Science.gov

Sample records for 105-r reactor disassembly

  1. GROUT TEMPERATURE MEASUREMENTS IN 105-R DISASSEMBLY BASIN D AND E CANAL

    SciTech Connect

    Fogle, R.; Collins, M.; Guerrero, H.

    2010-06-03

    The 105-R Reactor Disassembly Basin Grout Placement Strategy Report (SRNL-TR-2009-00157) identifies various portions of the facility that will undergo an in-situ decommissioning process. The estimated residual radioactive contamination in the 105-R facility is shown in Figure 1. Cementitious grout formulations developed by SRNL are being used to immobilize and isolate the radioactive contamination in existing below grade portions of the 105-R building as shown by the gray-hatched area in Figure 2. A Zero Bleed flowable fill was formulated for both dry placement and for underwater placement. The first major area in the 105-R Disassembly Basin to undergo the grouting process was the D&E Canal and an underlying void space known as the Chase. Grout temperature data was needed to ensure that the grout mix design was on the correct grout curing trajectory to meet the material compressive strength requirement of 50 pounds per square inch. Initial grout temperature measurements were needed to confirm and optimize grout mix design fresh property characteristics; i.e. material strength, and set time. Grout curing temperature is an integrating fresh property characteristic that is used to estimate cementitious material strength in accordance with the Standard Practice for Estimating Concrete Strength by the Maturity Method, ASTM C 1074. The Maturity Method is used in the construction industry to estimate in-place strength of concrete to allow the start of critical construction activities; e.g. formwork removal, removal of cold weather protection, opening of roadways to traffic, etc. Applying this methodology provides an expeditious means to estimate in-place grout strength based on compressive strength laboratory results. The Maturity Method results define the relationship between strength-time and age-time that may be utilized in the field for estimating strength after a given time of placement. Maturation curves were developed under the 105-R Reactor Disassembly Basin

  2. SAVANNAH RIVER SITE R REACTOR DISASSEMBLY BASIN IN SITU DECOMMISSIONING

    SciTech Connect

    Langton, C.; Blankenship, J.; Griffin, W.; Serrato, M.

    2009-12-03

    The US DOE concept for facility in-situ decommissioning (ISD) is to physically stabilize and isolate in tact, structurally sound facilities that are no longer needed for their original purpose of, i.e., generating (reactor facilities), processing(isotope separation facilities) or storing radioactive materials. The 105-R Disassembly Basin is the first SRS reactor facility to undergo the in-situ decommissioning (ISD) process. This ISD process complies with the105-R Disassembly Basin project strategy as outlined in the Engineering Evaluation/Cost Analysis for the Grouting of the R-Reactor Disassembly Basin at the Savannah River Site and includes: (1) Managing residual water by solidification in-place or evaporation at another facility; (2) Filling the below grade portion of the basin with cementitious materials to physically stabilize the basin and prevent collapse of the final cap - Sludge and debris in the bottom few feet of the basin will be encapsulated between the basin floor and overlying fill material to isolate if from the environment; (3) Demolishing the above grade portion of the structure and relocating the resulting debris to another location or disposing of the debris in-place; and (4) Capping the basin area with a concrete slab which is part of an engineered cap to prevent inadvertent intrusion. The estimated total grout volume to fill the 105-R Reactor Disassembly Basin is 24,424 cubic meters or 31,945 cubic yards. Portland cement-based structural fill materials were design and tested for the reactor ISD project and a placement strategy for stabilizing the basin was developed. Based on structural engineering analyses and work flow considerations, the recommended maximum lift height is 5 feet with 24 hours between lifts. Pertinent data and information related to the SRS 105-R-Reactor Disassembly Basin in-situ decommissioning include: regulatory documentation, residual water management, area preparation activities, technology needs, fill material designs

  3. SAVANNAH RIVER SITE R-REACTOR DISASSEMBLY BASIN IN-SITU DECOMMISSIONING -10499

    SciTech Connect

    Langton, C.; Serrato, M.; Blankenship, J.; Griffin, W.

    2010-01-04

    The US DOE concept for facility in-situ decommissioning (ISD) is to physically stabilize and isolate intact, structurally sound facilities that are no longer needed for their original purpose, i.e., generating (reactor facilities), processing(isotope separation facilities) or storing radioactive materials. The 105-R Disassembly Basin is the first SRS reactor facility to undergo the in-situ decommissioning (ISD) process. This ISD process complies with the 105-R Disassembly Basin project strategy as outlined in the Engineering Evaluation/Cost Analysis for the Grouting of the R-Reactor Disassembly Basin at the Savannah River Site and includes: (1) Managing residual water by solidification in-place or evaporation at another facility; (2) Filling the below grade portion of the basin with cementitious materials to physically stabilize the basin and prevent collapse of the final cap - Sludge and debris in the bottom few feet of the basin will be encapsulated between the basin floor and overlying fill material to isolate it from the environment; (3) Demolishing the above grade portion of the structure and relocating the resulting debris to another location or disposing of the debris in-place; and (4) Capping the basin area with a concrete slab which is part of an engineered cap to prevent inadvertent intrusion. The estimated total grout volume to fill the 105-R Reactor Disassembly Basin is 24,384 cubic meters or 31,894 cubic yards. Portland cement-based structural fill materials were designed and tested for the reactor ISD project, and a placement strategy for stabilizing the basin was developed. Based on structural engineering analyses and material flow considerations, maximum lift heights and differential height requirements were determined. Pertinent data and information related to the SRS 105-R Reactor Disassembly Basin in-situ decommissioning include: regulatory documentation, residual water management, area preparation activities, technology needs, fill material

  4. Deactivation of the P, C, and R Reactor Disassembly Basins at the SRS

    SciTech Connect

    Pickett, J.B.

    2000-12-06

    The Facilities Disposition Division (FDD) at the Savannah River Site is engaged in planning the deactivation/closure of three of the site's five reactor disassembly basins. Activities are currently underway at 105-R Disassembly Basin and will continue with the 105-P and 105-C disassembly basins. The basins still contain the cooling and shielding water that was present when operations ceased. Low concentrations of radionuclides are present, with tritium, Cs-137, and Sr-90 being the major contributors. Although there is no evidence that any of the basins have leaked, the 50-year-old facilities will eventually contaminate the surrounding groundwaters. The FDD is pursuing a pro-active solution to close the basins in-place and prevent a release to the groundwater. In-situ ion-exchange is currently underway at the R-Reactor Disassembly Basin to reduce the Cs and Sr concentrations to levels that would allow release of the treated water to previously used on-site cooling ponds. A NEPA Environmental Assessment (EA) is being prepared to propose the preferred closure alternative for each of the three basins. The EA will be the primary mechanism to inform the public and gain stakeholder and regulatory approval.

  5. Development of remote disassembly technology for liquid-metal reactor (LMR) fuel

    SciTech Connect

    Bradley, E.C.; Evans, J.H.; Metz, C.F. III; Weil, B.S.

    1990-01-01

    A major objective of the Consolidated Fuel Reprocessing Program (CFRP) is to develop equipment and demonstrate technology to reprocess fast breeder reactor fuel. Experimental work on fuel disassembly cutting methods began in the 1970s. High-power laser cutting was selected as the preferred cutting method for fuel disassembly. Remotely operated development equipment was designed, fabricated, installed, and tested at Oak Ridge National Laboratory (ORNL). Development testing included remote automatic operation, remote maintenance testing, and laser cutting process development. This paper summarizes the development work performed at ORNL on remote fuel disassembly. 2 refs., 1 fig.

  6. Disassembly of the fusion-1 capsule after irradiation in the BOR-60 reactor

    SciTech Connect

    Tsai, H.; Kazakov, V.A.; Chakin, V.P.

    1997-04-01

    A U.S./Russia (RF) collaborative irradiation experiment, Fusion-1, was completed in June 1996 after reaching a peak exposure of {approx}17 dpa in the BOR-60 fast reactor at the Research Institute of Atomic Reactors (RIAR) in Russia. The specimens were vanadium alloys, mainly of recent heats from both countries. In this reporting period, the capsule was disassembled at the RIAR hot cells and all test specimens were successfully retrieved. For the disassembly, an innovative method of using a heated diffusion oil to melt and separate the lithium bond from the test specimens was adopted. This method proved highly successful.

  7. Highly Selective Nuclide Removal from the R-Reactor Disassembly Basin at the SRS

    SciTech Connect

    Pickett, J. B.; Austin, W. E.; Dukes, H. H.

    2002-02-26

    This paper describes the results of a deployment of highly selective ion-exchange resin technologies for the in-situ removal of Cs-137 and Sr-90 from the Savannah River Site (SRS) R-Reactor Disassembly Basin. The deployment was supported by the DOE Office of Science and Technology's (OST, EM-50) National Engineering Technology Laboratory (NETL), as a part of an Accelerated Site Technology Deployment (ASTD) project. The Facilities Decontamination and Decommissioning (FDD) Program at the SRS conducted this deployment as a part of an overall program to deactivate three of the site's five reactor disassembly basins.

  8. ASSESSMENT OF THE POTENTIAL FOR HYDROGEN GENERATION DURING GROUTING OPERATIONS IN C-REACTOR DISASSEMBLY BASIN

    SciTech Connect

    Wiersma, B.

    2011-07-12

    C-reactor disassembly basin is being prepared for deactivation and decommissioning (D and D). D and D activities will consist primarily of immobilizing contaminated scrap components and structures in a grout-like formulation. The disassembly basin will be the first area of the C-reactor building that will be immobilized. The scrap components contain aluminum alloy materials. Any aluminum will corrode very rapidly when it comes in contact with the very alkaline grout (pH > 13), and as a result would produce hydrogen gas. To address this potential deflagration/explosion hazard, Savannah River National Laboratory (SRNL) reviewed and evaluated existing experimental and analytical studies of this issue to determine if any process constraints are necessary. The risk of accumulation of a flammable mixture of hydrogen above the surface of the water during the injection of grout into the C-reactor disassembly area is low if the assessment of the aluminum surface area is reliable. Conservative calculations estimate that there is insufficient aluminum present in the basin areas to result in significant hydrogen accumulation in this local region. The minimum safety margin (or factor) on a 60% LFL criterion for a local region of the basin (i.e., Horizontal Tube Storage) was greater than 3. Calculations also demonstrated that a flammable situation in the vapor space above the basin is unlikely. Although these calculations are conservative, there are some measures that may be taken to further minimize the risk of developing a flammable condition during grouting operations.

  9. An analysis of thermionic space nuclear reactor power system: I. Effect of disassembling radial reflector, following a reactivity initiated accident

    SciTech Connect

    El-Genk, M.S.; Paramonov, D. )

    1993-01-10

    An analysis is performed to determine the effect of disassembling the radial reflector of the TOPAZ-II reactor, following a hypothetical severe Reactivity Initiated Accident (RIA). Such an RIA is assumed to occur during the system start-up in orbit due to a malfunction of the drive mechanism of the control drums, causing the drums to rotate the full 180[degree] outward at their maximum speed of 1.4[degree]/s. Results indicate that disassembling only three of twelve radial reflector panels would successfully shutdown the reactor, with little overheating of the fuel and the moderator.

  10. Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 113: Reactor Maintenance, Assembly, and Disassembly Building Nevada Test Site, Nevada

    SciTech Connect

    J. L. Smith

    2001-01-01

    This Streamlined Approach for Environmental Restoration (SAFER) Plan addresses the action necessary for the closure in place of Corrective Action Unit (CAU) 113 Area 25 Reactor Maintenance, Assembly, and Disassembly Facility (R-MAD). CAU 113 is currently listed in Appendix III of the Federal Facility Agreement and Consent Order (FFACO) (NDEP, 1996). The CAU is located in Area 25 of the Nevada Test Site (NTS) and consists of Corrective Action Site (CAS) 25-04-01, R-MAD Facility (Figures 1-2). This plan provides the methodology for closure in place of CAU 113. The site contains radiologically impacted and hazardous material. Based on preassessment field work, there is sufficient process knowledge to close in place CAU 113 using the SAFER process. At a future date when funding becomes available, the R-MAD Building (25-3110) will be demolished and inaccessible radiologic waste will be properly disposed in the Area 3 Radiological Waste Management Site (RWMS).

  11. Environmental Assessment and FONSI Proposed Decontamination and Disassembly of the Argonne Thermal Source Reactor (ATSR) at Argonne National Laboratory

    SciTech Connect

    N /A

    1998-07-15

    The purpose of this project is to protect human health and the environment from risks associated with the contaminated surplus ATSR. The proposed action is needed because the ATSR, a former experimental reactor, contains residual radioactivity and hazardous materials.

  12. AGC-2 Disassembly Report

    SciTech Connect

    William Windes

    2014-05-01

    The Next Generation Nuclear Plant (NGNP) Graphite Research and Development (R&D) Program is currently measuring irradiated material properties for predicting the behavior and operating performance of new nuclear graphite grades available for use within the cores of new very high temperature reactor designs. The Advanced Graphite Creep (AGC) experiment, consisting of six irradiation capsules, will generate irradiated graphite performance data for NGNP reactor operating conditions. The AGC experiment is designed to determine the changes to specific material properties such as thermal diffusivity, thermal expansion, elastic modulus, mechanical strength, irradiation induced dimensional change rate, and irradiation creep for a wide variety of nuclear grade graphite types over a range of high temperature, and moderate doses. A series of six capsules containing graphite test specimens will be used to expose graphite test samples to a dose range from 1 to 7 dpa at three different temperatures (600, 900, and 1200°C) as described in the Graphite Technology Development Plan. Since irradiation induced creep within graphite components is considered critical to determining the operational life of the graphite core, some of the samples will also be exposed to an applied load to determine the creep rate for each graphite type under both temperature and neutron flux. All six AGC capsules in the experiment will be irradiated in the Advanced Test Reactor (ATR). AGC-1 and AGC-2 will be irradiated in the south flux trap and AGC-3–AGC-6 will be irradiated in the east flux trap. The change in flux traps is due to NGNP irradiation priorities requiring the AGC experiment to be moved to accommodate Fuel irradiation experiments. After irradiation, all six AGC capsules will be cooled in the ATR Canal, sized for shipment, and shipped to the Materials and Fuels Complex (MFC) where the capsule will be disassembled in the Hot Fuel Examination Facility (HFEF). During disassembly, the metallic

  13. FROM CONCEPT TO REALITY, IN-SITU DECOMMISSIONING OF THE P AND R REACTORS AT THE SAVANNAH RIVER SITE

    SciTech Connect

    Musall, J.; Blankenship, J.; Griffin, W.

    2012-01-09

    SRS recently completed an approximately three year effort to decommission two SRS reactors: P-Reactor (Building 105-P) and R-Reactor (Building 105-R). Completed in December 2011, the concurrent decommissionings marked the completion of two relatively complex and difficult facility disposition projects at the SRS. Buildings 105-P and 105-R began operating as production reactors in the early 1950s with the mission of producing weapons material (e.g., tritium and plutonium-239). The 'P' Reactor and was shutdown in 1991 while the 'R' Reactor and was shutdown in 1964. In the intervening period between shutdown and deactivation & decommissioning (D&D), Buildings 105-P and 105-R saw limited use (e.g., storage of excess heavy water and depleted uranium oxide). For Building 105-P, deactivation was initiated in April 2007 and was essentially complete by June 2010. For Building 105-R, deactivation was initiated in August 2008 and was essentially complete by September 2010. For both buildings, the primary objective of deactivation was to remove/mitigate hazards associated with the remaining hazardous materials, and thus prepare the buildings for in-situ decommissioning. Deactivation removed the following hazardous materials to the extent practical: combustibles/flammables, residual heavy water, acids, friable asbestos (as needed to protect workers performing deactivation and decommissioning), miscellaneous chemicals, lead/brass components, Freon(reg sign), oils, mercury/PCB containing components, mold and some radiologically-contaminated equipment. In addition to the removal of hazardous materials, deactivation included the removal of hazardous energy, exterior metallic components (representing an immediate fall hazard), and historical artifacts along with the evaporation of water from the two Disassembly Basins. Finally, so as to facilitate occupancy during the subsequent in-situ decommissioning, deactivation implemented repairs to the buildings and provided temporary power.

  14. Mechanism of ciliary disassembly.

    PubMed

    Liang, Yinwen; Meng, Dan; Zhu, Bing; Pan, Junmin

    2016-05-01

    As motile organelles and sensors, cilia play pivotal roles in cell physiology, development and organ homeostasis. Ciliary defects are associated with a class of cilia-related diseases or developmental disorders, termed ciliopathies. Even though the presence of cilia is required for diverse functions, cilia can be removed through ciliary shortening or resorption that necessitates disassembly of the cilium, which occurs normally during cell cycle progression, cell differentiation and in response to cellular stress. The functional significance of ciliary resorption is highlighted in controlling the G1-S transition during cell cycle progression. Internal or external cues that trigger ciliary resorption initiate signaling cascades that regulate several downstream events including depolymerization of axonemal microtubules, dynamic changes in actin and the ciliary membrane, regulation of intraflagellar transport and posttranslational modifications of ciliary proteins. To ensure ciliary resorption, both the active disassembly of the cilium and the simultaneous inhibition of ciliary assembly must be coordinately regulated. PMID:26869233

  15. Cilium assembly and disassembly.

    PubMed

    Sánchez, Irma; Dynlacht, Brian David

    2016-06-28

    The primary cilium is an antenna-like, immotile organelle present on most types of mammalian cells, which interprets extracellular signals that regulate growth and development. Although once considered a vestigial organelle, the primary cilium is now the focus of considerable interest. We now know that ciliary defects lead to a panoply of human diseases, termed ciliopathies, and the loss of this organelle may be an early signature event during oncogenic transformation. Ciliopathies include numerous seemingly unrelated developmental syndromes, with involvement of the retina, kidney, liver, pancreas, skeletal system and brain. Recent studies have begun to clarify the key mechanisms that link cilium assembly and disassembly to the cell cycle, and suggest new possibilities for therapeutic intervention. PMID:27350441

  16. Cilium assembly and disassembly

    PubMed Central

    2016-01-01

    The primary cilium is an antenna-like, immotile organelle present on most types of mammalian cells, which interprets extracellular signals that regulate growth and development. Although once considered a vestigial organelle, the primary cilium is now the focus of considerable interest. We now know that ciliary defects lead to a panoply of human diseases, termed ciliopathies, and the loss of this organelle may be an early signature event during oncogenic transformation. Ciliopathies include numerous seemingly unrelated developmental syndromes, with involvement of the retina, kidney, liver, pancreas, skeletal system and brain. Recent studies have begun to clarify the key mechanisms that link cilium assembly and disassembly to the cell cycle, and suggest new possibilities for therapeutic intervention. PMID:27350441

  17. Static Detection of Disassembly Errors

    SciTech Connect

    Krishnamoorthy, Nithya; Debray, Saumya; Fligg, Alan K

    2009-10-13

    Static disassembly is a crucial first step in reverse engineering executable files, and there is a consider- able body of work in reverse-engineering of binaries, as well as areas such as semantics-based security anal- ysis, that assumes that the input executable has been correctly disassembled. However, disassembly errors, e.g., arising from binary obfuscations, can render this assumption invalid. This work describes a machine- learning-based approach, using decision trees, for stat- ically identifying possible errors in a static disassem- bly; such potential errors may then be examined more closely, e.g., using dynamic analyses. Experimental re- sults using a variety of input executables indicate that our approach performs well, correctly identifying most disassembly errors with relatively few false positives.

  18. USE OF CEMENTITIOUS MATERIALS FOR SRS REACTOR FACILITY IN-SITU DECOMMISSIONING - 11620

    SciTech Connect

    Langton, C.; Stefanko, D.; Serrato, M.; Blankenship, J.; Griffin, W.; Waymer, J.; Matheny, D.; Singh, D.

    2010-12-07

    The United States Department of Energy (US DOE) concept for facility in-situ decommissioning (ISD) is to physically stabilize and isolate in tact, structurally sound facilities that are no longer needed for their original purpose of, i.e., producing (reactor facilities), processing (isotope separation facilities) or storing radioactive materials. The Savannah River Site 105-P and 105-R Reactor Facility ISD requires about 250,000 cubic yards of grout to fill the below grade structure. The fills are designed to prevent subsidence, reduce water infiltration, and isolate contaminated materials. This work is being performed as a Comprehensive Environmental Response, Compensations and Liability Act (CERCLA) action and is part of the overall soil and groundwater completion projects for P- and R-Areas. Cementitious materials were designed for the following applications: (1) Below grade massive voids/rooms: Portland cement-based structural flowable fills for - Bulk filling, Restricted placement and Underwater placement. (2) Special below grade applications for reduced load bearing capacity needs: Cellular portland cement lightweight fill (3) Reactor vessel fills that are compatible with reactive metal (aluminum metal) components in the reactor vessels: Calcium sulfoaluminate flowable fill, and Magnesium potassium phosphate flowable fill. (4) Caps to prevent water infiltration and intrusion into areas with the highest levels of radionuclides: Portland cement based shrinkage compensating concrete. A system engineering approach was used to identify functions and requirements of the fill and capping materials. Laboratory testing was performed to identify candidate formulations and develop final design mixes. Scale-up testing was performed to verify material production and placement as well as fresh and cured properties. The 105-P and 105-R ISD projects are currently in progress and are expected to be complete in 2012. The focus of this paper is to describe the (1) grout mixes

  19. Simulation-based disassembly systems design

    NASA Astrophysics Data System (ADS)

    Ohlendorf, Martin; Herrmann, Christoph; Hesselbach, Juergen

    2004-02-01

    Recycling of Waste of Electrical and Electronic Equipment (WEEE) is a matter of actual concern, driven by economic, ecological and legislative reasons. Here, disassembly as the first step of the treatment process plays a key role. To achieve sustainable progress in WEEE disassembly, the key is not to limit analysis and planning to merely disassembly processes in a narrow sense, but to consider entire disassembly plants including additional aspects such as internal logistics, storage, sorting etc. as well. In this regard, the paper presents ways of designing, dimensioning, structuring and modeling different disassembly systems. Goal is to achieve efficient and economic disassembly systems that allow recycling processes complying with legal requirements. Moreover, advantages of applying simulation software tools that are widespread and successfully utilized in conventional industry sectors are addressed. They support systematic disassembly planning by means of simulation experiments including consecutive efficiency evaluation. Consequently, anticipatory recycling planning considering various scenarios is enabled and decisions about which types of disassembly systems evidence appropriateness for specific circumstances such as product spectrum, throughput, disassembly depth etc. is supported. Furthermore, integration of simulation based disassembly planning in a holistic concept with configuration of interfaces and data utilization including cost aspects is described.

  20. Integrating Safeguards into the Pit Disassembly and Conversion Facility

    SciTech Connect

    Clark, T.G.

    2002-05-28

    In September 2000, the United States and the Russian Federation entered into an agreement which stipulates each country will irreversibly transform 34 metric tons of weapons-grade plutonium into material which could not be used for weapon purposes. Supporting the Department of Energy's (DOE) program to dispose of excess nuclear materials, the Pit Disassembly and Conversion Facility (PDCF) is being designed and constructed to disassemble the weapon ''pits'' and convert the nuclear material to an oxide form for fabrication into reactor fuel at the separate Mixed Oxide Fuel Fabrication Facility. The PDCF design incorporates automation to the maximum extent possible to facilitate material safeguards, reduce worker dose, and improve processing efficiency. This includes provisions for automated guided vehicle movements for shipping containers, material transport via automated conveyor between processes, remote process control monitoring, and automated Nondestructive Assay product systems.

  1. CALUTRON ASSEMBLING AND DISASSEMBLING MEANS

    DOEpatents

    Andrews, R.E.; Thornton, J.

    1959-01-27

    This patent relates to the assembling and disassembling of a calutron and, more specifically describes a calutron having the ion separating mechanism carried by a fuce plate removably secured to the tank. When it is desired to withdraw the ion separating mechanism from the tank, a motor is energized and a carriage attached through a bracket to the fuce plate is driven along a track. The face plate moves out from the tank in substantially a linear direction, preventing injury to the ion separating mechanism.

  2. Disassemblability modeling technology of configurable product based on disassembly constraint relation weighted design structure matrix(DSM)

    NASA Astrophysics Data System (ADS)

    Qiu, Lemiao; Liu, Xiaojian; Zhang, Shuyou; Sun, Liangfeng

    2014-05-01

    The current research of configurable product disassemblability focuses on disassemblability evaluation and disassembly sequence planning. Little work has been done on quantitative analysis of configurable product disassemblability. The disassemblability modeling technology for configurable product based on disassembly constraint relation weighted design structure matrix (DSM) is proposed. Major factors affecting the disassemblability of configurable product are analyzed, and the disassembling degrees between components in configurable product are obtained by calculating disassembly entropies such as joint type, joint quantity, disassembly path, disassembly accessibility and material compatibility. The disassembly constraint relation weighted DSM of configurable product is constructed and configuration modules are formed by matrix decomposition and tearing operations. The disassembly constraint relation in configuration modules is strong coupling, and the disassembly constraint relation between modules is weak coupling, and the disassemblability configuration model is constructed based on configuration module. Finally, taking a hydraulic forging press as an example, the decomposed weak coupling components are used as configuration modules alone, components with a strong coupling are aggregated into configuration modules, and the disassembly sequence of components inside configuration modules is optimized by tearing operation. A disassemblability configuration model of the hydraulic forging press is constructed. By researching the disassemblability modeling technology of product configuration design based on disassembly constraint relation weighted DSM, the disassembly property in maintenance, recycling and reuse of configurable product are optimized.

  3. Product disassembly scheduling using graph models

    NASA Astrophysics Data System (ADS)

    Puente Mendez, Santiago; Torres Medina, Fernando; Pomares Baeza, Jorge

    2002-02-01

    Disassembly problem is a current issue for industrial companies. Governments of different countries promote research in this field. This paper presents the following points. First a brief state of the art in disassembly planning. Next it exposes a solution for the disassembly problem of industrial products. It uses a combination between direct and indirect graph representation for the product, all components that have physical entity are considered as vertices of the graph. Edges of the graph represent the relationships between vertices. There are three different types of edges. First corresponds with accessibility and fastener restrictions. Second corresponds with direct relations between components without fasteners. Last one corresponds with contact relationships, which represent an indifferent choice of the vertices. Based on that representation the paper exposed a method to find the best sequence to disassemble a component. Costs of disassembling each component and of changing tool between each pair of vertices and different sequences of the disassembly are taken into consideration. This method consists in a function minimization defined in the graph domain. In the last point of the paper this method is tested with a remote control disassembly. This method gives a solution to the problem, if several solutions, with the same cost, exist then it gives all of them, and any one of these disassemble sequences could be used to achieve to the target component.

  4. (HFR-B1 experiment reporting and capsule disassembly)

    SciTech Connect

    Myers, B.F.

    1991-02-22

    The traveler visited the Joint Research Centre (JRC), Petten, The Netherlands, the Forschungszentrum GmbH (KFA), Juelich, Germany; and the Zentralinstitut fuer Kernforschung (ZfK), Rossendorf, Germany, during the period January 28 through February 9. At JRC, the analysis of the experiment HFR-B1 was discussed; a new schedule for issuance of the final data report was established. Other discussions at JRC concerned the capabilities of Petten to conduct two reactor experiments being proposed under the US/FRG cooperative program and the initial results of a proof test of Germany fuel spheres. At KFA, the main emphasis was on the disassembly of capsules 2 and 3 of the HFR-B1 experiment and agreement on the examinations and tests to be conducted with the disassembled components. The disassembly of capsule 3 was observed. Extensive discussions were conducted on the work, both experimental and analytical, being conducted in the Institut fuer Sicherheitsforschung und Reaktor Technologie. A major portion of the experimental work is being conducted at ZfK and a visit to this laboratory, sponosored by the KFA, was made on February 6 and 7. Cooperation with the US on the experimental and analytical work in the safety area was strongly emphasized. 1 tab.

  5. NEUTRONIC REACTOR

    DOEpatents

    Creutz, E.C.; Ohlinger, L.A.; Weinberg, A.M.; Wigner, E.P.; Young, G.J.

    1959-10-27

    BS>A reactor cooled by water, biphenyl, helium, or other fluid with provision made for replacing the fuel rods with the highest plutonium and fission product content without disassembling the entire core and for promptly cooling the rods after their replacement in order to prevent build-up of heat from fission product activity is described.

  6. Biocomputing based on particle disassembly

    NASA Astrophysics Data System (ADS)

    Nikitin, Maxim P.; Shipunova, Victoria O.; Deyev, Sergey M.; Nikitin, Petr I.

    2014-09-01

    Nanoparticles with biocomputing capabilities could potentially be used to create sophisticated robotic devices with a variety of biomedical applications, including intelligent sensors and theranostic agents. DNA/RNA-based computing techniques have already been developed that can offer a complete set of Boolean logic functions and have been used, for example, to analyse cells and deliver molecular payloads. However, the computing potential of particle-based systems remains relatively unexplored. Here, we show that almost any type of nanoparticle or microparticle can be transformed into autonomous biocomputing structures that are capable of implementing a functionally complete set of Boolean logic gates (YES, NOT, AND and OR) and binding to a target as result of a computation. The logic-gating functionality is incorporated into self-assembled particle/biomolecule interfaces (demonstrated here with proteins) and the logic gating is achieved through input-induced disassembly of the structures. To illustrate the capabilities of the approach, we show that the structures can be used for logic-gated cell targeting and advanced immunoassays.

  7. Disassembling Iron Availability to Phytoplankton

    PubMed Central

    Shaked, Yeala; Lis, Hagar

    2012-01-01

    The bioavailability of iron to microorganisms and its underlying mechanisms have far reaching repercussions to many natural systems and diverse fields of research, including ocean biogeochemistry, carbon cycling and climate, harmful algal blooms, soil and plant research, bioremediation, pathogenesis, and medicine. Within the framework of ocean sciences, short supply and restricted bioavailability of Fe to phytoplankton is thought to limit primary production and curtail atmospheric CO2 drawdown in vast ocean regions. Yet a clear-cut definition of bioavailability remains elusive, with elements of iron speciation and kinetics, phytoplankton physiology, light, temperature, and microbial interactions, to name a few, all intricately intertwined into this concept. Here, in a synthesis of published and new data, we attempt to disassemble the complex concept of iron bioavailability to phytoplankton by individually exploring some of its facets. We distinguish between the fundamentals of bioavailability – the acquisition of Fe-substrate by phytoplankton – and added levels of complexity involving interactions among organisms, iron, and ecosystem processes. We first examine how phytoplankton acquire free and organically bound iron, drawing attention to the pervasiveness of the reductive uptake pathway in both prokaryotic and eukaryotic autotrophs. Turning to acquisition rates, we propose to view the availability of various Fe-substrates to phytoplankton as a spectrum rather than an absolute “all or nothing.” We then demonstrate the use of uptake rate constants to make comparisons across different studies, organisms, Fe-compounds, and environments, and for gaging the contribution of various Fe-substrates to phytoplankton growth in situ. Last, we describe the influence of aquatic microorganisms on iron chemistry and fate by way of organic complexation and bio-mediated redox transformations and examine the bioavailability of these bio-modified Fe species. PMID:22529839

  8. First insights into disassembled "evapotranspiration"

    NASA Astrophysics Data System (ADS)

    Chormański, Jarosław; Kleniewska, Małgorzata; Berezowski, Tomasz; Szporak-Wasilewska, Sylwia; Okruszko, Tomasz; Szatyłowicz, Jan; Batelaan, Okke

    2015-04-01

    In this work we present an initial data analysis obtained from a complex tool for measuring water fluxes in wetland ecosystems. The tool was designed to quantify processes related to interception storage on plants leafs. The measurements are conducted by combining readings from various instruments, including: eddy covariance tower (EC), field spectrometer, SapFlow system, rain gauges above and under canopy, soil moisture probes and other. The idea of this set-up is to provide continuous measurement of overall water flux from the ecosystem (EC tower), intercepted water volume and timing (field spectrometers), through-fall (rain gauges above and under canopy), transpiration (SapFlow), evaporation and soil moisture (soil moisture probes). Disassembling the water flux to the above components allows giving more insight to the interception related processes and differentiates them fromthe total evapotranspiration. The measurements are conducted in the Upper Biebrza Basin (NE Poland). The study area is part of the valley and is covered by peat soils (mainly peat moss with the exception of areas near the river) and receives no inundations waters of the Biebrza. The plant community of Agrostietum-Carici caninae has a dominant share here creating an up to 0.6 km wide belt along the river. The area is covered also by Caricion lasiocarpae as well as meadows and pastures Molinio-Arrhenatheretea, Phragmitetum communis. Sedges form a hummock pattern characteristic for the sedge communities in natural river valleys with wetland vegetation. The main result of the measurement set-up will be the analyzed characteristics and dynamics of interception storage for sedge ecosystems and a developed methodology for interception monitoring by use spectral reflectance technique. This will give a new insight to processes of evapotranspiration in wetlands and its component transpiration, evaporation from interception and evaporation from soil. Moreover, other important results of this project

  9. Electronic waste disassembly with industrial waste heat.

    PubMed

    Chen, Mengjun; Wang, Jianbo; Chen, Haiyian; Ogunseitan, Oladele A; Zhang, Mingxin; Zang, Hongbin; Hu, Jiukun

    2013-01-01

    Waste printed circuit boards (WPCBs) are resource-rich but hazardous, demanding innovative strategies for post-consumer collection, recycling, and mining for economically precious constituents. A novel technology for disassembling electronic components from WPCBs is proposed, using hot air to melt solders and to separate the components and base boards. An automatic heated-air disassembling equipment was designed to operate at a heating source temperature at a maximum of 260 °C and an inlet pressure of 0.5 MPa. A total of 13 individual WPCBs were subjected to disassembling tests at different preheat temperatures in increments of 20 °C between 80 and 160 °C, heating source temperatures ranging from 220 to 300 °C in increments of 20 °C, and incubation periods of 1, 2, 4, 6, or 8 min. For each experimental treatment, the disassembly efficiency was calculated as the ratio of electronic components released from the board to the total number of its original components. The optimal preheat temperature, heating source temperature, and incubation period to disassemble intact components were 120 °C, 260 °C, and 2 min, respectively. The disassembly rate of small surface mount components (side length ≤ 3 mm) was 40-50% lower than that of other surface mount components and pin through hole components. On the basis of these results, a reproducible and sustainable industrial ecological protocol using steam produced by industrial exhaust heat coupled to electronic-waste recycling is proposed, providing an efficient, promising, and green method for both electronic component recovery and industrial exhaust heat reutilization.

  10. Multi-kanban mechanism for appliance disassembly

    NASA Astrophysics Data System (ADS)

    Udomsawat, Gun; Gupta, Surendra M.

    2005-11-01

    The use of household appliances continues to rise every year. A significant number of End-Of-Life (EOL) appliances are generated because of the introduction of newer models that are more attractive, efficient and affordable. Others are, of course, generated when they become non-functional. Many regulations encourage recycling of EOL appliances to reduce the amount of waste sent to landfills. In addition, EOL appliances offer the appliance manufacturing and remanufacturing industries a source of less expensive raw materials and components. For this reason product recovery has become a subject of interest during the past decade. In this paper, we study the disassembly line for appliance disassembly. We discuss and incorporate some of the complications that are inherent in disassembly line including product arrival, demand arrival, inventory fluctuation and production control mechanisms. We show how to overcome such complications by implementing a multi-kanban system in the appliance disassembly line setting. The multi-kanban system (MKS) relies on dynamic routing of kanbans according to the state of the system. We investigate the multi-kanban mechanism using simulation and explore the effect of product mix on performance of the traditional push system (TPS) and MKS in terms of controlling the system's inventory while attempting to achieve a decent customer service level.

  11. REACTOR

    DOEpatents

    Christy, R.F.

    1961-07-25

    A means is described for co-relating the essential physical requirements of a fission chain reaction in order that practical, compact, and easily controllable reactors can be built. These objects are obtained by employing a composition of fissionsble isotope and moderator in fluid form in which the amount of fissionsble isotcpe present governs the reaction. The size of the reactor is no longer a critical factor, the new criterion being the concentration of the fissionable isotope.

  12. REACTOR

    DOEpatents

    Szilard, L.

    1963-09-10

    A breeder reactor is described, including a mass of fissionable material that is less than critical with respect to unmoderated neutrons and greater than critical with respect to neutrons of average energies substantially greater than thermal, a coolant selected from sodium or sodium--potassium alloys, a control liquid selected from lead or lead--bismuth alloys, and means for varying the quantity of control liquid in the reactor. (AEC)

  13. Human cognitive analysis of disassembly planning using fuzzy petri nets

    NASA Astrophysics Data System (ADS)

    Tang, Ying; Turowski, Mark

    2004-12-01

    Disassembly, as the process of systematic removal of desirable constituent parts from an assembly, is of growing importance due to the increasing environmental and economic pressures. Designing and improving disassembly process towards a more economic manner is worthwhile investigating. This paper extends our previous work on human factors in disassembly. More specifically, a Fuzzy Petri Net (FPN) is proposed to mathematically model uncertainties in the disassembly process due to the variations in operator skill level and product condition. An adaptive fuzzy system is further developed for the decision-making in disassembly process planning (DPP), where a learning mechanism is engaged to monitor the quality of various parameter estimates and exploit the past "knowledge" regarding uncertainties. This idea is exemplified through the disassembly of a discarded product with three components.

  14. Disassembly sequencing problem: a case study of a cell phone

    NASA Astrophysics Data System (ADS)

    Gupta, Surendra M.; Erbis, Evren; McGovern, Seamus M.

    2004-12-01

    Selection of an optimal disassembly sequence is essential for the efficient processing of a product at the end of its life. Disassembly sequences are listings of disassembly actions (such as the separation of an assembly into two or more subassemblies, or removing one or more connections between components). Disassembly takes place in remanufacturing, recycling, and disposal with a disassembly line being the best choice for automation. In this paper, the disassembly sequencing problem is solved for a cell phone case on a disassembly line, seeking a sequence which is feasible, minimizes the number of workstations (and hence idle times), provides for early removal of high demand/value parts, provides the removal of parts that lead to the access of greatest number of still-installed parts, and early removal of hazardous parts as well as for the grouping of parts for removal having identical part removal directions. Since finding the optimal sequence is computationally intensive due to factorial growth, a heuristic method is used taking into account various disassembly-specific matters. Using the experimentally determined precedence relationships and task times of a real-world cell phone, a MATLAB program is designed and a sequencing solution is generated. Finally, Design for Disassembly (DFD) improvements are recommended with respect to environmentally conscious manufacturing.

  15. A Heuristic for Disassembly Planning in Remanufacturing System

    PubMed Central

    2014-01-01

    This study aims to improve the efficiency of disassembly planning in remanufacturing environment. Even though disassembly processes are considered as the reverse of the corresponding assembly processes, under some technological and management constraints the feasible and efficient disassembly planning can be achieved by only well-designed algorithms. In this paper, we propose a heuristic for disassembly planning with the existence of disassembled part/subassembly demands. A mathematical model is formulated for solving this problem to determine the sequence and quantity of disassembly operations to minimize the disassembly costs under sequence-dependent setup and capacity constraints. The disassembly costs consist of the setup cost, part inventory holding cost, disassembly processing cost, and purchasing cost that resulted from unsatisfied demand. A simple but efficient heuristic algorithm is proposed to improve the quality of solution and computational efficiency. The main idea of heuristic is to divide the planning horizon into the smaller planning windows and improve the computational efficiency without much loss of solution quality. Performances of the heuristic are investigated through the computational experiments. PMID:24895679

  16. REACTOR

    DOEpatents

    Roman, W.G.

    1961-06-27

    A pressurized water reactor in which automatic control is achieved by varying the average density of the liquid moderator-cooiant is patented. Density is controlled by the temperature and power level of the reactor ftself. This control can be effected by the use of either plate, pellet, or tubular fuel elements. The fuel elements are disposed between upper and lower coolant plenum chambers and are designed to permit unrestricted coolant flow. The control chamber has an inlet opening communicating with the lower coolant plenum chamber and a restricted vapor vent communicating with the upper coolant plenum chamber. Thus, a variation in temperature of the fuel elements will cause a variation in the average moderator density in the chamber which directly affects the power level of the reactor.

  17. Postulated accident scenarios in weapons disassembly

    SciTech Connect

    Payne, S.S.

    1997-06-01

    A very brief summary of three postulated accident scenarios for weapons disassembly is provided in the paper. The first deals with a tetrahedral configuration of four generic pits; the second, an infinite planar array of generic pits with varying interstitial water density; and the third, a spherical shell with internal mass suspension in water varying the size and mass of the shell. Calculations were performed using the Monte Carlo Neutron Photon transport code MCNP4A. Preliminary calculations pointed to a need for higher resolution of small pit separation regimes and snapshots of hydrodynamic processes of water/plutonium mixtures.

  18. The assembly and disassembly of ecological networks.

    PubMed

    Bascompte, Jordi; Stouffer, Daniel B

    2009-06-27

    Global change has created a severe biodiversity crisis. Species are driven extinct at an increasing rate, and this has the potential to cause further coextinction cascades. The rate and shape of these coextinction cascades depend very much on the structure of the networks of interactions across species. Understanding network structure and how it relates to network disassembly, therefore, is a priority for system-level conservation biology. This process of network collapse may indeed be related to the process of network build-up, although very little is known about both processes and even less about their relationship. Here we review recent work that provides some preliminary answers to these questions. First, we focus on network assembly by emphasizing temporal processes at the species level, as well as the structural building blocks of complex ecological networks. Second, we focus on network disassembly as a consequence of species extinctions or habitat loss. We conclude by emphasizing some general rules of thumb that can help in building a comprehensive framework to understand the responses of ecological networks to global change.

  19. Asymmetric disassembly and robustness in declining networks

    PubMed Central

    Saavedra, Serguei; Reed-Tsochas, Felix; Uzzi, Brian

    2008-01-01

    Mechanisms that enable declining networks to avert structural collapse and performance degradation are not well understood. This knowledge gap reflects a shortage of data on declining networks and an emphasis on models of network growth. Analyzing >700,000 transactions between firms in the New York garment industry over 19 years, we tracked this network's decline and measured how its topology and global performance evolved. We find that favoring asymmetric (disassortative) links is key to preserving the topology and functionality of the declining network. Based on our findings, we tested a model of network decline that combines an asymmetric disassembly process for contraction with a preferential attachment process for regrowth. Our simulation results indicate that the model can explain robustness under decline even if the total population of nodes contracts by more than an order of magnitude, in line with our observations for the empirical network. These findings suggest that disassembly mechanisms are not simply assembly mechanisms in reverse and that our model is relevant to understanding the process of decline and collapse in a broad range of biological, technological, and financial networks. PMID:18936489

  20. Asymmetric disassembly and robustness in declining networks.

    PubMed

    Saavedra, Serguei; Reed-Tsochas, Felix; Uzzi, Brian

    2008-10-28

    Mechanisms that enable declining networks to avert structural collapse and performance degradation are not well understood. This knowledge gap reflects a shortage of data on declining networks and an emphasis on models of network growth. Analyzing >700,000 transactions between firms in the New York garment industry over 19 years, we tracked this network's decline and measured how its topology and global performance evolved. We find that favoring asymmetric (disassortative) links is key to preserving the topology and functionality of the declining network. Based on our findings, we tested a model of network decline that combines an asymmetric disassembly process for contraction with a preferential attachment process for regrowth. Our simulation results indicate that the model can explain robustness under decline even if the total population of nodes contracts by more than an order of magnitude, in line with our observations for the empirical network. These findings suggest that disassembly mechanisms are not simply assembly mechanisms in reverse and that our model is relevant to understanding the process of decline and collapse in a broad range of biological, technological, and financial networks.

  1. Probabilistic Risk Assessment of disassembly procedures

    SciTech Connect

    O`Brien, D.A.; Bement, T.R.; Letellier, B.C.

    1993-10-01

    Probabilistic Risk (Safety) Assessment (PRA or PSA) is an analytic methodology for identifying the combination of events that, if they occur, lead to accidents. Accidents are defined as those events causing loss or injury to people, property, or the environment. PRA also provides a method for estimating the frequency of occurrence of each combination of events and the consequences of each accident. The Los Alamos effort for this study is summarized as follows: The focus of the Los Alamos study was on evaluating the risks specifically associated with disassembling a Los Alamos-designed device. The PRA for the disassembly operation included a detailed evaluation only for those potential accident sequences which could lead to significant off-site consequences and affect public health. The overall purpose of this study was to investigate the feasibility of a risk consequence goal for DOE operations. Often called a Level 3 PRA (or PSA), the methods are general and can with a little modification be applied to other procedures or processes.

  2. Mitotic lamin disassembly is triggered by lipid-mediated signaling.

    PubMed

    Mall, Moritz; Walter, Thomas; Gorjánácz, Mátyás; Davidson, Iain F; Nga Ly-Hartig, Thi Bach; Ellenberg, Jan; Mattaj, Iain W

    2012-09-17

    Disassembly of the nuclear lamina is a key step during open mitosis in higher eukaryotes. The activity of several kinases, including CDK1 (cyclin-dependent kinase 1) and protein kinase C (PKC), has been shown to trigger mitotic lamin disassembly, yet their precise contributions are unclear. In this study, we develop a quantitative imaging assay to study mitotic lamin B1 disassembly in living cells. We find that CDK1 and PKC act in concert to mediate phosphorylation-dependent lamin B1 disassembly during mitosis. Using ribonucleic acid interference (RNAi), we showed that diacylglycerol (DAG)-dependent PKCs triggered rate-limiting steps of lamin disassembly. RNAi-mediated depletion or chemical inhibition of lipins, enzymes that produce DAG, delayed lamin disassembly to a similar extent as does PKC inhibition/depletion. Furthermore, the delay of lamin B1 disassembly after lipin depletion could be rescued by the addition of DAG. These findings suggest that lipins activate a PKC-dependent pathway during mitotic lamin disassembly and provide evidence for a lipid-mediated mitotic signaling event.

  3. Basis for Interim Operation for the K-Reactor in Cold Standby

    SciTech Connect

    Shedrow, B.

    1998-10-19

    The Basis for Interim Operation (BIO) document for K Reactor in Cold Standby and the L- and P-Reactor Disassembly Basins was prepared in accordance with the draft DOE standard for BIO preparation (dated October 26, 1993).

  4. AGR-1 Irradiated Test Train Preliminary Inspection and Disassembly First Look

    SciTech Connect

    Paul Demkowicz; Lance Cole; Scott Ploger; Philip Winston; Binh Pham; Michael Abbott

    2011-01-01

    The AGR-1 irradiation experiment ended on November 6, 2009, after 620 effective full power days in the Advanced Test Reactor, achieving a peak burnup of 19.6% FIMA. The test train was shipped to the Materials and Fuels Complex in March 2010 for post-irradiation examination. The first PIE activities included non-destructive examination of the test train, followed by disassembly of the test train and individual capsules and detailed inspection of the capsule contents, including the fuel compacts and the graphite fuel holders. Dimensional measurements of the compacts, graphite holders, and steel capsules shells were performed using a custom vision measurement system (for outer diameters and lengths) and conventional bore gauges (for inner diameters). Gamma spectrometry of the intact test train gave a preliminary look at the condition of the interior components. No evidence of damage to compacts or graphite components was evident from the isotopic and gross gamma scans. Neutron radiography of the intact Capsule 2 showed a high degree of detail of interior components and confirmed the observation that there was no major damage to the capsule. Disassembly of the capsules was initiated using procedures qualified during out-of-cell mockup testing. Difficulties were encountered during capsule disassembly due to irradiation-induced changes in some of the capsule components’ properties, including embrittled niobium and molybdenum parts that were susceptible to fracture and swelling of the graphite fuel holders that affected their removal from the capsule shells. This required various improvised modifications to the disassembly procedure to avoid damage to the fuel compacts. Ultimately the capsule disassembly was successful and only one compact from Capsule 4 (out of 72 total in the test train) sustained damage during the disassembly process, along with the associated graphite holder. The compacts were generally in very good condition upon removal. Only relatively minor

  5. CNS myelin wrapping is driven by actin disassembly.

    PubMed

    Zuchero, J Bradley; Fu, Meng-Meng; Sloan, Steven A; Ibrahim, Adiljan; Olson, Andrew; Zaremba, Anita; Dugas, Jason C; Wienbar, Sophia; Caprariello, Andrew V; Kantor, Christopher; Leonoudakis, Dmitri; Leonoudakus, Dmitri; Lariosa-Willingham, Karen; Kronenberg, Golo; Gertz, Karen; Soderling, Scott H; Miller, Robert H; Barres, Ben A

    2015-07-27

    Myelin is essential in vertebrates for the rapid propagation of action potentials, but the molecular mechanisms driving its formation remain largely unknown. Here we show that the initial stage of process extension and axon ensheathment by oligodendrocytes requires dynamic actin filament assembly by the Arp2/3 complex. Unexpectedly, subsequent myelin wrapping coincides with the upregulation of actin disassembly proteins and rapid disassembly of the oligodendrocyte actin cytoskeleton and does not require Arp2/3. Inducing loss of actin filaments drives oligodendrocyte membrane spreading and myelin wrapping in vivo, and the actin disassembly factor gelsolin is required for normal wrapping. We show that myelin basic protein, a protein essential for CNS myelin wrapping whose role has been unclear, is required for actin disassembly, and its loss phenocopies loss of actin disassembly proteins. Together, these findings provide insight into the molecular mechanism of myelin wrapping and identify it as an actin-independent form of mammalian cell motility.

  6. Alignment Pins for Assembling and Disassembling Structures

    NASA Technical Reports Server (NTRS)

    Campbell, Oliver C.

    2008-01-01

    Simple, easy-to-use, highly effective tooling has been devised for maintaining alignment of bolt holes in mating structures during assembly and disassembly of the structures. The tooling was originally used during removal of a body flap from the space shuttle Atlantis, in which misalignments during removal of the last few bolts could cause the bolts to bind in their holes. By suitably modifying the dimensions of the tooling components, the basic design of the tooling can readily be adapted to other structures that must be maintained in alignment. The tooling includes tapered, internally threaded alignment pins designed to fit in the bolt holes in one of the mating structures, plus a draw bolt and a cup that are used to install or remove each alignment pin. In preparation for disassembly of two mating structures, external supports are provided to prevent unintended movement of the structures. During disassembly of the structures, as each bolt that joins the structures is removed, an alignment pin is installed in its place. Once all the bolts have been removed and replaced with pins, the pins maintain alignment as the structures are gently pushed or pulled apart on the supports. In assembling the two structures, one reverses the procedure described above: pins are installed in the bolt holes, the structures are pulled or pushed together on the supports, then the pins are removed and replaced with bolts. The figure depicts the tooling and its use. To install an alignment pin in a bolt hole in a structural panel, the tapered end of the pin is inserted from one side of the panel, the cup is placed over the pin on the opposite side of the panel, the draw bolt is inserted through the cup and threaded into the pin, the draw bolt is tightened to pull the pin until the pin is seated firmly in the hole, then the draw bolt and cup are removed, leaving the pin in place. To remove an alignment pin, the cup is placed over the pin on the first-mentioned side of the panel, the draw

  7. Disassembly and Sanitization of Classified Matter

    SciTech Connect

    Stockham, Dwight J.; Saad, Max P.

    2008-01-15

    The Disassembly Sanitization Operation (DSO) process was implemented to support weapon disassembly and disposition by using recycling and waste minimization measures. This process was initiated by treaty agreements and reconfigurations within both the DOD and DOE Complexes. The DOE is faced with disassembling and disposing of a huge inventory of retired weapons, components, training equipment, spare parts, weapon maintenance equipment, and associated material. In addition, regulations have caused a dramatic increase in the need for information required to support the handling and disposition of these parts and materials. In the past, huge inventories of classified weapon components were required to have long-term storage at Sandia and at many other locations throughout the DoE Complex. These materials are placed in onsite storage unit due to classification issues and they may also contain radiological and/or hazardous components. Since no disposal options exist for this material, the only choice was long-term storage. Long-term storage is costly and somewhat problematic, requiring a secured storage area, monitoring, auditing, and presenting the potential for loss or theft of the material. Overall recycling rates for materials sent through the DSO process have enabled 70 to 80% of these components to be recycled. These components are made of high quality materials and once this material has been sanitized, the demand for the component metals for recycling efforts is very high. The DSO process for NGPF, classified components established the credibility of this technique for addressing the long-term storage requirements of the classified weapons component inventory. The success of this application has generated interest from other Sandia organizations and other locations throughout the complex. Other organizations are requesting the help of the DSO team and the DSO is responding to these requests by expanding its scope to include Work-for- Other projects. For example

  8. Montmorillonite-induced Bacteriophage φ6 Disassembly

    NASA Astrophysics Data System (ADS)

    Trusiak, A.; Gottlieb, P.; Katz, A.; Alimova, A.; Steiner, J. C.; Block, K. A.

    2012-12-01

    It is estimated that there are 1031 virus particles on Earth making viruses an order of magnitude more prevalent in number than prokaryotes with the vast majority of viruses being bacteriophages. Clays are a major component of soils and aquatic sediments and can react with RNA, proteins and bacterial biofilms. The clays in soils serve as an important moderator between phage and their host bacteria, helping to preserve the evolutionary balance. Studies on the effects of clays on viral infectivity have given somewhat contradictory results; possibly a consequence of clay-virus interactions being dependent on the unique structure of particular viruses. In this work, the interaction between montmorillonite and the bacteriophage φ6 is investigated. φ6 is a member of the cystovirus family that infects Pseudomonas syringe, a common plant pathogen. As a member of the cystovirus family with an enveloped structure, φ6 serves as a model for reoviruses, a human pathogen. Experiments were conducted with φ6 suspended in dilute, purified homoionic commercial-grade montmorillonite over a range of virus:clay ratios. At a 1:100000 virus:clay ratio, the clay reduced viral infectivity by 99%. The minimum clay to virus ratio which results in a measurable reduction of P. syringae infection is 1:1. Electron microscopy demonstrates that mixed suspensions of smectite and virus co-aggregate to form flocs encompassing virions within the smectite. Both free viral particles as well as those imbedded in the flocs are seen in the micrographs to be missing the envelope- leaving only the nucleocapsid (NC) intact; indicating that smectite inactivates the virus by envelope disassembly. These results have strong implications in the evolution of both the φ6 virus and its P. syringae host cells. TEM of aggregate showing several disassembled NCs.

  9. Reactor

    DOEpatents

    Evans, Robert M.

    1976-10-05

    1. A neutronic reactor having a moderator, coolant tubes traversing the moderator from an inlet end to an outlet end, bodies of material fissionable by neutrons of thermal energy disposed within the coolant tubes, and means for circulating water through said coolant tubes characterized by the improved construction wherein the coolant tubes are constructed of aluminum having an outer diameter of 1.729 inches and a wall thickness of 0.059 inch, and the means for circulating a liquid coolant through the tubes includes a source of water at a pressure of approximately 350 pounds per square inch connected to the inlet end of the tubes, and said construction including a pressure reducing orifice disposed at the inlet ends of the tubes reducing the pressure of the water by approximately 150 pounds per square inch.

  10. Coupled anion and cation ordering in Sr{sub 3}RFe{sub 4}O{sub 10.5} (R=Y, Ho, Dy) anion-deficientperovskites

    SciTech Connect

    Abakumov, Artem M.; D'Hondt, Hans; Rossell, Marta D.; Tsirlin, Alexander A.; Gutnikova, Olga; Filimonov, Dmitry S.; Schnelle, Walter; Rosner, Helge; Hadermann, Joke; Van Tendeloo, Gustaaf; Antipov, Evgeny V.

    2010-12-15

    The Sr{sub 3}RFe{sub 4}O{sub 10.5} (R=Y, Ho, Dy) anion-deficient perovskites were prepared using a solid-state reaction in evacuated sealed silica tubes. Transmission electron microscopy and {sup 57}Fe Moessbauer spectroscopy evidenced a complete A-cations and oxygen vacancies ordering. The structure model was further refined by ab initio structure relaxation, based on density functional theory calculations. The compounds crystallize in a tetragonal a{approx}2{radical}2a{sub p{approx}}11.3 A, c{approx}4c{sub p{approx}}16 A unit cell (a{sub p}: parameter of the perovskite subcell) with the P4{sub 2}/mnm space group. Oxygen vacancies reside in the (FeO{sub 5/4{open_square}3/4}) layers, comprising corner-sharing FeO{sub 4} tetrahedra and FeO{sub 5} tetragonal pyramids, which are sandwiched between the layers of the FeO{sub 6} octahedra. Smaller R atoms occupy the 9-fold coordinated position, whereas the 10-fold coordinated positions are occupied by larger Sr atoms. The Fe sublattice is ordered aniferromagnetically up to at least 500 K, while the rare-earth sublattice remains disordered down to 2 K. -- Graphical abstract: The Sr{sub 3}RFe{sub 4}O{sub 10.5} (R=Y, Ho, Dy) anion-deficient perovskites with a complete ordering of the A-cations and oxygen vacancies have been prepared using a solid-state reaction in evacuated sealed silica tubes. Oxygen vacancies reside in the (FeO{sub 5/43/4}) layers, comprising corner-sharing FeO{sub 4} tetrahedra and FeO{sub 5} tetragonal pyramids, which are sandwiched between the layers of the FeO{sub 6} octahedra. Smaller R atoms occupy the 9-fold coordinated position, whereas the 10-fold coordinated positions are occupied by larger Sr atoms.

  11. 13. View of disassembled steam engine showing cylinder, piston rod, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. View of disassembled steam engine showing cylinder, piston rod, parallel motion links and steam chest. - Hacienda Azucarera La Esperanza, Steam Engine & Mill, 2.65 Mi. N of PR Rt. 2 Bridge over Manati River, Manati, Manati Municipio, PR

  12. 12. View of disassembled steam engine sitting in open shed ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. View of disassembled steam engine sitting in open shed showing base, columns and entablature. - Hacienda Azucarera La Esperanza, Steam Engine & Mill, 2.65 Mi. N of PR Rt. 2 Bridge over Manati River, Manati, Manati Municipio, PR

  13. 17. View of disassembled reduction gear parts including bull and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. View of disassembled reduction gear parts including bull and intermediate gears and pedestal bearing. - Hacienda Azucarera La Esperanza, Steam Engine & Mill, 2.65 Mi. N of PR Rt. 2 Bridge over Manati River, Manati, Manati Municipio, PR

  14. Laser cutting system for nuclear fuel disassembly

    SciTech Connect

    Weil, B.S.

    1985-01-01

    A significant advancement in fuel reprocessing technology has been made by utilizing a multikilowatt, carbon dioxide laser to perform cutting operations necessary to remove unprocessible hardware from reactor fuel assemblies. 10 figs.

  15. Systems impacts of spent fuel disassembly alternatives

    SciTech Connect

    Not Available

    1984-07-01

    Three studies were completed to evaluate four alternatives to the disposal of intact spent fuel assemblies in a geologic repository. A preferred spent fuel waste form for disposal was recommended on consideration of (1) package design and fuel/package interaction, (2) long-term, in-repository performance of the waste form, and (3) overall process performance and costs for packaging, handling, and emplacement. The four basic alternative waste forms considered were (1) end fitting removal, (2) fission gas venting, (3) disassembly and close packing, and (4) shearing/immobilization. None of the findings ruled out any alternative on the basis of waste package considerations or long-term performance of the waste form. The third alternative offers flexibility in loading that may prove attractive in the various geologic media under consideration, greatly reduces the number of packages, and has the lowest unit cost. These studies were completed in October, 1981. Since then Westinghouse Electric Corporation and the Office of Nuclear Waste Isolation have completed studies in related fields. This report is now being published to provide publicly the background material that is contained within. 47 references, 28 figures, 31 tables.

  16. Disassembly and characterization of liquid crystal screens.

    PubMed

    Juchneski, Nichele C F; Scherer, Janine; Grochau, Inês H; Veit, Hugo M

    2013-06-01

    The technology used in the manufacturing of televisions and monitors has been changing in recent years. Monitors with liquid crystal displays (LCD) emerged in the market with the aim of replacing cathode ray tube monitors. As a result, the disposal of this type of product, which is already very high, will increase. Thus, without accurate knowledge of the components and materials present in an LCD monitor, the recycling of materials, such as mercury, thermoplastic polymers, glasses, metals and precious metals amongst others, is not only performed, but allows contamination of soil, water and air with the liberation of toxic compounds present in this type of waste when disposed of improperly. Therefore, the objective of this study was to disassemble and characterize the materials in this type of waste, identify the composition, amount and form to enable, in further work, the development of recycling routes. After various tests and analyses, it was observed that an LCD display can be recycled, provided that precautions are taken. Levels of lead, fluoride and copper are above those permitted by the Brazilian law, characterizing this residue as having a high pollution potential. The materials present in printed circuit boards (base and precious metals)-thermoplastics, such as polyethylene terephthalate, acrylic, acrylonitrile butadiene styrene and polycarbonate and metals, such as steel and aluminum, and a layer of indium (in the internal face of the glass)-are components that make a point in terms of their potential for recycling.

  17. A symbolic methodology to improve disassembly process design.

    PubMed

    Rios, Pedro; Blyler, Leslie; Tieman, Lisa; Stuart, Julie Ann; Grant, Ed

    2003-12-01

    Millions of end-of-life electronic components are retired annually due to the proliferation of new models and their rapid obsolescence. The recovery of resources such as plastics from these goods requires their disassembly. The time required for each disassembly and its associated cost is defined by the operator's familiarity with the product design and its complexity. Since model proliferation serves to complicate an operator's learning curve, it is worthwhile to investigate the benefits to be gained in a disassembly operator's preplanning process. Effective disassembly process design demands the application of green engineering principles, such as those developed by Anastas and Zimmerman (Environ. Sci. Technol. 2003, 37, 94A-101A), which include regard for product complexity, structural commonality, separation energy, material value, and waste prevention. This paper introduces the concept of design symbolsto help the operator more efficiently survey product complexity with respect to location and number of fasteners to remove a structure that is common to all electronics: the housing. With a sample of 71 different computers, printers, and monitors, we demonstrate that appropriate symbols reduce the total disassembly planning time by 13.2 min. Such an improvement could well make efficient the separation of plastic that would otherwise be destined for waste-to-energy or landfill. The symbolic methodology presented may also improve Design for Recycling and Design for Maintenance and Support.

  18. FY-2010 AGC-1 Disassembly Preparation

    SciTech Connect

    Philip L. Winston

    2010-09-01

    The Next Generation Nuclear Plant Project Graphite Research and Development program is currently establishing the safe operating envelope of graphite core components for a very high temperature reactor design. The program is generating quantitative data necessary for predicting the behavior and operating performance of the new nuclear graphite grades. To determine the in-service behavior of the graphite for pebble bed and prismatic designs, the Advanced Graphite Creep (AGC) experiment is underway. This experiment is examining the properties and behavior of nuclear grade graphite over a large spectrum of temperatures, neutron fluencies, and compressive loads. Each experiment consists of over 400 graphite specimens that are characterized prior to irradiation and following irradiation. Six experiments are planned with the first, AGC-1, currently being irradiated in the Advanced Test Reactor and preirradiation characterization of the second, AGC-2, completed.

  19. Application of an optical 3D sensor for automated disassembling

    NASA Astrophysics Data System (ADS)

    Knackfuss, Peter; Schmidt, Achim

    1996-08-01

    The application of an active vision 3D sensor is described for the development and control of an autonomous intelligent robot cell for the disassembling of end-of-life-vehicle components. The research and development work was done concurrently by three European development teams at different locations. During this phase, the virtual environment was distributed on the local development platforms of these teams. Intermediate development results and 3D sensor data were exchanged through network communication to be mutually tested and verified. The physical environment of the disassembling cell demonstrator and its sensor systems is currently being integrated at the BIBA institute.

  20. Capillarity-induced disassembly of virions in carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Fan, Xiaobin; Barclay, J. Elaine; Peng, Wenchao; Li, Yang; Li, Xianyu; Zhang, Guoliang; Evans, David J.; Zhang, Fengbao

    2008-04-01

    Studying the transport and fate of viruses through nanochannels is of great importance. By using the nanochannel of a carbon nanotube (CNT) as an ideal model, we evaluated the possibility of capillarity-induced viral transport through a closely fitting nanochannel and explored the mechanisms involved. It is shown both experimentally and theoretically that Cowpea mosaic virus can enter CNTs by capillarity. However, when introduced into a nanotube the protein capsid may disassemble. During the initial capillary filling stage, anomalous needle-shaped high pressure exists in the centre of the nanotube's entrance. This high pressure, combining with the significant negative pressure within the nanotube, may account for the disassembly of the virions.

  1. Assembly via disassembly: A case in machine perceptual development

    NASA Technical Reports Server (NTRS)

    Bajcsy, Ruzena K.; Tsikos, Constantine J.

    1989-01-01

    First results in the effort of learning about representations of objects is presented. The questions attempted to be answered are: What is innate and what must be derived from the environment. The problem is casted in the framework of disassembly of an object into two parts.

  2. Teaching Assembly for Disassembly; An Under-Graduate Module Experience

    ERIC Educational Resources Information Center

    Alexandri, Eleftheria

    2014-01-01

    This paper is about the experience of teaching Assembly for Disassembly to fourth year architect students within the module of sustainable design. When designing a sustainable building one should take into consideration the fact that the building is going to be demolished in some years; thus the materials should be assembled in such a way so that…

  3. Desmosome Assembly and Disassembly Are Membrane Raft-Dependent

    PubMed Central

    Faundez, Victor; Koval, Michael; Mattheyses, Alexa L.; Kowalczyk, Andrew P.

    2014-01-01

    Strong intercellular adhesion is critical for tissues that experience mechanical stress, such as the skin and heart. Desmosomes provide adhesive strength to tissues by anchoring desmosomal cadherins of neighboring cells to the intermediate filament cytoskeleton. Alterations in assembly and disassembly compromise desmosome function and may contribute to human diseases, such as the autoimmune skin blistering disease pemphigus vulgaris (PV). We previously demonstrated that PV auto-antibodies directed against the desmosomal cadherin desmoglein 3 (Dsg3) cause loss of adhesion by triggering membrane raft-mediated Dsg3 endocytosis. We hypothesized that raft membrane microdomains play a broader role in desmosome homeostasis by regulating the dynamics of desmosome assembly and disassembly. In human keratinocytes, Dsg3 is raft associated as determined by biochemical and super resolution immunofluorescence microscopy methods. Cholesterol depletion, which disrupts rafts, prevented desmosome assembly and adhesion, thus functionally linking rafts to desmosome formation. Interestingly, Dsg3 did not associate with rafts in cells lacking desmosomal proteins. Additionally, PV IgG-induced desmosome disassembly occurred by redistribution of Dsg3 into raft-containing endocytic membrane domains, resulting in cholesterol-dependent loss of adhesion. These findings demonstrate that membrane rafts are required for desmosome assembly and disassembly dynamics, suggesting therapeutic potential for raft targeting agents in desmosomal diseases such as PV. PMID:24498201

  4. [Dislocation-disassembly of bipolar hip arthroplasty--case report].

    PubMed

    Gagała, Jacek; Blacha, Jan

    2005-01-01

    Bipolar hip arthroplasty dislocation is rare. A case of bipolar hip arthroplasty dislocation in patient treated because of femoral neck fracture was described. Patient had neurological problems. The arthroplasty was made with posterolateral approach. Disassembly of bipolar prosthesis occurred during closed reduction. Open reduction with bipolar head exchange was necessary. To avoid this complication reduction should be made in anesthesia with muscles relaxation.

  5. Multi-kanban mechanism for personal computer disassembly

    NASA Astrophysics Data System (ADS)

    Udomsawat, Gun; Gupta, Surendra M.; Kamarthi, Sagar V.

    2004-12-01

    The use of personal computers (PCs) continues to increase every year. According to a 1999 figure, 50 percent of all US households owned PCs, a figure that continues to rise every year. With continuous development of sophisticated software, PCs are becoming increasingly powerful. In addition, the price of a PC continues to steadily decline. Furthermore, the typical life of a PC in the workplace is approximately two to three years while in the home it is three to five years. As these PCs become obsolete, they are replaced and the old PCs are disposed of. It is estimated that between 14 and 20 million PCs are retired annually in the US. While 20 to 30% of the units may be resold, the others are discarded. These discards represent a significant potential source of lead for the waste stream. In some communities, waste cathode ray tubes (CRTs) represent the second largest source of lead in the waste stream after vehicular lead acid batteries. PCs are, therefore, not suitable for dumping in landfills. Besides, several components of a PC can be reused and then there are other valuable materials that can also be harvested. And with the advent of product stewardship, product recovery is the best solution for manufacturers. Disassembly line is perhaps the most suitable set up for disassembling PCs. However, planning and scheduling of disassembly on a disassembly line is complicated. In this paper, we discuss some of the complications including product arrival, demand arrival, inventory fluctuation and production control mechanisms. We then show how to overcome them by implementing a multi-kanban mechanism in the PC disassembly line setting. The multi-kanban mechanism relies on dynamic routing of kanbans according to the state of the system. We investigate the multi-kanban mechanism using simulation and demonstrate that this mechanism is superior to the traditional push system in terms of controlling the system"s inventory while maintaining a decent customer service level.

  6. 29 CFR 1926.1404 - Assembly/Disassembly-general requirements (applies to all assembly and disassembly operations).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... following: (i) Their tasks. (ii) The hazards associated with their tasks. (iii) The hazardous positions... (d)(1)(i) through (d)(1)(iii) of this section must be met. (e) Protecting assembly/disassembly crew... to: (i) Protect the structural integrity of the equipment, and (ii) Prevent dangerous movement...

  7. Development of an advanced, continuous mild gasification process for the production of co-products. Task 4.8, Decontamination and disassembly of the mild gasification process research unit and disposal of co-products

    SciTech Connect

    Ness, R.O. Jr.; Li, Y.; Heidt, M.

    1992-09-01

    Prior to disassembly of the CFBR, accumulated tar residue must be removed from the reactor, piping and tubing lines, and the condenser vessels. Based on experience from the CFBR mild gasification tests, lacquer thinner must be pumped through the unit for at least one hour to remove the residual tar. The lacquer thinner wash may be followed by a water wash. The CFBR will be disassembled after the system has been thoroughly flushed out. The following equipment must be disassembled and removed for storage: Superheater; Water supply pump; Coal feed system (hopper, auger, ball feeder, valves); Reactor; Cyclone and fines catch pot; Condensers (water lines, glycol bath, condenser pots, valves); and Gas meter. After the process piping and reactor have been disassembled, the equipment will be inspected for tar residues and flushed again with acetone or lacquer thinner, if necessary. All solvent used for cleaning the system will be collected for recycle or proper disposal. Handling and disposal of the solvent will be properly documented. The equipment will be removed and stored for future use. Equipment contaminated externally with tar (Level 4) will be washed piece by piece with lacquer thinner after disassembly of the PRU. Proper health and safety practices must be followed by the personnel involved in the cleanup operation. Care must be taken to avoid ingestion, inhalation, or prolonged skin contact of the coal tars and lacquer thinner. Equipment contaminated internally by accumulation of residual tar or oil (Level 5) will be flushed section by section with lacquer thinner. The equipment will be washed with solvent both before and after disassembly to ensure that all tar has been removed from the piping, pumps, gas quench condensers, light tar condensers, and drain lines. The coal tars wig be separated from the solvent and incinerated.

  8. Uses for plutonium: Weapons, reactors, and other

    SciTech Connect

    Condit, R.H.

    1994-05-01

    This document begins with a introduction on criticality and supercriticality. Then, types and components, design and engineering, yields, and disassembly of nuclear weapons are discussed. Plutonium is evaluated as a reactor fuel, including neutronics and chemistry considerations. Finally, other uses of plutonium are analyzed.

  9. Distinct stages in stress granule assembly and disassembly.

    PubMed

    Wheeler, Joshua R; Matheny, Tyler; Jain, Saumya; Abrisch, Robert; Parker, Roy

    2016-01-01

    Stress granules are non-membrane bound RNA-protein (RNP) assemblies that form when translation initiation is limited and contain a biphasic structure with stable core structures surrounded by a less concentrated shell. The order of assembly and disassembly of these two structures remains unknown. Time course analysis of granule assembly suggests that core formation is an early event in granule assembly. Stress granule disassembly is also a stepwise process with shell dissipation followed by core clearance. Perturbations that alter liquid-liquid phase separations (LLPS) driven by intrinsically disordered protein regions (IDR) of RNA binding proteins in vitro have the opposite effect on stress granule assembly in vivo. Taken together, these observations argue that stress granules assemble through a multistep process initiated by stable assembly of untranslated mRNPs into core structures, which could provide sufficient high local concentrations to allow for a localized LLPS driven by IDRs on RNA binding proteins. PMID:27602576

  10. Programmable, isothermal disassembly of DNA-linked colloidal particles

    NASA Astrophysics Data System (ADS)

    Tison, Christopher Kirby

    Colloidal particles serve as useful building blocks for materials applications ranging from controlled hand-gap materials to rationally designed drug delivery systems. Thus, developing approaches to direct the assembly and disassembly of sub-micron sized particles will be paramount to further advances in materials science engineering. This project focuses on using programmable and reversible binding between oligonucleotide strands to assemble and then disassemble polystyrene colloidal particles. It is shown that DNA-mediated assembly can be reversed at a fixed temperature using secondary oligonucleotide strands to competitively displace the primary strands linking particles together. It was found that (1) titrating the surface density of hybridizing probe strands and (2) adjusting the base length difference between primary and secondary target strands was key to successful isothermal disassembly. In order to titrate the surface density of primary probe-target duplexes, colloidal particles were conjugated with mixtures of probe strands and "diluent" strands in order to minimize the number of DNA linkages between particles. To reduce the steric interference of the diluent strands to hybridization events, diluent strands were clipped with a restriction enzyme in select cases. Kinetics studies revealed that a four to six base-length difference between primary and secondary target strands resulted in extensive competitive hybridization at secondary oligonucleotide concentrations as low as 10 nM. Importantly, it was found that the timing for release of either DNA alone or DNA-conjugated nanoparticles could be tuned through choices in the DNA sequences and concentration. Lastly, competitive hybridization was explored in select studies to drive the "shedding" of PEGylated DNA targets from microspheres to reveal underlying adhesive groups or ligands on the particle surface. Unlike prior work relying on elevated temperatures to melt DNA-linkages, this work presents an

  11. Does life history mediate changing disease risk when communities disassemble?

    PubMed

    Joseph, Maxwell B; Mihaljevic, Joseph R; Orlofske, Sarah A; Paull, Sara H

    2013-11-01

    Biodiversity loss sometimes increases disease risk or parasite transmission in humans, wildlife and plants. Some have suggested that this pattern can emerge when host species that persist throughout community disassembly show high host competence - the ability to acquire and transmit infections. Here, we briefly assess the current empirical evidence for covariance between host competence and extirpation risk, and evaluate the consequences for disease dynamics in host communities undergoing disassembly. We find evidence for such covariance, but the mechanisms for and variability around this relationship have received limited consideration. This deficit could lead to spurious assumptions about how and why disease dynamics respond to community disassembly. Using a stochastic simulation model, we demonstrate that weak covariance between competence and extirpation risk may account for inconsistent effects of host diversity on disease risk that have been observed empirically. This model highlights the predictive utility of understanding the degree to which host competence relates to extirpation risk, and the need for a better understanding of the mechanisms underlying such relationships.

  12. Regulated assembly and disassembly of the yeast telomerase quaternary complex

    PubMed Central

    Tucey, Timothy M.

    2014-01-01

    The enzyme telomerase, which elongates chromosome termini, is a critical factor in determining long-term cellular proliferation and tissue renewal. Hence, even small differences in telomerase levels can have substantial consequences for human health. In budding yeast, telomerase consists of the catalytic Est2 protein and two regulatory subunits (Est1 and Est3) in association with the TLC1 RNA, with each of the four subunits essential for in vivo telomerase function. We show here that a hierarchy of assembly and disassembly results in limiting amounts of the quaternary complex late in the cell cycle, following completion of DNA replication. The assembly pathway, which is driven by interaction of the Est3 telomerase subunit with a previously formed Est1–TLC1–Est2 preassembly complex, is highly regulated, involving Est3-binding sites on both Est2 and Est1 as well as an interface on Est3 itself that functions as a toggle switch. Telomerase subsequently disassembles by a mechanistically distinct pathway due to dissociation of the catalytic subunit from the complex in every cell cycle. The balance between the assembly and disassembly pathways, which dictate the levels of the active holoenzyme in the cell, reveals a novel mechanism by which telomerase (and hence telomere homeostasis) is regulated. PMID:25240060

  13. Regulation of cilia assembly, disassembly, and length by protein phosphorylation.

    PubMed

    Cao, Muqing; Li, Guihua; Pan, Junmin

    2009-01-01

    The exact mechanism by which cells are able to assemble, regulate, and disassemble cilia or flagella is not yet completely understood. Recent studies in several model systems, including Chlamydomonas, Tetrahymena, Leishmania, Caenorhabditis elegans, and mammals, provide increasing biochemical and genetic evidence that phosphorylation of multiple protein kinases plays a key role in cilia assembly, disassembly, and length regulation. Members of several protein kinase families--including aurora kinases, never in mitosis A (NIMA)-related protein kinases, mitogen-activated protein (MAP) kinases, and a novel cyclin-dependent protein kinase--are involved in the ciliary regulation process. Among the newly identified protein kinase substrates are Chlamydomonas kinesin-13 (CrKinesin13), a microtubule depolymerizer, and histone deacetylase 6 (HDAC6), a microtubule deacetylase. Chlamydomonas aurora/Ipl1p-like protein kinase (CALK) and CrKinesin13 are two proteins that undergo phosphorylation changes correlated with flagellar assembly or disassembly. CALK becomes phosphorylated when flagella are lost, whereas CrKinesin13 is phosphorylated when new flagella are assembled. Conversely, suppressing CrKinesin13 expression results in cells with shorter flagella. PMID:20362099

  14. Tyrosine phosphorylation of WASP promotes calpain-mediated podosome disassembly

    PubMed Central

    Macpherson, Lee; Monypenny, James; Blundell, Michael P.; Cory, Giles O.; Tomé-García, Jessica; Thrasher, Adrian J.; Jones, Gareth E.; Calle, Yolanda

    2012-01-01

    Podosomes are actin-based adhesions involved in migration of cells that have to cross tissue boundaries such as myeloid cells. The Wiskott Aldrich Syndrome Protein regulates de novo actin polymerization during podosome formation and it is cleaved by the protease calpain during podosome disassembly. The mechanisms that may induce the Wiskott Aldrich Syndrome Protein cleavage by calpain remain undetermined. We now report that in myeloid cells, tyrosine phosphorylation of the Wiskott Aldrich Syndrome Protein-tyrosine291 (Human)/tyrosine293 (mouse) not only enhances Wiskott Aldrich Syndrome Protein-mediated actin polymerization but also promotes its calpain-dependent degradation during podosome disassembly. We also show that activation of the Wiskott Aldrich Syndrome Protein leading to podosome formation occurs independently of tyrosine phosphorylation in spleen-derived dendritic cells. We conclude that tyrosine phosphorylation of the Wiskott Aldrich Syndrome Protein integrates dynamics of actin and cell adhesion proteins during podosome disassembly required for mobilization of myeloid cells during the immune response. PMID:22133775

  15. Disassembly of the cystovirus ϕ6 envelope by montmorillonite clay

    PubMed Central

    Block, Karin A; Trusiak, Adrianna; Katz, Al; Gottlieb, Paul; Alimova, Alexandra; Wei, Hui; Morales, Jorge; Rice, William J; Steiner, Jeffrey C

    2014-01-01

    Prior studies of clay–virus interactions have focused on the stability and infectivity of nonenveloped viruses, yielding contradictory results. We hypothesize that the surface charge distribution of the clay and virus envelope dictates how the components react and affect aggregation, viral stability, and infectivity. The bacteriophage Cystoviridae species φ6 used in this study is a good model for enveloped pathogens. The interaction between φ6 and montmorillonite (MMT) clay (the primary component of bentonite) is explored by transmission electron microscopy. The analyses show that MMT–φ6 mixtures undergo heteroaggregation, forming structures in which virtually all the virions are either sequestered between MMT platelet layers or attached to platelet edges. The virions swell and undergo disassembly resulting in partial or total envelope loss. Edge-attached viral envelopes distort to increase contact area with the positively charged platelet edges indicating that the virion surface is negatively charged. The nucleocapsid (NCs) remaining after envelope removal also exhibit distortion, in contrast to detergent-produced NCs which exhibit no distortion. This visually discernible disassembly is a mechanism for loss of infectivity previously unreported by studies of nonenveloped viruses. The MMT-mediated sequestration and disassembly result in reduced infectivity, suggesting that clays may reduce infectivity of enveloped pathogenic viruses in soils and sediments. PMID:24357622

  16. Caspar carboxylates: the structural basis of tobamovirus disassembly.

    PubMed Central

    Wang, H; Planchart, A; Stubbs, G

    1998-01-01

    Carboxylate groups have been known for many years to drive the disassembly of simple viruses, including tobacco mosaic virus (TMV). The identities of the carboxylate groups involved and the mechanism by which they initiate disassembly have not, however, been clear. Structures have been determined at resolutions between 2.9 and 3.5 A for five tobamoviruses by fiber diffraction methods. Site-directed mutagenesis has also been used to change numerous carboxylate side chains in TMV to the corresponding amides. Comparison of the stabilities of the various mutant viruses shows that disassembly is driven by a much more complex set of carboxylate interactions than had previously been postulated. Despite the importance of the carboxylate interactions, they are not conserved during viral evolution. Instead, it appears that during evolution, patches of electrostatic interaction drift across viral subunit interfaces. The flexibility of these interactions confers a considerable advantage on the virus, enabling it to change its surface structure rapidly and thus evade host defenses. PMID:9449364

  17. On the optimal design of the disassembly and recovery processes

    SciTech Connect

    Xanthopoulos, A.; Iakovou, E.

    2009-05-15

    This paper tackles the problem of the optimal design of the recovery processes of the end-of-life (EOL) electric and electronic products, with a special focus on the disassembly issues. The objective is to recover as much ecological and economic value as possible, and to reduce the overall produced quantities of waste. In this context, a medium-range tactical problem is defined and a novel two-phased algorithm is presented for a remanufacturing-driven reverse supply chain. In the first phase, we propose a multicriteria/goal-programming analysis for the identification and the optimal selection of the most 'desirable' subassemblies and components to be disassembled for recovery, from a set of different types of EOL products. In the second phase, a multi-product, multi-period mixed-integer linear programming (MILP) model is presented, which addresses the optimization of the recovery processes, while taking into account explicitly the lead times of the disassembly and recovery processes. Moreover, a simulation-based solution approach is proposed for capturing the uncertainties in reverse logistics. The overall approach leads to an easy-to-use methodology that could support effectively middle level management decisions. Finally, the applicability of the developed methodology is illustrated by its application on a specific case study.

  18. ARC: A compact, high-field, disassemblable fusion nuclear science facility and demonstration power plant

    NASA Astrophysics Data System (ADS)

    Sorbom, Brandon; Ball, Justin; Palmer, Timothy; Mangiarotti, Franco; Sierchio, Jennifer; Bonoli, Paul; Kasten, Cale; Sutherland, Derek; Barnard, Harold; Haakonsen, Christian; Goh, Jon; Sung, Choongki; Whyte, Dennis

    2014-10-01

    The Affordable, Robust, Compact (ARC) reactor conceptual design aims to reduce the size, cost, and complexity of a combined Fusion Nuclear Science Facility (FNSF) and demonstration fusion pilot power plant. ARC is a 270 MWe tokamak reactor with a major radius of 3.3 m, a minor radius of 1.1 m, and an on-axis magnetic field of 9.2 T. ARC has Rare Earth Barium Copper Oxide (REBCO) superconducting toroidal field coils with joints to allow disassembly, allowing for removal and replacement of the vacuum vessel as a single component. Inboard-launched current drive of 25 MW LHRF power and 13.6 MW ICRF power is used to provide a robust, steady state core plasma far from disruptive limits. ARC uses an all-liquid blanket, consisting of low pressure, slowly flowing Fluorine Lithium Beryllium (FLiBe) molten salt. The liquid blanket acts as a working fluid, coolant, and tritium breeder, and minimizes the solid material that can become activated. The large temperature range over which FLiBe is liquid permits blanket operation at 800-900 K with single phase fluid cooling and allows use of a high-efficiency Brayton cycle for electricity production in the secondary coolant loop.

  19. Amide I band and photoinduced disassembly of a peptide hydrogel

    NASA Astrophysics Data System (ADS)

    Measey, Thomas J.; Markiewicz, Beatrice N.; Gai, Feng

    2013-08-01

    Peptide hydrogels are promising candidates for a wide range of medical and biotechnological applications. To further expand the potential utility of peptide hydrogels, herein we demonstrate a simple yet effective strategy to render peptide hydrogels photodegradable, making controlled disassembly of the gel structure of interest feasible. In addition, we find that the high-frequency amide I' component (i.e., the peak at ˜1685 cm-1) of the photodegradable peptide hydrogel studied shows an unusually large enhancement, in comparison to that of other peptide fibrils consisting of antiparallel β-sheets, making it a good model system for further study of the coupling-structure relationship.

  20. Distinct stages in stress granule assembly and disassembly

    PubMed Central

    Wheeler, Joshua R; Matheny, Tyler; Jain, Saumya; Abrisch, Robert; Parker, Roy

    2016-01-01

    Stress granules are non-membrane bound RNA-protein (RNP) assemblies that form when translation initiation is limited and contain a biphasic structure with stable core structures surrounded by a less concentrated shell. The order of assembly and disassembly of these two structures remains unknown. Time course analysis of granule assembly suggests that core formation is an early event in granule assembly. Stress granule disassembly is also a stepwise process with shell dissipation followed by core clearance. Perturbations that alter liquid-liquid phase separations (LLPS) driven by intrinsically disordered protein regions (IDR) of RNA binding proteins in vitro have the opposite effect on stress granule assembly in vivo. Taken together, these observations argue that stress granules assemble through a multistep process initiated by stable assembly of untranslated mRNPs into core structures, which could provide sufficient high local concentrations to allow for a localized LLPS driven by IDRs on RNA binding proteins. DOI: http://dx.doi.org/10.7554/eLife.18413.001 PMID:27602576

  1. Single-Molecule Studies of Actin Assembly and Disassembly Factors

    PubMed Central

    Smith, Benjamin A.; Gelles, Jeff; Goode, Bruce L.

    2014-01-01

    The actin cytoskeleton is very dynamic and highly regulated by multiple associated proteins in vivo. Understanding how this system of proteins functions in the processes of actin network assembly and disassembly requires methods to dissect the mechanisms of activity of individual factors and of multiple factors acting in concert. The advent of single-filament and single-molecule fluorescence imaging methods has provided a powerful new approach to discovering actin-regulatory activities and obtaining direct, quantitative insights into the pathways of molecular interactions that regulate actin network architecture and dynamics. Here we describe techniques for acquisition and analysis of single-molecule data, applied to the novel challenges of studying the filament assembly and disassembly activities of actin-associated proteins in vitro. We discuss the advantages of single-molecule analysis in directly visualizing the order of molecular events, measuring the kinetic rates of filament binding and dissociation, and studying the coordination among multiple factors. The methods described here complement traditional biochemical approaches in elucidating actin-regulatory mechanisms in reconstituted filamentous networks. PMID:24630103

  2. A products generator for testing the performance of disassembly procedures

    NASA Astrophysics Data System (ADS)

    Adenso-Díaz, Belarmino; González Torre, Beatriz

    2004-12-01

    In recent decades, regulations and markets have been exerting pressure on designers and manufacturers to take more responsibility for the environmental impacts of their products throughout their life cycles. The problem of finding the disassembly sequence represents one of the major challenges when attempting to close product life cycles by carrying out reuse, recycling and remanufacturing practices. Many different techniques have been used to deal with this problem, varying from exact to heuristic solutions. So far, however, not much effort has gone into measuring and comparing the efficiency of this wide set of techniques. This is partly due to the difficulties of getting a wide population of real products, belonging to different industries and with different degree of complexity that might constitute a representative population for carrying out this kind of task. In this paper, a generator of complex products is presented that is able to build up products with hundreds of components joined by different kinds of joints in such a way that a theoretical "good" disassembly sequence is always known. The efficiency of different methods for general products can thus be easily compared. The performance of a Scatter Search algorithm is tested as an example of its application in this case.

  3. Hybrid LCA of a design for disassembly technology: active disassembling fasteners of hydrogen storage alloys for home appliances.

    PubMed

    Nakamura, Shinichiro; Yamasue, Eiji

    2010-06-15

    In the current recycling system of end-of-life (EoL) appliances, which is based on shredding, alloying elements tend to end up in the scrap of base metals. The uncontrolled mixing of alloying elements contaminates secondary metals and calls for dilution with primary metals. Active disassembling fastener (ADF) is a design for disassembly (DfD) technology that is expected to solve this problem by significantly reducing the extent of mixing. This paper deals with a life cycle assessment (LCA) based on the waste input-output (WIO) model of an ADF developed using hydrogen storage alloys. Special attention is paid to the issue of dilution of mixed iron scrap using pig iron in an electric arc furnace (EAF). The results for Japanese electrical and electronic appliances indicate superiority of the recycling system based on the ADF over the current system in terms of reduced emissions of CO(2). The superiority of ADF was found to increase with an increase in the requirement for dilution of scrap.

  4. Nucleocytoplasmic transport in the midzone membrane domain controls yeast mitotic spindle disassembly

    PubMed Central

    Lucena, Rafael; Dephoure, Noah; Gygi, Steve P.; Kellogg, Douglas R.; Tallada, Victor A.

    2015-01-01

    During each cell cycle, the mitotic spindle is efficiently assembled to achieve chromosome segregation and then rapidly disassembled as cells enter cytokinesis. Although much has been learned about assembly, how spindles disassemble at the end of mitosis remains unclear. Here we demonstrate that nucleocytoplasmic transport at the membrane domain surrounding the mitotic spindle midzone, here named the midzone membrane domain (MMD), is essential for spindle disassembly in Schizosaccharomyces pombe cells. We show that, during anaphase B, Imp1-mediated transport of the AAA-ATPase Cdc48 protein at the MMD allows this disassembly factor to localize at the spindle midzone, thereby promoting spindle midzone dissolution. Our findings illustrate how a separate membrane compartment supports spindle disassembly in the closed mitosis of fission yeast. PMID:25963819

  5. Nanobody Binding to a Conserved Epitope Promotes Norovirus Particle Disassembly

    PubMed Central

    Koromyslova, Anna D.

    2014-01-01

    ABSTRACT Human noroviruses are icosahedral single-stranded RNA viruses. The capsid protein is divided into shell (S) and protruding (P) domains, which are connected by a flexible hinge region. There are numerous genetically and antigenically distinct noroviruses, and the dominant strains evolve every other year. Vaccine and antiviral development is hampered by the difficulties in growing human norovirus in cell culture and the continually evolving strains. Here, we show the X-ray crystal structures of human norovirus P domains in complex with two different nanobodies. One nanobody, Nano-85, was broadly reactive, while the other, Nano-25, was strain specific. We showed that both nanobodies bound to the lower region on the P domain and had nanomolar affinities. The Nano-85 binding site mainly comprised highly conserved amino acids among the genetically distinct genogroup II noroviruses. Several of the conserved residues also were recognized by a broadly reactive monoclonal antibody, which suggested this region contained a dominant epitope. Superposition of the P domain nanobody complex structures into a cryoelectron microscopy particle structure revealed that both nanobodies bound at occluded sites on the particles. The flexible hinge region, which contained ∼10 to 12 amino acids, likely permitted a certain degree of P domain movement on the particles in order to accommodate the nanobodies. Interestingly, the Nano-85 binding interaction with intact particles caused the particles to disassemble in vitro. Altogether, these results suggested that the highly conserved Nano-85 binding epitope contained a trigger mechanism for particle disassembly. Principally, this epitope represents a potential site of norovirus vulnerability. IMPORTANCE We characterized two different nanobodies (Nano-85 and Nano-25) that bind to human noroviruses. Both nanobodies bound with high affinities to the lower region of the P domain, which was occluded on intact particles. Nano-25 was

  6. Double contingency controls in the pit disassembly and conversion facility

    SciTech Connect

    Christensen, L.; Brady-Raap, M.

    2002-01-01

    A Pit Disassembly and Conversion Facility (PDCF) will be built and operated at DOE'S Savannah River Site (SRS) in South Carolina. The facility will process over three metric tons of plutonium per year. There will be a significant amount of special nuclear material (SNM) moving through the various processing modules in the facility, and this will obviously require well-designed engineering controls to prevent criticality accidents. The PDCF control system will interlock glovebox entry doors closed if the correct amount of SNM has not been removed from the exit enclosure. These same engineering controls will also be used to verify that only plutonium goes to plutonium processing gloveboxes, enriched uranium goes to enriched uranium processing, and that neither goes into non-SNM processing gloveboxes.

  7. Disassembling and reintegration of large telescope primary mirror

    NASA Astrophysics Data System (ADS)

    Xu, Qi-rui; Fan, Bin; Zhang, Ming

    2014-09-01

    The success of the large telescope is largely linked to the excellent performance and reliability of the primary mirror. In order to maintain the quality of its reflective surface at the high expectations of astronomers, the primary mirror after almost two or three years of astronomical observations, needs to be removed and reinstalled for its cleaning and re-coating operation. There are a series of procedures such as the primary mirror cell dissembling from telescope, mirror handling, transportation, reintegration, alignment and so on. This paper will describe the experiences of disassembling and reintegration of large telescope primary mirror, taking a two meter grade primary mirror for example. As with all advanced and complex opto-mechanical systems, there has been the usual problems and trouble shooting.

  8. A model actin comet tail disassembling by severing

    PubMed Central

    Michalski, P J; Carlsson, A E

    2011-01-01

    We use a numerical simulation to model an actin comet tail as it grows from the surface of a small object (a bead) and disassembles by severing. We explore the dependence of macroscopic properties such as the local tail radius and tail length on several controllable properties, namely, the bead diameter, the bead velocity, the severing rate per unit length, and the actin gel mesh size. The model predicts an F-actin density with an initial exponential decay followed by an abrupt decay at the edge of the tail, and predicts that the comet tail diameter is constant along the length of the tail. The simulation results are used to fit a formula relating the comet tail length to the control parameters, and it is proposed that this formula offers a means to extract quantitative information on the actin gel mesh size and severing kinetics from simple macroscopic measurements. PMID:21566272

  9. Dynamic Alterations to α-Actinin Accompanying Sarcomere Disassembly and Reassembly during Cardiomyocyte Mitosis.

    PubMed

    Fan, Xiaohu; Hughes, Bryan G; Ali, Mohammad A M; Cho, Woo Jung; Lopez, Waleska; Schulz, Richard

    2015-01-01

    Although mammals are thought to lose their capacity to regenerate heart muscle shortly after birth, embryonic and neonatal cardiomyocytes in mammals are hyperplastic. During proliferation these cells need to selectively disassemble their myofibrils for successful cytokinesis. The mechanism of sarcomere disassembly is, however, not understood. To study this, we performed a series of immunofluorescence studies of multiple sarcomeric proteins in proliferating neonatal rat ventricular myocytes and correlated these observations with biochemical changes at different cell cycle stages. During myocyte mitosis, α-actinin and titin were disassembled as early as prometaphase. α-actinin (representing the sarcomeric Z-disk) disassembly precedes that of titin (M-line), suggesting that titin disassembly occurs secondary to the collapse of the Z-disk. Sarcomere disassembly was concurrent with the dissolution of the nuclear envelope. Inhibitors of several intracellular proteases could not block the disassembly of α-actinin or titin. There was a dramatic increase in both cytosolic (soluble) and sarcomeric α-actinin during mitosis, and cytosolic α-actinin exhibited decreased phosphorylation compared to sarcomeric α-actinin. Inhibition of cyclin-dependent kinase 1 (CDK1) induced the quick reassembly of the sarcomere. Sarcomere dis- and re-assembly in cardiomyocyte mitosis is CDK1-dependent and features dynamic differential post-translational modifications of sarcomeric and cytosolic α-actinin.

  10. An environmentally friendly technology of disassembling electronic components from waste printed circuit boards.

    PubMed

    Wang, Jianbo; Guo, Jie; Xu, Zhenming

    2016-07-01

    Electronic components (ECs) disassembling from waste printed circuit boards (WPCBs) is the first and essential step in WPCBs recycling chain. Over the past decades, primitive methods like simply heating WPCBs on a coal-heated plate to melt solders are dominated in practice, causing serious environmental pollution and also putting a real threat to the human health. In order to solve this problem, in this article, an automatic system in pilot-scale for ECs disassembling from WPCBs is designed, manufactured, and investigated. This system contains two parts: ECs automatic disassembly and off-gas purification. Meanwhile, WPCBs from television (i.e., TV-WPCBs) and personal computer (i.e., PC-WPCBs) are used for disassembling tests, respectively. When the disassembling temperature, rotating speed, and incubation time are 265±5°C, 10rpm, and 8min, respectively, the solder can be completely removed from both TV-WPCBs and PC-WPCBs. No pollutant is discharged from this system. Finally, the disassembling procedures for ECs from both TV-WPCBs and PC-WPCBs are suggested to promote WPCBs disassembling in an environment-friendly way, without threaten the environment and human health. PMID:27026495

  11. An environmentally friendly technology of disassembling electronic components from waste printed circuit boards.

    PubMed

    Wang, Jianbo; Guo, Jie; Xu, Zhenming

    2016-07-01

    Electronic components (ECs) disassembling from waste printed circuit boards (WPCBs) is the first and essential step in WPCBs recycling chain. Over the past decades, primitive methods like simply heating WPCBs on a coal-heated plate to melt solders are dominated in practice, causing serious environmental pollution and also putting a real threat to the human health. In order to solve this problem, in this article, an automatic system in pilot-scale for ECs disassembling from WPCBs is designed, manufactured, and investigated. This system contains two parts: ECs automatic disassembly and off-gas purification. Meanwhile, WPCBs from television (i.e., TV-WPCBs) and personal computer (i.e., PC-WPCBs) are used for disassembling tests, respectively. When the disassembling temperature, rotating speed, and incubation time are 265±5°C, 10rpm, and 8min, respectively, the solder can be completely removed from both TV-WPCBs and PC-WPCBs. No pollutant is discharged from this system. Finally, the disassembling procedures for ECs from both TV-WPCBs and PC-WPCBs are suggested to promote WPCBs disassembling in an environment-friendly way, without threaten the environment and human health.

  12. The effects of blood and fat on Morse taper disassembly forces.

    PubMed

    Lavernia, Carlos J; Baerga, Luis; Barrack, Robert L; Tozakoglou, Evangelos; Cook, Stephen D; Lata, Loren; Rossi, Mark D

    2009-04-01

    Biological debris between modular components using Morse tapers in hip arthroplasty can lead to weakening of the implant construct. We conducted a study to determine the effect of blood and fat within the taper interface. Tapers were divided into groups 1 (clean), 2 (surface covered with blood and fat), and 3 (blood and fat wiped off). Each taper was impacted and disassembled 5 times. There was a difference in mean disassembly force between pulls within group 2. Thus, blood and fat contamination can have a significant effect on the potential for disassembly.

  13. Letting Go of JuNK by Disassembly of Adhesive Complexes.

    PubMed

    Farley, Jonathan E; Freeman, Marc R

    2015-12-01

    Immature neural circuits form excessive synaptic connections that are later refined through pruning of exuberant branches. In this issue, Bornstein et al. identify a role for JNK signaling in selective axon elimination through disassembly of cell adhesion complexes. PMID:26637791

  14. Metal Nanoparticle/Block Copolymer Composite Assembly and Disassembly.

    PubMed

    Li, Zihui; Sai, Hiroaki; Warren, Scott C; Kamperman, Marleen; Arora, Hitesh; Gruner, Sol M; Wiesner, Ulrich

    2009-01-01

    Ligand-stabilized platinum nanoparticles (Pt NPs) were self-assembled with poly(isoprene-block-dimethylaminoethyl methacrylate) (PI-b-PDMAEMA) block copolymers to generate organic-inorganic hybrid materials. High loadings of NPs in hybrids were achieved through usage of N,N-di-(2-(allyloxy)ethyl)-N-3-mercaptopropyl-N-3-methylammonium chloride as the ligand, which provided high solubility of NPs in various solvents as well as high affinity to PDMAEMA. From NP synthesis, existence of sub-1 nm Pt NPs was confirmed by high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) images. Estimations of the Pt NP ligand head group density based on HAADF-STEM images and thermogravimetric analysis (TGA) data yielded results comparable to what has been found for alkanethiol self-assembled monolayers (SAMs) on flat Pt {111} surfaces. Changing the volume fraction of Pt NPs in block copolymer-NP composites yielded hybrids with spherical micellar, wormlike micellar, lamellar and inverse hexagonal morphologies. Disassembly of hybrids with spherical, wormlike micellar, and lamellar morphologies generated isolated metal-NP based nano-spheres, cylinders and sheets, respectively. Results suggest the existence of powerful design criteria for the formation of metal-based nanostructures from designer blocked macromolecules.

  15. Metal Nanoparticle/Block Copolymer Composite Assembly and Disassembly

    PubMed Central

    Li, Zihui; Sai, Hiroaki; Warren, Scott C.; Kamperman, Marleen; Arora, Hitesh; Gruner, Sol M.; Wiesner, Ulrich

    2010-01-01

    Ligand-stabilized platinum nanoparticles (Pt NPs) were self-assembled with poly(isoprene-block-dimethylaminoethyl methacrylate) (PI-b-PDMAEMA) block copolymers to generate organic-inorganic hybrid materials. High loadings of NPs in hybrids were achieved through usage of N,N-di-(2-(allyloxy)ethyl)-N-3-mercaptopropyl-N-3-methylammonium chloride as the ligand, which provided high solubility of NPs in various solvents as well as high affinity to PDMAEMA. From NP synthesis, existence of sub-1 nm Pt NPs was confirmed by high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) images. Estimations of the Pt NP ligand head group density based on HAADF-STEM images and thermogravimetric analysis (TGA) data yielded results comparable to what has been found for alkanethiol self-assembled monolayers (SAMs) on flat Pt {111} surfaces. Changing the volume fraction of Pt NPs in block copolymer-NP composites yielded hybrids with spherical micellar, wormlike micellar, lamellar and inverse hexagonal morphologies. Disassembly of hybrids with spherical, wormlike micellar, and lamellar morphologies generated isolated metal-NP based nano-spheres, cylinders and sheets, respectively. Results suggest the existence of powerful design criteria for the formation of metal-based nanostructures from designer blocked macromolecules. PMID:21103025

  16. Augmented stress fiber arrays after cytopharmacologic disassembly of microtubules

    SciTech Connect

    Godman, G.C.; Tannenbaum, J.; Brett, J.B.

    1986-03-01

    Disruption of microtubules (mt) of bovine aortic endothelial (BAE) cells, and normal and transformed fibroblasts, by exposure to 2.5 ..mu..M colchicine; 12 ..mu..M vinblastine; or 1 ..mu..M nocodazole, for 5 or 20 hrs results in aggregation of vimentin-intermediate filament (IF) and the development of markedly augmented stress fiber (SF) arrays. After disassembly of mt, confluent BAE, with circumferential marginal microfilament bands and few central SF, develop dense ribbon-like SF arrays, and spontaneously transformed fibroblasts (tHmf-e), which before treatment are apolar or epithelioid and have few or no SF, acquire extensive organized SF arrays. The axially oriented SF span the entire cell length and terminate in vinculin-containing adhesion plaques, polarizing these cells. The visible increase in SF associated actin is not accompanied by an increase either in actin synthesis (determined from electropherograms after pulse labeling with (/sup 35/S)methionine), or content (DNAse I assay for total cell actin). The reorganization of actin into SF and the development of vinculin adhesion plaques is independent of protein synthesis and occurs in the presence of cycloheximide (10 ..mu..g/ml). These results suggest a role for mt and IF in the regulation of the organizational state of the actin-based cytoskeleton.

  17. Cells Respond to Mechanical Stress by Rapid Disassembly of Caveolae

    PubMed Central

    Sinha, Bidisha; Köster, Darius; Ruez, Richard; Gonnord, Pauline; Bastiani, Michele; Abankwa, Daniel; Stan, Radu. V.; Butler-Browne, Gillian; Vedie, Benoit; Johannes, Ludger; Morone, Nobuhiro; Parton, Robert G.; Raposo, Graça; Sens, Pierre; Lamaze, Christophe; Nassoy, Pierre

    2011-01-01

    SUMMARY The precise role of caveolae, the characteristic plasma membrane invaginations present in many cells, still remains debated. The high density of caveolae in cells experiencing mechanical stress led us to investigate their role in membrane-mediated mechanical response. Acute mechanical stress induced by cell osmotic swelling or by uniaxial stretching results in the immediate disappearance of caveolae, which is associated with a reduced caveolin/Cavin1 interaction, and an increase of free caveolins at the plasma membrane. Tether pulling force measurements in live cells and in plasma membrane spheres demonstrate that caveola flattening and disassembly is the primary actin and ATP-independent cell response which buffers membrane tension surges during mechanical stress. Conversely, stress release leads to complete caveola reassembly in an actin and ATP-dependent process. The absence of a functional caveola reservoir in myotubes from muscular dystrophic patients enhanced membrane fragility under mechanical stress. Our findings support a new role for caveolae as a physiological membrane reservoir that allows cells to quickly accommodate sudden and acute mechanical stresses. PMID:21295700

  18. Force Generation by Microtubule Assembly/Disassembly in Mitosis and Related Movements

    PubMed Central

    Inoué, Shinya; Salmon, Edward D.

    1995-01-01

    In this article, we review the dynamic nature of the filaments (microtubules) that make up the labile fibers of the mitotic spindle and asters, we discuss the roles that assembly and disassembly of microtubules play in mitosis, and we consider how such assembling and disassembling polymer filaments can generate forces that are utilized by the living cell in mitosis and related movements. Images PMID:8590794

  19. Reactor pressure vessel vented head

    DOEpatents

    Sawabe, James K.

    1994-01-11

    A head for closing a nuclear reactor pressure vessel shell includes an arcuate dome having an integral head flange which includes a mating surface for sealingly mating with the shell upon assembly therewith. The head flange includes an internal passage extending therethrough with a first port being disposed on the head mating surface. A vent line includes a proximal end disposed in flow communication with the head internal passage, and a distal end disposed in flow communication with the inside of the dome for channeling a fluid therethrough. The vent line is fixedly joined to the dome and is carried therewith when the head is assembled to and disassembled from the shell.

  20. Nek2 activation of Kif24 ensures cilium disassembly during the cell cycle

    PubMed Central

    Kim, Sehyun; Lee, Kwanwoo; Choi, Jung-Hwan; Ringstad, Niels; Dynlacht, Brian David

    2015-01-01

    Many proteins are known to promote ciliogenesis, but mechanisms that promote primary cilia disassembly before mitosis are largely unknown. Here we identify a mechanism that favours cilium disassembly and maintains the disassembled state. We show that co-localization of the S/G2 phase kinase, Nek2 and Kif24 triggers Kif24 phosphorylation, inhibiting cilia formation. We show that Kif24, a microtubule depolymerizing kinesin, is phosphorylated by Nek2, which stimulates its activity and prevents the outgrowth of cilia in proliferating cells, independent of Aurora A and HDAC6. Our data also suggest that cilium assembly and disassembly are in dynamic equilibrium, but Nek2 and Kif24 can shift the balance toward disassembly. Further, Nek2 and Kif24 are overexpressed in breast cancer cells, and ablation of these proteins restores ciliation in these cells, thereby reducing proliferation. Thus, Kif24 is a physiological substrate of Nek2, which regulates cilia disassembly through a concerted mechanism involving Kif24-mediated microtubule depolymerization. PMID:26290419

  1. Effects of reactive oxygen species on cellular wall disassembly of banana fruit during ripening.

    PubMed

    Cheng, Guiping; Duan, Xuewu; Shi, John; Lu, Wangjin; Luo, Yunbo; Jiang, Weibo; Jiang, Yueming

    2008-07-15

    Fruit softening is generally attributed to cell wall disassembly. Experiments were conducted to investigate effects of various reactive oxygen species (ROS) on in vitro cellular wall disassembly of harvested banana fruit. The alcohol-extracted insoluble residue (AEIR) was obtained from the pulp tissues of banana fruit at various ripening stages and then used to examine the disassembly of cellular wall polysaccharides in the presence of superoxide anion (O2(-)), hydrogen peroxide (H2O2) or hydroxyl radical (OH) and their scavengers. The presence of OH accelerated significantly disassembly of cellular wall polysaccharides in terms of the increase in contents of total sugars released and uronic acid, and the decrease in molecular mass of soluble polysaccharides, using gel permeation chromatography. However, the treatment with H2O2 or O2(-) showed no significant effect on the disassembly of cellular wall polysaccharides. Furthermore, the degradation of the de-esterified AEIR was more susceptible to OH attack than the esterified AEIR. In addition, the effect of OH could be inhibited in the presence of OH scavenger. This study suggests that disassembly of cellular wall polysaccharides could be initiated by OH as the solublisation of the polysaccharides increased, which, in turn, accelerated fruit softening. PMID:26003353

  2. Regulation of Mitotic Spindle Disassembly by an Environmental Stress-Sensing Pathway in Budding Yeast

    PubMed Central

    Pigula, Adrianne; Drubin, David G.; Barnes, Georjana

    2014-01-01

    Timely spindle disassembly is essential for coordination of mitotic exit with cytokinesis. In the budding yeast Saccharomyces cerevisiae, the microtubule-associated protein She1 functions in one of at least three parallel pathways that promote spindle disassembly. She1 phosphorylation by the Aurora kinase Ipl1 facilitates a role for She1 in late anaphase, when She1 contributes to microtubule depolymerization and shrinkage of spindle halves. By examining the genetic interactions of known spindle disassembly genes, we identified three genes in the environmental stress-sensing HOG (high-osmolarity glycerol response) pathway, SHO1, PBS2, and HOG1, and found they are necessary for proper localization of She1 to the anaphase spindle and for proper spindle disassembly. HOG pathway mutants exhibited spindle disassembly defects, as well as mislocalization of anillin-related proteins Boi1 and Boi2 from the bud neck. Moreover, Boi2, but not Boi1, plays a role in spindle disassembly that places Boi2 in a pathway with Sho1, Pbs2, and Hog1. Together, our data identify a process by which cells monitor events at the spindle and bud neck and describe a novel role for the HOG pathway in mitotic signaling. PMID:25213170

  3. Mucus barrier-triggered disassembly of siRNA nanocarriers

    NASA Astrophysics Data System (ADS)

    Thomsen, Troels B.; Li, Leon; Howard, Kenneth A.

    2014-10-01

    The mucus overlying mucosal epithelial surfaces presents not only a biological barrier to the penetration of potential pathogens, but also therapeutic modalities including RNAi-based nanocarriers. Movement of nanomedicines across the mucus barriers of the gastrointestinal mucosa is modulated by interactions of the nanomedicine carriers with mucin glycoproteins inside the mucus, potentiated by the large surface area of the nanocarrier. We have developed a fluorescence activation-based reporter system showing that the interaction between polyanionic mucins and the cationic chitosan/small interfering RNA (siRNA) nanocarriers (polyplexes) results in the disassembly and consequent triggered release of fluorescent siRNA. The quantity of release was found to be dependent on the molar ratio between chitosan amino groups and siRNA phosphate groups (NP ratio) of the polyplexes with a maximal estimated 48.6% release of siRNA over 30 min at NP 60. Furthermore, a microfluidic in vitro model of the gastrointestinal mucus barrier was used to visualize the dynamic interaction between chitosan/siRNA nanocarriers and native purified porcine stomach mucins. We observed strong interactions and aggregations at the mucin-liquid interface, followed by an NP ratio dependent release and consequent diffusion of siRNA across the mucin barrier. This work describes a new model of interaction at the nanocarrier-mucin interface and has important implications for the design and development of nucleic acid-based nanocarrier therapeutics for mucosal disease treatments and also provides insights into nanoscale pathogenic processes.The mucus overlying mucosal epithelial surfaces presents not only a biological barrier to the penetration of potential pathogens, but also therapeutic modalities including RNAi-based nanocarriers. Movement of nanomedicines across the mucus barriers of the gastrointestinal mucosa is modulated by interactions of the nanomedicine carriers with mucin glycoproteins inside the

  4. Microcalorimetric study of adsorption and disassembling of virus-like particles on anion exchange chromatography media.

    PubMed

    Yu, Mengran; Zhang, Songping; Zhang, Yan; Yang, Yanli; Ma, Guanghui; Su, Zhiguo

    2015-04-01

    Chromatographic purification of virus-like particles (VLPs) is important to the development of modern vaccines. However, disassembly of the VLPs on the solid-liquid interface during chromatography process could be a serious problem. In this study, isothermal titration calorimetric (ITC) measurements, together with chromatography experiments, were performed on the adsorption and disassembling of multi-subunits hepatitis B virus surface antigen virus-like particles (HB-VLPs). Two gigaporous ion-exchange chromatography (IEC) media, DEAE-AP-280 nm and DEAE-POROS, were used. The application of gigaporous media with high ligand density led to significantly increased irreversible disassembling of HB-VLPs and consequently low antigen activity recovery during IEC process. To elucidate the thermodynamic mechanism of the effect of ligand density on the adsorption and conformational change of VLPs, a thermodynamic model was proposed. With this model, one can obtain the intrinsic molar enthalpy changes related to the binding of VLPs and the accompanying conformational change on the liquid-solid interface during its adsorption. This model assumes that, when intact HB-VLPs interact with the IEC media, the total adsorbed proteins contain two states, the intact formation and the disassembled formation; accordingly, the apparent adsorption enthalpy, ΔappH, which can be directly measured from ITC experiments, presents the sum of three terms: (1) the intrinsic molar enthalpy change associated to the binding of intact HB-VLPs (ΔbindHintact), (2) the intrinsic molar enthalpy change associated to the binding of HB-VLPs disassembled formation (ΔbindHdis), and (3) the enthalpy change accompanying the disassembling of HB-VLPs (ΔconfHdis). The intrinsic binding of intact HB-VLPs and the disassembled HB-VLPs to both kinds of gigaporous media (each of which has three different ligand densities), were all observed to be entropically driven as indicated by positive values of

  5. Microcalorimetric study of adsorption and disassembling of virus-like particles on anion exchange chromatography media.

    PubMed

    Yu, Mengran; Zhang, Songping; Zhang, Yan; Yang, Yanli; Ma, Guanghui; Su, Zhiguo

    2015-04-01

    Chromatographic purification of virus-like particles (VLPs) is important to the development of modern vaccines. However, disassembly of the VLPs on the solid-liquid interface during chromatography process could be a serious problem. In this study, isothermal titration calorimetric (ITC) measurements, together with chromatography experiments, were performed on the adsorption and disassembling of multi-subunits hepatitis B virus surface antigen virus-like particles (HB-VLPs). Two gigaporous ion-exchange chromatography (IEC) media, DEAE-AP-280 nm and DEAE-POROS, were used. The application of gigaporous media with high ligand density led to significantly increased irreversible disassembling of HB-VLPs and consequently low antigen activity recovery during IEC process. To elucidate the thermodynamic mechanism of the effect of ligand density on the adsorption and conformational change of VLPs, a thermodynamic model was proposed. With this model, one can obtain the intrinsic molar enthalpy changes related to the binding of VLPs and the accompanying conformational change on the liquid-solid interface during its adsorption. This model assumes that, when intact HB-VLPs interact with the IEC media, the total adsorbed proteins contain two states, the intact formation and the disassembled formation; accordingly, the apparent adsorption enthalpy, ΔappH, which can be directly measured from ITC experiments, presents the sum of three terms: (1) the intrinsic molar enthalpy change associated to the binding of intact HB-VLPs (ΔbindHintact), (2) the intrinsic molar enthalpy change associated to the binding of HB-VLPs disassembled formation (ΔbindHdis), and (3) the enthalpy change accompanying the disassembling of HB-VLPs (ΔconfHdis). The intrinsic binding of intact HB-VLPs and the disassembled HB-VLPs to both kinds of gigaporous media (each of which has three different ligand densities), were all observed to be entropically driven as indicated by positive values of

  6. The MAP kinase pathway coordinates crossover designation with disassembly of synaptonemal complex proteins during meiosis.

    PubMed

    Nadarajan, Saravanapriah; Mohideen, Firaz; Tzur, Yonatan B; Ferrandiz, Nuria; Crawley, Oliver; Montoya, Alex; Faull, Peter; Snijders, Ambrosius P; Cutillas, Pedro R; Jambhekar, Ashwini; Blower, Michael D; Martinez-Perez, Enrique; Harper, J Wade; Colaiacovo, Monica P

    2016-02-27

    Asymmetric disassembly of the synaptonemal complex (SC) is crucial for proper meiotic chromosome segregation. However, the signaling mechanisms that directly regulate this process are poorly understood. Here we show that the mammalian Rho GEF homolog, ECT-2, functions through the conserved RAS/ERK MAP kinase signaling pathway in the C. elegans germline to regulate the disassembly of SC proteins. We find that SYP-2, a SC central region component, is a potential target for MPK-1-mediated phosphorylation and that constitutively phosphorylated SYP-2 impairs the disassembly of SC proteins from chromosomal domains referred to as the long arms of the bivalents. Inactivation of MAP kinase at late pachytene is critical for timely disassembly of the SC proteins from the long arms, and is dependent on the crossover (CO) promoting factors ZHP-3/RNF212/Zip3 and COSA-1/CNTD1. We propose that the conserved MAP kinase pathway coordinates CO designation with the disassembly of SC proteins to ensure accurate chromosome segregation.

  7. The MAP kinase pathway coordinates crossover designation with disassembly of synaptonemal complex proteins during meiosis

    PubMed Central

    Nadarajan, Saravanapriah; Mohideen, Firaz; Tzur, Yonatan B; Ferrandiz, Nuria; Crawley, Oliver; Montoya, Alex; Faull, Peter; Snijders, Ambrosius P; Cutillas, Pedro R; Jambhekar, Ashwini; Blower, Michael D; Martinez-Perez, Enrique; Harper, J Wade; Colaiacovo, Monica P

    2016-01-01

    Asymmetric disassembly of the synaptonemal complex (SC) is crucial for proper meiotic chromosome segregation. However, the signaling mechanisms that directly regulate this process are poorly understood. Here we show that the mammalian Rho GEF homolog, ECT-2, functions through the conserved RAS/ERK MAP kinase signaling pathway in the C. elegans germline to regulate the disassembly of SC proteins. We find that SYP-2, a SC central region component, is a potential target for MPK-1-mediated phosphorylation and that constitutively phosphorylated SYP-2 impairs the disassembly of SC proteins from chromosomal domains referred to as the long arms of the bivalents. Inactivation of MAP kinase at late pachytene is critical for timely disassembly of the SC proteins from the long arms, and is dependent on the crossover (CO) promoting factors ZHP-3/RNF212/Zip3 and COSA-1/CNTD1. We propose that the conserved MAP kinase pathway coordinates CO designation with the disassembly of SC proteins to ensure accurate chromosome segregation. DOI: http://dx.doi.org/10.7554/eLife.12039.001 PMID:26920220

  8. Deacetylation of α-tubulin and cortactin is required for HDAC6 to trigger ciliary disassembly.

    PubMed

    Ran, Jie; Yang, Yunfan; Li, Dengwen; Liu, Min; Zhou, Jun

    2015-08-06

    Cilia play important roles in sensing extracellular signals and directing fluid flow. Ciliary dysfunction is associated with a variety of diseases known as ciliopathies. Histone deacetylase 6 (HDAC6) has recently emerged as a major driver of ciliary disassembly, but little is known about the downstream players. Here we provide the first evidence that HDAC6-mediated deacetylation of α-tubulin and cortactin is critical for its induction of ciliary disassembly. HDAC6 is localized in the cytoplasm and enriched at the centrosome and basal body. Overexpression of HDAC6 decreases the levels of acetylated α-tubulin and cortactin without affecting the expression or localization of known ciliary regulators. We also find that overexpression of α-tubulin or cortactin or their acetylation-deficient mutants enhances the ability of HDAC6 to induce ciliary disassembly. In addition, acetylation-mimicking mutants of α-tubulin and cortactin counteract HDAC6-induced ciliary disassembly. Furthermore, HDAC6 stimulates actin polymerization, and inhibition of actin polymerization abolishes the activity of HDAC6 to trigger ciliary disassembly. These findings provide mechanistic insight into the ciliary role of HDAC6 and underscore the importance of reversible acetylation in regulating ciliary homeostasis.

  9. Coordinated Action of Nap1 and RSC in Disassembly of Tandem Nucleosomes.

    PubMed

    Prasad, Rashmi; D'Arcy, Sheena; Hada, Arjan; Luger, Karolin; Bartholomew, Blaine

    2016-09-01

    The SWI/SNF and RSC family of ATP-dependent chromatin remodelers disassembles nucleosomes by moving nucleosomes into the vicinity of adjoining nucleosomes. We found that the histone chaperone Nap1 efficiently promotes disassembly of adjacent nucleosomes with which RSC collides and not the disassembly of nucleosomes mobilized by RSC. Nap1 is specific to RSC, as it does not target SWI/SNF, its paralog in Saccharomyces cerevisiae Extensive mutational analysis of Nap1 has revealed that Nap1 affinity for histones H2A-H2B and H3-H4 and its ability to displace histones from DNA are required for Nap1 to enhance RSC-mediated disassembly. Other histone chaperones, such as Vps75, that also bind histones are not able to enhance RSC-mediated disassembly. Our study suggests a mechanism by which Nap1 is recruited to actively transcribed regions and assists in the passage of the transcription complex through chromatin, and it provides a novel mechanism for the coordinated action of RSC and Nap1.

  10. Coordinated Action of Nap1 and RSC in Disassembly of Tandem Nucleosomes.

    PubMed

    Prasad, Rashmi; D'Arcy, Sheena; Hada, Arjan; Luger, Karolin; Bartholomew, Blaine

    2016-09-01

    The SWI/SNF and RSC family of ATP-dependent chromatin remodelers disassembles nucleosomes by moving nucleosomes into the vicinity of adjoining nucleosomes. We found that the histone chaperone Nap1 efficiently promotes disassembly of adjacent nucleosomes with which RSC collides and not the disassembly of nucleosomes mobilized by RSC. Nap1 is specific to RSC, as it does not target SWI/SNF, its paralog in Saccharomyces cerevisiae Extensive mutational analysis of Nap1 has revealed that Nap1 affinity for histones H2A-H2B and H3-H4 and its ability to displace histones from DNA are required for Nap1 to enhance RSC-mediated disassembly. Other histone chaperones, such as Vps75, that also bind histones are not able to enhance RSC-mediated disassembly. Our study suggests a mechanism by which Nap1 is recruited to actively transcribed regions and assists in the passage of the transcription complex through chromatin, and it provides a novel mechanism for the coordinated action of RSC and Nap1. PMID:27273866

  11. Disassembly of simian virus 40 during passage through the endoplasmic reticulum and in the cytoplasm.

    PubMed

    Kuksin, Dmitry; Norkin, Leonard C

    2012-02-01

    The nonenveloped polyomavirus simian virus 40 (SV40) is taken up into cells by a caveola-mediated endocytic process that delivers the virus to the endoplasmic reticulum (ER). Within the ER lumen, the capsid undergoes partial disassembly, which exposes its internal capsid proteins VP2 and VP3 to immunostaining with antibodies. We demonstrate here that the SV40 genome does not become accessible to detection while the virus is in the ER. Instead, the genome becomes accessible two distinct detection procedures, one using anti-bromodeoxyuridine antibodies and the other using a 5-ethynyl-2-deoxyuridine-based chemical reaction, only after the emergence of partially disassembled SV40 particles in the cytoplasm. These cytoplasmic particles retain some of the SV40 capsid proteins, VP1, VP2, and VP3, in addition to the viral genome. Thus, SV40 particles undergo discrete disassembly steps during entry that are separated temporally and topologically. First, a partial disassembly of the particles occurs in the ER, which exposes internal capsid proteins VP2 and VP3. Then, in the cytoplasm, disassembly progresses further to also make the genomic DNA accessible to immune detection.

  12. Disassembly of Simian Virus 40 during Passage through the Endoplasmic Reticulum and in the Cytoplasm

    PubMed Central

    Kuksin, Dmitry

    2012-01-01

    The nonenveloped polyomavirus simian virus 40 (SV40) is taken up into cells by a caveola-mediated endocytic process that delivers the virus to the endoplasmic reticulum (ER). Within the ER lumen, the capsid undergoes partial disassembly, which exposes its internal capsid proteins VP2 and VP3 to immunostaining with antibodies. We demonstrate here that the SV40 genome does not become accessible to detection while the virus is in the ER. Instead, the genome becomes accessible two distinct detection procedures, one using anti-bromodeoxyuridine antibodies and the other using a 5-ethynyl-2-deoxyuridine-based chemical reaction, only after the emergence of partially disassembled SV40 particles in the cytoplasm. These cytoplasmic particles retain some of the SV40 capsid proteins, VP1, VP2, and VP3, in addition to the viral genome. Thus, SV40 particles undergo discrete disassembly steps during entry that are separated temporally and topologically. First, a partial disassembly of the particles occurs in the ER, which exposes internal capsid proteins VP2 and VP3. Then, in the cytoplasm, disassembly progresses further to also make the genomic DNA accessible to immune detection. PMID:22090139

  13. Disassembling "evapotranspiration" in-situ with a complex measurement tool

    NASA Astrophysics Data System (ADS)

    Chormanski, Jaroslaw; Kleniewska, Malgorzata; Berezowski, Tomasz; Sporak-Wasilewska, Sylwia; Okruszko, Tomasz; Szatylowicz, Jan; Batelaan, Okke

    2014-05-01

    In this work we present a complex tool for measuring water fluxes in wetland ecosystems. The tool was designed to quantify processes related to interception storage on plants leafs. The measurements are conducted by combining readings from various instruments, including: eddy covariance tower (EC), field spectrometer, SapFlow system, rain gauges above and under canopy, soil moisture probes and other. The idea of this set-up is to provide continuous measurement of overall water flux from the ecosystem (EC tower), intercepted water volume and timing (field spectrometers), through-fall (rain gauges above and under canopy), transpiration (SapFlow), evaporation and soil moisture (soil moisture probes). Disassembling the water flux to the above components allows giving more insight to the interception related processes and differentiates them from the total evapotranspiration. The measurements are conducted in the Upper Biebrza Basin (NE Poland). The study area is part of the valley and is covered by peat soils (mainly peat moss with the exception of areas near the river) and receives no inundations waters of the Biebrza. The plant community of Agrostietum-Carici caninae has a dominant share here creating an up to 0.6 km wide belt along the river. The area is covered also by Caricion lasiocarpae as well as meadows and pastures Molinio-Arrhenatheretea, Phragmitetum communis. Sedges form a hummock pattern characteristic for the sedge communities in natural river valleys with wetland vegetation. The main result of the measurement set-up will be the analyzed characteristics and dynamics of interception storage for sedge ecosystems and a developed methodology for interception monitoring by use spectral reflectance technique. This will give a new insight to processes of evapotranspiration in wetlands and its components transpiration, evaporation from interception and evaporation from soil. Moreover, other important results of this project will be the estimation of energy and

  14. Assembly/Disassembly of DNA-Au Nanoparticles: A Strategy of Intervention

    DOE PAGES

    Lim, I-Im S.; Wang, Lingyan; Chandrachud, Uma; Gal, Susannah; Zhong, Chuan-Jian

    2008-01-01

    This report describes the viability of a strategy for manipulating the assembly/disassembly processes of DNA-Au nanoparticles by molecular intervention. Using the temperature-induced assembly and disassembly processes of DNAs and gold nanoparticles as a model system, the introduction of a molecular recognition probe is demonstrated to lead to the intervention of the assembly/disassembly processes depending on its specific biorecognition. This process can be detected by monitoring the change in the optical properties of gold nanoparticles and their DNA assemblies. Implications of the preliminary results to exploration of the resulting nanostructures for fine-tuning of the interfacial reactivities in DNA-based bioassays and biomaterialmore » engineering are also discussed.« less

  15. Delivery of lipophilic bioactives: assembly, disassembly, and reassembly of lipid nanoparticles.

    PubMed

    Yao, Mingfei; Xiao, Hang; McClements, David Julian

    2014-01-01

    The oral bioavailability of lipophilic bioactive molecules can be greatly increased by encapsulating them within engineered lipid nanoparticles (ELNs), such as micelles, microemulsions, nanoemulsions, or solid lipid nanoparticles (SLNs). After ingestion, these ELNs are disassembled in the gastrointestinal tract (GIT) and then reassembled into biological lipid nanoparticles (mixed micelles) in the small intestine. These mixed micelles solubilize and transport lipophilic bioactive components to the epithelial cells. The mixed micelles are then disassembled and reassembled into yet another form of biological lipid nanoparticle [chylomicrons (CMs)] within the enterocyte cells. The CMs carry the bioactive components into the systemic (blood) circulation via the lymphatic system, thereby avoiding first-pass metabolism. This article provides an overview of the various physicochemical and physiological processes responsible for the assembly and disassembly of lipid nanoparticles outside and inside the GIT. This knowledge can be used to design food-grade delivery systems to improve the oral bioavailability of encapsulated lipophilic bioactive components. PMID:24328432

  16. Clathrin-coat disassembly illuminates the mechanisms of Hsp70 force generation.

    PubMed

    Sousa, Rui; Liao, Hsien-Shun; Cuéllar, Jorge; Jin, Suping; Valpuesta, José M; Jin, Albert J; Lafer, Eileen M

    2016-09-01

    Hsp70s use ATP hydrolysis to disrupt protein-protein associations and to move macromolecules. One example is the Hsc70- mediated disassembly of the clathrin coats that form on vesicles during endocytosis. Here, we exploited the exceptional features of these coats to test three models-Brownian ratchet, power-stroke and entropic pulling-proposed to explain how Hsp70s transform their substrates. Our data rule out the ratchet and power-stroke models and instead support a collision-pressure mechanism whereby collisions between clathrin-coat walls and Hsc70s drive coats apart. Collision pressure is the complement to the pulling force described in the entropic pulling model. We also found that self-association augments collision pressure, thereby allowing disassembly of clathrin lattices that have been predicted to be resistant to disassembly. These results illuminate how Hsp70s generate the forces that transform their substrates. PMID:27478930

  17. Node-by-node disassembly of a mutualistic interaction web driven by species introductions

    PubMed Central

    Rodriguez-Cabal, Mariano A.; Barrios-Garcia, M. Noelia; Amico, Guillermo C.; Aizen, Marcelo A.; Sanders, Nathan J.

    2013-01-01

    Interaction webs summarize the diverse interactions among species in communities. The addition or loss of particular species and the alteration of key interactions can lead to the disassembly of the entire interaction web, although the nontrophic effects of species loss on interaction webs are poorly understood. We took advantage of ongoing invasions by a suite of exotic species to examine their impact in terms of the disassembly of an interaction web in Patagonia, Argentina. We found that the reduction of one species (a host of a keystone mistletoe species) resulted in diverse indirect effects that led to the disassembly of an interaction web through the loss of the mistletoe, two key seed-dispersers (a marsupial and a bird), and a pollinator (hummingbird). Our results demonstrate that the gains and losses of species are both consequences and drivers of global change that can lead to underappreciated cascading coextinctions through the disruption of mutualisms. PMID:24067653

  18. Disassembly properties and material characterisation of household small waste electric and electronic equipment.

    PubMed

    Bovea, María D; Pérez-Belis, Victoria; Ibáñez-Forés, Valeria; Quemades-Beltrán, Pilar

    2016-07-01

    This paper is focused on characterising small waste electric and electronic equipment, specifically small household appliances, from two different points of views: disassembly properties and material identification. The sample for this characterisation was obtained from a selective collection campaign organised in Castellón de la Plana (Spain). A total amount of 833.7kg (749 units) of small waste electric and electronic equipment was collected, of which 23.3% by weight and 22.4% by units belonged to the subcategory household equipment. This subcategory, composed of appliances such as vacuum cleaners, toasters, sandwich makers, hand blenders, juicers, coffee makers, hairdryers, scales, irons and heaters, was first disassembled in order to analyse different aspects of the disassembly process for each equipment type: type of joints, ease of identification of materials, ease of access to joints for extracting components, ease of separation of components from the whole, uniformity of tools needed for the disassembly process and possibility of reassembly after disassembly. Results show that the most common joints used in these equipment types are snap-fits and screws, although some permanent joints have also been identified. Next, the material composition of each component of each appliance belonging to each equipment type was identified visually and with additional mechanical trials and testing. It can be observed that plastic and electric/electronic components are present in all the equipment types analysed and are also the material fractions that appear with higher percentages in the material composition: 41.1wt% and 39.1wt% for the plastic fraction and electric/electronic components, respectively. The most common plastics are: polypropylene (PP), acrylonitrile butadiene styrene (ABS) and polycarbonate (PC), while the most common electric/electronic components are: cable, plug and printed circuit boards. Results also show that disassembly properties and material

  19. Disassembly properties and material characterisation of household small waste electric and electronic equipment.

    PubMed

    Bovea, María D; Pérez-Belis, Victoria; Ibáñez-Forés, Valeria; Quemades-Beltrán, Pilar

    2016-07-01

    This paper is focused on characterising small waste electric and electronic equipment, specifically small household appliances, from two different points of views: disassembly properties and material identification. The sample for this characterisation was obtained from a selective collection campaign organised in Castellón de la Plana (Spain). A total amount of 833.7kg (749 units) of small waste electric and electronic equipment was collected, of which 23.3% by weight and 22.4% by units belonged to the subcategory household equipment. This subcategory, composed of appliances such as vacuum cleaners, toasters, sandwich makers, hand blenders, juicers, coffee makers, hairdryers, scales, irons and heaters, was first disassembled in order to analyse different aspects of the disassembly process for each equipment type: type of joints, ease of identification of materials, ease of access to joints for extracting components, ease of separation of components from the whole, uniformity of tools needed for the disassembly process and possibility of reassembly after disassembly. Results show that the most common joints used in these equipment types are snap-fits and screws, although some permanent joints have also been identified. Next, the material composition of each component of each appliance belonging to each equipment type was identified visually and with additional mechanical trials and testing. It can be observed that plastic and electric/electronic components are present in all the equipment types analysed and are also the material fractions that appear with higher percentages in the material composition: 41.1wt% and 39.1wt% for the plastic fraction and electric/electronic components, respectively. The most common plastics are: polypropylene (PP), acrylonitrile butadiene styrene (ABS) and polycarbonate (PC), while the most common electric/electronic components are: cable, plug and printed circuit boards. Results also show that disassembly properties and material

  20. 29 CFR 1926.1403 - Assembly/Disassembly-selection of manufacturer or employer procedures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 8 2011-07-01 2011-07-01 false Assembly/Disassembly-selection of manufacturer or employer procedures. 1926.1403 Section 1926.1403 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Cranes and Derricks in...

  1. 29 CFR 1926.1406 - Assembly/Disassembly-employer procedures-general requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 8 2011-07-01 2011-07-01 false Assembly/Disassembly-employer procedures-general requirements. 1926.1406 Section 1926.1406 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Cranes and Derricks in Construction...

  2. DNA-based delivery vehicles: pH-controlled disassembly and cargo release.

    PubMed

    Keum, Jung-Won; Bermudez, Harry

    2012-12-25

    Non-Watson-Crick base pairing provides an in situ approach for actuation of DNA nanostructures through responses to solution conditions. Here we demonstrate this concept by using physiologically-relevant changes in pH to regulate DNA pyramid assembly/disassembly and to control the release of protein cargo. PMID:23143043

  3. The intersection between cell wall disassembly, ripening, and fruit susceptibility to Botrytis cinerea

    PubMed Central

    Cantu, D.; Vicente, A. R.; Greve, L. C.; Dewey, F. M.; Bennett, A. B.; Labavitch, J. M.; Powell, A. L. T.

    2008-01-01

    Fruit ripening is characterized by processes that modify texture and flavor but also by a dramatic increase in susceptibility to necrotrophic pathogens, such as Botrytis cinerea. Disassembly of the major structural polysaccharides of the cell wall (CW) is a significant process associated with ripening and contributes to fruit softening. In tomato, polygalacturonase (PG) and expansin (Exp) are among the CW proteins that cooperatively participate in ripening-associated CW disassembly. To determine whether endogenous CW disassembly influences the ripening-regulated increase in necrotropic pathogen susceptibility, B. cinerea susceptibility was assessed in transgenic fruit with suppressed polygalacturonase (LePG) and expansin (LeExp1) expression. Suppression of either LePG or LeExp1 alone did not reduce susceptibility but simultaneous suppression of both dramatically reduced the susceptibility of ripening fruit to B. cinerea, as measured by fungal biomass accumulation and by macerating lesion development. These results demonstrate that altering endogenous plant CW disassembly during ripening influences the course of infection by B. cinerea, perhaps by changing the structure or the accessibility of CW substrates to pathogen CW-degrading enzymes. Recognition of the role of ripening-associated CW metabolism in postharvest pathogen susceptibility may be useful in the design and development of strategies to limit pathogen losses during fruit storage, handling, and distribution. PMID:18199833

  4. Mechanical disassembly of single virus particles reveals kinetic intermediates predicted by theory.

    PubMed

    Castellanos, Milagros; Pérez, Rebeca; Carrillo, Pablo J P; de Pablo, Pedro J; Mateu, Mauricio G

    2012-06-01

    New experimental approaches are required to detect the elusive transient intermediates predicted by simulations of virus assembly or disassembly. Here, an atomic force microscope (AFM) was used to mechanically induce partial disassembly of single icosahedral T=1 capsids and virions of the minute virus of mice. The kinetic intermediates formed were imaged by AFM. The results revealed that induced disassembly of single minute-virus-of-mice particles is frequently initiated by loss of one of the 20 equivalent capsomers (trimers of capsid protein subunits) leading to a stable, nearly complete particle that does not readily lose further capsomers. With lower frequency, a fairly stable, three-fourths-complete capsid lacking one pentamer of capsomers and a free, stable pentamer were obtained. The intermediates most frequently identified (capsids missing one capsomer, capsids missing one pentamer of capsomers, and free pentamers of capsomers) had been predicted in theoretical studies of reversible capsid assembly based on thermodynamic-kinetic models, molecular dynamics, or oligomerization energies. We conclude that mechanical manipulation and imaging of simple virus particles by AFM can be used to experimentally identify kinetic intermediates predicted by simulations of assembly or disassembly.

  5. Tooling concepts for ITER tokamak assembly and remote disassembly

    SciTech Connect

    Oikawa, A.; Puhn, F.; Helary, J.L.; Shaw, R.; Friend, M.; Piec, Z.; Tachikawa, N.; Acks, M.; Basile, A.

    1995-12-31

    Since ITER has many of the characteristics of a full-scale tokamak reactor, its provisions for assembly and replaceability are relevant to a future fusion power plant. The performance of ITER is dependent on tight tolerances, mainly for the magnets and plasma facing components. The magnetic field must be highly uniform in the toroidal direction to ensure good plasma energy and particle confinement. Alignment of the plasma facing surface of the first wall and divertor target plates is required to avoid large local heat loads on the plasma facing components and, as a consequence, their erosion and contamination of the plasma with impurities. Because of the large and heavy components the major challenge of the ITER tokamak assembly is to hold such tight tolerances using guide tools, adjustable interfaces, accurate measuring tools, and specific procedures to compensate for deformation and fabrication tolerances. The assembly tooling plan also includes verification of the essential remote handling operations.

  6. Low cytoplasmic pH reduces ER-Golgi trafficking and induces disassembly of the Golgi apparatus

    SciTech Connect

    Soonthornsit, Jeerawat; Yamaguchi, Yoko; Tamura, Daisuke; Ishida, Ryuichi; Nakakoji, Yoko; Osako, Shiho; Yamamoto, Akitsugu; Nakamura, Nobuhiro

    2014-11-01

    The Golgi apparatus was dramatically disassembled when cells were incubated in a low pH medium. The cis-Golgi disassembled quickly, extended tubules and spread to the periphery of cells within 30 min. In contrast, medial- and trans-Golgi were fragmented in significantly larger structures of smaller numbers at a slower rate and remained largely in structures distinct from the cis-Golgi. Electron microscopy revealed the complete disassembly of the Golgi stack in low pH treated cells. The effect of low pH was reversible; the Golgi apparatus reassembled to form a normal ribbon-like structure within 1–2 h after the addition of a control medium. The anterograde ER to Golgi transport and retrograde Golgi to ER transport were both reduced under low pH. Phospholipase A{sub 2} inhibitors (ONO, BEL) effectively suppressed the Golgi disassembly, suggesting that the phospholipase A{sub 2} was involved in the Golgi disassembly. Over-expression of Rab1, 2, 30, 33 and 41 also suppressed the Golgi disassembly under low pH, suggesting that they have protective role against Golgi disassembly. Low pH treatment reduced cytoplasmic pH, but not the luminal pH of the Golgi apparatus, strongly suggesting that reduction of the cytoplasmic pH triggered the Golgi disassembly. Because a lower cytoplasmic pH is induced in physiological or pathological conditions, disassembly of the Golgi apparatus and reduction of vesicular transport through the Golgi apparatus may play important roles in cell physiology and pathology. Furthermore, our findings indicated that low pH treatment can serve as an important tool to analyze the molecular mechanisms that support the structure and function of the Golgi apparatus. - Highlights: • The Golgi apparatus reversibly disassembles by low pH treatment. • The cis-Golgi disassembles quickly generating tubular structures. • Both anterograde and retrograde transport between the ER and the Golgi apparatus are reduced. • Phospholipase A{sub 2} inhibitors (ONO

  7. Disassembly and physical separation of electric/electronic components layered in printed circuit boards (PCB).

    PubMed

    Lee, Jaeryeong; Kim, Youngjin; Lee, Jae-chun

    2012-11-30

    Although printed circuit boards (PCBs) contain various elements, only the major elements (i.e., those with content levels in wt% or over grade) of and precious metals (e.g., Ag, Au, and platinum groups) contained within PCBs can be recycled. To recover other elements from PCBs, the PCBs should be properly disassembled as the first step of the recycling process. The recovery of these other elements would be beneficial for efforts to conserve scarce resources, reuse electric/electronic components (EECs), and eliminate environmental problems. This paper examines the disassembly of EECs from wasted PCBs (WPCBs) and the physical separation of these EECs using a self-designed disassembling apparatus and a 3-step separation process of sieving, magnetic separation, and dense medium separation. The disassembling efficiencies were evaluated by using the ratio of grinding area (E(area)) and the weight ratio of the detached EECs (E(weight)). In the disassembly treatment, these efficiencies were improved with an increase of grinder speed and grinder height. 97.7% (E(area)) and 98% (E(weight)) could be accomplished ultimately by 3 repetitive treatments at a grinder speed of 5500 rpm and a grinder height of 1.5mm. Through a series of physical separations, most groups of the EECs (except for the diode, transistor, and IC chip groups) could be sorted at a relatively high separation efficiency of about 75% or more. To evaluate the separation efficiency with regard to the elemental composition, the distribution ratio (R(dis)) and the concentration ratio (R(conc)) were used. 15 elements could be separated with the highest R(dis) and R(conc) in the same separated division. This result implies that the recyclability of the elements is highly feasible, even though the initial content in EECs is lower than several tens of mg/kg.

  8. Roles of different pools of the mitotic checkpoint complex and the mechanisms of their disassembly

    PubMed Central

    Eytan, Esther; Sitry-Shevah, Danielle; Teichner, Adar; Hershko, Avram

    2013-01-01

    The mitotic (or spindle assembly) checkpoint system prevents premature separation of sister chromatids in mitosis. When the checkpoint is turned on, the mitotic checkpoint complex (MCC) inhibits the ubiquitin ligase anaphase-promoting complex/cyclosome (APC/C). MCC is composed of the checkpoint proteins BubR1, Bub3, and Mad2 associated with the APC/C activator Cdc20. The mechanisms of the assembly of MCC when the checkpoint is turned on, and of its disassembly when the checkpoint is inactivated, are not sufficiently understood. Previous reports indicated that APC/C-mediated polyubiquitylation of Cdc20 in MCC is required for the dissociation of APC/C-associated MCC, but not of free MCC. The pool of free MCC is disassembled by an ATP-dependent process stimulated by the Mad2-binding protein p31comet. It remained unknown whether free MCC is the precursor or the dissociation product of APC/C-bound MCC. By characterizing the mechanisms of the disassembly of APC/C-bound MCC in a purified system, we find that it cannot be the source of free MCC, because it is bound at high affinity and is released only in ubiquitylated or partially disassembled forms. By the use of a cell-free system from Xenopus eggs that reproduces the mitotic checkpoint, we show that MCC can be assembled in the absence of APC/C in a checkpoint-dependent manner. We propose that when the checkpoint is turned on, free MCC is the precursor of APC/C-bound MCC. When the mitotic checkpoint is extinguished, both APC/C-bound and free MCC pools have to be disassembled to release APC/C from inhibition. PMID:23754430

  9. Pit disassembly and conversion demonstration environmental assessment and research and development activities

    SciTech Connect

    1998-08-01

    A significant portion of the surplus plutonium is in the form of pits, a nuclear weapons component. Pits are composed of plutonium which is sealed in a metallic shell. These pits would need to be safely disassembled and permanently converted to an unclassified form that would be suitable for long-term disposition and international inspection. To determine the feasibility of an integrated pit disassembly and conversion system, a Pit Disassembly and Conversion Demonstration is proposed to take place at the Los Alamos National Laboratory (LANL). This demonstration would be done in existing buildings and facilities, and would involve the disassembly of up to 250 pits and conversion of the recovered plutonium to plutonium metal ingots and plutonium dioxide. This demonstration also includes the conversion of up to 80 kilograms of clean plutonium metal to plutonium dioxide because, as part of the disposition process, some surplus plutonium metal may be converted to plutonium dioxide in the same facility as the surplus pits. The equipment to be used for the proposed demonstration addressed in this EA would use some parts of the Advanced Recovery and Integrated Extraction System (ARIES) capability, other existing equipment/capacities, plus new equipment that was developed at other sites. In addition, small-scale R and D activities are currently underway as part of the overall surplus plutonium disposition program. These R and D activities are related to pit disassembly and conversion, MOX fuel fabrication, and immobilization (in glass and ceramic forms). They are described in Section 7.0. On May 16, 1997, the Office of Fissile Materials Disposition (MD) notified potentially affected states and tribes that this EA would be prepared in accordance with NEPA. This EA has been prepared to provide sufficient information for DOE to determine whether a Finding of No Significant Impact (FONSI) is warranted or whether an EIS must be prepared.

  10. Processive ATP-driven Substrate Disassembly by the N-Ethylmaleimide-sensitive Factor (NSF) Molecular Machine*♦

    PubMed Central

    Cipriano, Daniel J.; Jung, Jaemyeong; Vivona, Sandro; Fenn, Timothy D.; Brunger, Axel T.; Bryant, Zev

    2013-01-01

    SNARE proteins promote membrane fusion by forming a four-stranded parallel helical bundle that brings the membranes into close proximity. Post-fusion, the complex is disassembled by an AAA+ ATPase called N-ethylmaleimide-sensitive factor (NSF). We present evidence that NSF uses a processive unwinding mechanism to disassemble SNARE proteins. Using a real-time disassembly assay based on fluorescence dequenching, we correlate NSF-driven disassembly rates with the SNARE-activated ATPase activity of NSF. Neuronal SNAREs activate the ATPase rate of NSF by ∼26-fold. One SNARE complex takes an average of ∼5 s to disassemble in a process that consumes ∼50 ATP. Investigations of substrate requirements show that NSF is capable of disassembling a truncated SNARE substrate consisting of only the core SNARE domain, but not an unrelated four-stranded coiled-coil. NSF can also disassemble an engineered double-length SNARE complex, suggesting a processive unwinding mechanism. We further investigated processivity using single-turnover experiments, which show that SNAREs can be unwound in a single encounter with NSF. We propose a processive helicase-like mechanism for NSF in which ∼1 residue is unwound for every hydrolyzed ATP molecule. PMID:23775070

  11. Low cytoplasmic pH reduces ER-Golgi trafficking and induces disassembly of the Golgi apparatus.

    PubMed

    Soonthornsit, Jeerawat; Yamaguchi, Yoko; Tamura, Daisuke; Ishida, Ryuichi; Nakakoji, Yoko; Osako, Shiho; Yamamoto, Akitsugu; Nakamura, Nobuhiro

    2014-11-01

    The Golgi apparatus was dramatically disassembled when cells were incubated in a low pH medium. The cis-Golgi disassembled quickly, extended tubules and spread to the periphery of cells within 30 min. In contrast, medial- and trans-Golgi were fragmented in significantly larger structures of smaller numbers at a slower rate and remained largely in structures distinct from the cis-Golgi. Electron microscopy revealed the complete disassembly of the Golgi stack in low pH treated cells. The effect of low pH was reversible; the Golgi apparatus reassembled to form a normal ribbon-like structure within 1-2h after the addition of a control medium. The anterograde ER to Golgi transport and retrograde Golgi to ER transport were both reduced under low pH. Phospholipase A2 inhibitors (ONO, BEL) effectively suppressed the Golgi disassembly, suggesting that the phospholipase A2 was involved in the Golgi disassembly. Over-expression of Rab1, 2, 30, 33 and 41 also suppressed the Golgi disassembly under low pH, suggesting that they have protective role against Golgi disassembly. Low pH treatment reduced cytoplasmic pH, but not the luminal pH of the Golgi apparatus, strongly suggesting that reduction of the cytoplasmic pH triggered the Golgi disassembly. Because a lower cytoplasmic pH is induced in physiological or pathological conditions, disassembly of the Golgi apparatus and reduction of vesicular transport through the Golgi apparatus may play important roles in cell physiology and pathology. Furthermore, our findings indicated that low pH treatment can serve as an important tool to analyze the molecular mechanisms that support the structure and function of the Golgi apparatus.

  12. Arc discharge-mediated disassembly of viral particles in water.

    PubMed

    Lee, Eun-Jung; Lee, Wooseong; Kim, Minwoo; Choi, Eun Ha; Kim, Yun-Ji

    2016-10-01

    In this study, we investigated the inactivation effects on murine norovirus (MNV-1) with/without purification in water using a submerged plasma reactor of arc discharge (underwater arc), which produced a shockwave, UV light, reactive oxygen species and reactive nitrogen species. Underwater arc treatments of 3 and 6 Hz at 12 kV resulted in 2.6- and 4.2-log reductions in the virus titer of non-purified MNV-1 after 1 min of treatment, respectively. The reduction of purified MNV-1 was higher than that of non-purified MNV-1 after underwater arc treatment for all applied conditions (12 or 15 kV and 3 or 6 Hz). One of the viral capsid proteins (VP1) was not detectable after underwater arc treatment, when its integrity was assessed by western blot analysis. Transmission electron microscopy analysis also revealed that MNV-1 particles were completely dissembled by the treatment. This study demonstrates that underwater arc treatment, which was capable of disintegrating the MNV-1 virion structure and the viral capsid protein, can be an effective disinfection process for the inactivation of water-borne noroviruses.

  13. Arc discharge-mediated disassembly of viral particles in water.

    PubMed

    Lee, Eun-Jung; Lee, Wooseong; Kim, Minwoo; Choi, Eun Ha; Kim, Yun-Ji

    2016-10-01

    In this study, we investigated the inactivation effects on murine norovirus (MNV-1) with/without purification in water using a submerged plasma reactor of arc discharge (underwater arc), which produced a shockwave, UV light, reactive oxygen species and reactive nitrogen species. Underwater arc treatments of 3 and 6 Hz at 12 kV resulted in 2.6- and 4.2-log reductions in the virus titer of non-purified MNV-1 after 1 min of treatment, respectively. The reduction of purified MNV-1 was higher than that of non-purified MNV-1 after underwater arc treatment for all applied conditions (12 or 15 kV and 3 or 6 Hz). One of the viral capsid proteins (VP1) was not detectable after underwater arc treatment, when its integrity was assessed by western blot analysis. Transmission electron microscopy analysis also revealed that MNV-1 particles were completely dissembled by the treatment. This study demonstrates that underwater arc treatment, which was capable of disintegrating the MNV-1 virion structure and the viral capsid protein, can be an effective disinfection process for the inactivation of water-borne noroviruses. PMID:27379726

  14. Application of laser processing for disassembly of nuclear power plants

    NASA Astrophysics Data System (ADS)

    Baranov, Gennady A.; Zinchenko, A. V.; Arutyunyan, R. B.

    1998-12-01

    Provision of safety and drop of ecological risk at salvaging of nuclear submarines (NSM) of Russia Navy Forces represents one of the most actual problems of nowadays. It is necessary to remove from services of Russian Navy Forces 170 - 180 nuclear submarines by 2000. At salvaging of Russian Navy Forces NSM it should be necessary to cut out reactor compartments with more than 150 thousand tons of gross weight and to fragment terminal carcasses of submarines with gross weight of 2 million tons. Taking into account overall dimensions of salvaging objects and Euro-standard requirement on the sizes of carcass fragments, for salvaging of one NSM it is necessary to execute more than 10 km of cuts. Using of conventional methods of gas and plasma cutting of ship constructions and equipment polluted with radioactive oxides and bedding of insulation and paint and varnish materials causes contamination of working zones and environment by a mix of radioactive substances and highly toxic combustion products, nomenclature of which includes up to 50 names. Calculations carried out in the Institute of industrial and Marine Medicine have shown that salvage of just one NSM with using of gas and plasma cutting are accompanied by discharge into an environment of up to 11.5 kg of chromium oxides, up to 22.5 kg of manganese oxides, up to 97 kg of carbon oxides and up to 650 kg of nitrogen oxides. Fragmentation of such equipment by a method of directional explosion or hydraulic jet is problematic because of complexity of treated constructions and necessity to create special protective facilities, which will accumulate a bulk of radioactive and toxic discharges, as a consequence of the explosion and spreaded by shock waves and water deluges. In a number of new technological processes the cutting with using of high-power industrial lasers radiation stands out. As compared with other technological processes, laser cutting has many advantages determined by such unique properties of laser

  15. A Summary Report on the NPH Evaluation of 105-L Disassembly Basin

    SciTech Connect

    Joshi, J.R.

    2002-04-30

    The L Area Disassembly Basin (LDB) is evaluated for the natural phenomena hazards (NPH) effects due to earthquake, wind, and tornado in accordance with DOE Order 420.1 and DOE-STD-1020. The deterministic analysis is performed for a Performance Category 3 (PC3) level of loads. Savannah River Site (SRS) specific NPH loads and design criteria are obtained from Engineering Standard 01060. It is demonstrated that the demand to capacity (D/C) ratios for primary and significant structural elements are acceptable (equal to or less than 1.0). Thus, 105-L Disassembly Basin building structure is qualified for the PC3 NPH effects in accordance with DOE Order 420.1.

  16. Assembly, operation and disassembly manual for the Battelle Large Volume Water Sampler (BLVWS)

    SciTech Connect

    Thomas, V.W.; Campbell, R.M.

    1984-12-01

    Assembly, operation and disassembly of the Battelle Large Volume Water Sampler (BLVWS) are described in detail. Step by step instructions of assembly, general operation and disassembly are provided to allow an operator completely unfamiliar with the sampler to successfully apply the BLVWS to his research sampling needs. The sampler permits concentration of both particulate and dissolved radionuclides from large volumes of ocean and fresh water. The water sample passes through a filtration section for particle removal then through sorption or ion exchange beds where species of interest are removed. The sampler components which contact the water being sampled are constructed of polyvinylchloride (PVC). The sampler has been successfully applied to many sampling needs over the past fifteen years. 9 references, 8 figures.

  17. Base dependent DNA-carbon nanotube interactions: activation enthalpies and assembly-disassembly control

    PubMed Central

    Albertorio, Fernando; Hughes, Mary E.; Golovchenko, Jene A.; Branton, Daniel

    2009-01-01

    We quantify the base dependent interactions between single stranded DNA and single walled carbon nanotubes (SWNT) in solution. DNA/SWNT hybrids hold the promise of applications ranging from nanoscale electronics and assembly of nanotube based materials, to drug delivery and DNA sequencing. These applications require control over the hybrid assembly and disassembly. Our analytical assay reveals the order of nucleobase binding strengths with SWNTs as G > C > A > T. Furthermore, time dependent fixed temperature experiments that probe the kinetics of the dissociation process provide values for the equilibrium constants and dissociation enthalpies that underlie the microscopic interactions. Quantifying the base dependency of hybrid stability shows how insight into the energetics of the component interactions facilitates control over hybrid assembly and disassembly. PMID:19724110

  18. Structural basis for assembly and disassembly of the CRM1 nuclear export complex

    SciTech Connect

    Dong, Xiuhua; Biswas, Anindita; Chook, Yuh Min

    2009-09-15

    CRM1 (or exportin 1, Xpo1) transports proteins out of the cell nucleus through the nuclear pore complex. In the cytoplasm, GTP hydrolysis and consequent dissociation of Ran from CRM1 releases low-affinity substrates, while additional factors facilitate release of high-affinity substrates. Here we provide a model for human CRM1 export complex assembly and disassembly through structural and biochemical analyses of CRM1 bound to the substrate snurportin 1 (SNUPN, also called snuportin 1).

  19. Detailed Per-residue Energetic Analysis Explains the Driving Force for Microtubule Disassembly

    PubMed Central

    Ayoub, Ahmed T.; Klobukowski, Mariusz; Tuszynski, Jack A.

    2015-01-01

    Microtubules are long filamentous hollow cylinders whose surfaces form lattice structures of αβ-tubulin heterodimers. They perform multiple physiological roles in eukaryotic cells and are targets for therapeutic interventions. In our study, we carried out all-atom molecular dynamics simulations for arbitrarily long microtubules that have either GDP or GTP molecules in the E-site of β-tubulin. A detailed energy balance of the MM/GBSA inter-dimer interaction energy per residue contributing to the overall lateral and longitudinal structural stability was performed. The obtained results identified the key residues and tubulin domains according to their energetic contributions. They also identified the molecular forces that drive microtubule disassembly. At the tip of the plus end of the microtubule, the uneven distribution of longitudinal interaction energies within a protofilament generates a torque that bends tubulin outwardly with respect to the cylinder's axis causing disassembly. In the presence of GTP, this torque is opposed by lateral interactions that prevent outward curling, thus stabilizing the whole microtubule. Once GTP hydrolysis reaches the tip of the microtubule (lateral cap), lateral interactions become much weaker, allowing tubulin dimers to bend outwards, causing disassembly. The role of magnesium in the process of outward curling has also been demonstrated. This study also showed that the microtubule seam is the most energetically labile inter-dimer interface and could serve as a trigger point for disassembly. Based on a detailed balance of the energetic contributions per amino acid residue in the microtubule, numerous other analyses could be performed to give additional insights into the properties of microtubule dynamic instability. PMID:26030285

  20. c-Jun N-terminal kinase mediates disassembly of apical junctions in model intestinal epithelia.

    PubMed

    Naydenov, Nayden G; Hopkins, Ann M; Ivanov, Andrei I

    2009-07-01

    Dynamic remodeling of intercellular junctions is a critical determinant of epithelial barrier function in both physiological and pathophysiological states. While the disassembly of epithelial tight junctions (TJ) and adherens junctions (AJ) has been well-described in response to pathogens and other external stressors, the role of stress-related signaling in TJ/AJ regulation remains poorly understood. The aim of this study was to define the role of stress-activated c-Jun N-terminal kinase (JNK) in disruption of intercellular junctions in model intestinal epithelia. We show that rapid AJ/TJ disassembly triggered by extracellular calcium depletion of T84 and SK-CO15 cell monolayers was accompanied by activation (phosphorylation) of JNK, and prevented by pharmacological inhibitors of JNK. The opposite process, TJ/AJ reassembly, was accelerated by JNK inhibition and suppressed by the JNK activator anisomycin. JNK1 but not JNK2 was found to colocalize with intercellular junctions, and siRNA-mediated downregulation of JNK1 attenuated the TJ/AJ disruption caused by calcium depletion. JNK inhibition also blocked formation of characteristic contractile F-actin rings in calcium-depleted epithelial cells, suggesting that JNK regulates junctions by remodeling the actin cytoskeleton. In this role JNK acts downstream of the actin-reorganizing Rho-dependent kinase (ROCK), since ROCK inhibition abrogated JNK phosphorylation and TJ/AJ disassembly after calcium depletion. Furthermore, JNK acts upstream of F-actin-membrane linker proteins of the ERM (ezrin-radixin-moesin) family, but in a complex relationship yet to be fully elucidated. Taken together, our findings suggest a novel role for JNK in the signaling pathway that links ROCK and F-actin remodeling during disassembly of epithelial junctions.

  1. Reactor pressure vessel vented head

    DOEpatents

    Sawabe, J.K.

    1994-01-11

    A head for closing a nuclear reactor pressure vessel shell includes an arcuate dome having an integral head flange which includes a mating surface for sealingly mating with the shell upon assembly therewith. The head flange includes an internal passage extending therethrough with a first port being disposed on the head mating surface. A vent line includes a proximal end disposed in flow communication with the head internal passage, and a distal end disposed in flow communication with the inside of the dome for channeling a fluid therethrough. The vent line is fixedly joined to the dome and is carried therewith when the head is assembled to and disassembled from the shell. 6 figures.

  2. Design-only conceptual design report for pit disassembly and conversion facility. Rev 0

    SciTech Connect

    Zygmunt, S.; Christensen, L.; Richardson, C.

    1997-12-12

    This design-only conceptual design report (DOCDR) was prepared to support a funding request by the Department of Energy (DOE)-Office of Fissile Material Disposition (OFMD) for engineering design of the Pit Disassembly and Conversion Facility (PDCF) Project No. 99-D-141. The PDCF will be used to disassemble the nation`s inventory of surplus nuclear weapons pits and convert the plutonium recovered from those pits into a form suitable for storage, international inspection, and final disposition. The PDCF is a complex consisting of a hardened building that will contain the plutonium processes in a safe and secure manner, and conventional buildings and structures that will house support personnel, systems, and equipment. The PDCF uses the Advanced Recovery and Integrated Extraction System (ARIES), a low waste, modular pyroprocessing system to convert pits to plutonium oxide. The PDCF project consists of engineering and design, and construction of the buildings and structures, and engineering and design, procurement, installation, testing and start-up of equipment to disassemble pits and convert plutonium in pits to oxide form. The facility is planned to operate for 10 years, averaging 3.5 metric tons (3.86 tons) of plutonium metal per year. On conclusion of operations, the PDCF will be decontaminated and decommissioned.

  3. Single-molecule imaging of a three-component ordered actin disassembly mechanism

    PubMed Central

    Jansen, Silvia; Collins, Agnieszka; Chin, Samantha M.; Ydenberg, Casey A.; Gelles, Jeff; Goode, Bruce L.

    2015-01-01

    The mechanisms by which cells destabilize and rapidly disassemble filamentous actin networks have remained elusive; however, Coronin, Cofilin and AIP1 have been implicated in this process. Here using multi-wavelength single-molecule fluorescence imaging, we show that mammalian Cor1B, Cof1 and AIP1 work in concert through a temporally ordered pathway to induce highly efficient severing and disassembly of actin filaments. Cor1B binds to filaments first, and dramatically accelerates the subsequent binding of Cof1, leading to heavily decorated, stabilized filaments. Cof1 in turn recruits AIP1, which rapidly triggers severing and remains bound to the newly generated barbed ends. New growth at barbed ends generated by severing was blocked specifically in the presence of all three proteins. This activity enabled us to reconstitute and directly visualize single actin filaments being rapidly polymerized by formins at their barbed ends while simultanteously being stochastically severed and capped along their lengths, and disassembled from their pointed ends. PMID:25995115

  4. Overlapping mechanisms promote postsynaptic RAD-51 filament disassembly during meiotic double-strand break repair.

    PubMed

    Ward, Jordan D; Muzzini, Diego M; Petalcorin, Mark I R; Martinez-Perez, Enrique; Martin, Julie S; Plevani, Paolo; Cassata, Giuseppe; Marini, Federica; Boulton, Simon J

    2010-01-29

    Homologous recombination (HR) is essential for repair of meiotic DNA double-strand breaks (DSBs). Although the mechanisms of RAD-51-DNA filament assembly and strand exchange are well characterized, the subsequent steps of HR are less well defined. Here, we describe a synthetic lethal interaction between the C. elegans helicase helq-1 and RAD-51 paralog rfs-1, which results in a block to meiotic DSB repair after strand invasion. Whereas RAD-51-ssDNA filaments assemble at meiotic DSBs with normal kinetics in helq-1, rfs-1 double mutants, persistence of RAD-51 foci and genetic interactions with rtel-1 suggest a failure to disassemble RAD-51 from strand invasion intermediates. Indeed, purified HELQ-1 and RFS-1 independently bind to and promote the disassembly of RAD-51 from double-stranded, but not single-stranded, DNA filaments via distinct mechanisms in vitro. These results indicate that two compensating activities are required to promote postsynaptic RAD-51 filament disassembly, which are collectively essential for completion of meiotic DSB repair.

  5. The ubiquitin conjugation system is involved in the disassembly of cilia and flagella

    PubMed Central

    Huang, Kaiyao; Diener, Dennis R.

    2009-01-01

    The disassembly of cilia and flagella is linked to the cell cycle and environmental cues. We have found that ubiquitination of flagellar proteins is an integral part of flagellar disassembly. Free ubiquitin and the ubiquitin-conjugating enzyme CrUbc13 are detected in flagella, and several proteins are ubiquitinated in isolated flagella when exogenous ubiquitin and adenosine triphosphatase are added, suggesting that the ubiquitin conjugation system operates in flagella. Levels of ubiquitinated flagellar proteins increase during flagellar resorption, especially in intraflagellar transport (IFT) mutants, suggesting that disassembly products are labeled with ubiquitin and transported to the cell body by IFT. Substrates of the ubiquitin conjugation system include α-tubulin (but not β-tubulin), a dynein subunit (IC2), two signaling proteins involved in the mating process, cyclic guanosine monophosphate–dependent kinase, and the cation channel polycystic kidney disease 2. Ubiquitination of flagellar proteins is enhanced early in mating, suggesting that ubiquitination also plays an active role in regulating signaling pathways in flagella. PMID:19704024

  6. Myosin-dependent remodeling of adherens junctions protects junctions from Snail-dependent disassembly

    PubMed Central

    Weng, Mo

    2016-01-01

    Although Snail is essential for disassembly of adherens junctions during epithelial–mesenchymal transitions (EMTs), loss of adherens junctions in Drosophila melanogaster gastrula is delayed until mesoderm is internalized, despite the early expression of Snail in that primordium. By combining live imaging and quantitative image analysis, we track the behavior of E-cadherin–rich junction clusters, demonstrating that in the early stages of gastrulation most subapical clusters in mesoderm not only persist, but move apically and enhance in density and total intensity. All three phenomena depend on myosin II and are temporally correlated with the pulses of actomyosin accumulation that drive initial cell shape changes during gastrulation. When contractile myosin is absent, the normal Snail expression in mesoderm, or ectopic Snail expression in ectoderm, is sufficient to drive early disassembly of junctions. In both cases, junctional disassembly can be blocked by simultaneous induction of myosin contractility. Our findings provide in vivo evidence for mechanosensitivity of cell–cell junctions and imply that myosin-mediated tension can prevent Snail-driven EMT. PMID:26754645

  7. APC15 mediates CDC20 auto-ubiquitylation by APC/CMCC and MCC disassembly

    PubMed Central

    Uzunova, Kristina; Dye, Billy T.; Schutz, Hannelore; Ladurner, Rene; Petzold, Georg; Toyoda, Yusuke; Jarvis, Marc A.; Brown, Nicholas G.; Poser, Ina; Novatchkova, Maria; Mechtler, Karl; Hyman, Anthony A.; Stark, Holger; Schulman, Brenda A.; Peters, Jan-Michael

    2012-01-01

    The anaphase-promoting complex/cyclosome bound to CDC20 (APC/CCDC20) initiates anaphase by ubiquitylating B-type cyclins and securin. During chromosome bi-orientation, CDC20 assembles with MAD2, BUBR1 and BUB3 into a mitotic checkpoint complex (MCC) which inhibits substrate recruitment to the APC/C. APC/C activation depends on MCC disassembly, which has been proposed to require CDC20 auto-ubiquitylation. Here we characterized APC15, a human APC/C subunit related to yeast Mnd2. APC15 is located near APC/C’s MCC binding site, is required for APC/CMCC-dependent CDC20 auto-ubiquitylation and degradation, and for timely anaphase initiation, but is dispensable for substrate ubiquitylation by APC/CCDC20 and APC/CCDH1. Our results support the view that MCC is continuously assembled and disassembled to enable rapid activation of APC/CCDC20 and that CDC20 auto-ubiquitylation promotes MCC disassembly. We propose that APC15 and Mnd2 negatively regulate APC/C coactivators, and report the first generation of recombinant human APC/C. PMID:23007861

  8. Asbestos exposure from gaskets during disassembly of a medium duty diesel engine.

    PubMed

    Liukonen, Larry R; Weir, Francis W

    2005-03-01

    Diesel engines have historically used asbestos-containing gaskets leading to concerns of fiber release and mechanic exposure. Other published studies regarding asbestos fiber release during gasket removal have reported on short-duration events; were conducted under simulated work conditions; or had other limitations. There are no comprehensive studies relating to diesel engine gaskets under conditions similar to those reported herein, evaluating asbestos fiber release from gaskets during all facets of a complete disassembly and cleaning of a medium duty diesel engine in a busy repair and service shop by a journeyman mechanic. Asbestos content of all gaskets was identified; all disassembly tasks were described and timed; and personal and area air monitoring was conducted for each task. Twenty seven of thirty three gaskets contained chrysotile asbestos in concentrations that ranged from 5 to 70%. All but one air monitoring sample reported results below the limit of reliable detection even though plumes of visible dust were evident during various removal, cleaning, and buffing procedures. The detection limit for airborne asbestos fibers in this investigation was influenced by the presence of other shop dust in the air. Our investigation demonstrates that using shop-standard procedures in an established repair facility, a journeyman mechanic has very little potential for exposure to airborne asbestos fibers during disassembly of an engine, approximately 10% or less than that currently considered to be acceptable by OSHA. PMID:15698534

  9. Molecular disassembly of rice and lotus starches during thermal processing and its effect on starch digestibility.

    PubMed

    Wang, Shujun; Sun, Yue; Wang, Jinrong; Wang, Shuo; Copeland, Les

    2016-02-01

    The molecular disassembly of starch during thermal processing is a major determinant for the susceptibility of starch to enzymatic digestion. In the present study, the effects of thermal processing on the disassembly of the granular structure and the in vitro enzymatic digestibility of rice and lotus starches were investigated. After heating at 50 °C, rice and lotus starches did not show significant changes in granular morphology, long-range crystallinity and short-range molecular order. As the temperature increased to 60 °C, rice starch underwent a partial gelatinization followed by an incomplete disruption of granular morphology, crystallites and molecular order. In contrast, lotus starch was almost completely gelatinized at 60 °C. At 70 °C or higher, both starches were fully gelatinized with complete disruption of the micro and macro structures. Our results show that gelatinization greatly increased the in vitro enzymatic digestibility of both starches, but that the degree of disassembly of the starch structure during thermal processing was not a major determinant of the digestibility of gelatinized starch. PMID:26829664

  10. Phosphorylation of p37 is important for Golgi disassembly at mitosis

    SciTech Connect

    Kaneko, Yayoi; Tamura, Kaori; Totsukawa, Go; Kondo, Hisao

    2010-11-05

    Research highlights: {yields} p37 is phosphorylated on Serine-56 and Threonine-59 by Cdc2 at mitosis. {yields} Phosphorylated p37 does not bind to Golgi membranes. {yields} p37 phosphorylation inhibits p97/p37-mediated Golgi membrane fusion. -- Abstract: In mammals, the Golgi apparatus is disassembled at early mitosis and reassembled at the end of mitosis. For Golgi disassembly, membrane fusion needs to be blocked. Golgi biogenesis requires two distinct p97ATPase-mediated membrane fusion, the p97/p47 and p97/p37 pathways. We previously reported that p47 phosphorylation on Serine-140 by Cdc2 results in mitotic inhibition of the p97/p47 pathway . In this study, we demonstrate that p37 is phosphorylated on Serine-56 and Threonine-59 by Cdc2 at mitosis, and this phosphorylated p37 does not bind to Golgi membranes. Using an in vitro Golgi reassembly assay, we show that mutated p37(S56D, T59D), which mimics mitotic phosphorylation, does not cause any cisternal regrowth, indicating that p37 phosphorylation inhibits the p97/p37 pathway. Our results demonstrate that p37 phosphorylation on Serine-56 and Threonine-59 is important for Golgi disassembly at mitosis.

  11. Cardiac Extracellular Matrix Scaffold Generated Using Sarcomeric Disassembly and Antigen Removal.

    PubMed

    Papalamprou, Angela; Griffiths, Leigh G

    2016-04-01

    Xenogeneic cardiac extracellular matrix (cECM) scaffolds for reconstructive cardiac surgery applications have potential to overcome the limitations of current clinically utilized patch materials. A potentially ideal cECM scaffold would be immunologically acceptable while preserving the native cECM niche. Production of such a scaffold necessitates removal of cellular and antigenic components from cardiac tissue while preserving cECM structure/function properties. Existing decellularization methodologies predominantly utilize denaturing detergents which might irreversibly alter cECM material properties. To overcome potential deficiencies of current approaches, the effect of sarcomere relaxation and disassembly on resultant cECM scaffold cellularity was investigated. Additionally, the ability of sequential differential protein solubilization (antigen removal-AR) to reduce cECM scaffold antigenicity was examined. Sarcomeric relaxation and disassembly were necessary to achieve scaffold acellularity. All groups in which AR was employed displayed statistically significant decreases in residual antigenicity regardless of their degree of acellularity. AR combined with sarcomeric disassembly preserved structural, biochemical, mechanical and recellularization properties of the cECM scaffold. However, sodium dodecyl sulfate significantly altered cECM properties. This study demonstrates the importance of solubilizing cellular elements and antigenic components in a stepwise manner for production of a potentially ideal cECM scaffold and may have implications for future tissue engineering and regenerative medicine applications.

  12. Molecular disassembly of rice and lotus starches during thermal processing and its effect on starch digestibility.

    PubMed

    Wang, Shujun; Sun, Yue; Wang, Jinrong; Wang, Shuo; Copeland, Les

    2016-02-01

    The molecular disassembly of starch during thermal processing is a major determinant for the susceptibility of starch to enzymatic digestion. In the present study, the effects of thermal processing on the disassembly of the granular structure and the in vitro enzymatic digestibility of rice and lotus starches were investigated. After heating at 50 °C, rice and lotus starches did not show significant changes in granular morphology, long-range crystallinity and short-range molecular order. As the temperature increased to 60 °C, rice starch underwent a partial gelatinization followed by an incomplete disruption of granular morphology, crystallites and molecular order. In contrast, lotus starch was almost completely gelatinized at 60 °C. At 70 °C or higher, both starches were fully gelatinized with complete disruption of the micro and macro structures. Our results show that gelatinization greatly increased the in vitro enzymatic digestibility of both starches, but that the degree of disassembly of the starch structure during thermal processing was not a major determinant of the digestibility of gelatinized starch.

  13. Artificial biofilms establish the role of matrix interactions in staphylococcal biofilm assembly and disassembly.

    PubMed

    Stewart, Elizabeth J; Ganesan, Mahesh; Younger, John G; Solomon, Michael J

    2015-01-01

    We demonstrate that the microstructural and mechanical properties of bacterial biofilms can be created through colloidal self-assembly of cells and polymers, and thereby link the complex material properties of biofilms to well understood colloidal and polymeric behaviors. This finding is applied to soften and disassemble staphylococcal biofilms through pH changes. Bacterial biofilms are viscoelastic, structured communities of cells encapsulated in an extracellular polymeric substance (EPS) comprised of polysaccharides, proteins, and DNA. Although the identity and abundance of EPS macromolecules are known, how these matrix materials interact with themselves and bacterial cells to generate biofilm morphology and mechanics is not understood. Here, we find that the colloidal self-assembly of Staphylococcus epidermidis RP62A cells and polysaccharides into viscoelastic biofilms is driven by thermodynamic phase instability of EPS. pH conditions that induce phase instability of chitosan produce artificial S. epidermidis biofilms whose mechanics match natural S. epidermidis biofilms. Furthermore, pH-induced solubilization of the matrix triggers disassembly in both artificial and natural S. epidermidis biofilms. This pH-induced disassembly occurs in biofilms formed by five additional staphylococcal strains, including three clinical isolates. Our findings suggest that colloidal self-assembly of cells and matrix polymers produces biofilm viscoelasticity and that biofilm control strategies can exploit this mechanism. PMID:26272750

  14. Artificial biofilms establish the role of matrix interactions in staphylococcal biofilm assembly and disassembly.

    PubMed

    Stewart, Elizabeth J; Ganesan, Mahesh; Younger, John G; Solomon, Michael J

    2015-08-14

    We demonstrate that the microstructural and mechanical properties of bacterial biofilms can be created through colloidal self-assembly of cells and polymers, and thereby link the complex material properties of biofilms to well understood colloidal and polymeric behaviors. This finding is applied to soften and disassemble staphylococcal biofilms through pH changes. Bacterial biofilms are viscoelastic, structured communities of cells encapsulated in an extracellular polymeric substance (EPS) comprised of polysaccharides, proteins, and DNA. Although the identity and abundance of EPS macromolecules are known, how these matrix materials interact with themselves and bacterial cells to generate biofilm morphology and mechanics is not understood. Here, we find that the colloidal self-assembly of Staphylococcus epidermidis RP62A cells and polysaccharides into viscoelastic biofilms is driven by thermodynamic phase instability of EPS. pH conditions that induce phase instability of chitosan produce artificial S. epidermidis biofilms whose mechanics match natural S. epidermidis biofilms. Furthermore, pH-induced solubilization of the matrix triggers disassembly in both artificial and natural S. epidermidis biofilms. This pH-induced disassembly occurs in biofilms formed by five additional staphylococcal strains, including three clinical isolates. Our findings suggest that colloidal self-assembly of cells and matrix polymers produces biofilm viscoelasticity and that biofilm control strategies can exploit this mechanism.

  15. Expert System analysis of non-fuel assembly hardware and spent fuel disassembly hardware: Its generation and recommended disposal

    SciTech Connect

    Williamson, D.A.

    1991-12-31

    Almost all of the effort being expended on radioactive waste disposal in the United States is being focused on the disposal of spent Nuclear Fuel, with little consideration for other areas that will have to be disposed of in the same facilities. one area of radioactive waste that has not been addressed adequately because it is considered a secondary part of the waste issue is the disposal of the various Non-Fuel Bearing Components of the reactor core. These hardware components fall somewhat arbitrarily into two categories: Non-Fuel Assembly (NFA) hardware and Spent Fuel Disassembly (SFD) hardware. This work provides a detailed examination of the generation and disposal of NFA hardware and SFD hardware by the nuclear utilities of the United States as it relates to the Civilian Radioactive Waste Management Program. All available sources of data on NFA and SFD hardware are analyzed with particular emphasis given to the Characteristics Data Base developed by Oak Ridge National Laboratory and the characterization work performed by Pacific Northwest Laboratories and Rochester Gas & Electric. An Expert System developed as a portion of this work is used to assist in the prediction of quantities of NFA hardware and SFD hardware that will be generated by the United States` utilities. Finally, the hardware waste management practices of the United Kingdom, France, Germany, Sweden, and Japan are studied for possible application to the disposal of domestic hardware wastes. As a result of this work, a general classification scheme for NFA and SFD hardware was developed. Only NFA and SFD hardware constructed of zircaloy and experiencing a burnup of less than 70,000 MWD/MTIHM and PWR control rods constructed of stainless steel are considered Low-Level Waste. All other hardware is classified as Greater-ThanClass-C waste.

  16. Disassembly of mitotic checkpoint complexes by the joint action of the AAA-ATPase TRIP13 and p31comet

    PubMed Central

    Eytan, Esther; Wang, Kexi; Miniowitz-Shemtov, Shirly; Sitry-Shevah, Danielle; Kaisari, Sharon; Yen, Tim J.; Liu, Song-Tao; Hershko, Avram

    2014-01-01

    The mitotic (or spindle assembly) checkpoint system delays anaphase until all chromosomes are correctly attached to the mitotic spindle. When the checkpoint is active, a Mitotic Checkpoint Complex (MCC) assembles and inhibits the ubiquitin ligase Anaphase-Promoting Complex/Cyclosome (APC/C). MCC is composed of the checkpoint proteins Mad2, BubR1, and Bub3 associated with the APC/C activator Cdc20. When the checkpoint signal is turned off, MCC is disassembled and the checkpoint is inactivated. The mechanisms of the disassembly of MCC are not sufficiently understood. We have previously observed that ATP hydrolysis is required for the action of the Mad2-binding protein p31comet to disassemble MCC. We now show that HeLa cell extracts contain a factor that promotes ATP- and p31comet-dependent disassembly of a Cdc20–Mad2 subcomplex and identify it as Thyroid Receptor Interacting Protein 13 (TRIP13), an AAA-ATPase known to interact with p31comet. The joint action of TRIP13 and p31comet also promotes the release of Mad2 from MCC, participates in the complete disassembly of MCC and abrogates checkpoint inhibition of APC/C. We propose that TRIP13 plays centrally important roles in the sequence of events leading to MCC disassembly and checkpoint inactivation. PMID:25092294

  17. AGR-2 Irradiated Test Train Preliminary Inspection and Disassembly First Look

    SciTech Connect

    Ploger, Scott; Demkowciz, Paul; Harp, Jason

    2015-05-01

    The AGR 2 irradiation experiment began in June 2010 and was completed in October 2013. The test train was shipped to the Materials and Fuels Complex in July 2014 for post-irradiation examination (PIE). The first PIE activities included nondestructive examination of the test train, followed by disassembly of the test train and individual capsules and detailed inspection of the capsule contents, including the fuel compacts and their graphite fuel holders. Dimensional metrology was then performed on the compacts, graphite holders, and steel capsule shells. AGR 2 disassembly and metrology were performed with the same equipment used successfully on AGR 1 test train components. Gamma spectrometry of the intact test train gave a preliminary look at the condition of the interior components. No evidence of damage to compacts or graphite components was evident from the isotopic and gross gamma scans. Disassembly of the AGR 2 test train and its capsules was conducted rapidly and efficiently by employing techniques refined during the AGR 1 disassembly campaign. Only one major difficulty was encountered while separating the test train into capsules when thermocouples (of larger diameter than used in AGR 1) and gas lines jammed inside the through tubes of the upper capsules, which required new tooling for extraction. Disassembly of individual capsules was straightforward with only a few minor complications. On the whole, AGR 2 capsule structural components appeared less embrittled than their AGR 1 counterparts. Compacts from AGR 2 Capsules 2, 3, 5, and 6 were in very good condition upon removal. Only relatively minor damage or markings were visible using high resolution photographic inspection. Compact dimensional measurements indicated radial shrinkage between 0.8 to 1.7%, with the greatest shrinkage observed on Capsule 2 compacts that were irradiated at higher temperature. Length shrinkage ranged from 0.1 to 0.9%, with by far the lowest axial shrinkage on Capsule 3 compacts

  18. NEUTRONIC REACTOR

    DOEpatents

    Fermi, E.; Zinn, W.H.; Anderson, H.L.

    1958-09-16

    Means are presenied for increasing the reproduction ratio of a gaphite- moderated neutronic reactor by diminishing the neutron loss due to absorption or capture by gaseous impurities within the reactor. This means comprised of a fluid-tight casing or envelope completely enclosing the reactor and provided with a valve through which the casing, and thereby the reactor, may be evacuated of atmospheric air.

  19. [PHAHs levels in soil samples from the E-waste disassembly sites and their sources allocation].

    PubMed

    Zhao, Gao-Feng; Wang, Zi-Jian

    2009-06-15

    Soil samples (each with 3 replicates of - 1 kg, at the top 0-5 cm layer) were collected from each of the e-waste disassembly sites and the control site. Also obtained from each disassembly site were samples (each weighing - 0.2 kg) of cable coating,stuffing powder, and circuit boards chipping. The contents of 23 PBB congeners, 12 PBDE congeners, and 27 PCB congeners in soil and in their potential sources, including e-waste residues, were measured using the GC-MS5975B technique. The highest level of PBBs was found in the cable coating among the three e-waste residues, with a concentration of 35.25 ng x g(-1). The contents of low-brominated PBBs (including monobromobiphenyls and dibromobiphenyls) accounted for 38% of the total PBBs concentration observed in cable coating sample. The highest levels of PBDEs and PBDE209 were found in the stuffing powder for electronic component among the collected e-waste residues, with a concentration of 29.71 and 4.19 x 10(3) ng x g(-1). PBDE153 and PBDE183 were the most predominant PBDE congeners, with their concentration accounting for 43% and 24% of the total PBDEs concentration observed in the stuffing powder sample, respectively. Levels of PCBs in cable coating were the highest in these e-waste residues, with a concentration of 680.02 ngx g(-1). The observed values of the three PHAHs in soils from the disassembly site were considerably higher than their corresponding values observed in the control site (p < 0.05), which indicates that these PHAHs from e-waste is the pollution source of local environment. PMID:19662879

  20. Fruit softening and pectin disassembly: an overview of nanostructural pectin modifications assessed by atomic force microscopy

    PubMed Central

    Paniagua, Candelas; Posé, Sara; Morris, Victor J.; Kirby, Andrew R.; Quesada, Miguel A.; Mercado, José A.

    2014-01-01

    Background One of the main factors that reduce fruit quality and lead to economically important losses is oversoftening. Textural changes during fruit ripening are mainly due to the dissolution of the middle lamella, the reduction of cell-to-cell adhesion and the weakening of parenchyma cell walls as a result of the action of cell wall modifying enzymes. Pectins, major components of fruit cell walls, are extensively modified during ripening. These changes include solubilization, depolymerization and the loss of neutral side chains. Recent evidence in strawberry and apple, fruits with a soft or crisp texture at ripening, suggests that pectin disassembly is a key factor in textural changes. In both these fruits, softening was reduced as result of antisense downregulation of polygalacturonase genes. Changes in pectic polymer size, composition and structure have traditionally been studied by conventional techniques, most of them relying on bulk analysis of a population of polysaccharides, and studies focusing on modifications at the nanostructural level are scarce. Atomic force microscopy (AFM) allows the study of individual polymers at high magnification and with minimal sample preparation; however, AFM has rarely been employed to analyse pectin disassembly during fruit ripening. Scope In this review, the main features of the pectin disassembly process during fruit ripening are first discussed, and then the nanostructural characterization of fruit pectins by AFM and its relationship with texture and postharvest fruit shelf life is reviewed. In general, fruit pectins are visualized under AFM as linear chains, a few of which show long branches, and aggregates. Number- and weight-average values obtained from these images are in good agreement with chromatographic analyses. Most AFM studies indicate reductions in the length of individual pectin chains and the frequency of aggregates as the fruits ripen. Pectins extracted with sodium carbonate, supposedly located within

  1. [PHAHs levels in soil samples from the E-waste disassembly sites and their sources allocation].

    PubMed

    Zhao, Gao-Feng; Wang, Zi-Jian

    2009-06-15

    Soil samples (each with 3 replicates of - 1 kg, at the top 0-5 cm layer) were collected from each of the e-waste disassembly sites and the control site. Also obtained from each disassembly site were samples (each weighing - 0.2 kg) of cable coating,stuffing powder, and circuit boards chipping. The contents of 23 PBB congeners, 12 PBDE congeners, and 27 PCB congeners in soil and in their potential sources, including e-waste residues, were measured using the GC-MS5975B technique. The highest level of PBBs was found in the cable coating among the three e-waste residues, with a concentration of 35.25 ng x g(-1). The contents of low-brominated PBBs (including monobromobiphenyls and dibromobiphenyls) accounted for 38% of the total PBBs concentration observed in cable coating sample. The highest levels of PBDEs and PBDE209 were found in the stuffing powder for electronic component among the collected e-waste residues, with a concentration of 29.71 and 4.19 x 10(3) ng x g(-1). PBDE153 and PBDE183 were the most predominant PBDE congeners, with their concentration accounting for 43% and 24% of the total PBDEs concentration observed in the stuffing powder sample, respectively. Levels of PCBs in cable coating were the highest in these e-waste residues, with a concentration of 680.02 ngx g(-1). The observed values of the three PHAHs in soils from the disassembly site were considerably higher than their corresponding values observed in the control site (p < 0.05), which indicates that these PHAHs from e-waste is the pollution source of local environment.

  2. Gap-junction disassembly and connexin 43 dephosphorylation induced by 18 beta-glycyrrhetinic acid.

    PubMed

    Guan, X; Wilson, S; Schlender, K K; Ruch, R J

    1996-07-01

    Gap-junction channels connect the interiors of adjacent cells and can be arranged into aggregates or plaques consisting of hundreds to thousands of channel particles. The mechanism of channel aggregation into plaques and whether plaques can disaggregate are not known. Many carcinogenic and tumor-promoting chemicals have been identified that inhibit cell-cell gap-junctional coupling. Here, we provide morphological evidence that 18 beta-glycyrrhetinic acid (18 beta-GA), a saponin isolated from licorice root that is an inhibitor of gap-junctional communication, caused the disassembly of gap-junction plaques in WB-F344 rat liver epithelial cells. This effect was dose (5-40 microM) and time dependent (1-4 h treatment). Gap-junction channels in WB-F344 cells are comprised of connexin 43 (Cx43), and the protein is phosphorylated to a species known as Cx43-P2 coincident with the assembly of channels into plaques. Consistent with this, the disassembly of plaques induced by 18 beta-GA was correlated with decreases in Cx43-P2 levels and increases in nonphosphorylated Cx43. Biochemical evidence indicated that these changes in the P2 and NP forms of Cx43 represented 18 beta-GA-induced dephosphorylation of Cx43-P2 and not its degradation or the inhibition of Cx43-NP phosphorylation. Okadaic acid and calyculin A, which are inhibitors of type 1 and type 2A protein phosphatases, prevented the dephosphorylation of Cx43, suggesting that one or both of these phosphatases were involved in Cx43 dephosphorylation. These data indicate that 18 beta-GA causes type 1 or type 2A protein phosphatase-mediated Cx43 dephosphorylation coincident with the disassembly of gap-junction plaques.

  3. Distribution Coefficients (Kd Values) for Waste Resins Generated from the K and L Disassembly Basin Facilities

    SciTech Connect

    Kaplan, D.I.

    2002-12-02

    The objective of this study was to measure 14C, 129I, and 99Tc Kd values of spent resin generated from the K and L Disassembly Basin Facilities. The scope of the work was to conduct Kd measurements of resins combined in the ratio that they are disposed, 42:58 cation:anion. Because it was not known how these spent resins would be buried, it was necessary to measure the Kd values in such a manner as to simulate both trench and vault disposal. This was accomplished by using an acid-rain simulant (a standard U.S. Environmental Protection Agency protocol) and a cement leachate simulant .

  4. Demonstrate fuel disassembly/encapsulation. Technical progress report, April 1981-June 1981

    SciTech Connect

    1981-08-03

    Work on this project is focused on demonstrating disassembly and encapsulation of nuclear fuels as a means to increase spent fuel storage. The effort commenced on April 17, 1980, and is progressing satisfactorily. The Equipment/Procedure Preparation sub-task is essentially complete. The Equipment Demonstration sub-task and the Process Assessment Studies sub-task continue. The equipment design effort associated with the first sub-task, the component testing and checking associated with the second sub-task, and the technical studies and investigations associated with the latter sub-task continue to verify the feasibility of this concept to enhance the use of fuel storage resources.

  5. Fractional processes and nuclear disassembly in very-heavy-ion collisions in the Fermi energy regime

    SciTech Connect

    Schroeder, W.U.

    1991-01-01

    Exclusive measurements of charged products and neutrons were performed for the reactions {sup 197}Au + (29 MeV/u) {sup 208}Pb and {sup 209}Bi + (28.2 MeV/u) {sup 136}Xe. The multiplicities of neutrons and charged particles are found to indicate collision impact parameters with different sensitivities. Characteristic correlations observed between massive products and light particles suggest the dominance of the damped-reaction mechanism in the Fermi energy domain. For central collisions, massive fragments are no longer observed, and a considerable fraction of the mass of the system is found disassembled into light particles and clusters. 75 refs., 19 figs.

  6. Developing a framework for applying disassembly planning and demanufacturing modeling to organic processing waste streams

    NASA Astrophysics Data System (ADS)

    Rosentrater, Kurt A.; Tang, Ying

    2005-11-01

    Alternative disposal methods for food and other organic manufacturing waste streams are increasingly being investigated. Direct shipping, blending, extrusion, pelleting, and drying are commonly used to produce finished human food, animal feed, industrial products, and components ready for further manufacture. This paper discusses a new initiative whose goal is to develop a computer model based on analytical methods used for disassembly planning and demanufacturing modeling, but applied to organic processing waste streams. Upon completion, the simulation model discussed here will be used to analyze various liquid, sludge, and solid byproduct streams in order to determine optimal reprocessing avenues for specific manufacturing firms.

  7. Effects of D-amino acids and norspermidine on the disassembly of large, old-aged microbial aggregates.

    PubMed

    Si, Xiurong; Quan, Xiangchun; Li, Qilin; Wu, Yachuan

    2014-05-01

    The increasing threat of microbial aggregates in many fields highlights the need to develop methods to promote their disassembly. This study investigated the coupled effects of d-tyrosine (d-Tyr) and norspermidine on the disassembly of a type of old-aged (more than 6 months), large (about 900 μm) microbial aggregate formed by mixed culture. Results showed that d-Tyr and norspermidine acting together effectively triggered the disassembly of microbial aggregates, with disassembly ratio enhanced by 30-164% compared to the control at the concentration of 50-500 μM of d-Tyr and norspermidine. d-Tyr and norspermidine reduced the content of extracellular protein and polysaccharide in microbial aggregates and altered the matrix structure of extracellular polymeric substances as confirmed by a confocal laser scanning microscope. The microbial aggregates lost stability after treatment with d-Tyr and norspermidine as could be seen from the increase in surface negative charge and decrease in cell hydrophobicity. Fourier transform infrared spectroscopy analysis revealed that norspermidine could directly interact with polysaccharide and caused the disappearance of an IR band at 1152 cm(-1) that may be correlated with the functional group C-O-C. Overall, the combined application of d-amino acids and norspermidine offers an effective approach to disassemble large and resistant microbial aggregates. PMID:24576700

  8. Impact of physicochemical parameters on in vitro assembly and disassembly kinetics of recombinant triple-layered rotavirus-like particles.

    PubMed

    Mellado, Maria Candida M; Mena, Jimmy A; Lopes, António; Ramírez, Octavio T; Carrondo, Manuel J T; Palomares, Laura A; Alves, Paula M

    2009-11-01

    Virus-like particles constitute potentially relevant vaccine candidates. Nevertheless, their behavior in vitro and assembly process needs to be understood in order to improve their yield and quality. In this study we aimed at addressing these issues and for that purpose triple- and double-layered rotavirus-like particles (TLP 2/6/7 and DLP 2/6, respectively) size and zeta potential were measured using dynamic light scattering at different physicochemical conditions, namely pH, ionic strength, and temperature. Both TLP and DLP were stable within a pH range of 3-7 and at 5-25 degrees C. Aggregation occurred at 35-45 degrees C and their disassembly became evident at 65 degrees C. The isoelectric points of TLP and DLP were 3.0 and 3.8, respectively. In vitro kinetics of TLP disassembly was monitored. Ionic strength, temperature, and the chelating agent employed determined disassembly kinetics. Glycerol (10%) stabilized TLP by preventing its disassembly. Disassembled TLP was able to reassemble by dialysis at high calcium conditions. VP7 monomers were added to DLP in the presence of calcium to follow in vitro TLP assembly kinetics; its assembly rate being mostly affected by pH. Finally, DLP and TLP were found to coexist under certain conditions as determined from all reaction products analyzed by capillary electrophoresis. Overall, these results contribute to the design of new strategies for the improvement of TLP yield and quality by reducing the VP7 detachment from TLP.

  9. Reconstitution of the cell cycle-regulated Golgi disassembly and reassembly in a cell-free system

    PubMed Central

    Tang, Danming; Xiang, Yi; Wang, Yanzhuang

    2012-01-01

    The Golgi apparatus undergoes extensive disassembly during mitosis and reassembly in post-mitotic daughter cells. This process has been mimicked in vitro by treating Golgi membranes with mitotic and interphase cytosol. To determine the minimal machinery that controls the morphological change, we have developed a defined Golgi disassembly and reassembly assay that reconstitutes this process using purified proteins instead of cytosol. Treatment of Golgi membranes with mitotic kinases and COPI coat proteins efficiently disassembles the membranes into mitotic Golgi fragments, whereas further incubation with p97 or N-ethylmaleimide-sensitive factor (two AAA ATPases involved in membrane fusion) and their cofactors, in combination with protein phosphatase PP2A, leads to reassembly of the membranes into new Golgi stacks. The whole process takes 3–4 d and is applicable for identification and determination of novel cytosolic and membrane proteins that regulate Golgi membrane dynamics in the cell cycle. PMID:20360770

  10. NUCLEAR REACTOR

    DOEpatents

    Treshow, M.

    1961-09-01

    A boiling-water nuclear reactor is described wherein control is effected by varying the moderator-to-fuel ratio in the reactor core. This is accomplished by providing control tubes containing a liquid control moderator in the reactor core and providing means for varying the amount of control moderatcr within the control tubes.

  11. NEUTRONIC REACTOR

    DOEpatents

    Daniels, F.

    1959-10-27

    A reactor in which at least a portion of the moderator is in the form of movable refractory balls is described. In addition to their moderating capacity, these balls may serve as carriers for fissionable material or fertile material, or may serve in a coolant capacity to remove heat from the reactor. A pneumatic system is used to circulate the balls through the reactor.

  12. Intracellular disassembly and localization of a new P123-PEI-R13/DNA complex.

    PubMed

    Zhu, Manman; Liu, Kehai; Zhu, Qing; Chen, Shunsheng; Lv, Hui; Zhao, Wenfang; Mao, Yuan; Hu, Jing

    2014-01-01

    The appropriate location and release of target gene is necessary for gene therapy. In our previous paper, a gene vector named P123-PEI-R13 has been successfully synthesized, and the physical characteristics and cellular trafficking of nanoparticle P123-PEI-R13/DNA has been explored explicitly, but little was known about its disassembly within cells. In order to investigate its intracellular disassembly, P123-PEI-R13/DNA complex was exposed to the different competitors (RNA, DNA, proteins) or different conditions of pH and osmolarity, DNA release was determined by gel electrophoresis. Meanwhile, confocal laser technology was used to locate the complex in cells. The results revealed that DNA, RNA and osmolarity could affect the stability of the complex obviously, especially RNA which exist in nucleus. In addition, the speed of DNA release decreased as the weight ratio of polymer increased. Images got by a confocal fluorescence microscope confirmed that after cell uptake, P123-PEI-R13 could translocate DNA into nucleus.

  13. Plastics disassembly versus bulk recycling: engineering design for end-of-life electronics resource recovery.

    PubMed

    Rios, Pedro; Stuart, Julie Ann; Grant, Ed

    2003-12-01

    Annual plastic flows through the business and consumer electronics manufacturing supply chain include nearly 3 billion lb of high-value engineering plastics derived from petroleum. The recovery of resource value from this stream presents critical challenges in areas of materials identification and recycling process design that demand new green engineering technologies applied together with life cycle assessment and ecological supply chain analysis to create viable plastics-to-plastics supply cycles. The sustainable recovery of potentially high-value engineering plastics streams requires that recyclers either avoid mixing plastic parts or purify later by separating smaller plastic pieces created in volume reduction (shredding) steps. Identification and separation constitute significant barriers in the plastics-to-plastics recycling value proposition. In the present work, we develop a model that accepts randomly arriving electronic products to study scenarios by which a recycler might identify and separate high-value engineering plastics as well as metals. Using discrete eventsimulation,we compare current mixed plastics recovery with spectrochemical plastic resin identification and subsequent sorting. Our results show that limited disassembly with whole-part identification can produce substantial yields in separated streams of recovered engineering thermoplastics. We find that disassembly with identification does not constitute a bottleneck, but rather, with relatively few workers, can be configured to pull the process and thus decrease maximum staging space requirements.

  14. Generation of contractile actomyosin bundles depends on mechanosensitive actin filament assembly and disassembly

    PubMed Central

    Tojkander, Sari; Gateva, Gergana; Husain, Amjad; Krishnan, Ramaswamy; Lappalainen, Pekka

    2015-01-01

    Adhesion and morphogenesis of many non-muscle cells are guided by contractile actomyosin bundles called ventral stress fibers. While it is well established that stress fibers are mechanosensitive structures, physical mechanisms by which they assemble, align, and mature have remained elusive. Here we show that arcs, which serve as precursors for ventral stress fibers, undergo lateral fusion during their centripetal flow to form thick actomyosin bundles that apply tension to focal adhesions at their ends. Importantly, this myosin II-derived force inhibits vectorial actin polymerization at focal adhesions through AMPK-mediated phosphorylation of VASP, and thereby halts stress fiber elongation and ensures their proper contractility. Stress fiber maturation additionally requires ADF/cofilin-mediated disassembly of non-contractile stress fibers, whereas contractile fibers are protected from severing. Taken together, these data reveal that myosin-derived tension precisely controls both actin filament assembly and disassembly to ensure generation and proper alignment of contractile stress fibers in migrating cells. DOI: http://dx.doi.org/10.7554/eLife.06126.001 PMID:26652273

  15. Quantifying cadherin mechanotransduction machinery assembly/disassembly dynamics using fluorescence covariance analysis

    PubMed Central

    Vedula, Pavan; Cruz, Lissette A.; Gutierrez, Natasha; Davis, Justin; Ayee, Brian; Abramczyk, Rachel; Rodriguez, Alexis J.

    2016-01-01

    Quantifying multi-molecular complex assembly in specific cytoplasmic compartments is crucial to understand how cells use assembly/disassembly of these complexes to control function. Currently, biophysical methods like Fluorescence Resonance Energy Transfer and Fluorescence Correlation Spectroscopy provide quantitative measurements of direct protein-protein interactions, while traditional biochemical approaches such as sub-cellular fractionation and immunoprecipitation remain the main approaches used to study multi-protein complex assembly/disassembly dynamics. In this article, we validate and quantify multi-protein adherens junction complex assembly in situ using light microscopy and Fluorescence Covariance Analysis. Utilizing specific fluorescently-labeled protein pairs, we quantified various stages of adherens junction complex assembly, the multiprotein complex regulating epithelial tissue structure and function following de novo cell-cell contact. We demonstrate: minimal cadherin-catenin complex assembly in the perinuclear cytoplasm and subsequent localization to the cell-cell contact zone, assembly of adherens junction complexes, acto-myosin tension-mediated anchoring, and adherens junction maturation following de novo cell-cell contact. Finally applying Fluorescence Covariance Analysis in live cells expressing fluorescently tagged adherens junction complex proteins, we also quantified adherens junction complex assembly dynamics during epithelial monolayer formation. PMID:27357130

  16. PslG, a self-produced glycosyl hydrolase, triggers biofilm disassembly by disrupting exopolysaccharide matrix.

    PubMed

    Yu, Shan; Su, Tiantian; Wu, Huijun; Liu, Shiheng; Wang, Di; Zhao, Tianhu; Jin, Zengjun; Du, Wenbin; Zhu, Mei-Jun; Chua, Song Lin; Yang, Liang; Zhu, Deyu; Gu, Lichuan; Ma, Luyan Z

    2015-12-01

    Biofilms are surface-associated communities of microorganism embedded in extracellular matrix. Exopolysaccharide is a critical component in the extracellular matrix that maintains biofilm architecture and protects resident biofilm bacteria from antimicrobials and host immune attack. However, self-produced factors that target the matrix exopolysaccharides, are still poorly understood. Here, we show that PslG, a protein involved in the synthesis of a key biofilm matrix exopolysaccharide Psl in Pseudomonas aeruginosa, prevents biofilm formation and disassembles existing biofilms within minutes at nanomolar concentrations when supplied exogenously. The crystal structure of PslG indicates the typical features of an endoglycosidase. PslG mainly disrupts the Psl matrix to disperse bacteria from biofilms. PslG treatment markedly enhances biofilm sensitivity to antibiotics and macrophage cells, resulting in improved biofilm clearance in a mouse implant infection model. Furthermore, PslG shows biofilm inhibition and disassembly activity against a wide range of Pseudomonas species, indicating its great potential in combating biofilm-related complications.

  17. Molecular disassembly of starch granules during gelatinization and its effect on starch digestibility: a review.

    PubMed

    Wang, Shujun; Copeland, Les

    2013-11-01

    Starch is the most important glycemic carbohydrate in foods. The relationship between the rate and extent of starch digestion to produce glucose for absorption into the bloodstream and risk factors for diet-related diseases is of considerable nutritional interest. Native starch is attacked slowly by enzymes, but after hydrothermal processing its susceptibility to enzymatic breakdown is greatly increased. Most starch consumed by humans has undergone some form of processing or cooking, which causes native starch granules to gelatinize, followed by retrogradation on cooling. The extent of gelatinization and retrogradation are major determinants of the susceptibility of starch to enzymatic digestion and its functional properties for food processing. The type and extent of changes that occur in starch as a result of gelatinization, pasting and retrogradation are determined by the type of the starch, processing and storage conditions. A mechanistic understanding of the molecular disassembly of starch granules during gelatinization is critical to explaining the effects of processing or cooking on starch digestibility. This review focuses on the molecular disassembly of starch granules during starch gelatinization over a wide range of water levels, and its consequential effect on in vitro starch digestibility and in vivo glycemic index.

  18. γ-SNAP stimulates disassembly of endosomal SNARE complexes and regulates endocytic trafficking pathways.

    PubMed

    Inoue, Hiroki; Matsuzaki, Yuka; Tanaka, Ayaka; Hosoi, Kaori; Ichimura, Kaoru; Arasaki, Kohei; Wakana, Yuichi; Asano, Kenichi; Tanaka, Masato; Okuzaki, Daisuke; Yamamoto, Akitsugu; Tani, Katsuko; Tagaya, Mitsuo

    2015-08-01

    Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) that reside in the target membranes and transport vesicles assemble into specific SNARE complexes to drive membrane fusion. N-ethylmaleimide-sensitive factor (NSF) and its attachment protein, α-SNAP (encoded by NAPA), catalyze disassembly of the SNARE complexes in the secretory and endocytic pathways to recycle them for the next round of fusion events. γ-SNAP (encoded by NAPG) is a SNAP isoform, but its function in SNARE-mediated membrane trafficking remains unknown. Here, we show that γ-SNAP regulates the endosomal trafficking of epidermal growth factor (EGF) receptor (EGFR) and transferrin. Immunoprecipitation and mass spectrometry analyses revealed that γ-SNAP interacts with a limited range of SNAREs, including endosomal ones. γ-SNAP, as well as α-SNAP, mediated the disassembly of endosomal syntaxin-7-containing SNARE complexes. Overexpression and small interfering (si)RNA-mediated depletion of γ-SNAP changed the morphologies and intracellular distributions of endosomes. Moreover, the depletion partially suppressed the exit of EGFR and transferrin from EEA1-positive early endosomes to delay their degradation and uptake. Taken together, our findings suggest that γ-SNAP is a unique SNAP that functions in a limited range of organelles - including endosomes - and their trafficking pathways.

  19. Probing the disassembly of ultrafast laser heated gold using frequency domain interferometry.

    NASA Astrophysics Data System (ADS)

    Ao, Tommy; Ping, Yuan; Lee, Edward

    2005-10-01

    Ultrafast laser heating of a solid offers a unique approach to examine the behavior of non-equilibrium high energy density states. Initially, the electrons are optically excited while the ions in the lattice remain cold. This is followed by electron-electron and electron-phonon relaxation. Recently, experiments were performed in which ultrathin freestanding, gold foils were heated by a femtosecond pump laser to a strongly overdriven regime with energy densities reaching 20 MJ/kg. Interestingly, femtosecond laser reflectivity and transmission measurements on the heated sample revealed a quasi-steady-state behavior before the onset of hydrodynamic expansion. This led to the conjecture of the existence of a metastable, disordered state prior to the disassembly of the solid. To further examine the dynamics of ultrafast laser heated solids, frequency domain interferometry (FDI) was used to provide an independent observation. The highly sensitive change in the phase shift of the FDI probe clearly showed evidence of the quasi-steady-state behavior. The new experiment also yielded a detailed measurement of the time scale of such a quasi-steady-state phase that may help elucidate the process of electron-phonon coupling and disassembly in a strongly overdriven regime.

  20. Asymmetric ring structure of Vps4 required for ESCRT-III disassembly

    NASA Astrophysics Data System (ADS)

    Caillat, Christophe; Macheboeuf, Pauline; Wu, Yuanfei; McCarthy, Andrew A.; Boeri-Erba, Elisabetta; Effantin, Gregory; Göttlinger, Heinrich G.; Weissenhorn, Winfried; Renesto, Patricia

    2015-12-01

    The vacuolar protein sorting 4 AAA-ATPase (Vps4) recycles endosomal sorting complexes required for transport (ESCRT-III) polymers from cellular membranes. Here we present a 3.6-Å X-ray structure of ring-shaped Vps4 from Metallosphera sedula (MsVps4), seen as an asymmetric pseudohexamer. Conserved key interface residues are shown to be important for MsVps4 assembly, ATPase activity in vitro, ESCRT-III disassembly in vitro and HIV-1 budding. ADP binding leads to conformational changes within the protomer, which might propagate within the ring structure. All ATP-binding sites are accessible and the pseudohexamer binds six ATP with micromolar affinity in vitro. In contrast, ADP occupies one high-affinity and five low-affinity binding sites in vitro, consistent with conformational asymmetry induced on ATP hydrolysis. The structure represents a snapshot of an assembled Vps4 conformation and provides insight into the molecular motions the ring structure undergoes in a concerted action to couple ATP hydrolysis to ESCRT-III substrate disassembly.

  1. Generation of contractile actomyosin bundles depends on mechanosensitive actin filament assembly and disassembly.

    PubMed

    Tojkander, Sari; Gateva, Gergana; Husain, Amjad; Krishnan, Ramaswamy; Lappalainen, Pekka

    2015-01-01

    Adhesion and morphogenesis of many non-muscle cells are guided by contractile actomyosin bundles called ventral stress fibers. While it is well established that stress fibers are mechanosensitive structures, physical mechanisms by which they assemble, align, and mature have remained elusive. Here we show that arcs, which serve as precursors for ventral stress fibers, undergo lateral fusion during their centripetal flow to form thick actomyosin bundles that apply tension to focal adhesions at their ends. Importantly, this myosin II-derived force inhibits vectorial actin polymerization at focal adhesions through AMPK-mediated phosphorylation of VASP, and thereby halts stress fiber elongation and ensures their proper contractility. Stress fiber maturation additionally requires ADF/cofilin-mediated disassembly of non-contractile stress fibers, whereas contractile fibers are protected from severing. Taken together, these data reveal that myosin-derived tension precisely controls both actin filament assembly and disassembly to ensure generation and proper alignment of contractile stress fibers in migrating cells. PMID:26652273

  2. Quantifying cadherin mechanotransduction machinery assembly/disassembly dynamics using fluorescence covariance analysis.

    PubMed

    Vedula, Pavan; Cruz, Lissette A; Gutierrez, Natasha; Davis, Justin; Ayee, Brian; Abramczyk, Rachel; Rodriguez, Alexis J

    2016-01-01

    Quantifying multi-molecular complex assembly in specific cytoplasmic compartments is crucial to understand how cells use assembly/disassembly of these complexes to control function. Currently, biophysical methods like Fluorescence Resonance Energy Transfer and Fluorescence Correlation Spectroscopy provide quantitative measurements of direct protein-protein interactions, while traditional biochemical approaches such as sub-cellular fractionation and immunoprecipitation remain the main approaches used to study multi-protein complex assembly/disassembly dynamics. In this article, we validate and quantify multi-protein adherens junction complex assembly in situ using light microscopy and Fluorescence Covariance Analysis. Utilizing specific fluorescently-labeled protein pairs, we quantified various stages of adherens junction complex assembly, the multiprotein complex regulating epithelial tissue structure and function following de novo cell-cell contact. We demonstrate: minimal cadherin-catenin complex assembly in the perinuclear cytoplasm and subsequent localization to the cell-cell contact zone, assembly of adherens junction complexes, acto-myosin tension-mediated anchoring, and adherens junction maturation following de novo cell-cell contact. Finally applying Fluorescence Covariance Analysis in live cells expressing fluorescently tagged adherens junction complex proteins, we also quantified adherens junction complex assembly dynamics during epithelial monolayer formation. PMID:27357130

  3. Real-time assembly and disassembly of human RAD51 filaments on individual DNA molecules

    PubMed Central

    van der Heijden, Thijn; Seidel, Ralf; Modesti, Mauro; Kanaar, Roland; Wyman, Claire; Dekker, Cees

    2007-01-01

    The human DNA repair protein RAD51 is the crucial component of helical nucleoprotein filaments that drive homologous recombination. The molecular mechanistic details of how this structure facilitates the requisite DNA strand rearrangements are not known but must involve dynamic interactions between RAD51 and DNA. Here, we report the real-time kinetics of human RAD51 filament assembly and disassembly on individual molecules of both single- and double-stranded DNA, as measured using magnetic tweezers. The relative rates of nucleation and filament extension are such that the observed filament formation consists of multiple nucleation events that are in competition with each other. For varying concentration of RAD51, a Hill coefficient of 4.3 ± 0.5 is obtained for both nucleation and filament extension, indicating binding to dsDNA with a binding unit consisting of multiple (≥4) RAD51 monomers. We report Monte Carlo simulations that fit the (dis)assembly data very well. The results show that, surprisingly, human RAD51 does not form long continuous filaments on DNA. Instead each nucleoprotein filament consists of a string of many small filament patches that are only a few tens of monomers long. The high flexibility and dynamic nature of this arrangement is likely to facilitate strand exchange. PMID:17709342

  4. Distinctive PSA-NCAM and NCAM hallmarks in glutamate-induced dendritic atrophy and synaptic disassembly.

    PubMed

    Podestá, María Fernanda; Yam, Patricia; Codagnone, Martín Gabriel; Uccelli, Nonthué Alejandra; Colman, David; Reinés, Analía

    2014-01-01

    Dendritic and synapse remodeling are forms of structural plasticity that play a critical role in normal hippocampal function. Neural cell adhesion molecule (NCAM) and its polysialylated form (PSA-NCAM) participate in neurite outgrowth and synapse formation and plasticity. However, it remains unclear whether they contribute to dendritic retraction and synaptic disassembly. Cultured hippocampal neurons exposed to glutamate (5 µM) showed a reduced MAP-2 (+) area in the absence of neuronal death 24 h after the insult. Concomitantly, synapse loss, revealed by decreased synaptophysin and post-synaptic density-95 cluster number and area, together with changes in NCAM and PSA-NCAM levels were found. Dendritic atrophy and PSA-NCAM reduction proved NMDA-receptor dependent. Live-imaging experiments evidenced dendritic atrophy 4 h after the insult; this effect was preceded by smaller NCAM clusters (1 h) and decreased surface and total PSA-NCAM levels (3 h). Simultaneously, total NCAM cluster number and area remained unchanged. The subsequent synapse disassembly (6 h) was accompanied by reductions in total NCAM cluster number and area. A PSA mimetic peptide prevented both the dendritic atrophy and the subsequent synaptic changes (6 h) but had no effect on the earliest synaptic remodeling (3 h). Thus, NCAM-synaptic reorganization and PSA-NCAM level decrease precede glutamate-induced dendritic atrophy, whereas the NCAM level reduction is a delayed event related to synapse loss. Consequently, distinctive stages in PSA-NCAM/NCAM balance seem to accompany glutamate-induced dendritic atrophy and synapse loss.

  5. Extracellular Inhibitors, Repellents, and Semaphorin/Plexin/MICAL-mediated Actin Filament Disassembly

    PubMed Central

    Hung, Ruei-Jiun; Terman, Jonathan R.

    2011-01-01

    Multiple extracellular signals have been identified that regulate actin dynamics within motile cells, but how these instructive cues present on the cell surface exert their precise effects on the internal actin cytoskeleton is still poorly understood. One particularly interesting class of these cues is a group of extracellular proteins that negatively alter the movement of cells and their processes. Over the years, these types of events have been described using a variety of terms and herein we provide an overview of inhibitory/repulsive cellular phenomena and highlight the largest known protein family of repulsive extracellular cues, the Semaphorins. Specifically, the Semaphorins (Semas) utilize Plexin cell-surface receptors to dramatically collapse the actin cytoskeleton and we summarize what is known of the direct molecular and biochemical mechanisms of Sema-triggered actin filament (F-actin) disassembly. We also discuss new observations from our lab that reveal that the multi-domain oxidoreductase (Redox) enzyme MICAL, an important mediator of Sema/Plexin repulsion, is a novel F-actin disassembly factor. Our results indicate that MICAL triggers Sema/Plexin-mediated reorganization of the F-actin cytoskeleton and suggest a role for specific Redox signaling events in regulating actin dynamics. PMID:21800438

  6. Quantifying cadherin mechanotransduction machinery assembly/disassembly dynamics using fluorescence covariance analysis.

    PubMed

    Vedula, Pavan; Cruz, Lissette A; Gutierrez, Natasha; Davis, Justin; Ayee, Brian; Abramczyk, Rachel; Rodriguez, Alexis J

    2016-01-01

    Quantifying multi-molecular complex assembly in specific cytoplasmic compartments is crucial to understand how cells use assembly/disassembly of these complexes to control function. Currently, biophysical methods like Fluorescence Resonance Energy Transfer and Fluorescence Correlation Spectroscopy provide quantitative measurements of direct protein-protein interactions, while traditional biochemical approaches such as sub-cellular fractionation and immunoprecipitation remain the main approaches used to study multi-protein complex assembly/disassembly dynamics. In this article, we validate and quantify multi-protein adherens junction complex assembly in situ using light microscopy and Fluorescence Covariance Analysis. Utilizing specific fluorescently-labeled protein pairs, we quantified various stages of adherens junction complex assembly, the multiprotein complex regulating epithelial tissue structure and function following de novo cell-cell contact. We demonstrate: minimal cadherin-catenin complex assembly in the perinuclear cytoplasm and subsequent localization to the cell-cell contact zone, assembly of adherens junction complexes, acto-myosin tension-mediated anchoring, and adherens junction maturation following de novo cell-cell contact. Finally applying Fluorescence Covariance Analysis in live cells expressing fluorescently tagged adherens junction complex proteins, we also quantified adherens junction complex assembly dynamics during epithelial monolayer formation.

  7. Synthesis of Zeolites Using the ADOR (Assembly-Disassembly-Organization-Reassembly) Route

    PubMed Central

    Wheatley, Paul S.; Čejka, Jiří; Morris, Russell E.

    2016-01-01

    Zeolites are an important class of materials that have wide ranging applications such as heterogeneous catalysts and adsorbents which are dependent on their framework topology. For new applications or improvements to existing ones, new zeolites with novel pore systems are desirable. We demonstrate a method for the synthesis of novel zeolites using the ADOR route. ADOR is an acronym for Assembly, Disassembly, Organization and Reassembly. This synthetic route takes advantage of the assembly of a relatively poorly stable that which can be selectively disassembled into a layered material. The resulting layered intermediate can then be organized in different manners by careful chemical manipulation and then reassembled into zeolites with new topologies. By carefully controlling the organization step of the synthetic pathway, new zeolites with never before seen topologies are capable of being synthesized. The structures of these new zeolites are confirmed using powder X-ray diffraction and further characterized by nitrogen adsorption and scanning electron microscopy. This new synthetic pathway for zeolites demonstrates its capability to produce novel frameworks that have never been prepared by traditional zeolite synthesis techniques. PMID:27078165

  8. The cellular prion protein traps Alzheimer's Aβ in an oligomeric form and disassembles amyloid fibers

    PubMed Central

    Younan, Nadine D.; Sarell, Claire J.; Davies, Paul; Brown, David R.; Viles, John H.

    2013-01-01

    There is now strong evidence to show that the presence of the cellular prion protein (PrPC) mediates amyloid-β (Aβ) neurotoxicity in Alzheimer's disease (AD). Here, we probe the molecular details of the interaction between PrPC and Aβ and discover that substoichiometric amounts of PrPC, as little as 1/20, relative to Aβ will strongly inhibit amyloid fibril formation. This effect is specific to the unstructured N-terminal domain of PrPC. Electron microscopy indicates PrPC is able to trap Aβ in an oligomeric form. Unlike fibers, this oligomeric Aβ contains antiparallel β sheet and binds to a oligomer specific conformational antibody. Our NMR studies show that a specific region of PrPC, notably residues 95–113, binds to Aβ oligomers, but only once Aβ misfolds. The ability of PrPC to trap and concentrate Aβ in an oligomeric form and disassemble mature fibers suggests a mechanism by which PrPC might confer Aβ toxicity in AD, as oligomers are thought to be the toxic form of Aβ. Identification of a specific recognition site on PrPC that traps Aβ in an oligomeric form is potentially a therapeutic target for the treatment of Alzheimer's disease.—Younan, N. D., Sarell, C. J., Davies, P., Brown, D. R., Viles, J. H. The cellular prion protein traps Alzheimer's Aβ in an oligomeric form and disassembles amyloid fibers. PMID:23335053

  9. Research reactors

    SciTech Connect

    Tonneson, L.C.; Fox, G.J.

    1996-04-01

    There are currently 284 research reactors in operation, and 12 under construction around the world. Of the operating reactors, nearly two-thirds are used exclusively for research, and the rest for a variety of purposes, including training, testing, and critical assembly. For more than 50 years, research reactor programs have contributed greatly to the scientific and educational communities. Today, six of the world`s research reactors are being shut down, three of which are in the USA. With government budget constraints and the growing proliferation concerns surrounding the use of highly enriched uranium in some of these reactors, the future of nuclear research could be impacted.

  10. CONVECTION REACTOR

    DOEpatents

    Hammond, R.P.; King, L.D.P.

    1960-03-22

    An homogeneous nuclear power reactor utilizing convection circulation of the liquid fuel is proposed. The reactor has an internal heat exchanger looated in the same pressure vessel as the critical assembly, thereby eliminating necessity for handling the hot liquid fuel outside the reactor pressure vessel during normal operation. The liquid fuel used in this reactor eliminates the necessity for extensive radiolytic gas rocombination apparatus, and the reactor is resiliently pressurized and, without any movable mechanical apparatus, automatically regulates itself to the condition of criticality during moderate variations in temperature snd pressure and shuts itself down as the pressure exceeds a predetermined safe operating value.

  11. Three Mile Island Unit-2 core status summary: a basis for tool development for reactor disassembly and defueling

    SciTech Connect

    Croucher, D.W.

    1981-05-01

    The accident at Three Mile Island Unit-2 (TMI-2) on March 28, 1979 caused extensive damage to the core. A variety of analyses were performed using three general approaches to determine the extent of core damage. First, thermal-hydraulic events were reconstructed using available data, thermal-hydraulic principles, and computer analyses. Second, determinations of the hydrogen generated yielded estimates of the amount of zircaloy oxidized and embrittled. Third, the type and quantity of fission products released during the accident were used to estimate the location of core damage and the fuel temperatures which were achieved. Uncertainties exist in each type of determination due to the equivocal nature of the data. This paper reviews and summarizes the core damage assessments which have been made, identifies the minimum and maximum bounds of damage, and establishes a reference description for the current status of the core.

  12. Supramolecular disassembly of facially amphiphilic dendrimer assemblies in response to physical, chemical, and biological stimuli.

    PubMed

    Raghupathi, Krishna R; Guo, Jing; Munkhbat, Oyuntuya; Rangadurai, Poornima; Thayumanavan, S

    2014-07-15

    CONSPECTUS: Supramolecular assemblies formed from spontaneous self-assembly of amphiphilic macromolecules are explored as biomimetic architectures and for applications in areas such as sensing, drug delivery, and diagnostics. Macromolecular assemblies are usually preferred, compared with their simpler small molecule counterparts, due to their low critical aggregate concentrations (CAC) and high thermodynamic stability. This Account focuses on the structural and functional aspects of assemblies formed from dendrimers, specifically facially amphiphilic dendrons that form micelle or inverse micelle type supramolecular assemblies depending on the nature of the solvent medium. The micelle type assemblies formed from facially amphiphilic dendrons sequester hydrophobic guest molecules in their interiors. The stability of these assemblies is dependent on the relative compatibility of the hydrophilic and hydrophobic functionalities with water, often referred to as hydrophilic-lipophilic balance (HLB). Disruption of the HLB, using an external stimulus, could lead to disassembly of the aggregates, which can then be utilized to cause an actuation event, such as guest molecule release. Studying these possibilities has led to (i) a robust and general strategy for stimulus-induced disassembly and molecular release and (ii) the introduction of a new approach to protein-responsive supramolecular disassembly. The latter strategy provides a particularly novel avenue for impacting biomedical applications. Most of the stimuli-sensitive supramolecular assemblies have been designed to be responsive to factors such pH, temperature, and redox conditions. The reason for this interest stems from the fact that certain disease microenvironments have aberrations in these factors. However, these variations are the secondary imbalances in biology. Imbalances in protein activity are the primary reasons for most, if not all, human pathology. There have been no robust strategies in stimulus

  13. Supramolecular disassembly of facially amphiphilic dendrimer assemblies in response to physical, chemical, and biological stimuli.

    PubMed

    Raghupathi, Krishna R; Guo, Jing; Munkhbat, Oyuntuya; Rangadurai, Poornima; Thayumanavan, S

    2014-07-15

    CONSPECTUS: Supramolecular assemblies formed from spontaneous self-assembly of amphiphilic macromolecules are explored as biomimetic architectures and for applications in areas such as sensing, drug delivery, and diagnostics. Macromolecular assemblies are usually preferred, compared with their simpler small molecule counterparts, due to their low critical aggregate concentrations (CAC) and high thermodynamic stability. This Account focuses on the structural and functional aspects of assemblies formed from dendrimers, specifically facially amphiphilic dendrons that form micelle or inverse micelle type supramolecular assemblies depending on the nature of the solvent medium. The micelle type assemblies formed from facially amphiphilic dendrons sequester hydrophobic guest molecules in their interiors. The stability of these assemblies is dependent on the relative compatibility of the hydrophilic and hydrophobic functionalities with water, often referred to as hydrophilic-lipophilic balance (HLB). Disruption of the HLB, using an external stimulus, could lead to disassembly of the aggregates, which can then be utilized to cause an actuation event, such as guest molecule release. Studying these possibilities has led to (i) a robust and general strategy for stimulus-induced disassembly and molecular release and (ii) the introduction of a new approach to protein-responsive supramolecular disassembly. The latter strategy provides a particularly novel avenue for impacting biomedical applications. Most of the stimuli-sensitive supramolecular assemblies have been designed to be responsive to factors such pH, temperature, and redox conditions. The reason for this interest stems from the fact that certain disease microenvironments have aberrations in these factors. However, these variations are the secondary imbalances in biology. Imbalances in protein activity are the primary reasons for most, if not all, human pathology. There have been no robust strategies in stimulus

  14. A Rab1 mutant affecting guanine nucleotide exchange promotes disassembly of the Golgi apparatus

    PubMed Central

    1994-01-01

    The Golgi apparatus is a dynamic organelle whose structure is sensitive to vesicular traffic and to cell cycle control. We have examined the potential role for rab1a, a GTPase previously associated with ER to Golgi and intra-Golgi transport, in the formation and maintenance of Golgi structure. Bacterially expressed, recombinant rab1a protein was microinjected into rat embryonic fibroblasts, followed by analysis of Golgi morphology by fluorescence and electron microscopy. Three recombinant proteins were tested: wild-type rab, mutant rab1a(S25N), a constitutively GDP-bound form (Nuoffer, C., H. W. Davidson, J. Matteson, J. Meinkoth, and W. E. Balch, 1994. J. Cell Biol. 125: 225- 237), and mutant rab1a(N124I) defective in guanine nucleotide binding. Microinjection of wild-type rab1a protein or a variety of negative controls (injection buffer alone or activated ras protein) did not affect the appearance of the Golgi, as visualized by immunofluorescence of alpha-mannosidase II (Man II), used as a Golgi marker. In contrast, microinjection of the mutant forms promoted the disassembly of the Golgi stacks into dispersed vesicular structures visualized by immunofluorescence. When S25N-injected cells were analyzed by EM after immunoperoxidase labeling, Man II was found in isolated ministacks and large vesicular elements that were often surrounded by numerous smaller unlabeled vesicles resembling carrier vesicles. Golgi disassembly caused by rab1a mutants differs from BFA-induced disruption, since beta- COP remains membrane associated, and Man II does not redistribute to the ER. BFA can still cause these residual Golgi elements to fuse and disperse, albeit at a slower rate. Moreover, BFA recovery is incomplete in the presence of rab1 mutants or GTP gamma S. We conclude that GTP exchange and hydrolysis by GTPases, specifically rab1a, are required to form and maintain normal Golgi stacks. The similarity of Golgi disassembly seen with rab1a mutants to that occurring during

  15. PBBs, PBDEs, and PCBs in foods collected from e-waste disassembly sites and daily intake by local residents.

    PubMed

    Zhao, Gaofeng; Zhou, Huaidong; Wang, Donghong; Zha, Jinmiao; Xu, Yiping; Rao, Kaifeng; Ma, Mei; Huang, Shengbiao; Wang, Zijian

    2009-04-01

    This study was conducted to estimate the total daily dietary intakes (TDIs) of three PHAHs subfamilies for residents living around the large e-waste disassembly sites in the Zhejiang province of China. A total of 191 food samples (including seven food groups and drinking water) were obtained from the disassembly sites and the control site in April, 2007. The levels of three PHAHs were measured by GC-MS. The estimated TDIs of PBBs (385.5 ng day(-1)), PBDEs (195.9 ng day(-1)), and PCBs (12,372.9 ng day(-1)) in the disassembly sites were approximately 2-3 times higher than those in the control site, which suggested that these PHAHs from e-waste might have entered into the food chain. Rice appeared to be the food group showing the highest contribution to the individual dietary intakes of these PHAHs. The estimated TDIs were also compared with those results reported recently in the literature and their respective reference doses by WHO (or Health Canada). By and large, although the estimated TDIs for the PHAHs under study were lower than their respective reference doses, they were obviously higher than those observed in other places listed in the literature, thus suggesting that residents living around the disassembly sites have been exposed to higher levels of PHAHs than those places, and might thus be at greater health risk. PMID:19200583

  16. 29 CFR 1926.1407 - Power line safety (up to 350 kV)-assembly and disassembly.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 8 2014-07-01 2014-07-01 false Power line safety (up to 350 kV)-assembly and disassembly. 1926.1407 Section 1926.1407 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND... Cranes and Derricks in Construction § 1926.1407 Power line safety (up to 350 kV)—assembly and...

  17. 29 CFR 1926.1407 - Power line safety (up to 350 kV)-assembly and disassembly.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 8 2013-07-01 2013-07-01 false Power line safety (up to 350 kV)-assembly and disassembly. 1926.1407 Section 1926.1407 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND... Cranes and Derricks in Construction § 1926.1407 Power line safety (up to 350 kV)—assembly and...

  18. 29 CFR 1926.1407 - Power line safety (up to 350 kV)-assembly and disassembly.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 8 2012-07-01 2012-07-01 false Power line safety (up to 350 kV)-assembly and disassembly. 1926.1407 Section 1926.1407 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND... Cranes and Derricks in Construction § 1926.1407 Power line safety (up to 350 kV)—assembly and...

  19. Neuroprotective Effects Against POCD by Photobiomodulation: Evidence from Assembly/Disassembly of the Cytoskeleton

    PubMed Central

    Liebert, Ann D.; Chow, Roberta T.; Bicknell, Brian T.; Varigos, Euahna

    2016-01-01

    Postoperative cognitive dysfunction (POCD) is a decline in memory following anaesthesia and surgery in elderly patients. While often reversible, it consumes medical resources, compromises patient well-being, and possibly accelerates progression into Alzheimer’s disease. Anesthetics have been implicated in POCD, as has neuroinflammation, as indicated by cytokine inflammatory markers. Photobiomodulation (PBM) is an effective treatment for a number of conditions, including inflammation. PBM also has a direct effect on microtubule disassembly in neurons with the formation of small, reversible varicosities, which cause neural blockade and alleviation of pain symptoms. This mimics endogenously formed varicosities that are neuroprotective against damage, toxins, and the formation of larger, destructive varicosities and focal swellings. It is proposed that PBM may be effective as a preconditioning treatment against POCD; similar to the PBM treatment, protective and abscopal effects that have been demonstrated in experimental models of macular degeneration, neurological, and cardiac conditions. PMID:26848276

  20. Disassembly time of deuterium-cluster-fusion plasma irradiated by an intense laser pulse

    DOE PAGES

    Bang, W.

    2015-07-02

    Energetic deuterium ions from large deuterium clusters (>10 nm diameter) irradiated by an intense laser pulse (>10¹⁶ W/cm²) produce DD fusion neutrons for a time interval determined by the geometry of the resulting fusion plasma. We show an analytical solution of this time interval, the plasma disassembly time, for deuterium plasmas that are cylindrical in shape. Assuming a symmetrically expanding deuterium plasma, we calculate the expected fusion neutron yield and compare with an independent calculation of the yield using the concept of a finite confinement time at a fixed plasma density. The calculated neutron yields agree quantitatively with the availablemore » experimental data. Our one-dimensional simulations indicate that one could expect a tenfold increase in total neutron yield by magnetically confining a 10 - keV deuterium fusion plasma for 10 ns.« less

  1. Disassembly time of deuterium-cluster-fusion plasma irradiated by an intense laser pulse

    SciTech Connect

    Bang, W.

    2015-07-02

    Energetic deuterium ions from large deuterium clusters (>10 nm diameter) irradiated by an intense laser pulse (>10¹⁶ W/cm²) produce DD fusion neutrons for a time interval determined by the geometry of the resulting fusion plasma. We show an analytical solution of this time interval, the plasma disassembly time, for deuterium plasmas that are cylindrical in shape. Assuming a symmetrically expanding deuterium plasma, we calculate the expected fusion neutron yield and compare with an independent calculation of the yield using the concept of a finite confinement time at a fixed plasma density. The calculated neutron yields agree quantitatively with the available experimental data. Our one-dimensional simulations indicate that one could expect a tenfold increase in total neutron yield by magnetically confining a 10 - keV deuterium fusion plasma for 10 ns.

  2. Ultratrace Detection of Toxic Chemicals: Triggered Disassembly of Supramolecular Nanotube Wrappers.

    PubMed

    Ishihara, Shinsuke; Azzarelli, Joseph M; Krikorian, Markrete; Swager, Timothy M

    2016-07-01

    Chemical sensors offer opportunities for improving personal security, safety, and health. To enable broad adoption of chemical sensors requires performance and cost advantages that are best realized from innovations in the design of the sensing (transduction) materials. Ideal materials are sensitive and selective to specific chemicals or chemical classes and provide a signal that is readily interfaced with portable electronic devices. Herein we report that wrapping single walled carbon nanotubes with metallo-supramolecular polymers creates sensory devices with a dosimetric (time- and concentration-integrated) increase in electrical conductivity that is triggered by electrophilic chemical substances such as diethylchlorophosphate, a nerve agent simulant. The mechanism of this process involves the disassembly of the supramolecular polymer, and we demonstrate its utility in a wireless inductively powered sensing system based on near-field communication technology. Specifically, the dosimeters can be powered and read wirelessly with conventional smartphones to create sensors with ultratrace detection limits. PMID:27336905

  3. Microtubule-depolymerizing kinesins in the regulation of assembly, disassembly, and length of cilia and flagella.

    PubMed

    Hu, Zhangfeng; Liang, Yinwen; Meng, Dan; Wang, Liang; Pan, Junmin

    2015-01-01

    Defects in ciliary assembly, maintenance, and signaling are associated with various human diseases and developmental disorders, termed ciliopathies. Eukaryotic flagella and cilia (interchangeable terms) are microtubule-based organelles. Thus, microtubule dynamics and microtubule-dependent transport are predicted to affect the structural integrity and functionality of cilia profoundly. Kinesin-2 is well known for its role in intraflagellar transport to transport ciliary precursors and signaling molecules. Recently, microtubule-depolymerizing kinesins found in kinesin-8, -13, and -14A families have emerged as regulators of cilia. We first discuss ciliary kinesins identified in the flagellar or ciliary proteome, and then focus on the function and regulation of microtubule-depolymerizing kinesins. Lastly, we review the recent advances of microtubule-depolymerizing kinesins in controlling ciliary assembly, disassembly, and length.

  4. Temporal sequence of cell wall disassembly events in developing fruits. 1. Analysis of raspberry (Rubus idaeus).

    PubMed

    Vicente, Ariel R; Ortugno, Claudia; Powell, Ann L T; Greve, L Carl; Labavitch, John M

    2007-05-16

    Raspberry fruits were harvested at five developmental stages, from green to red ripe, and the changes in cell wall composition, pectin and hemicellulose solubilization, and depolymerization were analyzed. Fruit softening at intermediate stages of ripening was associated with increased pectin solubilization, which occurred without depolymerization. Arabinose was found to be the most abundant noncellulosic neutral sugar in the cell wall and showed dramatic solubilization late in ripening. No changes in pectin molecular size were observed even at the 100% red stage. Subsequently, as fruit became fully ripe a dramatic depolymerization occurred. In contrast, the hemicellulosic fractions showed no significant changes in content or polymer size during ripening. The paper discusses the sequence of events leading to cell wall disassembly in raspberry fruit.

  5. Ultratrace Detection of Toxic Chemicals: Triggered Disassembly of Supramolecular Nanotube Wrappers.

    PubMed

    Ishihara, Shinsuke; Azzarelli, Joseph M; Krikorian, Markrete; Swager, Timothy M

    2016-07-01

    Chemical sensors offer opportunities for improving personal security, safety, and health. To enable broad adoption of chemical sensors requires performance and cost advantages that are best realized from innovations in the design of the sensing (transduction) materials. Ideal materials are sensitive and selective to specific chemicals or chemical classes and provide a signal that is readily interfaced with portable electronic devices. Herein we report that wrapping single walled carbon nanotubes with metallo-supramolecular polymers creates sensory devices with a dosimetric (time- and concentration-integrated) increase in electrical conductivity that is triggered by electrophilic chemical substances such as diethylchlorophosphate, a nerve agent simulant. The mechanism of this process involves the disassembly of the supramolecular polymer, and we demonstrate its utility in a wireless inductively powered sensing system based on near-field communication technology. Specifically, the dosimeters can be powered and read wirelessly with conventional smartphones to create sensors with ultratrace detection limits.

  6. NEUTRONIC REACTOR

    DOEpatents

    Fraas, A.P.; Mills, C.B.

    1961-11-21

    A neutronic reactor in which neutron moderation is achieved primarily in its reflector is described. The reactor structure consists of a cylindrical central "island" of moderator and a spherical moderating reflector spaced therefrom, thereby providing an annular space. An essentially unmoderated liquid fuel is continuously passed through the annular space and undergoes fission while contained therein. The reactor, because of its small size, is particularly adapted for propulsion uses, including the propulsion of aircraft. (AEC)

  7. In Vitro Disassembly of Influenza A Virus Capsids by Gradient Centrifugation.

    PubMed

    Stauffer, Sarah; Nebioglu, Firat; Helenius, Ari

    2016-01-01

    Acid-triggered molecular processes closely control cell entry of many viruses that enter through the endocytic system. In the case of influenza A virus (IAV), virus fusion with the endosomal membrane as well as the subsequent disassembly of the viral capsid, called uncoating, is governed by the ionic conditions inside endocytic vesicles. The early steps in the virus life cycle are hard to study because endosomes cannot be directly accessed experimentally, creating the need for an in vitro approach. Here, we describe a method based on velocity gradient centrifugation of purified virions through a two-layer glycerol gradient, which enables analysis of the IAV core and its stability. The gradient contains a non-ionic detergent (NP-40) in its lower layer to remove the viral membrane by solubilization as the virus sediments toward the bottom. At neutral pH, viral cores are pelleted as stable structures. The major core components, matrix protein (M1) and the viral ribonucleoproteins (vRNPs), can be clearly identified in the pellet fraction by SDS-PAGE. Decreasing the pH to 6.0 or lower in the bottom layer selectively removes M1 from the pellet followed by release of vRNPs at more acidic conditions. Viral protein bands on Coomassie-stained gels can be subjected to densitometric quantification to monitor intermediate states of IAV disassembly. Besides pH, other factors that influence viral core stability can be assessed, such as salt concentration and putative viral uncoating factors, simply by modifying the detergent-containing glycerol layer accordingly. Taken together, the presented technique allows highly reproducible and quantitative analysis of viral uncoating in vitro. It can be applied to other enveloped viruses that undergo complex uncoating processes. PMID:27077390

  8. Dynamic Assembly and Disassembly of Functional β-Endorphin Amyloid Fibrils.

    PubMed

    Nespovitaya, Nadezhda; Gath, Julia; Barylyuk, Konstantin; Seuring, Carolin; Meier, Beat H; Riek, Roland

    2016-01-27

    Neuropeptides and peptide hormones are stored in the amyloid state in dense-core vesicles of secretory cells. Secreted peptides experience dramatic environmental changes in the secretory pathway, from the endoplasmic reticulum via secretory vesicles to release into the interstitial space or blood. The molecular mechanisms of amyloid formation during packing of peptides into secretory vesicles and amyloid dissociation upon release remain unknown. In the present work, we applied thioflavin T binding, tyrosine intrinsic fluorescence, fluorescence anisotropy measurements, and solid-state NMR spectroscopy to study the influence of physiologically relevant environmental factors on the assembly and disassembly of β-endorphin amyloids in vitro. We found that β-endorphin aggregation and dissociation occur in vitro on relatively short time scales, comparable to times required for protein synthesis and the rise of peptide concentration in the blood, respectively. Both assembly and disassembly of amyloids strongly depend on the presence of salts of polyprotic acids (such as phosphate and sulfate), while salts of monoprotic acids are not effective in promoting aggregation. A steep increase of the peptide aggregation rate constant upon increase of solution pH from 5.0 to 6.0 toward the isoelectric point as well as more rapid dissociation of β-endorphin amyloid fibrils at lower pH indicate the contribution of ion-specific effects into dynamics of the amyloid. Several low-molecular-weight carbohydrates exhibit the same effect on β-endorphin aggregation as phosphate. Moreover, no structural difference was detected between the phosphate- and carbohydrate-induced fibrils by solid-state NMR. In contrast, β-endorphin amyloid fibrils obtained in the presence of heparin demonstrated distinctly different behavior, which we attributed to a dramatic change of the amyloid structure. Overall, the presented results support the hypothesis that packing of peptide hormones/neuropeptides in

  9. Distinctive PSA-NCAM and NCAM Hallmarks in Glutamate-Induced Dendritic Atrophy and Synaptic Disassembly

    PubMed Central

    Podestá, María Fernanda; Yam, Patricia; Codagnone, Martín Gabriel; Uccelli, Nonthué Alejandra; Colman, David; Reinés, Analía

    2014-01-01

    Dendritic and synapse remodeling are forms of structural plasticity that play a critical role in normal hippocampal function. Neural cell adhesion molecule (NCAM) and its polysialylated form (PSA-NCAM) participate in neurite outgrowth and synapse formation and plasticity. However, it remains unclear whether they contribute to dendritic retraction and synaptic disassembly. Cultured hippocampal neurons exposed to glutamate (5 µM) showed a reduced MAP-2 (+) area in the absence of neuronal death 24 h after the insult. Concomitantly, synapse loss, revealed by decreased synaptophysin and post-synaptic density-95 cluster number and area, together with changes in NCAM and PSA-NCAM levels were found. Dendritic atrophy and PSA-NCAM reduction proved NMDA-receptor dependent. Live-imaging experiments evidenced dendritic atrophy 4 h after the insult; this effect was preceded by smaller NCAM clusters (1 h) and decreased surface and total PSA-NCAM levels (3 h). Simultaneously, total NCAM cluster number and area remained unchanged. The subsequent synapse disassembly (6 h) was accompanied by reductions in total NCAM cluster number and area. A PSA mimetic peptide prevented both the dendritic atrophy and the subsequent synaptic changes (6 h) but had no effect on the earliest synaptic remodeling (3 h). Thus, NCAM-synaptic reorganization and PSA-NCAM level decrease precede glutamate-induced dendritic atrophy, whereas the NCAM level reduction is a delayed event related to synapse loss. Consequently, distinctive stages in PSA-NCAM/NCAM balance seem to accompany glutamate-induced dendritic atrophy and synapse loss. PMID:25279838

  10. Distinctive PSA-NCAM and NCAM hallmarks in glutamate-induced dendritic atrophy and synaptic disassembly.

    PubMed

    Podestá, María Fernanda; Yam, Patricia; Codagnone, Martín Gabriel; Uccelli, Nonthué Alejandra; Colman, David; Reinés, Analía

    2014-01-01

    Dendritic and synapse remodeling are forms of structural plasticity that play a critical role in normal hippocampal function. Neural cell adhesion molecule (NCAM) and its polysialylated form (PSA-NCAM) participate in neurite outgrowth and synapse formation and plasticity. However, it remains unclear whether they contribute to dendritic retraction and synaptic disassembly. Cultured hippocampal neurons exposed to glutamate (5 µM) showed a reduced MAP-2 (+) area in the absence of neuronal death 24 h after the insult. Concomitantly, synapse loss, revealed by decreased synaptophysin and post-synaptic density-95 cluster number and area, together with changes in NCAM and PSA-NCAM levels were found. Dendritic atrophy and PSA-NCAM reduction proved NMDA-receptor dependent. Live-imaging experiments evidenced dendritic atrophy 4 h after the insult; this effect was preceded by smaller NCAM clusters (1 h) and decreased surface and total PSA-NCAM levels (3 h). Simultaneously, total NCAM cluster number and area remained unchanged. The subsequent synapse disassembly (6 h) was accompanied by reductions in total NCAM cluster number and area. A PSA mimetic peptide prevented both the dendritic atrophy and the subsequent synaptic changes (6 h) but had no effect on the earliest synaptic remodeling (3 h). Thus, NCAM-synaptic reorganization and PSA-NCAM level decrease precede glutamate-induced dendritic atrophy, whereas the NCAM level reduction is a delayed event related to synapse loss. Consequently, distinctive stages in PSA-NCAM/NCAM balance seem to accompany glutamate-induced dendritic atrophy and synapse loss. PMID:25279838

  11. RADIOLOGICAL SURVEY STATION DEVELOPMENT FOR THE PIT DISASSEMBLY AND CONVERSION PROJECT

    SciTech Connect

    Dalmaso, M.; Gibbs, K.; Gregory, D.

    2011-05-22

    The Savannah River National Laboratory (SRNL) has developed prototype equipment to demonstrate remote surveying of Inner and Outer DOE Standard 3013 containers for fixed and transferable contamination in accordance with DOE Standard 3013 and 10 CFR 835 Appendix B. When fully developed the equipment will be part of a larger suite of equipment used to package material in accordance with DOE Standard 3013 at the Pit Disassembly and Conversion Project slated for installation at the Savannah River Site. The prototype system consists of a small six-axis industrial robot with an end effector consisting of a force sensor, vacuum gripper and a three fingered pneumatic gripper. The work cell also contains two alpha survey instruments, swipes, swipe dispenser, and other ancillary equipment. An external controller interfaces with the robot controller, survey instruments and other ancillary equipment to control the overall process. SRNL is developing automated equipment for the Pit Disassembly and Conversion (PDC) Project that is slated for the Savannah River Site (SRS). The equipment being developed is automated packaging equipment for packaging plutonium bearing materials in accordance with DOE-STD-3013-2004. The subject of this paper is the development of a prototype Radiological Survey Station (RSS). Other automated equipment being developed for the PDC includes the Bagless transfer System, Outer Can Welder, Gantry Robot System (GRS) and Leak Test Station. The purpose of the RSS is to perform a frisk and swipe of the DOE Standard 3013 Container (either inner can or outer can) to check for fixed and transferable contamination. This is required to verify that the contamination levels are within the limits specified in DOE-STD-3013-2004 and 10 CFR 835, Appendix D. The surface contamination limit for the 3013 Outer Can (OC) is 500 dpm/100 cm2 (total) and 20 dpm/100 cm2 (transferable). This paper will concentrate on the RSS developments for the 3013 OC but the system for the

  12. Permo-Triassic anatexis, continental rifting and the disassembly of western Pangaea

    NASA Astrophysics Data System (ADS)

    Cochrane, Ryan; Spikings, Richard; Gerdes, Axel; Ulianov, Alexey; Mora, Andres; Villagómez, Diego; Putlitz, Benita; Chiaradia, Massimo

    2014-03-01

    Crustal anatectites are frequently observed along ocean-continent active margins, although their origins are disputed with interpretations varying between rift-related and collisional. We report geochemical, isotopic and geochronological data that define an ~ 1500 km long belt of S-type meta-granites along the Andes of Colombia and Ecuador, which formed during 275-223 Ma. These are accompanied by amphibolitized tholeiitic basaltic dykes that yield concordant zircon U-Pb dates ranging between 240 and 223 Ma. A model is presented which places these rocks within a compressive Permian arc setting that existed during the amalgamation of westernmost Pangaea. Anatexis and mafic intrusion during 240-223 Ma are interpreted to have occurred during continental rifting, which culminated in the formation of oceanic crust and initiated the break-up of western Pangaea. Compression during 275-240 Ma generated small volumes of crustal melting. Rifting during 240-225 Ma was characterized by basaltic underplating, the intrusion of tholeiitic basalts and a peak in crustal melting. Tholeiitic intrusions during 225-216 Ma isotopically resemble depleted mantle and yield no evidence for contamination by continental crust, and we assign this period to the onset of continental drift. Dissected ophiolitic sequences in northern Colombia yield zircon U-Pb dates of 216 Ma. The Permo-Triassic margin of Ecuador and Colombia exhibits close temporal, faunal and geochemical similarities with various crustal blocks that form the basement to parts of Mexico, and thus these may represent the relict conjugate margin to NW Gondwana. The magmatic record of the early disassembly of Pangaea spans ~ 20 Ma (240-216 Ma), and the duration of rifting and rift-drift transition is similar to that documented in Cretaceous-Tertiary rift settings such as the West Iberia-Newfoundland conjugate margins, and the Taupo-Lau-Havre System, where rifting and continental disassembly also occurred over periods lasting ~ 20 Ma.

  13. REACTOR COOLING

    DOEpatents

    Quackenbush, C.F.

    1959-09-29

    A nuclear reactor with provisions for selectively cooling the fuel elements is described. The reactor has a plurality of tubes extending throughout. Cylindrical fuel elements are disposed within the tubes and the coolant flows through the tubes and around the fuel elements. The fuel elements within the central portion of the reactor are provided with roughened surfaces of material. The fuel elements in the end portions of the tubes within the reactor are provlded with low conduction jackets and the fuel elements in the region between the central portion and the end portions are provided with smooth surfaces of high heat conduction material.

  14. NEUTRONIC REACTOR

    DOEpatents

    Wigner, E.P.

    1958-04-22

    A nuclear reactor for isotope production is described. This reactor is designed to provide a maximum thermal neutron flux in a region adjacent to the periphery of the reactor rather than in the center of the reactor. The core of the reactor is generally centrally located with respect tn a surrounding first reflector, constructed of beryllium. The beryllium reflector is surrounded by a second reflector, constructed of graphite, which, in tune, is surrounded by a conventional thermal shield. Water is circulated through the core and the reflector and functions both as a moderator and a coolant. In order to produce a greatsr maximum thermal neutron flux adjacent to the periphery of the reactor rather than in the core, the reactor is designed so tbat the ratio of neutron scattering cross section to neutron absorption cross section averaged over all of the materials in the reflector is approximately twice the ratio of neutron scattering cross section to neutron absorption cross section averaged over all of the material of the core of the reactor.

  15. NEUTRONIC REACTOR

    DOEpatents

    Metcalf, H.E.; Johnson, H.W.

    1961-04-01

    BS>A nuclear reactor incorporating fuel rods passing through a moderator and including tubes of a material of higher Thermal conductivity than the fuel in contact with the fuel is described. The tubes extend beyond the active portion of the reactor into contant with a fiuld coolant.

  16. Reactor building

    SciTech Connect

    Hista, J. C.

    1984-09-18

    Reactor building comprising a vessel shaft anchored in a slab which is peripherally locked. This reactor building comprises a confinement enclosure within which are positioned internal structures constituted by an internal structure floor, a vessel shaft, a slab being positioned between the general floor and the internal structure floor, the vesse

  17. Advanced Test Reactor In-Canal Ultrasonic Scanner: Experiment Design and Initial Results on Irradiated Plates

    SciTech Connect

    D. M. Wachs; J. M. Wight; D. T. Clark; J. M. Williams; S. C. Taylor; D. J. Utterbeck; G. L. Hawkes; G. S. Chang; R. G. Ambrosek; N. C. Craft

    2008-09-01

    An irradiation test device has been developed to support testing of prototypic scale plate type fuels in the Advanced Test Reactor. The experiment hardware and operating conditions were optimized to provide the irradiation conditions necessary to conduct performance and qualification tests on research reactor type fuels for the RERTR program. The device was designed to allow disassembly and reassembly in the ATR spent fuel canal so that interim inspections could be performed on the fuel plates. An ultrasonic scanner was developed to perform dimensional and transmission inspections during these interim investigations. Example results from the AFIP-2 experiment are presented.

  18. The Prolyl Isomerase Pin1 Promotes the Herpesvirus-Induced Phosphorylation-Dependent Disassembly of the Nuclear Lamina Required for Nucleocytoplasmic Egress

    PubMed Central

    Milbradt, Jens; Hutterer, Corina; Bahsi, Hanife; Wagner, Sabrina; Sonntag, Eric; Kaufer, Benedikt B.; Mori, Yasuko; Sticht, Heinrich; Fossen, Torgils; Marschall, Manfred

    2016-01-01

    The nuclear lamina lines the inner nuclear membrane providing a structural framework for the nucleus. Cellular processes, such as nuclear envelope breakdown during mitosis or nuclear export of large ribonucleoprotein complexes, are functionally linked to the disassembly of the nuclear lamina. In general, lamina disassembly is mediated by phosphorylation, but the precise molecular mechanism is still not completely understood. Recently, we suggested a novel mechanism for lamina disassembly during the nuclear egress of herpesviral capsids which involves the cellular isomerase Pin1. In this study, we focused on mechanistic details of herpesviral nuclear replication to demonstrate the general importance of Pin1 for lamina disassembly. In particular, Ser22-specific lamin phosphorylation consistently generates a Pin1-binding motif in cells infected with human and animal alpha-, beta-, and gammaherpesviruses. Using nuclear magnetic resonance spectroscopy, we showed that binding of Pin1 to a synthetic lamin peptide induces its cis/trans isomerization in vitro. A detailed bioinformatic evaluation strongly suggests that this structural conversion induces large-scale secondary structural changes in the lamin N-terminus. Thus, we concluded that a Pin1-induced conformational change of lamins may represent the molecular trigger responsible for lamina disassembly. Consistent with this concept, pharmacological inhibition of Pin1 activity blocked lamina disassembly in herpesvirus-infected fibroblasts and consequently impaired virus replication. In addition, a phospho-mimetic Ser22Glu lamin mutant was still able to form a regular lamina structure and overexpression of a Ser22-phosphorylating kinase did not induce lamina disassembly in Pin1 knockout cells. Intriguingly, this was observed in absence of herpesvirus infection proposing a broader importance of Pin1 for lamina constitution. Thus, our results suggest a functional model of similar events leading to disassembly of the nuclear

  19. The Prolyl Isomerase Pin1 Promotes the Herpesvirus-Induced Phosphorylation-Dependent Disassembly of the Nuclear Lamina Required for Nucleocytoplasmic Egress.

    PubMed

    Milbradt, Jens; Hutterer, Corina; Bahsi, Hanife; Wagner, Sabrina; Sonntag, Eric; Horn, Anselm H C; Kaufer, Benedikt B; Mori, Yasuko; Sticht, Heinrich; Fossen, Torgils; Marschall, Manfred

    2016-08-01

    The nuclear lamina lines the inner nuclear membrane providing a structural framework for the nucleus. Cellular processes, such as nuclear envelope breakdown during mitosis or nuclear export of large ribonucleoprotein complexes, are functionally linked to the disassembly of the nuclear lamina. In general, lamina disassembly is mediated by phosphorylation, but the precise molecular mechanism is still not completely understood. Recently, we suggested a novel mechanism for lamina disassembly during the nuclear egress of herpesviral capsids which involves the cellular isomerase Pin1. In this study, we focused on mechanistic details of herpesviral nuclear replication to demonstrate the general importance of Pin1 for lamina disassembly. In particular, Ser22-specific lamin phosphorylation consistently generates a Pin1-binding motif in cells infected with human and animal alpha-, beta-, and gammaherpesviruses. Using nuclear magnetic resonance spectroscopy, we showed that binding of Pin1 to a synthetic lamin peptide induces its cis/trans isomerization in vitro. A detailed bioinformatic evaluation strongly suggests that this structural conversion induces large-scale secondary structural changes in the lamin N-terminus. Thus, we concluded that a Pin1-induced conformational change of lamins may represent the molecular trigger responsible for lamina disassembly. Consistent with this concept, pharmacological inhibition of Pin1 activity blocked lamina disassembly in herpesvirus-infected fibroblasts and consequently impaired virus replication. In addition, a phospho-mimetic Ser22Glu lamin mutant was still able to form a regular lamina structure and overexpression of a Ser22-phosphorylating kinase did not induce lamina disassembly in Pin1 knockout cells. Intriguingly, this was observed in absence of herpesvirus infection proposing a broader importance of Pin1 for lamina constitution. Thus, our results suggest a functional model of similar events leading to disassembly of the nuclear

  20. The Prolyl Isomerase Pin1 Promotes the Herpesvirus-Induced Phosphorylation-Dependent Disassembly of the Nuclear Lamina Required for Nucleocytoplasmic Egress.

    PubMed

    Milbradt, Jens; Hutterer, Corina; Bahsi, Hanife; Wagner, Sabrina; Sonntag, Eric; Horn, Anselm H C; Kaufer, Benedikt B; Mori, Yasuko; Sticht, Heinrich; Fossen, Torgils; Marschall, Manfred

    2016-08-01

    The nuclear lamina lines the inner nuclear membrane providing a structural framework for the nucleus. Cellular processes, such as nuclear envelope breakdown during mitosis or nuclear export of large ribonucleoprotein complexes, are functionally linked to the disassembly of the nuclear lamina. In general, lamina disassembly is mediated by phosphorylation, but the precise molecular mechanism is still not completely understood. Recently, we suggested a novel mechanism for lamina disassembly during the nuclear egress of herpesviral capsids which involves the cellular isomerase Pin1. In this study, we focused on mechanistic details of herpesviral nuclear replication to demonstrate the general importance of Pin1 for lamina disassembly. In particular, Ser22-specific lamin phosphorylation consistently generates a Pin1-binding motif in cells infected with human and animal alpha-, beta-, and gammaherpesviruses. Using nuclear magnetic resonance spectroscopy, we showed that binding of Pin1 to a synthetic lamin peptide induces its cis/trans isomerization in vitro. A detailed bioinformatic evaluation strongly suggests that this structural conversion induces large-scale secondary structural changes in the lamin N-terminus. Thus, we concluded that a Pin1-induced conformational change of lamins may represent the molecular trigger responsible for lamina disassembly. Consistent with this concept, pharmacological inhibition of Pin1 activity blocked lamina disassembly in herpesvirus-infected fibroblasts and consequently impaired virus replication. In addition, a phospho-mimetic Ser22Glu lamin mutant was still able to form a regular lamina structure and overexpression of a Ser22-phosphorylating kinase did not induce lamina disassembly in Pin1 knockout cells. Intriguingly, this was observed in absence of herpesvirus infection proposing a broader importance of Pin1 for lamina constitution. Thus, our results suggest a functional model of similar events leading to disassembly of the nuclear

  1. Compact Reactor

    SciTech Connect

    Williams, Pharis E.

    2007-01-30

    Weyl's Gauge Principle of 1929 has been used to establish Weyl's Quantum Principle (WQP) that requires that the Weyl scale factor should be unity. It has been shown that the WQP requires the following: quantum mechanics must be used to determine system states; the electrostatic potential must be non-singular and quantified; interactions between particles with different electric charges (i.e. electron and proton) do not obey Newton's Third Law at sub-nuclear separations, and nuclear particles may be much different than expected using the standard model. The above WQP requirements lead to a potential fusion reactor wherein deuterium nuclei are preferentially fused into helium nuclei. Because the deuterium nuclei are preferentially fused into helium nuclei at temperatures and energies lower than specified by the standard model there is no harmful radiation as a byproduct of this fusion process. Therefore, a reactor using this reaction does not need any shielding to contain such radiation. The energy released from each reaction and the absence of shielding makes the deuterium-plus-deuterium-to-helium (DDH) reactor very compact when compared to other reactors, both fission and fusion types. Moreover, the potential energy output per reactor weight and the absence of harmful radiation makes the DDH reactor an ideal candidate for space power. The logic is summarized by which the WQP requires the above conditions that make the prediction of DDH possible. The details of the DDH reaction will be presented along with the specifics of why the DDH reactor may be made to cause two deuterium nuclei to preferentially fuse to a helium nucleus. The presentation will also indicate the calculations needed to predict the reactor temperature as a function of fuel loading, reactor size, and desired output and will include the progress achieved to date.

  2. NUCLEAR REACTOR

    DOEpatents

    Moore, R.V.; Bowen, J.H.; Dent, K.H.

    1958-12-01

    A heterogeneous, natural uranium fueled, solid moderated, gas cooled reactor is described, in which the fuel elements are in the form of elongated rods and are dlsposed within vertical coolant channels ln the moderator symmetrically arranged as a regular lattice in groups. This reactor employs control rods which operate in vertical channels in the moderator so that each control rod is centered in one of the fuel element groups. The reactor is enclosed in a pressure vessel which ls provided with access holes at the top to facilitate loading and unloadlng of the fuel elements, control rods and control rod driving devices.

  3. Pioglitazone leads to an inactivation and disassembly of complex I of the mitochondrial respiratory chain

    PubMed Central

    2013-01-01

    Background Thiazolidinediones are antidiabetic agents that increase insulin sensitivity but reduce glucose oxidation, state 3 respiration, and activity of complex I of the mitochondrial respiratory chain (MRC). The mechanisms of the latter effects are unclear. The aim of this study was to determine the mechanisms by which pioglitazone (PGZ), a member of the thiazolidinedione class of antidiabetic agents, decreases the activity of the MRC. In isolated mitochondria from mouse liver, we measured the effects of PGZ treatment on MRC complex activities, fully-assembled complex I and its subunits, gene expression of complex I and III subunits, and [3H]PGZ binding to mitochondrial complexes. Results In vitro, PGZ decreased activity of complexes I and III of the MRC, but in vivo only complex I activity was decreased in mice treated for 12 weeks with 10 mg/kg/day of PGZ. In vitro treatment of isolated liver mitochondria with PGZ disassembled complex I, resulting in the formation of several subcomplexes. In mice treated with PGZ, fully assembled complex I was increased and two additional subcomplexes were found. Formation of supercomplexes CI+CIII2+CIVn and CI+CIII2 decreased in mouse liver mitochondria exposed to PGZ, while formation of these supercomplexes was increased in mice treated with PGZ. Two-dimensional analysis of complex I using blue native/sodium dodecyl sulfate polyacrylamide gel electrophoresis (BN/SDS-PAGE) showed that in vitro PGZ induced the formation of four subcomplexes of 600 (B), 400 (C), 350 (D), and 250 (E) kDa, respectively. Subcomplexes B and C had NADH:dehydrogenase activity, while subcomplexes C and D contained subunits of complex I membrane arm. Autoradiography and coimmunoprecipitation assays showed [3H]PGZ binding to subunits NDUFA9, NDUFB6, and NDUFA6. Treatment with PGZ increased mitochondrial gene transcription in mice liver and HepG2 cells. In these cells, PGZ decreased intracellular ATP content and enhanced gene expression of specific

  4. NEUTRONIC REACTOR

    DOEpatents

    Fermi, E.

    1960-04-01

    A nuclear reactor is described consisting of blocks of graphite arranged in layers, natural uranium bodies disposed in holes in alternate layers of graphite blocks, and coolant tubes disposed in the layers of graphite blocks which do not contain uranium.

  5. NEUTRONIC REACTOR

    DOEpatents

    Anderson, H.L.

    1960-09-20

    A nuclear reactor is described comprising fissionable material dispersed in graphite blocks, helium filling the voids of the blocks and the spaces therebetween, and means other than the helium in thermal conductive contact with the graphite for removing heat.

  6. Chemical Reactors.

    ERIC Educational Resources Information Center

    Kenney, C. N.

    1980-01-01

    Describes a course, including content, reading list, and presentation on chemical reactors at Cambridge University, England. A brief comparison of chemical engineering education between the United States and England is also given. (JN)

  7. NEUTRONIC REACTOR

    DOEpatents

    Hurwitz, H. Jr.; Brooks, H.; Mannal, C.; Payne, J.H.; Luebke, E.A.

    1959-03-24

    A reactor of the heterogeneous, liquid cooled type is described. This reactor is comprised of a central region of a plurality of vertically disposed elongated tubes surrounded by a region of moderator material. The central region is comprised of a central core surrounded by a reflector region which is surrounded by a fast neutron absorber region, which in turn is surrounded by a slow neutron absorber region. Liquid sodium is used as the primary coolant and circulates through the core which contains the fuel elements. Control of the reactor is accomplished by varying the ability of the reflector region to reflect neutrons back into the core of the reactor. For this purpose the reflector is comprised of moderator and control elements having varying effects on reactivity, the control elements being arranged and actuated by groups to give regulation, shim, and safety control.

  8. NUCLEAR REACTOR

    DOEpatents

    Miller, H.I.; Smith, R.C.

    1958-01-21

    This patent relates to nuclear reactors of the type which use a liquid fuel, such as a solution of uranyl sulfate in ordinary water which acts as the moderator. The reactor is comprised of a spherical vessel having a diameter of about 12 inches substantially surrounded by a reflector of beryllium oxide. Conventionnl control rods and safety rods are operated in slots in the reflector outside the vessel to control the operation of the reactor. An additional means for increasing the safety factor of the reactor by raising the ratio of delayed neutrons to prompt neutrons, is provided and consists of a soluble sulfate salt of beryllium dissolved in the liquid fuel in the proper proportion to obtain the result desired.

  9. REACTOR SHIELD

    DOEpatents

    Wigner, E.P.; Ohlinger, L.E.; Young, G.J.; Weinberg, A.M.

    1959-02-17

    Radiation shield construction is described for a nuclear reactor. The shield is comprised of a plurality of steel plates arranged in parallel spaced relationship within a peripheral shell. Reactor coolant inlet tubes extend at right angles through the plates and baffles are arranged between the plates at right angles thereto and extend between the tubes to create a series of zigzag channels between the plates for the circulation of coolant fluid through the shield. The shield may be divided into two main sections; an inner section adjacent the reactor container and an outer section spaced therefrom. Coolant through the first section may be circulated at a faster rate than coolant circulated through the outer section since the area closest to the reactor container is at a higher temperature and is more radioactive. The two sections may have separate cooling systems to prevent the coolant in the outer section from mixing with the more contaminated coolant in the inner section.

  10. NUCLEAR REACTOR

    DOEpatents

    Sherman, J.; Sharbaugh, J.E.; Fauth, W.L. Jr.; Palladino, N.J.; DeHuff, P.G.

    1962-10-23

    A nuclear reactor incorporating seed and blanket assemblies is designed. Means are provided for obtaining samples of the coolant from the blanket assemblies and for varying the flow of coolant through the blanket assemblies. (AEC)

  11. NEUTRONIC REACTORS

    DOEpatents

    Vernon, H.C.

    1959-01-13

    A neutronic reactor of the heterogeneous, fluid cooled tvpe is described. The reactor is comprised of a pressure vessel containing the moderator and a plurality of vertically disposed channels extending in spaced relationship through the moderator. Fissionable fuel material is placed within the channels in spaced relationship thereto to permit circulation of the coolant fluid. Separate means are provided for cooling the moderator and for circulating a fluid coolant thru the channel elements to cool the fuel material.

  12. NUCLEAR REACTOR

    DOEpatents

    Anderson, C.R.

    1962-07-24

    A fluidized bed nuclear reactor and a method of operating such a reactor are described. In the design means are provided for flowing a liquid moderator upwardly through the center of a bed of pellets of a nentron-fissionable material at such a rate as to obtain particulate fluidization while constraining the lower pontion of the bed into a conical shape. A smooth circulation of particles rising in the center and falling at the outside of the bed is thereby established. (AEC)

  13. NUCLEAR REACTOR

    DOEpatents

    Breden, C.R.; Dietrich, J.R.

    1961-06-20

    A water-soluble non-volatile poison may be introduced into a reactor to nullify excess reactivity. The poison is removed by passing a side stream of the water containing the soluble poison to an evaporation chamber. The vapor phase is returned to the reactor to decrease the concentration of soluble poison and the liquid phase is returned to increase the concentration of soluble poison.

  14. Three αSNAP and 10 ATP Molecules Are Used in SNARE Complex Disassembly by N-ethylmaleimide-sensitive Factor (NSF)*

    PubMed Central

    Shah, Niket; Colbert, Karen N.; Enos, Michael D.; Herschlag, Daniel; Weis, William I.

    2015-01-01

    The fusion of intracellular membranes is driven by the formation of a highly stable four-helix bundle of SNARE proteins embedded in the vesicle and target membranes. N-Ethylmaleimide sensitive factor recycles SNAREs after fusion by binding to the SNARE complex through an adaptor protein, αSNAP, and using the energy of ATP hydrolysis to disassemble the complex. Although only a single molecule of αSNAP binds to a soluble form of the SNARE complex, we find that three molecules of αSNAP are used for SNARE complex disassembly. We describe an engineered αSNAP trimer that supports more efficient SNARE complex disassembly than monomeric αSNAP. Using the trimerized αSNAP, we find that N-ethylmaleimide-sensitive factor hydrolyzes 10 ATP molecules on average to disassemble a single SNARE complex. PMID:25492864

  15. NUCLEAR REACTOR

    DOEpatents

    Grebe, J.J.

    1959-07-14

    High temperature reactors which are uniquely adapted to serve as the heat source for nuclear pcwered rockets are described. The reactor is comprised essentially of an outer tubular heat resistant casing which provides the main coolant passageway to and away from the reactor core within the casing and in which the working fluid is preferably hydrogen or helium gas which is permitted to vaporize from a liquid storage tank. The reactor core has a generally spherical shape formed entirely of an active material comprised of fissile material and a moderator material which serves as a diluent. The active material is fabricated as a gas permeable porous material and is interlaced in a random manner with very small inter-connecting bores or capillary tubes through which the coolant gas may flow. The entire reactor is divided into successive sections along the direction of the temperature gradient or coolant flow, each section utilizing materials of construction which are most advantageous from a nuclear standpoint and which at the same time can withstand the operating temperature of that particular zone. This design results in a nuclear reactor characterized simultaneously by a minimum critiral size and mass and by the ability to heat a working fluid to an extremely high temperature.

  16. Spent fuel disassembly hardware and other non-fuel bearing components: characterization, disposal cost estimates, and proposed repository acceptance requirements

    SciTech Connect

    Luksic, A.T.; McKee, R.W.; Daling, P.M.; Konzek, G.J.; Ludwick, J.D.; Purcell, W.L.

    1986-10-01

    There are two categories of waste considered in this report. The first is the spent fuel disassembly (SFD) hardware. This consists of the hardware remaining after the fuel pins have been removed from the fuel assembly. This includes end fittings, spacer grids, water rods (BWR) or guide tubes (PWR) as appropriate, and assorted springs, fasteners, etc. The second category is other non-fuel-bearing (NFB) components the DOE has agreed to accept for disposal, such as control rods, fuel channels, etc., under Appendix E of the standard utiltiy contract (10 CFR 961). It is estimated that there will be approximately 150 kg of SFD and NFB waste per average metric ton of uranium (MTU) of spent uranium. PWR fuel accounts for approximately two-thirds of the average spent-fuel mass but only 50 kg of the SFD and NFB waste, with most of that being spent fuel disassembly hardware. BWR fuel accounts for one-third of the average spent-fuel mass and the remaining 100 kg of the waste. The relatively large contribution of waste hardware in BWR fuel, will be non-fuel-bearing components, primarily consisting of the fuel channels. Chapters are devoted to a description of spent fuel disassembly hardware and non-fuel assembly components, characterization of activated components, disposal considerations (regulatory requirements, economic analysis, and projected annual waste quantities), and proposed acceptance requirements for spent fuel disassembly hardware and other non-fuel assembly components at a geologic repository. The economic analysis indicates that there is a large incentive for volume reduction.

  17. The kinetochore microtubule minus-end disassembly associated with poleward flux produces a force that can do work.

    PubMed Central

    Waters, J C; Mitchison, T J; Rieder, C L; Salmon, E D

    1996-01-01

    During metaphase and anaphase in newt lung cells, tubulin subunits within the kinetochore microtubule (kMT) lattice flux slowly poleward as kMTs depolymerize at their minus-ends within in the pole. Very little is known about how and where the force that moves the tubulin subunits poleward is generated and what function it serves during mitosis. We found that treatment with the drug taxol (10 microM) caused separated centrosomes in metaphase newt lung cells to move toward one another with an average velocity of 0.89 microns/min, until the interpolar distance was reduced by 22-62%. This taxol-induced spindle shortening occurred as kMTs between the chromosomes and the poles shortened. Photoactivation of fluorescent marks on kMTs revealed that taxol inhibited kinetochore microtubule assembly/disassembly at kinetochores, whereas minus-end MT disassembly continued at a rate typical of poleward flux in untreated metaphase cells. This poleward flux was strong enough to stretch the centromeric chromatin between sister kinetochores as much as it is stretched in control metaphase cells. In anaphase, taxol blocked kMT disassembly/assembly at the kinetochore whereas minus-end disassembly continued at a rate similar to flux in control cells (approximately 0.2 microns/min). These results reveal that the mechanism for kMT poleward flux 1) is not dependent on kMT plus-end dynamics and 2) produces pulling forces capable of generating tension across the centromeres of bioriented chromosomes. Images PMID:8898361

  18. Polygalacturonase Gene Expression in Ripe Melon Fruit Supports a Role for Polygalacturonase in Ripening-Associated Pectin Disassembly

    PubMed Central

    Hadfield, Kristen A.; Rose, Jocelyn K.C.; Yaver, Debbie S.; Berka, Randy M.; Bennett, Alan B.

    1998-01-01

    Ripening-associated pectin disassembly in melon is characterized by a decrease in molecular mass and an increase in the solubilization of polyuronide, modifications that in other fruit have been attributed to the activity of polygalacturonase (PG). Although it has been reported that PG activity is absent during melon fruit ripening, a mechanism for PG-independent pectin disassembly has not been positively identified. Here we provide evidence that pectin disassembly in melon (Cucumis melo) may be PG mediated. Three melon cDNA clones with significant homology to other cloned PGs were isolated from the rapidly ripening cultivar Charentais (C. melo cv Reticulatus F1 Alpha) and were expressed at high levels during fruit ripening. The expression pattern correlated temporally with an increase in pectin-degrading activity and a decrease in the molecular mass of cell wall pectins, suggesting that these genes encode functional PGs. MPG1 and MPG2 were closely related to peach fruit and tomato abscission zone PGs, and MPG3 was closely related to tomato fruit PG. MPG1, the most abundant melon PG mRNA, was expressed in Aspergillus oryzae. The culture filtrate exponentially decreased the viscosity of a pectin solution and catalyzed the linear release of reducing groups, suggesting that MPG1 encodes an endo-PG with the potential to depolymerize melon fruit cell wall pectin. Because MPG1 belongs to a group of PGs divergent from the well-characterized tomato fruit PG, this supports the involvement of a second class of PGs in fruit ripening-associated pectin disassembly. PMID:9625689

  19. Interface-induced disassembly of a self-assembled two-component nanoparticle system.

    PubMed

    Gao, Yan; Duc, Le T; Ali, Affira; Liang, Beverly; Liang, Jenn-Tai; Dhar, Prajnaparamita

    2013-03-19

    We present a study of static and dynamic interfacial properties of self-assembled polyelectrolyte complex nanoparticles (size 110-120 nm) containing entrapped surfactant molecules at a fluid/fluid interface. Surface tension vs time measurements of an aqueous solution of these polyelectrolyte complex nanoparticles (PCNs) show a concentration-dependent biphasic adsorption to the air/water interface while interfacial microrheology data show a concentration-dependent initial increase in the surface viscosity (up to 10(-7) N·m/s), followed by a sharp decrease (10(-9) N·m/s). Direct visualization of the air/water interface shows disappearance of particles from the interface over time. On the basis of these observations, we propose that the PCNs at fluid/fluid interfaces exist in two states: initial accumulation of PCNs at the air/water interface as nanoparticles, followed by interface induced disassembly of the accumulated PCNs into their components. The lack of change in particle size, charge, and viscosity of the bulk aqueous solution of PCNs with time indicates that this disintegration of the self-assembled PCNs is an interfacial phenomenon. Changes in energy encountered by the PCNs at the interface lead to instability of the self-assembled system and dissociation into its components. Such systems can be used for applications requiring directed delivery and triggered release of entrapped surfactants or macromolecules at fluid/fluid interfaces.

  20. Regulation of contraction and thick filament assembly-disassembly in glycerinated vertebrate smooth muscle cells

    PubMed Central

    1983-01-01

    Isolated smooth muscle cells and cell fragments prepared by glycerination and subsequent homogenization will contract to one-third their normal length, provided Ca++ and ATP are present. Ca++- independent contraction was obtained by preincubation in Ca++ and ATP gamma S, or by addition of trypsin-treated myosin light chain kinase (MLCK) that no longer requires Ca++ for activation. In the absence of Ca++, myosin was rapidly lost from the cells upon addition of ATP. Glycerol-urea-PAGE gels showed that none of this myosin is phosphorylated. The extent of myosin loss was ATP- and pH-dependent and occurred under conditions similar to those previously reported for the in vitro disassembly of gizzard myosin filaments. Ca++-dependent contraction was restored to extracted cells by addition of gizzard myosin under rigor conditions (i.e., no ATP), followed by addition of MLCK, calmodulin, Ca++, and ATP. Function could also be restored by adding all these proteins in relaxing conditions (i.e., in EGTA and ATP) and then initiating contraction by Ca++ addition. Incubation with skeletal myosin will restore contraction, but this was not Ca++- dependent unless the cells were first incubated in troponin and tropomyosin. These results strengthen the idea that contraction in glycerinated cells and presumably also in intact cells is primarily thick filament regulated via MLCK, that the myosin filaments are unstable in relaxing conditions, and that the spatial information required for cell length change is present in the thin filament- intermediate filament organization. PMID:6688623

  1. Definition of a consensus integrin adhesome and its dynamics during adhesion complex assembly and disassembly.

    PubMed

    Horton, Edward R; Byron, Adam; Askari, Janet A; Ng, Daniel H J; Millon-Frémillon, Angélique; Robertson, Joseph; Koper, Ewa J; Paul, Nikki R; Warwood, Stacey; Knight, David; Humphries, Jonathan D; Humphries, Martin J

    2015-12-01

    Integrin receptor activation initiates the formation of integrin adhesion complexes (IACs) at the cell membrane that transduce adhesion-dependent signals to control a multitude of cellular functions. Proteomic analyses of isolated IACs have revealed an unanticipated molecular complexity; however, a global view of the consensus composition and dynamics of IACs is lacking. Here, we have integrated several IAC proteomes and generated a 2,412-protein integrin adhesome. Analysis of this data set reveals the functional diversity of proteins in IACs and establishes a consensus adhesome of 60 proteins. The consensus adhesome is likely to represent a core cell adhesion machinery, centred around four axes comprising ILK-PINCH-kindlin, FAK-paxillin, talin-vinculin and α-actinin-zyxin-VASP, and includes underappreciated IAC components such as Rsu-1 and caldesmon. Proteomic quantification of IAC assembly and disassembly detailed the compositional dynamics of the core cell adhesion machinery. The definition of this consensus view of integrin adhesome components provides a resource for the research community. PMID:26479319

  2. Characteristics of the polar assembly and disassembly of microtubules observed in vitro by darkfield light microscopy

    PubMed Central

    1979-01-01

    We describe here the continuous observations of the polymerization of individual microtubules in vitro by darkfield microscopy. In homogeneous preparations we verify that polymerization can occur onto both ends of microtubules. The assembly of microtubules is polar, with one end growing at three times the rate of the other. The differential rate of elongation can be used to determine the polarity of growth off cellular nucleating centers. We show that the microtubules grow off the proximal end of ciliary axonemes at a growth rate equal to that of the slow growing end of free microtubules, while growth off the distal end proceeds at the same rate as the fast growing end. Applying this technique to microtubule growth from metaphase chromosomes isolated from HeLa and CHO cells, we demonstrate that chromosomes initiate polymerization with the fast growing end facing away from the chromosome nucleation site. The opposite ends of free microtubules show different sensitivities to microtubule depolymerizing agents such as low temperature, Ca++ or colchicine as measured directly by darkfield microscopy. The differing rates of assembly and disassembly of each end of a microtubule suggest that a difference in polarity of growth off nucleating sites could serve as one basis for regulating the polymerization of different groups of microtubules in the same cell. PMID:511939

  3. Histone Acetylation near the Nucleosome Dyad Axis Enhances Nucleosome Disassembly by RSC and SWI/SNF.

    PubMed

    Chatterjee, Nilanjana; North, Justin A; Dechassa, Mekonnen Lemma; Manohar, Mridula; Prasad, Rashmi; Luger, Karolin; Ottesen, Jennifer J; Poirier, Michael G; Bartholomew, Blaine

    2015-12-01

    Signaling associated with transcription activation occurs through posttranslational modification of histones and is best exemplified by lysine acetylation. Lysines are acetylated in histone tails and the core domain/lateral surface of histone octamers. While acetylated lysines in histone tails are frequently recognized by other factors referred to as "readers," which promote transcription, the mechanistic role of the modifications in the lateral surface of the histone octamer remains unclear. By using X-ray crystallography, we found that acetylated lysines 115 and 122 in histone H3 are solvent accessible, but in biochemical assays they appear not to interact with the bromodomains of SWI/SNF and RSC to enhance recruitment or nucleosome mobilization, as previously shown for acetylated lysines in H3 histone tails. Instead, we found that acetylation of lysines 115 and 122 increases the predisposition of nucleosomes for disassembly by SWI/SNF and RSC up to 7-fold, independent of bromodomains, and only in conjunction with contiguous nucleosomes. Thus, in combination with SWI/SNF and RSC, acetylation of lateral surface lysines in the histone octamer serves as a crucial regulator of nucleosomal dynamics distinct from the histone code readers and writers.

  4. Recycling factors for ribosome disassembly in the apicoplast and mitochondrion of Plasmodium falciparum.

    PubMed

    Gupta, Ankit; Mir, Snober S; Jackson, Katherine E; Lim, Erin E; Shah, Priyanka; Sinha, Ashima; Siddiqi, Mohammad Imran; Ralph, Stuart A; Habib, Saman

    2013-06-01

    The reduced genomes of the apicoplast and mitochondrion of the malaria parasite Plasmodium falciparum are actively translated and antibiotic-mediated translation inhibition is detrimental to parasite survival. In order to understand recycling of organellar ribosomes, a critical step in protein translation, we identified ribosome recycling factors (RRF) encoded by the parasite nuclear genome. Targeting of PfRRF1 and PfRRF2 to the apicoplast and mitochondrion respectively was established by localization of leader sequence-GFP fusions. Unlike any RRF characterized thus far, PfRRF2 formed dimers with disulphide interaction(s) and additionally localized in the cytoplasm, thus suggesting adjunct functions for the factor. PfRRF1 carries a large 108-amino-acid insertion in the functionally critical hinge region between the head and tail domains of the protein, yet complemented Escherichia coli RRF in the LJ14frr(ts) mutant and disassembled surrogate E. coli 70S ribosomes in the presence of apicoplast-targeted EF-G. Recombinant PfRRF2 bound E. coli ribosomes and could split monosomes in the presence of the relevant mitochondrial EF-G but failed to complement the LJ14frr(ts) mutant. Although proteins comprising subunits of P. falciparum organellar ribosomes are predicted to differ from bacterial and mitoribosomal counterparts, our results indicate that the essential interactions required for recycling are conserved in parasite organelles.

  5. Variations in Spontaneous Assembly and Disassembly of Molecules on Unmodified Gold Nanoparticles

    NASA Astrophysics Data System (ADS)

    Jin, Ng Zhang; Anniebell, Stanley; Gopinath, Subash C. B.; Chen, Yeng

    2016-09-01

    Electrostatic attraction, covalent binding, and hydrophobic absorption are spontaneous processes to assemble and disassemble the molecules of gold nanoparticles (GNP). This dynamic change can be performed in the presence of ions, such as NaCl or charged molecules. Current research encompasses the GNP in mediating non-biofouling and investigating the molecular attachment and detachment. Experiments were performed with different sizes of GNP and polymers. As a proof of concept, poly(ethylene glycol)- b-poly(acrylic acid), called PEG-PAAc, attachment and binding events between factor IX and factor IX-bp from snake venom were demonstrated, and the variations with these molecular attachment on GNP were shown. Optimal concentration of NaCl for GNP aggregation was 250 mM, and the optimal size of GNP used was 30 nm. The polymer PEG-PAAc (1 mg/ml) has a strong affinity to the GNP as indicated by the dispersed GNP. The concentration of 5800 nM of factor IX was proved to be optimal for dispersion of GNP, and at least 100 nM of factor IX-bp was needed to remove factor IX from the surface of GNP. This study delineates the usage of unmodified GNP for molecular analysis and downstream applications.

  6. Role of a reducing environment in disassembly of the herpesvirus tegument

    SciTech Connect

    Newcomb, William W.; Jones, Lisa M.; Dee, Alexander; Chaudhry, Farid; Brown, Jay C.

    2012-09-15

    Initiation of infection by herpes family viruses involves a step in which most of the virus tegument becomes detached from the capsid. Detachment takes place in the host cell cytosol near the virus entry site and it is followed by dispersal of tegument proteins and disappearance of the tegument as a distinct entity. Here we describe the results of experiments designed to test the idea that the reducing environment of the cytosol may contribute to tegument detachment and disassembly. Non-ionic detergent was used to remove the membrane of purified herpes simplex virus under control and reducing conditions. The effects on the tegument were then examined by SDS-PAGE and electron microscopy. Protein analysis demonstrated that most major tegument proteins were removed under both oxidizing and reducing conditions except for UL49 which required a reducing environment. It is proposed therefore that the reducing conditions in the cytosol are involved in removal of UL49 protein. Electron microscopic analysis revealed that capsids produced under oxidizing conditions contained a coating of protein that was absent in reduced virions and which correlated uniquely with the presence of UL49. This capsid-associated layer is suggested to be the location of UL49 in the extracted virion.

  7. QIL1 mutation causes MICOS disassembly and early onset fatal mitochondrial encephalopathy with liver disease

    PubMed Central

    Guarani, Virginia; Jardel, Claude; Chrétien, Dominique; Lombès, Anne; Bénit, Paule; Labasse, Clémence; Lacène, Emmanuelle; Bourillon, Agnès; Imbard, Apolline; Benoist, Jean-François; Dorboz, Imen; Gilleron, Mylène; Goetzman, Eric S; Gaignard, Pauline; Slama, Abdelhamid; Elmaleh-Bergès, Monique; Romero, Norma B; Rustin, Pierre; Ogier de Baulny, Hélène; Paulo, Joao A; Harper, J Wade; Schiff, Manuel

    2016-01-01

    Previously, we identified QIL1 as a subunit of mitochondrial contact site (MICOS) complex and demonstrated a role for QIL1 in MICOS assembly, mitochondrial respiration, and cristae formation critical for mitochondrial architecture (Guarani et al., 2015). Here, we identify QIL1 null alleles in two siblings displaying multiple clinical symptoms of early-onset fatal mitochondrial encephalopathy with liver disease, including defects in respiratory chain function in patient muscle. QIL1 absence in patients’ fibroblasts was associated with MICOS disassembly, abnormal cristae, mild cytochrome c oxidase defect, and sensitivity to glucose withdrawal. QIL1 expression rescued cristae defects, and promoted re-accumulation of MICOS subunits to facilitate MICOS assembly. MICOS assembly and cristae morphology were not efficiently rescued by over-expression of other MICOS subunits in patient fibroblasts. Taken together, these data provide the first evidence of altered MICOS assembly linked with a human mitochondrial disease and confirm a central role for QIL1 in stable MICOS complex formation. DOI: http://dx.doi.org/10.7554/eLife.17163.001 PMID:27623147

  8. Definition of a consensus integrin adhesome and its dynamics during adhesion complex assembly and disassembly

    PubMed Central

    Askari, Janet A.; Ng, Daniel H. J.; Millon-Frémillon, Angélique; Robertson, Joseph; Koper, Ewa J.; Paul, Nikki R.; Warwood, Stacey; Knight, David; Humphries, Jonathan D.; Humphries, Martin J.

    2015-01-01

    Integrin receptor activation initiates the formation of integrin adhesion complexes (IACs) at the cell membrane that transduce adhesion-dependent signals to control a multitude of cellular functions. Proteomic analyses of isolated IACs have revealed an unanticipated molecular complexity; however, a global view of the consensus composition and dynamics of IACs is currently lacking. Here, we have integrated several IAC proteomes and generated a 2,412-protein integrin adhesome. Analysis of this dataset reveals the functional diversity of proteins in IACs and establishes a consensus adhesome of 60 proteins. The consensus adhesome likely represents a core cell adhesion machinery, centred around four axes comprising ILK-PINCH-kindlin, FAK-paxillin, talin-vinculin and α-actinin-zyxin-VASP, and includes underappreciated IAC components such as Rsu-1 and caldesmon. Proteomic quantification of IAC assembly and disassembly detailed the compositional dynamics of the core cell adhesion machinery. The definition of this consensus view of integrin adhesome components provides a resource for the research community. PMID:26479319

  9. Disassembly of actin structures by nanosecond pulsed electric field is a downstream effect of cell swelling.

    PubMed

    Pakhomov, Andrei G; Xiao, Shu; Pakhomova, Olga N; Semenov, Iurii; Kuipers, Marjorie A; Ibey, Bennett L

    2014-12-01

    Disruption of the actin cytoskeleton structures was reported as one of the characteristic effects of nanosecond-duration pulsed electric field (nsPEF) in both mammalian and plant cells. We utilized CHO cells that expressed the monomeric fluorescent protein (mApple) tagged to actin to test if nsPEF modifies the cell actin directly or as a consequence of cell membrane permeabilization. A train of four 600-ns pulses at 19.2 kV/cm (2 Hz) caused immediate cell membrane poration manifested by YO-PRO-1 dye uptake, gradual cell rounding and swelling. Concurrently, bright actin features were replaced by dimmer and uniform fluorescence of diffuse actin. To block the nsPEF-induced swelling, the bath buffer was isoosmotically supplemented with an electropore-impermeable solute (sucrose). A similar addition of a smaller, electropore-permeable solute (adonitol) served as a control. We demonstrated that sucrose efficiently blocked disassembly of actin features by nsPEF, whereas adonitol did not. Sucrose also attenuated bleaching of mApple-tagged actin in nsPEF-treated cells (as integrated over the cell volume), although did not fully prevent it. We conclude that disintegration of the actin cytoskeleton was a result of cell swelling, which, in turn, was caused by cell permeabilization by nsPEF and transmembrane diffusion of solutes which led to the osmotic imbalance. PMID:24507565

  10. Variations in Spontaneous Assembly and Disassembly of Molecules on Unmodified Gold Nanoparticles.

    PubMed

    Jin, Ng Zhang; Anniebell, Stanley; Gopinath, Subash C B; Chen, Yeng

    2016-12-01

    Electrostatic attraction, covalent binding, and hydrophobic absorption are spontaneous processes to assemble and disassemble the molecules of gold nanoparticles (GNP). This dynamic change can be performed in the presence of ions, such as NaCl or charged molecules. Current research encompasses the GNP in mediating non-biofouling and investigating the molecular attachment and detachment. Experiments were performed with different sizes of GNP and polymers. As a proof of concept, poly(ethylene glycol)-b-poly(acrylic acid), called PEG-PAAc, attachment and binding events between factor IX and factor IX-bp from snake venom were demonstrated, and the variations with these molecular attachment on GNP were shown. Optimal concentration of NaCl for GNP aggregation was 250 mM, and the optimal size of GNP used was 30 nm. The polymer PEG-PAAc (1 mg/ml) has a strong affinity to the GNP as indicated by the dispersed GNP. The concentration of 5800 nM of factor IX was proved to be optimal for dispersion of GNP, and at least 100 nM of factor IX-bp was needed to remove factor IX from the surface of GNP. This study delineates the usage of unmodified GNP for molecular analysis and downstream applications. PMID:27637891

  11. QIL1 mutation causes MICOS disassembly and early onset fatal mitochondrial encephalopathy with liver disease.

    PubMed

    Guarani, Virginia; Jardel, Claude; Chrétien, Dominique; Lombès, Anne; Bénit, Paule; Labasse, Clémence; Lacène, Emmanuelle; Bourillon, Agnès; Imbard, Apolline; Benoist, Jean-François; Dorboz, Imen; Gilleron, Mylène; Goetzman, Eric S; Gaignard, Pauline; Slama, Abdelhamid; Elmaleh-Bergès, Monique; Romero, Norma B; Rustin, Pierre; Ogier de Baulny, Hélène; Paulo, Joao A; Harper, J Wade; Schiff, Manuel

    2016-01-01

    Previously, we identified QIL1 as a subunit of mitochondrial contact site (MICOS) complex and demonstrated a role for QIL1 in MICOS assembly, mitochondrial respiration, and cristae formation critical for mitochondrial architecture (Guarani et al., 2015). Here, we identify QIL1 null alleles in two siblings displaying multiple clinical symptoms of early-onset fatal mitochondrial encephalopathy with liver disease, including defects in respiratory chain function in patient muscle. QIL1 absence in patients' fibroblasts was associated with MICOS disassembly, abnormal cristae, mild cytochrome c oxidase defect, and sensitivity to glucose withdrawal. QIL1 expression rescued cristae defects, and promoted re-accumulation of MICOS subunits to facilitate MICOS assembly. MICOS assembly and cristae morphology were not efficiently rescued by over-expression of other MICOS subunits in patient fibroblasts. Taken together, these data provide the first evidence of altered MICOS assembly linked with a human mitochondrial disease and confirm a central role for QIL1 in stable MICOS complex formation. PMID:27623147

  12. Green design "bioinspired disassembly-reassembly strategy" applied for improved tumor-targeted anticancer drug delivery.

    PubMed

    Wang, Ruoning; Gu, Xiaochen; Zhou, Jianping; Shen, Lingjia; Yin, Lifang; Hua, Peiying; Ding, Yang

    2016-08-10

    In this study, a simple and green approach 'bioinspired disassembly-reassembly strategy' was employed to reconstitute lipoprotein nanoparticles (RLNs) using whole-components of endogenous ones (contained dehydrated human lipids and native apolipoproteins). These RLNs were engineered to mimic the configuration and properties of natural lipoproteins for efficient drug delivery. In testing therapeutic targeting to microtubules, paclitaxel (PTX) was reassembled into RLNs to achieve improved targeted anti-carcinoma treatment and minimize adverse effects, demonstrating ultimately more applicable than HDL-like particles which are based on exogenous lipid sources. We have characterized that apolipoprotein-decoration of PTX-loaded RLNs (RLNs-PTX) led to favoring uniformly dispersed distribution, increasing PTX-encapsulation with a sustained-release pattern, while enhancing biostability during blood circulation. The innate biological RLNs induced efficient intracellular trafficking of cargos in situ via multi-targeting mechanisms, including scavenger receptor class B type I (SR-BI)-mediated direct transmembrane delivery, as well as other lipoprotein-receptors associated endocytic pathways. The resulting anticancer treatment from RLNs-PTX was demonstrated a half-maximal inhibitory concentration of 0.20μg/mL, cell apoptosis of 18.04% 24h post-incubation mainly arresting G2/M cell cycle in vitro, and tumor weight inhibition of 70.51% in vivo. Collectively, green-step assembly-based RLNs provided an efficient strategy for mediating tumor-targeted accumulation of PTX and enhanced anticancer efficacy. PMID:27238442

  13. [Dietary intake of PHAHs and cancer risk evaluation for residents living in the e-waste disassembly sites].

    PubMed

    Zhao, Gao-feng; Wang, Zi-jian

    2009-08-15

    This study was conducted to estimate the lifetime average daily dose (LADDs) and the cumulative cancer risk of PBBs, PBDEs, and PCBs for local residents living in four e-waste disassembly sites and a control site in the Zhejiang Province of China. A total of 191 food samples (including seven food groups and drinking water) were obtained, and the concentrations of the three PHAHs were measured by GC/MS 5975B. The estimated LADDs of PHAHs in the disassembly sites were approximately 2-3 times higher than those in the control site. Among different food groups, LADDs of the three PHAHs through rice consumption accounted for more than 48% of the total cumulative dose. The estimated cumulative cancer risk was 3.81 x 10(-4) for residents living in the disassembly sites, which was about two fold higher than those for the people living in the control site (1.50 x 10(-4)). The results showed that rice consumption was the principal exposure pathway for the intakes of PHAHs, dioxin-like PCBs were the major contributors for the cumulative cancer risks, which accounts for 45% of the total cancer risks. PMID:19799310

  14. Reversible assembly and disassembly of amphiphilic assemblies by electropolymerized polyaniline films: effects rendered by varying the electropolymerization potential.

    PubMed

    Dutta, Kingshuk; Kundu, Patit P

    2013-06-27

    Polymer films that respond to a variety of stimuli are attractive candidates for location-specific guest molecule delivery. These systems release the guest molecules by polymer erosion; thus, these are mono-use systems. If a polymer film is used to disassemble amphiphilic assemblies containing sequestered guest molecules, the polymer erosion issue can be circumvented. However, charge-bearing vinyl polymers, upon interaction with amphiphilic assemblies, are known to adapt to a conformation that results in encapsulating guest molecules instead of releasing them. On the contrary, it has earlier been reported that a rigid, charge-bearing, and water-insoluble conjugated polyaniline film can effectively disassemble amphiphilic assemblies without causing much harm to the film. Herein, we demonstrate the effect rendered by varying the electropolymerization potential on the interaction efficiency between the positive charge-bearing polyaniline film and oppositely charged amphiphilic assemblies. In addition, it is also demonstrated that a film of oxidized polyaniline can be regenerated for repetitive disassembly of the amphiphilic assemblies, and concomitant guest molecule delivery.

  15. Kinetics of Assembly and Dis-assembly of Structures Forming a Chromonic Liquid Crystal at Low Concentrations

    NASA Astrophysics Data System (ADS)

    Nieser, Kenneth; Collings, Peter

    2013-03-01

    The molecules of the near-IR absorbing dye IR-806 spontaneously assemble in water at very low concentrations, forming a chromonic liquid crystal phase at room temperature when the concentration is above 0.5 wt%. The assembly process proceeds in two steps and results in a complex structure that orientationally orders in a liquid crystal phase. The kinetics of the assembly and dis-assembly of these complex structures can be followed through absorption measurements by rapidly mixing the initial sample with either a small fraction of salt solution (assembly) or a large fraction of water (dis-assembly). The kinetics of dis-assembly is exponential while the kinetics of assembly is non-exponential, both with rate constants depending on the starting and ending conditions, but falling in the 0.1-1.0 s-1 range. While past equilibrium absorption measurements on IR-806 offer evidence for a threshold concentration for the assembly of these complex structures, the kinetics experiments show with certainty the existence of such a threshold. Similar experiments on Benzopurpurin 4B, another dye that forms a chromonic liquid crystal at low concentrations, reveal kinetics that are slower by two orders of magnitude and a threshold concentration for the assembly of complex structures. Acknowledgment is made to the donors of the American Chemical Society Petroleum Research Fund for partial support of this research.

  16. An experimental study of the solvent-dependent self-assembly/disassembly and conformer preferences of gramicidin A.

    PubMed

    Chen, Liuxi; Chen, Shu-Hua; Russell, David H

    2013-08-20

    The solvent dependence of self-assembly/disassembly kinetics and conformer preferences of the gramicidin A (GA) dimer is investigated using a combination of techniques, viz., electrospray ionization-ion mobility-mass spectrometry (IM-MS), collision-induced dissociation (CID), and hydrogen/deuterium exchange (HDX)-MS. IM-MS measurements reveal that there are possibly three distinct GA dimeric species, detected as sodium ion adduct ions [2GA + 2Na](2+), and these are assigned as the parallel β-helix, antiparallel β-helix, and head-to-head dimer. The monomerization kinetics and equilibrium abundances of the dimer ions depend upon solvent polarity. The antiparallel β-helix was the thermodynamically preferred species in less polar solvents. HDX measurements and collision-induced dissociation (CID) of the intermediate complex confirm the well-protected dimer geometry with strong intermolecular hydrogen bonds. This combined IM-HDX-CID methodology provides a comprehensive view of GA self-assembly/disassembly in low dielectric solutions, showing its potential utility in solving solution-phase protein self-assembly/disassembly kinetics and providing structural information of the multimers at the same time.

  17. Research reactors - an overview

    SciTech Connect

    West, C.D.

    1997-03-01

    A broad overview of different types of research and type reactors is provided in this paper. Reactor designs and operating conditions are briefly described for four reactors. The reactor types described include swimming pool reactors, the High Flux Isotope Reactor, the Mark I TRIGA reactor, and the Advanced Neutron Source reactor. Emphasis in the descriptions is placed on safety-related features of the reactors. 7 refs., 7 figs., 2 tabs.

  18. NEUTRONIC REACTOR

    DOEpatents

    Ohlinger, L.A.; Wigner, E.P.; Weinberg, A.M.; Young, G.J.

    1958-09-01

    This patent relates to neutronic reactors of the heterogeneous water cooled type, and in particular to a fuel element charging and discharging means therefor. In the embodiment illustrated the reactor contains horizontal, parallel coolant tubes in which the fuel elements are disposed. A loading cart containing a magnzine for holding a plurality of fuel elements operates along the face of the reactor at the inlet ends of the coolant tubes. The loading cart is equipped with a ram device for feeding fuel elements from the magazine through the inlot ends of the coolant tubes. Operating along the face adjacent the discharge ends of the tubes there is provided another cart means adapted to receive irradiated fuel elements as they are forced out of the discharge ends of the coolant tubes by the incoming new fuel elements. This cart is equipped with a tank coataining a coolant, such as water, into which the fuel elements fall, and a hydraulically operated plunger to hold the end of the fuel element being discharged. This inveation provides an apparatus whereby the fuel elements may be loaded into the reactor, irradiated therein, and unloaded from the reactor without stopping the fiow of the coolant and without danger to the operating personnel.

  19. POWER REACTOR

    DOEpatents

    Zinn, W.H.

    1958-07-01

    A fast nuclear reactor system ls described for producing power and radioactive isotopes. The reactor core is of the heterogeneous, fluid sealed type comprised of vertically arranged elongated tubular fuel elements having vertical coolant passages. The active portion is surrounded by a neutron reflector and a shield. The system includes pumps and heat exchangers for the primary and secondary coolant circuits. The core, primary coolant pump and primary heat exchanger are disposed within an irapenforate tank which is filled with the primary coolant, in this case a liquid metal such as Na or NaK, to completely submerge these elements. The tank is completely surrounded by a thick walled concrete shield. This reactor system utilizes enriched uranium or plutonium as the fissionable material, uranium or thorium as a diluent and thorium or uranium containing less than 0 7% of the U/sup 235/ isotope as a fertile material.

  20. NEUTRONIC REACTOR

    DOEpatents

    Metcalf, H.E.

    1957-10-01

    A reactor of the type which preferably uses plutonium as the fuel and a liquid moderator, preferably ordinary water, and which produces steam within the reactor core due to the heat of the chain reaction is described. In the reactor shown the fuel elements are essentially in the form of trays and are ventically stacked in spaced relationship. The water moderator is continuously supplied to the trays to maintain a constant level on the upper surfaces of the fuel element as it is continually evaporated by the heat. The steam passes out through the spaces between the fuel elements and is drawn off at the top of the core. The fuel elements are clad in aluminum to prevent deterioration thereof with consequent contamimation of the water.

  1. NUCLEAR REACTOR

    DOEpatents

    Christy, R.F.

    1958-07-15

    A nuclear reactor of the homogeneous liquid fuel type is described wherein the fissionable isotope is suspended or dissolved in a liquid moderator such as water. The reactor core is comprised essentially of a spherical vessel for containing the reactive composition surrounded by a reflector, preferably of beryllium oxide. The reactive composition may be an ordinary water solution of a soluble salt of uranium, the quantity of fissionable isotope in solution being sufficient to provide a critical mass in the vessel. The liquid fuel is stored in a tank of non-crtttcal geometry below the reactor vessel and outside of the reflector and is passed from the tank to the vessel through a pipe connecting the two by air pressure means. Neutron absorbing control and safety rods are operated within slots in the reflector adjacent to the vessel.

  2. Bioconversion reactor

    DOEpatents

    McCarty, Perry L.; Bachmann, Andre

    1992-01-01

    A bioconversion reactor for the anaerobic fermentation of organic material. The bioconversion reactor comprises a shell enclosing a predetermined volume, an inlet port through which a liquid stream containing organic materials enters the shell, and an outlet port through which the stream exits the shell. A series of vertical and spaced-apart baffles are positioned within the shell to force the stream to flow under and over them as it passes from the inlet to the outlet port. The baffles present a barrier to the microorganisms within the shell causing them to rise and fall within the reactor but to move horizontally at a very slow rate. Treatment detention times of one day or less are possible.

  3. REACTOR CONTROL

    DOEpatents

    Fortescue, P.; Nicoll, D.

    1962-04-24

    A control system employed with a high pressure gas cooled reactor in which a control rod is positioned for upward and downward movement into the neutron field from a position beneath the reactor is described. The control rod is positioned by a coupled piston cylinder releasably coupled to a power drive means and the pressurized coolant is directed against the lower side of the piston. The coolant pressure is offset by a higher fiuid pressure applied to the upper surface of the piston and means are provided for releasing the higher pressure on the upper side of the piston so that the pressure of the coolant drives the piston upwardly, forcing the coupled control rod into the ncutron field of the reactor. (AEC)

  4. Catalytic reactor

    SciTech Connect

    Aaron, Timothy Mark; Shah, Minish Mahendra; Jibb, Richard John

    2009-03-10

    A catalytic reactor is provided with one or more reaction zones each formed of set(s) of reaction tubes containing a catalyst to promote chemical reaction within a feed stream. The reaction tubes are of helical configuration and are arranged in a substantially coaxial relationship to form a coil-like structure. Heat exchangers and steam generators can be formed by similar tube arrangements. In such manner, the reaction zone(s) and hence, the reactor is compact and the pressure drop through components is minimized. The resultant compact form has improved heat transfer characteristics and is far easier to thermally insulate than prior art compact reactor designs. Various chemical reactions are contemplated within such coil-like structures such that as steam methane reforming followed by water-gas shift. The coil-like structures can be housed within annular chambers of a cylindrical housing that also provide flow paths for various heat exchange fluids to heat and cool components.

  5. NEUTRONIC REACTORS

    DOEpatents

    Wigner, E.P.; Young, G.J.

    1958-10-14

    A method is presented for loading and unloading rod type fuel elements of a neutronic reactor of the heterogeneous, solld moderator, liquid cooled type. In the embodiment illustrated, the fuel rods are disposed in vertical coolant channels in the reactor core. The fuel rods are loaded and unloaded through the upper openings of the channels which are immersed in the coolant liquid, such as water. Unloading is accomplished by means of a coffer dam assembly having an outer sleeve which is placed in sealing relation around the upper opening. A radiation shield sleeve is disposed in and reciprocable through the coffer dam sleeve. A fuel rod engaging member operates through the axial bore in the radiation shield sleeve to withdraw the fuel rod from its position in the reactor coolant channel into the shield, the shield snd rod then being removed. Loading is accomplished in the reverse procedure.

  6. NUCLEAR REACTOR

    DOEpatents

    Young, G.

    1963-01-01

    This patent covers a power-producing nuclear reactor in which fuel rods of slightly enriched U are moderated by heavy water and cooled by liquid metal. The fuel rods arranged parallel to one another in a circle are contained in a large outer closed-end conduit that extends into a tank containing the heavy water. Liquid metal is introduced into the large conduit by a small inner conduit that extends within the circle of fuel rods to a point near the lower closed end of the outer conduit. (AEC) Production Reactors

  7. NEUTRONIC REACTOR

    DOEpatents

    Fermi, E.; Szilard, L.

    1957-09-24

    Reactors of the type employing plates of natural uranium in a moderator are discussed wherein the plates are um-formly disposed in parallel relationship to each other thereby separating the moderator material into distinct and individual layers. Each plate has an uninterrupted sunface area substantially equal to the cross-sectional area of the active portion of the reactor, the particular size of the plates and the volume ratio of moderator to uranium required to sustain a chain reaction being determinable from the known purity of these materials and other characteristics such as the predictable neutron losses due to the formation of radioactive elements of extremely high neutron capture cross section.

  8. NEUTRONIC REACTOR

    DOEpatents

    Wigner, E.P.; Weinberg, A.W.; Young, G.J.

    1958-04-15

    A nuclear reactor which uses uranium in the form of elongated tubes as fuel elements and liquid as a coolant is described. Elongated tubular uranium bodies are vertically disposed in an efficient neutron slowing agent, such as graphite, for example, to form a lattice structure which is disposed between upper and lower coolant tanks. Fluid coolant tubes extend through the uranium bodies and communicate with the upper and lower tanks and serve to convey the coolant through the uranium body. The reactor is also provided with means for circulating the cooling fluid through the coolant tanks and coolant tubes, suitable neutron and gnmma ray shields, and control means.

  9. Disassembling bacterial extracellular matrix with DNase-coated nanoparticles to enhance antibiotic delivery in biofilm infections.

    PubMed

    Baelo, Aida; Levato, Riccardo; Julián, Esther; Crespo, Anna; Astola, José; Gavaldà, Joan; Engel, Elisabeth; Mateos-Timoneda, Miguel Angel; Torrents, Eduard

    2015-07-10

    Infections caused by biofilm-forming bacteria are a major threat to hospitalized patients and the main cause of chronic obstructive pulmonary disease and cystic fibrosis. There is an urgent necessity for novel therapeutic approaches, since current antibiotic delivery fails to eliminate biofilm-protected bacteria. In this study, ciprofloxacin-loaded poly(lactic-co-glycolic acid) nanoparticles, which were functionalized with DNase I, were fabricated using a green-solvent based method and their antibiofilm activity was assessed against Pseudomonas aeruginosa biofilms. Such nanoparticles constitute a paradigm shift in biofilm treatment, since, besides releasing ciprofloxacin in a controlled fashion, they are able to target and disassemble the biofilm by degrading the extracellular DNA that stabilize the biofilm matrix. These carriers were compared with free-soluble ciprofloxacin, and ciprofloxacin encapsulated in untreated and poly(lysine)-coated nanoparticles. DNase I-activated nanoparticles were not only able to prevent biofilm formation from planktonic bacteria, but they also successfully reduced established biofilm mass, size and living cell density, as observed in a dynamic environment in a flow cell biofilm assay. Moreover, repeated administration over three days of DNase I-coated nanoparticles encapsulating ciprofloxacin was able to reduce by 95% and then eradicate more than 99.8% of established biofilm, outperforming all the other nanoparticle formulations and the free-drug tested in this study. These promising results, together with minimal cytotoxicity as tested on J774 macrophages, allow obtaining novel antimicrobial nanoparticles, as well as provide clues to design the next generation of drug delivery devices to treat persistent bacterial infections. PMID:25913364

  10. The effect of multivalent cations and Tau on paclitaxel-stabilized microtubule assembly, disassembly, and structure.

    PubMed

    Safinya, Cyrus R; Chung, Peter J; Song, Chaeyeon; Li, Youli; Ewert, Kai K; Choi, Myung Chul

    2016-06-01

    In this review we describe recent studies directed at understanding the formation of novel nanoscale assemblies in biological materials systems. In particular, we focus on the effects of multivalent cations, and separately, of microtubule-associated protein (MAP) Tau, on microtubule (MT) ordering (bundling), MT disassembly, and MT structure. Counter-ion directed bundling of paclitaxel-stabilized MTs is a model electrostatic system, which parallels efforts to understand MT bundling by intrinsically disordered proteins (typically biological polyampholytes) expressed in neurons. We describe studies, which reveal an unexpected transition from tightly spaced MT bundles to loose bundles consisting of strings of MTs as the valence of the cationic counter-ion decreases from Z=3 to Z=2. This transition is not predicted by any current theories of polyelectrolytes. Notably, studies of a larger series of divalent counter-ions reveal strong ion specific effects. Divalent counter-ions may either bundle or depolymerize paclitaxel-stabilized MTs. The ion concentration required for depolymerization decreases with increasing atomic number. In a more biologically related system we review synchrotron small angle x-ray scattering (SAXS) studies on the effect of the Tau on the structure of paclitaxel-stabilized MTs. The electrostatic binding of MAP Tau isoforms leads to an increase in the average radius of microtubules with increasing Tau coverage (i.e. a re-distribution of protofilament numbers in MTs). Finally, inspired by MTs as model nanotubes, we briefly describe other more robust lipid-based cylindrical nanostructures, which may have technological applications, for example, in drug encapsulation and delivery. PMID:26684364

  11. p31comet promotes disassembly of the mitotic checkpoint complex in an ATP-dependent process

    PubMed Central

    Teichner, Adar; Eytan, Esther; Sitry-Shevah, Danielle; Miniowitz-Shemtov, Shirly; Dumin, Elena; Gromis, Jonathan; Hershko, Avram

    2011-01-01

    Accurate segregation of chromosomes in mitosis is ensured by a surveillance mechanism called the mitotic (or spindle assembly) checkpoint. It prevents sister chromatid separation until all chromosomes are correctly attached to the mitotic spindle through their kinetochores. The checkpoint acts by inhibiting the anaphase-promoting complex/cyclosome (APC/C), a ubiquitin ligase that targets for degradation securin, an inhibitor of anaphase initiation. The activity of APC/C is inhibited by a mitotic checkpoint complex (MCC), composed of the APC/C activator Cdc20 bound to the checkpoint proteins MAD2, BubR1, and Bub3. When all kinetochores acquire bipolar attachment the checkpoint is inactivated, but the mechanisms of checkpoint inactivation are not understood. We have previously observed that hydrolyzable ATP is required for exit from checkpoint-arrested state. In this investigation we examined the possibility that ATP hydrolysis in exit from checkpoint is linked to the action of the Mad2-binding protein p31comet in this process. It is known that p31comet prevents the formation of a Mad2 dimer that it thought to be important for turning on the mitotic checkpoint. This explains how p31comet blocks the activation of the checkpoint but not how it promotes its inactivation. Using extracts from checkpoint-arrested cells and MCC isolated from such extracts, we now show that p31comet causes the disassembly of MCC and that this process requires β,γ-hydrolyzable ATP. Although p31comet binds to Mad2, it promotes the dissociation of Cdc20 from BubR1 in MCC. PMID:21300909

  12. The effect of multivalent cations and Tau on paclitaxel-stabilized microtubule assembly, disassembly, and structure.

    PubMed

    Safinya, Cyrus R; Chung, Peter J; Song, Chaeyeon; Li, Youli; Ewert, Kai K; Choi, Myung Chul

    2016-06-01

    In this review we describe recent studies directed at understanding the formation of novel nanoscale assemblies in biological materials systems. In particular, we focus on the effects of multivalent cations, and separately, of microtubule-associated protein (MAP) Tau, on microtubule (MT) ordering (bundling), MT disassembly, and MT structure. Counter-ion directed bundling of paclitaxel-stabilized MTs is a model electrostatic system, which parallels efforts to understand MT bundling by intrinsically disordered proteins (typically biological polyampholytes) expressed in neurons. We describe studies, which reveal an unexpected transition from tightly spaced MT bundles to loose bundles consisting of strings of MTs as the valence of the cationic counter-ion decreases from Z=3 to Z=2. This transition is not predicted by any current theories of polyelectrolytes. Notably, studies of a larger series of divalent counter-ions reveal strong ion specific effects. Divalent counter-ions may either bundle or depolymerize paclitaxel-stabilized MTs. The ion concentration required for depolymerization decreases with increasing atomic number. In a more biologically related system we review synchrotron small angle x-ray scattering (SAXS) studies on the effect of the Tau on the structure of paclitaxel-stabilized MTs. The electrostatic binding of MAP Tau isoforms leads to an increase in the average radius of microtubules with increasing Tau coverage (i.e. a re-distribution of protofilament numbers in MTs). Finally, inspired by MTs as model nanotubes, we briefly describe other more robust lipid-based cylindrical nanostructures, which may have technological applications, for example, in drug encapsulation and delivery.

  13. Probability of Liquefaction for Pit Disassembly and Conversion Facility (PDCF) Site, Savannah River Site

    SciTech Connect

    Lee, R.C.

    2003-09-30

    This report documents the probability of liquefaction (POL) for the Pit Disassembly and Conversion Facility (PDCF). The procedure for analysis of a critical layer of interest requires the following basic steps: (1) establish the probability of occurrence (POO) of ranges of 2.5 Hz bedrock motion based on a probabilistic seismic hazard assessment (PSHA); (2) define the critical layer that may be susceptible to liquefaction; (3) estimate distributions of cyclic stress ratio (CSR) (i.e., seismic demand) for the critical layer using site-specific soil properties corresponding to the bedrock motions; (4) estimate capacity of the critical layer based on site-specific cone penetration test (CPT) soundings and standard penetration test (SPT) blowcount data; and (5) sum the probability of liquefaction for each range of bedrock motion using empirical data correlating demand and capacity with liquefaction. The soil layer most susceptible to liquefaction is the critical layer. The critical layer is characterized by relatively low blowcount and low fines content and is established from soil layers below the water table. A key component for seismic demand is the establishment of the soil profile and it's uncertainty. The PDCF site is consistent with the 1997 SRS-specific model used to compute the site amplification database. Thus, previously derived site amplification functions reflecting the uncertainty in site properties and stratigraphy can be used to predict distributions of CSR given a specific earthquake magnitude and level of bedrock motion. The previously developed site amplification database reflects uncertainty in site response based on the large database of site shear-wave velocity profiles. Consequently, for each level of bedrock motion (from the PSHA) the site amplification database is used to establish the distribution of the expected CSR (demand) in the critical layer.

  14. Antofine-induced connexin43 gap junction disassembly in rat astrocytes involves protein kinase Cβ.

    PubMed

    Huang, Yu-Fang; Liao, Chih-Kai; Lin, Jau-Chen; Jow, Guey-Mei; Wang, Hwai-Shi; Wu, Jiahn-Chun

    2013-03-01

    Antofine, a phenanthroindolizidine alkaloid derived from Cryptocaryachinensis and Ficusseptica in the Asclepiadaceae milkweed family, is cytotoxic for various cancer cell lines. In this study, we demonstrated that treatment of rat primary astrocytes with antofine induced dose-dependent inhibition of gap junction intercellular communication (GJIC), as assessed by scrape-loading 6-carboxyfluorescein dye transfer. Levels of Cx43 protein were also decreased in a dose- and time-dependent manner following antofine treatment. Double-labeling immunofluorescence microscopy showed that antofine (10ng/ml) induced endocytosis of surface gap junctions into the cytoplasm, where Cx43 was co-localized with the early endosome marker EEA1. Inhibition of lysosomes or proteasomes by co-treatment with antofine and their respective specific inhibitors, NH4Cl or MG132, partially inhibited the antofine-induced decrease in Cx43 protein levels, but did not inhibit the antofine-induced inhibition of GJIC. After 30min of treatment, antofine induced a rapid increase in the intracellular Ca(2+) concentration and activation of protein kinase C (PKC)α/βII, which was maintained for at least 6h. Co-treatment of astrocytes with antofine and the intracellular Ca(2+) chelator BAPTA-AM prevented downregulation of Cx43 and inhibition of GJIC. Moreover, co-treatment with antofine and a specific PKCβ inhibitor prevented endocytosis of gap junctions, downregulation of Cx43, and inhibition of GJIC. Taken together, these findings indicate that antofine induces Cx43 gap junction disassembly by the PKCβ signaling pathway. Inhibition of GJIC by antofine may undermine the neuroprotective effect of astrocytes in CNS. PMID:23403203

  15. Disassembling bacterial extracellular matrix with DNase-coated nanoparticles to enhance antibiotic delivery in biofilm infections.

    PubMed

    Baelo, Aida; Levato, Riccardo; Julián, Esther; Crespo, Anna; Astola, José; Gavaldà, Joan; Engel, Elisabeth; Mateos-Timoneda, Miguel Angel; Torrents, Eduard

    2015-07-10

    Infections caused by biofilm-forming bacteria are a major threat to hospitalized patients and the main cause of chronic obstructive pulmonary disease and cystic fibrosis. There is an urgent necessity for novel therapeutic approaches, since current antibiotic delivery fails to eliminate biofilm-protected bacteria. In this study, ciprofloxacin-loaded poly(lactic-co-glycolic acid) nanoparticles, which were functionalized with DNase I, were fabricated using a green-solvent based method and their antibiofilm activity was assessed against Pseudomonas aeruginosa biofilms. Such nanoparticles constitute a paradigm shift in biofilm treatment, since, besides releasing ciprofloxacin in a controlled fashion, they are able to target and disassemble the biofilm by degrading the extracellular DNA that stabilize the biofilm matrix. These carriers were compared with free-soluble ciprofloxacin, and ciprofloxacin encapsulated in untreated and poly(lysine)-coated nanoparticles. DNase I-activated nanoparticles were not only able to prevent biofilm formation from planktonic bacteria, but they also successfully reduced established biofilm mass, size and living cell density, as observed in a dynamic environment in a flow cell biofilm assay. Moreover, repeated administration over three days of DNase I-coated nanoparticles encapsulating ciprofloxacin was able to reduce by 95% and then eradicate more than 99.8% of established biofilm, outperforming all the other nanoparticle formulations and the free-drug tested in this study. These promising results, together with minimal cytotoxicity as tested on J774 macrophages, allow obtaining novel antimicrobial nanoparticles, as well as provide clues to design the next generation of drug delivery devices to treat persistent bacterial infections.

  16. Negative pressure induces p120-catenin-dependent adherens junction disassembly in keratinocytes during wound healing.

    PubMed

    Huang, Ching-Hui; Hsu, Chih-Chin; Chen, Carl Pai-Chu; Chow, Shu-Er; Wang, Jong-Shyan; Shyu, Yu-Chiau; Lu, Mu-Jie

    2016-09-01

    A negative-pressure of 125mmHg (NP) has been widely used to treat chronic wounds in modern medicine. Keratinocytes under NP treatment have shown accelerated cell movement and decreased E-cadherin expression. However, the molecular mechanism of E-cadherin regulation under NP remains incompletely understood. Therefore, we investigated the E-cadherin regulation in keratinocytes (HaCaT cells) under NP. HaCaT cells were treated at ambient pressure (AP) and NP for 12h. Cell movement was measured by traditional and electric wound healing assays at the 2 different pressures. Mutants with overexpression of p120-catenin (p120(ctn)) were used to observe the effect of NP on p120(ctn) and E-cadherin expression during wound healing. Cell fractionation and immunoblotting data showed that NP increased Y228-phosphorylated p120(ctn) level and resulted in the translocation of p120(ctn) from the plasma membrane to cytoplasm. Immunofluorescence images revealed that NP decreased the co-localization of p120(ctn) and E-cadherin on the plasma membrane. Knockdown of p120(ctn) reduced E-cadherin expression and accelerated cell movement under AP. Overexpression of the Y228-phosphorylation-mimic p120(ctn) decreased E-cadherin membrane expression under both AP and NP. Phosphorylation-deficient mutants conferred restored adherens junctions (AJs) under NP. The Src inhibitor blocked the phosphorylation of p120(ctn) and impeded cell migration under NP. In conclusion, Src-dependent phosphorylation of p120(ctn) can respond rapidly to NP and contribute to E-cadherin downregulation. The NP-induced disassembly of the AJ further accelerates wound healing.

  17. Progress Report on Disassembly and Post-Irradiation Experiments for UCSB ATR-2 Experiment

    SciTech Connect

    Nanstad, Randy K; Odette, G. R.; Robertson, Janet Pawel; Yamamoto, T

    2015-09-01

    The reactor pressure vessel (RPV) in a light-water reactor (LWR) represents the first line of defense against a release of radiation in case of an accident. Thus, regulations that govern the operation of commercial nuclear power plants require conservative margins of fracture toughness, both during normal operation and under accident scenarios. In the unirradiated condition, the RPV has sufficient fracture toughness such that failure is implausible under any postulated condition, including pressurized thermal shock (PTS) in pressurized water reactors (PWR). In the irradiated condition, however, the fracture toughness of the RPV may be severely degraded, with the degree of toughness loss dependent on the radiation sensitivity of the materials. As stated in previous progress reports, the available embrittlement predictive models, e.g. [1], and our present understanding of radiation damage are not fully quantitative, and do not treat all potentially significant variables and issues, particularly considering extension of operation to 80y.

  18. Neutronic reactor

    DOEpatents

    Wende, Charles W. J.

    1976-08-17

    A safety rod for a nuclear reactor has an inner end portion having a gamma absorption coefficient and neutron capture cross section approximately equal to those of the adjacent shield, a central portion containing materials of high neutron capture cross section and an outer end portion having a gamma absorption coefficient at least equal to that of the adjacent shield.

  19. Neutronic reactor

    DOEpatents

    Carleton, John T.

    1977-01-25

    A graphite-moderated nuclear reactor includes channels between blocks of graphite and also includes spacer blocks between adjacent channeled blocks with an axis of extension normal to that of the axis of elongation of the channeled blocks to minimize changes in the physical properties of the graphite as a result of prolonged neutron bombardment.

  20. Sonochemical Reactors.

    PubMed

    Gogate, Parag R; Patil, Pankaj N

    2016-10-01

    Sonochemical reactors are based on the generation of cavitational events using ultrasound and offer immense potential for the intensification of physical and chemical processing applications. The present work presents a critical analysis of the underlying mechanisms for intensification, available reactor configurations and overview of the different applications exploited successfully, though mostly at laboratory scales. Guidelines have also been presented for optimum selection of the important operating parameters (frequency and intensity of irradiation, temperature and liquid physicochemical properties) as well as the geometric parameters (type of reactor configuration and the number/position of the transducers) so as to maximize the process intensification benefits. The key areas for future work so as to transform the successful technique at laboratory/pilot scale into commercial technology have also been discussed. Overall, it has been established that there is immense potential for sonochemical reactors for process intensification leading to greener processing and economic benefits. Combined efforts from a wide range of disciplines such as material science, physics, chemistry and chemical engineers are required to harness the benefits at commercial scale operation.

  1. NEUTRONIC REACTOR

    DOEpatents

    Wigner, E.P.

    1962-12-25

    A reactor is described comprising a plurality of horizontal trays containing a solution of a fissionable material, the trays being sleeved on a vertical tube which contains a vertically-reciprocable control rod, a gas-tight chamber enclosing the trays, and means for conducting vaporized moderator from the chamber and for replacing vaporized moderator in the trays. (AEC)

  2. NEUTRONIC REACTORS

    DOEpatents

    Anderson, H.L.

    1958-10-01

    The design of control rods for nuclear reactors are described. In this design the control rod consists essentially of an elongated member constructed in part of a neutron absorbing material and having tube means extending therethrough for conducting a liquid to cool the rod when in use.

  3. Sonochemical Reactors.

    PubMed

    Gogate, Parag R; Patil, Pankaj N

    2016-10-01

    Sonochemical reactors are based on the generation of cavitational events using ultrasound and offer immense potential for the intensification of physical and chemical processing applications. The present work presents a critical analysis of the underlying mechanisms for intensification, available reactor configurations and overview of the different applications exploited successfully, though mostly at laboratory scales. Guidelines have also been presented for optimum selection of the important operating parameters (frequency and intensity of irradiation, temperature and liquid physicochemical properties) as well as the geometric parameters (type of reactor configuration and the number/position of the transducers) so as to maximize the process intensification benefits. The key areas for future work so as to transform the successful technique at laboratory/pilot scale into commercial technology have also been discussed. Overall, it has been established that there is immense potential for sonochemical reactors for process intensification leading to greener processing and economic benefits. Combined efforts from a wide range of disciplines such as material science, physics, chemistry and chemical engineers are required to harness the benefits at commercial scale operation. PMID:27573503

  4. NEUTRONIC REACTOR

    DOEpatents

    Wigner, E.P.

    1960-09-27

    A unit assembly is described for a neutronic reactor comprising a tube and plurality of spaced parallel sandwiches in the tube extending lengthwise thereof, each sandwich including a middle plate having a central opening for plutonium and other openings for fertile material at opposite ends of the plate.

  5. Ca(2+)-independent F-actin assembly and disassembly during Fc receptor- mediated phagocytosis in mouse macrophages

    PubMed Central

    1991-01-01

    Phagocytosis of IgG-coated particles by macrophages is presumed to involve the actin-based cytoskeleton since F-actin accumulates beneath forming phagosomes, and particle engulfment is blocked by cytochalasins, drugs that inhibit actin filament assembly. However, it is unknown whether Fc receptor ligation affects the rate or extent of F- actin assembly during phagocytosis of IgG-coated particles. To examine this question we have used a quantitative spectrofluorometric method to examine F-actin dynamics during a synchronous wave of phagocytosis of IgG-coated red blood cells by inflammatory mouse macrophages. We observed a biphasic rise in macrophage F-actin content during particle engulfment, with maxima at 1 and 5 min after the initiation of phagocytosis. F-actin declined to resting levels by 30 min, by which time particle engulfment was completed. These quantitative increases in macrophage F-actin were reflected in localized changes in F-actin distribution. Previous work showed that the number of IgG-coated particles engulfed by macrophages is unaffected by buffering extracellular calcium or by clamping cytosolic free calcium concentration ([Ca2+]i) to very low levels (Di Virgilio, F., B. C. Meyer, S. Greenberg, and S. C. Silverstein. 1988. J. Cell Biol. 106: 657-666). To determine whether clamping [Ca2+]i in macrophages affects the rate of particle engulfment, or the assembly or disassembly of F- actin during phagocytosis, we examined these parameters in macrophages whose [Ca2+]i had been clamped to approximately less than 3 nM with fura 2/AM and acetoxymethyl ester of EGTA. We found that the initial rate of phagocytosis, and the quantities of F-actin assembled and disassembled were similar in Ca(2+)-replete and Ca(2+)-depleted macrophages. We conclude that Fc receptor-mediated phagocytosis in mouse macrophages is accompanied by an ordered sequence of assembly and disassembly of F-actin that is insensitive to [Ca2+]i. PMID:2026648

  6. High Light Induced Disassembly of Photosystem II Supercomplexes in Arabidopsis Requires STN7-Dependent Phosphorylation of CP29

    PubMed Central

    Fristedt, Rikard; Vener, Alexander V.

    2011-01-01

    Photosynthetic oxidation of water and production of oxygen by photosystem II (PSII) in thylakoid membranes of plant chloroplasts is highly affected by changes in light intensities. To minimize damage imposed by excessive sunlight and sustain the photosynthetic activity PSII, organized in supercomplexes with its light harvesting antenna, undergoes conformational changes, disassembly and repair via not clearly understood mechanisms. We characterized the phosphoproteome of the thylakoid membranes from Arabidopsis thaliana wild type, stn7, stn8 and stn7stn8 mutant plants exposed to high light. The high light treatment of the wild type and stn8 caused specific increase in phosphorylation of Lhcb4.1 and Lhcb4.2 isoforms of the PSII linker protein CP29 at five different threonine residues. Phosphorylation of CP29 at four of these residues was not found in stn7 and stn7stn8 plants lacking the STN7 protein kinase. Blue native gel electrophoresis followed by immunological and mass spectrometric analyses of the membrane protein complexes revealed that the high light treatment of the wild type caused redistribution of CP29 from PSII supercomplexes to PSII dimers and monomers. A similar high-light-induced disassembly of the PSII supercomplexes occurred in stn8, but not in stn7 and stn7stn8. Transfer of the high-light-treated wild type plants to normal light relocated CP29 back to PSII supercomplexes. We postulate that disassembly of PSII supercomplexes in plants exposed to high light involves STN7-kinase-dependent phosphorylation of the linker protein CP29. Disruption of this adaptive mechanism can explain dramatically retarded growth of the stn7 and stn7stn8 mutants under fluctuating normal/high light conditions, as previously reported. PMID:21915352

  7. Basic residue at position 14 is not required for fast assembly and disassembly kinetics in neural cadherin.

    PubMed

    Vunnam, Nagamani; Hammer, Nathan I; Pedigo, Susan

    2015-01-27

    In spite of their structural similarities, epithelial (E-) and neural (N-) cadherin are expressed at different types of synapses and differ significantly in their dimerization kinetics. Recent studies proposed a transient intermediate in E-cadherin as the key requirement for rapid disassembly kinetics of the adhesive dimer. This E-cadherin intermediate comprises four intermolecular ionic and H-bonding interactions between adhesive partners. These interactions are not preserved in N-cadherin except for a basic residue at the 14th position, which could stabilize the intermediate through either H-bonding or ionic interactions with the partner protomer. To investigate the origin of the rapid dimerization kinetics of N-cadherin in the presence of calcium, studies reported here systematically test the role of ionic and H-bonding interactions in dimerization kinetics using R14S, R14A, and R14E mutants of N-cadherin. Analytical size-exclusion chromatographic and bead aggregation studies showed two primary results. First, N-cadherin/R14S and N-cadherin/R14A mutants showed fast assembly and disassembly kinetics in the calcium-saturated state similar to that of wild-type N-cadherin. These results indicate that the fast disassembly of the calcium-saturated dimer of N-cadherin does not require a basic residue at the 14th position. Second, the dimerization kinetics of N-cadherin/R14E were slow in the calcium-saturated state, indicating that negative charge destabilizes the intermediate state. Taken together, these results indicate that the basic residue at the 14th position does not promote rapid dimerization kinetics but that an acidic amino acid in that position significantly impairs dimerization kinetics.

  8. Macromolecular crowding favors the fibrillization of β2-microglobulin by accelerating the nucleation step and inhibiting fibril disassembly.

    PubMed

    Luo, Xu-Dong; Kong, Fan-Lou; Dang, Hai-Bin; Chen, Jie; Liang, Yi

    2016-11-01

    Hemodialysis-associated amyloidosis (HAA) involves the fibrillization of β2-microglobulin (β2M) and occurs in crowded physiological environments. However, how macromolecular crowding affects amyloid formation of β2M remains elusive. Here we study the effects of macromolecular crowding on amyloid formation and fibril disassembly of wild-type human β2M and its pathogenic mutant ΔN6. At strongly acidic pH2.5, the presence of a strong crowding agent (Ficoll 70 or dextran 70) not only dramatically accelerates the fibrillization of both wild-type β2M and its ΔN6 variant by reducing the lag time to a large extent, indicating the acceleration of the nucleation phase, but also remarkably increases the amount of β2M fibrils. At weakly acidic pH6.2, such an enhancing effect of macromolecular crowding on fibril formation is only observed for pathogenic mutant ΔN6, but not for wild-type β2M which does not form amyloid fibrils in the absence and presence of a crowding agent. Thus, we propose that the monomers of β2M form the nuclei, which is enhanced by macromolecular crowding, followed by the step of fibril elongation. Furthermore, at physiological pH, macromolecular crowding remarkably inhibits β2M fibril disassembly by decreasing rate constants corresponding to fast and slow stages of fibril disaggregation. Our data demonstrate that macromolecular crowding favors the fibrillization of β2M by accelerating the nucleation step and inhibiting fibril disassembly. Our findings provide clear evidence for the pathology of HAA that macromolecular crowding should be taken into account. PMID:27481166

  9. Sequence-defined Energetic Shifts Control the Disassembly Kinetics and Microstructure of Amelogenin Adsorbed onto Hydroxyapatite (100)

    SciTech Connect

    Tao, Jinhui; Buchko, Garry W.; Shaw, Wendy J.; De Yoreo, Jim; Tarasevich, Barbara J.

    2015-11-03

    The interactions between proteins and surfaces are critical to a number of important processes including biomineralization, the biocompatibility of biomaterials, and the function of biosensors. Although many proteins exist as monomers or small oligomers, amelogenin is a unique protein that self-assembles into supramolecular structures called “nanospheres,” aggregates of 100’s of monomers that are 20-60 nm in diameter. The nanosphere quaternary structure is observed in solution, however, the quaternary structure of amelogenin adsorbed onto hydroxyapatite (HAP) surfaces is not known even though it may be important to amelogenin’s function in forming highly elongated and intricately assembled HAP crystallites during enamel formation. We report studies of the interactions of the enamel protein, amelogenin (rpM179), with a well-defined (100) face prepared by synthesis of large crystals of HAP. High resolution, in-situ atomic force microscopy (AFM) was used to directly observe protein adsorption onto HAP at the molecular level within an aqueous solution environment. Our study shows that the amelogenin nanospheres disassemble onto the HAP surface, breaking down into oligomeric (25-mer) subunits of the larger nanosphere. In some cases, the disassembly event is directly observed by in situ imaging for the first time. Quantification of the adsorbate amounts by size analysis led to the determination of a protein binding energy (17.1 kbT) to a specific face of HAP (100). The kinetics of disassembly are greatly slowed in aged solutions, indicating there are time-dependent increases in oligomer-oligomer binding interactions within the nanosphere. A small change in the sequence of amelogenin by the attachment of a histidine tag to the N-terminus of rpM179 to form rp(H)M180 results in the adsorption of a complete second layer on top of the underlying first layer. Our research elucidates how supramolecular protein structures interact and break down at surfaces and how small

  10. Osteoprotegerin induces podosome disassembly in osteoclasts through calcium, ERK, and p38 MAPK signaling pathways.

    PubMed

    Zhao, Hongyan; Liu, Xuezhong; Zou, Hui; Dai, Nannan; Yao, Lulian; Gao, Qian; Liu, Wei; Gu, Jianhong; Yuan, Yan; Bian, Jianchun; Liu, Zongping

    2015-02-01

    Osteoclasts are critical for bone resorption and use podosomes to attach to bone matrix. Osteoprotegerin (OPG) is a negative regulator of osteoclast function that can affect the formation and function of podosomes. However, the signaling pathways that link OPG to podosome function have not been well characterized. Therefore, this study examined the roles of intracellular calcium and MAPKs in OPG-induced podosome disassembly in osteoclasts. We assessed the effects of the intracellular calcium chelator Bapta-AM, ERK inhibitor U0126, and p38 inhibitor SB202190 on OPG-treated osteoclast differentiation, adhesion structures, intracellular free Ca(2+) concentration and the phosphorylation state of podosome associated proteins (Pyk2 and Src). Mouse monocytic RAW 264.7 cells were differentiated to osteoclasts using RANKL (30ng/mL) and M-CSF (25ng/mL). The cells were pretreated with Bapta-AM (5μM), U0126 (5μM), or SB202190 (10μM) for 30min, followed by 40ng/mL OPG for 3h. Osteoclastogenesis, adhesion structure, viability and morphology, intracellular free Ca(2+) concentration and the phosphorylation state of Pyk2 and Src were measured by TRAP staining, scanning electron microscopy, real-time cell analyzer, flow cytometry and western blotting, respectively. OPG significantly inhibited osteoclastogenesis, the formation of adhesion structures, and reduced the amount of phosphorylated Pyk2 and Src-pY527, but increased phosphorylation of Src-pY416. Bapta-AM, U0126, and SB202190 partially restored osteoclast differentiation and adhesion structures. Both Bapta-AM and U0126, but not SB202190, restored the levels of intracellular free Ca(2+) concentration, phosphorylated Pyk2 and Src-pY527. All three inhibitors blocked OPG-induced phosphorylation at Src-pY416. These results suggest OPG disrupts the attachment structures of osteoclasts and activates Src as an adaptor protein that competes for the reduced amount of phosphorylated Pyk2 through calcium- and ERK-dependent signaling

  11. NUCLEAR REACTOR

    DOEpatents

    Grebe, J.J.

    1959-12-15

    A reactor which is particularly adapted tu serve as a heat source for a nuclear powered alrcraft or rocket is described. The core of this reactor consists of a porous refractory modera;or body which is impregnated with fissionable nuclei. The core is designed so that its surface forms tapered inlet and outlet ducts which are separated by the porous moderator body. In operation a gaseous working fluid is circulated through the inlet ducts to the surface of the moderator, enters and passes through the porous body, and is heated therein. The hot gas emerges into the outlet ducts and is available to provide thrust. The principle advantage is that tremendous quantities of gas can be quickly heated without suffering an excessive pressure drop.

  12. NUCLEAR REACTOR

    DOEpatents

    Treshow, M.

    1958-08-19

    A neuclear reactor is described of the heterogeneous type and employing replaceable tubular fuel elements and heavy water as a coolant and moderator. A pluraltty of fuel tubesa having their axes parallel, extend through a tank type pressure vessel which contatns the liquid moderator. The fuel elements are disposed within the fuel tubes in the reaetive portion of the pressure vessel during normal operation and the fuel tubes have removable plug members at each end to permit charging and discharging of the fuel elements. The fuel elements are cylindrical strands of jacketed fissionable material having helical exterior ribs. A bundle of fuel elements are held within each fuel tube with their longitudinal axes parallel, the ribs serving to space them apart along their lengths. Coolant liquid is circulated through the fuel tubes between the spaced fuel elements. Suitable control rod and monitoring means are provided for controlling the reactor.

  13. REACTOR MONITORING

    DOEpatents

    Bugbee, S.J.; Hanson, V.F.; Babcock, D.F.

    1959-02-01

    A neutron density inonitoring means for reactors is described. According to this invention a tunnel is provided beneath and spaced from the active portion of the reactor and extends beyond the opposite faces of the activc portion. Neutron beam holes are provided between the active portion and the tunnel and open into the tunnel near the middle thereof. A carriage operates back and forth in the tunnel and is adapted to convey a neutron detector, such as an ion chamber, and position it beneath one of the neutron beam holes. This arrangement affords convenient access of neutron density measuring instruments to a location wherein direct measurement of neutron density within the piles can be made and at the same time affords ample protection to operating personnel.

  14. NEUTRONIC REACTOR

    DOEpatents

    Wade, E.J.

    1958-09-16

    This patent relates to a reflector means for a neutronic reactor. A reflector comprised of a plurality of vertically movable beryllium control members is provided surrounding the sides of the reactor core. An absorber of fast neutrons comprised of natural uramum surrounds the reflector. An absorber of slow neutrons surrounds the absorber of fast neutrons and is formed of a plurality of beryllium blocks having natural uranium members distributcd therethrough. in addition, a movable body is positioned directly below the core and is comprised of a beryllium reflector and an absorbing member attached to the botiom thereof, the absorbing member containing a substance selected from the goup consisting of natural urantum and Th/sup 232/.

  15. Nuclear reactor

    DOEpatents

    Wade, Elman E.

    1979-01-01

    A nuclear reactor including two rotatable plugs and a positive top core holddown structure. The top core holddown structure is divided into two parts: a small core cover, and a large core cover. The small core cover, and the upper internals associated therewith, are attached to the small rotating plug, and the large core cover, with its associated upper internals, is attached to the large rotating plug. By so splitting the core holddown structures, under-the-plug refueling is accomplished without the necessity of enlarging the reactor pressure vessel to provide a storage space for the core holddown structure during refueling. Additionally, the small and large rotating plugs, and their associated core covers, are arranged such that the separation of the two core covers to permit rotation is accomplished without the installation of complex lifting mechanisms.

  16. REACTOR UNLOADING

    DOEpatents

    Leverett, M.C.

    1958-02-18

    This patent is related to gas cooled reactors wherein the fuel elements are disposed in vertical channels extending through the reactor core, the cooling gas passing through the channels from the bottom to the top of the core. The invention is a means for unloading the fuel elements from the core and comprises dump values in the form of flat cars mounted on wheels at the bottom of the core structure which support vertical stacks of fuel elements. When the flat cars are moved, either manually or automatically, for normal unloading purposes, or due to a rapid rise in the reproduction ratio within the core, the fuel elements are permtted to fall by gravity out of the core structure thereby reducing the reproduction ratio or stopping the reaction as desired.

  17. Neutronic reactor

    DOEpatents

    Lewis, Warren R.

    1978-05-30

    A graphite-moderated, water-cooled nuclear reactor including a plurality of rectangular graphite blocks stacked in abutting relationship in layers, alternate layers having axes which are normal to one another, alternate rows of blocks in alternate layers being provided with a channel extending through the blocks, said channeled blocks being provided with concave sides and having smaller vertical dimensions than adjacent blocks in the same layer, there being nuclear fuel in the channels.

  18. NUCLEAR REACTORS

    DOEpatents

    Koch, L.J.; Rice, R.E. Jr.; Denst, A.A.; Rogers, A.J.; Novick, M.

    1961-12-01

    An active portion assembly for a fast neutron reactor is described wherein physical distortions resulting in adverse changes in the volume-to-mass ratio are minimized. A radially expandable locking device is disposed within a cylindrical tube within each fuel subassembly within the active portion assembly, and clamping devices expandable toward the center of the active portion assembly are disposed around the periphery thereof. (AEC)

  19. NUCLEAR REACTORS

    DOEpatents

    Long, E.; Ashby, J.W.

    1958-09-16

    ABS>A graphite moderator structure is presented for a nuclear reactor compriscd of an assembly of similarly orientated prismatic graphite blocks arranged on spaced longitudinal axes lying in common planes wherein the planes of the walls of the blocks are positioned so as to be twisted reintive to the planes of said axes so thatthe unlmpeded dtrect paths in direction wholly across the walls of the blocks are limited to the width of the blocks plus spacing between the blocks.

  20. NEUTRONIC REACTORS

    DOEpatents

    Anderson, J.B.

    1960-01-01

    A reactor is described which comprises a tank, a plurality of coaxial steel sleeves in the tank, a mass of water in the tank, and wire grids in abutting relationship within a plurality of elongated parallel channels within the steel sleeves, the wire being provided with a plurality of bends in the same plane forming adjacent parallel sections between bends, and the sections of adjacent grids being normally disposed relative to each other.

  1. NUCLEAR REACTOR

    DOEpatents

    Grebe, J.J.

    1961-01-24

    A core structure for neutronic reactors adapted for the propulsion of aircraft and rockets is offered. The core is designed for cooling by gaseous media, and comprises a plurality of hollow tapered tubular segments of a porous moderating material impregniated with fissionable fuel nested about a common axis. Alternate ends of the segments are joined. In operation a coolant gas passes through the porous structure and is heated.

  2. REACTOR CONTROL

    DOEpatents

    Ruano, W.J.

    1957-12-10

    This patent relates to nuclear reactors of the type which utilize elongited rod type fuel elements immersed in a liquid moderator and shows a design whereby control of the chain reaction is obtained by varying the amount of moderator or reflector material. A central tank for containing liquid moderator and fuel elements immersed therein is disposed within a surrounding outer tank providing an annular space between the two tanks. This annular space is filled with liquid moderator which functions as a reflector to reflect neutrons back into the central reactor tank to increase the reproduction ratio. Means are provided for circulating and cooling the moderator material in both tanks and additional means are provided for controlling separately the volume of moderator in each tank, which latter means may be operated automatically by a neutron density monitoring device. The patent also shows an arrangement for controlling the chain reaction by injecting and varying an amount of poisoning material in the moderator used in the reflector portion of the reactor.

  3. Multi-criteria decision making approach in multiple periods for a disassembly-to-order system under product's deterioration and stochastic yields

    NASA Astrophysics Data System (ADS)

    Imtanavanich, Prasit; Gupta, Surendra M.

    2005-11-01

    In this paper, we concentrate on the disassembly-to-order (DTO) system, where end-of-life (EOL) products are taken back from last users to be disassembled to fulfill the demands for components and materials. The objective is to determine the number of EOL products that would be needed to maximize the profit and minimize the costs of the system. The conditions of EOL products are not always certain, which makes the problem difficult. We use a heuristic approach which transforms the stochastic disassembly yields into their deterministic equivalents and use a multi-criteria decision-making technique to solve the problem. In addition, we take the products' ages (and thus their deterioration) into account to determine their yield rates (e.g., older products tend to have lower yield rates for usable components) and generate the DTO plans for multiple periods. A numerical example is considered to illustrate the implementation of the approach.

  4. Photosensitizer enhanced disassembly of amphiphilic micelle for ROS-response targeted tumor therapy in vivo.

    PubMed

    Dai, Liangliang; Yu, Yonglin; Luo, Zhong; Li, Menghuan; Chen, Weizhen; Shen, Xinkun; Chen, Feng; Sun, Qiang; Zhang, Qingfeng; Gu, Hao; Cai, Kaiyong

    2016-10-01

    This study reports a reactive oxygen species (ROS) sensitive drug delivery system based on amphiphilic polymer of poly(propylene sulfide)-polyethylene glycol-serine-folic acid (PPS-mPEG-Ser-FA). The polymer could form homogeneous micelles with an average diameter of around 80 nm through self-assembly, which would then be loaded with the singlet oxygen-generating photosensitizer of zinc phthalocyanine (ZNPC) and anti-cancer drug of DOX. The disassembly of micelles could be triggered by the hydrophobic to hydrophilic transition of the PPS core in response to ROS-induced oxidation in vitro. ZNPC molecules are capable of producing ROS under laser irradiation, which results in the rapid disassembly of micelles and releasing of the anti-tumor drug for tumor therapy under physiological condition otherwise. Moreover, the excessive ROS production deriving from ZNPC synergically induces cells apoptosis. Furthermore, the DOX loaded amphiphilic micelles could be internalized by tumor cells via FA receptor-mediated endocytosis to effectively inhibit the tumor growth in vivo, while with only minimal toxic side effects. The results in vitro and in vivo consistently demonstrate that the light-responsive micelle is a promising biodegradable nanocarrier for on-command drug release and targeted tumor therapy. PMID:27423095

  5. Reconstruction of the Disassembly Pathway of an Icosahedral Viral Capsid and Shape Determination of Two Successive Intermediates.

    PubMed

    Law-Hine, Didier; Sahoo, Anil K; Bailleux, Virginie; Zeghal, Mehdi; Prevost, Sylvain; Maiti, Prabal K; Bressanelli, Stéphane; Constantin, Doru; Tresset, Guillaume

    2015-09-01

    Viral capsids derived from an icosahedral plant virus widely used in physical and nanotechnological investigations were fully dissociated into dimers by a rapid change of pH. The process was probed in vitro at high spatiotemporal resolution by time-resolved small-angle X-ray scattering using a high brilliance synchrotron source. A powerful custom-made global fitting algorithm allowed us to reconstruct the most likely pathway parametrized by a set of stoichiometric coefficients and to determine the shape of two successive intermediates by ab initio calculations. None of these two unexpected intermediates was previously identified in self-assembly experiments, which suggests that the disassembly pathway is not a mirror image of the assembly pathway. These findings shed new light on the mechanisms and the reversibility of the assembly/disassembly of natural and synthetic virus-based systems. They also demonstrate that both the structure and dynamics of an increasing number of intermediate species become accessible to experiments. PMID:27120684

  6. Salt stress-induced disassembly of Arabidopsis cortical microtubule arrays involves 26S proteasome-dependent degradation of SPIRAL1.

    PubMed

    Wang, Songhu; Kurepa, Jasmina; Hashimoto, Takashi; Smalle, Jan A

    2011-09-01

    The dynamic instability of cortical microtubules (MTs) (i.e., their ability to rapidly alternate between phases of growth and shrinkage) plays an essential role in plant growth and development. In addition, recent studies have revealed a pivotal role for dynamic instability in the response to salt stress conditions. The salt stress response includes a rapid depolymerization of MTs followed by the formation of a new MT network that is believed to be better suited for surviving high salinity. Although this initial depolymerization response is essential for the adaptation to salt stress, the underlying molecular mechanism has remained largely unknown. Here, we show that the MT-associated protein SPIRAL1 (SPR1) plays a key role in salt stress-induced MT disassembly. SPR1, a microtubule stabilizing protein, is degraded by the 26S proteasome, and its degradation rate is accelerated in response to high salinity. We show that accelerated SPR1 degradation is required for a fast MT disassembly response to salt stress and for salt stress tolerance.

  7. Disassembly of yeast 80S ribosomes into subunits is a concerted action of ribosome-assisted folding of denatured protein.

    PubMed

    Chakraborty, Biprashekhar; Bhakta, Sayan; Sengupta, Jayati

    2016-01-22

    It has been shown by several groups that ribosome can assist folding of denatured protein in vitro and the process is conserved across the species. Domain V of large ribosomal rRNA which occupies the intersubunit side of the large subunit was identified as the key player responsible for chaperoning the folding process. Thus, it is conceivable that denatured protein needs to access the intersubunit space of the ribosome in order to get folded. In this study, we have investigated the mechanism of release of the protein from the eukaryotic ribosome following reactivation. We have observed significant splitting of yeast 80S ribosome when incubated with the denatured BCAII protein. Energy-free disassembly mechanism functions in low Mg(+2) ion concentration for prokaryotic ribosomes. Eukaryotic ribosomes do not show significant splitting even at low Mg(+2) ion concentration. In this respect, denatured protein-induced disassembly of eukaryotic ribosome without the involvement of any external energy source is intriguing. For prokaryotic ribosomes, it was reported that the denatured protein induces ribosome splitting into subunits in order to access domain V-rRNA. In contrast, our results suggest an alternative mechanism for eukaryotic ribosomal rRNA-mediated protein folding and subsequent separation of the subunits by which release of the activated-protein occurs.

  8. Interaction with the BRCA2 C terminus protects RAD51-DNA filaments from disassembly by BRC repeats.

    PubMed

    Davies, Owen Richard; Pellegrini, Luca

    2007-06-01

    BRCA2 has an essential function in DNA repair by homologous recombination, interacting with RAD51 via short motifs in the middle and at the C terminus of BRCA2. Here, we report that a conserved 36-residue sequence of human BRCA2 encoded by exon 27 (BRCA2Exon27) interacts with RAD51 through the specific recognition of oligomerized RAD51 ATPase domains. BRCA2Exon27 binding stabilizes the RAD51 nucleoprotein filament against disassembly by BRC repeat 4. The protection is specific for RAD51 filaments formed on single-stranded DNA and is lost when BRCA2Exon27 is phosphorylated on Ser3291. We propose that productive recombination results from the functional balance between the different RAD51-binding modes [corrected] of the BRC repeat and exon 27 regions of BRCA2. Our results further suggest a mechanism in which CDK phosphorylation of BRCA2Exon27 at the G2-M transition alters the balance in favor of RAD51 filament disassembly, thus terminating recombination.

  9. Disassembly of the self-assembled, double-ring structure of proteasome α7 homo-tetradecamer by α6

    PubMed Central

    Ishii, Kentaro; Noda, Masanori; Yagi, Hirokazu; Thammaporn, Ratsupa; Seetaha, Supaporn; Satoh, Tadashi; Kato, Koichi; Uchiyama, Susumu

    2015-01-01

    The 20S core particle of the eukaryotic proteasome is composed of two α- and two β-rings, each of which is a hetero-heptamer composed of seven homologous but distinct subunits. Although formation of the eukaryotic proteasome is a highly ordered process assisted by assembly chaperones, α7, an α-ring component, has the unique property of self-assembling into a homo-tetradecamer. We used biophysical methods to characterize the oligomeric states of this proteasome subunit and its interaction with α6, which makes direct contacts with α7 in the proteasome α-ring. We determined a crystal structure of the α7 tetradecamer, which has a double-ring structure. Sedimentation velocity analytical ultracentrifugation and mass spectrometric analysis under non-denaturing conditions revealed that α7 exclusively exists as homo-tetradecamer in solution and that its double-ring structure is disassembled upon the addition of α6, resulting in a 1:7 hetero-octameric α6–α7 complex. Our findings suggest that proteasome formation involves the disassembly of non-native oligomers, which are assembly intermediates. PMID:26657688

  10. Resistance of Dynamin-related Protein 1 Oligomers to Disassembly Impairs Mitophagy, Resulting in Myocardial Inflammation and Heart Failure.

    PubMed

    Cahill, Thomas J; Leo, Vincenzo; Kelly, Matthew; Stockenhuber, Alexander; Kennedy, Nolan W; Bao, Leyuan; Cereghetti, Grazia; Harper, Andrew R; Czibik, Gabor; Lao, Chunyan; Bellahcene, Mohamed; Steeples, Violetta; Ghaffari, Safar; Yavari, Arash; Mayer, Alice; Poulton, Joanna; Ferguson, David J P; Scorrano, Luca; Hettiarachchi, Nishani T; Peers, Chris; Boyle, John; Hill, R Blake; Simmons, Alison; Watkins, Hugh; Dear, T Neil; Ashrafian, Houman

    2015-10-23

    We have reported previously that a missense mutation in the mitochondrial fission gene Dynamin-related protein 1 (Drp1) underlies the Python mouse model of monogenic dilated cardiomyopathy. The aim of this study was to investigate the consequences of the C452F mutation on Drp1 protein function and to define the cellular sequelae leading to heart failure in the Python monogenic dilated cardiomyopathy model. We found that the C452F mutation increased Drp1 GTPase activity. The mutation also conferred resistance to oligomer disassembly by guanine nucleotides and high ionic strength solutions. In a mouse embryonic fibroblast model, Drp1 C452F cells exhibited abnormal mitochondrial morphology and defective mitophagy. Mitochondria in C452F mouse embryonic fibroblasts were depolarized and had reduced calcium uptake with impaired ATP production by oxidative phosphorylation. In the Python heart, we found a corresponding progressive decline in oxidative phosphorylation with age and activation of sterile inflammation. As a corollary, enhancing autophagy by exposure to a prolonged low-protein diet improved cardiac function in Python mice. In conclusion, failure of Drp1 disassembly impairs mitophagy, leading to a downstream cascade of mitochondrial depolarization, aberrant calcium handling, impaired ATP synthesis, and activation of sterile myocardial inflammation, resulting in heart failure. PMID:26370078

  11. Nuclear Reactors. Revised.

    ERIC Educational Resources Information Center

    Hogerton, John F.

    This publication is one of a series of information booklets for the general public published by the United States Atomic Energy Commission. Among the topics discussed are: How Reactors Work; Reactor Design; Research, Teaching, and Materials Testing; Reactors (Research, Teaching and Materials); Production Reactors; Reactors for Electric Power…

  12. Nuclear reactor

    DOEpatents

    Pennell, William E.; Rowan, William J.

    1977-01-01

    A nuclear reactor in which the core components, including fuel-rod assemblies, control-rod assemblies, fertile rod-assemblies, and removable shielding assemblies, are supported by a plurality of separate inlet modular units. These units are referred to as inlet module units to distinguish them from the modules of the upper internals of the reactor. The modular units are supported, each removable independently of the others, in liners in the supporting structure for the lower internals of the reactor. The core assemblies are removably supported in integral receptacles or sockets of the modular units. The liners, units, sockets and assmblies have inlet openings for entry of the fluid. The modular units are each removably mounted in the liners with fluid seals interposed between the opening in the liner and inlet module into which the fluid enters and the upper and lower portion of the liner. Each assembly is similarly mounted in a corresponding receptacle with fluid seals interposed between the openings where the fluid enters and the lower portion of the receptacle or fitting closely in these regions. As fluid flows along each core assembly a pressure drop is produced along the fluid so that the fluid which emerges from each core assembly is at a lower pressure than the fluid which enters the core assembly. However because of the seals interposed in the mountings of the units and assemblies the pressures above and below the units and assemblies are balanced and the units are held in the liners and the assemblies are held in the receptacles by their weights as they have a higher specific gravity than the fluid. The low-pressure spaces between each module and its liner and between each core assembly and its module is vented to the low-pressure regions of the vessel to assure that fluid which leaks through the seals does not accumulate and destroy the hydraulic balance.

  13. REACTOR COMPONETN

    DOEpatents

    Creutz, E.C.

    1959-10-27

    A reactor fuel element comprised of a slug of fissionable material disposed in a sheath of corrosion resistantmaterial is described. The sheath is in the form of a tubular container closed at one end and is in tight-fitting engagement with the peripheral sunface of the slug. An inner cap is insented into the open end of the sheath against the slug, which end is then bent around the inner cap and welded thereto. An outer cap is then welded around its peripheny to the bent portion of the container.

  14. NUCLEAR REACTORS

    DOEpatents

    Long, E.; Ashley, J.W.

    1958-12-16

    A graphite moderator structure is described for a gas-cooled nuclear reactor having a vertical orlentation wherein the structure is physically stable with regard to dlmensional changes due to Wigner growth properties of the graphite, and leakage of coolant gas along spaces in the structure is reduced. The structure is comprised of stacks of unlform right prismatic graphite blocks positioned in layers extending in the direction of the lengths of the blocks, the adjacent end faces of the blocks being separated by pairs of tiles. The blocks and tiles have central bores which are in alignment when assembled and are provided with cooperatlng keys and keyways for physical stability.

  15. Hybrid adsorptive membrane reactor

    NASA Technical Reports Server (NTRS)

    Tsotsis, Theodore T. (Inventor); Sahimi, Muhammad (Inventor); Fayyaz-Najafi, Babak (Inventor); Harale, Aadesh (Inventor); Park, Byoung-Gi (Inventor); Liu, Paul K. T. (Inventor)

    2011-01-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  16. Hybrid adsorptive membrane reactor

    DOEpatents

    Tsotsis, Theodore T.; Sahimi, Muhammad; Fayyaz-Najafi, Babak; Harale, Aadesh; Park, Byoung-Gi; Liu, Paul K. T.

    2011-03-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  17. Control Means for Reactor

    DOEpatents

    Manley, J. H.

    1961-06-27

    An apparatus for controlling a nuclear reactor includes a tank just below the reactor, tubes extending from the tank into the reactor, and a thermally expansible liquid neutron absorbent material in the tank. The liquid in the tank is exposed to a beam of neutrons from the reactor which heats the liquid causing it to expand into the reactor when the neutron flux in the reactor rises above a predetermincd danger point. Boron triamine may be used for this purpose.

  18. NEUTRONIC REACTOR

    DOEpatents

    Stewart, H.B.

    1958-12-23

    A nuclear reactor of the type speclfically designed for the irradiation of materials is discussed. In this design a central cyllndrical core of moderating material ls surrounded by an active portlon comprlsed of an annular tank contalning fissionable material immersed ln a liquid moderator. The active portion ls ln turn surrounded by a reflector, and a well ls provided in the center of the core to accommodate the materlals to be irradiated. The over-all dimensions of the core ln at least one plane are equal to or greater than twice the effective slowing down length and equal to or less than twlce the effective diffuslon length for neutrons in the core materials.

  19. NEUTRONIC REACTOR

    DOEpatents

    Wigner, E.P.

    1957-09-17

    A reactor of the type having coolant liquid circulated through clad fuel elements geometrically arranged in a solid moderator, such as graphite, is described. The core is enclosed in a pressure vessel and suitable shielding, wherein means is provided for circulating vapor through the core to superheat the same. This is accomplished by drawing off the liquid which has been heated in the core due to the fission of the fuel, passing it to a nozzle within a chamber where it flashes into a vapor, and then passing the vapor through separate tubes extending through the moderator to pick up more heat developed in the core due to the fission of the fuel, thereby producing superheated vapor.

  20. NEUTRONIC REACTOR

    DOEpatents

    Daniels, F.

    1962-12-18

    A power plant is described comprising a turbine and employing round cylindrical fuel rods formed of BeO and UO/sub 2/ and stacks of hexagonal moderator blocks of BeO provided with passages that loosely receive the fuel rods so that coolant may flow through the passages over the fuels to remove heat. The coolant may be helium or steam and fiows through at least one more heat exchanger for producing vapor from a body of fluid separate from the coolant, which fluid is to drive the turbine for generating electricity. By this arrangement the turbine and directly associated parts are free of particles and radiations emanating from the reactor. (AEC)

  1. Nuclear reactor

    DOEpatents

    Yant, Howard W.; Stinebiser, Karl W.; Anzur, Gregory C.

    1977-01-01

    A nuclear reactor, particularly a liquid-metal breeder reactor, whose upper internals include outlet modules for channeling the liquid-metal coolant from selected areas of the outlet of the core vertically to the outlet plenum. The modules are composed of a highly-refractory, high corrosion-resistant alloy, for example, INCONEL-718. Each module is disposed to confine and channel generally vertically the coolant emitted from a subplurality of core-component assemblies. Each module has a grid with openings, each opening disposed to receive the coolant from an assembly of the subplurality. The grid in addition serves as a holdown for the assemblies of the corresponding subplurality preventing their excessive ejection upwardly from the core. In the region directly over the core the outlet modules are of such peripheral form that they nest forming a continuum over the core-component assemblies whose outlet coolant they confine. Each subassembly includes a chimney which confines the coolant emitted by its corresponding subassemblies to generally vertical flow between the outlet of the core and the outlet plenum. Each subplurality of assemblies whose emitted coolant is confined by an outlet module includes assemblies which emit lower-temperature coolant, for example, a control-rod assembly, or fertile assemblies, and assemblies which emit coolant of substantially higher temperature, for example, fuel-rod assemblies. The coolants of different temperatures are mixed in the chimneys reducing the effect of stripping (hot-cold temperature fluctuations) on the remainder of the upper internals which are composed typically of AISI-304 or AISI-316 stainless steel.

  2. The RanBP2/RanGAP1*SUMO1/Ubc9 SUMO E3 ligase is a disassembly machine for Crm1-dependent nuclear export complexes

    PubMed Central

    Ritterhoff, Tobias; Das, Hrishikesh; Hofhaus, Götz; Schröder, Rasmus R.; Flotho, Annette; Melchior, Frauke

    2016-01-01

    Continuous cycles of nucleocytoplasmic transport require disassembly of transport receptor/Ran-GTP complexes in the cytoplasm. A basic disassembly mechanism in all eukaryotes depends on soluble RanGAP and RanBP1. In vertebrates, a significant fraction of RanGAP1 stably interacts with the nucleoporin RanBP2 at a binding site that is flanked by FG-repeats and Ran-binding domains, and overlaps with RanBP2's SUMO E3 ligase region. Here, we show that the RanBP2/RanGAP1*SUMO1/Ubc9 complex functions as an autonomous disassembly machine with a preference for the export receptor Crm1. We describe three in vitro reconstituted disassembly intermediates, which show binding of a Crm1 export complex via two FG-repeat patches, cargo-release by RanBP2's Ran-binding domains and retention of free Crm1 at RanBP2 after Ran-GTP hydrolysis. Intriguingly, all intermediates are compatible with SUMO E3 ligase activity, suggesting that the RanBP2/RanGAP1*SUMO1/Ubc9 complex may link Crm1- and SUMO-dependent functions. PMID:27160050

  3. A conserved membrane attachment site in alpha-SNAP facilitates N-ethylmaleimide-sensitive factor (NSF)-driven SNARE complex disassembly.

    PubMed

    Winter, Ulrike; Chen, Xiong; Fasshauer, Dirk

    2009-11-13

    The ATPase NSF (N-ethylmaleimide-sensitive factor) and its SNAP (soluble N-ethylmaleimide-sensitive factor attachment protein) cofactor constitute the ubiquitous enzymatic machinery responsible for recycling of the SNARE (SNAP receptor) membrane fusion machinery. The enzyme uses the energy of ATP hydrolysis to dissociate the constituents of the SNARE complex, which is formed during the fusion of a transport vesicle with the acceptor membrane. However, it is still unclear how NSF and the SNAP adaptor work together to take the tight SNARE bundle apart. SNAPs have been reported to attach to membranes independently from SNARE complex binding. We have investigated how efficient the disassembly of soluble and membrane-bound substrates are, comparing the two. We found that SNAPs support disassembly of membrane-bound SNARE complexes much more efficiently. Moreover, we identified a putative, conserved membrane attachment site in an extended loop within the N-terminal domain of alpha-SNAP. Mutation of two highly conserved, exposed phenylalanine residues on the extended loop prevent SNAPs from facilitating disassembly of membrane-bound SNARE complexes. This implies that the disassembly machinery is adapted to attack membrane-bound SNARE complexes, probably in their relaxed cis-configuration.

  4. A repeatable assembling and disassembling electrochemical aptamer cytosensor for ultrasensitive and highly selective detection of human liver cancer cells.

    PubMed

    Sun, Duanping; Lu, Jing; Chen, Zuanguang; Yu, Yanyan; Mo, Manni

    2015-07-23

    In this work, a repeatable assembling and disassembling electrochemical aptamer cytosensor was proposed for the sensitive detection of human liver hepatocellular carcinoma cells (HepG2) based on a dual recognition and signal amplification strategy. A high-affinity thiolated TLS11a aptamer, covalently attached to a gold electrode through Au-thiol interactions, was adopted to recognize and capture the target HepG2 cells. Meanwhile, the G-quadruplex/hemin/aptamer and horseradish peroxidase (HRP) modified gold nanoparticles (G-quadruplex/hemin/aptamer-AuNPs-HRP) nanoprobe was designed. It could be used for electrochemical cytosensing with specific recognition and enzymatic signal amplification of HRP and G-quadruplex/hemin HRP-mimicking DNAzyme. With the nanoprobes as recognizing probes, the HepG2 cancer cells were captured to fabricate an aptamer-cell-nanoprobes sandwich-like superstructure on a gold electrode surface. The proposed electrochemical cytosensor delivered a wide detection range from 1×10(2) to 1×10(7) cells mL(-1) and high sensitivity with a low detection limit of 30 cells mL(-1). Furthermore, after the electrochemical detection, the activation potential of -0.9 to -1.7V was performed to break Au-thiol bond and regenerate a bare gold electrode surface, while maintaining the good characteristic of being used repeatedly. The changes of gold electrode behavior after assembling and desorption processes were investigated by electrochemical impedance spectroscopy and cyclic voltammetry techniques. These results indicate that the cytosensor has great potential in disease diagnostic of cancers and opens new insight into the reusable gold electrode with repeatable assembling and disassembling in the electrochemical sensing.

  5. Nuclear removal during terminal lens fiber cell differentiation requires CDK1 activity: appropriating mitosis-related nuclear disassembly

    PubMed Central

    Chaffee, Blake R.; Shang, Fu; Chang, Min-Lee; Clement, Tracy M.; Eddy, Edward M.; Wagner, Brad D.; Nakahara, Masaki; Nagata, Shigekazu; Robinson, Michael L.; Taylor, Allen

    2014-01-01

    Lens epithelial cells and early lens fiber cells contain the typical complement of intracellular organelles. However, as lens fiber cells mature they must destroy their organelles, including nuclei, in a process that has remained enigmatic for over a century, but which is crucial for the formation of the organelle-free zone in the center of the lens that assures clarity and function to transmit light. Nuclear degradation in lens fiber cells requires the nuclease DNase IIβ (DLAD) but the mechanism by which DLAD gains access to nuclear DNA remains unknown. In eukaryotic cells, cyclin-dependent kinase 1 (CDK1), in combination with either activator cyclins A or B, stimulates mitotic entry, in part, by phosphorylating the nuclear lamin proteins leading to the disassembly of the nuclear lamina and subsequent nuclear envelope breakdown. Although most post-mitotic cells lack CDK1 and cyclins, lens fiber cells maintain these proteins. Here, we show that loss of CDK1 from the lens inhibited the phosphorylation of nuclear lamins A and C, prevented the entry of DLAD into the nucleus, and resulted in abnormal retention of nuclei. In the presence of CDK1, a single focus of the phosphonuclear mitotic apparatus is observed, but it is not focused in CDK1-deficient lenses. CDK1 deficiency inhibited mitosis, but did not prevent DNA replication, resulting in an overall reduction of lens epithelial cells, with the remaining cells possessing an abnormally large nucleus. These observations suggest that CDK1-dependent phosphorylations required for the initiation of nuclear membrane disassembly during mitosis are adapted for removal of nuclei during fiber cell differentiation. PMID:25139855

  6. Biotransfer of persistent organic pollutants from a large site in China used for the disassembly of electronic and electrical waste.

    PubMed

    Zhao, Gaofeng; Xu, Ying; Han, Guanggen; Ling, Bo

    2006-08-01

    Samples of groundwater, river water, river sediment, paddy soil, rice seeds, hen eggs, fish, umbilical cord blood, and newborn meconium were collected from October 2002 to October 2003 near a large site in China used for the disassembly of obsolete transformers and other electronic or electrical waste. Six indicator PCB congeners, three non-ortho dioxin-like PCB congeners, and six organochlorine pesticides were determined in the samples by GC with electron capture detector. The results demonstrated that the local environment and edible foods had been seriously polluted by toxic PCBs and organochlorine pesticides. The actual daily intakes (ADIs) of these pollutants were estimated for local residents living in the area. The intake data showed that the contents of PCBs in these local residents were substantial, as the ADI estimates greatly exceed the reference doses set by the World Health Organization and the United States Agency for Toxic Substances and Disease Registry. The presence of the indicator PCB congeners in the cord blood and the meconium samples, as well as significant correlations (r (2) > 0.80, p < 0.05) between these levels, suggests a potential biotransfer of these indicators from mothers to their newborns. This preliminary study showed that obsolete transformers and other electronic or electrical waste can be an important source for the emission of persistent organic pollutants into the local environment, such as through leakage, evaporation, runoff, and leaching. Contamination from this source appears to have reached the level considered to be a serious threat to environmental and human health around the disassembly site.

  7. Reactor safety method

    DOEpatents

    Vachon, Lawrence J.

    1980-03-11

    This invention relates to safety means for preventing a gas cooled nuclear reactor from attaining criticality prior to start up in the event the reactor core is immersed in hydrogenous liquid. This is accomplished by coating the inside surface of the reactor coolant channels with a neutral absorbing material that will vaporize at the reactor's operating temperature.

  8. NEUTRONIC REACTOR MANIPULATING DEVICE

    DOEpatents

    Ohlinger, L.A.

    1962-08-01

    A cable connecting a control rod in a reactor with a motor outside the reactor for moving the rod, and a helical conduit in the reactor wall, through which the cable passes are described. The helical shape of the conduit prevents the escape of certain harmful radiations from the reactor. (AEC)

  9. Nuclear reactor

    DOEpatents

    Thomson, Wallace B.

    2004-03-16

    A nuclear reactor comprising a cylindrical pressure vessel, an elongated annular core centrally disposed within and spaced from the pressure vessel, and a plurality of ducts disposed longitudinally of the pressure vessel about the periphery thereof, said core comprising an annular active portion, an annular reflector just inside the active portion, and an annular reflector just outside the active a portion, said annular active portion comprising rectangular slab, porous fuel elements radially disposed around the inner reflector and extending the length of the active portion, wedge-shaped, porous moderator elements disposed adjacent one face of each fuel element and extending the length of the fuel element, the fuel and moderator elements being oriented so that the fuel elements face each other and the moderator elements do likewise, adjacent moderator elements being spaced to provide air inlet channels, and adjacent fuel elements being spaced to provide air outlet channels which communicate with the interior of the peripheral ducts, and means for introducing air into the air inlet channels which passes through the porous moderator elements and porous fuel elements to the outlet channel.

  10. Closure Report for Corrective Action Unit 117: Area 26 Pluto Disassembly Facility, Nevada Test Site, Nevada, Revision 0

    SciTech Connect

    Mark Burmeister

    2009-06-01

    This Closure Report (CR) presents information supporting the closure of Corrective Action Unit (CAU) 117: Area 26 Pluto Disassembly Facility, Nevada Test Site, Nevada. This CR complies with the requirements of the Federal Facility Agreement and Consent Order that was agreed to by the State of Nevada; U.S. Department of Energy (DOE), Environmental Management; U.S. Department of Defense; and DOE, Legacy Management. Corrective Action Unit 117 comprises Corrective Action Site (CAS) 26-41-01, Pluto Disassembly Facility, located in Area 26 of the Nevada Test Site. The purpose of this CR is to provide documentation supporting the completed corrective actions and provide data confirming that the closure objectives for CAU 117 were met. To achieve this, the following actions were performed: • Review the current site conditions, including the concentration and extent of contamination. • Implement any corrective actions necessary to protect human health and the environment. • Properly dispose of corrective action and investigation wastes. • Document Notice of Completion and closure of CAU 117 issued by the Nevada Division of Environmental Protection. From May 2008 through February 2009, closure activities were performed as set forth in the Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 117, Area 26 Pluto Disassembly Facility, Nevada Test Site, Nevada. The purpose of the activities as defined during the data quality objectives process were: • Determine whether contaminants of concern (COCs) are present. • If COCs are present, determine their nature and extent, implement appropriate corrective actions, and properly dispose of wastes. Analytes detected during the closure activities were evaluated against final action levels to determine COCs for CAU 117. Assessment of the data generated from closure activities indicated that the final action levels were exceeded for polychlorinated biphenyls (PCBs) reported as total Aroclor and

  11. Test reactor irradiation coordination

    SciTech Connect

    Heartherly, D.W.; Siman Tov, I.I.; Sparks, D.W.

    1995-10-01

    This task was established to supply and coordinate irradiation services needed by NRC contractors other than ORNL. These services include the design and assembly of irradiation capsules as well as arranging for their exposure, disassembly, and return of specimens. During this period, the final design of the facility and specimen baskets was determined through an iterative process involving the designers and thermal analysts. The resulting design should permit the irradiation of all test specimens to within 5{degrees}C of their desired temperature. Detailing of all parts is ongoing and should be completed during the next reporting period. Procurement of the facility will also be initiated during the next review period.

  12. The pedagogical value of Disassemble/Analyze/Assemble (DAA) activities: Assessing the potential for motivation and transfer

    NASA Astrophysics Data System (ADS)

    Dalrymple, Odesma Onika

    Undergraduate engineering institutions are currently seeking to improve recruiting practices and to retain engineering majors particularly by addressing what many studies document as a major challenge of poor instruction. There is an undisputed need for instructional practices that motivate students in addition to facilitating the transfer of learning beyond the classroom. Reverse engineering and product dissection, more broadly termed Disassemble/Analyze/Assemble (DAA) activities, have shown potential to address these concerns, based on the reviews of students and professors alike. DAA activities involve the systematic deconstruction of an artifact, the subsequent analysis and possible reconstruction of its components for the purpose of understanding the embodied fundamental concepts, design principles and developmental processes. These activities have been part of regular industry practice for some time; however, the systematic analysis of their benefits for learning and instruction is a relatively recent phenomenon. A number of studies have provided highly descriptive accounts of curricula and possible outcomes of DAA activities; but, relatively few have compared participants doing DAA activities to a control group doing more traditional activities. In this respect, two quasi-experiments were conducted as part of a first-year engineering laboratory, and it was hypothesized that students who engaged in the DAA activity would be more motivated and would demonstrate higher frequencies of transfer than the control. A DAA activity that required students to disassemble a single-use camera and analyze its components to discover how it works was compared to a step-by-step laboratory activity in the first experiment and a lecture method of instruction in the second experiment. In both experiments, over forty percent of the students that engaged in the DAA activity demonstrated the ability to transfer the knowledge gained about the functions of the camera's components and

  13. Proteolytic disassembly of peptide-mediated graphene oxide assemblies for turn-on fluorescence sensing of proteases

    NASA Astrophysics Data System (ADS)

    Yang, Jin-Kyoung; Kwak, Seon-Yeong; Jeon, Su-Ji; Lee, Eunjin; Ju, Jong-Min; Kim, Hye-In; Lee, Yoon-Sik; Kim, Jong-Ho

    2016-06-01

    Molecule-induced assembly of nanomaterials can alter their unique chemical and physical properties, which can be a promising approach for sensing. Herein, we demonstrate an optical `turn-on' biosensor for the detection of matrix metalloproteinase-2 (MMP-2), fabricated by means of a peptide-induced assembly of fluorescent graphene oxide (GO). Functionalization of GO with a peptide substrate for MMP-2 bearing a thiol group leads to its self-assembly via disulfide bonding, accompanied by self-quenching of GO's strong fluorescence. This peptide-induced GO assembly is then disassembled by proteolytic cleavage in the presence of MMP-2, thereby restoring the level of self-quenched GO fluorescence. With this approach, we are able to detect MMP-2 and to investigate the kinetic parameters of MMP-2 activity. The GO-peptide assembly is successfully applied to the selective and sensitive detection of MMP-2 secreted by living cells, human hepatocytes HepG2, at a concentration of 2 ng mL-1.Molecule-induced assembly of nanomaterials can alter their unique chemical and physical properties, which can be a promising approach for sensing. Herein, we demonstrate an optical `turn-on' biosensor for the detection of matrix metalloproteinase-2 (MMP-2), fabricated by means of a peptide-induced assembly of fluorescent graphene oxide (GO). Functionalization of GO with a peptide substrate for MMP-2 bearing a thiol group leads to its self-assembly via disulfide bonding, accompanied by self-quenching of GO's strong fluorescence. This peptide-induced GO assembly is then disassembled by proteolytic cleavage in the presence of MMP-2, thereby restoring the level of self-quenched GO fluorescence. With this approach, we are able to detect MMP-2 and to investigate the kinetic parameters of MMP-2 activity. The GO-peptide assembly is successfully applied to the selective and sensitive detection of MMP-2 secreted by living cells, human hepatocytes HepG2, at a concentration of 2 ng mL-1. Electronic

  14. PBBs, PBDEs, and PCBs levels in hair of residents around e-waste disassembly sites in Zhejiang Province, China, and their potential sources.

    PubMed

    Zhao, Gaofeng; Wang, Zijian; Dong, Michael H; Rao, Kaifeng; Luo, Jianping; Wang, Donghong; Zha, Jinmiao; Huang, Shengbiao; Xu, Yiping; Ma, Mei

    2008-07-01

    This study was conducted to explore the exposure potential of Chinese residents to PBBs, PBDEs, and PCBs in e-waste disassembly sites in Zhejiang province. The contents of 23 PBB congeners, 12 PBDE congeners, and 27 PCB congeners in hair and in their potential sources, including soil and e-waste, were measured via GC-MS. The levels of PHAHs in the three subfamilies (i.e., the PBBs, PBDEs, and PCBs) were all considerably higher (P<0.05) in hair samples collected from the disassembly sites than from the control site. The highest levels of PBBs (57.77 ng g(-1) dw), PBDEs (29.64 ng g(-1) dw), and PCBs (181.99 ng g(-1) dw) in hair were all found in those from the disassembly site Xinqiu, which are respectively 2, 2, and 10 times more than those observed in hair from the control site Yandang. Among the three subfamilies of PHAHs, PCBs were the most predominant pollutants detected. PBBs, which have very limited information available in China, can be detected at a comparable level with PBDEs in these samples in the study. Therefore, these observations suggested that more attention should be given over the potential for environmental or occupational exposure to PHAHs present in e-waste. By and large, the PHAH levels measured in the hair samples were consistent with those detected in the soil. Hair analysis could thus be a valid screening tool for assessing human PHAHs exposure in and around e-waste disassembly sites. PMID:18439655

  15. Hybrid plasmachemical reactor

    SciTech Connect

    Lelevkin, V. M. Smirnova, Yu. G.; Tokarev, A. V.

    2015-04-15

    A hybrid plasmachemical reactor on the basis of a dielectric barrier discharge in a transformer is developed. The characteristics of the reactor as functions of the dielectric barrier discharge parameters are determined.

  16. Attrition reactor system

    SciTech Connect

    Scott, Charles D.; Davison, Brian H.

    1993-01-01

    A reactor vessel for reacting a solid particulate with a liquid reactant has a centrifugal pump in circulatory flow communication with the reactor vessel for providing particulate attrition, resulting in additional fresh surface where the reaction can occur.

  17. Attrition reactor system

    SciTech Connect

    Scott, C.D.; Davison, B.H.

    1993-09-28

    A reactor vessel for reacting a solid particulate with a liquid reactant has a centrifugal pump in circulatory flow communication with the reactor vessel for providing particulate attrition, resulting in additional fresh surface where the reaction can occur. 2 figures.

  18. Detection of the Assembly and Disassembly of PCV2b Virus-Like Particles Using Fluorescence Spectroscopy Analysis.

    PubMed

    Fang, Mingli; Diao, Wenzhen; Dong, Boqi; Wei, Hongfei; Liu, Jialin; Hua, Li; Zhang, Miaomin; Guo, Sheng; Xiao, Yue; Yu, Yongli; Wang, Liying; Wan, Min

    2015-01-01

    Monitoring the assembly and disassembly of virus-like particles (VLPs) is important in developing effective VLP-based vaccines. We tried to establish a simple and rapid method to evaluate the status of VLP assembly using fluorescence spectroscopic analysis (FSA) while developing a VLP-based vaccine against porcine circovirus type 2b (PCV2b). We synthesized the gene coding for PCV2b capsid protein (CP). The CP was expressed in Escherichia coli in a soluble form, dialyzed into three different buffers, and assembled into VLPs. The immunogenicity of the VLPs was evaluated by an enzyme-linked immunosorbent assay using the sera of mice immunized with inactivated PCV2b. The VLP assembly was detected using transmission electron microscopy and FSA. The assembled VLPs showed a distinct FSA curve with a peak at 320 nm. We found that the assembly status was related to the immunogenicity, fluorescence intensity, and morphology of the VLP. The FSA assay was able to monitor the various denatured statuses of PCV2b VLPs treated with β-mercaptoethanol or β-mercaptoethanol plus urea. We have demonstrated that FSA can be used to detect the assembly of PCV2b VLPs produced in E. coli. This provides a simple solution for monitoring VLP assembly during the production of VLP-based vaccines. PMID:26783743

  19. A switchable self-assembling and disassembling chiral system based on a porphyrin-substituted phenylalanine-phenylalanine motif.

    PubMed

    Charalambidis, Georgios; Georgilis, Evangelos; Panda, Manas K; Anson, Christopher E; Powell, Annie K; Doyle, Stephen; Moss, David; Jochum, Tobias; Horton, Peter N; Coles, Simon J; Linares, Mathieu; Beljonne, David; Naubron, Jean-Valère; Conradt, Jonas; Kalt, Heinz; Mitraki, Anna; Coutsolelos, Athanassios G; Balaban, Teodor Silviu

    2016-01-01

    Artificial light-harvesting systems have until now not been able to self-assemble into structures with a large photon capture cross-section that upon a stimulus reversibly can switch into an inactive state. Here we describe a simple and robust FLFL-dipeptide construct to which a meso-tetraphenylporphyrin has been appended and which self-assembles to fibrils, platelets or nanospheres depending on the solvent composition. The fibrils, functioning as quenched antennas, give intense excitonic couplets in the electronic circular dichroism spectra which are mirror imaged if the unnatural FDFD-analogue is used. By slightly increasing the solvent polarity, these light-harvesting fibres disassemble to spherical structures with silent electronic circular dichroism spectra but which fluoresce. Upon further dilution with the nonpolar solvent, the intense Cotton effects are recovered, thus proving a reversible switching. A single crystal X-ray structure shows a head-to-head arrangement of porphyrins that explains both their excitonic coupling and quenched fluorescence. PMID:27582363

  20. Role of phosphorylation of Cdc20 in p31comet-stimulated disassembly of the mitotic checkpoint complex

    PubMed Central

    Miniowitz-Shemtov, Shirly; Eytan, Esther; Ganoth, Dvora; Sitry-Shevah, Danielle; Dumin, Elena; Hershko, Avram

    2012-01-01

    The mitotic checkpoint system delays anaphase until all chromosomes are correctly attached to the mitotic spindle. When the checkpoint is turned on, it promotes the formation of the mitotic checkpoint complex (MCC), which inhibits the ubiquitin ligase anaphase-promoting complex/cyclosome (APC/C). MCC is composed of the checkpoint proteins BubR1, Bub3, and Mad2 bound to the APC/C activator Cdc20. When the checkpoint is satisfied, MCC is disassembled and APC/C becomes active. Previous studies have shown that the Mad2-binding protein p31comet promotes the dissociation of Cdc20 from BubR1 in MCC in a process that requires ATP. We now show that a part of MCC dissociation is blocked by inhibitors of cyclin-dependent kinases (Cdks) and that purified Cdk1–cyclin B stimulates this process. The mutation of all eight potential Cdk phosphorylation sites of Cdc20 partially prevented its release from BubR1. Furthermore, p31comet stimulated Cdk-catalyzed phosphorylation of Cdc20 in MCC. It is suggested that the binding of p31comet to Mad2 in MCC may trigger a conformational change in Cdc20 that facilitates its phosphorylation by Cdk, and that the latter process may promote its dissociation from BubR1. PMID:22566641

  1. A switchable self-assembling and disassembling chiral system based on a porphyrin-substituted phenylalanine-phenylalanine motif

    NASA Astrophysics Data System (ADS)

    Charalambidis, Georgios; Georgilis, Evangelos; Panda, Manas K.; Anson, Christopher E.; Powell, Annie K.; Doyle, Stephen; Moss, David; Jochum, Tobias; Horton, Peter N.; Coles, Simon J.; Linares, Mathieu; Beljonne, David; Naubron, Jean-Valère; Conradt, Jonas; Kalt, Heinz; Mitraki, Anna; Coutsolelos, Athanassios G.; Balaban, Teodor Silviu

    2016-09-01

    Artificial light-harvesting systems have until now not been able to self-assemble into structures with a large photon capture cross-section that upon a stimulus reversibly can switch into an inactive state. Here we describe a simple and robust FLFL-dipeptide construct to which a meso-tetraphenylporphyrin has been appended and which self-assembles to fibrils, platelets or nanospheres depending on the solvent composition. The fibrils, functioning as quenched antennas, give intense excitonic couplets in the electronic circular dichroism spectra which are mirror imaged if the unnatural FDFD-analogue is used. By slightly increasing the solvent polarity, these light-harvesting fibres disassemble to spherical structures with silent electronic circular dichroism spectra but which fluoresce. Upon further dilution with the nonpolar solvent, the intense Cotton effects are recovered, thus proving a reversible switching. A single crystal X-ray structure shows a head-to-head arrangement of porphyrins that explains both their excitonic coupling and quenched fluorescence.

  2. Disassembly of microtubules and inhibition of neurite outgrowth, neuroblastoma cell proliferation, and MAP kinase tyrosine dephosphorylation by dibenzyl trisulphide.

    PubMed

    Rösner, H; Williams, L A; Jung, A; Kraus, W

    2001-08-22

    Dibenzyl trisulphide (DTS), a main lipophilic compound in Petiveria alliacea L. (Phytolaccaceae), was identified as one of the active immunomodulatory compounds in extracts of the plant. To learn more about its biological activities and molecular mechanisms, we conducted one-dimensional NMR interaction studies with bovine serum albumin (BSA) and tested DTS and related compounds in two well-established neuronal cell-and-tissue culture systems. We found that DTS preferentially binds to an aromatic region of BSA which is rich in tyrosyl residues. In SH-SY5Y neuroblastoma cells, DTS attenuates the dephosphorylation of tyrosyl residues of MAP kinase (erk1/erk2). In the same neuroblastoma cell line and in Wistar 38 human lung fibroblasts, DTS causes a reversible disassembly of microtubules, but it did not affect actin dynamics. Probably due to the disruption of the microtubule dynamics, DTS also inhibits neuroblastoma cell proliferation and neurite outgrowth from spinal cord explants. Related dibenzyl compounds with none, one, or two sulphur atoms were found to be significantly less effective. These data confirmed that the natural compound DTS has a diverse spectrum of biological properties, including cytostatic and neurotoxic actions in addition to immunomodulatory activities.

  3. A switchable self-assembling and disassembling chiral system based on a porphyrin-substituted phenylalanine–phenylalanine motif

    PubMed Central

    Charalambidis, Georgios; Georgilis, Evangelos; Panda, Manas K.; Anson, Christopher E.; Powell, Annie K.; Doyle, Stephen; Moss, David; Jochum, Tobias; Horton, Peter N.; Coles, Simon J.; Linares, Mathieu; Beljonne, David; Naubron, Jean-Valère; Conradt, Jonas; Kalt, Heinz; Mitraki, Anna; Coutsolelos, Athanassios G.; Balaban, Teodor Silviu

    2016-01-01

    Artificial light-harvesting systems have until now not been able to self-assemble into structures with a large photon capture cross-section that upon a stimulus reversibly can switch into an inactive state. Here we describe a simple and robust FLFL-dipeptide construct to which a meso-tetraphenylporphyrin has been appended and which self-assembles to fibrils, platelets or nanospheres depending on the solvent composition. The fibrils, functioning as quenched antennas, give intense excitonic couplets in the electronic circular dichroism spectra which are mirror imaged if the unnatural FDFD-analogue is used. By slightly increasing the solvent polarity, these light-harvesting fibres disassemble to spherical structures with silent electronic circular dichroism spectra but which fluoresce. Upon further dilution with the nonpolar solvent, the intense Cotton effects are recovered, thus proving a reversible switching. A single crystal X-ray structure shows a head-to-head arrangement of porphyrins that explains both their excitonic coupling and quenched fluorescence. PMID:27582363

  4. Naphthalene Imide Conjugates: Formation of Supramolecular Assemblies, and the Encapsulation and Release of Dyes through DNA-Mediated Disassembly.

    PubMed

    Shankar, Balaraman H; Jayaram, Dhanya T; Ramaiah, Danaboyina

    2015-12-01

    We report the synthesis of two new amphiphilic conjugates 1 and 2 based on naphthalene di- and monoimide chromophores and the investigation of their photophysical, self-assembly and DNA-binding properties. These conjugates showed aqueous good solubility and exhibited strong interactions with DNA and polynucleotides such as poly(dG⋅dC)-poly(dG⋅dC) and poly(dA⋅dT)-poly(dA⋅dT). The interaction of these conjugates with DNA was evaluated by photo- and biophysical techniques. These studies revealed that the conjugates interact with DNA through intercalation with association constants in the order of 5-8×10(4)  M(-1) . Of these two conjugates, bolaamphiphile 1 exhibited a supramolecular assembly that formed vesicles with an approximate diameter of 220 nm in the aqueous medium at a critical aggregation concentration of 0.4 mM, which was confirmed by SEM and TEM. These vesicular structures showed a strong affinity for hydrophobic molecules such as Nile red through encapsulation. Uniquely, when exposed to DNA the vesicles disassembled, and therefore this transformation could be utilised for the encapsulation and release of hydrophobic molecules by employing DNA as a stimulus.

  5. Biomedical Exploitation of Chitin and Chitosan via Mechano-Chemical Disassembly, Electrospinning, Dissolution in Imidazolium Ionic Liquids, and Supercritical Drying

    PubMed Central

    Muzzarelli, Riccardo A. A.

    2011-01-01

    Recently developed technology permits to optimize simultaneously surface area, porosity, density, rigidity and surface morphology of chitin-derived materials of biomedical interest. Safe and ecofriendly disassembly of chitin has superseded the dangerous acid hydrolysis and provides higher yields and scaling-up possibilities: the chitosan nanofibrils are finding applications in reinforced bone scaffolds and composite dressings for dermal wounds. Electrospun chitosan nanofibers, in the form of biocompatible thin mats and non-wovens, are being actively studied: composites of gelatin + chitosan + polyurethane have been proposed for cardiac valves and for nerve conduits; fibers are also manufactured from electrospun particles that self-assemble during subsequent freeze-drying. Ionic liquids (salts of alkylated imidazolium) are suitable as non-aqueous solvents that permit desirable reactions to occur for drug delivery purposes. Gel drying with supercritical CO2 leads to structures most similar to the extracellular matrix, even when the chitosan is crosslinked, or in combination with metal oxides of interest in orthopedics. PMID:22131955

  6. A sequential mechanism for clathrin cage disassembly by 70-kDa heat-shock cognate protein (Hsc70) and auxilin.

    PubMed

    Rothnie, Alice; Clarke, Anthony R; Kuzmic, Petr; Cameron, Angus; Smith, Corinne J

    2011-04-26

    An essential stage in endocytic coated vesicle recycling is the dissociation of clathrin from the vesicle coat by the molecular chaperone, 70-kDa heat-shock cognate protein (Hsc70), and the J-domain-containing protein, auxilin, in an ATP-dependent process. We present a detailed mechanistic analysis of clathrin disassembly catalyzed by Hsc70 and auxilin, using loss of perpendicular light scattering to monitor the process. We report that a single auxilin per clathrin triskelion is required for maximal rate of disassembly, that ATP is hydrolyzed at the same rate that disassembly occurs, and that three ATP molecules are hydrolyzed per clathrin triskelion released. Stopped-flow measurements revealed a lag phase in which the scattering intensity increased owing to association of Hsc70 with clathrin cages followed by serial rounds of ATP hydrolysis prior to triskelion removal. Global fit of stopped-flow data to several physically plausible mechanisms showed the best fit to a model in which sequential hydrolysis of three separate ATP molecules is required for the eventual release of a triskelion from the clathrin-auxilin cage.

  7. Period meter for reactors

    DOEpatents

    Rusch, Gordon K.

    1976-01-06

    An improved log N amplifier type nuclear reactor period meter with reduced probability for noise-induced scrams is provided. With the reactor at low power levels a sampling circuit is provided to determine the reactor period by measuring the finite change in the amplitude of the log N amplifier output signal for a predetermined time period, while at high power levels, differentiation of the log N amplifier output signal provides an additional measure of the reactor period.

  8. NEUTRONIC REACTOR POWER PLANT

    DOEpatents

    Metcalf, H.E.

    1962-12-25

    This patent relates to a nuclear reactor power plant incorporating an air-cooled, beryllium oxide-moderated, pebble bed reactor. According to the invention means are provided for circulating a flow of air through tubes in the reactor to a turbine and for directing a sidestream of the circu1ating air through the pebble bed to remove fission products therefrom as well as assist in cooling the reactor. (AEC)

  9. Reactor System Transient Code.

    1999-07-14

    RELAP3B describes the behavior of water-cooled nuclear reactors during postulated accidents or power transients, such as large reactivity excursions, coolant losses or pump failures. The program calculates flows, mass and energy inventories, pressures, temperatures, and steam qualities along with variables associated with reactor power, reactor heat transfer, or control systems. Its versatility allows one to describe simple hydraulic systems as well as complex reactor systems.

  10. High solids fermentation reactor

    DOEpatents

    Wyman, Charles E.; Grohmann, Karel; Himmel, Michael E.; Richard, Christopher J.

    1993-03-02

    A fermentation reactor and method for fermentation of materials having greater than about 10% solids. The reactor includes a rotatable shaft along the central axis, the shaft including rods extending outwardly to mix the materials. The reactor and method are useful for anaerobic digestion of municipal solid wastes to produce methane, for production of commodity chemicals from organic materials, and for microbial fermentation processes.

  11. High solids fermentation reactor

    DOEpatents

    Wyman, Charles E.; Grohmann, Karel; Himmel, Michael E.; Richard, Christopher J.

    1993-01-01

    A fermentation reactor and method for fermentation of materials having greater than about 10% solids. The reactor includes a rotatable shaft along the central axis, the shaft including rods extending outwardly to mix the materials. The reactor and method are useful for anaerobic digestion of municipal solid wastes to produce methane, for production of commodity chemicals from organic materials, and for microbial fermentation processes.

  12. Efficient Silicon Reactor

    NASA Technical Reports Server (NTRS)

    Bates, H. E.; Hill, D. M.; Jewett, D. N.

    1983-01-01

    High-purity silicon efficiently produced and transferred by continuous two-cycle reactor. New reactor operates in relatively-narrow temperature rate and uses large surfaces area to minimize heat expenditure and processing time in producing silicon by hydrogen reduction of trichlorosilane. Two cycles of reactor consists of silicon production and removal.

  13. NUCLEAR REACTOR CONTROL SYSTEM

    DOEpatents

    Epler, E.P.; Hanauer, S.H.; Oakes, L.C.

    1959-11-01

    A control system is described for a nuclear reactor using enriched uranium fuel of the type of the swimming pool and other heterogeneous nuclear reactors. Circuits are included for automatically removing and inserting the control rods during the course of normal operation. Appropriate safety circuits close down the nuclear reactor in the event of emergency.

  14. Advanced Test Reactor Tour

    SciTech Connect

    Miley, Don

    2011-01-01

    The Advanced Test Reactor at Idaho National Laboratory is the foremost nuclear materials test reactor in the world. This virtual tour describes the reactor, how experiments are conducted, and how spent nuclear fuel is handled and stored. For more information about INL research, visit http://www.facebook.com/idahonationallaboratory.

  15. NEUTRONIC REACTOR SHIELDING

    DOEpatents

    Borst, L.B.

    1961-07-11

    A special hydrogenous concrete shielding for reactors is described. In addition to Portland cement and water, the concrete essentially comprises 30 to 60% by weight barytes aggregate for enhanced attenuation of fast neutrons. The biological shields of AEC's Oak Ridge Graphite Reactor and Materials Testing Reactor are particular embodiments.

  16. Improved vortex reactor system

    DOEpatents

    Diebold, James P.; Scahill, John W.

    1995-01-01

    An improved vortex reactor system for affecting fast pyrolysis of biomass and Refuse Derived Fuel (RDF) feed materials comprising: a vortex reactor having its axis vertically disposed in relation to a jet of a horizontally disposed steam ejector that impels feed materials from a feeder and solids from a recycle loop along with a motive gas into a top part of said reactor.

  17. Advanced Test Reactor Tour

    ScienceCinema

    Miley, Don

    2016-07-12

    The Advanced Test Reactor at Idaho National Laboratory is the foremost nuclear materials test reactor in the world. This virtual tour describes the reactor, how experiments are conducted, and how spent nuclear fuel is handled and stored. For more information about INL research, visit http://www.facebook.com/idahonationallaboratory.

  18. Solid-Core, Gas-Cooled Reactor for Space and Surface Power

    NASA Astrophysics Data System (ADS)

    King, Jeffrey C.; El-Genk, Mohamed S.

    2006-01-01

    The solid-core, gas-cooled, Submersion-Subcritical Safe Space (S∧4) reactor is developed for future space power applications and avoidance of single point failures. The Mo-14%Re reactor core is loaded with uranium nitride fuel in enclosed cavities, cooled by He-30%Xe, and sized to provide 550 kWth for seven years of equivalent full power operation. The beryllium oxide reflector disassembles upon impact on water or soil. In addition to decreasing the reactor and shadow shield mass, Spectral Shift Absorber (SSA) materials added to the reactor core ensure that it remains subcritical in the worst-case submersion accident. With a 0.1 mm thick boron carbide coating on the outside surface of the core block and 0.25 mm thick iridium sleeves around the fuel stacks, the reflector outer diameter is 43.5 cm and the combined reactor and shadow shield mass is 935.1 kg. With 12.5 atom% gadolinium-155 added to the fuel, 2.0 mm diameter gadolinium-155 sesquioxide intersititial pins, and a 0.1 mm thick gadolinium-155 sesquioxide coating, the S∧4 reactor has a slightly smaller reflector outer diameter of 43.0 cm, and a total reactor and shield mass of 901.7 kg. With 8.0 atom% europium-151 added to the fuel, 2.0 mm diameter europium-151 sesquioxide interstitial pins, and a 0.1 mm thick europium-151 sesquioxide coating, the reflector's outer diameter and the total reactor and shield mass are further reduced to 41.5 cm and 869.2 kg, respectively.

  19. Solid-Core, Gas-Cooled Reactor for Space and Surface Power

    SciTech Connect

    King, Jeffrey C.; El-Genk, Mohamed S.

    2006-01-20

    The solid-core, gas-cooled, Submersion-Subcritical Safe Space (S and 4) reactor is developed for future space power applications and avoidance of single point failures. The Mo-14%Re reactor core is loaded with uranium nitride fuel in enclosed cavities, cooled by He-30%Xe, and sized to provide 550 kWth for seven years of equivalent full power operation. The beryllium oxide reflector disassembles upon impact on water or soil. In addition to decreasing the reactor and shadow shield mass, Spectral Shift Absorber (SSA) materials added to the reactor core ensure that it remains subcritical in the worst-case submersion accident. With a 0.1 mm thick boron carbide coating on the outside surface of the core block and 0.25 mm thick iridium sleeves around the fuel stacks, the reflector outer diameter is 43.5 cm and the combined reactor and shadow shield mass is 935.1 kg. With 12.5 atom% gadolinium-155 added to the fuel, 2.0 mm diameter gadolinium-155 sesquioxide intersititial pins, and a 0.1 mm thick gadolinium-155 sesquioxide coating, the S and 4 reactor has a slightly smaller reflector outer diameter of 43.0 cm, and a total reactor and shield mass of 901.7 kg. With 8.0 atom% europium-151 added to the fuel, 2.0 mm diameter europium-151 sesquioxide interstitial pins, and a 0.1 mm thick europium-151 sesquioxide coating, the reflector's outer diameter and the total reactor and shield mass are further reduced to 41.5 cm and 869.2 kg, respect0011ive.

  20. Neutron behavior, reactor control, and reactor heat transfer. Volume four

    SciTech Connect

    Not Available

    1986-01-01

    Volume four covers neutron behavior (neutron absorption, how big are nuclei, neutron slowing down, neutron losses, the self-sustaining reactor), reactor control (what is controlled in a reactor, controlling neutron population, is it easy to control a reactor, range of reactor control, what happens when the fuel burns up, controlling a PWR, controlling a BWR, inherent safety of reactors), and reactor heat transfer (heat generation in a nuclear reactor, how is heat removed from a reactor core, heat transfer rate, heat transfer properties of the reactor coolant).

  1. Nuclear reactor overflow line

    DOEpatents

    Severson, Wayne J.

    1976-01-01

    The overflow line for the reactor vessel of a liquid-metal-cooled nuclear reactor includes means for establishing and maintaining a continuous bleed flow of coolant amounting to 5 to 10% of the total coolant flow through the overflow line to prevent thermal shock to the overflow line when the reactor is restarted following a trip. Preferably a tube is disposed concentrically just inside the overflow line extending from a point just inside the reactor vessel to an overflow tank and a suction line is provided opening into the body of liquid metal in the reactor vessel and into the annulus between the overflow line and the inner tube.

  2. Reactor vessel support system

    DOEpatents

    Golden, Martin P.; Holley, John C.

    1982-01-01

    A reactor vessel support system includes a support ring at the reactor top supported through a box ring on a ledge of the reactor containment. The box ring includes an annular space in the center of its cross-section to reduce heat flow and is keyed to the support ledge to transmit seismic forces from the reactor vessel to the containment structure. A coolant channel is provided at the outside circumference of the support ring to supply coolant gas through the keyways to channels between the reactor vessel and support ledge into the containment space.

  3. Reactor water cleanup system

    DOEpatents

    Gluntz, D.M.; Taft, W.E.

    1994-12-20

    A reactor water cleanup system includes a reactor pressure vessel containing a reactor core submerged in reactor water. First and second parallel cleanup trains are provided for extracting portions of the reactor water from the pressure vessel, cleaning the extracted water, and returning the cleaned water to the pressure vessel. Each of the cleanup trains includes a heat exchanger for cooling the reactor water, and a cleaner for cleaning the cooled reactor water. A return line is disposed between the cleaner and the pressure vessel for channeling the cleaned water thereto in a first mode of operation. A portion of the cooled water is bypassed around the cleaner during a second mode of operation and returned through the pressure vessel for shutdown cooling. 1 figure.

  4. Reactor water cleanup system

    DOEpatents

    Gluntz, Douglas M.; Taft, William E.

    1994-01-01

    A reactor water cleanup system includes a reactor pressure vessel containing a reactor core submerged in reactor water. First and second parallel cleanup trains are provided for extracting portions of the reactor water from the pressure vessel, cleaning the extracted water, and returning the cleaned water to the pressure vessel. Each of the cleanup trains includes a heat exchanger for cooling the reactor water, and a cleaner for cleaning the cooled reactor water. A return line is disposed between the cleaner and the pressure vessel for channeling the cleaned water thereto in a first mode of operation. A portion of the cooled water is bypassed around the cleaner during a second mode of operation and returned through the pressure vessel for shutdown cooling.

  5. High temperature reactors

    NASA Astrophysics Data System (ADS)

    Dulera, I. V.; Sinha, R. K.

    2008-12-01

    With the advent of high temperature reactors, nuclear energy, in addition to producing electricity, has shown enormous potential for the production of alternate transport energy carrier such as hydrogen. High efficiency hydrogen production processes need process heat at temperatures around 1173-1223 K. Bhabha Atomic Research Centre (BARC), is currently developing concepts of high temperature reactors capable of supplying process heat around 1273 K. These reactors would provide energy to facilitate combined production of hydrogen, electricity, and drinking water. Compact high temperature reactor is being developed as a technology demonstrator for associated technologies. Design has been also initiated for a 600 MWth innovative high temperature reactor. High temperature reactor development programme has opened new avenues for research in areas like advanced nuclear fuels, high temperature and corrosion resistant materials and protective coatings, heavy liquid metal coolant technologies, etc. The paper highlights design of these reactors and their material related requirements.

  6. Spinning fluids reactor

    DOEpatents

    Miller, Jan D; Hupka, Jan; Aranowski, Robert

    2012-11-20

    A spinning fluids reactor, includes a reactor body (24) having a circular cross-section and a fluid contactor screen (26) within the reactor body (24). The fluid contactor screen (26) having a plurality of apertures and a circular cross-section concentric with the reactor body (24) for a length thus forming an inner volume (28) bound by the fluid contactor screen (26) and an outer volume (30) bound by the reactor body (24) and the fluid contactor screen (26). A primary inlet (20) can be operatively connected to the reactor body (24) and can be configured to produce flow-through first spinning flow of a first fluid within the inner volume (28). A secondary inlet (22) can similarly be operatively connected to the reactor body (24) and can be configured to produce a second flow of a second fluid within the outer volume (30) which is optionally spinning.

  7. Radionuclide characterization of reactor decommissioning waste and neutron-activated metals

    SciTech Connect

    Robertson, D.E.; Thomas, C.W.; Wynhoff, N.L.; Haggard, D.L.

    1993-06-01

    This study is providing the NRC and licensees with a more comprehensive data base for regulatory assessment of the radiological factors associated with reactor decommissioning and disposal of wastes generated during these activities. The objectives of this study are being accomplished during the actual decommissioning of Shippingport Station and the detailed analysis of neutron-activated materials from commercial reactors. The radiological characterization studies of Shippingport decommissioning materials have now been completed, and analyses of dismantled piping and scabbled concrete have shown that neutron activation products, dominated by {sup 60}Co, comprised the residual radionuclide inventory. Waste classification assessment have shown that all decommissioning materials (except reactor pressure vessel internals) could be disposed of as Class A waste. Spent fuel disassembly hardware from the Shippingport Core-3 was analyzed for long-lived activation products. {sup 94}Nb and {sup 63}Ni concentrations in Inconel-X750 and stainless steel components exceeded their Class C limits. Measurements and assessments of {sup 14}C in spent fuel disassembly hardware from three commercial nuclear power stations showed that this radionuclide never exceeded the Class C limit for all components. However, the {sup 63}Ni and {sup 94}Nb concentrations in some of these materials did exceed the Class C limits. These measurements are providing the basis for an assessment of the disposal options for these types of highly radioactive materials. Work is continuing on radiological characterization of spent PWR and BWR control rod assemblies. Three control rods, including a BWR cruciform control rod blade, a PWR control rod cluster assembly, and a PWR burnable poison rod assembly, have been characterized for their long-lived activation product concentrations and distribution by direct assay methods. These spent control rods could all be classified as Class C low-level waste.

  8. Radionuclide characterization of reactor decommissioning waste and neutron-activated metals

    SciTech Connect

    Robertson, D.E.; Thomas, C.W.; Wynhoff, N.L.; Haggard, D.L.

    1993-06-01

    This study is providing the NRC and licensees with a more comprehensive data base for regulatory assessment of the radiological factors associated with reactor decommissioning and disposal of wastes generated during these activities. The objectives of this study are being accomplished during the actual decommissioning of Shippingport Station and the detailed analysis of neutron-activated materials from commercial reactors. The radiological characterization studies of Shippingport decommissioning materials have now been completed, and analyses of dismantled piping and scabbled concrete have shown that neutron activation products, dominated by Co-60, comprised the residual radionuclide inventory. Waste classification assessment have shown that all decommissioning materials (except reactor pressure vessel internals) could be disposed of as Class A waste. Spent fuel disassembly hardware from the Shippingport Core-3 was analyzed for long-lived activation products. Nb-94 and Ni-63 concentrations in Inconel-X750 and stainless steel components exceeded their Class C limits. Measurements and assessments of C-14 in spent fuel disassembly hardware from three commercial nuclear power stations showed that this radionuclide never exceeded the Class C limit for al components. However, the Ni-63 and Nb-94 concentrations in some of these materials did exceed the Class C limits. These measurements are providing the basis for an assessment of the disposal options for these types of highly radioactive materials. Work is continuing on radiological characterization of spent PWR and BWR control rod assemblies. Three control rods, including a BWR cruciform control rod blade, a PWR control rod cluster assembly, and a PWR burnable poison rod assembly, have been characterized for their long-lived activation product concentrations and distribution by direct assay methods. These spent control rods could all be classified as Class C low-level waste. These rods are presently being sampled.

  9. Deployment of remote dismantlement systems at the CP-5 reactor

    SciTech Connect

    Black, D.B.; Ditch, R.W.; Henley, D.R.; Seifert, L.S.

    1997-06-01

    The Chicago Pile 5 (CP-5) Reactor Facility is currently undergoing decontamination and decommissioning (D&D) at the Argonne National Laboratory (ANL) Illinois site. CP-5 was the principal nuclear reactor used to produce neutrons for scientific research at Argonne from 1954 to 1979. The CP-5 reactor was a heavy-water moderated, enriched uranium-fueled reactor with a graphite reflector. The CP-5 D&D project includes the disassembly and removal of all radioactive components, equipment, and structures associated with the CP-5 facility. The Department of Energy`s Robotics Technology Development Program along with the Federal Energy Technology Center, Morgantown Office, have provided teleoperated, remote systems for use in the dismantlement of the CP-5 reactor structure for tasks requiring remote dismantlement. These systems include the dual-arm work platform, the Rosie mobile D&D vehicle, the swing-reduced crane control system, and a remotely-operated crane control system. The dual-arm work platform is a robotic dismantlement system that includes a pair of Schilling Titan III hydraulic manipulators mounted on a special platform, a hydraulic power unit and an operator console. The Rosie mobile D&D work system developed by RedZone Robotics, Inc. is an electro-hydraulic omni-directional locomotor platform with a heavy manipulator mounted on its deck. The Rosie vehicle moves about the floor around the CP-5 reactor block and is operated from a console in the control room. The swing-reduced crane control system has been installed on the CP-5 polar crane, and allows a load suspended from the crane hook to be moved while reducing the induced swing in the load. A remote control system and a rotating crane hook have also been added to the CP-5 polar crane. This paper discusses the status of these remote systems at CP-5 and the facility changes made to allow for their use in the dismantlement of the reactor structure internals. 4 refs., 3 figs.

  10. Final Status Survey Report for Corrective Action Unit 117 - Pluto Disassembly Facility, Building 2201, Nevada National Security Site, Nevada

    SciTech Connect

    Jeremy Gwin and Douglas Frenette

    2010-09-30

    This document contains the process knowledge, radiological data and subsequent statistical methodology and analysis to support approval for the radiological release of Corrective Action Unit (CAU) 117 – Pluto Disassembly Facility, Building 2201 located in Area 26 of the Nevada National Security Site (NNSS). Preparations for release of the building began in 2009 and followed the methodology described in the Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM). MARSSIM is the DOE approved process for release of Real Property (buildings and landmasses) to a set of established criteria or authorized limits. The pre-approved authorized limits for surface contamination values and corresponding assumptions were established by DOE O 5400.5. The release criteria coincide with the acceptance criteria of the U10C landfill permit. The U10C landfill is the proposed location to dispose of the radiologically non-impacted, or “clean,” building rubble following demolition. However, other disposition options that include the building and/or waste remaining at the NNSS may be considered providing that the same release limits apply. The Final Status Survey was designed following MARSSIM guidance by reviewing historical documentation and radiological survey data. Following this review a formal radiological characterization survey was performed in two phases. The characterization revealed multiple areas of residual radioactivity above the release criteria. These locations were remediated (decontaminated) and then the surface activity was verified to be less than the release criteria. Once remediation efforts had been successfully completed, a Final Status Survey Plan (10-015, “Final Status Survey Plan for Corrective Action Unit 117 – Pluto Disassembly Facility, Building 2201”) was developed and implemented to complete the final step in the MARSSIM process, the Final Status Survey. The Final Status Survey Plan consisted of categorizing each individual room

  11. The AAA-ATPase molecular chaperone Cdc48/p97 disassembles sumoylated centromeres, decondenses heterochromatin, and activates ribosomal RNA genes

    PubMed Central

    Mérai, Zsuzsanna; Chumak, Nina; García-Aguilar, Marcelina; Hsieh, Tzung-Fu; Nishimura, Toshiro; Schoft, Vera K.; Bindics, János; Ślusarz, Lucyna; Arnoux, Stéphanie; Opravil, Susanne; Mechtler, Karl; Zilberman, Daniel; Fischer, Robert L.; Tamaru, Hisashi

    2014-01-01

    Centromeres mediate chromosome segregation and are defined by the centromere-specific histone H3 variant (CenH3)/centromere protein A (CENP-A). Removal of CenH3 from centromeres is a general property of terminally differentiated cells, and the persistence of CenH3 increases the risk of diseases such as cancer. However, active mechanisms of centromere disassembly are unknown. Nondividing Arabidopsis pollen vegetative cells, which transport engulfed sperm by extended tip growth, undergo loss of CenH3; centromeric heterochromatin decondensation; and bulk activation of silent rRNA genes, accompanied by their translocation into the nucleolus. Here, we show that these processes are blocked by mutations in the evolutionarily conserved AAA-ATPase molecular chaperone, CDC48A, homologous to yeast Cdc48 and human p97 proteins, both of which are implicated in ubiquitin/small ubiquitin-like modifier (SUMO)-targeted protein degradation. We demonstrate that CDC48A physically associates with its heterodimeric cofactor UFD1-NPL4, known to bind ubiquitin and SUMO, as well as with SUMO1-modified CenH3 and mutations in NPL4 phenocopy cdc48a mutations. In WT vegetative cell nuclei, genetically unlinked ribosomal DNA (rDNA) loci are uniquely clustered together within the nucleolus and all major rRNA gene variants, including those rDNA variants silenced in leaves, are transcribed. In cdc48a mutant vegetative cell nuclei, however, these rDNA loci frequently colocalized with condensed centromeric heterochromatin at the external periphery of the nucleolus. Our results indicate that the CDC48ANPL4 complex actively removes sumoylated CenH3 from centromeres and disrupts centromeric heterochromatin to release bulk rRNA genes into the nucleolus for ribosome production, which fuels single nucleus-driven pollen tube growth and is essential for plant reproduction. PMID:25344531

  12. Rad51 Nucleoprotein Filament Disassembly Captured Using Fluorescent Plasmodium falciparum SSB as a Reporter for Single-Stranded DNA

    PubMed Central

    Davenport, Eric Parker; Harris, Derek F.; Origanti, Sofia

    2016-01-01

    Single-stranded DNA binding (SSB) proteins coordinate DNA replication, repair, and recombination and are critical for maintaining genomic integrity. SSB binds to single-stranded DNA (ssDNA) rapidly and with very high affinity making it a useful molecular tool to detect free ssDNA in solution. We have labeled SSB from Plasmodium falciparum (Pf-SSB) with the MDCC (7-diethylamino-3-((((2-maleimidyl)ethyl)amino)-carbonyl)coumarin) fluorophore which yields a four-fold increase in fluorescence upon binding to ssDNA. Pf-SSBMDCC binding to DNA is unaffected by NaCl or Mg2+ concentration and does not display salt-dependent changes in DNA binding modes or cooperative binding on long DNA substrates. These features are unique to Pf-SSB, making it an ideal tool to probe the presence of free ssDNA in any biochemical reaction. Using this Pf-SSBMDCC probe as a sensor for free ssDNA, we have investigated the clearing of preformed yeast Rad51 nucleoprotein filaments by the Srs2 helicase during HR. Our studies provide a rate for the disassembly of the Rad51 filament by full length Srs2 on long ssDNA substrates. Mutations in the conserved 2B domain in the homologous bacterial UvrD, Rep and PcrA helicases show an enhancement of DNA unwinding activity, but similar mutations in Srs2 do not affect its DNA unwinding or Rad51 clearing properties. These studies showcase the utility of the Pf-SSB probe in mechanistic investigation of enzymes that function in DNA metabolism. PMID:27416037

  13. Induced Radioactivity and Waste Classification of Reactor Zone Components of the Chernobyl Nuclear Power Plant Unit 1 After Final Shutdown

    SciTech Connect

    Bylkin, Boris K.; Davydova, Galina B.; Zverkov, Yuri A.; Krayushkin, Alexander V.; Neretin, Yuri A.; Nosovsky, Anatoly V.; Seyda, Valery A.; Short, Steven M.

    2001-10-15

    The dismantlement of the reactor core materials and surrounding structural components is a major technical concern for those planning closure and decontamination and decommissioning of the Chernobyl Nuclear Power Plant (NPP). Specific issues include when and how dismantlement should be accomplished and what the radwaste classification of the dismantled system would be at the time it is disassembled. Whereas radiation levels and residual radiological characteristics of the majority of the plant systems are directly measured using standard radiation survey and radiochemical analysis techniques, actual measurements of reactor zone materials are not practical due to high radiation levels and inaccessibility. For these reasons, neutron transport analysis was used to estimate induced radioactivity and radiation levels in the Chernobyl NPP Unit 1 reactor core materials and structures.Analysis results suggest that the optimum period of safe storage is 90 to 100 yr for the Unit 1 reactor. For all of the reactor components except the fuel channel pipes (or pressure tubes), this will provide sufficient decay time to allow unlimited worker access during dismantlement, minimize the need for expensive remote dismantlement, and allow for the dismantled reactor components to be classified as low- or medium-level radioactive waste. The fuel channel pipes will remain classified as high-activity waste requiring remote dismantlement for hundreds of years due to the high concentration of induced {sup 63}Ni in the Zircaloy pipes.

  14. Nuclear Reactor Physics

    NASA Astrophysics Data System (ADS)

    Stacey, Weston M.

    2001-02-01

    An authoritative textbook and up-to-date professional's guide to basic and advanced principles and practices Nuclear reactors now account for a significant portion of the electrical power generated worldwide. At the same time, the past few decades have seen an ever-increasing number of industrial, medical, military, and research applications for nuclear reactors. Nuclear reactor physics is the core discipline of nuclear engineering, and as the first comprehensive textbook and reference on basic and advanced nuclear reactor physics to appear in a quarter century, this book fills a large gap in the professional literature. Nuclear Reactor Physics is a textbook for students new to the subject, for others who need a basic understanding of how nuclear reactors work, as well as for those who are, or wish to become, specialists in nuclear reactor physics and reactor physics computations. It is also a valuable resource for engineers responsible for the operation of nuclear reactors. Dr. Weston Stacey begins with clear presentations of the basic physical principles, nuclear data, and computational methodology needed to understand both the static and dynamic behaviors of nuclear reactors. This is followed by in-depth discussions of advanced concepts, including extensive treatment of neutron transport computational methods. As an aid to comprehension and quick mastery of computational skills, he provides numerous examples illustrating step-by-step procedures for performing the calculations described and chapter-end problems. Nuclear Reactor Physics is a useful textbook and working reference. It is an excellent self-teaching guide for research scientists, engineers, and technicians involved in industrial, research, and military applications of nuclear reactors, as well as government regulators who wish to increase their understanding of nuclear reactors.

  15. Preparation of LWBR (Light Water Breeder Reactor) spent fuel for shipment to ICPP (Idaho Chemical Processing Plant) for long term storage (LWBR Development Program). [Shippingport Atomic Power Station

    SciTech Connect

    Hodges, B.W.

    1987-10-01

    After successfully operating for 29,047 effective full power hours, the Light Water Breeder Reactor (LWBR) core was defueled prior to total decommissioning of the Shippingport facility. All nuclear fuel and much of the reactor internal hardware was removed from the reactor vessel. Non-fuel components were prepared for shipment to disposal sites, and the fuel assemblies were partially disassembled and shipped to the Expended Core Facility (ECF) in Idaho. At ECF, the fuel modules underwent further disassembly to provide fuel rods for nondestructive testing to establish the core's breeding efficiency and to provide core components for examinations to assess their performance characteristics. This report presents a basic description of the processes and equipment used to prepare and to ship all LWBR nuclear fuel to the Idaho Chemical Processing Plant (ICPP) for long-term storage. Preparation processes included the underwater loading of LWBR fuel into storage liners, the sealing, dewatering and drying of the storage liners, and the final pressurization of the storage liners with inert neon gas. Shipping operations included the underwater installation of the fuel loaded storage liner into the Peach Bottom shipping cask, cask removal from the waterpit, cask preparations for shipping, and cask shipment by tractor trailer to the ICPP facility for long-term storage. The ICPP facility preparations for LWBR fuel storage and the ICPP process for discharge of the fuel into underground silos are presented. 10 refs., 42 figs.

  16. S∧4 Reactor: Operating Lifetime and Estimates of Temperature and Burnup Reactivity Coefficients

    NASA Astrophysics Data System (ADS)

    King, Jeffrey C.; El-Genk, Mohamed S.

    2006-01-01

    The S∧4 reactor has a sectored, Mo-14%Re solid core for avoidance of single point failures in reactor cooling and Closed Brayton Cycle (CBC) energy conversion. The reactor is loaded with UN fuel, cooled with a He-Xe gas mixture at ~1200 K and operates at steady thermal power of 550 kW. Following a launch abort accident, the axial and radial BeO reflectors easily disassemble upon impact so that the bare reactor is subcriticial when submerged in wet sand or seawater and the core voids are filled with seawater. Spectral Shift Absorber (SSA) additives have been shown to increase the UN fuel enrichment and significantly reduce the total mass of the reactor. This paper investigates the effects of SSA additions on the temperature and burnup reactivity coefficients and the operational lifetime of the S∧4 reactor. SSAs slightly decrease the temperature reactivity feedback coefficient, but significantly increase the operating lifetime by decreasing the burnup reactivity coefficient. With no SSAs, fuel enrichment is only 58.5 wt% and the estimated operating lifetime is the shortest (7.6 years) with the highest temperature and burnup reactivity feedback coefficients (-0.2709 ¢/K and -1.3470 $/atom%). With europium-151 and gadolinium-155 additions, the enrichment (91.5 and 94 wt%) and operating lifetime (9.9 and 9.8 years) of the S∧4 reactor are the highest while the temperature and burnup reactivity coefficients (-0.2382 and -0.2447 ¢/K -0.9073 and 0.8502 $/atom%) are the lowest.

  17. HORIZONTAL BOILING REACTOR SYSTEM

    DOEpatents

    Treshow, M.

    1958-11-18

    Reactors of the boiling water type are described wherein water serves both as the moderator and coolant. The reactor system consists essentially of a horizontal pressure vessel divided into two compartments by a weir, a thermal neutronic reactor core having vertical coolant passages and designed to use water as a moderator-coolant posltioned in one compartment, means for removing live steam from the other compartment and means for conveying feed-water and water from the steam compartment to the reactor compartment. The system further includes auxiliary apparatus to utilize the steam for driving a turbine and returning the condensate to the feed-water inlet of the reactor. The entire system is designed so that the reactor is self-regulating and has self-limiting power and self-limiting pressure features.

  18. Modelling of biofilm reactors

    SciTech Connect

    Rodrigues, A.; Grasmick, A.; Elmaleh, S.

    1982-10-01

    Comprehensive models of biofilm reactors are developed. Model I assumes a zero-order reaction of a limiting substrate and a diffusional mass transport through the biofilm; in the diffusion-controlled regime the model is fully characterized by one parameter alpha. From this model the conversion of substrate or reactor efficiency can be calculated, for continuously stirred tank reactors (CSTRs) and plug flow reactors respectively, as follows: EA = )alpha(alpha + 2)) 1/2 - alpha; and Ep = (2 alpha) 1/2 - alpha/2: Validation of the model is tested for different experimental systems. Model II includes liquid film mass transfer resistance. The conversion gap between plug flow reactors and CSTRs is always lower than 25% and, as a first approximation, the biofilm reactor design does not then require accurate residence time distribution measurements. (Refs. 23).

  19. Hybrid reactors. [Fuel cycle

    SciTech Connect

    Moir, R.W.

    1980-09-09

    The rationale for hybrid fusion-fission reactors is the production of fissile fuel for fission reactors. A new class of reactor, the fission-suppressed hybrid promises unusually good safety features as well as the ability to support 25 light-water reactors of the same nuclear power rating, or even more high-conversion-ratio reactors such as the heavy-water type. One 4000-MW nuclear hybrid can produce 7200 kg of /sup 233/U per year. To obtain good economics, injector efficiency times plasma gain (eta/sub i/Q) should be greater than 2, the wall load should be greater than 1 MW.m/sup -2/, and the hybrid should cost less than 6 times the cost of a light-water reactor. Introduction rates for the fission-suppressed hybrid are usually rapid.

  20. Thermionic space reactors overview

    SciTech Connect

    Wetch, J.R.; Britt, E.J.; Fitzpatrick, G.O.; Rasor, N.S.

    1983-08-01

    The multi-national development of thermionic reactor systems is summarized in the context of the past general space nuclear reactor program and the recent renewed interest in space nuclear power. Comparison of various alternate reactor space power systems indicates that only the in-core thermionic reactor approach has the performance and growth potential required to provide the power levels potentially needed for shuttle-launchable systems by the year 2000 at reactor coolant and system temperatures that are near the current state-of-the-art. It is concluded that all shuttle- launchable high power space reactor systems require high-temperature, long-endurance nuclear fuels, and that high priority characterization and development of such fuels is essential to successfully realize power systems that can enable the space missions presently being considered.

  1. Modeling of the performance of weapons MOX fuel in light water reactors

    SciTech Connect

    Alvis, J.; Bellanger, P.; Medvedev, P.G.; Peddicord, K.L.; Gellene, G.I.

    1999-05-01

    Both the Russian Federation and the US are pursing mixed uranium-plutonium oxide (MOX) fuel in light water reactors (LWRs) for the disposition of excess plutonium from disassembled nuclear warheads. Fuel performance models are used which describe the behavior of MOX fuel during irradiation under typical power reactor conditions. The objective of this project is to perform the analysis of the thermal, mechanical, and chemical behavior of weapons MOX fuel pins under LWR conditions. If fuel performance analysis indicates potential questions, it then becomes imperative to assess the fuel pin design and the proposed operating strategies to reduce the probability of clad failure and the associated release of radioactive fission products into the primary coolant system. Applying the updated code to anticipated fuel and reactor designs, which would be used for weapons MOX fuel in the US, and analyzing the performance of the WWER-100 fuel for Russian weapons plutonium disposition are addressed in this report. The COMETHE code was found to do an excellent job in predicting fuel central temperatures. Also, despite minor predicted differences in thermo-mechanical behavior of MOX and UO{sub 2} fuels, the preliminary estimate indicated that, during normal reactor operations, these deviations remained within limits foreseen by fuel pin design.

  2. NEUTRONIC REACTOR CONTROL

    DOEpatents

    Dreffin, R.S.

    1959-12-15

    A control means for a nuclear reactor is described. Particularly a device extending into the active portion of the reactor consisting of two hollow elements coaxially disposed and forming a channel therebetween, the cross sectional area of the channel increasing from each extremity of the device towards the center thereof. An element of neutron absorbing material is slidably positionable within the inner hollow element and a fluid reactor poison is introduced into the channel defined by the two hollow elements.

  3. NEUTRONIC REACTOR SYSTEM

    DOEpatents

    Goett, J.J.

    1961-01-24

    A system is described which includes a neutronic reactor containing a dispersion of fissionable material in a liquid moderator as fuel and a conveyor to which a portion of the dispersion may be passed and wherein the self heat of the slurry evaporates the moderator. Means are provided for condensing the liquid moderator and returning it to the reactor and for conveying the dried fissionable material away from the reactor.

  4. Improved vortex reactor system

    DOEpatents

    Diebold, J.P.; Scahill, J.W.

    1995-05-09

    An improved vortex reactor system is described for affecting fast pyrolysis of biomass and Refuse Derived Fuel (RDF) feed materials comprising: a vortex reactor having its axis vertically disposed in relation to a jet of a horizontally disposed steam ejector that impels feed materials from a feeder and solids from a recycle loop along with a motive gas into a top part of said reactor. 12 figs.

  5. THERMAL NEUTRONIC REACTOR

    DOEpatents

    Spinrad, B.I.

    1960-01-12

    A novel thermal reactor was designed in which a first reflector formed from a high atomic weight, nonmoderating material is disposed immediately adjacent to the reactor core. A second reflector composed of a moderating material is disposed outwardly of the first reflector. The advantage of this novel reflector arrangement is that the first reflector provides a high slow neutron flux in the second reflector, where irradiation experiments may be conducted with a small effect on reactor reactivity.

  6. FLOW SYSTEM FOR REACTOR

    DOEpatents

    Zinn, W.H.

    1963-06-11

    A reactor is designed with means for terminating the reaction when returning coolant is below a predetermined temperature. Coolant flowing from the reactor passes through a heat exchanger to a lower reservoir, and then circulates between the lower reservoir and an upper reservoir before being returned to the reactor. Means responsive to the temperature of the coolant in the return conduit terminate the chain reaction when the temperature reaches a predetermined minimum value. (AEC)

  7. Pressurized fluidized bed reactor

    DOEpatents

    Isaksson, J.

    1996-03-19

    A pressurized fluid bed reactor power plant includes a fluidized bed reactor contained within a pressure vessel with a pressurized gas volume between the reactor and the vessel. A first conduit supplies primary gas from the gas volume to the reactor, passing outside the pressure vessel and then returning through the pressure vessel to the reactor, and pressurized gas is supplied from a compressor through a second conduit to the gas volume. A third conduit, comprising a hot gas discharge, carries gases from the reactor, through a filter, and ultimately to a turbine. During normal operation of the plant, pressurized gas is withdrawn from the gas volume through the first conduit and introduced into the reactor at a substantially continuously controlled rate as the primary gas to the reactor. In response to an operational disturbance of the plant, the flow of gas in the first, second, and third conduits is terminated, and thereafter the pressure in the gas volume and in the reactor is substantially simultaneously reduced by opening pressure relief valves in the first and third conduits, and optionally by passing air directly from the second conduit to the turbine. 1 fig.

  8. Pressurized fluidized bed reactor

    DOEpatents

    Isaksson, Juhani

    1996-01-01

    A pressurized fluid bed reactor power plant includes a fluidized bed reactor contained within a pressure vessel with a pressurized gas volume between the reactor and the vessel. A first conduit supplies primary gas from the gas volume to the reactor, passing outside the pressure vessel and then returning through the pressure vessel to the reactor, and pressurized gas is supplied from a compressor through a second conduit to the gas volume. A third conduit, comprising a hot gas discharge, carries gases from the reactor, through a filter, and ultimately to a turbine. During normal operation of the plant, pressurized gas is withdrawn from the gas volume through the first conduit and introduced into the reactor at a substantially continuously controlled rate as the primary gas to the reactor. In response to an operational disturbance of the plant, the flow of gas in the first, second, and third conduits is terminated, and thereafter the pressure in the gas volume and in the reactor is substantially simultaneously reduced by opening pressure relief valves in the first and third conduits, and optionally by passing air directly from the second conduit to the turbine.

  9. HOMOGENEOUS NUCLEAR POWER REACTOR

    DOEpatents

    King, L.D.P.

    1959-09-01

    A homogeneous nuclear power reactor utilizing forced circulation of the liquid fuel is described. The reactor does not require fuel handling outside of the reactor vessel during any normal operation including complete shutdown to room temperature, the reactor being selfregulating under extreme operating conditions and controlled by the thermal expansion of the liquid fuel. The liquid fuel utilized is a uranium, phosphoric acid, and water solution which requires no gus exhaust system or independent gas recombining system, thereby eliminating the handling of radioiytic gas.

  10. Study to define an approach for developing a computer-based system capable of automatic, unattended assembly/disassembly of spacecraft, phase 1

    NASA Technical Reports Server (NTRS)

    Nevins, J. L.; Defazio, T. L.; Seltzer, D. S.; Whitney, D. E.

    1981-01-01

    The initial set of requirements for additional studies necessary to implement a space-borne, computer-based work system capable of achieving assembly, disassembly, repair, or maintenance in space were developed. The specific functions required of a work system to perform repair and maintenance were discussed. Tasks and relevant technologies were identified and delineated. The interaction of spacecraft design and technology options, including a consideration of the strategic issues of repair versus retrieval-replacement or destruction by removal were considered along with the design tradeoffs for accomplishing each of the options. A concept system design and its accompanying experiment or test plan were discussed.

  11. Mucin-mediated nanocarrier disassembly for triggered uptake of oligonucleotides as a delivery strategy for the potential treatment of mucosal tumours

    NASA Astrophysics Data System (ADS)

    Martirosyan, A.; Olesen, M. J.; Fenton, R. A.; Kjems, J.; Howard, K. A.

    2016-06-01

    This work demonstrates gastric mucin-triggered nanocarrier disassembly for release of antisense oligonucleotides and consequent unassisted cellular entry as a novel oral delivery strategy. A fluorescence activation-based reporter system was used to investigate the interaction and mucin-mediated disassembly of chitosan-based nanocarriers containing a 13-mer DNA oligonucleotide with a flanked locked RNA nucleic acid gapmer design. Gastric mucins were shown to trigger gapmer release from nanocarriers that was dependent on the interaction time, mucin concentration and N : P ratio with a maximal release at N : P 10. In contrast to siRNA, naked gapmers exhibited uptake into mucus producing HT-MTX mono-cultures and HT-MTX co-cultured with the carcinoma epithelial cell line Caco-2. Importantly, in vivo gapmer uptake was observed in epithelial tissue 30 min post-injection in murine intestinal loops. The findings present a mucosal design-based system tailored for local delivery of oligonucleotides that may maximize the effectiveness of gene silencing therapeutics within tumours at mucosal sites.This work demonstrates gastric mucin-triggered nanocarrier disassembly for release of antisense oligonucleotides and consequent unassisted cellular entry as a novel oral delivery strategy. A fluorescence activation-based reporter system was used to investigate the interaction and mucin-mediated disassembly of chitosan-based nanocarriers containing a 13-mer DNA oligonucleotide with a flanked locked RNA nucleic acid gapmer design. Gastric mucins were shown to trigger gapmer release from nanocarriers that was dependent on the interaction time, mucin concentration and N : P ratio with a maximal release at N : P 10. In contrast to siRNA, naked gapmers exhibited uptake into mucus producing HT-MTX mono-cultures and HT-MTX co-cultured with the carcinoma epithelial cell line Caco-2. Importantly, in vivo gapmer uptake was observed in epithelial tissue 30 min post-injection in murine intestinal

  12. Authorized Limits for the Release of a 25 Ton Locomotive, Serial Number 21547, at the Area 25 Engine Maintenance, Assembly, and Disassembly Facility, Nevada Test Site, Nevada

    SciTech Connect

    Jeremy Gwin and Douglas Frenette

    2010-04-08

    This document contains process knowledge and radiological data and analysis to support approval for release of the 25-ton locomotive, Serial Number 21547, at the Area 25 Engine Maintenance, Assembly, and Disassembly (EMAD) Facility, located on the Nevada Test Site (NTS). The 25-ton locomotive is a small, one-of-a-kind locomotive used to move railcars in support of the Nuclear Engine for Rocket Vehicle Application project. This locomotive was identified as having significant historical value by the Nevada State Railroad Museum in Boulder City, Nevada, where it will be used as a display piece. A substantial effort to characterize the radiological conditions of the locomotive was undertaken by the NTS Management and Operations Contractor, National Security Technologies, LLC (NSTec). During this characterization process, seven small areas on the locomotive had contamination levels that exceeded the NTS release criteria (limits consistent with U.S. Department of Energy [DOE] Order DOE O 5400.5, “Radiation Protection of the Public and the Environment”). The decision was made to perform radiological decontamination of these known accessible impacted areas to further the release process. On February 9, 2010, NSTec personnel completed decontamination of these seven areas to within the NTS release criteria. Although all accessible areas of the locomotive had been successfully decontaminated to within NTS release criteria, it was plausible that inaccessible areas of the locomotive (i.e., those areas on the locomotive where it was not possible to perform radiological surveys) could potentially have contamination above unrestricted release limits. To access the majority of these inaccessible areas, the locomotive would have to be disassembled. A complete disassembly for a full radiological survey could have permanently destroyed parts and would have ruined the historical value of the locomotive. Complete disassembly would also add an unreasonable financial burden for the

  13. Cytokines induce tight junction disassembly in airway cells via an EGFR-dependent MAPK/ERK1/2-pathway.

    PubMed

    Petecchia, Loredana; Sabatini, Federica; Usai, Cesare; Caci, Emanuela; Varesio, Luigi; Rossi, Giovanni A

    2012-08-01

    markedly prevented when Calu-3 cells were cultured in the presence of an EGFR inhibitor (AG1478, 1 μM) or a MAP kinase inhibitor (U0126, 25 μM). In conclusion, cytokine-induced epithelial injury includes TJ disassembly and epithelial barrier permeability alteration and involves the EGFR-dependent MAPK/ERK1/2 signaling pathway.

  14. NEUTRONIC REACTOR SYSTEM

    DOEpatents

    Treshow, M.

    1959-02-10

    A reactor system incorporating a reactor of the heterogeneous boiling water type is described. The reactor is comprised essentially of a core submerged adwater in the lower half of a pressure vessel and two distribution rings connected to a source of water are disposed within the pressure vessel above the reactor core, the lower distribution ring being submerged adjacent to the uppcr end of the reactor core and the other distribution ring being located adjacent to the top of the pressure vessel. A feed-water control valve, responsive to the steam demand of the load, is provided in the feedwater line to the distribution rings and regulates the amount of feed water flowing to each distribution ring, the proportion of water flowing to the submerged distribution ring being proportional to the steam demand of the load. This invention provides an automatic means exterior to the reactor to control the reactivity of the reactor over relatively long periods of time without relying upon movement of control rods or of other moving parts within the reactor structure.

  15. Polymerization Reactor Engineering.

    ERIC Educational Resources Information Center

    Skaates, J. Michael

    1987-01-01

    Describes a polymerization reactor engineering course offered at Michigan Technological University which focuses on the design and operation of industrial polymerization reactors to achieve a desired degree of polymerization and molecular weight distribution. Provides a list of the course topics and assigned readings. (TW)

  16. The Integral Fast Reactor

    SciTech Connect

    Till, C.E.; Chang, Y.I. ); Lineberry, M.J. )

    1990-01-01

    Argonne National Laboratory, since 1984, has been developing the Integral Fast Reactor (IFR). This paper will describe the way in which this new reactor concept came about; the technical, public acceptance, and environmental issues that are addressed by the IFR; the technical progress that has been made; and our expectations for this program in the near term. 5 refs., 3 figs.

  17. Light water reactor program

    SciTech Connect

    Franks, S.M.

    1994-12-31

    The US Department of Energy`s Light Water Reactor Program is outlined. The scope of the program consists of: design certification of evolutionary plants; design, development, and design certification of simplified passive plants; first-of-a-kind engineering to achieve commercial standardization; plant lifetime improvement; and advanced reactor severe accident program. These program activities of the Office of Nuclear Energy are discussed.

  18. Operating US power reactors

    SciTech Connect

    Silver, E.G.

    1982-07-01

    The operation of US power reactors during March and April 1982 is summarized. Events of special note are discussed in the text, and the operational performance of all licensed power reactors is presented. These data are taken from the monthly Operating Units Status Report prepared by the Nuclear Regulatory Commission (NRC).

  19. Compact torsatron reactors

    SciTech Connect

    Lyon, J.F.; Carreras, B.A.; Lynch, V.E.; Tolliver, J.S.; Sviatoslavsky, I.N.

    1988-05-01

    Low-aspect-ratio torsatron configurations could lead to compact stellarator reactors with R/sub 0/ = 8--11m, roughly one-half to one-third the size of more conventional stellarator reactor designs. Minimum-size torsatron reactors are found using various assumptions. Their size is relatively insensitive to the choice of the conductor parameters and depends mostly on geometrical constraints. The smallest size is obtained by eliminating the tritium breeding blanket under the helical winding on the inboard side and by reducing the radial depth of the superconducting coil. Engineering design issues and reactor performance are examined for three examples to illustrate the feasibility of this approach for compact reactors and for a medium-size (R/sub 0/ approx. = 4 m,/bar a/ /approx lt/ 1 m) copper-coil ignition experiment. 26 refs., 11 figs., 7 tabs.

  20. REACTOR FUEL SCAVENGING MEANS

    DOEpatents

    Coffinberry, A.S.

    1962-04-10

    A process for removing fission products from reactor liquid fuel without interfering with the reactor's normal operation or causing a significant change in its fuel composition is described. The process consists of mixing a liquid scavenger alloy composed of about 44 at.% plutoniunm, 33 at.% lanthanum, and 23 at.% nickel or cobalt with a plutonium alloy reactor fuel containing about 3 at.% lanthanum; removing a portion of the fuel and scavenger alloy from the reactor core and replacing it with an equal amount of the fresh scavenger alloy; transferring the portion to a quiescent zone where the scavenger and the plutonium fuel form two distinct liquid layers with the fission products being dissolved in the lanthanum-rich scavenger layer; and the clean plutonium-rich fuel layer being returned to the reactor core. (AEC)

  1. Status of French reactors

    SciTech Connect

    Ballagny, A.

    1997-08-01

    The status of French reactors is reviewed. The ORPHEE and RHF reactors can not be operated with a LEU fuel which would be limited to 4.8 g U/cm{sup 3}. The OSIRIS reactor has already been converted to LEU. It will use U{sub 3}Si{sub 2} as soon as its present stock of UO{sub 2} fuel is used up, at the end of 1994. The decision to close down the SILOE reactor in the near future is not propitious for the start of a conversion process. The REX 2000 reactor, which is expected to be commissioned in 2005, will use LEU (except if the fast neutrons core option is selected). Concerning the end of the HEU fuel cycle, the best option is reprocessing followed by conversion of the reprocessed uranium to LEU.

  2. Reactor neutrino monitoring

    NASA Astrophysics Data System (ADS)

    Lhuillier, D.

    2009-03-01

    Nuclear reactors are the most intense man-controlled sources of antineutrinos and as such have hosted number of key physics experiments, from the antineutrino discovery to modern oscillation measurements. At the present time, both detection technology and understanding of fundamental physics are mature enough to think about antineutrinos as a new tool for reactor monitoring. We describe below how antineutrinos can provide online information on reactor operation and amount of plutonium accumulated in the core. Reactors are the only sources of plutonium on earth and this element can be chemically separated from the rest of the nuclear fuel and diverted into nuclear weapons. We present in the next sections the unique features antineutrino detectors could provide to safeguards agencies such as IAEA. We review the worldwide efforts to develop small ( 1m scale) antineutrino detectors dedicated to automated and non-intrusive reactor monitoring.

  3. Activation analysis of concrete and graphite in the experimental reactor RUS.

    PubMed

    Cometto, M; Ridikas, D; Aubert, M C; Damoy, F; Ancius, D

    2005-01-01

    The decommissioning and dismantling of nuclear installations after their service life involves the necessary disassembling, handling and disposing of a large amount of radioactive equipment and structures. In particular, the concrete that has been used as a biological reactor shield and graphite that has been used as a moderator-reflector represent the majority of waste, requiring geological disposal. To reduce this undesirable volume to the minimum and to successfully plan the dismantling and disposal of radioactive materials to storage facilities, the activations of the structures should be accurately evaluated. In the framework of the decommissioning and the dismantling of the experimental reactor of the University of Strasbourg, detailed activation estimates have been conducted to characterise the graphite and the structural materials present in the reactor environment. For this purpose, the chemical compositions of fresh graphite samples and different types of concrete have been determined by activation analysis in the research reactors OSIRIS and ORPHEE of CEA Saclay (France). Then, the activations of graphite, concrete and other materials have been calculated in the whole reactor, as a function of the three main nuclear data libraries, i.e. ENDF, JEF and JENDL. In parallel, the activations of representative graphite and concrete samples have been measured experimentally. The comparison of theoretical predictions with experimental values validates the approach and the methodology used in the present study and tests the consistency and the reliability of the nuclear data used for activation analysis. We believe that a similar approach could also be used for the decommissioning of industrial nuclear reactors.

  4. Activation analysis of concrete and graphite in the experimental reactor RUS.

    PubMed

    Cometto, M; Ridikas, D; Aubert, M C; Damoy, F; Ancius, D

    2005-01-01

    The decommissioning and dismantling of nuclear installations after their service life involves the necessary disassembling, handling and disposing of a large amount of radioactive equipment and structures. In particular, the concrete that has been used as a biological reactor shield and graphite that has been used as a moderator-reflector represent the majority of waste, requiring geological disposal. To reduce this undesirable volume to the minimum and to successfully plan the dismantling and disposal of radioactive materials to storage facilities, the activations of the structures should be accurately evaluated. In the framework of the decommissioning and the dismantling of the experimental reactor of the University of Strasbourg, detailed activation estimates have been conducted to characterise the graphite and the structural materials present in the reactor environment. For this purpose, the chemical compositions of fresh graphite samples and different types of concrete have been determined by activation analysis in the research reactors OSIRIS and ORPHEE of CEA Saclay (France). Then, the activations of graphite, concrete and other materials have been calculated in the whole reactor, as a function of the three main nuclear data libraries, i.e. ENDF, JEF and JENDL. In parallel, the activations of representative graphite and concrete samples have been measured experimentally. The comparison of theoretical predictions with experimental values validates the approach and the methodology used in the present study and tests the consistency and the reliability of the nuclear data used for activation analysis. We believe that a similar approach could also be used for the decommissioning of industrial nuclear reactors. PMID:16381692

  5. Possible steps of complete disassembly of post-termination complex by yeast eEF3 deduced from inhibition by translocation inhibitors.

    PubMed

    Kurata, Shinya; Shen, Ben; Liu, Jun O; Takeuchi, Nono; Kaji, Akira; Kaji, Hideko

    2013-01-01

    Ribosomes, after one round of translation, must be recycled so that the next round of translation can occur. Complete disassembly of post-termination ribosomal complex (PoTC) in yeast for the recycling consists of three reactions: release of tRNA, release of mRNA and splitting of ribosomes, catalyzed by eukaryotic elongation factor 3 (eEF3) and ATP. Here, we show that translocation inhibitors cycloheximide and lactimidomycin inhibited all three reactions. Cycloheximide is a non-competitive inhibitor of both eEF3 and ATP. The inhibition was observed regardless of the way PoTC was prepared with either release factors or puromycin. Paromomycin not only inhibited all three reactions but also re-associated yeast ribosomal subunits. On the other hand, sordarin or fusidic acid, when applied together with eEF2/GTP, specifically inhibited ribosome splitting without blocking of tRNA/mRNA release. From these inhibitor studies, we propose that, in accordance with eEF3's known function in elongation, the release of tRNA via exit site occurs first, then mRNA is released, followed by the splitting of ribosomes during the disassembly of post-termination complexes catalyzed by eEF3 and ATP.

  6. Burdens of PBBs, PBDEs, and PCBs in tissues of the cancer patients in the e-waste disassembly sites in Zhejiang, China.

    PubMed

    Zhao, Gaofeng; Wang, Zijian; Zhou, Huaidong; Zhao, Qing

    2009-08-15

    This study was conducted to explore the burdens of PBBs, PBDEs, and PCBs among cancer patients living in the e-waste disassembly sites. The contents of 23 PBB congeners, 12 PBDE congeners, and 27 PCB congeners in kidney, liver, and lung samples were measured by GC-MS. The results showed that low-brominated PBBs and PBB153 were the predominant congeners. PBDE47 were the most predominant PBDE congeners. PBDE209 were detected in > 70% of the samples, with geometric means ranging from 64.2 to 113.9 ng g(-1) lipid. Among the three subfamilies of PHAHs, PCB concentrations were the highest. The detected levels of PHAHs were in the same order of magnitude in the three tissues, which indicated that any of the three tissues could be the suitable indicator for assessing body burdens of PHAHs. PBB contents (181-192 ng g(-1) lipid) were obviously higher than those reported in the general USA population (3-8 ng g(-1) lipid). PBDE levels (174.1-182.3 ng g(-1) lipid) were comparable to those reported in the USA population, but significantly higher than those of the European population. PCBs levels were comparable to those of the European population. The high cancer incidence in the disassembly sites may be related to higher burdens of PBBs, PBDEs, and PCBs in tissues. PMID:19539352

  7. Assessment of the impacts of spent fuel disassembly alternatives on the Nuclear Waste Isolation System. [Preparing and packaging spent fuel assemblies for geologic disposal

    SciTech Connect

    Not Available

    1984-07-01

    The objective of this report was to evaluate four possible alternative methods of preparing and packaging spent fuel assemblies for geologic disposal against the Reference Process of unmodified spent fuel. The four alternative processes were: (1) End fitting removal, (2) Fission gas venting and resealing, (3) Fuel bundle disassembly and close packing of fuel pins, and (4) Fuel shearing and immobilization. Systems analysis was used to develop a basis of comparison of the alternatives. Conceptual processes and facility layouts were devised for each of the alternatives, based on technology deemed feasible for the purpose. Assessments were made of 15 principal attributes from the technical, operational, safety/risk, and economic considerations related to each of the alternatives, including both the surface packaging and underground repository operations. Specific attributes of the alternative processes were evaluated by assigning a number for each that expressed its merit relative to the corresponding attribute of the Reference Process. Each alternative process was then ranked by summing the numbers for attributes in each of the four assessment areas and collectively. Fuel bundle disassembly and close packing of fuel pins was ranked the preferred method of disposal of spent fuel. 63 references, 46 figures, 46 tables.

  8. Triggered disassembly of hierarchically assembled onion-like micelles into the pristine core-shell micelles via a small change in pH.

    PubMed

    Cai, Guoqiang; Zhang, Haiwen; Liu, Peng; Wang, Liqun; Jiang, Hongliang

    2011-10-01

    The size and surface property of nanomaterial-based delivery systems administered intravenously play important roles in their cell uptake and in vivo distribution. Both of them should be capable of self-evolution in order to achieve efficient targeting performance. A facile strategy was proposed to manipulate both the size and surface property of polymeric micelles. It was found that the hierarchical assembly between trimethylated chitosan-g-poly(ε-caprolactone) (TMC-PCL) micelles and carboxyethyl chitosan-g-poly(ethylene glycol) (CEC-PEG) could produce onion-like micelles with enlarged size and PEGylated surface. The onion-like micelles could withstand the ionic strength of plasma and competitive exchange with BSA, and abruptly disassemble into the pristine TMC-PCL micelles via a small change in pH. By varying the degree of carboxyethylation, the disassembly pH could be modulated to the range of the tumoral microclimate pH. In contrast with TMC-PCL micelles, which displayed high cytotoxicity and endocytic ability towards C6 glioma cells, the onion-like micelles were cell-friendly and internalized by the cells at a very low level. Doxorubicin was used as a model chemotherapeutic agent and incorporated within TMC-PCL micelles. Dox release from both TMC-PCL micelles and the onion-like micelles was very slow under normal physiological conditions and displayed excellent pH sensitivity. Cell viability of Dox-loaded micelles was also investigated.

  9. Mucin-mediated nanocarrier disassembly for triggered uptake of oligonucleotides as a delivery strategy for the potential treatment of mucosal tumours.

    PubMed

    Martirosyan, A; Olesen, M J; Fenton, R A; Kjems, J; Howard, K A

    2016-07-01

    This work demonstrates gastric mucin-triggered nanocarrier disassembly for release of antisense oligonucleotides and consequent unassisted cellular entry as a novel oral delivery strategy. A fluorescence activation-based reporter system was used to investigate the interaction and mucin-mediated disassembly of chitosan-based nanocarriers containing a 13-mer DNA oligonucleotide with a flanked locked RNA nucleic acid gapmer design. Gastric mucins were shown to trigger gapmer release from nanocarriers that was dependent on the interaction time, mucin concentration and N : P ratio with a maximal release at N : P 10. In contrast to siRNA, naked gapmers exhibited uptake into mucus producing HT-MTX mono-cultures and HT-MTX co-cultured with the carcinoma epithelial cell line Caco-2. Importantly, in vivo gapmer uptake was observed in epithelial tissue 30 min post-injection in murine intestinal loops. The findings present a mucosal design-based system tailored for local delivery of oligonucleotides that may maximize the effectiveness of gene silencing therapeutics within tumours at mucosal sites. PMID:26694897

  10. Binding-induced autonomous disassembly of aptamer-DNAzyme supersandwich nanostructures for sensitive electrochemiluminescence turn-on detection of ochratoxin A

    NASA Astrophysics Data System (ADS)

    Chen, Ying; Yang, Mengli; Xiang, Yun; Yuan, Ruo; Chai, Yaqin

    2013-12-01

    The self-assembled DNA nanostructure has been one of the most interesting research areas in the field of nanoscience, and the application of the DNA self-assembled nanostructures in biosensing is still in the early stage. In this work, based on the target-induced autonomous disassembly of the aptamer-DNAzyme supersandwich nanostructures, we demonstrated a highly sensitive strategy for electrochemiluminescent (ECL) detection of ochratoxin A (OTA). The aptamer-DNAzyme supersandwich nanostructures, which exhibited significant ECL quenching effect toward the oxygen/persulfate (O2/S2O82-) system, were self-assembled on the gold electrode surface. The presence of the target OTA and the exonuclease (RecJf) resulted in autonomous disassembly of the nanostructures and cyclic reuse of OTA, leading to efficient recovery of the ECL emission and highly sensitive detection of OTA. Our developed method also showed high selectivity against other interference molecules and can be applied for the detection of OTA in real red wine samples, which offers the proposed method opportunities for designing new DNA-based nanostructures for biosensing applications.

  11. Mucin-mediated nanocarrier disassembly for triggered uptake of oligonucleotides as a delivery strategy for the potential treatment of mucosal tumours.

    PubMed

    Martirosyan, A; Olesen, M J; Fenton, R A; Kjems, J; Howard, K A

    2016-07-01

    This work demonstrates gastric mucin-triggered nanocarrier disassembly for release of antisense oligonucleotides and consequent unassisted cellular entry as a novel oral delivery strategy. A fluorescence activation-based reporter system was used to investigate the interaction and mucin-mediated disassembly of chitosan-based nanocarriers containing a 13-mer DNA oligonucleotide with a flanked locked RNA nucleic acid gapmer design. Gastric mucins were shown to trigger gapmer release from nanocarriers that was dependent on the interaction time, mucin concentration and N : P ratio with a maximal release at N : P 10. In contrast to siRNA, naked gapmers exhibited uptake into mucus producing HT-MTX mono-cultures and HT-MTX co-cultured with the carcinoma epithelial cell line Caco-2. Importantly, in vivo gapmer uptake was observed in epithelial tissue 30 min post-injection in murine intestinal loops. The findings present a mucosal design-based system tailored for local delivery of oligonucleotides that may maximize the effectiveness of gene silencing therapeutics within tumours at mucosal sites.

  12. Nuclear reactor control column

    DOEpatents

    Bachovchin, Dennis M.

    1982-01-01

    The nuclear reactor control column comprises a column disposed within the nuclear reactor core having a variable cross-section hollow channel and containing balls whose vertical location is determined by the flow of the reactor coolant through the column. The control column is divided into three basic sections wherein each of the sections has a different cross-sectional area. The uppermost section of the control column has the greatest cross-sectional area, the intermediate section of the control column has the smallest cross-sectional area, and the lowermost section of the control column has the intermediate cross-sectional area. In this manner, the area of the uppermost section can be established such that when the reactor coolant is flowing under normal conditions therethrough, the absorber balls will be lifted and suspended in a fluidized bed manner in the upper section. However, when the reactor coolant flow falls below a predetermined value, the absorber balls will fall through the intermediate section and into the lowermost section, thereby reducing the reactivity of the reactor core and shutting down the reactor.

  13. Slurry reactor design studies

    SciTech Connect

    Fox, J.M.; Degen, B.D.; Cady, G.; Deslate, F.D.; Summers, R.L. ); Akgerman, A. ); Smith, J.M. )

    1990-06-01

    The objective of these studies was to perform a realistic evaluation of the relative costs of tublar-fixed-bed and slurry reactors for methanol, mixed alcohols and Fischer-Tropsch syntheses under conditions where they would realistically be expected to operate. The slurry Fischer-Tropsch reactor was, therefore, operated at low H{sub 2}/CO ratio on gas directly from a Shell gasifier. The fixed-bed reactor was operated on 2.0 H{sub 2}/CO ratio gas after adjustment by shift and CO{sub 2} removal. Every attempt was made to give each reactor the benefit of its optimum design condition and correlations were developed to extend the models beyond the range of the experimental pilot plant data. For the methanol design, comparisons were made for a recycle plant with high methanol yield, this being the standard design condition. It is recognized that this is not necessarily the optimum application for the slurry reactor, which is being proposed for a once-through operation, coproducing methanol and power. Consideration is also given to the applicability of the slurry reactor to mixed alcohols, based on conditions provided by Lurgi for an Octamix{trademark} plant using their standard tubular-fixed reactor technology. 7 figs., 26 tabs.

  14. Reactor Safety Research Programs

    SciTech Connect

    Edler, S. K.

    1981-07-01

    This document summarizes the work performed by Pacific Northwest Laboratory (PNL) from January 1 through March 31, 1981, for the Division of Reactor Safety Research within the U.S. Nuclear Regulatory Commission (NRC). Evaluations of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibility of determining the strength of structural graphite, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the integrity of pressurized water reactor (PWR) steam generator tubes where service-induced degradation has been indicated. Experimental data and analytical models are being provided to aid in decision-making regarding pipeto- pipe impacts following postulated breaks in high-energy fluid system piping. Core thermal models are being developed to provide better digital codes to compute the behavior of full-scale reactor systems under postulated accident conditions. Fuel assemblies and analytical support are being provided for experimental programs at other facilities. These programs include loss-ofcoolant accident (LOCA) simulation tests at the NRU reactor, Chalk River, Canada; fuel rod deformation, severe fuel damage, and postaccident coolability tests for the ESSOR reactor Super Sara Test Program, Ispra, Italy; the instrumented fuel assembly irradiation program at Halden, Norway; and experimental programs at the Power Burst Facility, Idaho National Engineering Laboratory (INEL). These programs will provide data for computer modeling of reactor system and fuel performance during various abnormal operating conditions.

  15. Nuclear reactor reflector

    DOEpatents

    Hopkins, Ronald J.; Land, John T.; Misvel, Michael C.

    1994-01-01

    A nuclear reactor reflector is disclosed that comprises a stack of reflector blocks with vertical water flow passages to cool the reflector. The interface between blocks is opposite support points for reactor fuel rods. Water flows between the reflector and the reactor barrel from passages in a bottom block. The top block contains a flange to limit this flow and the flange has a slot to receive an alignment pin that is welded to the barrel. The pin is held in the slot by two removable shims. Alignment bars extend the length of the stack in slots machined in each block when the stack is assembled.

  16. Nuclear reactor reflector

    DOEpatents

    Hopkins, R.J.; Land, J.T.; Misvel, M.C.

    1994-06-07

    A nuclear reactor reflector is disclosed that comprises a stack of reflector blocks with vertical water flow passages to cool the reflector. The interface between blocks is opposite support points for reactor fuel rods. Water flows between the reflector and the reactor barrel from passages in a bottom block. The top block contains a flange to limit this flow and the flange has a slot to receive an alignment pin that is welded to the barrel. The pin is held in the slot by two removable shims. Alignment bars extend the length of the stack in slots machined in each block when the stack is assembled. 12 figs.

  17. Microfluidic electrochemical reactors

    DOEpatents

    Nuzzo, Ralph G.; Mitrovski, Svetlana M.

    2011-03-22

    A microfluidic electrochemical reactor includes an electrode and one or more microfluidic channels on the electrode, where the microfluidic channels are covered with a membrane containing a gas permeable polymer. The distance between the electrode and the membrane is less than 500 micrometers. The microfluidic electrochemical reactor can provide for increased reaction rates in electrochemical reactions using a gaseous reactant, as compared to conventional electrochemical cells. Microfluidic electrochemical reactors can be incorporated into devices for applications such as fuel cells, electrochemical analysis, microfluidic actuation, pH gradient formation.

  18. CONTROL FOR NEUTRONIC REACTOR

    DOEpatents

    Lichtenberger, H.V.; Cameron, R.A.

    1959-03-31

    S>A control rod operating device in a nuclear reactor of the type in which the control rod is gradually withdrawn from the reactor to a position desired during stable operation is described. The apparatus is comprised essentially of a stop member movable in the direction of withdrawal of the control rod, a follower on the control rod engageable with the stop and means urging the follower against the stop in the direction of withdrawal. A means responsive to disengagement of the follower from the stop is provided for actuating the control rod to return to the reactor shut-down position.

  19. REACTOR CONTROL SYSTEM

    DOEpatents

    MacNeill, J.H.; Estabrook, J.Y.

    1960-05-10

    A reactor control system including a continuous tape passing through a first coolant passageway, over idler rollers, back through another parallel passageway, and over motor-driven rollers is described. Discrete portions of fuel or poison are carried on two opposed active sections of the tape. Driving the tape in forward or reverse directions causes both active sections to be simultaneously inserted or withdrawn uniformly, tending to maintain a more uniform flux within the reactor. The system is particularly useful in mobile reactors, where reduced inertial resistance to control rod movement is important.

  20. COOLED NEUTRONIC REACTOR

    DOEpatents

    Binner, C.R.; Wilkie, C.B.

    1958-03-18

    This patent relates to a design for a reactor of the type in which a fluid coolant is flowed through the active portion of the reactor. This design provides for the cooling of the shielding material as well as the reactor core by the same fluid coolant. The core structure is a solid moderator having coolant channels in which are disposed the fuel elements in rod or slug form. The coolant fluid enters the chamber in the shield, in which the core is located, passes over the inner surface of said chamber, enters the core structure at the center, passes through the coolant channels over the fuel elements and out through exhaust ducts.

  1. NUCLEAR REACTOR FUEL SYSTEMS

    DOEpatents

    Thamer, B.J.; Bidwell, R.M.; Hammond, R.P.

    1959-09-15

    Homogeneous reactor fuel solutions are reported which provide automatic recombination of radiolytic gases and exhibit large thermal expansion characteristics, thereby providing stability at high temperatures and enabling reactor operation without the necessity of apparatus to recombine gases formed by the radiolytic dissociation of water in the fuel and without the necessity of liquid fuel handling outside the reactor vessel except for recovery processes. The fuels consist of phosphoric acid and water solutions of enriched uranium, wherein the uranium is in either the hexavalent or tetravalent state.

  2. Spherical torus fusion reactor

    DOEpatents

    Martin Peng, Y.K.M.

    1985-10-03

    The object of this invention is to provide a compact torus fusion reactor with dramatic simplification of plasma confinement design. Another object of this invention is to provide a compact torus fusion reactor with low magnetic field and small aspect ratio stable plasma confinement. In accordance with the principles of this invention there is provided a compact toroidal-type plasma confinement fusion reactor in which only the indispensable components inboard of a tokamak type of plasma confinement region, mainly a current conducting medium which carries electrical current for producing a toroidal magnet confinement field about the toroidal plasma region, are retained.

  3. Fast Breeder Reactor studies

    SciTech Connect

    Till, C.E.; Chang, Y.I.; Kittel, J.H.; Fauske, H.K.; Lineberry, M.J.; Stevenson, M.G.; Amundson, P.I.; Dance, K.D.

    1980-07-01

    This report is a compilation of Fast Breeder Reactor (FBR) resource documents prepared to provide the technical basis for the US contribution to the International Nuclear Fuel Cycle Evaluation. The eight separate parts deal with the alternative fast breeder reactor fuel cycles in terms of energy demand, resource base, technical potential and current status, safety, proliferation resistance, deployment, and nuclear safeguards. An Annex compares the cost of decommissioning light-water and fast breeder reactors. Separate abstracts are included for each of the parts.

  4. NEUTRONIC REACTOR CONTROL

    DOEpatents

    Metcalf, H.E.

    1958-10-14

    Methods of controlling reactors are presented. Specifically, a plurality of neutron absorber members are adjustably disposed in the reactor core at different distances from the center thereof. The absorber members extend into the core from opposite faces thereof and are operated by motive means coupled in a manner to simultaneously withdraw at least one of the absorber members while inserting one of the other absorber members. This feature effects fine control of the neutron reproduction ratio by varying the total volume of the reactor effective in developing the neutronic reaction.

  5. Biomimetic Culture Reactor for Whole-Lung Engineering

    PubMed Central

    Raredon, Micha Sam Brickman; Rocco, Kevin A.; Gheorghe, Ciprian P.; Sivarapatna, Amogh; Ghaedi, Mahboobe; Balestrini, Jenna L.; Raredon, Thomas L.; Calle, Elizabeth A.; Niklason, Laura E.

    2016-01-01

    Abstract Decellularized organs are now established as promising scaffolds for whole-organ regeneration. For this work to reach therapeutic practice, techniques and apparatus are necessary for doing human-scale clinically applicable organ cultures. We have designed and constructed a bioreactor system capable of accommodating whole human or porcine lungs, and we describe in this study relevant technical details, means of assembly and operation, and validation. The reactor has an artificial diaphragm that mimics the conditions found in the chest cavity in vivo, driving hydraulically regulated negative pressure ventilation and custom-built pulsatile perfusion apparatus capable of driving pressure-regulated or volume-regulated vascular flow. Both forms of mechanical actuation can be tuned to match specific physiologic profiles. The organ is sealed in an elastic artificial pleura that mounts to a support architecture. This pleura reduces the fluid volume required for organ culture, maintains the organ's position during mechanical conditioning, and creates a sterile barrier allowing disassembly and maintenance outside of a biosafety cabinet. The combination of fluid suspension, negative-pressure ventilation, and physiologic perfusion allows the described system to provide a biomimetic mechanical environment not found in existing technologies and especially suited to whole-organ regeneration. In this study, we explain the design and operation of this apparatus and present data validating intended functions. PMID:27088061

  6. Biomimetic Culture Reactor for Whole-Lung Engineering.

    PubMed

    Raredon, Micha Sam Brickman; Rocco, Kevin A; Gheorghe, Ciprian P; Sivarapatna, Amogh; Ghaedi, Mahboobe; Balestrini, Jenna L; Raredon, Thomas L; Calle, Elizabeth A; Niklason, Laura E

    2016-01-01

    Decellularized organs are now established as promising scaffolds for whole-organ regeneration. For this work to reach therapeutic practice, techniques and apparatus are necessary for doing human-scale clinically applicable organ cultures. We have designed and constructed a bioreactor system capable of accommodating whole human or porcine lungs, and we describe in this study relevant technical details, means of assembly and operation, and validation. The reactor has an artificial diaphragm that mimics the conditions found in the chest cavity in vivo, driving hydraulically regulated negative pressure ventilation and custom-built pulsatile perfusion apparatus capable of driving pressure-regulated or volume-regulated vascular flow. Both forms of mechanical actuation can be tuned to match specific physiologic profiles. The organ is sealed in an elastic artificial pleura that mounts to a support architecture. This pleura reduces the fluid volume required for organ culture, maintains the organ's position during mechanical conditioning, and creates a sterile barrier allowing disassembly and maintenance outside of a biosafety cabinet. The combination of fluid suspension, negative-pressure ventilation, and physiologic perfusion allows the described system to provide a biomimetic mechanical environment not found in existing technologies and especially suited to whole-organ regeneration. In this study, we explain the design and operation of this apparatus and present data validating intended functions. PMID:27088061

  7. Packed Bed Reactor Experiment

    NASA Video Gallery

    The purpose of the Packed Bed Reactor Experiment in low gravity is to determine how a mixture of gas and liquid flows through a packed bed in reduced gravity. A packed bed consists of a metal pipe ...

  8. NEUTRONIC REACTOR STRUCTURE

    DOEpatents

    Daniels, F.

    1961-10-24

    A reactor core, comprised of vertical stacks of hexagonal blocks of beryllium oxide having axial cylindrical apertures extending therethrough and cylindrical rods of a sintered mixture of uranium dioxide and beryllium oxide, is described. (AEC)

  9. NEUTRONIC REACTOR FUEL COMPOSITION

    DOEpatents

    Thurber, W.C.

    1961-01-10

    Uranium-aluminum alloys in which boron is homogeneously dispersed by adding it as a nickel boride are described. These compositions have particular utility as fuels for neutronic reactors, boron being present as a burnable poison.

  10. Molten metal reactors

    DOEpatents

    Bingham, Dennis N; Klingler, Kerry M; Turner, Terry D; Wilding, Bruce M

    2013-11-05

    A molten metal reactor for converting a carbon material and steam into a gas comprising hydrogen, carbon monoxide, and carbon dioxide is disclosed. The reactor includes an interior crucible having a portion contained within an exterior crucible. The interior crucible includes an inlet and an outlet; the outlet leads to the exterior crucible and may comprise a diffuser. The exterior crucible may contain a molten alkaline metal compound. Contained between the exterior crucible and the interior crucible is at least one baffle.

  11. Compact power reactor

    DOEpatents

    Wetch, Joseph R.; Dieckamp, Herman M.; Wilson, Lewis A.

    1978-01-01

    There is disclosed a small compact nuclear reactor operating in the epithermal neutron energy range for supplying power at remote locations, as for a satellite. The core contains fuel moderator elements of Zr hydride with 7 w/o of 93% enriched uranium alloy. The core has a radial beryllium reflector and is cooled by liquid metal coolant such as NaK. The reactor is controlled and shut down by moving portions of the reflector.

  12. Future reactor experiments

    SciTech Connect

    Wen, Liangjian

    2015-07-15

    The non-zero neutrino mixing angle θ{sub 13} has been discovered and precisely measured by the current generation short-baseline reactor neutrino experiments. It opens the gate of measuring the leptonic CP-violating phase and enables the neutrino mass ordering. The JUNO and RENO-50 proposals aim at resolving the neutrino mass ordering using reactors. The experiment design, physics sensitivity, technical challenges as well as the progresses of those two proposed experiments are reviewed in this paper.

  13. Reactor Safety Research Programs

    SciTech Connect

    Dotson, CW

    1980-08-01

    This document summarizes the work performed by Pacific Northwest laboratory from October 1 through December 31, 1979, for the Division of Reactor Safety Research within the Nuclear Regulatory Commission. Evaluation of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibilty of determining structural graphite strength, evaluating the feasibilty of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the remaining integrity of pressurized water reactor steam generator tubes where service-induced degradation has been indicated. Test assemblies and analytical support are being provided for experimental programs at other facilities. These programs include the loss-of-coolant accident simulation tests at the NRU reactor, Chalk River, Canada; the fuel rod deformation and post-accident coolability tests for the ESSOR Test Reactor Program, lspra, Italy; the blowdown and reflood tests in the test facility at Cadarache, France; the instrumented fuel assembly irradiation program at Halden, Norway; and the experimental programs at the Power Burst Facility, Idaho National Engineering Laboratory. These programs will provide data for computer modeling of reactor system and fuel performance during various abnormal operating conditions.

  14. F Reactor Inspection

    SciTech Connect

    Grindstaff, Keith; Hathaway, Boyd; Wilson, Mike

    2014-10-29

    Workers from Mission Support Alliance, LLC., removed the welds around the steel door of the F Reactor before stepping inside the reactor to complete its periodic inspection. This is the first time the Department of Energy (DOE) has had the reactor open since 2008. The F Reactor is one of nine reactors along the Columbia River at the Department's Hanford Site in southeastern Washington State, where environmental cleanup has been ongoing since 1989. As part of the Tri-Party Agreement, the Department completes surveillance and maintenance activities of cocooned reactors periodically to evaluate the structural integrity of the safe storage enclosure and to ensure confinement of any remaining hazardous materials. "This entry marks a transition of sorts because the Hanford Long-Term Stewardship Program, for the first time, was responsible for conducting the entry and surveillance and maintenance activities," said Keith Grindstaff, Energy Department Long-Term Stewardship Program Manager. "As the River Corridor cleanup work is completed and transitioned to long-term stewardship, our program will manage any on-going requirements."

  15. F Reactor Inspection

    ScienceCinema

    Grindstaff, Keith; Hathaway, Boyd; Wilson, Mike

    2016-07-12

    Workers from Mission Support Alliance, LLC., removed the welds around the steel door of the F Reactor before stepping inside the reactor to complete its periodic inspection. This is the first time the Department of Energy (DOE) has had the reactor open since 2008. The F Reactor is one of nine reactors along the Columbia River at the Department's Hanford Site in southeastern Washington State, where environmental cleanup has been ongoing since 1989. As part of the Tri-Party Agreement, the Department completes surveillance and maintenance activities of cocooned reactors periodically to evaluate the structural integrity of the safe storage enclosure and to ensure confinement of any remaining hazardous materials. "This entry marks a transition of sorts because the Hanford Long-Term Stewardship Program, for the first time, was responsible for conducting the entry and surveillance and maintenance activities," said Keith Grindstaff, Energy Department Long-Term Stewardship Program Manager. "As the River Corridor cleanup work is completed and transitioned to long-term stewardship, our program will manage any on-going requirements."

  16. Moon base reactor system

    NASA Technical Reports Server (NTRS)

    Chavez, H.; Flores, J.; Nguyen, M.; Carsen, K.

    1989-01-01

    The objective of our reactor design is to supply a lunar-based research facility with 20 MW(e). The fundamental layout of this lunar-based system includes the reactor, power conversion devices, and a radiator. The additional aim of this reactor is a longevity of 12 to 15 years. The reactor is a liquid metal fast breeder that has a breeding ratio very close to 1.0. The geometry of the core is cylindrical. The metallic fuel rods are of beryllium oxide enriched with varying degrees of uranium, with a beryllium core reflector. The liquid metal coolant chosen was natural lithium. After the liquid metal coolant leaves the reactor, it goes directly into the power conversion devices. The power conversion devices are Stirling engines. The heated coolant acts as a hot reservoir to the device. It then enters the radiator to be cooled and reenters the Stirling engine acting as a cold reservoir. The engines' operating fluid is helium, a highly conductive gas. These Stirling engines are hermetically sealed. Although natural lithium produces a lower breeding ratio, it does have a larger temperature range than sodium. It is also corrosive to steel. This is why the container material must be carefully chosen. One option is to use an expensive alloy of cerbium and zirconium. The radiator must be made of a highly conductive material whose melting point temperature is not exceeded in the reactor and whose structural strength can withstand meteor showers.

  17. NEUTRONIC REACTOR CONSTRUCTION AND OPERATION

    DOEpatents

    West, J.M.; Weills, J.T.

    1960-03-15

    A method is given for operating a nuclear reactor having a negative coefficient of reactivity to compensate for the change in reactor reactivity due to the burn-up of the xenon peak following start-up of the reactor. When it is desired to start up the reactor within less than 72 hours after shutdown, the temperature of the reactor is lowered prior to start-up, and then gradually raised after start-up.

  18. REACTOR GROUT THERMAL PROPERTIES

    SciTech Connect

    Steimke, J.; Qureshi, Z.; Restivo, M.; Guerrero, H.

    2011-01-28

    Savannah River Site has five dormant nuclear production reactors. Long term disposition will require filling some reactor buildings with grout up to ground level. Portland cement based grout will be used to fill the buildings with the exception of some reactor tanks. Some reactor tanks contain significant quantities of aluminum which could react with Portland cement based grout to form hydrogen. Hydrogen production is a safety concern and gas generation could also compromise the structural integrity of the grout pour. Therefore, it was necessary to develop a non-Portland cement grout to fill reactors that contain significant quantities of aluminum. Grouts generate heat when they set, so the potential exists for large temperature increases in a large pour, which could compromise the integrity of the pour. The primary purpose of the testing reported here was to measure heat of hydration, specific heat, thermal conductivity and density of various reactor grouts under consideration so that these properties could be used to model transient heat transfer for different pouring strategies. A secondary purpose was to make qualitative judgments of grout pourability and hardened strength. Some reactor grout formulations were unacceptable because they generated too much heat, or started setting too fast, or required too long to harden or were too weak. The formulation called 102H had the best combination of characteristics. It is a Calcium Alumino-Sulfate grout that contains Ciment Fondu (calcium aluminate cement), Plaster of Paris (calcium sulfate hemihydrate), sand, Class F fly ash, boric acid and small quantities of additives. This composition afforded about ten hours of working time. Heat release began at 12 hours and was complete by 24 hours. The adiabatic temperature rise was 54 C which was within specification. The final product was hard and displayed no visible segregation. The density and maximum particle size were within specification.

  19. CSER 94-013: Classification and access to PFP 232-Z Incinerator Facility and limits on characterization and disassembly activities in 232-Z burning hood

    SciTech Connect

    Miller, E.M.

    1995-01-12

    This CSER justifies the Limited Control Facility designation for the closed Burning Hood in the PFP 232-Z Incinerator Facility. If the Burning Hood is opened to characterize the plutonium distribution and geometric integrity of the internals or for disassembly of the internals, then the more rigorous Fissionable Material Facility classification is required. Two sets of requirements apply for personnel access, criticality firefighting category for water use, and fissile material movement for the two states of the Burning Hood. The parameters used in the criticality analysis are listed to establish the limits under which this CSER is valid. Determination that the Burning Hood fissile material, moderation, or internal arrangements are outside these limits requires reevaluation of these parameter values and activities at the 232-Z Incinerator Facility. When the Burning Hood is open, water entry is to be prevented by two physical barriers for each water source.

  20. Reactor Safety Planning for Prometheus Project, for Naval Reactors Information

    SciTech Connect

    P. Delmolino

    2005-05-06

    The purpose of this letter is to submit to Naval Reactors the initial plan for the Prometheus project Reactor Safety work. The Prometheus project is currently developing plans for cold physics experiments and reactor prototype tests. These tests and facilities may require safety analysis and siting support. In addition to the ground facilities, the flight reactor units will require unique analyses to evaluate the risk to the public from normal operations and credible accident conditions. This letter outlines major safety documents that will be submitted with estimated deliverable dates. Included in this planning is the reactor servicing documentation and shipping analysis that will be submitted to Naval Reactors.

  1. Insights into the effects of polygalacturonase FaPG1 gene silencing on pectin matrix disassembly, enhanced tissue integrity, and firmness in ripe strawberry fruits

    PubMed Central

    Posé, Sara; Paniagua, Candelas; Cifuentes, Manuel; Blanco-Portales, Rosario; Quesada, Miguel A.; Mercado, José A.

    2013-01-01

    Antisense-mediated down-regulation of the fruit-specific polygalacturonase (PG) gene FaPG1 in strawberries (Fragaria×ananassa Duch.) has been previously demonstrated to reduce fruit softening and to extend post-harvest shelf life, despite the low PG activity detected in this fruit. The improved fruit traits were suggested to be attributable to a reduced cell wall disassembly due to FaPG1 silencing. This research provides empirical evidence that supports this assumption at the biochemical, cellular, and tissue levels. Cell wall modifications of two independent transgenic antisense lines that demonstrated a >90% reduction in FaPG1 transcript levels were analysed. Sequential extraction of cell wall fractions from control and ripe fruits exhibited a 42% decrease in pectin solubilization in transgenic fruits. A detailed chromatographic analysis of the gel filtration pectin profiles of the different cell wall fractions revealed a diminished depolymerization of the more tightly bound pectins in transgenic fruits, which were solubilized with both a chelating agent and sodium carbonate. The cell wall extracts from antisense FaPG1 fruits also displayed less severe in vitro swelling. A histological analysis revealed more extended cell–cell adhesion areas and an enhanced tissue integrity in transgenic ripe fruits. An immunohistological analysis of fruit sections using the JIM5 antibody against low methyl-esterified pectins demonstrated a higher labelling in transgenic fruit sections, whereas minor differences were observed with JIM7, an antibody that recognizes highly methyl-esterified pectins. These results support that the increased firmness of transgenic antisense FaPG1 strawberry fruits is predominantly due to a decrease in pectin solubilization and depolymerization that correlates with more tightly attached cell wall-bound pectins. This limited disassembly in the transgenic lines indicates that these pectin fractions could play a key role in tissue integrity

  2. Analysis of heat-induced disassembly process of three different monomeric forms of the major light-harvesting chlorophyll a/b complex of photosystem II.

    PubMed

    Zhang, Yajie; Liu, Cheng; Yang, Chunhong

    2012-03-01

    The temperature-dependent disassembly process of three monomeric isoforms, namely Lhcb1, Lhcb2, and Lhcb3, of the major light-harvesting chlorophyll (Chl) a/b complexes of photosystem II (LHCIIb) were characterized by observing the changes of absorption spectra, circular dichroism (CD), and dissociation processes of the bound pigments to the in vitro reconstituted complexes subjected to high temperatures. Our results suggest that the three isoforms of LHCIIb undergo conformational rearrangements, structural changes, and dissociations of the bound pigments when the ambient temperature increases from 20 to 90°C. The conformation of the complexes changed sensitively to the changing temperatures because the absorption peaks in the Soret region (436 and 471 nm) and the Qy region (650-660 and 680 nm) decreased immediately upon elevating the ambient temperatures. Analyzing temperature-dependent denaturing and pigment dissociation process, we can divide the disassembly process into three stages: The first stage, appeared from 20°C to around 50-60°C, was characterized by the diminishment of the absorption around 650-660 and 680 nm, accompanied by the blue-shift of the peak at 471 nm and disappearance of the absorbance at 436 nm, which is related to changes in the transition energy of the Chl b cluster, and the red-most Chl a cluster in the LHCIIb. The second stage, beginning at about 50-60°C, was signified by the diminishment of the CD signal between (+)483 nm and (-)490 nm, which implied the disturbance of dipole-dipole interaction of pigments, and the onset of the pigment dissociation. The last stage, beginning at about 70-80°C, indicates the complete dissociation of the pigments from the complex. The physiological aspects of the three stages in the denaturing process are also discussed.

  3. The Nucleoid Occlusion SlmA Protein Accelerates the Disassembly of the FtsZ Protein Polymers without Affecting Their GTPase Activity

    PubMed Central

    Cabré, Elisa J.; Monterroso, Begoña; Alfonso, Carlos; Sánchez-Gorostiaga, Alicia; Reija, Belén; Jiménez, Mercedes

    2015-01-01

    Division site selection is achieved in bacteria by different mechanisms, one of them being nucleoid occlusion, which prevents Z-ring assembly nearby the chromosome. Nucleoid occlusion in E. coli is mediated by SlmA, a sequence specific DNA binding protein that antagonizes FtsZ assembly. Here we show that, when bound to its specific target DNA sequences (SBS), SlmA reduces the lifetime of the FtsZ protofilaments in solution and of the FtsZ bundles when located inside permeable giant vesicles. This effect appears to be essentially uncoupled from the GTPase activity of the FtsZ protofilaments, which is insensitive to the presence of SlmA·SBS. The interaction of SlmA·SBS with either FtsZ protofilaments containing GTP or FtsZ oligomers containing GDP results in the disassembly of FtsZ polymers. We propose that SlmA·SBS complexes control the polymerization state of FtsZ by accelerating the disassembly of the FtsZ polymers leading to their fragmentation into shorter species that are still able to hydrolyze GTP at the same rate. SlmA defines therefore a new class of inhibitors of the FtsZ ring different from the SOS response regulator SulA and from the moonlighting enzyme OpgH, inhibitors of the GTPase activity. SlmA also shows differences compared with MinC, the inhibitor of the division site selection Min system, which shortens FtsZ protofilaments by interacting with the GDP form of FtsZ. PMID:25950808

  4. EBT reactor analysis

    SciTech Connect

    Uckan, N. A.; Jaeger, E. F.; Santoro, R. T.; Spong, D. A.; Uckan, T.; Owen, L. W.; Barnes, J. M.; McBride, J. B.

    1983-08-01

    This report summarizes the results of a recent ELMO Bumpy Torus (EBT) reactor study that includes ring and core plasma properties with consistent treatment of coupled ring-core stability criteria and power balance requirements. The principal finding is that constraints imposed by these coupling and other physics and technology considerations permit a broad operating window for reactor design optimization. Within this operating window, physics and engineering systems analysis and cost sensitivity studies indicate that reactors with <..beta../sub core/> approx. 6 to 10%, P approx. 1200 to 1700 MW(e), wall loading approx. 1.0 to 2.5 MW/m/sup 2/, and recirculating power fraction (including ring-sustaining power and all other reactors auxiliaries) approx. 10 to 15% are possible. A number of concept improvements are also proposed that are found to offer the potential for further improvement of the reactor size and parameters. These include, but are not limited to, the use of: (1) supplementary coils or noncircular mirror coils to improve magnetic geometry and reduce size, (2) energetic ion rings to improve ring power requirements, (3) positive potential to enhance confinement and reduce size, and (4) profile control to improve stability and overall fusion power density.

  5. REACTOR AND NOVEL METHOD

    DOEpatents

    Young, G.J.; Ohlinger, L.A.

    1958-06-24

    A nuclear reactor of the type which uses a liquid fuel and a method of controlling such a reactor are described. The reactor is comprised essentially of a tank for containing the liquid fuel such as a slurry of discrete particles of fissionnble material suspended in a heavy water moderator, and a control means in the form of a disc of neutron absorbirg material disposed below the top surface of the slurry and parallel thereto. The diameter of the disc is slightly smaller than the diameter of the tank and the disc is perforated to permit a flow of the slurry therethrough. The function of the disc is to divide the body of slurry into two separate portions, the lower portion being of a critical size to sustain a nuclear chain reaction and the upper portion between the top surface of the slurry and the top surface of the disc being of a non-critical size. The method of operation is to raise the disc in the reactor until the lower portion of the slurry has reached a critical size when it is desired to initiate the reaction, and to lower the disc in the reactor to reduce the size of the lower active portion the slurry to below criticality when it is desired to stop the reaction.

  6. Methanation assembly using multiple reactors

    DOEpatents

    Jahnke, Fred C.; Parab, Sanjay C.

    2007-07-24

    A methanation assembly for use with a water supply and a gas supply containing gas to be methanated in which a reactor assembly has a plurality of methanation reactors each for methanating gas input to the assembly and a gas delivery and cooling assembly adapted to deliver gas from the gas supply to each of said methanation reactors and to combine water from the water supply with the output of each methanation reactor being conveyed to a next methanation reactor and carry the mixture to such next methanation reactor.

  7. Nuclear reactor safety device

    DOEpatents

    Hutter, Ernest

    1986-01-01

    A safety device is disclosed for use in a nuclear reactor for axially repositioning a control rod with respect to the reactor core in the event of an upward thermal excursion. Such safety device comprises a laminated helical ribbon configured as a tube-like helical coil having contiguous helical turns with slidably abutting edges. The helical coil is disclosed as a portion of a drive member connected axially to the control rod. The laminated ribbon is formed of outer and inner laminae. The material of the outer lamina has a greater thermal coefficient of expansion than the material of the inner lamina. In the event of an upward thermal excursion, the laminated helical coil curls inwardly to a smaller diameter. Such inward curling causes the total length of the helical coil to increase by a substantial increment, so that the control rod is axially repositioned by a corresponding amount to reduce the power output of the reactor.

  8. Reactor for exothermic reactions

    DOEpatents

    Smith, L.A. Jr.; Hearn, D.; Jones, E.M. Jr.

    1993-03-02

    A liquid phase process is described for oligomerization of C[sub 4] and C[sub 5] isoolefins or the etherification thereof with C[sub 1] to C[sub 6] alcohols wherein the reactants are contacted in a reactor with a fixed bed acid cation exchange resin catalyst at an LHSV of 5 to 20, pressure of 0 to 400 psig and temperature of 120 to 300 F. Wherein the improvement is the operation of the reactor at a pressure to maintain the reaction mixture at its boiling point whereby at least a portion but less than all of the reaction mixture is vaporized. By operating at the boiling point and allowing a portion of the reaction mixture to vaporize, the exothermic heat of reaction is dissipated by the formation of more boil up and the temperature in the reactor is controlled.

  9. A NEUTRONIC REACTOR

    DOEpatents

    Luebke, E.A.; Vandenberg, L.B.

    1959-09-01

    A nuclear reactor for producing thermoelectric power is described. The reactor core comprises a series of thermoelectric assemblies, each assembly including fissionable fuel as an active element to form a hot junction and a thermocouple. The assemblies are disposed parallel to each other to form spaces and means are included for Introducing an electrically conductive coolant between the assemblies to form cold junctions of the thermocouples. An electromotive force is developed across the entire series of the thermoelectric assemblies due to fission heat generated in the fuel causing a current to flow perpendicular to the flow of coolant and is distributed to a load outside of the reactor by means of bus bars electrically connected to the outermost thermoelectric assembly.

  10. Dynamic bed reactor

    SciTech Connect

    Stormo, K.E.

    1996-07-02

    A dynamic bed reactor is disclosed in which a compressible open cell foam matrix is periodically compressed and expanded to move a liquid or fluid through the matrix. In preferred embodiments, the matrix contains an active material such as an enzyme, biological cell, chelating agent, oligonucleotide, adsorbent or other material that acts upon the liquid or fluid passing through the matrix. The active material may be physically immobilized in the matrix, or attached by covalent or ionic bonds. Microbeads, substantially all of which have diameters less than 50 microns, can be used to immobilize the active material in the matrix and further improve reactor efficiency. A particularly preferred matrix is made of open cell polyurethane foam, which adsorbs pollutants such as polychlorophenol or o-nitrophenol. The reactors of the present invention allow unidirectional non-laminar flow through the matrix, and promote intimate exposure of liquid reactants to active agents such as microorganisms immobilized in the matrix. 27 figs.

  11. Reactor for exothermic reactions

    DOEpatents

    Smith, Jr., Lawrence A.; Hearn, Dennis; Jones, Jr., Edward M.

    1993-01-01

    A liquid phase process for oligomerization of C.sub.4 and C.sub.5 isoolefins or the etherification thereof with C.sub.1 to C.sub.6 alcohols wherein the reactants are contacted in a reactor with a fixed bed acid cation exchange resin catalyst at an LHSV of 5 to 20, pressure of 0 to 400 psig and temperature of 120.degree. to 300.degree. F. Wherein the improvement is the operation of the reactor at a pressure to maintain the reaction mixture at its boiling point whereby at least a portion but less than all of the reaction mixture is vaporized. By operating at the boiling point and allowing a portion of the reaction mixture to vaporize, the exothermic heat of reaction is dissipated by the formation of more boil up and the temperature in the reactor is controlled.

  12. Dynamic bed reactor

    DOEpatents

    Stormo, Keith E.

    1996-07-02

    A dynamic bed reactor is disclosed in which a compressible open cell foam matrix is periodically compressed and expanded to move a liquid or fluid through the matrix. In preferred embodiments, the matrix contains an active material such as an enzyme, biological cell, chelating agent, oligonucleotide, adsorbent or other material that acts upon the liquid or fluid passing through the matrix. The active material may be physically immobilized in the matrix, or attached by covalent or ionic bonds. Microbeads, substantially all of which have diameters less than 50 microns, can be used to immobilize the active material in the matrix and further improve reactor efficiency. A particularly preferred matrix is made of open cell polyurethane foam, which adsorbs pollutants such as polychlorophenol or o-nitrophenol. The reactors of the present invention allow unidirectional non-laminar flow through the matrix, and promote intimate exposure of liquid reactants to active agents such as microorganisms immobilized in the matrix.

  13. Heat dissipating nuclear reactor

    DOEpatents

    Hunsbedt, Anstein; Lazarus, Jonathan D.

    1987-01-01

    Disclosed is a nuclear reactor containment adapted to retain and cool core debris in the unlikely event of a core meltdown and subsequent breach in the reactor vessel. The reactor vessel is seated in a cavity which has a thick metal sidewall that is integral with a thick metal basemat at the bottom of the cavity. The basemat extends beyond the perimeter of the cavity sidewall. Underneath the basemat is a porous bed with water pipes and steam pipes running into it. Water is introduced into the bed and converted into steam which is vented to the atmosphere. A plurality of metal pilings in the form of H-beams extends from the metal base plate downwardly and outwardly into the earth.

  14. Heat dissipating nuclear reactor

    DOEpatents

    Hunsbedt, A.; Lazarus, J.D.

    1985-11-21

    Disclosed is a nuclear reactor containment adapted to retain and cool core debris in the unlikely event of a core meltdown and subsequent breach in the reactor vessel. The reactor vessel is seated in a cavity which has a thick metal sidewall that is integral with a thick metal basemat at the bottom of the cavity. The basemat extends beyond the perimeter of the cavity sidewall. Underneath the basemat is a porous bed with water pipes and steam pipes running into it. Water is introduced into the bed and converted into steam which is vented to the atmosphere. A plurality of metal pilings in the form of H-beams extend from the metal base plate downwardly and outwardly into the earth.

  15. Thermionic Reactor Design Studies

    SciTech Connect

    Schock, Alfred

    1994-08-01

    Paper presented at the 29th IECEC in Monterey, CA in August 1994. The present paper describes some of the author's conceptual designs and their rationale, and the special analytical techniques developed to analyze their (thermionic reactor) performance. The basic designs, first published in 1963, are based on single-cell converters, either double-ended diodes extending over the full height of the reactor core or single-ended diodes extending over half the core height. In that respect they are similar to the thermionic fuel elements employed in the Topaz-2 reactor subsequently developed in the Soviet Union, copies of which were recently imported by the U.S. As in the Topaz-2 case, electrically heated steady-state performance tests of the converters are possible before fueling.

  16. Compact reactor design automation

    NASA Technical Reports Server (NTRS)

    Nassersharif, Bahram; Gaeta, Michael J.

    1991-01-01

    A conceptual compact reactor design automation experiment was performed using the real-time expert system G2. The purpose of this experiment was to investigate the utility of an expert system in design; in particular, reactor design. The experiment consisted of the automation and integration of two design phases: reactor neutronic design and fuel pin design. The utility of this approach is shown using simple examples of formulating rules to ensure design parameter consistency between the two design phases. The ability of G2 to communicate with external programs even across networks provides the system with the capability of supplementing the knowledge processing features with conventional canned programs with possible applications for realistic iterative design tools.

  17. REACTOR CONTROL DEVICE

    DOEpatents

    Graham, R.H.

    1962-09-01

    A wholly mechanical compact control device is designed for automatically rendering the core of a fission reactor subcritical in response to core temperatures in excess of the design operating temperature limit. The control device comprises an expansible bellows interposed between the base of a channel in a reactor core and the inner end of a fuel cylinder therein which is normally resiliently urged inwardly. The bellows contains a working fluid which undergoes a liquid to vapor phase change at a temperature substantially equal to the design temperature limit. Hence, the bellows abruptiy expands at this limiting temperature to force the fuel cylinder outward and render the core subcritical. The control device is particularly applicable to aircraft propulsion reactor service. (AEC)

  18. Merchant Marine Ship Reactor

    DOEpatents

    Sankovich, M. F.; Mumm, J. F.; North, Jr, D. C.; Rock, H. R.; Gestson, D. K.

    1961-05-01

    A nuclear reactor for use in a merchant marine ship is described. The reactor is of pressurized, light water cooled and moderated design in which three passes of the water through the core in successive regions of low, intermediate, and high heat generation and downflow in a fuel region are made. The design makes a compact reactor construction with extended core life. The core has an egg-crate lattice containing the fuel elements that are confined between a lower flow baffle and upper grid plate, with the latter serving also as part of a turn- around manifold from which the entire coolant is distributed into the outer fuel elements for the second pass through the core. The inner fuel elements are cooled in the third pass. (AEC)

  19. MERCHANT MARINE SHIP REACTOR

    DOEpatents

    Mumm, J.F.; North, D.C. Jr.; Rock, H.R.; Geston, D.K.

    1961-05-01

    A nuclear reactor is described for use in a merchant marine ship. The reactor is of pressurized light water cooled and moderated design in which three passes of the water through the core in successive regions of low, intermediate, and high heat generation and downflow in a fuel region are made. The foregoing design makes a compact reactor construction with extended core life. The core has an egg-crate lattice containing the fuel elements confined between a lower flow baffle and upper grid plate, with the latter serving also as part of a turn- around manifold from which the entire coolant is distributed into the outer fuel elements for the second pass through the core. The inner fuel elements are cooled in the third pass.

  20. Advanced light water reactor requirements document: Chapter 4, Reactor systems

    SciTech Connect

    Not Available

    1987-06-01

    The purpose of this chapter of the Advanced Light Water Reactor (ALWR) Plant Requirements Document is to establish utility requirements for the design of the Reactor Systems of Advanced LWR plants consistent with the objectives and principles of the ALWR program. The scope of this chapter covers the following for Pressurized Water Reactor (PWR) and Boiling Water Reactor (BWR): reactor pressure vessel, nozzles and safe-ends, reactor internals, in-vessel portions of fluid systems (including reactor internal pumps (Emergency Core Cooling System (ECCS) piping and spargers), nuclear fuel, and the control rods and control rod drive system (including hydraulic supply and accumulators). Special tools required for reactor system maintenance, inspection and testing are also covered.

  1. Looking Southwest at Reactor Box Furnaces With Reactor Boxes and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking Southwest at Reactor Box Furnaces With Reactor Boxes and Repossessed Uranium in Recycle Recovery Building - Hematite Fuel Fabrication Facility, Recycle Recovery Building, 3300 State Road P, Festus, Jefferson County, MO

  2. Plug Flow Reactor Simulator

    SciTech Connect

    Larson, Richard S.

    1996-07-30

    PLUG is a computer program that solves the coupled steady state continuity, momentum, energy, and species balance equations for a plug flow reactor. Both homogeneous (gas-phase) and heterogenous (surface) reactions can be accommodated. The reactor may be either isothermal or adiabatic or may have a specified axial temperature or heat flux profile; alternatively, an ambient temperature and an overall heat-transfer coefficient can be specified. The crosssectional area and surface area may vary with axial position, and viscous drag is included. Ideal gas behavior and surface site conservation are assumed.

  3. NEUTRONIC REACTOR CONTROL ELEMENT

    DOEpatents

    Newson, H.W.

    1960-09-13

    A novel composite neutronic reactor control element is offered. The element comprises a multiplicity of sections arranged in end-to-end relationship, each of the sections having a markedly different neutron-reactive characteristic. For example, a three-section control element could contain absorber, moderator, and fuel sections. By moving such an element longitudinally through a reactor core, reactivity is decreased by the absorber, increased slightly by the moderator, or increased substantially by the fuel. Thus, control over a wide reactivity range is provided.

  4. MEANS FOR SHIELDING REACTORS

    DOEpatents

    Garrison, W.M.; McClinton, L.T.; Burton, M.

    1959-03-10

    A reactor of the heterageneous, heavy water moderated type is described. The reactor is comprised of a plurality of vertically disposed fuel element tubes extending through a tank of heavy water moderator and adapted to accommodate a flow of coolant water in contact with the fuel elements. A tank containing outgoing coolant water is disposed above the core to function is a radiation shield. Unsaturated liquid hydrocarbon is floated on top of the water in the shield tank to reduce to a minimum the possibility of the occurrence of explosive gaseous mixtures resulting from the neutron bombardment of the water in the shield tank.

  5. Perspectives on reactor safety

    SciTech Connect

    Haskin, F.E.; Camp, A.L.

    1994-03-01

    The US Nuclear Regulatory Commission (NRC) maintains a technical training center at Chattanooga, Tennessee to provide appropriate training to both new and experienced NRC employees. This document describes a one-week course in reactor, safety concepts. The course consists of five modules: (1) historical perspective; (2) accident sequences; (3) accident progression in the reactor vessel; (4) containment characteristics and design bases; and (5) source terms and offsite consequences. The course text is accompanied by slides and videos during the actual presentation of the course.

  6. Fusion reactor pumped laser

    DOEpatents

    Jassby, Daniel L.

    1988-01-01

    A nuclear pumped laser capable of producing long pulses of very high power laser radiation is provided. A toroidal fusion reactor provides energetic neutrons which are slowed down by a moderator. The moderated neutrons are converted to energetic particles capable of pumping a lasing medium. The lasing medium is housed in an annular cell surrounding the reactor. The cell includes an annular reflecting mirror at the bottom and an annular output window at the top. A neutron reflector is disposed around the cell to reflect escaping neutrons back into the cell. The laser radiation from the annular window is focused onto a beam compactor which generates a single coherent output laser beam.

  7. NEUTRONIC REACTOR SYSTEM

    DOEpatents

    Daniels, F.

    1957-10-15

    Gas-cooled solid-moderator type reactors wherein the fissionable fuel and moderator materials are each in the form of solid pebbles, or discrete particles, and are substantially homogeneously mixed in the proper proportion and placed within the core of the reactor are described. The shape of these discrete particles must be such that voids are present between them when mixed together. Helium enters the bottom of the core and passes through the voids between the fuel and moderator particles to absorb the heat generated by the chain reaction. The hot helium gas is drawn off the top of the core and may be passed through a heat exchanger to produce steam.

  8. ARIES tokamak reactor study

    SciTech Connect

    Steiner, D.; Embrechts, M.

    1990-07-01

    This is a status report on technical progress relative to the tasks identified for the fifth year of Grant No. FG02-85-ER52118. The ARIES tokamak reactor study is a multi-institutional effort to develop several visions of the tokamak as an attractive fusion reactor with enhanced economic, safety, and environmental features. The ARIES study is being coordinated by UCLA and involves a number of institutions, including RPI. The RPI group has been pursuing the following areas of research in the context of the ARIES-I design effort: MHD equilibrium and stability analyses; plasma-edge modeling and blanket materials issues. Progress in these areas is summarized herein.

  9. Plug Flow Reactor Simulator

    1996-07-30

    PLUG is a computer program that solves the coupled steady state continuity, momentum, energy, and species balance equations for a plug flow reactor. Both homogeneous (gas-phase) and heterogenous (surface) reactions can be accommodated. The reactor may be either isothermal or adiabatic or may have a specified axial temperature or heat flux profile; alternatively, an ambient temperature and an overall heat-transfer coefficient can be specified. The crosssectional area and surface area may vary with axial position,more » and viscous drag is included. Ideal gas behavior and surface site conservation are assumed.« less

  10. Particle bed reactor modeling

    NASA Technical Reports Server (NTRS)

    Sapyta, Joe; Reid, Hank; Walton, Lew

    1993-01-01

    The topics are presented in viewgraph form and include the following: particle bed reactor (PBR) core cross section; PBR bleed cycle; fuel and moderator flow paths; PBR modeling requirements; characteristics of PBR and nuclear thermal propulsion (NTP) modeling; challenges for PBR and NTP modeling; thermal hydraulic computer codes; capabilities for PBR/reactor application; thermal/hydralic codes; limitations; physical correlations; comparison of predicted friction factor and experimental data; frit pressure drop testing; cold frit mask factor; decay heat flow rate; startup transient simulation; and philosophy of systems modeling.

  11. Nuclear reactor apparatus

    DOEpatents

    Wade, Elman E.

    1978-01-01

    A lifting, rotating and sealing apparatus for nuclear reactors utilizing rotating plugs above the nuclear reactor core. This apparatus permits rotation of the plugs to provide under the plug refueling of a nuclear core. It also provides a means by which positive top core holddown can be utilized. Both of these operations are accomplished by means of the apparatus lifting the top core holddown structure off the nuclear core while stationary, and maintaining this structure in its elevated position during plug rotation. During both of these operations, the interface between the rotating member and its supporting member is sealingly maintained.

  12. Fast quench reactor method

    SciTech Connect

    Detering, Brent A.; Donaldson, Alan D.; Fincke, James R.; Kong, Peter C.; Berry, Ray A.

    1999-01-01

    A fast quench reaction includes a reactor chamber having a high temperature heating means such as a plasma torch at its inlet and a means of rapidly expanding a reactant stream, such as a restrictive convergent-divergent nozzle at its outlet end. Metal halide reactants are injected into the reactor chamber. Reducing gas is added at different stages in the process to form a desired end product and prevent back reactions. The resulting heated gaseous stream is then rapidly cooled by expansion of the gaseous stream.

  13. Fast quench reactor method

    DOEpatents

    Detering, B.A.; Donaldson, A.D.; Fincke, J.R.; Kong, P.C.; Berry, R.A.

    1999-08-10

    A fast quench reaction includes a reactor chamber having a high temperature heating means such as a plasma torch at its inlet and a means of rapidly expanding a reactant stream, such as a restrictive convergent-divergent nozzle at its outlet end. Metal halide reactants are injected into the reactor chamber. Reducing gas is added at different stages in the process to form a desired end product and prevent back reactions. The resulting heated gaseous stream is then rapidly cooled by expansion of the gaseous stream. 8 figs.

  14. THERMAL NUCLEAR REACTOR

    DOEpatents

    Fenning, F.W.; Jackson, R.F.

    1957-09-24

    Nuclear reactors of the graphite moderated air cooled type in which canned slugs or rods of fissile material are employed are discussed. Such a reactor may be provided with a means for detecting dust particles in the exhausted air. The means employed are lengths of dust absorbent cord suspended in vertical holes in the shielding structure above each vertical coolant flow channel to hang in the path of the cooling air issuing from the channels, and associated spindles and drive motors for hauling the cords past detectors, such as Geiger counters, for inspecting the cords periodically. This design also enables detecting the individual channel in which a fault condition may have occurred.

  15. Diagnostics for hybrid reactors

    SciTech Connect

    Orsitto, Francesco Paolo

    2012-06-19

    The Hybrid Reactor(HR) can be considered an attractive actinide-burner or a fusion assisted transmutation for destruction of transuranic(TRU) nuclear waste. The hybrid reactor has two important subsystems: the tokamak neutron source and the blanket which includes a fuel zone where the TRU are placed and a tritium breeding zone. The diagnostic system for a HR must be as simple and robust as possible to monitor and control the plasma scenario, guarantee the protection of the machine and monitor the transmutation.

  16. Reactor operation environmental information document

    SciTech Connect

    Haselow, J.S.; Price, V.; Stephenson, D.E.; Bledsoe, H.W.; Looney, B.B.

    1989-12-01

    The Savannah River Site (SRS) produces nuclear materials, primarily plutonium and tritium, to meet the requirements of the Department of Defense. These products have been formed in nuclear reactors that were built during 1950--1955 at the SRS. K, L, and P reactors are three of five reactors that have been used in the past to produce the nuclear materials. All three of these reactors discontinued operation in 1988. Currently, intense efforts are being extended to prepare these three reactors for restart in a manner that protects human health and the environment. To document that restarting the reactors will have minimal impacts to human health and the environment, a three-volume Reactor Operations Environmental Impact Document has been prepared. The document focuses on the impacts of restarting the K, L, and P reactors on both the SRS and surrounding areas. This volume discusses the geology, seismology, and subsurface hydrology. 195 refs., 101 figs., 16 tabs.

  17. Inertial confinement fusion reactor systems

    SciTech Connect

    Frank, T.G.; Bohachevsky, I.O.; Pendergrass, J.H.

    1980-01-01

    A variety of reactor cavity concepts, drivers, and energy conversion mechanisms are being considered to realize commercial applications of ICF. Presented in this paper are: (1) a review of reactor concepts with estimates of practically achievable pulse repetition rates; (2) a survey of drivers with estimates of the requirements on reactor conditions imposed by beam propagation characteristics; and (3) an assessment of compatible driver-reactor combinations.

  18. Reactor operation safety information document

    SciTech Connect

    Not Available

    1990-01-01

    The report contains a reactor facility description which includes K, P, and L reactor sites, structures, operating systems, engineered safety systems, support systems, and process and effluent monitoring systems; an accident analysis section which includes cooling system anomalies, radioactive materials releases, and anticipated transients without scram; a summary of onsite doses from design basis accidents; severe accident analysis (reactor core disruption); a description of operating contractor organization and emergency planning; and a summary of reactor safety evolution. (MB)

  19. NRC Targets University Reactors.

    ERIC Educational Resources Information Center

    Marshall, Eliot

    1984-01-01

    The Nuclear Regulatory Commission (NRC) wants universities to convert to low-grade fuel in their research reactions. Researchers claim the conversion, which will bring U.S. reactors in line with a policy the NRC is trying to impress on foreigners, could be financially and scientifically costly. Impact of the policy is considered. (JN)

  20. Neutronic reactor thermal shield

    DOEpatents

    Wende, Charles W. J.

    1976-06-15

    1. The method of operating a water-cooled neutronic reactor having a graphite moderator which comprises flowing a gaseous mixture of carbon dioxide and helium, in which the helium comprises 40-60 volume percent of the mixture, in contact with the graphite moderator.

  1. Nuclear Reactors and Technology

    SciTech Connect

    Cason, D.L.; Hicks, S.C.

    1992-01-01

    This publication Nuclear Reactors and Technology (NRT) announces on a monthly basis the current worldwide information available from the open literature on nuclear reactors and technology, including all aspects of power reactors, components and accessories, fuel elements, control systems, and materials. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past month. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency`s Energy Technology Data Exchange or government-to-government agreements. The digests in NRT and other citations to information on nuclear reactors back to 1948 are available for online searching and retrieval on the Energy Science and Technology Database and Nuclear Science Abstracts (NSA) database. Current information, added daily to the Energy Science and Technology Database, is available to DOE and its contractors through the DOE Integrated Technical Information System. Customized profiles can be developed to provide current information to meet each user`s needs.

  2. NEUTRONIC REACTOR FUEL ELEMENT

    DOEpatents

    Picklesimer, M.L.; Thurber, W.C.

    1961-01-01

    A chemically nonreactive fuel composition for incorporation in aluminum- clad, plate type fuel elements for neutronic reactors is described. The composition comprises a mixture of aluminum and uranium carbide particles, the uranium carbide particles containing at least 80 wt.% UC/sub 2/.

  3. NEUTRONIC REACTOR SHIELD

    DOEpatents

    Fermi, E.; Zinn, W.H.

    1957-09-24

    The reactor radiation shield material is comprised of alternate layers of iron-containing material and compressed cellulosic material, such as masonite. The shielding material may be prefabricated in the form of blocks, which can be stacked together in ary desired fashion to form an effective shield.

  4. NEUTRONIC REACTOR FUEL PUMP

    DOEpatents

    Cobb, W.G.

    1959-06-01

    A reactor fuel pump is described which offers long life, low susceptibility to radiation damage, and gaseous fission product removal. An inert-gas lubricated bearing supports a journal on one end of the drive shsft. The other end has an impeller and expansion chamber which effect pumping and gas- liquid separation. (T.R.H.)

  5. Thermal Reactor Safety

    SciTech Connect

    Not Available

    1980-06-01

    Information is presented concerning fire risk and protection; transient thermal-hydraulic analysis and experiments; class 9 accidents and containment; diagnostics and in-service inspection; risk and cost comparison of alternative electric energy sources; fuel behavior and experiments on core cooling in LOCAs; reactor event reporting analysis; equipment qualification; post facts analysis of the TMI-2 accident; and computational methods.

  6. University Reactor Instrumentation Program

    SciTech Connect

    Vernetson, W.G.

    1992-11-01

    Recognizing that the University Reactor Instrumentation Program was developed in response to widespread needs in the academic community for modernization and improvement of research and training reactors at institutions such as the University of Florida, the items proposed to be supported by this grant over its two year period have been selected as those most likely to reduce foreed outages, to meet regulatory concerns that had been expressed in recent years by Nuclear Regulatory Commission inspectors or to correct other facility problems and limitations. Department of Energy Grant Number DE-FG07-90ER129969 was provided to the University of Florida Training Reactor(UFTR) facility through the US Department of Energy's University Reactor Instrumentation Program. The original proposal submitted in February, 1990 requested support for UFTR facility instrumentation and equipment upgrades for seven items in the amount of $107,530 with $13,800 of this amount to be the subject of cost sharing by the University of Florida and $93,730 requested as support from the Department of Energy. A breakdown of the items requested and total cost for the proposed UFTR facility instrumentation and equipment improvements is presented.

  7. NETL - Chemical Looping Reactor

    ScienceCinema

    None

    2016-07-12

    NETL's Chemical Looping Reactor unit is a high-temperature integrated CLC process with extensive instrumentation to improve computational simulations. A non-reacting test unit is also used to study solids flow at ambient temperature. The CLR unit circulates approximately 1,000 pounds per hour at temperatures around 1,800 degrees Fahrenheit.

  8. SYSTEM FOR UNLOADING REACTORS

    DOEpatents

    Rand, A.C. Jr.

    1961-05-01

    An unloading device for individual vertical fuel channels in a nuclear reactor is shown. The channels are arranged in parallel rows and underneath each is a separate supporting block on which the fuel in the channel rests. The blocks are raounted in contiguous rows on an array of parallel pairs of tracks over the bottom of the reactor. Oblong hollows in the blocks form a continuous passageway through the middle of the row of blocks on each pair of tracks. At the end of each passageway is a horizontal grappling rod with a T- or L extension at the end next to the reactor of a length to permit it to pass through the oblong passageway in one position, but when rotated ninety degrees the head will strike one of the longer sides of the oblong hollow of one of the blocks. The grappling rod is actuated by a controllable reciprocating and rotating device which extends it beyond any individual block desired, rotates it and retracts it far enough to permit the fuel in the vertical channel above the block to fall into a handling tank below the reactor.

  9. Fossil fuel furnace reactor

    DOEpatents

    Parkinson, William J.

    1987-01-01

    A fossil fuel furnace reactor is provided for simulating a continuous processing plant with a batch reactor. An internal reaction vessel contains a batch of shale oil, with the vessel having a relatively thin wall thickness for a heat transfer rate effective to simulate a process temperature history in the selected continuous processing plant. A heater jacket is disposed about the reactor vessel and defines a number of independent controllable temperature zones axially spaced along the reaction vessel. Each temperature zone can be energized to simulate a time-temperature history of process material through the continuous plant. A pressure vessel contains both the heater jacket and the reaction vessel at an operating pressure functionally selected to simulate the continuous processing plant. The process yield from the oil shale may be used as feedback information to software simulating operation of the continuous plant to provide operating parameters, i.e., temperature profiles, ambient atmosphere, operating pressure, material feed rates, etc., for simulation in the batch reactor.

  10. NEUTRONIC REACTOR CONTROL

    DOEpatents

    Untermyer, S.; Hutter, E.

    1959-08-01

    This patent relates to "shadow" control of a nuclear reactor. The control means comprises a plurality ot elongated rods disposed adjacent and parallel to each other, The morphology and effects of gases generated within sections of neutron absorbing materials and equal length sections of neutron permeable materials together with means for longitudinally pcsitioning the rcds relative to each other.

  11. NEUTRONIC REACTOR FUEL ELEMENT

    DOEpatents

    Stacy, J.T.

    1958-12-01

    A reactor fuel element having a core of molybdenum-uranium alloy jacketed in stainless steel is described. A barrier layer of tungsten, tantalum, molybdenum, columbium, or silver is interposed between the core and jacket to prevent formation of a low melting eutectic between uranium and the varlous alloy constituents of the stainless steel.

  12. NUCLEAR REACTOR FUEL ELEMENT

    DOEpatents

    Currier, E.L. Jr.; Nicklas, J.H.

    1963-06-11

    A fuel plate is designed for incorporation into control rods of the type utilized in high-flux test reactors. The fuel plate is designed so that the portion nearest the poison section of the control rod contains about one-half as much fissionable material as in the rest of the plate, thereby eliminating dangerous flux peaking in that portion. (AEC)

  13. JACKETED REACTOR FUEL ELEMENT

    DOEpatents

    Smith, K.F.; Van Thyne, R.J.

    1958-12-01

    A fuel element is described for fast reactors comprised of a core of uranium metal containing material and a jacket around the core, the jacket consisting of from 2.5 to 15 percent of titanium, from 1 to 5 percent of niobium, and from 80 to 96.5 percent of vanadium.

  14. NEUTRONIC REACTOR FUEL ELEMENT

    DOEpatents

    Horning, W.A.; Lanning, D.D.; Donahue, D.J.

    1959-10-01

    A fuel slug for a reactor which acts as a safety device is described. The fuel slug is an aluminum tube with a foil lining the inside surface of the tube, the foil being fabricated of uranium in a lead matrix.

  15. NETL - Chemical Looping Reactor

    SciTech Connect

    2013-07-24

    NETL's Chemical Looping Reactor unit is a high-temperature integrated CLC process with extensive instrumentation to improve computational simulations. A non-reacting test unit is also used to study solids flow at ambient temperature. The CLR unit circulates approximately 1,000 pounds per hour at temperatures around 1,800 degrees Fahrenheit.

  16. WATER BOILER REACTOR

    DOEpatents

    King, L.D.P.

    1960-11-22

    As its name implies, this reactor utilizes an aqueous solution of a fissionable element salt, and is also conventional in that it contains a heat exchanger cooling coil immersed in the fuel. Its novelty lies in the utilization of a cylindrical reactor vessel to provide a critical region having a large and constant interface with a supernatant vapor region, and the use of a hollow sleeve coolant member suspended from the cover assembly in coaxial relation with the reactor vessel. Cool water is circulated inside this hollow coolant member, and a gap between its outer wall and the reactor vessel is used to carry off radiolytic gases for recombination in an external catalyst chamber. The central passage of the coolant member defines a reflux condenser passage into which the externally recombined gases are returned and condensed. The large and constant interface between fuel solution and vapor region prevents the formation of large bubbles and minimizes the amount of fuel salt carried off by water vapor, thus making possible higher flux densities, specific powers and power densities.

  17. Reactor component automatic grapple

    SciTech Connect

    Greenaway, P.R.

    1982-12-07

    A grapple for handling nuclear reactor components in a medium such as liquid sodium which, upon proper seating and alignment of the grapple with the component as sensed by a mechanical logic integral to the grapple, automatically seizes the component. The mechanical logic system also precludes seizure in the absence of proper seating and alignment.

  18. Reactor component automatic grapple

    DOEpatents

    Greenaway, Paul R.

    1982-01-01

    A grapple for handling nuclear reactor components in a medium such as liquid sodium which, upon proper seating and alignment of the grapple with the component as sensed by a mechanical logic integral to the grapple, automatically seizes the component. The mechanical logic system also precludes seizure in the absence of proper seating and alignment.

  19. Neutronic Reactor Structure

    DOEpatents

    Vernon, H. C.; Weinberg, A. M.

    1961-05-30

    The neutronic reactor is comprised of a core consisting of natural uranium and heavy water with a K-factor greater than unity. The core is surrounded by a reflector consisting of natural uranium and ordinary water with a Kfactor less than unity. (AEC)

  20. NEUTRONIC REACTOR STRUCTURE

    DOEpatents

    Weinberg, A.M.; Vernon, H.C.

    1961-05-30

    A neutronic reactor is described. It has a core consisting of natural uranium and heavy water and having a K-factor greater than unity which is surrounded by a reflector consisting of natural uranium and ordinary water having a Kfactor less than unity.