Science.gov

Sample records for 10cr-1mo-1w-vnbn steel forging

  1. Stainless-steel elbows formed by spin forging

    NASA Technical Reports Server (NTRS)

    1964-01-01

    Large seamless austenitic stainless steel elbows are fabricated by spin forging /rotary shear forming/. A specially designed spin forging tool for mounting on a hydrospin machine has been built for this purpose.

  2. 2014 Accomplishments-Tritium aging studies on stainless steel: Fracture toughness properties of forged stainless steels-Effect of hydrogen, forging strain rate, and forging temperature

    SciTech Connect

    Morgan, Michael J.

    2015-02-01

    Forged stainless steels are used as the materials of construction for tritium reservoirs. During service, tritium diffuses into the reservoir walls and radioactively decays to helium-3. Tritium and decay helium cause a higher propensity for cracking which could lead to a tritium leak or delayed failure of a tritium reservoir. The factors that affect the tendency for crack formation and propagation include: Environment; steel type and microstructure; and, vessel configuration (geometry, pressure, residual stress). Fracture toughness properties are needed for evaluating the long-term effects of tritium on their structural properties. Until now, these effects have been characterized by measuring the effects of tritium on the tensile and fracture toughness properties of specimens fabricated from experimental forgings in the form of forward-extruded cylinders. A key result of those studies is that the long-term cracking resistance of stainless steels in tritium service depends greatly on the interaction between decay helium and the steels’ forged microstructure. New experimental research programs are underway and are designed to measure tritium and decay helium effects on the cracking properties of stainless steels using actual tritium reservoir forgings instead of the experimental forgings of past programs. The properties measured should be more representative of actual reservoir properties because the microstructure of the specimens tested will be more like that of the tritium reservoirs. The programs are designed to measure the effects of key forging variables on tritium compatibility and include three stainless steels, multiple yield strengths, and four different forging processes. The effects on fracture toughness of hydrogen and crack orientation were measured for type 316L forgings. In addition, hydrogen effects on toughness were measured for Type 304L block forgings having two different yield strengths. Finally, fracture toughness properties of type 304L

  3. 77 FR 14445 - Application for a License To Export Steel Forging

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-09

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Application for a License To Export Steel Forging Pursuant to 10 CFR 110.70(b) ``Public Notice of... Spain. December 15, 2011 head steel head steel February 7, 2012 forging. forging will be XR175...

  4. 75 FR 67110 - Forged Stainless Steel Flanges From India and Taiwan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-01

    ... COMMISSION Forged Stainless Steel Flanges From India and Taiwan AGENCY: United States International Trade... stainless steel flanges from India and Taiwan. SUMMARY: The Commission hereby gives notice that it has... determine whether revocation of the antidumping duty orders on forged stainless steel flanges from India...

  5. Influence of free forging conditions on austenitic grain growth in constructional steel

    NASA Astrophysics Data System (ADS)

    Zagulyaeva, S. V.; Potanina, V. S.; Vinograd, M. I.

    1984-02-01

    The initial period of austenitic grain growth in heating of a hot forged billet of 50G-SSh steel and of forgings after free forging is characterized by the formation of a mixed grain structure of No. 8 fine grains and No. 3-0 coarse.

  6. Anisotropie embrittlement in high-hardness ESR 4340 steel forgings

    NASA Astrophysics Data System (ADS)

    Olson, G. B.; Anctil, A. A.; Desisto, T. S.; Kula, E. B.

    1983-08-01

    ESR 4340 steel forgings tempered to a hardness of HRC 55 exhibit a severe loss of tensile ductility in the short transverse direction which is strain-rate and humidity dependent. The anisotropy is also reflected in blunt-notch Charpy impact energy, but is absent in the sharp-crack fracture toughness. Brittle behavior is associated with regions of smooth intergranular fracture which are aligned with microstructural banding. Scanning Auger microprobe analysis indicates some intergranular segregation of phosphorus and sulfur in these regions. The anisotropic embrittlement is attributed to an interaction of nonequilibrium segregation on solidification with local equilibrium segregation at grain boundaries during austenitizing. This produces defective regions of enhanced intergranular impurity segregation which are oriented during forging. The regions are prone to brittle fracture under impact conditions and abnormal sensitivity to environmental attack during low strain-rate deformation. A relatively sparse distribution of these defects (˜10cm-3) accounts for the discrepancy between smooth bar and blunt-notch tests vs sharp-crack tests. Isotropie properties are restored by homogenization treatment. For application of these steels at extreme hardness levels, homogenization treatment is essential.

  7. HYDROGEN-ASSISTED FRACTURE IN FORGED TYPE 304L AUSTENITIC STAINLESS STEEL

    SciTech Connect

    Switzner, Nathan; Neidt, Ted; Hollenbeck, John; Knutson, J.; Everhart, Wes; Hanlin, R.; Bergen, R.; Balch, D. K.

    2012-09-06

    Austenitic stainless steels generally have good resistance to hydrogen-assisted fracture; however, structural designs for high-pressure gaseous hydrogen are constrained by the low strength of this class of material. Forging is used to increase the low strength of austenitic stainless steels, thus improving the efficiency of structural designs. Hydrogen-assisted racture, however, depends on microstructural details associated with manufacturing. In this study, hydrogen-assisted fracture of forged type 304L austenitic stainless steel is investigated. Microstructural variation in multi-step forged 304L was achieved by forging at different rates and temperatures, and by process annealing. High internal hydrogen content in forged type 304L austenitic stainless steel is achieved by thermal precharging in gaseous hydrogen and results in as much as 50% reduction of tensile ductility.

  8. Parameter Optimization During Forging Process of a Novel High-Speed-Steel Cold Work Roll

    NASA Astrophysics Data System (ADS)

    Guo, Jing; Liu, Ligang; Sun, Yanliang; Li, Qiang; Ren, Xuejun; Yang, Qingxiang

    2016-01-01

    The forging of high-speed-steel (HSS) roll has always been a technical problem in manufacturing industry. In this study, the forging process of a novel HSS cold work roll was simulated by deform-3D on the basis of rigid-viscoplastic finite element model. The effect of heating temperature and forging speed on temperature and stress fields during forging process was simulated too. The results show that during forging process, the temperature of the contact region with anvils increases. The stress of the forging region increases and distributes un-uniformly, while that of the non-forging region is almost zero. With increasing forging time, Z load on anvil increases gradually. With increasing heating temperature or decreasing forging speed, the temperature of the whole billet increases, while the stress and Z load on anvil decrease. In order to ensure the high efficiency and safety of the forging process, the heating temperature and the forging speed are chosen as 1160 °C and 16.667 mm/s, respectively.

  9. Residual Stresses in 21-6-9 Stainless Steel Warm Forgings

    SciTech Connect

    Everhart, Wesley A.; Lee, Jordan D.; Broecker, Daniel J.; Bartow, John P.; McQueen, Jamie M.; Switzner, Nathan T.; Neidt, Tod M.; Sisneros, Thomas A.; Brown, Donald W.

    2012-11-14

    Forging residual stresses are detrimental to the production and performance of derived machined parts due to machining distortions, corrosion drivers and fatigue crack drivers. Residual strains in a 21-6-9 stainless steel warm High Energy Rate Forging (HERF) were measured via neutron diffraction. The finite element analysis (FEA) method was used to predict the residual stresses that occur during forging and water quenching. The experimentally measured residual strains were used to calibrate simulations of the three-dimensional residual stress state of the forging. ABAQUS simulation tools predicted residual strains that tend to match with experimental results when varying yield strength is considered.

  10. 76 FR 31585 - Forged Stainless Steel Flanges From India: Notice of Rescission of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-01

    ... International Trade Administration Forged Stainless Steel Flanges From India: Notice of Rescission of... stainless steel flanges from India. The period of review is February 1, 2010, through January 22, 2011... stainless steel flanges from India. See Antidumping or Countervailing Duty Order, Finding, or...

  11. Anisotropic embrittlement in high-hardness ESR 4340 steel forgings

    SciTech Connect

    Olson, G.B.; Anctil, A.A.; DeSisto, T.S.; Kula, E.B.

    1983-08-01

    ESR 4340 steel forgings tempered to a hardness of HRC 55 exhibit a severe loss of tensile ductility in the short transverse direction which is strain-rate and humidity dependent. The anisotropy is also reflected in blunt-notch Charpy impact energy, but is absent in the sharp-crack fracture toughness. Brittle behavior is associated with regions of smooth intergranular fracture aligned with microstructural banding Scanning Auger microprobe analysis indicates intergranular segregation of phosphorus and sulfur. The anisotropic embrittlement is attributed to an interaction of nonequilibrium segregation on solidification with local equilibrium segregation at grain boundaries during austenitizing. The regions are prone to brittle fracture under impact conditions and abnormal sensitivity to environmental attack during low strain-rate deformation. A relatively sparse distribution of these defects accounts for the discrepancy between smooth bar and blunt-notch tests vs sharp-crack tests. Isotropic properties are restored by homogenization treatment. For application of these steels at extreme hardness levels, homogenization treatment is essential.

  12. Nine percent nickel steel heavy forging weld repair study. [National Transonic Wind Tunnel fan components

    NASA Technical Reports Server (NTRS)

    Young, C. P., Jr.; Gerringer, A. H.; Brooks, T. G.; Berry, R. F., Jr.

    1978-01-01

    The feasibility of making weld repairs on heavy section 9% nickel steel forgings such as those being manufactured for the National Transonic Facility fan disk and fan drive shaft components was evaluated. Results indicate that 9% nickel steel in heavy forgings has very good weldability characteristics for the particular weld rod and weld procedures used. A comparison of data for known similar work is included.

  13. Development of Oxide Dispersion Strengthened (ODS) Ferritic Steel Through Powder Forging

    NASA Astrophysics Data System (ADS)

    Kumar, Deepak; Prakash, Ujjwal; Dabhade, Vikram V.; Laha, K.; Sakthivel, T.

    2017-02-01

    Oxide dispersion strengthened (ODS) ferritic steels are candidates for cladding tubes in fast breeder nuclear reactors. In this study, an 18%Cr ODS ferritic steel was prepared through powder forging route. Elemental powders with a nominal composition of Fe-18Cr-2 W-0.2Ti (composition in wt.%) with 0 and 0.35% yttria were prepared by mechanical alloying in a Simoloyer attritor under argon atmosphere. The alloyed powders were heated in a mild steel can to 1473 K under flowing hydrogen atmosphere. The can was then hot forged. Steps of sealing, degassing and evacuation are eliminated by using powder forging. Heating ODS powder in hydrogen atmosphere ensures good bonding between alloy powders. A dense ODS alloy with an attractive combination of strength and ductility was obtained after re-forging. On testing at 973 K, a loss in ductility was observed in yttria-containing alloy. The strength and ductility increased with increase in strain rate at 973 K. Reasons for this are discussed. The ODS alloy exhibited a recrystallized microstructure which is difficult to achieve by extrusion. No prior particle boundaries were observed after forging. The forged compacts exhibited isotropic mechanical properties. It is suggested that powder forging may offer several advantages over the traditional extrusion/HIP routes for fabrication of ODS alloys.

  14. The development and production of thermo-mechanically forged tool steel spur gears

    NASA Technical Reports Server (NTRS)

    Bamberger, E. N.

    1973-01-01

    A development program to establish the feasibility and applicability of high energy rate forging procedures to tool steel spur gears was performed. Included in the study were relatively standard forging procedures as well as a thermo-mechanical process termed ausforming. The subject gear configuration utilized was essentially a standard spur gear having 28 teeth, a pitch diameter of 3.5 inches and a diametral pitch of 8. Initially it had been planned to use a high contact ratio gear design, however, a comprehensive evaluation indicated that severe forging problems would be encountered as a result of the extremely small teeth required by this type of design. The forging studies were successful in achieving gear blanks having integrally formed teeth using both standard and thermo-mechanical forging procedures.

  15. 76 FR 8773 - Forged Stainless Steel Flanges From India and Taiwan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-15

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Forged Stainless Steel Flanges From India and Taiwan AGENCY: United States International Trade... steel flanges from India and Taiwan would be likely to lead to continuation or recurrence of...

  16. HYDROGEN EFFECTS ON THE FRACTURE TOUGHNESS PROPERTIES OF FORGED STAINLESS STEELS

    SciTech Connect

    Morgan, M

    2008-03-28

    The effect of hydrogen on the fracture toughness properties of Types 304L, 316L and 21-6-9 forged stainless steels was investigated. Fracture toughness samples were fabricated from forward-extruded forgings. Samples were uniformly saturated with hydrogen after exposure to hydrogen gas at 34 MPa or 69 and 623 K prior to testing. The fracture toughness properties were characterized by measuring the J-R behavior at ambient temperature in air. The results show that the hydrogen-charged steels have fracture toughness values that were about 50-60% of the values measured for the unexposed steels. The reduction in fracture toughness was accompanied by a change in fracture appearance. Both uncharged and hydrogen-charged samples failed by microvoid nucleation and coalescence, but the fracture surfaces of the hydrogen-charged steels had smaller microvoids. Type 316L stainless steel had the highest fracture toughness properties and the greatest resistance to hydrogen degradation.

  17. Controlled Forging of a Nb Containing Microalloyed Steel for Automotive Applications

    NASA Astrophysics Data System (ADS)

    Nakhaie, Davood; Hosseini Benhangi, Pooya; Fazeli, Fateh; Mazinani, Mohammad; Zohourvahid Karimi, Ebrahim; Ghandehari Ferdowsi, Mahmoud Reza

    2012-12-01

    Controlled forging of microalloyed steels is a viable economical process for the manufacture of automotive parts. Ferrite grain refinement and precipitation hardening are the major microstructural parameters to enhance the mechanical properties of the forged components. In the current study, a modified thermomechanical treatment for additional ferrite grain refinement is developed by exploiting the effect of Nb in increasing the T NR (no recrystallization temperature) and via phase transformation from a pancaked austenite. This is accomplished by performing the final passes of forging below the T NR temperature followed by a controlled cooling stage to produce a mixture of fine grained ferrite, small scaled acicular ferrite as well as a limited amount of martensite. The effect of processing parameters in terms of forging strain, cooling rate and aging condition on the microstructure and mechanical properties of a medium carbon, Nb containing microalloyed steel is investigated. An attempt is made to identify a suitable microstructure that provides a proper combination of high strength and good impact toughness. The processing-microstructure relationships for the proposed novel forging procedure are discussed, and directions for further improvements are outlined.

  18. TRITIUM AGING EFFECTS ON THE FRACTURE TOUGHNESS PROPERTIES OF FORGED STAINLESS STEEL

    SciTech Connect

    Morgan, M

    2008-04-14

    The fracture toughness properties of Type 21-6-9 stainless steel were measured for forgings in the unexposed, hydrogen-exposed, and tritium-exposed-and-aged conditions. Fracture toughness samples were cut from conventionally-forged and high-energy-rate-forged forward-extruded cylinders and mechanically tested at room temperature using ASTM fracture-toughness testing procedures. Some of the samples were exposed to either hydrogen or tritium gas (340 MPa, 623 K) prior to testing. Tritium-exposed samples were aged for up to seven years and tested periodically in order to measure the effect on fracture toughness of {sup 3}He from radioactive tritium decay. The results show that hydrogen-exposed and tritium-exposed samples had lower fracture- toughness values than unexposed samples and that fracture toughness decreased with increasing decay {sup 3}He content. Forged steels were more resistant to the embrittling effects of tritium and decay {sup 3}He than annealed steels, although their fracture-toughness properties depended on the degree of sensitization that occurred during processing. The fracture process was dominated by microvoid nucleation, growth and coalescence; however, the size and spacing of microvoids on the fracture surfaces were affected by hydrogen and tritium with the lowest-toughness samples having the smallest microvoids and finest spacing.

  19. 2016 Accomplishments. Tritium aging studies on stainless steel. Forging process effects on the fracture toughness properties of tritium-precharged stainless steel

    SciTech Connect

    Morgan, Michael J.

    2017-01-01

    Forged austenitic stainless steels are used as the materials of construction for pressure vessels designed to contain tritium at high pressure. These steels are highly resistant to tritium-assisted fracture but their resistance can depend on the details of the forging microstructure. During FY16, the effects of forging strain rate and deformation temperature on the fracture toughness properties of tritium-exposed-and-aged Type 304L stainless steel were studied. Forgings were produced from a single heat of steel using four types of production forging equipment – hydraulic press, mechanical press, screw press, and high-energy-rate forging (HERF). Each machine imparted a different nominal strain rate during the deformation. The objective of the study was to characterize the J-Integral fracture toughness properties as a function of the industrial strain rate and temperature. The second objective was to measure the effects of tritium and decay helium on toughness. Tritium and decay helium effects were measured by thermally precharging the as-forged specimens with tritium gas at 34.5 MPa and 350°C and aging for up to five years at -80°C to build-in decay helium prior to testing. The results of this study show that the fracture toughness properties of the as-forged steels vary with forging strain rate and forging temperature. The effect is largely due to yield strength as the higher-strength forgings had the lower toughness values. For non-charged specimens, fracture toughness properties were improved by forging at 871°C versus 816°C and Screw-Press forgings tended to have lower fracture toughness values than the other forgings. Tritium exposures reduced the fracture toughness values remarkably to fracture toughness values averaging 10-20% of as-forged values. However, forging strain rate and temperature had little or no effect on the fracture toughness after tritium precharging and aging. The result was confirmed by fractography which indicated that fracture modes

  20. Tribo-thermal fatigue of the steel used for the forging die construction

    NASA Astrophysics Data System (ADS)

    Drumeanu, A. C.

    2017-02-01

    Frequently the durability of the forging dies is firstly determined by the non-isothermal fatigue wear, which causes the cracks appearance on their internal surfaces, much more before their abrasion wear to reach the limit value. In these conditions it is necessary to design the forging dies firstly by the point of view of the non-isothermal fatigue wear. For a correctly choosing and using of metallic material, it is necessary to determine their intrinsic characteristics regarding its cyclic non-isothermal stresses durability. The experimental determination of these characteristics implies a lot of experiments, which are done in specific conditions, different from those used for isothermal mechanical fatigue durability determination. The paper presents the experimental results concerning intrinsic characteristic determination of the forging dies steel. Based on these results there were determined specific equations which characterize this kind of stresses, and the diagrams that represent their graphic image. These data can be used both in designing and exploitation of the forging dies.

  1. Effect of Aluminum Content on Wear Resistance of Hot-Forged Multiphase Steel

    NASA Astrophysics Data System (ADS)

    Mohamed, Masoud Ibrahim; Farahat, Ahmed Ismail Zaky; Al-Jarrah, J. A.

    2017-01-01

    A medium-carbon steel was alloyed with Mn, Cr, Si, and Al to obtain carbide-free bainite steel. The thermomechanics and chemistry of steel were used to produce medium carbon containing four phases: ferrite, pearlite, bainite, and chromium carbide. The morphologies of different phases were characterized and analyzed by using optical and scanning electron microscopes. An abrasive dry sliding wear (pin on ring) of two types of medium-carbon, hot-forged steels containing different aluminum contents was investigated at different pressures and sliding velocities. The sliding duration time was 30 minutes under dry sliding conditions. The wear rate of Alloy 1 and 2 revealed negligible wear rates at low velocity and pressure. On the other hand, the wear rate highly increased to maximum at maximum velocity and pressure for Alloy 1 and 2. Alloy steel 2 of 2 pct Al revealed a maximum wear rate of 720 mg/min compared with 160.8 mg/min for Alloy 1 contains 1 pct Al. Experimental results showed that increased aluminum content is directly proportional to the ferrite volume fraction, which greatly influences the wear resistance performance and mechanical properties of the two types of steel.

  2. An Assessment of the Ductile Fracture Behavior of Hot Isostatically Pressed and Forged 304L Stainless Steel

    NASA Astrophysics Data System (ADS)

    Cooper, A. J.; Smith, R. J.; Sherry, A. H.

    2017-02-01

    Type 300 austenitic stainless steel manufactured by hot isostatic pressing (HIP) has recently been shown to exhibit subtly different fracture behavior from that of equivalent graded forged steel, whereby the oxygen remaining in the component after HIP manifests itself in the austenite matrix as nonmetallic oxide inclusions. These inclusions facilitate fracture by acting as nucleation sites for the initiation, growth, and coalescence of microvoids in the plastically deforming austenite matrix. Here, we perform analyses based on the Rice-Tracey (RT) void growth model, supported by instrumented Charpy and J-integral fracture toughness testing at ambient temperature, to characterize the degree of void growth ahead of both a V-notch and crack in 304L stainless steel. We show that the hot isostatically pressed (HIP'd) 304L steel exhibits a lower critical void growth at the onset of fracture than that observed in forged 304L steel, which ultimately results in HIP'd steel exhibiting lower fracture toughness at initiation and impact toughness. Although the reduction in toughness of HIP'd steel is not detrimental to its use, due to the steel's sufficiently high toughness, the study does indicate that HIP'd and forged 304L steel behave as subtly different materials at a microstructural level with respect to their fracture behavior.

  3. Effect of Hot Forging on Microstructural Evolution and Impact Toughness in Ultra-high Carbon Low Alloy Steel

    NASA Astrophysics Data System (ADS)

    Kim, J. B.; Kim, J. H.; Kang, C. Y.

    2016-12-01

    The effect of a hot forging ratio on the microstructural variation and tensile properties of ultra-high carbon low alloy steel was investigated. Scanning electron microscopic analyses depict that with an increase in the hot forging ratio, the thickness of the network and acicular proeutectoid cementite decreased. Moreover, the lamella spacing and thickness of the eutectoid cementite decreased and broke up into particle shapes, which then became spheroidized as the hot forging ratio increased. Furthermore, when the forging ratio exceeded 65%, the network and acicular shape of the as-cast state disappeared. By increasing the hot forging ratio, the tensile strength and elongation remained below 50%, but they increased rapidly with an increase in the forging ratio. Strength and elongation were not affected by the thickness of the proeutectoid and eutectoid cementites, but were greatly affected by the shape of the proeutectoid cementite. Due to the decrease in the austenite grain size, as well as the spheroidization of the cementite, the tensile strength and elongation sharply increased.

  4. Effect of forging strain rate and deformation temperature on the mechanical properties of warm-worked 304L stainless steel

    SciTech Connect

    Switzner, N. T.; Van Tyne, C. J.; Mataya, M. C.

    2010-01-25

    Stainless steel 304L forgings were produced with four different types of production forging equipment – hydraulic press, mechanical press, screw press, and high-energy rate forging (HERF). Each machine imparted a different nominal strain rate during the deformation. The final forgings were done at the warm working (low hot working) temperatures of 816 °C, 843°C, and 871°C. The objectives of the study were to characterize and understand the effect of industrial strain rates (i.e. processing equipment), and deformation temperature on the mechanical properties for the final component. Some of the components were produced with an anneal prior to the final forging while others were deformed without the anneal. The results indicate that lower strain rates produced lower strength and higher ductility components, but the lower strain rate processes were more sensitive to deformation temperature variation and resulted in more within-part property variation. The highest strain rate process, HERF, resulted in slightly lower yield strength due to internal heating. Lower processing temperatures increased strength, decreased ductility but decreased within-part property variation. The anneal prior to the final forging produced a decrease in strength, a small increase in ductility, and a small decrease of within-part property variation.

  5. Effects of Low Temperature on Hydrogen-Assisted Crack Growth in Forged 304L Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Jackson, Heather; San Marchi, Chris; Balch, Dorian; Somerday, Brian; Michael, Joseph

    2016-08-01

    The objective of this study was to evaluate effects of low temperature on hydrogen-assisted crack propagation in forged 304L austenitic stainless steel. Fracture initiation toughness and crack-growth resistance curves were measured using fracture mechanics specimens that were thermally precharged with 140 wppm hydrogen and tested at 293 K or 223 K (20 °C or -50 °C). Fracture initiation toughness for hydrogen-precharged forgings decreased by at least 50 to 80 pct relative to non-charged forgings. With hydrogen, low-temperature fracture initiation toughness decreased by 35 to 50 pct relative to room-temperature toughness. Crack growth without hydrogen at both temperatures was microstructure-independent and indistinguishable from blunting, while with hydrogen microcracks formed by growth and coalescence of microvoids. Initiation of microvoids in the presence of hydrogen occurred where localized deformation bands intersected grain boundaries and other deformation bands. Low temperature additionally promoted fracture initiation at annealing twin boundaries in the presence of hydrogen, which competed with deformation band intersections and grain boundaries as sites of microvoid formation and fracture initiation. A common ingredient for fracture initiation was stress concentration that arose from the intersection of deformation bands with these microstructural obstacles. The localized deformation responsible for producing stress concentrations at obstacles was intensified by low temperature and hydrogen. Crack orientation and forging strength were found to have a minor effect on fracture initiation toughness of hydrogen-supersaturated 304L forgings.

  6. Tensile behavior of an austenitic stainless steel subjected to multidirectional forging

    NASA Astrophysics Data System (ADS)

    Tikhonova, M.; Sorokopudova, J.; Bondareva, E.; Belyakov, A.; Kaibyshev, R.

    2014-08-01

    The mechanical behavior of a chromium-nickel austenitic stainless steel with submicrocrystalline structures produced by multidirectional forging (MDF) to a total strain of ~ 4 at temperatures of 700 and 600°C was studied. This processing resulted in the formation of uniform ultrafine grained structure with an average crystallite size of 360 and 300 nm, respectively, and high dislocation density. The tensile tests were carried out in a wide temperature range 20-650°C. At ambient temperature, the yield stress (YS) comprised 900 MPa and 730 MPa in the samples subjected to MDF at 600 and 700°C, respectively. It should be noted that this strength was achieved along with elongations of 16% and 22% in the samples subjected to MDF at 600 and 700°C. The YS decreased and elongation-to-failure tends to increase with increasing test temperature and approaching 235 MPa and 51%, respectively, at 650°C. Effect of temperature on mechanical behavior of stainless steel with submicrocrystalline structure is discussed.

  7. Rapid heating tensile tests of hydrogen-charged high-energy-rate-forged 316L stainless steel

    SciTech Connect

    Mosley, W.C.

    1989-05-19

    316L stainless steel is a candidate material for construction of equipment that will be exposed to tritium. Proper design of the equipment will require an understanding of how tritium and its decay product helium affect mechanical properties. This memorandum describes results of rapid heating tensile testing of hydrogen-charged specimens of high-energy-rate-forged (HERF) 316L stainless steel. These results provide a data base for comparison with uncharged and tritium-charged-and-aged specimens to distinguish the effects of hydrogen and helium. Details of the experimental equipment and procedures and results for uncharged specimens were reported previously. 3 refs., 10 figs.

  8. Characteristics comparison of weld metal zones welded to cast and forged steels for piston crown material

    NASA Astrophysics Data System (ADS)

    Moon, Kyung-Man; Kim, Yun-Hae; Lee, Myeong-Hoon; Baek, Tae-Sil

    2015-03-01

    An optimum repair welding for the piston crown which is one of the engine parts exposed to the combustion chamber is considered to be very important to prolong the engine lifetime from an economical point of view. In this study, two types of filler metals such as 1.25Cr-0.5Mo, 0.5Mo were welded with SMAW method and the other two types of filler metals such as Inconel 625 and 718 were welded with GTAW method, respectively, and the used base metals were the cast and forged steels of the piston crown material. The weld metal zones welded with Inconel 625 and 718 filler metals exhibited higher corrosion resistance compared to 1.25Cr-0.5Mo and 0.5Mo filler metals. In particular, the weld metal zone welded with Inconel 718 and 0.5Mo, filler metals indicated the best and worst corrosion resistance, respectively. Consequently, it is suggested that the corrosion resistance of the weld metal zone surely depends on the chemical components of each filler metal and welding method irrespective of the types of piston crown material.

  9. The Influence of Temperature on the Frictional Behavior of Duplex-Coated Die Steel Rubbing Against Forging Brass

    NASA Astrophysics Data System (ADS)

    Ebrahimzadeh, I.; Ashrafizadeh, F.

    2015-01-01

    Improvement of die life under hot forging of brass alloys is considered vital from both economical and technical points of view. One of the best methods for improving die life is duplex coatings. In this research, the influence of temperature on the tribological behavior of duplex-coated die steel rubbing against forging brass was investigated. The wear tests were performed on a pin-on-disk machine from room temperature to 700 °C; the pins were made in H13 hot work tool steel treated by plasma nitriding and by PVD coatings of TiN-TiAlN-CrAlN. The disks were machined from a two-phase brass alloy too. The results revealed that the friction coefficient of this tribosystem went through a maximum at 550 °C and decreased largely at 700 °C. Furthermore, the formation of Cr2O3 caused the reduction of friction coefficient at 700 °C. PVD coatings proved their wear resistance up to 550 °C, well above the working temperature of the brass forging dies.

  10. The Influence of Forge Reduction Ratio on the Tensile and Impact Properties of a Low-Alloy ESR (Electroslag Remelting) Steel

    DTIC Science & Technology

    1986-01-01

    phenomenon occurs. The ESR steel investigated was a low sulphur (0.002%) - . AISI 4340 grade in the heat treated condition. Attention is also directed toward...MRL-R-985 THE INFLUENCE OF FORGE REDUCTION RATIO ON THE TENSILE AND IMPACT PROPERTIES OF A LOW-ALLOY ESR STEEL G.M. Weston LEC I . ;T E; ’ :cX NMI 5- i...RESEARCH LABORATORIES REPORT MRL-R-98 5 THE INFLUENCE OF FORGE REDUCTION RATIO ON THE TENSILE AND IMPACT PROPERTIES OF A LOW-ALLOY ESR STEEL G.M. Weston

  11. Surface fatigue and failure characteristics of hot-forged powder metal AISI 4620, AISI 4640, and machined AISI 4340 steel spur gears

    NASA Technical Reports Server (NTRS)

    Townsend, Dennis P.

    1987-01-01

    Spur gear surface fatigue endurance tests were conducted to investigate hot forged powder metal AISI 4620 and 4640 steel for use as a gear material, to determine endurance characteristics and to compare the results with machined AISI 4340 and 9310 steel gear materials. The as-forged and unground AISI 4620 gear exhibited a 10 percent fatigue life that was approximately one-fourth of that for AISI 9310 and less than one-half that for the AISI 4340 gears. The forged and finish ground AISI 4620 gears exhibited a 10 percent life, approximately 70 percent that of AISI 9310 and slightly better than that of AISI 4340. The AISI 4640 hot forged gears had less fracture toughness and slightly less fatigue life than the AISI 4620 test gears.

  12. Surface fatigue and failure characteristics of hot forged powder metal AISI 4620, AISI 4640, and machined AISI 4340 steel spur gears

    NASA Technical Reports Server (NTRS)

    Townsend, D. P.

    1986-01-01

    Spur gear surface fatigue endurance tests were conducted to investigate hot forged powder metal AISI 4620 and 4640 steel for use as a gear material, to determine endurance characteristics and to compare the results with machined AISI 4340 and 9310 steel gear materials. The as-forged and unground SISI 4620 gear exhibited a 10 percent fatigue life that was approximately one-fourth of that for AISI 9310 and less than one-half that for the AISI 4340 gears. The forged and finish ground AISI 4620 gears exhibited a 10 percent life, approximately 70 percent that of AISI 9310 and slightly better than that of AISI 4340. The AISI 4640 hot forged gears had less fracture toughness and slightly less fatigue life than the AISI 4620 test gears.

  13. Microstructure and Texture Evolution in Cold Rotary Forging of Spur Bevel Gears of 20CrMnTi Alloy Steel

    NASA Astrophysics Data System (ADS)

    Han, Xinghui; Dong, Liying; Hua, Lin; Zhuang, Wuhao

    2016-03-01

    The microstructure of cold rotary forged gears greatly affects their working life. Therefore, the aim of this study is to reveal the evolution of microstructure and texture that occurs during the cold rotary forging of spur bevel gears of 20CrMnTi alloy steel. The evolution of grains of the gear tooth is investigated through optical microscopy. By employing scanning electron microscopy and electron backscatter diffraction, the evolution of the cementite particles and the texture of the gear tooth is also revealed. The results indicate that the grain size distribution is non-uniform from the tooth profile to its center. The cementite particles in the tooth profile are finer and more uniformly distributed than those in the tooth center. After cold rotary forging, the tooth center has a combination of α- and γ-fibers, and the γ-fibers are more developed than the α-fibers, while most of the components in the tooth profile are assembled along the α-fibers.

  14. Influence of local mechanical properties of high strength steel from large size forged ingot on ultrasonic wave velocities

    NASA Astrophysics Data System (ADS)

    Dupont-Marillia, Frederic; Jahazi, Mohamad; Lafreniere, Serge; Belanger, Pierre

    2017-02-01

    In the metallurgical industry, ultrasonic inspection is routinely used for the detection of defects. For the non-destructive inspection of small high strength steel parts, the material can be considered isotropic. However, when the size of the parts under inspection is large, the isotropic material hypothesis does not necessarily hold. The aim of this study is to investigate the effect of the variation in mechanical properties such as grain size, Young's modulus, Poissons ratio, chemical composition on longitudinal and transversal ultrasonic wave velocities. A 2 cm thick slice cut from a 40-ton bainitic steel ingot that was forged and heat treated was divided into 875 parallelepiped samples of 2x4x7 cm3. A metallurgical study has been performed to identify the phase and measure the grain size. Ultrasonic velocity measurements at 2.25 MHz for longitudinal and transversal waves were performed. The original location of the parallelepiped samples in the large forged ingot, and the measured velocities were used to produce an ultrasonic velocity map. Using a local isotropy assumption as well as the local density of the parallelepiped samples calculated from the chemical composition of the ingot provided by a previously published study, Youngs modulus and Poissons ratio were calculated from the longitudinal and transversal wave velocities. Micro-tensile test was used to validate Youngs modulus obtained by the ultrasonic wave velocity and an excellent agreement was observed.

  15. Manufacturing of Precision Forgings by Radial Forging

    NASA Astrophysics Data System (ADS)

    Wallner, S.; Harrer, O.; Buchmayr, B.; Hofer, F.

    2011-01-01

    Radial forging is a multi purpose incremental forging process using four tools on the same plane. It is widely used for the forming of tool steels, super alloys as well as titanium- and refractory metals. The range of application goes from reducing the diameters of shafts, tubes, stepped shafts and axels, as well as for creating internal profiles for tubes in Near-Net-Shape and Net-Shape quality. Based on actual development of a weight optimized transmission input shaft, the specific features of radial forging technology is demonstrated. Also a Finite Element Model for the simulation of the process is shown which leads to reduced pre-processing effort and reduced computing time compared to other published simulation methods for radial forging. The finite element model can be applied to quantify the effects of different forging strategies.

  16. Effect of Austenitizing Temperature on Microstructure and Mechanical Properties of Semi-High-Speed Steel Cold-Forged Rolls

    NASA Astrophysics Data System (ADS)

    Wu, Qiong; Sun, Da-Le; Liu, Chang-Sheng

    2009-10-01

    The effect of austenitizing temperature on the microstructure and mechanical properties of semi-high-speed steel (S-HSS) cold-forged rolls was investigated. Low-temperature austenitizing below 1313 K induced carbide coarsening during subsequent tempering at 973 K due to the nucleation effect of undissolved M7C3. On the other hand, the heavy dissolution of M7C3 above 1353 K caused the fine carbide formation on lath and plate boundaries, which retarded the subgrain growth during tempering. The increase in strength with increasing austenitizing temperature was attributed to the fine carbide distribution and the high dislocation density. Furthermore, as the austenitizing temperature increased, the impact energy markedly reduced, due to the large prior austenite grain size and the high strength. Finally, based on the microstructure and mechanical properties, an optimal austenitizing temperature range between 1313 and 1333 K was determined.

  17. Influence of minimum quantity lubrication parameters on tool wear and surface roughness in milling of forged steel

    NASA Astrophysics Data System (ADS)

    Yan, Lutao; Yuan, Songmei; Liu, Qiang

    2012-05-01

    The minimum quantity of lubrication (MQL) technique is becoming increasingly more popular due to the safety of environment. Moreover, MQL technique not only leads to economical benefits by way of saving lubricant costs but also presents better machinability. However, the effect of MQL parameters on machining is still not clear, which needs to be overcome. In this paper, the effect of different modes of lubrication, i.e., conventional way using flushing, dry cutting and using the minimum quantity lubrication (MQL) technique on the machinability in end milling of a forged steel (50CrMnMo), is investigated. The influence of MQL parameters on tool wear and surface roughness is also discussed. MQL parameters include nozzle direction in relation to feed direction, nozzle elevation angle, distance from the nozzle tip to the cutting zone, lubricant flow rate and air pressure. The investigation results show that MQL technique lowers the tool wear and surface roughness values compared with that of conventional flood cutting fluid supply and dry cutting conditions. Based on the investigations of chip morphology and color, MQL technique reduces the cutting temperature to some extent. The relative nozzle-feed position at 120°, the angle elevation of 60° and distance from nozzle tip to cutting zone at 20 mm provide the prolonged tool life and reduced surface roughness values. This fact is due to the oil mists can penetrate in the inner zones of the tool edges in a very efficient way. Improvement in tool life and surface finish could be achieved utilizing higher oil flow rate and higher compressed air pressure. Moreover, oil flow rate increased from 43.8 mL/h to 58.4 mL/h leads to a small decrease of flank wear, but it is not very significant. The results obtained in this paper can be used to determine optimal conditions for milling of forged steel under MQL conditions.

  18. A Microstructural Study on the Observed Differences in Charpy Impact Behavior Between Hot Isostatically Pressed and Forged 304L and 316L Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Cooper, Adam J.; Cooper, Norman I.; Bell, Andrew; Dhers, Jean; Sherry, Andrew H.

    2015-11-01

    With near-net shape technology becoming a more desirable route toward component manufacture due to its ability to reduce machining time and associated costs, it is important to demonstrate that components fabricated via Hot Isostatic Pressing (HIP) are able to perform to similar standards as those set by equivalent forged materials. This paper describes the results of a series of Charpy tests from HIP'd and forged 304L and 316L austenitic stainless steel, and assesses the differences in toughness values observed. The pre-test and post-test microstructures were examined to develop an understanding of the underlying reasons for the differences observed. The as-received microstructure of HIP'd material was found to contain micro-pores, which was not observed in the forged material. In tested specimens, martensite was detectable within close proximity to the fracture surface of Charpy specimens tested at 77 K (-196 °C), and not detected in locations remote from the fracture surface, nor was martensite observed in specimens tested at ambient temperatures. The results suggest that the observed changes in the Charpy toughness are most likely to arise due to differences in as-received microstructures of HIP'd vs forged stainless steel.

  19. Σ3 CSL boundary distributions in an austenitic stainless steel subjected to multidirectional forging followed by annealing

    NASA Astrophysics Data System (ADS)

    Tikhonova, Marina; Kuzminova, Yuliya; Fang, Xiaoying; Wang, Weiguo; Kaibyshev, Rustam; Belyakov, Andrey

    2014-12-01

    The effect of processing and annealing temperatures on the grain boundary characters in the ultrafine-grained structure of a 304-type austenitic stainless steel was studied. An S304H steel was subjected to multidirectional forging (MDF) at 500-800°C to total strains of ~4, followed by annealing at 800-1,000°C for 30 min. The MDF resulted in the formation of ultrafine-grained microstructures with mean grain sizes of 0.28-0.85 μm depending on the processing temperature. The annealing behaviour of the ultrafine-grained steel was characterized by the development of continuous post-dynamic recrystallization including a rapid recovery followed by a gradual grain growth. The post-dynamically recrystallized grain size depended on both the deformation temperature and the annealing temperature. The recrystallization kinetics was reduced with an increase in the temperature of the preceding deformation. The grain growth during post-dynamic recrystallization was accompanied by an increase in the fraction of Σ3n CSL boundaries, which was defined by a relative change in the grain size, i.e. a ratio of the annealed grain size to that evolved by preceding warm working (D/D0). The fraction of Σ3n CSL boundaries sharply rose to approximately 0.5 in the range of D/D0 from 1 to 5, which can be considered as early stage of continuous post-dynamic recrystallization. Then, the rate of increase in the fraction of Σ3n CSL boundaries slowed down significantly in the range of D/D0 > 5. A fivefold increase in the grain size by annealing is a necessary condition to obtain approximately 50% Σ3n CSL boundaries in the recrystallized microstructure.

  20. Assessment of densification and mechanical property of AISI 8630 steel composition on different heat treatments produced through hot upsetting powder preform forging

    NASA Astrophysics Data System (ADS)

    Bala, Y. G.; Sankaranarayanan, S. Raman; Pandey, K. S.

    2015-11-01

    The present investigation was carried out to evaluate the densification, mechanical properties, microstructural and fractrography effects of AISI 8630 steel composition developed through powder preform forging under different heat treated conditions. Sintered preforms of different aspect ratios such as 0.6, 0.9, and 1.2 were hot upset forged to disc shape to different height strain to analysis the densification mechanism. Certain relationships relating strains, Poisson's ratio relating densification have revealed the effect of preform geometry on densification kinetics and resulted in the polynomial expression with justified regression coefficient greater the 0.9 or unity. The preforms of aspect ratio of 1.1 were hot upset forged to square cross section bars and transferred to different quenching medium like oil, water, furnace and air to assess its mechanical properties. Comparing the temperament of the heat treatments, sintered forged homogenised water quenched sample upshot in the maximum Tensile strength with least per centage elongation andthe furnace cooled sample shows the maximum toughness with desirable per centage elongation and least tensile strength. Microstructure stated the presence of varying ferrite and pearlite distribution and fractograph studies has disclosed the mixed mode of failure on the effect of varying heat treatments progression has affected the properties significantly.

  1. Energy audit of three energy-conserving devices in a steel-industry demonstration program. Task I. Hague forge furnaces. Final report

    SciTech Connect

    Lownie, H.W.; Holden, F.C.

    1982-06-01

    A program to demonstrate to industry the benefits of installing particular types of energy-conserving devices and equipment was carried out. One of these types of equipment and the results obtained under production conditions in commercial plants are described. The equipment under consideration includes improved forge furnaces and associated heat-recovery components. They are used to heat steel to about 2300 F prior to hot forging. The energy-conserving devices include improved insulation, automatic air-fuel ratio control, and a ceramic recuperator that recovers heat from hot combustion gases and delivers preheated air to high-temperature recirculating burners. Twelve Hague furnaces and retrofit packages were purchased and installed by eleven host forge shops that agree to furnish performance data for the purpose of demonstrating the energy and economic savings that can be achieved in comparison with existing equipment. Fuel savings were reported by comparing the specific energy consumption (Btu's per pound of steel heated) for each Hague furnace with that of a comparison furnace. Economic comparisons were made using payback period based on annual after-tax cash flow. Payback periods for the Hague equipment varied from less than two years to five years or more. In several cases, payback times were high only because the units were operated at a small fraction of their available capacity.

  2. Microstructure and yield strength effects on hydrogen and tritium induced cracking in HERF (high-energy-rate-forged) stainless steel

    SciTech Connect

    Morgan, M J; Tosten, M H

    1989-01-01

    Rising-load J-integral measurements and falling-load threshold stress intensity measurements were used to characterize hydrogen and tritium induced cracking in high-energy-rate-forged (HERF) 21-6-9 stainless steel. Samples having yield strengths in the range 517--930 MPa were thermally charged with either hydrogen or tritium and tested at room temperature in either air or high-pressure hydrogen gas. In general, the hydrogen isotopes reduced the fracture toughness by affecting the fracture process. Static recrystallization in the HERF microstructures affected the material's fracture toughness and its relative susceptibility to hydrogen and tritium induced fracture. In hydrogen-exposed samples, the reduction in fracture toughness was primarily dependent on the susceptibility of the microstructure to intergranular fracture and only secondarily affected by strength in the range of 660 to 930 MPa. Transmission-electron microscopy observations revealed that the microstructures least susceptible to hydrogen-induced intergranular cracking contained patches of fully recrystallized grains. These grains are surrounded by highly deformed regions containing a high number density of dislocations. The microstructure can best be characterized as duplex'', with soft recrystallized grains embedded in a hard, deformed matrix. The microstructures most susceptible to hydrogen-induced intergranular fracture showed no well-developed recrystallized grains. The patches of recrystallized grains seemed to act as crack barriers to hydrogen-induced intergranular fracture. In tritium-exposed-and-aged samples, the amount of static recrystallization also affected the fracture toughness properties but to a lesser degree. 7 refs., 25 figs.

  3. Prediction and control of segregations in CrMoV steel ingot for monoblock HLP rotor forgings using experimental results obtained from 8 ton sand mold ingots

    SciTech Connect

    Itoh, Akihiro; Yamada, Hitohisa; Takenouchi, Tomoo

    1997-12-31

    Remarkable segregation was observed in the modified super clean CrMoV steel forgings for electric power generation applications. Therefore, to make the mechanism clear, effect of such elements as Mn, Ni, Cr and Mo on segregation was studied, using 8 ton sand mold ingots, the solidification time of which corresponds to that of 100 ton ingot. As a result, the authors found that factors controlling the segregation are {delta}-solidification ratio, mean partition coefficient, density difference of molten steels between bulk and segregated liquid at the solidification front and so on. These factors can be calculated from chemical composition of steels. Then, based on prediction model obtained from the experimental results, chemical composition and shape of ingot were tried to be changed. As for chemical composition, such elements as Mo which is heavy and {delta}-former were kept low in the specification range. And, as for ingot shape, height to diameter ratio H/D was kept high to shorten the solidification time. The carbon segregation along the axis of ingot was kept relatively low by this ingot design. The eutectic Nb (C,N) inclusions which give bad effect on the toughness were also investigated. The conditions for the formation of such inclusions were made clear and then predicted and controlled by the calculation from chemical composition. By this technical development, quality of ingot for HLP rotor forgings was extremely improved.

  4. Weldability Characteristics of Sintered Hot-Forged AISI 4135 Steel Produced through P/M Route by Using Pulsed Current Gas Tungsten Arc Welding

    NASA Astrophysics Data System (ADS)

    Joseph, Joby; Muthukumaran, S.; Pandey, K. S.

    2016-01-01

    Present investigation is an attempt to study the weldability characteristics of sintered hot-forged plates of AISI 4135 steel produced through powder metallurgy (P/M) route using matching filler materials of ER80S B2. Compacts of homogeneously blended elemental powders corresponding to the above steel were prepared on a universal testing machine (UTM) by taking pre-weighed powder blend with a suitable die, punch and bottom insert assembly. Indigenously developed ceramic coating was applied on the entire surface of the compacts in order to protect them from oxidation during sintering. Sintered preforms were hot forged to flat, approximately rectangular plates, welded by pulsed current gas tungsten arc welding (PCGTAW) processes with aforementioned filler materials. Microstructural, tensile and hardness evaluations revealed that PCGTAW process with low heat input could produce weldments of good quality with almost nil defects. It was established that PCGTAW joints possess improved tensile properties compared to the base metal and it was mainly attributed to lower heat input, resulting in finer fusion zone grains and higher fusion zone hardness. Thus, the present investigation opens a new and demanding field in research.

  5. Forging Advisor

    SciTech Connect

    Kerry Barnett

    2003-03-01

    Many mechanical designs demand components produced to a near net shape condition to minimize subsequent process steps. Rough machining from slab or bar stock can quickly and economically produce simple prismatic or cylindrical shapes. More complex shapes can be produced by laser engineered net shaping (LENS), casting , or forging. But for components that require great strength in mission critical applications, forging may be the best or even the only option. However, designers of these parts may and often do lack the detailed forging process knowledge necessary to understand the impact of process details such as grain flow or parting line placement on both the forging process and the characteristics of the forged part. Economics and scheduling requirements must also be considered. Sometimes the only viable answer to a difficult problem is to re-design the assembly to reduce loading and enable use of other alternatives.

  6. New Trends in Forging Technologies

    NASA Astrophysics Data System (ADS)

    Behrens, B.-A.; Hagen, T.; Knigge, J.; Elgaly, I.; Hadifi, T.; Bouguecha, A.

    2011-05-01

    Limited natural resources increase the demand on highly efficient machinery and transportation means. New energy-saving mobility concepts call for design optimisation through downsizing of components and choice of corrosion resistant materials possessing high strength to density ratios. Component downsizing can be performed either by constructive structural optimisation or by substituting heavy materials with lighter high-strength ones. In this context, forging plays an important role in manufacturing load-optimised structural components. At the Institute of Metal Forming and Metal-Forming Machines (IFUM) various innovative forging technologies have been developed. With regard to structural optimisation, different strategies for localised reinforcement of components were investigated. Locally induced strain hardening by means of cold forging under a superimposed hydrostatic pressure could be realised. In addition, controlled martensitic zones could be created through forming induced phase conversion in metastable austenitic steels. Other research focused on the replacement of heavy steel parts with high-strength nonferrous alloys or hybrid material compounds. Several forging processes of magnesium, aluminium and titanium alloys for different aeronautical and automotive applications were developed. The whole process chain from material characterisation via simulation-based process design to the production of the parts has been considered. The feasibility of forging complex shaped geometries using these alloys was confirmed. In spite of the difficulties encountered due to machine noise and high temperature, acoustic emission (AE) technique has been successfully applied for online monitoring of forging defects. New AE analysis algorithm has been developed, so that different signal patterns due to various events such as product/die cracking or die wear could be detected and classified. Further, the feasibility of the mentioned forging technologies was proven by means

  7. Surface decarburization behavior and its adverse effects of air-cooled forging steel C70S6 for fracture splitting connecting rod

    NASA Astrophysics Data System (ADS)

    Zhang, Chao-lei; Xie, li-yao; Liu, Guang-lei; Chen, lie; Liu, Ya-zheng; Li, Jian

    2016-09-01

    Surface decarburization behavior and its adverse effects of air-cooled forging steel C70S6 for automobile engine fracture splitting connecting rod were investigated comprehensively by mechanical properties, microstructure and fracture morphology analysis. The results show that the surface decarburization in the outer surface of the fracture splitting at the big end bore and the micro-cracks in the decarburized layer are result in the uneven and spalling fracture surfaces of the waster connecting rod product. Besides, partial decarburization is produced between 900 °C and 1250 °C for heating 2 h, and decarburization sensitivity reach maximum at 1150 °C, but no complete decarburization forms for heating 2 h at 650-1250 °C. The decarburized depth follows a parabolic law with the increase of the heating time from 0.5 h to 12 h, and the decarburization sensitivity coefficient is 2.05×10-5 m·s-1/2 at 1200 °C. For the connecting rod manufacturing, surface decarburization must be under effective control during the hot forging process but not the control cooling process.

  8. Co-Operative Training in the Sheffield Forging Industry

    ERIC Educational Resources Information Center

    Duncan, R.

    2008-01-01

    Purpose: The purpose of this paper is to give details of an operation carried out in Sheffield to increase the recruitment of young men into the steel forging industry. Design/methodology/approach: The Sheffield Forges Co-operative Training Scheme was designed to encourage boys to enter the forging industry and to provide them with training and…

  9. Steel, bars, forgings, and tubing 0.80Cr 1.8Ni 0.25Mo (0.38-0.43C) special aircraft quality cleanliness, normalized and tempered. (SAE standard)

    SciTech Connect

    1996-06-01

    This specification covers a low-alloy steel in the form of bars, forgings, mechanical tubing, and forging stock. These products have been used typically for parts required to meet stringent magnetic particle inspection criteria, having sections 3.5 inches (89 mm) and under in nominal thickness at time of heat treatment, and requiring a through-hardening steel capable of developing a minimum hardness of 30 HRC when properly hardened and tempered and also for parts of greater thickness but requiring proportionately lower hardness, but usage is not limited to such applications. Certain design and processing procedures may cause these products to become susceptible to stress-corrosion cracking after heat treatment; ARP 1110 recommends practices to minimize such conditions. These products are not recommended for use in parts heat treated to a tensile strength range having a maximum over 220 ksi (1517 MPa) or where the high transverse properties of vacuum-arc-remelted or electroslag remelted steel are required. Alloy: 4340 UNS Number: G4340.

  10. Military Process Specification for Type 46XX Powder-Forged Weapon Components

    DTIC Science & Technology

    1985-08-20

    one with low carbon or carburizing steels (Figure 18). Fracture Toughness Only one paper contained fracture toughness data for P/F 10XX steels . The...201-213. 8. Brown, G. T., "The Core ’Properties of a Range of Powder-Forged Steels ’ for Carburizing Applications," Powder Metallurgy, vol. 20, no...621205H84001, Dover, NJ: ARRADC0M, October 1980. Smith, A. 0., "Hardenability of Forged Alloy Steel Powders for Carburizing Ap- plications," Inland

  11. HYDRODYNAMIC COMPRESSIVE FORGING.

    DTIC Science & Technology

    HYDRODYNAMICS), (*FORGING, COMPRESSIVE PROPERTIES, LUBRICANTS, PERFORMANCE(ENGINEERING), DIES, TENSILE PROPERTIES, MOLYBDENUM ALLOYS , STRAIN...MECHANICS), BERYLLIUM ALLOYS , NICKEL ALLOYS , CASTING ALLOYS , PRESSURE, FAILURE(MECHANICS).

  12. High-energy rate forgings of wedges. Characterization of processing conditions

    SciTech Connect

    Reynolds, Thomas Bither; Everhart, Wesley; Switzner, Nathan T; Balch, Dorian K.; San Marchi, Christopher W.

    2014-05-01

    The wedge geometry is a simple geometry for establishing a relatively constant gradient of strain in a forged part. The geometry is used to establish gradients in microstructure and strength as a function of strain, forging temperature, and quenching time after forging. This geometry has previously been used to benchmark predictions of strength and recrystallization using Sandias materials model for type 304L austenitic stainless steel. In this report, the processing conditions, in particular the times to forge and quench the forged parts, are summarized based on information recorded during forging on June 18, 2013 of the so-called wedge geometry from type 316L and 21Cr-6Ni-9Mn austenitic stainless steels.

  13. Prediction of Microstructure in High-Strength Ductile Forging Parts

    SciTech Connect

    Urban, M.; Back, A.; Hirt, G.; Keul, C.; Bleck, W.

    2010-06-15

    Governmental, environmental and economic demands call for lighter, stiffer and at the same time cheaper products in the vehicle industry. Especially safety relevant parts have to be stiff and at the same time ductile. The strategy of this project was to improve the mechanical properties of forging steel alloys by employing a high-strength and ductile bainitic microstructure in the parts while maintaining cost effective process chains to reach these goals for high stressed forged parts. Therefore, a new steel alloy combined with an optimized process chain has been developed. To optimize the process chain with a minimum of expensive experiments, a numerical approach was developed to predict the microstructure of the steel alloy after the process chain based on FEM simulations of the forging and cooling combined with deformation-time-temperature-transformation-diagrams.

  14. Forging Long Shafts On Disks

    NASA Technical Reports Server (NTRS)

    Tilghman, Chris; Askey, William; Hopkins, Steven

    1989-01-01

    Isothermal-forging apparatus produces long shafts integral with disks. Equipment based on modification of conventional isothermal-forging equipment, required stroke cut by more than half. Enables forging of shafts as long as 48 in. (122 cm) on typical modified conventional forging press, otherwise limited to making shafts no longer than 18 in. (46cm). Removable punch, in which forged material cools after plastic deformation, essential novel feature of forging apparatus. Technology used to improve such products as components of gas turbines and turbopumps and of other shaft/disk parts for powerplants, drive trains, or static structures.

  15. Deformation processes in forging ceramics

    NASA Technical Reports Server (NTRS)

    Cannon, R. M.; Rhodes, W. H.

    1972-01-01

    The deformation processes involved in the forging of refractory ceramic oxides were investigated. A combination of mechanical testing and forging are utilized to investigate both the flow and fracture processes involved. An additional hemisphere forging was done which failed prematurely. Analysis and comparison with available fracture data for AL2O3 indicated possible causes of the failure. Examination of previous forgings indicated an increase in grain boundary cavitation with increasing strain.

  16. Modeling of Closed-Die Forging for Estimating Forging Load

    NASA Astrophysics Data System (ADS)

    Sheth, Debashish; Das, Santanu; Chatterjee, Avik; Bhattacharya, Anirban

    2017-02-01

    Closed die forging is one common metal forming process used for making a range of products. Enough load is to exert on the billet for deforming the material. This forging load is dependent on work material property and frictional characteristics of the work material with the punch and die. Several researchers worked on estimation of forging load for specific products under different process variables. Experimental data on deformation resistance and friction were used to calculate the load. In this work, theoretical estimation of forging load is made to compare this value with that obtained through LS-DYNA model facilitating the finite element analysis. Theoretical work uses slab method to assess forging load for an axi-symmetric upsetting job made of lead. Theoretical forging load estimate shows slightly higher value than the experimental one; however, simulation shows quite close matching with experimental forging load, indicating possibility of wide use of this simulation software.

  17. Partners: Forging Strong Relationships.

    ERIC Educational Resources Information Center

    Spears, Ellen, Ed.

    1999-01-01

    This newsletter issue asserts that sound, effective relationships in which diverse groups of people and organizations work together toward a common goal are the basis of the collaborative efforts in education that can accomplish change. The first article, "Partners: Forging Strong Relationships" (Sarah E. Torian), briefly describes the…

  18. Fallon FORGE Well Lithologies

    SciTech Connect

    Doug Blankenship

    2016-03-01

    x,y,z text file of the downhole lithologic interpretations in the wells in and around the Fallon FORGE site. All the relevant information is in the file header (the spatial reference, the projection etc.) In addition all the fields in the data file are identified in the header.

  19. Superplastic forging nitride ceramics

    DOEpatents

    Panda, Prakash C.; Seydel, Edgar R.; Raj, Rishi

    1988-03-22

    The invention relates to producing relatively flaw free silicon nitride ceramic shapes requiring little or no machining by superplastic forging This invention herein was made in part under Department of Energy Grant DE-AC01-84ER80167, creating certain rights in the United States Government. The invention was also made in part under New York State Science and Technology Grant SB1R 1985-10.

  20. Comparison of pitting fatigue life of ausforged and standard forged AISI M-50 and AISI 9310 spur gears

    NASA Technical Reports Server (NTRS)

    Townsend, D. P.; Bamberger, E. N.; Zaretsky, E. V.

    1975-01-01

    Standard forged and ausforged spur gears made of vacuum-induction-melted, consumable-electrode, vacuum-arc-remelted AISI M-50 steel were tested under conditions that produced fatigue pitting. The gears were 8.89 cm (3.5 in.) in pitch diameter and had tip relief. The M-50 standard forged and ausforged test results were compared with each other. They were then compared with results for machined vacuum-arc-remelted AISI 9310 gears tested under identical conditions. Both types of M-50 gears had lives approximately five times that of the 9310 gears. The life at which 10 percent of the M-50 ausforged gears failed was slightly less than that at which the M-50 standard forged gears failed. The ausforged gears had a slightly greater tendency to fail by tooth fracture than did the standard forged gears, most likely because of the better forging and grain flow pattern of standard forged gears.

  1. Superplastic forging nitride ceramics

    DOEpatents

    Panda, P.C.; Seydel, E.R.; Raj, R.

    1988-03-22

    A process is disclosed for preparing silicon nitride ceramic parts which are relatively flaw free and which need little or no machining, said process comprising the steps of: (a) preparing a starting powder by wet or dry mixing ingredients comprising by weight from about 70% to about 99% silicon nitride, from about 1% to about 30% of liquid phase forming additive and from 1% to about 7% free silicon; (b) cold pressing to obtain a preform of green density ranging from about 30% to about 75% of theoretical density; (c) sintering at atmospheric pressure in a nitrogen atmosphere at a temperature ranging from about 1,400 C to about 2,200 C to obtain a density which ranges from about 50% to about 100% of theoretical density and which is higher than said preform green density, and (d) press forging workpiece resulting from step (c) by isothermally uniaxially pressing said workpiece in an open die without initial contact between said workpiece and die wall perpendicular to the direction of pressing and so that pressed workpiece does not contact die wall perpendicular to the direction of pressing, to substantially final shape in a nitrogen atmosphere utilizing a temperature within the range of from about 1,400 C to essentially 1,750 C and strain rate within the range of about 10[sup [minus]7] to about 10[sup [minus]1] seconds[sup [minus]1], the temperature and strain rate being such that surface cracks do not occur, said pressing being carried out to obtain a shear deformation greater than 30% whereby superplastic forging is effected.

  2. Large forging manufacturing process

    DOEpatents

    Thamboo, Samuel V.; Yang, Ling

    2002-01-01

    A process for forging large components of Alloy 718 material so that the components do not exhibit abnormal grain growth includes the steps of: a) providing a billet with an average grain size between ASTM 0 and ASTM 3; b) heating the billet to a temperature of between 1750.degree. F. and 1800.degree. F.; c) upsetting the billet to obtain a component part with a minimum strain of 0.125 in at least selected areas of the part; d) reheating the component part to a temperature between 1750.degree. F. and 1800.degree. F.; e) upsetting the component part to a final configuration such that said selected areas receive no strains between 0.01 and 0.125; f) solution treating the component part at a temperature of between 1725.degree. F. and 1750.degree. F.; and g) aging the component part over predetermined times at different temperatures. A modified process achieves abnormal grain growth in selected areas of a component where desirable.

  3. Effect of Die Strength and Work Piece Strength on the Wear of Hot Forging Dies

    NASA Astrophysics Data System (ADS)

    Levy, B. S.; Van Tyne, C. J.

    2015-01-01

    The effect of the strength ratio extracted from an Archard model for wear is used to describe the wear rates expected in hot forging dies. In the current study, the strength ratio is the strength of the hot forging die to the strength of the work piece. Three hot forging die steels are evaluated. The three die steels are FX, 2714, and WF. To determine the strength of the forging die, a continuous function has been developed that describes the yield strength of three die steels for temperatures from 600 to 700 °C and for times up to 20 h (i.e., tempering times of up to 20 h). The work piece material is assumed to be AISI 1045. Based on the analysis, the wear resistance of WF should be superior and FX should be slightly better than 2714. Decreasing the forging temperature increases the strength ratio, because the strength of the die surface increases faster than the flow strength of AISI 1045. The increase in the strength ratio indicates a decrease in the expected wear rate.

  4. 29 CFR 1910.218 - Forging machines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 5 2014-07-01 2014-07-01 false Forging machines. 1910.218 Section 1910.218 Labor... OCCUPATIONAL SAFETY AND HEALTH STANDARDS Machinery and Machine Guarding § 1910.218 Forging machines. (a... other identifier, for the forging machine which was inspected. (ii) Scheduling and recording...

  5. 29 CFR 1910.218 - Forging machines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 5 2013-07-01 2013-07-01 false Forging machines. 1910.218 Section 1910.218 Labor... OCCUPATIONAL SAFETY AND HEALTH STANDARDS Machinery and Machine Guarding § 1910.218 Forging machines. (a... other identifier, for the forging machine which was inspected. (ii) Scheduling and recording...

  6. 29 CFR 1910.218 - Forging machines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 5 2011-07-01 2011-07-01 false Forging machines. 1910.218 Section 1910.218 Labor... OCCUPATIONAL SAFETY AND HEALTH STANDARDS Machinery and Machine Guarding § 1910.218 Forging machines. (a... other identifier, for the forging machine which was inspected. (ii) Scheduling and recording...

  7. Process modelings and simulations of heavy castings and forgings

    NASA Astrophysics Data System (ADS)

    Li, Dianzhong; Sun, Mingyue; Wang, Pei; Kang, Xiuhong; Fu, Paixian; Li, Yiyi

    2013-05-01

    The Materials Process Modeling Division, IMR, CAS has been promoting for more than 10 years research activities on modeling and experimental studies on heavy castings and forgings. In this report, we highlight some selected achievements and impacts in this area: To satisfy domestic strategic requirements, such as nuclear and hydraulic power, marine projects and high speed rail, we have developed a number of casting and forging technologies, which combine advanced computing simulations, X-ray real time observation techniques and industrial-scaled trial experiments. These technologies have been successfully applied in various industrial areas and yielded a series of scientific and technological breakthroughs and innovation. Important examples of this strategic research include the hot-processing technologies of the Three Gorge water turbine runner, marine crankshaft manufacturers, backup rolls for hot rolling mills and the production of hundreds-ton steel ingot.

  8. Analysis of the thermo-mechanical deformations in a hot forging tool by numerical simulation

    NASA Astrophysics Data System (ADS)

    L-Cancelos, R.; Varas, F.; Martín, E.; Viéitez, I.

    2016-03-01

    Although programs have been developed for the design of tools for hot forging, its design is still largely based on the experience of the tool maker. This obliges to build some test matrices and correct their errors to minimize distortions in the forged piece. This phase prior to mass production consumes time and material resources, which makes the final product more expensive. The forging tools are usually constituted by various parts made of different grades of steel, which in turn have different mechanical properties and therefore suffer different degrees of strain. Furthermore, the tools used in the hot forging are exposed to a thermal field that also induces strain or stress based on the degree of confinement of the piece. Therefore, the mechanical behaviour of the assembly is determined by the contact between the different pieces. The numerical simulation allows to analyse different configurations and anticipate possible defects before tool making, thus, reducing the costs of this preliminary phase. In order to improve the dimensional quality of the manufactured parts, the work presented here focuses on the application of a numerical model to a hot forging manufacturing process in order to predict the areas of the forging die subjected to large deformations. The thermo-mechanical model developed and implemented with free software (Code-Aster) includes the strains of thermal origin, strains during forge impact and contact effects. The numerical results are validated with experimental measurements in a tooling set that produces forged crankshafts for the automotive industry. The numerical results show good agreement with the experimental tests. Thereby, a very useful tool for the design of tooling sets for hot forging is achieved.

  9. Powder Metallurgy Forged Gear Development

    DTIC Science & Technology

    1985-03-01

    Unclassified) 12. PERSONAL AUTHOR(S) D. H. Ro, B. L. Ferguson, S. Pillay, D. T. Ostberg 13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month...Method Water Atomized SelecCion -Initial Alloy Distribution Prealloyed -Particle Size Distribution -100 Mesh kForging Quality) Uxmtpaction -Lubricant Zinc

  10. Steel - Structural, reinforcing; Pressure vessel, railway

    SciTech Connect

    Not Available

    1986-01-01

    This book contains specifications for structural steel used in various constructions; concrete reinforcement; plate and forgings for boilers and pressure vesseles; rails, axles, wheels and other accessories for railway service.

  11. Deformation processes in forging ceramics

    NASA Technical Reports Server (NTRS)

    Cannon, R. M.; Rhodes, W. H.

    1973-01-01

    The deformation processes involved in the forging of refractory ceramic oxides were investigated. A combination of mechanical testing and forging was utilized to investigate both the flow and fracture processes involved. Deformation studies of very fine grain Al203 revealed an apparent transition in behavior, characterized by a shift in the strain rate sensitivity from 0.5 at low stresses to near unity at higher stresses. The behavior is indicative of a shift in control between two dependent mechanisms, one of which is indicated to be cation limited diffusional creep with significant boundary enhancement. The possible contributions of slip, indicated by crystallographic texture, interface control of the diffusional creep and inhomogeneous boundary sliding are also discussed. Additional experiments indicated an independence of deformation behavior on MgO doping and retained hot pressing impurities, at least for ultrafine grained material, and also an independence of test atmosphere.

  12. Fallon FORGE Well Temp data

    SciTech Connect

    Doug Blankenship

    2016-03-01

    x,y,z downhole temperature data for wells in and around the Fallon FORGE site. Data for the following wells are included: 82-36, 82-19, 84.31, 61-36, 88-24, FOH-3D, FDU-1, and FDU-2. Data are formatted in txt format and in columns for importing into Earthvision Software. Column headers and coordinate system information is stored in the file header.

  13. Ultrahigh carbon steels, Damascus steels, and superplasticity

    SciTech Connect

    Sherby, O.D.; Wadsworth, J.

    1997-04-01

    The processing properties of ultrahigh carbon steels (UHCSs) have been studied at Stanford University over the past twenty years. These studies have shown that such steels (1 to 2.1% C) can be made superplastic at elevated temperature and can have remarkable mechanical properties at room temperature. It was the investigation of these UHCSs that eventually brought us to study the myths, magic, and metallurgy of ancient Damascus steels, which in fact, were also ultrahigh carbon steels. These steels were made in India as castings, known as wootz, possibly as far back as the time of Alexander the Great. The best swords are believed to have been forged in Persia from Indian wootz. This paper centers on recent work on superplastic UHCSs and on their relation to Damascus steels. 32 refs., 6 figs.

  14. Characterization of a Viking Blade Fabricated by Traditional Forging Techniques

    NASA Astrophysics Data System (ADS)

    Vo, H.; Frazer, D.; Bailey, N.; Traylor, R.; Austin, J.; Pringle, J.; Bickel, J.; Connick, R.; Connick, W.; Hosemann, P.

    2016-12-01

    A team of students from the University of California, Berkeley, participated in a blade-smithing competition hosted by the Minerals, Metals, and Materials Society at the TMS 2015 144th annual meeting and exhibition. Motivated by ancient forging methods, the UC Berkeley team chose to fabricate our blade from historical smithing techniques utilizing naturally-occurring deposits of iron ore. This approach resulted in receiving the "Best Example of a Traditional Blade Process/Ore Smelting Technique" award for our blade named "Berkelium." First, iron-enriched sand was collected from local beaches. Magnetite (Fe3O4) was then extracted from the sand and smelted into individual high- and low-carbon steel ingots. Layers of high- and low-carbon steels were forge-welded together, predominantly by hand, to form a composite material. Optical microscopy, energy dispersive spectroscopy, and Vickers hardness mechanical testing were conducted at different stages throughout the blade-making process to evaluate the microstructure and hardness evolution during formation. It was found that the pre-heat-treated blade microstructure was composed of ferrite and pearlite, and contained many nonmetallic inclusions. A final heat treatment was performed, which caused the average hardness of the blade edge to increase by more than a factor of two, indicating a martensitic transformation.

  15. Development of forging and heat treating practices for AMS 5737 for use at liquid helium temperatures

    SciTech Connect

    Dalder, E.N.C.; Greenlee, M.

    1981-08-10

    To achieve a combination of high yield-strength (sigma y), plane-strain fracture-toughness (K/sub IC/) and resistance to galling when turned against austenitic stainless steels in highly-loaded threaded turnbuckles in the M.F.T.F.-B (Mirror Fusion Test Facility), AMS 5737 (Fe-15Cr-25Ni-1Mo-V-Ti-Al-B), a heat-treatable Fe-base superalloy that is slightly-ferromagnetic under high magnetic fields at 4K, was chosen for large (approx. 340 kg) forged turn buckles. This report describes the forging and heat-treatment optimization program that resulted in good sigma y and K/sub IC/ over the 4 to 300K range of service-temperatures and the verification tests run on a pre-production forging and actual production parts.

  16. Analysis Of Potentiometric Methods Used For Crack Detection In Forging Tools

    NASA Astrophysics Data System (ADS)

    Pilc, Jozef; Drbúl, Mário; Stančeková, Dana; Varga, Daniel; Martinček, Juraj; Kuždák, Viktor

    2015-12-01

    Increased use of forging tools in mass production causes their increased wear and creates pressure to design more efficient renovation process. Renovation is complicated because of the identification of cracks expanding from the surface to the core material. Given that the production of forging tools is expensive, caused by the cost of tool steels and the thermo-chemical treatment, it is important to design forging tool with its easy renovation in mind. It is important to choose the right renovation technology, which will be able to restore the instrument to its original state while maintaining financial rentability. Choosing the right technology is difficult because of nitrided and heat-treated surface for high hardness and wear resistance. Article discusses the use of non-destructive method of detecting cracks taking into account the size of the cracks formed during working process.

  17. Reactor pressure vessel with forged nozzles

    DOEpatents

    Desai, Dilip R.

    1993-01-01

    Inlet nozzles for a gravity-driven cooling system (GDCS) are forged with a cylindrical reactor pressure vessel (RPV) section to which a support skirt for the RPV is attached. The forging provides enhanced RPV integrity around the nozzle and substantial reduction of in-service inspection costs by eliminating GDCS nozzle-to-RPV welds.

  18. Automated Welding of Rotary Forge Hammers

    DTIC Science & Technology

    1994-05-01

    NUMBER OF PAGES Plasma Transferred Arc (PTA) Welding. Metal Inert Gas (MIG) Welding, 34 Metal Powder, Rotary Forge Hammers. Hardfacing 16. PRICE CODE 17...filled with required hardfacing materials ............................................... 26 8. Top and side schematic views, respectively, of forging...superalloy hardfacing deposit. In addition to the hardfacing layer, an underlying layer of buffer material must first be deposited to minimize cracking

  19. Forging of Advanced Disk Alloy LSHR

    NASA Technical Reports Server (NTRS)

    Gabb, Timothy P.; Gayda, John; Falsey, John

    2005-01-01

    The powder metallurgy disk alloy LSHR was designed with a relatively low gamma precipitate solvus temperature and high refractory element content to allow versatile heat treatment processing combined with high tensile, creep and fatigue properties. Grain size can be chiefly controlled through proper selection of solution heat treatment temperatures relative to the gamma precipitate solvus temperature. However, forging process conditions can also significantly influence solution heat treatment-grain size response. Therefore, it is necessary to understand the relationships between forging process conditions and the eventual grain size of solution heat treated material. A series of forging experiments were performed with subsequent subsolvus and supersolvus heat treatments, in search of suitable forging conditions for producing uniform fine grain and coarse grain microstructures. Subsolvus, supersolvus, and combined subsolvus plus supersolvus heat treatments were then applied. Forging and subsequent heat treatment conditions were identified allowing uniform fine and coarse grain microstructures.

  20. A Life Study of Ausforged, Standard Forged and Standard Machined AISI M-50 Spur Gears

    NASA Technical Reports Server (NTRS)

    Townsend, D. P.; Bamberger, E. N.; Zaretsky, E. V.

    1975-01-01

    Tests were conducted at 350 K (170 F) with three groups of 8.9 cm (3.5 in.) pitch diameter spur gears made of vacuum induction melted (VIM) consumable-electrode vacuum-arc melted (VAR), AISI M-50 steel and one group of vacuum-arc remelted (VAR) AISI 9310 steel. The pitting fatigue life of the standard forged and ausforged gears was approximately five times that of the VAR AISI 9310 gears and ten times that of the bending fatigue life of the standard machined VIM-VAR AISI M-50 gears run under identical conditions. There was a slight decrease in the 10-percent life of the ausforged gears from that for the standard forged gears, but the difference is not statistically significant. The standard machined gears failed primarily by gear tooth fracture while the forged and ausforged VIM-VAR AISI M-50 and the VAR AISI 9310 gears failed primarily by surface pitting fatigue. The ausforged gears had a slightly greater tendency to fail by tooth fracture than the standard forged gears.

  1. Design of forging process variables under uncertainties

    NASA Astrophysics Data System (ADS)

    Repalle, Jalaja; Grandhi, Ramana V.

    2005-02-01

    Forging is a complex nonlinear process that is vulnerable to various manufacturing anomalies, such as variations in billet geometry, billet/die temperatures, material properties, and workpiece and forging equipment positional errors. A combination of these uncertainties could induce heavy manufacturing losses through premature die failure, final part geometric distortion, and reduced productivity. Identifying, quantifying, and controlling the uncertainties will reduce variability risk in a manufacturing environment, which will minimize the overall production cost. In this article, various uncertainties that affect the forging process are identified, and their cumulative effect on the forging tool life is evaluated. Because the forging process simulation is time-consuming, a response surface model is used to reduce computation time by establishing a relationship between the process performance and the critical process variables. A robust design methodology is developed by incorporating reliability-based optimization techniques to obtain sound forging components. A case study of an automotive-component forging-process design is presented to demonstrate the applicability of the method.

  2. Phased Array Ultrasonic Inspection of Titanium Forgings

    SciTech Connect

    Howard, P.; Klaassen, R.; Kurkcu, N.; Barshinger, J.; Chalek, C.; Nieters, E.; Sun, Zongqi; Fromont, F. de

    2007-03-21

    Aerospace forging inspections typically use multiple, subsurface-focused sound beams in combination with digital C-scan image acquisition and display. Traditionally, forging inspections have been implemented using multiple single element, fixed focused transducers. Recent advances in phased array technology have made it possible to perform an equivalent inspection using a single phased array transducer. General Electric has developed a system to perform titanium forging inspection based on medical phased array technology and advanced image processing techniques. The components of that system and system performance for titanium inspection will be discussed.

  3. Processing and Characterization of Sub-delta Solvus Forged Hemispherical Forgings of Inconel 718

    NASA Astrophysics Data System (ADS)

    Chenna Krishna, S.; Rao, G. Sudarasana; Singh, Satish Kumar; Narayana Murty, S. V. S.; Venkatanarayana, G.; Jha, Abhay K.; Pant, Bhanu; Venkitakrishnan, P. V.

    2016-12-01

    In this paper, microstructure and mechanical properties of 200 mm diameter Inconel 718 hemispherical domes processed at 1025 °C through closed die hammer forging have been investigated. Microstructure and mechanical properties of the forgings in radial and tangential directions were characterized using optical microscopy, scanning electron microscopy, impact testing, and tensile testing. Grain size of the forgings at three different locations was fine with an average grain size of ASTM No. 8-9. The typical tensile properties of the forgings in solution-treated and aged condition were ultimate tensile strength-1450 MPa, yield strength-1240 MPa, and ductility-25%. The fine grain size achieved in forgings has been attributed to delta phase present at grain boundaries which pinned the grains during forging and prevented grain coarsening.

  4. Numerical simulation and experimental study for the die forging process of a high-speed railway brake disc hub

    NASA Astrophysics Data System (ADS)

    Sun, Mingyue; Xu, Bin; Zhang, Long; LI, Dianzhong

    2013-05-01

    With the aim of manufacturing a near-net shape forging product of a brake disk hub for the high-speed railway, the die forging process was designed and optimized in this study. Firstly, based on the measured stress-strain curves at different strain rates and the thermal-physical parameters of 40Cr A steel, a finite element model for the forging process of a high-speed railway brake disc hub was established. Then, the temperature, stress and strain fields were studied and analyzed at the pre-forging and the finial-forging stages. Besides, in order to trace the stress and strain evolution, five points at different positions were chosen on the billet, and the comparison of the state conditions was made among these points. The results have demonstrated that the product can be well formed by an elaborately designed three-stage forging process, which may reduce the metal machine allowance and the producing cost effectively. Finally, an industrial trial was made and a machined product with sound quality was obtained.

  5. Forging and Stamping Nonferrous Metals. Handbook.

    DTIC Science & Technology

    1984-05-10

    Tools, Power of Machines ............................................................ 199 Chapter IV. Elements of Construction of Stampings and Tools... Power of Machines ............................................................... 230 Chapter V. Technology of Forging and Stamping...Alloys ........ 570 References ............................................................... 603 Table of Contents

  6. Forging of FeAl intermetallic compounds

    SciTech Connect

    Flores, O.; Juarez, J.; Campillo, B.; Martinez, L.; Schneibel, J.H.

    1994-09-01

    Much activity has been concentrated on the development of intermetallic compounds with the aim of improving tensile ductility, fracture toughness and high notch sensitivity in order to develop an attractive combination of properties for high and low temperature applications. This paper reports experience in processing and forging of FeAl intermetallic of B2 type. During the experiments two different temperatures were employed, and the specimens were forged after annealing in air, 10{sup {minus}2} torr vacuum and argon. From the results it was learned that annealing FeAl in argon atmosphere prior to forging resulted in better deformation behavior than for the other two environments. For the higher forging temperature used in the experiments (700C), the as-cast microstructure becomes partially recrystallized.

  7. Compressed Air System Optimization Project Improves Production at a Metal Forging Plant (Modern Forge, TN, Plant)

    SciTech Connect

    2000-12-01

    In 1995, Modern Forge of Tennessee implemented a compressed air system improvement project at its Piney Flats, Tennessee, forging plant. Due to the project’s implementation, the plant was able to operate with fewer compressors and improve its product quality, thus allowing it to increase productivity. The project also resulted in considerable energy and maintenance savings.

  8. Forging and Stamping (Selected Articles),

    DTIC Science & Technology

    1979-03-02

    performed on them. Also presented for comparison are data from a study on analogous torgings prepared by the old method. Fig. 1 shows a diagram of the...virtually all type-A discs torged from acid martensitic steel, particularly the nonvacuumed, ultrasound produces defects and zones where defects accumulate

  9. 1. MIDDLE FORGE DISPLAY, ACROSS FROM BUILDING NO. 114 on ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. MIDDLE FORGE DISPLAY, ACROSS FROM BUILDING NO. 114 on FARLEY AVE. MARKER ON DISPLAY ITSELF READS: FORGE AND TOOLS, USED AT MIDDLE FORGE LOCATED AT PICATINNY LAKE OUTLETS 1749 TO 1880. NEARBY MARKER READS: THE MIDDLE FORGE. THE MT. HOPE IRONWORKS INCLUDING A TRACT CALLED THE MIDDLE FORGE, SUPPLIED ORDNANCE MATERIAL TO THE CONTINENTAL ARMY IN THE AMERICAN REVOLUTION. GENERAL WASHINGTON INSPECTED THE FACILITY. THE WAR DEPARTMENT PURCHASED THE MIDDLE FORGE PORPERTY FOR AN ARMY POWDER DEPOT IN 1879-80. THE FORGE AND TOOLS WERE RECOVERED AT THE ACTUAL SITE NEAR PICATINNY PEAK. THROUGH THE YEARS, THE MIDDLE FORGE DISPLAY CAME TO BE THE UNOFFICIAL SYMBOL OF PICATINNY ARSENAL. -- HISTORICAL OFFICE NO DATE - Picatinny Arsenal, State Route 15 near I-80, Dover, Morris County, NJ

  10. 4. FORGE, ANVIL, PEDESTAL GRINDER, AND BELT DRIVES. NOTE WATERWHEEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. FORGE, ANVIL, PEDESTAL GRINDER, AND BELT DRIVES. NOTE WATERWHEEL NEEDLE VALVE CASTING HANGING ON THE WALL ABOVE THE FORGE. VIEW TO NORTH. - Santa Ana River Hydroelectric System, SAR-1 Machine Shop, Redlands, San Bernardino County, CA

  11. Application of Magnetic Kinds of Nondestructive Inspection to Parts From Die Tool Steels

    NASA Astrophysics Data System (ADS)

    Kornilova, A. V.; Selishchev, A. I.; Idarmachev, I. M.

    2016-01-01

    Possibilities of control of the level of accumulated damage in dies for cold and hot forming as a function of the coercivity are considered. The coercivity of the material of dies for hot forging and cold stamping is studied. Formulas are obtained for determining the coercivity in steels for hot die forging in the state as delivered.

  12. Near-Net Forging Technology Demonstration Program

    NASA Technical Reports Server (NTRS)

    Hall, I. Keith

    1996-01-01

    Significant advantages in specific mechanical properties, when compared to conventional aluminum (Al) alloys, make aluminum-lithium (Al-Li) alloys attractive candidate materials for use in cryogenic propellant tanks and dry bay structures. However, the cost of Al-Li alloys is typically five times that of 2219 aluminum. If conventional fabrication processes are employed to fabricate launch vehicle structure, the material costs will restrict their utilization. In order to fully exploit the potential cost and performance benefits of Al-Li alloys, it is necessary that near-net manufacturing methods be developed to off-set or reduce raw material costs. Near-net forging is an advanced manufacturing method that uses elevated temperature metal movement (forging) to fabricate a single piece, near-net shape, structure. This process is termed 'near-net' because only a minimal amount of post-forge machining is required. The near-net forging process was developed to reduce the material scrap rate (buy-to-fly ratio) and fabrication costs associated with conventional manufacturing methods. The goal for the near-net forging process, when mature, is to achieve an overall cost reduction of approximately 50 percent compared with conventional manufacturing options for producing structures fabricated from Al-Li alloys. This NASA Marshall Space Flight Center (MSFC) sponsored program has been a part of a unique government / industry partnership, coordinated to develop and demonstrate near-net forging technology. The objective of this program was to demonstrate scale-up of the near-net forging process. This objective was successfully achieved by fabricating four integrally stiffened, 170- inch diameter by 20-inch tall, Al-Li alloy 2195, Y-ring adapters. Initially, two 2195 Al-Li ingots were converted and back extruded to produce four cylindrical blockers. Conventional ring rolling of the blockers was performed to produce ring preforms, which were then contour ring rolled to produce

  13. Study on Pot Forming of Induction Heater Type Rice Cookers by Forging Cast Process

    NASA Astrophysics Data System (ADS)

    Ohnishi, Masayuki; Yamaguchi, Mitsugi; Ohashi, Osamu

    This paper describes a study result on pot fabrication by the forging cast process of stainless steel with aluminum. Rice cooked with the new bowl-shaped pot for the induction heater type rice cookers is better tasting than rice cooked with the conventional cylindrical one, due to the achievement of better heat conduction and convection. The conventional pot is made of the clad sheet, consisting of stainless steel and aluminum. However, it is rather difficult to form a bowl shape from the clad sheet, primarily due to the problem of a material spring back. The fabrication of a new type of a pot was made possible by means of the adoption of a forging cast process instead of the clad sheet. In this process, iron powder is inserted between stainless steel and aluminum in order to alleviate the large difference on the coefficient of expansion between each material. It was made clear that the application of two kinds of iron particle, namely 10 μm size powder on the stainless steel side and 44 μm on the aluminum side, enables the joints to become strong enough. The joint strength of the new pot by this fabrication process was confirmed by the tests of the shear strength and the fatigue tests together with the stress analysis.

  14. 76 FR 168 - Heavy Forged Hand Tools From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-03

    ... COMMISSION Heavy Forged Hand Tools From China AGENCY: United States International Trade Commission. ACTION: Institution of five-year reviews concerning the antidumping duty orders on heavy forged hand tools from China... antidumping duty orders on heavy forged hand tools from China would be likely to lead to continuation...

  15. 76 FR 50755 - Heavy Forged Hand Tools From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-16

    ... COMMISSION Heavy Forged Hand Tools From China Determinations On the basis of the record \\1\\ developed in the... antidumping duty orders on heavy forged hand tools from China would be likely to lead to continuation or... Forged Hand Tools From China: Investigation Nos. 731-TA-457-A-D (Third Review). Issued: August 10,...

  16. Computer-Aided Design of Manufacturing Chain Based on Closed Die Forging for Hardly Deformable Cu-Based Alloys

    NASA Astrophysics Data System (ADS)

    Pietrzyk, Maciej; Kuziak, Roman; Pidvysots'kyy, Valeriy; Nowak, Jarosław; Węglarczyk, Stanisław; Drozdowski, Krzysztof

    2013-07-01

    Two copper-based alloys were considered, Cu-1 pct Cr and Cu-0.7 pct Cr-1 pct Si-2 pct Ni. The thermal, electrical, and mechanical properties of these alloys are given in the paper and compared to pure copper and steel. The role of aging and precipitation kinetics in hardening of the alloys is discussed based upon the developed model. Results of plastometric tests performed at various temperatures and various strain rates are presented. The effect of the initial microstructure on the flow stress was investigated. Rheologic models for the alloys were developed. A finite element (FE) model based on the Norton-Hoff visco-plastic flow rule was applied to the simulation of forging of the alloys. Analysis of the die wear for various processes of hot and cold forging is presented as well. A microstructure evolution model was implemented into the FE code, and the microstructure and mechanical properties of final products were predicted. Various variants of the manufacturing cycles were considered. These include different preheating schedules, hot forging, cold forging, and aging. All variants were simulated using the FE method and loads, die filling, tool wear, and mechanical properties of products were predicted. Three variants giving the best combination of forging parameters were selected and industrial trials were performed. The best manufacturing technology for the copper-based alloys is proposed.

  17. Assembled camshaft for I. C. engines with forged powder metal cams

    SciTech Connect

    Lugosi, R.; Brauer, M.; Cook, J.

    1987-01-01

    A key element in the Automotive Industry's efforts to improve fuel economy and engine performance is the introduction of roller tappets to reduce friction in valve trains. As a result, contact stresses in excess of 200,000 psi may be experienced at the roller and cam (shaft) interface. Conventional cast iron camshafts cannot effectively carry this stress level. After studying several alternatives, the authors have developed a camshaft which promises to be a viable solution to the problem, both technically and economically. The purpose of this work was to demonstrate the acceptable wear performance of an assembled camshaft containing forged powder metal lobes in a series of motored engine tests with roller hydraulic valve train. In this study, a camshaft consisting of a carbon steel tube and forged powder metal lobes (4660 composition) joined by brazing was tested at low speed and at high speed in a motored engine at approximately 250,000 psi maximum contact stress.

  18. Forging the anthropogenic iron cycle.

    PubMed

    Wang, Tao; Müller, Daniel B; Graedel, T E

    2007-07-15

    Metallurgical iron cycles are characterized for four anthropogenic life stages: production, fabrication and manufacturing, use, and waste management and recycling. This analysis is conducted for year 2000 and at three spatial levels: 68 countries and territories, nine world regions, and the planet. Findings include the following: (1) contemporary iron cycles are basically open and substantially dependent on environmental sources and sinks; (2) Asia leads the world regions in iron production and use; Oceania, Latin America and the Caribbean, Africa, and the Commonwealth of Independent States present a highly production-biased iron cycle; (3) purchased scrap contributes a quarter of the global iron and steel production; (4) iron exiting use is three times less than that entering use; (5) about 45% of global iron entering use is devoted to construction, 24% is devoted to transport equipment, and 20% goes to industrial machinery; (6) with respect to international trade of iron ore, iron and steel products, and scrap, 54 out of the 68 countries are net iron importers, while only 14 are net exporters; (7) global iron discharges in tailings, slag, and landfill approximate one-third of the iron mined. Overall, these results provide a foundation for studies of iron-related resource policy, industrial development, and waste and environmental management.

  19. Forging Collaborative Partnerships: The Waterloo Neighborhood Project.

    ERIC Educational Resources Information Center

    Gruenewald, Anne

    The Forging Collaborative Partnerships Project in Waterloo, Iowa is a collaborative venture to assist voluntary agencies in developing tools and strategies to strengthen collaborative relationships among public and nonprofit child welfare agencies and other key stakeholders as they adopt a family-focused philosophy. This monograph details how the…

  20. Forging Inclusive Solutions: Experiential Earth Charter Education

    ERIC Educational Resources Information Center

    Hill, Linda D.

    2010-01-01

    Forging Inclusive Solutions describes the aims, methodology and outcomes of Inclusive Leadership Adventures, an experiential education curriculum for exploring the Earth Charter. Experiential education builds meaningful relationships, skills, awareness and an inclusive community based on the Earth Charter principles. When we meet people where they…

  1. 49 CFR 178.59 - Specification 8 steel cylinders with porous fillings for acetylene.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Specification 8 steel cylinders with porous...) SPECIFICATIONS FOR PACKAGINGS Specifications for Cylinders § 178.59 Specification 8 steel cylinders with porous... service pressure of 250 psig. The following steel is authorized: (1) A longitudinal seam if forge...

  2. 49 CFR 178.59 - Specification 8 steel cylinders with porous fillings for acetylene.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Specification 8 steel cylinders with porous...) SPECIFICATIONS FOR PACKAGINGS Specifications for Cylinders § 178.59 Specification 8 steel cylinders with porous... service pressure of 250 psig. The following steel is authorized: (1) A longitudinal seam if forge...

  3. 49 CFR 178.59 - Specification 8 steel cylinders with porous fillings for acetylene.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Specification 8 steel cylinders with porous...) SPECIFICATIONS FOR PACKAGINGS Specifications for Cylinders § 178.59 Specification 8 steel cylinders with porous... service pressure of 250 psig. The following steel is authorized: (1) A longitudinal seam if forge...

  4. 49 CFR 178.59 - Specification 8 steel cylinders with porous fillings for acetylene.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Specification 8 steel cylinders with porous...) SPECIFICATIONS FOR PACKAGINGS Specifications for Cylinders § 178.59 Specification 8 steel cylinders with porous... service pressure of 250 psig. The following steel is authorized: (1) A longitudinal seam if forge...

  5. Anisotropic Embrittlement in High-Hardness ESR 4340 Steel Forgings.

    DTIC Science & Technology

    1982-01-01

    direction which is strain-rate and humidity dependent. The anisotropy is also reflected in blunt-notch Charpy impact energy, but is absent in the sharp...evaluated both by standard Charpy impact tests and slow-bend tests on precracked Charpy specimens; sharp-crack fracture toughness (KIc) values were...Microprobe (SAM). Despite the frequent observation of intergranular fracture in Charpy impact specimens (as in Figure 3), no clear examples of

  6. Defining a method of evaluating die life performance by using finite element models (FEM) and a practical open die hot forging method

    NASA Astrophysics Data System (ADS)

    Marashi, J.; Foster, J.; Zante, R.

    2016-10-01

    Die wear, which is defined as a surface damage or removal of material from one or both of two solid surfaces in a sliding, rolling or impact motion relative to one another, is considered the main cause of tool failure. Wear is responsible for 70% of tool failure and a potential source of high costs; as much as 30% per forging unit in the forging industries [1]. This paper presents a unique wear prediction and measurement method for open die forging using a modified Archard equation, 3D FE simulation (to represent the actual forging process precisely) and an industrial scale forging trial. The proposed tool and experimental design is aimed at facilitating a cost effective method of tool wear analysis and to establish a repeatable method of measurement. It creates a platform to test different type of lubricants and coatings on industrial scale environment. The forging trial was carried out using 2100T Schuler Screw press. A full factorial experiment design was used on 3D simulation to identify the process setting for creating a measurable amount of tool wear. Wear prediction of 28.5 µm based on the simulation correlated with both Infinite Focus Optical Microscope and Coordinate Measuring Machine (CMM) measurement results of the practical trial. Thermal camera reading showed temperature raise on the area with maximum wear, which suggests that increase in contact time, causes thermal softening on tool steel. The measurement showed that abrasive wear and adhesive wear are dominant failure modes on the tool under these process conditions.

  7. A Method for Measuring the Hardness of the Surface Layer on Hot Forging Dies Using a Nanoindenter

    NASA Astrophysics Data System (ADS)

    Mencin, P.; van Tyne, C. J.; Levy, B. S.

    2009-11-01

    The properties and characteristics of the surface layer of forging dies are critical for understanding and controlling wear. However, the surface layer is very thin, and appropriate property measurements are difficult to obtain. The objective of the present study is to determine if nanoindenter testing provides a reliable method, which could be used to measure the surface hardness in forging die steels. To test the reliability of nanoindenter testing, nanoindenter values for two quenched and tempered steels (FX and H13) are compared to microhardness and macrohardness values. These steels were heat treated for various times to produce specimens with different values of hardness. The heat-treated specimens were tested using three different instruments—a Rockwell hardness tester for macrohardness, a Vickers hardness tester for microhardness, and a nanoindenter tester for fine scale evaluation of hardness. The results of this study indicate that nanoindenter values obtained using a Nanoindenter XP Machine with a Berkovich indenter reliably correlate with Rockwell C macrohardness values, and with Vickers HV microhardness values. Consequently, nanoindenter testing can provide reliable results for analyzing the surface layer of hot forging dies.

  8. FEA Based Tool Life Quantity Estimation of Hot Forging Dies Under Cyclic Thermo-Mechanical Loads

    NASA Astrophysics Data System (ADS)

    Behrens, B.-A.; Bouguecha, A.; Schäfer, F.; Hadifi, T.

    2011-01-01

    Hot forging dies are exposed during service to a combination of cyclic thermo-mechanical, tribological and chemical loads. Besides abrasive and adhesive wear on the die surface, fatigue crack initiation with subsequent fracture is one of the most frequent causes of failure. In order to extend the tool life, the finite element analysis (FEA) may serve as a means for process design and process optimisation. So far the FEA based estimation of the production cycles until initial cracking is limited as tool material behaviour due to repeated loading is not captured with the required accuracy. Material models which are able to account for cyclic effects are not verified for the fatigue life predictions of forging dies. Furthermore fatigue properties from strain controlled fatigue tests of relevant hot work steels are to date not available to allow for a close-to-reality fatigue life prediction. Two industrial forging processes, where clear fatigue crack initiation has been observed are considered for a fatigue analysis. For this purpose the relevant tool components are modelled with elasto-plastic material behaviour. The predicted sites, where crack initiation occurs, agree with the ones observed on the real die component.

  9. Stainless Steel Permeability

    SciTech Connect

    Buchenauer, Dean A.; Karnesky, Richard A.

    2015-09-01

    An understanding of the behavior of hydrogen isotopes in materials is critical to predicting tritium transport in structural metals (at high pressure), estimating tritium losses during production (fission environment), and predicting in-vessel inventory for future fusion devices (plasma driven permeation). Current models often assume equilibrium diffusivity and solubility for a class of materials (e.g. stainless steels or aluminum alloys), neglecting trapping effects or, at best, considering a single population of trapping sites. Permeation and trapping studies of the particular castings and forgings enable greater confidence and reduced margins in the models. For FY15, we have continued our investigation of the role of ferrite in permeation for steels of interest to GTS, through measurements of the duplex steel 2507. We also initiated an investigation of the permeability in work hardened materials, to follow up on earlier observations of unusual permeability in a particular region of 304L forgings. Samples were prepared and characterized for ferrite content and coated with palladium to prevent oxidation. Issues with the poor reproducibility of measurements at low permeability were overcome, although the techniques in use are tedious. Funding through TPBAR and GTS were secured for a research grade quadrupole mass spectrometer (QMS) and replacement turbo pumps, which should improve the fidelity and throughput of measurements in FY16.

  10. Improvements in the process of boss bar upset forging into a horizontal forging machine with the aim of joint knuckle forging quality improvement

    NASA Astrophysics Data System (ADS)

    Pankratov, D. L.; Nizamov, R. S.; Kharisov, I. Zh

    2016-06-01

    A new technique for tapered composing transition shaping has been put forward in the process of upset forging with the use of an experimental tool. The results of the upset forging process with the use of a new composing transition has been computer simulated.

  11. Enhancement of Aluminum Alloy Forgings through Rapid Billet Heating

    SciTech Connect

    Kervick, R.; Blue, C. A.; Kadolkar, P. B.; Ando, T.; Lu, H.; Nakazawa, K.; Mayer, H.; Mochnal, G.

    2006-06-01

    Forging is a manufacturing process in which metal is pressed, pounded or squeezed under great pressure and, often, under high strain rates into high-strength parts known as forgings. The process is typically performed hot by preheating the metal to a desired temperature before it is worked. The forging process can create parts that are stronger than those manufactured by any other metal working process. Forgings are almost always used where reliability and human safety are critical. Forgings are normally component parts contained inside assembled items such airplanes, automobiles, tractors, ships, oil drilling equipment, engines missiles, and all kinds of capital equipment Forgings are stronger than castings and surpass them in predictable strength properties, producing superior strength that is assured, part to part.

  12. Evolution of the Ultrasonic Inspection of Heavy Rotor Forgings Over the Last Decades

    NASA Astrophysics Data System (ADS)

    Zimmer, A.; Vrana, J.; Meiser, J.; Maximini, W.; Blaes, N.

    2010-02-01

    All types of heavy forgings that are used in energy machine industry, rotor shafts as well as discs, retaining rings or tie bolts are subject to extensive nondestructive inspections before they are delivered to the customer. Due to the availability of the parts in simple shapes, these forgings are very well suited for full volmetric inspections using ultrasound. In the beginning, these inspections were carried out manually, using straight beam probes and analogue equipment. Higher requirements in reliability, efficiency, safety and power output in the machines have lead to higher requirements for the ultrasonic inspection in the form of more scanning directions, higher sensitivity demands and improved documentation means. This and the increasing use of high alloy materials for ever growing parts, increase the need for more and more sophisticated methods for testing the forgings. Angle scans and sizing technologies like DGS have been implemented, and for more than 15 years now, mechanized and automated inspections have gained importance since they allow better documentation as well as easier evaluation of the recorded data using different views (B- C- or D-Scans), projections or tomography views. The latest major development has been the availability of phased array probes to increase the flexibility of the inspection systems. Many results of the ongoing research in ultrasonic's have not been implemented yet. Today's availability of fast computers, large and fast data storages allows saving RF inspection data and applying sophisticated signal processing methods. For example linear diffraction tomography methods like SAFT offer tools for 3D reconstruction of inspection data, simplifying sizing and locating of defects as well as for improving signal to noise ratios. While such methods are already applied in medical ultrasonic's, they are still to be implemented in the steel industry. This paper describes the development of the ultrasonic inspection of heavy forgings

  13. Isothermal Roll Forging of T55 Compressor Blades

    DTIC Science & Technology

    1977-12-01

    with: (1) high strength at the blade forging temperature ; (2) good resistance to deformation and fracture when repeatedly cycled to the forging...feedstock, having lower room temperature strength, buckled under the same load resulting in only partial fill of the dies. The high force (6000 lb...Flash Control 16 3.1.5 Roll Forge Atmosphere 15 3.1.6 Roll Forge Lubricant 17 3.1.7 Temperature Control 17 3.2 Task 2 - Process Selection 18 3.3 Task

  14. 27 CFR 447.22 - Forgings, castings, and machined bodies.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ..., castings, extrusions, and machined bodies) which have reached a stage in manufacture where they are clearly... components, accessories, attachments and parts) then the particular forging, casting, extrusion,...

  15. 27 CFR 447.22 - Forgings, castings, and machined bodies.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ..., castings, extrusions, and machined bodies) which have reached a stage in manufacture where they are clearly... components, accessories, attachments and parts) then the particular forging, casting, extrusion,...

  16. 27 CFR 447.22 - Forgings, castings, and machined bodies.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ..., castings, extrusions, and machined bodies) which have reached a stage in manufacture where they are clearly... components, accessories, attachments and parts) then the particular forging, casting, extrusion,...

  17. 27 CFR 447.22 - Forgings, castings, and machined bodies.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ..., castings, extrusions, and machined bodies) which have reached a stage in manufacture where they are clearly... components, accessories, attachments and parts) then the particular forging, casting, extrusion,...

  18. 27 CFR 447.22 - Forgings, castings, and machined bodies.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ..., castings, extrusions, and machined bodies) which have reached a stage in manufacture where they are clearly... components, accessories, attachments and parts) then the particular forging, casting, extrusion,...

  19. 77 FR 23496 - Boundary Revision of Valley Forge National Historical Park

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-19

    ... National Park Service Boundary Revision of Valley Forge National Historical Park AGENCY: National Park... to the boundary of Valley Forge National Historical Park, pursuant to the authority specified below... ``Valley Forge National Historical Park Proposed Boundary Expansion, Montgomery County,...

  20. Ultrasonic Defect Characterization in Heavy Rotor Forgings by Means of the Synthetic Aperture Focusing Technique and Optimization Methods.

    PubMed

    Fendt, Karl T; Mooshofer, Hubert; Rupitsch, Stefan J; Ermert, Helmut

    2016-06-01

    Ultrasonic nondestructive testing of steel forgings aims at the detection and classification of material inhomogeneities to ensure the components fitness for use. Due to the high price and safety critical nature of large forgings for turbomachinery, there is great interest in the application of imaging algorithms to inspection data. However, small flaw indications that cannot be sufficiently resolved have to be characterized using amplitude-based quantification. One such method is the distance gain size method, which converts the maximum echo amplitudes into the diameters of penny-shaped equivalent size reflectors. The approach presented in this contribution combines the synthetic aperture focusing technique (SAFT) with an iterative inversion scheme to locate and quantify small flaws in a more reliable way. Ultrasonic inspection data obtained in a pulse-echo configuration are reconstructed by means of an Synthetic Focusing Technique (SAFT). From the reconstructed data, the amount and approximate location of small flaws are extracted. These predetermined positions, along with the constrained defect model of a penny-shaped crack, provide the initial parametrization for an elastodynamic simulation based on the Kirchhoff approximation. The identification of the optimal parameter set is achieved through an iteratively regularized Gauss-Newton method. By testing the characterization method on a series of flat-bottom holes under laboratory conditions, we demonstrate that the procedure is applicable over a wide range of defect sizes. To show suitability for large forging inspection, we additionally evaluate the inspection data of a large generator shaft forging of 0.6-m diameter.

  1. A new steel for single cylinder steam turbine rotors

    SciTech Connect

    Yamada, M.; Tsuda, Y.; Tanaka, Y.; Ikeda, Y.

    1996-12-31

    A new steel, 2.25%Cr1.7%NiMoVNbW steel has been developed for the high pressure (HP)-low pressure (LP) single cylinder steam turbine rotor in combined power plants and medium/small rating thermal power plants. This steel has good creep rupture strength equivalent to that of 1%CrMoV steel which has been used as HP rotor fogings and excellent toughness and proof stress considerably superior to the conventional HP-LP single cylinder rotor steels. This paper includes the following contents: The optimization of chemical composition and heat treatment condition; the production and evaluation of a 70 tons trial rotor forging by the application of VCD (Vacuum Carbon Deoxidation) process; the production and evaluation of a 43 tons trial ingot by the application of ESR (Electroslag Remelting) ingot process; and the production and evaluation of rotor forgings for the commercial power plant.

  2. Fallon FORGE 3D Geologic Model

    SciTech Connect

    Doug Blankenship

    2016-03-01

    An x,y,z scattered data file for the 3D geologic model of the Fallon FORGE site. Model created in Earthvision by Dynamic Graphic Inc. The model was constructed with a grid spacing of 100 m. Geologic surfaces were extrapolated from the input data using a minimum tension gridding algorithm. The data file is tabular data in a text file, with lithology data associated with X,Y,Z grid points. All the relevant information is in the file header (the spatial reference, the projection etc.) In addition all the fields in the data file are identified in the header.

  3. West Flank Coso, CA FORGE Seismic Reflection

    SciTech Connect

    Doug Blankenship

    2016-05-16

    PDFs of seismic reflection profiles 101,110, 111 local to the West Flank FORGE site. 45 line kilometers of seismic reflection data are processed data collected in 2001 through the use of vibroseis trucks. The initial analysis and interpretation of these data was performed by Unruh et al. (2001). Optim processed these data by inverting the P-wave first arrivals to create a 2-D velocity structure. Kirchhoff images were then created for each line using velocity tomograms (Unruh et al., 2001).

  4. 17. Forge building, fuel storage shed, and foundry, 1906 Photocopied ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. Forge building, fuel storage shed, and foundry, 1906 Photocopied from a photograph by Thomas S. Bronson, 'Group at Whitney Factory, 5 November 1906,' NHCHSL. The most reliable view of the fuel storage sheds and foundry, together with a view of the forge building. - Eli Whitney Armory, West of Whitney Avenue, Armory Street Vicinity, Hamden, New Haven County, CT

  5. View west of small tooling and forging dies in Blacksmith ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View west of small tooling and forging dies in Blacksmith Shop, Boilermakers Department, east side of building 57; during World War II approximately forty women were employed as blacksmith's forging a variety of small tools; these may be the tools they used. - Naval Base Philadelphia-Philadelphia Naval Shipyard, Structure Shop, League Island, Philadelphia, Philadelphia County, PA

  6. 22 CFR 121.10 - Forgings, castings, and machined bodies.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 22 Foreign Relations 1 2014-04-01 2014-04-01 false Forgings, castings, and machined bodies. 121.10 Section 121.10 Foreign Relations DEPARTMENT OF STATE INTERNATIONAL TRAFFIC IN ARMS REGULATIONS THE UNITED STATES MUNITIONS LIST Enumeration of Articles § 121.10 Forgings, castings, and machined bodies. The...

  7. 18. INTERIOR VIEW OF ROUGH FORGED TOOLS (FOREGROUND) WHICH ARE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. INTERIOR VIEW OF ROUGH FORGED TOOLS (FOREGROUND) WHICH ARE PRE-HEATED IN THE FURNACE (REAR RIGHT) AND THEN FORGED WITH THE BRADLEY HAMMER (LEFT) AS SHOWN BY JAMES GLASPELL - Warwood Tool Company, Foot of Nineteenth Street, Wheeling, Ohio County, WV

  8. The effect of hot working on structure and strength of a precipitation strengthened austenitic stainless steel

    SciTech Connect

    Mataya, M.C.; Carr, M.J.; Krauss, G.

    1984-02-01

    The development of microstructure and strength during forging a ..gamma..' strengthened austenitic stainless steel, JBK-75, was investigated. The specimens were deformed in a strain range of 0.16 to 1.0, from 800 /sup 0/C to 1080 /sup 0/C at approximate strain rates of 2 (press forging) and 2 X 10/sup 3/ S/sup -1/ (high energy rate forging). Mechanical properties were determined by tensile testing as-forged and forged and aged specimens. The alloy exhibited a wide variety of structures and properties within the range of forging parameters studied. Deformation at the higher strain rate via high energy rate forging resulted in unrecovered substructures and high strengths at low forging temperatures, and static recrystallization and low strengths at high temperatures. In contrast, however, deformation at the lower strain rate via press forging resulted in retention of the well developed subgrain structure and associated high strength produced at high forging temperatures and strains. At lower temperatures and strains during press forging a subgrain structure formed preferentially at high angle grain boundaries, apparently by a creep-type deformation mechanism. Dynamic recrystallization was not an important restoration mechanism for any of the forging conditions. The results are interpreted on the basis of stacking fault energy and the accumulation of strain energy during hot working. The significance of microstructural differences for equivalent deformation conditions (iso-Z, where Z is the Zener-Holloman parameter) is discussed in relation to the utilization of Z for predicting hot work structures and strengths. Aging showed that ..gamma..' precipitation is not affected by substructure and that the strengthening contributions were independent and additive. Applications for these findings are discussed in terms of process design criteria.

  9. Processing and structure of high-energy-rate-forged 21-6-9 and 304L forgings

    SciTech Connect

    Mataya, M.C.; Carr, M.J.; Krenzer, R.W.; Krauss, G.

    1981-08-10

    Two 304L and three Nitronic 40 (21-6-9) high energy rate processed forgings were studied to determine interrelationships that exist between forging history, mechanical properties, microstructure, macrostructure, and substructure. A striking observation is the wide variation in properties and structure between different forgings and also between different locations within an individual forging. Variations were related to either finishing temperature of the last forming stage or to the forming sequence. For example, lower finishing temperatures resulted in higher dislocation densities and therefore higher strengths. Higher finishing temperatures promoted dynamic recrystallization, lower dislocation densities, and lower strengths. With respect to forming sequence, locations in the forging which are formed first undergo a number of additional thermal cycles while the rest of the part is being formed. These areas are usually recrystallized and have lower dislocation densities, and therefore lower strengths relative to locations formed later in the sequence.

  10. Meso- and microstructural features of steel 12GBA produced by different methods of thermomechanical treatment

    NASA Astrophysics Data System (ADS)

    Derevyagina, Lyudmila S.; Panin, Viktor E.; Korznikov, Aleksandr V.; Gordienko, Antonina I.

    2015-10-01

    The effect of uniform isothermal forging (UF) and warm rolling (WR) on the structure of low-carbon tube steel 12GBA has been studied. It is shown that the structures of the treated steel differ significantly by the effective grain size, density of all boundaries, percentage of density of high angle boundaries (HABs) and low angle boundaries (LABs), carbide phase morphology in the perlite zone and texture of the ferrite phase. After forging steel has the greatest degree of grain refinement, maximum boundary density, and overrepresentation of LABs. This structural state of steel is characterized by a double-component texture: (001) + (111), <001> + <101>, while after warm rolling steel has a mono-component texture (111) <101>. The evident differences in the steel structure treated by WR and UF may have dual effect on the strength and plasticity properties of steel and its fracture behavior.

  11. Initial billet and forging dies shape optimization: Application on an axisymetrical forging with a hammer

    NASA Astrophysics Data System (ADS)

    Meng, Fanjuan; Labergere, Carl; Lafon, Pascal

    2011-05-01

    In metal forming process, the forging die design is the most important step for products quality control. Reasonable dies shape can not only reduce raw material cost but also improving material flow and eliminating defects. The main objective of this paper is to obtain some optimal parameters of the initial billet and forging dies shape according to the simulation results of a two-step metal forming process (platting step and forging step). To develop this metal forming process optimization system several numerical tools are required: geometric modelling (CATIA V5™), FEM analysis (ABAQUS®), work-flow control and optimization computation (MODEFRONTIER®). This study is done in three stages: simulating the two-step metal forming process, building surrogate meta-models to relate response and variables and optimizing the process by using advanced optimization algorithms. In this paper, a two-step axisymmetric metal forming project was studied as an example. By using our simulation model, we get 581 correct real simulation results totally. According to all these real values, we build the surrogate meta-models and obtain Pareto points for a two-objective optimization process. The choice of a solution in all Pareto points will be done by the engineer who can choose his best values according to their criterions of project.

  12. 6. NORTH END OF MACHINE SHOP. FORGE SHOP (HAER No. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. NORTH END OF MACHINE SHOP. FORGE SHOP (HAER No. CA-326-K) ON LEFT, FORD PLANT IN DISTANCE, NE BY 60. - Rosie the Riveter National Historical Park, Machine Shop, 1311 Canal Boulevard, Richmond, Contra Costa County, CA

  13. View facing east of top of quarry wall with forge ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View facing east of top of quarry wall with forge site in foreground - Granite Hill Plantation, Quarry No. 4, South side of State Route 16, 1.3 miles northeast east of Sparta, Sparta, Hancock County, GA

  14. DETAIL VIEW OF BLACKSMITH'S FORGE AND WORK AREA ON WEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW OF BLACKSMITH'S FORGE AND WORK AREA ON WEST SIDE OF UPPER TRAM TERMINAL, LOOKING EAST. FORGE IS IN FOREGROUND, WITH THE ANVIL BLOCK JUST TO THE RIGHT AND BEHIND IT. A TRAM CAR IS UPSIDE DOWN TO THE LEFT OF THE FORGE. THE PIPE GOING INTO THE FORGE ON THE RIGHT CARRIED COMPRESSED AIR TO BLOW THE COALS. AT CENTER RIGHT ON THE TRAM TERMINAL ARE THE OPENING AND CLOSING MECHANISMS FOR THE ORE BUCKETS. AT CENTER LEFT IS A BRAKE WHEEL. THE ANCHOR POINTS FOR THE STATIONARY TRAM CABLES ARE JUST BELOW THIS WHEEL. THE FRONT END OF THE TERMINAL IS JUST OFF FRAME ON THE RIGHT. - Keane Wonder Mine, Park Route 4 (Daylight Pass Cutoff), Death Valley Junction, Inyo County, CA

  15. Forging And Milling Contribution On Residual Stresses For A Textured Biphasic Titanium Alloy

    SciTech Connect

    Deleuze, C.; Fabre, A.; Barrallier, L.; Molinas, O.

    2011-01-17

    Ti-10V-2Fe-3Al is a biphasic titanium alloy ({alpha}+{beta}) used in aeronautical applications for its mechanical properties, such as its yield strength of 1200 MPa and it weighs 40% less than steel. This alloy is particularly useful for vital parts with complex geometry, because of its high forging capability. In order to predict the capability for fatigue lifetime, the designers need to know the residual stresses. X-Ray diffraction is the main experimental technique used to determine residual stresses on the surface. In this case, stress levels are primarily influenced by the complex forging and milling process. On this alloy in particular, it may be difficult to characterize stress due to modification of the microstructure close to the surface. Results obtained by x-ray analysis depend on the correct definition of the shape of the diffraction peaks. The more precisely defined the position of the peak, the more accurately the stresses are evaluated. This paper presents a method to detect if residual stresses can be characterized by x-ray diffraction. The characterization of hardness seems to be a relevant technique to quickly analyze the capability of x-ray diffraction to determine residual stresses.

  16. Development of Next Generation Heating System for Scale Free Steel Reheating

    SciTech Connect

    Dr. Arvind C. Thekdi

    2011-01-27

    The work carried out under this project includes development and design of components, controls, and economic modeling tools that would enable the steel industry to reduce energy intensity through reduction of scale formation during the steel reheating process. Application of scale free reheating offers savings in energy used for production of steel that is lost as scale, and increase in product yield for the global steel industry. The technology can be applied to a new furnace application as well as retrofit design for conversion of existing steel reheating furnaces. The development work has resulted in the knowledge base that will enable the steel industry and steel forging industry us to reheat steel with 75% to 95% reduction in scale formation and associated energy savings during the reheating process. Scale reduction also results in additional energy savings associated with higher yield from reheat furnaces. Energy used for steel production ranges from 9 MM Btu/ton to 16.6 MM Btu/ton or the industry average of approximately 13 MM Btu/ton. Hence, reduction in scale at reheating stage would represent a substantial energy reduction for the steel industry. Potential energy savings for the US steel industry could be in excess of 25 Trillion Btu/year when the technology is applied to all reheating processes. The development work has resulted in new design of reheating process and the required burners and control systems that would allow use of this technology for steel reheating in steel as well as steel forging industries.

  17. Structural aspect of the manifestation of thermal brittleness in a maraging steel of the EI-832 type

    NASA Astrophysics Data System (ADS)

    Schastlivtsev, V. M.; Yakovleva, I. L.; Tereshchenko, N. A.; Kruglov, A. A.

    2010-02-01

    The character of fracture, phase composition, and structure of a maraging steel of the EI-832 type in large forged pieces (90 mm and more in cross section) have been investigated. Structural factors responsible for the level of impact toughness of the steel subjected to aging in a forged state and after quenching have been revealed. It has been shown that for this steel the manifestation of thermal brittleness that is caused by precipitation of dispersed titanium carbonitrides at grain boundaries and is not eliminated upon subsequent conventional heat treatment is possible.

  18. 77 FR 67332 - Certain Steel Threaded Rod From the People's Republic of China: Final Results and Final Partial...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-09

    ... that were not produced during the POR and updated the Thai import statistics used to value steel wire rod based on the specific carbon content reported by the RMB/IFI Group for its steel wire rod... forged, turned, cold-drawn, cold- rolled, machine straightened, or otherwise cold-finished, and...

  19. Snake River Plain FORGE Site Characterization Data

    SciTech Connect

    Robert Podgorney

    2016-04-18

    The site characterization data used to develop the conceptual geologic model for the Snake River Plain site in Idaho, as part of phase 1 of the Frontier Observatory for Research in Geothermal Energy (FORGE) initiative. This collection includes data on seismic events, groundwater, geomechanical models, gravity surveys, magnetics, resistivity, magnetotellurics (MT), rock physics, stress, the geologic setting, and supporting documentation, including several papers. Also included are 3D models (Petrel and Jewelsuite) of the proposed site. Data for wells INEL-1, WO-2, and USGS-142 have been included as links to separate data collections. These data have been assembled by the Snake River Geothermal Consortium (SRGC), a team of collaborators that includes members from national laboratories, universities, industry, and federal agencies, lead by the Idaho National Laboratory (INL). Other contributors include the National Renewable Energy Laboratory (NREL), Lawrence Livermore National Laboratory (LLNL), the Center for Advanced Energy Studies (CEAS), the University of Idaho, Idaho State University, Boise State University, University of Wyoming, University of Oklahoma, Energy and Geoscience Institute-University of Utah, US Geothermal, Baker Hughes Campbell Scientific Inc., Chena Power, US Geological Survey (USGS), Idaho Department of Water Resources, Idaho Geological Survey, and Mink GeoHydro.

  20. West Flank Coso, CA FORGE Magnetotelluric Inversion

    DOE Data Explorer

    Doug Blankenship

    2016-05-16

    The Coso Magnetotelluric (MT) dataset of which the West Flank FORGE MT data is a subset, was collected by Schlumberger / WesternGeco and initially processed by the WesternGeco GeoSolutions Integrated EM Center of Excellence in Milan, Italy. The 2011 data was based on 99 soundings that were centered on the West Flank geothermal prospect. The new soundings along with previous data from 2003 and 2006 were incorporated into a 3D inversion. Full impedance tensor data were inverted in the 1-3000 Hz range. The modelling report notes several noise sources, specifically the DC powerline that is 20,000 feet west of the survey area, and may have affected data in the 0.02 to 10 Hz range. Model cell dimensions of 450 x 450 x 65 feet were used to avoid computational instability in the 3D model. The fit between calculated and observed MT values for the final model run had an RMS value of 1.807. The included figure from the WesternGeco report shows the sounding locations from the 2011, 2006 and 2003 surveys.

  1. Fracture toughness properties of welded stainless steels for tritium service

    SciTech Connect

    Morgan, M.

    1994-10-01

    Studies to determine tritium exposure effects on the properties of welded steels are being conducted. In this investigation, the effects of tritium and decay helium on the fracture toughness properties of high-energy-rate-forged (HERF) Incoloy 903 were. Fracture toughness measurements were conducted for tritium-exposed samples in the as-forged condition and compared with welded samples. Tritium-exposed HERF Incoloy 903 had fracture toughness values that were 33% lower than those for unexposed HERF Incoloy 903. Tritium-exposed welded samples had fracture toughness values that were just 8% of the unexposed HERF alloys and 28% of unexposed welded alloys.

  2. Abbreviated annealing of high-speed steel

    SciTech Connect

    Zablotskii, V.K.; Bartel, G.P.

    1987-07-01

    The authors investigate the structural and phase transformations during the heating, holding, and cooling of high-speed steels of two basic groups: tungsten (R18, R12, R12F3, and R12F4K5) and tungsten-molybdenum (R6M5, 10R6M5, R6M5K5, R8M3, 10R8M3, and R8M3K6S) steels in the forged state. They propose a cooling regime with complete alpha-gamma recrystallization whose implementation at a Soviet steel plant has made it possible to reduce the duration of heat treatment and increase productivity by 20% in cutting the annealed high-speed steels.

  3. Fatigue crack growth properties of a cryogenic structural steel at liquid helium temperature

    SciTech Connect

    Konosu, Shinji; Kishiro, Tomohiro; Ivano, O.; Nunoya, Yoshihiko; Nakajima, Hideo; Tsuji, Hiroshi

    1996-01-01

    The structural materials of the coils of superconducting magnets utilized in thermonuclear fusion reactors are used at liquid helium (4.2 K) temperatures and are subjected to repeated thermal stresses and electromagnetic forces. A high strength, high toughness austenitic stainless steel (12Cr-12Ni-10Mn-5Mo-0.2N) has recently been developed for large, thick-walled components used in such environments. This material is non-magnetic even when subjected to processing and, because it is a forging material, it is advantageous as a structural material for large components. In the current research, a large forging of 12Cr-12Ni-10Mn-5Mo-0.2N austenitic stainless steel, was fabricated to a thickness of 250 mm, which is typical of section thicknesses encountered in actual equipment. The tensile fatigue crack growth properties of the forging were examined at liquid helium temperature as a function of specimen location across the thickness of the forging. There was virtually no evidence of variation in tensile strength or fatigue crack growth properties attributable to different sampling locations in the thickness direction and no effect of thickness due to the forging or solution treatment associated with large forgings was observed.

  4. The influence of deformation, annealing and recrystallisation on oxide nanofeatures in oxide dispersion strengthened steel

    NASA Astrophysics Data System (ADS)

    Dawson, Karl; Tatlock, Gordon J.

    2017-04-01

    This work demonstrates that Y-Ti oxide nanofeatures, observed in as-extruded oxide dispersion strengthened steel, are structurally modified by cold forging. A 950 °C heat treatment promoted restructuring of the deformed particles and partial recrystallisation of the cold forged alloy. Transmission electron microscopy revealed that cuboid shaped nanofeatures were deformed during forging, which resulted in high number densities of lens shaped yttrium-titanium oxide particles. Annealing the forged alloy promoted partial recrystallisation of the ferritic matrix. Particle morphology reverted from lens shaped, as witnessed in the deformed material, to cuboid shaped oxide nanofeatures, identical to those observed in as-extruded material. Precipitation distributions evaluated in both recrystallised and recovering grains were indistinguishable from those first measured in the as-extruded alloy. TEM images revealed a widespread orientation relationship between the oxide precipitates and the recrystallised grains; registration with the ferrite lattice was omnipresent in both recovering and recrystallised grains.

  5. West Flank Coso FORGE Magnetotelluric 3D Data

    SciTech Connect

    Doug Blankenship

    2016-01-01

    This is the 3D version of the MT data for the West Flank FORGE area.The Coso geothermal field has had three Magnetotelluric (MT) datasets collected including surveys in 2003, 2006, and 2011. The final collection, in 2011, expanded the survey to the west and covers the West Flank of FORGE area.This most recent data set was collected by Schlumberger/WesternGeco and inverted by the WesternGeco GeoSolutions Integrated EM Center of Excellence in Milan, Italy; the 2003 and 2006 data were integrated for these inversions in the present study.

  6. 2015 Accomplishments-Tritium aging studies on stainless steel. Effects of hydrogen isotopes, crack orientation, and specimen geometry on fracture toughness

    SciTech Connect

    Morgan, Michael J.

    2016-01-01

    This study reports on the effects of hydrogen isotopes, crack orientation, and specimen geometry on the fracture toughness of stainless steels. Fracture toughness variability was investigated for Type 21-6-9 stainless steel using the 7K0004 forging. Fracture toughness specimens were cut from the forging in two different geometric configurations: arc shape and disc shape. The fracture toughness properties were measured at ambient temperature before and after exposure to hydrogen gas and compared to prior studies. There are three main conclusions that can be drawn from the results. First, the fracture toughness properties of actual reservoir forgings and contemporary heats of steel are much higher than those measured in earlier studies that used heats of steel from the 1980s and 1990s and forward extruded forgings which were designed to simulate reservoir microstructures. This is true for as-forged heats as well as forged heats exposed to hydrogen gas. Secondly, the study confirms the well-known observation that cracks oriented parallel to the forging grain flow will propagate easier than those oriented perpendicular to the grain flow. However, what was not known, but is shown here, is that this effect is more pronounced, particularly after hydrogen exposures, when the forging is given a larger upset. In brick forgings, which have a relatively low amount of upset, the fracture toughness variation with specimen orientation is less than 5%; whereas, in cup forgings, the fracture toughness is about 20% lower than that forging to show how specimen geometry affects fracture toughness values. The American Society for Testing Materials (ASTM) specifies minimum specimen section sizes for valid fracture toughness values. However, sub-size specimens have long been used to study tritium effects because of the physical limitation of diffusing hydrogen isotopes into stainless steel at mild temperatures so as to not disturb the underlying forged microstructure. This study shows

  7. Processing and properties of superclean ASTM A508 Cl. 4 forgings

    SciTech Connect

    Hinkel, A.V.; Handerhan, K.J.; Manzo, G.J.; Simkins, G.P.

    1988-12-31

    Steels with improved resistance to temper embrittlement are now being produced using ``superclean`` steelmaking technology. This technology involves the use of scrap control, proper electric arc furnace and ladle refining furnace practices to produce steel with very low Mn, Si, P, S and other residual impurities such as Sn, As and Sb. This technology has been applied on a production basis to modified ASTM A508 Cl- 4 material intended for high temperature pressure vessel forgings. Processing and properties of this superclean material are reviewed. In addition, the cleanliness and mechanical properties are compared to conventionally melted A508 Cl. 4 material. The ``superclean`` A508 Cl. 4 mod. was found to meet all specification requirements. In addition, the superclean material was found to possess superior upper shelf CVN properties, a lower FATT{sub 50} and NDTT, along with superior microcleanliness compared to conventional material. Finally, the superclean material was found to be immune to temper embrittlement based on the short-term embrittlement treatments examined.

  8. Modelling of the radial forging process of a hollow billet with the mandrel on the lever radial forging machine

    NASA Astrophysics Data System (ADS)

    Karamyshev, A. P.; Nekrasov, I. I.; Pugin, A. I.; Fedulov, A. A.

    2016-04-01

    The finite-element method (FEM) has been used in scientific research of forming technological process modelling. Among the others, the process of the multistage radial forging of hollow billets has been modelled. The model includes both the thermal problem, concerning preliminary heating of the billet taking into account thermal expansion, and the deformation problem, when the billet is forged in a special machine. The latter part of the model describes such features of the process as die calibration, die movement, initial die temperature, friction conditions, etc. The results obtained can be used to define the necessary process parameters and die calibration.

  9. Family Health and Financial Literacy--Forging the Connection

    ERIC Educational Resources Information Center

    Braun, Bonnie; Kim, Jinhee; Anderson, Elaine A.

    2009-01-01

    Families are at-risk of or experiencing a diminished quality of living and life in current economic times and difficult decisions are required. Health and financial literacy are the basis for wise personal and public decision making. Family and consumer sciences (FCS) professionals can forge connections between health and financial literacy to…

  10. 16. Forge building and fuel storage shed from the southwest, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. Forge building and fuel storage shed from the southwest, c.1918 Photocopied from a photograph in the collection of William F. Applegate, 43 Grandview Avenue, Wallingford, Connecticut. - Eli Whitney Armory, West of Whitney Avenue, Armory Street Vicinity, Hamden, New Haven County, CT

  11. Electronic Portfolios in Teacher Education: Forging a Middle Ground

    ERIC Educational Resources Information Center

    Strudler, Neal; Wetzel, Keith

    2012-01-01

    At a time when implementation of electronic portfolios (EPs) is expanding, the issues of clarifying their purposes continue to plague teacher education programs. Are student-centered uses of EPs compatible with program assessment and accreditation efforts? Is this an either/or situation, or can a productive middle ground be forged? This article…

  12. Forging an Identity over the Life-Course

    ERIC Educational Resources Information Center

    Spiteri, Damian

    2009-01-01

    Using a social constructionist approach, this study explores the self-perceptions of young men who, when at school, were classed as boys with social, emotional and behavioural difficulties (SEBD). The aim is to understand how these perceptions were forged throughout the young men's life-courses resulting in changing self-identities. The study also…

  13. Consolidation and Forging Methods for a Cryomilled Al Alloy

    NASA Astrophysics Data System (ADS)

    Newbery, A. P.; Ahn, B.; Hayes, R. W.; Pao, P. S.; Nutt, S. R.; Lavernia, E. J.

    2008-09-01

    The method used to consolidate a cryogenically ball-milled powder is critical to the retention of superior strength along with acceptable tensile ductility in the bulk product. In this study, gas-atomized Al 5083 powder was cryomilled, hot vacuum degassed, and consolidated by hot isostatic pressing (HIP) or by quasi-isostatic (QI) forging to produce low-porosity billets. The billets were then forged, either at high strain rate (without a die) or quasi-isostatically, and subsequently hot rolled to produce three 6.5-mm-thick plates. Despite extended periods at elevated temperatures and differences between the consolidation/deformation methods, a similar predominantly ultrafine grain microstructure was obtained in all three plates. The plates possessed similar ultimate tensile strengths, about 50 pct greater than standard work-hardened Al 5083. However, in terms of fracture toughness, there were significant differences between the plates. Debonding at prior cryomilled powder particle surfaces was an important fracture mechanism for “HIPped” material, leading to low toughness for crack surfaces in the plane of the plate. This effect was minimized by the implementation of double QI forging, producing plate with good isotropic fracture toughness. The type of particle boundary deformation during forging and the influence of impurities appeared to be more important in determining fracture toughness than the presence of ˜10 vol pct coarser micron-sized grains.

  14. The Valley Forge Encampment: Epic on the Schuylkill.

    ERIC Educational Resources Information Center

    Trussell, John B. B., Jr.

    Valley Forge, outside Philadelphia (Pennsylvania), has long been recognized as the site of a great victory of the human spirit. Eleven thousand men including Blacks and Indians resided there during the winter of 1777-78 and triumphed over cold, starvation, nakedness, disease, and uncertainty. The encampment site was unprepared for the tattered,…

  15. THE EFFECTS OF HYDROGEN, TRITIUM, AND HEAT TREATMENT ON THE DEFORMATION AND FRACTURE TOUGHNESS PROPERTIES OF STAINLESS STEEL

    SciTech Connect

    Morgan, M.; Tosten, M.; Chapman, G.

    2013-09-06

    The deformation and fracture toughness properties of forged stainless steels pre-charged with tritium were compared to the deformation and fracture toughness properties of the same steels heat treated at 773 K or 873 K and precharged with hydrogen. Forged stainless steels pre-charged with tritium exhibit an aging effect: Fracture toughness values decrease with aging time after precharging because of the increase in concentration of helium from tritium decay. This study shows that forged stainless steels given a prior heat treatment and then pre-charged with hydrogen also exhibit an aging effect: Fracture toughness values decrease with increasing time at temperature. A microstructural analysis showed that the fracture toughness reduction in the heat-treated steels was due to patches of recrystallized grains that form within the forged matrix during the heat treatment. The combination of hydrogen and the patches of recrystallized grains resulted in more deformation twinning. Heavy deformation twinning on multiple slip planes was typical for the hydrogen-charged samples; whereas, in the non-charged samples, less twinning was observed and was generally limited to one slip plane. Similar effects occur in tritium pre-charged steels, but the deformation twinning is brought on by the hardening associated with decay helium bubbles in the microstructure.

  16. Influence of alloying elements on corrosion resistance of chromium--nickel steels in alkaline medium

    SciTech Connect

    Kanevskii, L.S.; Ebanoidze, D.D.; Kolesnikova, N.N.; Mosolov, A.V.; Shirokova, N.V.; Tovadze, F.N.

    1986-05-01

    The authors study the influence of nickel, chromium, and molybdenum on the behavior of chromium-nickel-molybdenum steels in concentrated alkali and alkali-chlorate solutions, simulating the media in partitioned alkali electrolysis evaporators. Defect-free forgings with no transcrystallization were obtained by pouring the steel into metal molds heated to 1400 degrees C. In the presence of molybdenum the passivation of the steels becomes more difficult, and as a result the corrosion potentials of certain steels in a chlorate-containing solution are much more negative than those of their molybdenum-free analogs.

  17. 75 FR 12514 - Stainless Steel Bar From Brazil: Preliminary Results of Antidumping Duty Administrative Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-16

    ... stainless steel in straight lengths that have been either hot-rolled, forged, turned, cold-drawn, cold... straight lengths, whether produced from hot-rolled bar or from straightened and cut rod or wire, and... width which exceeds 150 mm and measures at least twice the thickness), wire (i.e., cold-formed...

  18. Clean/superclean steel rotors for electric utility applications

    SciTech Connect

    Viswanathan, R.

    1996-12-31

    Improved cleanliness is perhaps the only approach that results in simultaneous improvement in strength and ductility at elevated temperatures as well as toughness at low temperatures of steels. In addition, superclean steels in which manganese and silicon have also been reduced provide greater resistance to stress corrosion cracking than conventional steels. Major projects are underway worldwide to promote the use of clean/superclean steel rotor and disk forgings, both for low temperature and for high temperature applications in steam and combustion turbines. An international workshop sponsored by EPRI was held in 1995 in London, at which turbine manufacturers and steelmakers discussed ongoing activities with respect to clean steels. This paper will review EPRI research in th area and provide an overview of recent developments.

  19. Superclean steel development: A guide for utility use

    SciTech Connect

    Richman, R.H.; McNaughton, W.P. )

    1989-12-01

    The Electric Power Research Institute has actively encouraged and sponsored a number of research projects to develop superclean 3. 5NiCrMoV steel for low pressure turbine rotors. Such steel is highly resistant to temper embrittlement and will thus facilitate increased efficiency in electricity generation through the use of higher operating temperatures and improvements in design. Steels with impurity contents typical of the superclean specification can be manufactured for production rotors with properties that equal or exceed those for conventional 3.5NiCrMoV rotors in every detail. Of particular interest are the results that the superclean steels appear to be virtually resistant to temper embrittlement to a temperature of 500{degree}C. The objective of this users guide is to assist US utilities with decisions about when to adopt superclean steel for new or replacement rotor forgings by providing an overview of superclean steel developments and a summary of the properties to be expected of production rotor forgings. 57 refs., 26 figs.

  20. First Results of Energy Saving at Process Redesign of Die Forging Al-Alloys

    SciTech Connect

    Pepelnjak, Tomaz; Kuzman, Karl; Kokol, Anton

    2011-05-04

    The contribution deals with eco-friendly solutions for shortened production chains of forging light alloys. During the die forging operations a remarkable amount of material goes into the flash and later on into chips during finish machining. These low value side products are rich with embedded energy therefore recycling or reprocessing could be very energy saving procedure.In cooperation with a die forging company a shortened reprocessing cycle has been studied starting from re-melting the forging flash and without additional heating to cast preforms for subsequent die forging. As such preforms have not as good formability characteristics as those done from extruded billets the isothermal forging process has been adopted. First results showed that without cracks and other defects the formability is sufficient for a broad spectrum of forgings.To improve the formability a homogenization process of cast preforms has been implemented. As the process started immediately after casting, amount of additional energy for heating was minimized. To reduce voids forging process was redesigned in a way to assure greater hydrostatic pressures in parts during forging. First results were promising therefore research is going towards improving processes without adding significantly more energy as it is needed for casting with homogenization and die forging.

  1. Microstructure development during conventional and isothermal hot forging of a near-gamma titanium aluminide

    SciTech Connect

    Semiatin, S.L. ); Seetharaman, V. ); Jain, V.K. . Mechanical and Aerospace Engineering Dept.)

    1994-12-01

    The breakdown of the lamellar preform microstructure in the ingot metallurgy near-gamma titanium aluminide, Ti-45.5Al-2Cr-2Nb (atomic percent), was investigated. Microstructures developed during canned, conventional hot forging were compared to those from isothermal hot forging. The higher rate of deformation in conventional forging led to considerably finer and almost completely broken-down structures in the as-forged condition. Several nontraditional approaches, including the isothermal forming of a metastable microstructure (so-called alpha forging'') and the inclusion of a short static recrystallization anneal during forging, were found to produce a more fully broken-down structure in as-isothermally forged conditions. Despite the noticeable microstructure differences after forging, a conventionally and isothermally forged material responded similarly during heat treatment. In both cases, almost totally recrystallized structures of either equiaxed gamma or transformed alpha grains surrounded by fine gamma grains were produced depending on the heat-treatment temperature. Metallography on forged and heat-treated pancake macroslices was useful in delineating small differences in composition not easily detected by analytical methods.

  2. West Flank Coso, CA FORGE ArcGIS data 2

    DOE Data Explorer

    Doug Blankenship

    2016-03-01

    archive of ArcGIS data from the West Flank FORGE site located in Coso, California. Archive contains: 8 shapefiles polygon of the 3D geologic model polylines of the traces 3D modeled faults polylines of the fault traces from Duffield and Bacon, 1980 polygon of the West Flank FORGE site polylines of the traces of the geologic cross-sections (cross-sections in a separate archive in the GDR) polylines of the traces of the seismic reflection profiles through and adjacent to the West Flank site (seismic reflection profiles in a separate archive in the GDR) points of the well collars in and around the West Flank site polylines of the surface expression of the West Flank well paths

  3. Crack toughness evaluation of hot pressed and forged beryllium.

    NASA Technical Reports Server (NTRS)

    Jones, M. H.; Bubsey, R. T.; Brown, W. F., Jr.

    1973-01-01

    Fracture toughness tests at room temperature were made on three-point loaded beryllium bend specimens cut from hot pressed block and a forged disk. These specimens had plane proportions conforming to ASTM E 399 and covered a thickness range of from 1/32 to 1/2 in. Two sets of bend specimens were tested, one having fatigue cracks and the other 0.5 mil radius notches. One objective of the investigation was the development of techniques to produce fatigue cracks in accordance with the procedures specified in ASTM E 399. This objective was achieved for the hot pressed material. In plane cracks were not consistently produced in the specimens cut from forged stock.

  4. Performance Assessment Method for a Forged Fingerprint Detection Algorithm

    NASA Astrophysics Data System (ADS)

    Shin, Yong Nyuo; Jun, In-Kyung; Kim, Hyun; Shin, Woochang

    The threat of invasion of privacy and of the illegal appropriation of information both increase with the expansion of the biometrics service environment to open systems. However, while certificates or smart cards can easily be cancelled and reissued if found to be missing, there is no way to recover the unique biometric information of an individual following a security breach. With the recognition that this threat factor may disrupt the large-scale civil service operations approaching implementation, such as electronic ID cards and e-Government systems, many agencies and vendors around the world continue to develop forged fingerprint detection technology, but no objective performance assessment method has, to date, been reported. Therefore, in this paper, we propose a methodology designed to evaluate the objective performance of the forged fingerprint detection technology that is currently attracting a great deal of attention.

  5. Internal Shear Forging Processes for Missile Primary Structures.

    DTIC Science & Technology

    1981-07-20

    Different Thermal-Mechanical Cycles. .. .. .. 91 9 Effect of Final Aging Treatment on Tensile Properties of 2014 Aluminum Alloy...naturally aged to the T4 condition. .. ... ......... ......... ... 51 39 Initial tooling design for internal shear forging. .. .. ... 58 40...treatable age -hardening alloy and contains Al with Cu, Mg, and Si as the main alloying elements. Addition of Si enhances the response to artificial aging (T6

  6. Fracture behavior of warm forged and CVD tungsten

    SciTech Connect

    Lassila, D.H.; Connor, A.

    1991-02-14

    The fracture behavior of warm forged and chemical vapor deposition (CVD) tungsten was studied. Three-point bend tests were used to determine ductile-brittle transition temperatures (DBTT) of the materials using a strain based criterion for the DBTT which was arrived at by analysis of computer code modelling results of the three-point bend test. The DBTT's of the warm forged materials were found to be considerably lower than those of the CVD materials. Scanning electron microscopy (SEM), scanning Auger electron spectroscopy (SAES) and X-ray photoelectron spectroscopy (XPS) were performed to characterize the fracture morphologies and fracture surface compositions of the materials. All fracture surfaces were found to be comprised entirely of tungsten with significant and varying amounts of oxygen and carbon segregation. A large portion of the fracture surfaces of the warm forged materials is intergranular, although this is not always directly evident from SEM observations. The fracture surfaces of the CVD materials were clearly 100% intergranular. Results of the study suggest that the fracture paths of the different materials were related to the DBTTs. 22 refs., 8 figs., 2 tabs.

  7. Influence of Processing Parameters on Grain Size Evolution of a Forged Superalloy

    NASA Astrophysics Data System (ADS)

    Reyes, L. A.; Páramo, P.; Salas Zamarripa, A.; de la Garza, M.; Guerrero-Mata, M. P.

    2016-01-01

    The microstructure evolution of nickel-based superalloys has a great influence on the mechanical behavior during service conditions. Microstructure modification and the effect of process variables such as forging temperature, die-speed, and tool heating were evaluated after hot die forging of a heat-resistant nickel-based alloy. Forging sequences in a temperature range from 1253 to 1323 K were considered through experimental trials. An Avrami model was applied using finite element data to evaluate the average grain size and recrystallization at different evolution zones. It was observed that sequential forging at final temperatures below 1273 K provided greater grain refinement through time-dependent recrystallization phenomena. This investigation was aim to explore the influence of forging parameters on grain size evolution in order to design a fully homogenous and refined microstructure after hot die forging.

  8. Mechanical-Property Data Ti-10V-2Fe-3Al Alloy. Isothermally Forged

    DTIC Science & Technology

    1982-06-01

    mm) RCS, reheated to 1700 F (1200 K) and forged to a 5-inch (127 mm) RCS, reheated to 1500 F ( 1089 K) and forged to a 4-inch (102 mm) octagon. A final...pass at RMI was performed in a rotary forging machine at 1500 F ( 1089 K) transfoiming the octagon 4 "to a 3-1/4-inch (8.26 mm) diameter round bar. At

  9. Microstructural, mechanical, corrosion and cytotoxicity characterization of the hot forged FeMn30(wt.%) alloy.

    PubMed

    Čapek, Jaroslav; Kubásek, Jiří; Vojtěch, Dalibor; Jablonská, Eva; Lipov, Jan; Ruml, Tomáš

    2016-01-01

    An interest in biodegradable metallic materials has been increasing in the last two decades. Besides magnesium based materials, iron-manganese alloys have been considered as possible candidates for fabrication of biodegradable stents and orthopedic implants. In this study, we prepared a hot forged FeMn30 (wt.%) alloy and investigated its microstructural, mechanical and corrosion characteristics as well as cytotoxicity towards mouse L 929 fibroblasts. The obtained results were compared with those of iron. The FeMn30 alloy was composed of antiferromagnetic γ-austenite and ε-martensite phases and possessed better mechanical properties than iron and even that of 316 L steel. The potentiodynamic measurements in simulated body fluids showed that alloying with manganese lowered the free corrosion potential and enhanced the corrosion rate, compared to iron. On the other hand, the corrosion rate of FeMn30 obtained by a semi-static immersion test was significantly lower than that of iron, most likely due to a higher degree of alkalization in sample surrounding. The presence of manganese in the alloy slightly enhanced toxicity towards the L 929 cells; however, the toxicity did not exceed the allowed limit and FeMn30 alloy fulfilled the requirements of the ISO 10993-5 standard.

  10. Closed Die Deformation Behavior of Cylindrical Iron-Alumina Metal Matrix Composites During Cold Sinter Forging

    NASA Astrophysics Data System (ADS)

    Prasanna Kumar, Undeti Jacob; Gupta, Pallav; Jha, Arun Kant; Kumar, Devendra

    2016-10-01

    The present paper aims to study the closed die deformation behavior of cylindrical Fe-Al2O3 metal matrix composites (MMCs). Closed die was manufactured by machining the high carbon steel block followed by oil quenching and then finishing. Samples sintered at a temperature of 1100 °C for 1 h were characterized with X-ray diffraction and scanning electron microscopy, which showed the formation of Fe, Al2O3 and nano size FeAl2O4 phases respectively. Density and hardness of the composite samples were determined after sintering. Closed die deformation studies of the prepared composite samples were carried under three different interfacial frictional conditions i.e. dry, solid lubricating and liquid lubricating. Hardness, density and metallographic characterizations were also done for the deformed samples. On comparing the micrographs of the samples before and after deformation it was revealed that in deformed specimens recrystallization has taken place due to the difference in the energy between the strained iron matrix and unstrained alumina reinforcement during closed die forging process. Experimental density of the samples was also verified with the theoretical density using the standard equations. It is expected that the results of the present investigations will be helpful in developing quality MMC components for wide industrial applications.

  11. Opacity and Mass Emission Relationship in Forging Areas of Large Caliber Metal Parts Facilities,

    DTIC Science & Technology

    1981-11-01

    was tested to he 0.0058 gr/dscf. The lubricating oil used at Flinchbaugh is designated as Hot Forging Agent 201 (HF 201), manufactured by E. F. Houghton...at the New Bedford forgi, shop are designated as MacForge 599 and MacForge-, 958. MacForge 958 is water, based, containing 1? percent oil and 24...determine mass emissions from optical density at another plant, the particulate characteristics and the ptrocess imu t be very siwilar to the plant

  12. Magnetic Barkhausen noise and magneto acoustic emission in pressure vessel steel

    NASA Astrophysics Data System (ADS)

    Neyra Astudillo, Miriam Rocío; López Pumarega, María Isabel; Núñez, Nicolás Marcelo; Pochettino, Alberto; Ruzzante, José

    2017-03-01

    Magnetic Barkhausen Noise (MBN) and Magneto Acoustic Emission (MAE) were studied in A508 Class II forged steel used for pressure vessels in nuclear power stations. The magnetic experimental determinations were completed with a macro graphic study of sulfides and the texture analysis of the material. The analysis of these results allows us to determine connections between the magnetic anisotropy, texture and microstructure of the material. Results clearly suggest that the plastic flow direction is different from the forging direction indicated by the material supplier

  13. Final Technical Report: Intensive Quenching Technology for Heat Treating and Forging Industries

    SciTech Connect

    Aronov, Michael A.

    2005-12-21

    Intensive quenching (IQ) process is an alternative way of hardening (quenching) steel parts through the use of highly agitated water and then still air. It was developed by IQ Technologies, Inc. (IQT) of Akron, Ohio. While conventional quenching is usually performed in environmentally unfriendly oil or water/polymer solutions, the IQ process uses highly agitated environmentally friendly water or low concentration water/mineral salt solutions. The IQ method is characterized by extremely high cooling rates of steel parts. In contrast to conventional quenching, where parts cool down to the quenchant temperature and usually have tensile or neutral residual surface stresses at the end of quenching. The IQ process is interrupted when the part core is still hot and when there are maximum compressive stresses deep into the parts, thereby providing hard, ductile, better wear resistant parts. The project goal was to advance the patented IQ process from feasibility to commercialization in the heat-treating and forging industries to reduce significantly energy consumption and environmental impact, to increase productivity and to enhance economic competitiveness of these industries as well as Steel, Metal Casting and Mining industries. To introduce successfully the IQ technology in the U.S. metal working industry, the project team has completed the following work over the course of this project: A total of 33 manufacturers of steel products provided steel parts for IQ trails. IQT conducted IQ demonstrations for 34 different steel parts. Our customers tested intensively quenched parts in actual field conditions to evaluate the product service life and performance improvement. The data obtained from the field showed the following: Service life (number of holes punched) of cold-work punches (provided by EHT customer and made of S5 shock-resisting steel) was improved by two to eight times. Aluminum extrusion dies provided by GAM and made of hot work H-13 steel outperformed the

  14. The effect of hydrogen isotopes and helium on the tensile properties of 21-6-9 stainless steel

    SciTech Connect

    Morgan, M.J.; Lohmeier, D.

    1990-01-01

    High-energy-rate-forged (HERF) stainless steels are used as the materials of construction for pressure vessels designed for the containment of hydrogen and its isotopes. Hydrogen and helium, the decay product of tritium, are known to embrittle these materials. HERF stainless steels have a relatively good resistance to hydrogen-and-helium-induced embrittlement when compared to annealed stainless steels due to their high number density of dislocations, which act as traps for hydrogen and helium. However, the degree of embrittlement in these materials can vary considerably because of microstructure and yield strength variations introduced during the forging process. In this study the effect of hydrogen and tritium on the tensile properties of 21-6-9 stainless steel was measured as a function of HERF yield strength in the range of 660 to 930 MPa. The effect of microstructure was studied also be conducting tensile tests with HERF and annealed samples.

  15. Hot Deformation Behavior and Microstructural Evolution of a Medium Carbon Vanadium Microalloyed Steel

    NASA Astrophysics Data System (ADS)

    Cutrim, Rialberth M.; Rodrigues, Samuel F.; Reis, Gedeon S.; Silva, Eden S.; Aranas, Clodualdo; Balancin, Oscar

    2016-11-01

    Hot forging of steel requires application of large strains, under which conditions, dynamic recrystallization (DRX) is expected to take place. In this study, torsion tests were carried out on a medium carbon vanadium microalloyed steel (38MnSiVS5) to simulate hot forging. Deformations were applied isothermally in the temperature range 900-1200 °C at strain rates of 0.1-10 s-1 in order to observe for the occurrence of DRX and to investigate for the microstructural evolution during straining. The shape of the flow curves indicated that the recrystallization takes place during deformation. This was supported by optical microscopy performed on the quenched samples which displayed considerable amounts of recrystallized grains. It was shown that the grain size depends on straining conditions such as strain rate and temperature. Finally, it was revealed that these process parameters can considerably affect the evolution of microstructure of industrial grade steels by means of DRX.

  16. Effect of Variants of Thermomechanical Working and Annealing Treatment on Titanium Alloy Ti6Al4V Closed Die Forgings

    NASA Astrophysics Data System (ADS)

    Gupta, R. K.; Kumar, V. Anil; Kumar, P. Ram

    2016-06-01

    Performance of titanium alloy Ti6Al4V pressure vessels made of closed die forged domes of route `B' (multiple step forged and mill annealed) is reported to be better than route `A' (single/two step forged and mill annealed). Analysis revealed that forgings processed through route `B' have uniformity in microstructure and yield strength at various locations within the forging, as compared to that of route `A.' It is attributed to in-process recrystallization (dynamic as well as static) of route `B' forgings as compared to limited recrystallization of route `A' forgings. Further, post-forging recrystallization annealing (RA) effect is found to be more significant for route `A' forgings in achieving uniform microstructure and mechanical properties, since route `B' forgings have already undergone similar phenomenon during the thermomechanical working process itself. Considering prime importance of yield strength, statistical scatter in yield strength values within the forgings have been evaluated for forgings of both the routes. Standard deviation in the yield strength of route `B' forgings was lower (<10 MPa) as compared to route `A' (>15 MPa), which later became lower (~10 MPa) after RA with a minor decrease in yield strength. The present work discusses these variants of thermomechanical processing along with annealing to achieve better uniformity in properties and microstructure.

  17. Mechanical and Microstructural Characterization of an Aluminum Bearing Trip Steel

    NASA Astrophysics Data System (ADS)

    Monsalve, Alberto; Guzmán, Alexis; De Barbieri, Flavio; Artigas, Alfredo; Carvajal, Linton; Bustos, Oscar; Garza-Montes-de Oca, Nelson F.; Colás, Rafael

    2016-06-01

    The mechanical properties and microstructural characteristics of a steel able to sustain the TRIP-effect were studied. The material was prepared by taking in mind the partial substitution of silicon by aluminum following a processing route that included hot forging, hot and cold rolling, intercritical annealing, and a final bainitic isothermal treatment. The mechanical properties that were obtained resulted to be above those of commercial a 780 TRIP steel. The TRIP phenomenon was confirmed by the change in retained austenite before and after deforming the steel; X-ray diffraction was used to evaluate the volume content of retained austenite. Formability of the steel under study can be rationalized in terms of the texture developed in the material.

  18. 76 FR 26696 - Certain Steel Threaded Rod From the People's Republic of China: Preliminary Results of the First...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-09

    ... any diameter, in any straight length, that have been forged, turned, cold-drawn, cold- rolled, machine... financial statement of Rajratan Global Wire Limited, the 2008-2009 financial statement of Bansidhar Granites Private Limited, the 2008- 2009 financial statement of J&K Wire & Steel Industries (P) Ltd., and the...

  19. Performance of hot stacked-sinter forged Bi2223 ceramics

    NASA Astrophysics Data System (ADS)

    Noudem, J. G.; Guilmeau, E.; Chateigner, D.; Ouladdiaf, B.; Bourgault, D.

    2004-08-01

    Dense Bi2223 superconductors have been successfully formed by hot stacking-forging process (HSF). Neutron diffraction measurements were used to investigate the bulk textures of HSF-Bi2223 samples. Angular dependence of transport critical current density, Jc values were measured at various temperatures and different applied magnetic fields. Several textured pieces were hot-stacked. This procedure leads to an increase of both the sample thickness and the nominal engineering critical current ( Ic), favourable hints for use of textured-Bi2223 in power generation supplies.

  20. West Flank Coso, CA FORGE 3D geologic model

    SciTech Connect

    Doug Blankenship

    2016-03-01

    This is an x,y,z file of the West Flank FORGE 3D geologic model. Model created in Earthvision by Dynamic Graphic Inc. The model was constructed with a grid spacing of 100 m. Geologic surfaces were extrapolated from the input data using a minimum tension gridding algorithm. The data file is tabular data in a text file, with lithology data associated with X,Y,Z grid points. All the relevant information is in the file header (the spatial reference, the projection etc.) In addition all the fields in the data file are identified in the header.

  1. Snake River Plain FORGE Well Data for USGS-142

    SciTech Connect

    Robert Podgorney

    2015-11-23

    Well data for the USGS-142 well located in eastern Snake River Plain, Idaho. This data collection includes lithology reports, borehole logs, and photos of rhyolite core samples. This collection of data has been assembled as part of the site characterization data used to develop the conceptual geologic model for the Snake River Plain site in Idaho, as part of phase 1 of the Frontier Observatory for Research in Geothermal Energy (FORGE) initiative. They were assembled by the Snake River Geothermal Consortium (SRGC), a team of collaborators that includes members from national laboratories, universities, industry, and federal agencies, lead by the Idaho National Laboratory (INL).

  2. Pilot Plant Forging of Hydrogenated Ti-6Al-4V.

    DTIC Science & Technology

    1980-06-01

    inserted into an M-246 nickel base superalloy die block with 713C alloy flat dies positioned on the heated die block. The entire die system was enclosed...side if neceaary and identify by block number) Hydrogenation Isothermal Forging Ring Test Titanium Alloy Ti-6A1-4V Flow Stress 20. k9Sr9Xd1’ (Continue on...5 Rack used to hold Specimens during Hydrogenation 29 6 Flow Stress-Plastic Strain Relation for Ti-6AI-4V Alloy (Heat A) with Various Hydrogen

  3. APT characterization of high nickel RPV steels

    NASA Astrophysics Data System (ADS)

    Miller, M. K.; Sokolov, M. A.; Nanstad, R. K.; Russell, K. F.

    2006-06-01

    The microstructures of three high nickel content pressure vessel steels have been characterized by atom probe tomography to investigate the influence of high nickel levels on the response to neutron irradiation of high and low copper pressure vessel steels. The high-nickel, low-manganese, low-copper VVER-1000 weld and forging exhibited lower than predicted levels of embrittlement during neutron irradiation. The Palisades weld exhibits a Δ T41 J of 102 °C which was significantly lower than the value of 154 °C predicted by Reg. Guide 1.99 Rev. 2. Atom probe tomography revealed nickel-, manganese-, and silicon-enriched precipitates in both the VVER-1000 base and weld materials after neutron irradiation. A high number density of copper-, nickel-, manganese-, silicon- and phosphorus-enriched precipitates were observed in the Palisades weld after neutron irradiation. Atom probe tomography also revealed high levels of phosphorus segregation to the dislocations in all three materials.

  4. Strain Rate Effects and Temperature History Effects for Three Different Tempers of 4340 VAR Steel

    DTIC Science & Technology

    1984-07-01

    45, pp 60-66 March, 1978. 17. C.F. Hickey, Jr. and A. A. Anctil, "Split Heat Mechanical Property Comparison of ESR and VAR 4340 Steel ", A•MMRC...Embrittlement in High Hardness ESR 4340 Steel Forgings", ANMRC Technical Report 82-1, Army Materials and Mechanics Research Center, Watertown, Mass, January, 1982...Effects and Temperature History Effects for Three Different Tempers of 4340 VAR Steel . 0 by S. Tanimura and J. Duffy DTICr:fti Army Research Office . . 1

  5. Microstructure Modeling of a Ni-Fe-Based Superalloy During the Rotary Forging Process

    NASA Astrophysics Data System (ADS)

    Loyda, A.; Hernández-Muñoz, G. M.; Reyes, L. A.; Zambrano-Robledo, P.

    2016-06-01

    The microstructure evolution of Ni-Fe superalloys has a great influence on the mechanical behavior during service conditions. The rotary forging process offers an alternative to conventional bulk forming processes where the parts can be rotary forged with a fraction of the force commonly needed by conventional forging techniques. In this investigation, a numerical modeling of microstructure evolution for design and optimization of the hot forging operations has been used to manufacture a heat-resistant nickel-based superalloy. An Avrami model was implemented into finite element commercial platform DEFORM 3D to evaluate the average grain size and recrystallization during the rotary forging process. The simulations were carried out considering three initial temperatures, 980, 1000, and 1050 °C, to obtain the microstructure behavior after rotary forging. The final average grain size of one case was validated by comparing with results of previous experimental work of disk forging operation. This investigation was aimed to explore the influence of the rotary forging process on microstructure evolution in order to obtain a homogenous and refined grain size in the final component.

  6. 76 FR 66996 - Agency Information Collection Activities; Submission for OMB Review; Comment Request; Forging...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-28

    ...; Forging Machines ACTION: Notice. SUMMARY: The Department of Labor (DOL) is submitting the Occupational... Machines,'' to the Office of Management and Budget (OMB) for review and approval for continued use in... employers to conduct and to document periodic inspections of forging machines, guards, and...

  7. [Research on the inner wall condition monitoring method of ring forgings based on infrared spectra].

    PubMed

    Fu, Xian-bin; Liu, Bin; Wei, Bin; Zhang, Yu-cun; Liu, Zhao-lun

    2015-01-01

    In order to grasp the inner wall condition of ring forgings, an inner wall condition monitoring method based on infrared spectra for ring forgings is proposed in the present paper. Firstly, using infrared spectroscopy the forgings temperature measurement system was built based on the three-level FP-cavity LCTF. The two single radiation spectra from the forgings' surface were got using the three-level FP-cavity LCTF. And the temperature measuring of the surface forgings was achieved according to the infrared double-color temperature measuring principle. The measuring accuracy can be greatly improved by this temperature measurement method. Secondly, on the basis of the Laplace heat conduction differential equation the inner wall condition monitoring model was established by the method of separating variables. The inner wall condition monitoring of ring forgings was realized via combining the temperature data and the forgings own parameter information. Finally, this method is feasible according to the simulation experiment. The inner wall condition monitoring method can provide the theoretical basis for the normal operating of the ring forgings.

  8. Forging; Heat Treating and Testing; Technically Oriented Industrial Materials and Process 1: 5898.05.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    The course provides students with advanced and exploratory experience in the area of plastic deformation of metals and in the changing of the physical characteristics of metals by the controlled application and timed removal of heat. Course content includes goals, specific objectives, safety in forge work, forging tools and equipment, industrial…

  9. 75 FR 70689 - Kaiser Aluminum Fabricated Products, LLC; Kaiser Aluminum-Greenwood Forge Division; Currently...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-18

    ... Employment and Training Administration Kaiser Aluminum Fabricated Products, LLC; Kaiser Aluminum- Greenwood... Aluminum Fabricated Products, LLC, Kaiser Aluminum-Greenwood Forge Division, including on- site leased... are engaged in the production of aluminum alloy forgings. Information shows that on July 28,...

  10. Vibration control in forge hammers. [by shock wave damping in foundation platform

    NASA Technical Reports Server (NTRS)

    Moise, F.; Lazarescu, C.

    1974-01-01

    Special measures are discussed for calculating, designing and executing a forge hammer foundation, so that the vibrations that occur during its working will not be transmitted to neighboring machinery, workrooms and offices. These vibrations are harmful to the workers near the forge hammer.

  11. A New Method for Controlling Billet Temperature During Isothermal Die Forging of a Complex Superalloy Casing

    NASA Astrophysics Data System (ADS)

    Lin, Y. C.; Wu, Xian-Yang

    2015-09-01

    Isothermal die forging is one of near net-shape metal-forming technologies. Strict control of billet temperature during isothermal die forging is a guarantee for the excellent properties of final product. In this study, a new method is proposed to accurately control the billet temperature of complex superalloy casing, based on the finite element simulation and response surface methodology (RSM). The proposed method is accomplished by the following two steps. Firstly, the thermal compensation process is designed and optimized to overcome the inevitable heat loss of dies during hot forging. i.e., the layout and opening time of heaters assembled on die sleeves are optimized. Then, the effects of forging speed (the pressing velocity of hydraulic machine) and its changing time on the maximum billet temperature are discussed. Furthermore, the optimized forging speed and its changing time are obtained by RSM. Comparisons between the optimized and conventional die forging processes indicate that the proposed method can effectively control the billet temperature within the optimal forming temperature range. So, the optimized die forging processes can guarantee the high volume fraction of dynamic recrystallization, and restrict the rapid growth of grains in the forged superalloy casing.

  12. Low Temperature Superplasticity of Ti-6Al-4V Processed by Warm Multidirectional Forging (Preprint)

    DTIC Science & Technology

    2012-07-01

    temperature superplasticity, multidirectional forging , ultrafine grain structure , microstructure evolution 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF...mail.ru, dLee.Semiatin@wpafb.af.mil Keywords: Low-temperature superplasticity, Multidirectional forging , Ultrafine grain structure , Microstructure... Metals Branch Structural Materials Division G.A. Salishchev, E.A. Kudrjavtsev, and S.V. Zherebtsov Belgorod State University July

  13. Metallographic problems of the production of parts from continuously cast high-speed steels

    NASA Astrophysics Data System (ADS)

    Supov, A. V.; Aleksandrova, N. M.; Paren'kov, S. A.; Kakabadze, R. V.; Pavlov, V. P.

    1998-09-01

    It has been assumed until recently that high-speed steels cannot be produced by the method of continuous casting. Numerous attempts to use this highly efficient technology for manufacturing such steels have failed because of breakage of the cast preforms. A solution was sought in improving the design of the continuous-casting machines (CCM), increasing the level of their automation, and using rational compositions of slag-forming mixtures (SFM). The idea was that a high-speed steel can be cast only in vertical CCM. The present work concerns regimes of secondary cooling under which the structures formed in high-speed steels provide a ductility sufficient for bending the continuously cast preform without failure. Steel R6M5 cast continuously in such a machine can easily be machined into hot-rolled preforms for sheets, wire, silver-steel rods, and other final products without a forging stage.

  14. Nonmetallic inclusions in a chromium steel intended for the power engineering industry

    NASA Astrophysics Data System (ADS)

    Kolpishon, E. Yu.; Mal'Ginov, A. N.; Romashkin, A. N.; Durynin, V. A.; Afanas'ev, S. Yu.; Shitov, E. V.; Afanas'eva, L. T.; Batov, Yu. M.

    2010-06-01

    The behavior of oxygen in the course of manufacturing large steel ingots containing 1.5-20% Cr, the formation of oxides depending on the contents of deoxidizing agents and oxygen, and the composition of the oxide phase in ingots and forgings made of the steel are considered. The steel is manufactured using an arc steel-melting furnace and unit for complex treatment of steel (ASF-ACSPU technology) and the ASF-ACSPU technology and electroslag remelting (ESR). It is shown that the oxide phase composition depends on the contents of strong deoxidizing agents and oxygen and the development of secondary oxidation. Chromium- and manganese-containing spinels are characteristic species of the secondary and tertiary oxides in the chromium steel in the case of deficient aluminum and silicon.

  15. Research into Oil-based Colloidal-Graphite Lubricants for Forging of Al-based Alloys

    SciTech Connect

    Petrov, A.; Petrov, P.; Petrov, M.

    2011-05-04

    The presented paper describes the topical problem in metal forging production. It deals with the choice of an optimal lubricant for forging of Al-based alloys. Within the scope of the paper, the properties of several oil-based colloidal-graphite lubricants were investigated. The physicochemical and technological properties of these lubricants are presented. It was found that physicochemical properties of lubricant compositions have an influence on friction coefficient value and quality of forgings.The ring compression method was used to estimate the friction coefficient value. Hydraulic press was used for the test. The comparative analysis of the investigated lubricants was carried out. The forging quality was estimated on the basis of production test. The practical recommendations were given to choose an optimal oil-based colloidal-graphite lubricant for isothermal forging of Al-based alloy.

  16. 77 FR 39997 - Heavy Forged Hand Tools, Finished or Unfinished, With or Without Handles From the People's...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-06

    ... International Trade Administration Heavy Forged Hand Tools, Finished or Unfinished, With or Without Handles From... and is amending the final results of the antidumping duty review on heavy forged hand tools, finished... Heavy Forged Hand Tools, Finished or Unfinished, With or Without Handles, From the People's Republic...

  17. 76 FR 31631 - Heavy Forged Hand Tools From China; Scheduling of Expedited Five-Year Reviews Concerning the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-01

    ... COMMISSION Heavy Forged Hand Tools From China; Scheduling of Expedited Five- Year Reviews Concerning the Antidumping Duty Orders on Heavy Forged Hand Tools From China. AGENCY: United States International Trade... determine whether revocation of the antidumping duty orders on heavy forged hand tools from China would...

  18. Ultrasonic phased arrays for nondestructive inspection of forgings

    SciTech Connect

    Wuestenberg, H.; Rotter, B. ); Klanke, H.P. ); Harbecke, D. )

    1993-06-01

    Ultrasonic examinations on large forgings like rotor shafts for turbines or components for nuclear reactors are carried out at various manufacturing stages and during in-service inspections. During the manufacture, most of the inspections are carried out manually. Special in-service conditions, such as those at nuclear pressure vessels, have resulted in the development of mechanized scanning equipment. Ultrasonic probes have improved, and well-adapted sound fields and pulse shapes and based on special imaging procedures for the representation of the reportable reflectors have been applied. Since the geometry of many forgings requires the use of a multitude of angles for the inspections in-service and during manufacture, phased-array probes can be used successfully. The main advantages of the phased-array concept, e.g. the generation of a multitude of angles with the typical increase of redundancy in detection and quantitative evaluation and the possibility to produce pictures of defect situations, will be described in this contribution.

  19. Aircraft Steels

    DTIC Science & Technology

    2009-02-19

    NAWCADPAX/TR-2009/ 12 AIRCRAFT STEELS by E. U. Lee R. Taylor C. Lei H. C. Sanders 19 February 2009...MARYLAND NAWCADPAX/TR-2009/ 12 19 February 2009 AIRCRAFT STEELS by E. U. Lee R. Taylor C. Lei H. C. Sanders...Prescribed by ANSI Std. Z39-18 NAWCADPAX/TR-2009/ 12 ii SUMMARY Five high strength and four stainless steels have been studied, identifying their

  20. Microstructural and magnetic studies on thermomechanically treated HSLA steel

    NASA Astrophysics Data System (ADS)

    Narayan, S. P.; Rao, V.; Das, S.; Mohanty, O. N.

    1990-07-01

    Thermomechanical treatment of commercial grade HSLA steel microalloyed with Nb, V and Ti has been carried out in order to obtain microstructures with spheroidised carbides evenly distributed throughout the matrix and therefore with good magnetic properties at high strength levels. Alloys were tempered after rolling-quenching, as well as forging-quenching. In both cases, rolled as well as forged, good magnetic properties were obtained at a strength of 600-620 MPa after spheroidisation of carbides. Thus, for a given level of carbon, the spheroidised carbides lead to a lower coercive force compared to the case in which they are lamellar. This is believed to be associated with lower locked-up microstresses in the former situation.

  1. Fatigue experience from tests carried out with forged beam and frame structures in the development of the Saab aircraft Viggen

    NASA Technical Reports Server (NTRS)

    Larsson, S. E.

    1972-01-01

    A part of the lower side of the main wing at the joint of the main spar with the fuselage frame was investigated. This wing beam area was simulated by a test specimen consisting of a spar boom of AZ 74 forging (7075 aluminum alloy modified with 0.3 percent Ag) and a portion of a honeycomb sandwich panel attached to the boom flange with steel bolts. The cross section was reduced to half scale. However, the flange thickness, the panel height, and the bolt size were full scale. Further, left and right portions of the fuselage frame intended to carry over the bending moment of the main wing were tested. Each of these frame halves consisted of a forward and a rear forging (7079 aluminum alloy, overaged) connected by an outer and inner skin (Alclad 7075) creating a box beam. These test specimens were full scale and were constructed principally of ordinary aircraft components. The test load spectrum was common to both types of specimens with regard to percentage levels. It consisted of maneuver and gust loads, touchdown loads, and loads due to ground roughness. A load history of 200 hours of flight with 15,000 load cycles was punched on a tape. The loads were randomized in groups according to the flight-by-flight principle. The highest positive load level was 90 percent of limit load and the largest negative load was -27 percent. A total of 20 load levels were used. Both types of specimens were provided with strain gages and had a nominal stress of about 300 MN/sq m in some local areas. As a result of the tests, steps were taken to reduce the risk of fatigue damage in aircraft. Thus stress levels were lowered, radii were increased, and demands on surface finish were sharpened.

  2. Using of material-technological modelling for designing production of closed die forgings

    NASA Astrophysics Data System (ADS)

    Ibrahim, K.; Vorel, I.; Jeníček, Š.; Káňa, J.; Aišman, D.; Kotěšovec, V.

    2017-02-01

    Production of forgings is a complex and demanding process which consists of a number of forging operations and, in many cases, includes post-forge heat treatment. An optimized manufacturing line is a prerequisite for obtaining prime-quality products which in turn are essential to profitable operation of a forging company. Problems may, however, arise from modifications to the manufacturing route due to changing customer needs. As a result, the production may have to be suspended temporarily to enable changeover and optimization. Using material-technological modelling, the required modifications can be tested and optimized under laboratory conditions outside the plant without disrupting the production. Thanks to material-technological modelling, the process parameters can be varied rapidly in response to changes in market requirements. Outcomes of the modelling runs include optimum parameters for the forging part’s manufacturing route, values of mechanical properties, and results of microstructure analysis. This article describes the use of material-technological modelling for exploring the impact of the amount of deformation and the rate of cooling of a particular forged part from the finish-forging temperature on its microstructure and related mechanical properties.

  3. Design and Analysis of a Forging Die for Manufacturing of Multiple Connecting Rods

    NASA Astrophysics Data System (ADS)

    Megharaj, C. E.; Nagaraj, P. M.; Jeelan Pasha, K.

    2016-09-01

    This paper demonstrates to utilize the hammer capacity by modifying the die design such that forging hammer can manufacture more than one connecting rod in a given forging cycle time. To modify the die design study is carried out to understand the parameters that are required for forging die design. By considering these parameters, forging die is designed using design modelling tool solid edge. This new design now can produce two connecting rods in same capacity hammer. The new design is required to validate by verifying complete filing of metal in die cavities without any defects in it. To verify this, analysis tool DEFORM 3D is used in this project. Before start of validation process it is require to convert 3D generated models in to. STL file format to import the models into the analysis tool DEFORM 3D. After importing these designs they are analysed for material flow into the cavities and energy required to produce two connecting rods in new forging die design. It is found that the forging die design is proper without any defects and also energy graph shows that the forging energy required to produce two connecting rods is within the limit of that hammer capacity. Implementation of this project increases the production of connecting rods by 200% in less than previous cycle time.

  4. 3D Finite Element Analysis of Spider Non-isothermal Forging Process

    NASA Astrophysics Data System (ADS)

    Niu, Ling; Wei, Wei; Wei, Kun Xia; Alexandrov, Igor V.; Hu, Jing

    2016-06-01

    The differences of effective stress, effective strain, velocity field, and the load-time curves between the spider isothermal and non-isothermal forging processes are investigated by making full use of 3D FEA, and verified by the production experiment of spider forging. Effective stress is mainly concentrated on the pin, and becomes lower closer to the front of the pin. The maximum effective strain in the non-isothermal forging is lower than that in the isothermal. The great majority of strain in the non-isothermal forging process is 1.76, which is larger than the strain of 1.31 in the isothermal forging. The maximum load required in the isothermal forging is higher than that in the non-isothermal. The maximum experimental load and deformation temperature in the spider production are in good agreement with those in the non-isothermal FEA. The results indicate that the non-isothermal 3D FEA results can guide the design of the spider forging process.

  5. Optimum Design of Forging Process Parameters and Preform Shape under Uncertainties

    NASA Astrophysics Data System (ADS)

    Repalle, Jalaja; Grandhi, Ramana V.

    2004-06-01

    Forging is a highly complex non-linear process that is vulnerable to various uncertainties, such as variations in billet geometry, die temperature, material properties, workpiece and forging equipment positional errors and process parameters. A combination of these uncertainties could induce heavy manufacturing losses through premature die failure, final part geometric distortion and production risk. Identifying the sources of uncertainties, quantifying and controlling them will reduce risk in the manufacturing environment, which will minimize the overall cost of production. In this paper, various uncertainties that affect forging tool life and preform design are identified, and their cumulative effect on the forging process is evaluated. Since the forging process simulation is computationally intensive, the response surface approach is used to reduce time by establishing a relationship between the system performance and the critical process design parameters. Variability in system performance due to randomness in the parameters is computed by applying Monte Carlo Simulations (MCS) on generated Response Surface Models (RSM). Finally, a Robust Methodology is developed to optimize forging process parameters and preform shape. The developed method is demonstrated by applying it to an axisymmetric H-cross section disk forging to improve the product quality and robustness.

  6. Snake River Plain FORGE Well Data for INEL-1

    DOE Data Explorer

    Robert Podgorney

    1979-03-01

    Well data for the INEL-1 well located in eastern Snake River Plain, Idaho. This data collection includes caliper logs, lithology reports, borehole logs, temperature at depth data, neutron density and gamma data, full color logs, fracture analysis, photos, and rock strength parameters for the INEL-1 well. This collection of data has been assembled as part of the site characterization data used to develop the conceptual geologic model for the Snake River Plain site in Idaho, as part of phase 1 of the Frontier Observatory for Research in Geothermal Energy (FORGE) initiative. They were assembled by the Snake River Geothermal Consortium (SRGC), a team of collaborators that includes members from national laboratories, universities, industry, and federal agencies, lead by the Idaho National Laboratory (INL).

  7. Science Education and Outreach: Forging a Path to the Future

    NASA Astrophysics Data System (ADS)

    Manning, James G.

    2009-05-01

    The International Year of Astronomy and the Year of Science provide singular opportunities to focus public attention on science in general and the universe in particular in 2009. But what happens on January 1, 2010? How can the science and science education communities build on the initiatives and successes of 2009 to create sustainable programs and efforts to continue to advance science education and literacy objectives for the longer term? The presenter will relate how these questions will be addressed at the annual meeting of the Astronomical Society of the Pacific in Millbrae, California, September 12-16, and how the meeting will provide an opportunity for the science, astronomy, and science education and outreach communities to contribute to the discussion and to share their answers and perspectives with the larger community, and to identify ways in which we can forge that future path together.

  8. Crack toughness evaluation of hot pressed and forged beryllium

    NASA Technical Reports Server (NTRS)

    Jones, M. H.; Bubsey, R. T.; Brown, W. F., Jr.

    1971-01-01

    Beryllium fracture toughness test specimens were fatigue cracked using reversed cycling with a compression load two to three times the tension load. In worked beryllium, textures may be produced which result in fatigue cracks that are out of plane with the starter notch. Specimens of hot pressed stock exhibited load displacement records which were nonlinear throughout their course. Fracture specimens of both hot pressed and forged stock showed essentially no reduction of thickness and the fracture surfaces were flat and normal to the load axis. However, the stress intensity factor at maximum load increased with decreasing thickness. Load-displacement and electric potential records for the hot pressed beryllium specimens exhibited several anomalies such as negative residual crack mouth displacements and a decrease in electrical potential with increasing load.

  9. Experimentation and numerical modeling of forging induced bending (FIB) process

    NASA Astrophysics Data System (ADS)

    Naseem, S.; van den Boogaard, A. H.

    2016-10-01

    Accurate prediction of the final shape using numerical modeling has been a top priority in the field of sheet and bulk forming. Better shape prediction is the result of a better estimation of the physical stress and strain state. For experimental and numerical investigations of such estimations, simple benchmark processes are used. In this paper a benchmark process involving forging (flattening) of sheet metal between punch and die with negative clearance is proposed. The introduced material flow results in bending. Easy measurability of the angle of this bend makes this process suitable for validation purpose. Physical experiments are performed to characterize this bending angle due to flattening. Furthermore a numerical model is developed to capture this phenomenon. The main focus of this paper is the validation of the numerical model in terms of accurate prediction of the physical results.

  10. Snake River Plain FORGE Well Data for WO-2

    DOE Data Explorer

    Robert Podgorney

    1991-07-29

    Well data for the WO-2 well located in eastern Snake River Plain, Idaho. This data collection includes lithology reports, borehole logs, temperature at depth data, neutron density and gamma data, and rock strength parameters for the WO-2 well. This collection of data has been assembled as part of the site characterization data used to develop the conceptual geologic model for the Snake River Plain site in Idaho, as part of phase 1 of the Frontier Observatory for Research in Geothermal Energy (FORGE) initiative. They were assembled by the Snake River Geothermal Consortium (SRGC), a team of collaborators that includes members from national laboratories, universities, industry, and federal agencies, lead by the Idaho National Laboratory (INL).

  11. Optimizing noise control strategy in a forging workshop.

    PubMed

    Razavi, Hamideh; Ramazanifar, Ehsan; Bagherzadeh, Jalal

    2014-01-01

    In this paper, a computer program based on a genetic algorithm is developed to find an economic solution for noise control in a forging workshop. Initially, input data, including characteristics of sound sources, human exposure, abatement techniques, and production plans are inserted into the model. Using sound pressure levels at working locations, the operators who are at higher risk are identified and picked out for the next step. The program is devised in MATLAB such that the parameters can be easily defined and changed for comparison. The final results are structured into 4 sections that specify an appropriate abatement method for each operator and machine, minimum allowance time for high-risk operators, required damping material for enclosures, and minimum total cost of these treatments. The validity of input data in addition to proper settings in the optimization model ensures the final solution is practical and economically reasonable.

  12. Physics and Technological Training in Bulgarian Forge Craft

    NASA Astrophysics Data System (ADS)

    Petkova, Petya N.; Velcheva, Keranka G.

    2010-01-01

    The contemporary world regenerates and preserves the traditions of decorative—applied art and the national crafts. This brings up young generation and helps them to uncover the sources of national culture. In the commonly educational system the technological training realizes succession of new methods for national and applied art. The aim is examination of the national crafts as technological processes for cultivation of different metal constructions. There are enforced physical laws here. Seven basic groups of forging methods consider in Bulgarian tradition craft as heat treatment, plastic deformation and applying of different tensions. This gives information about morphology of construction after applying of stress, enlarging or decreasing of the linear sizes, structure change and the change of physical and mechanical properties.

  13. Laser-dispersing of forging tools using AlN-ceramics

    NASA Astrophysics Data System (ADS)

    Noelke, C.; Luecke, M.; Kaierle, S.; Wesling, V.; Overmeyer, L.

    2014-02-01

    Forging tools for aluminum work pieces show an increased adhesive wear due to cold welding during the forging process. Laser dispersing offers at this point a great potential to fabricate protective layers or tracks with tailored properties that reduce abrasive or adhesive wear at the surface of highly stressed components. Using different process strategies, four metal ceramic compounds applied on two substrate geometries were investigated regarding their structural and mechanical properties and their performance level. The subsequent forging tests have pointed out a positive effect and less adhesive residuals on the laser dispersed tool surface.

  14. Characterization of large 2219 aluminum alloy hand forgings for the space shuttle solid rocket booster

    NASA Technical Reports Server (NTRS)

    Brennecke, M. W.

    1978-01-01

    The mechanical properties, including fracture toughness, and stress corrosion properties of four types of 2219-T852 aluminum alloy hand forgings are presented. Weight of the forgings varied between 450 and 3500 lb at the time of heat treatment and dimensions exceeded the maximum covered in existing specifications. The forgings were destructively tested to develop reliable mechanical property data to replace estimates employed in the design of the Space Shuttle Solid Rocket Booster (SRB) and to establish minimum guaranteed properties for structural refinement and for entry into specification revisions. The report summarizes data required from the forgers and from the SRB Structures contractor.

  15. Assessment of NASA Dual Microstructure Heat Treatment Method for Multiple Forging Batch Heat Treatment

    NASA Technical Reports Server (NTRS)

    Gayda, John (Technical Monitor); Lemsky, Joe

    2004-01-01

    NASA dual microstructure heat treatment technology previously demonstrated on single forging heat treat batches of a generic disk shape was successfully demonstrated on a multiple disk batch of a production shape component. A group of four Rolls-Royce Corporation 3rd Stage AE2100 forgings produced from alloy ME209 were successfully dual microstructure heat treated as a single heat treat batch. The forgings responded uniformly as evidenced by part-to-part consistent thermocouple recordings and resultant macrostructures, and from ultrasonic examination. Multiple disk DMHT processing offers a low cost alternative to other published dual microstructure processing techniques.

  16. Hot Superplastic Powder Forging for Transparent nanocrystalline Ceramics

    SciTech Connect

    Cannon, W. Roger

    2006-05-22

    The program explored a completely new, economical method of manufacturing nanocrystalline ceramics, Hot Superplastic Powder Forging (HSPF). The goal of the work was the development of nanocrystalline/low porosity optically transparent zirconia/alumina. The high optical transparency should result from lack of grain boundary scattering since grains will be smaller than one tenth the wavelength of light and from elimination of porosity. An important technological potential for this process is manufacturing of envelopes for high-pressure sodium vapor lamps. The technique for fabricating monolithic nanocrystalline material does not begin with powder whose particle diameter is <100 nm as is commonly done. Instead it begins with powder whose particle diameter is on the order of 10-100 microns but contains nanocrystalline crystallites <<100 nm. Spherical particles are quenched from a melt and heat treated to achieve the desired microstructure. Under a moderate pressure within a die or a mold at temperatures of 1100C to 1300C densification is by plastic flow of superplastic particles. A nanocrystalline microstructure results, though some features are greater than 100nm. It was found, for instance, that in the fully dense Al2O3-ZrO2 eutectic specimens that a bicontinuous microstructure exists containing <100 nm ZrO2 particles in a matrix of Al2O3 grains extending over 1-2 microns. Crystallization, growth, phase development and creep during hot pressing and forging were studied for several compositions and so provided some details on development of polycrystalline microstructure from heating quenched ceramics.

  17. Optimization of Thixoforging Parameters for C70S6 Steel Connecting Rods

    NASA Astrophysics Data System (ADS)

    Özkara, İsa Metin; Baydoğan, Murat

    2016-11-01

    A microalloyed steel, C70S6, with a solidification interval of 1390-1479 °C, was thixoforged in the semisolid state in a closed die at temperatures in the range 1400-1475 °C to form a 1/7 scaled-down model of a passenger vehicle connecting rod. Die design and an optimized thixoforging temperature eliminated the excessive flash and other problems during forging. Tension test samples from connecting rods thixoforged at the optimum temperature of 1440 °C exhibited nearly the same hardness, yield strength, and ultimate tensile strength as conventional hot forged samples but ductility decreased by about 45% due to grain boundary ferrite network formed during cooling from the thixoforging temperature. Thus, C70S6-grade steel can be thixoforged at 1440 °C to form flash-free connecting rods. This conclusion was also validated using FEA analysis.

  18. Establishment of a Process for Creep Forging Aluminum Alloy Weapon Components

    DTIC Science & Technology

    1978-04-01

    the important powder particle character- istics are mean particle size and size distribution, dendritic cell size and pattern, internal voids , and...Geometry Forging No. 26 (Fig. 53) showed excellent die filling except for a slight underfill at the tallest rib. Minor cracking also occurred over a small...Much cracking and underfill In rib detal1. 0.2 750 400 1 Some cracking Trimmed weight, 3.0 lb. 0.1 830 150 - Forged

  19. Numerical analysis of rheological and tribological behavior influence on 16MnCr5 forging fibering

    NASA Astrophysics Data System (ADS)

    Gavrus, A.; Pintilie, D.; Nedelcu, R.

    2016-10-01

    The present research work is focus on the influence of the rheological constitutive equation and friction law formulation on 16MnCr5 forging fibering. Numerical analysis using FE Forge® and Abaqus code show the importance of the rheological softening terms on the metals fibers morphology and position coordinate. Calibration of friction law and sensitivity of softening parameters corresponding to a Hansel-Spittel rheological equation have been studied.

  20. Development of strategies for saving energy by temperature reduction in warm forging processes

    NASA Astrophysics Data System (ADS)

    Varela, Sonia; Santos, Maite; Vadillo, Leire; Idoyaga, Zuriñe; Valbuena, Óscar

    2016-10-01

    This paper is associated to the European policy of increasing efficiency in raw material and energy usage. This policy becomes even more important in sectors consuming high amount of resources, like hot forging industry, where material costs sums up to 50% of component price and energy ones are continuously raising. The warm forging shows a clear potential of raw material reduction (near-net-shape components) and also of energy saving (forging temperature under 1000°C). However and due to the increment of the energy costs, new solutions are required by the forging sector in order to reduce the temperature below 900°C. The reported research is based on several approaches to reduce the forging temperature applied to a flanged shaft of the automotive sector as demonstration case. The developed investigations have included several aspects: raw material, process parameters, tools and dies behavior during forging process and also metallographic evaluation of the forged parts. This paper summarizes analysis of the ductility and the admissible forces of the flanged shaft material Ck45 in as-supplied state (as-rolled) and also in two additional heat treated states. Hot compression and tensile tests using a GLEEBLE 3800C Thermo mechanical simulator have been performed pursuing this target. In the same way, a coupled numerical model based on Finite Element Method (FEM) has been developed to predict the material flow, the forging loads and the stresses on the tools at lower temperature with the new heat treatments of the raw material. In order to validate the previous development, experimental trials at 850 °C and 750 °C were carried out in a mechanical press and the results were very promising.

  1. 2012 ACCOMPLISHMENTS - TRITIUM AGING STUDIES ON STAINLESS STEELS

    SciTech Connect

    Morgan, M.

    2013-01-31

    This report summarizes the research and development accomplishments during FY12 for the tritium effects on materials program. The tritium effects on materials program is designed to measure the long-term effects of tritium and its radioactive decay product, helium-3, on the structural properties of forged stainless steels which are used as the materials of construction for tritium reservoirs. The FY12 R&D accomplishments include: (1) Fabricated and Thermally-Charged 150 Forged Stainless Steel Samples with Tritium for Future Aging Studies; (2) Developed an Experimental Plan for Measuring Cracking Thresholds of Tritium-Charged-and-Aged Steels in High Pressure Hydrogen Gas; (3) Calculated Sample Tritium Contents For Laboratory Inventory Requirements and Environmental Release Estimates; (4) Published report on “Cracking Thresholds and Fracture Toughness Properties of Tritium-Charged-and-Aged Stainless Steels”; and, (5) Published report on “The Effects of Hydrogen, Tritium, and Heat Treatment on the Deformation and Fracture Toughness Properties of Stainless Steels”. These accomplishments are highlighted here and references given to additional reports for more detailed information.

  2. Deformation, recrystallization, strength, and fracture of press-forged ceramic crystals.

    NASA Technical Reports Server (NTRS)

    Rice, R. W.

    1972-01-01

    Sapphire and ruby were very difficult to press-forge because they deformed without cracking only in a limited temperature range before they melted. Spinel crystals were somewhat easier and MgO, CaO, and TiC crystals much easier to forge. The degree of recrystallization that occurred during forging (which was related to the ease and type of slip intersections) varied from essentially zero in Al2O3 to complete (i.e., random polycrystalline bodies were produced) in CaO. Forging of bi- and polycrystalline bodies produced incoherent bodies as a result of grain-boundary sliding. Strengths of the forged crystals were comparable to those of dense polycrystalline bodies of similar grain size. However, forged and recrystallized CaO crystals were ductile at lower temperatures than dense hot-pressed CaO. This behavior is attributed to reduced grain-boundary impurities and porosity. Fracture origins could be located, indicating that fracture in the CaO occurs internally as a result of surface work hardening caused by machining.-

  3. FEM Analysis and Experimental Verification of the Integral Forging Process for AP1000 Primary Coolant Pipe

    NASA Astrophysics Data System (ADS)

    Wang, Shenglong; Yu, Xiaoyi; Yang, Bin; Zhang, Mingxian; Wu, Huanchun

    2016-10-01

    AP1000 primary coolant pipes must be manufactured by integral forging technology according to the designer—Westinghouse Electric Co. The characteristics of these large, special-shaped pipes create nonuniform temperatures, effective stress, and effective strain during shaping of the pipes. This paper presents a three-dimensional finite element simulation (3D FEM) of the integral forging process, and qualitatively evaluates the likelihood of forging defects. By analyzing the evolution histories of the three field variables, we concluded that the initial forging temperature should be strictly controlled within the interval 1123 K to 1423 K (850 °C to 1150 °C) to avoid second-phase precipitation. In the hard deformation zones, small strains do not contribute to recrystallization resulting in coarse grains. Conversely, in the free deformation zone, the large strains can contribute to the dynamic recrystallization, favoring grain refinement and closure of voids. Cracks are likely to appear, however, on the workpiece surface when forging leads to large deformations. Based on the simulation results, an eligible workpiece with good mechanical properties, few macroscopic defects, and favorable grain size has been successfully forged by experiments at an industrial scale, which validates the FEM simulation.

  4. Study on application of color filters in vision system of hot forgings

    NASA Astrophysics Data System (ADS)

    Bi, Chao; Fang, Jianguo; Li, Di; Qu, Xinghua

    2016-10-01

    In order to improve the quality and efficiency of forging process, it needs to execute on-line dimensional measurement of the forgings. In the paper, a laboratory color vision measuring system is set up and the combination of digital and physical filtering is adopted to improve the image quality based on the radiation characteristics of high-temperature forgings. The digital filtering technology is a kind of image processing methods, in which the R component of the forging image is removed. While, the physical filtering technology is achieved by optical filters installed in front of the CCD, in which strong self-emitted radiation from the hot parts can be filtered out. In order to evaluate the image quality, the image contrast is applied, which is generally defined as the difference value between average gray scale of object region and that of background region. In the experiments, image contrast derived with filters at different sample points set from 800°C to 1200°C is compared to determine the optimal scheme of filters to be selected. Results of experiments indicate that the application effect of filters is dissimilar when the forging is in different temperature ranges. Through comparison, the optimal selection scheme of filters is determined to derive high quality image of forgings at different temperatures, which lays a solid foundation for the subsequent image processing.

  5. Temperature effects on the mechanical properties of annealed and HERF 304L stainless steel.

    SciTech Connect

    Antoun, Bonnie R.

    2004-11-01

    The effect of temperature on the tensile properties of annealed 304L stainless steel and HERF 304L stainless steel forgings was determined by completing experiments over the moderate range of -40 F to 160 F. Temperature effects were more significant in the annealed material than the HERF material. The tensile yield strength of the annealed material at -40 F averaged twenty two percent above the room temperature value and at 160 F averaged thirteen percent below. The tensile yield strength for the three different geometry HERF forgings at -40 F and 160 F changed less than ten percent from room temperature. The ultimate tensile strength was more temperature dependent than the yield strength. The annealed material averaged thirty six percent above and fourteen percent below the room temperature ultimate strength at -40 F and 160 F, respectively. The HERF forgings exhibited similar, slightly lower changes in ultimate strength with temperature. For completeness and illustrative purposes, the stress-strain curves are included for each of the tensile experiments conducted. The results of this study prompted a continuation study to determine tensile property changes of welded 304L stainless steel material with temperature, documented separately.

  6. West Flank Coso, CA FORGE 3D temperature model

    SciTech Connect

    Doug Blankenship

    2016-03-01

    x,y,z data of the 3D temperature model for the West Flank Coso FORGE site. Model grid spacing is 250m. The temperature model for the Coso geothermal field used over 100 geothermal production sized wells and intermediate-depth temperature holes. At the near surface of this model, two boundary temperatures were assumed: (1) areas with surface manifestations, including fumaroles along the northeast striking normal faults and northwest striking dextral faults with the hydrothermal field, a temperature of ~104˚C was applied to datum at +1066 meters above sea level elevation, and (2) a near-surface temperature at about 10 meters depth, of 20˚C was applied below the diurnal and annual conductive temperature perturbations. These assumptions were based on heat flow studies conducted at the CVF and for the Mojave Desert. On the edges of the hydrothermal system, a 73˚C/km (4˚F/100’) temperature gradient contour was established using conductive gradient data from shallow and intermediate-depth temperature holes. This contour was continued to all elevation datums between the 20˚C surface and -1520 meters below mean sea level. Because the West Flank is outside of the geothermal field footprint, during Phase 1, the three wells inside the FORGE site were incorporated into the preexisting temperature model. To ensure a complete model was built based on all the available data sets, measured bottom-hole temperature gradients in certain wells were downward extrapolated to the next deepest elevation datum (or a maximum of about 25% of the well depth where conductive gradients are evident in the lower portions of the wells). After assuring that the margins of the geothermal field were going to be adequately modelled, the data was contoured using the Kriging method algorithm. Although the extrapolated temperatures and boundary conditions are not rigorous, the calculated temperatures are anticipated to be within ~6˚C (20˚F), or one contour interval, of the

  7. Building a New High School and Forging a New Community.

    ERIC Educational Resources Information Center

    Krajewski, Robert

    1988-01-01

    Two aging structures were replaced by Central High School in an Indiana steel town. Planning, board and administrator support, and community involvement eased negative attitudes toward the high school closures and resulted in a $36 million school that has unified the city and will serve it for over 50 years. (MLF)

  8. Hot forging of graphite-carbide composites. Final report

    SciTech Connect

    Jenkins, G.M.; Holland, L.R.

    1998-07-15

    This project was aimed at hot shaping of titanium carbide/graphite and vanadium carbide/graphite composite materials by heating them to above 2000 degrees celsius and pressing into an electrographite die. The sample was to be a preformed cylinder of powdered graphite mixed with powdered titanium or vanadium, lightly sintered. The preform would be heated in a hot press and the titanium or vanadium would react with some of the graphite to form titanium or vanadium carbide. The remaining (excess) graphite would form a composite with the carbide, and this could then be deformed plastically at temperatures well below the onset of plasticity in pure graphite. There were to be two major thrusts in the research: In the first, an electron beam furnace at Sandia Laboratory was to be used for rapid heating of the sample, which would then be transferred into the press. The second thrust was to be entirely at Alabama A and M University, and here they intended to use a heated, controlled atmosphere press to forge the graphite/carbide preforms at a steady temperature and measure their viscosity as a function of temperature. This report discusses the progress made on this project.

  9. Movement Synchrony Forges Social Bonds across Group Divides

    PubMed Central

    Tunçgenç, Bahar; Cohen, Emma

    2016-01-01

    Group dynamics play an important role in the social interactions of both children and adults. A large amount of research has shown that merely being allocated to arbitrarily defined groups can evoke disproportionately positive attitudes toward one's in-group and negative attitudes toward out-groups, and that these biases emerge in early childhood. This prompts important empirical questions with far-reaching theoretical and applied significance. How robust are these inter-group biases? Can biases be mitigated by behaviors known to bond individuals and groups together? How can bonds be forged across existing group divides? To explore these questions, we examined the bonding effects of interpersonal synchrony on minimally constructed groups in a controlled experiment. In-group and out-group bonding were assessed using questionnaires administered before and after a task in which groups performed movements either synchronously or non-synchronously in a between-participants design. We also developed an implicit behavioral measure, the Island Game, in which physical proximity was used as an indirect measure of interpersonal closeness. Self-report and behavioral measures showed increased bonding between groups after synchronous movement. Bonding with the out-group was significantly higher in the condition in which movements were performed synchronously than when movements were performed non-synchronously between groups. The findings are discussed in terms of their importance for the developmental social psychology of group dynamics as well as their implications for applied intervention programs. PMID:27303341

  10. Irradiation behavior of Ti-stabilized 316L type steel

    NASA Astrophysics Data System (ADS)

    Rodchenkov, B. S.; Kalinin, G. M.; Strebkov, Yu. S.; Shamardin, V. K.; Prokhorov, V. I.; Bulanova, T. M.

    2009-04-01

    Type 316L austenitic steels are widely used for the in-vessel internal structures of fission reactors (core, core support, etc.) and for experimental irradiation facilities. The modifications of 316L Type steel (316L, 316L(N), US 316, J 316, JPCA, etc.) have been considered as structural material for International Thermonuclear Experimental Reactor (ITER). The results of investigation the irradiation behaviour of Ti-stabilized 316 L type steel (0.04 C-15 Cr-11 Ni-2.5 Mo-0.5 Ti) are presented in this work. The specimens cut out from 316L-Ti steel forging were irradiated in the SM-2 reactor up to a dose ˜4 and 10 dpa at 265 ± 15 °C. The tensile properties, fracture toughness and changes in resistance to intergranular stress corrosion cracking (IGSCC) have been investigated after irradiation. The results for Ti-stabilized 316L steel were compared with those for 316L(N)-IG steel irradiated at the same condition.

  11. Ancient Blacksmiths, The Iron Age, Damascus Steels, and Modern Metallurgy

    SciTech Connect

    Sherby, O.D.; Wadsworth, J.

    2000-09-11

    The history of iron and Damascus steels is described through the eyes of ancient blacksmiths. For example, evidence is presented that questions why the Iron Age could not have begun at about the same time as the early Bronze Age (i.e. approximately 7000 B.C.). It is also clear that ancient blacksmiths had enough information from their forging work, together with their observation of color changes during heating and their estimate of hardness by scratch tests, to have determined some key parts of the present-day iron-carbon phase diagram. The blacksmiths' greatest artistic accomplishments were the Damascus and Japanese steel swords. The Damascus sword was famous not only for its exceptional cutting edge and toughness, but also for its beautiful surface markings. Damascus steels are ultrahigh carbon steels (UHCSs) that contain from 1.0 to 2.1%. carbon. The modern metallurgical understanding of UHCSs has revealed that remarkable properties can be obtained in these hypereutectoid steels. The results achieved in UHCSs are attributed to the ability to place the carbon, in excess of the eutectoid composition, to do useful work that enhances the high temperature processing of carbon steels and that improves the low and intermediate temperature mechanical properties.

  12. New heat treatment process for advanced high-strength steels

    NASA Astrophysics Data System (ADS)

    Bublíková, D.; Jeníček, Š.; Vorel, I.; Mašek, B.

    2017-02-01

    Today’s advanced steels are required to possess high strength and ductility. It can be achieved by choosing an appropriate steel chemistry which has a substantial effect on the properties obtained by heat treatment. Mechanical properties influenced the presence of retained austenite in the final structure. Steels of this group typically require complicated heat treatment which places great demands on the equipment used. The present paper introduces new procedures aimed at simplifying the heat treatment of high-strength steels with the use of material-technological modelling. Four experimental steels were made and cast, whose main alloying additions were manganese, silicon, chromium, molybdenum and nickel. The steels were treated using the Q-P process with subsequent interrupted quenching. The resulting structure was a mixture of martensite and retained austenite. Strength levels of more than 2000 MPa combined with 10-15 % elongation were obtained. These properties thus offer potential for the manufacture of intricate closed-die forgings with a reduced weight. Intercritical annealing was obtained structure not only on the basis of martensite, but also with certain proportion of bainitic ferrite and retained austenite.

  13. DESIGN MECHANICAL PROPERTIES, FRACTURE TOUGHNESS, FATIGUE PROPERTIES, EXFOLIATION AND STRESS-CORROSION RESISTANCE OF 7050 SHEET, PLATE, HAND FORGINGS, DIE FORGINGS AND EXTRUSIONS

    DTIC Science & Technology

    1975-07-01

    Cracking, of Stress- Relieved Stretched Aluminum Alloy Extrusions", Technical Report AFML-TR-68-34, Fabruary 1968. 11. D. J. Brownhill, C. F. Babilon , 0. E...Rates of Stress-Relieved Aluminum Alloy Hand Forgings", Technical Report AFML-TR-70-10, February 1970. 12. C. F. Babilon , R. H. Wygonik, G. E

  14. Temperature and environmentally assisted cracking in low alloy steel

    SciTech Connect

    Auten, T.A.; Monter, J.V.

    1995-12-31

    Environmentally assisted cracking (EAC) can be defined as the propagation of fatigue cracks in water at rates that are anywhere from 3 to over 40 times the growth rates expected in air. In the present work, five ASTM A 508 Class 2 forgings with ladle and check analyses that ranged from 0.010 to 0.019 wt% S were tested in high purity deaerated water in the temperature range of 93 to 260 C. At 260 C these forgings did not undergo EAC, reinforcing earlier results for two similar forgings. This broad sampling indicates a strong resistance to EAC for this class of forging at 260 C. On the other hand, EAC occurred consistently in the three of these forgings that were tested below 204 C, provided the test conditions were high enough to produce a high baseline fatigue crack growth rate (FCGR), where the baseline FCGR is that expected in air. At 149 C, EAC occurred at test conditions that combined to yield a baseline FCGR greater than {approx}2E-6 mm/s. At 204, 121, and 93 C, this ``critical crack growth rate`` appeared to shift to lower baseline values. The EAC that occurred at lower temperatures was a factor of 3 to 12 times higher than baseline air rates, which was not as strong as the effect for higher sulfur steels at 240 to 290 C. Also, no plateau in the growth rates occurred as it does with the higher sulfur steels. In another approach, EAC was induced at 93 and at 260 C by raising the dissolved oxygen content of the water from <10 to >15 ppb. In this case, the EAC growth rates decreased to non-EAC levels when the oxygen supply was shut off. The oxygen-related EAC occurred over a broader range of baseline growth rates than found for the EAC driven by the baseline crack tip speed. Again, this can be rationalized by the buildup of sulfur in the crack tip water, which can be associated with the higher corrosion potential of the bulk water.

  15. Making randomised trials more efficient: report of the first meeting to discuss the Trial Forge platform.

    PubMed

    Treweek, Shaun; Altman, Doug G; Bower, Peter; Campbell, Marion; Chalmers, Iain; Cotton, Seonaidh; Craig, Peter; Crosby, David; Davidson, Peter; Devane, Declan; Duley, Lelia; Dunn, Janet; Elbourne, Diana; Farrell, Barbara; Gamble, Carrol; Gillies, Katie; Hood, Kerry; Lang, Trudie; Littleford, Roberta; Loudon, Kirsty; McDonald, Alison; McPherson, Gladys; Nelson, Annmarie; Norrie, John; Ramsay, Craig; Sandercock, Peter; Shanahan, Daniel R; Summerskill, William; Sydes, Matt; Williamson, Paula; Clarke, Mike

    2015-06-05

    Randomised trials are at the heart of evidence-based healthcare, but the methods and infrastructure for conducting these sometimes complex studies are largely evidence free. Trial Forge ( www.trialforge.org ) is an initiative that aims to increase the evidence base for trial decision making and, in doing so, to improve trial efficiency.This paper summarises a one-day workshop held in Edinburgh on 10 July 2014 to discuss Trial Forge and how to advance this initiative. We first outline the problem of inefficiency in randomised trials and go on to describe Trial Forge. We present participants' views on the processes in the life of a randomised trial that should be covered by Trial Forge.General support existed at the workshop for the Trial Forge approach to increase the evidence base for making randomised trial decisions and for improving trial efficiency. Agreed upon key processes included choosing the right research question; logistical planning for delivery, training of staff, recruitment, and retention; data management and dissemination; and close down. The process of linking to existing initiatives where possible was considered crucial. Trial Forge will not be a guideline or a checklist but a 'go to' website for research on randomised trials methods, with a linked programme of applied methodology research, coupled to an effective evidence-dissemination process. Moreover, it will support an informal network of interested trialists who meet virtually (online) and occasionally in person to build capacity and knowledge in the design and conduct of efficient randomised trials.Some of the resources invested in randomised trials are wasted because of limited evidence upon which to base many aspects of design, conduct, analysis, and reporting of clinical trials. Trial Forge will help to address this lack of evidence.

  16. Forging New Links in the Asteroid-Meteorite Connection

    NASA Astrophysics Data System (ADS)

    Binzel, R. P.

    1995-09-01

    Historically, the path linking telescopic measurements of asteroids with laboratory measurements of meteorites has been an arduous one full of dead ends and dark passages. However some recent successes are beginning to clear and illuminate the path. Largely these successes have come about through advances in astronomical instrumentation and dedicated surveys of main-belt asteroids down to sizes substantially smaller than what had been previously observed. In addition, the most immediate precursor precursor population to meteorites, the near-Earth asteroids, are becoming more thoroughly studied. Three new links appear to have been forged. The strongest is the previously debated link between Vesta and the HED meteorites [1,2,3]. In a new survey of small (diameter < 20 km) main-belt asteroids, Binzel and Xu [4] found 20 which have visible spectra matching that which was previously unique to Vesta and the HED meteorites. While most appeared dynamically clustered around Vesta, eight of the discovered Vesta-like asteroids bridged the orbital space between Vesta and the 3:1 Jovian resonance -- a dynamical escape hatch to the inner solar system. Thus the observations demonstrate a complete delivery route for fragments from Vesta to the Earth, implying strong confidence that HED meteorites are derived from Vesta. The broad implications are that Vesta is now the fourth planetary body for which we have known samples, thus opening a new field for meteoritics and planetary science -- the geology of Vesta. A second, but more tentative link, is the discovery [5] of at least one small main-belt asteroid, 3628 Boznemcova, whose spectrum resembles ordinary chondrite meteorites. Previously, only one Earth-crossing asteroid (1862 Apollo) appeared to provide an asteroid spectral analog to these most common meteorites. Unfortunately the discovery of just one small main-belt ordinary chondrite-like asteroid out of about 1000 surveyed does not resolve issues such as whether space

  17. Toughness of 12%Cr ferritic/martensitic steel welds produced by non-arc welding processes

    SciTech Connect

    Ginn, B.J.; Gooch, T.G.

    1998-08-01

    Low carbon 12%Cr steels can offer reduced life cycle costs in many applications. The present work examined the behavior of commercial steels of varying composition when subject to low heat input welding by the electron beam (EB) process and to a forge cycle by linear friction welding (LFW). Charpy impact testing was carried out on the high temperature heat-affected zone (HAZ)/fusion boundary or weld interface, with metallographic examination. With EB welding, the ductile-brittle transition temperature (DBTT) was below 0 C (32 F) only for steel of low ferrite factor giving a fully martensitic weld area. Higher ferrite factor alloys showed predominantly ferritic transformed microstructures and a transition well above room temperature. Grain coarsening was found even with low EB process power, the peak grain size increasing with both heat input and steel ferrite factor. Use of LFW gave a fine weld area structure and DBTTs around 0 C even in high ferrite factor (FF) material.

  18. Identification of forged Bank of England £20 banknotes using IR spectroscopy.

    PubMed

    Sonnex, Emily; Almond, Matthew J; Baum, John V; Bond, John W

    2014-01-24

    Bank of England notes of £20 denomination have been studied using infrared spectroscopy in order to generate a method to identify forged notes. An aim of this work was to develop a non-destructive method so that a small, compact Fourier transform infrared spectrometer (FT-IR) instrument could be used by bank workers, police departments or others such as shop assistants to identify forged notes in a non-lab setting. The ease of use of the instrument is the key to this method, as well as the relatively low cost. The presence of a peak at 1400 cm(-1) arising from νasym (CO3(2-)) from the blank paper section of a forged note proved to be a successful indicator of the note's illegality for the notes that we studied. Moreover, differences between the spectra of forged and genuine £20 notes were observed in the ν(OH) (ca. 3500 cm(-1)), ν(C-H) (ca. 2900 cm(-1)) and ν(C=O) (ca. 1750 cm(-1)) regions of the IR spectrum recorded for the polymer film covering the holographic strip. In cases where these simple tests fail, we have shown how an infrared microscope can be used to further differentiate genuine and forged banknotes by producing infrared maps of selected areas of the note contrasting inks with background paper.

  19. Test report: effect of specimen orientation and location on the tensile properties of GTS forging 1472859

    SciTech Connect

    Melcher, Ryan J

    2008-02-12

    ASTM standardized tensile tests were performed on GTS WR-quality 1472859 forging (21-6- 9 material) to determine the dependence of tensile properties on specimen orientation (longitudinal vs. transverse) with respect to forging ‘grain flow’ and location within the forging. Statistical analyses of the results show that location has a statistically measurable effect on the longitudinal tensile properties (as compared to the error involved in tensile testing). However, this dependence of the properties with location, especially in the circumferential orientation, causes large variability in the results that clouds the statistical determination of any orientation effect. As a result, this forging is determined to be inhomogeneous along the forging length, with a significant range in properties observed (e.g. yield strengths from 85 to 117 ksi) and highest strength/lowest ductility in the spherical region. Additional specimens should be tested to acquire a higher resolution view of this inhomogeneity if the end use of the data is structural integrity analyses using spatially dependent properties; however, sufficient data is provided in this study to extract a statistical lower bound for conservative, homogeneous structural analysis.

  20. Non-isothermal FEM analyses of large-strain back extrusion forging

    SciTech Connect

    Flower, E.C.; Hallquist, J.O.; Shapiro, A.B.

    1986-06-19

    Back extrusion forging is a complex metal forming operation dominated by large-strain, non-isothermal deformation. NIKE2D, a fully vectorized implicit finite-element program developed at Lawrence Livermore National Laboratory, was applied to a two-stage isothermal back extrusion forging process. Modeling of the forging process required special features in the FEM code such as friction and interactive rezoning that allows for remeshing of the distorted mesh while maintaining a complete history of all the state variables. To model conditions of the non-isothermal forging process required implementing TOPAZ2D, our LLNL-developed two-dimensional implicit finite element code for heat conduction analysis, as a subroutine into NIKE2D. The fully coupled version maintains all the original features of both codes and can account for the contribution of heat generation during plastic deformation. NIKE/TOPAZ-2D was applied to the piercing operation of the back extrusion forging process. The thermal deformation history of the die, punch, and workpiece and the effective plastic strains were calculated.

  1. Identification of Forged Bank of England 20 Gbp Banknotes Using IR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Sonnex, Emily

    2014-06-01

    Bank of England notes of 20 GBP denomination have been studied using infrared spectroscopy in order to generate a method to identify forged notes. A principal aim of this work was to develop a method so that a small, compact ATR FTIR instrument could be used by bank workers, police departments or others such as shop assistants to identify forged notes in a non-lab setting. The ease of use of the instrument is the key to this method, as well as the relatively low cost. The presence of a peak at 1400 wn from the blank paper section of a forged note proved to be a successful indicator of the note's illegality for the notes that we studied. Moreover, differences between the spectra of forged and genuine 20 GBP notes were observed in the ν(OH) (ca. 3500 wn), ν(C-H) (ca. 2900 wn) and ν(C=O) (ca. 1750 wn) regions of the IR spectrum recorded for the polymer film covering the holographic strip. In cases where these simple tests fail, we have shown how an infrared microscope can be used to further differentiate genuine and forged banknotes by producing infrared maps of selected areas of the note contrasting inks with background paper. Further to this, with an announcement by the Bank of England to produce polymer banknotes in the future, the work has been extended using Australian polymer banknotes to show that the method would be transferable.

  2. Forging of Naval Brass (ASTM B16) - Finite Element Analysis using Ls Dyna

    NASA Astrophysics Data System (ADS)

    Subha Sankari, T.; Sangavi, S.; Paneerselvam, T.; Venkatraman, R.; Venkatesan, M.

    2016-09-01

    Forging is one of the important manufacturing process in which products like connecting rod, transmission shaft, clutch hubs and gears are produced. Finite element analysis (FEA) in forming techniques is of recent interest for the optimal design and determination of right manufacturing forming process. The data from the numerical results can help in providing the information for selecting the ideal process conditions. Thus aside from experimental values, simulation by the finite element analysis software's such as LS DYNA can be used for the analysis of strain distribution in forging processes. In the present work, Finite element simulation of open die forging of naval brass (ASTM B16) is done at an optimal temperature. An advanced multi physics simulation software package by the Livermore software technology cooperation LSTC - LS DYNA is utilized for the simulation of forging process. For the forging validation, experiment is conducted with a cylindrical billet having height 45 mm and diameter of 40mm. The numerical results are compared with that of experimental results carried out at the same temperature and dimensions for validation. The distribution of strain is analyzed. Energy analysis due to impact load is detailed. The simulation results are found to be in good agreement with the experimental results.

  3. TDNiCr (ni-20Cr-2ThO2) forging studies

    NASA Technical Reports Server (NTRS)

    Filippi, A. M.

    1974-01-01

    Elevated temperature tensile and stress rupture properties were evaluated for forged TDNiCr (Ni-20Cr-2ThO2) and related to thermomechanical history and microstructure. Forging temperature and final annealed condition had pronounced influences on grain size which, in turn, was related to high temperature strength. Tensile strength improved by a factor of 8 as grain size changed from 1 to 150 microns. Stress-rupture strength was improved by a factor of 3 to 5 by a grain size increase from 10 to 1000 microns. Some contributions to the elevated temperature strength of very large grain material may also occur from the development of a strong texture and a preponderance of small twins. Other conditions promoting the improvement of high temperature strength were: an increase of total reduction, forging which continued the metal deformation inherent in the starting material, a low forging speed, and prior deformation by extrusion. The mechanical properties of optimally forged TDNiCr compared favorably to those of high strength sheet developed for space shuttle application.

  4. Ultrasonic attenuation measurements in sinter-forged YBa2Cu3O7-δ

    NASA Astrophysics Data System (ADS)

    Xu, M.-F.; Bein, D.; Wiegert, R. F.; Sarma, Bimal K.; Levy, M.; Zhao, Z.; Adenwalla, S.; Moreau, A.; Robinson, Q.; Johnson, D. L.; Hwu, S. J.; Poeppelmeier, K. R.; Ketterson, J. B.

    1989-01-01

    We report ultrasonic attenuation measurements on sinter-forged YBa2Cu2O7-δ material, which differs from ordinary sintered material in that the crystallites are preferentially oriented to form a uniaxial sample. Three peaks in attenuation, at temperatures of 250, 180, and 70 K, were observed for longitudinal waves propagating perpendicular to the forging axis, which is similar to that reported in ordinary (isotropic) polycrystalline samples. However, for both transverse and longitudinal sound propagated along the forging axis we have a different behavior, with only one peak at 180 K, showing a strong anisotropy. It is suggested that sound waves traveling parallel to and normal to the Cu-O planes may account for the anisotropic effect, and a relaxation mechanism may explain the increase in shear wave attenuation which was seen with decreasing temperature.

  5. Evaluation of Die Chilling Effects during Forging of Nimonic-80A Superalloy

    SciTech Connect

    Shahriari, D.; Sadeghi, M. H.; Amiri, A.; Cheraghzadeh, M.

    2010-06-15

    Nimonic-80A is a kind of nickel-based superalloys which is used in high temperature components of land gas turbines. In this paper, the influence of four design factors: die temperature, strain rate, friction coefficient and geometry size of ring sample over the variation of internal diameters (VID) and forging load (FL) was studied. It was done by means of design methodology based on DOE-designated full factorial and FE simulations. FEM and experimental results showed that the variation of internal diameters and forging load had inverse proportion to the die temperature. Regression models were developed by using the response surface methodology (RSM) for VID and FL. Rate of the dynamic recrystallization varied depending on different amounts of die temperature. The results can be used in the semi-isothermal forging of complex part of the Nimonic-80A.

  6. Queen City Forging Revitalized by Oak Ridge National Lab Partnership – U.S. Department of Energy

    SciTech Connect

    Mayer, Rob; Blue, Craig

    2016-05-11

    Oak Ridge National Laboratory, with support from the U.S. Department of Energy, teamed up with Queen City Forging, the U.S. Forging Industry, and Infrared Heating Technologies to develop a rapid-infrared heating furnace to produce aluminum turbochargers.

  7. Queen City Forging Revitalized by Oak Ridge National Lab Partnership – U.S. Department of Energy

    ScienceCinema

    Mayer, Rob; Blue, Craig

    2016-07-12

    Oak Ridge National Laboratory, with support from the U.S. Department of Energy, teamed up with Queen City Forging, the U.S. Forging Industry, and Infrared Heating Technologies to develop a rapid-infrared heating furnace to produce aluminum turbochargers.

  8. Surface and Bulk Carbide Transformations in High-Speed Steel

    NASA Astrophysics Data System (ADS)

    Godec, M.; Večko Pirtovšek, T.; Šetina Batič, B.; McGuiness, P.; Burja, J.; Podgornik, B.

    2015-11-01

    We have studied the transformation of carbides in AISI M42 high-speed steels in the temperature window used for forging. The annealing was found to result in the partial transformation of the large, metastable M2C carbides into small, more stable grains of M6C, with an associated change in the crystal orientation. In addition, MC carbides form during the transformation of M2C to M6C. From the high-speed-steel production point of view, it is beneficial to have large, metastable carbides in the cast structure, which later during annealing, before the forging, transform into a structure of polycrystalline carbides. Such carbides can be easily decomposed into several small carbides, which are then randomly distributed in the microstructure. The results also show an interesting difference in the carbide-transformation reactions on the surface versus the bulk of the alloy, which has implications for in-situ studies of bulk phenomena that are based on surface observations.

  9. Surface and Bulk Carbide Transformations in High-Speed Steel.

    PubMed

    Godec, M; Večko Pirtovšek, T; Šetina Batič, B; McGuiness, P; Burja, J; Podgornik, B

    2015-11-05

    We have studied the transformation of carbides in AISI M42 high-speed steels in the temperature window used for forging. The annealing was found to result in the partial transformation of the large, metastable M2C carbides into small, more stable grains of M6C, with an associated change in the crystal orientation. In addition, MC carbides form during the transformation of M2C to M6C. From the high-speed-steel production point of view, it is beneficial to have large, metastable carbides in the cast structure, which later during annealing, before the forging, transform into a structure of polycrystalline carbides. Such carbides can be easily decomposed into several small carbides, which are then randomly distributed in the microstructure. The results also show an interesting difference in the carbide-transformation reactions on the surface versus the bulk of the alloy, which has implications for in-situ studies of bulk phenomena that are based on surface observations.

  10. Surface and Bulk Carbide Transformations in High-Speed Steel

    PubMed Central

    Godec, M.; Večko Pirtovšek, T.; Šetina Batič, B.; McGuiness, P.; Burja, J.; Podgornik, B.

    2015-01-01

    We have studied the transformation of carbides in AISI M42 high-speed steels in the temperature window used for forging. The annealing was found to result in the partial transformation of the large, metastable M2C carbides into small, more stable grains of M6C, with an associated change in the crystal orientation. In addition, MC carbides form during the transformation of M2C to M6C. From the high-speed-steel production point of view, it is beneficial to have large, metastable carbides in the cast structure, which later during annealing, before the forging, transform into a structure of polycrystalline carbides. Such carbides can be easily decomposed into several small carbides, which are then randomly distributed in the microstructure. The results also show an interesting difference in the carbide-transformation reactions on the surface versus the bulk of the alloy, which has implications for in-situ studies of bulk phenomena that are based on surface observations. PMID:26537780

  11. Multi-objective optimization of gear forging process based on adaptive surrogate meta-models

    NASA Astrophysics Data System (ADS)

    Meng, Fanjuan; Labergere, Carl; Lafon, Pascal; Daniel, Laurent

    2013-05-01

    In forging industry, net shape or near net shape forging of gears has been the subject of considerable research effort in the last few decades. So in this paper, a multi-objective optimization methodology of net shape gear forging process design has been discussed. The study is mainly done in four parts: building parametric CAD geometry model, simulating the forging process, fitting surrogate meta-models and optimizing the process by using an advanced algorithm. In order to maximally appropriate meta-models of the real response, an adaptive meta-model based design strategy has been applied. This is a continuous process: first, bui Id a preliminary version of the meta-models after the initial simulated calculations; second, improve the accuracy and update the meta-models by adding some new representative samplings. By using this iterative strategy, the number of the initial sample points for real numerical simulations is greatly decreased and the time for the forged gear design is significantly shortened. Finally, an optimal design for an industrial application of a 27-teeth gear forging process was introduced, which includes three optimization variables and two objective functions. A 3D FE nu merical simulation model is used to realize the process and an advanced thermo-elasto-visco-plastic constitutive equation is considered to represent the material behavior. The meta-model applied for this example is kriging and the optimization algorithm is NSGA-II. At last, a relatively better Pareto optimal front (POF) is gotten with gradually improving the obtained surrogate meta-models.

  12. Creep of A508/533 Pressure Vessel Steel

    SciTech Connect

    Richard Wright

    2014-08-01

    ABSTRACT Evaluation of potential Reactor Pressure Vessel (RPV) steels has been carried out as part of the pre-conceptual Very High Temperature Reactor (VHTR) design studies. These design studies have generally focused on American Society of Mechanical Engineers (ASME) Code status of the steels, temperature limits, and allowable stresses. Initially, three candidate materials were identified by this process: conventional light water reactor (LWR) RPV steels A508 and A533, 2¼Cr-1Mo in the annealed condition, and Grade 91 steel. The low strength of 2¼Cr-1Mo at elevated temperature has eliminated this steel from serious consideration as the VHTR RPV candidate material. Discussions with the very few vendors that can potentially produce large forgings for nuclear pressure vessels indicate a strong preference for conventional LWR steels. This preference is based in part on extensive experience with forging these steels for nuclear components. It is also based on the inability to cast large ingots of the Grade 91 steel due to segregation during ingot solidification, thus restricting the possible mass of forging components and increasing the amount of welding required for completion of the RPV. Grade 91 steel is also prone to weld cracking and must be post-weld heat treated to ensure adequate high-temperature strength. There are also questions about the ability to produce, and very importantly, verify the through thickness properties of thick sections of Grade 91 material. The availability of large components, ease of fabrication, and nuclear service experience with the A508 and A533 steels strongly favor their use in the RPV for the VHTR. Lowering the gas outlet temperature for the VHTR to 750°C from 950 to 1000°C, proposed in early concept studies, further strengthens the justification for this material selection. This steel is allowed in the ASME Boiler and Pressure Vessel Code for nuclear service up to 371°C (700°F); certain excursions above that temperature are

  13. Automobile bodies: Can aluminum be an economical alternative to steel?

    NASA Astrophysics Data System (ADS)

    Roth, Richard; Clark, Joel; Kelkar, Ashish

    2001-08-01

    Although the use of aluminum in cars has been increasing for the past two decades, progress has been limited in developing aluminum auto bodies. In fact, most aluminum substitution has come in the form of castings and forgings in the transmission, wheels, etc. Car manufacturers have developed all-aluminum cars with two competing designs: conventional unibody and the spaceframe. However, aluminum is far from being a material of choice for auto bodies. The substitution of aluminum for steel is partly influenced by regulatory pressures to meet fuel efficiency standards by reducing vehicle weight, and to meet recycling standards. The key obstacles are the high cost of primary aluminum as compared to steel and added fabrication costs of aluminum panels. Both the aluminum and the automotive industries have attempted to make aluminum a cost-effective alternative to steel. This paper analyzes the cost of fabrication and assembly of four different aluminum car body designs, making comparisons with conventional steel designs at current aluminum prices and using current aluminum fabrication technology. It then attempts to determine if aluminum can be an alternative to steel at lower primary aluminum prices, and improved fabrication processes.

  14. Phased Array Inspection of Titanium Disk Forgings Targeting no. 1/2 FBH Sensitivity

    SciTech Connect

    Roberts, R.A.; Friedl, J.

    2005-04-09

    The phased array implementation of a focused zoned ultrasonic inspection to achieve a >3dB signal-to-noise for no. 1/2 flat bottom holes (FBH) in titanium is reported. Previous work established the ultrasound focusing required to achieve the targeted sensitivity. This work reports on the design of a phased array transducer capable of maintaining the needed focus to the depths required in the forging inspection. The performance of the phased array inspection is verified by examining signal-to-noise of no. 1/2 FBHs contained in coupons cut from actual forgings.

  15. Computer modeling of wear in extrusion and forging of automotive exhaust valves

    NASA Astrophysics Data System (ADS)

    Tulsyan, R.; Shivpuri, R.

    1995-04-01

    In an automotive engine valve forging process, the billet is cold sheared, induction heated, and fed to a mechanical press for a two-stage forging operation with the first stage being extrusion. The main limiting factor in this operation is the wear of the dies during the first stage, extrusion. In this study. abrasive wear was identified as the primary mode of wear, and computer simulation was used to investigate the effect of process variables, such as press speed, initial billet temperature, and die preheat temperature upon abrasive wear. The result generated by this study should be applicable to other part geometry and not limited just to exhaust valves.

  16. The Development of a Ceramic Mold for Hot-Forging of Micro-Magnets

    SciTech Connect

    Christenson, Todd; Garino, Terry

    1999-06-25

    A new mold material has been developed for use in making rare-earth permanent magnet components with precise dimensions in the 10 to 1000 µm range by hot-forging. These molds are made from molds poly(methyl)methacrylate (PMMA) made by deep x-ray lithography (DXRL). An alumina bonded with colloidal silica has been developed for use in these molds. This material can be heated to 950°C without changing dimensions where it develops the strength needed to withstand the hot-fmging conditions (750°C, 100 MPa). In addition, it disintegrates in HF so that parts can be easily removed after forging.

  17. Texture and yield stress of pre-strained 304L stainless steel

    SciTech Connect

    Bennett, K.; Dreele, R.B. von; Gray, G.T. III; Chen, S.R.

    1998-08-01

    The evolution of texture and yield stress in 304L stainless steel is investigated as a function of deformation to large plastic strains. Steel bars quasi-statically upset forged at a strain rate of 0.001 s{sup {minus}1} to true strains of 0, 0.5, 1.0 and 1.8 were found to acquire their texture ({approximately}3.0 m.r.d.) in the first 0.5 strain with (110) poles highly aligned parallel to the compression direction independent of whether the pre-forged starting material was in a cold worked or annealed (1,050 C for 1 hour) condition. The same bars, when strained at room temperature show an incremental yield with pre-strain regardless of strain rate (10{sup {minus}1} or 10{sup {minus}3}s{sup {minus}1}) or thermal history, though annealed bars yield at slightly lower stresses. At 77 K and strain rate 10{sup {minus}3}s{sup {minus}1}, the annealed 304L exhibits more pronounced strain-hardening behavior than the 304L forged in a cold-worked condition.

  18. Texture and Yield Stress of Pre-Strained 304L Stainless Steel

    SciTech Connect

    Bennett, K.; Von Dreele, B.; Gray, G.T. III; Chen, S.R.

    1997-06-23

    The evolution of texture and yield stress in 304L stainless steel is investigated as a function of deformation to large plastic strains. Steel bars quasi-statically upset forged at a strain rate of 0.001s{sup -1} to true strains of 0, 0.5, 1.0 and 1.8 were found to acquire their texture ({approximately}3.0 m.r.d.) in the first 0.5 strain with (110) poles highly aligned parallel to the compression direction independent of whether the pre-forged starting material was in a cold worked or annealed (1050 C for 1 hour) condition. The same bars, when strained at room temperature show an incremental yield with pre-strain regardless of strain rate (10{sup -1} or 10{sup -3}s{sup -1}) or thermal history, though annealed bars yield at slightly lower stresses. At 77 K and strain rate 10{sup -3}s{sup -1}, the annealed 304L exhibits more pronounced strain-hardening behavior than the 304L forged in a cold-worked condition.

  19. Steel Rattler

    NASA Astrophysics Data System (ADS)

    Trudo, Robert A.; Stotts, Larry G.

    1997-07-01

    Steel Rattler is a multi-phased project to determine the feasibility of using commercial off-the-shelf components in an advanced acoustic/seismic unattended ground sensor. This project is supported by the Defense Intelligence Agency through Sandia National Laboratories as the lead development agency. Steel Rattler uses advanced acoustic and seismic detection algorithms to categorize and identify various heavy vehicles down to the number of cylinders in the engine. This detection is accomplished with the capabilities of new, high-speed digital signal processors which analyze both acoustic and seismic data. The resulting analysis is compared against an onboard library of known vehicles and a statistical match is determined. An integrated thermal imager is also employed to capture digital thermal images for subsequent compression and transmission. Information acquired by Steel Rattler in the field is transmitted in small packets by a built-in low-power satellite communication system. The ground station receivers distribute the coded information to multiple analysis sites where the information is reassembled into coherent messages and images.

  20. Fracture Mechanical Measurements with Commercial Stainless Steels at 4 K and with Cp-Titanium at 173 K

    NASA Astrophysics Data System (ADS)

    Nyilas, A.; Mitterbacher, H.

    2010-04-01

    Using the JETT (J-Evaluation on Tensile Test) technique, measurements have been performed with commercial stainless steels in forged and cast condition for the reason of an assessment for low temperature service down to 4 K. These steels frequently used for industrial applications are designated by German Werkstoff (WNr) 1.4308 and 1.4408 cast stainless steels and a forged material with the number 1.4307. The fracture toughness tests at 4 K with forged material 1.4307 comprised apart from the base metal also the weld zone and additionally the 5% and 8% pre-strained conditions of the base metal. Fracture toughness reduced slightly for cold worked condition gradually as well as for the weld joint. The Reliability of the JETT measurements has been also checked using the ASTM E 1820—99a standard. In addition, to these measurements, commercial pure ASTM grade 2 titanium (WNr 3.7035) has been also examined using the same JETT method for the reason of industrial application and the requirement of minimum fracture toughness of 100 MPa√m was fulfilled at 173 K. Furthermore, test results performed at 7 K of pure titanium plate material (ASTM grade 1) with respect to fracture mechanical JETT method are presented.

  1. Effect of Thermomechanical Processing on the Microstructure and Mechanical Properties of Nb-Ti-V Microalloyed Steel

    NASA Astrophysics Data System (ADS)

    Opiela, M.

    2014-09-01

    The paper presents the results of thermomechanical treatment via forging on the microstructure and mechanical properties of newly obtained microalloyed steel containing 0.28% C, 1.41% Mn, 0.027% Nb, 0.028% Ti, and 0.019% V. The investigated steel is assigned to the production of forged elements for the automotive industry. Conditions of forging using the thermomechanical processing method were developed based on plastometric tests. Continuous and double-hit compression tests were conducted using the Gleeble 3800 thermomechanical simulator. The samples were investigated in a temperature range from 900 to 1100 °C and a strain rate of 1 and 10 s-1. To determine the recrystallization kinetics of plastically deformed austenite, discontinuous compression tests of samples using the applied deformation were conducted in a temperature range from 900 to 1100 °C with isothermal holding of the specimens between successive deformations for 2-100 s. Observations of the microstructures of thin foils were conducted using a TITAN80-300 FEI transmission electron microscope. The applied thermomechanical treatment allows to obtain a fine-grained microstructure of the austenite during hot-working and production of forged parts. These acquire advantageous mechanical properties and guaranteed crack resistance after controlled cooling from the end plastic deformation temperature and successive tempering. Forgings produced using the thermomechanical treatment method, consecutively subjected to tempering in a temperature range from 550 to 650 °C, reveal values of YS0.2 which equal from 994 to 892 MPa, UTS from 1084 to 958 MPa, KV from 69 to 109 J, KV-40 from 55 to 83 J, and a hardness ranging from 360 to 300 HBW.

  2. Characterization of Cracking and Crack Growth Properties of the C5A Aircraft Tie-Box Forging

    NASA Technical Reports Server (NTRS)

    Piascik, Robert S.; Smith, Stephen W.; Newman, John A.; Willard, Scott A.

    2003-01-01

    Detailed destructive examinations were conducted to characterize the integrity and material properties of two aluminum alloy (7075-T6) horizontal stabilizer tie box forgings removed.from US. Air Force C5A and C5B transport aircraft. The C5B tie box forging was,found to contain no evidence of cracking. Thirteen cracks were found in the CSA,forging. All but one of the cracks observed in the C5A component were located along the top cap region (one crack was located in the bottom cap region). The cracks in the C5A component initiated at fastener holes and propagated along a highly tunneled intergranular crack path. The tunneled crack growth configuration is a likelv result of surface compressive stress produced during peening of the .forging suijace. The tie box forging ,fatigue crack growth, fracture and stress corrosion cracking (SCC) properties were characterized. Reported herein are the results of laboratory air ,fatigue crack growth tests and 95% relative humidity SCC tests conducted using specimens machined from the C5A ,forging. SCC test results revealed that the C5A ,forging material was susceptible to intergranular environmental assisted cracking: the C5A forging material exhibited a SCC crack-tip stress-intensity factor threshold of less than 6 MPadn. Fracture toughness tests revealed that the C5A forging material exhibited a fracture toughness that was 25% less than the C5B forging. The C5A forging exhibited rapid laboratory air fatigue crack growth rates having a threshold crack-tip stress-intensity factor range of less than 0.8 MPa sup m. Detailed fractographic examinations revealed that the ,fatigue crack intergranular growth crack path was similar to the cracking observed in the C5A tie box forging. Because both fatigue crack propagation and SCC exhibit similar intergranular crack path behavior, the damage mechanism resulting in multi-site cracking of tie box forgings cannot be determined unless local cyclic stresses can be quantified.

  3. Electron backscattering diffraction analysis of an ancient wootz steel blade from central India

    SciTech Connect

    Barnett, M.R. Sullivan, A.; Balasubramaniam, R.

    2009-04-15

    The electron backscattering diffraction technique was used to analyse the nature of carbides present in an ancient wootz steel blade. Bulky carbides, pro-eutectoid carbide along the prior austenite grain boundaries and fine spheroidized carbides were detected. Electron backscattering diffraction was employed to understand the texture of these carbides. The orientations of the cementite frequently occur in clusters, which points to a common origin of the members of the cluster. For the bands of coarse cementite, the origin is probably large coarse particles formed during the original cooling of the wootz cake. Pearlite formed earlier in the forging process has led to groups of similarly oriented fine cementite particles. The crystallographic texture of the cementite is sharp whereas that of the ferrite is weak. The sharp cementite textures point to the longevity of the coarse cementite throughout the repeated forging steps and to the influence of existing textured cementite on the nucleation of new cementite during cooling.

  4. Social Work and Engineering Collaboration: Forging Innovative Global Community Development Education

    ERIC Educational Resources Information Center

    Gilbert, Dorie J.

    2014-01-01

    Interdisciplinary programs in schools of social work are growing in scope and number. This article reports on collaboration between a school of social work and a school of engineering, which is forging a new area of interdisciplinary education. The program engages social work students working alongside engineering students in a team approach to…

  5. Jernberg Industries, Inc: Forging Facility Uses Plant-Wide Assessment to Aid Conversion to Lean Manufacturing

    SciTech Connect

    2004-10-01

    Jernberg Industries conducted a plant-wide assessment while converting to lean manufacturing at a forging plant. Seven projects were identified that could yield annual savings of $791,000, 64,000 MMBtu in fuel and 6 million kWh.

  6. Forging the Link between Multicultural Competence and Ethical Counseling Practice: A Historical Perspective

    ERIC Educational Resources Information Center

    Watson, Zarus E. P.; Herlihy, Barbara Richter; Pierce, Latoya Anderson

    2006-01-01

    Recognition of multicultural competence as an essential component of ethical counseling practice is a growing trend. This article presents a historical perspective of salient events that have contributed to forging a link between multicultural competence and ethical behavior. Multicultural counseling is traced from its beginnings to its emergence…

  7. Simulation and Analysis of Finite Volume of Hot Forging Process of Nut

    NASA Astrophysics Data System (ADS)

    Maarefdoust, M.; Hosseyni, M.

    2011-08-01

    In this study the forging operations of nut has been modeled. This nut is a part which is manufactured with the help of hot forging. The aim of this research is utilizing computers in designing forming process, and in particular, modeling of hot forging in the nut and to inquire the stresses appeared on the mold. For this purpose Pro/Engineer software for modeling, and SuperForge2004 software for analyzing the process have been used. This part is formed in two stages. To enrich the results coming out of the use of the software, the findings achieved from the modeling of the first stage are compared with its analytic dissolving. In the second stage modeling of metal forming the effect of rake on increasing the stresses imposed to the die mold is studied. The aim of this research is to correct the molds and the volume of the raw materials so that we can produce high qualified parts in spite of raw material low volume and low pressure on the molds.

  8. Numerical modeling of axi-symmetrical cold forging process by ``Pseudo Inverse Approach''

    NASA Astrophysics Data System (ADS)

    Halouani, A.; Li, Y. M.; Abbes, B.; Guo, Y. Q.

    2011-05-01

    The incremental approach is widely used for the forging process modeling, it gives good strain and stress estimation, but it is time consuming. A fast Inverse Approach (IA) has been developed for the axi-symmetric cold forging modeling [1-2]. This approach exploits maximum the knowledge of the final part's shape and the assumptions of proportional loading and simplified tool actions make the IA simulation very fast. The IA is proved very useful for the tool design and optimization because of its rapidity and good strain estimation. However, the assumptions mentioned above cannot provide good stress estimation because of neglecting the loading history. A new approach called "Pseudo Inverse Approach" (PIA) was proposed by Batoz, Guo et al.. [3] for the sheet forming modeling, which keeps the IA's advantages but gives good stress estimation by taking into consideration the loading history. Our aim is to adapt the PIA for the cold forging modeling in this paper. The main developments in PIA are resumed as follows: A few intermediate configurations are generated for the given tools' positions to consider the deformation history; the strain increment is calculated by the inverse method between the previous and actual configurations. An incremental algorithm of the plastic integration is used in PIA instead of the total constitutive law used in the IA. An example is used to show the effectiveness and limitations of the PIA for the cold forging process modeling.

  9. The Ties That Bind: How Social Capital Is Forged and Forfeited in Teacher Communities

    ERIC Educational Resources Information Center

    Bridwell-Mitchell, E. N.; Cooc, North

    2016-01-01

    The effects of social capital on school improvement make it important to understand how teachers forge, maintain, or forfeit collegial relationships. Two common explanations focused on formal organizational features and individual characteristics do not address how social capital accrues from informal dynamics of teachers' interactions in…

  10. T & I--Metalworking, Forging. Kit No. 55. Instructor's Manual [and] Student Learning Activity Guide.

    ERIC Educational Resources Information Center

    Lake, Robert J.

    An instructor's manual and student activity guide on forging are provided in this set of prevocational education materials which focuses on the vocational area of trade and industry (metalworking). (This set of materials is one of ninety-two prevocational education sets arranged around a cluster of seven vocational offerings: agriculture, home…

  11. 76 FR 30200 - Forging Machines; Extension of the Office of Management and Budget's (OMB) Approval of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-24

    ... operated valves and switches. DATES: Comments must be submitted (postmarked, sent, or received) by July 25... clearly and properly identify manually operated valves and switches. Inspection of Forging Machines... Controlled Valves and Switches (paragraphs (c), (h)(3), (i)(1) and (i)(2)). These paragraphs require...

  12. Rolling contact fatigue of low hardness steel for slewing ring application

    NASA Astrophysics Data System (ADS)

    Knuth, Jason A.

    This thesis discusses the rolling contact fatigue of steel utilized in anti-friction bearings, also referred to as slewing bearings. These slewing bearings are utilized in cranes, excavators, wind turbines and other similar applications. Five materials composed of two different material types were tested. The two material types were high carbon steel and medium carbon alloy steel. The test specimens were processed from forged rolled rings. Two machines were evaluated a ZF-RCF and 3-Ball test machine. The evaluation was to determine which machine can best simulate the application in which the slewing bearing is utilized. Initially, each specimen will be pretested to determine the appropriate testing direction from within the forged rolled rings. Pretesting is needed in order to establish consistent failure modes between samples. The primary goal of the test is to understand the life differences and failure modes between high carbon steel and medium carbon alloy steel. The high carbon steel ring was cut into two sections, one of which was stress relieved and the other was quenched and tempered. The medium carbon alloy steel was cut into three sections, all of which were quenched and tempered to different hardness levels. The test program was dynamically adjusted based upon the previous sample's life and load. An S-N curve was then established from the 5 materials tested at two target loads. The samples were run until the first sign of a crack was detected by an eddy current. At the completion of the rolling contact test, select sample's microstructure was evaluated for crack initiation location. The selected samples were divided into four groups which represent different maximum shear stress levels. These samples displayed indications of material deformation in which the high carbon steel experienced an increased amount of cold work when compared to medium carbon alloy steel. The life of the high carbon steel was nearly equivalent to the expected life of the medium

  13. Supertough Stainless Bearing Steel

    NASA Technical Reports Server (NTRS)

    Olson, Gregory B.

    1995-01-01

    Composition and processing of supertough stainless bearing steel designed with help of computer-aided thermodynamic modeling. Fracture toughness and hardness of steel exceeds those of other bearing steels like 440C stainless bearing steel. Developed for service in fuel and oxidizer turbopumps on Space Shuttle main engine. Because of strength and toughness, also proves useful in other applications like gears and surgical knives.

  14. Aspects of testing and selecting stainless steels for sea water applications

    SciTech Connect

    Steinsmo, U.; Rogne, T.; Drugli, J.M.

    1994-12-31

    In the period from 1980, highly alloyed stainless steels (i.e. Pitting Resistance Equivalent (PRE{sub N}) > 40) have been widely selected for chlorinated sea water systems in the Norwegian offshore industry. Recently failures have been reported -- severe crevice corrosion on flanges in a cooling water system and crevice corrosion at the threaded cast and forged joints in a fire water system. The failures highlights the question of corrosion testing and safe use limits for high alloyed stainless steels in sea water systems. This paper discusses three aspects regarding testing and selection of highly alloyed stainless steels for sea water application -- the relevancy of the electrochemical test methods used, the quality control system and the importance of repassivation.

  15. Cryo-quenched Fe-Ni-Cr alloy single crystals: A new decorative steel

    SciTech Connect

    Boatner, Lynn A.; Kolopus, James A.; Lavrik, Nicolay V.; Phani, P. Sudharshan

    2016-08-31

    In this paper, a decorative steel is described that is formed by a process that is unlike that of the fabrication methods utilized in making the original Damascus steels over 2000 years ago. The decorative aspect of the steel arises from a three-dimensional surface pattern that results from cryogenically quenching polished austenitic alloy single crystals into the martensitic phase that is present below 190 K. No forging operations are involved – the mechanism is entirely based on the metallurgical phase properties of the ternary alloy. The symmetry of the decorative pattern is determined and controlled by the crystallographic orientation and symmetry of the 70%Fe,15%Ni,15%Cr alloy single crystals. Finally, in addition to using “cuts” made along principal crystallographic surface directions, an effectively infinite number of other random-orientation “cuts” can be utilized to produce decorative patterns where each pattern is unique after the austenitic-to-martensitic phase transformation.

  16. 76 FR 52313 - Heavy Forged Hand Tools (i.e., Axes & Adzes, Bars & Wedges, Hammers & Sledges, and Picks...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-22

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE International Trade Administration Heavy Forged Hand Tools (i.e., Axes & Adzes, Bars & Wedges, Hammers & Sledges... AGENCY: Import Administration, International Trade Administration, Department of Commerce. SUMMARY: As...

  17. Effects of Cryogenic Forging and Anodization on the Mechanical Properties of AA 7075-T73 Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Shih, Teng-Shih; Liao, Tien-Wei; Hsu, Wen-Nong

    2016-03-01

    In this study, high-strength AA7075 alloy samples were cryogenically forged after annealing and then subjected to solution and aging treatments. The cryogenically forged 7075-T73 alloy samples displayed equiaxed fine grains associated with abundant fine precipitates in their matrix. Compared with conventional 7075-T73 alloy samples, the cryogenically forged samples exhibited an 8-12% reduction in tensile strength and an increased fatigue strength and higher corrosion resistance. The fatigue strength measured at 107 cycles was 225 MPa in the bare samples; the strength was increased to 250 MPa in the cryogenically forged samples. The effect of anodization on the corrosion resistance of the bare samples was improved from (E corr) -0.80 to -0.61 V.

  18. Composition Optimization and Experimental Characterization of a Novel Steel Based on CALPHAD

    NASA Astrophysics Data System (ADS)

    Guo, Jing; Liao, Bo; Liu, Ligang; Gao, Yukui; Ren, Xuejun; Yang, Qingxiang

    2015-05-01

    A new steel with high Cr and low W, Mo contents for forged cold work roll was designed based on the composition system of traditional high-speed steel roll. The Fe-C isopleths of the steel and the mass fraction of equilibrium phases versus temperature were calculated by Thermo-Calc, and the effects of different alloying elements (W, Mo, Cr, V) on austenite, ferrite, and carbides (MC, M6C, M7C3, M23C6) were also established to optimize the composition and structure. The designed and optimized specimens were both quenched at 1100 °C and then tempered twice at 560 °C. The hardness and wear resistance of the samples were measured. The microstructures of quenched tempered and forged specimens were studied. The results show that ferrite crystallization, peritectic reaction, austenite crystallization, and the precipitation of MC, M6C, M7C3, M23C6 occur during equilibrium solidification process. The alloying elements W, Mo mainly affect the precipitation of M6C, while Cr affects the precipitated region and mass fraction of M7C3. Higher V content widens the high-temperature region of the peritectic reaction and results in a large amount of MC precipitation. The optimized composition (wt.%) for cold work roll steel is 1.30-1.35%C, 9-10%Cr, 2.5-3.0%Mo, 0.5-1.0%W, 2.5-3.0%V, 0.5-0.6%Mn, 0.5-0.6%Si. The hardness of the steel after quenching and tempering is 60.8 HRC and weight loss after 120 min is 6.2 mg. This meets the requirement of hardness and wear resistance requirements for cold work roll. The ledeburite in the optimized steel disappears after forging and the carbide network break into a large amount of tiny blocky ones dispersed in the matrix without cracks, which shows a good forgeability of the steel and rationality of the optimized composition.

  19. Effects of Process Parameters on Deformation and Temperature Uniformity of Forged Ti-6Al-4V Turbine Blade

    NASA Astrophysics Data System (ADS)

    Luo, Shiyuan; Zhu, Dahu; Hua, Lin; Qian, Dongsheng; Yan, Sijie; Yu, Fengping

    2016-11-01

    This work is motivated by the frequent occurrence of macro- and microdefects within forged Ti-6Al-4V turbine blades due to the severely nonuniform strain and temperature distributions. To overcome the problem of nonuniformity during the blade forging operation, firstly, a 2D coupled thermo-mechanical finite element approach using the strain-compensated Arrhenius-type constitutive model is employed to simulate the real movements and processing conditions, and its reliability is verified experimentally. Secondly, two evaluation indexes, standard deviation of equivalent plastic strain and standard deviation of temperature, are proposed to evaluate the uniformity characteristics within the forged blade, and the effects of four process parameters including the forging velocity, friction factor, initial workpiece temperature and dwell time on the uniformity of strain and temperature distributions are carefully studied. Finally, the numerically optimized combination of process parameters is validated by the application in a practical process. The parametric study reveals that a reasonable combination of process parameters considering the flow resistance, flow localization and the effects of deformation and friction heating is crucial for the titanium alloy blade forging with uniformity. This work can provide a significant guidance for the design and optimization of blade forging processes.

  20. Porosity, Microstructure, and Mechanical Properties of Ti-6Al-4V Alloy Parts Fabricated by Powder Compact Forging

    NASA Astrophysics Data System (ADS)

    Jia, Mingtu; Zhang, Deliang; Liang, Jiamiao; Gabbitas, Brian

    2017-04-01

    Ti-6Al-4V alloy powders produced using a hydrogenation-dehydrogenation process and a gas atomization process, respectively, were rapidly consolidated into near-net-shaped parts by powder compact forging. The porosity, microstructure, and tensile mechanical properties of specimens cut from regions at different distances from the side surfaces of the forged parts were examined. The regions near the side surfaces contained a fraction of pores due to the circumferential tensile strain arising during the powder compact forging process, and the porosity level decreased rapidly to zero with increasing the distance from the side surface. The forged parts had a fully lamellar structure with the α + β colony sizes and α lamella thickness changing little with the distance from the side surface. The specimens cut from the regions near the side surfaces had a lower yield strength and tensile strength. The correlation of porosity with the yield strength of the specimens suggested that the reduction of load bearing areas due to the porosity and unbonded or weakly bonded interparticle boundaries was not the only reason for the lower strength, and the stress concentration at the pores and associated with their geometry also played an important role in this. It is likely that the effect of stress concentration on yield strength reduction of the forged part increases with oxygen content. The Hall-Petch relationship of the yield strength and the average α lamella thickness suggested that the strength of the fully dense and fully consolidated forged parts was increased by oxygen solution strengthening.

  1. Porosity, Microstructure, and Mechanical Properties of Ti-6Al-4V Alloy Parts Fabricated by Powder Compact Forging

    NASA Astrophysics Data System (ADS)

    Jia, Mingtu; Zhang, Deliang; Liang, Jiamiao; Gabbitas, Brian

    2017-01-01

    Ti-6Al-4V alloy powders produced using a hydrogenation-dehydrogenation process and a gas atomization process, respectively, were rapidly consolidated into near-net-shaped parts by powder compact forging. The porosity, microstructure, and tensile mechanical properties of specimens cut from regions at different distances from the side surfaces of the forged parts were examined. The regions near the side surfaces contained a fraction of pores due to the circumferential tensile strain arising during the powder compact forging process, and the porosity level decreased rapidly to zero with increasing the distance from the side surface. The forged parts had a fully lamellar structure with the α + β colony sizes and α lamella thickness changing little with the distance from the side surface. The specimens cut from the regions near the side surfaces had a lower yield strength and tensile strength. The correlation of porosity with the yield strength of the specimens suggested that the reduction of load bearing areas due to the porosity and unbonded or weakly bonded interparticle boundaries was not the only reason for the lower strength, and the stress concentration at the pores and associated with their geometry also played an important role in this. It is likely that the effect of stress concentration on yield strength reduction of the forged part increases with oxygen content. The Hall-Petch relationship of the yield strength and the average α lamella thickness suggested that the strength of the fully dense and fully consolidated forged parts was increased by oxygen solution strengthening.

  2. Development of expert systems for the design of a hot-forging process based on material workability

    NASA Astrophysics Data System (ADS)

    Ravi, R.; Prasad, Y. V. R. K.; Sarma, V. V. S.

    2003-12-01

    Most of the time (and cost) involved in planning hot forging process is related to activities strongly dependent on human expertise, intuition, and creativity, and also to iterative procedure involving extensive experimental work. In this paper, the development of an expert system for forging process design, which emphasizes materials’ workability, is discussed. Details of the forging process design expert system, its basic modules, design and implementation details, and deliverables are explained. The system uses the vast database available on the hot workability of more than 200 technologically important materials and the knowledge acquired from a materials’ expert. The C Language Integrated Production System (CLIPS) has been adopted to develop this expert system. The expert system can address three types of functions, namely, forging process design, materials information system, and forging defect analysis. The expert system will aid and prompt a novice engineer in designing a forging process by providing accurate information of the process parameters, lubricants, type of machine, die material, and type of process (isothermal versus non-isothermal) for a given material with a known specification or code and prior history.

  3. Application of multi-grid method on the simulation of incremental forging processes

    NASA Astrophysics Data System (ADS)

    Ramadan, Mohamad; Khaled, Mahmoud; Fourment, Lionel

    2016-10-01

    Numerical simulation becomes essential in manufacturing large part by incremental forging processes. It is a splendid tool allowing to show physical phenomena however behind the scenes, an expensive bill should be paid, that is the computational time. That is why many techniques are developed to decrease the computational time of numerical simulation. Multi-Grid method is a numerical procedure that permits to reduce computational time of numerical calculation by performing the resolution of the system of equations on several mesh of decreasing size which allows to smooth faster the low frequency of the solution as well as its high frequency. In this paper a Multi-Grid method is applied to cogging process in the software Forge 3. The study is carried out using increasing number of degrees of freedom. The results shows that calculation time is divide by two for a mesh of 39,000 nodes. The method is promising especially if coupled with Multi-Mesh method.

  4. Fatigue life on a full scale test rig: Forged versus cast wind turbine rotor shafts

    NASA Astrophysics Data System (ADS)

    Herrmann, J.; Rauert, T.; Dalhoff, P.; Sander, M.

    2016-09-01

    To reduce uncertainties associated with the fatigue life of the highly safety relevant rotor shaft and also to review today's design practice, the fatigue behaviour will be tested on a full scale test rig. Until now tests on full scale wind turbine parts are not common. Therefore, a general lack of experience on how to perform accelerated life time tests for those components exists. To clarify how to transfer real conditions to the test environment, the arrangements and deviations for the upcoming experimental test are discussed in detail. In order to complete investigations of weight saving potentials, next to getting a better comprehension of the fatigue behaviour by executing a full scale test, a further outcome are suggestions for the usage of cast and forged materials regarding the fatigue and the remaining life of the rotor shaft. It is shown, that it is worthwhile to think about a material exchange for the forged rotor shaft.

  5. FEM analysis of spur gears forging from nano-structured materials

    NASA Astrophysics Data System (ADS)

    Salcedo, D.; Luis-Pérez, C. J.; Luri, R.; León, J.

    2012-04-01

    The ECAE process is a novel technology which allows us to obtain materials with sub-micrometric and/or nanometric grain size as a result of accumulating very high levels of plastic deformation in the presence of a high hydrostatic pressure. This avoids the fracture of the material and allows us to obtain very high values of plastic deformation (ɛ >>1). Therefore, these nano-structured materials can be used as starting materials for other manufacturing processes such as: extrusion, rolling and forging, among others; with the advantage of providing nanostructure and hence, improved mechanical properties. In this present work, the forging by finite element method (FEM) of materials that have been previously processed by ECAE is analyzed. MSC. MarcTM software will be employed with the aim of analyzing the possibility of manufacturing mechanical components (spur gears) from materials nano-structured by ECAE.

  6. Effect of multiaxial forging on microstructure and mechanical properties of Mg-o.8Ca alloy

    NASA Astrophysics Data System (ADS)

    Yurchenko, N. Yu; Stepanov, N. D.; Salishchev, G. A.; Rokhlin, L. L.; Dobatkin, S. V.

    2014-08-01

    It was shown that multiaxial forging with continuous decrease of temperature from 450°C to 250°C turns coarse structure of the Mg-0.8Ca alloy in homogenized state with grain size of several hundreeds gm into fine structure with average grain size of about 2.1 gm. Refinement of structure is accompanied by drastic increase of mechanical properties: tensile yield strength increases from 50 MPa to 193 MPa, ultimate tensile strength increases from 78 to 308 MPa and elongation to fracture increases from 3.0% to 7.2%. The microstructural evolution during multiaxial forging is studied using optical microscopy, scanning electron microscopy and EBSD analysis. The mechanisms responsible for refinement of microstructure are discussed

  7. Forging an American Grand Strategy: Securing a Path Through a Complex Future

    DTIC Science & Technology

    2013-10-01

    public opinion, nuclear proliferation, civil-military relations , information warfare, and U.S. national security. Dr. Ferber holds a Ph.D. from Harvard...USAWC WebsiteSSI WebsiteThis Publication U.S. ARMY WAR COLLEGE Forging an Am erican G rand Strategy: Securing a Path Through a Com plex Future...and UNITED STATES ARMY WAR COLLEGE PRESS Visit our website for other free publication downloads http://www.StrategicStudiesInstitute.army.mil/ To

  8. High Speed Turning of H-13 Tool Steel Using Ceramics and PCBN

    NASA Astrophysics Data System (ADS)

    Umer, Usama

    2012-09-01

    H-13 is the toughest tool steel used in machined die casting and forging dies. Due to its extreme hardness and poor thermal conductivity high speed cutting results in high temperature and stresses. This gives rise to surface damage of the workpiece and accelerated tool wear. This study evaluates the performance of different tools including ceramics and PCBN using practical finite element simulations and high speed orthogonal cutting tests. The machinability of H-13 was evaluated by tool wear, surface roughness, and cutting force measurements. From the 2D finite element model for orthogonal cutting, stresses and temperature distributions were predicted and compared for the different tool materials.

  9. Effect of aluminizing treatment on the oxidation properties of 12Cr heat resisting steel

    NASA Astrophysics Data System (ADS)

    Kim, Jae-Hwan; Wang, Jei-Pil; Kang, Chang-Yong

    2011-12-01

    In order to investigate the effect of aluminization on the oxidation properties of 12Cr martensitic heat resisting steel, a specimen was prepared by forging after centrifugal casting. After aluminizing treatment under various conditions, scanning electron microscopy observation, and hardness, line profile and x-ray diffraction analysis of the alloy layer were performed. The results confirmed that the thickness of the layer of Al13Fe4, with a Vickers hardness of over 880, increased with increasing aluminizing temperature and time. Moreover, it was concluded from the results of the oxidation experiment that the oxidation properties of the aluminized specimen were improved by up to approximately 30 %.

  10. Forming limit prediction of powder forging process by the energy-based elastoplastic damage model

    NASA Astrophysics Data System (ADS)

    Yeh, Hung-Yang; Cheng, Jung-Ho; Huang, Cheng-Chao

    2004-06-01

    An energy-based elastoplastic damage model is developed and then applied to predict the deformation and fracture initiation in powder forging processes. The fracture mechanism is investigated by the newly proposed damage model, which is based on the plastic energy dissipation. The developed formulations are implemented into finite element program ABAQUS in order to simulate the complex loading conditions. The forming limits of sintered porous metals under various operational conditions are explored by comparing the relevant experiments with the finite element analyses. The sintered iron-powder preforms of various initial relative densities (RDs) and aspect ratios are compressed until crack initiates. The deformation level of the bulged billets at fracture stroke obtained from compressive fracture tests is utilized to validate the finite element model and then the forming limit diagrams are constructed with the validated model. This model is further verified by the gear blank forging. The fracture site and corresponding deformation level are predicted by the finite element simulations. Meanwhile, the gear forging experiment is performed on the sintered preforms. The predicted results agree well with the experimental observations.

  11. Simulations and Experiments of the Nonisothermal Forging Process of a Ti-6Al-4V Impeller

    NASA Astrophysics Data System (ADS)

    Prabhu, T. Ram

    2016-09-01

    In the present study, a nonisothermal precision forging process of a Ti-6Al-4V first-stage impeller for the gas turbine engine was simulated using the finite element software. The simulation results such as load requirements, damage, velocity field, stress, strain, and temperature distributions are discussed in detail. Simulations predicted the maximum load requirement of about 80 MN. The maximum temperature loss was observed at the contour surface regions. The center and contour regions are the high-strained regions in the part. To validate the model, forging experiments mimicking simulations were performed in the α + β phases region (930 °C). The selected locations of the part were characterized for tensile properties at 27 and 200 °C, hardness, microstructure, grain size, and the amount of primary α phase based on the strain distribution results. The soundness of the forged part was verified using fluorescent penetrant test (Mil Std 2175 Grade A) and ultrasonic test (AMS 2630 class A1). From the experimental results, it was found that the variations in the hardness, tensile properties at room, and elevated temperature are not significant. The microstructure, grain size, and primary α phase content are nearly same.

  12. An Approach to Optimize Size Parameters of Forging by Combining Hot-Processing Map and FEM

    NASA Astrophysics Data System (ADS)

    Hu, H. E.; Wang, X. Y.; Deng, L.

    2014-11-01

    The size parameters of 6061 aluminum alloy rib-web forging were optimized by using hot-processing map and finite element method (FEM) based on high-temperature compression data. The results show that the stress level of the alloy can be represented by a Zener-Holloman parameter in a hyperbolic sine-type equation with the hot deformation activation energy of 343.7 kJ/mol. Dynamic recovery and dynamic recrystallization concurrently preceded during high-temperature deformation of the alloy. Optimal hot-processing parameters for the alloy corresponding to the peak value of 0.42 are 753 K and 0.001 s-1. The instability domain occurs at deformation temperature lower than 653 K. FEM is an available method to validate hot-processing map in actual manufacture by analyzing the effect of corner radius, rib width, and web thickness on workability of rib-web forging of the alloy. Size parameters of die forgings can be optimized conveniently by combining hot-processing map and FEM.

  13. Computer-assisted Rheo-forging Processing of A356 Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Kim, H. H.; Kang, C. G.

    2010-06-01

    Die casting process has been used widely for complex automotive products such as the knuckle, arm and etc. Generally, a part fabricated by casting has limited strength due to manufacturing defects by origin such as the dendrite structure and segregation. As an attempt to offer a solution to these problems, forging has been used as an alternative process. However, the forging process provides limited formability for complex shape products. Rheo-forging of metal offers not only superior mechanical strength but also requires significantly lower machine loads than solid forming processes. In order to produce semi-solid materials of the desired microstructure, a stirring process is applied during solidification of A356 aluminum molten state. This paper presents the results of an A356 aluminum alloy sample, which were obtained by experiment and by simulation using DEFORM 3D V6.1. Samples of metal parts were subsequently fabricated by using hydraulic press machinery. In order to compare the influence of loading method, two types of samples were fabricated: (1) samples fabricated under direct loading die sets (2) those fabricated under indirect loading die sets. The formability and defects, which were predicted by FEM simulation, were similar to those of samples used in practice.

  14. Non-destructive Testing of Forged Metallic Materials by Active Infrared Thermography

    NASA Astrophysics Data System (ADS)

    Maillard, S.; Cadith, J.; Bouteille, P.; Legros, G.; Bodnar, J. L.; Detalle, V.

    2012-11-01

    Nowadays, infrared thermography is considered as the reference method in many applications such as safety, the inspection of electric installations, or the inspection of buildings' heat insulation. In recent years, the evolution of both material and data-processing tools also allows the development of thermography as a real non-destructive testing method. Thus, by subjecting the element to be inspected to an external excitation and by analyzing the propagation of heat in the examined zone, it is possible to highlight surface or subsurface defects such as cracks, delaminations, or corrosion. One speaks then about active infrared thermography. In this study, some results obtained during the collective studies carried out by CETIM and the University of Reims for the forging industry are presented. Various experimental possibilities offered by active thermography are presented and the interest in this method in comparison with the traditional non-destructive testing methods (penetrant testing and magnetic particle inspection) is discussed. For example, comparative results on a forged cracked hub, a steering joint, and a threaded rod are presented. They highlight the interest of infrared thermography stimulated by induction for forged parts.

  15. Experimental and Numerical Investigation of Forging Process to Reproduce a 3D Aluminium Foam Complex Shape

    SciTech Connect

    Filice, Luigino; Gagliardi, Francesco; Umbrello, Domenico; Shivpuri, Rajiv

    2007-05-17

    Metallic foams represent one of the most exciting materials introduced in the manufacturing scenario in the last years. In the study here addressed, the experimental and numerical investigations on the forging process of a simple foam billet shaped into complex sculptured parts were carried out. In particular, the deformation behavior of metallic foams and the development of density gradients were investigated through a series of experimental forging tests in order to produce a selected portion of a hip prosthesis. The human bone replacement was chosen as case study due to its industrial demand and for its particular 3D complex shape. A finite element code (Deform 3D) was utilized for modeling the foam behavior during the forging process and an accurate material rheology description was used based on a porous material model which includes the measured local density. Once the effectiveness of the utilized Finite Element model was verified through the comparison with the experimental evidences, a numerical study of the influence of the foam density was investigated. The obtained numerical results shown as the initial billet density plays an important role on the prediction of the final shape, the optimization of the flash as well as the estimation of the punch load.

  16. eFORGE: A Tool for Identifying Cell Type-Specific Signal in Epigenomic Data.

    PubMed

    Breeze, Charles E; Paul, Dirk S; van Dongen, Jenny; Butcher, Lee M; Ambrose, John C; Barrett, James E; Lowe, Robert; Rakyan, Vardhman K; Iotchkova, Valentina; Frontini, Mattia; Downes, Kate; Ouwehand, Willem H; Laperle, Jonathan; Jacques, Pierre-Étienne; Bourque, Guillaume; Bergmann, Anke K; Siebert, Reiner; Vellenga, Edo; Saeed, Sadia; Matarese, Filomena; Martens, Joost H A; Stunnenberg, Hendrik G; Teschendorff, Andrew E; Herrero, Javier; Birney, Ewan; Dunham, Ian; Beck, Stephan

    2016-11-15

    Epigenome-wide association studies (EWAS) provide an alternative approach for studying human disease through consideration of non-genetic variants such as altered DNA methylation. To advance the complex interpretation of EWAS, we developed eFORGE (http://eforge.cs.ucl.ac.uk/), a new standalone and web-based tool for the analysis and interpretation of EWAS data. eFORGE determines the cell type-specific regulatory component of a set of EWAS-identified differentially methylated positions. This is achieved by detecting enrichment of overlap with DNase I hypersensitive sites across 454 samples (tissues, primary cell types, and cell lines) from the ENCODE, Roadmap Epigenomics, and BLUEPRINT projects. Application of eFORGE to 20 publicly available EWAS datasets identified disease-relevant cell types for several common diseases, a stem cell-like signature in cancer, and demonstrated the ability to detect cell-composition effects for EWAS performed on heterogeneous tissues. Our approach bridges the gap between large-scale epigenomics data and EWAS-derived target selection to yield insight into disease etiology.

  17. Computer-assisted Rheo-forging Processing of A356 Aluminum Alloys

    SciTech Connect

    Kim, H. H.; Kang, C. G.

    2010-06-15

    Die casting process has been used widely for complex automotive products such as the knuckle, arm and etc. Generally, a part fabricated by casting has limited strength due to manufacturing defects by origin such as the dendrite structure and segregation. As an attempt to offer a solution to these problems, forging has been used as an alternative process. However, the forging process provides limited formability for complex shape products. Rheo-forging of metal offers not only superior mechanical strength but also requires significantly lower machine loads than solid forming processes. In order to produce semi-solid materials of the desired microstructure, a stirring process is applied during solidification of A356 aluminum molten state. This paper presents the results of an A356 aluminum alloy sample, which were obtained by experiment and by simulation using DEFORM 3D V6.1. Samples of metal parts were subsequently fabricated by using hydraulic press machinery. In order to compare the influence of loading method, two types of samples were fabricated: (1) samples fabricated under direct loading die sets (2) those fabricated under indirect loading die sets. The formability and defects, which were predicted by FEM simulation, were similar to those of samples used in practice.

  18. Experimental and Numerical Investigation of Forging Process to Reproduce a 3D Aluminium Foam Complex Shape

    NASA Astrophysics Data System (ADS)

    Filice, Luigino; Gagliardi, Francesco; Shivpuri, Rajiv; Umbrello, Domenico

    2007-05-01

    Metallic foams represent one of the most exciting materials introduced in the manufacturing scenario in the last years. In the study here addressed, the experimental and numerical investigations on the forging process of a simple foam billet shaped into complex sculptured parts were carried out. In particular, the deformation behavior of metallic foams and the development of density gradients were investigated through a series of experimental forging tests in order to produce a selected portion of a hip prosthesis. The human bone replacement was chosen as case study due to its industrial demand and for its particular 3D complex shape. A finite element code (Deform 3D®) was utilized for modeling the foam behavior during the forging process and an accurate material rheology description was used based on a porous material model which includes the measured local density. Once the effectiveness of the utilized Finite Element model was verified through the comparison with the experimental evidences, a numerical study of the influence of the foam density was investigated. The obtained numerical results shown as the initial billet density plays an important role on the prediction of the final shape, the optimization of the flash as well as the estimation of the punch load.

  19. Weldability and mechanical property characterization of weld clad alloy 800H tubesheet forging

    SciTech Connect

    King, J.F.; McCoy, H.E.

    1984-09-01

    The weldability of an alloy 800H forging that simulates a steam generator tubesheet is studied. Weldability was of concern because a wide range of microstructures was present in this forging. The top and portions of the bottom were weld clad with ERNiC-3 weld metal to a thickness of 19 mm similar to that anticipated for HTGR steam generators. Examinations of the clad fusion line in various regions revealed no weldability problems except possibly on the bottom portion, which contained large grains and some as-cast structure. A few microfissures were evident in this region, but no excessive hot cracking tendency was observed. The tensile properties in all areas of the clad forging were reasonable and not influenced greatly by the microstructure. The elevated-temperature tests showed strong tendency for fracture in the heat-affected zone of the alloy 800H. Creep failure at 649/sup 0/C consistently occurred in the heat-affected zone of the alloy 800H, but the creep strength exceeded the expected values for alloy 800H.

  20. Effect of Process Parameters on Microstructure and Hardness of Oxide Dispersion Strengthened 18Cr Ferritic Steel

    NASA Astrophysics Data System (ADS)

    Nagini, M.; Vijay, R.; Rajulapati, Koteswararao V.; Rao, K. Bhanu Sankara; Ramakrishna, M.; Reddy, A. V.; Sundararajan, G.

    2016-08-01

    Pre-alloyed ferritic 18Cr steel (Fe-18Cr-2.3W-0.3Ti) powder was milled with and without nano-yttria in high-energy ball mill for varying times until steady-state is reached. The milled powders were consolidated by upset forging followed by hot extrusion. Microstructural changes were examined at all stages of processing (milling, upset forging, and extrusion). In milled powders, crystallite size decreases and hardness increases with increasing milling time reaching a steady-state beyond 5 hours. The size of Y2O3 particles in powders decreases with milling time and under steady-state milling conditions; the particles either dissolve in matrix or form atomic clusters. Upset forged sample consists of unrecrystallized grain structure with few pockets of fine recrystallized grains and dispersoids of 2 to 4 nm. In extruded and annealed rods, the particles are of cuboidal Y2Ti2O7 at all sizes and their size decreased from 15 nm to 5 nm along with significant increase in number density. The oxide particles in ODS6 are of cuboidal Y2Ti2O7 with diamond cubic crystal structure ( Fd bar{3} m) having a lattice parameter of 10.1 Å and are semicoherent with the matrix. The hardness values of extruded and annealed samples predicted by linear summation model compare well with measured values.

  1. 76 FR 5331 - Forged Stainless Steel Flanges From India and Taiwan: Final Results of Sunset Reviews and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-31

    ... Taiwan. Because the domestic interested parties did not participate in these sunset reviews, the.... See Initiation of Five-Year (``Sunset'') Review, 75 FR 67082 (November 1, 2010). We did not receive a..., issue a final determination revoking the order. Because the domestic interested parties did not file...

  2. The rolling texture of 18% Ni-350 maraging steel

    SciTech Connect

    Haq, A. ul; Khan, A.Q. )

    1993-02-01

    Texture development in hot rolled sheet and hot forged tube of 18% Ni-350 maraging steel has been studied after various degrees of cold deformation and flow turning, respectively. Hot rolled sheet exhibited considerable mechanical anisotropy. Weak texture development was observed following flow turning compared to cold deformation. Above 80% deformation, an increase in work hardening was accompanied by an increase in the orientation density of the texture component (001)[110]. Deformation of 97% leads to the development of the texture component (111)[110], with the highest orientation density 10.3 times random and a constant orientation density of 9 times random along [var phi][sub 1] at [phi] = 55[degree] and [var phi][sub 2] = 45[degree]. This texture was correlated with the appearance of shear bands in the microstructure.

  3. Welding Rustproof Steels

    NASA Technical Reports Server (NTRS)

    Hoffmann, W

    1929-01-01

    The following experimental results will perhaps increase the knowledge of the process of welding rustproof steels. The experiments were made with two chrome-steel sheets and with two chrome-steel-nickel sheets having the composition shown in Table I.

  4. Comminuting irradiated ferritic steel

    DOEpatents

    Bauer, Roger E.; Straalsund, Jerry L.; Chin, Bryan A.

    1985-01-01

    Disclosed is a method of comminuting irradiated ferritic steel by placing the steel in a solution of a compound selected from the group consisting of sulfamic acid, bisulfate, and mixtures thereof. The ferritic steel is used as cladding on nuclear fuel rods or other irradiated components.

  5. Reclamation and additional alloying of 18Ni(350) maraging steel

    SciTech Connect

    Ahmed, M.; Salam, I.; Nasim, I.; Hussain, S.W.; Hashmi, F.H.; Khan, A.Q. )

    1994-06-01

    The possibility of gainfully utilizing grade 18Ni(350) maraging steel scrap has been investigated, along with the effect of additional alloying with niobium. A vacuum induction melting and casting furnace was used for melting and additional alloying. The cast ingots were hot forged and their properties compared with those of the stock material. The composition of the reprocessed material was found to be within the prescribed range for 18Ni(350) steel, except for some loss in titanium content. The hardness and tensile strength of the recycled steels were similar to those of the stock material. A slight decrease in hardness in the aged condition could be attributed to loss of titanium during remelting. Charpy V-notch impact testing indicated significantly higher toughness in the remelted material; this has been attributed to a homogeneous, refined microstructure and a lower level of inclusions. Additional alloying with 2% Nb not only improved the mechanical properties but also affected the amount of reverted austenite obtained after aging.

  6. Thermomechanical steels behaviors at semi-solid state

    NASA Astrophysics Data System (ADS)

    Traidi, K.; Favier, V.; Lestriez, P.; Debray, K.; Langlois, L.; Ranc, N.; Saby, M.; Mangin, P.

    2016-10-01

    Semisolid thixoforming is an intermediate process between casting and forging. The combination of the semi-solid state and globular microstructures leads to thixotropic properties of the material [1]. Thixoformingprocess presents several advantages such as energy efficiency, high production rates, smooth die filling, low shrinkage porosity, which together lead to near net shape capability and thus to fewer manufacturing steps than with classical methods. So far, there are only few applications of semisolid processing of highr melting point alloys [2]. Steel is a particularly challenging material to semi-solid process because of about 1400°C temperatures involved. Characterizing and modelling such semi-solid behaviour for steels is still challenging. The aim of the research work was to study the rheological properties of a suitable graded steel (LTT C38) designed for semi-solid processing. An experimental protocol was determined to characterize the thermomechanical behaviors and defect condition. Uniaxial tensile tests were carried out on semi-solid specimen having >0.8 solid fraction for different temperatures. The variation in both ductility and strength with temperature has been identified.

  7. Carbide Precipitation Behavior and Wear Resistance of a Novel Roller Steel

    NASA Astrophysics Data System (ADS)

    Guo, Jing; Li, Qiang; Qu, Hongwei; Liu, Ligang; Yang, Qingxiang

    2013-06-01

    High speed steel, which contains more alloy elements, cannot be used to manufacture the forged work roll. Therefore, a novel roller steel was designed on the basis of W6Mo5Cr4V2 (M2) steel. In this study, the carbide precipitation behavior and wear resistance of the novel roller steel were investigated. The Fe-C isopleths were calculated by Thermo-Calc to determine the carbide types, which were precipitated at different temperatures. The phase transformation temperatures were measured by differential scanning calorimeter and then the characteristic temperatures were designed. The phase structures quenched from the characteristic temperatures were measured by x-ray diffraction and transmission electron microscopy. The typical microstructures were observed by field emission scanning electron microscopy with Energy Disperse Spectroscopy. The hardness and wear resistance of the novel roller steel were measured. The results show that the precipitation temperatures of austenite, MC, M6C, M23C6, and ferrite are 1360, 1340, 1230, 926, and 843 °C respectively. When the specimen is quenched from 1300 °C, only MC precipitates from the matrix. At 1220 °C, MC and M2C precipitate. At 1150 °C, all of MC, M2C and M6C precipitate. Relationship between mass fraction of different phases and temperature were also simulated by Thermo-Calc. The hardness of the novel roller steel is a little lower than that of M2 steel, however, the wear resistance of the novel roller steel is a little higher than that of M2 steel with the increase of wear time.

  8. Effects of heat input on the microstructure and toughness of the 8 MnMoNi 5 5 shape-welded nuclear steel

    NASA Astrophysics Data System (ADS)

    Million, Karl; Datta, Ratan; Zimmermann, Horst

    2005-04-01

    A weld metal well proven in the German nuclear industry served as the basis for the certification of a shape-welded steel to be used as base material for manufacture of nuclear primary components. The outstanding properties of this steel are attributed to the extremely fine-grained and stable primary microstructure. Subsequent reheating cycles caused by neighbouring weld beads do neither lead to coarsened brittle structures in the heat-affected zone nor to increase in hardness and decrease in toughness, as is the case with wrought steel materials. One of the largest new reactor vessel design amongst today's advanced reactor projects is considered to be particularly suitable for the use of shape-welded parts in place of forgings. In addition the need for design and development of new shape-welded steel grades for other new generation reactor projects is emphasized, in which the experience gained with this research could make a contribution.

  9. Effect of microalloying elements on the structure and properties of low-carbon and ultralow-carbon cold-rolled steels

    NASA Astrophysics Data System (ADS)

    Girina, O. A.; Fonshtein, N. M.; Storozheva, L. M.

    1994-03-01

    Cold-rolled steels used for the forged components of automobiles should exhibit high, partly mutually-exclusive properties: high forgeability with desirably high strength, resistance to aging combined with hardenability at temperatures for drying paint coatings, etc. Satisfaction of these requirements is provided to a considerable degree by microalloying. The final mechanical properties of cold-rolled steel depend on such structural parameters of hot-rolled strip as texture, the amount of dissolved C and N atoms in α-solid solution, and ferrite grain size. With constant hot rolling production schedules these structural parameters are governed by steel composition, in particular by the type of microalloying. In this work the effect is considered for dispersed microalloying elements, i.e., phosphorus, boron, titanium, and nïobium, on the final mechanical properties of low- and ultralow-carbon steels.

  10. Effect of impurities on the proneness to temper embrittlement of heat resistant Cr-Mo-V steel

    SciTech Connect

    Borisov, I.A.; Kark, G.S.; Pokusaeva, V.I.

    1986-03-01

    The authors investigated the effect of most alloying elements which are traditionaly regarded as dangerous in low-alloy structural steels--sulfur, phosphorus, copper, arsenic, antimony, tin--on the proneness to temper embrittlement of steel 25Kh1M1F which is used for making large all-forged rotors of fixed and transport medium-pressure steam turbines. On the basis of the obtained results it may be concluded that from among the investigated alloying elements only phosphorus and antimony have a statistically significant effect on the proneness of fine-grained steel 25Kh1M1F to temper embrittlement, and the embrittling effect of phosphorus is much stronger than the embrittling effect of antimony.

  11. The steel scrap age.

    PubMed

    Pauliuk, Stefan; Milford, Rachel L; Müller, Daniel B; Allwood, Julian M

    2013-04-02

    Steel production accounts for 25% of industrial carbon emissions. Long-term forecasts of steel demand and scrap supply are needed to develop strategies for how the steel industry could respond to industrialization and urbanization in the developing world while simultaneously reducing its environmental impact, and in particular, its carbon footprint. We developed a dynamic stock model to estimate future final demand for steel and the available scrap for 10 world regions. Based on evidence from developed countries, we assumed that per capita in-use stocks will saturate eventually. We determined the response of the entire steel cycle to stock saturation, in particular the future split between primary and secondary steel production. During the 21st century, steel demand may peak in the developed world, China, the Middle East, Latin America, and India. As China completes its industrialization, global primary steel production may peak between 2020 and 2030 and decline thereafter. We developed a capacity model to show how extensive trade of finished steel could prolong the lifetime of the Chinese steelmaking assets. Secondary steel production will more than double by 2050, and it may surpass primary production between 2050 and 2060: the late 21st century can become the steel scrap age.

  12. Methods of forming steel

    DOEpatents

    Branagan, Daniel J.; Burch, Joseph V.

    2001-01-01

    In one aspect, the invention encompasses a method of forming a steel. A metallic glass is formed and at least a portion of the glass is converted to a crystalline steel material having a nanocrystalline scale grain size. In another aspect, the invention encompasses another method of forming a steel. A molten alloy is formed and cooled the alloy at a rate which forms a metallic glass. The metallic glass is devitrified to convert the glass to a crystalline steel material having a nanocrystalline scale grain size. In yet another aspect, the invention encompasses another method of forming a steel. A first metallic glass steel substrate is provided, and a molten alloy is formed over the first metallic glass steel substrate to heat and devitrify at least some of the underlying metallic glass of the substrate.

  13. Influence of die geometry and material selection on the behavior of protective die covers in closed-die forging

    NASA Astrophysics Data System (ADS)

    Yu, Yingyan; Rosenstock, Dirk; Wolfgarten, Martin; Hirt, Gerhard

    2016-10-01

    Due to the fact that tooling costs make up to 30% of total costs of the final forged part, the tool life is always one main research topic in closed-die forging [1]. To improve the wear resistance of forging dies, many methods like nitriding and deposition of ceramic layers have been used. However, all these methods will lose its effect after a certain time, then tool repair or exchange is needed, which requires additional time and costs. A new method, which applies an inexpensive and changeable sheet metal on the forging die to protect it from abrasive wear, was firstly proposed in [2]. According to the first investigation, the die cover is effective for decreasing thermal and mechanical loads, but there are still several challenges to overcome in this concept, like wrinkling and thinning of the die cover. Therefore, an experimental study using different geometries and die cover materials is presented within this work. The results indicate the existence of feasible application cases of this concept, since conditions are found under which a die cover made of 22MnB5 still keeps its original shape even after 7 forging cycles.

  14. Effect of forging parameters on low cycle fatigue behaviour of Al/basalt short fiber metal matrix composites.

    PubMed

    Karthigeyan, R; Ranganath, G

    2013-01-01

    This paper deals with metal matrix composites (MMCs) of Al 7075 alloy containing different weight percentage (2.5, 5, 7.5, and 10) basalt short fiber reinforcement and unreinforced matrix alloy. The samples were produced by the permanent stir casting technique. The casting ingots were cut into blanks to be forged in single stage and double stage, using MN press and graphite-based lubricant. The microstructures and fatigue properties of the matrix alloy and MMC samples were investigated in the as cast state and in the single and double stage forging operations. The microstructure results showed that the forged sample had a uniform distribution of the basalt short fiber throughout the specimens. Evaluation of the fatigue properties showed that the forged samples had higher values than those of the as cast counterparts. After forging, the enhancement of the fatigue strength of the matrix alloy was so significant and high in the case of 2.5 and 5.0 wt. percentage basalt short fiber reinforced MMC, and there was no enhancement in 7.5 and 10 weight percentages short fiber reinforced MMCs. The fracture damage was mainly due to decohesion at the matrix-fiber interface.

  15. Effect of Forging Parameters on Low Cycle Fatigue Behaviour of Al/Basalt Short Fiber Metal Matrix Composites

    PubMed Central

    Karthigeyan, R.; Ranganath, G.

    2013-01-01

    This paper deals with metal matrix composites (MMCs) of Al 7075 alloy containing different weight percentage (2.5, 5, 7.5, and 10) basalt short fiber reinforcement and unreinforced matrix alloy. The samples were produced by the permanent stir casting technique. The casting ingots were cut into blanks to be forged in single stage and double stage, using MN press and graphite-based lubricant. The microstructures and fatigue properties of the matrix alloy and MMC samples were investigated in the as cast state and in the single and double stage forging operations. The microstructure results showed that the forged sample had a uniform distribution of the basalt short fiber throughout the specimens. Evaluation of the fatigue properties showed that the forged samples had higher values than those of the as cast counterparts. After forging, the enhancement of the fatigue strength of the matrix alloy was so significant and high in the case of 2.5 and 5.0 wt. percentage basalt short fiber reinforced MMC, and there was no enhancement in 7.5 and 10 weight percentages short fiber reinforced MMCs. The fracture damage was mainly due to decohesion at the matrix-fiber interface. PMID:24298207

  16. Comparative Tensile Flow and Work-Hardening Behavior of 9 Pct Chromium Ferritic-Martensitic Steels in the Framework of the Estrin-Mecking Internal-Variable Approach

    NASA Astrophysics Data System (ADS)

    Choudhary, B. K.; Christopher, J.

    2016-06-01

    The comparative tensile flow and work-hardening behavior of P9 steel in two different product forms, normalized and tempered plate and thick section tube plate forging, and P91 steel were investigated in the framework of the dislocation dynamics based Estrin-Mecking (E-M) one-internal-variable approach. The analysis indicated that the flow behavior of P9 and P91 steels was adequately described by the E-M approach in a wide range of temperatures. It was suggested that dislocation dense martensite lath/cell boundaries and precipitates together act as effective barriers to dislocation motion in P9 and P91 steels. At room and intermediate temperatures, the evolution of the internal-state variable, i.e., the dislocation density with plastic strain, exhibited insignificant variations with respect to temperature. At high temperatures, a rapid evolution of dislocation density with plastic strain toward saturation with increasing temperature was observed. The softer P9 steel tube plate forging exhibited higher work hardening in terms of larger gains in the dislocation density and flow stress contribution from dislocations than the P9 steel plate and P91 steel at temperatures ranging from 300 K to 873 K (27 °C to 600 °C). The evaluation of activation energy suggests that the deformation is controlled by cross-slip of dislocations at room and intermediate temperatures, and climb of dislocations at high temperatures. The relative influence of initial microstructure on flow and work-hardening parameters associated with the E-M approach was discussed in the three temperature regimes displayed by P9 and P91 steels.

  17. Forging of eccentric co-extruded Al-Mg compounds and analysis of the interface strength

    NASA Astrophysics Data System (ADS)

    Förster, W.; Binotsch, C.; Awiszus, B.; Lehmann, T.; Müller, J.; Kirbach, C.; Stockmann, M.; Ihlemann, J.

    2016-03-01

    Within the subproject B3 of the Collaborative Research Center 692 it has been shown that Al-Mg compounds with a good bonding quality can be produced by hydrostatic coextrusion. During processing by forging, the aluminum sleeve is thinned in areas of high strains depending on the component geometry. To solve this problem an eccentric core arrangement during co-extrusion was investigated. Based on the results of FE-simulations, the experimental validation is presented in this work. Rods with an offset of 0.25, 0.5 and 0.75 mm were produced by eccentric hydrostatic co-extrusion. Ultrasonic testing was used to evaluate the bonding quality across the entire rods. For the forging investigations the basic process Rising was chosen. The still good bonding quality after forging was examined by dye penetrant testing and optical microscopy. For an optimal stress transfer between the materials across the entire component, a sufficient bonding between the materials is essential. To evaluate the interface strength, a special bending test was developed. For the conception of the bending specimens it was required to analyze the Rising specimens geometry. These analyses were performed using a reconstruction of the geometrical data based on computer tomography (CT) investigations. The comparison with the numerically deter-mined Rising specimen geometry shows good correlation. Parametric Finite Element Analyses of the bending test were used to develop the load case and the specimen geometry. By means of iterative adaption of load application, bearing and specimen geometry parameters, an advantageous stress state and experimentally applicable configuration were found. Based on this conception, the experimental setup was configured and bending tests were performed. The interface strength was deter-mined by the calculation of the maximum interlaminar interfacial tension stress using the experimental interface failure force and the bending FE model.

  18. Hot forging of melt quenched powder: Microstructure development and kinetics of densification

    NASA Astrophysics Data System (ADS)

    Keshavan, Hrishikesh

    Hot powder forging is a new process for making scalable and cost-effective nanocrystalline ceramics. It utilizes powder typically between 5 mum to 25 mum to nucleate very stable crystallite sizes well below 100 nm. These particles superplastically deform at relatively moderate temperature and stress. Hence, rapid densification at high creep rates is achieved with limited grain growth. A novel way to achieve high creep rate is to take advantage of partially amorphous powders that are obtained by one of the many available rapid quenching processes. Our study uses a plasma flame to melt the spray-dried aggregates of a particular composition and rapidly quench into water that results in metastable, optically transparent powder. The plasma sprayed powder is first hot pressed to obtain cylindrical pellets and then hot-forged at various stresses and temperatures to obtain optimum creep rates. Eutectic oxide compositions were studied due to their low melting point and better glass forming ability in an effort to optimize both the composition and processing parameters. Five binary compositions of alumina, zirconia and magnesium aluminate spinel and the effect of adding borosilicate glass on creep rates and microstructure were investigated. Their phase evolution and crystallite growth were examined in a detailed annealing study. The final densities after hot forging were composition dependent and ranged from 86% to 100% at 1350°C. Creep rates of the binary eutectic increased by an order of magnitude when alumina was substituted with spinel or when borosilicate glass was added. The highest creep rate obtained would correspond to 10-4 1/s for 40 MPa at 1350°C. SEM studies confirm that the densification is by plastic deformation of particles. TEM studies reveal nano-sized zirconia either in an alumina or spinel matrix. The grain morphology was cellular in compositions without glass and acicular in compositions with glass.

  19. High Temperature, Slow Strain Rate Forging of Advanced Disk Alloy ME3

    NASA Technical Reports Server (NTRS)

    Gabb, Timothy P.; OConnor, Kenneth

    2001-01-01

    The advanced disk alloy ME3 was designed in the HSR/EPM disk program to have extended durability at 1150 to 1250 F in large disks. This was achieved by designing a disk alloy and process producing balanced monotonic, cyclic, and time-dependent mechanical properties. combined with robust processing and manufacturing characteristics. The resulting baseline alloy, processing, and supersolvus heat treatment produces a uniform, relatively fine mean grain size of about ASTM 7, with as-large-as (ALA) grain size of about ASTM 3. There is a long term need for disks with higher rim temperature capabilities than 1250 F. This would allow higher compressor exit (T3) temperatures and allow the full utilization of advanced combustor and airfoil concepts under development. Several approaches are being studied that modify the processing and chemistry of ME3, to possibly improve high temperature properties. Promising approaches would be applied to subscale material, for screening the resulting mechanical properties at these high temperatures. n obvious path traditionally employed to improve the high temperature and time-dependent capabilities of disk alloys is to coarsen the grain size. A coarser grain size than ASTM 7 could potentially be achieved by varying the forging conditions and supersolvus heat treatment. The objective of this study was to perform forging and heat treatment experiments ("thermomechanical processing experiments") on small compression test specimens of the baseline ME3 composition, to identify a viable forging process allowing significantly coarser grain size targeted at ASTM 3-5, than that of the baseline, ASTM 7.

  20. Derivation of uranium residual radioactive material guidelines for the Aliquippa Forge site

    SciTech Connect

    Monette, F.; Jones, L.; Yu, C.

    1992-09-01

    Residual radioactive material guidelines for uranium were derived for the Aliquippa Forge site in Aliquippa, Pennsylvania. This site has been identified for remedial action under the Formerly Utilized Sites Remedial Action Program (FUSRAP) of the US Department of Energy (DOE). The uranium guidelines were derived on the basis of the requirement that the 50-year committed effective dose equivalent to a hypothetical individual who lives or works in the immediate vicinity of the Aliquippa Forge site should not exceed a dose of 100 mrem/yr following decontamination. The DOE residual radioactive material guideline computer code, RESRAD, which implements the methodology described in the DOE manual for implementing residual radioactive material guidelines, was used in this evaluation. Four potential scenarios were considered for the site; the scenarios vary with regard to time spent at the site, sources of water used, and sources of food consumed. The results of the evaluation indicate that the basic dose limit of 100 mrem/yr will not be exceeded for uranium within 1,000 years, provided that the soil concentration of combined uranium (uranium-234, uranium-235, and uranium-238) at the Aliquippa Forge site does not exceed the following levels: 1,700 pCi/g for Scenario A (industrial worker: the expected scenario); 3,900 pCi/g for Scenario B (recreationist: a plausible scenario); 20 pCi/g for Scenario C (resident farmer using well water as the only water source: a possible but unlikely scenario), and 530 pCi/g for Scenario D (resident farmer using a distant water source not affected by site conditions as the only water source: a possible but unlikely scenario). The uranium guidelines derived in this report apply to the combined activity concentration of uranium-234, uranium-235, and uranium-238 and were calculated on the basis of a dose of 100 mrem/yr.

  1. Microstructure and Properties of Selective Laser Melted High Hardness Tool Steel

    NASA Astrophysics Data System (ADS)

    Feuerhahn, F.; Schulz, A.; Seefeld, T.; Vollertsen, F.

    A secondary hardening tool steel material X110CrMoVAl 8-2 was successfully processed by selective laser melting (SLM), producing defect free samples of high density. The microstructure appeared irregular after SLM, which was attributed to locally different temper states in consequence of the SLM process pattern. By a subsequent heat treatment, a homogeneous microstructure with ultrafine carbide precipitations and a very high resulting hardness of 765 HV were achieved. The hardness came very close to that of the same material processed by spray forming and forging, whilst the SLM microstructure was significantly finer. Therefore this tool steel material was considered as highly promising for SLM manufacturing of tools, e.g. for micro tooling applications.

  2. Modeling flow stress constitutive behavior of SA508-3 steel for nuclear reactor pressure vessels

    NASA Astrophysics Data System (ADS)

    Sun, Mingyue; Hao, Luhan; Li, Shijian; Li, Dianzhong; Li, Yiyi

    2011-11-01

    Based on the measured stress-strain curves under different temperatures and strain rates, a series of flow stress constitutive equations for SA508-3 steel were firstly established through the classical theories on work hardening and softening. The comparison between the experimental and modeling results has confirmed that the established constitutive equations can correctly describe the mechanical responses and microstructural evolutions of the steel under various hot deformation conditions. We further represented a successful industrial application of this model to simulate a forging process for a large conical shell used in a nuclear steam generator, which evidences its practical and promising perspective of our model with an aim of widely promoting the hot plasticity processing for heavy nuclear components of fission reactors.

  3. Validation of finite-element codes for prediction of machining distortions in forgings

    NASA Astrophysics Data System (ADS)

    Chandra, U.

    1993-06-01

    When a forging is machined to its net shape, unacceptably large distortions can occur if the final part shape is complex. Such distortions can be predicted with the application of the finite-element method. However, numerical errors associated with the finite element technique can render such predictions unreliable. This paper presents benchmark problems for verifying the accuracy of machining distortions predicted by any prospective finite-element code. Also, a comparison between two industry-standard general-purpose codes, ANSYS and ABAQUS, is presented.

  4. A Metallurgical Investigation of Large Forged Discs of Low-carbon N-155 Alloy

    NASA Technical Reports Server (NTRS)

    Cross, Howard C; Freeman, J W

    1947-01-01

    Research was undertaken to ascertain the properties of better wrought heat resisting alloys in the form of large discs required for gas turbine rotors. The properties of large discs of low carbon N-155 alloy in both the as-forged and water-quenched and aged conditions were determined by means of stress-rupture and creep tests for time periods up to about 2000 hours at 1200, 1350, and 1500 F. Short-time tensile test, impact test, and time-total deformation characteristics are included. The principle results are given.

  5. Military Specification for Type 10XX Powder-Forged Weapon Components.

    DTIC Science & Technology

    1985-10-14

    6292-3 UNLSIFIED RRSCO- CR -50 ORRKICI-4-C-0245 F/G 11/6.2 2 I ihhhEhh irmmohhmhmhum I, 111112.2 I1.25 1 . 51IM NIII qp 4 I.~ - . 1 3 N OV 1985...CONTRACTOR REPORT ARSCD- CR -85008 !MILITARY SPECIFICATION FOR TYPE IOXX : POWDER-FORGED WEAPON COMPONENTS - .I-. - 5 ~FINAL TECHNICAL REPORT [ -- STEVEN...INSTRUCTiONS R R O iEEFORE COMPLETING FORM I. REPORT NUMBER 2. GOVT ACCESSION NQ. " E CiPIENT’. CATALOU NUMBLR Contractor Report ARSCD- CR -85008 4- TITLE (a"nd

  6. Forging a poison prevention and control system: report of an Institute of Medicine committee.

    PubMed

    Guyer, Bernard; Mavor, Anne

    2005-01-01

    The Committee forged a vision for a national poison prevention and control system that broadly integrates the current network of poison control centers with state and local public health departments responsible for monitoring populations. Implementing the Committee's recommendations, however, will require leadership from the Congress and the federal agencies to whom the report is addressed: HRSA and CDC. The next steps include amendments to existing legislation to establish the national system and to secure federal funding to assure stability of the system and systematic oversight by the federal agencies to hold all parties accountable for the performance of the system.

  7. Conventionally cast and forged copper alloy for high-heat-flux thrust chambers

    NASA Technical Reports Server (NTRS)

    Kazaroff, John M.; Repas, George A.

    1987-01-01

    The combustion chamber liner of the space shuttle main engine is made of NARloy-Z, a copper-silver-zirconium alloy. This alloy was produced by vacuum melting and vacuum centrifugal casting; a production method that is currently now available. Using conventional melting, casting, and forging methods, NASA has produced an alloy of the same composition called NASA-Z. This report compares the composition, microstructure, tensile properties, low-cycle fatigue life, and hot-firing life of these two materials. The results show that the materials have similar characteristics.

  8. A hot compression testing apparatus for the study of isothermal forging

    NASA Astrophysics Data System (ADS)

    Immarigeon, J.-P. A.; Wallace, W.; Iandeil, A. Y.; de Malherbe, M. C.

    1980-11-01

    An apparatus for uniaxial compression testing has been developed to simulate isothermal forging conditions. The system can apply 100-kN loads at temperatures up to 1200 + or - 3 C in a controlled environment and at constant true strain rates between 0.00001/s and 1/s. Results on the flow behavior of nickel-base superalloy compacts and composites are presented that demonstrate the importance of control of the testing parameters. The difference in flow strength of the two materials under identical testing conditions is discussed.

  9. Prediction of microstructure evolution during high temperature blade forging of a Ni-Fe based superalloy, Alloy 718

    NASA Astrophysics Data System (ADS)

    Na, Young-Sang; Yeom, Jong-Taek; Park, Nho-Kwang; Lee, Jai-Young

    2003-02-01

    The mechanical properties of the Ni-Fe-based Alloy 718 depend very much on grain size, as well as the strengthening phases, γ' and γ. The grain structure of the superalloy components is mainly controlled during thermo-mechanical processes by the dynamic, meta-dynamic recrystallization and grain growth. In this investigation, the evolution of the grain structure in the process of two-step blade forging was experimentally and numerically dealt with. The evolution of the grain structure in Alloy 718 during blade forging was predicted using a 2-DFE simulator with implemented constitutive models on dynamic recrystallization and grain growth. The comparison of the simulated microstructure with the actual grain structure of the forged parts validated the prediction of the grain structure evolution. The effect of dynamic recrystallization on the evolution of grain structure is highlighted in this article.

  10. Crystalline gamma-Al2O3 physical vapour deposition-coating for steel thixoforging tools.

    PubMed

    Bobzin, K; Hirt, G; Bagcivan, N; Khizhnyakova, L; Ewering, M

    2011-10-01

    The process of thixoforming, which has been part of many researches during the last decades, combines the advantages of forging and casting for the shaping of metallic components. But due to the high temperatures of semi-solid steel alloys high demands on the tools are requested. To resists the thermal and mechanical loads (wear, friction, thermal and thermomechanical fatigue) protecting thin films are necessary. In this regard crystalline gamma-Al2O3 deposited via Physical Vapour Deposition (PVD) is a promising candidate: It exhibits high thermal stability, high oxidation resistance and high hot hardness. In the present work the application of a (Ti, Al)N/gamma-Al2O3 coating deposited by means of Magnetron Sputter Ion Plating in an industrial coating unit is presented. The coating was analysed by means of Rockwell test, nanoindentation, and Scanning Electron Microscopy (SEM). The coated tool was tested in thixoforging experiments with steel grade X210CrW12 (AlSI D6). The surface of the coated dies was examined with Scanning Electron Microscope (SEM) after 22, 42, 90 and 170 forging cycles.

  11. Highly porous, low elastic modulus 316L stainless steel scaffold prepared by selective laser melting.

    PubMed

    Čapek, Jaroslav; Machová, Markéta; Fousová, Michaela; Kubásek, Jiří; Vojtěch, Dalibor; Fojt, Jaroslav; Jablonská, Eva; Lipov, Jan; Ruml, Tomáš

    2016-12-01

    Recently, porous metallic materials have been extensively studied as candidates for use in the fabrication of scaffolds and augmentations to repair trabecular bone defects, e.g. in surroundings of joint replacements. Fabricating these complex structures by using common approaches (e.g., casting and machining) is very challenging. Therefore, rapid prototyping techniques, such as selective laser melting (SLM), have been investigated for these applications. In this study, we characterized a highly porous (87 vol.%) 316L stainless steel scaffold prepared by SLM. 316L steel was chosen because it presents a biomaterial still widely used for fabrication of joint replacements and, from the practical point of view, use of the same material for fabrication of an augmentation and a joint replacement is beneficial for corrosion prevention. The results are compared to the reported properties of two representative nonporous 316L stainless steels prepared either by SLM or casting and subsequent hot forging. The microstructural and mechanical properties and the surface chemical composition and interaction with the cells were investigated. The studied material exhibited mechanical properties that were similar to those of trabecular bone (compressive modulus of elasticity ~0.15GPa, compressive yield strength ~3MPa) and cytocompatibility after one day that was similar to that of wrought 316L stainless steel, which is a commonly used biomaterial. Based on the obtained results, SLM is a suitable method for the fabrication of porous 316L stainless steel scaffolds with highly porous structures.

  12. Prior thermo-mechanical processing to modify structure and properties of severely deformed low carbon steel

    NASA Astrophysics Data System (ADS)

    Zrnik, J.; Lapovok, R.; Raab, G. I.

    2014-08-01

    The article focuses on the severe plastic deformation (SPD) of low carbon steel AISI 1010 performed at increased temperature. The grain refinement of ferrite structure is monitored and described with respect to different initial steel structure modified by thermal and thermomechanical (TM) treatment (TM) prior severe plastic deformation. The refinement of coarse initial ferrite structure with grain size in range of 30 - 50 gm resulted from solutioning was conducted then in two steps. Preliminary structure refinement has been achieved due to multistep open die forging process and quite uniform ferrite structure with grain size of the order of gm was obtained. The further grain refinement steel structure was then accomplished during warm Equal Channel Angular Pressing (ECAP phi = 120°) at 300°C, introducing different strain in range of ɛef = 2.6 -4. The change of microstructure in dependence of the effective strain was evaluated by SEM and TEM study of thin foils. The high straining of steel resulted in extensive deformation of ferrite grains and formation of mixture of submicron grains structure in banded deformed structure with dense dislocation network and subgrains. The dynamic polygonization process, due to increased ECAP temperature, modified the submicrocrystalline structure formation. There was only indistinctive difference observed in structure refinement when considering different initial structure of steel. The tensile behaviour was characterized by strength increase followed by softening. None work hardening phenomenon appeared at tensile deformation of deformed bars.

  13. Maraging Steel Machining Improvements

    DTIC Science & Technology

    2007-04-23

    APR 2007 2. REPORT TYPE Technical, Success Story 3. DATES COVERED 01-12-2006 to 23-04-2007 4. TITLE AND SUBTITLE Maraging Steel Machining...consumers of cobalt-strengthened maraging steel . An increase in production requires them to reduce the machining time of certain operations producing... maraging steel ; Success Stories 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 1 18. NUMBER OF PAGES 1 19a. NAME OF RESPONSIBLE

  14. Forging tool shape optimization using pseudo inverse approach and adaptive incremental approach

    NASA Astrophysics Data System (ADS)

    Halouani, A.; Meng, F. J.; Li, Y. M.; Labergère, C.; Abbès, B.; Lafon, P.; Guo, Y. Q.

    2013-05-01

    This paper presents a simplified finite element method called "Pseudo Inverse Approach" (PIA) for tool shape design and optimization in multi-step cold forging processes. The approach is based on the knowledge of the final part shape. Some intermediate configurations are introduced and corrected by using a free surface method to consider the deformation paths without contact treatment. A robust direct algorithm of plasticity is implemented by using the equivalent stress notion and tensile curve. Numerical tests have shown that the PIA is very fast compared to the incremental approach. The PIA is used in an optimization procedure to automatically design the shapes of the preform tools. Our objective is to find the optimal preforms which minimize the equivalent plastic strain and punch force. The preform shapes are defined by B-Spline curves. A simulated annealing algorithm is adopted for the optimization procedure. The forging results obtained by the PIA are compared to those obtained by the incremental approach to show the efficiency and accuracy of the PIA.

  15. [Effects of peak levels and number of noise impulses on hearing among forge hammering workers].

    PubMed

    Suvorov, G A; Denisov, E I; Antipin, V G; Kharitonov, V I; Starck, Iu; Pyykko, I; Toppila, E

    2002-01-01

    The work was aimed (1) to compare actual and expected values of hearing loss in forge hammering workers, using risk evaluation patterns based on impulse noise measurements, and (2) to simulate harmful hearing changes caused by impulse noise. Study of exposure to noise and hearing loss covered forge hammering workers in 2 major blacksmith workshops of automobile enterprise, where equivalent levels of acoustic pressure (104 and 106 dB) were equal, but peak levels and impalse degrees reliably differed. Hearing thresholds for 2 selected groups of workers (97 and 235 subjects) were evaluated. When compared, actual and expected values of hearing loss calculated according to ISO standard appeared different with excess of 1 dB and 3 dB for the workers in shops 1 and 2 respectively. Excessive hearing loss corresponds to noise exposure increased by 3.5 years. Hearing loss in the workers subjected to less impulsive noise were readily forecasted by ISO standard 1999-1990. Hearing loss in the workers subjected to more impulsive noise were in reliable correlation with combination of peak level and impulses number.

  16. Welding irradiated stainless steel

    SciTech Connect

    Kanne, W.R. Jr.; Chandler, G.T.; Nelson, D.Z.; Franco-Ferreira, E.A.

    1993-12-31

    Conventional welding processes produced severe underbead cracking in irradiated stainless steel containing 1 to 33 appm helium from n,a reactions. A shallow penetration overlay technique was successfully demonstrated for welding irradiated stainless steel. The technique was applied to irradiated 304 stainless steel that contained 10 appm helium. Surface cracking, present in conventional welds made on the same steel at the same and lower helium concentrations, was eliminated. Underbead cracking was minimal compared to conventional welding methods. However, cracking in the irradiated material was greater than in tritium charged and aged material at the same helium concentrations. The overlay technique provides a potential method for repair or modification of irradiated reactor materials.

  17. Roll-Bonded 300M/1010 Steel Metal-Metal Laminates: Forgeability, Toughness, Fatigue, and Stress Corrosion.

    DTIC Science & Technology

    1982-06-01

    Charpy Impact Testing of Sheet Metal" Proc. Am. Soc. Testing Hats., 57, 1273 (1957). 6. S. V. Arnold, "Notch Sensitivity and Resistance to Tearing of...80-C-0575 ATC REPORT NO. R-92000/2CR-20 Roll-Bonded 300M /1010 Steel Metal-Metal Laminates: Forgeaility, Toughness, Fatigue, and Stress Corrosion L. E...process, the transverse flow of thp layers and interleaves being completely stable in the 300M /1010 system. 7 effects of forging on the mechanical

  18. Forging Links.

    ERIC Educational Resources Information Center

    Stewig, John Warren

    Blacksmiths and their craft have changed with the times, and as times change for teachers, they too should be forgers of links. Teacher-to-teacher links should extend beyond the faculty lounge to support systems and active groups of individuals concerned about each other. Another personal link can be made by developing a grade level, system-wide…

  19. 76 FR 24856 - Heavy Forged Hand Tools (i.e., Axes & Adzes, Bars & Wedges, Hammers & Sledges, and Picks...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-03

    ... From the Federal Register Online via the Government Publishing Office ] DEPARTMENT OF COMMERCE International Trade Administration Heavy Forged Hand Tools (i.e., Axes & Adzes, Bars & Wedges, Hammers & Sledges..., Department of Commerce. SUMMARY: On January 3, 2011, the Department of Commerce (``Department'') initiated...

  20. Fatigue behavior of rolled and forged tungsten at 25°, 280° and 480 °C

    NASA Astrophysics Data System (ADS)

    Habainy, J.; Iyengar, S.; Lee, Y.; Dai, Y.

    2015-10-01

    Pure tungsten has been chosen as the target material at the European Spallation Source facility in Lund. Calculations show that the target temperature can reach 500 °C momentarily during the spallation process, leading to thermal fatigue. Target life estimations require fatigue data at different temperatures and this work focuses on generating such data for pure, unirradiated, rolled and forged tungsten in the range 25°-480 °C. For specimens oriented in the rolling direction, tensile tests at room temperature indicated Young's modulus values in the range 320-390 GPa, low levels of plasticity (<0.23%) and UTS values in the range 397 MPa (unpolished) and 705 MPa (Polished). UTS for forged specimens were around 500 MPa. Stress-controlled fatigue tests were conducted in the tensile regime, with a runout limit of 2 × 106 cycles. At 25 °C, unpolished specimens had fatigue limits of 150 MPa (rolling and transverse direction), and 175 MPa (forged). For polished specimens in the rolling direction, fatigue limits were higher at 237.5 MPa (25 °C) and 252.5 MPa (280 °C). The forged specimens showed slightly better fatigue properties and marginal cyclic hardening at 480 °C.

  1. Forging Research-Teaching Linkages through Action Research: An Example of Facilitating the Development of Competency in Critical Reflection

    ERIC Educational Resources Information Center

    Lowry-O'Neill, Catherine

    2009-01-01

    Action research is an approach to enquiry that forges linkages between research and teaching, with each potentially informing the other in a responsive and creative cycle. This paper provides an overview of a pedagogic action research project which was undertaken in order to respond directly to learning needs expressed by a group of second year…

  2. Jernberg Industries, Inc.: Forging Facility Uses Plant-Wide Energy Assessment to Aid Conversion to Lean Manufacturing (Revised)

    SciTech Connect

    Not Available

    2004-10-01

    Jernberg Industries conducted a plant-wide assessment while converting to lean manufacturing at a forging plant. Seven projects were identified that could yield annual savings of $791,000, 64,000 MMBtu in fuel and 6 million kWh

  3. Quenching and Cold-Work Residual Stresses in Aluminum Hand Forgings : Contour Method Measurement and FEM Prediction

    SciTech Connect

    Prime, M. B.; Newborn, M. A.; Balog, J. A.

    2003-01-01

    The cold-compression stress relief process used to reduce the quench-induced stresses in high-strength aerospace aluminum alloy forgings does not fully relieve the stresses. This study measured and predicted the residual stress in 7050-T74 (solution heat treated, quenched, and artificially overaged) and 7050-T7452 (cold compressed prior to aging) hand forgings. The manufacturing process was simulated by finite element analysis. First, a thermal analysis simulated the quench using appropriate thermal boundary conditions and temperature dependent material properties. Second, a structural analysis used the thermal history and a temperature and strain-rate dependent constitutive model to predict the stresses after quenching. Third, the structural analysis was continued to simulate the multiple cold compressions of the stress relief process. Experimentally, the residual stresses in the forgings were mapped using the contour method, which involved cutting the forgings using wire EDM and then measuring the contour of the cut surface using a CMM. Multiple cuts were used to map different stress components. The results show a spatially periodic variation of stresses that results from the periodic nature of the cold work stress relief process. The results compare favorably with the finite element prediction of the stresses.

  4. Effect of hot-forging on beta phase transformation of a high niobium containing titanium aluminide alloy

    NASA Astrophysics Data System (ADS)

    Cheng, Liang; Xue, Xiangyi; Tang, Bin; Kou, Hongchao; Li, Jinshan

    2015-03-01

    In this paper, ingot breakdown process of a high Nb containing TiAl alloy with a chemical composition of Ti-42.63Al-8.11Nb-0.21W-0.09Y (at.%) has been investigated under conventional forging conditions. It was found that the present alloy possesses superior hot-workability that can be successfully forged by conventional upsetting route due to the appearance of large amount of β/B2 phase, though shear band was observed in the forged-pancake. Further studies revealed that hot-working performed in (α + β) phase region which can effectively impede the β → α transformation and thus significantly increase the volume fraction of β/B2 phase. In contrast, the amount of β/B2 phase was notably reduced by heat treatment at the same conditions. This stress-induced effect is considered to be responsible to the superior hot-workability of the present alloy and the mechanism has been discussed and reasonably clarified. It was also suggested that the stress-induced effect has practical significance that it allows the implementation of conventional multi-step forging process which can develop fine and uniform microstructures suitable for secondary processing.

  5. 31 CFR 370.40 - Can I be held accountable if my negligence contributes to a forged signature?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 31 Money and Finance: Treasury 2 2010-07-01 2010-07-01 false Can I be held accountable if my negligence contributes to a forged signature? 370.40 Section 370.40 Money and Finance: Treasury Regulations... Submission of Transaction Requests Through the Bureau of the Public Debt § 370.40 Can I be held...

  6. Microstructure and corrosion behaviour in biological environments of the new forged low-Ni Co-Cr-Mo alloys.

    PubMed

    Hiromoto, Sachiko; Onodera, Emi; Chiba, Akihiko; Asami, Katsuhiko; Hanawa, Takao

    2005-08-01

    Corrosion behaviour and microstructure of developed low-Ni Co-29Cr-(6, 8)Mo (mass%) alloys and a conventional Co-29Cr-6Mo-1Ni alloy (ASTM F75-92) were investigated in saline solution (saline), Hanks' solution (Hanks), and cell culture medium (E-MEM + FBS). The forging ratios of the Co-29Cr-6Mo alloy were 50% and 88% and that of the Co-29Cr-8Mo alloy was 88%. Ni content in the air-formed surface oxide film of the low-Ni alloys was under the detection limit of XPS. The passive current densities of the low-Ni alloys were of the same order of magnitude as that of the ASTM alloy in all the solutions. The passive current densities of all the alloys did not significantly change with the inorganic ions and the biomolecules. The anodic current densities in the secondary passive region of the low-Ni alloys were lower than that of the ASTM alloy in the E-MEM + FBS. Consequently, the low-Ni alloys are expected to show as high corrosion resistance as the ASTM alloy. On the other hand, the passive current density of the Co-29Cr-6Mo alloy with a forging ratio of 50% was slightly lower than that with a forging ratio of 88% in the saline. The refining of grains by further forging causes the increase in the passive current density of the low-Ni alloy.

  7. 78 FR 8587 - Heraeus Kulzer, LLC., Including On-Site Leased Workers from People Link Staffing, Forge Staffing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-06

    ... Link Staffing, Forge Staffing, Career Transitions and Talent Source; South Bend, Indiana; Amended... information from the company shows that workers leased from Career Transitions and Talent Source were employed... findings, the Department is amending this certification to include workers leased from Career...

  8. Taking the Lead in Science Education: Forging Next-Generation Science Standards. International Science Benchmarking Report. Appendix

    ERIC Educational Resources Information Center

    Achieve, Inc., 2010

    2010-01-01

    This appendix accompanies the report "Taking the Lead in Science Education: Forging Next-Generation Science Standards. International Science Benchmarking Report," a study conducted by Achieve to compare the science standards of 10 countries. This appendix includes the following: (1) PISA and TIMSS Assessment Rankings; (2) Courses and…

  9. Coated 4340 Steel

    DTIC Science & Technology

    2013-08-26

    the effects of three coating systems on the mechanical property, fatigue, and...defined striations or striations-like features were formed in air, Figure A-13(b). On the other hand, intergranular cracking and formation of brittle...steel, in air. Their respective effects on the fatigue resistance of bare 4340 steel were similar in both of the employed environments, air and

  10. Steel Industry Wastes.

    ERIC Educational Resources Information Center

    Schmidtke, N. W.; Averill, D. W.

    1978-01-01

    Presents a literature review of wastes from steel industry, covering publications of 1976-77. This review covers: (1) coke production; (2) iron and steel production; (3) rolling operations; and (4) surface treatment. A list of 133 references is also presented. (NM)

  11. Mechanical Behavior of Cryomilled CP-Ti Consolidated via Quasi-Isostatic Forging

    NASA Astrophysics Data System (ADS)

    Ertorer, Osman; Zúñiga, Alejandro; Topping, Troy; Moss, Wes; Lavernia, Enrique J.

    2009-01-01

    Commercially pure (CP) Ti (Grade 2 with chemical composition 0.190 wt pct O, 0.0165 wt pct N, 0.0030 wt pct C, and 0.013 wt pct Fe) was cryomilled in liquid argon and liquid nitrogen for 8 hours. The influence of the milling environment on the chemistry, grain size, and grain-boundary structure of CP-Ti was studied by means of transmission electron microscopy (TEM), X-ray diffraction (XRD), and chemical analysis. The results show that the final average grain size obtained after 8 hours of cryomilling was ˜20 nm, for both liquid nitrogen and liquid argon cryomilling environments. Grains were observed to be heavily deformed and they did not reveal well-defined boundaries between them. Liquid nitrogen and liquid argon cryomilling environments led to differences in the final powder chemistry. Cryomilling in liquid nitrogen resulted in Ti powders with ˜2 wt pct nitrogen, which caused embrittlement that in turn affected the mechanical behavior of the consolidated materials. Cryomilling in liquid argon resulted in powders with slightly higher oxygen levels than those from liquid nitrogen experiments; this was attributed to the use of stearic acid (CH3(CH2)16COOH) as a process control agent (PCA). The cryomilled powders, in the form of various compositional blends from the argon and nitrogen milling experiments, were subsequently consolidated via quasi-isostatic (QI) forging, for mechanical behavior studies. The mechanical testing results showed that the QI-forged 85 pct as-received +15 pct liquid-argon-cryomilled powder blend exhibited ˜30 pct elongation to fracture, with a yield strength (YS) of 601 MPa and an ultimate tensile strength (UTS) of 711 MPa. In the case of 100 pct liquid-argon-cryomilled and QI-forged material, the YS, UTS, and elongation values were 947 and 995 MPa and 4.32 pct, respectively. The mechanical behavior was discussed in terms of the operative microstructure mechanisms. The enhanced ductility noted in the blended powders was discussed in terms

  12. EAST ELEVATION, LTV STEEL (FORMERLY REPUBLIC STEEL), 8" BAR MILL, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EAST ELEVATION, LTV STEEL (FORMERLY REPUBLIC STEEL), 8" BAR MILL, BUFFALO PLANT. VIEW LOOKING SOUTHWEST FROM ROLL SHOP. 8" BAR MILL DESIGNED AND BUILT BY DONNER STEEL CO. (PREDECESSOR OF REPUBLIC), 1919-1920. FOR DESCRIPTION OF ORIGINAL MILL SEE "IRON AGE", 116\\4 (23 JULY 1925): 201-204. - LTV Steel, 8-inch Bar Mill, Buffalo Plant, Buffalo, Erie County, NY

  13. Essaying the mechanical hypothesis: Descartes, La Forge, and Malebranche on the formation of birthmarks.

    PubMed

    Wilkin, Rebecca M

    2008-01-01

    This essay examines the determination by Cartesians to explain the maternal imagination's alleged role in the formation of birthmarks and the changing notion of monstrosity. Cartesians saw the formation of birthmarks as a challenge through which to demonstrate the heuristic capacity of mechanism. Descartes claimed to be able to explain the transmission of a perception from the mother's imagination to the fetus' skin without having recourse to the little pictures postulated by his contemporaries. La Forge offered a detailed account stating that the failure to explain the maternal imagination's impressions would cast doubt on mechanism. Whereas both characterized the birthmark as a deformation or monstrosity in miniature, Malebranche attributed a role to the maternal imagination in fashioning family likenesses. However, he also charged the mother's imagination with the transmission of original sin.

  14. Investigation of influencing factors on friction during ring test in hot forging using FEM simulation

    NASA Astrophysics Data System (ADS)

    Sethy, Ritanjali; Galdos, Lander; Mendiguren, Joseba; Sáenz de Argandoña, Eneko

    2016-10-01

    Few studies have been undertaken to understand the friction in hot forming, especially when addressing the issue of varying input parameters. Better understanding of their role is therefore needed in order to obtain accurate results in numerical simulations. This paper numerically investigates the high temperature ring compression test to evaluate how frictional behaviour is affected by variations of input parameters (i.e. press velocity, Heat Transfer Coefficient (HTC), processing time, mesh size, material and tool temperature). The high temperature ring-compression process was simulated by means of Finite Element Modelling (FEM) using FORGE-3D software with the ring made of AISI 304L having ratio of outer diameter, inner diameter and height of 30:15:10. According to the results, the HTC and the press velocity have most significant effects on frictional behavior and the calibration curves needed to calculate the friction coefficients after experimental testing.

  15. A Simplified Inverse Approach for the Simulation of Axi-Symmetrical Cold Forging Process

    NASA Astrophysics Data System (ADS)

    Halouani, A.; Li, Y. M.; Abbès, B.; Guo, Y. Q.

    2011-01-01

    This paper presents the formulation of an axi-symmetric element based on an efficient method called "Inverse Approach" (I.A.) for the numerical modeling of cold forging process. In contrast to the classical incremental methods, the Inverse Approach exploits the known shape of the final part and executes the calculation from the final part to the initial billet. The assumptions of the proportional loading and the simplified tool actions make the I.A. calculation very fast. The metal's incompressibility is ensured by the penalty method. The comparison with ABAQUS® and FORGE® shows the efficiency and limitations of the I.A. This simplified method will be a good tool for the preliminary preform design.

  16. Development of Replacements for Phoscoating Used in Forging, Extrusion and Metal Forming Processes

    SciTech Connect

    Kerry Barnett

    2003-03-01

    Many forging, extrusion, heading and other metal forming processes use graphite-based lubricants, phosphate coatings, and other potentially hazardous or harmful substances to improve the tribology of the metal forming process. The application of phosphate-based coatings has long been studied to determine if other synthetic ''clean'' lubricants could provide the same degree of protection afforded by phoscoatings and its formulations. So far, none meets the cost and performance objectives provided by phoscoatings as a general aid to the metal forming industry. In as much as phoscoatings and graphite have replaced lead-based lubricants, the metal forming industry has had previous experience with a legislated requirement to change processes. However, without a proactive approach to phoscoating replacement, many metal forming processes could find themselves without a cost effective tribology material necessary for the metal forming process

  17. Effects of Forged Stock and Pure Aluminum Coating on Cryogenic Performance of Heat Treated Aluminum Mirrors

    NASA Technical Reports Server (NTRS)

    Toland, Ronald W.; Ohl, Raymond G.; Barthelmy, Michael P.; Zewari, S. Wahid; Greenhouse, Matthew A.; MacKenty, John W.

    2003-01-01

    We present the results of an on-going test program designed to empirically determine the effects of different stress relief procedures for aluminum mirrors. Earlier test results identified a preferred heat treatment for flat and spherical mirrors diamond turned from blanks cut out of Al 6061-T651 plate stock. Further tests have been performed on mirrors from forged stock and one set from plate stock coated with Alumiplate(trademark) aluminum coating to measure the effect of these variables on cryogenic performance. The mirrors are tested for figure error and radius of curvature at room temperature and at 80 K for three thermal cycles. We correlate the results of our optical testing with heat treatment and metallographic data.

  18. Development of Iron-based Closed-Cell Foams by Powder Forging and Rolling

    NASA Astrophysics Data System (ADS)

    Paswan, Dayanand; Mistry, Dhananjay; Sahoo, K. L.; Srivastava, V. C.

    2013-08-01

    In the present investigation, an attempt has been made to develop in situ sandwich Fe-based foams using powder forging and rolling. Several metal carbonates are first studied by thermo gravimetric analysis to find out their suitability to be used as foaming agent for iron-based foams. Barium carbonate is found to be the most promising foaming agent among other suitable options studied such as SrCO3, CaCO3, MgCO3, etc. The effects of process parameters such as precursor composition, sintering temperature, foaming temperature and time, and content of foaming agent have been studied. The microstructural characteristics of the sintered precursor have been studied by means of optical and scanning electron microscopy. It was found that a good pore structure can be obtained using 2-3% C in Fe and 3% BaCO3 as foaming agent and by foaming at around 1350 °C for 3-6 min.

  19. Development of {gamma}+{alpha}{sub 2}+B2 type titanium aluminide for forged turbine rotors

    SciTech Connect

    Tetsui, Toshimitsu

    1995-12-31

    In order to apply TiAl for forged turbine rotors, hot deformability at manufacturing process and high temperature strength at application are both required. For these requirements a new {gamma}+{alpha}{sub 2}+B2 type TiAl (named KAT-3) has been developed. The alloy composition is Ti-45Al-8Nb-2Cr (at%) and this alloy consists of three phases: {gamma}, {alpha}{sub 2} and B2. Because B2 phase has excellent hot deformability and {gamma}/{alpha}{sub 2} lamellar structure has excellent high temperature strength, the above contradictory requirements for TiAl can both be achieved by optimizing the manufacturing process. In this paper various properties required for turbine rotor materials of this alloy were investigated, especially in comparison with Inconel 713C.

  20. Occupational noise exposure in small scale hand tools manufacturing (forging) industry (SSI) in Northern India.

    PubMed

    Singh, Lakhwinder Pal; Bhardwaj, Arvind; Deepak, K K; Bedi, Raman

    2009-08-01

    Occupational noise has been recognized as hazardous for the human beings. A high noise level in forging shops is considered to lower the labour productivity and cause illness however occupational noise is being accepted as an integral part of the job. The present study has been carried out in 5 small scale hand tool forging units (SSI) of different sizes in Northern India in Punjab. Noise levels at various sections were measured. OSHA norms for hearing conservation has been incorporated which includes an exchange rate of 5 dB (A), criterion level at 90 dB (A), criterion time of 8 h, threshold level=80 dB (A), upper limit=140 dB (A) and with F/S response rate. Equivalent sound pressure level (L(eq)) has been measured in various sections of these plants. Noise at various sections like hammer section, cutting presses, punching, grinding and barrelling process was found to be >90 dB (A), which is greater than OSHA norms. A cross-sectional study on the basis of questionnaire has been carried out. The results of which revealed that 68% of the workers are not wearing ear protective equipments out of these 50% were not provided with PPE by the company. About 95% of the workers were suffering speech interference though high noise annoyance was reported by only 20%. It has been established that the maximum noise exposure is being taken by the workers as they are working more than 8h a day for six days per week. More than 90% workers are working 12 to 24 h over time per week which lead to very high noise exposure i.e. 50 to 80% per week higher than exposure time/week in USA or European countries(15, 16)).

  1. FEM simulation for cold press forging forming of the round-fin heat sink

    NASA Astrophysics Data System (ADS)

    Wang, Kesheng; Han, Yu; Zhang, Haiyan; Zhang, Lihan

    2013-05-01

    In this paper, the finite element method is used to investigate the forming process of cold press forging for the round-fin heat sink in the automotive lighting. A series of simulations on the round-fin heat sink forming using the program DEFORM were carried out. The blank thickness and friction coefficient on the formation of round-fin were studied, and the tooling structure with counterpressure on the heat sink formation was also investigated. The results show that the blank thickness is very good for the round-fin formation, and the thicker the blank is, the better the round-fin can be formed; and also When both the punch-blank interface and the die-blank interface have the same value of friction factor, the larger value of friction factor is in favor of round-fin forming, the further investigation reveals that the friction at the punch-blank interface has more significant effect on preventing the initiation of flow-through compared with the friction at the die-blank interface, which implies that the punch-blank interface has more significant effect on the material flow in the formation of round-fin. Meanwhile, The tooling structure with counterpressure is helpful to the formation of round-fin heat sink, which not only ensures the height of each round-fin on the heat sink is uniform but also retards the initiation of flow-through on the reverse side of round-fin. In addition, the experiments of press forging process were conducted to validate the finite element analysis, and the simulation results are in good agreement with the experimental data.

  2. Pod of Ultrasonic Detection of Synthetic Hard Alpha Inclusions in Titanium Aircraft Engine Forgings

    NASA Astrophysics Data System (ADS)

    Thompson, R. B.; Meeker, W. Q.; Brasche, L. J. H.

    2011-06-01

    The probability of detection (POD) of inspection techniques is a key input to estimating the lives of structural components such as aircraft engines. This paper describes work conducted as a part of the development of POD curves for the ultrasonic detection of synthetic hard alpha (SHA) inclusions in titanium aircraft engine forgings. The sample upon which the POD curves are to be based contains four types of right circular SHAs that have been embedded in a representative titanium forging, as well as a number of flat bottomed holes (FBHs). The SHAs were of two sizes, ♯3 and ♯5, with each size including seeds with nominal nitrogen concentrations of both 3 and 17 wt. %. The FBHs included sizes of ♯1, ♯3, and ♯5. This discreteness of the data poses a number of challenges to standard processes for determining POD. For example, at each concentration of nitrogen, there are only two sizes, with 10 inspection opportunities each. Fully empirical, standard methodologies such as â versus a provide less than an ideal framework for such an analysis. For example, there is no way to describe the beam limiting effect whereby the signal no longer increases the flaw grows larger than the beam, one can only determine POD at the two concentration levels present in the block, and confidence bounds tend to be broad because of the limited data available for each case. In this paper, we will describe strategies involving the use of physics-based models to overcome these difficulties by allowing the data from all reflectors to be analyzed by a single statistical model. Included will be a discussion of the development of the physics-based model, its comparison to the experimental data (obtained at multiple sites with multiple operators) and its implications regarding the statistical analysis, whose details will be given in a separate article by Li et al. in this volume.

  3. Fatigue Isotropy in Cross-Rolled, Hardened Isotropic-Quality Steel

    NASA Astrophysics Data System (ADS)

    Temmel, C.; Karlsson, B.; Ingesten, N.-G.

    2008-05-01

    Deformation and forging operations often introduce microstructural orientation and, therewith, mechanical anisotropy to steel. Flattened manganese sulfide inclusions are held responsible for a great part of fatigue anisotropy. Isotropic-quality (IQ) steel maintains the mechanical isotropy of the material, even after a deformation operation. Isotropic material generally contains little S and, therewith, few manganese sulfides. Further, the IQ steels used in this investigation were Ca treated. The Ca treatment improves the shape stability of the sulfides, even during a hot-working deformation. Two commercial materials were compared for their fatigue response, a standard medium-carbon steel with 0.04 wt pct S and a low-sulfur variant that underwent IQ treatment. The two batches were cross-rolled to plates with a deformation ratio of 4.5, leading to in-plane isotropy. Tension-compression fatigue testing was performed in longitudinal and short transversal directions relative to the rolling plane. The results showed strong anisotropy of the fatigue behavior for the standard material. The performance in the short transverse direction, with the principal stress perpendicular to the flattened inclusions, was inferior. The IQ material with nearly spherical inclusions was almost perfectly isotropic, with only slightly worse fatigue response in the short transverse direction.

  4. Damascus steel ledeburite class

    NASA Astrophysics Data System (ADS)

    Sukhanov, D. A.; Arkhangelsky, L. B.; Plotnikova, N. V.

    2017-02-01

    Discovered that some of blades Damascus steel has an unusual nature of origin of the excess cementite, which different from the redundant phases of secondary cementite, cementite of ledeburite and primary cementite in iron-carbon alloys. It is revealed that the morphological features of separate particles of cementite in Damascus steels lies in the abnormal size of excess carbides having the shape of irregular prisms. Considered three hypotheses for the formation of excess cementite in the form of faceted prismatic of excess carbides. The first hypothesis is based on thermal fission of cementite of a few isolated grains. The second hypothesis is based on the process of fragmentation cementite during deformation to the separate the pieces. The third hypothesis is based on the transformation of metastable cementite in the stable of angular eutectic carbide. It is shown that the angular carbides are formed within the original metastable colony ledeburite, so they are called “eutectic carbide”. It is established that high-purity white cast iron is converted into of Damascus steel during isothermal soaking at the annealing. It was revealed that some of blades Damascus steel ledeburite class do not contain in its microstructure of crushed ledeburite. It is shown that the pattern of carbide heterogeneity of Damascus steel consists entirely of angular eutectic carbides. Believe that Damascus steel refers to non-heat-resistant steel of ledeburite class, which have similar structural characteristics with semi-heat-resistant die steel or heat-resistant high speed steel, differing from them only in the nature of excess carbide phase.

  5. Cobalt free maraging steel

    SciTech Connect

    Floreen, S.

    1984-04-17

    The subject invention is directed to ferrous-base alloys, particularly to a cobalt-free maraging steel of novel chemistry characterized by a desired combination of strength and toughness, notwithstanding that cobalt is non-essential.

  6. Structural Amorphous Steels

    NASA Astrophysics Data System (ADS)

    Lu, Z. P.; Liu, C. T.; Thompson, J. R.; Porter, W. D.

    2004-06-01

    Recent advancement in bulk metallic glasses, whose properties are usually superior to their crystalline counterparts, has stimulated great interest in fabricating bulk amorphous steels. While a great deal of effort has been devoted to this field, the fabrication of structural amorphous steels with large cross sections has remained an alchemist’s dream because of the limited glass-forming ability (GFA) of these materials. Here we report the discovery of structural amorphous steels that can be cast into glasses with large cross-section sizes using conventional drop-casting methods. These new steels showed interesting physical, magnetic, and mechanical properties, along with high thermal stability. The underlying mechanisms for the superior GFA of these materials are discussed.

  7. Glass Stronger than Steel

    DOE R&D Accomplishments Database

    Yarris, Lynn

    2011-03-28

    A new type of damage-tolerant metallic glass, demonstrating a strength and toughness beyond that of steel or any other known material, has been developed and tested by a collaboration of researchers from Berkeley Lab and Caltech.

  8. Joining Steel Armor - Intermix

    DTIC Science & Technology

    1979-03-01

    TARADCOM a d ki Lk A el B~ 0el RWET0 TECHNICAL REPORT NO. 12311 JOINING STEEL ARMOR - INTERMIX March 1979 U U * S* ’ "U .by B. . A.SCEV * U...authorized documents. O "if TECHNICAL REPORT NO. 12311 JOINING STEEL ARMOR - INTERMIX BY B. A. SCHEVO March 1979 AMS: 3197..6D.4329 TARADCOM ARMOR AND...Intermix Process ...... ........ 3 Test Procedures - Intermix Armor ........ ......... 4 Mock Hull ................. ..................... 5 Results

  9. Life after Steel

    ERIC Educational Resources Information Center

    Mangan, Katherine

    2013-01-01

    Bobby Curran grew up in a working-class neighborhood in Baltimore, finished high school, and followed his grandfather's steel-toed bootprints straight to Sparrows Point, a 3,000-acre sprawl of industry on the Chesapeake Bay. College was not part of the plan. A gritty but well-paying job at the RG Steel plant was Mr. Curran's ticket to a secure…

  10. Ferrium M54 Steel

    DTIC Science & Technology

    2015-03-18

    15 to 18% (reference 1). Beyond this range the alloy becomes more noble than steel and loses its sacrificial protection property . Therefore, Zn-14...for a 7075-T651 aluminum alloy , which was subjected to biaxial fatigue loading in 3.5% NaCl solution (reference 27). NAWCADPAX/TIM-2014/292...Edition, Properties and Selection: Iron, Steels, and High- Performance Alloys , ASM International, 1990, p. 395. 8. G. L. Spencer and D. J. Duquette

  11. Frictional behaviors of some nitrogen ceramics in conformal contact with tin coated Al-Si alloy, steel and MMC

    NASA Astrophysics Data System (ADS)

    Wang, Q.; Cheng, H. S.; Fine, M. E.

    1994-07-01

    The frictional behavior of certain nitrogen-containing ceramics, such as silicon nitride, alpha sialons, and beta sialons as journal materials were studied in conformal contact with a tin-coated Al-Si alloy (Al-Si/Sn), forged 1141 steel and a cast aluminum matrix composite with silicon carbide reinforcement (cast metal matrix composites (MMC)) as bearing materials while lubricated with SAE 10W30. A case-hardened 1016 steel was also tested with the Al-Si/Sn and cast MMC bearings under the same conditions. The friction values of the ceramic and the steel journal wear pairs were compared and their frictional behaviors were evaluated. Silicon nitride and one of the beta sialons exhibited higher load-supporting capacities than the others when they were in contact with the 1141 steel bearings. The journal surface roughness was found to be very important when the journals were in contact with the Al-Si/Sn bearings. The frictional behavior of the ceramics and cast MMC pairs and the steel and cast MMC pairs were controlled by different wear machanisms, namely for the former, hard particle pull-out and matrix plowing, and for the latter, iron transfer from the journal to the cast MMC bearing surface.

  12. Residual stresses and microstructure of H13 steel formed by combining two different direct fabrication methods

    SciTech Connect

    Maziasz, P.J.; Payzant, E.A.; Schlienger, M.E.; McHugh, K.M.

    1998-10-13

    Direct fabrication (DF) of tool and die steels by rapid solidification techniques can produce near-net-shape parts and components with unique properties, and without the distortions caused by conventional normalizing and tempering heat-treatments. When combined with sophisticated 3-dimensional computer control to build complex solid metallic shapes, one has the capability of using DF for rapid prototyping. Spray forming using a circular converging/diverging atomizer is a DF process being developed at the Idaho National Engineering and Environmental Laboratory (INEEL) for rapid manufacturing of tool and die steels like H-13. Laser Engineered Net Shaping (LENS{trademark}) is a DF process being developed at Sandia National laboratory (SNL). LENS involves laser-processing fine powder metal sprays into complex, fully-dense 3-dimensional shapes with fine-detail control that would allow rapid prototyping of tools or dies. One logical combination of the two processes is to combine spray forming to replicate most of the die surface and backing, and then t o build other die-surface fine-features with LENS. Premium H-13 steel was used because it belongs to the widely used group of hot-work steels that have good resistance to heat, pressure and abrasion for metal-forging and aluminum die-casting applications. The microstructure and residual stresses that exist across the interface of a composite metal produced by these two DF methods are critical parameters in producing crack-free components with functional properties. The purpose of this work is to combine unique neutron-diffraction facilities at the Oak Ridge National Laboratory (ORNL) for measuring bulk residual stresses with these two different DF processes to characterize LENS deposits of H-13 steel made on a spray-formed base of that same steel.

  13. The influence of aluminum and carbon on the abrasion resistance of high manganese steels

    NASA Astrophysics Data System (ADS)

    Buckholz, Samuel August

    Abrasive wear testing of lightweight, austenitic Fe-Mn-Al-C cast steel has been performed in accordance with ASTM G65 using a dry sand, rubber wheel, abrasion testing apparatus. Testing was conducted on a series of Fe-30Mn-XAl-YC-1Si-0.5Mo chemistries containing aluminum levels from 2.9 to 9.5 wt.% and carbon levels from 0.9 to 1.83 wt.%. Solution treated materials having an austenitic microstructure produced the highest wear resistance. Wear resistance decreased with higher aluminum, lower carbon, and higher hardness after age hardening. In the solution treated condition the wear rate was a strong function of the aluminum to carbon ratio and the wear rate increased with a parabolic dependence on the Al/C ratio, which ranged from 1.8 to 10.2. Examination of the surface wear scar revealed a mechanism of plowing during abrasion testing and this method of material removal is sensitive to work hardening rate. Work hardening behavior was determined from tensile tests and also decreased with increasing Al/C ratio and after aging hardening. The loss of wear resistance is related to short range ordering of Al and C in the solution treated materials and kappa-carbide precipitation in age hardened materials and both contribute to planar slip and lower work hardening rates. A high carbon tool steel (W1) and a bainitic low alloy steel (SAE 8620) were also tested for comparison. A lightweight steel containing 6.5 wt.% Al and 1.2 wt.% C has wear resistance comparable to within 5% of the bainitic SAE 8620 steel forging currently used for the Bradley Fighting Vehicle track shoe and this cast Fe-Mn-Al-C steel, at equivalent tensile properties, would be 10% lighter.

  14. Establishment of a Computer-Aided Design (CAD)/Computer-Aided Manufacturing (CAM) Process for the Production of Cold Forged Gears

    DTIC Science & Technology

    1984-01-01

    Continue on reverse side if necessary and Identify by block number) Computer Aided Design/Manufacturing (CAD/CAM), Spur and Helical Gears, Cold Forging...for cold forging spur and helical gears. The geometry of the spur and helical gears has been obtained from the kinematics of the hobbing/shaper machines...or shaping) to cut the electrode for a helical gear die were then computed using the corrections described above. A computer program called GEARDI

  15. Copper-beryllium alloy, bars, rods, shapes, and forgings 98Cu 1.9Be solution heat treated tb00 (a). (SAE standard)

    SciTech Connect

    1996-09-01

    This specification covers one type of copper-beryllium alloy in the form of bars, rods, forgings, and forging stock. These products have been used typically for parts requiring a combination of high strength, good wear resistance, and corrosion resistance and where electrical conductivity or low magnetic susceptibility may be important, but usage is not limited to such applications. Alloy: C17200 UNS Number: C1720.

  16. Articles comprising ferritic stainless steels

    SciTech Connect

    Rakowski, James M.

    2016-06-28

    An article of manufacture comprises a ferritic stainless steel that includes a near-surface region depleted of silicon relative to a remainder of the ferritic stainless steel. The article has a reduced tendency to form an electrically resistive silica layer including silicon derived from the steel when the article is subjected to high temperature oxidizing conditions. The ferritic stainless steel is selected from the group comprising AISI Type 430 stainless steel, AISI Type 439 stainless steel, AISI Type 441 stainless steel, AISI Type 444 stainless steel, and E-BRITE.RTM. alloy, also known as UNS 44627 stainless steel. In certain embodiments, the article of manufacture is a fuel cell interconnect for a solid oxide fuel cell.

  17. Influence of Hot forging on Tribological behavior of Al6061-TiB2 In-situ composites

    NASA Astrophysics Data System (ADS)

    Pradeep kumar, G. S.; Keshavamurthy, R.; kuppahalli, Prabhakar; kumari, Prachi

    2016-09-01

    Al6061-TiB2 metal matrix composite was fabricated by stir casting technique via in-situ reaction, using mixture of Al6061 alloy, Potassium tetraflouroborate salt (KBF4) and tetraflourotitanate (K2TiF6). The cast composites were processed to hot forging, SEM studies; X- ray Diffraction studies (XRD), Microhardness and Dry friction and wear tests. Pin on disc type machine was used to perform tribological tests over a load range of 20-100N and sliding velocities of 0.314-1.57m/s. SEM and XRD studies confirms formation of fine in-situ TiB2 particles. Composites exhibit higher Microhardness, improved wear resistance and Lower COF with formation of TiB2 particles when compared with the unreinforced alloy. Compared to cast alloy and its Composites, forged alloy and its composites show superior Tribological behavior under similar test conditions.

  18. Simulations and Experiments of Hot Forging Design and Evaluation of the Aircraft Landing Gear Barrel Al Alloy Structure

    NASA Astrophysics Data System (ADS)

    Ram Prabhu, T.

    2016-04-01

    In the present study, the hot forging design of a typical landing gear barrel was evolved using finite element simulations and validated with experiments. A DEFORM3D software was used to evolve the forging steps to obtain the sound quality part free of defects with minimum press force requirements. The hot forging trial of a barrel structure was carried out in a 30 MN hydraulic press based on the simulation outputs. The tensile properties of the part were evaluated by taking samples from all three orientations (longitudinal, long transverse, short transverse). The hardness and microstructure of the part were also investigated. To study the soundness of the product, fluorescent penetrant inspection and ultrasonic testing were performed in order to identify any potential surface or internal defects in the part. From experiments, it was found that the part was formed successfully without any forging defects such as under filling, laps, or folds that validated the effectiveness of the process simulation. The tensile properties of the part were well above the specification limit (>10%) and the properties variation with respect to the orientation was less than 2.5%. The part has qualified the surface defects level of Mil Std 1907 Grade C and the internal defects level of AMS 2630 Class A (2 mm FBh). The microstructure shows mean grain length and width of 167 and 66 µm in the longitudinal direction. However, microstructure results revealed that the coarse grain structure was observed on the flat surface near the lug region due to the dead zone formation. An innovative and simple method of milling the surface layer after each pressing operation was applied to solve the problem of the surface coarse grain structure.

  19. Hydrogeology and ground-water quality of Valley Forge National Historical Park, Montgomery County, Pennsylvania

    USGS Publications Warehouse

    Sloto, Ronald A.; McManus, B. Craig

    1996-01-01

    Valley Forge National Historical Park is just southwest of the Commodore Semiconductor Group (CSG) National Priorities List (Superfund) Site, a source of volatile organic compounds (VOC's) in ground water. The 7.5-square-mile study area includes the part of the park in Lower Providence and West Norriton Townships in Montgomery County, Pa., and surrounding vicinity. The park is underlain by sedimentary rocks of the Upper Triassic age stockton Formation. A potentiometric-surface map constructed from water levels measured in 59 wells shows a cone of depression, approximately 0.5 mile in diameter, centered near the CSG Site. The cone of depression is caused by the pumping of six public supply wells. A ground-water divide between the cone of depression and Valley Forge National Historical Park provides a hydraulic barrier to the flow of ground water and contaminants from the CSG Site to the park. If pumping in the cone of depression was to cease, water levels would recover, and the ground-water divide would shift to the north. A hydraulic gradient between the CSG Site and the Schuylkill River would be established, causing contaminated ground water to flow to the park. Water samples were collected from 12 wells within the park boundary and 9 wells between the park boundary and the ground-water divide to the north of the park. All water samples were analyzed for physical properties (field determinations), nutrients, common ions, metals and other trace constituents, and VOC's. Water samples from the 12 wells inside the park boundary also were analyzed for pesticides. Concentrations of inorganic constituents in the water samples did not exceed U.S. Environmental Protection Agency maximum contaminant levels. Very low concentrations of organic compounds were detected in some of the water samples. VOC's were detected in water from 76 percent of the wells sampled; the maximum concentration detected was 5.8 micrograms per liter of chloroform. The most commonly detected VOC was

  20. Microstructures and Mechanical Properties of Ultrafine Grained Ti-47Al-2Cr (at %) Alloy Produced Using Powder Compact Forging

    NASA Astrophysics Data System (ADS)

    Nadakuduru, Vijay N.; Zhang, Deliang; Cao, Peng; Gabbittas, Brian

    Development of innovative techniques to produce gamma TiAl based alloys, with good mechanical properties, while still maintaining ultra fine grain size can be rewarding, but also is a great challenge. In the present study study a Ti-47Al-2Cr (at %) alloy has been synthesized by directly forging green powder compacts of a Ti/Al/Cr composite powder produced by high energy mechanical milling of a mixture of elemental Ti, Al, Cr powders. It has been found that the density of the bulk consolidated alloy sample after forging decreases from 95% of the theoretical density in the central region to 84% in the periphery region. The microstructure of the bulk alloy consisted of several Ti rich regions, which was expected to be mainly due to initial powder condition. The room temperature tensile strength of the samples produced from this process was found to be in the range of 115 - 130 MPa. The roles of canning and green powder compact density in determining the forged sample porosity level and distribution are discussed.

  1. Effect of solution treatment on stress corrosion cracking behavior of an as-forged Mg-Zn-Y-Zr alloy

    NASA Astrophysics Data System (ADS)

    Wang, S. D.; Xu, D. K.; Wang, B. J.; Sheng, L. Y.; Han, E. H.; Dong, C.

    2016-07-01

    Effect of solid solution treatment (T4) on stress corrosion cracking (SCC) behavior of an as-forged Mg-6.7%Zn-1.3%Y-0.6%Zr (in wt.%) alloy has been investigated using slow strain rate tensile (SSRT) testing in 3.5 wt.% NaCl solution. The results demonstrated that the SCC susceptibility index (ISCC) of as-forged samples was 0.95 and its elongation-to-failure (εf) was only 1.1%. After T4 treatment, the SCC resistance was remarkably improved. The ISCC and εf values of T4 samples were 0.86 and 3.4%, respectively. Fractography and surface observation indicated that the stress corrosion cracking mode for as-forged samples was dominated by transgranular and partially intergranular morphology, whereas the cracking mode for T4 samples was transgranular. In both cases, the main cracking mechanism was associated with hydrogen embrittlement (HE). Through alleviating the corrosion attack of Mg matrix, the influence of HE on the SCC resistance of T4 samples can be greatly suppressed.

  2. Effect of solution treatment on stress corrosion cracking behavior of an as-forged Mg-Zn-Y-Zr alloy.

    PubMed

    Wang, S D; Xu, D K; Wang, B J; Sheng, L Y; Han, E H; Dong, C

    2016-07-08

    Effect of solid solution treatment (T4) on stress corrosion cracking (SCC) behavior of an as-forged Mg-6.7%Zn-1.3%Y-0.6%Zr (in wt.%) alloy has been investigated using slow strain rate tensile (SSRT) testing in 3.5 wt.% NaCl solution. The results demonstrated that the SCC susceptibility index (ISCC) of as-forged samples was 0.95 and its elongation-to-failure (εf) was only 1.1%. After T4 treatment, the SCC resistance was remarkably improved. The ISCC and εf values of T4 samples were 0.86 and 3.4%, respectively. Fractography and surface observation indicated that the stress corrosion cracking mode for as-forged samples was dominated by transgranular and partially intergranular morphology, whereas the cracking mode for T4 samples was transgranular. In both cases, the main cracking mechanism was associated with hydrogen embrittlement (HE). Through alleviating the corrosion attack of Mg matrix, the influence of HE on the SCC resistance of T4 samples can be greatly suppressed.

  3. Dependence of Microstructure on Solution and Aging Treatment for Near-β Forged TA15 Ti-Alloy

    NASA Astrophysics Data System (ADS)

    Sun, Zhichao; Wu, Huili; Ma, Xiaoyong; Mao, Xiaojun; Yang, He

    2016-10-01

    For TA15 Ti-alloy, a tri-modal microstructure was obtained via near-β forging combined with solution and aging treatment (SAT) with a short time of air cooling (AC) during forgings transferring before water quenching (WQ). The influence of SAT conditions on final microstructures via 970 °C/0.1 s-1/60%/(AC + WQ) and SAT was investigated. Solution temperature determined the proportion of α and β phases and mainly affected the volume fraction of secondary lamellar α. Solution time mainly influenced the morphology of secondary lamellar α. Solution cooling method was the main factor affecting the thickness of lamellar α. Lower cooling rate resulted in more and thicker lamellar α. Aging treatment had little influence on the volume fraction, size, and morphology of each phase in the microstructure. The main function of aging treatment was to homogenize and stabilize the microstructure. The volume fraction and thickness of lamellar α were increased, and the distribution homogeneity became better during aging. Under the given forging condition, the reasonable solution and aging conditions to obtain tri-modal microstructure were determined as 930 °C/1~2 h/AC + 550~600 °C/5 h/AC.

  4. Effect of solution treatment on stress corrosion cracking behavior of an as-forged Mg-Zn-Y-Zr alloy

    PubMed Central

    Wang, S. D.; Xu, D. K.; Wang, B. J.; Sheng, L. Y.; Han, E. H.; Dong, C.

    2016-01-01

    Effect of solid solution treatment (T4) on stress corrosion cracking (SCC) behavior of an as-forged Mg-6.7%Zn-1.3%Y-0.6%Zr (in wt.%) alloy has been investigated using slow strain rate tensile (SSRT) testing in 3.5 wt.% NaCl solution. The results demonstrated that the SCC susceptibility index (ISCC) of as-forged samples was 0.95 and its elongation-to-failure (εf) was only 1.1%. After T4 treatment, the SCC resistance was remarkably improved. The ISCC and εf values of T4 samples were 0.86 and 3.4%, respectively. Fractography and surface observation indicated that the stress corrosion cracking mode for as-forged samples was dominated by transgranular and partially intergranular morphology, whereas the cracking mode for T4 samples was transgranular. In both cases, the main cracking mechanism was associated with hydrogen embrittlement (HE). Through alleviating the corrosion attack of Mg matrix, the influence of HE on the SCC resistance of T4 samples can be greatly suppressed. PMID:27387817

  5. Microstructure characterization and mechanical behaviors of a hot forged high Nb containing PM-TiAl alloy

    SciTech Connect

    Li, Jianbo; Liu, Yong; Liu, Bin; Wang, Yan; Liang, Xiaopeng; He, Yuehui

    2014-09-15

    In this work, the effects of deformation on the microstructure and mechanical behaviors of TiAl alloy were investigated. Deformed microstructure observation was characterized by scanning electron microscopy, electron back scattered diffraction technique, transmission electron microscopy and DEFORM-3D software. Results indicated that the core area of the TiAl pancake was characterized by completely dynamically recrystallized microstructures, however some residual lamellar colonies can be observed near the edge area, which are primarily caused by a temperature drop and inhomogenous plastic flow. The main softening mechanism is dynamic recrystallization of γ grains. The as-forged alloy exhibited excellent mechanical properties at both room temperature and high temperature. Tensile test results showed that the ultimate tensile strength of the alloy increased from 832 MPa at room temperature to 853 MPa at 700 °C, while the elongation increased from 2.7% to 17.8%. Even at the temperature of 850 °C, the ultimate tensile strength maintained 404 MPa, and the elongation increased to 75%. The as-forged alloy also exhibited remarkable low-temperature superplasticity at 850 °C, with an elongation of 120%. - Highlights: • The core area of the TiAl pancake was characterized by DRX microstructure. • The elongation at RT is higher than that of other high Nb-containing TiAl alloys. • The forged alloy exhibited low-temperature superplasticity at 850 °C.

  6. Effect of solution treatment on the fatigue behavior of an as-forged Mg-Zn-Y-Zr alloy

    NASA Astrophysics Data System (ADS)

    Wang, S. D.; Xu, D. K.; Wang, B. J.; Han, E. H.; Dong, C.

    2016-04-01

    Through investigating and comparing the fatigue behavior of an as-forged Mg-6.7Zn-1.3Y-0.6Zr (wt.%) alloy before and after solid solution treatment (T4) in laboratory air, the effect of T4 treatment on fatigue crack initiation was disclosed. S-N curves illustrated that the fatigue strength of as-forged samples was 110 MPa, whereas the fatigue strength of T4 samples was only 80 MPa. Observations to fracture surfaces demonstrated that for as-forged samples, fatigue crack initiation sites were covered with a layer of oxide film. However, due to the coarse grain structure and the dissolution of MgZn2 precipitates, the activation and accumulation of {10–12} twins in T4 samples were much easier, resulting in the preferential fatigue crack initiation at cracked twin boundaries (TBs). Surface characterization demonstrated that TB cracking was mainly ascribed to the incompatible plastic deformation in the twinned area and nearby α-Mg matrix.

  7. Effect of Nano-Scale and Micro-Scale Yttria Reinforcement on Powder Forged AA-7075 Composites

    NASA Astrophysics Data System (ADS)

    Joshi, Tilak C.; Prakash, U.; Dabhade, Vikram V.

    2016-05-01

    The present investigation deals with the development of AA-7075 metal matrix composites reinforced with nano yttria particles (0.1 to 3 vol.%) and micron yttria particles (1 to 15 vol.%) by powder forging. Matrix powders (AA-7075) and reinforcement powders (yttria) were blended, cold compacted, sintered under pure nitrogen, and finally hot forged in a closed floating die. The hot forged samples were artificially age hardened at 121 °C for various time durations to determine the peak aging time. The mechanical properties in the peak-aged condition as well as density and microstructure were determined and correlated with the reinforcement size and content. The nano composites exhibited a well-densified structure as well as better hardness and tensile/compressive strength as compared to micro-scale composites. The mechanical properties in nano-scale composites peaked at 0.5 vol.% yttria addition while for micro-scale composites these properties peaked at 5 vol.% yttria addition.

  8. Effect of solution treatment on the fatigue behavior of an as-forged Mg-Zn-Y-Zr alloy.

    PubMed

    Wang, S D; Xu, D K; Wang, B J; Han, E H; Dong, C

    2016-04-01

    Through investigating and comparing the fatigue behavior of an as-forged Mg-6.7Zn-1.3Y-0.6Zr (wt.%) alloy before and after solid solution treatment (T4) in laboratory air, the effect of T4 treatment on fatigue crack initiation was disclosed. S-N curves illustrated that the fatigue strength of as-forged samples was 110 MPa, whereas the fatigue strength of T4 samples was only 80 MPa. Observations to fracture surfaces demonstrated that for as-forged samples, fatigue crack initiation sites were covered with a layer of oxide film. However, due to the coarse grain structure and the dissolution of MgZn2 precipitates, the activation and accumulation of {10-12} twins in T4 samples were much easier, resulting in the preferential fatigue crack initiation at cracked twin boundaries (TBs). Surface characterization demonstrated that TB cracking was mainly ascribed to the incompatible plastic deformation in the twinned area and nearby α-Mg matrix.

  9. Effect of solution treatment on the fatigue behavior of an as-forged Mg-Zn-Y-Zr alloy

    PubMed Central

    Wang, S. D.; Xu, D. K.; Wang, B. J.; Han, E. H.; Dong, C.

    2016-01-01

    Through investigating and comparing the fatigue behavior of an as-forged Mg-6.7Zn-1.3Y-0.6Zr (wt.%) alloy before and after solid solution treatment (T4) in laboratory air, the effect of T4 treatment on fatigue crack initiation was disclosed. S-N curves illustrated that the fatigue strength of as-forged samples was 110 MPa, whereas the fatigue strength of T4 samples was only 80 MPa. Observations to fracture surfaces demonstrated that for as-forged samples, fatigue crack initiation sites were covered with a layer of oxide film. However, due to the coarse grain structure and the dissolution of MgZn2 precipitates, the activation and accumulation of {10–12} twins in T4 samples were much easier, resulting in the preferential fatigue crack initiation at cracked twin boundaries (TBs). Surface characterization demonstrated that TB cracking was mainly ascribed to the incompatible plastic deformation in the twinned area and nearby α-Mg matrix. PMID:27032532

  10. View northwest, wharf A, sheet steel bulkhead, steel lift tower ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View northwest, wharf A, sheet steel bulkhead, steel lift tower - U.S. Coast Guard Sandy Hook Station, Western Docking Structure, West of intersection of Canfield Road & Hartshorne Drive, Highlands, Monmouth County, NJ

  11. Superclean steel development

    SciTech Connect

    Richman, R.H.; McNaughton, W.P. )

    1989-12-01

    The Electric Power Research Institute has actively encouraged and sponsored a number of research projects to develop a superclean 3.5NiCrMoV steel for low pressure turbine rotors. Such steel is highly resistant to temper embrittlement and will thus facilitate increased efficiency in electricity generation through the use of higher operating temperatures and improvements in design. The objective of this interim report was to integrate the results that have been generated to date worldwide in the pursuit of superclean steel. The report contains detailed findings that enable the interested utility to evaluate how the results affect utility decision making. A companion document has been written to summarize the findings from this technical report. The results indicate that steels with impurity contents typical of the superclean specification can be manufactured for production rotors with properties that equal or exceed those for conventional 3.5NiCrMoV rotors in every detail. Of particular interest are the results that the superclean steels appear to be virtually resistant to temper embrittlement to a temperature of 500 {degrees}C. 109 refs., 51 figs., 9 tabs.

  12. Trends in steel technology. [Dual phase and HSLA steels

    SciTech Connect

    Not Available

    1980-01-01

    Dual phase steels, composite products, and microalloyed steels are making inroads in the automotive industry applications for bumpers, automotive parts, bodies, mechanical parts, suspension and steering equipment and truck bumpers. New steels are also used to support solar mirrors and cells, in corrosive environments in the oil and gas industry, fusion reactors, and pressure vessels in nuclear power plants. (FS)

  13. Continuous steel production and apparatus

    DOEpatents

    Peaslee, Kent D.; Peter, Jorg J.; Robertson, David G. C.; Thomas, Brian G.; Zhang, Lifeng

    2009-11-17

    A process for continuous refining of steel via multiple distinct reaction vessels for melting, oxidation, reduction, and refining for delivery of steel continuously to, for example, a tundish of a continuous caster system, and associated apparatus.

  14. Forging Harmony in the Social Organism: Industry and the Power of Psychometric Techniques

    ERIC Educational Resources Information Center

    Herman, Frederik

    2014-01-01

    This article analyses the initiating role of the steel industry in educational selection by means of psychometric techniques used in the psycho-physiological laboratory associated with a vocational school in Luxembourg founded in 1914. It first considers the origins of, and initial meanings bestowed upon, this first (and perhaps also last)…

  15. Three-dimensional resistivity tomography of Vulcan's forge, Vulcano Island, southern Italy

    NASA Astrophysics Data System (ADS)

    Revil, A.; Johnson, T. C.; Finizola, A.

    2010-08-01

    9,525 DC resistivity measurements were taken along 9 profiles crossing the volcanic edifice of La Fossa di Vulcano (the forge of God Vulcan in ancient Roman mythology), Vulcano Island (Italy) using a total of 958 electrode locations. This unique data set has been inverted in 3D by minimizing the L2 norm of the data misfit using a Gauss-Newton approach. The true 3D inversion was performed using parallel processing on an unstructured tetrahedral mesh containing 75,549 finite-element nodes and 398,208 elements to accurately model the topography of the volcanic edifice. The 3D tomogram shows a very conductive body (>0.1 S/m) comprised inside the Pietre Cotte crater with conductive volumes that are consistent with the position of temperature and CO2 anomalies at the ground surface. This conductive body is interpreted as the main hydrothermal body. It is overlaid by a resistive and cold cap in the bottom of the crater. The position of the conductive body is consistent with the deformation source responsible for the observed 1990-1996 deflation of the volcano associated with a decrease of hydrothermal activity.

  16. Quantifying performance of ultrasonic immersion inspection using phased arrays for curvilinear disc forgings

    NASA Astrophysics Data System (ADS)

    Brown, Roy H.; Dobson, Jeff; Pierce, S. Gareth; Dutton, Ben; Collison, Ian

    2017-02-01

    Use of full-matrix capture (FMC), combined with the total focusing method (TFM), has been shown to provide improvements to flaw sensitivity within components of irregular geometry. Ultrasonic immersion inspection of aerospace discs requires strict specifications to ensure full coverage - one of which is that all surfaces should be machined flat. The ability to detect defects through curved surfaces, with an equivalent sensitivity to that obtained through flat surfaces could bring many advantages. In this work, the relationship between surface curvature and sensitivity to standard defects was quantified for various front wall radii. Phased array FMC immersion inspection of curved components was simulated using finite element modelling, then visualized using surface-compensated focusing techniques. This includes the use of BRAIN software developed at the University of Bristol for production of TFM images. Modelling results were compared to experimental data from a series of test blocks with a range of curvatures, containing standard defects. The sensitivity to defects is evaluated by comparing the performance to conventional methods. Results are used to highlight the benefits and limitations of these methods relating to the application area of aerospace engine disc forgings.

  17. The evolving role of health educators in advancing patient safety: forging partnerships and leading change.

    PubMed

    Mercurio, Annette

    2007-04-01

    At least 1.5 million preventable injuries because of adverse drug events occur in the United States each year, according to an Institute of Medicine report. IOM and other organizations at the forefront of health care improvement emphasize that stronger partnerships between patients, their families, and health care providers are necessary to make health care safer. Health educators possess a skill set and an ethical framework that effectively equip them to advance patient and family-centered care and contribute in other significant ways to a safer health care system. Health educators in clinical settings are playing varied and significant roles in advancing patient safety. They are removing barriers to clear communication and forging partnerships between patients, their families, and staff. Health educators are leading patient safety culture change within their institutions and contributing to the shift from provider-centric to patient-centric systems. To expand their impact in improving patient safety, health educators in clinical settings are participating in public awareness campaigns. In seeking to enhance patient safety, health educators face a number of challenges. To successfully manage those, health educators must expand their knowledge, broaden connections, and engage patients and families in meaningful ways.

  18. [Joint prostheses components of warm-forged and surface treated Ti-6Al-7Nb alloy].

    PubMed

    Semlitsch, M; Weber, H; Streicher, R M; Schön, R

    1991-05-01

    In 1978 development of a TiAl alloy with the inert alloying element niobium was initiated. In 1984, the optimal composition was found to be Ti-6Al-7Nb (Protasul-100). This custom-made alloy for implants has the same alpha/beta micro-structure and equally good mechanical properties as Ti-6Al-4V. The corrosion resistance of Ti-6Al-7Nb is better than that of pure titanium and Ti-6Al-4V, due to the very dense and stable passive layer. Since 1985, highly stressed anchoring stems of various hip prosthesis designs have been manufactured from hot-forged Ti-6Al-7Nb/Protasul-100. Polished surfaces of hip, knee or wrist joints made of Ti-6Al-7Nb intended to articulate with polyethylene are surface-treated by the application of a very hard, 3-5 microns thick titanium nitride coating (Tribosul-TiN), or by oxygen diffusion hardening (Tribosul-ODH) to a depth of 30 microns.

  19. Seasonal food use by white-tailed deer at Valley Forge National Historical Park, Pennsylvania, USA

    NASA Astrophysics Data System (ADS)

    Cypher, Brian L.; Yahner, Richard H.; Cypher, Ellen A.

    1988-03-01

    Food habits of white-tailed deer ( Odocoileus virginianus) were examined from January to November 1984 via fecal-pellet analysis at Valley Forge National Historical Park (VFNHP), which represents an “island” habitat for deer surrounded by extensive urbanization, in southeastern Pennsylvania. In addition, use of fields by deer was compared to food habits. Herbaceous vegetation (forbs, leaves of woody plants, and conifer needles) was the predominant food type in all seasons except fall. Acorns and graminoids (grasses and sedges) were important food resources in fall and spring, respectively. Use of woody browse (twigs) was similar among seasons. Field use was relatively high during fall, winter without snow cover (<20 cm), and spring when food resources in fields were readily available. In contrast, use of fields was lowest in summer when preferred woodland foods were available and in winter with snow cover when food in fields was not readily accessible. Patterns of food-type use by deer at VFNHP indicate the year-round importance of nonwoody foods and field habitats to deer populations on public lands such as national parks in the northeastern United States.

  20. Analytical and experimental evaluation of a proposed self-forging fragment munition

    SciTech Connect

    Tuft, D.B.; Folsom, E.N.

    1982-12-27

    Analytical and experimental tools have been used to study the formation of a proposed self-forging fragment projectile. The primary objective of this study is the determination of the interior and exterior shape of the fully formed fragment, and to determine if the fragment tumbles in flight. In addition, it is of interest to compare computer predictions to experimental results. An experiment was performed using high speed photography and high-energy flash x-ray radiography to study liner and case motion and projectile formation. Fabrication and assembly tolerances were closely controlled in an effort to eliminate tolerances as a possible source of fragment instability. X-ray film-density contours were analyzed to determine the fully formed fragment interior and exterior shape. Down-range yaw screens showed fragment tumbling in flight. The computed fragment shape was compared to experimental results and it was found that a retaining ring in the computational model near the liner periphery had a significant effect on the final computed fragment shape. With the retaining ring in the computational model and full two-way sliding between all material interfaces, the final computed fragment showed very good agreement with the experiment on both exterior and interior shapes.

  1. Forging Hispanic communities in new destinations: A case study of Durham, NC1

    PubMed Central

    Flippen, Chenoa A.; Parrado, Emilio A.

    2013-01-01

    The Chicago School of urban sociology and its extension in the spatial assimilation model have provided the dominant framework for understanding the interplay between immigrant social and spatial mobility. However, the main tenets of the theory were derived from the experience of pre-war, centralized cities; scholars falling under the umbrella of the Los Angeles school have recently challenged the extent to which they are applicable to the contemporary urban form, which is characterized by sprawling, decentralized, and multi-nucleated development. Indeed, new immigrant destinations, such as those scattered throughout the American Southeast, are both decentralized and lack prior experience with large scale immigration. Informed by this debate this paper traces the formation and early evolution of Hispanic neighborhoods in Durham, NC, a new immigrant destination. Using qualitative data we construct a social history of immigrant neighborhoods and apply survey and census information to examine the spatial pattern of neighborhood succession. We also model the sorting of immigrants across neighborhoods according to personal characteristics. Despite the many differences in urban form and experience with immigration, the main processes forging the early development of Hispanic neighborhoods in Durham are remarkably consistent with the spatial expectations from the Chicago School, though the sorting of immigrants across neighborhoods is more closely connected to family dynamics and political economy considerations than purely human capital attributes. PMID:24482612

  2. Effects of Forged Stock and Pure Aluminum Coating on Cryogenic Performance of Heat Treated Aluminum Mirrors

    NASA Technical Reports Server (NTRS)

    Toland, Ronald; Ohl, Raymond G.; Barthelmy, Michael P.; Zewari, S. Wahid; Greenhouse, Matthew A.; MacKenty, John W.

    2003-01-01

    In spite of its baseline mechanical stress relief, aluminum 6061-T651 harbors some residual stress that may relieve and distort mirror figure to unacceptable levels at cryogenic operating temperatures unless relieved during fabrication. Cryogenic instruments using aluminum mirrors for both ground-based and space IR astronomy have employed a variety of heat treatment formulae, with mixed results. We present the results of an on-going test program designed to empirically determine the effects of different stress relief procedures for aluminum mirrors. Earlier test results identified a preferred heat treatment for flat and spherical mirrors diamond turned from blanks cut out of Al6061-T651 plate stock. Further tests have been performed on mirrors from forged stock and one set from plate stock coated with Alumiplate(TM) aluminum coating to measure the effect of these variables on cryogenic performance. The mirrors are tested for figure error and radius of curvature at room temperature and at 80 K for three thermal cycles. We correlate the results of our optical testing with heat treatment and metallographic data.

  3. Forging School-Scientist Partnerships: A Case of Easier Said than Done?

    NASA Astrophysics Data System (ADS)

    Falloon, Garry

    2013-12-01

    Since the early 1980s, a number of initiatives have been undertaken worldwide which have involved scientists and teachers working together in projects designed to support the science learning of students. Many of these have attempted to establish school-scientist partnerships. In these, scientists, teachers, and students formed teams engaged in mutually beneficial science-based activities founded on principles such as equal recognition and input, and shared vision, responsibility and risk. This article uses two partnership programmes run by a New Zealand Science Research Institute, to illustrate the challenges faced by scientists and teachers as they attempted to forge meaningful and effective partnerships. It argues that achieving the theorised position of a shared partnership space at the intersection of the worlds of scientists and teachers is problematic, and that scientists must instead be prepared to penetrate deeply into the world of the classroom when undertaking any such interactions. Findings indicate epistemological differences, curriculum and school systems and issues, and teacher efficacy and science knowledge significantly affect the process of partnership formation. Furthermore, it is argued that a re-thinking of partnerships is needed to reflect present economic and education environments, which are very different to those in which they were originally conceived nearly 30 years ago. It suggests that technology has an important role to play in future partnership interactions.

  4. Stainless steel tanks

    SciTech Connect

    Hagen, T.

    1995-12-31

    There is currently no recognized code or standard for the design, fabrication and construction of atmospheric and low pressure stainless steel tanks. At the present time these tanks are being designed to individual specifications, manufacturers standards or utilizing other codes and standards that may not be entirely applicable. Recognizing the need, the American Petroleum Institute will be publishing a new appendix to the API STD 650 Standard which will cover stainless steel tanks. The new Appendix was put together by a Task Group of selected individuals from the API Subcommittee of Pressure Vessels and Tanks from the Committee on Refinery Equipment. This paper deals with the development and basis of the new appendix. The new appendix will provide a much needed standard to cover the material, design, fabrication, erection and testing requirements for vertical, cylindrical, austenitic stainless steel aboveground tanks in nonrefrigerated service.

  5. Insight on the inconsistencies of Barkhausen signal measurements for radiation damage on nuclear reactor steel

    SciTech Connect

    Barroso, Soraia Pirfo; Fitzpatrick, Michael E.; Gillemot, Ferenc; Horváth, Marta; Horváth, Ákos; Szekely, Richard

    2014-02-18

    This paper focuses on the use of magnetic measurements, using Barkhausen signals to determine the irradiation effects, attempting to predict fracture toughness changes on nuclear reactor structural materials and correlating these measurements to mechanical testing and microstructure. For this study, two types of nuclear reactor materials were investigated: one sensitive to irradiation effects, the JRQ IAEA's reference material (A533B- -type); and one resistant material, 15KH2MFA WWER's reactor pressure vessel steel. The samples were carefully identified within the original heat block, i.e. forged or rolled plate. These calibrated samples were irradiated at different neutron fluences up to 10{sup 23} n/m{sup 2}. We show how microstructural anisotropy can mask the irradiation effects in the magnetic measurements. A correlation between irradiation effects and the magnetic measurements is explained based on this study.

  6. Stress corrosion evaluation of HP 9Ni-4Co-0.20C steel

    NASA Technical Reports Server (NTRS)

    Torres, Pablo D.

    1993-01-01

    A stress corrosion cracking (SCC) evaluation was undertaken on HP 9Ni-4Co-0.20C steel in support of the Advanced Solid Rocket Motor (ASRM) program. This alloy was tested in plate, bar, and ring forging forms. Several heat treating procedures yielded ultimate tensile strengths ranging from 1,407 to 1,489 MPa (204 to 216 ksi). The test environments were high humidity, alternate immersion in 3.5-percent NaCl, and 5-percent salt spray. Stress levels ranged from 25 to 90 percent of the yield strengths. The majority of the tests were conducted for 90 days. Even though the specimens rusted significantly in salt spray and alternate immersion, no failures occurred. Therefore, it can be concluded that this alloy, in the forms and at the strength levels tested, is highly resistant to SCC in salt and high humidity environments.

  7. A-3 steel work completed

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Stennis Space Center engineers celebrated a key milestone in construction of the A-3 Test Stand on April 9 - completion of structural steel work. Workers with Lafayette (La.) Steel Erector Inc. placed the last structural steel beam atop the stand during a noon ceremony attended by more than 100 workers and guests.

  8. Influence of Shot Peening on Surface Characteristics of High-Speed Steels

    NASA Astrophysics Data System (ADS)

    Harada, Yasunori; Fukaura, Kenzo

    High-speed steels are generally used for the cutting of other hard materials. These are hard materials, and can be used at high temperatures. Therefore, some of them are used for warm metal forming such as forging. However, in the tools used in hot working, an excellent hot hardness and long-life fatigue are strongly required. In the present study, the influence of shot peening on the surface characteristics of high-speed steels was investigated. Shot peening imparts compressive residual stresses on the metal surface, thus improving the fatigue life of the machine parts. In the experiment, the shot peening treatment was performed using an air-type shot peening machine. The shots made of cemented carbide were used. The workpieces were two types, W-type and Mo-type alloys. Surface roughness, compressive residual stress, and hardness of the peened workpieces were measured. It was found that shot peening using the hard shot media was effective in improving the surface characteristics of high-speed steels.

  9. Influence of Cooling Rate on Phase Formationin Spray-Formed H13 Tool Steel

    SciTech Connect

    K. M. Mchugh; Y. Lin; Y. Zhou; E. J. Lavernia

    2006-04-01

    Spray forming is an effective way to process many tool steels into near-net-shape molds, dies and related tooling. The general approach involves depositing atomized droplets onto a refractory pattern in order to image the pattern’s features. The pattern is removed and the die is fitted into a standard holding fixture. This approach results in significant cost and lead-time savings compared to conventional machining, Spray-formed dies perform well in many industrial forming operations, oftentimes exhibiting extended die life over conventional dies. Care must be exercised when spray forming tool steel dies to minimize porosity and control the nature and distribution of phases and residual stresses. Selection of post-deposition heat treatment is important to tailor the die’s properties (hardness, strength, impact energy, etc.) for a particular application. This paper examines how the cooling rate and other processing parameters during spray processing and heat treatment of H13 tool steel influence phase formation. Results of case studies on spray-formed die performance in forging, extrusion and die casting, conducted by industry during production runs, will be described.

  10. Improved mechanical properties of A 508 class 3 steel for nuclear pressure vessel through steelmaking

    SciTech Connect

    Kim, J.T.; Kwon, H.K.; Kim, K.C.; Kim, J.M.

    1997-12-31

    The present work is concerned with the steelmaking practices which improve the mechanical properties of the A 508 class 3 steel for reactor pressure vessel. Three kinds of steelmaking practices were applied to manufacture the forged heavy wall shell for reactor pressure vessel, that is, the vacuum carbon deoxidation (VCD), modified VCD containing aluminum and silicon-killing. The segregation of the chemical elements through the thickness was quite small so that the variations of the tensile properties at room temperature were small and the anisotropy of the impact properties was hardly observed regardless of the steelmaking practices. The Charpy V-notch impact properties and the reference nil-ductile transition temperature by drop weight test were significantly improved by the modified VCD and silicon-killing as compared with those of the steel by VCD. Moreover, the plane strain fracture toughness values of the materials by modified VCD and silicon-killing practices was much higher than those of the steel by VCD. These were resulted from the fining of austenite grain size. It was observed that the grain size was below 20 {micro}m (ASTM No. 8.5) when using the modified VCD and silicon-killing, compared to 50 {micro}m (ASTM No. 7.0) when using VCD.

  11. Cryo-quenched Fe-Ni-Cr alloy single crystals: A new decorative steel

    DOE PAGES

    Boatner, Lynn A.; Kolopus, James A.; Lavrik, Nicolay V.; ...

    2016-08-31

    In this paper, a decorative steel is described that is formed by a process that is unlike that of the fabrication methods utilized in making the original Damascus steels over 2000 years ago. The decorative aspect of the steel arises from a three-dimensional surface pattern that results from cryogenically quenching polished austenitic alloy single crystals into the martensitic phase that is present below 190 K. No forging operations are involved – the mechanism is entirely based on the metallurgical phase properties of the ternary alloy. The symmetry of the decorative pattern is determined and controlled by the crystallographic orientation andmore » symmetry of the 70%Fe,15%Ni,15%Cr alloy single crystals. Finally, in addition to using “cuts” made along principal crystallographic surface directions, an effectively infinite number of other random-orientation “cuts” can be utilized to produce decorative patterns where each pattern is unique after the austenitic-to-martensitic phase transformation.« less

  12. Microbial-Influenced Corrosion of Corten Steel Compared with Carbon Steel and Stainless Steel in Oily Wastewater by Pseudomonas aeruginosa

    NASA Astrophysics Data System (ADS)

    Mansouri, Hamidreza; Alavi, Seyed Abolhasan; Fotovat, Meysam

    2015-07-01

    The microbial corrosion behavior of three important steels (carbon steel, stainless steel, and Corten steel) was investigated in semi petroleum medium. This work was done in modified nutrient broth (2 g nutrient broth in 1 L oily wastewater) in the presence of Pseudomonas aeruginosa and mixed culture (as a biotic media) and an abiotic medium for 2 weeks. The behavior of corrosion was analyzed by spectrophotometric and electrochemical methods and at the end was confirmed by scanning electron microscopy. The results show that the degree of corrosion of Corten steel in mixed culture, unlike carbon steel and stainless steel, is less than P. aeruginosa inoculated medium because some bacteria affect Corten steel less than other steels. According to the experiments, carbon steel had less resistance than Corten steel and stainless steel. Furthermore, biofilm inhibits separated particles of those steels to spread to the medium; in other words, particles get trapped between biofilm and steel.

  13. Braze alloy spreading on steel

    NASA Technical Reports Server (NTRS)

    Siewert, T. A.; Heine, R. W.; Lagally, M. G.

    1978-01-01

    Scanning electron microscopy (SEM) and Auger electron microscopy (AEM) were employed to observe elemental surface decomposition resulting from the brazing of a copper-treated steel. Two types of steel were used for the study, stainless steel (treated with a eutectic silver-copper alloy), and low-carbon steel (treated with pure copper). Attention is given to oxygen partial pressure during the processes; a low enough pressure (8 x 10 to the -5th torr) was found to totally inhibit the spreading of the filler material at a fixed heating cycle. With both types of steel, copper treatment enhanced even spreading at a decreased temperature.

  14. Development, pre-qualification, and production history of 60 ksi UOE steel tendon pipe for AUGER tension leg platform

    SciTech Connect

    Takeuchi, Izumi; Nishimoto, Koji; Nagase, Makoto; Nishizawa, Masashi; Smith, J.D.; Bowen, K.G. |

    1995-12-31

    AUGER Tension Leg Platform (TLP) tendons consisted of specially designed threaded forged connections welded to thick-walled tubular tendon segments. This paper describes the development, pre-qualification testing, and production properties of the 60ksi-26 in. O.D. x 1.300 in. wall-thickness steel pipes which formed the TLP tendon segments. The tendon pipe segments were manufactured by the UOE process using Thermo-Mechanical Control Process (TMCP) steel plate with double-submerged arc seam welding (DSAW). Stringent mechanical properties and dimensional control requirements were established for the tendon pipes, with special emphasis on weldability and resulting high heat-affected-zone (HAZ) crack-tip opening displacement (CTOD) fracture toughness. The weldability (hydrogen delayed cracking resistance) and fracture toughness of the HAZ showed high and stable performance. Tight dimensional control, especially ovality, ensured minimal high-low during the making of girth welds at the construction site. Limiting high-low is an important parameter for lowering local stress-concentration factor (SCF) and increasing fatigue life. These results are discussed with particular reference to the steel Local Brittle Zone (LBZ) concept. Narrow range control of the TMCP steel chemistry, plate manufacturing process, and UOE pipe-forming and seam-welding process insured that all requirements were met for the production quantity.

  15. PERFORMANCE IMPROVEMENT OF CREEP-RESISTANT FERRITIC STEEL WELDMENTS THROUGH THERMO-MECHANICAL TREATMENT AND ALLOY DESIGN

    SciTech Connect

    Yamamoto, Yukinori; Babu, Prof. Sudarsanam Suresh; Shassere, Benjamin; Yu, Xinghua

    2016-01-01

    Two different approaches have been proposed for improvement of cross-weld creep properties of the high temperature ferrous structural materials for fossil-fired energy applications. The traditional creep strength-enhanced ferritic (CSEF) steel weldments suffer from Type IV failures which occur at the fine-grained heat affected zone (FGHAZ). In order to minimize the premature failure at FGHAZ in the existing CSEF steels, such as modified 9Cr-1Mo ferritic-martensitic steels (Grade 91), a thermo-mechanical treatment consisting of aus-forging/rolling and subsequent aus-aging is proposed which promotes the formation of stable MX carbonitrides prior to martensitic transformation. Such MX remains undissolved during welding process, even in FGHAZ, which successfully improves the cross-weld creep properties. Another approach is to develop a new fully ferrtic, creep-resistant FeCrAl alloy which is essentially free from Type IV failure issues. Fe-30Cr-3Al base alloys with minor alloying additions were developed which achieved a combination of good oxidation/corrosion resistance and improved tensile and creep performance comparable or superior to Grade 92 steel.

  16. Cutting tool study: 21-6-9 stainless steel

    SciTech Connect

    McManigle, A.P.

    1992-07-29

    The Rocky Flats Plant conducted a study to test cermet cutting tools by performing machinability studies on War Reserve product under controlled conditions. The purpose of these studies was to determine the most satisfactory tools that optimize tool life, minimize costs, improve reliability and chip control, and increase productivity by performing the operations to specified Accuracies. This study tested three manufacturers` cermet cutting tools and a carbide tool used previously by the Rocky Flats Plant for machining spherical-shaped 21-6-9 stainless steel forgings (Figure 1). The 80-degree diamond inserts were tested by experimenting with various chip-breaker geometries, cutting speeds, feedrates, and cermet grades on the outside contour roughing operation. The cermets tested were manufactured by Kennametal, Valenite, and NTK. The carbide tool ordinarily used for this operation is manufactured by Carboloy. Evaluation of tho tools was conducted by investigating the number of passes per part and parts per insert, tool wear, cutting time, tool life, surface finish, and stem taper. Benefits to be gained from this study were: improved part quality, better chip control, increased tool life and utilization, and greater fabrication productivity. This was to be accomplished by performing the operation to specified accuracies within the scope of the tools tested.

  17. Cutting tool study: 21-6-9 stainless steel

    SciTech Connect

    McManigle, A.P.

    1992-07-29

    The Rocky Flats Plant conducted a study to test cermet cutting tools by performing machinability studies on War Reserve product under controlled conditions. The purpose of these studies was to determine the most satisfactory tools that optimize tool life, minimize costs, improve reliability and chip control, and increase productivity by performing the operations to specified Accuracies. This study tested three manufacturers' cermet cutting tools and a carbide tool used previously by the Rocky Flats Plant for machining spherical-shaped 21-6-9 stainless steel forgings (Figure 1). The 80-degree diamond inserts were tested by experimenting with various chip-breaker geometries, cutting speeds, feedrates, and cermet grades on the outside contour roughing operation. The cermets tested were manufactured by Kennametal, Valenite, and NTK. The carbide tool ordinarily used for this operation is manufactured by Carboloy. Evaluation of tho tools was conducted by investigating the number of passes per part and parts per insert, tool wear, cutting time, tool life, surface finish, and stem taper. Benefits to be gained from this study were: improved part quality, better chip control, increased tool life and utilization, and greater fabrication productivity. This was to be accomplished by performing the operation to specified accuracies within the scope of the tools tested.

  18. Numerical Simulation of Damage during Forging with Superimposed Hydrostatic Pressure by Active Media

    NASA Astrophysics Data System (ADS)

    Behrens, B.-A.; Hagen, T.; Röhr, S.; Sidhu, K. B.

    2007-05-01

    The effective reduction of energy consumption and a reasonable treatment of resources can be achieved by minimizing a component's weight using lightweight metals. In this context, aluminum alloys play a major role. Due to their material-sided restricted formability, the mentioned aluminum materials are difficult to form. The plasticity of a material is ascertained by its maximum forming limit. It is attained, when the deformation causes mechanical damage within the material. Damage of that sort is reached more rapidly, the greater the tensile strength rate in relation to total tension rate. A promising approach of handling these low ductile, high-strength aluminum alloys within a forming process, is forming with a synchronized superposition of comprehensive stress by active media such as by controlling oil pressure. The influence of superimposed hydrostatic pressure on the flow stress was analyzed as well as the formability for different procedures at different hydrostatic pressures and temperature levels. It was observed that flow stress is independent of superimposed hydrostatic pressure. Neither the superimposed pressure has an influence on the plastic deformation, nor does a pressure dependent material hardening due to increasing hydrostatic pressure take place. The formability increases with rising hydrostatic pressure. The relative gain at room temperature and increase of the superimposed pressure from 0 to 600 bar for tested materials was at least 140 % and max. 220 %. Therefore in this paper, based on these experimental observations, it is the intended to develop a numerical simulation in order to predict ductile damage that occurs in the bulk forging process with superimposed hydrostatic pressure based Lemaitre's damage model.

  19. Numerical Simulation of Damage during Forging with Superimposed Hydrostatic Pressure by Active Media

    SciTech Connect

    Behrens, B.-A.; Hagen, T.; Roehr, S.; Sidhu, K. B.

    2007-05-17

    The effective reduction of energy consumption and a reasonable treatment of resources can be achieved by minimizing a component's weight using lightweight metals. In this context, aluminum alloys play a major role. Due to their material-sided restricted formability, the mentioned aluminum materials are difficult to form. The plasticity of a material is ascertained by its maximum forming limit. It is attained, when the deformation causes mechanical damage within the material. Damage of that sort is reached more rapidly, the greater the tensile strength rate in relation to total tension rate. A promising approach of handling these low ductile, high-strength aluminum alloys within a forming process, is forming with a synchronized superposition of comprehensive stress by active media such as by controlling oil pressure. The influence of superimposed hydrostatic pressure on the flow stress was analyzed as well as the formability for different procedures at different hydrostatic pressures and temperature levels. It was observed that flow stress is independent of superimposed hydrostatic pressure. Neither the superimposed pressure has an influence on the plastic deformation, nor does a pressure dependent material hardening due to increasing hydrostatic pressure take place. The formability increases with rising hydrostatic pressure. The relative gain at room temperature and increase of the superimposed pressure from 0 to 600 bar for tested materials was at least 140 % and max. 220 %. Therefore in this paper, based on these experimental observations, it is the intended to develop a numerical simulation in order to predict ductile damage that occurs in the bulk forging process with superimposed hydrostatic pressure based Lemaitre's damage model.

  20. Forge Welding of Magnesium Alloy to Aluminum Alloy Using a Cu, Ni, or Ti Interlayer

    NASA Astrophysics Data System (ADS)

    Yamagishi, Hideki; Sumioka, Junji; Kakiuchi, Shigeki; Tomida, Shogo; Takeda, Kouichi; Shimazaki, Kouichi

    2015-08-01

    The forge-welding process was examined to develop a high-strength bonding application of magnesium (Mg) alloy to aluminum (Al) alloy under high-productivity conditions. The effect of the insert material on the tensile strength of the joints, under various preheat temperatures and pressures, was investigated by analyzing the reaction layers of the bonded interface. The tensile strengths resulting from direct bonding, using pure copper (Cu), pure nickel (Ni), and pure titanium (Ti) inserts were 56, 100, 119, and 151 MPa, respectively. The maximum joint strength reached 93 pct with respect to the Mg cast billet. During high-pressure bonding, a microscopic plastic flow occurred that contributed to an anchor effect and the generation of a newly formed surface at the interface, particularly prominent with the Ti insert in the form of an oxide layer. The bonded interfaces of the maximum-strength inserts were investigated using scanning electron microscopy-energy-dispersive spectroscopy and electron probe microanalysis. The diffusion reaction layer at the bonded interface consisted of brittle Al-Mg intermetallics having a thickness of approximately 30 μm. In contrast, for the three inserts, the thicknesses of the diffusion reaction layer were infinitely thin. For the pure Ti insert, exhibiting the maximum tensile strength value among the inserts tested, focused ion beam-transmission electron microscopy-EDS analysis revealed a 60-nm-thick Al-Ti reaction layer, which had formed at the bonded interface on the Mg alloy side. Thus, a high-strength Al-Mg bonding method in air was demonstrated, suitable for mass production.

  1. 77 FR 30589 - SteelRiver Infrastructure Partners LP, SteelRiver Infrastructure Associates LLC, SteelRiver...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-23

    ... Surface Transportation Board SteelRiver Infrastructure Partners LP, SteelRiver Infrastructure Associates LLC, SteelRiver Infrastructure Fund North America LP, and Patriot Funding LLC--Control Exemption--Patriot Rail Corp., et al. SteelRiver Infrastructure Partners LP (SRIP LP), SteelRiver...

  2. Ferritic steel melt and FLiBe/steel experiment : melting ferritic steel.

    SciTech Connect

    Troncosa, Kenneth P.; Smith, Brandon M.; Tanaka, Tina Joan

    2004-11-01

    In preparation for developing a Z-pinch IFE power plant, the interaction of ferritic steel with the coolant, FLiBe, must be explored. Sandia National Laboratories Fusion Technology Department was asked to drop molten ferritic steel and FLiBe in a vacuum system and determine the gas byproducts and ability to recycle the steel. We tried various methods of resistive heating of ferritic steel using available power supplies and easily obtained heaters. Although we could melt the steel, we could not cause a drop to fall. This report describes the various experiments that were performed and includes some suggestions and materials needed to be successful. Although the steel was easily melted, it was not possible to drip the molten steel into a FLiBe pool Levitation melting of the drop is likely to be more successful.

  3. History of ultrahigh carbon steels

    SciTech Connect

    Wadsworth, J.; Sherby, O.D.

    1997-06-20

    The history and development of ultrahigh carbon steels (i.e., steels containing between 1 and 2.l percent C and now known as UHCS) are described. The early use of steel compositions containing carbon contents above the eutectoid level is found in ancient weapons from around the world. For example, both Damascus and Japanese sword steels are hypereutectoid steels. Their manufacture and processing is of interest in understanding the role of carbon content in the development of modern steels. Although sporadic examples of UHCS compositions are found in steels examined in the early part of this century, it was not until the mid-1970s that the modern study began. This study had its origin in the development of superplastic behavior in steels and the recognition that increasing the carbon content was of importance in developing that property. The compositions that were optimal for superplasticity involved the development of steels that contained higher carbon contents than conventional modern steels. It was discovered, however, that the room temperature properties of these compositions were of interest in their own right. Following this discovery, a period of intense work began on understanding their manufacture, processing, and properties for both superplastic forming and room temperature applications. The development of superplastic cast irons and iron carbides, as well as those of laminated composites containing UHCS, was an important part of this history.

  4. Evaluation of Stress Corrosion Cracking Susceptibility Using Fracture Mechanics Techniques, Part 1. [environmental tests of aluminum alloys, stainless steels, and titanium alloys

    NASA Technical Reports Server (NTRS)

    Sprowls, D. O.; Shumaker, M. B.; Walsh, J. D.; Coursen, J. W.

    1973-01-01

    Stress corrosion cracking (SSC) tests were performed on 13 aluminum alloys, 13 precipitation hardening stainless steels, and two titanium 6Al-4V alloy forgings to compare fracture mechanics techniques with the conventional smooth specimen procedures. Commercially fabricated plate and rolled or forged bars 2 to 2.5-in. thick were tested. Exposures were conducted outdoors in a seacoast atmosphere and in an inland industrial atmosphere to relate the accelerated tests with service type environments. With the fracture mechanics technique tests were made chiefly on bolt loaded fatigue precracked compact tension specimens of the type used for plane-strain fracture toughness tests. Additional tests of the aluminum alloy were performed on ring loaded compact tension specimens and on bolt loaded double cantilever beams. For the smooth specimen procedure 0.125-in. dia. tensile specimens were loaded axially in constant deformation type frames. For both aluminum and steel alloys comparative SCC growth rates obtained from tests of precracked specimens provide an additional useful characterization of the SCC behavior of an alloy.

  5. 46 CFR 59.20-1 - Carbon-steel or alloy-steel castings.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Carbon-steel or alloy-steel castings. 59.20-1 Section 59... BOILERS, PRESSURE VESSELS AND APPURTENANCES Welding Repairs to Castings § 59.20-1 Carbon-steel or alloy-steel castings. Defects in carbon-steel or alloy-steel castings may be repaired by welding. The...

  6. 46 CFR 59.20-1 - Carbon-steel or alloy-steel castings.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Carbon-steel or alloy-steel castings. 59.20-1 Section 59... BOILERS, PRESSURE VESSELS AND APPURTENANCES Welding Repairs to Castings § 59.20-1 Carbon-steel or alloy-steel castings. Defects in carbon-steel or alloy-steel castings may be repaired by welding. The...

  7. 46 CFR 59.20-1 - Carbon-steel or alloy-steel castings.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Carbon-steel or alloy-steel castings. 59.20-1 Section 59... BOILERS, PRESSURE VESSELS AND APPURTENANCES Welding Repairs to Castings § 59.20-1 Carbon-steel or alloy-steel castings. Defects in carbon-steel or alloy-steel castings may be repaired by welding. The...

  8. 46 CFR 59.20-1 - Carbon-steel or alloy-steel castings.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Carbon-steel or alloy-steel castings. 59.20-1 Section 59... BOILERS, PRESSURE VESSELS AND APPURTENANCES Welding Repairs to Castings § 59.20-1 Carbon-steel or alloy-steel castings. Defects in carbon-steel or alloy-steel castings may be repaired by welding. The...

  9. 46 CFR 59.20-1 - Carbon-steel or alloy-steel castings.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Carbon-steel or alloy-steel castings. 59.20-1 Section 59... BOILERS, PRESSURE VESSELS AND APPURTENANCES Welding Repairs to Castings § 59.20-1 Carbon-steel or alloy-steel castings. Defects in carbon-steel or alloy-steel castings may be repaired by welding. The...

  10. High Fragmentation Steel Production Process

    DTIC Science & Technology

    1984-01-01

    phase of the project entailed the purchase and metallurgical characterization of two heats of HF-1 steel from different vendors. Performed by...At>-A 13^ nzt AD AD-E401 117 CONTRACTOR REPORT ARLCD-CR-83049 HIGH FRAGMENTATION STEEL PRODUCTION PROCESS ^"fP-PTTMirj A 1 James F. Kane...Report 6. PERFORMING ORG. REPORT NUMBER High Fragmentation Steel Production Process 7. AUTHORfs; James F. Kane, Ronald L. Kivak, Colin C. MacCrindle

  11. Process for dezincing galvanized steel

    DOEpatents

    Morgan, W.A.; Dudek, F.J.; Daniels, E.J.

    1998-07-14

    A process is described for removing zinc from galvanized steel. The galvanized steel is immersed in an electrolyte containing at least about 15% by weight of sodium or potassium hydroxide and having a temperature of at least about 75 C and the zinc is galvanically corroded from the surface of the galvanized steel. The material serving as the cathode is principally a material having a standard electrode potential which is intermediate of the standard electrode potentials of zinc and cadmium in the electrochemical series. The corrosion rate may be accelerated by (1) increasing the number density of corrosion sites in the galvanized steel by mechanically abrading or deforming the galvanized steel, (2) heating the galvanized steel to form an alloy of zinc on the surface of the galvanized steel, (3) mixing the galvanized steel with a material having a standard electrode potential which is intermediate of the standard electrode potentials of zinc and cadmium in the electrochemical series, or (4) moving the galvanized steel relative to itself and to the electrolyte while immersed in the electrolyte. 1 fig.

  12. Process for dezincing galvanized steel

    DOEpatents

    Morgan, William A.; Dudek, Frederick J.; Daniels, Edward J.

    1998-01-01

    A process for removing zinc from galvanized steel. The galvanized steel is immersed in an electrolyte containing at least about 15% by weight of sodium or potassium hydroxide and having a temperature of at least about 75.degree. C. and the zinc is galvanically corroded from the surface of the galvanized steel. The material serving as the cathode is principally a material having a standard electrode potential which is intermediate of the standard electrode potentials of zinc and cadmium in the electrochemical series. The corrosion rate may be accelerated by (i) increasing the number density of corrosion sites in the galvanized steel by mechanically abrading or deforming the galvanized steel, (ii) heating the galvanized steel to form an alloy of zinc on the surface of the galvanized steel, (iii) mixing the galvanized steel with a material having a standard electrode potential which is intermediate of the standard electrode potentials of zinc and cadmium in the electrochemical series, or (iv) moving the galvanized steel relative to itself and to the electrolyte while immersed in the electrolyte.

  13. High strength, tough alloy steel

    DOEpatents

    Thomas, Gareth; Rao, Bangaru V. N.

    1979-01-01

    A high strength, tough alloy steel is formed by heating the steel to a temperature in the austenite range (1000.degree.-1100.degree. C.) to form a homogeneous austenite phase and then cooling the steel to form a microstructure of uniformly dispersed dislocated martensite separated by continuous thin boundary films of stabilized retained austenite. The steel includes 0.2-0.35 weight % carbon, at least 1% and preferably 3-4.5% chromium, and at least one other substitutional alloying element, preferably manganese or nickel. The austenite film is stable to subsequent heat treatment as by tempering (below 300.degree. C.) and reforms to a stable film after austenite grain refinement.

  14. Hydrogen Embrittlement of Gun Steel

    DTIC Science & Technology

    1987-11-01

    8217s HY80 and HY130 steels were checked for the critical hydrogen concentrations which were determined to be 6 ppm for HY8O steel 8 and 3 ppm for HY130...JOTC FILE COPY AD-A188 972 AD 1 TECHNICAL REPORT ARCCB-TR-87030 HYDROGEN EMBRITTLEMENT OF GUN STEEL F’ GERALD L. SPFNCER DTIC DEC 1 5 1987 NOVEMBER...PtEtIOC COVERED HYDROGEN EMBRITTLEHENT OF GUN STEEL Final OG EOTNME 6. PERFORMINGORO EOTNME 7. A*JTNOR(s) S. CONTRACT OR GRANT NUMBER(&) Gerald L

  15. Co-extrusion of Discontinuously, Non-centric Steel-reinforced Aluminum

    SciTech Connect

    Foydl, A.; Haase, M.; Khalifa, N. Ben; Tekkaya, A. E.

    2011-05-04

    The process of manufacturing discontinuously non-centric steel reinforced aluminum by means of co-extrusion has been examined. By this process semi-finished reinforced profiles can be fabricated for further treatment through forging techniques. Therefore, steel reinforcement elements consisting of E295GC were inserted into conventional aluminum billets and co-extruded into two different solid profiles; a rectangle one by an extrusion ratio of 10.1:1 and a round one by 4.8:1. The used aluminum alloy is EN AW-6060. The billet temperature as well as the ram speed were varied to investigate their influence on the position of the reinforcement elements inside the strand. The measurement was done by a video measurement system, called Optomess A250, after milling off the strand. The distances between the elements in longitudinal direction were nearly constant, apart from the rear part of the strand. The same was observed for the distance of the steel elements to the profile edge. This due to the inhomogeneous material flow in the transverse weld, related to the billet-to-billet extrusion. The rotation of the reinforcement elements occurs because the elements flow nearby the shear zone. Further, micrographs were made to investigate the embedding situation and the grain size distribution. The embedding of the reinforcement elements were good in the solid round profile, but in the rectangle profile were found some kind of air pocket. The grain size of the aluminum alloy close to the steel elements is much smaller than in the other parts of the solid round profile.

  16. Mechanical Properties and Microstructure of Thin Plates of A6061 Wrought Aluminum Alloy Using Rheology Forging Process with Electromagnetic Stirring

    NASA Astrophysics Data System (ADS)

    Jin, Chul Kyu; Bolouri, Amir; Kang, Chung Gil

    2014-06-01

    We propose the possibility of fabricating A6061 thin plates using the rheology forging process. Electromagnetic stirring (EMS) is used to fabricate a semi-solid slurry. A thin plate is formed by injecting the slurry into the forging die. When the punch speed used to compress the slurry is low, turbulent flow occurs. When the punch speed is high, laminar flow occurs, and the solid and liquid phases move simultaneously. For a pressure of 150 MPa or below, incomplete filling behavior and cracks occur. For a pressure of 200 MPa or above, a durable formed product can be obtained. However, the differences between the mechanical properties according to the application of EMS and pressure are slight. The microstructure of the slurry without EMS has an unclear distinction between the liquid phase and solid phase. However, the microstructure of the thin plates formed by using this slurry has a clear distinction between the liquid and solid with respect to the spheroid shapes. The tensile strength and elongation for a thin plate formed with a punch speed of 300 mm/s and pressure of 250 MPa with EMS slurry are 169 MPa and 11.0 pct, respectively. After T6 heat treatment, the tensile strength improves to 305 MPa.

  17. Effects of Carbides on the Microstructural Evolution in Sub-micron Grain 9310 Steel During Isothermal Heat Treatment

    NASA Astrophysics Data System (ADS)

    Kozmel, Thomas; Tin, Sammy

    2015-07-01

    Recent interest in bulk ultra-fine-grained microstructures has given rise for the necessity to quantify their behavior during heat treatment should any subsequent thermal processing of the material be necessary after forming. The present study showed that the microstructure of 9310 steel forgings containing varying fractions of sub-micron grains retained some degree of stability after 4 hours of heat treatment between the temperatures of 522 K and 866 K (249 °C and 593 °C, respectively). The behavior of the microstructure during heat treatment was largely influenced by both the carbide volume fraction and distribution, which affected the level of Zener Drag present. This in effect controlled the type of growth behavior exhibited by the ferrite grains and the ability to retain the fine-grained structure.

  18. The industrial ecology of steel

    SciTech Connect

    Considine, Timothy J.; Jablonowski, Christopher; Considine, Donita M.M.; Rao, Prasad G.

    2001-03-26

    This study performs an integrated assessment of new technology adoption in the steel industry. New coke, iron, and steel production technologies are discussed, and their economic and environmental characteristics are compared. Based upon detailed plant level data on cost and physical input-output relations by process, this study develops a simple mathematical optimization model of steel process choice. This model is then expanded to a life cycle context, accounting for environmental emissions generated during the production and transportation of energy and material inputs into steelmaking. This life-cycle optimization model provides a basis for evaluating the environmental impacts of existing and new iron and steel technologies. Five different plant configurations are examined, from conventional integrated steel production to completely scrap-based operations. Two cost criteria are used to evaluate technology choice: private and social cost, with the latter including the environmental damages associated with emissions. While scrap-based technologies clearly generate lower emissions in mass terms, their emissions of sulfur dioxide and nitrogen oxides are significantly higher. Using conventional damage cost estimates reported in the literature suggests that the social costs associated with scrap-based steel production are slightly higher than with integrated steel production. This suggests that adopting a life-cycle viewpoint can substantially affect environmental assessment of new technologies. Finally, this study also examines the impacts of carbon taxes on steel production costs and technology choice.

  19. MINOS Detector Steel Magnetic Measurements

    SciTech Connect

    Robert C. Trendler and Walter F. Jaskierny

    1999-03-03

    Magnetic measurements were made on one steel plate of the MINOS far detector. The conventionally used technique of measuring sense coil voltage induced by step changes in excitation current voltage was successful in providing stable, repeatable measurements. Measurements were made at several locations on the steel and the results are presented.

  20. Hydrogen Embrittlement of Structural Steels

    SciTech Connect

    Somerday, Brian P.; San Marchi, Christopher W

    2014-08-01

    Carbon-manganese steels are candidates for the structural materials in hydrogen gas pipelines; however, it is well known that these steels are susceptible to hydrogen embrittlement. Decades of research and industrial experience have established that hydrogen embrittlement compromises the structural integrity of steel components. This experience has also helped identify the failure modes that can operate in hydrogen containment structures. As a result, there are tangible ideas for managing hydrogen embrittlement in steels and quantifying safety margins for steel hydrogen containment structures. For example, fatigue crack growth aided by hydrogen embrittlement is a well-established failure mode for steel hydrogen containment structures subjected to pressure cycling. This pressure cycling represents one of the key differences in operating conditions between current hydrogen pipelines and those anticipated in a hydrogen delivery infrastructure. Applying structural integrity models in design codes coupled with measurement of relevant material properties allows quantification of the reliability/integrity of steel hydrogen pipelines subjected to pressure cycling. Furthermore, application of these structural integrity models is aided by the development of physics-based predictive models, which provide important insights such as the effects of microstructure on hydrogen-assisted fatigue crack growth. Successful implementation of these structural integrity and physics-based models enhances confidence in the design codes and enables decisions about materials selection and operating conditions for reliable and efficient steel hydrogen pipelines.

  1. Semisolid forming of 42CrMo4E steel grade

    NASA Astrophysics Data System (ADS)

    Lozares, Jokin; Plata, Gorka; Azpilgain, Zigor; Álvarez, Gonzalo

    2016-10-01

    Reduction of production costs is the aim of many companies in order to become more competitive. In this field, one of the so called `near net shape' processes, the semisolid metal forming (SSF), has revealed a high potential in terms of raw material and energetic savings. The lack of materials that result in good mechanical properties after SSF makes it difficult to implement this technology into the industry. This fact requires further thixoformability investigations on different steels to be overcome. Therefore, this research work, which is the continuation of [1], focuses on analyzing the thixoformability of the commercially available 42CrMo4E steel grade by thixoforging of an automotive spindle. Microstructure and mechanical properties evaluation has been as well carried-out to conclude, first, the impossibility of estimating by quenching and quantitative metallography analysis the liquid fraction of 42CrMo4E, and second, the great accordance of the mechanical properties of SSF component with the requirements of hot forged part.

  2. Ultrafine-Grained Structure and its Thermal Stability in Low-Carbon Steel

    NASA Astrophysics Data System (ADS)

    Korznikov, A. V.; Safarov, I. M.; Galeyev, R. M.; Sergeev, S. N.; Potekaev, A. I.

    2015-11-01

    The influence of annealing temperature on ultrafine-grained structure (UFG) of low-carbon steel 05G2MFB, produced by multiple isothermal forging (MIF) and warm rolling is investigated. Following 1-hour annealing (from 20 to 550°C), the fibrous UFG-structure formed as a result of rolling remains virtually the same. The equiaxial UFG-structure is found to be stable as the annealing temperature is increased up to 600°C. An examination of the resulting UFG-states by the method of electron backscatter diffraction (EBSD) provided a way to identify the differences in softening processes for a number of structure types. When the temperature of annealing treatment of as-rolled steel specimens is increased to 600°C, the fraction of low-angle boundaries (LAB) is found to remain at about 56%, while the average grain/subgrain size in the rod cross-section increases from 0.4 to 0.9 μm. In the MIF-processed specimens, an increase in the annealing temperature up to 625°C gives rise to a gradual decrease in the fraction of LAGBs from 53 to 30%, with the average grain/subgrain size increasing from 0.4 to 0.6 μm.

  3. Partially degradable friction-welded pure iron-stainless steel 316L bone pin.

    PubMed

    Nasution, A K; Murni, N S; Sing, N B; Idris, M H; Hermawan, H

    2015-01-01

    This article describes the development of a partially degradable metal bone pin, proposed to minimize the occurrence of bone refracture by avoiding the creation of holes in the bone after pin removal procedure. The pin was made by friction welding and composed of two parts: the degradable part that remains in the bone and the nondegradable part that will be removed as usual. Rods of stainless steel 316L (nondegradable) and pure iron (degradable) were friction welded at the optimum parameters: forging pressure = 33.2 kPa, friction time = 25 s, burn-off length = 15 mm, and heat input = 4.58 J/s. The optimum tensile strength and elongation was registered at 666 MPa and 13%, respectively. A spiral defect formation was identified as the cause for the ductile fracture of the weld joint. A 40-µm wide intermetallic zone was identified along the fusion line having a distinct composition of Cr, Ni, and Mo. The corrosion rate of the pin gradually decreased from the undeformed zone of pure iron to the undeformed zone of stainless steel 316L. All metallurgical zones of the pin showed no toxic effect toward normal human osteoblast cells, confirming the ppb level of released Cr and Ni detected in the cell media were tolerable.

  4. The effect of microstructure and strength on the fracture toughness of an 18 Ni, 300 grade maraging steel

    NASA Technical Reports Server (NTRS)

    Psioda, J. A.; Low, J. R., Jr.

    1975-01-01

    A 300 grade maraging steel was chosen as a vehicle by which to understand the inverse relationship between strength and toughness in high strength alloys such as the 18 Ni maraging steels. The 18 Ni, 300 grade maraging material was a commercial grade consumable-electrode, vacuum arc remelted heat obtained in the form of forged and annealed plate. The matrix contained a population of second-phase impurity inclusions which was a product of the casting and hot working processes. These inclusions did not change with subsequent precipitation hardening. Changes in microstructure resulting in strength increases were brought about by variations in aging temperature and time. Maximum strength was attained in the 300 grade maraging steel by aging at 427 C (800 F) for 100 hours. Tensile, fatigue precracked Charpy impact, and plane-strain fracture toughness tests were performed at room temperature, 20 C (68 F). With increasing strength the fracture toughness decreases as smaller and smaller inclusions act as sites for void initiation.

  5. Microstructure and yield strength effects on hydrogen-and-tritium-induced cracking in 21-6-9 stainless steel

    SciTech Connect

    Morgan, M.J.

    1989-01-01

    High-energy-rate-forged (HERF) austenitic stainless steels are used for the containment of hydrogen and its isotopes. Embrittlement of these materials by hydrogen has been a source of concern for some time. The nature and the degree of embrittlement by hydrogen varies considerably and, among other factors, is a complicated function of material composition and processing variations. Helium, the radioactive decay product of tritium, will also embrittle stainless steels. Precipitation of microscopic helium bubbles tends to increase the material's flow stress, through dislocation pinning, as well as weaken interfaces like grain and twin boundaries. Since fracture toughness tends to decrease with increasing yield strength, at least part of the helium-embrittlement problem may be due to strength effects. The relationship between a material's yield strength and toughness and, the incremental strength increase and corresponding toughness decrease imparted by helium is not known. The purpose of this study was to measure the combined effects of strength, hydrogen isotopes, and helium on the room temperature mechanical and fracture toughness properties of HERF 21-6-9 stainless steel.

  6. 2169 Steel Waveform Experiments

    NASA Astrophysics Data System (ADS)

    Furnish, M.; Alexander, C.; Reinhart, W.; Brown, J.

    2013-06-01

    In support of efforts to develop multiscale models of materials, we performed eight gas gun impact experiments on 2169 steel (21% Cr, 6% Ni, 9% Mn). These experiments provided shock, reshock and release velocimetry data, with initial shock stresses ranging from 10 to 50 GPa (particle velocities from 0.25 to 1.05 km/s). Both windowed and free-surface measurements were used, with samples 1 to 5 mm thick. The study focused on dynamic strength determination via the release/reshock paths. Reshock tests with explosively welded impactors produced clean results. The free-surface samples, which were steps on a single piece of steel, showed lower wavespeeds for thin (1 mm) samples than for thicker (2 or 4 mm) samples. A configuration used for the last three shots allowed release information to be determined from these free surface samples as well. The sample strength appears to increase with stress from ~1 GPa to ~3 GPa over this range, consistent with other recent work but about 40% above the Steinberg model. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  7. Connections: Superplasticity, Damascus Steels, Laminated Steels, and Carbon Dating

    NASA Astrophysics Data System (ADS)

    Wadsworth, Jeffrey

    2016-12-01

    In this paper, a description is given of the connections that evolved from the initial development of a family of superplastic plain carbon steels that came to be known as Ultra-High Carbon Steels (UHCS). It was observed that their very high carbon contents were similar, if not identical, to those of Damascus steels. There followed a series of attempts to rediscover how the famous patterns found on Damascus steels blades were formed. At the same time, in order to improve the toughness at room temperature of the newly-developed UHCS, laminated composites were made of alternating layers of UHCS and mild steel (and subsequently other steels and other metals). This led to a study of ancient laminated composites, the motives for their manufacture, and the plausibility of some of the claims relating to the number of layers in the final blades. One apparently ancient laminated composite, recovered in 1837 from the great pyramid of Giza which was constructed in about 2750 B.C., stimulated a carbon dating study of ancient steels. The modern interest in "Bladesmithing" has connections back to many of these ancient weapons.

  8. Occupational Profiles in the European Steel Industry.

    ERIC Educational Resources Information Center

    Franz, Hans-Werner; And Others

    The steel industry in Europe has faced great changes, with resulting layoffs and restructuring. Now that the most basic changes seem to be over, it has become evident that the remaining steel industry requires more highly trained workers than was the case previously. Although steel maintenance employees were always highly skilled, steel production…

  9. 49 CFR 192.55 - Steel pipe.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Steel pipe. 192.55 Section 192.55 Transportation... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Materials § 192.55 Steel pipe. (a) New steel pipe is... in accordance with paragraph (c) or (d) of this section. (b) Used steel pipe is qualified for...

  10. 49 CFR 192.55 - Steel pipe.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Steel pipe. 192.55 Section 192.55 Transportation... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Materials § 192.55 Steel pipe. (a) New steel pipe is... in accordance with paragraph (c) or (d) of this section. (b) Used steel pipe is qualified for...

  11. 49 CFR 192.55 - Steel pipe.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Steel pipe. 192.55 Section 192.55 Transportation... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Materials § 192.55 Steel pipe. (a) New steel pipe is... in accordance with paragraph (c) or (d) of this section. (b) Used steel pipe is qualified for...

  12. 49 CFR 192.55 - Steel pipe.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Steel pipe. 192.55 Section 192.55 Transportation... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Materials § 192.55 Steel pipe. (a) New steel pipe is... in accordance with paragraph (c) or (d) of this section. (b) Used steel pipe is qualified for...

  13. 49 CFR 192.55 - Steel pipe.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Steel pipe. 192.55 Section 192.55 Transportation... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Materials § 192.55 Steel pipe. (a) New steel pipe is... in accordance with paragraph (c) or (d) of this section. (b) Used steel pipe is qualified for...

  14. Improving the toughness of ultrahigh strength steel

    SciTech Connect

    Soto, Koji

    2002-01-01

    The ideal structural steel combines high strength with high fracture toughness. This dissertation discusses the toughening mechanism of the Fe/Co/Ni/Cr/Mo/C steel, AerMet 100, which has the highest toughness/strength combination among all commercial ultrahigh strength steels. The possibility of improving the toughness of this steel was examined by considering several relevant factors.

  15. High-cycle fatigue behavior of Ti-5Al-2.5Sn ELI alloy forging at low temperatures

    NASA Astrophysics Data System (ADS)

    Ono, Yoshinori; Yuri, Tetsumi; Ogata, Toshio; Demura, Masahiko; Matsuoka, Saburo; Sunakawa, Hideo

    2014-01-01

    High-cycle fatigue properties of Ti-5Al-2.5Sn Extra Low Interstitial (ELI) alloy forging were investigated at low temperatures. The high-cycle fatigue strength at low temperatures of this alloy was relatively low compared with that at ambient temperature. The crystallographic orientation of a facet formed at a fatigue crack initiation site was determined by electron backscatter diffraction (EBSD) method in scanning electron microscope (SEM) to understand the fatigue crack initiation mechanism and discuss on the low fatigue strength at low temperature. Furthermore, in terms of the practical use of this alloy, the effect of the stress ratio (or mean stress) on the high-cycle fatigue properties was evaluated using the modified Goodman diagram.

  16. Texture and anisotropy of yield strength in multistep isothermally forged Mg-5.8Zn-0.65Zr alloy

    NASA Astrophysics Data System (ADS)

    Nugmanov, D. R.; Sitdikov, O. Sh; Markushev, M. V.

    2015-04-01

    The effect of multistep isothermal forging (MIF) on microstructure, texture and anisotropy of ambient temperature yield strength of MA14 (Mg-5.8Mg-0.65Zr (%, wt)) magnesium alloy hot-pressed rod was analyzed. It has been found that the initial axial texture is quite stable under 1st MIF step up to strain e∼4.2 at 400°C and has been gradually transformed into much weaker single-peak one at further processing at 300 and 200°C to total strain of 10.2. Such texture changes were accompanied by strong grain refinement, along with significant reduction of the alloy strength anisotropy.

  17. Denver Federal Center Saves Energy, Forges Partnerships Through Super ESPC. Federal Energy Management Program (FEMP) ESPC Case Study

    SciTech Connect

    Not Available

    2002-01-01

    The General Services Administration is not just replacing aging heating and cooling equipment and reducing maintenance costs at the 670-acre Denver Federal Center (DFC). The GSA is also helping the government save about $450,000 in annual energy costs, conserve nearly 11 million gallons of water per year, and reduce annual carbon dioxide emissions by 15.9 million pounds, all by making use of the Department of Energy's Super Energy Savings Performance Contracts (Super ESPCs) at the DFC. Under these contracts, an energy services provider pays the up-front project costs and is then repaid over the contracts term out of the resulting energy cost savings. This two-page case study, prepared by NREL for the DOE Federal Energy Management Program (FEMP), demonstrates how the GSA forged new project partnerships, improved the DFCs boiler plant, and acquired efficient new chillers, motors, controls, and lighting by placing two delivery orders for this work under FEMPs Central Region Super ESPC.

  18. Effect of multidirectional forging and equal channel angular pressing on ultrafine grain formation in a Cu- Cr-Zr alloy

    NASA Astrophysics Data System (ADS)

    Shakhova, I.; Belyakov, A.; Kaibyshev, R.

    2014-08-01

    The microstructure evolution was investigated in a Cu-0.3%Cr-0.5%Zr alloy subjected to large plastic deformation at temperature of 400 °C. Two methods of large plastic deformation, i.e., equal channel angular pressing (ECAP) and multidirectional forging (MDF) were used. The large plastic deformations resulted in the development of new ultrafine grains. The formation of new ultrafine grains occurred as a result of continuous reaction, i.e., progressive increase in the misorientations of deformation subboundaries. The faster kinetics of microstructure evolution was observed during MDF as compared to ECAP. The MDF to a total strain of 4 resulted in the formation of uniform ultrafine grained structure, while ECAP to the same strain led to the heterogeneous microstructure consisting of new ultrafine grains and coarse remnants of original grains. Corresponding area fractions of ultrafine grains comprised 0.23 and 0.59 in the samples subjected to ECAP and MDF, respectively.

  19. Low-temperature superplasticity of submicrocrystalline Ti-48Al-2Nb-2Cr alloy produced by multiple forging

    SciTech Connect

    Imayev, V.M.; Salishchev, G.A.; Shagiev, M.R.; Kuznetsov, A.V.; Imayev, R.M.; Senkov, O.N.; Froes, F.H.

    1998-12-18

    Gamma titanium aluminides are attractive for elevated temperature applications because of their high specific strength, modulus retention, good oxidation and creep resistance. However they are inherently brittle at temperatures below 600 C due to their strong covalent interatomic bonding, which makes fabrication difficult and has restricted commercial applications. In this research work the authors have studied superplastic (SP) forming of a gamma alloy. Grain refinement is the most common method of decreasing the temperature at which superplasticity is observed, while the second approach is applicable only to gamma alloys containing less than 47 at.% Al. In the present work, a low-temperature superplasticity of a gamma TiAl-based alloy was achieved by producing a submicrocrystalline structure via multistep forging. Mechanical behavior and microstructural evolution of the submicrocrystalline gamma titanium aluminide were studied and possible mechanisms of the low-temperature superplasticity were discussed.

  20. High-cycle fatigue behavior of Ti-5Al-2.5Sn ELI alloy forging at low temperatures

    SciTech Connect

    Ono, Yoshinori; Yuri, Tetsumi; Ogata, Toshio; Demura, Masahiko; Matsuoka, Saburo; Sunakawa, Hideo

    2014-01-27

    High-cycle fatigue properties of Ti-5Al-2.5Sn Extra Low Interstitial (ELI) alloy forging were investigated at low temperatures. The high-cycle fatigue strength at low temperatures of this alloy was relatively low compared with that at ambient temperature. The crystallographic orientation of a facet formed at a fatigue crack initiation site was determined by electron backscatter diffraction (EBSD) method in scanning electron microscope (SEM) to understand the fatigue crack initiation mechanism and discuss on the low fatigue strength at low temperature. Furthermore, in terms of the practical use of this alloy, the effect of the stress ratio (or mean stress) on the high-cycle fatigue properties was evaluated using the modified Goodman diagram.

  1. Neutron radiation embrittlement studies in support of continued operation, and validation by sampling of Magnox reactor steel pressure vessels and components

    SciTech Connect

    Jones, R.B.; Bolton, C.J.

    1997-02-01

    Magnox steel reactor pressure vessels differ significantly from US LWR vessels in terms of the type of steel used, as well as their operating environment (dose level, exposure temperature range, and neutron spectra). The large diameter ferritic steel vessels are constructed from C-Mn steel plates and forgings joined together with manual metal and submerged-arc welds which are stress-relieved. All Magnox vessels are now at least thirty years old and their continued operation is being vigorously pursued. Vessel surveillance and other programmes are summarized which support this objective. The current understanding of the roles of matrix irradiation damage, irradiation-enhanced copper impurity precipitation and intergranular embrittlement effects is described in so far as these influence the form of the embrittlement and hardening trend curves for each material. An update is given on the influence of high temperature exposure, and on the role of differing neutron spectra. Finally, the validation offered by the results of an initial vessel sampling exercise is summarized together with the objectives of a more extensive future sampling programme.

  2. Hypereutectoid high-speed steels

    SciTech Connect

    Kremnev, L.S.

    1986-01-01

    Half of the tungsten and molybdenum contained in R6M5 and R18 steels is concentrated in the undissolved eutectic carbides hindering austenitic grain gowth in hardening and providing the necessary strength and impact strength. This article describes the tungsten-free low-alloy high-speed steel 11M5F with a chemical composition of 1.03-1.10% C, 5.2-5.7% Mo, 3.8-4.2% Cr, 1.3-1.7% V, 0.3-0.6% Si, and 0.3% Ce. The properties of 11M5F and R6M5 steels are examined and compared. The results of production and laboratory tests of the cutting properties of tools of the steels developed showed their high effectiveness, especially of 11M5F steel with 1% A1. The life of tools of the tungsten-free steels is two or three times greater than the life of tools of R6M5 steel.

  3. Welding tritium exposed stainless steel

    SciTech Connect

    Kanne, W.R. Jr.

    1994-11-01

    Stainless steels that are exposed to tritium become unweldable by conventional methods due to buildup of decay helium within the metal matrix. With longer service lives expected for tritium containment systems, methods for welding on tritium exposed material will become important for repair or modification of the systems. Solid-state resistance welding and low-penetration overlay welding have been shown to mitigate helium embrittlement cracking in tritium exposed 304 stainless steel. These processes can also be used on stainless steel containing helium from neutron irradiation, such as occurs in nuclear reactors.

  4. Method for welding chromium molybdenum steels

    SciTech Connect

    Sikka, V.K.

    1986-09-16

    A process is described for welding chromium-molybdenum steels which consist of: subjecting the steel to normalization by heating to above the transformation temperature and cooling in air; subjecting the steel to a partial temper by heating to a temperature less than a full temper; welding the steel using an appropriate filler metal; subjecting the steel to a full temper by heating to a temperature sufficient to optimize strength, reduce stress, increase ductility and reduce hardness.

  5. Homopolar pulse welding of API 5L carbon steel linepipe

    SciTech Connect

    Haase, P.; Carnes, R.; Harville, M.

    1994-12-31

    Homopolar pulse welding (HPW) is a resistance welding process being investigated as a method to rapidly join API 5L carbon steel linepipe. The target application for this investigation is deepwater offshore pipeline construction utilizing the J-lay method, which requires a rapid one-shot welding process for economic feasibility. HPW utilizes the high current, low-voltage pulse produced by a homopolar generator to rapidly resistance heat the interface between abutting workpieces, and follows that pulse with an upset action to produce a weld. A large number of controllable parameters affecting the quality of the resultant weld are present in the process. Three inch nominal diameter, schedule 160 API 5L X-52 pipe sections were welded in this series while controlling variations in generator discharge speed electrode location and upsetting parameters. Welding current voltage and temperature curves were recorded for the welds. Tensile and Charpy V-notch impact specimens were machined from each weld and tested. Weld cross-sections were macroscopically examined. By delaying the application of the forging action, the `white line` or decarburized zone commonly found in high frequency resistance or flash butt welds was eliminated. Weld tensile strength was found to be primarily dependent on generator discharge speed (heat input). Electrode distance from the weld interface was found to be the critical factor determining weld zone cooling rate. HPW parameters can be selected to produce welds without the `white line` or decarburized zone commonly found in high frequency resistance and flash butt welds. Full tensile strength welds are easily achieved providing two conditions are met: sufficient heat input is supplied and a nominal upsetting action is applied within a few seconds of the discharge current peak. Electrode location provides control over the weld zone cooling rate.

  6. 2169 steel waveform experiments.

    SciTech Connect

    Furnish, Michael David; Alexander, C. Scott; Reinhart, William Dodd; Brown, Justin L.

    2012-11-01

    In support of LLNL efforts to develop multiscale models of a variety of materials, we have performed a set of eight gas gun impact experiments on 2169 steel (21% Cr, 6% Ni, 9% Mn, balance predominantly Fe). These experiments provided carefully controlled shock, reshock and release velocimetry data, with initial shock stresses ranging from 10 to 50 GPa (particle velocities from 0.25 to 1.05 km/s). Both windowed and free-surface measurements were included in this experiment set to increase the utility of the data set, as were samples ranging in thickness from 1 to 5 mm. Target physical phenomena included the elastic/plastic transition (Hugoniot elastic limit), the Hugoniot, any phase transition phenomena, and the release path (windowed and free-surface). The Hugoniot was found to be nearly linear, with no indications of the Fe phase transition. Releases were non-hysteretic, and relatively consistent between 3- and 5-mmthick samples (the 3 mm samples giving slightly lower wavespeeds on release). Reshock tests with explosively welded impactors produced clean results; those with glue bonds showed transient releases prior to the arrival of the reshock, reducing their usefulness for deriving strength information. The free-surface samples, which were steps on a single piece of steel, showed lower wavespeeds for thin (1 mm) samples than for thicker (2 or 4 mm) samples. A configuration used for the last three shots allows release information to be determined from these free surface samples. The sample strength appears to increase with stress from ~1 GPa to ~ 3 GPa over this range, consistent with other recent work but about 40% above the Steinberg model.

  7. Damascus Steel-Part III; The Wadsworth-Sherby mechanism

    SciTech Connect

    Verhoeven, J.D.; Baker, H.H.; Peterson, D.T. . Dept. of Materials Science and Engineering); Clark, H.F. ); Yater, W.M. )

    1990-04-01

    Several blades have been forged from a Fe-1.6 wt% C alloy after heat treating to form austenite grain boundary allotriomorph (GBA) cementite (Cm). This is the Wadsworth--Sherby technique proposed as the mechanism for forming the pattern on Damascus blades. Both the forging temperature and the severity of metal flow during forging were systematically varied. The patterns obtained are compared to a genuine Damascus sword and shown to be macroscopically somewhat similar, but microscopically quite different. It is concluded that the Wadsworth--Sherby technique is probably not the technique used by ancient blacksmiths to produce the Damask pattern in their blades.

  8. Fatigue handbook: Offshore steel structures

    SciTech Connect

    Almarnaess, A.

    1985-01-01

    The contents of this book are: Overview of Offshore Steel Structures; Loads on Ocean Structures; Fracture Mechanics As a Tool in Fatigue Analysis; Basic Fatigue Properties of Welded Joints; Significance of Defects; Improving the Fatigue Strength of Welded Joints; Effects of Marine Environment and Cathodic Protection on Fatigue of Structural Steels Fatigue of Tubular Joints; Unstable Fracture; Fatigue Life Calculations; and Fatigue in Building Codes Background and Applications.

  9. Wear of steel by rubber

    NASA Technical Reports Server (NTRS)

    Gent, A. N.; Pulford, C. T. R.

    1978-01-01

    Wear of a steel blade used as a scraper to abrade rubber surfaces has been found to take place much more rapidly on a cis-polyisoprene (natural rubber) surface than on a cis-polybutadiene surface, and much more rapidly in an inert atmosphere than in air. These observations are attributed to the direct attack upon steel of free-radical species generated by mechanical rupture of elastomer molecules during abrasion.

  10. ELECTROMAGNETIC INSPECTION OF HARDENED STEEL.

    DTIC Science & Technology

    heat treat methods (no carbon added to the surface), and (2) The determination of through hardness or tempering temperature history of Stentor tool...effectiveness of phase sensitive and harmonic eddy current test methods for determining tempering temperature history of 4340 and Stentor tool steels was...showed that tempering temperature history of 4340 and Stentor steel can be determined for all temperatures (265 F to 820 F) used for specimen preparation on this program.

  11. Development of New Stainless Steel

    SciTech Connect

    Robert F. Buck

    2005-08-30

    A new family of innovative martensitic stainless steels, 521-A, 521-B, and 521-C has been developed by Advanced Steel Technology, LLC (Trafford, PA) as high strength fastener (bolt) materials for use at moderate temperatures in turbine engines, including steam turbines, gas turbines, and aircraft engines. The primary objective of the development program was to create a martensitic stainless steel with high strength at moderate temperatures, and which could replace the expensive nickel-based superalloy IN 718 in some fasteners applications. A secondary objective was to replace conventional 12Cr steels such as AISI 422 used as blades, buckets and shafts that operate at intermediate temperatures in turbine engines with stronger steel. The composition of the new alloys was specifically designed to produce excellent mechanical properties while integrating heat treatment steps into production to reduce energy consumption during manufacturing. As a result, production costs and energy consumption during production of rolled bar products is significantly lower than conventional materials. Successful commercialization of the new alloys would permit the installed cost of certain turbine engines to be reduced without sacrificing high availability or operational flexibility, thereby enhancing the global competitiveness of U.S. turbine engine manufacturers. Moreover, the domestic specialty steel industry would also benefit through increased productivity and reduced operating costs, while increasing their share of the international market for turbine engine fasteners, blades, buckets and shafts.

  12. Results of crack-arrest tests on irradiated a 508 class 3 steel

    SciTech Connect

    Iskander, S.K.; Milella, P.P.; Pini, M.A.

    1998-02-01

    Ten crack-arrest toughness values for irradiated specimens of A 508 class 3 forging steel have been obtained. The tests were performed according to the American Society for Testing and Materials (ASTM) Standard Test Method for Determining Plane-Strain Crack-Arrest Fracture Toughness, K{sub la} of Ferritic Steels, E 1221-88. None of these values are strictly valid in all five ASTM E 1221-88 validity criteria. However, they are useful when compared to unirradiated crack-arrest specimen toughness values since they show the small (averaging approximately 10{degrees}C) shifts in the mean and lower-bound crack-arrest toughness curves. This confirms that a low copper content in ASTM A 508 class 3 forging material can be expected to result in small shifts of the transition toughness curve. The shifts due to neutron irradiation of the lower bound and mean toughness curves are approximately the same as the Charpy V-notch (CVN) 41-J temperature shift. The nine crack-arrest specimens were irradiated at temperatures varying from 243 to 280{degrees}C, and to a fluence varying from 1.7 to 2.7 x 10{sup 19} neutrons/cm{sup 2} (> 1 MeV). The test results were normalized to reference values that correspond to those of CVN specimens irradiated at 284{degrees}C to a fluence of 3.2 x 10{sup 19} neutrons/cm{sup 2} (> 1 MeV) in the same capsule as the crack-arrest specimens. This adjustment resulted in a shift to lower temperatures of all the data, and in particular moved two data points that appeared to lie close to or lower than the American Society of Mechanical Engineers K{sub la} curve to positions that seemed more reasonable with respect to the remaining data. A special fixture was designed, fabricated, and successfully used in the testing. For reasons explained in the text, special blocks to receive the Oak Ridge National Laboratory clip gage were designed, and greater-than-standard crack-mouth opening displacements measured were accounted for. 24 refs., 13 figs., 12 tabs.

  13. Effect of stress ratio on high-cycle fatigue properties of Ti-6Al-4V ELI alloy forging at low temperature

    NASA Astrophysics Data System (ADS)

    Ono, Yoshinori; Yuri, Tetsumi; Ogata, Toshio; Matsuoka, Saburo; Sunakawa, Hideo

    2014-01-01

    The effect of the stress ratio R (the ratio of minimum stress to maximum stress) on the high-cycle fatigue properties of Ti-6Al-4V extra-low interstitial (ELI) alloy forging was investigated at 293 and 77 K. At 293 K, the fatigue strength at 107 cycles exhibited deviations below the modified Goodman line in the R=0.01 and 0.5 tests. Moreover, at 77 K, larger deviations of the fatigue strength at 107 cycles below the modified Goodman line were confirmed in the same stress ratio conditions. The high-cycle fatigue strength of the present alloy forging exhibit an anomalous mean stress dependency at both temperatures and this dependency becomes remarkable at low temperature.

  14. Review on cold-formed steel connections.

    PubMed

    Lee, Yeong Huei; Tan, Cher Siang; Mohammad, Shahrin; Tahir, Mahmood Md; Shek, Poi Ngian

    2014-01-01

    The concept of cold-formed light steel framing construction has been widespread after understanding its structural characteristics with massive research works over the years. Connection serves as one of the important elements for light steel framing in order to achieve its structural stability. Compared to hot-rolled steel sections, cold-formed steel connections perform dissimilarity due to the thin-walled behaviour. This paper aims to review current researches on cold-formed steel connections, particularly for screw connections, storage rack connections, welded connections, and bolted connections. The performance of these connections in the design of cold-formed steel structures is discussed.

  15. Review on Cold-Formed Steel Connections

    PubMed Central

    Tan, Cher Siang; Mohammad, Shahrin; Md Tahir, Mahmood; Shek, Poi Ngian

    2014-01-01

    The concept of cold-formed light steel framing construction has been widespread after understanding its structural characteristics with massive research works over the years. Connection serves as one of the important elements for light steel framing in order to achieve its structural stability. Compared to hot-rolled steel sections, cold-formed steel connections perform dissimilarity due to the thin-walled behaviour. This paper aims to review current researches on cold-formed steel connections, particularly for screw connections, storage rack connections, welded connections, and bolted connections. The performance of these connections in the design of cold-formed steel structures is discussed. PMID:24688448

  16. 38. Photocopy of photograph. STEEL PLANT, BOILERS UNDER CONSTRUCTION IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    38. Photocopy of photograph. STEEL PLANT, BOILERS UNDER CONSTRUCTION IN BOILER PLANT LOCATED EAST OF MAIN STEEL PLANT, 1909. (From the Bethlehem Steel Corporation collection, Seattle, WA) - Irondale Iron & Steel Plant, Port Townsend, Jefferson County, WA

  17. Characterization of residual stresses in heat treated Ti-6Al-4V forgings by machining induced distortion

    NASA Astrophysics Data System (ADS)

    Regener, B.; Krempaszky, C.; Werner, E.

    2010-06-01

    To provide a solid base for improved material exploitation in dimensioning calculations it is necessary to determine the stress state in the part prior to service loading. In order to achieve higher material strength at elevated temperatures, the surface temperature gradient with respect to time has to be sufficiently high during heat treatment. This results in non-negligable residual stresses that can reduce the allowable load level upon which yielding occurs. For titanium alloys there are two common heat treatments, namely solution treatment and mill annealing. The latter one is the method of choice within the presented project. Mill annealing is utilized in order to significantly reduce the residual stresses in the parts without loosing much of the improved strength at elevated temperatures. Quantification of residual stresses is done by solving an inverse problem. From the measurement of distortion, induced by dividing the investigated part, the residual stress state can be calculated via analytical modeling or correlation with finite element models. To assure a minimum perturbation of the residual stress state during specimen production, dividing of the part is accomplished by electric discharge machining. The parts of interest are v-shaped prisms with a length of approximatly 450 mm and a thickness in the cross sectional area from about 20 mm to 45 mm. Figure 1(a) shows the forged part and 1(b) the dimensions of the cross section in millimeters as well as the material properties considered in the finite element model. The heat exchange between the part and the environment is modelled as heat transfer by convection superimposed with heat radiation. Since the parts are exposed to air during forging and heat treatment, the surface develops a strongly adhesive oxide layer, the so called alpha-case. After forging the parts are cooled in air and heat treated at a temperature of 720° C for a duration of 120 min. Subsequent air cooling and removing the alpha-case by

  18. Computer Aided Design and Manufacturing (CAD/CAM) Techniques for Optimum Preform and Finish Forging of Spiral Bevel Gears. Phase 2

    DTIC Science & Technology

    1982-10-01

    Forging of Sprial Bevel Gears". It is being conducted under the direction of Mr. Donald Ostberg of the Metals & Welding Subfunction (DRSTA/RCKM) of the...conducted at Battelle with some input from Eaton Corporation and Mr. M. L. Baxter , subcontractor and consultant to the program, respectively. Phase I...1980. 6. Thomson, E. G., Yang, C. T., and Kobayashi, S., "Mechanics of Plastic Deformation in Metal Processing", The MacMillan Company, New York, 1965

  19. Metals, pesticides, and semivolatile organic compounds in sediment in Valley Forge National Historical Park, Montgomery County, Pennsylvania

    USGS Publications Warehouse

    Reif, Andrew G.; Sloto, Ronald A.

    1997-01-01

    The Schuylkill River flows through Valley Forge National Historical Park in Lower Providence and West Norriton Townships in Montgomery County, Pa. The concentration of selected metals, pesticides, semivolatile organic compounds, and total carbon in stream-bottom sediments from Valley Forge National Historical Park were determined for samples collected once at 12 sites in and around the Schuylkill River. Relatively low concentrations of arsenic, chromium, copper, and lead were detected in all samples. The concentrations of these metals are similar to concentrations in other stream-bottom sediment samples collected in the region. The concentrations of iron, manganese, and zinc were elevated in samples from four sites in the Schuylkill River, and the concentration of mercury was elevated in a sample from an impoundment along the river. The organophosphorus insecticide diazinon was detected in relatively low concentrations in half of the 12 samples analyzed. The organo-chlorine insecticide DDE was detected in all 12 samples analyzed; dieldrin was detected in 10 samples, chlordane, DDD, and DDT were detected in 9 samples, and heptachlor epoxide was detected in one sample. The concentrations of organo-chlorine and organophosphorus insecticides were relatively low and similar to concentrations in samples collected in the region. Detectable concentrations of 17 semivolatile organic compounds were measured in the 12 samples analyzed. The most commonly detected compounds were fluoranthene, phenanthrene, and pyrene. The maximum concentration detected was 4,800 micrograms per kilogram of phenanthrene. The highest concentrations of compounds were detected in Lamb Run, a small tributary to the Schuylkill River with headwaters in an industrial corporate center. The concentration of compounds in the Schuylkill River below Lamb Run is higher than the Schuylkill River above Lamb Run, indicating that sediment from Lamb Run is increasing the concentration of semivolatile organic

  20. 76 FR 7151 - Certain Carbon Steel Butt-Weld Pipe Fittings From Brazil, Japan, Taiwan, Thailand, and the People...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-09

    ... from the domestic interested parties, Weldbend Corporation, Tube Forging of America, Mills Iron Works... been advanced after forging. These advancements may include any one or more of the following: Coining... been advanced after forging. These advancements may include any one or more of the following:...

  1. Residual stress relaxation and fatigue behavior of an induction hardened microalloyed steel

    NASA Astrophysics Data System (ADS)

    Rivas, Ana Luisa Rivas De

    The thermal and mechanical relaxation of compressive residual stresses during tempering and cyclic loading of an induction hardened vanadium microalloyed steel has been evaluated. A microstructural analysis was also carried out on the microalloyed steel to correlate the residual stress relaxation behavior with microstructural characteristics of the material. Vanadium carbide particle size and distribution were analyzed as well as how these characteristics are affected by the application of normalizing and induction hardening heat treatments. To determine the effect of vanadium carbide particles on the residual stress relaxation response of the microalloyed steel a parallel study was conducted on a 1530 steel which is similar in chemistry to the microalloyed steel, but without the vanadium. The thermal relaxation of compressive residual stresses due to tempering for 2 hours after induction hardening was evaluated for a range of tempering temperatures from 177sp° C\\ (350sp° F) to 579sp° C\\ (1075sp° F). Mechanical residual stress relaxation was evaluated by subjecting specimens to cyclic loading conditions. For this part of the work a special type of specimen was designed. The specimen had an overall C-shape with a T-shaped cross section. This specimen geometry generates higher levels of stresses in the induction hardened outer layer than in the soft core material along the inner layer of the C-shaped geometry. The compressive residual stresses were generated by the phase transformation that occurs during hardening heat treatments and also by mechanical means. Additional compressive stresses were put into the outer surface region of the hardened C-shaped specimens by pre-straining them plastically through the application of compressive loads. Fine vanadium carbide precipitates were observed in the microalloyed steel in the as-forged condition. The application of a normalizing and induction hardening heat treatments caused coarsening of the vanadium carbide

  2. Nickel release from stainless steels.

    PubMed

    Haudrechy, P; Mantout, B; Frappaz, A; Rousseau, D; Chabeau, G; Faure, M; Claudy, A

    1997-09-01

    In 1994, a study of nickel release and allergic contact dermatitis from nickel-plated metals and stainless steels was published in this journal. It was shown that low-sulfur stainless steel grades like AISI 304, 316L or 430 (S < or = 0.007%) release less than 0.03 microgram/cm2/week of nickel in acid artificial sweat and elicit no reactions in patients already sensitized to nickel. In contrast, nickel-plated samples release around 100 micrograms/cm2/week of Ni and high-sulfur stainless steel (AISI 303-S approximately 0.3%) releases about 1.5 micrograms/cm2/week in this acid artificial sweat. Applied on patients sensitized to nickel, these metals elicit positive reactions in 96% and 14%, respectively, of the patients. The main conclusion was that low-sulfur stainless steels like AISI 304, 316L or 430, even when containing Ni, should not elicit nickel contact dermatitis, while metals having a mean corrosion resistance like a high-sulfur stainless steel (AISI 303) or nickel-plated steel should be avoided. The determining characteristic was in fact the corrosion resistance in chloride media, which, for stainless steels, is connected, among other factors, to the sulfur content. Thus, a question remained concerning the grades with an intermediate sulfur content, around 0.03%, which were not studied. They are the object of the study presented in this paper. 3 tests were performed: leaching experiments, dimethylglyoxime and HNO3 spot tests, and clinical patch tests; however, only stainless steels were tested: a low-sulfur AISI 304 and AISI 303 as references and 3 grades with a sulfur content around 0.03%: AISI 304L, AISI 304L added with Ca, AISI 304L+Cu. Leaching experiments showed that the 4 non-resulfurised grades released less than 0.5 microgram/cm2/week in acid sweat while the reulfurized AISI 303 released around or more than 0.5 microgram/cm2/week. This is explained by the poorer corrosion resistance of the resulfurized grade. Yet all these grades had the same

  3. 29 CFR 1926.754 - Structural steel assembly.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 8 2013-07-01 2013-07-01 false Structural steel assembly. 1926.754 Section 1926.754 Labor... (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Steel Erection § 1926.754 Structural steel...) Tripping hazards. Shear connectors (such as headed steel studs, steel bars or steel lugs), reinforcing...

  4. 46 CFR 56.60-5 - Steel (High temperature applications).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Steel (High temperature applications). 56.60-5 Section... SYSTEMS AND APPURTENANCES Materials § 56.60-5 Steel (High temperature applications). (a) (Reproduces 124.2... steel, plain nickel-alloy steel, carbon-manganese-alloy steel, manganese-vanadium-alloy steel,...

  5. 46 CFR 56.60-5 - Steel (High temperature applications).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Steel (High temperature applications). 56.60-5 Section... SYSTEMS AND APPURTENANCES Materials § 56.60-5 Steel (High temperature applications). (a) (Reproduces 124.2... steel, plain nickel-alloy steel, carbon-manganese-alloy steel, manganese-vanadium-alloy steel,...

  6. 29 CFR 1926.754 - Structural steel assembly.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Structural steel assembly. 1926.754 Section 1926.754 Labor... (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Steel Erection § 1926.754 Structural steel...) Tripping hazards. Shear connectors (such as headed steel studs, steel bars or steel lugs), reinforcing...

  7. 29 CFR 1926.754 - Structural steel assembly.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 8 2011-07-01 2011-07-01 false Structural steel assembly. 1926.754 Section 1926.754 Labor... (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Steel Erection § 1926.754 Structural steel...) Tripping hazards. Shear connectors (such as headed steel studs, steel bars or steel lugs), reinforcing...

  8. 29 CFR 1926.754 - Structural steel assembly.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 8 2012-07-01 2012-07-01 false Structural steel assembly. 1926.754 Section 1926.754 Labor... (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Steel Erection § 1926.754 Structural steel...) Tripping hazards. Shear connectors (such as headed steel studs, steel bars or steel lugs), reinforcing...

  9. 46 CFR 56.60-5 - Steel (High temperature applications).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Steel (High temperature applications). 56.60-5 Section... SYSTEMS AND APPURTENANCES Materials § 56.60-5 Steel (High temperature applications). (a) (Reproduces 124.2... steel, plain nickel-alloy steel, carbon-manganese-alloy steel, manganese-vanadium-alloy steel,...

  10. 46 CFR 56.60-5 - Steel (High temperature applications).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Steel (High temperature applications). 56.60-5 Section... SYSTEMS AND APPURTENANCES Materials § 56.60-5 Steel (High temperature applications). (a) (Reproduces 124.2... steel, plain nickel-alloy steel, carbon-manganese-alloy steel, manganese-vanadium-alloy steel,...

  11. 46 CFR 56.60-5 - Steel (High temperature applications).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Steel (High temperature applications). 56.60-5 Section... SYSTEMS AND APPURTENANCES Materials § 56.60-5 Steel (High temperature applications). (a) (Reproduces 124.2... steel, plain nickel-alloy steel, carbon-manganese-alloy steel, manganese-vanadium-alloy steel,...

  12. 29 CFR 1926.754 - Structural steel assembly.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 8 2014-07-01 2014-07-01 false Structural steel assembly. 1926.754 Section 1926.754 Labor... (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Steel Erection § 1926.754 Structural steel...) Tripping hazards. Shear connectors (such as headed steel studs, steel bars or steel lugs), reinforcing...

  13. Steel erected at A-3 Test Stand

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Workers erect the first fabricated steel girders to arrive at the A-3 Test Stand at Stennis Space Center. Steel work began at the construction site Oct. 29 and is scheduled to continue into next spring.

  14. High-temperature brazing of stainless steel

    NASA Technical Reports Server (NTRS)

    Beuyukian, C. S.; Heisman, R. M.; Mitchell, M. J.

    1978-01-01

    Prevention of iron contamination of platens is eliminated by placing alumina/silica ceramic-fiber blankets between platens and carbon-steel plate. Carbon-steel plates provide rigidity and improve heat transfer.

  15. Corrosion control of steel-reinforced concrete

    NASA Astrophysics Data System (ADS)

    Chung, D. D. L.

    2000-10-01

    The methods and materials for corrosion control of steel-reinforced concrete are reviewed. The methods are steel surface treatment, the use of admixtures in concrete, surface coating on concrete, and cathodic protection.

  16. An investigation of the fracture and fatigue crack growth behavior of forged damage-tolerant niobium aluminide intermetallics

    SciTech Connect

    Ye, F.; Mercer, C.; Soboyejo, W.O.

    1998-09-01

    The results of a recent study of the effects of ternary alloying with Ti on the fatigue and fracture behavior of a new class of forged damage-tolerant niobium aluminide (Ng, Al-xTi) intermetallics are presented in this article. The alloys studied have the following nominal compositions: Nb-15Al-10Ti (10Ti alloy), Nb-15Al-25Ti (25Ti alloy), and Nb-15Al-40Ti (40Ti alloy). All compositions are quoted in atomic percentages unless stated otherwise. The 10Ti and 25Ti alloys exhibit fracture toughness levels between 10 and 20 MPa{radical}m at room temperature. Fracture in these alloys occurs by brittle cleavage fracture modes. In contrast, a ductile dimpled fracture mode is observed at room-temperature for the alloy containing 40 at. pct Ti. The 40Ti alloy also exhibits exceptional combinations of room-temperature strength (695 to 904 MPa), ductility (4 to 30 pct), fracture toughness (40 to 100 MPa{radical}m), and fatigue crack growth resistance (comparable to Ti-6Al-4V, monolithic Nb, and inconel 718). The implications of the results are discussed for potential structural applications of the 40Ti alloy in the intermediate-temperature ({approximately}700 C to 750 C) regime.

  17. Optimization of hot working parameters of as-forged Nitinol 60 shape memory alloy using processing maps

    NASA Astrophysics Data System (ADS)

    Shu, Xiaoyong; Lu, Shiqiang; Wang, Kelu; Li, Guifa

    2015-07-01

    The hot deformation behavior of as-forged Nitinol 60 alloy (60 wt% Ni, 40 wt% Ti) was studied over the ranges of temperature, 650-850 °C, and strain rate, 0.01-1 s-1, using isothermal constant strain rate compression tests in a Gleeble-3500 simulator. The processing maps, based on the dynamic materials model, were developed to optimize the hot working parameters. The results show that the deformation parameters have a marked effect on the power dissipation efficiency and the instability parameter. A single unstable region (650-775 °C, 0.037-1 s-1), associated with flow localization and/or adiabatic shear, is detected from the processing map. This should be avoided in hot working process. The optimized hot working conditions correspond to 680-790 °C, 0.01-0.025 s-1 with peak efficiency of 0.45 at 720 °C, 0.01 s-1, and 820-850 °C, 0.1-1 s-1 with peak efficiency of 0.5 at 850 °C, 1 s-1. Microstructure observations indicate that the main deformation mechanism of optimized domains involves dynamic recrystallization.

  18. Joint replacement components made of hot-forged and surface-treated Ti-6Al-7Nb alloy.

    PubMed

    Semlitsch, M F; Weber, H; Streicher, R M; Schön, R

    1992-01-01

    We have developed a titanium-aluminium alloy with the inert alloying element niobium. The optimal composition was found to be Ti-6Al-7Nb (Protasul-100). This custom-made alloy designed for implants shows the same alpha/beta structure as Ti-6Al-4V and exhibits equally good mechanical properties. The corrosion resistance of Ti-6Al-7Nb in sodium chloride solution is equivalent to that of pure titanium and Ti-6Al-4V. This is due to a very dense and stable passive layer. Highly stressed anchorage stems of different hip prosthesis designs have been made from hot-forged Ti-6Al-7Nb. The polished surfaces of hip, knee and wrist joints made of Ti-6Al-7Nb and articulating against polyethylene are surface-treated by means of a very hard and 3-5 microns thick titanium nitride coating (Tribosul-TiN) or by oxygen diffusion hardening (Tribosul-ODH) to a depth of 30 microns.

  19. ESF GROUND SUPPORT - STRUCTURAL STEEL ANALYSIS

    SciTech Connect

    T. Misiak

    1996-06-26

    The purpose and objective of this analysis are to expand the level of detail and confirm member sizes for steel sets included in the Ground Support Design Analysis, Reference 5.20. This analysis also provides bounding values and details and defines critical design attributes for alternative configurations of the steel set. One possible configuration for the steel set is presented. This analysis covers the steel set design for the Exploratory Studies Facility (ESF) entire Main Loop 25-foot diameter tunnel.

  20. Copper-Nickel Cladding on Stainless Steel

    DTIC Science & Technology

    2005-07-01

    steel,. Monel (65Ni/35Cu) alloy consumables should be used as they can tolerate more iron dilution from the steel than the 70-30 copper-nickel alloy ...Cooper Alloys , 400 , K-500 Stainless Steel - Tyles 302, 304, 321, 347 N ickel 200 Silver Braze Alloys Nickel-Chromium Alloy 600 Nickel-Aluminum Bronze 70...cladding of austenitic stainless steels may also offer some ballistic, non-magnetic, and electromagnetic signature advantages over current hull alloys and