Science.gov

Sample records for 105-kw fuel storage

  1. Sampling and Analysis Plan for canister liquid and gas sampling at 105-KW fuel storage basin

    SciTech Connect

    Harris, R.A.; Green, M.A.; Makenas, B.J.; Trimble, D.J.

    1995-03-01

    This Sampling and Analysis Plan (SAP) details the sampling and analyses to be performed on fuel canisters transferred to the Weasel Pit of the 105-KW fuel storage basin. The radionuclide content of the liquid and gas in the canisters must be evaluated to support the shipment of fuel elements to the 300 Area in support of the fuel characterization studies (Abrefah, et al. 1994, Trimble 1995). The following sections provide background information and a description of the facility under investigation, discuss the existing site conditions, present the constituents of concern, outline the purpose and scope of the investigation, outline the data quality objectives (DQO), provide analytical detection limit, precision, and accuracy requirements, and address other quality assurance (QA) issues.

  2. Sampling and analysis plan for canister liquid and gas sampling at 105 KW fuel storage basin

    SciTech Connect

    Trimble, D.J.

    1996-08-09

    This Sampling and Analysis Plan describes the equipment,procedures and techniques for obtaining gas and liquid samples from sealed K West fuel canisters. The analytical procedures and quality assurance requirements for the subsequent laboratory analysis of the samples are also discussed.

  3. Transfer of Plutonium-Uranium Extraction Plant and N Reactor irradiated fuel for storage at the 105-KE and 105-KW fuel storage basins, Hanford Site, Richland Washington

    SciTech Connect

    1995-07-01

    The U.S. Department of Energy (DOE) needs to remove irradiated fuel from the Plutonium-Uranium Extraction (PUREX) Plant and N Reactor at the Hanford Site, Richland, Washington, to stabilize the facilities in preparation for decontamination and decommissioning (D&D) and to reduce the cost of maintaining the facilities prior to D&D. DOE is proposing to transfer approximately 3.9 metric tons (4.3 short tons) of unprocessed irradiated fuel, by rail, from the PUREX Plant in the 200 East Area and the 105 N Reactor (N Reactor) fuel storage basin in the 100 N Area, to the 105-KE and 105-KW fuel storage basins (K Basins) in the 100 K Area. The fuel would be placed in storage at the K Basins, along with fuel presently stored, and would be dispositioned in the same manner as the other existing irradiated fuel inventory stored in the K Basins. The fuel transfer to the K Basins would consolidate storage of fuels irradiated at N Reactor and the Single Pass Reactors. Approximately 2.9 metric tons (3.2 short tons) of single-pass production reactor, aluminum clad (AC) irradiated fuel in four fuel baskets have been placed into four overpack buckets and stored in the PUREX Plant canyon storage basin to await shipment. In addition, about 0.5 metric tons (0.6 short tons) of zircaloy clad (ZC) and a few AC irradiated fuel elements have been recovered from the PUREX dissolver cell floors, placed in wet fuel canisters, and stored on the canyon deck. A small quantity of ZC fuel, in the form of fuel fragments and chips, is suspected to be in the sludge at the bottom of N Reactor`s fuel storage basin. As part of the required stabilization activities at N Reactor, this sludge would be removed from the basin and any identifiable pieces of fuel elements would be recovered, placed in open canisters, and stored in lead lined casks in the storage basin to await shipment. A maximum of 0.5 metric tons (0.6 short tons) of fuel pieces is expected to be recovered.

  4. Engineering study: 105KE to 105KW Basin fuel and sludge transfer. Final report

    SciTech Connect

    Gant, R.G.

    1994-09-20

    In the last five years, there have been three periods at the 105KE fuel storage basin (KE Basin) where the reported drawdown test rates were in excess of 25 gph. Drawdown rates in excess of this amount have been used during past operations as the primary indicators of leaks in the basin. The latest leak occurred in March, 1993. The reported water loss from the KE Basin was estimated at 25 gph. This engineering study was performed to identify and recommend the most feasible and practical method of transferring canisters of irradiated fuel and basin sludge from the KE Basin to the 105KW fuel storage basin (KW Basin). Six alternatives were identified during the performance of this study as possible methods for transferring the fuel and sludge from the KE Basin to the KW Basin. These methods were then assessed with regard to operations, safety, radiation exposure, packaging, environmental concerns, waste management, cost, and schedule; and the most feasible and practical methods of transfer were identified. The methods examined in detail in this study were based on shipment without cooling water except where noted: Transfer by rail using the previously used transfer system and water cooling; Transfer by rail using the previously used transfer system (without water cooling); Transfer by truck using the K Area fuel transfer cask (K Area cask); Transfer by truck using a DOE shipping cask; Transfer by truck using a commercial shipping cask; and Transfer by truck using a new fuel shipping cask.

  5. Radioactive Air Emissions Notice of Construction for the 105-KW Basin integrated water treatment system filter vessel sparging vent

    SciTech Connect

    Kamberg, L.D.

    1998-02-23

    This document serves as a notice of construction (NOC), pursuant to the requirements of Washington Administrative Code (WAC) 246-247-060, and as a request for approval to construct, pursuant to 40 Code of Federal Regulations (CFR) 61.07, for the Integrated Water Treatment System (IWTS) Filter Vessel Sparging Vent at 105-KW Basin. Additionally, the following description, and references are provided as the notices of startup, pursuant to 40 CFR 61.09(a)(1) and (2) in accordance with Title 40 Code of Federal Regulations, Part 61, National Emission Standards for Hazardous Air Pollutants. The 105-K West Reactor and its associated spent nuclear fuel (SNF) storage basin were constructed in the early 1950s and are located on the Hanford Site in the 100-K Area about 1,400 feet from the Columbia River. The 105-KW Basin contains 964 Metric Tons of SNF stored under water in approximately 3,800 closed canisters. This SNF has been stored for varying periods of time ranging from 8 to 17 years. The 105-KW Basin is constructed of concrete with an epoxy coating and contains approximately 1.3 million gallons of water with an asphaltic membrane beneath the pool. The IWTS, which has been described in the Radioactive Air Emissions NOC for Fuel Removal for 105-KW Basin (DOE/RL-97-28 and page changes per US Department of Energy, Richland Operations Office letter 97-EAP-814) will be used to remove radionuclides from the basin water during fuel removal operations. The purpose of the modification described herein is to provide operational flexibility for the IWTS at the 105-KW basin. The proposed modification is scheduled to begin in calendar year 1998.

  6. EFFECT ON 105KW NORTH WALL DUE TO ADDITION OF FILTRATION SYSTEM

    SciTech Connect

    CHO CS

    2010-03-08

    CHPRC D&D Projects is adding three filtration system on two 1-ft concrete pads adjacent to the north side of existing KW Basin building. This analysis is prepared to provide qualitative assessment based on the review of design information available for 105KW basin substructure. In the proposed heating, ventilation and air conditioning (HVAC) filtration pad designs a 2 ft gap will be maintained between the pads and the north end of the existing 1 05KW -Basin building. Filtration Skids No.2 and No.3 share one pad. It is conservative to evaluate the No.2 and No.3 skid pad for the wall assessment. Figure 1 shows the plan layout of the 105KW basin site and the location of the pads for the filtration system or HVAC skids. Figure 2 shows the cross-section elevation view of the pad. The concrete pad Drawing H-1-91482 directs the replacement of the existing 8-inch concrete pad with two new 1-ft think pads. The existing 8-inch pad is separated from the 105KW basin superstructure by an expansion joint of only half an inch. The concrete pad Drawing H-1-91482 shows the gap between the new proposed pads and the north wall and any overflow pits and sumps is 2-ft. Following analysis demonstrates that the newly added filtration units and their pads do not exceed the structural capacity of existing wall. The calculation shows that the total bending moment on the north wall due to newly added filtration units and pads including seismic load is 82.636 ft-kip/ft and is within the capacity of wall which is 139.0ft-kip/ft.

  7. Fuel performance in water storage

    SciTech Connect

    Hoskins, A.P.; Scott, J.G.; Shelton-Davis, C.V.; McDannel, G.E.

    1993-11-01

    Westinghouse Idaho Nuclear Company operates the Idaho Chemical Processing Plant (ICPP) at the Idaho National Engineering Laboratory (INEL) for the Department of Energy (DOE). A variety of different types of fuels have been stored there since the 1950`s prior to reprocessing for uranium recovery. In April of 1992, the DOE decided to end fuel reprocessing, changing the mission at ICPP. Fuel integrity in storage is now viewed as long term until final disposition is defined and implemented. Thus, the condition of fuel and storage equipment is being closely monitored and evaluated to ensure continued safe storage. There are four main areas of fuel storage at ICPP: an original underwater storage facility (CPP-603), a modern underwater storage facility (CPP-666), and two dry fuel storage facilities. The fuels in storage are from the US Navy, DOE (and its predecessors the Energy Research and Development Administration and the Atomic Energy Commission), and other research programs. Fuel matrices include uranium oxide, hydride, carbide, metal, and alloy fuels. In the underwater storage basins, fuels are clad with stainless steel, zirconium, and aluminum. Also included in the basin inventory is canned scrap material. The dry fuel storage contains primarily graphite and aluminum type fuels. A total of 55 different fuel types are currently stored at the Idaho Chemical Processing Plant. The corrosion resistance of the barrier material is of primary concern in evaluating the integrity of the fuel in long term water storage. The barrier material is either the fuel cladding (if not canned) or the can material.

  8. Spent-fuel-storage alternatives

    SciTech Connect

    Not Available

    1980-01-01

    The Spent Fuel Storage Alternatives meeting was a technical forum in which 37 experts from 12 states discussed storage alternatives that are available or are under development. The subject matter was divided into the following five areas: techniques for increasing fuel storage density; dry storage of spent fuel; fuel characterization and conditioning; fuel storage operating experience; and storage and transport economics. Nineteen of the 21 papers which were presented at this meeting are included in this Proceedings. These have been abstracted and indexed. (ATT)

  9. Selecting fuel storage tanks

    SciTech Connect

    Doherty, R. )

    1993-07-01

    Until the use of underground storage tanks (USTs) for fuel storage was mandated by the 1970 Uniform Fire Code, above-ground storage tanks (ASTs) were widely used. The tanks were relatively crude by today's standards so the technical superiority and fire protection afforded by use of underground tanks soon made USTs the system of choice for almost all uses. As a result, tens of thousands of tanks have been underground for more than 20 years, and at some point, many of them began leaking. Often, the first sign of these leaks appeared when groundwater became contaminated. The EPA responded to this major environmental problem by strictly regulating the use of below-ground tanks to store flammable liquids. These added regulations have had a severe effect on both service stations and private fueling. The removal of underground tanks and the removal and disposal of any contaminated soil is an extremely expensive proposition. Furthermore, new Uniform Fire Code regulations have added to the costs, imposing requirements for double-walled tanks, corrosion protection, electronic leak monitoring, and annual tank testing. These requirements, plus the financial responsibility requirements the EPA imposed on owners and users of below-ground tanks, led directly to a reconsideration of the use of above-ground tanks for some applications.

  10. Spent fuel storage. Facts booklet

    SciTech Connect

    1980-04-01

    In October 1977, the Department of Energy (DOE) announced a spent nuclear fuel policy where the Government would, under certain conditions, take title to and store spent nuclear fuel from commercial power reactors. The policy is intended to provide spent fuel storage until final disposition is available. DOE has programs for providing safe, long-term disposal of nuclear waste. The spent fuel storage program is one element of waste management and compliments the disposal program. The costs for spent fuel services are to be fully recovered by the Government from the utilities. This will allow the utilities to confidently consider the costs for disposition of spent fuel in their rate structure. The United States would also store limited amounts of foreign spent fuel to meet nonproliferation objectives. This booklet summarizes information on many aspects of spent fuel storage.

  11. Spent-fuel storage requirements

    NASA Astrophysics Data System (ADS)

    1982-06-01

    Spent fuel storage requirements, as projected through the year 2000 for U.S. LWRs, were calculated using information supplied by the utilities reflecting plant status as of December 31, 1981. Projections through the year 2000 combined fuel discharge projections of the utilities with the assumed discharges of typical reactors required to meet the nuclear capacity of 165 GWe projected by the Energy Information Administration for the year 2000. Three cases were developed and are summarized. A reference case, or maximum at-reactor capacity case, assumes that all reactor storage pools are increased to their maximum capacities as estimated by the utilities for spent fuel storage utilizing currently licensed technologies. The reference case assumes no transshipments between pools except as current licensed by the Nuclear Regulatory Commission. This case identifies an initial requirement for 13 MTU of additional storage in 1984, and a cumulative requirement for 14,490 MTU additional storage in the year 2000.

  12. CONSTRUCTION PROGRESS PHOTO SHOWING WEST STORAGE BASIN AT FUEL STORAGE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CONSTRUCTION PROGRESS PHOTO SHOWING WEST STORAGE BASIN AT FUEL STORAGE BUILDING (CPP-603). INL PHOTO NUMBER NRTS-51-689. Unknown Photographer, 1950 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  13. Spent fuel data for waste storage programs

    SciTech Connect

    Greene, E M

    1980-09-01

    Data on LWR spent fuel were compiled for dissemination to participants in DOE-sponsored waste storage programs. Included are mechanical descriptions of the existing major types of LWR fuel assemblies, spent LWR fuel fission product inventories and decay heat data, and inventories of LWR spent fuel currently in storage, with projections of future quantities.

  14. Compressed gas fuel storage system

    DOEpatents

    Wozniak, John J.; Tiller, Dale B.; Wienhold, Paul D.; Hildebrand, Richard J.

    2001-01-01

    A compressed gas vehicle fuel storage system comprised of a plurality of compressed gas pressure cells supported by shock-absorbing foam positioned within a shape-conforming container. The container is dimensioned relative to the compressed gas pressure cells whereby a radial air gap surrounds each compressed gas pressure cell. The radial air gap allows pressure-induced expansion of the pressure cells without resulting in the application of pressure to adjacent pressure cells or physical pressure to the container. The pressure cells are interconnected by a gas control assembly including a thermally activated pressure relief device, a manual safety shut-off valve, and means for connecting the fuel storage system to a vehicle power source and a refueling adapter. The gas control assembly is enclosed by a protective cover attached to the container. The system is attached to the vehicle with straps to enable the chassis to deform as intended in a high-speed collision.

  15. NORTH ELEVATION OF IRRADIATED FUEL STORAGE FACILITY LOCATED IN FUEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    NORTH ELEVATION OF IRRADIATED FUEL STORAGE FACILITY LOCATED IN FUEL STORAGE BUILDING (CPP-603). PHOTO TAKEN LOOKING SOUTH. INL PHOTO NUMBER HD-54-16-1. Mike Crane, Photographer, 8/2005 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  16. SOUTH ELEVATION OF IRRADIATED FUEL STORAGE FACILITY LOCATED IN FUEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SOUTH ELEVATION OF IRRADIATED FUEL STORAGE FACILITY LOCATED IN FUEL STORAGE BUILDING (CPP-603). PHOTO TAKEN LOOKING NORTH. INL PHOTO NUMBER HD-54-15-2. Mike Crane, Photographer, 8/2005 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  17. VIEW OF SOUTH STORAGE BASIN NUMBER 1 OF FUEL STORAGE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF SOUTH STORAGE BASIN NUMBER 1 OF FUEL STORAGE BUILDING (CPP-603). PHOTO TAKEN LOOKING NORTHEAST. INL PHOTO NUMBER HD-54-18-4. Mike Crane, Photographer, 8/2005 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  18. VIEW OF MIDDLE STORAGE BASIN NUMBER 2 OF FUEL STORAGE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF MIDDLE STORAGE BASIN NUMBER 2 OF FUEL STORAGE BUILDING (CPP-603). PHOTO TAKEN LOOKING NORTHEAST. INL PHOTO NUMBER HD-54-17-3. Mike Crane, Photographer, 8/2005 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  19. Fuel removal, transport, and storage

    SciTech Connect

    Reno, H.W.

    1986-01-01

    The March 1979 accident at Unit 2 of the Three Mile Island Nuclear Power Station (TMI-2) which damaged the core of the reactor resulted in numerous scientific and technical challenges. Some of those challenges involve removing the core debris from the reactor, packaging it into canisters, loading canisters into a rail cask, and transporting the debris to the Idaho National Engineering Laboratory (INEL) for storage, examination, and preparation for final disposal. This paper highlights how some challenges were resolved, including lessons learned and benefits derived therefrom. Key to some success at TMI was designing, testing, fabricating, and licensing two rail casks, which each provide double containment of the damaged fuel. 10 refs., 12 figs.

  20. Consequence Analysis for Used Fuel Extended Storage

    SciTech Connect

    Dunn, Timothy; Gerhard, Michael; Sutton, Mark; Wen, Josh

    2014-09-23

    Early identification and evaluation of security issues related to the extended storage of used nuclear fuel is critical. A breach in a dry fuel storage container has the possibility of external gas from the atmosphere interacting with the used fuel rods at high temperatures, resulting in rapid oxidation and possibly the ignition of a zirconium fire. In support of this idea, the current work aims to develop a computational model of heat transfer and fluid flow in and through a breached dry fuel storage cask to determine if the resulting flow conditions are likely to result in a fire.

  1. Metal hydride fuel storage and method thereof

    DOEpatents

    Morse, Jeffrey D.; Jankowski, Alan F.; Yu, Conrad

    2006-10-17

    Disclosed herein is a metal hydride fuel storage cartridge having integrated resistive heaters that can be used in conjunction with fuel cells such as MEMS-based fuel cells. The cartridge is fabricated using micromachining methods and thin/thick film materials synthesis techniques.

  2. Metal hydride fuel storage and method thereof

    DOEpatents

    Morse, Jeffrey D [Martinez, CA; Jankowski, Alan F [Livermore, CA; Yu, Conrad [Antioch, CA

    2009-05-05

    Disclosed herein is a metal hydride fuel storage cartridge having integrated resistive heaters that can be used in conjunction with fuel cells such as MEMS-based fuel cells. The cartridge is fabricated using micromachining methods and thin/thick film materials synthesis techniques.

  3. Hydrogen storage and integrated fuel cell assembly

    DOEpatents

    Gross, Karl J.

    2010-08-24

    Hydrogen is stored in materials that absorb and desorb hydrogen with temperature dependent rates. A housing is provided that allows for the storage of one or more types of hydrogen-storage materials in close thermal proximity to a fuel cell stack. This arrangement, which includes alternating fuel cell stack and hydrogen-storage units, allows for close thermal matching of the hydrogen storage material and the fuel cell stack. Also, the present invention allows for tailoring of the hydrogen delivery by mixing different materials in one unit. Thermal insulation alternatively allows for a highly efficient unit. Individual power modules including one fuel cell stack surrounded by a pair of hydrogen-storage units allows for distribution of power throughout a vehicle or other electric power consuming devices.

  4. Horizontal modular dry irradiated fuel storage system

    DOEpatents

    Fischer, Larry E.; McInnes, Ian D.; Massey, John V.

    1988-01-01

    A horizontal, modular, dry, irradiated fuel storage system (10) includes a thin-walled canister (12) for containing irradiated fuel assemblies (20), which canister (12) can be positioned in a transfer cask (14) and transported in a horizontal manner from a fuel storage pool (18), to an intermediate-term storage facility. The storage system (10) includes a plurality of dry storage modules (26) which accept the canister (12) from the transfer cask (14) and provide for appropriate shielding about the canister (12). Each module (26) also provides for air cooling of the canister (12) to remove the decay heat of the irradiated fuel assemblies (20). The modules (26) can be interlocked so that each module (26) gains additional shielding from the next adjacent module (26). Hydraulic rams (30) are provided for inserting and removing the canisters (12) from the modules (26).

  5. Spent fuel behavior in dry storage

    NASA Astrophysics Data System (ADS)

    Johnson, A. B., Jr.; Pankaskie, P. J.; Gilbert, E. R.

    1982-02-01

    Dry storage is emerging as an attractive and timely alternative to complement wet storage, and assist utilities to meet interim storage needs. Spent fuel is handled and stored under dry conditions. Dry storage of irradiated Zircaloy clad fuel in metal casks, drywells, silos and vaults is demonstrated. Hot cell and laboratory studies also are underway to investigate specific phenomena related to cladding behavior in dry storage. A substantial fraction of the LWR spent fuel inventory has aged for relatively long times and has relatively low decay heats. This suggests that much of the fuel inventory can be stored at relatively low temperatures. Alternatively, rod consolidation of the older can be considered without exceeding maximum cladding temperatures.

  6. Spent fuel storage requirements 1993--2040

    SciTech Connect

    Not Available

    1994-09-01

    Historical inventories of spent fuel are combined with U.S. Department of Energy (DOE) projections of future discharges from commercial nuclear reactors in the United States to provide estimates of spent fuel storage requirements through the year 2040. The needs are estimated for storage capacity beyond that presently available in the reactor storage pools. These estimates incorporate the maximum capacities within current and planned in-pool storage facilities and any planned transshipments of spent fuel to other reactors or facilities. Existing and future dry storage facilities are also discussed. The nuclear utilities provide historical data through December 1992 on the end of reactor life are based on the DOE/Energy Information Administration (EIA) estimates of future nuclear capacity, generation, and spent fuel discharges.

  7. Inspection of Used Fuel Dry Storage Casks

    SciTech Connect

    Dennis C. Kunerth; Tim McJunkin; Mark McKay; Sasan Bakhtiari

    2012-09-01

    ABSTRACT The U.S. Nuclear Regulatory Commission (NRC) regulates the storage of used nuclear fuel, which is now and will be increasingly placed in dry storage systems. Since a final disposition pathway is not defined, the fuel is expected to be maintained in dry storage well beyond the time frame originally intended. Due to knowledge gaps regarding the viability of current dry storage systems for long term use, efforts are underway to acquire the technical knowledge and tools required to understand the issues and verify the integrity of the dry storage system components. This report summarizes the initial efforts performed by researchers at Idaho National Laboratory and Argonne National Laboratory to identify and evaluate approaches to in-situ inspection dry storage casks. This task is complicated by the design of the current storage systems that severely restrict access to the casks.

  8. Energy Storage Fuel Cell Vehicle Analysis

    SciTech Connect

    Pesaran, A; Markel, T; Zolot, M; Sprik, S; Tataria, H; Duong, T

    2005-08-01

    In recent years, hydrogen fuel cell (FC) vehicle technology has received considerable attention as a strategy to decrease oil consumption and reduce harmful emissions. However, the cost, transient response, and cold performance of FC systems may present significant challenges to widespread adoption of the technology for transportation in the next 15 years. The objectives of this effort were to perform energy storage modeling with fuel cell vehicle simulations to quantify the benefits of hybridization and to identify a process for setting the requirements of ES for hydrogen-powered FC vehicles for U.S. Department of Energy's Energy Storage Program.

  9. Fuel Temperature Fluctuations During Storage

    NASA Astrophysics Data System (ADS)

    Levitin, R. E.; Zemenkov, Yu D.

    2016-10-01

    When oil and petroleum products are stored, their temperature significantly impacts how their properties change. The paper covers the problem of determining temperature fluctuations of hydrocarbons during storage. It provides results of the authors’ investigations of the stored product temperature variations relative to the ambient temperature. Closeness and correlation coefficients between these values are given. Temperature variations equations for oil and petroleum products stored in tanks are deduced.

  10. Fuel Cells and Electrochemical Energy Storage.

    ERIC Educational Resources Information Center

    Sammells, Anthony F.

    1983-01-01

    Discusses the nature of phosphoric acid, molten carbonate, and solid oxide fuel cells and major features and types of batteries used for electrical energy storage. Includes two tables presenting comparison of major battery features and summary of major material problems in the sodium-sulfur and lithium-alloy metal sulfide batteries. (JN)

  11. 46 CFR 108.237 - Fuel storage facilities.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Fuel storage facilities. 108.237 Section 108.237... AND EQUIPMENT Construction and Arrangement Helicopter Facilities § 108.237 Fuel storage facilities. (a) Helicopter fuel storage tanks must be installed as far as practicable from— (1) The landing area; and...

  12. Fuel cell energy storage for Space Station enhancement

    NASA Technical Reports Server (NTRS)

    Stedman, J. K.

    1990-01-01

    Viewgraphs on fuel cell energy storage for space station enhancement are presented. Topics covered include: power profile; solar dynamic power system; photovoltaic battery; space station energy demands; orbiter fuel cell power plant; space station energy storage; fuel cell system modularity; energy storage system development; and survival power supply.

  13. 46 CFR 108.237 - Fuel storage facilities.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Fuel storage facilities. 108.237 Section 108.237... AND EQUIPMENT Construction and Arrangement Helicopter Facilities § 108.237 Fuel storage facilities. (a) Helicopter fuel storage tanks must be installed as far as practicable from— (1) The landing area; and...

  14. FACILITY LAYOUT OF FUEL STORAGE BUILDING (CPP603) SHOWING STORAGE BASINS, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FACILITY LAYOUT OF FUEL STORAGE BUILDING (CPP-603) SHOWING STORAGE BASINS, FUEL ELEMENT CUTTING FACILITY, AND DRY GRAPHITE STORAGE FACILITY. INL DRAWING NUMBER 200-0603-00-030-056329. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  15. Unreviewed safety question evaluation of 100 K West fuel canister gas and liquid sampling

    SciTech Connect

    Alwardt, L.D.

    1995-01-12

    The purpose of this report is to provide the basis for answers to an Unreviewed Safety Question (USQ) safety evaluation for the gas and liquid sampling activities associated with the fuel characterization program at the 100 K West (KW) fuel storage basin. The scope of this safety evaluation is limited to the movement of canisters between the main storage basin, weasel pit, and south loadout pit transfer channel (also known as the decapping station); gas and liquid sampling of fuel canisters in the weasel pit; mobile laboratory preliminary sample analysis in or near the 105 KW basin building; and the placement of sample containers in an approved shipping container. It was concluded that the activities and potential accident consequences associated with the gas and liquid sampling of 100 KW fuel canisters are bounded by the current safety basis documents and do not constitute an Unreviewed Safety Question.

  16. Behavior of spent nuclear fuel and storage system components in dry interim storage. Revision 1

    SciTech Connect

    Johnson, A.B. Jr.; Gilbert, E.R.; Guenther, R.J.

    1983-02-01

    Irradiated nuclear fuel has been handled under dry conditions since the early days of nuclear reactor operation, and use of dry storage facilities for extended management of irradiated fuel began in 1964. Irradiated fuel is currently being stored dry in four types of facilities: dry wells, vaults, silos, and metal casks. Essentially all types of irradiated nuclear fuel are currently stored under dry conditions. Gas-cooled reactor (GCR) and liquid metal fast breeder reactor (LMFBR) fuels are stored in vaults and dry wells. Certain types of fuel are being stored in licensed dry storage facilities: Magnox fuel in vaults in the United Kingdom; organic-cooled reactor (OCR) fuel (clad with a zirconium alloy) in silos in Canada; and boiling water reactor (BWR) fuel (clad with Zircaloy) in a metal storage cask in Germany. Dry storage demonstrations are under way for Zircaloy-clad fuel from BWRs, pressurized heavy-water reactors (PHWRs), and pressurized water reactors (PWRs) in all four types of dry storage facilities. The demonstrations and related hot cell and laboratory tests are directed toward expanding the data base and establishing a licensing basis for dry storage of water reactor fuel. This report reviews the scope of dry interim storage technology, the performance of fuel and facility materials, the status of programs in several countries to license dry storage of water reactor fuel, and the characteristics of water reactor fuel that relate to dry storage conditions. 110 refs., 22 figs., 28 tabs.

  17. International safeguards for spent fuel storage

    SciTech Connect

    Kratzer, M.; Wonder, E.; Immerman, W.; Crane, F.

    1981-08-01

    This report analyzes the nonproliferation effectiveness and political and economic acceptability of prospective improvements in international safeguard techniques for LWR spent fuel storage. Although the applicability of item accounting considerably eases the safeguarding of stored spent fuel, the problem of verification is potentially serious. A number of simple gamma and neutron nondestructive assay techniques were found to offer considerable improvements, of a qualitative rather than quantitative nature, in verification-related data and information, and possess the major advantage of intruding very little on facility operations. A number of improved seals and monitors appear feasible as well, but improvements in the timeliness of detection will not occur unless the frequency of inspection is increased or a remote monitoring capability is established. Limitations on IAEA Safeguards resources and on the integration of results from material accounting and containment and surveillance remain problems.

  18. Ingredients of proper wood fuel storage

    SciTech Connect

    White, M.S.

    1980-06-01

    This article deals with wood fuel storage and some of the problems arising out of long term storage. It was found that piles with steep sloping sides caused rainwater to be shed, while flat piles allowed rain water to percolate and become absorbed by the wood. After five months of storage, the outer one foot of cone-shaped piles gained moisture while the bulk of it was dried. Incidences of spontaneous fires increased with a pile height above 16 foot. The fires were commonly located in cracks near the surface of the pile which allowed oxygen to come in contact with the hot interior. Several preventative measures are put forward, these include the development of a first-in first-out storage and retrieval system, construction of piles on a non-combustible thermal conducting surface and removal of ice from the pile surface to allow heat to escape are suggested. The covering of green piles may decrease the average moisture content but should also be well ventilated to allow heat to escape.

  19. EAST ELEVATION OF HIGH BAY ADDITION OF FUEL STORAGE BUILDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EAST ELEVATION OF HIGH BAY ADDITION OF FUEL STORAGE BUILDING (CPP-603). INL DRAWING NUMBER 200-0603-00-706-051286. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  20. Behavior of spent nuclear fuel and storage system components in dry interim storage.

    SciTech Connect

    Johnson, A.B. Jr.; Gilbert, E.R.; Guenther, R.J.

    1982-08-01

    Irradiated nuclear fuel has been handled under dry conditions since the early days of nuclear reactor operation, and use of dry storage facilities for extended management of irradiated fuel began in 1964. Irradiated fuel is currently being stored dry in four types of facilities: dry wells, vaults, silos, and metal casks. Essentially all types of irradiated nuclear fuel are currently stored under dry conditions. Gas-cooled reactor (GCR) and liquid metal fast breeder reactor (LMFBR) fuels are stored in vaults and dry wells. Certain types of fuel are being stored in licensed dry storage facilities: Magnox fuel in vaults in the United Kingdom and organic-cooled reactor (OCR) fuel in silos in Canada. Dry storage demonstrations are under way for Zircaloy-clad fuel from boiling water reactors BWR's, pressurized heavy-water reactors (PHWRs), and pressurized water reactors (PWRs) in all four types of dry storage facilities. The demonstrations and related hot cell and laboratory tests are directed toward expanding the data base and establishing a licensing basis for dry storage of water reactor fuel. This report reviews the scope of dry interim storage technology, the performance of fuel and facility materials, the status of programs in several countries to license dry storage of water reactor fuel, and the characteristics of water reactor fuel that relate to dry storage conditions.

  1. Movement of Fuel Ashore: Storage, Capacity, Throughput, and Distribution Analysis

    DTIC Science & Technology

    2015-12-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release; distribution is unlimited MOVEMENT OF FUEL...3. REPORT TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE MOVEMENT OF FUEL ASHORE: STORAGE, CAPACITY, THROUGHPUT, AND DISTRIBUTION...of fuel movement ashore using only the ship- to-shore connectors available to the MEB. 14. SUBJECT TERMS Marine Corps, fuel, energy

  2. PLOT PLAN OF FUEL STORAGE BUILDING (CPP603) SHOWING STORAGE BASINS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PLOT PLAN OF FUEL STORAGE BUILDING (CPP-603) SHOWING STORAGE BASINS AND PROPOSED LOCATION OF FUEL ELEMENT CUTTING FACILITY. INL DRAWING NUMBER 200-0603-00-706-051287. ALTERNATE ID NUMBER CPP-C-1287. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  3. Hanford Single-Pass Reactor Fuel Storage Basin Demolition.

    PubMed

    Armstrong, Jason A.

    2003-02-01

    ABSTRACT The Environmental Restoration Contractor at the Hanford Site is tasked with removing auxiliary reactor structures and leaving the remaining concrete structure surrounding each reactor core. This is referred to as Interim Safe Storage. Part of placing the F Reactor into Interim Safe Storage is the demolition of the fuel storage basin, which was deactivated in 1970 by placing debris material into the basin prior to back filling with soil. Besides the debris material (wooden floor decking, handrails, and monorail pieces), the fuel storage basin contents included the possibility of spent nuclear fuel, fuel buckets, fuel spacers, process tubes, and tongs. Demolition of the fuel storage basin offered many unique radiological control challenges and innovative approaches to demolition. This paper describes how the total effective dose equivalent and contamination were controlled, how the use of a remote operated excavator was employed to remove high-dose-rate material, and how wireless technology was used to monitor changing radiological conditions.

  4. Hanford single-pass reactor fuel storage basin demolition.

    PubMed

    Armstrong, Jason A

    2003-02-01

    The Environmental Restoration Contractor at the Hanford Site is tasked with removing auxiliary reactor structures and leaving the remaining concrete structure surrounding each reactor core. This is referred to as Interim Safe Storage. Part of placing the F Reactor into Interim Safe Storage is the demolition of the fuel storage basin, which was deactivated in 1970 by placing debris material into the basin prior to back filling with soil. Besides the debris material (wooden floor decking, handrails, and monorail pieces), the fuel storage basin contents included the possibility of spent nuclear fuel, fuel buckets, fuel spacers, process tubes, and tongs. Demolition of the fuel storage basin offered many unique radiological control challenges and innovative approaches to demolition. This paper describes how the total effective dose equivalent and contamination were controlled, how the use of a remote operated excavator was employed to remove high-dose-rate material, and how wireless technology was used to monitor changing radiological conditions.

  5. Energy storage in ultrathin solid oxide fuel cells.

    PubMed

    Van Overmeere, Quentin; Kerman, Kian; Ramanathan, Shriram

    2012-07-11

    The power output of hydrogen fuel cells quickly decreases to zero if the fuel supply is interrupted. We demonstrate thin film solid oxide fuel cells with nanostructured vanadium oxide anodes that generate power for significantly longer time than reference porous platinum anode thin film solid oxide fuel cells when the fuel supply is interrupted. The charge storage mechanism was investigated quantitatively with likely identified contributions from the oxidation of the vanadium oxide anode, its hydrogen storage properties, and different oxygen concentration at the electrodes. Fuel cells capable of storing charge even for short periods of time could contribute to ultraminiaturization of power sources for mobile energy.

  6. Bases for extrapolating materials durability in fuel storage pools

    SciTech Connect

    Johnson, A.B. Jr.

    1994-12-01

    A major body of evidence indicates that zirconium alloys have the most consistent and reliable durability in wet storage, justifying projections of safe wet storage greater than 50 y. Aluminum alloys have the widest range of durabilities in wet storage; systematic control and monitoring of water chemistry have resulted in low corrosion rates for more than two decades on some fuels and components. However, cladding failures have occurred in a few months when important parameters were not controlled. Stainless steel is extremely durable when stress, metallurgical and water chemistry factors are controlled. LWR SS cladding has survived for 25 y in wet storage. However, sensitized, stressed SS fuels and components have seriously degraded in fuel storage pools (FSPs) at {approximately} 30 C. Satisfactory durability of fuel assembly and FSP component materials in extended wet storage requires investments in water quality management and surveillance, including chemical and biological factors. The key aspect of the study is to provide storage facility operators and other decision makers a basis to judge the durability of a given fuel type in wet storage as a prelude to basing other fuel management plans (e.g. dry storage) if wet storage will not be satisfactory through the expected period of interim storage.

  7. Heat Transfer Modeling of Dry Spent Nuclear Fuel Storage Facilities

    SciTech Connect

    Lee, S.Y.

    1999-01-13

    The present work was undertaken to provide heat transfer model that accurately predicts the thermal performance of dry spent nuclear fuel storage facilities. One of the storage configurations being considered for DOE Aluminum-clad Spent Nuclear Fuel (Al-SNF), such as the Material and Testing Reactor (MTR) fuel, is in a dry storage facility. To support design studies of storage options a computational and experimental program has been conducted at the Savannah River Site (SRS). The main objective is to develop heat transfer models including natural convection effects internal to an interim dry storage canister and to geological codisposal Waste Package (WP). Calculated temperatures will be used to demonstrate engineering viability of a dry storage option in enclosed interim storage and geological repository WP and to assess the chemical and physical behaviors of the Al-SNF in the dry storage facilities. The current paper describes the modeling approaches and presents the computational results along with the experimental data.

  8. 17. Forge building, fuel storage shed, and foundry, 1906 Photocopied ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. Forge building, fuel storage shed, and foundry, 1906 Photocopied from a photograph by Thomas S. Bronson, 'Group at Whitney Factory, 5 November 1906,' NHCHSL. The most reliable view of the fuel storage sheds and foundry, together with a view of the forge building. - Eli Whitney Armory, West of Whitney Avenue, Armory Street Vicinity, Hamden, New Haven County, CT

  9. Alkaline regenerative fuel cell systems for energy storage

    SciTech Connect

    Schubert, F.H.; Reid, M.A.; Martin, R.E.

    1981-01-01

    This paper presents the results of a preliminary design study of a Regenerative Fuel Cell Energy Storage system for application to future low-earth orbit space missions. This high energy density storage system is based on state-of-the-art alkaline electrolyte cell technology and incorporates dedicated fuel cell and electrolysis cell modules. 11 refs.

  10. Used fuel extended storage security and safeguards by design roadmap

    SciTech Connect

    Durbin, Samuel G.; Lindgren, Eric Richard; Jones, Robert; Ketusky, Edward; England, Jeffrey; Scherer, Carolynn; Sprinkle, James; Miller, Michael.; Rauch, Eric; Scaglione, John; Dunn, T.

    2016-05-01

    In the United States, spent nuclear fuel (SNF) is safely and securely stored in spent fuel pools and dry storage casks. The available capacity in spent fuel pools across the nuclear fleet has nearly reached a steady state value. The excess SNF continues to be loaded in dry storage casks. Fuel is expected to remain in dry storage for periods beyond the initial dry cask certification period of 20 years. Recent licensing renewals have approved an additional 40 years. This report identifies the current requirements and evaluation techniques associated with the safeguards and security of SNF dry cask storage. A set of knowledge gaps is identified in the current approaches. Finally, this roadmap identifies known knowledge gaps and provides a research path to deliver the tools and models needed to close the gaps and allow the optimization of the security and safeguards approaches for an interim spent fuel facility over the lifetime of the storage site.

  11. Corrosion assessment of dry fuel storage containers

    SciTech Connect

    Graves, C.E.

    1994-09-01

    The structural stability as a function of expected corrosion degradation of 75 dry fuel storage containers located in the 200 Area Low-Level Waste Burial Grounds was evaluated. These containers include 22 concrete burial containers, 13 55-gal (208-l) drums, and 40 Experimental Breeder Reactor II (EBR-II) transport/storage casks. All containers are buried beneath at least 48 in. of soil and a heavy plastic tarp with the exception of 35 of the EBR-II casks which are exposed to atmosphere. A literature review revealed that little general corrosion is expected and pitting corrosion of the carbon steel used as the exterior shell for all containers (with the exception of the concrete containers) will occur at a maximum rate of 3.5 mil/yr. Penetration from pitting of the exterior shell of the 208-l drums and EBR-II casks is calculated to occur after 18 and 71 years of burial, respectively. The internal construction beneath the shell would be expected to preclude containment breach, however, for the drums and casks. The estimates for structural failure of the external shells, large-scale shell deterioration due to corrosion, are considerably longer, 39 and 150 years respectively for the drums and casks. The concrete burial containers are expected to withstand a service life of 50 years.

  12. Lightweight cryogenic-compatible pressure vessels for vehicular fuel storage

    DOEpatents

    Aceves, Salvador; Berry, Gene; Weisberg, Andrew H.

    2004-03-23

    A lightweight, cryogenic-compatible pressure vessel for flexibly storing cryogenic liquid fuels or compressed gas fuels at cryogenic or ambient temperatures. The pressure vessel has an inner pressure container enclosing a fuel storage volume, an outer container surrounding the inner pressure container to form an evacuated space therebetween, and a thermal insulator surrounding the inner pressure container in the evacuated space to inhibit heat transfer. Additionally, vacuum loss from fuel permeation is substantially inhibited in the evacuated space by, for example, lining the container liner with a layer of fuel-impermeable material, capturing the permeated fuel in the evacuated space, or purging the permeated fuel from the evacuated space.

  13. Arrival condition of spent fuel after storage, handling, and transportation

    SciTech Connect

    Bailey, W.J.; Pankaskie, P.J.; Langstaff, D.C.; Gilbert, E.R.; Rising, K.H.; Schreiber, R.E.

    1982-11-01

    This report presents the results of a study conducted to determine the probable arrival condition of spent light-water reactor (LWR) fuel after handling and interim storage in spent fuel storage pools and subsequent handling and accident-free transport operations under normal or slightly abnormal conditions. The objective of this study was to provide information on the expected condition of spent LWR fuel upon arrival at interim storage or fuel reprocessing facilities or at disposal facilities if the fuel is declared a waste. Results of a literature survey and data evaluation effort are discussed. Preliminary threshold limits for storing, handling, and transporting unconsolidated spent LWR fuel are presented. The difficulty in trying to anticipate the amount of corrosion products (crud) that may be on spent fuel in future shipments is also discussed, and potential areas for future work are listed. 95 references, 3 figures, 17 tables.

  14. PLAN VIEW OF FUEL STORAGE BUILDING (CPP603) SHOWING STORAGE BASINS. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PLAN VIEW OF FUEL STORAGE BUILDING (CPP-603) SHOWING STORAGE BASINS. INL DRAWING NUMBER 200-0603-00-706-051285. ALTERNATE ID NUMBER CPP-D-1285. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  15. Interim Storage of Hanford Spent Fuel & Associated Sludge

    SciTech Connect

    MAKENAS, B.J.

    2002-07-01

    The Hanford site is currently dealing with a number of types of Spent Nuclear Fuel. The route to interim dry storage for the various fuel types branches along two different paths. Fuel types such as metallic N reactor fuel and Shippingport Core 2 Blanket assemblies are being placed in approximately 4 m long canisters which are then stored in tubes below grade in a new canister storage building. Other fuels such as TRIGA{trademark} and Light Water Reactor fuel will be relocated and stored in stand-alone casks on a concrete pad. Varying degrees of sophistication are being applied with respect to the drying and/or evacuation of the fuel interim storage canisters depending on the reactivity of the fuel, the degree of damaged fuel and the previous storage environment. The characterization of sludge from the Hanford K Basins is nearly complete and canisters are being designed to store the sludge (including uranium particles from fuel element cleaning) on an interim basis.

  16. Licensing of spent fuel dry storage and consolidated rod storage: A Review of Issues and Experiences

    SciTech Connect

    Bailey, W.J.

    1990-02-01

    The results of this study, performed by Pacific Northwest Laboratory (PNL) and sponsored by the US Department of Energy (DOE), respond to the nuclear industry's recommendation that a report be prepared that collects and describes the licensing issues (and their resolutions) that confront a new applicant requesting approval from the US Nuclear Regulatory Commission (NRC) for dry storage of spent fuel or for large-scale storage of consolidated spent fuel rods in pools. The issues are identified in comments, questions, and requests from the NRC during its review of applicants' submittals. Included in the report are discussions of (1) the 18 topical reports on cask and module designs for dry storage fuel that have been submitted to the NRC, (2) the three license applications for dry storage of spent fuel at independent spent fuel storage installations (ISFSIs) that have been submitted to the NRC, and (3) the three applications (one of which was later withdrawn) for large-scale storage of consolidated fuel rods in existing spent fuel storage pools at reactors that were submitted tot he NRC. For each of the applications submitted, examples of some of the issues (and suggestions for their resolutions) are described. The issues and their resolutions are also covered in detail in an example in each of the three subject areas: (1) the application for the CASTOR V/21 dry spent fuel storage cask, (2) the application for the ISFSI for dry storage of spent fuel at Surry, and (3) the application for full-scale wet storage of consolidated spent fuel at Millstone-2. The conclusions in the report include examples of major issues that applicants have encountered. Recommendations for future applicants to follow are listed. 401 refs., 26 tabs.

  17. Spent fuel dry storage technology development: thermal evaluation of sealed storage cask containing spent fuel

    SciTech Connect

    Schmitten, P.F.; Wright, J.B.

    1980-08-01

    A PWR spent fuel assembly was encapsulated inside the E-MAD Hot Bay and placed in a instrumented above surface storage cell during December 1978 for thermal testing. Instrumentation provided to measure canister, liner and concrete temperatures consisted of thermocouples which were inserted into tubes on the outside of the canister and liner and in three radial positions in the concrete. Temperatures from the SSC test assembly have been recorded throughout the past 16 months. Canister and liner temperatures have reached their peak values of 200{sup 0}F and 140{sup 0}F, respectively. Computer predictions of the transient and steady-state temperatures show good agreement with the test data.

  18. Spent nuclear fuel Canister Storage Building CDR Review Committee report

    SciTech Connect

    Dana, W.P.

    1995-12-01

    The Canister Storage Building (CSB) is a subproject under the Spent Nuclear Fuels Major System Acquisition. This subproject is necessary to design and construct a facility capable of providing dry storage of repackaged spent fuels received from K Basins. The CSB project completed a Conceptual Design Report (CDR) implementing current project requirements. A Design Review Committee was established to review the CDR. This document is the final report summarizing that review

  19. Fuel Cell Systems for First Lunar Outpost: Reactant Storage Options

    NASA Technical Reports Server (NTRS)

    Nelson, P. A.

    1996-01-01

    A Lunar Surface Power Working Group was formed to review candidate systems for providing power to the first lunar outpost habitat. The working group concluded that the most attractive candidate included a photovoltaic unit, a fuel cell, a regenerator to recycle the reactants, and storage of oxygen and hydrogen gases. Most of the volume (97 percent) and weight (64 percent) are taken up by the reactants and their storage tank. The large volume is difficult to accommodate, and therefore, the working group explored ways of reducing the volume. An alternative approach to providing separate high pressure storage tanks is to use two of the descent stage propellant storage tanks, which would have to be wrapped with graphite fibers to increase their pressure capability. This saves 90 percent of the volume required for storage of fuel cell reactants. Another approach is to use the descent storage propellant tanks for storage of the fuel cell reactants as cryogenic liquids, but his requires a gas liquefication system, increases the solar array by 40 percent, and increases the heat rejection rate by 170 percent compared with storage of reactants as high pressure gases. For a high power system (greater than 20 kW) the larger energy storage requirements would probably favor the cryogenic storage option.

  20. Fuel cell systems for first lunar outpost -- Reactant storage options

    SciTech Connect

    Nelson, P.A.

    1995-06-01

    A Lunar Surface Power Working Group was formed to review candidate systems for providing power to the First Lunar Outpost habitat. The working group met for five days in the fall of 1992 and concluded that the most attractive candidate included a photovoltaic unit, a fuel cell, a regenerator to recycle the reactants, and storage of oxygen and hydrogen gases. Most of the volume (97%) and weight (64%) are taken up by the reactants and their storage tanks. The large volume is difficult to accommodate, and therefore, the working group explored ways of reducing the volume. An alternative approach to providing separate high pressure storage tanks is to use two of the descent stage propellant storage tanks, which would have to be wrapped with graphite fibers to increase their pressure capability. This saves 90% of the volume required for storage of fuel cell reactants. Another approach is to use the descent storage propellant tanks for storage of the fuel cell reactants as cryogenic liquids, but this requires a gas liquefaction system, increases the solar array by 40%, and increases the heat rejection rate by 170% compared with storage of reactants as high pressure gases. For a high power system (>20 kW) the larger energy storage requirement would probably favor the cryogenic storage option.

  1. Minimum criticality dose evaluation for the Irradiated Fuel Storage Facility

    SciTech Connect

    Kim, S.S.

    1999-09-01

    The Irradiated Fuel Storage Facility (IFSF) is a government-owned, contractor-operated facility located at the Idaho National Engineering and Environmental Laboratory within the Idaho Nuclear Technology and Engineering Center. The mission of the facility is to provide safe dry storage for various types of irradiated fuels. Included are fuel elements such as irradiated ATR, EBR, MTR, Fort St. Vrain, TRIGA, and ROVER Parka fuels. Fuels requiring dry storage are received at the IFSF in fuel-shipping casks. At the facility receiving dock, the casks are removed from the transport vehicle, positioned in a cask transport car, and moved into the fuel-handling cave. Several functions are performed in the fuel-handling cave, including transferring fuel from shipping casks to storage canisters, preparing fuel elements for storage and processing. The minimum postulated criticality dose calculations were performed for the cask-receiving and fuel-handling areas to place criticality alarm system (CAS) detectors. The number of fissions for the minimum accident of concern is based on a dose of 20-rad air at 2 m in 1 min. The eigenvalue calculations were first performed to determine the size of the critical source. Then, two sets of fixed-source calculations were followed to calculate contributions from neutron and capture gamma rays and from prompt gamma rays. Two sets of MCNP calculations involved point and spherical critical sources. Validity of the Monte Carlo results was tested against ANISN deterministic calculations. The flux-to-dose conversion factors are based on ANSI/ANS-6.1.1-1977. All of the MCNP runs used continuous-energy ENDF/B-V cross sections. The BUGLE-80 cross-section library was used for the ANISN calculations.

  2. Dry Storage of Research Reactor Spent Nuclear Fuel - 13321

    SciTech Connect

    Adams, T.M.; Dunsmuir, M.D.; Leduc, D.R.; Severynse, T.F.; Sindelar, R.L.; Moore, E.N.

    2013-07-01

    Spent fuel from domestic and foreign research reactors is received and stored at the Savannah River Site's L Area Material Storage (L Basin) Facility. This DOE-owned fuel consists primarily of highly enriched uranium in metal, oxide or silicide form with aluminum cladding. Upon receipt, the fuel is unloaded and transferred to basin storage awaiting final disposition. Disposition alternatives include processing via the site's H Canyon facility for uranium recovery, or packaging and shipment of the spent fuel to a waste repository. A program has been developed to provide a phased approach for dry storage of the L Basin fuel. The initial phase of the dry storage program will demonstrate loading, drying, and storage of fuel in twelve instrumented canisters to assess fuel performance. After closure, the loaded canisters are transferred to pad-mounted concrete overpacks, similar to those used for dry storage of commercial fuel. Unlike commercial spent fuel, however, the DOE fuel has high enrichment, very low to high burnup, and low decay heat. The aluminum cladding presents unique challenges due to the presence of an oxide layer that forms on the cladding surface, and corrosion degradation resulting from prolonged wet storage. The removal of free and bound water is essential to the prevention of fuel corrosion and radiolytic generation of hydrogen. The demonstration will validate models predicting pressure, temperature, gas generation, and corrosion performance, provide an engineering scale demonstration of fuel handling, drying, leak testing, and canister backfill operations, and establish 'road-ready' storage of fuel that is suitable for offsite repository shipment or retrievable for onsite processing. Implementation of the Phase I demonstration can be completed within three years. Phases II and III, leading to the de-inventory of L Basin, would require an additional 750 canisters and 6-12 years to complete. Transfer of the fuel from basin storage to dry storage

  3. 11. The work area of a typical fuel storage and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. The work area of a typical fuel storage and transfer basin. The wooden floor was built over the 20-foot deep water-filled basin. Buckets filled with irradiated fuel of dummy slugs in the floor and were hung on trolleys attached to the monorail tracks suspended from the ceiling. 85-H807 - B Reactor, Richland, Benton County, WA

  4. 81. GENERAL VIEW FROM NORTH OF FUEL STORAGE TANK ON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    81. GENERAL VIEW FROM NORTH OF FUEL STORAGE TANK ON SOUTH END OF SLC-3W FUEL APRON. CORNER OF CONTROL SKID VISIBLE ON LEFT. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  5. 82. GENERAL VIEW FROM NORTH OF FUEL STORAGE AND TRANSFER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    82. GENERAL VIEW FROM NORTH OF FUEL STORAGE AND TRANSFER CONTROL SKID (SKID 2) ON SOUTH END OF SLC-3W FUEL APRON - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  6. VIEW OF CRANE LOADING AND UNLOADING AREA OF FUEL STORAGE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF CRANE LOADING AND UNLOADING AREA OF FUEL STORAGE BUILDING (CPP-603). PHOTO TAKEN LOOKING SOUTH. INL PHOTO NUMBER HD-54-17-1. Mike Crane, Photographer, 8/2005 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  7. SOUTH, EAST, NORTH ELEVATIONS AND SECTIONS OF FUEL STORAGE BUILDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SOUTH, EAST, NORTH ELEVATIONS AND SECTIONS OF FUEL STORAGE BUILDING (CPP-603). INL DRAWING NUMBER 200-0603-61-299-103030. ALTERNATE ID NUMBER 542-31-B-22. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  8. VIEW OF CRANE LOADING AND UNLOADING AREA OF FUEL STORAGE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF CRANE LOADING AND UNLOADING AREA OF FUEL STORAGE BUILDING (CPP-603). PHOTO TAKEN LOOKING NORTH. INL PHOTO NUMBER HD-54-17-4. Mike Crane, Photographer, 8/2005 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  9. CONSTRUCTION PROGRESS PHOTO SHOWING EMPLACEMENT STEEL BEAMS FUEL STORAGE BUILDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CONSTRUCTION PROGRESS PHOTO SHOWING EMPLACEMENT STEEL BEAMS FUEL STORAGE BUILDING (CPP-603) LOOKING EAST. INL PHOTO NUMBER NRTS-51-1371. Unknown Photographer, 1/31/1951 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  10. INTERIOR OF SECOND FLOOR CONTROL ROOM OF FUEL STORAGE BUILDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR OF SECOND FLOOR CONTROL ROOM OF FUEL STORAGE BUILDING (CPP-603). PHOTO TAKEN LOOKING SOUTHWEST. INL PHOTO NUMBER HD-54-19-2. Mike Crane, Photographer, 8/2005 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  11. Alkaline fuel cells for prime power and energy storage

    NASA Astrophysics Data System (ADS)

    Stedman, J. K.

    Alkaline fuel cell technology and its application to future space missions requiring high power and energy storage are discussed. Energy densities exceeding 100 watthours per pound and power densities approaching 0.5 pounds per kilowatt are calculated for advanced systems. Materials research to allow reversible operation of cells for energy storage and higher temperature operation for peaking power is warranted.

  12. Safety issues of dry fuel storage at RSWF

    SciTech Connect

    Clarksean, R.L.; Zahn, T.P.

    1995-02-01

    Safety issues associated with the dry storage of EBR-II spent fuel are presented and discussed. The containers for the fuel have been designed to prevent a leak of fission gases to the environment. The storage system has four barriers for the fission gases. These barriers are the fuel cladding, an inner container, an outer container, and the liner at the RSWF. Analysis has shown that the probability of a leak to the environment is much less than 10{sup {minus}6} per year, indicating that such an event is not considered credible. A drop accident, excessive thermal loads, criticality, and possible failure modes of the containers are also addressed.

  13. Microbial Condition of Water Samples from Foreign Fuel Storage Facilities

    SciTech Connect

    Berry, C.J.; Fliermans, C.B.; Santo Domingo, J.

    1997-10-30

    In order to assess the microbial condition of foreign nuclear fuel storage facilities, fourteen different water samples were received from facilities outside the United States that have sent spent nuclear fuel to SRS for wet storage. Each water sample was analyzed for microbial content and activity as determined by total bacteria, viable aerobic bacteria, viable anaerobic bacteria, viable sulfate- reducing bacteria, viable acid-producing bacteria and enzyme diversity. The results for each water sample were then compared to other foreign samples and to data from the receiving basin for off- site fuel (RBOF) at SRS.

  14. Fuel Storage Facility Final Safety Analysis Report. Revision 1

    SciTech Connect

    Linderoth, C.E.

    1984-03-01

    The Fuel Storage Facility (FSF) is an integral part of the Fast Flux Test Facility. Its purpose is to provide long-term storage (20-year design life) for spent fuel core elements used to provide the fast flux environment in FFTF, and for test fuel pins, components and subassemblies that have been irradiated in the fast flux environment. This Final Safety Analysis Report (FSAR) and its supporting documentation provides a complete description and safety evaluation of the site, the plant design, operations, and potential accidents.

  15. Storage, transportation and disposal system for used nuclear fuel assemblies

    DOEpatents

    Scaglione, John M.; Wagner, John C.

    2017-01-10

    An integrated storage, transportation and disposal system for used fuel assemblies is provided. The system includes a plurality of sealed canisters and a cask sized to receive the sealed canisters in side by side relationship. The plurality of sealed canisters include an internal basket structure to receive a plurality of used fuel assemblies. The internal basket structure includes a plurality of radiation-absorbing panels and a plurality of hemispherical ribs generally perpendicular to the canister sidewall. The sealed canisters are received within the cask for storage and transportation and are removed from the cask for disposal at a designated repository. The system of the present invention allows the handling of sealed canisters separately or collectively, while allowing storage and transportation of high burnup fuel and damaged fuel to the designated repository.

  16. Alkaline regenerative fuel cell systems for energy storage

    NASA Technical Reports Server (NTRS)

    Schubert, F. H.; Reid, M. A.; Martin, R. E.

    1981-01-01

    A description is presented of the results of a preliminary design study of a regenerative fuel cell energy storage system for application to future low-earth orbit space missions. The high energy density storage system is based on state-of-the-art alkaline electrolyte cell technology and incorporates dedicated fuel cell and electrolysis cell modules. In addition to providing energy storage, the system can provide hydrogen and oxygen for attitude control of the satellite and for life support. During the daylight portion of the orbit the electrolysis module uses power provided by the solar array to generate H2 and O2 from the product water produced by the fuel cell module. The fuel cell module supplies electrical power during the dark period of the orbit.

  17. Storage assembly for spent nuclear fuel

    SciTech Connect

    Lapides, M.E.

    1982-04-27

    A technique for storing spent fuel rods from a nuclear reactor is disclosed herein. This technique utilizes a housing including a closed inner chamber for containing the fuel rods and a thermally conductive member located partially within the housing chamber and partially outside the housing for transferring heat generated by the fuel rods from the chamber to the ambient surroundings. Particulate material is located within the chamber and surrounds the fuel rods contained therein. This material is selected to serve as a heat transfer media between the contained cells and the heat transferring member and, at the same time, stand ready to fuse into a solid mass around the contained cells if the heat transferring member malfunctions or otherwise fails to transfer the generated heat out of the housing chamber in a predetermined way.

  18. Compact Fuel Cell Power Supplies with Safe Fuel Storage

    DTIC Science & Technology

    2004-12-01

    Ammonia Ammonia is produced industrially from natural gas and nitrogen via the Haber - Bosch process in which methane is reformed to make hydrogen...W-h/kg, which is roughly twice that of state-of-the-art batteries. Increasing the capacity of the ammonia -storage tank improves the overall energy...characteristics to consider in the design of an ammonia -storage tank: safety and effective energy density. Reductions in tank wall thickness improve the

  19. Information handbook on independent spent fuel storage installations

    SciTech Connect

    Raddatz, M.G.; Waters, M.D.

    1996-12-01

    In this information handbook, the staff of the U.S. Nuclear Regulatory Commission describes (1) background information regarding the licensing and history of independent spent fuel storage installations (ISFSIs), (2) a discussion of the licensing process, (3) a description of all currently approved or certified models of dry cask storage systems (DCSSs), and (4) a description of sites currently storing spent fuel in an ISFSI. Storage of spent fuel at ISFSIs must be in accordance with the provisions of 10 CFR Part 72. The staff has provided this handbook for information purposes only. The accuracy of any information herein is not guaranteed. For verification or for more details, the reader should refer to the respective docket files for each DCSS and ISFSI site. The information in this handbook is current as of September 1, 1996.

  20. Crude oil and finished fuel storage stability: An annotated review

    SciTech Connect

    Whisman, M.L.; Anderson, R.P.; Woodward, P.W.; Giles, H.N.

    1991-01-01

    A state-of-the-art review and assessment of storage effects on crude oil and product quality was undertaken through a literature search by computer accessing several data base sources. Pertinent citations from that literature search are tabulated for the years 1980 to the present. This 1990 revision supplements earlier reviews by Brinkman and others which covered stability publications through 1979 and an update in 1983 by Goetzinger and others that covered the period 1952--1982. For purposes of organization, citations are listed in the current revision chronologically starting with the earliest 1980 publications. The citations have also been divided according to primary subject matter. Consequently 11 sections appear including: alternate fuels, gasoline, distillate fuel, jet fuel, residual fuel, crude oil, biodegradation, analyses, reaction mechanisms, containment, and handling and storage. Each section contains a brief narrative followed by all the citations for that category.

  1. Remote inspection of the IFSF spent fuel storage rack

    SciTech Connect

    Uldrich, E.D.

    1996-05-01

    The Irradiated Fuel Storage Facility (IFSF) is a dry storage facility for spent nuclear fuels located at the Idaho Chemical Processing Plant; it was constructed in the 1970`s specifically for the Fort Saint Vrain spent reactor fuels. Currently, it is being used for various spent fuels. It was not known if IFSF would met current DOE seismic criteria, so re-analysis was started, with the rack being analyzed first. The rack was inspected to determine the as-built condition. LazrLyne and VideoRuler were used in lieu of using a tape measure with the camera. It was concluded that when a visual inspection shows widely varying weld sizes, the engineer has to use all resources available to determine the most probable specified weld sizes.

  2. West Valley facility spent fuel handling, storage, and shipping experience

    SciTech Connect

    Bailey, W.J.

    1990-11-01

    The result of a study on handling and shipping experience with spent fuel are described in this report. The study was performed by Pacific Northwest Laboratory (PNL) and was jointly sponsored by the US Department of Energy (DOE) and the Electric Power Research Institute (EPRI). The purpose of the study was to document the experience with handling and shipping of relatively old light-water reactor (LWR) fuel that has been in pool storage at the West Valley facility, which is at the Western New York Nuclear Service Center at West Valley, New York and operated by DOE. A subject of particular interest in the study was the behavior of corrosion product deposits (i.e., crud) deposits on spent LWR fuel after long-term pool storage; some evidence of crud loosening has been observed with fuel that was stored for extended periods at the West Valley facility and at other sites. Conclusions associated with the experience to date with old spent fuel that has been stored at the West Valley facility are presented. The conclusions are drawn from these subject areas: a general overview of the West Valley experience, handling of spent fuel, storing of spent fuel, rod consolidation, shipping of spent fuel, crud loosening, and visual inspection. A list of recommendations is provided. 61 refs., 4 figs., 5 tabs.

  3. Hydrogen Storage Needs for Early Motive Fuel Cell Markets

    SciTech Connect

    Kurtz, J.; Ainscough, C.; Simpson, L.; Caton, M.

    2012-11-01

    The National Renewable Energy Laboratory's (NREL) objective for this project is to identify performance needs for onboard energy storage of early motive fuel cell markets by working with end users, manufacturers, and experts. The performance needs analysis is combined with a hydrogen storage technology gap analysis to provide the U.S. Department of Energy (DOE) Fuel Cell Technologies Program with information about the needs and gaps that can be used to focus research and development activities that are capable of supporting market growth.

  4. NUHOMS modular spent-fuel storage system: Performance testing

    SciTech Connect

    Strope, L.A.; McKinnon, M.A. ); Dyksterhouse, D.J.; McLean, J.C. )

    1990-09-01

    This report documents the results of a heat transfer and shielding performance evaluation of the NUTECH HOrizontal MOdular Storage (NUHOMS{reg sign}) System utilized by the Carolina Power and Light Co. (CP L) in an Independent Spent Fuel Storage Installation (ISFSI) licensed by the US Nuclear Regulatory Commission (NRC). The ISFSI is located at CP L's H. B. Robinson Nuclear Plant (HBR) near Hartsville, South Carolina. The demonstration included testing of three modules, first with electric heaters and then with spent fuel. The results indicated that the system was conservatively designed, with all heat transfer and shielding design criteria easily met. 5 refs., 45 figs., 9 tabs.

  5. Bioventing to treat fuel spills from underground storage tanks

    SciTech Connect

    Kampbell, D.H.; Wilson, J.T.

    1991-01-01

    Bioventilation is a procedure to cleanse soil gas of volatile fuel hydrocarbons originating from storage tank leaks. The rate of vapor degradation is a controlling parameter in the design of a bioventing system. A laboratory microcosm procedure using sandy soil from an aviation gasoline spill site was used to measure relative kinetics of some fuel vapors. (Copyright (c) 1991 Elsevier Science Publishers B.V.)

  6. Spent nuclear fuel canister storage building conceptual design report

    SciTech Connect

    Swenson, C.E.

    1996-01-01

    This Conceptual Design Report provides the technical basis for the Spent Nuclear Fuels Project, Canister Storage Building, and as amended by letter (correspondence number 9555700, M.E. Witherspoon to E.B. Sellers, ``Technical Baseline and Updated Cost Estimate for the Canister Storage Building``, dated October 24, 1995), includes the project cost baseline and Criteria to be used as the basis for starting detailed design in fiscal year 1995.

  7. Benchmarking criticality analysis of TRIGA fuel storage racks.

    PubMed

    Robinson, Matthew Loren; DeBey, Timothy M; Higginbotham, Jack F

    2017-01-01

    A criticality analysis was benchmarked to sub-criticality measurements of the hexagonal fuel storage racks at the United States Geological Survey TRIGA MARK I reactor in Denver. These racks, which hold up to 19 fuel elements each, are arranged at 0.61m (2 feet) spacings around the outer edge of the reactor. A 3-dimensional model was created of the racks using MCNP5, and the model was verified experimentally by comparison to measured subcritical multiplication data collected in an approach to critical loading of two of the racks. The validated model was then used to show that in the extreme condition where the entire circumference of the pool was lined with racks loaded with used fuel the storage array is subcritical with a k value of about 0.71; well below the regulatory limit of 0.8. A model was also constructed of the rectangular 2×10 fuel storage array used in many other TRIGA reactors to validate the technique against the original TRIGA licensing sub-critical analysis performed in 1966. The fuel used in this study was standard 20% enriched (LEU) aluminum or stainless steel clad TRIGA fuel.

  8. The shutdown reactor: Optimizing spent fuel storage cost

    SciTech Connect

    Pennington, C.W.

    1995-12-31

    Several studies have indicated that the most prudent way to store fuel at a shutdown reactor site safely and economically is through the use of a dry storage facility licensed under 10CFR72. While such storage is certainly safe, is it true that the dry ISFSI represents the safest and most economical approach for the utility? While no one is really able to answer that question definitely, as yet, Holtec has studied this issue for some time and believes that both an economic and safety case can be made for an optimization strategy that calls for the use of both wet and dry ISFSI storage of spent fuel at some plants. For the sake of brevity, this paper summarizes some of Holtec`s findings with respect to the economics of maintaining some fuel in wet storage at a shutdown reactor. The safety issue, or more importantly the perception of safety of spent fuel in wet storage, still varies too much with the eye of the beholder, and until a more rigorous presentation of safety analyses can be made in a regulatory setting, it is not practically useful to argue about how many angels can sit on the head of a safety-related pin. Holtec is prepared to present such analyses, but this does not appear to be the proper venue. Thus, this paper simply looks at certain economic elements of a wet ISFSI at a shutdown reactor to make a prima facie case that wet storage has some attractiveness at a shutdown reactor and should not be rejected out of hand. Indeed, an optimization study at certain plants may well show the economic vitality of keeping some fuel in the pool and converting the NRC licensing coverage from 10CFR50 to 10CFR72. If the economics look attractive, then the safety issue may be confronted with a compelling interest.

  9. Chemical Hydrides for Hydrogen Storage in Fuel Cell Applications

    SciTech Connect

    Devarakonda, Maruthi N.; Brooks, Kriston P.; Ronnebro, Ewa; Rassat, Scot D.; Holladay, Jamelyn D.

    2012-04-16

    Due to its high hydrogen storage capacity (up to 19.6% by weight for the release of 2.5 molar equivalents of hydrogen gas) and its stability under typical ambient conditions, ammonia borane (AB) is a promising material for chemical hydrogen storage for fuel cell applications in transportation sector. Several systems models for chemical hydride materials such as solid AB, liquid AB and alane were developed and evaluated at PNNL to determine an optimal configuration that would meet the 2010 and future DOE targets for hydrogen storage. This paper presents an overview of those systems models and discusses the simulation results for various transient drive cycle scenarios.

  10. Safety Aspects of Dry Spent Fuel Storage and Spent Fuel Management - 13559

    SciTech Connect

    Botsch, W.; Smalian, S.; Hinterding, P.

    2013-07-01

    Dry storage systems are characterized by passive and inherent safety systems ensuring safety even in case of severe incidents or accidents. After the events of Fukushima, the advantages of such passively and inherently safe dry storage systems have become more and more obvious. As with the storage of all radioactive materials, the storage of spent nuclear fuel (SF) and high-level radioactive waste (HLW) must conform to safety requirements. Following safety aspects must be achieved throughout the storage period: - safe enclosure of radioactive materials, - safe removal of decay heat, - securing nuclear criticality safety, - avoidance of unnecessary radiation exposure. The implementation of these safety requirements can be achieved by dry storage of SF and HLW in casks as well as in other systems such as dry vault storage systems or spent fuel pools, where the latter is neither a dry nor a passive system. Furthermore, transport capability must be guaranteed during and after storage as well as limitation and control of radiation exposure. The safe enclosure of radioactive materials in dry storage casks can be achieved by a double-lid sealing system with surveillance of the sealing system. The safe removal of decay heat must be ensured by the design of the storage containers and the storage facility. The safe confinement of radioactive inventory has to be ensured by mechanical integrity of fuel assembly structures. This is guaranteed, e.g. by maintaining the mechanical integrity of the fuel rods or by additional safety measures for defective fuel rods. In order to ensure nuclear critically safety, possible effects of accidents have also to be taken into consideration. In case of dry storage it might be necessary to exclude the re-positioning of fissile material inside the container and/or neutron moderator exclusion might be taken into account. Unnecessary radiation exposure can be avoided by the cask or canister vault system itself. In Germany dry storage of SF in

  11. REVIEW OF FAST FLUX TEST FACILITY (FFTF) FUEL EXPERIMENTS FOR STORAGE IN INTERIM STORAGE CASKS (ISC)

    SciTech Connect

    CHASTAIN, S.A.

    2005-10-24

    Appendix H, Section H.3.3.10.11 of the Final Safety Analysis Report (FSAR), provides the limits to be observed for fueled components authorized for storage in the Fast Flux Test Facility (FFTF) spent fuel storage system. Currently, the authorization basis allows standard driver fuel assemblies (DFA), as described in the FSAR Chapter 17, Section 17.5.3.1, to be stored provided decay power per assembly is {le} 250 watts, post-irradiation time is four years minimum, average assembly burn-up is 150,000 MWD/MTHM maximum and the pre-irradiation enrichment is 29.3% maximum (per H.3.3.10.11). In addition, driver evaluation (DE), core characterizer assemblies (CCA), and run-to-cladding-breach (RTCB) assemblies are included based on their similarities to a standard DFA. Ident-69 pin containers with fuel pins from these DFAs can also be stored. Section H.3.3.10.11 states that fuel types outside the specification criteria above will be addressed on a case-by-case basis. There are many different types of fuel and blanket experiments that were irradiated in the FFTF which now require offload to the spent fuel storage system. Two reviews were completed for a portion of these special type fuel components to determine if placement into the Core Component Container (CCC)/Interim Storage Cask (ISC) would require any special considerations or changes to the authorization basis. Project mission priorities coupled with availability of resources and analysts prevented these evaluations from being completed as a single effort. Areas of review have included radiological accident release consequences, radiological shielding adequacy, criticality safety, thermal limits, confinement, and stress. The results of these reviews are available in WHC-SD-FF-RPT-005, Rev. 0 and 1, ''Review of FFTF Fuel Experiments for Storage at ISA'', (Reference I), which subsequently allowed a large portion of these components to be included in the authorization basis (Table H.3.3-21). The report also identified

  12. 16. Forge building and fuel storage shed from the southwest, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. Forge building and fuel storage shed from the southwest, c.1918 Photocopied from a photograph in the collection of William F. Applegate, 43 Grandview Avenue, Wallingford, Connecticut. - Eli Whitney Armory, West of Whitney Avenue, Armory Street Vicinity, Hamden, New Haven County, CT

  13. CRITICALITY SAFETY CONTROL OF LEGACY FUEL FOUND AT 105-K WEST FUEL STORAGE BASIN

    SciTech Connect

    JENSEN, M.A.

    2005-08-19

    In August 2004, two sealed canisters containing spent nuclear fuel were opened for processing at the Hanford Site's K West fuel storage basin. The fuel was to be processed through cleaning and sorting stations, repackaged into special baskets, placed into a cask, and removed from the basin for further processing and eventual dry storage. The canisters were expected to contain fuel from the old Hanford C Reactor, a graphite-moderated reactor fueled by very low-enriched uranium metal. The expected fuel type was an aluminum-clad slug about eight inches in length and with a weight of about eight pounds. Instead of the expected fuel, the two canisters contained several pieces of thin tubes, some with wire wraps. The material was placed into unsealed canisters for storage and to await further evaluation. Videotapes and still photographs of the items were examined in consultation with available retired Hanford employees. It was determined that the items had a fair probability of being cut-up pieces of fuel rods from the retired Hanford Plutonium Recycle Test Reactor (PRTR). Because the items had been safely handled several times, it was apparent that a criticality safety hazard did not exist when handling the material by itself, but it was necessary to determine if a hazard existed when combining the material with other known types of spent nuclear fuel. Because the PRTR operated more than 40 years ago, investigators had to rely on a combination of researching archived documents, and utilizing common-sense estimates coupled with bounding assumptions, to determine that the fuel items could be handled safely with other spent nuclear fuel in the storage basin. As older DOE facilities across the nation are shut down and cleaned out, the potential for more discoveries of this nature is increasing. As in this case, it is likely that only incomplete records will exist and that it will be increasingly difficult to immediately characterize the nature of the suspect fissionable

  14. Signatures of Extended Storage of Used Nuclear Fuel in Casks

    SciTech Connect

    Rauch, Eric Benton

    2016-09-28

    As the amount of used nuclear fuel continues to grow, more and more used nuclear fuel will be transferred to storage casks. A consolidated storage facility is currently in the planning stages for storing these casks, where at least 10,000 MTHM of fuel will be stored. This site will have potentially thousands of casks once it is operational. A facility this large presents new safeguards and nuclear material accounting concerns. A new signature based on the distribution of neutron sources and multiplication within casks was part of the Department of Energy Office of Nuclear Energy’s Material Protection, Account and Control Technologies (MPACT) campaign. Under this project we looked at fingerprinting each cask's neutron signature. Each cask has a unique set of fuel, with a unique spread of initial enrichment, burnup, cooling time, and power history. The unique set of fuel creates a unique signature of neutron intensity based on the arrangement of the assemblies. The unique arrangement of neutron sources and multiplication produces a reliable and unique identification of the cask that has been shown to be relatively constant over long time periods. The work presented here could be used to restore from a loss of continuity of knowledge at the storage site. This presentation will show the steps used to simulate and form this signature from the start of the effort through its conclusion in September 2016.

  15. Fuel Aging in Storage and Transportation (FAST): Accelerated Characterization and Performance Assessment of the Used Nuclear Fuel Storage System

    SciTech Connect

    McDeavitt, Sean

    2016-08-02

    This Integrated Research Project (IRP) was established to characterize key limiting phenomena related to the performance of used nuclear fuel (UNF) storage systems. This was an applied engineering project with a specific application in view (i.e., UNF dry storage). The completed tasks made use of a mixture of basic science and engineering methods. The overall objective was to create, or enable the creation of, predictive tools in the form of observation methods, phenomenological models, and databases that will enable the design, installation, and licensing of dry UNF storage systems that will be capable of containing UNF for extended period of time.

  16. 78 FR 56947 - Prairie Island; Independent Spent Fuel Storage Installation; Notice of Docketing of Amendment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-16

    ... COMMISSION Prairie Island; Independent Spent Fuel Storage Installation; Notice of Docketing of Amendment... Information AGENCY: Nuclear Regulatory Commission. ACTION: License amendment request; opportunity to request a... spent fuel storage installation located in Welch, Minnesota. DATES: Requests for a hearing or...

  17. 10 CFR 72.214 - List of approved spent fuel storage casks.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General License for Storage of Spent Fuel at Power Reactor Sites § 72.214 List of approved...

  18. 10 CFR 72.214 - List of approved spent fuel storage casks.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General License for Storage of Spent Fuel at Power Reactor Sites § 72.214 List of approved...

  19. Cryogenic reactant storage for lunar base regenerative fuel cells

    NASA Astrophysics Data System (ADS)

    Kohout, Lisa L.

    1989-02-01

    There are major advantages to be gained by integrating a cryogenic reactant storage system with a hydrogen-oxygen regenerative fuel cell (RFC) to provide on-site electrical power during the lunar night. Although applicable to any power system using hydrogen-oxygen RFC's for energy storage, cryogenic reactant storage offers a significant benefit whenever the sun/shade cycle and energy storage period approach hundreds of hours. For solar power installations on the moon, cryogenic reactant storage reduces overall specific mass and meteoroid vulnerability of the system. In addition, it offers synergistic benefits to on-site users, such as availability of primary fuel cell reactants for surface rover vehicles and cryogenic propellants for OTV's. The integration involves processing and storing the RFC reactant streams as cryogenic liquids rather than pressurized gases, so that reactant containment (tankage per unit mass of reactants) can be greatly reduced. Hydrogen-oxygen alkaline RFC's, GaAs photovoltaic (PV) arrays, and space cryogenic processing/refrigeration technologies are assumed to be available for the conceptual system design. Advantages are demonstrated by comparing the characteristics of two power system concepts: a conventional lunar surface PV/RFC power system using pressurized gas storage in SOA filament wound pressure vessels and, that same system with gas liquefaction and storage replacing the pressurized storage. Comparisons are made at 20 and 250 kWe. Although cryogenic storage adds a processing plant (drying and liquefaction) to the system plus 30 percent more solar array to provide processing power, the approximate order of magnitude reduction in tankage mass, confirmed by this analysis, results in a reduction in overall total system mass of approximately 50 percent.

  20. Cryogenic reactant storage for lunar base regenerative fuel cells

    NASA Astrophysics Data System (ADS)

    Kohout, Lisa L.

    There are major advantages to be gained by integrating a cryogenic reactant storage system with a hydrogen-oxygen regenerative fuel cell (RFC) to provide on-site electrical power during the lunar night. Although applicable to any power system using hydrogen-oxygen RFC's for energy storage, cryogenic reactant storage offers a significant benefit whenever the sun/shade cycle and energy storage period approach hundreds of hours. For solar power installations on the moon, cryogenic reactant storage reduces overall specific mass and meteoroid vulnerability of the system. In addition, it offers synergistic benefits to on-site users, such as availability of primary fuel cell reactants for surface rover vehicles and cryogenic propellants for OTV's. The integration involves processing and storing the RFC reactant streams as cryogenic liquids rather than pressurized gases, so that reactant containment (tankage per unit mass of reactants) can be greatly reduced. Hydrogen-oxygen alkaline RFC's, GaAs photovoltaic (PV) arrays, and space cryogenic processing/refrigeration technologies are assumed to be available for the conceptual system design. Advantages are demonstrated by comparing the characteristics of two power system concepts: a conventional lunar surface PV/RFC power system using pressurized gas storage in SOA filament wound pressure vessels and, that same system with gas liquefaction and storage replacing the pressurized storage. Comparisons are made at 20 and 250 kWe. Although cryogenic storage adds a processing plant (drying and liquefaction) to the system plus 30 percent more solar array to provide processing power, the approximate order of magnitude reduction in tankage mass, confirmed by this analysis, results in a reduction in overall total system mass of approximately 50 percent.

  1. Cryogenic reactant storage for lunar base regenerative fuel cells

    NASA Technical Reports Server (NTRS)

    Kohout, Lisa L.

    1989-01-01

    There are major advantages to be gained by integrating a cryogenic reactant storage system with a hydrogen-oxygen regenerative fuel cell (RFC) to provide on-site electrical power during the lunar night. Although applicable to any power system using hydrogen-oxygen RFC's for energy storage, cryogenic reactant storage offers a significant benefit whenever the sun/shade cycle and energy storage period approach hundreds of hours. For solar power installations on the moon, cryogenic reactant storage reduces overall specific mass and meteoroid vulnerability of the system. In addition, it offers synergistic benefits to on-site users, such as availability of primary fuel cell reactants for surface rover vehicles and cryogenic propellants for OTV's. The integration involves processing and storing the RFC reactant streams as cryogenic liquids rather than pressurized gases, so that reactant containment (tankage per unit mass of reactants) can be greatly reduced. Hydrogen-oxygen alkaline RFC's, GaAs photovoltaic (PV) arrays, and space cryogenic processing/refrigeration technologies are assumed to be available for the conceptual system design. Advantages are demonstrated by comparing the characteristics of two power system concepts: a conventional lunar surface PV/RFC power system using pressurized gas storage in SOA filament wound pressure vessels and, that same system with gas liquefaction and storage replacing the pressurized storage. Comparisons are made at 20 and 250 kWe. Although cryogenic storage adds a processing plant (drying and liquefaction) to the system plus 30 percent more solar array to provide processing power, the approximate order of magnitude reduction in tankage mass, confirmed by this analysis, results in a reduction in overall total system mass of approximately 50 percent.

  2. Recommendations on Fuel Parameters for Standard Technical Specifications for Spent Fuel Storage Casks

    SciTech Connect

    Bowman, S.M.

    2001-03-08

    The U.S. Nuclear Regulatory Commission (NRC) is currently reviewing the technical specifications for spent fuel storage casks in an effort to develop standard technical specifications (STS) that define the allowable spent nuclear fuel (SNF) contents. One of the objectives of the review is to minimize the level of detail in the STS that define the acceptable fuel types. To support this initiative, this study has been performed to identify potential fuel specification parameters needed for criticality safety and radiation shielding analysis and rank their importance relative to a potential compromise of the margin of safety.

  3. 30 CFR 75.1912 - Fire suppression systems for permanent underground diesel fuel storage facilities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... underground diesel fuel storage facilities. 75.1912 Section 75.1912 Mineral Resources MINE SAFETY AND HEALTH... Diesel-Powered Equipment § 75.1912 Fire suppression systems for permanent underground diesel fuel storage... permanent underground diesel fuel storage facility. (1) Alternate types of fire suppression systems shall...

  4. 77 FR 24585 - List of Approved Spent Fuel Storage Casks: HI-STORM 100, Revision 8

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-25

    ... 3150-AJ05 List of Approved Spent Fuel Storage Casks: HI-STORM 100, Revision 8 AGENCY: Nuclear... amends the NRC's spent fuel storage regulations by revising the Holtec International HI-STORM 100 System... International HI-STORM 100 System listing within the ``List of Approved Spent Fuel Storage Casks'' to...

  5. 78 FR 32077 - List of Approved Spent Fuel Storage Casks: MAGNASTOR® System

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-29

    ... COMMISSION 10 CFR Part 72 RIN 3150-AJ22 List of Approved Spent Fuel Storage Casks: MAGNASTOR System AGENCY... Commission (NRC) is withdrawing a direct final rule that would have revised its spent fuel storage... ``List of Approved Spent Fuel Storage Casks.'' The NRC is taking this action because it has received...

  6. 78 FR 40199 - Draft Spent Fuel Storage and Transportation Interim Staff Guidance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-03

    ... COMMISSION Draft Spent Fuel Storage and Transportation Interim Staff Guidance AGENCY: Nuclear Regulatory... Regulatory Commission (NRC) requests public comment on Draft Spent Fuel Storage and Transportation Interim... Integrity for Continued Storage of High Burnup Fuel Beyond 20 Years.'' The draft SFST-ISG provides...

  7. 77 FR 60482 - Yankee Atomic Electric Company; Yankee Rowe Independent Spent Fuel Storage Installation, Staff...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-03

    ... COMMISSION Yankee Atomic Electric Company; Yankee Rowe Independent Spent Fuel Storage Installation, Staff Evaluation; Exemption 1.0 Background Yankee Atomic Electric Company (YAEC, the licensee) is the holder of... for the storage of spent fuel in an Independent Spent Fuel Storage Installation (ISFSI) to...

  8. Safeguards for spent fuel in an irretrievable storage facility

    SciTech Connect

    Richter, B.; Stein, G. )

    1992-01-01

    Ultimately, high-level waste from the reprocessing of German spent fuel, spent light water reactor (LWR) fuel assemblies that will not be reprocessed, and spent THTR-300 fuel will be disposed of in a geologic repository in the Gorleben salt dome, provided it will be licensed; the exploration of the salt dome is under way. Because of its fissile material content, particularly plutonium, the International Atomic Energy Agency will not release spent fuel from safeguards, although the irradiated material will be packaged in huge containers and irretrievably buried in the salt. International safeguards in an irretrievable storage facility will have to be designed accordingly. This paper discusses various safeguards aspects, investigations, and results. Technical aspects were presented in a previous paper.

  9. Changing the Rules on Fuel Export at Sellafield's First Fuel Storage Pond - 12065

    SciTech Connect

    Carlisle, Derek

    2012-07-01

    The Pile Fuel Storage Pond (PFSP) was built in 1949/50 to receive, store and de-can fuel and isotopes from the Windscale Piles. Following closure of the Piles in 1957, plant operations were scaled down until fuel processing eventually ceased in 1962. The facility has held an inventory of metal fuel both from the Piles and from other programmes since that time. The pond is currently undergoing remediation and removal of the fuel is a key step in that process, unfortunately the fuel export infrastructure on the plant is no longer functional and due to the size and limited lifting capability, the plant is not compatible with today's large volume heavy export flasks. The baseline scheme for the plant is to package fuel into a small capacity flask and transfer it to another facility for treatment and repackaging into a flask compatible with other facilities on site. Due to programme priorities the repackaging facility is not available to do this work for several years causing a delay to the work. In an effort accelerate the programme the Metal Fuel Pilot Project (MFPP) was initiated to challenge the norms for fuel transfer and develop a new methodology for transferring the fuel. In developing a transfer scheme the team had to overcome challenges associated with unknown fuel condition, transfers outside of bulk containment, pyro-phoricity and oxidisation hazards as well as developing remote control and recovery systems for equipment not designed for this purpose. A combination of novel engineering and enhanced operational controls were developed which resulted in the successful export of the first fuel to leave the Pile Fuel Storage Pond in over 40 years. The learning from the pilot project is now being considered by the main project team to see how the new methodology can be applied to the full inventory of the pond. (author)

  10. Unitized Regenerative Fuel Cell System Gas Storage-Radiator Development

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth A.; Jakupta, Ian

    2005-01-01

    High-energy-density regenerative fuel cell systems that are used for energy storage require novel approaches to integrating components in order to preserve mass and volume. A lightweight unitized regenerative fuel cell (URFC) energy storage system concept is being developed at the NASA Glenn Research Center. This URFC system minimizes mass by using the surface area of the hydrogen and oxygen storage tanks as radiating heat surfaces for overall thermal control of the system. The waste heat generated by the URFC stack during charging and discharging is transferred from the cell stack to the surface of each tank by loop heat pipes, which are coiled around each tank and covered with a thin layer of thermally conductive carbon composite. The thin layer of carbon composite acts as a fin structure that spreads the heat away from the heat pipe and across the entire tank surface. Two different-sized commercial-grade composite tanks were constructed with integral heat pipes and tested in a thermal vacuum chamber to examine the feasibility of using the storage tanks as system radiators. The storage tank-radiators were subjected to different steady-state heat loads and varying heat load profiles. The surface emissivity and specific heat capacity of each tank were calculated. In the future, the results will be incorporated into a model that simulates the performance of similar radiators using lightweight, spacerated carbon composite tanks.

  11. Spent nuclear fuel storage -- Performance tests and demonstrations

    SciTech Connect

    McKinnon, M.A.; DeLoach, V.A.

    1993-04-01

    This report summarizes the results of heat transfer and shielding performance tests and demonstrations conducted from 1983 through 1992 by or in cooperation with the US Department of Energy (DOE), Office of Commercial Radioactive Waste Management (OCRWM). The performance tests consisted of 6 to 14 runs involving one or two loadings, usually three backfill environments (helium, nitrogen, and vacuum backfills), and one or two storage system orientations. A description of the test plan, spent fuel load patterns, results from temperature and dose rate measurements, and fuel integrity evaluations are contained within the report.

  12. Storage of LWR spent fuel in air: Volume 1: Design and operation of a spent fuel oxidation test facility

    SciTech Connect

    Thornhill, C.K.; Campbell, T.K.; Thornhill, R.E.

    1988-12-01

    This report describes the design and operation and technical accomplishments of a spent-fuel oxidation test facility at the Pacific Northwest Laboratory. The objective of the experiments conducted in this facility was to develop a data base for determining spent-fuel dry storage temperature limits by characterizing the oxidation behavior of light-water reactor (LWR) spent fuels in air. These data are needed to support licensing of dry storage in air as an alternative to spent-fuel storage in water pools. They are to be used to develop and validate predictive models of spent-fuel behavior during dry air storage in an Independent Spent Fuel Storage Installation (ISFSI). The present licensed alternative to pool storage of spent fuel is dry storage in an inert gas environment, which is called inerted dry storage (IDS). Licensed air storage, however, would not require monitoring for maintenance of an inert-gas environment (which IDS requires) but does require the development of allowable temperature limits below which UO/sub 2/ oxidation in breached fuel rods would not become a problem. Scoping tests at PNL with nonirradiated UO/sub 2/ pellets and spent-fuel fragment specimens identified the need for a statistically designed test matrix with test temperatures bounding anticipated maximum acceptable air-storage temperatures. This facility was designed and operated to satisfy that need. 7 refs.

  13. Fail-safe storage rack for irradiated fuel rod assemblies

    DOEpatents

    Lewis, Donald R.

    1993-01-01

    A fail-safe storage rack is provided for interim storage of spent but radioactive nuclear fuel rod assemblies. The rack consists of a checkerboard array of substantially square, elongate receiving tubes fully enclosed by a double walled container, the outer wall of which is imperforate for liquid containment and the inner wall of which is provided with perforations for admitting moderator liquid flow to the elongate receiving tubes, the liquid serving to take up waste heat from the stored nuclear assemblies and dissipate same to the ambient liquid reservoir. A perforated cover sealing the rack facilitates cooling liquid entry and dissipation.

  14. Fail-safe storage rack for irradiated fuel rod assemblies

    DOEpatents

    Lewis, D.R.

    1993-03-23

    A fail-safe storage rack is provided for interim storage of spent but radioactive nuclear fuel rod assemblies. The rack consists of a checkerboard array of substantially square, elongate receiving tubes fully enclosed by a double walled container, the outer wall of which is imperforate for liquid containment and the inner wall of which is provided with perforations for admitting moderator liquid flow to the elongate receiving tubes, the liquid serving to take up waste heat from the stored nuclear assemblies and dissipate same to the ambient liquid reservoir. A perforated cover sealing the rack facilitates cooling liquid entry and dissipation.

  15. Energy Storage: Batteries and Fuel Cells for Exploration

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle A.; Miller, Thomas B.; Hoberecht, Mark A.; Baumann, Eric D.

    2007-01-01

    NASA's Vision for Exploration requires safe, human-rated, energy storage technologies with high energy density, high specific energy and the ability to perform in a variety of unique environments. The Exploration Technology Development Program is currently supporting the development of battery and fuel cell systems that address these critical technology areas. Specific technology efforts that advance these systems and optimize their operation in various space environments are addressed in this overview of the Energy Storage Technology Development Project. These technologies will support a new generation of more affordable, more reliable, and more effective space systems.

  16. Fail-safe storage rack for fuel rod assemblies

    SciTech Connect

    Lewis, D.R.

    1991-12-31

    This report discusses a fail-safe storage rack which is provided for interim storage of spent but radioactive nuclear fuel rod assemblies. The rack consists of a checkerboard array of substantially square, elongate receiving tubes fully enclosed by a double walled container, the outer wall of which is imperforate for liquid containment and the inner wall of which is provided with perforations for admitting moderator liquid flow to the elongate receiving tubes, the liquid serving to take up waste heat from the stored nuclear assemblies and dissipate same to the ambient liquid reservoir. A perforated cover sealing the rack facilitates cooling liquid entry and dissipation.

  17. Receipt and Storage Issues at the TMI-2 Irradiated Fuel Storage Installation

    SciTech Connect

    Christensen, Allan B.; Custer, Kenneth; Gardner, Rick; Kaylor, James; Stalnaker, James

    2002-07-01

    In less than a year, up to 12 canisters of TMI-2 reactor fuel debris were loaded into each of 28 Dry Storage Containers (DSCs), and placed into interim storage at an Irradiated Spent Fuel Storage Facility (ISFSI) at the Idaho National Engineering and Environmental Laboratory (INEEL). Draining and drying the canisters, loading and welding the DSCs, shipping the DSCs 25 miles, and storing in the ISFSI initially required up to 3 weeks per DSC. Significant time efficiencies were achieved during the early stages, reducing the time to less than one week per DSC. These efficiencies were achieved mostly in canister draining and drying and DSC lid welding, and despite several occurrences that had to be resolved before continuing work. The ISFSI has been operated without issue since, with the exception that license basis monitoring has indicated an unusual pattern of season- and position-dependent hydrogen generation. This paper discusses some of the innovations and storage experiences for the first ISFSI designed for the storage of severely defected fuel. (authors)

  18. 20. Interior view of fuel storage pit or vault adjacent ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. Interior view of fuel storage pit or vault adjacent to Test Cell 9 in Component Test Laboratory (T-27), looking west. Photograph shows upgraded instrumentation, piping, tanks, and technological modifications installed in 1997-99 to accommodate component testing requirements for the Atlas V missile. - Air Force Plant PJKS, Systems Integration Laboratory, Components Test Laboratory, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  19. Hydrogen-Oxygen PEM Regenerative Fuel Cell Energy Storage System

    NASA Technical Reports Server (NTRS)

    Bents, David J.; Scullin, Vincent J.; Chang, Bei-Jiann; Johnson, Donald W.; Garcia, Christopher P.

    2005-01-01

    An introduction to the closed cycle hydrogen-oxygen polymer electrolyte membrane (PEM) regenerative fuel cell (RFC), recently constructed at NASA Glenn Research Center, is presented. Illustrated with explanatory graphics and figures, this report outlines the engineering motivations for the RFC as a solar energy storage device, the system requirements, layout and hardware detail of the RFC unit at NASA Glenn, the construction history, and test experience accumulated to date with this unit.

  20. Fire hazard analysis for the fuel supply shutdown storage buildings

    SciTech Connect

    REMAIZE, J.A.

    2000-09-27

    The purpose of a fire hazards analysis (FHA) is to comprehensively assess the risk from fire and other perils within individual fire areas in a DOE facility in relation to proposed fire protection so as to ascertain whether the objectives of DOE 5480.7A, Fire Protection, are met. This Fire Hazards Analysis was prepared as required by HNF-PRO-350, Fire Hazards Analysis Requirements, (Reference 7) for a portion of the 300 Area N Reactor Fuel Fabrication and Storage Facility.

  1. Hydrogen Fuel Cells and Storage Technology: Fundamental Research for Optimization of Hydrogen Storage and Utilization

    SciTech Connect

    Perret, Bob; Heske, Clemens; Nadavalath, Balakrishnan; Cornelius, Andrew; Hatchett, David; Bae, Chusung; Pang, Tao; Kim, Eunja; Hemmers, Oliver

    2011-03-28

    Design and development of improved low-cost hydrogen fuel cell catalytic materials and high-capacity hydrogenn storage media are paramount to enabling the hydrogen economy. Presently, effective and durable catalysts are mostly precious metals in pure or alloyed form and their high cost inhibits fuel cell applications. Similarly, materials that meet on-board hydrogen storage targets within total mass and volumetric constraints are yet to be found. Both hydrogen storage performance and cost-effective fuel cell designs are intimately linked to the electronic structure, morphology and cost of the chosen materials. The FCAST Project combined theoretical and experimental studies of electronic structure, chemical bonding, and hydrogen adsorption/desorption characteristics of a number of different nanomaterials and metal clusters to develop better fundamental understanding of hydrogen storage in solid state matrices. Additional experimental studies quantified the hydrogen storage properties of synthesized polyaniline(PANI)/Pd composites. Such conducting polymers are especially interesting because of their high intrinsic electron density and the ability to dope the materials with protons, anions, and metal species. Earlier work produced contradictory results: one study reported 7% to 8% hydrogen uptake while a second study reported zero hydrogen uptake. Cost and durability of fuel cell systems are crucial factors in their affordability. Limits on operating temperature, loss of catalytic reactivity and degradation of proton exchange membranes are factors that affect system durability and contribute to operational costs. More cost effective fuel cell components were sought through studies of the physical and chemical nature of catalyst performance, characterization of oxidation and reduction processes on system surfaces. Additional development effort resulted in a new hydrocarbon-based high-performance sulfonated proton exchange membrane (PEM) that can be manufactured at low

  2. Vehicular hydrogen storage using lightweight tanks (regenerative fuel cell systems)

    SciTech Connect

    Mitlitsky, F; Myers, B; Weisberg, A H

    1999-06-01

    Energy storage systems with extremely high specific energy (>400 Wh/kg) have been designed that use lightweight tankage to contain the gases generated by reversible (unitized) regenerative fuel cells (URFCs). Lawrence Livermore National Laboratory (LLNL) will leverage work for aerospace applications supported by other sponsors (including BMDO, NASA, and USAF) to develop URFC systems for transportation and utility applications. Lightweight tankage is important for primary fuel cell powered vehicles that use on-board storage of hydrogen. Lightweight pressure vessels with state-of-the-art performance factors were designed, and prototypes are being fabricated to meet the DOE 2000 goals (4000 Wh/kg, 12% hydrogen by weight, 700 Wh/liter, and $20/kWh in high volume production). These pressure vessels use technologies that are easily adopted by industrial partners. Advanced liners provide permeation barriers for gas storage and are mandrels for composite overwrap. URFCs are important to the efficient use of hydrogen as a transportation fuel and enabler of renewable energy. H{sub 2}/halogen URFCs may be advantageous for stationary applications whereas H{sub 2}/O{sub 2} or H{sub 2}/air URFCs are advantageous for vehicular applications. URFC research and development is required to improve performance (efficiency), reduce catalyst loading, understand engineering operation, and integrate systems. LLNL has the experimental equipment and advanced URFC membrane electrode assemblies (some with reduced catalyst loading) for evaluating commercial hardware (not funded by DOE in FY1999).

  3. BWR Spent Nuclear Fuel Integrity Research and Development Survey for UKABWR Spent Fuel Interim Storage

    SciTech Connect

    Bevard, Bruce Balkcom; Mertyurek, Ugur; Belles, Randy; Scaglione, John M.

    2015-10-01

    The objective of this report is to identify issues and support documentation and identify and detail existing research on spent fuel dry storage; provide information to support potential R&D for the UKABWR (United Kingdom Advanced Boiling Water Reactor) Spent Fuel Interim Storage (SFIS) Pre-Construction Safety Report; and support development of answers to questions developed by the regulator. Where there are gaps or insufficient data, Oak Ridge National Laboratory (ORNL) has summarized the research planned to provide the necessary data along with the schedule for the research, if known. Spent nuclear fuel (SNF) from nuclear power plants has historically been stored on site (wet) in spent fuel pools pending ultimate disposition. Nuclear power users (countries, utilities, vendors) are developing a suite of options and set of supporting analyses that will enable future informed choices about how best to manage these materials. As part of that effort, they are beginning to lay the groundwork for implementing longer-term interim storage of the SNF and the Greater Than Class C (CTCC) waste (dry). Deploying dry storage will require a number of technical issues to be addressed. For the past 4-5 years, ORNL has been supporting the U.S. Department of Energy (DOE) in identifying these key technical issues, managing the collection of data to be used in issue resolution, and identifying gaps in the needed data. During this effort, ORNL subject matter experts (SMEs) have become expert in understanding what information is publicly available and what gaps in data remain. To ensure the safety of the spent fuel under normal and frequent conditions of wet and subsequent dry storage, intact fuel must be shown to: 1.Maintain fuel cladding integrity; 2.Maintain its geometry for cooling, shielding, and subcriticality; 3.Maintain retrievability, and damaged fuel with pinhole or hairline cracks must be shown not to degrade further. Where PWR (pressurized water reactor) information is

  4. Status of work at PNL supporting dry storage of spent fuel

    SciTech Connect

    Cunningham, M.E.; McKinnon, M.A.; Michener, T.E.; Thomas, L.E.; Thornhill, C.K.

    1993-01-01

    This report discusses three projects related to dry storage of light-water reactor spent fuel which are being conducted at Pacific Northwest Laboratory. Performance testing of six dry storage systems (four metal casks and two concrete storage systems) has been completed and results compiled. Two computer codes for predicting spent fuel and storage system thermal performance, COBRA-SFS and HYDRA-II, have been developed and have been reviewed by the US Nuclear Regulatory Commission. Air oxidation testing of spent fuel was conducted from 1984 through 1990 to obtain data to support recommendations of temperature-time limits for air dry storage of spent light-water reactor fuel.

  5. Characterization of the 309 building fuel transfer pit and storage basin

    SciTech Connect

    Hale, N.S.

    1998-03-19

    This document identifies radiological, chemical and physical conditions inside the Fuel Transfer Pit and Fuel Storage Basins. These spaces are located inside the Plutonium Recycle Test Reactor structure (309 Building.) The fuel handling and storage feature of the PRTR were primarily located in these spaces. The conditions were assessed as part of overall 309 Building transition.

  6. A fuel cell energy storage system for Space Station extravehicular activity

    NASA Technical Reports Server (NTRS)

    Rosso, Matthew J., Jr.; Adlhart, Otto J.; Marmolejo, Jose A.

    1988-01-01

    The development of a fuel cell energy storage system for the Space Station Extravehicular Mobility Unit (EMU) is discussed. The ion-exchange membrane fuel cell uses hydrogen stored as a metal hydride. Several features of the hydrogen-oxygen fuel cell are examined, including its construction, hydrogen storage, hydride recharge, water heat, water removal, and operational parameters.

  7. 75 FR 77017 - Nextera Energy Seabrook, LLC Seabrook Station Independent Spent Fuel Storage Installation; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-10

    ... COMMISSION Nextera Energy Seabrook, LLC Seabrook Station Independent Spent Fuel Storage Installation; Exemption 1.0 Background NextEra Energy Seabrook, LLC (NextEra, the licensee) is the holder of Facility..., subpart K, a general license is issued for the storage of spent fuel in an independent spent fuel...

  8. 75 FR 81031 - Consideration of Environmental Impacts of Temporary Storage of Spent Fuel After Cessation of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-23

    ... release from stored SNF. Multiple studies of the safety and security of spent fuel storage, including the... facilities, the studies of the safety and security of spent fuel storage (conducted both before and after the... are not publicly available; these are reports concerning the safety and security of spent fuel...

  9. 30 CFR 75.1903 - Underground diesel fuel storage facilities and areas; construction and safety precautions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... storage; and (4) Maintained to prevent the accumulation of water. (c) Welding or cutting other than that... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Underground diesel fuel storage facilities and...-UNDERGROUND COAL MINES Diesel-Powered Equipment § 75.1903 Underground diesel fuel storage facilities and...

  10. Replacement of tritiated water from irradiated fuel storage bay

    SciTech Connect

    Castillo, I.; Boniface, H.; Suppiah, S.; Kennedy, B.; Minichilli, A.; Mitchell, T.

    2015-03-15

    Recently, AECL developed a novel method to reduce tritium emissions (to groundwater) and personnel doses at the NRU (National Research Universal) reactor irradiated fuel storage bay (also known as rod or spent fuel bay) through a water swap process. The light water in the fuel bay had built up tritium that had been transferred from the heavy water moderator through normal fuel transfers. The major advantage of the thermal stratification method was that a very effective tritium reduction could be achieved by swapping a minimal volume of bay water and warm tritiated water would be skimmed off the bay surface. A demonstration of the method was done that involved Computational Fluid Dynamics (CFD) modeling of the swap process and a test program that showed excellent agreement with model prediction for the effective removal of almost all the tritium with a minimal water volume. Building on the successful demonstration, AECL fabricated, installed, commissioned and operated a full-scale system to perform a water swap. This full-scale water swap operation achieved a tritium removal efficiency of about 96%.

  11. Storage of Residual Fuel Oil in Underground Unlined Rock Caverns.

    DTIC Science & Technology

    1980-12-01

    Francaise des Petroles BP, Elf Union, Shell Francaise, and Compagnie Francaise de Raffinage (Total). The company and its subsidiaries were formed with...DEC 80 D C BANKS UNCLASSIFIED WES/NP/S4.-8O-19 ti. LE VEL MISCELLANEOUS PAPER GL-80-19 31 STORAGE OF RESIDUAL FUEL OIL IN UNDERGROUND UNLINED ROCK...Ruimaia.~ indl a riiirI( le ol Air in1 wi r’ hve en coIit’Icted to enc1ouraige muiliriershnpl I[I the i 5kRM. 1) By Innf t-Ii .fi’ I ’I.]%- I "W

  12. Capacitive bioanodes enable renewable energy storage in microbial fuel cells.

    PubMed

    Deeke, Alexandra; Sleutels, Tom H J A; Hamelers, Hubertus V M; Buisman, Cees J N

    2012-03-20

    We developed an integrated system for storage of renewable electricity in a microbial fuel cell (MFC). The system contained a capacitive electrode that was inserted into the anodic compartment of an MFC to form a capacitive bioanode. This capacitive bioanode was compared with a noncapacitive bioanode on the basis of performance and storage capacity. The performance and storage capacity were investigated during polarization curves and charge-discharge experiments. During polarization curves the capacitive electrode reached a maximum current density of 1.02 ± 0.04 A/m(2), whereas the noncapacitive electrode reached a current density output of only 0.79 ± 0.03 A/m(2). During the charge-discharge experiment with 5 min of charging and 20 min of discharging, the capacitive electrode was able to store a total of 22,831 C/m(2), whereas the noncapacitive electrode was only able to store 12,195 C/m(2). Regarding the charge recovery of each electrode, the capacitive electrode was able to recover 52.9% more charge during each charge-discharge experiment compared with the noncapacitive electrode. The capacitive electrode outperformed the noncapacitive electrode throughout each charge-discharge experiment. With a capacitive electrode it is possible to use the MFC simultaneously for production and storage of renewable electricity.

  13. Unitized Regenerative Fuel Cell System Gas Storage/Radiator Development

    NASA Technical Reports Server (NTRS)

    Jakupca, Ian; Burke, Kenneth A.

    2003-01-01

    The ancillary components for Unitized Regenerative Fuel Cell (URFC) Energy Storage System are being developed at the NASA Glenn Research Center. This URFC system is unique in that it uses the surface area of the hydrogen and oxygen storage tanks as radiating heat surfaces for overall thermal control of the system. The waste heat generated by the URFC stack during charging and discharging is transferred from the cell stack to the surface of each tank by loop heat pipes. The heat pipes are coiled around each tank and covered with a thin layer of thermally conductive layer of carbon composite. The thin layer of carbon composite acts as a fin structure that spreads the heat away from the heat pipe and across the entire tank surface. Two different sized commercial grade composite tanks were constructed with integral heat pipes and tested in a thermal vacuum chamber to examine the feasibility of using the storage tanks as system radiators. The storage radiators were subjected to different steady-state heat loads and varying heat load profiles. The surface emissivity and specific heat capacity of each tank were calculated. The results were incorporated into a model that simulates the performance of similar radiators using lightweight, space rated carbon composite tanks.

  14. Alkaline fuel cells for the regenerative fuel cell energy storage system

    SciTech Connect

    Martin, R.E.

    1983-08-01

    United Technologies Corporation has been conducting a development program sponsored by Lewis Research Center of NASA directed toward advancing the state of the art of the alkaline fuel cell. The goal of the program is the development of an extended endurance, high-performance, high-efficiency fuel cell for use in a multi-hundred kilowatt regenerative fuel cell. This technology advancement program has identified a low-weight design and cell components with increased performance and extended endurance. Longterm endurance testing of full-size fuel cell modules has demonstrated the extended endurance capability of potassium titanate matrix cells, the long-term performance stability of the anode catalyst, and the suitability of a lightweight graphite structure for use at the anode in an alkaline fuel cell. In addition under the program, a full-size alkaline fuel cell module has completed 5,000 hours of a planned 20,000-hour test to a cyclical load profile. The continuous load profile consists of 60 minutes at open circuit followed by 30 minutes at 200 ASF which simulates the operation of a Regenerative Fuel Cell Energy Storage System in low earth orbit.

  15. Initial evaluation of dry storage issues for spent nuclear fuels in wet storage at the Idaho Chemical Processing Plant

    SciTech Connect

    Guenther, R J; Johnson, Jr, A B; Lund, A L; Gilbert, E R

    1996-07-01

    The Pacific Northwest Laboratory has evaluated the basis for moving selected spent nuclear fuels in the CPP-603 and CPP-666 storage pools at the Idaho Chemical Processing Plant from wet to dry interim storage. This work is being conducted for the Lockheed Idaho Technologies Company as part of the effort to determine appropriate conditioning and dry storage requirements for these fuels. These spent fuels are from 22 test reactors and include elements clad with aluminum or stainless steel and a wide variety of fuel materials: UAl{sub x}, UAl{sub x}-Al and U{sub 3}O{sub 8}-Al cermets, U-5% fissium, UMo, UZrH{sub x}, UErZrH, UO{sub 2}-stainless steel cermet, and U{sub 3}O{sub 8}-stainless steel cermet. The study also included declad uranium-zirconium hydride spent fuel stored in the CPP-603 storage pools. The current condition and potential failure mechanisms for these spent fuels were evaluated to determine the impact on conditioning and dry storage requirements. Initial recommendations for conditioning and dry storage requirements are made based on the potential degradation mechanisms and their impacts on moving the spent fuel from wet to dry storage. Areas needing further evaluation are identified.

  16. CONSTRUCTION VIEW FUEL STORAGE BUILDING (CPP603) LOOKING EAST SHOWING ASBESTOS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CONSTRUCTION VIEW FUEL STORAGE BUILDING (CPP-603) LOOKING EAST SHOWING ASBESTOS SIDING. INL PHOTO NUMBER NRTS-51-1543. Unknown Photographer, 2/28/1951 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  17. BUILDING PLANS OF FUEL STORAGE BUILDING (CPP603). INL DRAWING NUMBER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    BUILDING PLANS OF FUEL STORAGE BUILDING (CPP-603). INL DRAWING NUMBER 200-0603-61-299-103029. ALTERNATE ID NUMBER 542-31-B-21. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  18. CONSTRUCTION PROGRESS PHOTO SHOWING FUEL STORAGE BUILDING (CPP603) LOOKING NORTHWEST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CONSTRUCTION PROGRESS PHOTO SHOWING FUEL STORAGE BUILDING (CPP-603) LOOKING NORTHWEST. INL PHOTO NUMBER NRTS-50-895. Unknown Photographer, 10/30/1950 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  19. Environmental Assessment: Construct Fuel Bowser Storage Area Install Underground Storage Tank, Security Fencing, Lighting Construct Bowser Open Storage Pavement at Grand Forks AFB, North Dakota

    DTIC Science & Technology

    2004-10-01

    Air Force Base has pro- posed the construction of an underground fuel-water recovery storage tank with SeGU- D We rity fencing and light- Is, Sec...your ad. Second or Third year Plumbing Apprentice. We are looking for a second or. third year plumbing apprentice to join our work force. Need...storage tank with secu- rity fencing and light- Ing and a paved open storage area for fuel bowsers on Grand Forks AFB. 2 - RESERVED We Fest lawn

  20. Stabilization of reactor fuel storage pool-TTP

    SciTech Connect

    Sevigny, G.

    1994-10-01

    The proposed work includes evaluating standard and improved technologies an designing an integrated demonstration system to clean the water and sludge the fuel storage pools. The water released would meet drinking water standards and tritium standards. The volume of radioactive sludge would be reduced by partial separation of the sludge and radionuclides and eventual solidification of the hazardous and radioactive waste. The scope of the wo includes a survey of needs and applicable technologies, system engineering evaluation, conceptual design, detailed design, fabrication of the integrat demonstration system, and testing of the system. The survey task will locate potential specific customers within the DOE complex, and outside of the DOE complex throughout the United States, that be able to utilize the narrowly focused technology to stabilize/shutdown reactor fuel storage pools, responsible parties will be located and asked respond to a survey about their specific process requirements. Literature searches will be run through technical and scientific databases to locate technologies that may be an improvement over the standard baselined technol for cleanup of radioactively-contaminated pools. Systems engineering will provide decision analysis support for the development, evaluation, design, test functions of the treatment of pool water and sludge.

  1. Dose reduction improvements in storage basins of spent nuclear fuel

    SciTech Connect

    Huang, Fan-Hsiung F.

    1997-08-13

    Spent nuclear fuel in storage basins at the Hanford Site has corroded and contaminated basin water, which has leaked into the soil; the fuel also had deposited a layer of radioactive sludge on basin floors. The SNF is to be removed from the basins to protect the nearby Columbia River. Because the radiation level is high, measures have been taken to reduce the background dose rate to as low as reasonably achievable (ALARA) to prevent radiation doses from becoming the limiting factor for removal of the SW in the basins to long-term dry storage. All activities of the SNF Project require application of ALARA principles for the workers. On the basis of these principles dose reduction improvements have been made by first identifying radiological sources. Principal radiological sources in the basin are basin walls, basin water, recirculation piping and equipment. Dose reduction activities focus on cleaning and coating basin walls to permit raising the water level, hydrolasing piping, and placing lead plates. In addition, the transfer bay floor will be refinished to make decontamination easier and reduce worker exposures in the radiation field. The background dose rates in the basin will be estimated before each task commences and after it is completed; these dose reduction data will provide the basis for cost benefit analysis.

  2. Extended Storage for Research and Test Reactor Spent Fuel for 2006 and Beyond

    SciTech Connect

    Hurt, William Lon; Moore, K.M.; Shaber, Eric Lee; Mizia, Ronald Eugene

    1999-10-01

    This paper will examine issues associated with extended storage of a variety of spent nuclear fuels. Recent experiences at the Idaho National Engineering and Environmental Laboratory and Hanford sites will be described. Particular attention will be given to storage of damaged or degraded fuel. The first section will address a survey of corrosion experience regarding wet storage of spent nuclear fuel. The second section will examine issues associated with movement from wet to dry storage. This paper also examines technology development needs to support storage and ultimate disposition.

  3. Status of work at PNL supporting dry storage of spent fuel

    SciTech Connect

    Cunningham, M.E.; McKinnon, M.A.; Michener, T.E.; Thomas, L.E.; Thornhill, C.K.

    1992-01-01

    Three projects related to dry storage of light-water reactor spent fuel are being conducted at Pacific Northwest Laboratory. Performance testing of six dry storage systems (four metal casks and two concrete storage systems) has been completed and results compiled. Two computer codes for predicting spent fuel and storage system thermal performance, COBRA-SFS and HYDRA-II, have been developed and have been reviewed by the US Nuclear Regulatory Commission. Air oxidation testing of spent fuel was conducted from 1984 through 1990 to obtain data to support recommendations of temperature-time limits for air dry storage for periods up to 40 years.

  4. Electricity Storage and the Hydrogen-Chlorine Fuel Cell

    NASA Astrophysics Data System (ADS)

    Rugolo, Jason Steven

    Electricity storage is an essential component of the transforming energy marketplace. Its absence at any significant scale requires that electricity producers sit ready to respond to every flick of a switch, constantly adjusting power production to meet demand. The dispatchable electricity production technologies that currently enable this type of market are growing unpopular because of their carbon emissions. Popular methods to move away from fossil fuels are wind and solar power. These sources also happen to be the least dispatchable. Electricity storage can solve that problem. By overproducing during sunlight to store energy for evening use, or storing during windy periods for delivery in future calm ones, electricity storage has the potential to allow intermittent renewable sources to constitute a large portion of our electricity mix. I investigate the variability of wind in Chapter 2, and show that the variability is not significantly reduced by geographically distributing power production over the entire country of the Netherlands. In Chapter 3, I calculate the required characteristics of a linear-response, constant activity storage technology to map wind and solar production scenarios onto several different supply scenarios for a range of specified system efficiencies. I show that solid electrode batteries have two orders of magnitude too little energy per unit power to be well suited for renewable balancing and emphasize the value of the modular separation between the power and energy components of regenerative fuel cell technologies. In Chapter 4 I introduce the regenerative hydrogen-chlorine fuel cell (rHCFC), which is a specific technology that shows promise for the above applications. In collaboration with Sustainable Innovations, we have made and tested 6 different rHCFCs. In order to understand the relative importance of the different inefficiencies in the rHCFC, Chapter 5 introduces a complex temperature and concentration dependent model of the r

  5. Fast facility spent-fuel and waste assay instrument. [Fluorinel Dissolution and Fuel Storage (FAST) Facility

    SciTech Connect

    Eccleston, G.W.; Johnson, S.S.; Menlove, H.O.; Van Lyssel, T.; Black, D.; Carlson, B.; Decker, L.; Echo, M.W.

    1983-01-01

    A delayed-neutron assay instrument was installed in the Fluorinel Dissolution and Fuel Storage Facility at Idaho National Engineering Laboratory. The dual-assay instrument is designed to measure both spent fuel and waste solids that are produced from fuel processing. A set of waste standards, fabricated by Los Alamos using uranium supplied by Exxon Nuclear Idaho Company, was used to calibrate the small-sample assay region of the instrument. Performance testing was completed before installation of the instrument to determine the effects of uranium enrichment, hydrogenous materials, and neutron poisons on assays. The unit was designed to measure high-enriched uranium samples in the presence of large neutron backgrounds. Measurements indicate that the system can assay low-enriched uranium samples with moderate backgrounds if calibrated with proper standards.

  6. Regenerative Fuel Cell System As Alternative Energy Storage For Space

    NASA Astrophysics Data System (ADS)

    Lucas, J.; Bockstahler, K.; Funke, H.; Jehle, W.; Markgraf, S.; Henn, N.; Schautz, M.

    2011-10-01

    Next generation telecommunication satellites will demand more power. Power levels of 20 to 30kW are foreseen for the next 10 years. Battery technology that can sustain 30kW for eclipse lengths of up to 72 minutes (equals amount of stored energy of 36kWh) will represent a major impact on the total mass of the satellite, even with Li-ion battery technologies, which are estimated to reach an energy density of 250Wh/kg (begin of life) on cell level i.e. 150Wh/kg on subsystem level in 10 years. For the high power level another technology is needed to reach the next goal of 300 - 350Wh/kg on subsystem level. One candidate is the Regenerative Fuel Cell (RFC) technology which proves to be superior to batteries with increasing power demand and increasing discharge time. Such an RFC system based on hydrogen and oxygen technology consists of storage for the reactants (H2, O2 and H2O), a fuel cell (FC) and an electrolyser (ELY). In charge mode, the electrolyser splits water in hydrogen and oxygen using electrical power from solar cells. The gases are stored in appropriate tanks. In discharge mode, during time intervals of power demand, O2 and H2 are converted in the fuel cell to generate electricity under formation of water as by-product. The water is stored in tanks and during charge mode rerouted to the electrolyser thus creating a closed-loop process. Today Astrium is developing an RFCS as energy storage and supply unit for some future ESA missions. A complete RFCS breadboard has been established and the operational behaviour of the system is being tested. First test results, dedicated experience gained from system testing and a comparison with the analytical prediction will be discussed and presented.

  7. Shipping and storage cask data for spent nuclear fuel

    SciTech Connect

    Johnson, E.R.; Notz, K.J.

    1988-11-01

    This document is a compilation of data on casks used for the storage and/or transport of commercially generated spent fuel in the US based on publicly available information. In using the information contained in the following data sheets, it should be understood that the data have been assembled from published information, which in some instances was not internally consistent. Moreover, it was sometimes necessary to calculate or infer the values of some attributes from available information. Nor was there always a uniform method of reporting the values of some attributes; for example, an outside surface dose of the loaded cask was sometimes reported to be the maximum acceptable by NRC, while in other cases the maximum actual dose rate expected was reported, and in still other cases the expected average dose rate was reported. A summary comparison of the principal attributes of storage and transportable storage casks is provided and a similar comparison for shipping casks is also shown. References to source data are provided on the individual data sheets for each cask.

  8. Research on Spent Fuel Storage and Transportation in CRIEPI (Part 2 Concrete Cask Storage)

    SciTech Connect

    Koji Shirai; Jyunichi Tani; Taku Arai; Masumi Watatu; Hirofumi Takeda; Toshiari Saegusa; Philip L. Winston

    2008-10-01

    Concrete cask storage has been implemented in the world. At a later stage of storage period, the containment of the canister may deteriorate due to stress corrosion cracking phenomena in a salty air environment. High resistant stainless steels against SCC have been tested as compared with normal stainless steel. Taking account of the limited time-length of environment with certain level of humidity and temperature range, the high resistant stainless steels will survive from SCC damage. In addition, the adhesion of salt from salty environment on the canister surface will be further limited with respect to the canister temperature and angle of the canister surface against the salty air flow in the concrete cask. Optional countermeasure against SCC with respect to salty air environment has been studied. Devices consisting of various water trays to trap salty particles from the salty air were designed to be attached at the air inlet for natural cooling of the cask storage building. Efficiency for trapping salty particles was evaluated. Inspection of canister surface was carried out using an optical camera inserted from the air outlet through the annulus of a concrete cask that has stored real spent fuel for more than 15 years. The camera image revealed no gross degradation on the surface of the canister. Seismic response of a full-scale concrete cask with simulated spent fuel assemblies has been demonstrated. The cask did not tip over, but laterally moved by the earthquake motion. Stress generated on the surface of the spent fuel assemblies during the earthquake motion were within the elastic region.

  9. Regulatory Perspective on Potential Fuel Reconfiguration and Its Implication to High Burnup Spent Fuel Storage and Transportation - 13042

    SciTech Connect

    Li, Zhian; Rahimi, Meraj; Tang, David; Aissa, Mourad; Flaganan, Michelle; Wagner, John C.

    2013-07-01

    The recent experiments conducted by Argonne National Laboratory on high burnup fuel cladding material property show that the ductile to brittle transition temperature of high burnup fuel cladding is dependent on: (1) cladding material, (2) irradiation conditions, and (3) drying-storage histories (stress at maximum temperature) [1]. The experiment results also show that the ductile to brittle temperature increases as the fuel burnup increases. These results indicate that the current knowledge in cladding material property is insufficient to determine the structural performance of the cladding of high burnup fuel after it has been stored in a dry cask storage system for some time. The uncertainties in material property and the elevated ductile to brittle transition temperature impose a challenge to the storage cask and transportation packaging designs because the cask designs may not be able to rely on the structural integrity of the fuel assembly for control of fissile material, radiation source, and decay heat source distributions. The fuel may reconfigure during further storage and/or the subsequent transportation conditions. In addition, the fraction of radioactive materials available for release from spent fuel under normal condition of storage and transport may also change. The spent fuel storage and/or transportation packaging vendors, spent fuel shippers, and the regulator may need to consider this possible fuel reconfiguration and its impact on the packages' ability to meet the safety requirements of Part 72 and Part 71 of Title 10 of the Code of Federal Regulations. The United States Nuclear Regulatory Commission (NRC) is working with the scientists at Oak Ridge National Laboratory (ORNL) to assess the impact of fuel reconfiguration on the safety of the dry storage systems and transportation packages. The NRC Division of Spent Fuel Storage and Transportation has formed a task force to work on the safety and regulatory concerns in relevance to high burnup

  10. 10 CFR 72.240 - Conditions for spent fuel storage cask reapproval.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Conditions for spent fuel storage cask reapproval. 72.240 Section 72.240 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS...

  11. 10 CFR 72.230 - Procedures for spent fuel storage cask submittals.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Procedures for spent fuel storage cask submittals. 72.230 Section 72.230 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS...

  12. 10 CFR 72.240 - Conditions for spent fuel storage cask reapproval.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Conditions for spent fuel storage cask reapproval. 72.240 Section 72.240 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS...

  13. 10 CFR 72.236 - Specific requirements for spent fuel storage cask approval and fabrication.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Specific requirements for spent fuel storage cask approval and fabrication. 72.236 Section 72.236 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND...

  14. 10 CFR 72.230 - Procedures for spent fuel storage cask submittals.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Procedures for spent fuel storage cask submittals. 72.230 Section 72.230 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS...

  15. 77 FR 9515 - List of Approved Spent Fuel Storage Casks: HI-STORM 100, Revision 8

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-17

    ... RIN 3150-AJ05 List of Approved Spent Fuel Storage Casks: HI-STORM 100, Revision 8 AGENCY: Nuclear... Commission) is amending its spent fuel storage regulations by revising the Holtec International HI-STORM 100... and safety will be adequately protected. This direct final rule revises the HI-STORM 100 listing in...

  16. INTERIOR VIEW OF FUEL STORAGE BUILDING (CPP603) LOOKING SOUTHWEST SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW OF FUEL STORAGE BUILDING (CPP-603) LOOKING SOUTHWEST SHOWING STORAGE BASIN IN FOREGROUND, TRANSFER CRANE AND UNLOADER TO LEFT OF NORTH SIDE OF HOT CELL. INL PHOTO NUMBER NRTS-58-157. J. Anderson, Photographer, 1/15/1958 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  17. Evaluating Fuel Leak and Aging Infrastructure at Red Hill, Hawaii, the Largest Underground Fuel Storage Facility in the United States

    EPA Pesticide Factsheets

    Learn about how EPA Region 9, Hawaii’s Department of Health, U.S. Navy, and Defense Logistics Agency are working tprotect human health and the environment at the Red Hill Bulk Fuel Storage Facility in Hawaii.

  18. Technical framework to facilitate foreign spent fuel storage and geologic disposal in Russia

    SciTech Connect

    Jardine, L J; Halsey, W G; Cmith, C F

    2000-01-31

    The option of storage and eventual geologic disposal in Russia of spent fuel of US origin used in Taiwan provides a unique opportunity that can benefit many parties. Taiwan has a near term need for a spent fuel storage and geologic disposal solution, available financial resources, but limited prospect for a timely domestic solution. Russia has significant spent fuel storage and transportation management experience, candidate storage and repository sites, but limited financial resources available for their development. The US has interest in Taiwan energy security, national security and nonproliferation interests in Russian spent fuel storage and disposal and interest in the US origin fuel. While it is understood that such a project includes complex policy and international political issues as well as technical issues, the goal of this paper is to begin the discussion by presenting a technical path forward to establish the feasibility of this concept for Russia.

  19. ALARA Analysis for Shippingport Pressurized Water Reactor Core 2 Fuel Storage in the Canister Storage Building (CSB)

    SciTech Connect

    LEWIS, M.E.

    2000-04-06

    The addition of Shippingport Pressurized Water Reactor (PWR) Core 2 Blanket Fuel Assembly storage in the Canister Storage Building (CSB) will increase the total cumulative CSB personnel exposure from receipt and handling activities. The loaded Shippingport Spent Fuel Canisters (SSFCs) used for the Shippingport fuel have a higher external dose rate. Assuming an MCO handling rate of 170 per year (K East and K West concurrent operation), 24-hr CSB operation, and nominal SSFC loading, all work crew personnel will have a cumulative annual exposure of less than the 1,000 mrem limit.

  20. Design for Corrosion Control of Aviation Fuel Storage and Distribution Systems

    DTIC Science & Technology

    1975-06-01

    AD-AOll 588 DESIGN FOR CORROSION CONTROL OF AVIATION FUEL STORAGE AND DISTRIBUTION SYSTEMS Fred Reinhart Civil Engineering Laboratory Prepared for...191137 OC DESIGN FOR CORROSION CONTROL OF AVIATION FUEL STORAGE AND DISTRIBUTION SYSTEMS Fred Reinhart O Civil Engineering Laboratory Naval...ZOVERE, fFinal Report for: 15 Oct 70 DESIGN FOR CORROSION CONTROL OF AVIATION FUEL I STORGE AD DITRIBTIONSYSTMS thru 15 Oct 74 STORGE ND ISTIBUTON

  1. High temperature solid oxide regenerative fuel cell for solar photovoltaic energy storage

    NASA Technical Reports Server (NTRS)

    Bents, David J.

    1987-01-01

    A hydrogen-oxygen regenerative fuel cell (RFC) energy storage system based on high temperature solid oxide fuel cell (SOFC) technology is described. The reactants are stored as gases in lightweight insulated pressure vessels. The product water is stored as a liquid in saturated equilibrium with the fuel gas. The system functions as a secondary battery and is applicable to darkside energy storage for solar photovoltaics.

  2. 78 FR 78165 - List of Approved Spent Fuel Storage Casks: HI-STORM 100 Cask System; Amendment No. 9

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-26

    ... RIN 3150-AJ12 List of Approved Spent Fuel Storage Casks: HI-STORM 100 Cask System; Amendment No. 9... amends the NRC's spent fuel storage regulations by revising the Holtec International HI-STORM 100...

  3. Viability in methyl soyate of microbial contaminants from farm fuel storage tanks

    SciTech Connect

    Ryu, D.; Katta, S.K.; Bullerman, L.B.; Hanna, M.A.; Gennadios, A.

    1996-11-01

    Biodiesel is a renewable, environmentally sound alternative fuel derived from vegetable oils and animal fats, Microbial contamination is a known problem with diesel fuel. The susceptibility of methyl soyate or its blends with diesel fuel to microbial growth has not been investigated. Bacillus species including two B. cereus strains were identified as problem-causing microorganisms in diesel fuel samples collected from agricultural diesel fuel storage tanks. Growth of these microorganisms was inhibited by methyl soyate. Inoculated bacteria were not viable in methyl soyate or in 20/80, 50/50, and 80/20% methyl soyate/diesel fuel blend samples after 8 weeks of storage. In contrast, bacterial counts increased significantly (P < 0.05) in both distilled water control and diesel fuel samples after 8 weeks of storage. 15 refs., 5 figs., 1 tab.

  4. 10 CFR 171.15 - Annual fees: Reactor licenses and independent spent fuel storage licenses.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Annual fees: Reactor licenses and independent spent fuel... REACTOR LICENSES AND FUEL CYCLE LICENSES AND MATERIALS LICENSES, INCLUDING HOLDERS OF CERTIFICATES OF... NRC § 171.15 Annual fees: Reactor licenses and independent spent fuel storage licenses. (a)...

  5. 10 CFR 171.15 - Annual fees: Reactor licenses and independent spent fuel storage licenses.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Annual fees: Reactor licenses and independent spent fuel... REACTOR LICENSES AND FUEL CYCLE LICENSES AND MATERIALS LICENSES, INCLUDING HOLDERS OF CERTIFICATES OF... NRC § 171.15 Annual fees: Reactor licenses and independent spent fuel storage licenses. (a)...

  6. Regenerative fuel cell energy storage system for a low Earth orbit space station

    SciTech Connect

    Martin, R.E.; Garow, J.; Michaels, K.B.

    1984-08-01

    Results of a study to define the characteristics of a regenerative fuel cell energy storage system for a large space station operating in low earth orbit (LEO) are presented. The regenerative fuel cell system employs an alkaline electrolyte fuel cell with the option of employing either an alkaline or a solid polymer electrolyte electrolyzer.

  7. 77 FR 9591 - List of Approved Spent Fuel Storage Casks: HI-STORM 100, Revision 8

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-17

    ... COMMISSION 10 CFR Part 72 RIN 3150-AJ05 List of Approved Spent Fuel Storage Casks: HI-STORM 100, Revision 8... the Holtec International HI-STORM 100 dry cask storage system listing within the ``List of Approved... other aspects of the HI-STORM 100 dry storage cask system. Because the NRC considers this...

  8. Foreign experience on effects of extended dry storage on the integrity of spent nuclear fuel

    SciTech Connect

    Schneider, K.J.; Mitchell, S.J.

    1992-04-01

    This report summarizes the results of a survey of foreign experience in dry storage of spent fuel from nuclear power reactors that was carried out for the US Department of Energy's (DOE) Office of Civilian Radioactive Waste Management (OCRWM). The report reviews the mechanisms for degradation of spent fuel cladding and fuel materials in dry storage, identifies the status and plans of world-wide experience and applications, and documents the available information on the expected long-term integrity of the dry-stored spent fuel from actual foreign experience. Countries covered in this survey are: Argentina, Canada, Federal Republic of Germany (before reunification with the former East Germany), former German Democratic Republic (former East Germany), France, India, Italy, Japan, South Korea, Spain, Switzerland, United Kingdom, and the former USSR (most of these former Republics are now in the Commonwealth of Independent States (CIS)). Industrial dry storage of Magnox fuels started in 1972 in the United Kingdom; Canada began industrial dry storage of CANDU fuels in 1980. The technology for safe storage is generally considered to be developed for time periods of 30 to 100 years for LWR fuel in inert gas and for some fuels in oxidizing gases at low temperatures. Because it will probably be decades before countries will have a repository for spent fuels and high-level wastes, the plans for expanded use of dry storage have increased significantly in recent years and are expected to continue to increase in the near future.

  9. Foreign experience on effects of extended dry storage on the integrity of spent nuclear fuel

    SciTech Connect

    Schneider, K.J.; Mitchell, S.J.

    1992-04-01

    This report summarizes the results of a survey of foreign experience in dry storage of spent fuel from nuclear power reactors that was carried out for the US Department of Energy`s (DOE) Office of Civilian Radioactive Waste Management (OCRWM). The report reviews the mechanisms for degradation of spent fuel cladding and fuel materials in dry storage, identifies the status and plans of world-wide experience and applications, and documents the available information on the expected long-term integrity of the dry-stored spent fuel from actual foreign experience. Countries covered in this survey are: Argentina, Canada, Federal Republic of Germany (before reunification with the former East Germany), former German Democratic Republic (former East Germany), France, India, Italy, Japan, South Korea, Spain, Switzerland, United Kingdom, and the former USSR (most of these former Republics are now in the Commonwealth of Independent States [CIS]). Industrial dry storage of Magnox fuels started in 1972 in the United Kingdom; Canada began industrial dry storage of CANDU fuels in 1980. The technology for safe storage is generally considered to be developed for time periods of 30 to 100 years for LWR fuel in inert gas and for some fuels in oxidizing gases at low temperatures. Because it will probably be decades before countries will have a repository for spent fuels and high-level wastes, the plans for expanded use of dry storage have increased significantly in recent years and are expected to continue to increase in the near future.

  10. OVERVIEW OF CRITERIA FOR INTERIM WET & DRY STORAGE OF RESEARCH REACTOR SPENT NUCLEAR FUEL

    SciTech Connect

    Sindelar, R.; Vinson, D.; Iyer, N.; Fisher, D.

    2010-11-03

    Following discharge from research reactors, spent nuclear fuel may be stored 'wet' in water pools or basins, or it may be stored 'dry' in various configurations including non-sealed or sealed containers until retrieved for ultimate disposition. Interim safe storage practices are based on avoiding degradation to the fuel that would impact functions related to safety. Recommended practices including environmental controls with technical bases, are outlined for wet storage and dry storage of aluminum-clad, aluminum-based research reactor fuel. For wet storage, water quality must be maintained to minimize corrosion degradation of aluminum fuel. For dry storage, vented canister storage of aluminum fuel readily provides a safe storage configuration. For sealed dry storage, drying must be performed so as to minimize water that would cause additional corrosion and hydrogen generation. Consideration must also be given to the potential for radiolytically-generated hydrogen from the bound water in the attendant oxyhydroxides on aluminum fuel from reactor operation for dry storage systems.

  11. Storage and production of hydrogen for fuel cell applications

    NASA Astrophysics Data System (ADS)

    Aiello, Rita

    The increased utilization of proton-exchange membrane (PEM) fuel cells as an alternative to internal combustion engines is expected to increase the demand for hydrogen, which is used as the energy source in these systems. The objective of this work is to develop and test new methods for the storage and production of hydrogen for fuel cells. Six ligand-stabilized hydrides were synthesized and tested as hydrogen storage media for use in portable fuel cells. These novel compounds are more stable than classical hydrides (e.g., NaBH4, LiAlH4) and react to release hydrogen less exothermically upon hydrolysis with water. Three of the compounds produced hydrogen in high yield (88 to 100 percent of the theoretical) and at significantly lower temperatures than those required for the hydrolysis of NaBH4 and LiAlH4. However, a large excess of water and acid were required to completely wet the hydride and keep the pH of the reaction medium neutral. The hydrolysis of the classical hydrides with steam can overcome these limitations. This reaction was studied in a flow reactor and the results indicate that classical hydrides can be hydrolyzed with steam in high yields at low temperatures (110 to 123°C) and in the absence of acid. Although excess steam was required, the pH of the condensed steam was neutral. Consequently, steam could be recycled back to the reactor. Production of hydrogen for large-scale transportation fuel cells is primarily achieved via the steam reforming, partial oxidation or autothermal reforming of natural gas or the steam reforming of methanol. However, in all of these processes CO is a by-product that must be subsequently removed because the Pt-based electrocatalyst used in the fuel cells is poisoned by its presence. The direct cracking of methane over a Ni/SiO2 catalyst can produce CO-free hydrogen. In addition to hydrogen, filamentous carbon is also produced. This material accumulates on the catalyst and eventually deactivates it. The Ni/SiO2 catalyst

  12. Spent nuclear fuel integrity during dry storage - performance tests and demonstrations

    SciTech Connect

    McKinnon, M.A.; Doherty, A.L.

    1997-06-01

    This report summarizes the results of fuel integrity surveillance determined from gas sampling during and after performance tests and demonstrations conducted from 1983 through 1996 by or in cooperation with the US DOE Office of Commercial Radioactive Waste Management (OCRWM). The cask performance tests were conducted at Idaho National Engineering Laboratory (INEL) between 1984 and 1991 and included visual observation and ultrasonic examination of the condition of the cladding, fuel rods, and fuel assembly hardware before dry storage and consolidation of fuel, and a qualitative determination of the effects of dry storage and fuel consolidation on fission gas release from the spent fuel rods. The performance tests consisted of 6 to 14 runs involving one or two loading, usually three backfill environments (helium, nitrogen, and vacuum backfills), and one or two storage system orientations. The nitrogen and helium backfills were sampled and analyzed to detect leaking spent fuel rods. At the end of each performance test, periodic gas sampling was conducted on each cask. A spent fuel behavior project (i.e., enhanced surveillance, monitoring, and gas sampling activities) was initiated by DOE in 1994 for intact fuel in a CASTOR V/21 cask and for consolidated fuel in a VSC-17 cask. The results of the gas sampling activities are included in this report. Information on spent fuel integrity is of interest in evaluating the impact of long-term dry storage on the behavior of spent fuel rods. Spent fuel used during cask performance tests at INEL offers significant opportunities for confirmation of the benign nature of long-term dry storage. Supporting cask demonstration included licensing and operation of an independent spent fuel storage installation (ISFSI) at the Virginia Power (VP) Surry reactor site. A CASTOR V/21, an MC-10, and a Nuclear Assurance NAC-I28 have been loaded and placed at the VP ISFSI as part of the demonstration program. 13 refs., 14 figs., 9 tabs.

  13. 76 FR 33121 - List of Approved Spent Fuel Storage Casks: HI-STORM Flood/Wind Addition

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-08

    ... 3150-AI90 List of Approved Spent Fuel Storage Casks: HI-STORM Flood/Wind Addition AGENCY: Nuclear... the NRC's spent fuel storage regulations to add the Holtec HI-STORM Flood/Wind cask system to the... Holtec HI- STORM Flood/Wind cask system to the ``List of Approved Spent Fuel Storage Casks''...

  14. COBRA-SFS thermal analysis of a sealed storage cask for the Monitored Retrievable Storage of spent fuel

    SciTech Connect

    Rector, D.R.; Wheeler, C.L.

    1986-01-01

    The COBRA-SFS (Spent Fuel Storage) computer code was used to predict temperature distributions in a concrete Sealed Storage Cask (SSC). This cask was designed for the Department of Energy in the Monitored Retrievable Storage (MRS) program for storage of spent fuel from commercial power operations. Analytical results were obtained for nominal operation of the SSC with spent fuel from 36 PWR fuel assemblies consolidated in 12 cylindrical canisters. Each canister generates 1650 W of thermal power. A parametric study was performed to assess the effects on cask thermal performance of thermal conductivity of the concrete, the fin material, and the amount of radial reinforcing steel bars (rebar). Seven different cases were modeled. The results of the COBRA-SFS analysis of the current cask design predict that the peak fuel cladding temperature in the SSC will not exceed the 37/sup 0/C design limit for the maximum spent fuel load of 19.8 kW and a maximum expected ambient temperature of 37.8/sup 0/C (100/sup 0/F). The results of the parametric analyses illustrate the importance of material selection and design optimization with regard to the SSC thermal performance.

  15. Tape extensometer sensitivity and reliability. [Climax fuel storage at NTS

    SciTech Connect

    Yow, J.L. Jr.; Wilder, D.G.

    1981-09-21

    The Spent Fuel Test-Climax is a test of retrievable storage in granite of spent nuclear reactor fuel. The rock has been instrumented to measure temperatures, stress changes, and displacements. Periodic tape extensometer readings provide test drift convergence data. Vertical and horizontal tape readings are made at five locations in each of two 3.4m x 3.4m (11 ft x 11 ft) drifts and six locations in a 4.6m x 6.2m (15 ft x 20.5 ft) drift. The sensitivity of the readings to temperature effects, errors in temperature corrections, change of steel tape, and change of operator has been examined. Calculated corrections for temperature-induced changes in distance range from 0.001 in. to 0.003 in.//sup 0/C. A tape changeout evidenced both a systematic error apparently due to slight changes in tape registration during punching and to nonidentical location of punched holes in the two tapes and a random error due to variability of reading and punching operations. These errors were corrected by making duplicate measurements for the tapes. Tape readings by the same operator have been repeatable within +-0.001 in. in the smaller drifts and +-0.002 in. in the larger. Different operators have been able to repeat readings to within +-0.004 in. (usually within +-0.002 in.) with generally consistent direction of offset between operators. Corrections of readings and review of plotted data show the tape extensometer to be a reliable instrument for tunnel convergence measurements.

  16. Developing a concept for a national used fuel interim storage facility in the United States

    SciTech Connect

    Lewis, Donald Wayne

    2013-07-01

    In the United States (U.S.) the nuclear waste issue has plagued the nuclear industry for decades. Originally, spent fuel was to be reprocessed but with the threat of nuclear proliferation, spent fuel reprocessing has been eliminated, at least for now. In 1983, the Nuclear Waste Policy Act of 1982 [1] was established, authorizing development of one or more spent fuel and high-level nuclear waste geological repositories and a consolidated national storage facility, called a 'Monitored Retrievable Storage' facility, that could store the spent nuclear fuel until it could be placed into the geological repository. Plans were under way to build a geological repository, Yucca Mountain, but with the decision by President Obama to terminate the development of Yucca Mountain, a consolidated national storage facility that can store spent fuel for an interim period until a new repository is established has become very important. Since reactor sites have not been able to wait for the government to come up with a storage or disposal location, spent fuel remains in wet or dry storage at each nuclear plant. The purpose of this paper is to present a concept developed to address the DOE's goals stated above. This concept was developed over the past few months by collaboration between the DOE and industry experts that have experience in designing spent nuclear fuel facilities. The paper examines the current spent fuel storage conditions at shutdown reactor sites, operating reactor sites, and the type of storage systems (transportable versus non-transportable, welded or bolted). The concept lays out the basis for a pilot storage facility to house spent fuel from shutdown reactor sites and then how the pilot facility can be enlarged to a larger full scale consolidated interim storage facility. (authors)

  17. Fuel Pond Sludge - Lessons Learned from Initial De-sludging of Sellafield's Pile Fuel Storage Pond - 12066

    SciTech Connect

    Carlisle, Derek; Adamson, Kate

    2012-07-01

    The Pile Fuel Storage Pond (PFSP) at Sellafield was built and commissioned between the late 1940's and early 1950's as a storage and cooling facility for irradiated fuel and isotopes from the two Windscale Pile reactors. The pond was linked via submerged water ducts to each reactor, where fuel and isotopes were discharged into skips for transfer along the duct to the pond. In the pond the fuel was cooled then de-canned underwater prior to export for reprocessing. The plant operated successfully until it was taken out of operation in 1962 when the First Magnox Fuel Storage Pond took over fuel storage and de-canning operations on the site. The pond was then used for storage of miscellaneous Intermediate Level Waste (ILW) and fuel from the UK's Nuclear Programme for which no defined disposal route was available. By the mid 1970's the import of waste ceased and the plant, with its inventory, was placed into a passive care and maintenance regime. By the mid 1990s, driven by the age of the facility and concern over the potential challenge to dispose of the various wastes and fuels being stored, the plant operator initiated a programme of work to remediate the facility. This programme is split into a number of key phases targeted at sustained reduction in the hazard associated with the pond, these include: - Pond Preparation: Before any remediation work could start the condition of the pond had to be transformed from a passive store to a plant capable of complex retrieval operations. This work included plant and equipment upgrades, removal of redundant structures and the provision of a effluent treatment plant for removing particulate and dissolved activity from the pond water. - Canned Fuel Retrieval: Removal of canned fuel, including oxide and carbide fuels, is the highest priority within the programme. Handling and export equipment required to remove the canned fuel from the pond has been provided and treatment routes developed utilising existing site facilities to

  18. Proliferation resistance assessment of various methods of spent nuclear fuel storage and disposal

    NASA Astrophysics Data System (ADS)

    Kollar, Lenka

    Many countries are planning to build or already are building new nuclear power plants to match their growing energy needs. Since all nuclear power plants handle nuclear materials that could potentially be converted and used for nuclear weapons, they each present a nuclear proliferation risk. Spent nuclear fuel presents the largest build-up of nuclear material at a power plant. This is a proliferation risk because spent fuel contains plutonium that can be chemically separated and used for a nuclear weapon. The International Atomic Energy Agency (IAEA) safeguards spent fuel in all non-nuclear weapons states that are party to the Non-Proliferation Treaty. Various safeguards methods are in use at nuclear power plants and research is underway to develop safeguards methods for spent fuel in centralized storage or underground storage and disposal. Each method of spent fuel storage presents different proliferation risks due to the nature of the storage method and the safeguards techniques that are utilized. Previous proliferation resistance and proliferation risk assessments have mainly compared nuclear material through the whole fuel cycle and not specifically focused on spent fuel storage. This project evaluates the proliferation resistance of the three main types of spent fuel storage: spent fuel pool, dry cask storage, and geological repository. The proliferation resistance assessment methodology that is used in this project is adopted from previous work and altered to be applicable to spent fuel storage. The assessment methodology utilizes various intrinsic and extrinsic proliferation-resistant attributes for each spent fuel storage type. These attributes are used to calculate a total proliferation resistant (PR) value. The maximum PR value is 1.00 and a greater number means that the facility is more proliferation resistant. Current data for spent fuel storage in the United States and around the world was collected. The PR values obtained from this data are 0.49 for

  19. Critical experiments supporting underwater storage of tightly packed configurations of spent fuel pins

    NASA Astrophysics Data System (ADS)

    Hoovler, G. S.; Baldwin, M. N.; Maceda, E. L.; Welfare, F. G.

    1981-11-01

    Critical experiments were performed with low enriched UO2 arrays simulating underwater pin storage of spent pressurized water reactor fuel. Pin storage refers to a storage concept in which fuel assemblies are dismantled and the individual fuel pins from several assemblies are tightly packed into specially designed cannisters. Each critical configuration is sufficiently described and documented to permit the use of these data for validating critically calculational methods according to ANSI Standard N16.9-1975. The reactivity of each benchmark core was calculated using the AMPX-KENO IV package. The results of these analyses are also presented.

  20. DEMONSTRATION OF LONG-TERM STORAGE CAPABILITY FOR SPENT NUCLEAR FUEL IN L BASIN

    SciTech Connect

    Sindelar, R.; Deible, R.

    2011-04-27

    The U.S. Department of Energy decisions for the ultimate disposition of its inventory of used nuclear fuel presently in, and to be received and stored in, the L Basin at the Savannah River Site, and schedule for project execution have not been established. A logical decision timeframe for the DOE is following the review of the overall options for fuel management and disposition by the Blue Ribbon Commission on America's Nuclear Future (BRC). The focus of the BRC review is commercial fuel; however, the BRC has included the DOE fuel inventory in their review. Even though the final report by the BRC to the U.S. Department of Energy is expected in January 2012, no timetable has been established for decisions by the U.S. Department of Energy on alternatives selection. Furthermore, with the imminent lay-up and potential closure of H-canyon, no ready path for fuel disposition would be available, and new technologies and/or facilities would need to be established. The fuel inventory in wet storage in the 3.375 million gallon L Basin is primarily aluminum-clad, aluminum-based fuel of the Materials Test Reactor equivalent design. An inventory of non-aluminum-clad fuel of various designs is also stored in L Basin. Safe storage of fuel in wet storage mandates several high-level 'safety functions' that would be provided by the Structures, Systems, and Components (SSCs) of the storage system. A large inventory of aluminum-clad, aluminum-based spent nuclear fuel, and other nonaluminum fuel owned by the U.S. Department of Energy is in wet storage in L Basin at the Savannah River Site. An evaluation of the present condition of the fuel, and the Structures, Systems, or Components (SSCs) necessary for its wet storage, and the present programs and storage practices for fuel management have been performed. Activities necessary to validate the technical bases for, and verify the condition of the fuel and the SSCs under long-term wet storage have also been identified. The overall

  1. Irradiation of Microbes from Spent Nuclear Fuel Storage Pool Environments

    SciTech Connect

    Breckenridge, C.R.; Watkins, C.S.; Bruhn, D.F.; Roberto, F.F.; Tsang, M.N.; Pinhero, P.J.; Brey, R.F.; Wright, R.N.; Windes, W.F.

    1999-09-03

    Microbes have been isolated and identified from spent nuclear fuel storage pools at the Idaho National Engineering and Environmental Laboratory (INEEL). Included among these are Corynebacterium aquaticum, Pseudomonas putida, Comamonas acidovorans, Gluconobacter cerinus, Micrococcus diversus, Rhodococcus rhodochrous, and two strains of sulfate-reducing bacteria (SRB). We examined the sensitivity of these microbes to a variety of total exposures of radiation generated by a 6-MeV linear accelerator (LINAC). The advantage of using a LINAC is that it provides a relatively quick screen of radiation tolerance. In the first set of experiments, we exposed each of the aforementioned microbes along with four additional microbes, pseudomonas aeruginosa, Micrococcus luteus, Escherchia coli, and Deinococcus radiodurans to exposures of 5 x 10{sup 3} and 6 x 10{sup 4} rad. All microbial specimens withstood the lower exposure with little or no reduction in cell population. Upon exposing the microbes to the larger dose of 6 x 10{sup 4} rad, we observed two distinct groupings: microbes that demonstrate resistance to radiation, and microbes that display intolerance through a dramatic reduction from their initial population. Microbes in the radiation tolerant grouping were exposed to 1.1 x 10{sup 5} rad to examine the extent of their resistance. We observe a correlation between radiation resistance and gram stain. The gram-positive species we examined seem to demonstrate a greater radiation resistance.

  2. Spent-fuel dry-storage testing at E-MAD (March 1978-March 1982)

    SciTech Connect

    Unterzuber, R.; Milnes, R.D.; Marinkovich, B.A.; Kubancsek, G.M.

    1982-09-01

    From March 1978 through March 1982, spent fuel dry storage tests were conducted at the Engine Maintenance, Assembly and Disassembly (E-MAD) facility on the Nevada Test Site to confirm that commercial reactor spent fuel could be encapsulated and passively stored in one or more interim dry storage cell concepts. These tests were: electrically heated drywell, isolated and adjacent drywell, concrete silo, fuel assembly internal temperature measurement, and air-cooled vault. This document presents the test data and results as well as results from supporting test operations (spent fuel calorimetry and canister gas sampling).

  3. Regenerative Hydrogen-oxygen Fuel Cell-electrolyzer Systems for Orbital Energy Storage

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.

    1984-01-01

    Fuel cells have found application in space since Gemini. Over the years technology advances have been factored into the mainstream hardware programs. Performance levels and service lives have been gradually improving. More recently, the storage application for fuel cell-electrolyzer combinations are receiving considerable emphasis. The regenerative system application described here is part of a NASA Fuel Cell Program which was developed to advance the fuel cell and electrolyzer technology required to satisfy the identified power generation and energy storage need of the Agency for space transportation and orbital applications to the year 2000.

  4. Basis for assessing the movement of spent nuclear fuels from wet to dry storage at the Idaho Chemical Processing Plant

    SciTech Connect

    Guenther, R.J.; Gilbert, E.R.; Johnson, A.B.; Lund, A.L.; Pednekar, S.P.; Windes, W.E.

    1994-12-01

    An assessment of the possible material interactions arising from the movement of previously wet stored spent nuclear fuel (SNF) into long-term dry interim storage has been conducted for selected fuels in the Idaho Chemical Processing Plant (ICPP). Three main classes of fuels are addressed: aluminum (Al) clad, stainless steel (SS) clad, and unclad Uranium-Zirconium Hydride (UZrHx) fuel types. Degradation issues for the cladding, fuel matrix material, and storage canister in both wet and dry storage environments are assessed. Possible conditioning techniques to stabilize the fuel and optimum dry environment conditions during storage are also addressed.

  5. Categorization of failed and damaged spent LWR (light-water reactor) fuel currently in storage

    SciTech Connect

    Bailey, W.J.

    1987-11-01

    The results of a study that was jointly sponsored by the US Department of Energy and the Electric Power Research Institute are described in this report. The purpose of the study was to (1) estimate the number of failed fuel assemblies and damaged fuel assemblies (i.e., ones that have sustained mechanical or chemical damage but with fuel rod cladding that is not breached) in storage, (2) categorize those fuel assemblies, and (3) prepare this report as an authoritative, illustrated source of information on such fuel. Among the more than 45,975 spent light-water reactor fuel assemblies currently in storage in the United States, it appears that there are nearly 5000 failed or damaged fuel assemblies. 78 refs., 23 figs., 19 tabs.

  6. Making the case for direct hydrogen storage in fuel cell vehicles

    SciTech Connect

    James, B.D.; Thomas, C.E.; Baum, G.N.; Lomas, F.D. Jr.; Kuhn, I.F. Jr.

    1997-12-31

    Three obstacles to the introduction of direct hydrogen fuel cell vehicles are often states: (1) inadequate onboard hydrogen storage leading to limited vehicle range; (2) lack of an hydrogen infrastructure, and (3) cost of the entire fuel cell system. This paper will address the first point with analysis of the problem/proposed solutions for the remaining two obstacles addressed in other papers. Results of a recent study conducted by Directed Technologies Inc. will be briefly presented. The study, as part of Ford Motor Company/DOE PEM Fuel Cell Program, examines multiple pure hydrogen onboard storage systems on the basis of weight, volume, cost, and complexity. Compressed gas, liquid, carbon adsorption, and metal hydride storage are all examined with compressed hydrogen storage at 5,000 psia being judged the lowest-risk, highest benefit, near-term option. These results are combined with recent fuel cell vehicle drive cycle simulations to estimate the onboard hydrogen storage requirement for full vehicle range (380 miles on the combined Federal driving schedule). The results indicate that a PNGV-like vehicle using powertrain weights and performance realistically available by the 2004 PNGV target data can achieve approximate fuel economy equivalent to 100 mpg on gasoline (100 mpg{sub eq}) and requires storage of approximately 3.6 kg hydrogen for full vehicle storage quantity allows 5,000 psia onboard storage without altering the vehicle exterior lines or appreciably encroaching on the passenger or trunk compartments.

  7. U.S. Naval Base, Pearl Harbor, Red Hill Underground Fuel Storage ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    U.S. Naval Base, Pearl Harbor, Red Hill Underground Fuel Storage System, Linear underground system extending from North Road to Icarus Way, Joint Base Pearl Harbor-Hickam, Honolulu, Honolulu County, HI

  8. 78 FR 3454 - Prairie Island, Independent Spent Fuel Storage Installation; Notice of Docketing of Amendment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-16

    ... COMMISSION Prairie Island, Independent Spent Fuel Storage Installation; Notice of Docketing of Amendment... Considerations and Containing Sensitive Unclassified Non-Safeguards Information AGENCY: Nuclear Regulatory... CFR), who believes access to Sensitive Unclassified Non-Safeguards Information (SUNSI) is necessary...

  9. Investigation of Hydrogen Storage in Single Walled Carbon Nanotubes for Fuel Cells-2

    DTIC Science & Technology

    2010-03-11

    1 Final Report Title: Investigation of hydrogen storage in Single Walled Carbon Nanotubes for fuel cells - 2 AFOSR/AOARD...SUBTITLE Investigation of hydrogen storage in single walled carbon nanotubes for fuel cells-2 5a. CONTRACT NUMBER FA23860914157 5b. GRANT NUMBER...SUPPLEMENTARY NOTES 14. ABSTRACT Single walled carbon nanotubes (SWCNTs) dispersed in 2-propanol are deposited on the alumina substrate using drop caste

  10. INTERIM STORAGE AND LONG TERM DISPOSAL OF RESEARCH REACTOR SPENT FUEL

    SciTech Connect

    Vinson, D

    2006-08-22

    Aluminum clad research reactor spent nuclear fuel (SNF) is currently being consolidated in wet storage basins (pools). Approximately 20 metric tons (heavy metal) of aluminum-based spent nuclear fuel (Al-SNF) is being consolidated for treatment, packaging, interim storage, and preparation for ultimate disposal in a geologic repository. The storage and disposal of Al-SNF are subject to requirements that provide for safety and acceptable radionuclide release. The options studied for interim storage of SNF include wet storage and dry storage. Two options have also been studied to develop the technical basis for the qualification and repository disposal of aluminum spent fuel. The two options studied include Direct Disposal and Melt-Dilute treatment. The implementation of these options present relative benefits and challenges. Both the Direct Disposal and the Melt-Dilute treatment options have been developed and their technical viability assessed. Adaptation of the melt-dilute technology for the treatment of spent fuel offers the benefits of converting the spent fuel into a proliferation resistant form and/or significantly reducing the volume of the spent fuel. A Mobile Melt-Dilute system concept has emerged to realize these benefits and a prototype system developed. The application of the melt-dilute technology for the treatment of legacy nuclear materials has been evaluated and also offers the promise for the safe disposal of these materials.

  11. OBLIQUE PHOTO OF NORTHWEST CORNER OF FUEL STORAGE BUILDING (CPP603). ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OBLIQUE PHOTO OF NORTHWEST CORNER OF FUEL STORAGE BUILDING (CPP-603). PHOTO TAKEN LOOKING SOUTHEAST. INL PHOTO NUMBER HD-54-14-4. Mike Crane, Photographer, 8/2005 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  12. 0BLIQUE PHOTO OF EAST ELEVATION OF FUEL STORAGE BUILDING (CPP603). ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    0BLIQUE PHOTO OF EAST ELEVATION OF FUEL STORAGE BUILDING (CPP-603). PHOTO TAKEN LOOKING WEST. INL PHOTO NUMBER HD-54-15-1. Mike Crane, Photographer, 8/2005 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  13. OBLIQUE PHOTO OF NORTH ELEVATION OF FUEL STORAGE BUILDING (CPP603). ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OBLIQUE PHOTO OF NORTH ELEVATION OF FUEL STORAGE BUILDING (CPP-603). PHOTO TAKEN LOOKING SOUTH. INL PHOTO NUMBER HD-54-14-3. Mike Crane, Photographer, 8/2005 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  14. 76 FR 9381 - Notice of Availability of Interim Staff Guidance Documents for Spent Fuel Storage Casks

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-17

    ... Gordon, Structural Mechanics and Materials Branch, Division of Spent Fuel Storage and Transportation... ISG-23 should be directed to Matthew Gordon, Structural Mechanics and Materials Branch, Division of.... Michele Sampson, Acting Chief, Structural Mechanics and Materials Branch, Division of Spent Fuel...

  15. VIEW OF FECF HOT CELL OF FUEL STORAGE BUILDING (CPP603). ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF FECF HOT CELL OF FUEL STORAGE BUILDING (CPP-603). PHOTO TAKEN LOOKING NORHTWEST. INL PHOTO NUMBER HD-54-18-3. Mike Crane, Photographer, 8/2005 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  16. SIDING AND ROOF DETAILS OF FUEL STORAGE BUILDING (CPP603). INL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SIDING AND ROOF DETAILS OF FUEL STORAGE BUILDING (CPP-603). INL DRAWING NUMBER 200-0603-61-299-103033. ALTERNATE ID NUMBER 542-31-B-25. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  17. MISCELLANEOUS SECTIONS AND DETAILS OF FUEL STORAGE BUILDING (CPP603). INL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MISCELLANEOUS SECTIONS AND DETAILS OF FUEL STORAGE BUILDING (CPP-603). INL DRAWING NUMBER 200-0603-61-299-103032. ALTERNATE ID NUMBER 542-31-B-24. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  18. VIEW OF TRANSFER BASIN CORRIDOR OF FUEL STORAGE BUILDING (CPP603). ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF TRANSFER BASIN CORRIDOR OF FUEL STORAGE BUILDING (CPP-603). PHOTO TAKEN LOOKING NORTH. INL PHOTO NUMBER HD-54-17-2. Mike Crane, Photographer, 8/2005 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  19. WEST ELEVATION OF FUEL STORAGE BUILDING (CPP603). PHOTO TAKEN LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    WEST ELEVATION OF FUEL STORAGE BUILDING (CPP-603). PHOTO TAKEN LOOKING NORTHEAST. INL PHOTO NUMBER HD-54-20-3. Mike Crane, Photographer, 8/2005 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  20. NORTHERN PORTION OF WEST ELEVATION OF FUEL STORAGE BUILDING (CPP603). ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    NORTHERN PORTION OF WEST ELEVATION OF FUEL STORAGE BUILDING (CPP-603). PHOTO TAKEN LOOKING SOUTHEAST. INL PHOTO NUMBER HD-54-20-2. Mike Crane, Photographer, 8/2005 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  1. WEST ELEVATION OF FUEL STORAGE BUILDING (CPP603). PHOTO TAKEN LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    WEST ELEVATION OF FUEL STORAGE BUILDING (CPP-603). PHOTO TAKEN LOOKING NORTHEAST. INL PHOTO NUMBER HD-54-20-1. Mike Crane, Photographer, 8/2005 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  2. INTERIOR VIEW OF FUEL STORAGE BUILDING (CPP603) SHOWING CRANE ASSEMBLY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW OF FUEL STORAGE BUILDING (CPP-603) SHOWING CRANE ASSEMBLY FOR TRANSFER PIT. INL PHOTO NUMBER NRTS-51-2404. Unknown Photographer, 5/31/1951 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  3. NORTHERN PORTION OF WEST ELEVATION OF FUEL STORAGE BUILDING (CPP603). ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    NORTHERN PORTION OF WEST ELEVATION OF FUEL STORAGE BUILDING (CPP-603). PHOTO TAKEN LOOKING NORTHEAST. INL PHOTO NUMBER HD-54-20-4. Mike Crane, Photographer, 8/2005 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  4. WEST ELEVATIONS AND SECTIONS OF FUEL STORAGE BUILDING (CPP603). INL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    WEST ELEVATIONS AND SECTIONS OF FUEL STORAGE BUILDING (CPP-603). INL DRAWING NUMBER 200-063-61-299-103031. ALTERNATE ID NUMBER 542-31-B-23. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  5. 78 FR 66858 - Waste Confidence-Continued Storage of Spent Nuclear Fuel

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-07

    ...; ] NUCLEAR REGULATORY COMMISSION 10 CFR Part 51 RIN 3150-AJ20 Waste Confidence--Continued Storage of Spent... storage of spent nuclear fuel beyond a reactor's licensed life for operation and prior to ultimate..., contact the individuals listed in the FOR FURTHER INFORMATION CONTACT section of this document....

  6. 10 CFR 72.236 - Specific requirements for spent fuel storage cask approval and fabrication.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR... storage cask must be designed to provide adequate heat removal capacity without active cooling systems. (g... ascertain that there are no cracks, pinholes, uncontrolled voids, or other defects that could...

  7. Leaker B.W.R. spent fuel elements: Radiochemical analysis on cover gases of storage containers after long storage

    SciTech Connect

    Paratore, A.L.; Pastore, G.; Partiti, C.

    1993-12-31

    Very few examples of non-destructive tests are available concerning of spent nuclear fuel elements after long period of dry storage under water. In Italy ENEL and FIAT CIEI performed two test campaigns in 1990 and 1991 at the pool storage facility AVOGADRO of Saluggia, aimed to investigate the condition of leaker B.W.R. fuel elements, dry-sealed into storage containers and stored under water since 1984. Radiochemical analyses were conducted on samples of the container`s cover gases by means of ``PSEUDO-SIPPING`` methods, with the following objectives: measurements of percentage of moisture radiolysis born hydrogen, detection of the possible presence of explosive mixtures; measurements of Kr 85 activity, verification of the behavior of cladding leaks. Results confirmed either the absence of dangerous quantities of radiolysis hydrogen, or a general increase of Kr 85 activity, compared with data coming from checks performed at the reactor site before fuel insertion into the storage containers. Cladding leaks at first were probably increased by transport conditions of spent fuel, dry-placed into shipping casks, and later on they were stabilized by the immersion in the pool cold water.

  8. Spent fuel handling system for a geologic storage test at the Nevada Test Site

    SciTech Connect

    Duncan, J.E.; House, P.A.; Wright, G.W.

    1980-05-01

    The Lawrence Livermore Laboratory is conducting a test of the geologic storage of encapsulated spent commercial reactor fuel assemblies in a granitic rock at the Nevada Test Site. The test, known as the Spent Fuel Test-Climax (SFT-C), is sponsored by the US Department of Energy, Nevada Operations Office. Eleven pressurized-water-reactor spent fuel assemblies are stored retrievably for three to five years in a linear array in the Climax stock at a depth of 420 m.

  9. Realization of the German Concept for Interim Storage of Spent Nuclear Fuel - Current Situation and Prospects

    SciTech Connect

    Thomauske, B. R.

    2003-02-25

    The German government has determined a phase out of nuclear power. With respect to the management of spent fuel it was decided to terminate transports to reprocessing plants by 2005 and to set up interim storage facilities on power plant sites. This paper gives an overview of the German concept for spent fuel management focused on the new on-site interim storage concept and the applied interim storage facilities. Since the end of the year 1998, the utilities have applied for permission of on-site interim storage in 13 storage facilities and 5 storage areas; one application for the interim storage facility Stade was withdrawn due to the planned final shut down of Stade nuclear power plant in autumn 2003. In 2001 and 2002, 3 on-site storage areas and 2 on-site storage facilities for spent fuel were licensed by the Federal Office for Radiation Protection (BfS). A main task in 2002 and 2003 has been the examination of the safety and security of the planned interim storage facilities and the verification of the licensing prerequisites. In the aftermath of September 11, 2001, BfS has also examined the attack with a big passenger airplane. Up to now, these aircraft crash analyses have been performed for three on-site interim storage facilities; the fundamental results will be presented. It is the objective of BfS to conclude the licensing procedures for the applied on-site interim storage facilities in 2003. With an assumed construction period for the storage buildings of about two years, the on-site interim storage facilities could then be available in the year 2005.

  10. West Valley vitrified HLW and spent-fuel on-site storage alternatives

    SciTech Connect

    Rothstein, H.; Swanson, J.; Kumar, S.

    1995-12-31

    Design layouts were developed for a West Valley Demonstration Project SSA with integrated interim storage of high-level radioactive waste canisters, spent fuel, and GTCC wastes from potential closure activities. Overall SSA cost estimates were prepared for the potential use of any of the NRC-licensed dry storage concepts. Using the costs for the concept closest to the average cost of all the concepts, comparisons were made to estimated costs for continued storage in the process building and FRS.

  11. Transportation impact analysis for shipment of irradiated N-reactor fuel and associated materials

    SciTech Connect

    Daling, P.M.; Harris, M.S.

    1994-12-01

    An analysis of the radiological and nonradiological impacts of highway transportation of N-Reactor irradiated fuel (N-fuel) and associated materials is described in this report. N-fuel is proposed to be transported from its present locations in the 105-KE and 105-KW Basins, and possibly the PUREX Facility, to the 327 Building for characterization and testing. Each of these facilities is located on the Hanford Site, which is near Richland, Washington. The projected annual shipping quantity is 500 kgU/yr for 5 years for a total of 2500 kgU. It was assumed the irradiated fuel would be returned to the K- Basins following characterization, so the total amount of fuel shipped was assumed to be 5000 kgU. The shipping campaign may also include the transport and characterization of liquids, gases, and sludges from the storage basins, including fuel assembly and/or canister parts that may also be present in the basins. The impacts of transporting these other materials are bounded by the impacts of transporting 5000 kgU of N-fuel. This report was prepared to support an environmental assessment of the N-fuel characterization program. The RADTRAN 4 and GENII computer codes were used to evaluate the radiological impacts of the proposed shipping campaign. RADTRAN 4 was used to calculate the routine exposures and accident risks to workers and the general public from the N-fuel shipments. The GENII computer code was used to calculate the consequences of the maximum credible accident. The results indicate that the transportation of N-fuel in support of the characterization program should not cause excess radiological-induced latent cancer fatalities or traffic-related nonradiological accident fatalities. The consequences of the maximum credible accident are projected to be small and result in no excess latent cancer fatalities.

  12. Safeguards-by-Design: Guidance for Independent Spent Fuel Dry Storage Installations (ISFSI)

    SciTech Connect

    Trond Bjornard; Philip C. Durst

    2012-05-01

    This document summarizes the requirements and best practices for implementing international nuclear safeguards at independent spent fuel storage installations (ISFSIs), also known as Away-from- Reactor (AFR) storage facilities. These installations may provide wet or dry storage of spent fuel, although the safeguards guidance herein focuses on dry storage facilities. In principle, the safeguards guidance applies to both wet and dry storage. The reason for focusing on dry independent spent fuel storage installations is that this is one of the fastest growing nuclear installations worldwide. Independent spent fuel storage installations are typically outside of the safeguards nuclear material balance area (MBA) of the reactor. They may be located on the reactor site, but are generally considered by the International Atomic Energy Agency (IAEA) and the State Regulator/SSAC to be a separate facility. The need for this guidance is becoming increasingly urgent as more and more nuclear power plants move their spent fuel from resident spent fuel ponds to independent spent fuel storage installations. The safeguards requirements and best practices described herein are also relevant to the design and construction of regional independent spent fuel storage installations that nuclear power plant operators are starting to consider in the absence of a national long-term geological spent fuel repository. The following document has been prepared in support of two of the three foundational pillars for implementing Safeguards-by-Design (SBD). These are: i) defining the relevant safeguards requirements, and ii) defining the best practices for meeting the requirements. This document was prepared with the design of the latest independent dry spent fuel storage installations in mind and was prepared specifically as an aid for designers of commercial nuclear facilities to help them understand the relevant international requirements that follow from a country’s safeguards agreement with

  13. 10 CFR 51.23 - Temporary storage of spent fuel after cessation of reactor operation-generic determination of no...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Temporary storage of spent fuel after cessation of reactor... Procedures § 51.23 Temporary storage of spent fuel after cessation of reactor operation—generic determination... necessary, spent fuel generated in any reactor can be stored safely and without significant...

  14. 10 CFR 51.23 - Temporary storage of spent fuel after cessation of reactor operation-generic determination of no...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Temporary storage of spent fuel after cessation of reactor... Procedures § 51.23 Temporary storage of spent fuel after cessation of reactor operation—generic determination... necessary, spent fuel generated in any reactor can be stored safely and without significant...

  15. 40 CFR 63.984 - Fuel gas systems and processes to which storage vessel, transfer rack, or equipment leak...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Fuel Gas System or a Process § 63.984 Fuel gas systems and processes to which storage vessel, transfer... 40 Protection of Environment 11 2013-07-01 2013-07-01 false Fuel gas systems and processes to which storage vessel, transfer rack, or equipment leak regulated material emissions are routed....

  16. 40 CFR 63.984 - Fuel gas systems and processes to which storage vessel, transfer rack, or equipment leak...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Fuel Gas System or a Process § 63.984 Fuel gas systems and processes to which storage vessel, transfer... 40 Protection of Environment 11 2012-07-01 2012-07-01 false Fuel gas systems and processes to which storage vessel, transfer rack, or equipment leak regulated material emissions are routed....

  17. 40 CFR 65.144 - Fuel gas systems and processes to which storage vessel, transfer rack, or equipment leak...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... System or a Process § 65.144 Fuel gas systems and processes to which storage vessel, transfer rack, or... evaluation as specified in § 65.165(a)(1). (c) Statement of connection to fuel gas system. For storage... 40 Protection of Environment 16 2012-07-01 2012-07-01 false Fuel gas systems and processes...

  18. 40 CFR 65.144 - Fuel gas systems and processes to which storage vessel, transfer rack, or equipment leak...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... System or a Process § 65.144 Fuel gas systems and processes to which storage vessel, transfer rack, or... evaluation as specified in § 65.165(a)(1). (c) Statement of connection to fuel gas system. For storage... 40 Protection of Environment 16 2014-07-01 2014-07-01 false Fuel gas systems and processes...

  19. 40 CFR 65.144 - Fuel gas systems and processes to which storage vessel, transfer rack, or equipment leak...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... System or a Process § 65.144 Fuel gas systems and processes to which storage vessel, transfer rack, or... evaluation as specified in § 65.165(a)(1). (c) Statement of connection to fuel gas system. For storage... 40 Protection of Environment 15 2011-07-01 2011-07-01 false Fuel gas systems and processes...

  20. 40 CFR 65.144 - Fuel gas systems and processes to which storage vessel, transfer rack, or equipment leak...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... System or a Process § 65.144 Fuel gas systems and processes to which storage vessel, transfer rack, or... evaluation as specified in § 65.165(a)(1). (c) Statement of connection to fuel gas system. For storage... 40 Protection of Environment 15 2010-07-01 2010-07-01 false Fuel gas systems and processes...

  1. 40 CFR 63.984 - Fuel gas systems and processes to which storage vessel, transfer rack, or equipment leak...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Fuel Gas System or a Process § 63.984 Fuel gas systems and processes to which storage vessel, transfer... 40 Protection of Environment 11 2014-07-01 2014-07-01 false Fuel gas systems and processes to which storage vessel, transfer rack, or equipment leak regulated material emissions are routed....

  2. Cosmic Ray Muon Imaging of Spent Nuclear Fuel in Dry Storage Casks

    SciTech Connect

    Durham, J. Matthew; Guardincerri, Elena; Morris, Christopher L.; Poulson, Daniel; Bacon, Jeffrey Darnell; Chichester, David; Fabritius, Joseph; Fellows, Shelby; Plaud-Ramos, Kenie Omar; Morley, Deborah Jean; Winston, Philip

    2016-04-29

    In this paper, cosmic ray muon radiography has been used to identify the absence of spent nuclear fuel bundles inside a sealed dry storage cask. The large amounts of shielding that dry storage casks use to contain radiation from the highly radioactive contents impedes typical imaging methods, but the penetrating nature of cosmic ray muons allows them to be used as an effective radiographic probe. This technique was able to successfully identify missing fuel bundles inside a sealed Westinghouse MC-10 cask. This method of fuel cask verification may prove useful for international nuclear safeguards inspectors. Finally, muon radiography may find other safety and security or safeguards applications, such as arms control verification.

  3. Foreign programs for the storage of spent nuclear power plant fuels, high-level waste canisters and transuranic wastes

    SciTech Connect

    Harmon, K.M.; Johnson, A.B. Jr.

    1984-04-01

    The various national programs for developing and applying technology for the interim storage of spent fuel, high-level radioactive waste, and TRU wastes are summarized. Primary emphasis of the report is on dry storage techniques for uranium dioxide fuels, but data are also provided concerning pool storage.

  4. High temperature solid oxide regenerative fuel cell for solar photovoltaic energy storage

    NASA Technical Reports Server (NTRS)

    Bents, David J.

    1987-01-01

    A hydrogen-oxygen regenerative fuel cell energy storage system based on high temperature solid oxide fuel cell technology is discussed which has application to darkside energy storage for solar photovoltaics. The forward and reverse operating cycles are described, and heat flow, mass, and energy balance data are presented to characterize the system's performance and the variation of performance with changing reactant storage pressure. The present system weighs less than nickel hydrogen battery systems after 0.7 darkside operation, and it maintains a specific weight advantage over radioisotope generators for discharge periods up to 72 hours.

  5. The corrosion of aluminum-clad spent nuclear fuel in wet basin storage

    SciTech Connect

    Howell, J.P.; Burke, S.D.

    1996-02-20

    Large quantities of Defense related spent nuclear fuels are being stored in water basins around the United States. Under the non-proliferation policy, there has been no processing since the late 1980`s and these fuels are caught in the pipeline awaiting stabilization or other disposition. At the Savannah River Site, over 200 metric tons of aluminum clad fuel are being stored in four water filled basins. Some of this fuel has experienced visible pitting corrosion. An intensive effort is underway at SRS to understand the corrosion problems and to improve the basin storage conditions for extended storage requirements. Significant improvements have been accomplished during 1993-1996. This paper presents a discussion of the fundamentals of aluminum alloy corrosion as it pertains to the wet storage of spent nuclear fuel. It examines the effects of variables on corrosion in the storage environment and presents the results of corrosion surveillance testing activities at SRS, as well as discussions of fuel storage basins at other production sites of the Department of Energy.

  6. Evaluation of Fluorine-Trapping Agents for Use During Storage of the MSRE Fuel Salt

    SciTech Connect

    Brynestad, J.; Williams, D.F.

    1999-05-01

    A fundamental characteristic of the room temperature Molten Salt Reactor Experiment (MSRE) fuel is that the radiation from the retained fission products and actinides interacts with this fluoride salt to produce fluorine gas. The purpose of this investigation was to identify fluorine-trapping materials for the MSRE fuel salt that can meet both the requirement of interim storage in a sealed (gastight) container and the vented condition required for disposal at the Waste Isolation Pilot Plant (WIPP). Sealed containers will be needed for interim storage because of the large radon source that remains even in fuel salt stripped of its uranium content. An experimental program was undertaken to identify the most promising candidates for efficient trapping of the radiolytic fluorine generated by the MSRE fuel salt. Because of the desire to avoid pressurizing the closed storage containers, an agent that traps fluorine without the generation of gaseous products was sought.

  7. COBRA-SFS (Spent-Fuel Storage) thermal-hydraulic analyses of the CASTOR-1C and REA 2023 BWR storage casks containing consolidated spent fuel

    SciTech Connect

    Rector, D.R.; Cuta, J.M.; Lombardo, N.J.

    1986-12-01

    Consolidation of spent nuclear fuel rods is being considered as one option for more efficient and compact storage of reactor spent fuel assemblies. In this concept, rods from two disassembled spent fuel assemblies will be consolidated in a space originally intended to store a single unconsolidated assembly. The thermal performance of consolidated fuel rods in dry storage, especially in multiassembly storage systems, is one of the major issues that must be addressed prior to implementation. In this study, Pacific Northwest Laboratory researchers performed thermal-hydraulic analyses for both the REA 2023 cask and the CASTOR-1C cask containing either unconsolidated or consolidated BWR spent fuel assemblies. The objective was to determine the effect of consolidating spent fuel assemblies on the temperature distributions within both types of casks. Two major conclusions resulted from this study. First, a lumping technique (combining rods and flow channels), which reduces the number of computational nodes required to model complex multiassembly geometries, could be used for both unconsolidated and consolidated rods with negligible effect on prediction accuracies. Second, with a relatively high thermal conductivity backfill gas (e.g., helium), the predicted peak fuel rod temperature in a canister of consolidated rods generating the same amount of heat as an unconsolidated assembly is essentially the same as the peak temperature in the unconsolidated assembly. In contrast, with a relatively low thermal conductivity backfill gas (e.g., nitrogen), the opposite is true and the predicted peak temperature in a consolidated canister is significantly higher than in an unconsolidated assembly. Therefore, when rods are consolidated, selection of the backfill gas is important in maintaining peak rod temperatures below allowable values for rods with relatively high decay heat generation rates.

  8. Testing and analyses of the TN-24P PWR spent-fuel dry storage cask loaded with consolidated fuel

    SciTech Connect

    McKinnon, M A; Michener, T E; Jensen, M F; Rodman, G R

    1989-02-01

    A performance test of a Transnuclear, Inc. TN-24P storage cask configured for pressurized water reactor (PWR) spent fuel was performed. The work was performed by the Pacific Northwest Laboratory (PNL) and Idaho National Engineering Laboratory (INEL) for the US Department of Energy Office of Civilian Radioactive Waste Management (OCRWM) and the Electric Power Research Institute. The performance test consisted of loading the TN-24P cask with 24 canisters of consolidated PWR spent fuel from Virginia Power's Surry and Florida Power and Light's Turkey Point reactors. Cask surface and fuel canister guide tube temperatures were measured, as were cask surface gamma and neutron dose rates. Testing was performed with vacuum, nitrogen, and helium backfill environments in both vertical and horizontal cask orientations. Transnuclear, Inc., arranged to have a partially insulated run added to the end of the test to simulate impact limiters. Limited spent fuel integrity data were also obtained. From both heat transfer and shielding perspectives, the TN-24P cask with minor refinements can be effectively implemented at reactor sites and central storage facilities for safe storage of unconsolidated and consolidated spent fuel. 35 refs., 93 figs., 17 tabs.

  9. Hydrocarbon Release During Fuel Storage and Transfer at Gas Stations: Environmental and Health Effects.

    PubMed

    Hilpert, Markus; Mora, Bernat Adria; Ni, Jian; Rule, Ana M; Nachman, Keeve E

    2015-12-01

    At gas stations, fuel is stored and transferred between tanker trucks, storage tanks, and vehicle tanks. During both storage and transfer, a small fraction of unburned fuel is typically released to the environment unless pollution prevention technology is used. While the fraction may be small, the cumulative release can be substantial because of the large quantities of fuel sold. The cumulative release of unburned fuel is a public health concern because gas stations are widely distributed in residential areas and because fuel contains toxic and carcinogenic chemicals. We review the pathways through which gasoline is chronically released to atmospheric, aqueous, and subsurface environments, and how these releases may adversely affect human health. Adoption of suitable pollution prevention technology should not only be based on equipment and maintenance cost but also on energy- and health care-saving benefits.

  10. High Performance Fuel Cell and Electrolyzer Membrane Electrode Assemblies (MEAs) for Space Energy Storage Systems

    NASA Technical Reports Server (NTRS)

    Valdez, Thomas I.; Billings, Keith J.; Kisor, Adam; Bennett, William R.; Jakupca, Ian J.; Burke, Kenneth; Hoberecht, Mark A.

    2012-01-01

    Regenerative fuel cells provide a pathway to energy storage system development that are game changers for NASA missions. The fuel cell/ electrolysis MEA performance requirements 0.92 V/ 1.44 V at 200 mA/cm2 can be met. Fuel Cell MEAs have been incorporated into advanced NFT stacks. Electrolyzer stack development in progress. Fuel Cell MEA performance is a strong function of membrane selection, membrane selection will be driven by durability requirements. Electrolyzer MEA performance is catalysts driven, catalyst selection will be driven by durability requirements. Round Trip Efficiency, based on a cell performance, is approximately 65%.

  11. Optimization of a Dry, Mixed Nuclear Fuel Storage Array for Nuclear Criticality Safety

    NASA Astrophysics Data System (ADS)

    Baranko, Benjamin T.

    A dry storage array of used nuclear fuel at the Idaho National Laboratory contains a mixture of more than twenty different research and test reactor fuel types in up to 636 fuel storage canisters. New analysis demonstrates that the current arrangement of the different fuel-type canisters does not minimize the system neutron multiplication factor (keff), and that the entire facility storage capacity cannot be utilized without exceeding the subcritical limit (ksafe) for ensuring nuclear criticality safety. This work determines a more optimal arrangement of the stored fuels with a goal to minimize the system keff, but with a minimum of potential fuel canister relocation movements. The solution to this multiple-objective optimization problem will allow for both an improvement in the facility utilization while also offering an enhancement in the safety margin. The solution method applies stochastic approximation and a Tabu search metaheuristic to an empirical model developed from supporting MCNP calculations. The results establish an optimal relocation of between four to sixty canisters, which will allow the current thirty-one empty canisters to be used for storage while reducing the array keff by up to 0.018 +/- 0.003 relative to the current arrangement.

  12. Safety of interim storage solutions of used nuclear fuel during extended term

    SciTech Connect

    Shelton, C.; Bader, S.; Issard, H.; Arslan, M.

    2013-07-01

    In 2013, the total amount of stored used nuclear fuel (UNF) in the world will reach 225,000 T HM. The UNF inventory in wet storage will take up over 80% of the available total spent fuel pool (SFP) capacity. Interim storage solutions are needed. They give flexibility to the nuclear operators and ensure that nuclear reactors continue to operate. However, we need to keep in mind that they are also an easy way to differ final decision and implementation of a UNF management approach (recycling or final disposal). In term of public perception, they can have a negative impact overtime as it may appear that nuclear industry may have significant issues to resolve. In countries lacking an integrated UNF management approach, the UNF are being discharged from the SFPs to interim storage (mostly to dry storage) at the same rate as UNF is being discharged from reactors, as the SFPs at the reactor sites are becoming full. This is now the case in USA, Taiwan, Switzerland, Spain, South Africa and Germany. For interim storage, AREVA has developed different solutions in order to allow the continued operation of reactors while meeting the current requirements of Safety Authorities: -) Dry storage canisters on pads, -) Dual-purpose casks (dry storage and transportation), -) Vault dry storage, and -) Centralized pool storage.

  13. MCO Pressurization analysis of spent nuclear fuel transporation and storage

    SciTech Connect

    Ogden, D.M., Westinghouse Hanford

    1996-09-20

    A series of analysis were performed to evaluate the pressurization of the Multi-Canister Overpack (MCO) during the stages of transport, processing and storage for expected operational and off normal events. The study examined both MCO sealing and venting issues. Computer models were developed for the MCO and its transport and storage environments using the GOTH and COBRA-TF computer codes. These thermal- hydraulic models included chemical corrosion and ranged in complexity from simple scoping models to full three-dimensional models. Results of the evaluation indicate that overpressurization of the MCO can occur within hours given the bounding reaction surface area and 3.0 Kg of residual water during shipping or 2.5 Kg of residual water during storage. Overpressurization can be prevented during shipping if the MCO reaction surface area is shown to be less than 80,000 cm{sup 2}. During storage the overpressurization can be prevented by limiting the available water.

  14. Fuel cell systems for First Lunar Outpost-reactant storage option

    NASA Technical Reports Server (NTRS)

    Nelson, P. A.

    1995-01-01

    The office of Space, DOE, appointed a Lunar Surface Power Working Group to review candidate systems for the First Lunar Outpost habitat. The working group met for a total of five days in the fall of 1992 and concluded that the candidate involving a photovoltaic unit, a fuel cell, a regenerator to recycle the reactants, and storage of oxygen and hydrogen gases was the most attractive for this application. Most of the volume (97 percent) and weight (63 percent) are taken up by the reactants and their storage tanks. Therefore, in my work for the Group, and in this report, I have concentrated on finding ways to reduce these volumes and weights. Three options were considered: (1) the baseline case considered in the preliminary system design, that of separate high pressure (200 bar) storage tanks; (2) the use of two of the descent storage propellant tanks wrapped with graphite fibers to increase the pressure capability; and (3) the use of cryogenic storage of reactants in the propellant tanks. The first option results in high storage tank mass and volume. The second option saves 90 percent of the volume by making use of the propellant tanks, but it has little if any weight advantages; the weight saved by not providing extra tanks for reactant storage is nearly entirely added back by the weight of the additional material (graphite fibers) to strengthen the propellant tanks. Use of the descent storage propellant tanks for storage of the fuel cell reactants as cryogenic liquids requires a gas liquefaction system. The weight of this system is expected to be less than that of the storage tanks but it would require development and testing to prove its reliability. The solar array would have to be 40 percent larger and the heat projection range would be 170 percent larger than for storage of reactants as high pressure gases. For a high power system (greater than 20 kW) the larger energy storage requirement would probably favor the cryogenic storage option.

  15. Spent fuel behavior under abnormal thermal transients during dry storage

    SciTech Connect

    Stahl, D.; Landow, M.P.; Burian, R.J.; Pasupathi, V.

    1986-01-01

    This study was performed to determine the effects of abnormally high temperatures on spent fuel behavior. Prior to testing, calculations using the CIRFI3 code were used to determine the steady-state fuel and cask component temperatures. The TRUMP code was used to determine transient heating rates under postulated abnormal events during which convection cooling of the cask surfaces was obstructed by a debris bed covering the cask. The peak rate of temperature rise during the first 6 h was calculated to be about 15/sup 0/C/h, followed by a rate of about 1/sup 0/C/h. A Turkey Point spent fuel rod segment was heated to approx. 800/sup 0/C. The segment deformed uniformly with an average strain of 17% at failure and a local strain of 60%. Pretest characterization of the spent fuel consisted of visual examination, profilometry, eddy-current examination, gamma scanning, fission gas collection, void volume measurement, fission gas analysis, hydrogen analysis of the cladding, burnup analysis, cladding metallography, and fuel ceramography. Post-test characterization showed that the failure was a pinhole cladding breach. The results of the tests showed that spent fuel temperatures in excess of 700/sup 0/C are required to produce a cladding breach in fuel rods pressurized to 500 psing (3.45 MPa) under postulated abnormal thermal transient cask conditions. The pinhole cladding breach that developed would be too small to compromise the confinement of spent fuel particles during an abnormal event or after normal cooling conditions are restored. This behavior is similar to that found in other slow ramp tests with irradiated and nonirradiated rod sections and nonirradiated whole rods under conditions that bracketed postulated abnormal heating rates. This similarity is attributed to annealing of the irradiation-strengthened Zircaloy cladding during heating. In both cases, the failure was a benign, ductile pinhole rupture.

  16. The Impact of Microbially Influenced Corrosion on Spent Nuclear Fuel and Storage Life

    SciTech Connect

    J. H. Wolfram; R. E. Mizia; R. Jex; L. Nelson; K. M. Garcia

    1996-10-01

    A study was performed to evaluate if microbial activity could be considered a threat to spent nuclear fuel integrity. The existing data regarding the impact of microbial influenced corrosion (MIC) on spent nuclear fuel storage does not allow a clear assessment to be made. In order to identify what further data are needed, a literature survey on MIC was accomplished with emphasis on materials used in nuclear fuel fabrication, e.g., A1, 304 SS, and zirconium. In addition, a survey was done at Savannah River, Oak Ridge, Hanford, and the INEL on the condition of their wet storage facilities. The topics discussed were the SNF path forward, the types of fuel, ramifications of damaged fuel, involvement of microbial processes, dry storage scenarios, ability to identify microbial activity, definitions of water quality, and the use of biocides. Information was also obtained at international meetings in the area of biological mediated problems in spent fuel and high level wastes. Topics dis cussed included receiving foreign reactor research fuels into existing pools, synergism between different microbes and other forms of corrosion, and cross contamination.

  17. Interim storage technology of spent fuel and high-level waste in Germany

    SciTech Connect

    Geiser, H.; Schroder, J.

    2007-07-01

    The idea of using casks for interim storage of spent fuel arose at GNS after a very controversial political discussion in 1978, when total passive safety features (including aircraft crash conditions) were required for an above ground spent fuel storage facility. In the meantime, GNS has loaded more than 1000 casks at 25 different storage sites in Germany. GNS cask technology is used in 13 countries. Spent fuel assemblies of PWR, BWR, VVER, RBMK, MTR and THTR as well as vitrified high level waste containers are stored in full metal casks of the CASTOR{sup R} type. Also MOX fuel of PWR and BWR has been stored. More than two decades of storage have shown that the basic requirements (safe confinement, criticality safety, sufficient shielding and appropriate heat transfer) have been fulfilled in any case - during normal operation and in case of severe accidents, including aircraft crash. There is no indication of problems arising in the future. Of course, the experience of more than 20 years has resulted in improvements of the cask design. The CASTOR{sup R} casks have been thoroughly investigated by many experiments. There have been approx. 50 full and half scale drop tests and a significant number of fire tests, simulations of aircraft crash, investigations with anti tank weapons, and an explosion of a railway tank with liquid gas neighbouring a loaded CASTOR{sup R} cask. According to customer and site specific demands, different types of storage facilities are realized in Germany. Firstly, there are facilities for long-term storage, such as large ventilated central storage buildings away from reactor or ventilated storage buildings at the reactor site, ventilated underground tunnels or concrete platforms outside a building. Secondly, there are facilities for temporary storage, where casks have been positioned in horizontal orientation under a ventilated shielding cover outside a building. (authors)

  18. Activity release from damaged fuel during the Paks-2 cleaning tank incident in the spent fuel storage pool

    NASA Astrophysics Data System (ADS)

    Hózer, Zoltán; Szabó, Emese; Pintér, Tamás; Varjú, Ilona Baracska; Bujtás, Tibor; Farkas, Gábor; Vajda, Nóra

    2009-07-01

    During crud removal operations the integrity of 30 fuel assemblies was lost at high temperature at the unit No. 2 of the Paks NPP. Part of the fission products was released from the damaged fuel into the coolant of the spent fuel storage pool. The gaseous fission products escaped through the chimney from the reactor hall. The volatile and non-volatile materials remained mainly in the coolant and were collected on the filters of water purification system. The activity release from damaged fuel rods during the Paks-2 cleaning tank incident was estimated on the basis of coolant activity concentration measurements and chimney activity data. The typical release rate of noble gases, iodine and caesium was 1-3%. The release of non-volatile fission products and actinides was also detected.

  19. Heat transfer analysis of the geologic disposal of spent fuel and high level waste storage canisters

    NASA Astrophysics Data System (ADS)

    Allen, G. K.

    1980-08-01

    Near-field temperatures resulting from the storage of high-level waste canisters and spent unreprocessed fuel assembly canisters in geologic formations were determined. Preliminary design of the repository was modeled for a heat transfer computer code, HEATING5, which used the finite difference method to evaluate transient heat transfer. The heat transfer system was evaluated with several two and three dimensional models which transfer heat by a combination of conduction, natural convention, and radiation. Physical properties of the materials in the model were based upon experimental values for the various geologic formations. The effects of canister spacing, fuel age, and use of an overpack were studied for the analysis of the spent fuel canisters; salt, granite, and basalt were considered as the storage media. The effects of canister diameter and use of an overpack were studied for the analysis of the high-level waste canisters; salt was considered as the only storage media for high-level waste canisters.

  20. Down Select Report of Chemical Hydrogen Storage Materials, Catalysts, and Spent Fuel Regeneration Processes

    SciTech Connect

    Ott, Kevin; Linehan, Sue; Lipiecki, Frank; Aardahl, Christopher L.

    2008-08-24

    The DOE Hydrogen Storage Program is focused on identifying and developing viable hydrogen storage systems for onboard vehicular applications. The program funds exploratory research directed at identifying new materials and concepts for storage of hydrogen having high gravimetric and volumetric capacities that have the potential to meet long term technical targets for onboard storage. Approaches currently being examined are reversible metal hydride storage materials, reversible hydrogen sorption systems, and chemical hydrogen storage systems. The latter approach concerns materials that release hydrogen in endothermic or exothermic chemical bond-breaking processes. To regenerate the spent fuels arising from hydrogen release from such materials, chemical processes must be employed. These chemical regeneration processes are envisioned to occur offboard the vehicle.

  1. SPENT NUCLEAR FUEL STORAGE BASIN WATER CHEMISTRY: ELECTROCHEMICAL EVALUATION OF ALUMINUM CORROSION

    SciTech Connect

    Hathcock, D

    2007-10-30

    The factors affecting the optimal water chemistry of the Savannah River Site spent fuel storage basin must be determines in order to optimize facility efficiency, minimize fuel corrosion, and reduce overall environmental impact from long term spent nuclear fuel storage at the Savannah River Site. The Savannah River National Laboratory is using statistically designed experiments to study the effects of NO{sub 3}{sup -}, SO{sub 4}{sup 2-}, and Cl{sup -} concentrations on alloys commonly used not only as fuel cladding, but also as rack construction materials The results of cyclic polarization pitting and corrosion experiments on samples of Al 6061 and 1100 alloys will be used to construct a predictive model of the basin corrosion and its dependence on the species in the basin. The basin chemistry model and corrosion will be discussed in terms of optimized water chemistry envelope and minimization of cladding corrosion.

  2. R D for the storage, transport, and handling of coal-based fuels

    SciTech Connect

    Not Available

    1991-01-01

    The product of several advanced physical coal cleaning processes is a dry, ultrafine coal (DUC), in the order of 10 microns mean mass diameter. To utilize this fuel commercially, cost-effective, environmentally safe systems must be provided for the storage, transport, and handling of this finely divided form of fuel. The objective of the project described herein is the development of total logistics systems for DUC, including experimental verification of key features. The systems to be developed will provide for safe, economic, and environmentally protective storage and delivery of DUC for residential, commercial, and industrial uses. 20 figs.

  3. Development of A 5,000 BBL, Rubberized Fabric Fuel Storage Tank, Collapsible,

    DTIC Science & Technology

    1981-04-01

    Rubbers ablate at very high heating rates which will protect the cloth for short periods of exposure at large heating rates so the tanks should have...AD-SlOG 005 GOOYEAR AEROSPACE CORP AKRON ON ENGINEERED FABRICS DIV F/S 13/4 DEVELOPMENT OF A 5,000 BOL. RUBBERIZED FABRIC FUEL STORAGE TAN- ETC(Ul...mEEmmhEEmhmhmhE OReport Number v L 4!! FINAL REPORT DEVELOPMENT OF A 5000 BBL RUBBERIZED FABRIC FUEL STORAGE TANK,COLLAPSIBLE I Ronald L Sosnowski

  4. Multidimensional shielding analysis of the JASPER in-vessel fuel storage experiments

    SciTech Connect

    Bucholz, J.A.

    1993-03-01

    The In-Vessel Fuel Storage (IVFS) experiments analyzed in this report were conducted at the Oak Ridge National Laboratory`s Tower Shielding Reactor (TSR) as part of the Japanese-American Shielding Program for Experimental Research (JASPER). These IVFS experiments were designed to study source multiplication and three-dimensional effects related to in-vessel storage of spent fuel elements in liquid metal reactor (LMR) systems. The present report describes the 2-D and 3-D models, analyses, and calculated results corresponding to a limited subset of those IVFS experiments in which the US LMR program has a particular interest.

  5. Use of filler materials to aid spent nuclear fuel dry storage

    SciTech Connect

    Anderson, K.J.

    1981-09-01

    The use of filler materials (also known as stabilizer or encapsulating materials) was investigated in conjunction with the dry storage of irradiated light water reactor (LWR) fuel. The results of this investigation appear to be equally valid for the wet storage of fuel. The need for encapsulation and suitable techniques for closing was also investigated. Various materials were reviewed (including solids, liquids, and gases) which were assumed to fill the void areas within a storage can containing either intact or disassembled spent fuel. Materials were reviewed and compared on the basis of cost, thermal characteristics, and overall suitability in the proposed environment. A thermal analysis was conducted to yield maximum centerline and surface temperatures of a design basis fuel encapsulated within various filler materials. In general, air was found to be the most likely choice as a filler material for the dry storage of spent fuel. The choice of any other filler material would probably be based on a desire, or need, to maximize specific selection criteria, such as surface temperatures, criticality safety, or confinement.

  6. A Preliminary Evaluation of Using Fill Materials to Stabilize Used Nuclear Fuel During Storage and Transportation

    SciTech Connect

    Maheras, Steven J.; Best, Ralph; Ross, Steven B.; Lahti, Erik A.; Richmond, David J.

    2012-08-01

    This report contains a preliminary evaluation of potential fill materials that could be used to fill void spaces in and around used nuclear fuel contained in dry storage canisters in order to stabilize the geometry and mechanical structure of the used nuclear fuel during extended storage and transportation after extended storage. Previous work is summarized, conceptual descriptions of how canisters might be filled were developed, and requirements for potential fill materials were developed. Elements of the requirements included criticality avoidance, heat transfer or thermodynamic properties, homogeneity and rheological properties, retrievability, material availability and cost, weight and radiation shielding, and operational considerations. Potential fill materials were grouped into 5 categories and their properties, advantages, disadvantages, and requirements for future testing were discussed. The categories were molten materials, which included molten metals and paraffin; particulates and beads; resins; foams; and grout. Based on this analysis, further development of fill materials to stabilize used nuclear fuel during storage and transportation is not recommended unless options such as showing that the fuel remains intact or canning of used nuclear fuel do not prove to be feasible.

  7. Corrosion experiments on stainless steels used in dry storage canisters of spent nuclear fuel

    SciTech Connect

    Ryskamp, J.M.; Adams, J.P.; Faw, E.M.; Anderson, P.A.

    1996-09-01

    Nonradioactive (cold) experiments have been set up in the Idaho Chemical Processing Plant (ICPP)-1634, and radioactive (hot) experiments have been set up in the Irradiated Fuel Storage Facility (IFSF) at ICPP. The objective of these experiments is to provide information on the interactions (corrosion) between the spent nuclear fuel currently stored at the ICPP and the dry storage canisters and containment materials in which this spent fuel will be stored for the next several decades. This information will be used to help select canister materials that will retain structural integrity over this period within economic, criticality, and other constraints. The two purposes for Dual Purpose Canisters (DPCs) are for interim storage of spent nuclear fuel and for shipment to a final geological repository. Information on how corrosion products, sediments, and degraded spent nuclear fuel may corrode DPCs will be required before the DPCs will be allowed to be shipped out of the State of Idaho. The information will also be required by the Nuclear Regulatory Commission (NRC) to support the licensing of DPCs. Stainless steels 304L and 316L are the most likely materials for dry interim storage canisters. Welded stainless steel coupons are used to represent the canisters in both hot and cold experiments.

  8. Conceptual design report for the ICPP spent nuclear fuel dry storage project

    SciTech Connect

    1996-07-01

    The conceptual design is presented for a facility to transfer spent nuclear fuel from shipping casks to dry storage containers, and to safely store those containers at ICPP at INEL. The spent fuels to be handled at the new facility are identified and overall design and operating criteria established. Physical configuration of the facility and the systems used to handle the SNF are described. Detailed cost estimate for design and construction of the facility is presented.

  9. Neutron imaging methods for the investigation of energy related materials. Fuel cells, battery, hydrogen storage and nuclear fuel

    NASA Astrophysics Data System (ADS)

    Lehmann, Eberhard H.; Boillat, Pierre; Kaestner, Anders; Vontobel, Peter; Mannes, David

    2015-10-01

    After a short explanation of the state-of-the-art in the field of neutron imaging we give some examples how energy related materials can be studied successfully. These are in particular fuel cell studies, battery research approaches, the storage of hydrogen, but also some investigations with nuclear fuel components. The high contrast for light isotopes like H-1, Li-6 or B-10 are used to trace low amounts of material even within compact sealing of metals which are relatively transparent for neutrons at the same time.

  10. Removal plan for Shippingport pressurized water reactor core 2 blanket fuel assemblies form T plant to the canister storage building

    SciTech Connect

    Lata

    1996-09-26

    This document presents the current strategy and path forward for removal of the Shippingport Pressurized Water Reactor Core 2 blanket fuel assemblies from their existing storage configuration (wet storage within the T Plant canyon) and transport to the Canister Storage Building (designed and managed by the Spent Nuclear Fuel. Division). The removal plan identifies all processes, equipment, facility interfaces, and documentation (safety, permitting, procedures, etc.) required to facilitate the PWR Core 2 assembly removal (from T Plant), transport (to the Canister storage Building), and storage to the Canister Storage Building. The plan also provides schedules, associated milestones, and cost estimates for all handling activities.

  11. Radiolysis Model Sensitivity Analysis for a Used Fuel Storage Canister

    SciTech Connect

    Wittman, Richard S.

    2013-09-20

    This report fulfills the M3 milestone (M3FT-13PN0810027) to report on a radiolysis computer model analysis that estimates the generation of radiolytic products for a storage canister. The analysis considers radiolysis outside storage canister walls and within the canister fill gas over a possible 300-year lifetime. Previous work relied on estimates based directly on a water radiolysis G-value. This work also includes that effect with the addition of coupled kinetics for 111 reactions for 40 gas species to account for radiolytic-induced chemistry, which includes water recombination and reactions with air.

  12. Alkaline fuel cells for the regenerative fuel cell energy storage system

    NASA Technical Reports Server (NTRS)

    Martin, R. E.

    1983-01-01

    The development of the alkaline Regenerative Fuel Cell System, whose fuel cell module would be a derivative of the 12-kW fuel cell power plant currently being produced for the Space Shuttle Orbiter, is reviewed. Long-term endurance testing of full-size fuel cell modules has demonstrated: (1) the extended endurance capability of potassium titanate matrix cells, (2) the long-term performance stability of the anode catalyst, and (3) the suitability of a lightweight graphite structure for use at the anode. These approaches, developed in the NASA-sponsored fuel cell technology advancement program, would also reduce cell weight by nearly one half.

  13. Alkaline fuel cells for the regenerative fuel cell energy storage system

    NASA Astrophysics Data System (ADS)

    Martin, R. E.

    The development of the alkaline Regenerative Fuel Cell System, whose fuel cell module would be a derivative of the 12-kW fuel cell power plant currently being produced for the Space Shuttle Orbiter, is reviewed. Long-term endurance testing of full-size fuel cell modules has demonstrated: (1) the extended endurance capability of potassium titanate matrix cells, (2) the long-term performance stability of the anode catalyst, and (3) the suitability of a lightweight graphite structure for use at the anode. These approaches, developed in the NASA-sponsored fuel cell technology advancement program, would also reduce cell weight by nearly one half.

  14. 29 CFR 1917.156 - Fuel handling and storage.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... not handled by pump shall be handled and transported only in portable containers or equivalent means...) Liquid fuel dispensing devices, such as pumps, shall be mounted either on a concrete island or be... shall be shielded against direct heat radiation. (v) Container installation shall provide the...

  15. 29 CFR 1917.156 - Fuel handling and storage.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... not handled by pump shall be handled and transported only in portable containers or equivalent means designed for that purpose. Portable containers shall be metal, have tight closures with screw or spring...) Liquid fuel dispensing devices, such as pumps, shall be mounted either on a concrete island or...

  16. 29 CFR 1917.156 - Fuel handling and storage.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... not handled by pump shall be handled and transported only in portable containers or equivalent means designed for that purpose. Portable containers shall be metal, have tight closures with screw or spring...) Liquid fuel dispensing devices, such as pumps, shall be mounted either on a concrete island or...

  17. 29 CFR 1917.156 - Fuel handling and storage.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... not handled by pump shall be handled and transported only in portable containers or equivalent means designed for that purpose. Portable containers shall be metal, have tight closures with screw or spring...) Liquid fuel dispensing devices, such as pumps, shall be mounted either on a concrete island or...

  18. 29 CFR 1917.156 - Fuel handling and storage.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... not handled by pump shall be handled and transported only in portable containers or equivalent means...) Liquid fuel dispensing devices, such as pumps, shall be mounted either on a concrete island or...

  19. Signatures of Extended Storage of Used Nuclear Fuel Comprehensive Final Report

    SciTech Connect

    Rauch, Eric Benton

    2016-09-21

    This report serves as a comprehensive overview of the Extended Storage of Used Nuclear Fuel work performed for the Material Protection, Accounting and Control Technologies campaign under the Department of Energy Office of Nuclear Energy. This paper describes a signature based on the source and fissile material distribution found within a population of used fuel assemblies combined with the neutron absorbers found within cask design that is unique to a specific cask with its specific arrangement of fuel. The paper describes all the steps used in producing and analyzing this signature from the beginning to the project end.

  20. Energy storage using high pressure electrolysis and methods for reconversion. [in automobile fuel synthesis

    NASA Technical Reports Server (NTRS)

    Hughes, W. L.

    1973-01-01

    Theoretical and experimental studies on high pressure electrolysis producing hydrogen and oxygen for energy storage and reconversion are reported. Moderate temperature, high pressure hydrogen/oxygen fuel cells with nickel electrodes are investigated for effects of pressure, temperature, and membrane porosity. Test results from an aphodid burner turbine generator combination obtained 40 percent kilowatt hours out of the fuel cell divided by kilowatt hours into the electrolyzer. It is concluded that high pressure hydrogenation of organic materials can be used to synthesize hydrozenes and methanes for making synthetic vehicular fuels.

  1. Radiological Danger of Disposed Spent Fuel at Different Time of Subsequent Storage

    SciTech Connect

    Gerasimov, A.S.; Bergelson, B.R.; Zaritskaya, T.S.; Kiselev, G.V.; Tikhomirov, G.V.

    2002-07-01

    Decay heat power and radiotoxicity of actinides and fission products extracted from spent uranium and uranium-plutonium nuclear fuel of VVER-1000 type reactors are calculated for storage during a time period of 100 000 years. Maximum permissible activity of nuclides in water were taken into account at calculations of a radiotoxicity. Radiotoxicity is important characteristics of radiological danger from the point of view of a leakage from the storage facility. Decay heat power is important for the heat removal system of the storage facility. (authors)

  2. Feasibility study for Zaporozhye Nuclear Power Plant spent fuel dry storage facility in Ukraine. Export trade information

    SciTech Connect

    1995-12-01

    This document reports the results of a Feasibility Study sponsored by a TDA grant to Zaporozhye Nuclear Power Plant (ZNPP) in Ukraine to study the construction of storage facilities for spent nuclear fuel. It provides pertinent information to U.S. companies interested in marketing spent fuel storage technology and related business to countries of the former Soviet Union or Eastern Europe.

  3. 76 FR 17019 - List of Approved Spent Fuel Storage Casks: HI-STORM Flood/Wind Addition

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-28

    ... 3150-AI90 List of Approved Spent Fuel Storage Casks: HI-STORM Flood/Wind Addition AGENCY: Nuclear... the Commission) is amending its regulations to add the HI-STORM Flood/Wind cask system to the ``List... spent fuel storage cask designs. Discussion This rule will add the Holtec HI-STORM Flood/Wind (FW)...

  4. 76 FR 17037 - List of Approved Spent Fuel Storage Casks: HI-STORM Flood/Wind Addition

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-28

    ...; ] NUCLEAR REGULATORY COMMISSION 10 CFR Part 72 RIN 3150-AI90 List of Approved Spent Fuel Storage Casks: HI... regulations to add the HI-STORM Flood/Wind cask system to the ``List of Approved Spent Fuel Storage Casks... 13, 2011. SAR Submitted by: Holtec International, Inc. SAR Title: Safety Analysis Report on the...

  5. 78 FR 73379 - List of Approved Spent Fuel Storage Casks: HI-STORM 100 Cask System; Amendment No. 9

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-06

    ... 3150-AJ12 List of Approved Spent Fuel Storage Casks: HI-STORM 100 Cask System; Amendment No. 9 AGENCY... (NRC) is amending its spent fuel storage regulations by revising the Holtec International HI- STORM 100... the HI-STORM 100U part of the HI-STORM 100 Cask System and updates the thermal model and...

  6. 78 FR 22411 - List of Approved Spent Fuel Storage Casks: HI-STORM 100, Amendment No. 8; Corrections

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-16

    ... COMMISSION 10 CFR Part 72 RIN 3150-AJ05 List of Approved Spent Fuel Storage Casks: HI-STORM 100, Amendment No.... (Holtec) HI-STORM 100 Cask System listing within the ``List of Approved Spent Fuel Storage Casks'' to... technical specifications (TS) and the NRC's Safety Evaluation Report (SER) for the Holtec HI-STORM 100...

  7. Radiotoxicity and decay heat power of spent nuclear fuel of VVER type reactors at long-term storage.

    PubMed

    Bergelson, B R; Gerasimov, A S; Tikhomirov, G V

    2005-01-01

    Radiotoxicity and decay heat power of the spent nuclear fuel of VVER-1000 type reactors are calculated during storage time up to 300,000 y. Decay heat power of radioactive waste (radwaste) determines parameters of the heat removal system for the safe storage of spent nuclear fuel. Radiotoxicity determines the radiological hazard of radwaste after its leakage and penetration into the environment.

  8. Results from Nevada Nuclear Waste Storage Investigations (NNWSI) Series 3 spent fuel dissolution tests

    SciTech Connect

    Wilson, C.N.

    1990-06-01

    The dissolution and radionuclide release behavior of spent fuel in groundwater is being studied by the Yucca Mountain Project (YMP), formerly the Nevada Nuclear Waste Storage Investigations (NNWSI) Project. Specimens prepared from pressurized water reactor fuel rod segments were tested in sealed stainless steel vessels in Nevada Test Site J-13 well water at 85{degree}C and 25{degree}C. The test matrix included three specimens of bare-fuel particles plus cladding hulls, two fuel rod segments with artificially defected cladding and water-tight end fittings, and an undefected fuel rod section with watertight end fittings. Periodic solution samples were taken during test cycles with the sample volumes replenished with fresh J-13 water. Test cycles were periodically terminated and the specimens restarted in fresh J-13 water. The specimens were run for three cycles for a total test duration of 15 months. 22 refs., 32 figs., 26 tabs.

  9. Storage of LWR spent fuel in air. Volume 3, Results from exposure of spent fuel to fluorine-contaminated air

    SciTech Connect

    Cunningham, M.E.; Thomas, L.E.

    1995-06-01

    The Behavior of Spent Fuel in Storage (BSFS) Project has conducted research to develop data on spent nuclear fuel (irradiated U0{sub 2}) that could be used to support design, licensing, and operation of dry storage installations. Test Series B conducted by the BSFS Project was designed as a long-term study of the oxidation of spent fuel exposed to air. It was discovered after the exposures were completed in September 1990 that the test specimens had been exposed to an atmosphere of bottled air contaminated with an unknown quantity of fluorine. This exposure resulted in the test specimens reacting with both the oxygen and the fluorine in the oven atmospheres. The apparent source of the fluorine was gamma radiation-induced chemical decomposition of the fluoro-elastomer gaskets used to seal the oven doors. This chemical decomposition apparently released hydrofluoric acid (HF) vapor into the oven atmospheres. Because the Test Series B specimens were exposed to a fluorine-contaminated oven atmosphere and reacted with the fluorine, it is recommended that the Test Series B data not be used to develop time-temperature limits for exposure of spent nuclear fuel to air. This report has been prepared to document Test Series B and present the collected data and observations.

  10. FIELD-DEPLOYABLE SAMPLING TOOLS FOR SPENT NUCLEAR FUEL INTERROGATION IN LIQUID STORAGE

    SciTech Connect

    Berry, T.; Milliken, C.; Martinez-Rodriguez, M.; Hathcock, D.; Heitkamp, M.

    2012-09-12

    Methodology and field deployable tools (test kits) to analyze the chemical and microbiological condition of aqueous spent fuel storage basins and determine the oxide thickness on the spent fuel basin materials were developed to assess the corrosion potential of a basin. this assessment can then be used to determine the amount of time fuel has spent in a storage basin to ascertain if the operation of the reactor and storage basin is consistent with safeguard declarations or expectations and assist in evaluating general storage basin operations. The test kit was developed based on the identification of key physical, chemical and microbiological parameters identified using a review of the scientific and basin operations literature. The parameters were used to design bench scale test cells for additional corrosion analyses, and then tools were purchased to analyze the key parameters. The tools were used to characterize an active spent fuel basin, the Savannah River Site (SRS) L-Area basin. The sampling kit consisted of a total organic carbon analyzer, an YSI multiprobe, and a thickness probe. The tools were field tested to determine their ease of use, reliability, and determine the quality of data that each tool could provide. Characterization confirmed that the L Area basin is a well operated facility with low corrosion potential.

  11. Dry spent fuel storage in Germany status in 1995 and prospects

    SciTech Connect

    Janberg, K. |; Malrnstroem, H.; Rittscher, D.; Willax, H.O.

    1995-12-31

    The German back-end policy until mid `94 was primarily based on reprocessing. Direct disposal was an acceptable alternative only when reprocessing was not available or economically not feasible. However, a law was passed in 1994 by Parliament which lifts these conditions applied to the choice of the final disposal route. For the THTR (Thorium High Temperature Reactor) fuel there was no reprocessing available and therefore the decommissioning of this reactor required the unloading of its fuel into dry storage casks. At the beginning of Nov `94 more than 260 CASTOR casks are already stored at the Ahaus site. The other storage facility at Gorleben was intended to be opened in July `94 with the CASTOR IIa, containing 4.5 t of HM. However, though the cask was loaded it is in early `95 waiting for its transport approval. The AVR-Reactor at the Juelich Research Center has been shut down and its fuel is also stored in casks. In early `95 around 50 are already loaded and transferred into the on-site storage facility. At the same time at the Greifswald site in former GDR a big storage facility is under construction. This facility has to receive all the wastes resulting from the decommissioning of the WWER 440 Voronesh-type reactors and the spent fuel also to be stored in casks.

  12. 10 CFR 171.15 - Annual fees: Reactor licenses and independent spent fuel storage licenses.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... licensee who does not hold a 10 CFR part 50 license, is $241,000. (2) The FY 2011 annual fee is comprised... NRC § 171.15 Annual fees: Reactor licenses and independent spent fuel storage licenses. (a) Each person holding an operating license for a power, test, or research reactor; each person holding...

  13. 114. ARAI Hot cell (ARA626) Building details of fuel storage ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    114. ARA-I Hot cell (ARA-626) Building details of fuel storage pit in plan and section. Spaces shown for 20 elements. Norman Engineering Company: 961-area/SF-626-S-4. Date: January 1959. Ineel index code no. 068-0626-60-613-102752. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID

  14. 75 FR 9452 - Solicitation of Topics for Discussion at a Spent Fuel Storage and Transportation Licensing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-02

    ... COMMISSION Solicitation of Topics for Discussion at a Spent Fuel Storage and Transportation Licensing Conference AGENCY: U.S. Nuclear Regulatory Commission. ACTION: Solicitation of Topics for Discussion at a... Commission (NRC) is soliciting input on topics for discussion at a proposed June 23-24, 2010, public...

  15. Radioactive Release from Aluminum-Based Spent Nuclear Fuel in Basin Storage

    SciTech Connect

    Sindelar, R.L.

    1999-10-21

    The report provides an evaluation of: (1) the release rate of radionuclides through minor cladding penetrations (breaches) on aluminum-based spent nuclear fuel (AL SNF), and (2) the consequences of direct storage of breached AL SNF relative to the authorization basis for SRS basin operation.

  16. Evaluation of Radiation Impacts of Spent Nuclear Fuel Storage (SNFS-2) of Chernobyl NPP - 13495

    SciTech Connect

    Paskevych, Sergiy; Batiy, Valiriy; Sizov, Andriy; Schmieman, Eric

    2013-07-01

    Radiation effects are estimated for the operation of a new dry storage facility for spent nuclear fuel (SNFS-2) of Chernobyl NPP RBMK reactors. It is shown that radiation exposure during normal operation, design and beyond design basis accidents are minor and meet the criteria for safe use of radiation and nuclear facilities in Ukraine. (authors)

  17. Data compliation report: K West Basin fuel storage canister liquid samples

    SciTech Connect

    Trimble, D.J.

    1995-12-21

    Sample analysis data from the 222-S Laboratory are reported. The data are for liquid samples taken from spent fuel storage canisters in the 105 K West Basin during March 1995. An analysis and data report from the Special Analytical Studies group of Westinghouse Hanford Company regarding these samples is also included. Data analysis is not included herein.

  18. 10 CFR 72.214 - List of approved spent fuel storage casks.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false List of approved spent fuel storage casks. 72.214 Section 72.214 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT... International. SAR Title: Final Safety Analysis Report for the HI-STAR 100 Cask System. Docket Number:...

  19. 10 CFR 72.214 - List of approved spent fuel storage casks.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false List of approved spent fuel storage casks. 72.214 Section 72.214 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT... International. SAR Title: Final Safety Analysis Report for the HI-STAR 100 Cask System. Docket Number:...

  20. 77 FR 48565 - Maine Yankee Atomic Power Company, Maine Yankee Independent Spent Fuel Storage Installation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-14

    ... also holds a 10 CFR part 72 general license for storage of spent fuel and greater than Class C waste at...; (iv) granting the exemption would not result in a significant construction impact because there are no construction activities associated with the requested exemption; and; (v) granting the exemption would...

  1. 10 CFR 72.240 - Conditions for spent fuel storage cask renewal.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Section 72.240 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C... report (FSAR) as required by § 72.248; (2) Time-limited aging analyses that demonstrate that...

  2. 78 FR 56775 - Waste Confidence-Continued Storage of Spent Nuclear Fuel

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-13

    ... the period of continued storage beyond the licensed life for operation of a reactor. Table of Contents... integrated into the cask. Bare fuel casks, which tend to be all metal construction, are generally bolted... operation are sufficiently understood as a result of lessons learned and knowledge gained from...

  3. 30 CFR 75.1912 - Fire suppression systems for permanent underground diesel fuel storage facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... chemical type (ABC) fire suppression system listed or approved as an engineered dry chemical extinguishing... permanent underground diesel fuel storage facility. (1) Alternate types of fire suppression systems shall be... protected against the entrance of foreign materials such as mud, coal dust, and rock dust. (b) The...

  4. 75 FR 36449 - Yankee Atomic Electric Co.; Yankee Atomic Independent Spent Fuel Storage Installation; Issuance...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-25

    ... COMMISSION Yankee Atomic Electric Co.; Yankee Atomic Independent Spent Fuel Storage Installation; Issuance of... Atomic Electric Company (YAEC), pursuant to 10 CFR 72.7, from the specific provisions of 10 CFR 72.212(a... instructions for the operations and maintenance of ISFSI systems, structures, and components, as required...

  5. 78 FR 63375 - List of Approved Spent Fuel Storage Casks: Transnuclear, Inc. Standardized NUHOMS® Cask System

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-24

    ... U.S. Nuclear Regulatory Commission (NRC) is amending its spent fuel storage regulations by revising... Environmental Management Programs, U.S. Nuclear Regulatory Commission, Washington, DC 20555-0001, telephone: 301... U.S.C. 3501 et seq.). Existing requirements were approved by the Office of Management and...

  6. 76 FR 30980 - Pacific Gas and Electric Company; Humboldt Bay Independent Spent Fuel Storage Installation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-27

    ... COMMISSION Pacific Gas and Electric Company; Humboldt Bay Independent Spent Fuel Storage Installation...-4737, or by e-mail to pdr.resource@nrc.gov . The Pacific Gas and Electric letter HIL-10-005 which... September 8, 2010, a license amendment application from Pacific Gas and Electric Company (PG&E),...

  7. 78 FR 56944 - Pacific Gas and Electric Company; Humboldt Bay Independent Spent Fuel Storage Installation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-16

    ... COMMISSION Pacific Gas and Electric Company; Humboldt Bay Independent Spent Fuel Storage Installation AGENCY... finding of no significant impact (FONSI) for an amendment request submitted by Pacific Gas and Electric... Installation (ISFSI). ADDRESSES: Please refer to Docket ID NRC-2011-0115 when contacting the ] NRC about...

  8. Templated assembly of photoswitches significantly increases the energy-storage capacity of solar thermal fuels.

    PubMed

    Kucharski, Timothy J; Ferralis, Nicola; Kolpak, Alexie M; Zheng, Jennie O; Nocera, Daniel G; Grossman, Jeffrey C

    2014-05-01

    Large-scale utilization of solar-energy resources will require considerable advances in energy-storage technologies to meet ever-increasing global energy demands. Other than liquid fuels, existing energy-storage materials do not provide the requisite combination of high energy density, high stability, easy handling, transportability and low cost. New hybrid solar thermal fuels, composed of photoswitchable molecules on rigid, low-mass nanostructures, transcend the physical limitations of molecular solar thermal fuels by introducing local sterically constrained environments in which interactions between chromophores can be tuned. We demonstrate this principle of a hybrid solar thermal fuel using azobenzene-functionalized carbon nanotubes. We show that, on composite bundling, the amount of energy stored per azobenzene more than doubles from 58 to 120 kJ mol(-1), and the material also maintains robust cyclability and stability. Our results demonstrate that solar thermal fuels composed of molecule-nanostructure hybrids can exhibit significantly enhanced energy-storage capabilities through the generation of template-enforced steric strain.

  9. Three-dimensional Computational Fluid Dynamics (CFD) modeling of dry spent nuclear fuel storage canisters

    SciTech Connect

    Lee, S.Y.

    1997-06-01

    One of the interim storage configurations being considered for aluminum-clad foreign research reactor fuel, such as the Material and Testing Reactor (MTR) design, is in a dry storage facility. To support design studies of storage options, a computational and experimental program was conducted at the Savannah River Site (SRS). The objective was to develop computational fluid dynamics (CFD) models which would be benchmarked using data obtained from a full scale heat transfer experiment conducted in the SRS Experimental Thermal Fluids Laboratory. The current work documents the CFD approach and presents comparison of results with experimental data. CFDS-FLOW3D (version 3.3) CFD code has been used to model the 3-dimensional convective velocity and temperature distributions within a single dry storage canister of MTR fuel elements. For the present analysis, the Boussinesq approximation was used for the consideration of buoyancy-driven natural convection. Comparison of the CFD code can be used to predict reasonably accurate flow and thermal behavior of a typical foreign research reactor fuel stored in a dry storage facility.

  10. US Department of Energy Storage of Spent Fuel and High Level Waste

    SciTech Connect

    Sandra M Birk

    2010-10-01

    ABSTRACT This paper provides an overview of the Department of Energy's (DOE) spent nuclear fuel (SNF) and high level waste (HLW) storage management. Like commercial reactor fuel, DOE's SNF and HLW were destined for the Yucca Mountain repository. In March 2010, the DOE filed a motion with the Nuclear Regulatory Commission (NRC) to withdraw the license application for the repository at Yucca Mountain. A new repository is now decades away. The default for the commercial and DOE research reactor fuel and HLW is on-site storage for the foreseeable future. Though the motion to withdraw the license application and delay opening of a repository signals extended storage, DOE's immediate plans for management of its SNF and HLW remain the same as before Yucca Mountain was designated as the repository, though it has expanded its research and development efforts to ensure safe extended storage. This paper outlines some of the proposed research that DOE is conducting and will use to enhance its storage systems and facilities.

  11. COMPLETION OF THE FIRST INTEGRATED SPENT NUCLEAR FUEL TRANSSHIPMENT/INTERIM STORAGE FACILITY IN NW RUSSIA

    SciTech Connect

    Dyer, R.S.; Barnes, E.; Snipes, R.L.; Hoeibraaten, S.; Gran, H.C.; Foshaug, E.; Godunov, V.

    2003-02-27

    Northwest and Far East Russia contain large quantities of unsecured spent nuclear fuel (SNF) from decommissioned submarines that potentially threaten the fragile environments of the surrounding Arctic and North Pacific regions. The majority of the SNF from the Russian Navy, including that from decommissioned nuclear submarines, is currently stored in on-shore and floating storage facilities. Some of the SNF is damaged and stored in an unstable condition. Existing Russian transport infrastructure and reprocessing facilities cannot meet the requirements for moving and reprocessing this amount of fuel. Additional interim storage capacity is required. Most of the existing storage facilities being used in Northwest Russia do not meet health and safety, and physical security requirements. The United States and Norway are currently providing assistance to the Russian Federation (RF) in developing systems for managing these wastes. If these wastes are not properly managed, they could release significant concentrations of radioactivity to these sensitive environments and could become serious global environmental and physical security issues. There are currently three closely-linked trilateral cooperative projects: development of a prototype dual-purpose transport and storage cask for SNF, a cask transshipment interim storage facility, and a fuel drying and cask de-watering system. The prototype cask has been fabricated, successfully tested, and certified. Serial production is now underway in Russia. In addition, the U.S. and Russia are working together to improve the management strategy for nuclear submarine reactor compartments after SNF removal.

  12. Regenerative Fuel Cells: Renewable Energy Storage Devices Based on Neutral Water Input

    SciTech Connect

    2010-09-01

    GRIDS Project: Proton Energy Systems is developing an energy storage device that converts water to hydrogen fuel when excess electricity is available, and then uses hydrogen to generate electricity when energy is needed. The system includes an electrolyzer, which generates and separates hydrogen and oxygen for storage, and a fuel cell which converts the hydrogen and oxygen back to electricity. Traditional systems use acidic membranes, and require expensive materials including platinum and titanium for key parts of the system. In contrast, Proton Energy Systems’ new system will use an inexpensive alkaline membrane and will contain only inexpensive metals such as nickel and stainless steel. If successful, Proton Energy Systems’ system will have similar performance to today’s regenerative fuel cell systems at a fraction of the cost, and can be used to store electricity on the electric grid.

  13. Cosmic Ray Muon Imaging of Spent Nuclear Fuel in Dry Storage Casks

    DOE PAGES

    Durham, J. Matthew; Guardincerri, Elena; Morris, Christopher L.; ...

    2016-04-29

    In this paper, cosmic ray muon radiography has been used to identify the absence of spent nuclear fuel bundles inside a sealed dry storage cask. The large amounts of shielding that dry storage casks use to contain radiation from the highly radioactive contents impedes typical imaging methods, but the penetrating nature of cosmic ray muons allows them to be used as an effective radiographic probe. This technique was able to successfully identify missing fuel bundles inside a sealed Westinghouse MC-10 cask. This method of fuel cask verification may prove useful for international nuclear safeguards inspectors. Finally, muon radiography may findmore » other safety and security or safeguards applications, such as arms control verification.« less

  14. Spent fuel dry storage technology development: Report of consolidated thermal data

    NASA Astrophysics Data System (ADS)

    Lundberg, W. L.

    1980-09-01

    A drywell/sealed cask technique for spent fuel storage is discussed. Experiments indicate that PWR fuel with decay heat levels in excess of 2 kW could be stored in isolated drywells in Nevada test site soil without exceeding the current fuel clad temperature limit (715 F). The ability to thermally analyze near surface drywells and above ground storage casks is assessed. It is concluded that the required analysis procedures, computer programs, etc., are already developed and available. Soil thermal conductivity requires additional study to better understand the soil drying mechanism and effects of moisture. Work is also required to develop an internal canister subchannel model. In addition, the ability of the overall drywell thermal model to accommodate thermal interaction effects between adjacent drywells should be confirmed.

  15. Alkaline regenerative fuel cell energy storage system for manned orbital satellites

    NASA Technical Reports Server (NTRS)

    Martin, R. E.; Gitlow, B.; Sheibley, D. W.

    1982-01-01

    It is pointed out that the alkaline regenerative fuel cell system represents a highly efficient, lightweight, reliable approach for providing energy storage in an orbiting satellite. In addition to its energy storage function, the system can supply hydrogen and oxygen for attitude control of the satellite and for life support. A summary is presented of the results to date obtained in connection with the NASA-sponsored fuel cell technology advancement program, giving particular attention to the requirements of the alkaline regenerative fuel cell and the low-earth mission. Attention is given to system design guidelines, weight considerations, gold-platinum cathode cell performance, matrix development, the electrolyte reservoir plate, and the cyclical load profile tests.

  16. Contaminated sediment removal from a spent fuel storage canal

    SciTech Connect

    Geber, K R

    1993-01-01

    A leaking underground spent fuel transfer canal between a decommissioned reactor and a radiochemical separations building at the Oak Ridge National Laboratory (ORNL) was found to contain RCRA-hazardous and radioactive sediment. Closure of the Part B RCRA permitted facility required the use of an underwater robotic vacuum and a filtration-containment system to separate and stabilize the contaminated sediment. This paper discusses the radiological controls established to maintain contamination and exposures As Low As Reasonably Achievable (ALARA) during the sediment removal.

  17. Successful Deployment of System for the Storage and Retrieval of Spent/Used Nuclear Fuel from Hanford K-West Fuel Storage Basin-13051

    SciTech Connect

    Quintero, Roger; Smith, Sahid; Blackford, Leonard Ty; Johnson, Mike W.; Raymond, Richard; Sullivan, Neal; Sloughter, Jim

    2013-07-01

    In 2012, a system was deployed to remove, transport, and interim store chemically reactive and highly radioactive sludge material from the Hanford Site's 105-K West Fuel Storage Basin that will be managed as spent/used nuclear fuel. The Knockout Pot (KOP) sludge in the 105-K West Basin was a legacy issue resulting from the spent nuclear fuel (SNF) washing process applied to 2200 metric tons of highly degraded fuel elements following long-term underwater storage. The washing process removed uranium metal and other non-uranium constituents that could pass through a screen with 0.25-inch openings; larger pieces are, by definition, SNF or fuel scrap. When originally retrieved, KOP sludge contained pieces of degraded uranium fuel ranging from 600 microns (μm) to 6350 μm mixed with inert material such as aluminum hydroxide, aluminum wire, and graphite in the same size range. In 2011, a system was developed, tested, successfully deployed and operated to pre-treat KOP sludge as part of 105-K West Basin cleanup. The pretreatment process successfully removed the vast majority of inert material from the KOP sludge stream and reduced the remaining volume of material by approximately 65 percent, down to approximately 50 liters of material requiring management as used fuel. The removal of inert material resulted in significant waste minimization and project cost savings because of the reduced number of transportation/storage containers and improvement in worker safety. The improvement in worker safety is a result of shorter operating times and reduced number of remote handled shipments to the site fuel storage facility. Additionally in 2011, technology development, final design, and cold testing was completed on the system to be used in processing and packaging the remaining KOP material for removal from the basin in much the same manner spent fuel was removed. This system was deployed and successfully operated from June through September 2012, to remove and package the last

  18. Fuel-Free Compressed-Air Energy Storage: Fuel-Free, Ubiquitous Compressed-Air Energy Storage and Power Conditioning

    SciTech Connect

    2010-09-13

    GRIDS Project: General Compression has developed a transformative, near-isothermal compressed air energy storage system (GCAES) that prevents air from heating up during compression and cooling down during expansion. When integrated with renewable generation, such as a wind farm, intermittent energy can be stored in compressed air in salt caverns or pressurized tanks. When electricity is needed, the process is reversed and the compressed air is expanded to produce electricity. Unlike conventional compressed air energy storage (CAES) projects, no gas is burned to convert the stored high-pressure air back into electricity. The result of this breakthrough is an ultra-efficient, fully shapeable, 100% renewable and carbon-free power product. The GCAES™ system can provide high quality electricity and ancillary services by effectively integrating renewables onto the grid at a cost that is competitive with gas, coal and nuclear generation.

  19. Computing Q-D Relationships for Storage of Rocket Fuels

    NASA Technical Reports Server (NTRS)

    Jester, Keith

    2005-01-01

    The Quantity Distance Measurement Tool is a GIS BASEP computer program that aids safety engineers by calculating quantity-distance (Q-D) relationships for vessels that contain explosive chemicals used in testing rocket engines. (Q-D relationships are standard relationships between specified quantities of specified explosive materials and minimum distances by which they must be separated from persons, objects, and other explosives to obtain specified types and degrees of protection.) The program uses customized geographic-information-system (GIS) software and calculates Q-D relationships in accordance with NASA's Safety Standard For Explosives, Propellants, and Pyrotechnics. Displays generated by the program enable the identification of hazards, showing the relationships of propellant-storage-vessel safety buffers to inhabited facilities and public roads. Current Q-D information is calculated and maintained in graphical form for all vessels that contain propellants or other chemicals, the explosiveness of which is expressed in TNT equivalents [amounts of trinitrotoluene (TNT) having equivalent explosive effects]. The program is useful in the acquisition, siting, construction, and/or modification of storage vessels and other facilities in the development of an improved test-facility safety program.

  20. The Effect of Weld Residual Stress on Life of Used Nuclear Fuel Dry Storage Canisters

    SciTech Connect

    Ronald G. Ballinger; Sara E. Ferry; Bradley P. Black; Sebastien P. Teysseyre

    2013-08-01

    With the elimination of Yucca Mountain as the long-term storage facility for spent nuclear fuel in the United States, a number of other storage options are being explored. Currently, used fuel is stored in dry-storage cask systems constructed of steel and concrete. It is likely that used fuel will continue to be stored at existing open-air storage sites for up to 100 years. This raises the possibility that the storage casks will be exposed to a salt-containing environment for the duration of their time in interim storage. Austenitic stainless steels, which are used to construct the canisters, are susceptible to stress corrosion cracking (SCC) in chloride-containing environments if a continuous aqueous film can be maintained on the surface and the material is under stress. Because steel sensitization in the canister welds is typically avoided by avoiding post-weld heat treatments, high residual stresses are present in the welds. While the environment history will play a key role in establishing the chemical conditions for cracking, weld residual stresses will have a strong influence on both crack initiation and propagation. It is often assumed for modeling purposes that weld residual stresses are tensile, high and constant through the weld. However, due to the strong dependence of crack growth rate on stress, this assumption may be overly conservative. In particular, the residual stresses become negative (compressive) at certain points in the weld. The ultimate goal of this research project is to develop a probabilistic model with quantified uncertainties for SCC failure in the dry storage casks. In this paper, the results of a study of the residual stresses, and their postulated effects on SCC behavior, in actual canister welds are presented. Progress on the development of the model is reported.

  1. A Critical Review of Practice of Equating the Reactivity of Spent Fuel to Fresh Fuel in Burnup Credit Criticality Safety Analyses for PWR Spent Fuel Pool Storage

    SciTech Connect

    Wagner, J.C.; Parks, C.V.

    2000-09-01

    This research examines the practice of equating the reactivity of spent fuel to that of fresh fuel for the purpose of performing burnup credit criticality safety analyses for PWR spent fuel pool (SFP) storage conditions. The investigation consists of comparing k{sub inf} estimates based on reactivity equivalent fresh fuel enrichment (REFFE) to k{sub inf} estimates using the actual spent fuel isotopics. Analyses of selected storage configurations common in PWR SFPs show that this practice yields nonconservative results (on the order of a few tenths of a percent) in configurations in which the spent fuel is adjacent to higher-reactivity assemblies (e.g., fresh or lower-burned assemblies) and yields conservative results in configurations in which spent fuel is adjacent to lower-reactivity assemblies (e.g., higher-burned fuel or empty cells). When the REFFE is determined based on unborated water moderation, analyses for storage conditions with soluble boron present reveal significant nonconservative results associated with the use of the REFFE. This observation is considered to be important, especially considering the recent allowance of credit for soluble boron up to 5% in reactivity. Finally, it is shown that the practice of equating the reactivity of spent fuel to fresh fuel is acceptable, provided the conditions for which the REFFE was determined remain unchanged. Determination of the REFFE for a reference configuration and subsequent use of the REFFE for different configurations violates the basis used for the determination of the REFFE and, thus, may lead to inaccurate, and possibly, nonconservative estimates of reactivity. A significant concentration ({approximately}2000 ppm) of soluble boron is typically (but not necessarily required to be) present in PWR SFPs, of which only a portion ({le} 500 ppm) may be credited in safety analyses. Thus, a large subcritical margin currently exists that more than accounts for errors or uncertainties associated with the use of

  2. Key challenges and recent progress in batteries, fuel cells, and hydrogen storage for clean energy systems

    NASA Astrophysics Data System (ADS)

    Chalk, Steven G.; Miller, James F.

    Reducing or eliminating the dependency on petroleum of transportation systems is a major element of US energy research activities. Batteries are a key enabling technology for the development of clean, fuel-efficient vehicles and are key to making today's hybrid electric vehicles a success. Fuel cells are the key enabling technology for a future hydrogen economy and have the potential to revolutionize the way we power our nations, offering cleaner, more efficient alternatives to today's technology. Additionally fuel cells are significantly more energy efficient than combustion-based power generation technologies. Fuel cells are projected to have energy efficiency twice that of internal combustion engines. However before fuel cells can realize their potential, significant challenges remain. The two most important are cost and durability for both automotive and stationary applications. Recent electrocatalyst developments have shown that Pt alloy catalysts have increased activity and greater durability than Pt catalysts. The durability of conventional fluorocarbon membranes is improving, and hydrocarbon-based membranes have also shown promise of equaling the performance of fluorocarbon membranes at lower cost. Recent announcements have also provided indications that fuel cells can start from freezing conditions without significant deterioration. Hydrogen storage systems for vehicles are inadequate to meet customer driving range expectations (>300 miles or 500 km) without intrusion into vehicle cargo or passenger space. The United States Department of Energy has established three centers of Excellence for hydrogen storage materials development. The centers are focused on complex metal hydrides that can be regenerated onboard a vehicle, chemical hydrides that require off-board reprocessing, and carbon-based storage materials. Recent developments have shown progress toward the 2010 DOE targets. In addition DOE has established an independent storage material testing center

  3. Hydrogen storage systems based on magnesium hydride: from laboratory tests to fuel cell integration

    NASA Astrophysics Data System (ADS)

    de Rango, P.; Marty, P.; Fruchart, D.

    2016-02-01

    The paper reviews the state of the art of hydrogen storage systems based on magnesium hydride, emphasizing the role of thermal management, whose effectiveness depends on the effective thermal conductivity of the hydride, but also depends of other limiting factors such as wall contact resistance and convective exchanges with the heat transfer fluid. For daily cycles, the use of phase change material to store the heat of reaction appears to be the most effective solution. The integration with fuel cells (1 kWe proton exchange membrane fuel cell and solid oxide fuel cell) highlights the dynamic behaviour of these systems, which is related to the thermodynamic properties of MgH2. This allows for "self-adaptive" systems that do not require control of the hydrogen flow rate at the inlet of the fuel cell.

  4. A COMPARISON OF CHALLENGES ASSOCIATED WITH SLUDGE REMOVAL & TREATMENT & DISPOSAL AT SEVERAL SPENT FUEL STORAGE LOCATIONS

    SciTech Connect

    PERES, M.W.

    2007-01-09

    Challenges associated with the materials that remain in spent fuel storage pools are emerging as countries deal with issues related to storing and cleaning up nuclear fuel left over from weapons production. The K Basins at the Department of Energy's site at Hanford in southeastern Washington State are an example. Years of corrosion products and piles of discarded debris are intermingled in the bottom of these two pools that stored more 2,100 metric tons (2,300 tons) of spent fuel. Difficult, costly projects are underway to remove radioactive material from the K Basins. Similar challenges exist at other locations around the globe. This paper compares the challenges of handling and treating radioactive sludge at several locations storing spent nuclear fuel.

  5. Testing and COBRA-SFS analysis of the VSC-17 ventilated concrete, spent fuel storage cask

    SciTech Connect

    McKinnon, M.A.; Dodge, R.E.; Schmitt, R.C.

    1992-04-01

    A performance test of a Pacific Sierra Nuclear VSC-17 ventilated concrete storage cask loaded with 17 canisters of consolidated PWR spent fuel generating approximately 15 kW was conducted. The performance test included measuring the cask surface, concrete, air channel surface, and fuel temperatures, as well as cask surface gamma and neutron dose rates. Testing was performed using vacuum, nitrogen, and helium backfill environments. Pretest predictions of cask thermal performance were made using the COBRA-SFS computer code. Analysis results were within 15{degrees}C of measured peak fuel temperature. Peak fuel temperature for normal operation was 321{degrees}C. In general, the surface dose rates were less than 30 mrem/h on the side of the cask and 40 mrem/h on the top of the cask.

  6. Slurry-Based Chemical Hydrogen Storage Systems for Automotive Fuel Cell Applications

    SciTech Connect

    Brooks, Kriston P.; Semelsberger, Troy; Simmons, Kevin L.; Van Hassel, Bart A.

    2014-05-30

    In this paper, the system designs for hydrogen storage using chemical hydrogen materials in an 80 kWe fuel cell, light-duty vehicle are described. Ammonia borane and alane are used for these designs to represent the general classes of exothermic and endothermic materials. The designs are then compared to the USDRIVE/DOE developed set of system level targets for on-board storage. While most of the DOE targets are predicted to be achieved based on the modeling, the system gravimetric and volumetric densities were more challenging and became the focus of this work. The resulting system evaluation determined that the slurry is majority of the system mass. Only modest reductions in the system mass can be expected with improvements in the balance of plant components. Most of the gravimetric improvements will require developing materials with higher inherent storage capacity or by increasing the solids loading of the chemical hydrogen storage material in the slurry.

  7. Slurry-based chemical hydrogen storage systems for automotive fuel cell applications

    NASA Astrophysics Data System (ADS)

    Brooks, Kriston P.; Semelsberger, Troy A.; Simmons, Kevin L.; van Hassel, Bart

    2014-12-01

    In this paper, the system designs for hydrogen storage using chemical hydrogen materials in an 80-kWe fuel cell, light-duty vehicle are described. Ammonia borane and alane are used for these designs to represent the general classes of exothermic and endothermic materials. The designs are then compared to the USDRIVE/DOE-developed set of system-level targets for onboard storage. While most DOE targets are predicted to be achieved based on the modeling, the system gravimetric and volumetric densities were more challenging and became the focus of this work. The resulting system evaluation determined that the slurry accounts for the majority of the system mass. Only modest reductions in the system mass can be expected with improvements in the balance-of-plant components. Most of the gravimetric improvements will require developing materials with higher inherent storage capacity or by increasing the solids loading of the chemical hydrogen storage material in the slurry.

  8. Environmental safety aspects of the new spent nuclear fuel management and storage system at Ignalina NPP

    SciTech Connect

    Poskas, P.; Ragaisis, V.; Adomaitis, J. E.

    2007-07-01

    In the framework of the preparation for the decommissioning of the Ignalina Nuclear Power Plant (INPP) a new Interim Spent Nuclear Fuel Storage Facility (ISFSF) will be built in the existing sanitary protection zone (SPZ) of INPP. In addition to the ISFSF, the new spent nuclear fuel management activity will include all necessary spent nuclear fuel retrieval and packaging operations at the Reactor Units, transfer of storage casks to the ISFSF, and other activities appropriate to the chosen design solution and required for the safe removal of the existing spent nuclear fuel from storage pools and insertion into the new ISFSF. The Republic of Lithuania regulations require that the average annual dose to the critical group members of population due to operation of nuclear facility shall not exceed dose constraint. If several nuclear facilities are located in the same SPZ, the same dose constraint shall envelope radiological impacts from all operating and planned nuclear facilities. The paper discusses radiological safety assessment aspects as relevant for the new nuclear activity to be implemented in the SPZ of INPP considering specificity of Lithuanian regulatory requirements. The safety assessment methodology aspects, results and conclusions as concern public exposure are outlined and discussed. (authors)

  9. Advanced chemical hydride-based hydrogen generation/storage system for fuel cell vehicles

    SciTech Connect

    Breault, R.W.; Rolfe, J.

    1998-08-01

    Because of the inherent advantages of high efficiency, environmental acceptability, and high modularity, fuel cells are potentially attractive power supplies. Worldwide concerns over clean environments have revitalized research efforts on developing fuel cell vehicles (FCV). As a result of intensive research efforts, most of the subsystem technology for FCV`s are currently well established. These include: high power density PEM fuel cells, control systems, thermal management technology, and secondary power sources for hybrid operation. For mobile applications, however, supply of hydrogen or fuel for fuel cell operation poses a significant logistic problem. To supply high purity hydrogen for FCV operation, Thermo Power`s Advanced Technology Group is developing an advanced hydrogen storage technology. In this approach, a metal hydride/organic slurry is used as the hydrogen carrier and storage media. At the point of use, high purity hydrogen will be produced by reacting the metal hydride/organic slurry with water. In addition, Thermo Power has conceived the paths for recovery and regeneration of the spent hydride (practically metal hydroxide). The fluid-like nature of the spent hydride/organic slurry will provide a unique opportunity for pumping, transporting, and storing these materials. The final product of the program will be a user-friendly and relatively high energy storage density hydrogen supply system for fuel cell operation. In addition, the spent hydride can relatively easily be collected at the pumping station and regenerated utilizing renewable sources, such as biomass, natural, or coal, at the central processing plants. Therefore, the entire process will be economically favorable and environmentally friendly.

  10. Corrosion Surveillance for Research Reactor Spent Nuclear Fuel in Wet Basin Storage

    SciTech Connect

    Howell, J.P.

    1998-10-16

    Foreign and domestic test and research reactor fuel is currently being shipped from locations over the world for storage in water filled basins at the Savannah River Site (SRS). The fuel was provided to many of the foreign countries as a part of the "Atoms for Peace" program in the early 1950's. In support of the wet storage of this fuel at the research reactor sites and at SRS, corrosion surveillance programs have been initiated. The International Atomic Energy Agency (IAEA) established a Coordinated Research Program (CRP) in 1996 on "Corrosion of Research Reactor Aluminum-Clad Spent Fuel in Water" and scientists from ten countries worldwide were invited to participate. This paper presents a detailed discussion of the IAEA sponsored CRP and provides the updated results from corrosion surveillance activities at SRS. In May 1998, a number of news articles around the world reported stories that microbiologically influenced corrosion (MIC) was active on the aluminum-clad spent fuel stored in the RBOF basin at SRS. This assessment was found to be in error with details presented in this paper. A biofilm was found on aluminum coupons, but resulted in no corrosion. Cracks seen on the surface were not caused by corrosion, but by stresses from the volume expansion of the oxide formed during pre-conditioning autoclaving. There has been no pitting caused by MIC or any other corrosion mechanism seen in the RBOF basin since initiation of the SRS Corrosion Surveillance Program in 1993.

  11. Cosmic ray muon computed tomography of spent nuclear fuel in dry storage casks

    DOE PAGES

    Poulson, Daniel Cris; Durham, J. Matthew; Guardincerri, Elena; ...

    2017-10-22

    Radiography with cosmic ray muon scattering has proven to be a successful method of imaging nuclear material through heavy shielding. Of particular interest is monitoring dry storage casks for diversion of plutonium contained in spent reactor fuel. Using muon tracking detectors that surround a cylindrical cask, cosmic ray muon scattering can be simultaneously measured from all azimuthal angles, giving complete tomographic coverage of the cask interior. This article describes the first application of filtered back projection algorithms, typically used in medical imaging, to cosmic ray muon scattering imaging. The specific application to monitoring spent nuclear fuel in dry storage casksmore » is investigated via GEANT4 simulations. With a cylindrical muon tracking detector surrounding a typical spent fuel cask, simulations indicate that missing fuel bundles can be detected with a statistical significance of ~18σ in less than two days exposure and a sensitivity at 1σ to a 5% missing portion of a fuel bundle. Finally, we discuss potential detector technologies and geometries.« less

  12. Issues relating to spent nuclear fuel storage on the Oak Ridge Reservation

    SciTech Connect

    Klein, J.A.; Turner, D.W.

    1994-12-31

    Currently, about 2,800 metric tons of spent nuclear fuel (SNF) is stored in the US, 1,000 kg of SNF (or about 0.03% of the nation`s total) are stored at the US Department of Energy (DOE) complex in Oak Ridge, Tennessee. However small the total quantity of material stored at Oak Ridge, some of the material is quite singular in character and, thus, poses unique management concerns. The various types of SNF stored at Oak Ridge will be discussed including: (1) High-Flux Isotope Reactor (HFIR) and future Advanced Neutron Source (ANS) fuels; (2) Material Testing Reactor (MTR) fuels, including Bulk Shielding Reactor (BSR) and Oak Ridge Research Reactor (ORR) fuels; (3) Molten Salt Reactor Experiment (MSRE) fuel; (4) Homogeneous Reactor Experiment (HRE) fuel; (5) Miscellaneous SNF stored in Oak Ridge National Laboratory`s (ORNL`s) Solid Waste Storage Areas (SWSAs); (6) SNF stored in the Y-12 Plant 9720-5 Warehouse including Health. Physics Reactor (HPRR), Space Nuclear Auxiliary Power (SNAP-) 10A, and DOE Demonstration Reactor fuels.

  13. A fuel cell energy storage system concept for the Space Station Freedom Extravehicular Mobility Unit

    NASA Astrophysics Data System (ADS)

    Adlhart, Otto J.; Rosso, Matthew J., Jr.; Marmolejo, Jose

    1989-03-01

    An update is given on work to design and build a Fuel Cell Energy Storage System (FCESS) bench-tested unit for the Space Station Freedom Extravehicular Mobility Unit (EMU). Fueled by oxygen and hydride-stored hydrogen, the FCESS is being considered as an alternative to the EMU zinc-silver oxide battery. Superior cycle life and quick recharge are the main attributes of FCESS. The design and performance of a nonventing, 28 V, 34 Ahr system with 7 amp rating are discussed.

  14. Alkaline water electrolysis technology for Space Station regenerative fuel cell energy storage

    NASA Technical Reports Server (NTRS)

    Schubert, F. H.; Hoberecht, M. A.; Le, M.

    1986-01-01

    The regenerative fuel cell system (RFCS), designed for application to the Space Station energy storage system, is based on state-of-the-art alkaline electrolyte technology and incorporates a dedicated fuel cell system (FCS) and water electrolysis subsystem (WES). In the present study, emphasis is placed on the WES portion of the RFCS. To ensure RFCS availability for the Space Station, the RFCS Space Station Prototype design was undertaken which included a 46-cell 0.93 cu m static feed water electrolysis module and three integrated mechanical components.

  15. A fuel cell energy storage system concept for the Space Station Freedom Extravehicular Mobility Unit

    NASA Technical Reports Server (NTRS)

    Adlhart, Otto J.; Rosso, Matthew J., Jr.; Marmolejo, Jose

    1989-01-01

    An update is given on work to design and build a Fuel Cell Energy Storage System (FCESS) bench-tested unit for the Space Station Freedom Extravehicular Mobility Unit (EMU). Fueled by oxygen and hydride-stored hydrogen, the FCESS is being considered as an alternative to the EMU zinc-silver oxide battery. Superior cycle life and quick recharge are the main attributes of FCESS. The design and performance of a nonventing, 28 V, 34 Ahr system with 7 amp rating are discussed.

  16. Container for reprocessing and permanent storage of spent nuclear fuel assemblies

    DOEpatents

    Forsberg, Charles W.

    1992-01-01

    A single canister process container for reprocessing and permanent storage of spent nuclear fuel assemblies comprising zirconium-based cladding and fuel, which process container comprises a collapsible container, having side walls that are made of a high temperature alloy and an array of collapsible support means wherein the container is capable of withstanding temperature necessary to oxidize the zirconium-based cladding and having sufficient ductility to maintain integrity when collapsed under pressure. The support means is also capable of maintaining their integrity at temperature necessary to oxide the zirconium-based cladding. The process container also has means to introduce and remove fluids to and from the container.

  17. Determination of Uranium Metal Concentration in Irradiated Fuel Storage Basin Sludge Using Selective Dissolution

    SciTech Connect

    Delegard, Calvin H.; Sinkov, Sergey I.; Chenault, Jeffrey W.; Schmidt, Andrew J.; Welsh, Terri L.; Pool, Karl N.

    2014-03-01

    Uranium metal corroding in water-saturated sludges now held in the US Department of Energy Hanford Site K West irradiated fuel storage basin can create hazardous hydrogen atmospheres during handling, immobilization, or subsequent transport and storage. Knowledge of uranium metal concentration in sludge thus is essential to safe sludge management and process design, requiring an expeditious routine analytical method to detect uranium metal concentrations as low as 0.03 wt% in sludge even in the presence of 30 wt% or higher total uranium concentrations.

  18. Vision and framework for technical and management support to facilitate foreign spent fuel storage and geologic disposal in Russia

    SciTech Connect

    Halsey, W G; Jardine, L J; Smith, C F

    1999-07-01

    This ''Technical and Management Support'' program would facilitate the transfer of spent fuel from commercial power plants in Taiwan to a storage and geologic repository site near Krasnoyarsk, Russia. This program resolves issues of disposition of Taiwan spent fuel (including US origin fuel) and provides revenue for Russia to develop an integrated spent fuel storage and radioactive waste management system including a geologic repository. LLNL has ongoing contracts and collaborations with all the principal parties and is uniquely positioned to facilitate the development of such a program. A three-phase approach over 20 years is proposed: namely, an initial feasibility investigation followed by an engineering development phase, and then implementation.

  19. Hazard analysis for 300 Area N Reactor Fuel Fabrication and Storage Facilty

    SciTech Connect

    Johnson, D.J.; Brehm, J.R.

    1994-01-25

    This hazard analysis (HA) has been prepared for the 300 Area N Reactor Fuel Fabrication and Storage Facility (Facility), in compliance with the requirements of Westinghouse Hanford Company (Westinghouse Hanford) controlled manual WHC-CM-4-46, Nonreactor Facility Safety Analysis Manual, and to the direction of WHC-IP-0690, Safety Analysis and Regulation Desk Instructions, (WHC 1992). An HA identifies potentially hazardous conditions in a facility and the associated potential accident scenarios. Unlike the Facility hazard classification documented in WHC-SD-NR-HC-004, Hazard Classification for 300 Area N Reactor Fuel Fabrication and Storage Facility, (Huang 1993), which is based on unmitigated consequences, credit is taken in an HA for administrative controls or engineered safety features planned or in place. The HA is the foundation for the accident analysis. The significant event scenarios identified by this HA will be further evaluated in a subsequent accident analysis.

  20. Application of regenerative fuel cells for space energy storage - A comparison to battery systems

    NASA Astrophysics Data System (ADS)

    Bolwin, K.

    1992-12-01

    A major advantage of regenerative fuel cells compared with battery systems arises from the decoupling of their rated power and their capacity, which determines the storage system. The mass of battery systems is related to the energy stored, whereas the masses of regenerative fuel cells systems are mainly determined by their rated power. On the other hand, average power and total energy are not independent variables, since they are correlated by the period of discharge of the electrochemical cells. Thus a comparison of the different approaches to storage can be given, by evaluating system masses as a function of power requirement and period of discharge. Since space power applications are considered, the charging and discharging periods can be expressed in terms of orbit altitudes.

  1. Analysis of H2 storage needs for early market non-motive fuel cell applications.

    SciTech Connect

    Johnson, Terry Alan; Moreno, Marcina; Arienti, Marco; Pratt, Joseph William; Shaw, Leo; Klebanoff, Leonard E.

    2012-03-01

    Hydrogen fuel cells can potentially reduce greenhouse gas emissions and the United States dependence on foreign oil, but issues with hydrogen storage are impeding their widespread use. To help overcome these challenges, this study analyzes opportunities for their near-term deployment in five categories of non-motive equipment: portable power, construction equipment, airport ground support equipment, telecom backup power, and man-portable power and personal electronics. To this end, researchers engaged end users, equipment manufacturers, and technical experts via workshops, interviews, and electronic means, and then compiled these data into meaningful and realistic requirements for hydrogen storage in specific target applications. In addition to developing these requirements, end-user benefits (e.g., low noise and emissions, high efficiency, potentially lower maintenance costs) and concerns (e.g., capital cost, hydrogen availability) of hydrogen fuel cells in these applications were identified. Market data show potential deployments vary with application from hundreds to hundreds of thousands of units.

  2. Design Verification Report Spent Nuclear Fuel (SNF) Project Canister Storage Building (CSB)

    SciTech Connect

    PICKETT, W.W.

    2000-09-22

    The Sub-project W379, ''Spent Nuclear Fuel Canister Storage Building (CSB),'' was established as part of the Spent Nuclear Fuel (SNF) Project. The primary mission of the CSB is to safely store spent nuclear fuel removed from the K Basins in dry storage until such time that it can be transferred to the national geological repository at Yucca Mountain Nevada. This sub-project was initiated in late 1994 by a series of studies and conceptual designs. These studies determined that the partially constructed storage building, originally built as part of the Hanford Waste Vitrification Plant (HWVP) Project, could be redesigned to safely store the spent nuclear fuel. The scope of the CSB facility initially included a receiving station, a hot conditioning system, a storage vault, and a Multi-Canister Overpack (MCO) Handling Machine (MHM). Because of evolution of the project technical strategy, the hot conditioning system was deleted from the scope and MCO welding and sampling stations were added in its place. This report outlines the methods, procedures, and outputs developed by Project W379 to verify that the provided Structures, Systems, and Components (SSCs): satisfy the design requirements and acceptance criteria; perform their intended function; ensure that failure modes and hazards have been addressed in the design; and ensure that the SSCs as installed will not adversely impact other SSCs. Because this sub-project is still in the construction/start-up phase, all verification activities have not yet been performed (e.g., canister cover cap and welding fixture system verification, MCO Internal Gas Sampling equipment verification, and As-built verification.). The verification activities identified in this report that still are to be performed will be added to the start-up punchlist and tracked to closure.

  3. Hydrolytic Stability of Polyurethane-Coated Fabrics Used for Collapsible Fuel Storage Containers

    DTIC Science & Technology

    2014-06-01

    reaction with water that chemically and structurally breaks down the urethane coating, resulting in cracking or extreme softening of the urethane...coated fabrics used in collapsible fuel storage containers is investigated. We immerse these fabrics in water held at an elevated temperature of 180 °F...fell apart after only 42 days of water immersion, while the two Cooley fabrics fell apart after 70 days. The three materials available from Seaman

  4. A&M. TAN607. Detail of fuel storage pool under construction. Camera ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    A&M. TAN-607. Detail of fuel storage pool under construction. Camera is on berm and facing northwest. Note depth of excavation. Formwork underway for floor and concrete walls of pool; wall between pool and vestibule. At center left of view, foundation for liquid waste treatment plant is poured. Date: August 25, 1953. INEEL negative no. 8541 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  5. Hydrogen Storage in Diamond Powder Utilizing Plasma NaF Surface Treatment for Fuel Cell Applications

    SciTech Connect

    Leal, David A.; Leal-Quiros, E.; Velez, Angel; Prelas, Mark A.; Gosh, Tushar

    2006-12-04

    Hydrogen Fuel Cells offer the vital solution to the world's socio-political dependence on oil. Due to existing difficulty in safe and efficient hydrogen storage for fuel cells, storing the hydrogen in hydrocarbon compounds such as artificial diamond is a realistic solution. By treating the surface of the diamond powder with a Sodium Fluoride plasma exposure, the surface of the diamond is cleaned of unwanted molecules. Due to fluorine's electro negativity, the diamond powder is activated and ready for hydrogen absorption. These diamond powder pellets are then placed on a graphite platform that is heated by conduction in a high voltage circuit made of tungsten wire. Then, the injection of hydrogen gas into chamber allows the storage of the Hydrogen on the surface of the diamond powder. By neutron bombardment in the nuclear reactor, or Prompt Gamma Neutron Activation Analysis, the samples are examined for parts per million amounts of hydrogen in the sample. Sodium Fluoride surface treatment allows for higher mass percentage of stored hydrogen in a reliable, resistant structure, such as diamond for fuel cells and permanently alters the diamonds terminal bonds for re-use in the effective storage of hydrogen. The highest stored amount utilizing the NaF plasma surface treatment was 22229 parts per million of hydrogen in the diamond powder which amounts to 2.2229% mass increase.

  6. The used nuclear fuel problem - can reprocessing and consolidated storage be complementary?

    SciTech Connect

    Phillips, C.; Thomas, I.

    2013-07-01

    This paper describes our CISF (Consolidated Interim Storage Facilities) and Reprocessing Facility concepts and show how they can be combined with a geologic repository to provide a comprehensive system for dealing with spent fuels in the USA. The performance of the CISF was logistically analyzed under six operational scenarios. A 3-stage plan has been developed to establish the CISF. Stage 1: the construction at the CISF site of only a rail receipt interface and storage pad large enough for the number of casks that will be received. The construction of the CISF Canister Handling Facility, the Storage Cask Fabrication Facility, the Cask Maintenance Facility and supporting infrastructure are performed during stage 2. The construction and placement into operation of a water-filled pool repackaging facility is completed for Stage 3. By using this staged approach, the capital cost of the CISF is spread over a number of years. It also allows more time for a final decision on the geologic repository to be made. A recycling facility will be built, this facility will used the NUEX recycling process that is based on the aqueous-based PUREX solvent extraction process, using a solvent of tri-N-butyl phosphate in a kerosene diluent. It is capable of processing spent fuels at a rate of 5 MT per day, at burn-ups up to 50 GWD per ton of spent fuels and a minimum of 5 years out-of-reactor cooling.

  7. Analysis of dose consequences arising from the release of spent nuclear fuel from dry storage casks.

    SciTech Connect

    Durbin, Samuel G.; Morrow, Charles.

    2013-01-01

    The resulting dose consequences from releases of spent nuclear fuel (SNF) residing in a dry storage casks are examined parametrically. The dose consequences are characterized by developing dose versus distance curves using simplified bounding assumptions. The dispersion calculations are performed using the MELCOR Accident Consequence Code System (MACCS2) code. Constant weather and generic system parameters were chosen to ensure that the results in this report are comparable with each other and to determine the relative impact on dose of each variable. Actual analyses of site releases would need to accommodate local weather and geographic data. These calculations assume a range of fuel burnups, release fractions (RFs), three exposure scenarios (2 hrs and evacuate, 2 hrs and shelter, and 24 hrs exposure), two meteorological conditions (D-4 and F-2), and three release heights (ground level 1 meter (m), 10 m, and 100 m). This information was developed to support a policy paper being developed by U.S. Nuclear Regulatory Commission (NRC) staff on an independent spent fuel storage installation (ISFSI) and monitored retrievable storage installation (MRS) security rulemaking.

  8. Progress on Fuel Receiving and Storage Decontamination Work at the West Valley Demonstration Project

    SciTech Connect

    Jablonski, J. F.; Al-Daouk, A. M.; Moore, H. R.

    2003-02-25

    The West Valley Demonstration Project (WVDP) removed the last of its spent nuclear fuel assemblies from an on-site storage pool last year and is now decontaminating its Fuel Receiving and Storage (FRS) Facility. The decontamination project will reduce the long-lived curie inventory, associated radiological hazards, and the operational costs associated with the maintenance of this facility. Workers at the WVDP conducted the first phase of the FRS decontamination project in late 2001 by removing 149 canisters that previously contained spent fuel assemblies from the pool. Removal of the canisters from the pool paved the way for nuclear divers to begin removing canister storage racks and other miscellaneous material from the FRS pool in February 2002. This was only the third time in the history of the WVDP that nuclear divers were used to perform underwater work. After decontaminating the pool, it will be drained slowly until all of the water is removed. The water will be processed through an ion exchanger to remove radioactive contaminants as it is being drained, and a fixative will be applied to the walls above the water surface to secure residual contamination.

  9. Thermal performance sensitivity studies in support of material modeling for extended storage of used nuclear fuel

    SciTech Connect

    Cuta, Judith M.; Suffield, Sarah R.; Fort, James A.; Adkins, Harold E.

    2013-08-15

    The work reported here is an investigation of the sensitivity of component temperatures of a storage system, including fuel cladding temperatures, in response to age-related changes that could degrade the design-basis thermal behavior of the system. Three specific areas of interest were identified for this study. • degradation of the canister backfill gas from pure helium to a mixture of air and helium, resulting from postulated leakage due to stress corrosion cracking (SCC) of canister welds • changes in surface emissivity of system components, resulting from corrosion or other aging mechanisms, which could cause potentially significant changes in temperatures and temperature distributions, due to the effect on thermal radiation exchange between components • changes in fuel and basket temperatures due to changes in fuel assembly position within the basket cells in the canister The purpose of these sensitivity studies is to provide a realistic example of how changes in the physical properties or configuration of the storage system components can affect temperatures and temperature distributions. The magnitudes of these sensitivities can provide guidance for identifying appropriate modeling assumptions for thermal evaluations extending long term storage out beyond 50, 100, 200, and 300 years.

  10. Mass minimization of a discrete regenerative fuel cell (RFC) system for on-board energy storage

    NASA Astrophysics Data System (ADS)

    Li, Xiaojin; Xiao, Yu; Shao, Zhigang; Yi, Baolian

    RFC combined with solar photovoltaic (PV) array is the advanced technologic solution for on-board energy storage, e.g. land, sky, stratosphere and aerospace applications, due to its potential of achieving high specific energy. This paper focuses on mass modeling and calculation for a RFC system consisting of discrete electrochemical cell stacks (fuel cell and electrolyzer), together with fuel storage, a PV array, and a radiator. A nonlinear constrained optimization procedure is used to minimize the entire system mass, as well as to study the effect of operating conditions (e.g. current densities of fuel cell and electrolyzer) on the system mass. According to the state-of-the-art specific power of both electrochemical stacks, an energy storage system has been designed for the conditions of stratosphere applications and a rated power output of 12 kW. The calculation results show that the optimization of the current density of both stacks is of importance in designing the light weight on-board energy system.

  11. Storage of LWR (light-water-reactor) spent fuel in air

    SciTech Connect

    Thomas, L.E.; Charlot, L.A.; Coleman, J.E. ); Knoll, R.W. )

    1989-12-01

    An experimental program is being conducted at Pacific Northwest Laboratory (PNL) to determine the oxidation response of light-water-reactor (LWR) spent fuels under conditions appropriate to fuel storage in air. The program is designed to investigate several independent variables that might affect the oxidation behavior of spent fuel. Included are temperature (135 to 230{degree}C), fuel burnup (to about 34 MWd/kgM), reactor type (pressurized and boiling water reactors), moisture level in the air, and the presence of a high gamma field. In continuing tests with declad spent fuel and nonirradiated UO{sub 2} specimens, oxidation rates were monitored by weight-gain measurements and the microstructures of subsamples taken during the weighing intervals were characterized by several analytical methods. The oxidation behavior indicated by weight gain and time to form powder will be reported in Volume III of this series. The characterization results obtained from x-ray diffractometry, transmission electron microscopy, scanning electron microscopy, and Auger electron spectrometry of oxidized fuel samples are presented in this report. 28 refs., 21 figs., 3 tabs.

  12. 78 FR 78285 - List of Approved Spent Fuel Storage Casks: HI-STORM 100 Cask System; Amendment No. 9

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-26

    ...; ] NUCLEAR REGULATORY COMMISSION 10 CFR Part 72 RIN 3150-AJ12 List of Approved Spent Fuel Storage Casks: HI... revising the Holtec International HI-STORM 100 Cask System listing within the ``List of Approved Spent...

  13. Apparatus for reducing flor and seismic loadings in underwater storage areas used in the storing of spent nuclear fuel rods

    SciTech Connect

    Wachter, W.J.; Fuierer, A.A.

    1989-12-26

    This patent describes a storage system for the storage of nuclear waste material. It comprises: a plurality of storage canisters having a longitudinal length great enough to hold spent nuclear fuel rods, with the storage canisters being stacked upon one another and side-by-side thereby creating a horizontal and a vertical array of the storage canisters; a rack structure for maintaining the storage canisters in the horizontal and vertical arrays the rack structure including; a horizontal base of lengthwise dimensions greater than the lengthwise dimensions of the storage canisters for positioning beneath the plurality of storage canisters; and a series of vertically extending the rails attached around the periphery of the horizontal base for engaging the ends of the storage canisters.

  14. Detection of diesel fuel leakage from underground storage tank using time domain reflectometry

    NASA Astrophysics Data System (ADS)

    Barnett, Daniel A.

    The Environmental Protection Agency (EPA) has established regulations concerning the construction and maintenance of an underground storage tank (UST) system. These regulations also define the means and methods required to detect potential leaks. Leak detection methods defined as "other methods" can be used if specific requirements are achieved. We find in our study time domain reflectometry (TDR) can be used to detect leaks from an UST. The magnitudes of reflections measured by the TDR technique are used to calculate electrical properties of the soil. We find the introduction of diesel fuel, a light non-aqueous phase liquid (LNAPL), into the soil alters the physical and chemical properties of the soil and subsequently the electrical properties. We demonstrate the measured variance of electrical properties can be correlated to the changes of diesel fuel concentration. We find diesel fuel can be detected and changes of concentration can be measured using TDR.

  15. Design and Operation of Equipment to Detect and Remove Water within Used Nuclear Fuel Storage Bottles

    SciTech Connect

    C.C. Baker; T.M. Pfeiffer; J.C. Price

    2013-09-01

    Inspection and drying equipment has been implemented in a hot cell to address the inadvertent ingress of water into used nuclear fuel storage bottles. Operated with telemanipulators, the system holds up to two fuel bottles and allows their threaded openings to be connected to pressure transducers and a vacuum pump. A prescribed pressure rebound test is used to diagnose the presence of moisture. Bottles found to contain moisture are dried by vaporization. The drying process is accelerated by the application of heat and vacuum. These techniques detect and remove virtually all free water (even water contained in a debris bed) while leaving behind most, if not all, particulates. The extracted water vapour passes through a thermoelectric cooler where it is condensed back to the liquid phase for collection. Fuel bottles are verified to be dry by passing the pressure rebound test.

  16. Accident safety analysis for 300 Area N Reactor Fuel Fabrication and Storage Facility

    SciTech Connect

    Johnson, D.J.; Brehm, J.R.

    1994-01-01

    The purpose of the accident safety analysis is to identify and analyze a range of credible events, their cause and consequences, and to provide technical justification for the conclusion that uranium billets, fuel assemblies, uranium scrap, and chips and fines drums can be safely stored in the 300 Area N Reactor Fuel Fabrication and Storage Facility, the contaminated equipment, High-Efficiency Air Particulate filters, ductwork, stacks, sewers and sumps can be cleaned (decontaminated) and/or removed, the new concretion process in the 304 Building will be able to operate, without undue risk to the public, employees, or the environment, and limited fuel handling and packaging associated with removal of stored uranium is acceptable.

  17. Effect of biodiesel addition on microbial community structure in a simulated fuel storage system.

    PubMed

    Restrepo-Flórez, Juan-Manuel; Bassi, Amarjeet; Rehmann, Lars; Thompson, Michael R

    2013-11-01

    Understanding changes in microbial structure due to biodiesel storage is important both for protecting integrity of storage systems and fuel quality management. In this work a simulated storage system was used to study the effect of biodiesel (0%, 25%, 50%, 75% and 100%) on a microbial population, which was followed by community level physiological profiling (CLPP), 16s rDNA analysis and plating in selective media. Results proved that structure and functionality were affected by biodiesel. CLPP showed at least three populations: one corresponding to diesel, one to biodiesel and one to blends of diesel and biodiesel. Analysis of 16s rDNA revealed that microbial composition was different for populations growing in diesel and biodiesel. Genera identified are known for degradation of hydrocarbons and emulsifier production. Maximum growth was obtained in biodiesel; however, microbial counts in standard media were lower for this samples. Acidification of culture media was observed at high biodiesel concentration.

  18. Partial Defect Verification of Spent Fuel Assemblies by PDET: Principle and Field Testing in Interim Spent Fuel Storage Facility (CLAB) in Sweden

    SciTech Connect

    Ham, Y.S.; Kerr, P.; Sitaraman, S.; Swan, R.; Rossa, R.; Liljenfeldt, H.

    2015-07-01

    The need for the development of a credible method and instrument for partial defect verification of spent fuel has been emphasized over a few decades in the safeguards communities as the diverted spent fuel pins can be the source of nuclear terrorism or devices. The need is increasingly more important and even urgent as many countries have started to transfer spent fuel to so called 'difficult-to-access' areas such as dry storage casks, reprocessing or geological repositories. Partial defect verification is required by IAEA before spent fuel is placed into 'difficult-to-access' areas. Earlier, Lawrence Livermore National Laboratory (LLNL) has reported the successful development of a new, credible partial defect verification method for pressurized water reactor (PWR) spent fuel assemblies without use of operator data, and further reported the validation experiments using commercial spent fuel assemblies with some missing fuel pins. The method was found to be robust as the method is relatively invariant to the characteristic variations of spent fuel assemblies such as initial fuel enrichment, cooling time, and burn-up. Since then, the PDET system has been designed and prototyped for 17x17 PWR spent fuel assemblies, complete with data acquisition software and acquisition electronics. In this paper, a summary description of the PDET development followed by results of the first successful field testing using the integrated PDET system and actual spent fuel assemblies performed in a commercial spent fuel storage site, known as Central Interim Spent fuel Storage Facility (CLAB) in Sweden will be presented. In addition to partial defect detection initial studies have determined that the tool can be used to verify the operator declared average burnup of the assembly as well as intra-assembly burnup levels. (authors)

  19. Cleanup Verification Package for the 118-F-8:4 Fuel Storage Basin West Side Adjacent and Side Slope Soils

    SciTech Connect

    L. D. Habel

    2008-03-18

    This cleanup verification package documents completion of remedial action, sampling activities, and compliance with cleanup criteria for the 118-F-8:4 Fuel Storage Basin West Side Adjacent and Side Slope Soils. The rectangular-shaped concrete basin on the south side of the 105-F Reactor building served as an underwater collection, storage, and transfer facility for irradiated fuel elements discharged from the reactor.

  20. Permeation of Military Fuels Through Nitrile-Coated Fabrics Used for Collapsible Fuel Storage Containers

    DTIC Science & Technology

    2014-03-01

    five of the candidate fabrics: the Bell Avon, Dunlop, Eng Fabrics, AmFuel, and Reeves fabrics. However, the Zodiac and Pronal nitrile-coated fabrics...Fife, U.K.), Engineering Fabrics (Rockmart, GA), Zodiac Fabrics Co. (London, Canada), Pronal Elastomer Engineering (Leers, France), Reeves Brothers...permeation rates measured. The three remaining coated fabric materials—BLSS, Zodiac , and Pronal—exhibited significantly lower permeation rates ranging from

  1. Compact fuel cell system utilizing a combination of hydrogen storage materials for optimized performance.

    SciTech Connect

    Chan, Jennifer P.; Dedrick, Daniel E.; Gross, Karl J.; Ng, Greg L.

    2004-12-01

    An entirely new class of light-weight reversible hydrides was recently discovered (the Ti-doped alanates)[1]. These NaAIH{sub 4}-based materials have demonstrated reversible hydrogen storage capacities of up to 5 wt%, nearly 4 times the gravimetrically density of commercial metal hydrides. For this reason, they have been considered a breakthrough for hydrogen storage in fuel cell vehicles. This project is the first to publish the use of alanates for the generation of electrical power and the first demonstration of a hydride-fueled elevated-temperature PEM Fuel Cell. Because the kinetics of hydrogen uptake and release by the alanate improves with elevated temperatures, novel concepts were tested for the purpose of developing a highly efficient stand-alone power system. A major focus of this work was on the modeling, design, construction and testing of an integrated fuel cell stack and hydrogen storage system that eliminates the need of complicated heat transfer systems and media. After extensive modeling efforts, a proof-of-concept system was built that employs an integrated fuel cell stack and hydride beds that balancing the generation of fuel cell waste heat with the endothermic release of hydrogen from the alanates. Our demonstration unit was capable of greater than one hour of operation on a single charge of hydrogen from the integrated 173 gram alanate bed. In addition, composite hydride materials with synergistic reaction heats were evaluated and tested to enhance the operational performance of the alanates. The composites provide a unique opportunity to utilize the heat produced from hydriding classic metal hydrides to improve both absorption and desorption rates of the alanates. A particular focus of the mixed storage materials work was to balance the thermodynamics and kinetics of the hydrides for start-up conditions. Modeling of the sorption properties proved invaluable in evaluating the optimum composition of hydrides. The modeling efforts were followed

  2. Thermal analysis for a spent reactor fuel storage test in granite

    SciTech Connect

    Montan, D.N.

    1980-09-01

    A test is conducted in which spent fuel assemblies from an operating commercial nuclear power reactor are emplaced in the Climax granite at the US Department of Energy`s Nevada Test Site. In this generic test, 11 canisters of spent PWR fuel are emplaced vertically along with 6 electrical simulator canisters on 3 m centers, 4 m below the floor of a storage drift which is 420 m below the surface. Two adjacent parallel drifts contain electrical heaters, operated to simulate (in the vicinity of the storage drift) the temperature fields of a large repository. This test, planned for up to five years duration, uses fairly young fuel (2.5 years out of core) so that the thermal peak will occur during the time frame of the test and will not exceed the peak that would not occur until about 40 years of storage had older fuel (5 to 15 years out of core) been used. This paper describes the calculational techniques and summarizes the results of a large number of thermal calculations used in the concept, basic design and final design of the spent fuel test. The results of the preliminary calculations show the effects of spacing and spent fuel age. Either radiation or convection is sufficient to make the drifts much better thermal conductors than the rock that was removed to create them. The combination of radiation and convection causes the drift surfaces to be nearly isothermal even though the heat source is below the floor. With a nominal ventilation rate of 2 m{sup 3}/s and an ambient rock temperature of 23{sup 0}C, the maximum calculated rock temperature (near the center of the heat source) is about 100{sup 0}C while the maximum air temperature in the drift is around 40{sup 0}C. This ventilation (1 m{sup 3}/s through the main drift and 1/2 m{sup 3}/s through each of the side drifts) will remove about 1/3 of the heat generated during the first five years of storage.

  3. Hazard Evaluation for Storage of Spent Nuclear Fuel (SNF) Sludge at the Solid Waste Treatment Facility

    SciTech Connect

    SCHULTZ, M.V.

    2000-08-22

    As part of the Spent Nuclear Fuel (SNF) storage basin clean-up project, sludge that has accumulated in the K Basins due to corrosion of damaged irradiated N Reactor will be loaded into containers and placed in interim storage. The Hanford Site Treatment Complex (T Plant) has been identified as the location where the sludge will be stored until final disposition of the material occurs. Long term storage of sludge from the K Basin fuel storage facilities requires identification and analysis of potential accidents involving sludge storage in T Plant. This report is prepared as the initial step in the safety assurance process described in DOE Order 5480.23, Nuclear Safety Analysis Reports and HNF-PRO-704, Hazards and Accident Analysis Process. This report documents the evaluation of potential hazards and off-normal events associated with sludge storage activities. This information will be used in subsequent safety analyses, design, and operations procedure development to ensure safe storage. The hazards evaluation for the storage of SNF sludge in T-Plant used the Hazards and Operability Analysis (HazOp) method. The hazard evaluation identified 42 potential hazardous conditions. No hazardous conditions involving hazardous/toxic chemical concerns were identified. Of the 42 items identified in the HazOp study, eight were determined to have potential for onsite worker consequences. No items with potential offsite consequences were identified in the HazOp study. Hazardous conditions with potential onsite worker or offsite consequences are candidates for quantitative consequence analysis. The hazardous conditions with potential onsite worker consequences were grouped into two event categories, Container failure due to overpressure - internal to T Plant, and Spill of multiple containers. The two event categories will be developed into accident scenarios that will be quantitatively analyzed to determine release consequences. A third category, Container failure due to

  4. Evaluation of Effect of Fuel Assembly Loading Patterns on Thermal and Shielding Performance of a Spent Fuel Storage/Transportation Cask

    SciTech Connect

    Cuta, Judith M.; Jenquin, Urban P.; McKinnon, Mikal A.

    2001-11-20

    The licensing of spent fuel storage casks is generally based on conservative analyses that assume a storage system being uniformly loaded with design basis fuel. The design basis fuel typically assumes a maximum assembly enrichment, maximum burn up, and minimum cooling time. These conditions set the maximum decay heat loads and radioactive source terms for the design. Recognizing that reactor spent fuel pools hold spent fuel with an array of initial enrichments, burners, and cooling times, this study was performed to evaluate the effect of load pattern on peak cladding temperature and cask surface dose rate. Based on the analysis, the authors concluded that load patterns could be used to reduce peak cladding temperatures in a cask without adversely impacting the surface dose rates.

  5. Reversible transient hydrogen storage in a fuel cell-supercapacitor hybrid device.

    PubMed

    Unda, Jesus E Zerpa; Roduner, Emil

    2012-03-21

    A new concept is investigated for hydrogen storage in a supercapacitor based on large-surface-area carbon material (Black Pearls 2000). Protons and electrons of hydrogen are separated on a fuel cell-type electrode and then stored separately in the electrical double layer, the electrons on the carbon and the protons in the aqueous electrolyte of the supercapacitor electrode. The merit of this concept is that it works spontaneously and reversibly near ambient pressure and temperature. This is in pronounced contrast to what has been known as electrochemical hydrogen storage, which does not involve hydrogen gas and where electrical work has to be spent in the loading process. With the present hybrid device, a H(2) storage capacity of 0.13 wt% was obtained, one order of magnitude more than what can be stored by conventional physisorption on large-surface-area carbons at the same pressure and temperature. Raising the pressure from 1.5 to 3.5 bar increased the capacity by less than 20%, indicating saturation. A capacitance of 11 μF cm(-2), comparable with that of a commercial double layer supercapacitor, was found using H(2)SO(4) as electrolyte. The chemical energy of the stored H(2) is almost a factor of 3 larger than the electrical energy stored in the supercapacitor. Further developments of this concept relate to a hydrogen buffer integrated inside a proton exchange membrane fuel cell to be used in case of peak power demand. This serial setup takes advantage of the suggested novel concept of hydrogen storage. It is fundamentally different from previous ways of operating a conventional supercapacitor hooked up in parallel to a fuel cell.

  6. Some alternatives for DOE acceptance and storage of spent fuel in 1998 and 1999

    SciTech Connect

    Wood, T.W.; Smith, R.I. ); Johnson, E.R.; McLeod, N.B. Associates, Inc., Oakton, VA )

    1990-05-01

    Under the Standard Contract for Disposal of Spent Fuel and High-Level Waste (10 CFR 961), the Department of Energy (DOE) will accept spent fuel for disposal from current owners. Current projections (DOE 1989a) suggest 2010 as the earliest date for the availability of a geologic repository for the disposal of spent fuel. In addition, DOE (1989a) suggests that a monitored retrievable storage (MRS) facility with full hot cell capabilities could not be in full service until 2000. As a result, there is a period of about two years wherein DOE is expected to receive and store spent fuel, but during which none of the proposed Federal Waste Management System (FWMS) facilities would be fully functional. During early 1990, a study was initiated to identify, describe, and provide a preliminary evaluation of some short-term alternatives that would permit DOE to accept and store spent fuel during this period. This paper summarizes some key results of this study. 4 refs., 1 fig., 4 tabs.

  7. Development and Validation of a Slurry Model for Chemical Hydrogen Storage in Fuel Cell Applications

    SciTech Connect

    Brooks, Kriston P.; Pires, Richard P.; Simmons, Kevin L.

    2014-07-25

    The US Department of Energy's (DOE) Hydrogen Storage Engineering Center of Excellence (HSECoE) is developing models for hydrogen storage systems for fuel cell-based light duty vehicle applications for a variety of promising materials. These transient models simulate the performance of the storage system for comparison to the DOE’s Technical Targets and a set of four drive cycles. The purpose of this research is to describe the models developed for slurry-based chemical hydrogen storage materials. The storage systems of both a representative exothermic system based on ammonia borane and endothermic system based on alane were developed and modeled in Simulink®. Once complete the reactor and radiator components of the model were validated with experimental data. The model was then run using a highway cycle, an aggressive cycle, cold-start cycle and hot drive cycle. The system design was adjusted to meet these drive cycles. A sensitivity analysis was then performed to identify the range of material properties where these DOE targets and drive cycles could be met. Materials with a heat of reaction greater than 11 kJ/mol H2 generated and a slurry hydrogen capacity of greater than 11.4% will meet the on-board efficiency and gravimetric capacity targets, respectively.

  8. Sorbent Material Property Requirements for On-Board Hydrogen Storage for Automotive Fuel Cell Systems.

    SciTech Connect

    Ahluwalia, R. K.; Peng, J-K; Hua, T. Q.

    2015-05-25

    Material properties required for on-board hydrogen storage in cryogenic sorbents for use with automotive polymer electrolyte membrane (PEM) fuel cell systems are discussed. Models are formulated for physical, thermodynamic and transport properties, and for the dynamics of H-2 refueling and discharge from a sorbent bed. A conceptual storage configuration with in-bed heat exchanger tubes, a Type-3 containment vessel, vacuum insulation and requisite balance-of-plant components is developed to determine the peak excess sorption capacity and differential enthalpy of adsorption for 5.5 wt% system gravimetric capacity and 55% well-to-tank (WTT) efficiency. The analysis also determines the bulk density to which the material must be compacted for the storage system to reach 40 g.L-1 volumetric capacity. Thermal transport properties and heat transfer enhancement methods are analyzed to estimate the material thermal conductivity needed to achieve 1.5 kg.min(-1) H-2 refueling rate. Operating temperatures and pressures are determined for 55% WTT efficiency and 95% usable H-2. Needs for further improvements in material properties are analyzed that would allow reduction of storage pressure to 50 bar from 100 bar, elevation of storage temperature to 175-200 K from 150 K, and increase of WTT efficiency to 57.5% or higher.

  9. Development and validation of a slurry model for chemical hydrogen storage in fuel cell vehicle applications

    NASA Astrophysics Data System (ADS)

    Brooks, Kriston P.; Pires, Richard P.; Simmons, Kevin L.

    2014-12-01

    The U.S. Department of Energy's (DOE) Hydrogen Storage Engineering Center of Excellence (HSECoE) is developing models for hydrogen storage systems for fuel cell-based light duty vehicle applications for a variety of promising materials. These transient models simulate the performance of the storage system for comparison to the DOE's Technical Targets and a set of four drive cycles. PNNL developed models to simulate the performance and suitability of slurry-based chemical hydrogen storage materials. The storage systems of both a representative exothermic system based on ammonia borane and an endothermic system based on alane were developed and modeled in Simulink®. Once complete, the reactor and radiator components of the model were validated with experimental data. The system design parameters were adjusted to allow the model to successfully meet a highway cycle, an aggressive cycle, a cold-start cycle, and a hot drive cycle. Finally, a sensitivity analysis was performed to identify the range of material properties where these DOE targets and drive cycles could be met. Materials with a heat of reaction >11 kJ mol-1 H2 generated and a slurry hydrogen capacity of >11.4% will meet the on-board efficiency and gravimetric capacity targets, respectively.

  10. Factor of explosiveness of pulverized fuel as a basis for classification of natural solid fuels with respect to their storageability in open coal depots

    SciTech Connect

    E.N. Tolchinskii; A.Yu. Lavrent'ev

    2003-01-15

    Existing methods for estimating the storageability of fuel in open coal depots are analyzed. It is inferred that the capacity of coals for oxidation and spontaneous combustion cannot be unambiguously associated with the name of the coal basin, deposit, or grade. Methods for calculating a generalized parameter reflecting a fuel group are suggested. It is shown that the explosiveness factor Kf of solid fuels calculated from the data on technical and elemental compositions can be used as a generalized characteristic for classifying fuels according to their resistance to oxidation and spontaneous combustion.

  11. COBRA-SFS (Spent Fuel Storage): A thermal-hydraulic analysis computer code: Volume 3, Validation assessments

    SciTech Connect

    Lombardo, N.J.; Cuta, J.M.; Michener, T.E.; Rector, D.R.; Wheeler, C.L.

    1986-12-01

    This report presents the results of the COBRA-SFS (Spent Fuel Storage) computer code validation effort. COBRA-SFS, while refined and specialized for spent fuel storage system analyses, is a lumped-volume thermal-hydraulic analysis computer code that predicts temperature and velocity distributions in a wide variety of systems. Through comparisons of code predictions with spent fuel storage system test data, the code's mathematical, physical, and mechanistic models are assessed, and empirical relations defined. The six test cases used to validate the code and code models include single-assembly and multiassembly storage systems under a variety of fill media and system orientations and include unconsolidated and consolidated spent fuel. In its entirety, the test matrix investigates the contributions of convection, conduction, and radiation heat transfer in spent fuel storage systems. To demonstrate the code's performance for a wide variety of storage systems and conditions, comparisons of code predictions with data are made for 14 runs from the experimental data base. The cases selected exercise the important code models and code logic pathways and are representative of the types of simulations required for spent fuel storage system design and licensing safety analyses. For each test, a test description, a summary of the COBRA-SFS computational model, assumptions, and correlations employed are presented. For the cases selected, axial and radial temperature profile comparisons of code predictions with test data are provided, and conclusions drawn concerning the code models and the ability to predict the data and data trends. Comparisons of code predictions with test data demonstrate the ability of COBRA-SFS to successfully predict temperature distributions in unconsolidated or consolidated single and multiassembly spent fuel storage systems.

  12. Dangerous (toxic) atmospheres in UK wood pellet and wood chip fuel storage.

    PubMed

    Simpson, Andrew T; Hemingway, Michael A; Seymour, Cliff

    2016-09-01

    There is growing use of wood pellet and wood chip boilers in the UK. Elsewhere fatalities have been reported, caused by carbon monoxide poisoning following entry into wood pellet storage areas. The aim of this work was to obtain information on how safely these two fuels are being stored in the UK. Site visits were made to six small-scale boiler systems and one large-scale pellet warehouse, to assess storage practice, risk management systems and controls, user knowledge, and potential for exposure to dangerous atmospheres. Real time measurements were made of gases in the store rooms and during laboratory tests on pellets and chips. Volatile organic compounds (VOCs) emitted and the microbiological content of the fuel was also determined. Knowledge of the hazards associated with these fuels, including confined space entry, was found to be limited at the smaller sites, but greater at the large pellet warehouse. There has been limited risk communication between companies supplying and maintaining boilers, those manufacturing and supplying fuel, and users. Risk is controlled by restricting access to the store rooms with locked entries; some store rooms have warning signs and carbon monoxide alarms. Nevertheless, some store rooms are accessed for inspection and maintenance. Laboratory tests showed that potentially dangerous atmospheres of carbon monoxide and carbon dioxide, with depleted levels of oxygen may be generated by these fuels, but this was not observed at the sites visited. Unplanned ventilation within store rooms was thought to be reducing the build-up of dangerous atmospheres. Microbiological contamination was confined to wood chips.

  13. Dangerous (toxic) atmospheres in UK wood pellet and wood chip fuel storage

    PubMed Central

    Simpson, Andrew T.; Hemingway, Michael A.; Seymour, Cliff

    2016-01-01

    ABSTRACT There is growing use of wood pellet and wood chip boilers in the UK. Elsewhere fatalities have been reported, caused by carbon monoxide poisoning following entry into wood pellet storage areas. The aim of this work was to obtain information on how safely these two fuels are being stored in the UK. Site visits were made to six small-scale boiler systems and one large-scale pellet warehouse, to assess storage practice, risk management systems and controls, user knowledge, and potential for exposure to dangerous atmospheres. Real time measurements were made of gases in the store rooms and during laboratory tests on pellets and chips. Volatile organic compounds (VOCs) emitted and the microbiological content of the fuel was also determined. Knowledge of the hazards associated with these fuels, including confined space entry, was found to be limited at the smaller sites, but greater at the large pellet warehouse. There has been limited risk communication between companies supplying and maintaining boilers, those manufacturing and supplying fuel, and users. Risk is controlled by restricting access to the store rooms with locked entries; some store rooms have warning signs and carbon monoxide alarms. Nevertheless, some store rooms are accessed for inspection and maintenance. Laboratory tests showed that potentially dangerous atmospheres of carbon monoxide and carbon dioxide, with depleted levels of oxygen may be generated by these fuels, but this was not observed at the sites visited. Unplanned ventilation within store rooms was thought to be reducing the build-up of dangerous atmospheres. Microbiological contamination was confined to wood chips. PMID:27030057

  14. Fires at storage sites of organic materials, waste fuels and recyclables.

    PubMed

    Ibrahim, Muhammad Asim; Alriksson, Stina; Kaczala, Fabio; Hogland, William

    2013-09-01

    During the last decade, the European Union has enforced the diversion of organic wastes and recyclables to waste management companies operating incineration plants, composting plants and recycling units instead of landfills. The temporary storage sites have been established as a buffer against fluctuations in energy demand throughout the year. Materials also need to be stored at temporary storage sites before recovery and recycling. However, regulations governing waste fuel storage and handling have not yet been developed, and, as a result, companies have engaged in risky practices that have resulted in a high number of fire incidents. In this study, a questionnaire survey was distributed to 249 of the 400 members of Avfall Sverige (Swedish Waste Management Association), which represents the waste management of 95% of the Swedish population. Information regarding 122 storage facilities owned by 69 companies was obtained; these facilities were responsible for the storage of 47% of the total treated waste (incineration + digestion + composting) in 2010 in Sweden. To identify factors related to fire frequency, the questionnaire covered the amounts of material handled and burnt per year, financial losses due to fires, storage duration, storage method and types of waste. The results show that 217 fire incidents corresponded to 170 kilotonnes of material burnt and cumulative losses of 49 million SEK (€4.3 million). Fire frequency and amount of material burnt per fire was found to be dependent upon type of management group (waste operator). Moreover, a correlation was found between fire frequency and material recycled during past years. Further investigations of financial aspects and externalities of fire incidents are recommended.

  15. DEVELOPMENT OF METHODOLOGY AND FIELD DEPLOYABLE SAMPLING TOOLS FOR SPENT NUCLEAR FUEL INTERROGATION IN LIQUID STORAGE

    SciTech Connect

    Berry, T.; Milliken, C.; Martinez-Rodriguez, M.; Hathcock, D.; Heitkamp, M.

    2012-06-04

    This project developed methodology and field deployable tools (test kits) to analyze the chemical and microbiological condition of the fuel storage medium and determine the oxide thickness on the spent fuel basin materials. The overall objective of this project was to determine the amount of time fuel has spent in a storage basin to determine if the operation of the reactor and storage basin is consistent with safeguard declarations or expectations. This project developed and validated forensic tools that can be used to predict the age and condition of spent nuclear fuels stored in liquid basins based on key physical, chemical and microbiological basin characteristics. Key parameters were identified based on a literature review, the parameters were used to design test cells for corrosion analyses, tools were purchased to analyze the key parameters, and these were used to characterize an active spent fuel basin, the Savannah River Site (SRS) L-Area basin. The key parameters identified in the literature review included chloride concentration, conductivity, and total organic carbon level. Focus was also placed on aluminum based cladding because of their application to weapons production. The literature review was helpful in identifying important parameters, but relationships between these parameters and corrosion rates were not available. Bench scale test systems were designed, operated, harvested, and analyzed to determine corrosion relationships between water parameters and water conditions, chemistry and microbiological conditions. The data from the bench scale system indicated that corrosion rates were dependent on total organic carbon levels and chloride concentrations. The highest corrosion rates were observed in test cells amended with sediment, a large microbial inoculum and an organic carbon source. A complete characterization test kit was field tested to characterize the SRS L-Area spent fuel basin. The sampling kit consisted of a TOC analyzer, a YSI

  16. Container for reprocessing and permanent storage of spent nuclear fuel assemblies

    DOEpatents

    Forsberg, C.W.

    1992-03-24

    A single canister process container is described for reprocessing and permanent storage of spent nuclear fuel assemblies comprising zirconium-based cladding and fuel, which process container comprises a collapsible container, having side walls that are made of a high temperature alloy and an array of collapsible support means wherein the container is capable of withstanding temperature necessary to oxidize the zirconium-based cladding and having sufficient ductility to maintain integrity when collapsed under pressure. The support means is also capable of maintaining its integrity at a temperature necessary to oxidize the zirconium-based cladding. The process container also has means to introduce and remove fluids to and from the container. 10 figs.

  17. Isolation and identification of cobalt- and caesium-resistant bacteria from a nuclear fuel storage pond.

    PubMed

    Dekker, Linda; Osborne, Thomas H; Santini, Joanne M

    2014-10-01

    One of the issues facing the nuclear power industry is how to store spent nuclear fuel which is contaminated with radionuclides produced during nuclear fission, including caesium ((134)Cs(+), (135)Cs(+) and (137)Cs(+)) and cobalt ((60)Co(2+)). In this study, we have isolated Co(2+)- and Cs(+)-resistant bacteria from water collected from a nuclear fuel storage pond. The most resistant Cs(+) and Co(2+) isolates grew in the presence of 500 mM CsCl and 3 mM CoCl2. Strain Cs67-2 is resistant to fourfold more Cs(+) than Cupriavidus metallidurans str. CH34 making it the most Cs(+)-resistant strain identified to date. The Cs(+)-resistant isolates were closely related to bacteria in the Serratia and Yersinia genera, while the Co(2+)-resistant isolates were closely related to the Curvibacter and Tardiphaga genera. These new isolates could be used for bioremediation.

  18. Multi-fuel reformers for fuel cells used in transportation: Assessment of hydrogen storage technologies. Phase 2: Final report

    SciTech Connect

    1995-05-01

    During Phase 1 of this program, the authors evaluated all known hydrogen storage technologies (including those that are now practiced and those that are development) in the context of fuel cell vehicles. They determined that among the development technologies, carbon sorbents could most benefit from closer scrutiny. During Phase 2 of this program, they tested ten different carbon sorbents at various practical temperatures and pressures, and developed the concept of the usable Capacity Ratio, which is the ratio of the mass of hydrogen that can be released from a carbon-filled tank to the mass of hydrogen that can be released from an empty tank. The authors also commissioned the design, fabrication, and NGV2 (Natural Gas Vehicle) testing of an aluminum-lined, carbon-composite, full-wrapped pressure vessel to store hydrogen at 78 K and 3,000 psi. They constructed a facility to pressure cycle the tank at 78 K and to temperature cycle the tank at 3,000 psi, tested one such tank, and submitted it for a burst test. Finally, they devised a means by which cryogenic compressed hydrogen gas tanks can be filled and discharged using standard hardware--that is, without using filters, valves, or pressure regulators that must operate at both low temperature and high pressure. This report describes test methods and test results of carbon sorbents and the design of tanks for cold storage. 7 refs., 91 figs., 10 tabs.

  19. Maintenance and storage of fuel oil for residential heating systems: A guide for residential heating system maintenance personnel

    SciTech Connect

    Litzke, Wai-Lin

    1992-12-01

    The quality of No. 2 fuel affects the performance of the heating system and is an important parameter in the proper and efficient operation of an oil-burning system. The physical and chemical characteristics of the fuel can affect the flow, atomization and combustion processes, all of which help to define and limit the overall performance of the heating system. The use of chemical additives by fuel oil marketershas become more common as a method of improving the quality of the fuel, especially for handling and storage. Numerous types of additives are available, but reliable information on their effectiveness and proper use is limited. This makes selecting an additive difficult in many situations. Common types of problems that contribute to poor fuel quality and how they affect residential heating equipment are identified inof this booklet. It covers the key items that are needed in an effective fuel quality monitoring program, such as what to look for when evaluating the quality of fuel as it is received from a supplier, or how to assess fuel problems associated with poor storage conditions. References to standard procedures and brief descriptions of the procedures also are given. Approaches for correcting a fuel-related problem, including the potential uses of chemical additives are discussed. Different types of additives are described to help users understand the functions and limitations of chemical treatment. Tips on how to select andeffectively use additives also are included. Finally, the importance of preventative maintenance in any fuel monitoring program is emphasized.

  20. [Forest carbon storage and fuel carbon emission in Tanjiang River basin].

    PubMed

    Chen, Zhiliang; Xia, Nianhe; Wu, Zhifeng; Cheng, Jiong; Liu, Ping

    2006-10-01

    The investigation on the forest carbon storage and fuel carbon emission in Tanjiang River basin showed that since 1990, the forests in Tanjiang River basin acted as a carbon sink, and this action was increased with time and with economic development. The net carbon uptake by the forests was 1.0579 x 10 (7) t in 1990 and 1.28061 x 10 (7) t in 2002, with an annual increment of 1.856 x 10(5) t, while the fuel carbon emission was 9. 508 x 10(5) t in 1990 and 1.8562 x 10(6) t in 2002, with an annual increment of 7.0 x 10(4) t. In 2003, the fuel carbon emission was up to 2.1968 x 10(6) t, 3.406 x 105 t more than that in 2002. In 2002, the energy consumption per 10(4) yuan GDP in Tanjiang River basin was 2.21 t standard coal, higher than the average consumption (1.81 t standard coal) in the Pearl River delta. If the fuel consumption decreased to the average level, the carbon emission in Tanjiang River basin would be reduced by 3.360 x 10(5) t, which was higher than the annual increment of forest net carbon uptake in the basin. From the viewpoint of net carbon uptake and emission in a basin, more attention should be paid to the relations between forest carbon sink and human activities.

  1. Renewable Fuel Utilization in a Cogeneration Arrangement with Hydrate Storage Method

    NASA Astrophysics Data System (ADS)

    Naing, Soe; Yamada, Takanobu; Nakanishi, Kimio

    According to the third conference of parties (COP3), Japan has set a target of reducing greenhouse gas emissions by 6% by the year 2010. Many believe that the bulk utilization of fossil fuel influences to the damaging environmental effect. The objective of this paper is to propose an effective method for this goad which is possible to clarify a noticeable utilization of renewable fuel in a micro gas turbine cogeneration system in cold region. Moreover, analysis of renewable fuel, biogas production indicates that production amount becomes largest in hot season, while the total heat energy demand is lowest on during three years. Biogas storage is also adapted for the delay between peak energy supply and demand. Biogas hydrate formation is examined by resource from laboratory experiments and simulation of integration into an existing cogeneration arrangement. The proposed system can be successfully supported the use and reuse of renewable fuel for providing to substantial emission and clean development mechanism for reducing greenhouse gas emission.

  2. As-Built Verification Plan Spent Nuclear Fuel Canister Storage Building MCO Handling Machine

    SciTech Connect

    SWENSON, C.E.

    2000-10-19

    This as-built verification plan outlines the methodology and responsibilities that will be implemented during the as-built field verification activity for the Canister Storage Building (CSB) MCO HANDLING MACHINE (MHM). This as-built verification plan covers THE ELECTRICAL PORTION of the CONSTRUCTION PERFORMED BY POWER CITY UNDER CONTRACT TO MOWAT. The as-built verifications will be performed in accordance Administrative Procedure AP 6-012-00, Spent Nuclear Fuel Project As-Built Verification Plan Development Process, revision I. The results of the verification walkdown will be documented in a verification walkdown completion package, approved by the Design Authority (DA), and maintained in the CSB project files.

  3. Design Verification Report Spent Nuclear Fuel (SNF) Project Canister Storage Building (CSB)

    SciTech Connect

    BAZINET, G.D.

    2000-11-03

    The Sub-project W379, ''Spent Nuclear Fuel Canister Storage Building (CSB),'' was established as part of the Spent Nuclear Fuel (SNF) Project. The primary mission of the CSB is to safely store spent nuclear fuel removed from the K Basins in dry storage until such time that it can be transferred to the national geological repository at Yucca Mountain Nevada. This sub-project was initiated in late 1994 by a series of studies and conceptual designs. These studies determined that the partially constructed storage building, originally built as part of the Hanford Waste Vitrification Plant (HWVP) Project, could be redesigned to safely store the spent nuclear fuel. The scope of the CSB facility initially included a receiving station, a hot conditioning system, a storage vault, and a Multi-Canister Overpack (MCO) Handling Machine (MHM). Because of evolution of the project technical strategy, the hot conditioning system was deleted from the scope and MCO welding and sampling stations were added in its place. This report outlines the methods, procedures, and outputs developed by Project W379 to verify that the provided Structures, Systems, and Components (SSCs): satisfy the design requirements and acceptance criteria; perform their intended function; ensure that failure modes and hazards have been addressed in the design; and ensure that the SSCs as installed will not adversely impact other SSCs. The original version of this document was prepared by Vista Engineering for the SNF Project. The purpose of this revision is to document completion of verification actions that were pending at the time the initial report was prepared. Verification activities for the installed and operational SSCs have been completed. Verification of future additions to the CSB related to the canister cover cap and welding fixture system and MCO Internal Gas Sampling equipment will be completed as appropriate for those components. The open items related to verification of those requirements are noted

  4. Permeability of Flexible Materials Used in Fuel Storage Tanks. Part 1. General Review

    DTIC Science & Technology

    1983-08-01

    of this Report is unlimited KEYWORDS J POL STORAGE " FABRICS FUEL TANKS PERMEABILITY PERVAPORATION COSATI gOOUPSY. 1109 2104 ABSTRAMrj A review of the...impermeability [I] and consequently a clearer understanding of the factors affecting permeability of these fabrics would be useful.I’- Pervaporation ... pervaporation , in the steady state, it can be written Q Do Se & t/l uPAt/l i.e. P -0S ’the formal similarity of this ujxpression to that derived for

  5. Licensing schedule for away-from-reactor (AFR) spent fuel storage facilities

    SciTech Connect

    Gray, P.L.

    1981-08-01

    The Nuclear Regulatory Commission has authority to issue licenses for Away-From-Reactor (AFR) installations for the storage of spent nuclear fuel. This report presents a detailed estimate of the time required to prosecute a licensing action. The projected licensing schedule shows that the elapsed time between filing an application and issuance of a license will be about 32 months, assuming intervention. The legal procedural steps will determine the time schedule and will override considerations of technical complexity. A license could be issued in about 14 months in the absence of intervention.

  6. Graphene-based electrochemical energy conversion and storage: fuel cells, supercapacitors and lithium ion batteries.

    PubMed

    Hou, Junbo; Shao, Yuyan; Ellis, Michael W; Moore, Robert B; Yi, Baolian

    2011-09-14

    Graphene has attracted extensive research interest due to its strictly 2-dimensional (2D) structure, which results in its unique electronic, thermal, mechanical, and chemical properties and potential technical applications. These remarkable characteristics of graphene, along with the inherent benefits of a carbon material, make it a promising candidate for application in electrochemical energy devices. This article reviews the methods of graphene preparation, introduces the unique electrochemical behavior of graphene, and summarizes the recent research and development on graphene-based fuel cells, supercapacitors and lithium ion batteries. In addition, promising areas are identified for the future development of graphene-based materials in electrochemical energy conversion and storage systems.

  7. An effective and practical fire-protection system. [for aircraft fuel storage and transport

    NASA Technical Reports Server (NTRS)

    Mansfield, J. A.; Riccitiello, S. R.; Fewell, L. L.

    1975-01-01

    A high-performance sandwich-type fire protection system comprising a steel outer sheath and insulation combined in various configurations is described. An inherent advantage of the sheath system over coatings is that it eliminates problems of weatherability, materials strength, adhesion, and chemical attack. An experimental comparison between the protection performance of state-of-the-art coatings and the sheath system is presented, with emphasis on the protection of certain types of steel tanks for fuel storage and transport. Sheath systems are thought to be more expensive than coatings in initial implementation, although they are less expensive per year for sufficiently long applications.

  8. R D for the storage, transport, and handling of coal-based fuels

    SciTech Connect

    Not Available

    1990-01-01

    The product of several advanced physical coal cleaning processes is a dry, ultrafine coal (DUC), in the order of 10 microns mean mass diameter. Environmentally safe systems must be provided for the storage, transport, and handling of this fuel. The objective of the project is the development of total logistics systems for DUC, including experimental verification of key features. The systems to be developed will provide for safe, economic, and environmentally protective storage and delivery of DUC for residential, commercial, and industrial uses. Work this quarter entailed: obtaining all of the test coals including 10 lbs of Illinois No. 6 cleaned by the LICADO process. Installation of the test system for the Residential Storage Tank including piping and the components required to recycle the ultrafine coal. Completion of the design of the scale model test of the Industrial/Commercial Storage System. Piping and supports for the porous fluidization plates in the floor of the tanks have been completed. Preliminary results with the Illinois No. 6 coal cleaned by the Bechtel heptane/asphalt process indicate that this material is cohesive and difficult to fluidize. Studies of dune formation have been made with the Illinois No. 6 coal. These data provide information on the minimum velocity which will transport the particles. 11 refs., 18 figs.

  9. Storage of comminuted forest biomass and its effect on fuel quality.

    SciTech Connect

    Afzal, M; Bedane, A.H.; Sokhansanj, Shahabaddine; Mahmood, W.

    2009-11-01

    White birch was stored in the form of bundles, wood chips and loose slash for a period of one year to examine the change in biomass fuel properties. The samples were collected at regular quarterly intervals to measure the moisture content, CNS content, ash content and calorific value. Data loggers were also placed into the woody biomass to measure the temperature change inside the piles. After the first quarter of the storage period and continuing into the next three months of storage, the moisture content showed most significant change. The moisture content of the biomass bundles increased from 29 % to above 80 % (db). The moisture content of the pile of wood chips covered with a tarp decreased from 51% to 26% and showed a continuous decline in moisture content to the end of storage period. However, the moisture content of uncovered wood chip piles were observed to continuously increase throughout the storage period resulting in more than double in magnitude from 59% to 160% (db). The dry matter loss was higher in wood chip piles (8-27%) than in bundles (~3%). Among the other properties, there was slightly higher loss of calorific value in wood chips (~1.6%) as compared to bundles (~0.7%) at the end of one year. Other changes in woody biomass properties were also discussed. The proposed two-dimensional mathematical model predicted the moisture content and temperature profile in the woody biomass pile closely to the experimental data.

  10. Systems Modeling of Chemical Hydride Hydrogen Storage Materials for Fuel Cell Applications

    SciTech Connect

    Brooks, Kriston P.; Devarakonda, Maruthi N.; Rassat, Scot D.; Holladay, Jamelyn D.

    2011-10-05

    A fixed bed reactor was designed, modeled and simulated for hydrogen storage on-board the vehicle for PEM fuel cell applications. Ammonia Borane (AB) was selected by DOE's Hydrogen Storage Engineering Center of Excellence (HSECoE) as the initial chemical hydride of study because of its high hydrogen storage capacity (up to {approx}16% by weight for the release of {approx}2.5 molar equivalents of hydrogen gas) and its stability under typical ambient conditions. The design evaluated consisted of a tank with 8 thermally isolated sections in which H2 flows freely between sections to provide ballast. Heating elements are used to initiate reactions in each section when pressure drops below a specified level in the tank. Reactor models in Excel and COMSOL were developed to demonstrate the proof-of-concept, which was then used to develop systems models in Matlab/Simulink. Experiments and drive cycle simulations showed that the storage system meets thirteen 2010 DOE targets in entirety and the remaining four at greater than 60% of the target.

  11. Spent Nuclear Fuel (SNF) Storage Project Fuel Basket Handling Grapple Design Development Test Report

    SciTech Connect

    CHENAULT, D.M.

    2000-01-06

    Acceptance testing of the SNF Fuel Basket Lift Grapple was accomplished to verify the design adequacy. This report shows the results affirming the design. The test was successful in demonstrating the adequacy of the grapple assembly's inconel actuator shaft and engagement balls for in loads excess of design basis loads (3200 pounds), 3X design basis loads (9600 pounds), and 5X design basis loads (16,000 pounds). The test data showed that no appreciable yielding for the inconel actuator shaft and engagement balls at loads in excess of 5X Design Basis loads. The test data also showed the grapple assembly and components to be fully functional after loads in excess of 5X Design Basis were applied and maintained for over 10 minutes. Following testing, each actuator shaft (Item 7) was liquid penetrant inspected per ASME Section 111, Division 1 1989 and accepted per requirements of NF-5350. This examination was performed to insure that no cracking had occurred. The test indicated that no cracking had occurred. The examination reports are included as Appendix C to this document. From this test, it is concluded that the design configuration meets or exceeds the requirements specified in ANSI N 14 6 for Special Lifting Devices for Shipping Containers Weighing 10,000 Pounds (4500 kg) or More.

  12. Extended Burnup Credit for BWR Spent Nuclear Fuel in Storage and Transportation Systems

    SciTech Connect

    Ade, Brian J; Bowman, Stephen M; Gauld, Ian C; Ilas, Germina; Martinez, J. S.

    2015-01-01

    [Full Text] Oak Ridge National Laboratory and the United States Nuclear Regulatory Commission have initiated a multiyear project to investigate the application of burnup credit (BUC) for boiling-water reactor (BWR) fuel in storage and transportation casks. This project includes two phases. The first phase investigates the applicability of peak reactivity methods currently used for spent fuel pools to spent fuel storage and transportation casks and the validation of reactivity (keff) calculations and depleted fuel compositions. The second phase focuses on extending BUC beyond peak reactivity. This paper documents work performed to date, investigating some aspects of extended BUC, and it also describes the plan to complete the evaluations. The technical basis for application of peak reactivity methods to BWR fuel in storage and transportation systems is presented in a companion paper. Two reactor operating parameters are being evaluated to establish an adequate basis for extended BWR BUC, including investigation of the axial void profile effect and the effect of control blade utilization during operation. A detailed analysis of core simulator data for one cycle of an operating BWR plant was performed to determine the range of void profiles and the variability of the profile experienced during irradiation. While a single cycle does not provide complete data, the data obtained are sufficient to use to determine the primary effects and identify conservative modeling approaches. Using data resulting from a single cycle, the axial void profile is studied by first determining the temporal fidelity necessary in depletion modeling, and then using multiple void profiles to examine the effect of the void profile on cask reactivity. The results of these studies are being used to develop recommendations for conservatively modeling the void profile effects for BWR depletion calculations. The second operational parameter studied is control blade exposure. Control blades

  13. Analysis of Underground Storage Tanks System Materials to Increased Leak Potential Associated with E15 Fuel

    SciTech Connect

    Kass, Michael D; Theiss, Timothy J; Janke, Christopher James; Pawel, Steven J

    2012-07-01

    include model year 2001 light-duty vehicles, but specifically prohibited use in motorcycles and off-road vehicles and equipment. UST stakeholders generally consider fueling infrastructure materials designed for use with E0 to be adequate for use with E10, and there are no known instances of major leaks or failures directly attributable to ethanol use. It is conceivable that many compatibility issues, including accelerated corrosion, do arise and are corrected onsite and, therefore do not lead to a release. However, there is some concern that higher ethanol concentrations, such as E15 or E20, may be incompatible with current materials used in standard gasoline fueling hardware. In the summer of 2008, DOE recognized the need to assess the impact of intermediate blends of ethanol on the fueling infrastructure, specifically located at the fueling station. This includes the dispenser and hanging hardware, the underground storage tank, and associated piping. The DOE program has been co-led and funded by the Office of the Biomass Program and Vehicle Technologies Program with technical expertise from the Oak Ridge National Laboratory (ORNL) and the National Renewable Energy Laboratory (NREL). The infrastructure material compatibility work has been supported through strong collaborations and testing at Underwriters Laboratories (UL). ORNL performed a compatibility study investigating the compatibility of fuel infrastructure materials to gasoline containing intermediate levels of ethanol. These results can be found in the ORNL report entitled Intermediate Ethanol Blends Infrastructure Materials Compatibility Study: Elastomers, Metals and Sealants (hereafter referred to as the ORNL intermediate blends material compatibility study). These materials included elastomers, plastics, metals and sealants typically found in fuel dispenser infrastructure. The test fuels evaluated in the ORNL study were SAE standard test fuel formulations used to assess material-fuel compatibility within a

  14. Production of Jet Fuels from Coal-Derived Liquids. Volume 13. Evaluation of Storage and Thermal Stability of Jet Fuels Derived from Coal Liquids

    DTIC Science & Technology

    1990-05-01

    at the Great Plains Gasification Plant ( GPGP ) in Beulah, North Dakota. Funding was provided to the Department of Energy. (DOE), Pittsburgh Energy...Petroleum and Energy Research-(NIPER)>of the lIT Research Institute to study the storage and thermal stability of a JP-8 fuel produced from the GPGP liquid by...fuel produced from the GPGP liquid by-product streams. DOE/PETC was funded through Military Interdepartmental Purchase Request (MIPR) FY1455-86- N0657

  15. Mechanical and thermomechanical calculations related to the storage of spent nuclear-fuel assemblies in granite

    SciTech Connect

    Butkovich, T.R.

    1981-08-01

    A generic test of the geologic storage of spent-fuel assemblies from an operating nuclear reactor is being made by the Lawrence Livermore National Laboratory at the US Department of Energy`s Nevada Test Site. The spent-fuel assemblies were emplaced at a depth of 420 m (1370 ft) below the surface in a typical granite and will be retrieved at a later time. The early time, close-in thermal history of this type of repository is being simulated with spent-fuel and electrically heated canisters in a central drift, with auxiliary heaters in two parallel side drifts. Prior to emplacement of the spent-fuel canisters, preliminary calculations were made using a pair of existing finite-element codes. Calculational modeling of a spent-fuel repository requires a code with a multiple capability. The effects of both the mining operation and the thermal load on the existing stress fields and the resultant displacements of the rock around the repository must be calculated. The thermal loading for each point in the rock is affected by heat tranfer through conduction, radiation, and normal convection, as well as by ventilation of the drifts. Both the ADINA stress code and the compatible ADINAT heat-flow code were used to perform the calculations because they satisfied the requirements of this project. ADINAT was adapted to calculate radiative and convective heat transfer across the drifts and to model the effects of ventilation in the drifts, while the existing isotropic elastic model was used with the ADINA code. The results of the calculation are intended to provide a base with which to compare temperature, stress, and displacement data taken during the planned 5-y duration of the test. In this way, it will be possible to determine how the existing jointing in the rock influences the results as compared with a homogeneous, isotropic rock mass. Later, new models will be introduced into ADINA to account for the effects of jointing.

  16. DUSCOBS - a depleted-uranium silicate backfill for transport, storage, and disposal of spent nuclear fuel

    SciTech Connect

    Forsberg, C.W.; Pope, R.B.; Ashline, R.C.; DeHart, M.D.; Childs, K.W.; Tang, J.S.

    1995-11-30

    A Depleted Uranium Silicate COntainer Backfill System (DUSCOBS) is proposed that would use small, isotopically-depleted uranium silicate glass beads as a backfill material inside storage, transport, and repository waste packages containing spent nuclear fuel (SNF). The uranium silicate glass beads would fill all void space inside the package including the coolant channels inside SNF assemblies. Based on preliminary analysis, the following benefits have been identified. DUSCOBS improves repository waste package performance by three mechanisms. First, it reduces the radionuclide releases from SNF when water enters the waste package by creating a local uranium silicate saturated groundwater environment that suppresses (1) the dissolution and/or transformation of uranium dioxide fuel pellets and, hence, (2) the release of radionuclides incorporated into the SNF pellets. Second, the potential for long-term nuclear criticality is reduced by isotopic exchange of enriched uranium in SNF with the depleted uranium (DU) in the glass. Third, the backfill reduces radiation interactions between SNF and the local environment (package and local geology) and thus reduces generation of hydrogen, acids, and other chemicals that degrade the waste package system. In addition, the DUSCOBS improves the integrity of the package by acting as a packing material and ensures criticality control for the package during SNF storage and transport. Finally, DUSCOBS provides a potential method to dispose of significant quantities of excess DU from uranium enrichment plants at potential economic savings. DUSCOBS is a new concept. Consequently, the concept has not been optimized or demonstrated in laboratory experiments.

  17. Nuclear Fuel Traces Definition in Storage Ponds of Research VVR-2 and OR Reactors in NRC 'Kurchatov Institute'

    SciTech Connect

    Stepanov, Alexey; Simirskii, Iurii; Stepanov, Vyacheslav; Semin, Ilya; Volkovich, Anatoly

    2015-07-01

    The Gas Plant complex is the experimental base of the Institute of Nuclear Reactors, which is part of the Kurchatov Institute. In 1954 the commissioning of the first Soviet water-cooled water-moderated research reactor VVR-2 on enriched uranium, and until 1983 the complex operated two research water-cooled water-moderated reactors 3 MW (VVR-2) and 300 kW (OR) capacity, which were dismantled in connection with the overall upgrades of the complex. The complex has three storage ponds in the reactor building. They are sub-surface vessels filled with water (the volume of water in each is about 6 m{sup 3}). In 2007-2013 the spent nuclear fuel from storages was removed for processing to 'Mayk'. Survey of Storage Ponds by Underwater Collimated Spectrometric System shows a considerable layer of slime on the bottom of ponds and traces of spent nuclear fuel in one of the storage. For determination qualitative and the quantitative composition of radionuclide we made complex α-, β-, γ- spectrometric research of water and bottom slimes from Gas Plant complex storage ponds. We found the spent nuclear fuel in water and bottom slime in all storage ponds. Specific activity of radionuclides in the bottom slime exceeded specific activity of radionuclides in the ponds water and was closed to levels of high radioactive waste. Analysis of the obtained data and data from earlier investigation of reactor MR storage ponds showed distinctions of specific activity of uranium and plutonium radionuclides. (authors)

  18. Materials for electrochemical energy storage and conversion -- Batteries, capacitors and fuel cells

    SciTech Connect

    Doughty, D.H.; Vyas, B.; Takamura, Tsutomu; Huff, J.R.

    1995-12-31

    The papers contained in this volume were presented at Symposium W: Materials for Electrochemical Energy Storage and Conversion -- Batteries, Capacitors and Fuel Cells, that was held during the 1995 MRS Spring Meeting in San Francisco, California, April 17--20, 1995. The symposium was organized as a forum for uniting materials scientists with electrochemists and battery engineers, with the hope of increasing communication and understanding of electrochemical aspects of materials. It is believed that the development of high-performance power sources for applications ranging from portable electronics to electric and hybrid vehicles is intimately linked with availability of advanced materials. Designing batteries and capacitors with higher specific energy and power will require a deeper understanding of materials properties and performance. Fuel cells, which offer the potential for clean, efficient conversion of chemical energy to electrical energy, are hampered by high cost and performance problems, both of which could be resolved by new materials and processing techniques. Sessions were organized on oxides, hydrides, polymers and carbons as they relate to fuel cells, batteries and electrochemical double-layer capacitors. Moreover, reviews of the current status of materials performance and needs were presented in each of the application areas. Forty nine papers have been processed separately for inclusion on the data base.

  19. NDE to Manage Atmospheric SCC in Canisters for Dry Storage of Spent Fuel: An Assessment

    SciTech Connect

    Meyer, Ryan M.; Pardini, Allan F.; Cuta, Judith M.; Adkins, Harold E.; Casella, Andrew M.; Qiao, Hong; Larche, Michael R.; Diaz, Aaron A.; Doctor, Steven R.

    2013-09-01

    This report documents efforts to assess representative horizontal (Transuclear NUHOMS®) and vertical (Holtec HI-STORM) storage systems for the implementation of non-destructive examination (NDE) methods or techniques to manage atmospheric stress corrosion cracking (SCC) in canisters for dry storage of used nuclear fuel. The assessment is conducted by assessing accessibility and deployment, environmental compatibility, and applicability of NDE methods. A recommendation of this assessment is to focus on bulk ultrasonic and eddy current techniques for direct canister monitoring of atmospheric SCC. This assessment also highlights canister regions that may be most vulnerable to atmospheric SCC to guide the use of bulk ultrasonic and eddy current examinations. An assessment of accessibility also identifies canister regions that are easiest and more difficult to access through the ventilation paths of the concrete shielding modules. A conceivable sampling strategy for canister inspections is to sample only the easiest to access portions of vulnerable regions. There are aspects to performing an NDE inspection of dry canister storage system (DCSS) canisters for atmospheric SCC that have not been addressed in previous performance studies. These aspects provide the basis for recommendations of future efforts to determine the capability and performance of eddy current and bulk ultrasonic examinations for atmospheric SCC in DCSS canisters. Finally, other important areas of investigation are identified including the development of instrumented surveillance specimens to identify when conditions are conducive for atmospheric SCC, characterization of atmospheric SCC morphology, and an assessment of air flow patterns over canister surfaces and their influence on chloride deposition.

  20. Spent Fuel Test-Climax: An evaluation of the technical feasibility of geologic storage of spent nuclear fuel in granite: Final report

    SciTech Connect

    Patrick, W.C.

    1986-03-30

    In the Climax stock granite on the Nevada Test Site, eleven canisters of spent nuclear reactor fuel were emplaced, and six electrical simulators were energized. When test data indicated that the test objectives were met during the 3-year storage phase, the spent-fuel canisters were retrieved and the thermal sources were de-energized. The project demonstrated the feasibility of packaging, transporting, storing, and retrieving highly radioactive fuel assemblies in a safe and reliable manner. In addition to emplacement and retrieval operations, three exchanges of spent-fuel assemblies between the SFT-C and a surface storage facility, conducted during the storage phase, furthered this demonstration. The test led to development of a technical measurements program. To meet these objectives, nearly 1000 instruments and a computer-based data acquisition system were deployed. Geotechnical, seismological, and test status data were recorded on a continuing basis for the three-year storage phase and six-month monitored cool-down of the test. This report summarizes the engineering and scientific endeavors which led to successful design and execution of the test. The design, fabrication, and construction of all facilities and handling systems are discussed, in the context of test objectives and a safety assessment. The discussion progresses from site characterization and experiment design through data acquisition and analysis of test data in the context of design calculations. 117 refs., 52 figs., 81 tabs.

  1. Select Generic Dry-Storage Pilot Plant Design for Safeguards and Security by Design (SSBD) per Used Fuel Campaign

    SciTech Connect

    Demuth, Scott Francis; Sprinkle, James K.

    2015-05-26

    As preparation to the year-end deliverable (Provide SSBD Best Practices for Generic Dry-Storage Pilot Scale Plant) for the Work Package (FT-15LA040501–Safeguards and Security by Design for Extended Dry Storage), the initial step was to select a generic dry-storage pilot plant design for SSBD. To be consistent with other DOE-NE Fuel Cycle Research and Development (FCR&D) activities, the Used Fuel Campaign was engaged for the selection of a design for this deliverable. For the work Package FT-15LA040501–“Safeguards and Security by Design for Extended Dry Storage”, SSBD will be initiated for the Generic Dry-Storage Pilot Scale Plant described by the layout of Reference 2. SSBD will consider aspects of the design that are impacted by domestic material control and accounting (MC&A), domestic security, and international safeguards.

  2. Combined cooling and purification system for nuclear reactor spent fuel pit, refueling cavity, and refueling water storage tank

    DOEpatents

    Corletti, Michael M.; Lau, Louis K.; Schulz, Terry L.

    1993-01-01

    The spent fuel pit of a pressured water reactor (PWR) nuclear power plant has sufficient coolant capacity that a safety rated cooling system is not required. A non-safety rated combined cooling and purification system with redundant branches selectively provides simultaneously cooling and purification for the spent fuel pit, the refueling cavity, and the refueling water storage tank, and transfers coolant from the refueling water storage tank to the refueling cavity without it passing through the reactor core. Skimmers on the suction piping of the combined cooling and purification system eliminate the need for separate skimmer circuits with dedicated pumps.

  3. Combined cooling and purification system for nuclear reactor spent fuel pit, refueling cavity, and refueling water storage tank

    DOEpatents

    Corletti, M.M.; Lau, L.K.; Schulz, T.L.

    1993-12-14

    The spent fuel pit of a pressured water reactor (PWR) nuclear power plant has sufficient coolant capacity that a safety rated cooling system is not required. A non-safety rated combined cooling and purification system with redundant branches selectively provides simultaneously cooling and purification for the spent fuel pit, the refueling cavity, and the refueling water storage tank, and transfers coolant from the refueling water storage tank to the refueling cavity without it passing through the reactor core. Skimmers on the suction piping of the combined cooling and purification system eliminate the need for separate skimmer circuits with dedicated pumps. 1 figures.

  4. Criticality evaluation of control component credited mixed zone spent and fresh fuel storage in high density PWR racks

    SciTech Connect

    Bilovsky, V.; Redmond, E.; Walker, C.; Ivanov, K.

    2006-07-01

    To expand the set of assemblies that qualify for storage in high-density racks, a mixed zone analysis may be performed where repeating pattern configurations within the rack are prescribed. In a mixed zone analysis, assemblies that are more reactive (low burnup) are stored adjacent to less reactive (highly burned) assemblies, thereby meeting the same overall criticality requirements as with the uniform burnup/enrichment analysis. The Arkansas Nuclear One (ANO) Plant has faced several challenges with respect to their spent fuel storage that reach beyond simply the number of spent fuel assemblies and available storage cells. These issues have resulted in the need for ANO to use an advanced storage strategy. In addition to using the mixed zone burnup approach in the high-density racks, ANO also proposed a new solution involving credit for control components in the spent fuel pool. ANO submitted an amendment of their spent fuel pool technical specifications to the Nuclear Regulatory Commission (NRC) based on the evaluation performed by Holtec International that was subsequently approved. This paper presents a description of the overall methodology used for supporting the submittal, and provides further discussion regarding the reactivity effect of control rods in a PWR spent fuel pool. (authors)

  5. Initial measurements of BN-350 spent fuel in dry storage casks using the dual slab verification detonator

    SciTech Connect

    Santi, Peter Angelo; Browne, Michael C; Freeman, Corey R; Parker, Robert F; Williams, Richard B

    2010-01-01

    The Dual Slab Verification Detector (DSVD) has been developed, built, and characterized by Los Alamos National Laboratory in cooperation with the International Atomic Energy Agency (IAEA) as part of the dry storage safeguards system for the spent fuel from the BN-350 fast reactor. The detector consists of two rows of 3He tubes embedded in a slab of polyethylene which has been designed to be placed on the outer surface of the dry storage cask. By performing DSVD measurements at several different locations around the outer surface of the DUC, a signature 'fingerprint' can be established for each DUC based on the neutron flux emanating from inside the dry storage cask. The neutron fingerprint for each individual DUC will be dependent upon the spatial distribution of nuclear material within the cask, thus making it sensitive to the removal of a certain amount of material from the cask. An initial set of DSVD measurements have been performed on the first set of dry storage casks that have been loaded with canisters of spent fuel and moved onto the dry storage pad to both establish an initial fingerprint for these casks as well as to quantify systematic uncertainties associated with these measurements. The results from these measurements will be presented and compared with the expected results that were determined based on MCNPX simulations of the dry storage facility. The ability to safeguard spent nuclear fuel is strongly dependent on the technical capabilities of establishing and maintaining continuity of knowledge (COK) of the spent fuel as it is released from the reactor core and either reprocessed or packaged and stored at a storage facility. While the maintenance of COK is often done using continuous containment and surveillance (C/S) on the spent fuel, it is important that the measurement capabilities exist to re-establish the COK in the event of a significant gap in the continuous CIS by performing measurements that independently confirm the presence and content

  6. Assessment of the integrity of spent fuel assemblies used in dry storage demonstrations at the Nevada Test Site

    SciTech Connect

    Johnson, A.B. Jr.; Dobbins, J.C.; Zaloudek, F.R.

    1987-07-01

    This report summarizes the histories of 17 Zircaloy-clad spent fuel assemblies used in dry storage tests and demonstrations at the Engine Maintenance and Disassembly (EMAD) and Climax facilities at the Nevada Test Site (NTS). The 18th assembly was shipped to the Battelle Columbus Laboratory (BCL) and remained there for extensive characterization and as a source of specimens for whole-rod and rod-segment dry storage tests. The report traces the history of the assemblies after discharge from the Turkey Point Unit 3 pressurized-water reactor (1975 and 1977) through shipment (first arrival at EMAD in December 1978), dry storage tests and demonstrations, and shipment by truck cask from EMAD to the Idaho National Engineering Laboratory (INEL) in May/June 1986. The principal objectives of this report are to assess and document the integrity of the fuel during the extensive dry storage activities at NTS and BCL, and to briefly summarize the dry storage technologies and procedures demonstrated in this program. The dry storage tests and demonstrations involved the following concepts and facilities: (1) surface drywells (EMAD); (2) deep drywells (425 m underground in the Climax granite formation); (3) concrete silo (EMAD); (4) air-cooled vault (EMAD); (5) electrically-heated module for fuel assembly thermal calibration and testing (EMAD/FAITM). 20 refs., 43 figs., 9 tabs.

  7. Critical Analysis of Dry Storage Temperature Limits for Zircaloy-Clad Spent Nuclear Fuel Based on Diffusion Controlled Cavity Growth

    SciTech Connect

    Hayes, T.A.; Rosen, R.S.; Kassner, M.E.

    1999-12-01

    Interim dry storage of spent nuclear fuel (SNF) rods is of critical concern because a shortage of existing SNF wet storage capacity combined with delays in the availability of a permanent disposal repository has led to an increasing number of SNF rods being placed into interim dry storage. Safe interim dry storage must be maintained for a minimum of twenty years according to the Standard Review Plan for Dry Cask Storage Systems [1] and the Code of Federal Regulations, 10 CFR Part 72 [2]. Interim dry storage licensees must meet certain safety conditions when storing SNF rods to ensure that there is a ''very low probability (e.g. 0.5%) of cladding breach during long-term storage'' [1]. Commercial SNF typically consists of uranium oxide pellets surrounded by a thin cladding. The cladding is usually an {alpha}-zirconium based alloy know as ''Zircaloy''. In dry storage, the SNF rods are confined in one of several types of cask systems approved by the Nuclear Regulatory Commission (NRC). ''The cask system must be designed to prevent degradation of fuel cladding that results in a type of cladding breach, such as axial-splits or ductile fracture, where irradiated UO{sub 2} particles may be released. In addition, the fuel cladding should not degrade to the point where more than one percent of the fuel rods suffer pinhole or hairline crack type failure under normal storage conditions [1].'' The NRC has approved two models [3,4] for use by proposed dry storage licensees to determine the maximum initial temperature limit for nuclear fuel rods in dry storage that supposedly meet the above criteria and yield consistent temperature limits. Though these two models are based on the same fundamental failure theory, different assumptions have been made including the choice of values for material constants in the failure equation. This report will examine and compare the similarities and inconsistencies of these two models. It will illustrate some of the shortcomings of the current

  8. Discussion of Available Methods to Support Reviews of Spent Fuel Storage Installation Cask Drop Evaluations

    SciTech Connect

    Witte, M.

    2000-03-28

    Applicants seeking a Certificate of Compliance for an Independent Spent Fuel Storage Installation (ISFSI) cask must evaluate the consequences of a handling accident resulting in a drop or tip-over of the cask onto a concrete storage pad. As a result, analytical modeling approaches that might be used to evaluate the impact of cylindrical containers onto concrete pads are needed. One such approach, described and benchmarked in NUREG/CR-6608,{sup 1} consists of a dynamic finite element analysis using a concrete material model available in DYNA3D{sup 2} and in LS-DYNA,{sup 3} together with a method for post-processing the analysis results to calculate the deceleration of a solid steel billet when subjected to a drop or tip-over onto a concrete storage pad. The analysis approach described in NUREG/CR-6608 gives a good correlation of analysis and test results. The material model used for the concrete in the analyses in NUREG/CR-6608 is, however, somewhat troublesome to use, requiring a number of material constants which are difficult to obtain. Because of this a simpler approach, which adequately evaluates the impact of cylindrical containers onto concrete pads, is sought. Since finite element modeling of metals, and in particular carbon and stainless steel, is routinely and accurately accomplished with a number of finite element codes, the current task involves a literature search for and a discussion of available concrete models used in finite element codes. The goal is to find a balance between a concrete material model with a limited number of required material parameters which are readily obtainable, and a more complex model which is capable of accurately representing the complex behavior of the concrete storage pad under impact conditions. The purpose of this effort is to find the simplest possible way to analytically represent the storage cask deceleration during a cask tip-over or a cask drop onto a concrete storage pad. This report is divided into three sections

  9. Retrieval Success from a 1950's UK Fuel Storage Pond: Blazing a Trail for Early Hazard Reduction

    SciTech Connect

    Bruce, S.

    2006-07-01

    Work has begun to tackle one of the biggest challenges in the UK nuclear cleanup program: the retrieval of spent nuclear fuel from the First Generation Magnox Fuel Storage Pond at Sellafield. The UK Government regulatory body, Nuclear Installations Inspectorate (NII) considers this pond to be the country's highest priority in terms of Hazard Reduction, a view supported by the facility owner, UK Government's Nuclear Decommissioning Authority (NDA). Remotely operated submersible vehicles (ROV's) were used by British Nuclear Group to assess the condition of stored fuel in First Generation Magnox Storage Ponds (1945-60's build). The ROV survey showed fuel condition was better than expected, and engineers were able to prototype retrieval on a selected skip (container) of fuel. The retrieval and subsequent export to the Fuel Handling Plant (FHP) was executed in November 2005 and was completely successful. The next stage is to reprocess the fuel using the Magnox Reprocessing Plant. If this is successful the prototype retrieval will have demonstrated that: - British Nuclear Group can safely retrieve fuel from its legacy ponds; - British Nuclear Group can safely transport retrieved legacy fuel between facilities; - British Nuclear Group can eliminate the hazard presented by this legacy fuel by use of existing on-site reprocessing facilities. This in turn enables the option to commence larger-scale fuel retrievals from these legacy ponds years ahead of the current plan which assumes new plants to be available to handle all arisings from the legacy ponds in 2015. This hazard reduction could commence as early as 2008. (authors)

  10. North Portal Fuel Storage System Fire Hazard Analysis-ESF Surface Design Package ID

    SciTech Connect

    N.M. Ruonavaara

    1995-01-18

    The purpose of the fire hazard analysis is to comprehensively assess the risk from fire within the individual fire areas. This document will only assess the fire hazard analysis within the Exploratory Studies Facility (ESF) Design Package ID, which includes the fuel storage system area of the North Portal facility, and evaluate whether the following objectives are met: 1.1.1--This analysis, performed in accordance with the requirements of this document, will satisfy the requirements for a fire hazard analysis in accordance with U.S. Department of Energy (DOE) Order 5480.7A. 1.1.2--Ensure that property damage from fire and related perils does not exceed an acceptable level. 1.1.3--Provide input to the ESF Basis For Design (BFD) Document. 1.1.4 Provide input to the facility Safety Analysis Report (SAR) (Paragraph 3.8).

  11. Measurements for the JASPER program In-Vessel Fuel Storage experiment

    SciTech Connect

    Muckenthaler, F.J.; Spencer, R.R.; Hunter, H.T.; Hull, J.L.; Shono, A.

    1992-01-01

    The In-Vessel-Fuel-Storage (IVFS) experiment was conducted at the Oak Ridge National Laboratory`s (ORNL) Tower Shielding Facility (TSF) during the first nine months of 1991 as part of the continuing series of eight experiments planned for the Japanese-American Shielding Program for Experimental Research (JASPER) that was started in 1986. This is the fourth in a series of eight experiments that were planned, all of which are intended to provide support in the development of current reactor shield designs proposed for liquid metal reactor (LMR) systems both in Japan and the United States. The program is a cooperative effort between the United States Department of Energy (US DOE) and the Japanese Power Reactor and Nuclear Development Corporation (PNC). This document provides a description of the instrumentation and experimental configuration, test data, and data analysis.

  12. Impact of a Diesel High Pressure Common Rail Fuel System and Onboard Vehicle Storage on B20 Biodiesel Blend Stability

    SciTech Connect

    Christensen, Earl; McCormick, Robert L.; Sigelko, Jenny; Johnson, Stuart; Zickmann, Stefan; Lopes, Shailesh; Gault, Roger; Slade, David

    2016-04-01

    Adoption of high-pressure common-rail (HPCR) fuel systems, which subject diesel fuels to higher temperatures and pressures, has brought into question the efficacy of ASTM International specifications for biodiesel and biodiesel blend oxidation stability, as well as the lack of any stability parameter for diesel fuel. A controlled experiment was developed to investigate the impact of a light-duty diesel HPCR fuel system on the stability of 20% biodiesel (B20) blends under conditions of intermittent use and long-term storage in a relatively hot and dry climate. B20 samples with Rancimat induction periods (IPs) near the current 6.0-hour minimum specification (6.5 hr) and roughly double the ASTM specification (13.5 hr) were prepared from a conventional diesel and a highly unsaturated biodiesel. Four 2011 model year Volkswagen Passats equipped with HPCR fuel injection systems were utilized: one on B0, two on B20-6.5 hr, and one on B20-13.5 hr. Each vehicle was operated over a one-hour drive cycle in a hot running loss test cell to initially stress the fuel. The cars were then kept at Volkswagen's Arizona Proving Ground for two (35 degrees C average daily maximum) to six months (26 degrees C average daily maximum). The fuel was then stressed again by running a portion of the one-hour dynamometer drive cycle (limited by the amount of fuel in the tank). Fuel rail and fuel tank samples were analyzed for IP, acid number, peroxide content, polymer content, and ester profile. The HPCR fuel pumps were removed, dismantled, and inspected for deposits or abnormal wear. Analysis of fuels collected during initial dynamometer tests showed no impact of exposure to HPCR conditions. Long-term storage with intermittent use showed that IP remained above 3 hours, acid number below 0.3 mg KOH/g, peroxides low, no change in ester profile, and no production of polymers. Final dynamometer tests produced only small changes in fuel properties. Inspection of the HPCR fuel pumps revealed no

  13. Apparatus for in situ determination of burnup, cooling time and fissile content of an irradiated nuclear fuel assembly in a fuel storage pond

    DOEpatents

    Phillips, John R.; Halbig, James K.; Menlove, Howard O.; Klosterbuer, Shirley F.

    1985-01-01

    A detector head for in situ inspection of irradiated nuclear fuel assemblies submerged in a water-filled nuclear fuel storage pond. The detector head includes two parallel arms which extend from a housing and which are spaced apart so as to be positionable on opposite sides of a submerged fuel assembly. Each arm includes an ionization chamber and two fission chambers. One fission chamber in each arm is enclosed in a cadmium shield and the other fission chamber is unshielded. The ratio of the outputs of the shielded and unshielded fission chambers is used to determine the boron content of the pond water. Correcting for the boron content, the neutron flux and gamma ray intensity are then used to verify the declared exposure, cooling time and fissile material content of the irradiated fuel assembly.

  14. Apparatus for in situ determination of burnup, cooling time and fissile content of an irradiated nuclear fuel assembly in a fuel storage pond

    DOEpatents

    Phillips, J.R.; Halbig, J.K.; Menlove, H.O.; Klosterbuer, S.F.

    1984-01-01

    A detector head for in situ inspection of irradiated nuclear fuel assemblies submerged in a water-filled nuclear fuel storage pond. The detector head includes two parallel arms which extend from a housing and which are spaced apart so as to be positionable on opposite sides of a submerged fuel assembly. Each arm includes an ionization chamber and two fission chambers. One fission chamber in each arm is enclosed in a cadmium shield and the other fission chamber is unshielded. The ratio of the outputs of the shielded and unshielded fission chambers is used to determine the boron content of the pond water. Correcting for the boron content, the neutron flux and gamma ray intensity are then used to verify the declared exposure, cooling time and fissile material content of the irradiated fuel assembly.

  15. Hydrogen as a fuel for today and tomorrow: expectations for advanced hydrogen storage materials/systems research.

    PubMed

    Hirose, Katsuhiko

    2011-01-01

    History shows that the evolution of vehicles is promoted by several environmental restraints very similar to the evolution of life. The latest environmental strain is sustainability. Transport vehicles are now facing again the need to advance to use sustainable fuels such as hydrogen. Hydrogen fuel cell vehicles are being prepared for commercialization in 2015. Despite intensive research by the world's scientists and engineers and recent advances in our understanding of hydrogen behavior in materials, the only engineering phase technology which will be available for 2015 is high pressure storage. Thus industry has decided to implement the high pressure tank storage system. However the necessity of smart hydrogen storage is not decreasing but rather increasing because high market penetration of hydrogen fuel cell vehicles is expected from around 2025 onward. In order to bring more vehicles onto the market, cheaper and more compact hydrogen storage is inevitable. The year 2025 seems a long way away but considering the field tests and large scale preparation required, there is little time available for research. Finding smart materials within the next 5 years is very important to the success of fuel cells towards a low carbon sustainable world.

  16. 78 FR 73456 - List of Approved Spent Fuel Storage Casks: HI-STORM 100 Cask System; Amendment No. 9

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-06

    ...; ] NUCLEAR REGULATORY COMMISSION 10 CFR Part 72 RIN 3150-AJ12 List of Approved Spent Fuel Storage Casks: HI... regulations by revising the Holtec International HI-STORM 100 Cask System listing within the ``List of.... Amendment No. 9 broadens the subgrade requirements for the HI-STORM 100U part of the HI-STORM 100...

  17. 10 CFR 51.61 - Environmental report-independent spent fuel storage installation (ISFSI) or monitored retrievable...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... either an environmental impact statement or an environmental assessment, as appropriate. The environmental report shall contain the information specified in § 51.45 and shall address the siting evaluation... the environmental impact of the storage of spent fuel at an ISFSI beyond the term of the license...

  18. 78 FR 73566 - Standard Format and Content for a License Application for an Independent Spent Fuel Storage...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-06

    ... COMMISSION Standard Format and Content for a License Application for an Independent Spent Fuel Storage... public comment draft regulatory guide (DG), DG-3042, ``Standard Format and Content for a License... Waste'' (Ref. 1), Subpart B, ``License Application, Form, and Contents,'' specifies the information...

  19. Review of ALARA plan for activities at the 105 K-East fuel storage basin

    SciTech Connect

    Vargo, G.J.; Durham, J.S.; Hickey, E.E.; Stansbury, P.S.; Cicotte, G.R.

    1994-09-01

    As part of its ongoing efforts to reduce doses to workers to levels as low as reasonably achievable (ALARA), Westinghouse Hanford Company (WHC) tasked the Health Protection Department of the Pacific Northwest Laboratory (PNL) to review operations at the 105 K-East Fuel Storage Basin (105 K-East). This review included both routine operations and a proposed campaign to encapsulate N-Reactor fuel stored there. This report summarizes the results of PNL`s reviews of policy, procedures, and practices for operations at 105 K-East as well as an evaluation of the major sources of occupational radiation exposures. Where possible, data previously collected by WHC and its predecessors were used. In addition, PNL staff developed a three-dimensional model of the radiological environment within 105 K-East to assess the relative contributions of different radiation sources to worker dose and to provide a decision tool for use in evaluating alternative methods of dose rate reduction. The model developed by PNL indicates that for most areas in the basin the primary source of occupational radiation exposure is the contaminated concrete surfaces of the basin near the waterline. Basin cooling water piping represents a significant source in a number of areas, particularly the Technical Viewing Pit. This report contains specific recommendations to reduce the impact of these sources of occupational radiation exposure in 105 K-East. Other recommendations to reduce doses to workers during activities such as filter changes and filter sampling are also included.

  20. COBRA-SFS: A thermal-hydraulic analysis code for spent fuel storage and transportation casks

    SciTech Connect

    Michener, T.E.; Rector, D.R.; Cuta, J.M.; Dodge, R.E.; Enderlin, C.W.

    1995-09-01

    COBRA-SFS is a general thermal-hydraulic analysis computer code for prediction of material temperatures and fluid conditions in a wide variety of systems. The code has been validated for analysis of spent fuel storage systems, as part of the Commercial Spent Fuel Management Program of the US Department of Energy. The code solves finite volume equations representing the conservation equations for mass, moment, and energy for an incompressible single-phase heat transfer fluid. The fluid solution is coupled to a finite volume solution of the conduction equation in the solid structure of the system. This document presents a complete description of Cycle 2 of COBRA-SFS, and consists of three main parts. Part 1 describes the conservation equations, constitutive models, and solution methods used in the code. Part 2 presents the User Manual, with guidance on code applications, and complete input instructions. This part also includes a detailed description of the auxiliary code RADGEN, used to generate grey body view factors required as input for radiative heat transfer modeling in the code. Part 3 describes the code structure, platform dependent coding, and program hierarchy. Installation instructions are also given for the various platform versions of the code that are available.

  1. Castor-1C spent fuel storage cask decay heat, heat transfer, and shielding analyses

    SciTech Connect

    Rector, D.R.; McCann, R.A.; Jenquin, U.P.; Heeb, C.M.; Creer, J.M.; Wheeler, C.L.

    1986-12-01

    This report documents the decay heat, heat transfer, and shielding analyses of the Gesellschaft fuer Nuklear Services (GNS) CASTOR-1C cask used in a spent fuel storage demonstration performed at Preussen Elektra's Wurgassen nuclear power plant. The demonstration was performed between March 1982 and January 1984, and resulted in cask and fuel temperature data and cask exterior surface gamma-ray and neutron radiation dose rate measurements. The purpose of the analyses reported here was to evaluate decay heat, heat transfer, and shielding computer codes. The analyses consisted of (1) performing pre-look predictions (predictions performed before the analysts were provided the test data), (2) comparing ORIGEN2 (decay heat), COBRA-SFS and HYDRA (heat transfer), and QAD and DOT (shielding) results to data, and (3) performing post-test analyses if appropriate. Even though two heat transfer codes were used to predict CASTOR-1C cask test data, no attempt was made to compare the two codes. The codes are being evaluated with other test data (single-assembly data and other cask data), and to compare the codes based on one set of data may be premature and lead to erroneous conclusions.

  2. Electron and carbon balances in microbial fuel cells reveal temporary bacterial storage behavior during electricity generation.

    PubMed

    Freguia, Stefano; Rabaey, Korneel; Yuan, Zhiguo; Keller, Jürg

    2007-04-15

    Microbial fuel cells (MFCs) are emerging as a novel technology with a great potential to reduce the costs of wastewater treatment. Their most studied application is organic carbon removal. One of the parameters commonly used to quantify the performance of these cells is the Coulombic efficiency, i.e., the electron recovery as electricity from the removed substrate. However, the "inefficiencies" of the process have never been fully identified. This study presents a method that uses the combination of electrochemical monitoring, chemical analysis, and a titration and off-gas analysis (TOGA) sensor to identify and quantify the sources of electron loss. The method was used successfully to close electron, carbon, and proton balances in acetate and glucose fed microbial fuel cells. The method revealed that in the case that a substrate is loaded as pulses carbon is stored inside the cells during initial high substrate conditions and consumed during starvation, with up to 57% of the current being generated after depletion of the external carbon source. Nile blue staining of biomass samples revealed lipophilic inclusions during high substrate conditions, thus confirming the storage of polymeric material in the bacterial cells. The method also allows for indirect measurement of growth yields, which ranged from 0 to 0.54 g biomass-C formed per g substrate-C used, depending on the type of substrate and the external resistance of the circuit.

  3. Modified-Collins cryocooler for zero-boiloff storage of cryogenic fuels in space

    NASA Astrophysics Data System (ADS)

    Hannon, Charles L.; Krass, Brady; Hogan, Jake; Brisson, John

    2012-06-01

    Future lunar and planetary explorations will require the storage of cryogenic propellants, particularly liquid oxygen (LOX) and liquid hydrogen (LH2), in low earth orbit (LEO) for periods of time ranging from days to months, and possibly longer. Without careful thermal management, significant quantities of stored liquid cryogens can be lost due to boil-off. Boil-off can be minimized by a variety of passive means including insulation, sun shades and passive radiational cooling. However, it has been shown that active cooling using space cryocoolers has the potential to result in Zero Boil-Off (ZBO) and the launch-mass savings using active cooling exceeds that of passive cooling of LOX for mission durations in LEO of less than 1 week, and for LH2 after about 2 months in LEO. Large-scale DC-flow cryogenic refrigeration systems operate at a fraction of the specific power levels required by small-scale AC-flow cryocoolers. The efficiency advantage of DC-flow cryogenic cycles motivates the current development of a cryocooler based on a modification of the Collins Cycle. The modified Collins cycle design employs piston type expanders that support high operating pressure ratios, electromagnetic valves that enable "floating pistons", and recuperative heat transfer. This paper will describe the design of a prototype Modified-Collins cryocooler for ZBO storage of cryogenic fuels in space.

  4. The Feasibility of Cask "Fingerprinting" as a Spent-Fuel, Dry-Storage Cask Safeguards Technique

    SciTech Connect

    Ziock, K P; Vanier, P; Forman, L; Caffrey, G; Wharton, J; Lebrun, A

    2005-07-27

    This report documents a week-long measurement campaign conducted on six, dry-storage, spent-nuclear-fuel storage casks at the Idaho National Laboratory. A gamma-ray imager, a thermal-neutron imager and a germanium spectrometer were used to collect data on the casks. The campaign was conducted to examine the feasibility of using the cask radiation signatures as unique identifiers for individual casks as part of a safeguards regime. The results clearly show different morphologies for the various cask types although the signatures are deemed insufficient to uniquely identify individual casks of the same type. Based on results with the germanium spectrometer and differences between thermal neutron images and neutron-dose meters, this result is thought to be due to the limitations of the extant imagers used, rather than of the basic concept. Results indicate that measurements with improved imagers could contain significantly more information. Follow-on measurements with new imagers either currently available as laboratory prototypes or under development are recommended.

  5. Integrated monitoring and reviewing systems for the Rokkasho Spent Fuel Receipt and Storage Facility

    SciTech Connect

    Yokota, Yasuhiro; Ishikawa, Masayuki; Matsuda, Yuji

    1998-12-31

    The Rokkasho Spent Fuel Receipt and Storage (RSFS) Facility at the Rokkasho Reprocessing Plant (RRP) in Japan is expected to begin operations in 1998. Effective safeguarding by International Atomic Energy Agency (IAEA) and Japan Atomic Energy Bureau (JAEB) inspectors requires monitoring the time of transfer, direction of movement, and number of spent fuel assemblies transferred. At peak throughput, up to 1,000 spent fuel assemblies will be accepted by the facility in a 90-day period. In order for the safeguards inspector to efficiently review the resulting large amounts of inspection information, an unattended monitoring system was developed that integrates containment and surveillance (C/S) video with radiation monitors. This allows for an integrated review of the facility`s radiation data, C/S video, and operator declaration data. This paper presents an outline of the integrated unattended monitoring hardware and associated data reviewing software. The hardware consists of a multicamera optical surveillance (MOS) system radiation monitoring gamma-ray and neutron detector (GRAND) electronics, and an intelligent local operating network (ILON). The ILON was used for time synchronization and MOS video triggers. The new software consists of a suite of tools, each one specific to a single data type: radiation data, surveillance video, and operator declarations. Each tool can be used in a stand-alone mode as a separate ion application or configured to communicate and match time-synchronized data with any of the other tools. A data summary and comparison application (Integrated Review System [IRS]) coordinates the use of all of the data-specific review tools under a single-user interface. It therefore automates and simplifies the importation of data and the data-specific analyses.

  6. Results from NNWSI [Nevada Nuclear Waste Storage Investigations] Series 2 bare fuel dissolution tests

    SciTech Connect

    Wilson, C.N.

    1990-09-01

    The dissolution and radionuclide release behavior of spent fuel in groundwater is being studied by the Nevada Nuclear Waste Storage Investigations (NNWSI) Project. Two bare spent fuel specimens plus the empty cladding hulls were tested in NNWSI J-13 well water in unsealed fused silica vessels under ambient hot cell air conditions (25{degree}C) in the currently reported tests. One of the specimens was prepared from a rod irradiated in the H. B. Robinson Unit 2 reactor and the other from a rod irradiated in the Turkey Point Unit 3 reactor. Results indicate that most radionuclides of interest fall into three groups for release modeling. The first group principally includes the actinides (U, Np, Pu, Am, and Cm), all of which reached solubility-limited concentrations that were orders of magnitude below those necessary to meet the NRC 10 CFR 60.113 release limits for any realistic water flux predicted for the Yucca Mountain repository site. The second group is nuclides of soluble elements such as Cs, Tc, and I, for which release rates do not appear to be solubility-limited and may depend on the dissolution rate of fuel. In later test cycles, {sup 137}Cs, {sup 90}Sr, {sup 99}Tc, and {sup 129}I were continuously released at rates between about 5 {times} 10{sup {minus}5} and 1 {times} 10{sup {minus}4} of inventory per year. The third group is radionuclides that may be transported in the vapor phase, of which {sup 14}C is of primary concern. Detailed test results are presented and discussed. 17 refs., 15 figs., 21 tabs.

  7. COBRA-SFS (Spent Fuel Storage): A thermal-hydraulic analysis computer code: Volume 2, User's manual

    SciTech Connect

    Rector, D.R.; Cuta, J.M.; Lombardo, N.J.; Michener, T.E.; Wheeler, C.L.

    1986-11-01

    COBRA-SFS (Spent Fuel Storage) is a general thermal-hydraulic analysis computer code used to predict temperatures and velocities in a wide variety of systems. The code was refined and specialized for spent fuel storage system analyses for the US Department of Energy's Commercial Spent Fuel Management Program. The finite-volume equations governing mass, momentum, and energy conservation are written for an incompressible, single-phase fluid. The flow equations model a wide range of conditions including natural circulation. The energy equations include the effects of solid and fluid conduction, natural convection, and thermal radiation. The COBRA-SFS code is structured to perform both steady-state and transient calculations; however, the transient capability has not yet been validated. This volume contains the input instructions for COBRA-SFS and an auxiliary radiation exchange factor code, RADX-1. It is intended to aid the user in becoming familiar with the capabilities and modeling conventions of the code.

  8. COBRA-SFS (Spent Fuel Storage): A thermal-hydraulic analysis computer code: Volume 1, Mathematical models and solution method

    SciTech Connect

    Rector, D.R.; Wheeler, C.L.; Lombardo, N.J.

    1986-11-01

    COBRA-SFS (Spent Fuel Storage) is a general thermal-hydraulic analysis computer code used to predict temperatures and velocities in a wide variety of systems. The code was refined and specialized for spent fuel storage system analyses for the US Department of Energy's Commercial Spent Fuel Management Program. The finite-volume equations governing mass, momentum, and energy conservation are written for an incompressible, single-phase fluid. The flow equations model a wide range of conditions including natural circulation. The energy equations include the effects of solid and fluid conduction, natural convection, and thermal radiation. The COBRA-SFS code is structured to perform both steady-state and transient calculations: however, the transient capability has not yet been validated. This volume describes the finite-volume equations and the method used to solve these equations. It is directed toward the user who is interested in gaining a more complete understanding of these methods.

  9. Managing aging effects on dry cask storage systems for extended long-term storage and transportation of used fuel - rev. 0

    SciTech Connect

    Chopra, O.K.; Diercks, D.; Fabian, R.; Ma, D.; Shah, V.; Tam, S.W.; Liu, Y.

    2012-07-06

    The cancellation of the Yucca Mountain repository program in the United States raises the prospect of extended long-term storage (i.e., >120 years) and deferred transportation of used fuel at operating and decommissioned nuclear power plant sites. Under U.S. federal regulations contained in Title 10 of the Code of Federal Regulations (CFR) 72.42, the initial license term for an Independent Spent Fuel Storage Installation (ISFSI) must not exceed 40 years from the date of issuance. Licenses may be renewed by the U.S. Nuclear Regulatory Commission (NRC) at the expiration of the license term upon application by the licensee for a period not to exceed 40 years. Application for ISFSI license renewals must include the following: (1) Time-limited aging analyses (TLAAs) that demonstrate that structures, systems, and components (SSCs) important to safety will continue to perform their intended function for the requested period of extended operation; and (2) a description of the aging management program (AMP) for management of issues associated with aging that could adversely affect SSCs important to safety. In addition, the application must also include design bases information as documented in the most recent updated final safety analysis report as required by 10 CFR 72.70. Information contained in previous applications, statements, or reports filed with the Commission under the license may be incorporated by reference provided that those references are clear and specific. The NRC has recently issued the Standard Review Plan (SRP) for renewal of used-fuel dry cask storage system (DCSS) licenses and Certificates of Compliance (CoCs), NUREG-1927, under which NRC may renew a specific license or a CoC for a term not to exceed 40 years. Both the license and the CoC renewal applications must contain revised technical requirements and operating conditions (fuel storage, surveillance and maintenance, and other requirements) for the ISFSI and DCSS that address aging effects that

  10. Capacity enhancement of aqueous borohydride fuels for hydrogen storage in liquids

    SciTech Connect

    Schubert, David; Neiner, Doinita; Bowden, Mark; Whittemore, Sean; Holladay, Jamie; Huang, Zhenguo; Autrey, Tom

    2015-10-01

    In this work we demonstrate enhanced hydrogen storage capacities through increased solubility of sodium borate product species in aqueous media achieved by adjusting the sodium (NaOH) to boron (B(OH)3) ratio, i.e., M/B, to obtain a distribution of polyborate anions. For a 1:1 mole ratio of NaOH to B(OH)3, M/B = 1, the ratio of the hydrolysis product formed from NaBH4 hydrolysis, the sole borate species formed and observed by 11B NMR is sodium metaborate, NaB(OH)4. When the ratio is 1:3 NaOH to B(OH)3, M/B = 0.33, a mixture of borate anions is formed and observed as a broad peak in the 11B NMR spectrum. The complex polyborate mixture yields a metastable solution that is difficult to crystallize. Given the enhanced solubility of the polyborate mixture formed when M/B = 0.33 it should follow that the hydrolysis of sodium octahydrotriborate, NaB3H8, can provide a greater storage capacity of hydrogen for fuel cell applications compared to sodium borohydride while maintaining a single phase. Accordingly, the hydrolysis of a 23 wt% NaB3H8 solution in water yields a solution having the same complex polyborate mixture as formed by mixing a 1:3 molar ratio of NaOH and B(OH)3 and releases >8 eq of H2. By optimizing the M/B ratio a complex mixture of soluble products, including B3O3(OH)52-, B4O5(OH)42-, B3O3(OH)4-, B5O6(OH)4- and B(OH)3, can be maintained as a single liquid phase throughout the hydrogen release process. Consequently, hydrolysis of NaB3H8 can provide a 40% increase in H2 storage density compared to the hydrolysis of NaBH4 given the decreased solubility of sodium metaborate. The authors would like to thank Jim Sisco and Paul Osenar of

  11. Characterization of the radiation environment for a large-area interim spent-nuclear-fuel storage facility

    NASA Astrophysics Data System (ADS)

    Fortkamp, Jonathan C.

    Current needs in the nuclear industry and movements in the political arena indicate that authorization may soon be given for development of a federal interim storage facility for spent nuclear fuel. The initial stages of the design work have already begun within the Department of Energy and are being reviewed by the Nuclear Regulatory Commission. This dissertation addresses the radiation environment around an interim spent nuclear fuel storage facility. Specifically the dissertation characterizes the radiation dose rates around the facility based on a design basis source term, evaluates the changes in dose due to varying cask spacing configurations, and uses these results to define some applicable health physics principles for the storage facility. Results indicate that dose rates from the facility are due primarily from photons from the spent fuel and Co-60 activation in the fuel assemblies. In the modeled cask system, skyshine was a significant contribution to dose rates at distances from the cask array, but this contribution can be reduced with an alternate cask venting system. With the application of appropriate health physics principles, occupation doses can be easily maintained far below regulatory limits and maintained ALARA.

  12. Down Select Report of Chemical Hydrogen Storage Materials, Catalysts, and Spent Fuel Regeneration Processes - May 2008

    SciTech Connect

    Ott, Kevin C.; Linehan, Sue; Lipiecki, Frank; Christopher, Aardahl L.

    2008-05-12

    Chemical Hydrogen Storage Center of Excellence FY2008 Second Quarter Milestone Report: Technical report describing assessment of hydrogen storage materials and progress towards meeting DOE’s hydrogen storage targets.

  13. Evaluation of the /sup 252/Cf-source-driven neutron noise analysis method for measuring the subcriticality of LWR fuel storage casks

    SciTech Connect

    Mihalczo, J.T.

    1987-01-01

    The /sup 252/Cf-source-driven neutron noise analysis method was evaluated to determine if it could be used to measure the subcriticality of storage casks of burnt light water reactor (LWR) fuel submerged in fuel storage pools, fully loaded and as they are being loaded. Measurements of k/sub eff/ would provide the parameter most directly related to the criticality safety of storage cask configurations of LWR fuel and could allow proper credit for fuel burnup without reliance on calculations. This, in turn, could lead to more cost-effective cask designs. Evaluation of the method for this application was based on experiments already completed at a critical experiments facility using arrays of pressurized water reactor (PWR) fuel pins typical of the size of storage cask configurations, the existence of neutron detectors that can function in shipping cask environments, and the ability to construct ionization chambers containing /sup 252/Cf of adequate intensity for these measurements.

  14. Biodegradation of international jet A-1 aviation fuel by microorganisms isolated from aircraft tank and joint hydrant storage systems.

    PubMed

    Itah, A Y; Brooks, A A; Ogar, B O; Okure, A B

    2009-09-01

    Microorganisms contaminating international Jet A-1 aircraft fuel and fuel preserved in Joint Hydrant Storage Tank (JHST) were isolated, characterized and identified. The isolates were Bacillus subtillis, Bacillus megaterium, Flavobacterium oderatum, Sarcina flava, Micrococcus varians, Pseudomonas aeruginosa, Bacillus licheniformis, Bacillus cereus and Bacillus brevis. Others included Candida tropicalis, Candida albicans, Saccharomyces estuari, Saccharomyces cerevisiae, Schizosaccharomyces pombe, Aspergillus flavus, Aspergillus niger, Aspergillus fumigatus, Cladosporium resinae, Penicillium citrinum and Penicillium frequentans. The viable plate count of microorganisms in the Aircraft Tank ranged from 1.3 (+/-0.01) x 104 cfu/mL to 2.2 (+/-1.6) x 104 cfu/mL for bacteria and 102 cfu/mL to 1.68 (+/-0.32) x 103 cfu/mL for fungi. Total bacterial counts of 1.79 (+/-0.2) x 104 cfu/mL to 2.58 (+/-0.04) x 104 cfu/mL and total fungal count of 2.1 (+/-0.1) x 103 cfu/mL to 2.28 (+/-0.5) x 103 cfu/mL were obtained for JHST. Selected isolates were re-inoculated into filter sterilized aircraft fuels and biodegradation studies carried out. After 14 days incubation, Cladosporium resinae exhibited the highest degradation rate with a percentage weight loss of 66 followed by Candida albicans (60.6) while Penicillium citrinum was the least degrader with a weight loss of 41.6%. The ability of the isolates to utilize the fuel as their sole source of carbon and energy was examined and found to vary in growth profile between the isolates. The results imply that aviation fuel could be biodegraded by hydrocarbonoclastic microorganisms. To avert a possible deterioration of fuel quality during storage, fuel pipe clogging and failure, engine component damage, wing tank corrosion and aircraft disaster, efficient routine monitoring of aircraft fuel systems is advocated.

  15. Spent-Fuel Test - Climax: An evaluation of the technical feasibility of geologic storage of spent nuclear fuel in granite: Executive summary of final results

    SciTech Connect

    Patrick, W.C.

    1986-09-02

    This summary volume outlines results that are covered in more detail in the final report of the Spent-Fuel Test - Climate project. The project was conducted between 1978 and 1983 in the granitic Climax stock at the Nevada Test Site. Results indicate that spent fuel can be safely stored for periods of years in this host medium and that nuclear waste so emplaced can be safely retrieved. We also evaluated the effects of heat and radiation (alone and in combination) on emplacement canisters and the surrounding rock mass. Storage of the spent-fuel affected the surrounding rock mass in measurable ways, but did not threaten the stability or safety of the facility at any time.

  16. Measurements and Characterization of Neutron and Gamma Dose Quantities in the Vicinity of an Independent Spent Fuel Storage Installation

    SciTech Connect

    Darois, E.L.; Keefer, D.G.; Plazeski, P.E.; Connell, J.

    2006-07-01

    As part of the decommissioning of the Maine Yankee Atomic Power Company (MYAPCo) nuclear power plant, the spent nuclear fuel is being temporarily stored in a dry cask storage facility on a portion of the original licensed property. Each of the spent nuclear fuel (SNF) storage casks hold approximately 25 spent fuel assemblies. Additional storage casks for the greater-than-Class C waste (GTCC) are also used. This waste is contained in 64 casks (60 SNF, 4 GTCC), each of which contain a substantial amount of concrete for shielding and structural purposes. The vertical concrete casks (VCCs) are typically separated by a distance of 4 and 6 feet. The storage casks are effective personnel radiation shields for most of the gamma and neutron radiation emitted from the fuel. However measurable gamma and neutron radiation levels are present in the vicinity of the casks. In order to establish a controlled area boundary around the facility such that a member of the public annual dose level of 0.25-mSv could be demonstrated, measurements of gamma and neutron dose equivalents were conducted. External gamma exposure rates were measured with a Pressurized Ion Chamber (PIC). Neutron absorbed dose and dose equivalent rates were measured with a Rossi-type tissue equivalent proportional counter (TEPC). Both gamma and neutron measurements were made at increasing distances from the facility as well as at a background location. The results of the measurements show that the distance to the 0.25-mSv per year boundary for 100% occupancy conditions varies from 321 feet to 441 feet from the geometric center of the storage pads, depending on the direction from the pad. For the TEPC neutron measurements, the average quality factor from the facilities was approximately 7.4. This quality factor compares well with the average quality factor of 7.6 that was measured during a calibration performed with a bare Cf-252 source. (authors)

  17. REGIONAL BINNING FOR CONTINUED STORAGE OF SPENT NUCLEAR FUEL AND HIGH-LEVEL WASTES

    SciTech Connect

    W. Lee Poe, Jr

    1998-10-01

    In the Continued Storage Analysis Report (CSAR) (Reference 1), DOE decided to analyze the environmental consequences of continuing to store the commercial spent nuclear fuel (SNF) at 72 commercial nuclear power sites and DOE-owned spent nuclear fuel and high-level waste at five Department of Energy sites by region rather than by individual site. This analysis assumes that three commercial facilities pairs--Salem and Hope Creek, Fitzpatrick and Nine-Mile Point, and Dresden and Moms--share common storage due to their proximity to each other. The five regions selected for this analysis are shown on Figure 1. Regions 1, 2, and 3 are the same as those used by the Nuclear Regulatory Commission in their regulatory oversight of commercial power reactors. NRC Region 4 was subdivided into two regions to more appropriately define the two different climates that exist in NRC Region 4. A single hypothetical site in each region was assumed to store all the SNF and HLW in that region. Such a site does not exist and has no geographic location but is a mathematical construct for analytical purposes. To ensure that the calculated results for the regional analyses reflect appropriate inventory, facility and material degradation, and radionuclide transport, the waste inventories, engineered barriers, and environmental conditions for the hypothetical sites were developed from data for each of the existing sites within the given region. Weighting criteria to account for the amount and types of SNF and HLW at each site were used in the development of the environmental data for the regional site, such that the results of the analyses for the hypothetical site were representative of the sum of the results of each actual site if they had been modeled independently. This report defines the actual site data used in development of this hypothetical site, shows how the individual site data was weighted to develop the regional site, and provides the weighted data used in the CSAR analysis. It is

  18. ORIGAMI Automator Primer. Automated ORIGEN Source Terms and Spent Fuel Storage Pool Analysis

    SciTech Connect

    Wieselquist, William A.; Thompson, Adam B.; Bowman, Stephen M.; Peterson, Joshua L.

    2016-04-01

    Source terms and spent nuclear fuel (SNF) storage pool decay heat load analyses for operating nuclear power plants require a large number of Oak Ridge Isotope Generation and Depletion (ORIGEN) calculations. SNF source term calculations also require a significant amount of bookkeeping to track quantities such as core and assembly operating histories, spent fuel pool (SFP) residence times, heavy metal masses, and enrichments. The ORIGEN Assembly Isotopics (ORIGAMI) module in the SCALE code system provides a simple scheme for entering these data. However, given the large scope of the analysis, extensive scripting is necessary to convert formats and process data to create thousands of ORIGAMI input files (one per assembly) and to process the results into formats readily usable by follow-on analysis tools. This primer describes a project within the SCALE Fulcrum graphical user interface (GUI) called ORIGAMI Automator that was developed to automate the scripting and bookkeeping in large-scale source term analyses. The ORIGAMI Automator enables the analyst to (1) easily create, view, and edit the reactor site and assembly information, (2) automatically create and run ORIGAMI inputs, and (3) analyze the results from ORIGAMI. ORIGAMI Automator uses the standard ORIGEN binary concentrations files produced by ORIGAMI, with concentrations available at all time points in each assembly’s life. The GUI plots results such as mass, concentration, activity, and decay heat using a powerful new ORIGEN Post-Processing Utility for SCALE (OPUS) GUI component. This document includes a description and user guide for the GUI, a step-by-step tutorial for a simplified scenario, and appendices that document the file structures used.

  19. Modeling evaporation from spent nuclear fuel storage pools: A diffusion approach

    NASA Astrophysics Data System (ADS)

    Hugo, Bruce Robert

    Accurate prediction of evaporative losses from light water reactor nuclear power plant (NPP) spent fuel storage pools (SFPs) is important for activities ranging from sizing of water makeup systems during NPP design to predicting the time available to supply emergency makeup water following severe accidents. Existing correlations for predicting evaporation from water surfaces are only optimized for conditions typical of swimming pools. This new approach modeling evaporation as a diffusion process has yielded an evaporation rate model that provided a better fit of published high temperature evaporation data and measurements from two SFPs than other published evaporation correlations. Insights from treating evaporation as a diffusion process include correcting for the effects of air flow and solutes on evaporation rate. An accurate modeling of the effects of air flow on evaporation rate is required to explain the observed temperature data from the Fukushima Daiichi Unit 4 SFP during the 2011 loss of cooling event; the diffusion model of evaporation provides a significantly better fit to this data than existing evaporation models.

  20. Development method of Hybrid Energy Storage System, including PEM fuel cell and a battery

    NASA Astrophysics Data System (ADS)

    Ustinov, A.; Khayrullina, A.; Borzenko, V.; Khmelik, M.; Sveshnikova, A.

    2016-09-01

    Development of fuel cell (FC) and hydrogen metal-hydride storage (MH) technologies continuously demonstrate higher efficiency rates and higher safety, as hydrogen is stored at low pressures of about 2 bar in a bounded state. A combination of a FC/MH system with an electrolyser, powered with a renewable source, allows creation of an almost fully autonomous power system, which could potentially replace a diesel-generator as a back-up power supply. However, the system must be extended with an electro-chemical battery to start-up the FC and compensate the electric load when FC fails to deliver the necessary power. Present paper delivers the results of experimental and theoretical investigation of a hybrid energy system, including a proton exchange membrane (PEM) FC, MH- accumulator and an electro-chemical battery, development methodology for such systems and the modelling of different battery types, using hardware-in-the-loop approach. The economic efficiency of the proposed solution is discussed using an example of power supply of a real town of Batamai in Russia.

  1. Stress corrosion cracking of stainless-steel canister for concrete cask storage of spent fuel

    NASA Astrophysics Data System (ADS)

    Tani, Jun-ichi; Mayuzumi, Masami; Hara, Nobuyoshi

    2008-09-01

    Resistance to external stress corrosion cracking (ESCC) and crevice corrosion were examined for various candidate canister materials in the spent fuel dry storage condition using concrete casks. A constant load ESCC test was conducted on the candidate materials in air after deposition of simulated sea salt particles on the specimen gage section. Highly corrosion resistant stainless steels (SS), S31260 and S31254, did not fail for more than 46 000 h at 353 K with relative humidity of 35%, although the normal stainless steel, S30403 SS failed within 500 h by ESCC. Crevice corrosion potentials of S31260 and S31254 SS became larger than 0.9 V (SCE) in synthetic sea water at temperatures below 298 K, while those of S30403 and S31603 SS were less than 0 V (SCE) at the same temperature range. No rust was found on S31260 and S31254 SS specimens at temperatures below 298 K in the atmospheric corrosion test, which is consistent with the temperature dependency of crevice corrosion potential. From the test result, the critical temperature of atmospheric corrosion was estimated to be 293 K for both S31260 and S31254 SS. Utilizing the ESCC test result and the critical temperature, together with the weather station data and the estimated canister wall temperature, the integrity of canister was assessed from the view point of ESCC.

  2. Annual Radiological Environmental Monitoring Program Report for the Three Mile Island, Unit 2, Independent Spent Fuel Storage Installation

    SciTech Connect

    Hall, Gregory Graham

    2002-02-01

    This report presents the results of the 2001 Radiological Environmental Monitoring Program conducted in accordance with 10 CFR 72.44 for the Three Mile Island, Unit 2, Independent Spent Fuel Storage Installation. A description of the facility and the monitoring program is provided. The results of monitoring the two predominant radiation exposure pathways, potential airborne radioactivity releases and direct radiation exposure, indicate the facility operation has not contributed to any increase in the estimated maximum potential dose commitment to the general public.

  3. Annual Radiological Environmental Monitoring Program Report for the Three Mile Island, Unit 2, Independent Spent Fuel Storage Installation (2005)

    SciTech Connect

    Hall, Gregory Graham

    2001-02-01

    This report presents the results of the 2000 Radiological Environmental Monitoring Program conducted in accordance with 10 CFR 72.44 for the Three Mile Island, Unit 2, Independent Spent Fuel Storage Installation. A description of the facility and the monitoring program is provided. The results of monitoring the two predominant radiation exposure pathways, potential airborne radioactivity releases and direct radiation exposure, indicate the facility operation has not contributed to any increase in the estimated maximum potential dose commitment to the general public.

  4. Annual Radiological Environmental Monitoring Program Report for the Three Mile Island - Unit 2 Independent Spent Fuel Storage Installation

    SciTech Connect

    Gregory G. Hall

    2003-02-01

    This report presents the results of the 2002 Radiological Environmental Monitoring Program conducted in accordance with 10 CFR 72.44 for the Three Mile Island, Unit 2, Independent Spent Fuel Storage Installation. A description of the facility and the monitoring program is provided. The results of monitoring the two predominant radiation exposure pathways, potential airborne radioactivity releases and direct radiation exposure, indicate the facility operation has not contributed to any increase in the estimated maximum potential dose commitment to the general public.

  5. Annual Radiological Environmental Monitoring Program Report for the Three Mile Island, Unit 2, Independent Spent Fuel Storage Installation

    SciTech Connect

    Hall, Gregory Graham

    2001-02-01

    This report presents the results of the 2000 Radiological Environmental Monitoring Program conducted in accordance with 10 CFR 72.44 for the Three Mile Island, Unit 2, Independent Spent Fuel Storage Installation. A description of the facility and the monitoring program is provided. The results of monitoring the two predominant radiation exposure pathways, potential airborne radioactivity releases and direct radiation exposure, indicate the facility operation has not contributed to any increase in the estimated maximum potential dose commitment to the general public.

  6. Annual Radiological Environmental Monitoring Program Report for the Three Mile Island, Unit 2, Independent Spent Fuel Storage Installation

    SciTech Connect

    G. G. Hall

    2000-02-01

    This report presents the results of the 1999 Radiological Environmental Monitoring Program conducted in accordance with 10 CFR 72.44 for the Three Mile Island, Unit 2, Independent Spent Fuel Storage Installation. A description of the facility and the monitoring program is provided. The results of monitoring the two predominant radiation exposure pathways, potential airborne radioactivity releases and direct radiation exposure, indicate facility operation has not contributed to any increase in the estimated maximum potential dose commitment to the general public.

  7. Annual Radiological Environmental Monitoring Program Report for the Fort St. Vrain Independent Spent Fuel Storage Installation (2005)

    SciTech Connect

    J. R. Newkirk; F. J. Borst

    2001-02-01

    This report presents the results of the 2003 Radiological Environmental Monitoring Program conducted in accordance with 10 CFR 72.44 for the Fort St. Vrain Independent Spent Fuel Storage Installation. A description of the facility and the monitoring program is provided. The results of monitoring the predominant radiation exposure pathway, direct radiation exposure, indicate the facility operation has not contributed to any increase in the estimated maximum potential dose commitment to the general public.

  8. Spent Nuclear Fuel (SNF) Project Cold Vacuum Drying (CVD) Facility Operations Manual

    SciTech Connect

    IRWIN, J.J.

    2000-11-18

    The mission of the Spent Nuclear Fuel (SNF) Project Cold Vacuum Drying Facility (CVDF) is to achieve the earliest possible removal of free water from Multi-Canister Overpacks (MCOs). The MCOs contain metallic uranium SNF that have been removed from the 100K Area fuel storage water basins (i.e., the K East and K West Basins) at the US. Department of Energy Hanford Site in Southeastern Washington state. Removal of free water is necessary to halt water-induced corrosion of exposed uranium surfaces and to allow the MCOs and their SNF payloads to be safely transported to the Hanford Site 200 East Area and stored within the SNF Project Canister Storage Building (CSB). The CVDF is located within a few hundred yards of the basins, southwest of the 165KW Power Control Building and the 105KW Reactor Building. The site area required for the facility and vehicle circulation is approximately 2 acres. Access and egress is provided by the main entrance to the 100K inner area using existing roadways. The CVDF will remove free. water from the MCOs to reduce the potential for continued fuel-water corrosion reactions. The cold vacuum drying process involves the draining of bulk water from the MCO and subsequent vacuum drying. The MCO will be evacuated to a pressure of 8 torr or less and backfilled with an inert gas (helium). The MCO will be sealed, leak tested, and then transported to the CSB within a sealed shipping cask. (The MCO remains within the same shipping Cask from the time it enters the basin to receive its SNF payload until it is removed from the Cask by the CSB MCO handling machine.) The CVDF subproject acquired the required process systems, supporting equipment, and facilities. The cold vacuum drying operations result in an MCO containing dried fuel that is prepared for shipment to the CSB by the Cask transportation system. The CVDF subproject also provides equipment to dispose of solid wastes generated by the cold vacuum drying process and transfer process water removed

  9. BWR spent fuel storage cask performance test. Volume 1. Cask handling experience and decay heat, heat transfer, and shielding data

    SciTech Connect

    McKinnon, M.A.; Doman, J.W.; Tanner, J.E.; Guenther, R.J.; Creer, J.M.; King, C.E.

    1986-02-01

    This report documents a heat transfer and shielding performance test conducted on a Ridihalgh, Eggers and Associates REA 2023 boiling water reactor (BWR) spent fuel storage cask. The testing effort consisted of three parts: pretest preparations, performance testing, and post-test activities. Pretest preparations included conducting cask handling dry runs and characterizing BWR spent fuel assemblies from Nebraska Public Power District's Cooper Nuclear Station. The performance test matrix included 14 runs consisting of two loadings, two cask orientations, and three backfill environments. Post-test activities included calorimetry and axial radiation scans of selected fuel assemblies, in-basin sipping of each assembly, crud collection, video and photographic scans, and decontamination of the cask interior and exterior.

  10. Optimal energy management in a dual-storage fuel-cell hybrid vehicle using multi-dimensional dynamic programming

    NASA Astrophysics Data System (ADS)

    Ansarey, Mehdi; Shariat Panahi, Masoud; Ziarati, Hussein; Mahjoob, Mohammad

    2014-03-01

    Hybrid storage systems consisting of battery and ultra-capacitor have recently emerged as an alternative to the conventional single buffer layout in hybrid vehicles. Their high power and energy density could improve the performance indices of the vehicle, provided that an optimal energy management strategy is employed that could handle systems with multiple degrees of freedom (DOF). The majority of existing energy management strategies is limited to a single DOF and the small body of work on multi-DOF systems is mainly heuristic-based. We propose an optimal solution to the energy management problem in fuel-cell hybrid vehicles with dual storage buffer for fuel economy in a standard driving cycle using multi-dimensional dynamic programming (MDDP). An efficient MDDP code is developed using MATLAB™'s vectorization feature that helps reduce the inherently high computational cost of MDDP. Results of multiple simulated experiments are presented to demonstrate the applicability and performance of the proposed strategy. A comparison is also made between a single and a double buffer fuel-cell hybrid vehicle in various driving cycles to determine the maximum reduction in fuel consumption that can be achieved by the addition of an ultra-capacitor.

  11. Used fuel storage monitoring using novel 4He scintillation fast neutron detectors and neutron energy discrimination analysis

    NASA Astrophysics Data System (ADS)

    Kelley, Ryan P.

    With an increasing quantity of spent nuclear fuel being stored at power plants across the United States, the demand exists for a new method of cask monitoring. Certifying these casks for transportation and long-term storage is a unique dilemma: their sealed nature lends added security, but at the cost of requiring non-invasive measurement techniques to verify their contents. This research will design and develop a new method of passively scanning spent fuel casks using 4He scintillation detectors to make this process more accurate. 4He detectors are a relatively new technological development whose full capabilities have not yet been exploited. These detectors take advantage of the high 4He cross section for elastic scattering at fast neutron energies, particularly the resonance around 1 MeV. If one of these elastic scattering interactions occurs within the detector, the 4He nucleus takes energy from the incident neutron, then de-excites by scintillation. Photomultiplier Tubes (PMTs) at either end of the detector tube convert this emitted light into an electrical signal. The goal of this research is to use the neutron spectroscopy features of 4He scintillation detectors to maintain accountability of spent fuel in storage. This project will support spent fuel safeguards and the detection of fissile material, in order to minimize the risk of nuclear proliferation and terrorism.

  12. NDE of copper canisters for long-term storage of spent nuclear fuel from the Swedish nuclear power plants

    NASA Astrophysics Data System (ADS)

    Stepinski, Tadeusz

    2003-07-01

    Sweden has been intensively developing methods for long term storage of spent fuel from the nuclear power plants for twenty-five years. A dedicated research program has been initiated and conducted by the Swedish company SKB (Swedish Nuclear Fuels and Waste Management Co.). After the interim storage SKB plans to encapsulate spent nuclear fuel in copper canisters that will be placed at a deep repository located in bedrock. The canisters filled with fuel rods will be sealed by an electron beam weld. This paper presents three complementary NDE techniques used for assessing the sealing weld in copper canisters, radiography, ultrasound, and eddy current. A powerful X-ray source and a digital detector are used for the radiography. An ultrasonic array system consisting of a phased ultrasonic array and a multi-channel electronics is used for the ultrasonic examination. The array system enables electronic focusing and rapid electronic scanning eliminating the use of a complicated mechanical scanner. A specially designed eddy current probe capable of detecting small voids at the depth up to 4 mm in copper is used for the eddy current inspection. Presently, all the NDE techniques are verified in SKB's Canister Laboratory where full scale canisters are welded and examined.

  13. Evaluation of Storage for Transportation Equipment, Unfueled Convertors, and Fueled Convertors at the INL for the Radioisotope Power Systems Program

    SciTech Connect

    S. G. Johnson; K. L. Lively

    2010-05-01

    This report contains an evaluation of the storage conditions required for several key components and/or systems of the Radioisotope Power Systems (RPS) Program at the Idaho National Laboratory (INL). These components/systems (transportation equipment, i.e., type ‘B’ shipping casks and the radioisotope thermo-electric generator transportation systems (RTGTS), the unfueled convertors, i.e., multi-hundred watt (MHW) and general purpose heat source (GPHS) RTGs, and fueled convertors of several types) are currently stored in several facilities at the Materials and Fuels Complex (MFC) site. For various reasons related to competing missions, inherent growth of the RPS mission at the INL and enhanced efficiency, it is necessary to evaluate their current storage situation and recommend the approach that should be pursued going forward for storage of these vital RPS components and systems. The reasons that drive this evaluation include, but are not limited to the following: 1) conflict with other missions at the INL of higher priority, 2) increasing demands from the INL RPS Program that exceed the physical capacity of the current storage areas and 3) the ability to enhance our current capability to care for our equipment, decrease maintenance costs and increase the readiness posture of the systems.

  14. Thermal Mode of Tanks for Storage Fuel of Thermal Power Plants and Boiler with the Influence of Engineering Facilities in the Area of their Placement

    NASA Astrophysics Data System (ADS)

    Polovnikov, V. Yu.; Makhsutbek, F. T.; Ozhikenova, Zh. F.

    2016-02-01

    This paper describes the numerical modeling of heat transfer in the area placing of the tank for storage fuel of thermal power plant and boiler with the influence of engineering construction. We have established that the presence of engineering structures in the area of placing of the tank for storage fuel of thermal power plant and boiler have little effect on the change of heat loss.

  15. DEMOLISHING A COLD-WAR-ERA FUEL STORAGE BASIN SUPERSTRUCTURE LADEN WITH ASBESTOS

    SciTech Connect

    LLOYD ER; ORGILL TK; DAGAN EB

    2008-11-25

    The K East (KE) Basin facilities are located near the north end of the Hanford Site's 100 K area. The facilities were built in 1950 as part of the KE Reactor complex and constructed within 400 meters of the Columbia River, which is the largest river in the Pacific Northwest and by volume the fourth largest river in the United States. The basin, located adjacent to the reactor, was used for the underwater storage of irradiated nuclear fuel discharged from the reactor. The basin was covered by a superstructure comprising steel columns and beams, concrete, and cement asbestos board (CAB) siding. The project's mission was to complete demolition of the structure over the K East basin within six months of tumover from facility deactivation activities. The demolition project team implemented open-air demolition techniques to demolish the facility to slab-on-grade. Several innovative techniques were used to control contamination and maintain contamination control within the confines of the demolition exclusion zone. The techniques, which focused on a defense-in-depth approach, included spraying fixatives on interior and exterior surfaces before demolition began; applying fixatives; misting using a fine spray of water during demolition; and demolishing the facility systematically. Another innovation that aided demolition was to demolish the building with the non-friable CAB remaining in place. The CAB siding covered the exterior of the building, portions of the interior walls, and was an integral part of the multiple layered roof. The project evaluated the risks involved in removing the CAB material in a radiologically contaminated environment and determined that radiological dose rates and exposure to radiological contamination and industrial hazards would be significantly reduced by removing the CAB during demolition using heavy equipment. The ability to perform this demolition safely and without spreading contamination (radiological or asbestos) demonstrates that similar

  16. Evaluation of Aluminum-Boron Carbide Neutron Absorbing Materials for Interim Storage of Used Nuclear Fuel

    SciTech Connect

    Wang, Lumin; Wierschke, Jonathan Brett

    2015-04-08

    The objective of this work was to understand the corrosion behavior of Boral® and Bortec® neutron absorbers over long-term deployment in a used nuclear fuel dry cask storage environment. Corrosion effects were accelerated by flowing humidified argon through an autoclave at temperatures up to 570°C. Test results show little corrosion of the aluminum matrix but that boron is leaching out of the samples. Initial tests performed at 400 and 570°C were hampered by reduced flow caused by the rapid build-up of solid deposits in the outlet lines. Analysis of the deposits by XRD shows that the deposits are comprised of boron trioxide and sassolite (H3BO3). The collection of boron- containing compounds in the outlet lines indicated that boron was being released from the samples. Observation of the exposed samples using SEM and optical microscopy show the growth of new phases in the samples. These phases were most prominent in Bortec® samples exposed at 570°C. Samples of Boral® exposed at 570°C showed minimal new phase formation but showed nearly the complete loss of boron carbide particles. Boron carbide loss was also significant in Boral samples at 400°C. However, at 400°C phases similar to those found in Bortec® were observed. The rapid loss of the boron carbide particles in the Boral® is suspected to inhibit the formation of the new secondary phases. However, Material samples in an actual dry cask environment would be exposed to temperatures closer to 300°C and less water than the lowest test. The results from this study conclude that at the temperature and humidity levels present in a dry cask environment, corrosion and boron leaching will have no effect on the performance of Boral® and Bortec® to maintain criticality control.

  17. Technical Basis for Peak Reactivity Burnup Credit for BWR Spent Nuclear Fuel in Storage and Transportation Systems

    SciTech Connect

    Marshall, William BJ J; Ade, Brian J; Bowman, Stephen M; Gauld, Ian C; Ilas, Germina; Mertyurek, Ugur; Radulescu, Georgeta

    2015-01-01

    Oak Ridge National Laboratory and the United States Nuclear Regulatory Commission have initiated a multiyear project to investigate application of burnup credit for boiling-water reactor (BWR) fuel in storage and transportation casks. This project includes two phases. The first phase (1) investigates applicability of peak reactivity methods currently used in spent fuel pools (SFPs) to storage and transportation systems and (2) evaluates validation of both reactivity (keff) calculations and burnup credit nuclide concentrations within these methods. The second phase will focus on extending burnup credit beyond peak reactivity. This paper documents the first phase, including an analysis of lattice design parameters and depletion effects, as well as both validation components. Initial efforts related to extended burnup credit are discussed in a companion paper. Peak reactivity analyses have been used in criticality analyses for licensing of BWR fuel in SFPs over the last 20 years. These analyses typically combine credit for the gadolinium burnable absorber present in the fuel with a modest amount of burnup credit. Gadolinium burnable absorbers are used in BWR assemblies to control core reactivity. The burnable absorber significantly reduces assembly reactivity at beginning of life, potentially leading to significant increases in assembly reactivity for burnups less than 15–20 GWd/MTU. The reactivity of each fuel lattice is dependent on gadolinium loading. The number of gadolinium-bearing fuel pins lowers initial lattice reactivity, but it has a small impact on the burnup and reactivity of the peak. The gadolinium concentration in each pin has a small impact on initial lattice reactivity but a significant effect on the reactivity of the peak and the burnup at which the peak occurs. The importance of the lattice parameters and depletion conditions are primarily determined by their impact on the gadolinium depletion. Criticality code validation for BWR burnup

  18. Forest fuel reduction alters fire severity and long-term carbon storage in three Pacific Northwest ecosystems.

    PubMed

    Mitchell, Stephen R; Harmon, Mark E; O'Connell, Kari E B

    2009-04-01

    Two forest management objectives being debated in the context of federally managed landscapes in the U.S. Pacific Northwest involve a perceived trade-off between fire restoration and carbon sequestration. The former strategy would reduce fuel (and therefore C) that has accumulated through a century of fire suppression and exclusion which has led to extreme fire risk in some areas. The latter strategy would manage forests for enhanced C sequestration as a method of reducing atmospheric CO2 and associated threats from global climate change. We explored the trade-off between these two strategies by employing a forest ecosystem simulation model, STANDCARB, to examine the effects of fuel reduction on fire severity and the resulting long-term C dynamics among three Pacific Northwest ecosystems: the east Cascades ponderosa pine forests, the west Cascades western hemlock-Douglas-fir forests, and the Coast Range western hemlock-Sitka spruce forests. Our simulations indicate that fuel reduction treatments in these ecosystems consistently reduced fire severity. However, reducing the fraction by which C is lost in a wildfire requires the removal of a much greater amount of C, since most of the C stored in forest biomass (stem wood, branches, coarse woody debris) remains unconsumed even by high-severity wildfires. For this reason, all of the fuel reduction treatments simulated for the west Cascades and Coast Range ecosystems as well as most of the treatments simulated for the east Cascades resulted in a reduced mean stand C storage. One suggested method of compensating for such losses in C storage is to utilize C harvested in fuel reduction treatments as biofuels. Our analysis indicates that this will not be an effective strategy in the west Cascades and Coast Range over the next 100 years. We suggest that forest management plans aimed solely at ameliorating increases in atmospheric CO2 should forgo fuel reduction treatments in these ecosystems, with the possible exception of

  19. Application of Framework for Integrating Safety, Security and Safeguards (3Ss) into the Design Of Used Nuclear Fuel Storage Facility

    SciTech Connect

    Badwan, Faris M.; Demuth, Scott F

    2015-01-06

    Department of Energy’s Office of Nuclear Energy, Fuel Cycle Research and Development develops options to the current commercial fuel cycle management strategy to enable the safe, secure, economic, and sustainable expansion of nuclear energy while minimizing proliferation risks by conducting research and development focused on used nuclear fuel recycling and waste management to meet U.S. needs. Used nuclear fuel is currently stored onsite in either wet pools or in dry storage systems, with disposal envisioned in interim storage facility and, ultimately, in a deep-mined geologic repository. The safe management and disposition of used nuclear fuel and/or nuclear waste is a fundamental aspect of any nuclear fuel cycle. Integrating safety, security, and safeguards (3Ss) fully in the early stages of the design process for a new nuclear facility has the potential to effectively minimize safety, proliferation, and security risks. The 3Ss integration framework could become the new national and international norm and the standard process for designing future nuclear facilities. The purpose of this report is to develop a framework for integrating the safety, security and safeguards concept into the design of Used Nuclear Fuel Storage Facility (UNFSF). The primary focus is on integration of safeguards and security into the UNFSF based on the existing Nuclear Regulatory Commission (NRC) approach to addressing the safety/security interface (10 CFR 73.58 and Regulatory Guide 5.73) for nuclear power plants. The methodology used for adaptation of the NRC safety/security interface will be used as the basis for development of the safeguards /security interface and later will be used as the basis for development of safety and safeguards interface. Then this will complete the integration cycle of safety, security, and safeguards. The overall methodology for integration of 3Ss will be proposed, but only the integration of safeguards and security will be applied to the design of the

  20. A quasi-Delphi study on technological barriers to the uptake of hydrogen as a fuel for transport applications-Production, storage and fuel cell drivetrain considerations

    NASA Astrophysics Data System (ADS)

    Hart, David; Anghel, Alexandra T.; Huijsmans, Joep; Vuille, François

    The introduction of hydrogen in transport, particularly using fuel cell vehicles, faces a number of technical and non-technical hurdles. However, their relative importance is unclear, as are the levels of concern accorded them within the expert community conducting research and development within this area. To understand what issues are considered by experts working in the field to have significant potential to slow down or prevent the introduction of hydrogen technology in transport, a study was undertaken, primarily during 2007. Three key technology areas within hydrogen transport were selected - hydrogen storage, fuel cell drivetrains, and small-scale hydrogen production - and interviews with selected experts conducted. Forty-nine experts from 34 organisations within the fuel cell, automotive, industrial gas and other related industries participated, in addition to some key academic and government figures. The survey was conducted in China, Japan, North America and Europe, and analysed using conventional mathematical techniques to provide weighted and averaged rankings of issues viewed as important by the experts. It became clear both from the interviews and the subsequent analysis that while a primary concern in China was fundamental technical performance, in the other regions cost and policy were rated more highly. Although a few individual experts identified possible technical showstoppers, the overall message was that pre-commercial hydrogen fuel cell vehicles could realistically be on the road in tens of thousands within 5 years, and that full commercialisation could take place within 10-15 years, without the need for radical technical breakthroughs. Perhaps surprisingly, the performance of hydrogen storage technologies was not viewed as a showstopper, though cost was seen as a significant challenge. Overall, however, coherent policy development was more frequently identified as a major issue to address.

  1. The effects of organosulfur compounds upon the storage stability of Jet A fuel. M.S. Thesis. Final Report

    NASA Technical Reports Server (NTRS)

    Heneman, F. C.

    1981-01-01

    This study examined the effect of sulfur-containing compounds on the storage stability of Jet A turbine fuel. It was found that alkyl sulfides and disulfides increased the fuel's stability while all thiols and thiophene derivatives tested decreased fuel stability (increased deposit formation) at temperatures and sulfur concentrations selected. Linear Arrhenius plots of sulfur-spiked fuel samples demonstrated that deposit formation decreased with increased slope for all alkyl sulfides, alkyl disulfides, thiols, and thiophene derivatives. A plot of insoluble deposit vs. concentration of added alkyl sulfide produces a negative slope. It appears that the inhibiting mechanism for alkyl sulfides is a result of the compound's reactivity with intermediate soluble precursors to deposit in the fuel. A method of approximating the relative basicity of weak organosulfur bases was developed via measurement of their resonance chemical shifts in proton NMR. Linear plots of log gm. deposit vs. change in chemical shift (shift differences between sulfur bases neat and complexed with I2) were found for alkyl sulfides and alkyl thiols. This suggests the possibility that increased deposit formation is due to base catalysis with these compound classes.

  2. Fast stack activation procedure and effective long-term storage for high-performance polymer electrolyte membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Yang, Seung Yong; Seo, Dong-Jun; Kim, Myeong-Ri; Seo, Min Ho; Hwang, Sun-Mi; Jung, Yong-Min; Kim, Beom-Jun; Yoon, Young-Gi; Han, Byungchan; Kim, Tae-Young

    2016-10-01

    Time-saving stack activation and effective long-term storage are one of most important issues that must be resolved for the commercialization of polymer electrolyte membrane fuel cell (PEMFC). Herein, we developed the cost-effective stack activation method to finish the whole activation within 30 min and the long-term storage method by using humidified N2 without any significant decrease in cell's performance for 30 days. Specifically, the pre-activation step with the direct injection of DI water into the stack and storage at 65 or 80 °C for 2 h increases the distinctive phase separation between the hydrophobic and hydrophilic regions in Nafion membrane, which significantly reduces the total activation time within 30 min. Additionally, the long-term storage with humidified N2 has no effect on the Pt oxidation and drying of Nafion membrane for 30 days due to its exergonic reaction in the cell. As a result, the high water content in Nafion membrane and the decrease of Pt oxidation are the critical factors that have a strong influence on the activation and long-term storage for high-performance PEMFC.

  3. Use of excess solar array power by regenerative fuel cell energy storage systems in low earth orbit

    SciTech Connect

    Hoberecht, M.A.; Green, R.D.

    1997-12-31

    Regenerative Fuel Cells (RFC`s) are a competing energy storage system technology for a number of low-earth-orbit applications. The system is comprised of an electrolyzer which utilizes solar array power to convert water into hydrogen and oxygen reactants, a fuel cell that recombines the reactants back into water and produces power during eclipse, and associated controls and reactant storage. Round-trip electrical efficiencies of RFC systems are typically lower than competing battery energy storage systems. This results in larger solar arrays for the same application, with inherent drag, mass, and cost penalties. However, the increase in solar array size can be limited, if not totally eliminated, because of the ability of RFC systems to use excess solar array power. For this paper, the International Space Station (ISS) application was chosen for evaluation and comparison of battery and RFC energy storage systems. This selection was based on the authors` familiarity with the ISS design and the availability of a detailed in-house computer model specific to the ISS electrical power system (SPACE). Combined altitude and orientation effects, seasonal variations, and beginning-of-life solar array performance were examined for individual orbits at and above specified reference points. Charging characteristics of the battery system were also investigated. The evaluation allowed a comparison of the solar array size required with the existing battery energy storage system to the projected solar array size required with a possible RFC system. The results of the examination indicated that no increase in solar array size would be necessary for the ISS if outfitted with a RFC energy storage system, in spite of the lower round-trip electrical efficiency. For orbits with a minimum of excess power, the battery energy storage system used only 73% of the available solar array power as compared to 100% usage for a RFC system. The usage by the battery system was far less for the orbits

  4. Advanced onboard storage concepts for natural gas-fueled automotive vehicles

    NASA Technical Reports Server (NTRS)

    Remick, R. J.; Elkins, R. H.; Camara, E. H.; Bulicz, T.

    1984-01-01

    The evaluation of several advanced concepts for storing natural gas at reduced pressure is presented. The advanced concepts include adsorption on high surface area carbon, adsorption in high porosity zeolite, storage in clathration compounds, and storage by dissolution in liquid solvents. High surface area carbons with high packing density are the best low pressure storage mediums. A simple mathematical model is used to compare adsorption storage on a state of the art carbon with compression storage. The model indicates that a vehicle using adsorption storage of natural gas at 3.6 MPa will have 36 percent of the range, on the EPA city cycle, of a vehicle operating on a compression storage system having the same physical size and a peak storage pressure of 21 MPa. Preliminary experiments and current literature suggest that the storage capacity of state of the art carbons could be improved by as much as 50 percent, and that adsorption systems having a capacity equal to compression storage at 14 MPa are possible without exceeding a maximum pressure of 3.6 MPa.

  5. Determination of the steam volume fraction in the event of loss of cooling of the spent fuel storage pool

    NASA Astrophysics Data System (ADS)

    Sledkov, R. M.; Galkin, I. Yu.; Stepanov, O. E.; Strebnev, N. A.

    2017-01-01

    When one solves engineering problems related to the cooling of fuel assemblies (FAs) in a spent fuel storage pool (SFSP) and the assessment of nuclear safety of FA storage in an SFSP in the initial event of loss of SFSP cooling, it is essential to determine the coolant density and, consequently, steam volume fractions φ in bundles of fuel elements at a pressure of 0.1-0.5 MPa. Such formulas for calculating φ that remain valid in a wide range of operating parameters and geometric shapes of channels and take the conditions of loss of SFSP cooling into account are currently almost lacking. The results of systematization and analysis of the available formulas for φ are reported in the present study. The calculated values were compared with the experimental data obtained in the process of simulating the conditions of FA cooling in an SFSP in the event of loss of its cooling. Six formulas for calculating the steam volume fraction, which were used in this comparison, were chosen from a total of 11 considered relations. As a result, the formulas producing the most accurate values of φ in the conditions of loss of SFSP cooling were selected. In addition, a relation that allows one to perform more accurate calculations of steam volume fractions in the conditions of loss of SFSP cooling was derived based on the Fedorov formula in the two-group approximation.

  6. Nickel-based anode with water storage capability to mitigate carbon deposition for direct ethanol solid oxide fuel cells.

    PubMed

    Wang, Wei; Su, Chao; Ran, Ran; Zhao, Bote; Shao, Zongping; Tade, Moses O; Liu, Shaomin

    2014-06-01

    The potential to use ethanol as a fuel places solid oxide fuel cells (SOFCs) as a sustainable technology for clean energy delivery because of the renewable features of ethanol versus hydrogen. In this work, we developed a new class of anode catalyst exemplified by Ni+BaZr0.4Ce0.4Y0.2O3 (Ni+BZCY) with a water storage capability to overcome the persistent problem of carbon deposition. Ni+BZCY performed very well in catalytic efficiency, water storage capability and coking resistance tests. A stable and high power output was well maintained with a peak power density of 750 mW cm(-2) at 750 °C. The SOFC with the new robust anode performed for seven days without any sign of performance decay, whereas SOFCs with conventional anodes failed in less than 2 h because of significant carbon deposition. Our findings indicate the potential applications of these water storage cermets as catalysts in hydrocarbon reforming and as anodes for SOFCs that operate directly on hydrocarbons.

  7. Comprehensive Study of a Sorption-Based Storage Vessel with Thermal Control for Gaseous Fuel

    NASA Astrophysics Data System (ADS)

    Vasil'ev, L. L.; Kanonchik, L. E.; Tsitovich, A. P.

    2016-07-01

    The authors have presented a calculation model for a gas storage vessel with a microporous adsorbent and a heat pipe with radial fi nning. The model was verifi ed by experimental data derived during the testing of a methane storage vessel in the regime of complete operating cycle. The authors have given the results of parametric investigation which confi rm the important role of the factor of cooling of the adsorbent layer during the charging of the storage vessel.

  8. Implementation process and deployment initiatives for the regionalized storage of DOE-owned spent nuclear fuel

    SciTech Connect

    Dearien, J.A.; Smith, N.E.L.

    1995-12-31

    This report describes how DOE-owned spent nuclear fuel (SNF) will be stored in the interim 40-year period from 1996 to 2035, by which time it is expected to be in a National Nuclear Repository. The process is described in terms of its primary components: fuel inventory, facilities where it is stored, how the fuel will be moved, and legal issues associated with the process. Tools developed to deploy and fulfill the implementation needs of the National Spent Nuclear Fuel Program are also discussed.

  9. Water storage of liquid-metal fast-breeder-reactor fuel

    SciTech Connect

    Meacham, S.A.

    1982-01-01

    The purpose of this paper is to present a general overview of a concept proposed for receiving and storing liquid metal fast breeder reactor (LMFBR) spent fuel. This work was done as part of the Consolidated Fuel Reprocessing Program (CFRP) at the Oak Ridge National Laboratory (ORNL). The CFRP has as its major objective the development of technology for reprocessing advanced nuclear reactor fuels. The program plans that research and development will be carried through to a sufficient scale, using irradiated spent fuel under plant operating conditions, to establish a basis for confident projection of reprocessing capability to support a breeder industry.

  10. 78 FR 78693 - List of Approved Spent Fuel Storage Casks: Transnuclear, Inc. Standardized NUHOMS® Cask System

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-27

    ... nuclear waste storage containers are dangerous to living organisms, including insects, microbes, bacteria... spirochete bacteria for millions of years, but after the Millstone release, that spirochete was...

  11. Assessment of shielding analysis methods, codes, and data for spent fuel transport/storage applications. [Radiation dose rates from shielded spent fuels and high-level radioactive waste

    SciTech Connect

    Parks, C.V.; Broadhead, B.L.; Hermann, O.W.; Tang, J.S.; Cramer, S.N.; Gauthey, J.C.; Kirk, B.L.; Roussin, R.W.

    1988-07-01

    This report provides a preliminary assessment of the computational tools and existing methods used to obtain radiation dose rates from shielded spent nuclear fuel and high-level radioactive waste (HLW). Particular emphasis is placed on analysis tools and techniques applicable to facilities/equipment designed for the transport or storage of spent nuclear fuel or HLW. Applications to cask transport, storage, and facility handling are considered. The report reviews the analytic techniques for generating appropriate radiation sources, evaluating the radiation transport through the shield, and calculating the dose at a desired point or surface exterior to the shield. Discrete ordinates, Monte Carlo, and point kernel methods for evaluating radiation transport are reviewed, along with existing codes and data that utilize these methods. A literature survey was employed to select a cadre of codes and data libraries to be reviewed. The selection process was based on specific criteria presented in the report. Separate summaries were written for several codes (or family of codes) that provided information on the method of solution, limitations and advantages, availability, data access, ease of use, and known accuracy. For each data library, the summary covers the source of the data, applicability of these data, and known verification efforts. Finally, the report discusses the overall status of spent fuel shielding analysis techniques and attempts to illustrate areas where inaccuracy and/or uncertainty exist. The report notes the advantages and limitations of several analysis procedures and illustrates the importance of using adequate cross-section data sets. Additional work is recommended to enable final selection/validation of analysis tools that will best meet the US Department of Energy's requirements for use in developing a viable HLW management system. 188 refs., 16 figs., 27 tabs.

  12. Radioactive waste shipments to Hanford retrievable storage from Westinghouse Advanced Reactors and Nuclear Fuels Divisions, Cheswick, Pennsylvania

    SciTech Connect

    Duncan, D.; Pottmeyer, J.A.; Weyns, M.I.; Dicenso, K.D.; DeLorenzo, D.S.

    1994-04-01

    During the next two decades the transuranic (TRU) waste now stored in the burial trenches and storage facilities at the Hanford Sits in southeastern Washington State is to be retrieved, processed at the Waste Receiving and Processing Facility, and shipped to the Waste Isolation Pilot Plant (WIPP), near Carlsbad, New Mexico for final disposal. Approximately 5.7 percent of the TRU waste to be retrieved for shipment to WIPP was generated by the decontamination and decommissioning (D&D) of the Westinghouse Advanced Reactors Division (WARD) and the Westinghouse Nuclear Fuels Division (WNFD) in Cheswick, Pennsylvania and shipped to the Hanford Sits for storage. This report characterizes these radioactive solid wastes using process knowledge, existing records, and oral history interviews.

  13. Storage Free Smart Energy Management for Frequency Control in a Diesel-PV-Fuel Cell-Based Hybrid AC Microgrid.

    PubMed

    Sekhar, P C; Mishra, S

    2016-08-01

    This paper proposes a novel, smart energy management scheme for a microgrid, consisting of a diesel generator and power electronic converter interfaced renewable energy-based generators, such as photovoltaic (PV) and fuel cell, for frequency regulation without any storage. In the proposed strategy, output of the PV is controlled in coordination with other generators using neurofuzzy controller, either only for transient frequency regulation or for both transient and steady-state frequency regulation, depending on the load demand, thereby eliminating the huge storage requirements. The option of demand response control is also explored along with the generation control. For accurate and quick tracking of maximum power point and its associated reserve power from the PV generator, this paper also proposes a novel adaptive-predictor-corrector-based tracking mechanism.

  14. An investigation towards real time dose rate monitoring, and fuel rod detection in a First Generation Magnox Storage Pond (FGMSP).

    PubMed

    Jackson, Sarah F; Monk, Stephen D; Riaz, Zahid

    2014-12-01

    The First Generation Magnox Storage Pond (FGMSP) is located on the Sellafield Nuclear Site, housing legacy spent Magnox nuclear fuel. Some of which has since corroded, forming a layer of Corroded Magnox Sludge (CMS) creating one of the largest decommissioning challenges the UK has faced. In this work the composition, physical properties and potentially high hazard nature of CMS are discussed, as are the gamma emission spectra of spent Magnox fuel rods typical of the ilk stored. We assess the potential use of a RadLine gamma detector to dose rate map this area and provide fuel rod detection. RadLine consists of a small scintillator, fibre optic cable and photon counter. The probe has the unusual advantage of not being electrically active and therefore fully submersible underwater, with the option to deploy hundreds of metres in length. Our experimental method encompasses general purpose Monte Carlo radiation transport code, MCNP, where we describe the modelling of CMS and pond liquor in comprehensive detail, including their radiological spectrum, chemical composition data, and physical properties. This investigation concludes that the maximum energy deposited within the scintillator crystal due to ambient CMS corresponds to a dose rate of 5.65Gy h(-1), thus above this value positive detection of a fuel rod would be anticipated. It is additionally established that the detectable region is within a 20cm range.

  15. Storage Stability of Jet Fuel Not Containing Anti-Oxidant (AO)

    DTIC Science & Technology

    2012-01-31

    Hydroperoxide Potential and Anti-Oxidant Effectiveness in Jet Fuels During Long Term Storage”, Coordinating Research Council, Atlanta, GA, 1998...control in aviation turbine fuels had never been documented. The overall effectiveness to control hydroperoxide formation was evaluated by implementing...lubricant oxidation. Anti-oxidant, Zinc Dithiophosphate (ZDDC) functions as both a radical scavenger and hydroperoxide decomposer that reduces the

  16. LESSONS LEARNED FROM CLEANING OUT THE SLUDGE FROM THE SPENT FUEL STORAGE BASINS AT HANFORD ICEM-07

    SciTech Connect

    KNOLLMEYER PM

    2007-08-31

    Until 2004, the K Basins at Hanford, in southeastern Washington State, held the largest collection of spent nuclear fuel in the United States Department of Energy (DOE) complex. The K East and K West Basins are massive pools each holding more than 4 million liters of water - that sit less than 450 meters from the Columbia River. In a significant multi-year campaign that ended in 2004, Fluor Hanford removed all of the fuel from the two Basins, over 2,300 metric tons (4.6 million pounds), dried it, and then placed it into dry storage in a specially designed facility away from the River. Removing the fuel, however, did not finish the cleanup work at the K Basins. The years of underwater storage had corroded the metallic uranium fuel, leaving behind a thick and sometimes hard-packed layer of sludge that coated the walls, floors and equipment inside the Basins. In places, the depth of the sludge was measured in feet rather than inches, and its composition was definitely not uniform. Together the Basins held an estimated 50 cubic meters of sludge (42 cubic meters in K East and 8 cubic meters in K West). The K East sludge retrieval and transfer work was completed in May 2007. Vacuuming up the sludge into large underwater containers in each of the Basins and then consolidating it all in containers in the K West Basin have presented significant challenges, some unexpected. This paper documents some of those challenges and presents the lessons learned so that other nuclear cleanup projects can benefit from the experience at Hanford.

  17. Time and dose assessment of barge shipment and at-reactor handling of a CASTOR V/21 spent fuel storage cask

    SciTech Connect

    Hostick, C.J. ); Lavender, J.C. ); Wakeman, B.H. )

    1992-04-01

    This report contains the results of a time/motion analysis and a radiation dose assessment made during the receipt from barge transport and the loading of CAst iron cask for Storage and Transport Of Radioactive material (CASTOR) V/21 storage casks with spent nuclear fuel at the Surry Power Station in Virginia during 1987. The study was a cooperative effort between Pacific Northwest Laboratory (PNL) and Virginia Electric and Power Company (Virginia Power), and was funded by the US Department of Energy (DOE) Transportation Program Office. In this study, cask handling activities were tracked at the Surry Power Station, tracing the transfer of the empty spent fuel storage cask from an ocean-going vessel to a barge for river transport through the activities required to place the loaded storage cask at an at-reactor storage location.

  18. Neutron analysis of spent fuel storage installation using parallel computing and advance discrete ordinates and Monte Carlo techniques.

    PubMed

    Shedlock, Daniel; Haghighat, Alireza

    2005-01-01

    In the United States, the Nuclear Waste Policy Act of 1982 mandated centralised storage of spent nuclear fuel by 1988. However, the Yucca Mountain project is currently scheduled to start accepting spent nuclear fuel in 2010. Since many nuclear power plants were only designed for -10 y of spent fuel pool storage, > 35 plants have been forced into alternate means of spent fuel storage. In order to continue operation and make room in spent fuel pools, nuclear generators are turning towards independent spent fuel storage installations (ISFSIs). Typical vertical concrete ISFSIs are -6.1 m high and 3.3 m in diameter. The inherently large system, and the presence of thick concrete shields result in difficulties for both Monte Carlo (MC) and discrete ordinates (SN) calculations. MC calculations require significant variance reduction and multiple runs to obtain a detailed dose distribution. SN models need a large number of spatial meshes to accurately model the geometry and high quadrature orders to reduce ray effects, therefore, requiring significant amounts of computer memory and time. The use of various differencing schemes is needed to account for radial heterogeneity in material cross sections and densities. Two P3, S12, discrete ordinate, PENTRAN (parallel environment neutral-particle TRANsport) models were analysed and different MC models compared. A multigroup MCNP model was developed for direct comparison to the SN models. The biased A3MCNP (automated adjoint accelerated MCNP) and unbiased (MCNP) continuous energy MC models were developed to assess the adequacy of the CASK multigroup (22 neutron, 18 gamma) cross sections. The PENTRAN SN results are in close agreement (5%) with the multigroup MC results; however, they differ by -20-30% from the continuous-energy MC predictions. This large difference can be attributed to the expected difference between multigroup and continuous energy cross sections, and the fact that the CASK library is based on the old ENDF

  19. Modeling the performance of hydrogen-oxygen unitized regenerative proton exchange membrane fuel cells for energy storage

    NASA Astrophysics Data System (ADS)

    Guarnieri, Massimo; Alotto, Piergiorgio; Moro, Federico

    2015-11-01

    Thanks to the independent sizing of power and energy, hydrogen-based energy storage is one of the very few technologies capable of providing long operational times in addition to the other advantages offered by electrochemical energy storage, for example scalability, site versatility, and mobile service. The typical design consists of an electrolyzer in charge mode and a separate fuel cell in discharge mode. Instead, a unitized regenerative fuel cell (URFC) is a single device performing both energy conversions, achieving a higher compactness and power-to-weight ratio. This paper presents a performance model of a URFC based on a proton exchange membrane (PEM) electrolyte and working on hydrogen and oxygen, which can provide high energy and power densities (>0.7 W cm-2). It provides voltage, power, and efficiency at varying load conditions as functions of the controlling physical quantities: temperature, pressure, concentration, and humidification. The model constitutes a tool for designing the interface and control sub-system as well as for exploring optimized cell/stack designs and operational conditions. To date, only a few of such analyses have been carried out and more research is needed in order to explore the true potential of URFCs.

  20. 77 FR 7211 - Pacific Gas and Electric Company, Diablo Canyon Independent Spent Fuel Storage Installation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-10

    ... associated radioactive materials resulting from the operation of the DC Nuclear Power Plant, Unit Nos. 1 and... Assembly Cooling and Maximum Decay Heat (Uniform Fuel loading) for a MPC-32 to limit the decay heat load...

  1. Transport of spent fuel from reactors to DOE storage/disposal facilities - a parametric study

    SciTech Connect

    Johnson, E.R.; Saverot, P.M.

    1997-09-01

    The amount of spent fuel from US commercial nuclear power plants that will be shipped to US DOE disposal facilities is expected to peak out at about 3000 MTU. A number of concerns including safety, emergency response, and traffic impacts, have been expressed regarding the large number of shipments that will be required to move this spent fuel. This article develops parametrically the numbers of shipments required to move 3000 MTU/year in the form of spent fuel under a variety of cask capacities and assumptions of fuel characteristics as well as the number of casks needed. In addition incremental traffic impact on roads and rail lines under a variety of conditions is also analyzed. 3 refs., 3 tabs.

  2. A Multi-function Cask for At-Reactor Storage of Short-Cooled Spent Fuel, Transport, and Disposal

    SciTech Connect

    Forsberg, C.W.

    2004-07-01

    The spent nuclear fuel (SNF) system in the United States was designed with the assumptions that SNF would be stored for several years in an at-reactor pool and then transported to reprocessing plants for recovery of fissile materials, that security would not be a major issue, and that the SNF burnups would be low. The system has evolved into a once-through fuel cycle with high-burnup SNF, long-term storage at the reactor sites, and major requirements for safeguards and security. An alternative system is proposed to better meet these current requirements. The SNF is placed in multi-function casks with the casks used for at-reactor storage, transport, and repository disposal. The cask is the handling package, provides radiation shielding, and protects the SNF against accidents and assault. SNF assemblies are handled only once to minimize accident risks, maximize security and safeguards by minimizing access to SNF, and reduce costs. To maximize physical protection, the cask body is constructed of a cermet (oxide particles embedded in steel, the same class of materials used in tank armor) and contains no cooling channels or other penetrations that allow access to the SNF. To minimize pool storage of SNF, the cask is designed to accept short-cooled SNF. To maximize the capability of the cask to reject decay heat and to limit SNF temperatures from short-cooled SNF, the cask uses (1) natural circulation of inert gas mixtures inside the cask to transfer heat from the SNF to the cask body and (2) an overpack with external natural-circulation, liquid-cooled fins to transfer heat from the cask body to the atmosphere. This approach utilizes the entire cask body area for heat transfer to maximize heat removal rates-without any penetrations through the cask body that would reduce the physical protection capabilities of the cask body. After the SNF has cooled, the cooling overpack is removed. At the repository, the cask is placed in a corrosion-resistant overpack before disposal

  3. Development of a New Transportation/Storage Cask System for Use by the DOE Russian Research Reactor Fuel Return Program

    SciTech Connect

    Michael J. Tyacke; Frantisek Svitak; Jiri Rychecky; Miroslav Picek; Alexey Smirnov; Sergey Komarov; Edward Bradley; Alexander Dudchenko; Konstantin Golubkin

    2007-10-01

    The United States, the Russian Federation, and the International Atomic Energy Agency (IAEA) have been working together on a program called the Russian Research Reactor Fuel Return (RRRFR) Program. The purpose of this program is to return Soviet or Russian-supplied high-enriched uranium (HEU) fuel, currently stored at Russian-designed research reactors throughout the world, to Russia. To accommodate transport of the HEU spent nuclear fuel (SNF), a new large-capacity transport/storage cask system was specially designed for handling and operations under the unique conditions at these research reactor facilities. This new cask system is named the ŠKODA VPVR/M cask. The design, licensing, testing, and delivery of this new cask system result from a significant international cooperative effort by several countries and involved numerous private and governmental organizations. This paper contains the following sections: 1) Introduction; 2) VPVR/M Cask Description; 3) Ancillary Equipment, 4) Cask Licensing; 5) Cask Demonstration and Operations; 6) IAEA Procurement, Quality Assurance Inspections, Fabrication, and Delivery; and, 7) Conclusions.

  4. Examination of stainless steel-clad Connecticut Yankee fuel assembly S004 after storage in borated water

    SciTech Connect

    Langstaff, D.C.; Bailey, W.J.; Johnson, A.B. Jr.; Landow, M.P.; Pasupathi, V.; Klingensmith, R.W.

    1982-09-01

    A Connecticut Yankee fuel assembly (S004) was tested nondestructively and destructively. It was concluded that no obvious degradation of the 304L stainless steel-clad spent fuel from assembly S004 occurred during 5 y of storage in borated water. Furthermore, no obvious degradation due to the pool environment occurred on 304 stainless steel-clad rods in assemblies H07 and G11, which were stored for shorter periods but contained operationally induced cladding defects. The seam welds in the cladding on fuel rods from assembly S004, H07, and G11 were similar in that they showed a wrought microstructure with grains noticeably smaller than those in the cladding base metal. The end cap welds showed a dendritically cored structure, typical of rapidly quenched austenitic weld metal. Some intergranular melting may have occurred in the heat-affected zone (HAZ) in the cladding adjacent to the end cap welds in rods from assemblies S004 and H07. However, the weld areas did not show evidence of corrosion-induced degradation.

  5. SYSTEMS MODELING OF AMMONIA BORANE BEAD REACTOR FOR OFF-BOARD REGENERABLE HYDROGEN STORAGE IN PEM FUEL CELL APPLICATIONS

    SciTech Connect

    Brooks, Kriston P.; Devarakonda, Maruthi N.; Rassat, Scot D.; King, Dale A.; Herling, Darrell R.

    2010-06-01

    Out of the materials available for chemical hydrogen storage in PEM fuel cell applications, ammonia borane (AB, NH3BH3) has a high hydrogen storage capacity (upto 19.6% by weight for the release of three hydrogen molecules). Therefore, AB was chosen in our chemical hydride simulation studies. A model for the AB bead reactor system was developed to study the system performance and determine the energy, mass and volume requirements for off-board regenerable hydrogen storage. The system includes hot and cold augers, ballast tank and reactor, product tank, H2 burner and a radiator. One dimensional models based on conservation of mass, species and energy were used to predict important state variables such as reactant and product concentrations, temperatures of various components, flow rates, along with pressure in the reactor system. Control signals to various components are governed by a control system which is modeled as an independent subsystem. Various subsystem components in the models were coded as C language S-functions and implemented in Matlab/Simulink environment. Preliminary system simulation results for a start-up case and for a transient drive cycle indicate accurate trends in the reactor system dynamics.

  6. Analysis of dust samples collected from spent nuclear fuel interim storage containers at Hope Creek, Delaware, and Diablo Canyon, California

    SciTech Connect

    Bryan, Charles R.; Enos, David George

    2014-07-01

    Potentially corrosive environments may form on the surface of spent nuclear fuel dry storage canisters by deliquescence of deposited dusts. To assess this, samples of dust were collected from in-service dry storage canisters at two near-marine sites, the Hope Creek and Diablo Canyon storage installations, and have been characterized with respect to mineralogy, chemistry, and texture. At both sites, terrestrially-derived silicate minerals, including quartz, feldspars, micas, and clays, comprise the largest fraction of the dust. Also significant at both sites were particles of iron and iron-chromium metal and oxides generated by the manufacturing process. Soluble salt phases were minor component of the Hope Creek dusts, and were compositionally similar to inland salt aerosols, rich in calcium, sulfate, and nitrate. At Diablo Canyon, however, sea-salt aerosols, occurring as aggregates of NaCl and Mg-sulfate, were a major component of the dust samples. The seasalt aerosols commonly occurred as hollow spheres, which may have formed by evaporation of suspended aerosol seawater droplets, possibly while rising through the heated annulus between the canister and the overpack. The differences in salt composition and abundance for the two sites are attributed to differences in proximity to the open ocean and wave action. The Diablo Canyon facility is on the shores of the Pacific Ocean, while the Hope Creek facility is on the shores of the Delaware River, several miles from the open ocean.

  7. Evaluation of the /sup 252/Cf-source-driven neutron noise analysis method for measuring the subcriticality of LWR fuel storage casks

    SciTech Connect

    Mihalczo, J.T.

    1987-11-15

    The /sup 252/Cf-source-driven neutron noise analysis method was evaluated to determine if it could be used to measure the subcriticality of storage casks of burnt LWR fuel submerged in fuel storage pools, fully loaded and as they are being loaded. The motivation for this evaluation was that measurements of k/sub eff/ would provide the parameter most directly related to the criticality safety of storage cask configurations of LWR fuel and could allow proper credit for fuel burnup without reliance on calculations. This in turn could lead to more cost-effective cask designs. Evaluation of the method for this application was based on (1) experiments already completed at a critical experiments facility using arrays of PWR fuel pins typical of the size of storage cask configurations, (2) the existence of neutron detectors that can function in shipping cask environments, and (3) the ability to construct ionization chambers containing /sup 252/Cf of adequate intensity for these measurements. These three considerations are discussed.

  8. Potential health and safety impacts from distribution and storage of alcohol fuels

    SciTech Connect

    Rosenberg, S.E.; Gasper, J.R.

    1980-06-01

    This assessment includes three major sections. Section 1 is a synopsis of literature on the health and safety aspects of neat alcohols, alcohol-gasoline blends, and typical gasoline. Section 2 identifies the toxic properties of each fuel type and describes existing standards and regulations and suggests provisions for establishing others. Section 3 analyzes the major safety and health risks that would result from the increased use of each type of alcohol fuel. Potential accidents are described and their probable impacts on occupational and public populations are determined. An attempt was made to distill the important health and safety issues and to define gaps in our knowledge regarding alcohol fuels to highlight the further research needed to circumvent potential helth and safety problems.

  9. Numerical Modeling of Heat and Mass Transfer Processes in the Transfer of Spent Nuclear Fuel from "Wet" to "Dry" Cask Storage

    NASA Astrophysics Data System (ADS)

    Karyakin, Yu. E.; Pletnev, A. A.; Fedorovich, E. D.

    2017-01-01

    The paper describes in brief the heat and mass transfer processes in the transfer of spent nuclear fuel of the RBMK-100 reactor from "wet" to "dry" cask storage. The algorithms are described and the results are presented of the "through" calculation of the heat and mass transfer processes in ampoules and in a metal-concrete cask at various stages of spent nuclear fuel management.

  10. Inspection and Gamma-Ray Dose Rate Measurements of the Annulus of the VSC-17 Concrete Spent Nuclear Fuel Storage Cask

    SciTech Connect

    P. L. Winston

    2007-09-01

    The air cooling annulus of the Ventilated Storage Cask (VSC)-17 spent fuel storage cask was inspected using a Toshiba 7 mm (1/4”) CCD video camera. The dose rates observed in the annular space were measured to provide a reference for the activity to which the camera(s) being tested were being exposed. No gross degradation, pitting, or general corrosion was observed.

  11. Economic Study of Spent Nuclear Fuel Storage and Reprocessing Practices in Russia

    SciTech Connect

    C. E. Singer; G. H. Miley

    1997-10-01

    This report describes a study of nuclear power economics in Russia. It addresses political and institutional background factors which constrain Russia's energy choices in the short and intermediate run. In the approach developed here, political and institutional factors might dominate short-term decisions, but the comparative costs of Russia's fuel-cycle options are likely to constrain her long-term energy strategy. To this end, the authors have also formulated a set of policy questions which should be addressed using a quantitative decision modeling which analyzes economic costs for all major components of different fuel cycle options, including the evolution of uranium prices.

  12. Away-from-reactor storage of spent nuclear fuel: factors affecting demand

    SciTech Connect

    Dinneen, P.M.; Solomon, K.A.; Triplett, M.B.

    1980-10-01

    This report analyzes factors that affect the magnitude and timing of demand for government AFRs, relative to the demand for other storage options, to assist policymakers in predicting this demand. Past predictions of AFT demand range widely and often appear to conflict. This report helps to explain the apparent conflicts among existing demand predictions by demonstrating their sensitivity to changes in key assumptions. Specifically, the report analyzes factors affecting the demand for government AFR storage facilities; illustrates why demand estimates may vary; and identifies actions that may be undertaken by groups, within and outside the government, to influence the level and timing of demands.

  13. Production of tung oil biodiesel and variation of fuel properties during storage.

    PubMed

    Shang, Qiong; Lei, Jiao; Jiang, Wei; Lu, Houfang; Liang, Bin

    2012-09-01

    The crude Tung oil with 4.72 mg KOH/g of acid value (AV) was converted by direct transesterification, and the reaction mixture was quantified. The phase distribution data showed that 38.24% of excess methanol, 11.76% of KOH, 10.13% of soap and 4.36% of glycerol were in the biodiesel phase; 0.35% of biodiesel dissolved in the glycerol phase. Tung oil biodiesel as well as its blends with 0(#) diesel was investigated under different storage conditions. The results indicated that higher temperature greatly influenced the storage stability, especially when the volume fraction of Tung oil biodiesel is increased in the blends.

  14. 75 FR 60147 - Calvert Cliffs Nuclear Power Plant, LLC; Independent Spent Fuel Storage Installation; Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-29

    ....61 x 10\\15\\ MeV/sec/assembly to allow fuel that reaches the TS LCO 3.1.1(5) assembly thermal limit... mail, or expedited delivery service to the Office of the Secretary, Sixteenth Floor, One White...

  15. 77 FR 20440 - Independent Spent Fuel Storage Installation, Virginia Electric and Power Company, Surry Power...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-04

    ... zones while preparing the dry shielded canister (DSC) loading maps. This resulted in five fuel assemblies being loaded into four DSCs with decay heat greater than the levels specified in the CoC. Dominion... limits in Attachment A, Technical Specifications (TS). The TS restrict the decay heat in lower Zone...

  16. 77 FR 20438 - Independent Spent Fuel Storage Installation, Virginia Electric and Power Company: North Anna...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-04

    ... zones while preparing the dry shielded canister (DSC) loading maps. This resulted in twelve fuel assemblies being loaded into seven DSCs with decay heat greater than the levels specified in the CoC... Specifications (TS). The TS restrict the decay heat in lower Zone ``1a'' locations to...

  17. 75 FR 42292 - List of Approved Spent Fuel Storage Casks: NAC-MPC System, Revision 6

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-21

    ... undamaged and damaged fuel assemblies; minor design modifications to the Vertical Concrete Cask (VCC... as low as is reasonably achievable (ALARA) principles; an increase in the concrete pad compression... in the concrete pad compression strength from 4,000 psi to 6,000 psi; (6) added justification for...

  18. Considerations for Using Composite Pressure Vessels (CPVs) in Fuel Storage for Automotive Applications

    NASA Technical Reports Server (NTRS)

    Cone, Darren; Greene, Nathanael; Beeson, Harold; McCloskey, David

    2013-01-01

    Ongoing initiative to get high energy capacity "green fuel" containers to market quickly and cost effectively. The United States has decided to invest in "green energy" technology, to become energy independent, and to "Innovate Our Way to a Clean Energy Future."

  19. Hydrogen Storage Experiments for an Undergraduate Laboratory Course--Clean Energy: Hydrogen/Fuel Cells

    ERIC Educational Resources Information Center

    Bailey, Alla; Andrews, Lisa; Khot, Ameya; Rubin, Lea; Young, Jun; Allston, Thomas D.; Takacs, Gerald A.

    2015-01-01

    Global interest in both renewable energies and reduction in emission levels has placed increasing attention on hydrogen-based fuel cells that avoid harm to the environment by releasing only water as a byproduct. Therefore, there is a critical need for education and workforce development in clean energy technologies. A new undergraduate laboratory…

  20. 75 FR 25120 - List of Approved Spent Fuel Storage Casks: NUHOMS® HD System Revision 1

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-07

    ... HD System to include pressurized water reactor fuel assemblies with control components, reduce the... the water from the dry shielded canister (DSC) and allow only helium as a cover gas during DSC cavity water removal operations, and make corresponding changes to the technical specifications....

  1. Imaging Spent Fuel in Dry Storage Casks with Cosmic Ray Muons

    SciTech Connect

    Durham, J. Matthew; Dougan, Arden

    2015-11-05

    Highly energetic cosmic ray muons are a natural source of ionizing radiation that can be used to make tomographic images of the interior of dense objects. Muons are capable of penetrating large amounts of shielding that defeats typical radiographic probes like neutrons or photons. This is the only technique which can examine spent nuclear fuel rods sealed inside dry casks.

  2. Determining Fuel Losses in Storage Tanks Based on Factual Saturation Pressures

    NASA Astrophysics Data System (ADS)

    Levitin, R. E.; Tryascin, R. A.

    2016-10-01

    At present, evaluation of fuel evaporative losses is based on a number of indirect parameters. Accuracy of such methods leaves much to be desired. The paper presents a method developed following the author's laboratory tests. An effective operation range of pressure vent valves in various tanks is provided, as well as low A92 gasoline losses for horizontal steel tanks at all operation temperatures.

  3. 30 CFR 75.1903 - Underground diesel fuel storage facilities and areas; construction and safety precautions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) Provided with either self-closing doors or a means for automatic enclosure; (3) Provided with a means for... storage; and (4) Maintained to prevent the accumulation of water. (c) Welding or cutting other than that...) When it is necessary to weld, cut, or solder pipelines, tanks, or other containers that may...

  4. 30 CFR 75.1903 - Underground diesel fuel storage facilities and areas; construction and safety precautions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) Provided with either self-closing doors or a means for automatic enclosure; (3) Provided with a means for... storage; and (4) Maintained to prevent the accumulation of water. (c) Welding or cutting other than that...) When it is necessary to weld, cut, or solder pipelines, tanks, or other containers that may...

  5. Spent Nuclear Fuel (SNF) Project Canister Storage Building (CSB) Process Flow Diagram Mass Balance Calculations

    SciTech Connect

    KLEM, M.J.

    2000-05-11

    The purpose of these calculations is to develop the material balances for documentation of the Canister Storage Building (CSB) Process Flow Diagram (PFD) and future reference. The attached mass balances were prepared to support revision two of the PFD for the CSB. The calculations refer to diagram H-2-825869.

  6. Inspection and evaluation of Nuclear Fuel Services high-level waste storage system, program plan

    NASA Astrophysics Data System (ADS)

    1980-01-01

    Information concerning the condition of the high-level waste tanks at the Western New York State Nuclear Service center near West Valley, New York is presented. This information is to be used in evaluating the safety of continued storage and in the development of alternatives for final disposition of the high-level waste.

  7. The long term storage of radioactive waste and spent fuel: safety and policy considerations

    SciTech Connect

    Rowat, J.; Metcalf, P.

    2007-07-01

    Storage is a necessary step in the overall management of radioactive waste. In recent years, due to the unavailability of disposal facilities, storage facilities intended originally as temporary, have had their lifetimes extended and consideration has been given, in some countries, to the use of long term storage (LTS) as a management option. In 2003, the IAEA published a position paper titled 'The Long Term Storage of Radioactive Waste: Safety and Sustainability'. The position paper, which written for a non-specialist audience, focused on seven key factors for safety and sustainability of LTS, namely: safety, maintenance/institutional control, retrieval, security, costs, community attitudes and retention of information. The Agency is preparing a follow-up report to the position paper that elaborates in a more technical manner upon the issues raised in the position paper and issues important for implementation of LTS. It also provides some discussion of the reasons for implementing a LTS option and contrasts LTS with aspects of other management options. The present paper provides an overview of the draft follow-up report. (authors)

  8. 18 CFR 1304.405 - Fuel storage tanks and handling facilities.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... AUTHORITY APPROVAL OF CONSTRUCTION IN THE TENNESSEE RIVER SYSTEM AND REGULATION OF STRUCTURES AND OTHER... handling facilities are generally either underground (UST) or aboveground (AST) storage tank systems. An UST is any one or combination of tanks or tank systems defined in applicable Federal or...

  9. Assessment of the requirements for placing and maintaining Savannah River Site spent fuel storage basins under International Atomic Energy Agency safeguards

    SciTech Connect

    Amacker, O.P. Jr.; Curtis, M.M.; Delegard, C.H.; Hsue, S.T.; Whitesel, R.N.

    1997-03-01

    The United States is considering the offer of irradiated research reactor spent fuel (RRSF) for international safeguards applied by the International Atomic Energy Agency (IAEA). The offer would be to add one or more spent fuel storage basins to the list of facilities eligible for IAEA safeguards. The fuel to be safeguarded would be stored in basins on the Savannah River Site (SRS). This RRSF potentially can include returns of Material Test Reactor (MTR) VAX fuel from Argentina, Brazil, and Chile (ABC); returns from other foreign research reactors; and fuel from domestic research reactors. Basins on the SRS being considered for this fuel storage are the Receiving Basin for Offsite Fuel (RBOF) and the L-Area Disassembly Basin (L-Basin). A working group of SRS, U.S. Department of Energy International Safeguards Division (NN-44), and National Laboratory personnel with experience in IAEA safeguards was convened to consider the requirements for applying the safeguards to this material. The working group projected the safeguards requirements and described alternatives.

  10. Assessment of degradation concerns for spent fuel, high-level wastes, and transuranic wastes in monitored retrievalbe storage

    SciTech Connect

    Guenther, R.J.; Gilbert, E.R.; Slate, S.C.; Partain, W.L.; Divine, J.R.; Kreid, D.K.

    1984-01-01

    It has been concluded that there are no significant degradation mechanisms that could prevent the design, construction, and safe operation of monitored retrievable storage (MRS) facilities. However, there are some long-term degradation mechanisms that could affect the ability to maintain or readily retrieve spent fuel (SF), high-level wastes (HLW), and transuranic wastes (TRUW) several decades after emplacement. Although catastrophic failures are not anticipated, long-term degradation mechanisms have been identified that could, under certain conditions, cause failure of the SF cladding and/or failure of TRUW storage containers. Stress rupture limits for Zircaloy-clad SF in MRS range from 300 to 440/sup 0/C, based on limited data. Additional tests on irradiated Zircaloy (3- to 5-year duration) are needed to narrow this uncertainty. Cladding defect sizes could increase in air as a result of fuel density decreases due to oxidation. Oxidation tests (3- to 5-year duration) on SF are also needed to verify oxidation rates in air and to determine temperatures below which monitoring of an inert cover gas would not be required. Few, if any, changes in the physical state of HLW glass or canisters or their performance would occur under projected MRS conditions. The major uncertainty for HLW is in the heat transfer through cracked glass and glass devitrification above 500/sup 0/C. Additional study of TRUW is required. Some fraction of present TRUW containers would probably fail within the first 100 years of MRS, and some TRUW would be highly degraded upon retrieval, even in unfailed containers. One possible solution is the design of a 100-year container. 93 references, 28 figures, 17 tables.

  11. An assessment of alternative diesel fuels: microbiological contamination and corrosion under storage conditions.

    PubMed

    Lee, Jason S; Ray, Richard I; Little, Brenda J

    2010-08-01

    Experiments were designed to evaluate the nature and extent of microbial contamination and the potential for microbiologically influenced corrosion of alloys exposed in a conventional high sulfur diesel (L100) and alternative fuels, including 100% biodiesel (B100), ultra-low sulfur diesel (ULSD) and blends of ULSD and B100 (B5 and B20). In experiments with additions of distilled water, all fuels supported biofilm formation. Changes in the water pH did not correlate with observations related to corrosion. In all exposures, aluminum 5052 was susceptible to pitting while stainless steel 304L exhibited passive behavior. Carbon steel exhibited uniform corrosion in ULSD and L100, and passive behavior in B5, B20, and B100.

  12. Experimental investigation of burnup credit for safe transport, storage, and disposal of spent nuclear fuel.

    SciTech Connect

    Berry, Donald T.; Harms, Gary A.; Ford, John T.; Walker, Sharon Ann; Helmick, Paul H.; Pickard, Paul S.

    2004-04-01

    This report describes criticality benchmark experiments containing rhodium that were conducted as part of a Department of Energy Nuclear Energy Research Initiative project. Rhodium is an important fission product absorber. A capability to perform critical experiments with low-enriched uranium fuel was established as part of the project. Ten critical experiments, some containing rhodium and others without, were conducted. The experiments were performed in such a way that the effects of the rhodium could be accurately isolated. The use of the experimental results to test neutronics codes is demonstrated by example for two Monte Carlo codes. These comparisons indicate that the codes predict the behavior of the rhodium in the critical systems within the experimental uncertainties. The results from this project, coupled with the results of follow-on experiments that investigate other fission products, can be used to quantify and reduce the conservatism of spent nuclear fuel safety analyses while still providing the necessary level of safety.

  13. Experimental Investigation of Burnup Credit for Safe Transport, Storage, and Disposal of Spent Nuclear Fuel

    SciTech Connect

    Harms, Gary A.; Helmick, Paul H.; Ford, John T.; Walker, Sharon A.; Berry, Donald T.; Pickard, Paul S.

    2004-04-01

    This report describes criticality benchmark experiments containing rhodium that were conducted as part of a Department of Energy Nuclear Energy Research Initiative project. Rhodium is an important fission product absorber. A capability to perform critical experiments with low-enriched uranium fuel was established as part of the project. Ten critical experiments, some containing rhodium and others without, were conducted. The experiments were performed in such a way that the effects of the rhodium could be accurately isolated. The use of the experimental results to test neutronics codes is demonstrated by example for two Monte Carlo codes. These comparisons indicate that the codes predict the behavior of the rhodium in the critical systems within the experimental uncertainties. The results from this project, coupled with the results of follow-on experiments that investigate other fission products, can be used to quantify and reduce the conservatism of spent nuclear fuel safety analyses while still providing the necessary level of safety.

  14. Extended Bioventing Testing Results at the Aboveground Jet Fuel Storage Tank #20, Randolph AFB LPST # 104626

    DTIC Science & Technology

    2007-11-02

    Parsons Engineering Science, Inc. (Parsons ES) is pleased to submit the results of the extended bioventing testing at the aboveground jet fuel...performed by Parsons ES from 3 to 8 May 1996 to assess the extent of remediation completed during approximately three years of air injection bioventing . The...purpose of this letter is to summarize site and bioventing activities to date, present the results of the most recent respiration and soil gas

  15. Completion of One Year Bioventing Tests: Area H; Area K; and Waikakalaua Fuel Storage Annex

    DTIC Science & Technology

    2007-11-02

    The Air Force Center for Environmental Excellence (AFCEE) one-year bioventing test and evaluation projects at the above sites have been completed... bioventing is cost-effectively remediating fuel contamination in a reasonable time frame. We recommend its application in areas within the above sites where...for a Field Treatability Test for Bioventing , May 1992, including Addendum One, February 1994. These are found in the "Tool Box" recently sent to your base.

  16. An Assessment of Alternative Diesel Fuels: Microbiological Contamination and Corrosion Under Storage Conditions

    DTIC Science & Technology

    2010-08-01

    hydrocarbon biodegradation and the prospects for microbial enhanced energy production. In : Vazquez-Duhalt R. Quintero -Ramierez R. editors. Pet...evaluate the nature and extent of microbial contamination and the potential for microbiologically influenced corrosion of alloys exposed in a...and B20) In experiments with additions of distilled water, all fuels supported biofilm formation Changes in the water pH did not correlate with

  17. Calculation of Containment Concentrations While Coating the Interior of a Bulk Storage Fuel Tank

    DTIC Science & Technology

    1990-05-01

    yet again, stresses the importance of knowing more information about the painting compounds and their evaporation rates. 67 CHAPTER 9 CONCLUSION The...pressurized and possibly rupture . The isocyanates react slowly with water to form polyureas and liberate CO2 gas. This gas can cause scaled cvntainers to...expand and possibly rupture . Product Code: D-065 Page 6 of 8 X. SPECIAL PRECAUTIONS STORAG DATA (Continued) PRECAUTIONS TO BE TAKEN IN HANDLING AND

  18. Distribution and Storage of Aviation Turbine Fuel for Military Operations in Northern Australia.

    DTIC Science & Technology

    1984-09-01

    Australian coast and thence to retail outlets and/or commercial bulk users in the immediate vacinity . Seaboard bulk storage capacities for AVT R are shown in...1,113 636 560 185 364 65 127 506 900 1.11 Points wet DI A-60W 6 41 3 221 1110 1 27 977 Taking the dangerously rainy season as January to April each year

  19. Regenerative fuel cell energy storage system for a low earth orbit space station

    NASA Technical Reports Server (NTRS)

    Martin, R. E.; Garow, J.; Michaels, K. B.

    1988-01-01

    A study was conducted to define characteristics of a Regenerative Fuel Cell System (RFCS) for low earth orbit Space Station missions. The RFCS's were defined and characterized based on both an alkaline electrolyte fuel cell integrated with an alkaline electrolyte water electrolyzer and an alkaline electrolyte fuel cell integrated with an acid solid polymer electrolyte (SPE) water electrolyzer. The study defined the operating characteristics of the systems including system weight, volume, and efficiency. A maintenance philosophy was defined and the implications of system reliability requirements and modularization were determined. Finally, an Engineering Model System was defined and a program to develop and demonstrate the EMS and pacing technology items that should be developed in parallel with the EMS were identified. The specific weight of an optimized RFCS operating at 140 F was defined as a function of system efficiency for a range of module sizes. An EMS operating at a nominal temperature of 180 F and capable of delivery of 10 kW at an overall efficiency of 55.4 percent is described. A program to develop the EMS is described including a technology development effort for pacing technology items.

  20. Regenerative fuel cell energy storage system for a low earth orbit space station

    NASA Astrophysics Data System (ADS)

    Martin, R. E.; Garow, J.; Michaels, K. B.

    1988-04-01

    A study was conducted to define characteristics of a Regenerative Fuel Cell System (RFCS) for low earth orbit Space Station missions. The RFCS's were defined and characterized based on both an alkaline electrolyte fuel cell integrated with an alkaline electrolyte water electrolyzer and an alkaline electrolyte fuel cell integrated with an acid solid polymer electrolyte (SPE) water electrolyzer. The study defined the operating characteristics of the systems including system weight, volume, and efficiency. A maintenance philosophy was defined and the implications of system reliability requirements and modularization were determined. Finally, an Engineering Model System was defined and a program to develop and demonstrate the EMS and pacing technology items that should be developed in parallel with the EMS were identified. The specific weight of an optimized RFCS operating at 140 F was defined as a function of system efficiency for a range of module sizes. An EMS operating at a nominal temperature of 180 F and capable of delivery of 10 kW at an overall efficiency of 55.4 percent is described. A program to develop the EMS is described including a technology development effort for pacing technology items.