A direct gravitational lensing test for 10 exp 6 solar masses black holes in halos of galaxies
NASA Technical Reports Server (NTRS)
Wambsganss, Joachim; Paczynski, Bohdan
1992-01-01
We propose a method that will be able to detect or exclude the existence of 10 exp 6 solar masses black holes in the halos of galaxies. VLBA radio maps of two milliarcsecond jets of a gravitationally lensed quasar will show the signature of these black holes - if they exist. If there are no compact objects in this mass range along the line of sight, the two jets should be linear mappings of each other. If they are not, there must be compact objects of about 10 exp 6 solar masses in the halo of the galaxy that deform the images by gravitational deflection. We present numerical simulations for the two jets A and B of the double quasar 0957 + 561, but the method is valid for any gravitationally lensed quasar with structure on milliarcsecond scales. As a by-product from high-quality VLBA maps of jets A and B, one will be able to tell which features in the maps are intrinsic in the original jet and which are only an optical illusion, i.e., gravitational distortions by black holes along the line of sight.
NASA Technical Reports Server (NTRS)
Macks, E F; Nemeth, Z N; Anderson, W J
1951-01-01
The effectiveness of molybdenum disulfide MoS2 as a bearing lubricant was determined at high temperature and at high speeds. A 1-inch-bore ball bearing operated at temperatures to 1000 F, a speed of 1725 rpm, and a thrust load of 20 pounds when lubricated only with MoS2-air mist. A 75-millimeter-bore cageless roller bearing, provided with a MoS2-syrup coating before operation, operated at DN values to 1 x 10(exp 6) with a load of 368 pounds.
NASA Technical Reports Server (NTRS)
Buglia, James J.
1961-01-01
A highly polished hemisphere-cone having a ratio of nose radius to base radius of 0.74 and a half-angle of 14.5 was flight tested at Mach numbers up to 4.70. Temperature and pressure data were obtained at Mach numbers up to 3.14 and a free-stream Reynolds number of 24 x 10(exp 6) based on body diameter. The nose of the model had a surface roughness of 2 to 5 microinches as measured with an interferometer. The measured Stanton numbers were in good agreement with theory. Transition Reynolds numbers based on the laminar boundary-layer momentum thickness at transition ranged from 2,190 to 794. Comparison with results from previous tests of blunt shapes having a surface roughness of 20 to 40 microinches showed that the high degree of polish was instrumental in delaying the transition from laminar to turbulent flow.
NASA Technical Reports Server (NTRS)
Cooper, Morton; Mayo, Edward E.
1959-01-01
Measurements of the local heat transfer and pressure distribution have been made on six 2-inch-diameter, blunt, axially symmetric bodies in the Langley gas dynamics laboratory at a Mach number of 4.95 and at Reynolds numbers per foot up to 81 x 10(exp 6). During the investigation laminar flow was observed over a hemispherical-nosed body having a surface finish from 10 to 20 microinches at the highest test Reynolds number per foot (for this configuration) of 77.4 x 10(exp 6). Though it was repeatedly possible to measure completely laminar flow at this Reynolds number for the hemisphere, it was not possible to observe completely laminar flow on the flat-nosed body for similar conditions. The significance of this phenomenon is obscured by the observation that the effects of particle impacts on the surface in causing roughness were more pronounced on the flat-nosed body. For engineering purposes, a method developed by M. Richard Dennison while employed by Lockheed Aircraft Corporation appears to be a reasonable procedure for estimating turbulent heat transfer provided transition occurs at a forward location on the body. For rearward-transition locations, the method is much poorer for the hemispherical nose than for the flat nose. The pressures measured on the hemisphere agreed very well with those of the modified Newtonian theory, whereas the pressures on all other bodies, except on the flat-nosed body, were bracketed by modified Newtonian theory both with and without centrifugal forces. For the hemisphere, the stagnation-point velocity gradient agreed very well with Newtonian theory. The stagnation-point velocity gradient for the flat- nosed model was 0.31 of the value for the hemispherical-nosed model. If a Newtonian type of flow is assumed, the ratio 0.31 will be independent of Much number and real-gas effects.
NASA Technical Reports Server (NTRS)
Graham, John B., Jr.
1958-01-01
Heat-transfer and pressure measurements were obtained from a flight test of a 1/18-scale model of the Titan intercontinental ballistic missile up to a Mach number of 3.86 and Reynolds number per foot of 23.5 x 10(exp 6) and are compared with the data of two previously tested 1/18-scale models. Boundary-layer transition was observed on the nose of the model. Van Driest's theory predicted heat-transfer coefficients reasonably well for the fully laminar flow but predictions made by Van Driest's theory for turbulent flow were considerably higher than the measurements when the skin was being heated. Comparison with the flight test of two similar models shows fair repeatability of the measurements for fully laminar or turbulent flow.
NASA Technical Reports Server (NTRS)
Miyoshi, Kazuhisa; Honecy, Frank S.; Abel, Phillip B.; Pepper, Stephen V.; Spalvins, Talivaldis; Wheeler, Donald R.
1992-01-01
The first part of this paper describes an ultrahigh vacuum friction apparatus (tribometer). The tribometer can be used in a ball-on-disk configuration and is specifically designed to measure the friction and endurance life of solid lubricating films such as MoS(x) in vacuum at a pressure of 10 exp -7 Pa. The sliding mode is typically unidirectional at a constant rotating speed. The second part of this paper presents some representative friction and endurance life data for magnetron sputtered MoS(x) films (110 nm thick) deposited on sputter-cleaned 440 C stainless-steel disk substrates, which were slid against a 6-mm-diameter 440 C stainless-steel bearing ball. All experiments were conducted with loads of 0.49 to 3.6 N (average Hertzian contact pressure, 0.33 to 0.69 GPa), at a constant rotating speed of 120 rpm (sliding velocity ranging from 31 to 107 mm/s due to the range of wear track radii involved in the experiments), in a vacuum of 7 x 10 exp -7 Pa and at room temperature. The results indicate that there are similarities in friction behavior of MoS(x) films overs their life cycles regardless of load applied. The coefficient of friction (mu) decreases as load W increases according to mu = kW exp -1/3. The endurance life E of MoS(x) films decreases as the load W increases according to E = KW exp -1.4 for the load range. The load- (or contract-pressure-) dependent endurance life allows us to reduce the time for wear experiments and to accelerate endurance life testing of MoS(x) films. For the magnetron-sputtered MoS(x) films deposited on 440 C stainless-steel disks: the specific wear rate normalized to the load and the number of revolutions was 3 x 10 exp -8 mm exp 3/N-revolution; the specific wear rate normalized to the load and the total sliding distance was 8 x 10 exp -7 mm exp 3/N-m; and the nondimensional wear coefficient of was approximately 5 x 10 exp -6. The values are almost independent of load in the range 0.49 to 3.6 N (average Hertzian contact
NASA Technical Reports Server (NTRS)
Kern, Brian; Guyon, Olivier; Kuhnert, Andreas; Niessner, Albert; Martinache, Frantz; Balasubramanian, Kunjithapatham
2013-01-01
We present coronagraphic images from the Phase Induced Amplitude Apodization (PIAA) coronagraph on NASA's High Contrast Imaging Testbed (HCIT) at the Jet Propulsion Lab, showing contrasts of 5x10(exp -1) averaged from 2-4 lambda/D, in monochromatic light at 808 nm. In parallel with the coronagraph and its deformable mirror and coronagraphic wavefront control, we also demonstrate a low-order wavefront control system, giving 100 x rms suppression of introduced tip/tilt disturbances down to residual levels of 10(exp -3) lambda/D. Current limitations, as well as broadband (10% fractional bandpass) preliminary results are discussed.
Unusual hysteresis in the magnetic susceptibility of cubic hexaboride KB6.
Etourneau, J; Ammar, A; Villesuzanne, A; Villeneuve, G; Chevalier, B; Whangbo, M-H
2003-07-14
Electrical resistivity, magnetic susceptibility, and electron paramagnetic resonance measurements were carried out for cubic hexaboride KB(6), which is one electron short of completely filling its conduction band. It is found that KB(6) is not metallic and has localized spins. KB(6) exhibits a highly unusual hysteresis in the magnetic susceptibility below 100 K, which suggests that it undergoes a slow relaxation process.
A neutron crystallographic analysis of a cubic porcine insulin at pD 6.6
NASA Astrophysics Data System (ADS)
Ishikawa, Takuya; Chatake, Toshiyuki; Ohnishi, Yuki; Tanaka, Ichiro; Kurihara, Kazuo; Kuroki, Ryota; Niimura, Nobuo
2008-04-01
The p Ka values of ionizable amino acid side chains are tabulated in standard textbooks. However, whether a certain amino acid side chain in a protein is charged or not cannot be estimated from standard pH values measured from protein solutions. Protonation and deprotonation of various ionizable amino acid residues were observed by a neutron diffraction experiment and discussed on the basis of the charged states estimated by the p Ka values of the amino acid residues. The neutron diffraction study has been carried out at 2.7 Å resolution on cubic porcine insulin at pD 6.6 using the BIX-4 single crystal diffractometer at the JRR-3 reactor of the Japan Atomic Energy Agency. For the present work, a large single crystal of 2.7 mm 3 (=2.0 × 1.7 × 0.8 mm) was obtained by dialysis. The structure refinement was carried out using the program CNS. The resulting Rcryst is 21.6% and the Rfree is 29.1% at a resolution of 2.7 Å. In the case of His B5, both N π and N τ of an imidazole ring are protonated at pD 6.6, but at pD 9 only N π is protonated. In contrast, for His B10, both N π and N τ are protonated at pD 6.6 as well as at pD 9. The ionization states of several amino acids in porcine insulin have been obtained at pD 6.6 and they are compared with those at pD 9 obtained by neutron diffraction as well as those at pH 6.50 and 6.98 obtained by X-ray diffraction. In this manuscript, the difference between these forms will be discussed.
An Instrument to Measure Elemental Energy Spectra of Cosmic Ray Nuclei Up to 10(exp 16) eV
NASA Technical Reports Server (NTRS)
Adams, J.; Bashindzhagyan, G.; Chilingarian, A.; Drury, L.; Egorov, N.; Golubkov,S.; Korotkova, N.; Panasyuk, M.; Podorozhnyi, D.; Procqureur, J.
2000-01-01
A longstanding goal of cosmic ray research is to measure the elemental energy spectra of cosmic rays up to and through the "knee" (approx. equal to 3 x 10 (exp 15) eV. It is not currently feasible to achieve this goal with an ionization calorimeter because the mass required to be deployed in Earth orbit is very large (at least 50 tonnes). An alternative method will be presented. This is based on measuring the primary particle energy by determining the angular distribution of secondaries produced in a target layer using silicon microstrip detector technology. The proposed technique can be used over a wide range of energies (10 (exp 11)- 10 (exp 16) eV) and gives an energy resolution of 60% or better. Based on this technique, a design for a new lightweight instrument with a large aperture (KLEM) will be described.
Electrical characterization of 6H crystalline silicon carbide. M.S. Thesis Final Report
NASA Technical Reports Server (NTRS)
Lempner, Stephen E.
1994-01-01
Crystalline silicon carbide (SiC) substrates and epilayers, undoped as well as n- and p-doped, have been electrically characterized by performing Hall effect and resistivity measurements (van der Pauw) over the temperature range of approximately 85 K to 650 K (200 K to 500 K for p-type sample). By fitting the measured temperature dependent carrier concentration data to the single activation energy theoretical model: (1) the activation energy for the nitrogen donor ranged from 0.078 eV to 0.101 eV for a doping concentration range of 10(exp 17) cm(exp -3) to 10(exp 18) cm(exp -3) and (2) the activation energy for the aluminum acceptor was 0.252 eV for a doping concentration of 4.6 x 10(exp 18) cm(exp -3). By fitting the measured temperature dependent carrier concentration data to the double activation energy level theoretical model for the nitrogen donor: (1) the activation energy for the hexagonal site was 0.056 eV and 0.093 eV corresponding to doping concentrations of 3.33 x 10 (exp 17) cm(exp -3) and 1.6 x 10(exp 18) cm(exp -3) and (2) the activation energy for the cubic site was 0.113 and 0.126 eV corresponding to doping concentrations of 4.2 x 10(exp 17) cm(exp -3) and 5.4 x 10(exp 18) cm(exp -3).
Lebed, Pablo J; de Souza, Kellen; Bilodeau, François; Larivière, Dominic; Kleitz, Freddy
2011-11-07
A new type of radionuclide extraction material is reported based on phosphonate functionalities covalently anchored on the mesopore surface of 3-D cubic mesoporous silica (KIT-6). The easily prepared nanoporous hybrid shows largely superior performance in selective sorption of uranium and thorium as compared to the U/TEVA commercial resin and 2-D hexagonal SBA-15 equivalent.
The morphology of 20 x 10 exp 6 K plasma in large non-impulsive solar flares
NASA Technical Reports Server (NTRS)
Acton, Loren W.; Feldman, Uri; Bruner, Marilyn E.; Doschek, George A.; Hirayama, Tadashi; Hudson, Hugh S.; Lemen, James R.; Ogawara, Yoshiaki; Strong, Keith T.; Tsuneta, Saku
1992-01-01
We have examined images of 10 flares observed by the Soft X-ray Telescope on-board the Yohkoh spacecraft. These images show that the hottest portion of the soft X-ray flare is located in compact regions that appear to be situated at the tops of loops. These compact regions form at, or shortly after, flare onset, and persist well into the decay phase of the flares. In some cases, the compact regions are only a few thousand kilometers in size and are small compared to the lengths of flaring loops. This is inconsistent with the smoother intensity distribution along the loops expected from models of chromospheric evaporation.
Cubic Yb3+-activated Y6MoO12 micro-powder - optical material operating in NIR region
NASA Astrophysics Data System (ADS)
Bieza, M.; Guzik, M.; Tomaszewicz, E.; Guyot, Y.; Boulon, G.
2017-01-01
We present Yb3+-doped Y6MoO12 solid solutions as a very promising NIR emitting phosphor with some hope to obtain them in the nearest future in the form of transparent ceramics due to their cubic structure. The samples are crystallizing in the cubic system with the space group Fm-3m. To perform a full structural and spectroscopic analysis on the well crystallized samples they were obtained in the uniform micro-crystal forms. The ternary Y6MoO12 and Yb3+-doped Y6MoO12 solid solutions containing a large concentration range of activator (0.1, 1, 3, 5, 10, 20 mol%) have been prepared by a high-temperature solid-state reaction method using the Yb2O3/Y2O3/MoO3 mixtures annealed in the air in the temperature range of 550-1550 °C for 6 h. As-obtained samples were systematically characterized by the X-ray powder diffraction (XRD), scanning electron microscopy (SEM), UV-Vis-NIR reflectance. Furthermore, to check the thermal stability of these molybdates the thermogravimetric analysis have been performed. Finally, the luminescent properties of Yb3+ ions activated Y6MoO12 microcrystals were investigated by using the high resolution absorption and emission techniques including the site selective spectroscopy at room and low temperatures. Basing on the absorption and emission spectra the Yb3+ electronic energy levels diagram has been proposed for the main site. The concentration quenching mechanism of Yb3+ ion in this host lattice was also discussed. Obtained results have demonstrated that Yb3+-doped Y6MoO12 microcrystals exhibited good luminescent properties and possess many advantages compared to other compounds based on molybdates and might have potential applications in the laser technology.
Short- and long-range ordering during the phase transition of the Zn6Sc 1/1 cubic approximant
NASA Astrophysics Data System (ADS)
Yamada, Tsunetomo; Euchner, Holger; Pay Gómez, Cesar; Takakura, Hiroyuki; Tamura, Ryuji; de Boissieu, Marc
2013-05-01
Using in situ x-ray scattering and synchrotron radiation, we have experimentally elucidated the mechanism of the cubic to monoclinic phase transition in the Zn6Sc 1/1 approximant to an icosahedral quasicrystal. The high-temperature cubic phase is described as a bcc packing of a large Tsai-type icosahedral cluster whose center is occupied by an orientationally disordered Zn4 tetrahedron. A clear monoclinic distortion has been found to take place within 2 K around Tc = 157 K, in excellent agreement with the observed anomalies in the electrical resistivity and heat capacity. Also, a rapid variation of the super-structure reflection intensity is observed. The low-temperature monoclinic phase, as determined by single-crystal x-ray diffraction at 40 K, has been confirmed to consist of ordered Zn4 tetrahedra, oriented in an anti-parallel way along the [\\bar {1}0 1] direction. Above Tc, a diffuse scattering signal is observed at the position of the super-structure reflections, which evidences that a short-range ordering of the Zn4 tetrahedra takes place. In a way similar to a second-order phase transition, the correlation length describing this short-range ordering increases rapidly when the temperature diminishes and almost diverges when the temperature is close to Tc, going from 200 Å at 220 K to reach the very large value of 1200 Å at 161 K. Finally, using single-crystal x-ray diffraction, the atomic structure of the low-temperature monoclinic super-structure (space group C2/c) could be solved. The ordering of the Zn4 tetrahedra is accompanied by a strong distortion of the surrounding shells.
Synthesis of a New Cubic Conductive Cu6O8-yMX (M=Tb, Dy, Ho, Er, Tm, Yb, Lu, X=NO3, Cl) Family
NASA Astrophysics Data System (ADS)
Sugise, Ryoji; Ohdan, Kyoji; Hamamoto, Toshikazu; Kashiwagi, Kouichi; Shirai, Masashi; Yazawa, Ichiro; Ihara, Hideo
1993-07-01
A new cubic Cu6O8-yMX family (M=Tb, Dy, Ho, Er, Tm, Yb, Lu, X=NO3, Cl) was prepared. These compounds showed metallic resistivity and paramagnetism. The Cu6O8-yMX compounds could be easily synthesized when a trivalent metal element (M) whose oxide (M2O3) has a cubic Tl2O3-type structure was used. These compounds were prepared in the thermal decomposition process of a mixed copper nitrate, copper chloride and metal element oxide solution. The lattice constants of the Cu6O8-yMX compounds were related to those of M2O3.
Hao, Zheng-Ming; Fang, Rui-Qin; Wu, Hai-Shun; Zhang, Xian-Ming
2008-09-15
Hydrothermal reaction of Cu(MeCO2)2, (4-pyridylthio)acetic acid and NH4SCN resulted in a twelve-connected face-centered cubic topological metal-organic framework [Cu3(pdt)2(CN)] (pdt = pyridinethiolate) in which Cu6S4 clusters act as twelve-connected nodes and pyridine rings and cyanides act as connectors. As an extension, an unprecedented fourteen-connected body-centered cubic coordination polymer [Cu19I4(pdt)12(SH)3] has been synthesized by three methods, in which nanosized chiral Cu19I4S12 clusters act as fourteen-connected nodes and triple pyridine rings and hydrosulfides act as connectors. The in situ S-C(sp(3)), S-C(sp(2)), and S-C(sp) cleavage reactions have been observed in the work.
Synthesis, crystal structure, and bonding analysis of the hypoelectronic cubic phase Ca5Pd6Ge6.
Doverbratt, Isa; Ponou, Siméon; Wang, Fei; Lidin, Sven
2015-09-21
The title compound, Ca5Pd6Ge6, was obtained during a systematic investigation of the Ca-Pd-Ge ternary phase diagram. The crystal structure was determined and refined from single-crystal X-ray diffraction data. It crystallizes in a new structure variant of the Y4PdGa12-type structure (Im3̅m, a = 8.7764(4) Å) that features an arrangement of vertex-sharing body-centered cubes of calcium, Ca@Ca8, with a hierarchical bcc network, interpenetrating a second (Pd6Ge6) network consisting of Ge2 dumbbells surrounded by Pd in a strongly flattened octahedron with Pd(μ(2)-η(2),η(4)-Ge2)-like motifs. These octahedra are condensed through the Pd to form a 3D open fcc network. Theoretical band structure calculations suggested that the compound is hypoelectronic with predominantly multicenter-type interatomic interactions involving all three elements and essentially a Hume-Rothery-like regime of electronic stabilization. The similar electronegativity between germanium and palladium atoms has a decisive impact on the bonding picture of the system.
The effect of disorder in Ba{sub 2}YTaO{sub 6} on the tetragonal to cubic phase transition
Zhou, Qingdi; Kennedy, Brendan J.; Kimpton, Justin A.
2011-04-15
Synchrotron X-ray diffraction and Raman spectroscopy have been used to study the structure of the complex perovskite Ba{sub 2}YTaO{sub 6}, at temperatures down to 100 K. Where the Ta and Y cations exhibit long-range rock-salt like ordering, Ba{sub 2}YTaO{sub 6} displays a continuous phase transition from a high temperature cubic structure, described in space group Fm3-bar m, to a tetragonal, I4/m, structure near 260 K. This transition is inhibited if extensive disorder and/or vacancies are/is present in the sample. -- Graphical abstract: The tetragonal-cubic phase transition observed in the cation ordered double perovskite Ba{sub 2}YTaO{sub 6} is inhibited when these are disordered. Display Omitted Highlights: {yields} Double perovskite Ba{sub 2}YTaO{sub 6} characterised by XRD and Raman spectroscopy. {yields} Cubic-tetragonal transition in Ba{sub 2}YTaO{sub 6} studied. {yields} Impact of disorder on the structure and phase transitions established.
NASA Astrophysics Data System (ADS)
Deluque Toro, C. E.; Rodríguez M., Jairo Arbey; Landínez Téllez, D. A.; Moreno Salazar, N. O.; Roa-Rojas, J.
2014-12-01
The Ba2YTaO6 double perovskite presents a transition from cubic (Fm-3m) to tetragonal structure (I4/m) at high temperature. In this work, we present a detailed study of the structural and electronic properties of the double perovskite Ba2YTaO6 in space group Fm-3m and I4/m. Calculations were made with the Full-Potential Linear Augmented Plane Wave method (FP-LAPW) within the framework of the Density Functional Theory (DFT) with exchange and correlation effects in the Generalized Gradient (GGA) and Local Density (LDA) approximations. From the minimization of energy as a function of volume and the fitting of the Murnaghan equation some structural characteristics were determined as, for example, total energy, lattice parameter (a=8.50 Å in cubic phase and a=5.985 Å and c=8.576 Å in tetragonal), bulk modulus (135.6 GPa in cubic phase and 134.1 GPa in tetragonal phase) and its derivative. The study of the electronic characteristics was performed from the analysis of the electronic density of states (DOS). We find a non-metallic behavior for this with a direct band gap of approximately 3.5 eV and we found that the Ba2YTaO6 (I4/m) phase is the most stable one. © 2013 Elsevier Science.
Euchner, H; Yamada, T; Rols, S; Ishimasa, T; Ollivier, J; Schober, H; Mihalkovic, M; de Boissieu, M
2014-02-05
A comparison of periodic approximants and their quasicrystalline counterparts offers the opportunity to better understand the structure, physical properties and stabilizing mechanisms of these complex phases. We present a combined experimental and computational study of the lattice dynamics of the icosahedral quasicrystals i-ZnMgSc and i-ZnAgSc and compare these to the lattice dynamics of the cubic 1/1-approximant Zn6Sc. The two phases, quasicrystal and approximant, are built up from the same atomic clusters, which are packed either quasiperiodically or on a body centered cubic lattice, respectively. Using inelastic neutron scattering and atomic scale simulations, we show that the vibrational spectra of these three systems are very similar, however, they contain a clear signature of the increasing structural complexity from approximant to quasicrystal.
Destruction of the Kondo effect in the cubic heavy-fermion compound Ce3Pd20Si6.
Custers, J; Lorenzer, K A; Müller, M; Prokofiev, A; Sidorenko, A; Winkler, H; Strydom, A M; Shimura, Y; Sakakibara, T; Yu, R; Si, Q; Paschen, S
2012-01-10
How ground states of quantum matter transform between one another reveals deep insights into the mechanisms stabilizing them. Correspondingly, quantum phase transitions are explored in numerous materials classes, with heavy-fermion compounds being among the most prominent ones. Recent studies in an anisotropic heavy-fermion compound have shown that different types of transitions are induced by variations of chemical or external pressure, raising the question of the extent to which heavy-fermion quantum criticality is universal. To make progress, it is essential to broaden both the materials basis and the microscopic parameter variety. Here, we identify a cubic heavy-fermion material as exhibiting a field-induced quantum phase transition, and show how the material can be used to explore one extreme of the dimensionality axis. The transition between two different ordered phases is accompanied by an abrupt change of Fermi surface, reminiscent of what happens across the field-induced antiferromagnetic to paramagnetic transition in the anisotropic YbRh2Si2. This finding leads to a materials-based global phase diagram--a precondition for a unified theoretical description.
Second harmonic generation response of the cubic chalcogenides Ba(6-x)Srx[Ag(4-y)Sn(y/4)](SnS4)4
NASA Astrophysics Data System (ADS)
Haynes, Alyssa S.; Liu, Te-Kun; Frazer, Laszlo; Lin, Jyun-Fan; Wang, Shuo-Yu; Ketterson, John B.; Kanatzidis, Mercouri G.; Hsu, Kuei-Fang
2017-04-01
We synthesized the barium/strontium solid solution sequence Ba6-xSrx[Ag(4-y)Sn(y/4)](SnS4)4 for nonlinear optical (NLO) applications in the infrared (IR) via a flux synthesis route. All title compounds are isotypic, crystallizing in the cubic space group I 4 ̅3d and are composed of a three-dimensional (3D) anionic framework of alternating corner-sharing SnS4 and AgS4 tetrahedra charge balanced by Ba and Sr. The shrinkage of Ba/Sr-S bond lengths causes the tetrahedra in the anionic framework to become more distorted, which results in a tunable band gap from 1.58 to 1.38 eV with increasing x values. The performance of the barium limit (x=0) is also superior to that of Sr (x=6), but surprisingly second harmonic generation (SHG) of the solid solution remains strong and is insensitive to the value of x over the range 0-3.8. Results show that the non-type-I phase-matched SHG produced by these cubic chalcogenides display intensities higher than the benchmark AgGaSe2 from 600 to 1000 nm.
Serghiou, George; Ji, Gang; Odling, Nicholas; Reichmann, Hans J; Morniroli, Jean-Paul; Boehler, Reinhard; Frost, Dan J; Wright, Jonathan P; Wunder, Bernd
2015-12-07
Alloy and nitride solid solutions are prominent for structural, energy and information processing applications. There are frequently however barriers to making them. We remove barriers to reactivity here using pressure with a new synthetic approach. We target pressures where the reasons for cubic endmember nitride instability can become the driving force for cubic nitride solid solution stability. Using this approach we form a novel rocksalt Mg0.4 Fe0.6 N solid solution at between 15 and 23 GPa and up to 2500 K. This is a system where, neither an alloy nor a nitride solid solution form at ambient conditions and bulk MgN and FeN endmembers do not form, either at ambient or at high pressure. The new nitride is formed, by removing endmember lattice mismatch with pressure, allowing a stabilizing redistribution of valence electrons upon heating. This approach can be employed for a range of normally unreactive systems. Mg, Fe and enhanced nitrogen presence, may also indicate a richer reaction chemistry in our planets interior.
de Silva, Namal; Dahl, Lawrence F
2006-10-30
The nonprotonated member, 1 (n = 6), of the previously established nanosized nu3-octahedral [H(6-n)Pt6Ni38(CO)48]n- series (n = 3-6) has been isolated from an aprotic synthetic route and stabilized as the crystal-ordered cyclohexane/acetonitrile-solvated [NMe4]+ salt. A highly precise X-ray determination (cubic; Pa3; Z = 4 with 1 possessing -3 site symmetry) has allowed a comparative analysis of the nonprotonated pseudo-D3d structure of 1 with the monoprotonated structure of 2 (n = 5), which constitutes the only previously reported complete geometry of any member of this extraordinary Pt6-encapsulated nu3-octahedral Pt6Ni38 cluster series.
NASA Astrophysics Data System (ADS)
Sahara, Ryoji; Matsunaga, Tetsuya; Hongo, Hiromichi; Tabuchi, Masaaki
2016-05-01
Small amounts of boron improve the mechanical properties in high-chromium ferritic heat-resistant steels. In this work, the stabilizing mechanism by boron in body-centered cubic iron (bcc Fe) through (Fe,Cr)23(C,B)6 precipitates was investigated by first-principles calculations. Formation energy analysis of (Fe,Cr)23(C,B)6 reveals that the compounds become more stable to elemental solids as the boron concentration increases. Furthermore, the interface energy of bcc Fe(110) || Fe23(C,B)6(111) also decreases with boron concentration in the compounds. The decreased interface energy caused by boron addition is explained by the balance between the change in the phase stability of the precipitates and the change in the misfit parameter for the bcc Fe matrix and the precipitates. These results show that boron stabilizes the microstructure of heat-resistant steels, which is important for understanding the origins of the creep strength in ferritic steels.
High-Pressure Synthesis and Ferrimagnetic Ordering of the B-Site-Ordered Cubic Perovskite Pb2FeOsO6.
Zhao, Qing; Liu, Min; Dai, Jianhong; Deng, Hongshan; Yin, Yunyu; Zhou, Long; Yang, Junye; Hu, Zhiwei; Agrestini, Stefano; Chen, Kai; Pellegrin, Eric; Valvidares, Manuel; Nataf, Lucie; Baudelet, François; Tjeng, L H; Yang, Yi-Feng; Jin, Changqing; Long, Youwen
2016-10-03
Pb2FeOsO6 was prepared for the first time by using high-pressure and high-temperature synthesis techniques. This compound crystallizes into a B-site-ordered double-perovskite structure with cubic symmetry Fm3̅m, where the Fe and Os atoms are orderly distributed with a rock-salt-type manner. Structure refinement shows an Fe-Os antisite occupancy of about 16.6%. Structural analysis and X-ray absorption spectroscopy both demonstrate the charge combination to be Pb2Fe(3+)Os(5+)O6. A long-range ferrimagnetic transition is found to occur at about 280 K due to antiferromagnetic interactions between the adjacent Fe(3+) and Os(5+) spins with a straight (180°) Fe-O-Os bond angle, as confirmed by X-ray magnetic circular-dichroism measurements. First-principles theoretical calculations reveal the semiconducting behavior as well as the Fe(3+)(↑)Os(5+)(↓) antiferromagnetic coupling originating from the superexchange interactions between the half-filled 3d orbitals of Fe and t2g orbitals of Os.
Surface Chemistry, Microstructure, and Tribological Properties of Cubic Boron Nitride Films
NASA Technical Reports Server (NTRS)
Watanabe, Shuichi; Wheeler, Donald R.; Abel, Phillip B.; Street, Kenneth W.; Miyoshi, Kazuhisa; Murakawa, Masao; Miyake, Shojiro
1998-01-01
This report deals with the surface chemistry, microstructure, bonding state, morphology, and friction and wear properties of cubic boron nitride (c-BN) films that were synthesized by magnetically enhanced plasma ion plating. Several analytical techniques - x-ray photoelectron spectroscopy, transmission electron microscopy and electron diffraction, Fourier transform infrared spectroscopy, atomic force microscopy, and surface profilometry - were used to characterize the films. Sliding friction experiments using a ball-on-disk configuration were conducted for the c-BN films in sliding contact with 440C stainless-steel balls at room temperature in ultrahigh vacuum (pressure, 10(exp -6), in ambient air, and under water lubrication. Results indicate that the boron-to-nitrogen ratio on the surface of the as-deposited c-BN film is greater than 1 and that not all the boron is present as boron nitride but a small percentage is present as an oxide. Both in air and under water lubrication, the c-BN film in sliding contact with steel showed a low wear rate, whereas a high wear rate was observed in vacuum. In air and under water lubrication, c-BN exhibited wear resistance superior to that of amorphous boron nitride, titanium nitride, and titanium carbide.
Redetermination of the cubic struvite analogue Cs[Mg(OH2)6](AsO4)
Weil, Matthias
2009-01-01
In contrast to the previous refinement from photographic data [Ferrari et al. (1955 ▶). Gazz. Chim. Ital. 84, 169–174], the present redetermination of the title compound, caesium hexaaquamagnesium arsenate(V), revealed the Cs atom to be on Wyckoff position 4d instead of Wyckoff position 4b of space group F 3m. The structure can be derived from the halite structure. The centres of the complex [Mg(OH2)6] octahedra and the AsO4 tetrahedra (both with 3m symmetry) are on the respective Na and Cl positions. The building units are connected to each other by O—H⋯O hydrogen bonds. The Cs+ cations (3m symmetry) are located in the voids of this arrangement and exhibit a regular cuboctahedral 12-coordination to the O atoms of the water molecules. The O atom bonded to As has 2mm site symmetry (Wyckoff position 24f) and the water-molecule O atom has m site symmetry (Wyckoff position 48h). PMID:21581464
Euchner, H; Yamada, T; Rols, S; Ishimasa, T; Kaneko, Y; Ollivier, J; Schober, H; Mihalkovic, M; de Boissieu, M
2013-03-20
A comparison of periodic approximants and their quasicrystalline counterparts offers the opportunity to better understand the structure, physical properties and stabilizing mechanisms of these complex phases. We present a combined experimental and molecular dynamics study of the lattice dynamics of the icosahedral quasicrystals i-ZnMgSc and i-ZnAgSc and compare it to recently published results obtained for the cubic 1/1-approximant Zn(6)Sc. Both phases, quasicrystal and approximant, are built up from large atomic clusters which contain a tetrahedral shell at the cluster centre and are packed either quasiperiodically or on a bcc lattice. Using quasielastic neutron scattering and atomic scale simulations, we show that in the quasicrystal the tetrahedra display a dynamics similar to that observed in the 1/1-approximant: the tetrahedra behave as a 'single molecule' and reorient dynamically on a timescale of the order of a few ps. The tetrahedra reorientation is accompanied by a large distortion of the surrounding cluster shells which provide a unique dynamical flexibility to the quasicrystal. However, whereas in the 1/1-approximant the tetrahedron reorientation is observed down to T(c) = 160 K, where a phase transition takes place, in the quasicrystal the tetrahedron dynamics is gradually freezing from 550 to 300 K, similarly to a glassy system.
Yang, Linlin; Jing, Xu; He, Cheng; Chang, Zhiduo; Duan, Chunying
2016-12-12
The design of artificial systems that mimic highly evolved and finely tuned natural enzymes is a promising subject of intensive research. The assembly of O-symmetric cubic structures with an Fe8 L6 formula was reported through the direct combination of a C4 -symmetric tetraphenylethylene-based ligand with a C3 -symmetric tris(bipyridine)iron node. The robust metal-organic cubes are rich in π-electron density and provide favorable interactions with planar polycyclic aromatic hydrocarbons. Within the confined space of the host, the aromatic hydrocarbons molecules are forced closer to the redox active host, and the photoinduced electron transfer (PET) is modified into a pseudo-intramolecular pathway. These iron vertices within the cubes exhibit suitable redox potential for electrochemical reduction of protons and the well-modified PET is further tailored to create artificial systems for light-driven hydrogen evolution from water through the encapsulation of fluorescein dyes. Control experiments based on a mononuclear compound resembling the iron corner of the octahedron suggest an enzymatic dynamic behavior. The new, well-elucidated reaction pathways and the increased molarity of the reaction within the confined space render these supramolecular systems superior to other relevant systems.
Second harmonic conversion in cubic silicon carbide at 1.06 micron
NASA Technical Reports Server (NTRS)
Harris, G. L.; Jones, E. W.; Spencer, M. G.; Jackson, K. H.
1991-01-01
This letter describes second harmonic conversion in cubic silicon carbide (beta-SiC) at a wavelength of 1.06 micron. Epitaxial layers of beta-SiC formed by vapor phase growth on silicon are indeed birefringent, and thus phase matchable. Phase-matched films of beta-SiC have respectable conversion efficiencies even in the presence of adsorption at 532 nm. The measured value of the effective second order nonlinear susceptibility for beta-SiC is chi super (2) eff = 1.05 +/- 0.3 x 10 exp -9 esu.
Zhang, Xian; Wang, Qiuran; Ma, Zhimin; He, Jianqiao; Wang, Zhe; Zheng, Chong; Lin, Jianhua; Huang, Fuqiang
2015-06-01
Two compounds with the formulas of Na4Cu32Sn12S48·4H2O and K11Cu32Sn12S48·4H2O were synthesized via flux (with thiourea as reactive flux) and hydrothermal method, respectively. The black crystals of Na4Cu32Sn12S48·4H2O and K11Cu32Sn12S48·4H2O both crystallize in the cubic space group of Fm3̅c with the cell constants a = 17.921(2) Å and a = 18.0559(6) Å, respectively. The crystal structures feature a 3D open-framework with the unique [Cu8Sn6S24](z-) (z = 13 for Na4Cu32Sn12S48·4H2O; z = 14.75 for K11Cu32Sn12S48·4H2O) clusters acting as building blocks. The [Cu8Sn6S24](z-) cluster of the Th symmetry is built up by eight [CuS3] triangles and six [SnS4] tetrahedra. The powder samples were investigated by X-ray diffraction and optical absorption measurements. Both phase-pure compounds show multiabsorption character with a main absorption edge (2.0 eV for Na4Cu32Sn12S48·4H2O and 1.9 eV for K11Cu32Sn12S48·4H2O) and an additional absorption peak (1.61 eV for Na4Cu32Sn12S48·4H2O and 1.52 eV for K11Cu32Sn12S48·4H2O), which are perfectly consistent with the first-principle calculation results. The analyses of the density of states further reveal that the two optical absorption bands in each compound are attributed to the two transitions of Cu-3d-S-3p → Sn-5s. The multiband nature of two compounds also enhances photocatalytic activity under visible light irradiation, with which the degradation of methyl blue over Na4Cu32Sn12S48·4H2O reached 100% in 3 h. The 3D open-framework features also facilitate the ionic conductivity nature of the Na4Cu32Sn12S48·4H2O compound, which achieved ∼10(-5) S/cm at room temperature.
NASA Astrophysics Data System (ADS)
Wu, Xiao-Xuan; Zheng, Wen-Chen
2015-06-01
The spin-Hamiltonian parameters (g factors g//, ?, and hyperfine structure constants A//, ?) of the tetragonally compressed Nb4+ center in cubic Cs2ZrCl6 crystal are calculated from two theoretical methods: one is the complete diagonalization (of energy matrix) method and another is the perturbation theory method. Both methods are based on the two-spin-orbit-parameter model where the contributions to spin-Hamiltonian parameters from the spin-orbit parameter of central dn ion (in the conventional crystal field theory) and that of ligand ion via covalence effect are contained. The calculated results from the two methods are in reasonable agreement with the experimental values. The tetragonal distortion of (NbCl6)2- octahedral cluster due to the Jahn-Teller effect for Nb4+ at the cubic Zr4+ site in Cs2ZrCl6 is also acquired. The results are discussed.
Mosquera, Jesús; Szyszko, Bartosz; Ho, Sarah K. Y.; Nitschke, Jonathan R.
2017-01-01
Self-assembly offers a general strategy for the preparation of large, hollow high-symmetry structures. Although biological capsules, such as virus capsids, are capable of selectively recognizing complex cargoes, synthetic encapsulants have lacked the capability to specifically bind large and complex biomolecules. Here we describe a cubic host obtained from the self-assembly of FeII and a zinc-porphyrin-containing ligand. This cubic cage is flexible and compatible with aqueous media. Its selectivity of encapsulation is driven by the coordination of guest functional groups to the zinc porphyrins. This new host thus specifically encapsulates guests incorporating imidazole and thiazole moieties, including drugs and peptides. Once encapsulated, the reactivity of a peptide is dramatically altered: encapsulated peptides are protected from trypsin hydrolysis, whereas physicochemically similar peptides that do not bind are cleaved. PMID:28358028
Accurate monotone cubic interpolation
NASA Technical Reports Server (NTRS)
Huynh, Hung T.
1991-01-01
Monotone piecewise cubic interpolants are simple and effective. They are generally third-order accurate, except near strict local extrema where accuracy degenerates to second-order due to the monotonicity constraint. Algorithms for piecewise cubic interpolants, which preserve monotonicity as well as uniform third and fourth-order accuracy are presented. The gain of accuracy is obtained by relaxing the monotonicity constraint in a geometric framework in which the median function plays a crucial role.
46 CFR 160.035-9 - Cubic capacity of lifeboats.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 6 2010-10-01 2010-10-01 false Cubic capacity of lifeboats. 160.035-9 Section 160.035-9...: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Lifeboats for Merchant Vessels § 160.035-9 Cubic capacity of... its cubic capacity. (1) Length (L). The length is the distance in feet from the inside of the...
46 CFR 160.035-9 - Cubic capacity of lifeboats.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 6 2011-10-01 2011-10-01 false Cubic capacity of lifeboats. 160.035-9 Section 160.035-9...: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Lifeboats for Merchant Vessels § 160.035-9 Cubic capacity of... its cubic capacity. (1) Length (L). The length is the distance in feet from the inside of the...
Pauling, L.
1987-06-01
It is shown that the x-ray powder diffraction patterns of rapidly quenched MnAl/sub 6/ and Mg/sub 32/(Al,Zn)/sub 49/ and the neutron powder diffraction pattern of MnAl/sub 5/ are compatible with the proposed 820-atom primitive cubic structure. The values found for the edge of the unit cube are 23.365 A (x-ray) and 23.416 A (neutron) for MnAl/sub 6/ and 24.313 A (x-ray) for Mg/sub 32/(Al,Zn)/sub 49/.
Burrell, Anthony K; McCleskey, Thomas Mark; Jia, Quanxi; Mueller, Alexander H; Luo, Hongmei
2013-04-30
A polymer-assisted deposition process for deposition of epitaxial cubic metal nitride films and the like is presented. The process includes solutions of one or more metal precursor and soluble polymers having binding properties for the one or more metal precursor. After a coating operation, the resultant coating is heated at high temperatures under a suitable atmosphere to yield metal nitride films and the like. Such films can be used as templates for the development of high quality cubic GaN based electronic devices.
NASA Astrophysics Data System (ADS)
Azoulay, M.; Raizman, A.; Weingarten, R.; Shacham, H.; Feldstein, H.
1993-03-01
The growth of CdMnTe single crystals faces some difficulties due to the phase transition in the solid state at high temperatures, just after solidification. To overcome this problem, it has been suggested to grow the crystals from a Te-rich solution by the traveling heater method at a lower temperature than that of growth from the melt, or alternatively to grow the crystal from the melt at high axial thermal gradient near the interface. In this paper, we present for the first time the growth of cubic, single phase, CdxMn1-xTe single crystals by the vertical gradient freeze technique under a very low axial thermal gradient in the melt (3°C/cm) and high manganese content (x ≈ 40%). The solidification stage is characterized by a rapid cooling of the crystal through the phase transition temperature region, followed by annealing at about 800°C. The crystal exhibits a very high crystalline perfection, as measured by the double-crystal X-ray rocking curves with a full width at half maximum of 30 arc sec and low optical losses of about 1 dB/mm between 650 and 820 nm with λ-cutoff at 630 nm. Further magneto-optical properties are currently examined for a possible application in devices.
NASA Technical Reports Server (NTRS)
Graf, TH.; Niedermann, S.; Marti, K.
1993-01-01
The spallation ratio (Ne-22/Ne-21)(sub c) from Si was determined as 1.243 plus or minus 0.022 in a terrestrial quartz sample. We carried out a calibration of the in-situ production rate ratio P-21/P-26 in quartz samples for which Be-10 and Al-26 production rates were previously measured. A ratio P-21/P-26 of 0.67 plus or minus 0.12 is obtained.
Vacancy Relaxation in Cubic Crystals
NASA Technical Reports Server (NTRS)
Girifalco, L. A.; Weizer, V. G.
1960-01-01
The configuration of the atoms surrounding a vacancy in four face-centered cubic and three body-centered cubic metals has been computed, using a pairwise, central-force model in which the energy of interaction between two atoms was taken to have the form of a Morse function. Only radial relaxations were considered. The first and second nearest-neighbor relaxations for the face-centered systems were found to be: Pb (1.42,-0.43), Ni (2.14,-0.39), Cu(2.24,-0.40) and Ca (2.73,-0.41, expressed in percentages of normal distances. For the body-centered systems the relaxations out to the fourth nearest neighbors to the vacancy were: Fe (6.07,-2.12, -0.25, -), Ba (7.85, -2.70, 0.70, -0.33) and Na (10.80, -3.14, 3.43, -0.20). The positive signs indicate relaxation toward the vacancy and the negative signs indicate relaxation away from the vacancy. The energies of relaxation (eV) are: Pb (0.162), Ni (0.626), Cu (0.560), Ca (0.400), Fe (1.410), Ba (0.950) and Na (0.172).
Rettenwander, Daniel; Welzl, Andreas; Cheng, Lei; Fleig, Jürgen; Musso, Maurizio; Suard, Emmanuelle; Doeff, Marca M; Redhammer, Günther J; Amthauer, Georg
2015-11-02
Cubic Li7La3Zr2O12 (LLZO) garnets are exceptionally well suited to be used as solid electrolytes or protecting layers in "Beyond Li-ion Battery" concepts. Unfortunately, cubic LLZO is not stable at room temperature (RT) and has to be stabilized by supervalent dopants. In this study we demonstrate a new possibility to stabilize the cubic phase at RT via substitution of Zr(4+) by Mo(6+). A Mo(6+) content of 0.25 per formula unit (pfu) stabilizes the cubic LLZO phase, and the solubility limit is about 0.3 Mo(6+) pfu. Based on the results of neutron powder diffraction and Raman spectroscopy, Mo(6+) is located at the octahedrally coordinated 16a site of the cubic garnet structure (space group Ia-3d). Since Mo(6+) has a smaller ionic radius compared to Zr(4+) the lattice parameter a0 decreases almost linearly as a function of the Mo(6+) content. The highest bulk Li-ion conductivity is found for the 0.25 pfu composition, with a typical RT value of 3.4 × 10(-4) S cm(-1). An additional significant resistive contribution originating from the sample interior (most probably from grain boundaries) could be identified in impedance spectra. The latter strongly depends on the prehistory and increases significantly after annealing at 700 °C in ambient air. Cyclic voltammetry experiments on cells containing Mo(6+) substituted LLZO indicate that the material is stable up to 6 V.
NASA Astrophysics Data System (ADS)
Deniz, Hakan; Preziosi, Daniele; Alexe, Marin; Hesse, Dietrich
2017-01-01
We report the growth of high-quality epitaxial Sr2FeMoO6 (SFMO) thin films on various unconventional oxide substrates, such as TbScO3, DyScO3, and Sr2Al0.3Ga0.7TaO6 (SAGT) as well as on the most commonly used one, SrTiO3 (STO), by pulsed laser deposition. The films were found to contain a foreign nano-scale phase coherently embedded inside the SFMO film matrix. Through energy dispersive X-ray spectroscopy and scanning transmission electron microscopy, we identified the foreign phase to be Sr2-xFe1+yMo1-yO6, an off-stoichiometric derivative of the SFMO compound with Fe rich content (y ≈ 0.6) and a fairly identical crystal structure to SFMO. The films on STO and SAGT exhibited very good magnetic properties with high Curie temperature values. All the samples have fairly good conducting behavior albeit the presence of a foreign phase. Despite the relatively large number of items of the foreign phase, there is no significant deterioration in the properties of the SFMO films. We discuss in detail how magneto-transport properties are affected by the foreign phase.
Lin, Qisheng; Corbett, John D
2010-05-17
Exploratory syntheses in the M-Au-Ge (M = Ca, Yb) systems have led to the discovery of two cleanly separated non-stoichiometric phases M(3)Au(approximately 14.4)Ge(approximately 4.6) (I) and M(3.25)Au(approximately 12.7)Ge(approximately 5.3) (II). Single crystal X-ray studies reveal that both (space group Im3) feature body-centered-cubic packing of five-shell multiply endohedral clusters that resemble those in the parent YCd(6) (= Y(3)Cd(18)) and are akin to approximate phases in other quasicrystal systems. However, differences resulting from various disorders in these are distinctive. The innermost cluster in the M(3)Au(approximately 14.4)Ge(approximately 4.6) phase (I) remains a disordered tetrahedron, as in the YCd(6) parent. In contrast, its counterpart in the electron-richer M(3.25)Au(approximately 12.7)Ge(approximately 5.3) phase (II) is a "rattling" M atom. The structural differentiations between I and II exhibit strong correlations between lattice parameters, cluster sizes, particular site occupancies, and valence electron counts.
Yuan, Li-Yong; Zhu, Lin; Xiao, Cheng-Liang; Wu, Qun-Yan; Zhang, Nan; Yu, Ji-Pan; Chai, Zhi-Fang; Shi, Wei-Qun
2017-02-01
A preorganized tetradentate phenanthrolineamide (DAPhen) ligand with hard and soft donors combined in the same molecule has been found to possess high extraction ability toward actinides over lanthanides from acidic aqueous solution in our previous work. Herein we grafted phenanthrolineamide groups onto a large-pore three-dimensional cubic silica support by the reaction of DAPhen siloxane with KIT-6 substrate to prepare a novel uranium-selective sorbent, KIT-6-DAPhen. The as-synthesized sorbent was well-characterized by scanning electron microscopy, high-resolution transmission electron microscopy, N2 adsorption/desorption, X-ray diffraction, FT-IR, (13)C cross-polarization magic-angle spinning NMR, and TGA techniques, which confirmed the consummation of the functionalization. Subsequently, the effects of contact time, solution pH, initial U(VI) concentration, and the presence of competing metal ions on the U(VI) sorption onto KIT-6-DAPhen sorbent were investigated in detail. It was found that KIT-6-DAPhen showed largely enhanced sorption capacity and excellent selectivity toward U(VI). The maximum sorption capacity of KIT-6-DAPhen at pH 5.0 reaches 328 mg of U/g of sorbent, which is superior to most of functionalized mesoporous silica materials. Density functional theory coupled with quasi-relativistic small-core pseudopotentials was used to explore the sorption interaction between U(VI) and KIT-6-DAPhen, which gives a sorption reaction of KIT-6-DAPhen + [UO2(H2O)5](2+) + NO3(-) ⇄ [UO2(KIT-6-DAPhen)(NO3)](+) + 5H2O. The findings of the present work provide new clues for developing new actinide sorbents by combining new ligands with various mesoporous matrixes.
NASA Astrophysics Data System (ADS)
Ovsyannikov, Sergey V.; Shchennikov, Vladimir V.; Todo, Sakae; Uwatoko, Yoshiya
2008-04-01
The results of the first study on the thermoelectric power (Seebeck effect) of single crystals of Fe3O4 magnetite at high pressure P up to 20 GPa and room temperature are reported. The electrical resistance and a sample's contraction (relative compressibility) were also investigated over a P range of 0-20 GPa. A smooth bend (crossover) in the pressure dependence of the thermopower was firmly established near 6 GPa. This feature was attributed to a modification of Fe3O4 to an 'ideal' inverse configuration, the case where equivalent amounts of charges (the Fe2+ ions) and vacancies (the Fe3+ ions) at the octahedral sites provide nearly metallic polaron hopping conductivity via the octahedral network. The origin of this transformation might lie in (i) a P-tuning 'perfection' of the electronic transport in the inverse spinel, and/or in (ii) a transfer of a minor group of the charges from the tetrahedral sites to the octahedral ones, i.e. a \\mathrm {normal \\to inverse} configuration transition. Opportunities for the opposite valence transition in magnetite, from the inverse spinel to the normal (direct) one, are also discussed. At ambient pressure the samples of Fe3O4 were probed by Raman spectroscopy and using the electrical resistivity across the Verwey transition.
Pani, M.; Manfrinetti, P.; Provino, A.; Yuan, Fang; Mozharivskyj, Y.; Morozkin, A.V.; Knotko, A.V.; Garshev, A.V.; Yapaskurt, V.O.; Isnard, O.
2014-02-15
Novel RNi{sub 6}Si{sub 6} compounds adopt the new CeNi{sub 6}Si{sub 6}-type structure for R=La–Ce (tP52, space group P4/nbm N 125-1) and new YNi{sub 6}Si{sub 6}-type structure for R=Y, Sm, Gd–Yb (tP52, space group P4{sup ¯}b2N 117) that are tetragonal derivative of NaZn{sub 13}-type structure, like LaCo{sub 9}Si{sub 4}-type. The CeNi{sub 6}Si{sub 6}, GdNi{sub 6}Si{sub 6}, TbNi{sub 6}Si{sub 6}, DyNi{sub 6}Si{sub 6} and HoNi{sub 6}Si{sub 6} compounds are Curie–Weiss paramagnets down to ∼30 K, and do not order magnetically down to 5 K. However, the inverse paramagnetic susceptibility of LaNi{sub 6}Si{sub 6} does not follow Curie–Weiss law. The DyNi{sub 6}Si{sub 6} shows ferromagnetic-like saturation behaviour at 5 K in applied fields of 50 kOe, giving rise to a magnetic moment value of 6.5 μ{sub B}/f.u. in 50 kOe. The powder neutron diffraction study in zero applied filed indicates square modulated the c-collinear antiferromagnetic ordering of TbNi{sub 6}Si{sub 6} with K=[±1/4, ±1/4, 0] wave vector below ∼10 K. - Graphical abstract: Novel (La, Ce)Ni{sub 6}Si{sub 6} compounds adopt the new CeNi{sub 6}Si{sub 6}-type structure and (Y, Sm, Gd–Yb) adopt the new YNi{sub 6}Si{sub 6}-type structure that are tetragonal derivative of NaZn{sub 13}-type structure, like LaCo{sub 9}Si{sub 4}-type. The CeNi{sub 6}Si{sub 6}, GdNi{sub 6}Si{sub 6}, TbNi{sub 6}Si{sub 6}, DyNi{sub 6}Si{sub 6} and HoNi{sub 6}Si{sub 6} compounds are Curie–Weiss paramagnets down to ∼30 K, and do not order magnetically down to 4.2 K. The powder neutron diffraction study in zero applied filed indicates square modulated the c-collinear antiferromagnetic ordering of TbNi{sub 6}Si{sub 6} with K=[±1/4, ±1/4, 0] wave vector below ∼10 K. Display Omitted - Highlights: • The new (La, Ce)Ni{sub 6}Si{sub 6} compounds adopt the new CeNi{sub 6}Si{sub 6}-type structure. • The new (Y, Sm, Gd–Yb)Ni{sub 6}Si{sub 6} compounds adopt the new YNi{sub 6}Si{sub 6}-type structure. • TbNi{sub 6}Si
Flemming, Anke; Hoppe, Alessandra
2008-10-15
Slow crystallization of (PyrH){sub 2}[Nb{sub 6}Cl{sub 18}] from hot ethanol solution affords triclinic (PyrH){sub 2}[Nb{sub 6}Cl{sub 18}].EtOH. Treatment of [Nb{sub 6}Cl{sub 14}(H{sub 2}O){sub 4}].4H{sub 2}O with pyridine in a methanol solution gives the second title compound, the cubic modification of (PyrH){sub 2}[Nb{sub 6}Cl{sub 18}]. Both structures were determined by single crystal X-ray diffraction, (PyrH){sub 2}[Nb{sub 6}Cl{sub 18}].EtOH: P1-bar , a=9.3475(3), b=9.3957(3), c=10.8600(3) A, {alpha}=82.582(1){sup o}, {beta}=78.608(1){sup o}, and {gamma}=78.085(1){sup o}, Z=1, R{sub 1}(F)/wR{sub 2}(F{sup 2})=0.0254/0.0573, cub.-(PyrH){sub 2}[Nb{sub 6}Cl{sub 18}]: Fd3-bar m, a=19.935(2) A, Z=8, R{sub 1}(F)/wR{sub 2}(F{sup 2})=0.0557/0.1796. The cluster compounds contain isolated, molecular [Nb{sub 6}Cl{sup i}{sub 12}Cl{sup a}{sub 6}]{sup 2-} cluster anions with an octahedron of metal atoms edge bridged by chlorido ligands with additional ones on all the six exo positions. These cluster anions are separated by the pyridinium cations and ethanol solvent molecules, respectively. For the cubic modification of (PyrH){sub 2}[Nb{sub 6}Cl{sub 18}], a structural comparison is given to the known rhombohedral modification using the group-subgroup relations as expressed by a Baernighausen tree. - Graphical abstract: The synthesis and structure of a second cubic modification of (PyrH){sub 2}[Nb{sub 6}Cl{sub 18}] and of the new (PyrH){sub 2}[Nb{sub 6}Cl{sub 18}].EtOH are reported, both of which contain isolated niobium halide cluster anions with an octahedral core of metal atoms.
Formation and stability of cubic ice in water droplets.
Murray, Benjamin J; Bertram, Allan K
2006-01-07
There is growing evidence that a metastable phase of ice, cubic ice, plays an important role in the Earth's troposphere and stratosphere. Cubic ice may also be important in diverse fields such as cryobiology and planetary sciences. Using X-ray diffraction, we studied the formation of cubic ice in pure water droplets suspended in an oil matrix as a function of droplet size. The results show that droplets of volume median diameter 5.6 microm froze dominantly to cubic ice with stacking faults. These results support previous suggestions that cubic ice is the crystalline phase that nucleates when pure water droplets freeze homogeneously at approximately 235 K. It is also shown that as the size of the water droplets increased from 5.6 to 17.0 microm, the formation of the stable phase of ice, hexagonal ice, was favoured. This size dependence can be rationalised with heat transfer calculations. We also investigated the stability of cubic ice that forms in water droplets suspended in an oil matrix. We observe cubic ice up to 243 K, much higher in temperature than observed in many previous studies. This result adds to the existing literature that shows bulk ice I(c) can persist up to approximately 240 K. The transformation of cubic ice to hexagonal ice also showed a complex time and temperature dependence, proceeding rapidly at first and then slowing down and coming to a halt. These combined results help explain why cubic ice forms in some experiments described in the literature and not others.
Salyer, R.L.; VanDenburg, J.W.; Prinja, A.K.; Kirby, T.; Busch, R.; Hong-Nian Jow
1996-07-01
The purpose of this research is to characterize existing 2 MeV, 4 MeV and 6 MeV buildup caps, and to determine if a buildup cap can be made for the 0.6 cm{sup 3} thimble ionization chamber that will accurately measure exposures in a high-energy photon radiation field. Two different radiation transport codes were used to computationally characterize existing 2 MeV, 4 MeV, and 6 MeV buildup caps for a 0.6 cm{sup 3} active volume thimble ionization chamber: ITS, The Integrated TIGER Series of Coupled Electron-Photon Monte Carlo Transport Codes; and CEPXS/ONEDANT, A One-Dimensional Coupled Electron-Photon Discrete Ordinates Code Package. These codes were also used to determine the design characteristics of a buildup cap for use in the 18 MeV photon beam produced by the 14 TW pulsed power HERMES-III electron accelerator. The maximum range of the secondary electron, the depth at which maximum dose occurs, and the point where dose and collision kerma are equal have been determined to establish the validity of electronic equilibrium. The ionization chamber with the appropriate buildup cap was then subjected to a 4 MeV and a 6 MeV bremmstrahlung radiation spectrum to determine the detector response.
ERIC Educational Resources Information Center
Khonsari, Michael M.; Horn, Douglas
1990-01-01
An algorithm is described for generating smooth curves of first-order continuity. The algorithm is composed of several cubic Bezier curves joined together at the user defined control points. Introduced is a tension control parameter which can be set thus providing additional flexibility in the design of free-form curves. (KR)
Cubic Unit Cell Construction Kit.
ERIC Educational Resources Information Center
Mattson, Bruce
2000-01-01
Presents instructions for building a simple interactive unit-cell construction kit that allows for the construction of simple, body-centered, and face-centered cubic lattices. The lit is built from inexpensive and readily available materials and can be built in any number of sizes. (WRM)
Cubication of Conservative Nonlinear Oscillators
ERIC Educational Resources Information Center
Belendez, Augusto; Alvarez, Mariela L.; Fernandez, Elena; Pascual, Immaculada
2009-01-01
A cubication procedure of the nonlinear differential equation for conservative nonlinear oscillators is analysed and discussed. This scheme is based on the Chebyshev series expansion of the restoring force, and this allows us to approximate the original nonlinear differential equation by a Duffing equation in which the coefficients for the linear…
A Novel Tungsten-Nickel Alloy Ohmic Contact to SiC at 900 C
NASA Technical Reports Server (NTRS)
Okojie, Robert S.; Evans, Laura J.; Lukco, Dorothy; Morris, Joseph P.
2010-01-01
A novel tungsten-nickel ohmic contact metallization on 4H-SiC and 6H-SiC capable of surviving temperatures as high as 900 C is reported. Preliminary results revealed the following: 1) ohmic contact on n-type 4H-SiC having net doping levels (Nd's) of 1.4 and 2 x 10(exp 19) per cubic centimeter, with specific contact resistances rhosNd's of 7.69 x 10(exp -4) and 5.81 x 10(exp -4) OMEGA (raised dot) square centimeters, respectively, after rapid thermal annealing (RTA), and 5.9 x 10(exp -3) and 2.51 x 10(exp -4) OMEGA (raised dot) square centimeters, respectively, after subsequent soak at 900 C for 1 h in argon, and 2) ohmic contact on n- and p-type 6H-SiC having Nd > 2 x 10(exp 19) and Na > 1 x 10(exp 20) per cubic centimeter, with rhosNd = 5 x 10(exp -5) and rhosNa = 2 X 10(exp -4) OMEGA (raised dot) square centimeter, respectively, after RTA, and rhosNd = 2.5 x 10 (exp -5) and rhosNa = 1.5 x 10(exp -4) OMEGA (raised dot) square centimeter after subsequent treatment at 900 C for 1 h in argon, respectively.
Cubic Icosahedra? A Problem in Assigning Symmetry
ERIC Educational Resources Information Center
Lloyd, D. R.
2010-01-01
There is a standard convention that the icosahedral groups are classified separately from the cubic groups, but these two symmetry types have been conflated as "cubic" in some chemistry textbooks. In this note, the connection between cubic and icosahedral symmetries is examined, using a simple pictorial model. It is shown that octahedral and…
Solving Cubic Equations by Polynomial Decomposition
ERIC Educational Resources Information Center
Kulkarni, Raghavendra G.
2011-01-01
Several mathematicians struggled to solve cubic equations, and in 1515 Scipione del Ferro reportedly solved the cubic while participating in a local mathematical contest, but did not bother to publish his method. Then it was Cardano (1539) who first published the solution to the general cubic equation in his book "The Great Art, or, The Rules of…
Weighted cubic and biharmonic splines
NASA Astrophysics Data System (ADS)
Kvasov, Boris; Kim, Tae-Wan
2017-01-01
In this paper we discuss the design of algorithms for interpolating discrete data by using weighted cubic and biharmonic splines in such a way that the monotonicity and convexity of the data are preserved. We formulate the problem as a differential multipoint boundary value problem and consider its finite-difference approximation. Two algorithms for automatic selection of shape control parameters (weights) are presented. For weighted biharmonic splines the resulting system of linear equations can be efficiently solved by combining Gaussian elimination with successive over-relaxation method or finite-difference schemes in fractional steps. We consider basic computational aspects and illustrate main features of this original approach.
An Atomic Clock with 10 (exp -18) Instability
2013-09-13
from the effects of strong initial density fluctuations in quench up experi ments and finite temperature (20). The space time dependence of the...experimental tools to address exciting topics in cosmology and gravitational physics such as Hawking radiation (13) or Unruh effect (27). References...3.2 x 10- 16/y’t (red solid lile). The blue dashed line represents the estimated combined instabiliy contributions from the Dick effect (1.4 x 10-16
Effects of stacking disorder on thermal conductivity of cubic ice.
Johari, G P; Andersson, Ove
2015-08-07
Cubic ice is said to have stacking disorder when the H2O sequences in its structure (space group Fd3̄m) are interlaced with hexagonal ice (space group P6(3)/mmc) sequences, known as stacking faults. Diffraction methods have shown that the extent of this disorder varies in samples made by different methods, thermal history, and the temperature T, but other physical properties of cubic and hexagonal ices barely differ. We had found that at 160 K, the thermal conductivity, κ, of cubic ice is ∼20% less than that of hexagonal ice, and this difference varies for cubic ice samples prepared by different methods and/or subjected to different thermal history. After reviewing the methods of forming cubic ice, we report an investigation of the effects of stacking disorder and other features by using new data, and by analyzing our previous data on the dependence of κ on T and on the pressure. We conclude that the lower κ of cubic ice and its weaker T-dependence is due mainly to stacking disorder and small crystal sizes. On in situ heating at 20-50 MPa pressure, κ increases and cubic ice irreversibly transforms more sharply to ice Ih, and at a higher T of ∼220 K, than it does in ex situ studies. Cooling and heating between 115 and 130 K at 0.1 K min(-1) rate yield the same κ value, indicating that the state of cubic ice in these conditions does not change with time and T. The increase in κ of cubic ice observed on heat-annealing before its conversion to hexagonal ice is attributed to the loss of stacking faults and other types of disorders, and to grain growth. After discussing the consequences of our findings on other properties, we suggest that detailed studies of variation of a given property of cubic ice with the fraction of stacking faults in its structure may reveal more about the effect of this disorder. A similar disorder may occur in the mono-layers of H2O adsorbed on a substrate, in bulk materials comprised of two dimensional layers, in diamond and in
Hardness of cubic solid solutions
Gao, Faming
2017-01-01
We demonstrate that a hardening rule exists in cubic solid solutions with various combinations of ionic, covalent and metallic bonding. It is revealed that the hardening stress ∆τFcg is determined by three factors: shear modulus G, the volume fraction of solute atoms fv, and the size misfit degree δb. A simple hardening correlation in KCl-KBr solid-solution is proposed as ∆τFcg = 0.27 G. It is applied to calculate the hardening behavior of the Ag-Au, KCl-KBr, InP-GaP, TiN-TiC, HfN-HfC, TiC-NbC and ZrC-NbC solid-solution systems. The composition dependence of hardness is elucidated quantitatively. The BN-BP solid-solution system is quantitatively predicted. We find a hardening plateau region around the x = 0.55–0.85 in BNxP1−x, where BNxP1−x solid solutions are far harder than cubic BN. Because the prediction is quantitative, it sets the stage for a broad range of applications. PMID:28054659
Transparent polycrystalline cubic silicon nitride.
Nishiyama, Norimasa; Ishikawa, Ryo; Ohfuji, Hiroaki; Marquardt, Hauke; Kurnosov, Alexander; Taniguchi, Takashi; Kim, Byung-Nam; Yoshida, Hidehiro; Masuno, Atsunobu; Bednarcik, Jozef; Kulik, Eleonora; Ikuhara, Yuichi; Wakai, Fumihiro; Irifune, Tetsuo
2017-03-17
Glasses and single crystals have traditionally been used as optical windows. Recently, there has been a high demand for harder and tougher optical windows that are able to endure severe conditions. Transparent polycrystalline ceramics can fulfill this demand because of their superior mechanical properties. It is known that polycrystalline ceramics with a spinel structure in compositions of MgAl2O4 and aluminum oxynitride (γ-AlON) show high optical transparency. Here we report the synthesis of the hardest transparent spinel ceramic, i.e. polycrystalline cubic silicon nitride (c-Si3N4). This material shows an intrinsic optical transparency over a wide range of wavelengths below its band-gap energy (258 nm) and is categorized as one of the third hardest materials next to diamond and cubic boron nitride (cBN). Since the high temperature metastability of c-Si3N4 in air is superior to those of diamond and cBN, the transparent c-Si3N4 ceramic can potentially be used as a window under extremely severe conditions.
Transparent polycrystalline cubic silicon nitride
NASA Astrophysics Data System (ADS)
Nishiyama, Norimasa; Ishikawa, Ryo; Ohfuji, Hiroaki; Marquardt, Hauke; Kurnosov, Alexander; Taniguchi, Takashi; Kim, Byung-Nam; Yoshida, Hidehiro; Masuno, Atsunobu; Bednarcik, Jozef; Kulik, Eleonora; Ikuhara, Yuichi; Wakai, Fumihiro; Irifune, Tetsuo
2017-03-01
Glasses and single crystals have traditionally been used as optical windows. Recently, there has been a high demand for harder and tougher optical windows that are able to endure severe conditions. Transparent polycrystalline ceramics can fulfill this demand because of their superior mechanical properties. It is known that polycrystalline ceramics with a spinel structure in compositions of MgAl2O4 and aluminum oxynitride (γ-AlON) show high optical transparency. Here we report the synthesis of the hardest transparent spinel ceramic, i.e. polycrystalline cubic silicon nitride (c-Si3N4). This material shows an intrinsic optical transparency over a wide range of wavelengths below its band-gap energy (258 nm) and is categorized as one of the third hardest materials next to diamond and cubic boron nitride (cBN). Since the high temperature metastability of c-Si3N4 in air is superior to those of diamond and cBN, the transparent c-Si3N4 ceramic can potentially be used as a window under extremely severe conditions.
Transparent polycrystalline cubic silicon nitride
Nishiyama, Norimasa; Ishikawa, Ryo; Ohfuji, Hiroaki; Marquardt, Hauke; Kurnosov, Alexander; Taniguchi, Takashi; Kim, Byung-Nam; Yoshida, Hidehiro; Masuno, Atsunobu; Bednarcik, Jozef; Kulik, Eleonora; Ikuhara, Yuichi; Wakai, Fumihiro; Irifune, Tetsuo
2017-01-01
Glasses and single crystals have traditionally been used as optical windows. Recently, there has been a high demand for harder and tougher optical windows that are able to endure severe conditions. Transparent polycrystalline ceramics can fulfill this demand because of their superior mechanical properties. It is known that polycrystalline ceramics with a spinel structure in compositions of MgAl2O4 and aluminum oxynitride (γ-AlON) show high optical transparency. Here we report the synthesis of the hardest transparent spinel ceramic, i.e. polycrystalline cubic silicon nitride (c-Si3N4). This material shows an intrinsic optical transparency over a wide range of wavelengths below its band-gap energy (258 nm) and is categorized as one of the third hardest materials next to diamond and cubic boron nitride (cBN). Since the high temperature metastability of c-Si3N4 in air is superior to those of diamond and cBN, the transparent c-Si3N4 ceramic can potentially be used as a window under extremely severe conditions. PMID:28303948
Hardness of cubic solid solutions
NASA Astrophysics Data System (ADS)
Gao, Faming
2017-01-01
We demonstrate that a hardening rule exists in cubic solid solutions with various combinations of ionic, covalent and metallic bonding. It is revealed that the hardening stress ∆τFcg is determined by three factors: shear modulus G, the volume fraction of solute atoms fv, and the size misfit degree δb. A simple hardening correlation in KCl-KBr solid-solution is proposed as ∆τFcg = 0.27 G. It is applied to calculate the hardening behavior of the Ag-Au, KCl-KBr, InP-GaP, TiN-TiC, HfN-HfC, TiC-NbC and ZrC-NbC solid-solution systems. The composition dependence of hardness is elucidated quantitatively. The BN-BP solid-solution system is quantitatively predicted. We find a hardening plateau region around the x = 0.55–0.85 in BNxP1‑x, where BNxP1‑x solid solutions are far harder than cubic BN. Because the prediction is quantitative, it sets the stage for a broad range of applications.
Optical spectroscopy of cubic GaN in nanowires
NASA Astrophysics Data System (ADS)
Renard, J.; Tourbot, G.; Sam-Giao, D.; Bougerol, C.; Daudin, B.; Gayral, B.
2010-08-01
We show that highly homogeneous cubic GaN can be grown by plasma-assisted molecular beam epitaxy on wurtzite GaN nanowires. The line width of the donor bound exciton is below 3 meV and can reach 1.6 meV in the best parts of the studied sample. This allows to perform a detailed spectroscopy of cubic GaN, and, in particular, to determine the precise spectral positions of the donor bound exciton, the fundamental free exciton and the split-off exciton in a photoluminescence experiment.
Boundary-Layer Instability Measurements in a Mach-6 Quiet Tunnel
NASA Technical Reports Server (NTRS)
Berridge, Dennis C.; Ward, Christopher, A. C.; Luersen, Ryan P. K.; Chou, Amanda; Abney, Andrew D.; Schneider, Steven P.
2012-01-01
Several experiments have been performed in the Boeing/AFOSR Mach-6 Quiet Tunnel at Purdue University. A 7 degree half angle cone at 6 degree angle of attack with temperature-sensitive paint (TSP) and PCB pressure transducers was tested under quiet flow. The stationary crossflow vortices appear to break down to turbulence near the lee ray for sufficiently high Reynolds numbers. Attempts to use roughness elements to control the spacing of hot streaks on a flared cone in quiet flow did not succeed. Roughness was observed to damp the second-mode waves in areas influenced by the roughness, and wide roughness spacing allowed hot streaks to form between the roughness elements. A forward-facing cavity was used for proof-of-concept studies for a laser perturber. The lowest density at which the freestream laser perturbations could be detected was 1.07 x 10(exp -2) kilograms per cubic meter. Experiments were conducted to determine the transition characteristics of a streamwise corner flow at hypersonic velocities. Quiet flow resulted in a delayed onset of hot streak spreading. Under low Reynolds number flow hot streak spreading did not occur along the model. A new shock tube has been built at Purdue. The shock tube is designed to create weak shocks suitable for calibrating sensors, particularly PCB-132 sensors. PCB-132 measurements in another shock tube show the shock response and a linear calibration over a moderate pressure range.
Ferromagnetic Ground States in Face-Centered Cubic Hubbard Clusters
Souza, T. X. R.; Macedo, C. A.
2016-01-01
In this study, the ground state energies of face-centered cubic Hubbard clusters are analyzed using the Lanczos method. Examination of the ground state energy as a function of the number of particle per site n showed an energy minimum for face-centered cubic structures. This energy minimum decreased in n with increasing coulombic interaction parameter U. We found that the ground state energy had a minimum at n = 0.6, when U = 3W, where W denotes the non-interacting energy bandwidth and the face-centered cubic structure was ferromagnetic. These results, when compared with the properties of nickel, shows strong similarity with other finite temperature analyses in the literature and supports the Hirsh’s conjecture that the interatomic direct exchange interaction dominates in driving the system into a ferromagnetic phase. PMID:27583653
Compensation in epitaxial cubic SiC films
NASA Technical Reports Server (NTRS)
Segall, B.; Alterovitz, S. A.; Haugland, E. J.; Matus, L. G.
1986-01-01
Hall measurements on four n-type cubic SiC films epitaxially grown by chemical vapor deposition on SiC substrates are reported. The temperature dependent carrier concentrations indicate that the samples are highly compensated. Donor ionization energies, E sub D, are less than one half the values previously reported. The values for E sub D and the donor concentration N sub D, combined with results for small bulk platelets with nitrogen donors, suggest the relation E sub D (N sub D) = E sub D(O) - alpha N sub N sup 1/3 for cubic SiC. A curve fit gives alpha is approx 2.6x10/5 meV cm and E sub D (O) approx 48 meV, which is the generally accepted value of E sub D(O) for nitrogen donors in cubic SiC.
Superconductivity in cubic noncentrosymmetric PdBiSe Crystal
NASA Astrophysics Data System (ADS)
Joshi, B.; Thamizhavel, A.; Ramakrishnan, S.
2015-03-01
Mixing of spin singlet and spin triplet superconducting pairing state is expected in noncentrosymmetric superconductors (NCS) due to the inherent presence of Rashba-type antisymmetric spin-orbit coupling. Unlike low symmetry (tetragonal or monoclinic) NCS, parity is isotropicaly broken in space for cubic NCS and can additionally lead to the coexistence of magnetic and superconducting state under certain conditions. Motivated with such enriched possibility of unconventional superconducting phases in cubic NCS we are reporting successful formation of single crystalline cubic noncentrosymmetric PdBiSe with lattice parameter a = 6.4316 Å and space group P21 3 (space group no. 198) which undergoes to superconducting transition state below 1.8 K as measured by electrical transport and AC susceptibility measurements. Significant strength of Rashba-type antisymmetric spin-orbit coupling can be expected for PdBiSe due to the presence of high Z (atomic number) elements consequently making it potential candidate for unconventional superconductivity.
Assessing Inquiry Learning: How Much Is a Cubic Metre?
ERIC Educational Resources Information Center
Fry, Kym
2014-01-01
In this article, Kym Fry uses the "Programme for International Student Assessment" (PISA) assessment framework to break down what her Year 6 students learned as they explored the inquiry question, "How much is a cubic metre?" First, an overview of the lessons in the unit is provided. Quality assessment opportunities are…
Automated reasoning about cubic curves.
Padmanabhan, R.; McCune, W.; Mathematics and Computer Science; Univ. of Manitoba
1995-01-01
It is well known that the n-ary morphisms defined on projective algebraic curves satisfy some strong local-to-global equational rules of derivation not satisfied in general by universal algebras. For example, every rationally defined group law on a cubic curve must be commutative. Here we extract from the geometry of curves a first order property (gL) satisfied by all morphisms defined on these curves such that the equational consequences known for projective curves can be derived automatically from a set of six rules (stated within the first-order logic with equality). First, the rule (gL) is implemented in the theorem-proving program Otter. Then we use Otter to automatically prove some incidence theorems on projective curves without any further reference to the underlying geometry or topology of the curves.
High Cubic-Phase Purity InN on MgO (001) Using Cubic-Phase GaN as a Buffer Layer
Sanorpim, S.; Kuntharin, S.; Parinyataramas, J.; Yaguchi, H.; Iwahashi, Y.; Orihara, M.; Hijikata, Y.; Yoshida, S.
2011-12-23
High cubic-phase purity InN films were grown on MgO (001) substrates by molecular beam epitaxy with a cubic-phase GaN buffer layer. The cubic phase purity of the InN grown layers has been analyzed by high resolution X-ray diffraction, {mu}-Raman scattering and transmission electron microscopy. It is evidenced that the hexagonal-phase content in the InN overlayer much depends on hexagonal-phase content in the cubic-phase GaN buffer layer and increases with increasing the hexagonal-phase GaN content. From Raman scattering measurements, in addition, the InN layer with lowest hexagonal component (6%), only Raman characteristics of cubic TO{sub InN} and LO{sub InN} modes were observed, indicating a formation of a small amount of stacking faults, which does not affect on vibrational property.
Cubic spline functions for curve fitting
NASA Technical Reports Server (NTRS)
Young, J. D.
1972-01-01
FORTRAN cubic spline routine mathematically fits curve through given ordered set of points so that fitted curve nearly approximates curve generated by passing infinite thin spline through set of points. Generalized formulation includes trigonometric, hyperbolic, and damped cubic spline fits of third order.
The compressibility of cubic white and orthorhombic, rhombohedral, and simple cubic black phosphorus
Clark, Simon M; Zaug, Joseph
2010-03-10
The effect of pressure on the crystal structure of white phosphorus has been studied up to 22.4 GPa. The ?alpha phase was found to transform into the alpha' phase at 0.87 +- 0.04 GPa with a volume change of 0.1 +- 0.3 cc/mol. A fit of a second order Birch- Murnaghan equation to the data gave Vo = 16.94 ? 0.08 cc/mol and Ko = 6.7 +- 0.5 GPa for the alpha phase and Vo = 16.4 +- 0.1 cc/mol and Ko = 9.1 +- 0.3 GPa for the alpha' phase. The alpha' phase was found to transform to the A17 phase of black phosphorus at 2.68 +- 0.34 GPa and then with increasing pressure to the A7 and then simple cubic phase of black phosphorus. A fit of a second order Birch-Murnaghan equation to our data combined with previous measurements gave Vo = 11.43 +- 0.05 cc/mol and Ko = 34.7 +- 0.5 GPa for the A17 phase, Vo = 9.62 +- 0.01 cc/mol and Ko = 65.0 +- 0.6 GPa for the A7 phase and , Vo = 9.23 +- 0.01 cc/mol and Ko = 72.5 +- 0.3 GPa for the simple cubic phase.
Ultrahard nanotwinned cubic boron nitride.
Tian, Yongjun; Xu, Bo; Yu, Dongli; Ma, Yanming; Wang, Yanbin; Jiang, Yingbing; Hu, Wentao; Tang, Chengchun; Gao, Yufei; Luo, Kun; Zhao, Zhisheng; Wang, Li-Min; Wen, Bin; He, Julong; Liu, Zhongyuan
2013-01-17
Cubic boron nitride (cBN) is a well known superhard material that has a wide range of industrial applications. Nanostructuring of cBN is an effective way to improve its hardness by virtue of the Hall-Petch effect--the tendency for hardness to increase with decreasing grain size. Polycrystalline cBN materials are often synthesized by using the martensitic transformation of a graphite-like BN precursor, in which high pressures and temperatures lead to puckering of the BN layers. Such approaches have led to synthetic polycrystalline cBN having grain sizes as small as ∼14 nm (refs 1, 2, 4, 5). Here we report the formation of cBN with a nanostructure dominated by fine twin domains of average thickness ∼3.8 nm. This nanotwinned cBN was synthesized from specially prepared BN precursor nanoparticles possessing onion-like nested structures with intrinsically puckered BN layers and numerous stacking faults. The resulting nanotwinned cBN bulk samples are optically transparent with a striking combination of physical properties: an extremely high Vickers hardness (exceeding 100 GPa, the optimal hardness of synthetic diamond), a high oxidization temperature (∼1,294 °C) and a large fracture toughness (>12 MPa m(1/2), well beyond the toughness of commercial cemented tungsten carbide, ∼10 MPa m(1/2)). We show that hardening of cBN is continuous with decreasing twin thickness down to the smallest sizes investigated, contrasting with the expected reverse Hall-Petch effect below a critical grain size or the twin thickness of ∼10-15 nm found in metals and alloys.
Cubical Sets and Trace Monoid Actions
Husainov, Ahmet A.
2013-01-01
This paper is devoted to connections between trace monoids and cubical sets. We prove that the category of trace monoids is isomorphic to the category of generalized tori and it is a reflective subcategory of the category of cubical sets. Adjoint functors between the categories of cubical sets and trace monoid actions are constructed. These functors carry independence preserving morphisms in the independence preserving morphisms. This allows us to build adjoint functors between the category of weak asynchronous systems and the category of higher dimensional automata. PMID:24453827
Biomechanical Analysis with Cubic Spline Functions
ERIC Educational Resources Information Center
McLaughlin, Thomas M.; And Others
1977-01-01
Results of experimentation suggest that the cubic spline is a convenient and consistent method for providing an accurate description of displacement-time data and for obtaining the corresponding time derivatives. (MJB)
Great Plains makes 100 billion cubic feet
Not Available
1987-03-01
The Great Plains coal gasification plant on January 18, 1987 produced its 100 billionth cubic foot of gas since start-up July 28, 1984. Owned by the Department of Energy and operated by ANG Coal Gasification Company, the plant uses the Lurgi process to produce about 50 billion cubic feet per year of gas from five million tons per year of lignite. The plant has been performing at well above design capacity.
Topological oxide insulator in cubic perovskite structure.
Jin, Hosub; Rhim, Sonny H; Im, Jino; Freeman, Arthur J
2013-01-01
The emergence of topologically protected conducting states with the chiral spin texture is the most prominent feature at the surface of topological insulators. On the application side, large band gap and high resistivity to distinguish surface from bulk degrees of freedom should be guaranteed for the full usage of the surface states. Here, we suggest that the oxide cubic perovskite YBiO3, more than just an oxide, defines itself as a new three-dimensional topological insulator exhibiting both a large bulk band gap and a high resistivity. Based on first-principles calculations varying the spin-orbit coupling strength, the non-trivial band topology of YBiO3 is investigated, where the spin-orbit coupling of the Bi 6p orbital plays a crucial role. Taking the exquisite synthesis techniques in oxide electronics into account, YBiO3 can also be used to provide various interface configurations hosting exotic topological phenomena combined with other quantum phases.
NASA Astrophysics Data System (ADS)
Subramanian, Sunu; Pandurangan, Arumugam
2016-04-01
The challenges on carbon nanotubes and graphene are still the subject of many research works due to its unique properties. There are three main methods to synthesis carbon nanotubes in which chemical vapor deposition (CVD) method can use for large scale production. The principle of CVD is the decomposition of various hydrocarbons over transition metal supported catalyst. KIT-6 molecular sieve was used as a support to prepare cobalt catalyst for CVD method using metal impregnation method to produce cobalt loadings of 2, 4 and 6 wt%. The catalysts were characterized by XRD, FTIR &TEM. Carbon nanotubes (CNTs) synthesized on Co-KIT-6 was also characterized by XRD, TGA, SEM & Raman spectra. Graphene was synthesized by Hummers method, which is the most common method for preparing graphene oxide. Graphene oxide was prepared by oxidation of graphite using some oxidizing agents like sulphuric acid, sodium nitrate and potassium permanganate. This graphene oxide is further treated with hydrazine solution to convert it into chemically converted graphene and also decorated with nickel metal and characterized. Hummer's method is important for large scale production of graphene. Both Graphene and carbon nanotubes are used in different fields due to its unique properties. Both Graphene and carbon nanotubes are fabricated in counter electrode of Dye sensitized solar cells (DSSC). By cyclic voltammetry study, it confirms that both materials are good and efficient to replace platinum in the DSSC.
Superhard BC3 in cubic diamond structure
Zhang, Miao; Liu, Hanyu; Li, Quan; ...
2015-01-06
We solve the crystal structure of recently synthesized cubic BC3 using an unbiased swarm structure search, which identifies a highly symmetric BC3 phase in the cubic diamond structure (d–BC3) that contains a distinct B-B bonding network along the body diagonals of a large 64-atom unit cell. Simulated x-ray diffraction and Raman peaks of d–BC3 are in excellent agreement with experimental data. Calculated stress-strain relations of d–BC3 demonstrate its intrinsic superhard nature and reveal intriguing sequential bond-breaking modes that produce superior ductility and extended elasticity, which are unique among superhard solids. Here, the present results establish the first boron carbide inmore » the cubic diamond structure with remarkable properties, and these new findings also provide insights for exploring other covalent solids with complex bonding configurations.« less
NASA Astrophysics Data System (ADS)
Liu, C.; Yuan, F.; Gen, Z.; Wang, L.; Cui, Y. G.; Wan, J. F.; Zhang, J. H.; Rong, Y. H.
2016-06-01
Temperature-dependence surface relief during cubic↔tetragonal martensitic transformation (MT) in Mn69.4Fe26.0Cu4.6 antiferromegnetic shape memory alloy was studied by means of in-situ atomic force microscopy. The surface morphology memory effect was found and the crystallography reversibility of the transformation and its shearing characters were directly verified. Twin shearing is suggested as the main mechanism of formation of tent-type surface relief. The surface relief angle (θα|θβ)<0.5° was firstly measured and might be the smallest compared with that in other shape memory alloys. A Landau model was proposed to consider the shearing strain related with surface relief of MT varying with the coupling effect between second-order antiferromagnetic transition and first-order MT. According to this model, the Mn69.4Fe26.0Cu4.6 alloy belongs to the weak coupling system and this kind of weak coupling effect makes the main contribution to the small relief angle.
Purely cubic action for string field theory
NASA Technical Reports Server (NTRS)
Horowitz, G. T.; Lykken, J.; Rohm, R.; Strominger, A.
1986-01-01
It is shown that Witten's (1986) open-bosonic-string field-theory action and a closed-string analog can be written as a purely cubic interaction term. The conventional form of the action arises by expansion around particular solutions of the classical equations of motion. The explicit background dependence of the conventional action via the Becchi-Rouet-Stora-Tyutin operator is eliminated in the cubic formulation. A closed-form expression is found for the full nonlinear gauge-transformation law.
NASA Astrophysics Data System (ADS)
Malmir, Hessam; Sahimi, Muhammad; Tabar, M. Reza Rahimi
2016-12-01
Packing of cubic particles arises in a variety of problems, ranging from biological materials to colloids and the fabrication of new types of porous materials with controlled morphology. The properties of such packings may also be relevant to problems involving suspensions of cubic zeolites, precipitation of salt crystals during CO2 sequestration in rock, and intrusion of fresh water in aquifers by saline water. Not much is known, however, about the structure and statistical descriptors of such packings. We present a detailed simulation and microstructural characterization of packings of nonoverlapping monodisperse cubic particles, following up on our preliminary results [H. Malmir et al., Sci. Rep. 6, 35024 (2016), 10.1038/srep35024]. A modification of the random sequential addition (RSA) algorithm has been developed to generate such packings, and a variety of microstructural descriptors, including the radial distribution function, the face-normal correlation function, two-point probability and cluster functions, the lineal-path function, the pore-size distribution function, and surface-surface and surface-void correlation functions, have been computed, along with the specific surface and mean chord length of the packings. The results indicate the existence of both spatial and orientational long-range order as the the packing density increases. The maximum packing fraction achievable with the RSA method is about 0.57, which represents the limit for a structure similar to liquid crystals.
Dry Powder Precursors of Cubic Liquid Crystalline Nanoparticles (cubosomes)
NASA Astrophysics Data System (ADS)
Spicer, Patrick T.; Small, William B.; Small, William B.; Lynch, Matthew L.; Burns, Janet L.
2002-08-01
Cubosomes are dispersed nanostructured particles of cubic phase liquid crystal that have stimulated significant research interest because of their potential for application in controlled-release and drug delivery. Despite the interest, cubosomes can be difficult to fabricate and stabilize with current methods. Most of the current work is limited to liquid phase processes involving high shear dispersion of bulk cubic liquid crystalline material into sub-micron particles, limiting application flexibility. In this work, two types of dry powder cubosome precursors are produced by spray-drying: (1) starch-encapsulated monoolein is produced by spray-drying a dispersion of cubic liquid crystalline particles in an aqueous starch solution and (2) dextran-encapsulated monoolein is produced by spray-drying an emulsion formed by the ethanol-dextran-monoolein-water system. The encapsulants are used to decrease powder cohesion during drying and to act as a soluble colloidal stabilizer upon hydration of the powders. Both powders are shown to form (on average) 0.6 μm colloidally-stable cubosomes upon addition to water. However, the starch powders have a broader particle size distribution than the dextran powders because of the relative ease of spraying emulsions versus dispersions. The developed processes enable the production of nanostructured cubosomes by end-users rather than just specialized researchers and allow tailoring of the surface state of the cubosomes for broader application.
NASA Astrophysics Data System (ADS)
Tkachuk, A. M.; Ivanova, S. E.; Mirzaeva, A. A.; Joubert, M.-F.; Guyot, Y.
2015-03-01
Energy transfer processes between praseodymium dopant ions, which are responsible for the luminescence self-quenching in crystals Na0.4Y0.6F2.2:Pr3+ (NYF:Pr3+; Pr = 0.4-9%), have been investigated experimentally and theoretically. Using methods of kinetic spectroscopy with selective excitation, the praseodymium luminescence decay kinetics from the levels 3 P 0,1 and 1 D 2 selectively excited by nanosecond laser pulses has been studied. Based on model quantum-mechanical calculations, interionic interaction microparameters have been determined theoretically and mechanisms that are responsible for the interaction of praseodymium ions by particular most likely energy transfer schemes have been elucidated. Energy transfer macrorates (of migration and quenching) have been found, and the values obtained have been used as parameters for calculation of the decay dynamics of the excited 1 D 2 and 3 P 0,1 levels of praseodymium ions. It has been shown that luminescence self-quenching from the 1 D 2 level in NYF:Pr3+ crystals can be described well in terms of the model of static ordered decay in the presence of dipole-dipole and dipole-quadrupole interactions. The luminescence self-quenching from the 3 P 0,1 levels is mainly determined by the dipole-dipole interaction, and it also can be described in terms of the model of the static ordered decay. Good agreement has been obtained between experimental and calculated kinetic dependences that characterize energy transfer processes in NYF:Pr3+ crystals in relation to the concentration of doping ions. Based on the obtained data, it has been concluded that investigated crystals of a certain composition are promising for use in quantum electronics and optical converters.
A monotonicity conjecture for real cubic maps
Dawson, S.P.; Galeeva, R.; Milnor, J.; Tresser, C.
1993-12-01
This will be an outline of work in progress. We study the conjecture that the topological entropy of a real cubic map depends ``monotonely`` on its parameters, in the sense that each locus of constant entropy in parameter space is a connected set. This material will be presented in more detail in a later paper.
Zhao, Ming; Figueroa-Cosme, Legna; Elnabawy, Ahmed O; Vara, Madeline; Yang, Xuan; Roling, Luke T; Chi, Miaofang; Mavrikakis, Manos; Xia, Younan
2016-08-10
Nanocages have received considerable attention in recent years for catalytic applications owing to their high utilization efficiency of atoms and well-defined facets. Here we report, for the first time, the synthesis of Ru cubic nanocages with ultrathin walls, in which the atoms are crystallized in a face-centered cubic (fcc) rather than hexagonal close-packed (hcp) structure. The key to the success of this synthesis is to ensure layer-by-layer deposition of Ru atoms on the surface of Pd cubic seeds by controlling the reaction temperature and the injection rate of a Ru(III) precursor. By selectively etching away the Pd from the Pd@Ru core-shell nanocubes, we obtain Ru nanocages with an average wall thickness of 1.1 nm or about six atomic layers. Most importantly, the Ru nanocages adopt an fcc crystal structure rather than the hcp structure observed in bulk Ru. The synthesis has been successfully applied to Pd cubic seeds with different edge lengths in the range of 6-18 nm, with smaller seeds being more favorable for the formation of Ru shells with a flat, smooth surface due to shorter distance for the surface diffusion of the Ru adatoms. Self-consistent density functional theory calculations indicate that these unique fcc-structured Ru nanocages might possess promising catalytic properties for ammonia synthesis compared to hcp Ru(0001), on the basis of strengthened binding of atomic N and substantially reduced activation energies for N2 dissociation, which is the rate-determining step for ammonia synthesis on hcp Ru catalysts.
Ytterbium: Transition at High Pressure from Face-Centered Cubic to Body-Centered Cubic Structure.
Hall, H T; Barnett, J D; Merrill, L
1963-01-11
Pressure of 40,000 atmospheres at 25 degrees C induces a phase transformation in ytterbium metal; the face-centered cubic structure changes to body-centered cubic. The radius of the atom changes from 1.82 to 1.75 A. At the same time the atom's volume decreases by 11 percent and the volume, observed macroscopically, decreases 3.2 percent.
Wavelets based on Hermite cubic splines
NASA Astrophysics Data System (ADS)
Cvejnová, Daniela; Černá, Dana; Finěk, Václav
2016-06-01
In 2000, W. Dahmen et al. designed biorthogonal multi-wavelets adapted to the interval [0,1] on the basis of Hermite cubic splines. In recent years, several more simple constructions of wavelet bases based on Hermite cubic splines were proposed. We focus here on wavelet bases with respect to which both the mass and stiffness matrices are sparse in the sense that the number of nonzero elements in any column is bounded by a constant. Then, a matrix-vector multiplication in adaptive wavelet methods can be performed exactly with linear complexity for any second order differential equation with constant coefficients. In this contribution, we shortly review these constructions and propose a new wavelet which leads to improved Riesz constants. Wavelets have four vanishing wavelet moments.
Face-Centered-Cubic Nanostructured Polymer Foams
NASA Astrophysics Data System (ADS)
Cui, C.; Baughman, R. H.; Liu, L. M.; Zakhidov, A. A.; Khayrullin, I. I.
1998-03-01
Beautifully iridescent polymer foams having Fm-3m cubic symmetry and periodicities on the scale of the wavelength of light have been synthesized by the templating of porous synthetic opals. These fabrication processes involve the filling of porous SiO2 opals (with typical cubic lattice parameters of 250 nm) with either polymers or polymer precursors, polymerization of the precursors if necessary, and removal of the fcc array of SiO2 balls to provide an all-polymer structure. The structures of these foams are similar to periodic minimal surfaces, although the Gaussian curvature can have both positive and negative values. Depending upon whether the internal surfaces of the opal are polymer filled or polymer coated, the polymer replica has either one or two sets of independent channels. We fill these channels with semiconductors, metals, or superconductors to provide electronic and optical materials with novel properties dependent on the nanoscale periodicity.
Deposition Of Cubic BN On Diamond Interlayers
NASA Technical Reports Server (NTRS)
Ong, Tiong P.; Shing, Yuh-Han
1994-01-01
Thin films of polycrystalline, pure, cubic boron nitride (c-BN) formed on various substrates, according to proposal, by chemical vapor deposition onto interlayers of polycrystalline diamond. Substrate materials include metals, semiconductors, and insulators. Typical substrates include metal-cutting tools: polycrystalline c-BN coats advantageous for cutting ferrous materials and for use in highly oxidizing environments-applications in which diamond coats tend to dissolve in iron or be oxidized, respectively.
Use of Pom Pons to Illustrate Cubic Crystal Structures.
ERIC Educational Resources Information Center
Cady, Susan G.
1997-01-01
Describes a method that uses olefin pom pons to illustrate cubic crystal structure. Facilitates hands-on examination of different packing arrangements such as hexagonal close-packed and cubic close-packed structures. (JRH)
Cubic Polynomials with Rational Roots and Critical Points
ERIC Educational Resources Information Center
Gupta, Shiv K.; Szymanski, Waclaw
2010-01-01
If you want your students to graph a cubic polynomial, it is best to give them one with rational roots and critical points. In this paper, we describe completely all such cubics and explain how to generate them.
Saito, Kazuya; Shinhara, Takashi; Nakamoto, Tadahiro; Kutsumizu, Shoichi; Yano, S; Sorai, Michio
2002-03-01
Heat capacity of a thermotropic mesogen ANBC(22) (4(')-alkoxy-3(')-nitrobiphenyl-4-carboxylic acid with 22 carbon atoms in alkyl chain) showing two cubic mesophases was measured by adiabatic calorimetry between 13 and 480 K. Excess enthalpies and entropies due to phase transitions were determined. A small thermal anomaly due to the cubic Im3m-->cubic Ia3d phase transition was successfully detected. Through an analysis of chain-length dependence of the entropy of transition, the sequence of two cubic mesophases (with space groups Ia3d and Im3m) is deduced for thermotropic mesogens ANBC(n). It is shown that the disorder of the core arrangement decreases in the order of Sm-C-->cubic (Im3m)-->cubic (Ia3d) while that of the chain in the reverse order cubic (Ia3d)-->cubic (Im3m)-->Sm C.
Two-layer tubes from cubic crystals
NASA Astrophysics Data System (ADS)
Goldstein, R. V.; Gorodtsov, V. A.; Lisovenko, D. S.; Volkov, M. A.
2016-12-01
Effective Young's moduli and Poisson's ratios of two-layer tubes from cubic crystals have been analyzed theoretically. It is shown (using derived formulas for numerical estimates) that the mechanical properties of two-layer tube composites from auxetics and nonauxetics are not described by the mixture rule. It is demonstrated that the deviation of the effective modulus from the mixture rule predictions rapidly increases with an increase in Young's modulus of the nonauxetic components of a composite. It is established that, combining auxetics and nonauxetics in layered tubes, one can obtain, depending on the packing order in layers, either a strong increase or a decrease in auxeticity.
Craniofacial Reconstruction Using Rational Cubic Ball Curves
Majeed, Abdul; Mt Piah, Abd Rahni; Gobithaasan, R. U.; Yahya, Zainor Ridzuan
2015-01-01
This paper proposes the reconstruction of craniofacial fracture using rational cubic Ball curve. The idea of choosing Ball curve is based on its robustness of computing efficiency over Bezier curve. The main steps are conversion of Digital Imaging and Communications in Medicine (Dicom) images to binary images, boundary extraction and corner point detection, Ball curve fitting with genetic algorithm and final solution conversion to Dicom format. The last section illustrates a real case of craniofacial reconstruction using the proposed method which clearly indicates the applicability of this method. A Graphical User Interface (GUI) has also been developed for practical application. PMID:25880632
Cherenkov and Scintillation Properties of Cubic Zirconium
NASA Technical Reports Server (NTRS)
Christl, M.J.; Adams, J.H.; Parnell, T.A.; Kuznetsov, E.N.
2008-01-01
Cubic zirconium (CZ) is a high index of refraction (n =2.17) material that we have investigated for Cherenkov counter applications. Laboratory and proton accelerator tests of an 18cc sample of CZ show that the expected fast Cherenkov response is accompanied by a longer scintillation component that can be separated by pulse shaping. This presents the possibility of novel particle spectrometers which exploits both properties of CZ. Other high index materials being examined for Cherenkov applications will be discussed. Results from laboratory tests and an accelerator exposure will be presented and a potential application in solar energetic particle instruments will be discussed
Giant Born effective charges in cubic WO_3.
NASA Astrophysics Data System (ADS)
Detraux, Francois; Ghosez, Philippe; Gonze, Xavier
1997-03-01
WO3 crystallizes in many different phases. It is also sometimes considered in a reference idealized simple cubic structure (defect-perovskite) where the tungsten is at the center of the cell and the oxygens at the middle of each face. Using a variational formulation of the density functional perturbation theory and a planewave-pseudopotential approach, we compute the Born effective charges for this idealized cubic structure, with an optimized lattice parameter of 3.73 ÅThe values obtained are anomalously large with respect to the nominal ionic charge (+6 on W and -2 on O). For the tungsten atom, the effective charge tensor is isotropic and Z_W= +12.43. For the oxygen, we must consider two different elements corresponding respectively to a displacement of the atom parallel or perpendicular to the W-O bond: Z^*O allel= -9.07 and Z^*O ⊥= -1.66. The giant anomalous contributions to Z^*W and Z^*O allel can be explained by transfer of charge produced by dynamic changes of hybridization between the O-2p and W-5d orbitals.
Characterization of a cubic EJ-309 liquid scintillator detector
NASA Astrophysics Data System (ADS)
Tomanin, A.; Paepen, J.; Schillebeeckx, P.; Wynants, R.; Nolte, R.; Lavietes, A.
2014-08-01
A cubic EJ-309 liquid scintillator of 10 cm width has been characterized for its response to γ-rays and neutrons. Response functions to γ-rays were measured with calibrated radionuclide γ-ray sources in the energy range from 400 keV to 6 MeV. Response functions for neutrons were obtained from measurements at the PTB Van de Graaff accelerator with quasi-monoenergetic neutron beams in the energy range from 500 keV to 2.7 MeV, and at the PTB cyclotron with time-of-flight (TOF) measurements in the energy range from 2.5 to 14 MeV. The light output and resolution functions for electrons and protons were derived by a least squares adjustment to experimental data using theoretical response functions determined with Monte Carlo simulations. The simulated response function for neutron was validated by results of measurements with an AmBe neutron source which was characterized for its total neutron intensity. The results indicate that the cubic EJ-309 detector is suitable for use in mixed γ-ray and neutron fields.
Multiply charged monopoles in cubic dimer model
NASA Astrophysics Data System (ADS)
Ganesh Jaya, Sreejith; Powell, Stephen
2015-03-01
The classical cubic dimer model is a 3D statistical mechanical system whose degrees of freedom are dimers that occupy the edges between nearest neighbour vertices of a cubic lattice. Dimer occupancies are subject to the local constraint that every vertex is associated with exactly one dimer. In the presence of an aligning interaction, it is known that the system exhibits an unconventional continuous thermal phase transition from a symmetry broken columnar phase to a Coulomb-phase. The transition is in the NCCP1 universality class, which also describes the Neel-VBS transition in the JQ model and the S =1/2 Heisenberg model with suppression of hedgehog defects. Using Monte-Carlo simulations of a pair of defects in a background of fluctuating dimers, we calculate the scaling exponents for fugacities of monopole defects of charge Q = 2 and 3 at this critical point. Our estimates suggest that Q = 3 monopoles are relevant and could therefore drive the JQ model away from the NCCP1 critical point on a hexagonal lattice.
Rheological properties of Cubic colloidal suspensions
NASA Astrophysics Data System (ADS)
Boromand, Arman; Maia, Joao
2016-11-01
Colloidal and non-colloidal suspensions are ubiquitous in many industrial application. There are numerous studies on these systems to understand and relate their complex rheological properties to their microstructural evolution under deformation. Although most of the experimental and simulation studies are centered on spherical particles, in most of the industrial applications the geometry of the colloidal particles deviate from the simple hard sphere and more complex geometries exist. Recent advances in microfabrication paved the way to fabricate colloidal particles with complex geometries for applications in different areas such as drug delivery where the fundamental understanding of their dynamics has remained unexplored. In this study, using dissipative particle dynamics, we investigate the rheological properties of cubic (superball) particles which are modeled as the cluster of core-modified DPD particles. Explicit representation of solvent particles in the DPD scheme will conserve the full hydrodynamic interactions between colloidal particles. Rheological properties of these cubic suspensions are investigated in the dilute and semi-dilute regimes. The Einstein and Huggins coefficients for these particles with different superball exponent will be calculate which represent the effect of single particle's geometry and multibody interactions on viscosity, respectively. The response of these suspensions is investigated under simple shear and oscillatory shear where it is shown that under oscillation these particles tend to form crystalline structure giving rise to stronger shear-thinning behavior recently measured experimentally.
Photo responsive monoolein cubic phase containing coumarin-Tween 20 conjugates.
Dai, Jing; Kim, Jin-Chul
2013-09-01
Photo-responsive monoolein (MO) cubic phase was developed by incorporating coumarin-Tween 20 conjugate in the cubic phase. 7-chlorocarbonylmethoxycoumarin was obtained from 7-hydroxycoumarin through three-step reactions with the yield of 19.8% and it was conjugated to the head group of Tween 20. The molar ratio of the coumarin derivative/Tween 20 in the conjugate was about 1/1 on ¹H NMR spectrum. The cubic phase was prepared by melting the mixture of MO/conjugate (100/0.88, w/w) and hydrating the molten mixture with 5(6)-carboxyfluorescein (CF) solution. UV irradiation (254 nm and/or 365 nm) for 3 h resulted in 1.27% to 2.69% reduction in the double bond of MO but the cubic phase was stable in terms of its integrity under the UV irradiation. The release of CF from coumarin-Tween 20 conjugate-incorporated cubic phase was somewhat suppressed by being subjected to the UV irradiation. The head groups of coumarin-Tween 20 conjugate will be cross-linked so the diffusion in the water channel will be suppressed.
Phase Transition of a Structure II Cubic Clathrate Hydrate to a Tetragonal Form.
Takeya, Satoshi; Fujihisa, Hiroshi; Yamawaki, Hiroshi; Gotoh, Yoshito; Ohmura, Ryo; Alavi, Saman; Ripmeester, John A
2016-08-01
The crystal structure and phase transition of cubic structure II (sII) binary clathrate hydrates of methane (CH4 ) and propanol are reported from powder X-ray diffraction measurements. The deformation of host water cages at the cubic-tetragonal phase transition of 2-propanol+CH4 hydrate, but not 1-propanol+CH4 hydrate, was observed below about 110 K. It is shown that the deformation of the host water cages of 2-propanol+CH4 hydrate can be explained by the restriction of the motion of 2-propanol within the 5(12) 6(4) host water cages. This result provides a low-temperature structure due to a temperature-induced symmetry-lowering transition of clathrate hydrate. This is the first example of a cubic structure of the common clathrate hydrate families at a fixed composition.
Polarization conversion in cubic Raman crystals
NASA Astrophysics Data System (ADS)
McKay, Aaron; Sabella, Alexander; Mildren, Richard P.
2017-02-01
Nonlinear conversion of unpolarized beams to lower frequencies is generally inefficient in c(2) materials, as it is challenging to achieve phase-matching for input ordinary and extraordinary beams simultaneously in the normal dispersion regime. Here, we show that cubic Raman crystals having doubly and triply degenerate (E and F type) modes provide a method for efficient nonlinear frequency downconversion of an unpolarized beam and yield a linearly polarized output state. Using Mueller calculus, optimal crystal directions for such polarization conversion are determined. Using diamond, an example of an F-class Raman crystal, we have verified that such conversion is possible with near quantum-defect-limited slope efficiency and a linear polarization contrast of more than 23.9 dB.
Cubic meter volume optical coherence tomography.
Wang, Zhao; Potsaid, Benjamin; Chen, Long; Doerr, Chris; Lee, Hsiang-Chieh; Nielson, Torben; Jayaraman, Vijaysekhar; Cable, Alex E; Swanson, Eric; Fujimoto, James G
2016-12-01
Optical coherence tomography (OCT) is a powerful three-dimensional (3D) imaging modality with micrometer-scale axial resolution and up to multi-GigaVoxel/s imaging speed. However, the imaging range of high-speed OCT has been limited. Here, we report 3D OCT over cubic meter volumes using a long coherence length, 1310 nm vertical-cavity surface-emitting laser and silicon photonic integrated circuit dual-quadrature receiver technology combined with enhanced signal processing. We achieved 15 µm depth resolution for tomographic imaging at a 100 kHz axial scan rate over a 1.5 m range. We show 3D macroscopic imaging examples of a human mannequin, bicycle, machine shop gauge blocks, and a human skull/brain model. High-bandwidth, meter-range OCT demonstrates new capabilities that promise to enable a wide range of biomedical, scientific, industrial, and research applications.
Polarization conversion in cubic Raman crystals
McKay, Aaron; Sabella, Alexander; Mildren, Richard P.
2017-01-01
Nonlinear conversion of unpolarized beams to lower frequencies is generally inefficient in c(2) materials, as it is challenging to achieve phase-matching for input ordinary and extraordinary beams simultaneously in the normal dispersion regime. Here, we show that cubic Raman crystals having doubly and triply degenerate (E and F type) modes provide a method for efficient nonlinear frequency downconversion of an unpolarized beam and yield a linearly polarized output state. Using Mueller calculus, optimal crystal directions for such polarization conversion are determined. Using diamond, an example of an F-class Raman crystal, we have verified that such conversion is possible with near quantum-defect-limited slope efficiency and a linear polarization contrast of more than 23.9 dB. PMID:28169327
Cubic meter volume optical coherence tomography
WANG, ZHAO; POTSAID, BENJAMIN; CHEN, LONG; DOERR, CHRIS; LEE, HSIANG-CHIEH; NIELSON, TORBEN; JAYARAMAN, VIJAYSEKHAR; CABLE, ALEX E.; SWANSON, ERIC; FUJIMOTO, JAMES G.
2017-01-01
Optical coherence tomography (OCT) is a powerful three-dimensional (3D) imaging modality with micrometer-scale axial resolution and up to multi-GigaVoxel/s imaging speed. However, the imaging range of high-speed OCT has been limited. Here, we report 3D OCT over cubic meter volumes using a long coherence length, 1310 nm vertical-cavity surface-emitting laser and silicon photonic integrated circuit dual-quadrature receiver technology combined with enhanced signal processing. We achieved 15 µm depth resolution for tomographic imaging at a 100 kHz axial scan rate over a 1.5 m range. We show 3D macroscopic imaging examples of a human mannequin, bicycle, machine shop gauge blocks, and a human skull/brain model. High-bandwidth, meter-range OCT demonstrates new capabilities that promise to enable a wide range of biomedical, scientific, industrial, and research applications. PMID:28239628
A smoothing algorithm using cubic spline functions
NASA Technical Reports Server (NTRS)
Smith, R. E., Jr.; Price, J. M.; Howser, L. M.
1974-01-01
Two algorithms are presented for smoothing arbitrary sets of data. They are the explicit variable algorithm and the parametric variable algorithm. The former would be used where large gradients are not encountered because of the smaller amount of calculation required. The latter would be used if the data being smoothed were double valued or experienced large gradients. Both algorithms use a least-squares technique to obtain a cubic spline fit to the data. The advantage of the spline fit is that the first and second derivatives are continuous. This method is best used in an interactive graphics environment so that the junction values for the spline curve can be manipulated to improve the fit.
Cubic interaction parameters for t2g Wannier orbitals
NASA Astrophysics Data System (ADS)
Ribic, T.; Assmann, E.; Tóth, A.; Held, K.
2014-10-01
Many-body calculations for multi-orbital systems at present typically employ Slater or Kanamori interactions which implicitly assume a full rotational invariance of the orbitals, whereas the real crystal has a lower symmetry. In cubic symmetry, the low-energy t2g orbitals have an on-site Kanamori interaction, albeit without the constraint U =U'+2J implied by spherical symmetry (U is the intra-orbital interaction, U' is the interorbital interaction, J is Hund's exchange). Using maximally localized Wannier functions we show that deviations from the standard, spherically symmetric interactions are indeed significant for 5d orbitals (˜25% for BaOsO3; ˜12% if screening is included) but are less important for 3d orbitals (˜6% for SrVO3; ˜1% if screened).
Room temperature quantum emission from cubic silicon carbide nanoparticles.
Castelletto, Stefania; Johnson, Brett C; Zachreson, Cameron; Beke, David; Balogh, István; Ohshima, Takeshi; Aharonovich, Igor; Gali, Adam
2014-08-26
The photoluminescence (PL) arising from silicon carbide nanoparticles has so far been associated with the quantum confinement effect or to radiative transitions between electronically active surface states. In this work we show that cubic phase silicon carbide nanoparticles with diameters in the range 45-500 nm can host other point defects responsible for photoinduced intrabandgap PL. We demonstrate that these nanoparticles exhibit single photon emission at room temperature with record saturation count rates of 7 × 10(6) counts/s. The realization of nonclassical emission from SiC nanoparticles extends their potential use from fluorescence biomarker beads to optically active quantum elements for next generation quantum sensing and nanophotonics. The single photon emission is related to single isolated SiC defects that give rise to states within the bandgap.
Anomalously large Born effective charges in cubic WO3
NASA Astrophysics Data System (ADS)
Detraux, F.; Ghosez, Ph.; Gonze, X.
1997-07-01
Within density-functional theory, we compute the Born effective charges of tungsten trioxyde in its reference cubic phase (defect-perovskite structure). For the tungsten atom, the effective charge tensor is isotropic, with Z*W=+12.51. For the oxygen atoms, the two independent components of the tensor, corresponding, respectively, to a displacement of the atom parallel or perpendicular to the W-O bond, have the values Z*O||=-9.13 and Z*O⊥=-1.68. Z*W and Z*O|| are anomalously large with respect to the nominal ionic charges (+6 on W and -2 on O), but compatible with the Born effective charges found in related ABO3-perovskite compounds.
Curvature and Tangency Handles for Control of Convex Cubic Shapes
2000-01-01
looked at A-splines constructed with segments of singular al- gebraic cubics, which are just rational cubics, with new, geometrically more meaningful...contact interpolation , and curvatures at three prescribed points, see Figures 1-4. Curve and Surface Design: Saint-Malo 1999 91 Pierre-Jean Laurent...curvature at one contact point. §2. Barycentric Coordinates and Curvature at the Endpoints The general algebraic cubic in cartesian coordinates x, y is
Low pressure growth of cubic boron nitride films
NASA Technical Reports Server (NTRS)
Ong, Tiong P. (Inventor); Shing, Yuh-Han (Inventor)
1997-01-01
A method for forming thin films of cubic boron nitride on substrates at low pressures and temperatures. A substrate is first coated with polycrystalline diamond to provide a uniform surface upon which cubic boron nitride can be deposited by chemical vapor deposition. The cubic boron nitride film is useful as a substitute for diamond coatings for a variety of applications in which diamond is not suitable. any tetragonal or hexagonal boron nitride. The cubic boron nitride produced in accordance with the preceding example is particularly well-suited for use as a coating for ultra hard tool bits and abrasives, especially those intended to use in cutting or otherwise fabricating iron.
Aerothermodynamic Measurement and Prediction for Modified Orbiter at Mach 6 and 10
NASA Technical Reports Server (NTRS)
Micol, John R.
1995-01-01
Detailed heat-transfer rate distributions measured laterally over the windward surface of an orbiter-like configuration using thin-film resistance heat-transfer gauges and globally using the newly developed relative intensity, two-color thermographic phosphor technique are presented for Mach 6 and 10 in air. The angle of attack was varied from 0 to 40 deg, and the freestream Reynolds number based on the model length was varied from 4 x 10(exp 5) to 6 x 10(exp 6) at Mach 6, corresponding to laminar, transitional, and turbulent boundary layers; the Reynolds number at Mach 10 was 4 x 10(exp 5), corresponding to laminar flow. The primary objective of the present study was to provide detailed benchmark heat-transfer data for the calibration of computational fluid-dynamics codes. Predictions from a Navier-Stokes solver referred to as the Langley aerothermodynamic upwind relaxation algorithm and an approximate boundary-layer solving method known as the axisymmetric analog three-dimensional boundary layer code are compared with measurement. In general, predicted laminar heat-transfer rates are in good agreement with measurements.
Cubic Polynomials with Real or Complex Coefficients: The Full Picture
ERIC Educational Resources Information Center
Bardell, Nicholas S.
2016-01-01
The cubic polynomial with real coefficients has a rich and interesting history primarily associated with the endeavours of great mathematicians like del Ferro, Tartaglia, Cardano or Vieta who sought a solution for the roots (Katz, 1998; see Chapter 12.3: The Solution of the Cubic Equation). Suffice it to say that since the times of renaissance…
Smooth cubic commensurate oxides on gallium nitride
Paisley, Elizabeth A.; Gaddy, Benjamin E.; LeBeau, James M.; Shelton, Christopher T.; Losego, Mark D.; Mita, Seiji; Collazo, Ramón; Sitar, Zlatko; Irving, Douglas L.; Maria, Jon-Paul; Biegalski, Michael D.; Christen, Hans M.
2014-02-14
Smooth, commensurate alloys of 〈111〉-oriented Mg{sub 0.52}Ca{sub 0.48}O (MCO) thin films are demonstrated on Ga-polar, c+ [0001]-oriented GaN by surfactant-assisted molecular beam epitaxy and pulsed laser deposition. These are unique examples of coherent cubic oxide|nitride interfaces with structural and morphological perfection. Metal-insulator-semiconductor capacitor structures were fabricated on n-type GaN. A comparison of leakage current density for conventional and surfactant-assisted growth reveals a nearly 100× reduction in leakage current density for the surfactant-assisted samples. HAADF-STEM images of the MCO|GaN interface show commensurate alignment of atomic planes with minimal defects due to lattice mismatch. STEM and DFT calculations show that GaN c/2 steps create incoherent boundaries in MCO over layers which manifest as two in-plane rotations and determine consequently the density of structural defects in otherwise coherent MCO. This new understanding of interfacial steps between HCP and FCC crystals identifies the steps needed to create globally defect-free heterostructures.
Radiation damage in cubic-stabilized zirconia
Costantini, Jean-Marc; Beuneu, Francois; Weber, William J
2013-01-01
Cubic yttria-stabilized zirconia (YSZ) can be used for nuclear applications as an inert matrix for actinide immobilization or transmutation. Indeed, the large amount of native oxygen vacancies leads to a high radiation tolerance of this material owing to defect recombination occurring in the atomic displacements cascades induced by fast neutron irradiation or ion implantations, as showed by Molecular dynamics (MD) simulations. Amorphization cannot be obtained in YSZ either by nuclear-collision or electronic-excitation damage, just like in urania. A kind of polygonization structure with slightly disoriented crystalline domains is obtained in both cases. In the first steps of damage, specific isolated point defects (like F+-type color centers) and point-defect clusters are produced by nuclear collisions with charged particles or neutrons. Further increase of damage leads to dislocation-loop formation, then to collapse of the dislocation network into a polygonization structure. For swift heavy ion irradiations, a similar polygonization structure is obtained above a threshold stopping power value of about 20-30 keV nm-1.
Polyimide nanocomposites based on cubic zirconium tungstate
NASA Astrophysics Data System (ADS)
Ramasubramanian Sharma, Gayathri
2009-12-01
In this research, cubic zirconium tungstate (ZrW2O8) was used as a filler to reduce the CTE of polyimides (PI), and the effect of ZrW2O8 nanoparticles on the bulk polymer properties was studied. Polyimides are high performance polymers with exceptional thermal stability, and there is a need for PIs with low CTEs for high temperature applications. The nanofiller, cubic ZrW2O8, is well known for its isotropic negative thermal expansion (NTE) over a wide temperature range from -272.7 to 777°C. The preparation of nanocomposites involved the synthesis of ZrW 2O8 nanofiller, engineering the polymer-filler interface using linker groups and optimization of processing strategies to prepare free-standing PI nanocomposite films. A hydrothermal method was used to synthesize ZrW 2O8 nanoparticles. Polyimide-ZrW2O8 interface interaction was enhanced by covalently bonding linker moieties to the surface of ZrW2O8 nanoparticles. Specifically, ZrW 2O8 nanoparticles were functionalized with two different linker groups: (1) a short aliphatic silane, and (2) low molecular weight PI. The surface functionalization was confirmed using X-ray photoelectron spectroscopy and thermal gravimetric analysis (TGA). Reprecipitation blending was used to prepare the freestanding PI-ZrW2O8 nanocomposite films with up to 15 volume% filler loading. SEM images showed the improvements in polymer-filler wetting behavior achieved using interface engineering. SEM images indicated that there was better filler dispersion in the PI matrix using reprecipitation blending, compared to the filler dispersion achieved in the nanocomposites prepared using conventional blending technique. The structure-property relationships in PI-ZrW2O8 nanocomposites were investigated by studying the thermal degradation, glass transition, tensile and thermal expansion properties of the nanocomposites. The properties were studied as a function of filler loading and interface linker groups. Addition of ZrW2O8 nanoparticles did not
Absence of Metallic Conductivity in Tetragonal and Cubic PbVO3 at High Pressure
NASA Astrophysics Data System (ADS)
Belik, Alexei A.; Yamauchi, Touru; Ueda, Hiroaki; Ueda, Yutaka; Yusa, Hitoshi; Hirao, Naohisa; Azuma, Masaki
2014-07-01
Transport properties of PbVO3, a material whose structural and electronic properties bear similarities with high-temperature copper superconductors, were investigated between 2 and 300 K and in the pressure range of 0.1 MPa and 11.3 GPa. There is a structural phase transition from about 2 GPa at room temperature from a super-tetragonal phase to a cubic phase with a significant drop of resistivity by about 5 orders of magnitude. Nevertheless, the cubic phase exhibited a semiconducting behavior of resistivity between 2 and 300 K up to 11.3 GPa. The pressure dependence of lattice parameters of the tetragonal and cubic phases was in very good agreement with results of first-principle calculations from http://dx.doi.org/10.1088/0953-8984/24/43/435403, J. Phys.: Condens. Matter 24, 435403 (2012). Fitting with the Birch-Murnaghan equation of states gave a bulk modulus K0 = 38.0(1.1) GPa and a unit cell volume V0 = 67.63(6) Å3 for the tetragonal phase and K0 = 179.5(1.4) GPa and V0 = 58.272(14) Å3 for the cubic phase.
Strain tuning of topological band order in cubic semiconductors
Feng, wanxiang; Zhu, Wenguang; Weitering, Hanno; Stocks, George Malcolm; Yao, yugui; Xiao, Di
2012-01-01
We theoretically explore the possibility of tuning the topological order of cubic diamond/zinc-blende semi- conductors with external strain. Based on a simple tight-binding model, we analyze the evolution of the cubic semiconductor band structure under hydrostatic or biaxial lattice expansion, by which a generic guiding princi- ple is established that biaxial lattice expansion can induce a topological phase transition of small band-gap cubic semiconductors via a band inversion and symmetry breaking at point. Using density functional theory cal- culations, we demonstrate that a prototype topological trivial semiconductor, InSb, is converted to a nontrivial topological semiconductor with a 2% 3% biaxial lattice expansion.
Wang, Jia-Jia; Wei, Qi; Yang, Bai-Feng; Yang, Guo-Yu
2017-02-24
Two new copper borates, namely H6 [(μ4 -O)Cu4 @B20 O32 (OH)8 ]⋅25 H2 O (1) and H6 [(μ4 -O)Cu4 @B20 O32 (OH)8 ]⋅34 H2 O⋅8 H3 BO3 (2), with 3D supramolecular framework have been made under solvothermal conditions, which built by novel cubic supramolecular cages with mesoscale cavities via the H-bondings. Interestingly, the cage is assembled by [(μ4 -O)Cu4 @B20 O32 (OH)8 ] ({Cu4 @B20 }) cluster units with different point-group symmetry. Owing to extra H3 BO3 molecules participated in building the supramolecular framework, 2 has a larger cubic cage size and higher non-framework volume, leading to the cage size extended to mesoporous size set as a version of ''1 plus".
March 20, 2012 Space Station Briefing: Cubic Satellite Deploy (Narrated)
This animation, presented by Expedition 32 Lead Flight Director Dina Contella during the March 20, 2012 ISS Program and Science Overview Briefing, shows the deploy of small cubic satellites (often ...
The Coulombic Lattice Potential of Ionic Compounds: The Cubic Perovskites.
ERIC Educational Resources Information Center
Francisco, E.; And Others
1988-01-01
Presents coulombic models representing the particles of a system by point charges interacting through Coulomb's law to explain coulombic lattice potential. Uses rubidium manganese trifluoride as an example of cubic perovskite structure. Discusses the effects on cluster properties. (CW)
March 20, 2012 Space Station Briefing: Cubic Satellite Deploy
This animation, presented by Expedition 32 Lead Flight Director Dina Contella during the March 20, 2012 ISS Program and Science Overview Briefing, shows the deploy of small cubic satellites (often ...
Late-time attractor for the cubic nonlinear wave equation
Szpak, Nikodem
2010-08-15
We apply our recently developed scaling technique for obtaining late-time asymptotics to the cubic nonlinear wave equation and explain the appearance and approach to the two-parameter attractor found recently by Bizon and Zenginoglu.
On the role of cubic structure in ice nucleation
NASA Astrophysics Data System (ADS)
Takahashi, Tōru
1982-10-01
To clarify the formation mechanism of snow polycrystals the possibility of formation of a cubic ice embryo is discussed on the basis of the homogeneous nucleation theory for supercooled water formed from ambient water molecules in the phase of supersaturated vapour. In this connection, attention is paid to a finding from a model of broken hydrogen bonds that the plane {111} of a cubic ice crystal has a smaller specific interfacial energy than each of the {0001} or {10ovbar|10} planes of a hexagonal ice crystal. Hence, it follows that a critical cubic embryo has a smaller activation energy than a critical hexagonal embryo below a critical temperature; namely, Ostwald's step rule (Stufenregel) holds for a change from cubic ice to hexagonal ice below a critical temperature. This discussion is reinforced by examining, from the viewpoint of this step rule, the observed misorientation of the c-axis of natural snow polycrystals and the results of experiments using frozen water droplets.
19. 1500 CUBIC FEET CAPACITY SCRAP STEEL CHARGING BOX ON ...
19. 1500 CUBIC FEET CAPACITY SCRAP STEEL CHARGING BOX ON THE CHARGING AISLE OF THE BOP SHOP LOOKING NORTHWEST. - U.S. Steel Duquesne Works, Basic Oxygen Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA
The Formation of Nanocrystalline Semiconductor Particles within a Bicontinuous Cubic Phase
1997-04-08
zeolites have been used to control the particle size. Recently, other researchers have synthesized 1 DTIC QUALITY niEPEOTEB £ Docket No...Inventor’s Name: Yang et al PATENT APPLICATION 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 THE FORMATION OF...NANOCRYSTALLINE SEMICONDUCTOR PARTICLES WITHIN A BICONTINUOUS CUBIC PHASE Background of the Invention 1 . Field of the Invention The present
Turbulent convective flows in a cubic cavity at high Prandtl number
NASA Astrophysics Data System (ADS)
Vasiliev, A.; Sukhanovskii, A.; Frick, P.
2016-10-01
Characteristics of turbulent convective flows in a cubic cell is studied experimentally for high values of Prandtl number. The first set was carriied out with propylene glycol (Pr = 64 and the second one with 25% water solution of propylene glycol (Pr = 24). It was found that increasing of Pr from 6.1 to 24 leads only to the slight change of intensity of the flow but during the next increasing of Pr from 24 to 64 the flow changes its structure.
New cubic structure compounds as actinide host phases
NASA Astrophysics Data System (ADS)
Stefanovsky, S. V.; Yudintsev, S. V.; Livshits, T. S.
2010-03-01
Various compounds with fluorite (cubic zirconia) and fluorite-derived (pyrochlore, zirconolite) structures are considered as promising actinide host phases at immobilization of actinide-bearing nuclear wastes. Recently some new cubic compounds — stannate and stannate-zirconate pyrochlores, murataite and related phases, and actinide-bearing garnet structure compounds were proposed as perspective matrices for complex actinide wastes. Zirconate pyrochlore (ideally Gd2Zr2O7) has excellent radiation resistance and high chemical durability but requires high temperatures (at least 1500 °C) to be produced by hot-pressing from sol-gel derived precursor. Partial Sn4+ substitution for Zr4+ reduces production temperature and the compounds REE2ZrSnO7 may be hot-pressed or cold pressed and sintered at ~1400 °C. Pyrochlore, A2B2O7-x (two-fold elementary fluorite unit cell), and murataite, A3B6C2O20-y (three-fold fluorite unit cell), are end-members of the polysomatic series consisting of the phases whose structures are built from alternating pyrochlore and murataite blocks (nano-sized modules) with seven- (2C/3C/2C), five- (2C/3C), eight- (3C/2C/3C) and three-fold (3C — murataite) fluorite unit cells. Actinide content in this series reduces in the row: 2C (pyrochlore) > 7C > 5C > 8C > 3C (murataite). Due to congruent melting murataite-based ceramics may be produced by melting and the firstly segregated phase at melt crystallization is that with the highest fraction of the pyrochlore modules in its structure. The melts containing up to 10 wt. % AnO2 (An = Th, U, Np, Pu) or REE/An fraction of HLW form at crystallization zoned grains composed sequentially of the 5C → 8C → 3C phases with the highest actinide concentration in the core and the lowest — in the rim of the grains. Radiation resistance of the "murataite" is comparable to titanate pyrochlores. One more promising actinide hosts are ferrites with garnet structure. The matrices containing sometime complex fluorite
Skeletal cubic, lamellar, and ribbon phases of bundled thermotropic bolapolyphiles.
Liu, Feng; Prehm, Marko; Zeng, Xiangbing; Tschierske, Carsten; Ungar, Goran
2014-05-14
A series of T-shaped polyphilic molecules composed of a rigid linear biphenyl core with a polar glycerol group at each end and one swallow-tail semiperfluorinated lateral chain were synthesized and their thermotropic liquid crystalline (LC) phases were investigated by X-ray diffraction, calorimetry, and microscopy. The compounds have a long alkyl spacer between the aromatic core and the fluorinated C(n)F(2n+1) ends, where n = 4, 6, 8, and 10. Upon melting, all compounds start with lamellar LC phases, followed on heating by a rectangular columnar ribbon phase with c2mm symmetry. Unusually, a ribbon is a flat bundle of molecular cores highly aligned parallel to the ribbon axis. On further heating, for n = 8 and 10, this phase is succeeded by a bicontinuous cubic phase with Ia3d symmetry. This is a new variant of the "gyroid" phase, with axially oriented rod-like molecular cores forming the skeleton of the two infinite networks and junctions separated by exactly two molecular lengths. In this tricontinuous core-shell structure (aromatic-aliphatic-perfluoroalkyl), the polar glycerol domains of appreciable size, contained within the skeleton, can be considered as micellar.
Shear waves in a cubic nonlinear inhomogeneous resonator
NASA Astrophysics Data System (ADS)
Krit, Timofey B.; Andreev, Valery G.; Sapozhnikov, Oleg A.
2012-09-01
We study finite-amplitude shear waves in one-dimensional resonator represented by a layer of rubber-like medium with inhomogeneities in the form of through holes made on the side face. The holes are parallel to the bases and perpendicular to the direction of vibrations. Two different configurations of the resonator: with holes at the bottom and at the top are studied. A rigid plate of finite mass is fixed on the upper surface. The lower boundary of the layer oscillates harmonically with a given acceleration. The equation of motion of particles in the resonator was found using the model of medium with one relaxation time, and a cubic dependence of the shear modulus of deformation. The measurements were performed in a resonator in the form of a rectangular parallelepiped of 15 mm thickness made of a rubber-like polymer plastisol. The linear shear modulus and shear viscosity of the polymer at the first resonant frequency were determined using the finite element method. The amplitudes of the oscillations in the resonator reached a point where the maximum shear strain in the resonator is 0.4 - 0.6, making it possible to observe nonlinear effects. The evolution of the resonance curves at different amplitudes of acceleration was investigated. A harmonic analysis of the acceleration profiles of the upper boundary was performed. The dependence of nonlinear effects on the holes position was studied.
Consolidation of cubic and hexagonal boron nitride composites
Du Frane, W. L.; Cervantes, O.; Ellsworth, G. F.; Kuntz, J. D.
2015-12-08
When we Consolidate cubic boron nitride (cBN) it typically requires either a matrix of metal bearing materials that are undesirable for certain applications, or very high pressures within the cBN phase stability field that are prohibitive to manufacturing size and cost. We present new methodology for consolidating high stiffness cBN composites within a hexagonal boron nitride (hBN) matrix (15–25 vol%) with the aid of a binder phase (0–6 vol%) at moderate pressures (0.5–1.0 GPa) and temperatures (900–1300 °C). The composites are demonstrated to be highly tailorable with a range of compositions and resulting physical/mechanical properties. Ultrasonic measurements indicate that in some cases these composites have elastic mechanical properties that exceed those of the highest strength steel alloys. Moreover, two methods were identified to prevent phase transformation of the metastable cBN phase into hBN during consolidation: 1. removal of hydrocarbons, and 2. increased cBN particle size. Lithium tetraborate worked better as a binder than boron oxide, aiding consolidation without enhancing cBN to hBN phase transformation kinetics. These powder mixtures consolidated within error of their full theoretical mass densities at 1 GPa, and had only slightly lower densities at 0.5 GPa. This shows potential for consolidation of these composites into larger parts, in a variety of shapes, at even lower pressures using more conventional manufacturing methods, such as hot-pressing.
Deng, Yuru; Almsherqi, Zakaria A; Shui, Guanghou; Wenk, Markus R; Kohlwein, Sepp D
2009-09-01
Very long-chain polyunsaturated fatty acids (VLC-PUFAs), such as docosahexaenoic acid (DHA) and docosapentaenoic acid (DPA), have recently made it to the realm of "magical molecules" based on their multiple presumably beneficial effects in biological systems, making these PUFAs particularly interesting in biomedicine. Their specific biological functions, however, remain enigmatic. Here we provide evidence derived from studies in the amoeba Chaos that indicates a structural role for omega-6 DPA in cell membrane organization, which may help to explain the multiple diverse effects of VLC-PUFA in healthy and diseased states. Amoeba Chaos mitochondria undergo a remarkable and reversible morphological transition into cubic morphology on starvation. This morphological transition is reflected in major changes in fatty acid and lipid composition, as determined by gas liquid chromatography and mass spectrometry, in particular by a drastic increase in C22:5 modified phosphatidylcholine plasmalogen, phosphatidylethanolamine plasmalogen, and phosphatidylinositol species. Liposomes produced in vitro from lipids of starved amoeba cells show a high propensity to form hexagonal tubular and cubic morphologies. Addition of omega-6 DPA, but not of omega-3 DPA, to the cell culture also induced mitochondrial membrane transformation into cubic morphology in fed cells, demonstrating for the first time an important structural role of omega-6 DPA-containing lipids in cell membrane organization.
Effects of stacking disorder on thermal conductivity of cubic ice
NASA Astrophysics Data System (ADS)
Johari, G. P.; Andersson, Ove
2015-08-01
Cubic ice is said to have stacking disorder when the H2O sequences in its structure (space group F d 3 ¯ m ) are interlaced with hexagonal ice (space group P63/mmc) sequences, known as stacking faults. Diffraction methods have shown that the extent of this disorder varies in samples made by different methods, thermal history, and the temperature T, but other physical properties of cubic and hexagonal ices barely differ. We had found that at 160 K, the thermal conductivity, κ, of cubic ice is ˜20% less than that of hexagonal ice, and this difference varies for cubic ice samples prepared by different methods and/or subjected to different thermal history. After reviewing the methods of forming cubic ice, we report an investigation of the effects of stacking disorder and other features by using new data, and by analyzing our previous data on the dependence of κ on T and on the pressure. We conclude that the lower κ of cubic ice and its weaker T-dependence is due mainly to stacking disorder and small crystal sizes. On in situ heating at 20-50 MPa pressure, κ increases and cubic ice irreversibly transforms more sharply to ice Ih, and at a higher T of ˜220 K, than it does in ex situ studies. Cooling and heating between 115 and 130 K at 0.1 K min-1 rate yield the same κ value, indicating that the state of cubic ice in these conditions does not change with time and T. The increase in κ of cubic ice observed on heat-annealing before its conversion to hexagonal ice is attributed to the loss of stacking faults and other types of disorders, and to grain growth. After discussing the consequences of our findings on other properties, we suggest that detailed studies of variation of a given property of cubic ice with the fraction of stacking faults in its structure may reveal more about the effect of this disorder. A similar disorder may occur in the mono-layers of H2O adsorbed on a substrate, in bulk materials comprised of two dimensional layers, in diamond and in
Toward 10(exp 9) GPS geodesy: Vector baselines, Earth rotation and reference frames
NASA Technical Reports Server (NTRS)
Schutz, Bob E.
1993-01-01
The University of Texas Center for Space Research research efforts under NASA Grant No. NAG-1936 from 1 Jan. 1992 - 31 Dec. 1992 were in the following areas: GPS orbit accuracy assessments and efforts to improve the accuracy; analysis of global GPS data collected during the first three months of the IGS campaign, and analysis of regional data. A brief summary of each of the above activities is presented in the following.
Towards 10(exp 9) GPS geodesy: Vector baselines, Earth rotation and reference frames
NASA Technical Reports Server (NTRS)
Schutz, Bob E.
1994-01-01
Effort during the period form January 1, 1993 to December 31, 1993 were in the following areas: GPS orbit accuracy assessments and efforts to improve the accuracy; analysis and effects of GPS receiver antenna phase center variation; analysis of global GPS data being collected for the IGS campaign; and analysis of regional (south west Pacific) campaign data. A brief summary of each of the above activities is presented.
Friction, Wear, and Evaporation Rates of Various Materials in Vacuum to 10(exp -7) mm Hg
NASA Technical Reports Server (NTRS)
Buckley, Donald H.; Swikert, Max; Johnson, Robert L.
1961-01-01
The requirements for bearings and seals to operate in the environment of space dictate a new area for lubrication research. The low ambient pressures encountered in space can be expected to influence the behavior of oil, grease, and solid-film lubricants. The property of these materials most significantly affected by low ambient pressures is the evaporation rate. Various investigators have therefore measured the evaporation rates of oils and greases in vacuum as one method of establishing their relative merit for space applications (1-3). The results of this work have given some indication as to the oils and greases with the greatest stability at reduced ambient pressures. Only limited experimental work, however, has been reported in the literature for inorganic solids and soft metals which have potential use as solid lubricant films or coatings for hard alloy substrates [e.g. Reference ( 4 )]. In general, the evaporation rates of these materials would be lower than those of oils and greases. These films might therefore be very attractive as lubricants for high vacuum service.
Body-centered-cubic Ni and its magnetic properties.
Tian, C S; Qian, D; Wu, D; He, R H; Wu, Y Z; Tang, W X; Yin, L F; Shi, Y S; Dong, G S; Jin, X F; Jiang, X M; Liu, F Q; Qian, H J; Sun, K; Wang, L M; Rossi, G; Qiu, Z Q; Shi, J
2005-04-08
The body-centered-cubic (bcc) phase of Ni, which does not exist in nature, has been achieved as a thin film on GaAs(001) at 170 K via molecular beam epitaxy. The bcc Ni is ferromagnetic with a Curie temperature of 456 K and possesses a magnetic moment of 0.52+/-0.08 micro(B)/atom. The cubic magnetocrystalline anisotropy of bcc Ni is determined to be +4.0x10(5) ergs x cm(-3), as opposed to -5.7x10(4) ergs x cm(-3) for the naturally occurring face-centered-cubic (fcc) Ni. This sharp contrast in the magnetic anisotropy is attributed to the different electronic band structures between bcc Ni and fcc Ni, which are determined using angle-resolved photoemission with synchrotron radiation.
Superhard cubic BC2N compared to diamond.
Zhang, Yi; Sun, Hong; Chen, Changfeng
2004-11-05
Recent experiments claimed successful synthesis of cubic boron-carbonitride compounds BC2N with an extreme hardness second only to diamond. In the present Letter, we examine the ideal strength of cubic BC2N using first-principles calculations. Our results reveal that, despite the large elastic parameters, compositional anisotropy and strain dependent bonding character impose limitation on their strength. Consequently, the hardness of the optimal BC2N structure is predicted to be lower than that of cubic BN, the second hardest material known. The measured extreme hardness of BC2N nanocomposites is most likely due to the nanocrystalline size effect and the bonding to the surrounding amorphous carbon matrix. This may prove to be a general rule useful in the quest for new superhard covalent materials.
Tetragonal and cubic zirconia multilayered ceramic constructs created by EPD.
Mochales, Carolina; Frank, Stefan; Zehbe, Rolf; Traykova, Tania; Fleckenstein, Christine; Maerten, Anke; Fleck, Claudia; Mueller, Wolf-Dieter
2013-02-14
The interest in electrophoretic deposition (EPD) for nanomaterials and ceramics production has widely increased due to the versatility of this technique to effectively combine different materials in unique shapes and structures. We successfully established an EPD layering process with submicrometer sized powders of Y-TZP with different mol percentages of yttrium oxide (3 and 8%) and produced multilayers of alternating tetragonal and cubic phases with a clearly defined interface. The rationale behind the design of these multilayer constructs was to optimize the properties of the final ceramic by combining the high mechanical toughness of the tetragonal phase of zirconia together with the high ionic conductivity of its cubic phase. In this work, a preliminary study of the mechanical properties of these constructs proved the good mechanical integrity of the multilayered constructs obtained as well as crack deflection in the interface between tetragonal and cubic zirconia layers.
Shear waves in a resonator with cubic nonlinearity
NASA Astrophysics Data System (ADS)
Andreev, V. G.; Krit, T. B.; Sapozhnikov, O. A.
2011-11-01
Shear waves with finite amplitude in a one-dimensional resonator in the form of a layer of a rubber-like medium with a rigid plate of finite mass at the upper surface of the layer are investigated. The lower boundary of the layer oscillates according to a harmonic law with a preset acceleration. The equation of motion for particles in a resonator is determined using a model of a medium with a single relaxation time and cubical dependence of the shear modulus on deformation. The amplitude and form of shear waves in a resonator are calculated numerically by the finite difference method at shifted grids. Resonance curves are obtained at different acceleration amplitudes at the lower boundary of a layer. It is demonstrated that, as the oscillation amplitude in the resonator grows, the value of the resonance frequency increases and the shape of the resonance curve becomes asymmetrical. At sufficiently large amplitudes, a bistability region is observed. Measurements were conducted with a resonator, where a layer with the thickness of 15 mm was manufactured of a rubber-like polymer called plastisol. The shear modulus of the polymer at small deformations and the nonlinearity coefficient were determined according to the experimental dependence of mechanical stress on shear deformation. Oscillation amplitudes in the resonator attained values when the maximum shear deformations in the layer were 0.4-0.6, which provided an opportunity to observe nonlinear effects. Measured dependences of the resonance frequency on the oscillation amplitude corresponded to the calculated ones that were obtained at a smaller value of the nonlinear coefficient.
Consolidation of cubic and hexagonal boron nitride composites
Du Frane, W. L.; Cervantes, O.; Ellsworth, G. F.; ...
2015-12-08
When we Consolidate cubic boron nitride (cBN) it typically requires either a matrix of metal bearing materials that are undesirable for certain applications, or very high pressures within the cBN phase stability field that are prohibitive to manufacturing size and cost. We present new methodology for consolidating high stiffness cBN composites within a hexagonal boron nitride (hBN) matrix (15–25 vol%) with the aid of a binder phase (0–6 vol%) at moderate pressures (0.5–1.0 GPa) and temperatures (900–1300 °C). The composites are demonstrated to be highly tailorable with a range of compositions and resulting physical/mechanical properties. Ultrasonic measurements indicate that inmore » some cases these composites have elastic mechanical properties that exceed those of the highest strength steel alloys. Moreover, two methods were identified to prevent phase transformation of the metastable cBN phase into hBN during consolidation: 1. removal of hydrocarbons, and 2. increased cBN particle size. Lithium tetraborate worked better as a binder than boron oxide, aiding consolidation without enhancing cBN to hBN phase transformation kinetics. These powder mixtures consolidated within error of their full theoretical mass densities at 1 GPa, and had only slightly lower densities at 0.5 GPa. This shows potential for consolidation of these composites into larger parts, in a variety of shapes, at even lower pressures using more conventional manufacturing methods, such as hot-pressing.« less
Simple adaptive cubic spline interpolation of fluorescence decay functions
NASA Astrophysics Data System (ADS)
Kuśba, J.; Czuper, A.
2007-05-01
Simple method allowing for adaptive cubic spline interpolation of fluorescence decay functions is proposed. In the first step of the method, the interpolated function is integrated using the known adaptive algorithm based on Newton-Cotes quadratures. It is shown that, in this step, application of the Simpson's rule provides the smallest number of calls of the interpolated function. In the second step of the method, a typical cubic spline approximation is used to find values of the interpolated function between the points evaluated in the first step.
Surface enhanced Raman study of cubic boron nitride
NASA Astrophysics Data System (ADS)
Zhang, Xu
2003-05-01
Surface enhancement for Raman scattering of single crystal cubic boron nitride (c-BN) (1 1 1) and polycrystalline cubic BN was observed by depositing silver nanoparticles on the substrate surface. The c-BN samples were subjected to hydrogen plasma, as well as deuterium plasma treatment to observe the isotopic shift of surface binding species. Characteristic Raman peaks corresponding to the molecular vibrational modes of surface chemisorbed hydrogen and deuterium could be observed for the first time and were assigned according to ab initio molecular orbital calculations.
Process for producing wurtzitic or cubic boron nitride
Holt, J. Birch; Kingman, deceased, Donald D.; Bianchini, Gregory M.
1992-01-01
Disclosed is a process for producing wurtzitic or cubic boron nitride comprising the steps of: [A] preparing an intimate mixture of powdered boron oxide, a powdered metal selected from the group consisting of magnesium or aluminum, and a powdered metal azide; [B] igniting the mixture and bringing it to a temperature at which self-sustaining combustion occurs; [C] shocking the mixture at the end of the combustion thereof with a high pressure wave, thereby forming as a reaction product, wurtzitic or cubic boron nitride and occluded metal oxide; and, optionally [D] removing the occluded metal oxide from the reaction product. Also disclosed are reaction products made by the process described.
Process for producing wurtzitic or cubic boron nitride
Holt, J.B.; Kingman, D.D.; Bianchini, G.M.
1992-04-28
Disclosed is a process for producing wurtzitic or cubic boron nitride comprising the steps of: [A] preparing an intimate mixture of powdered boron oxide, a powdered metal selected from the group consisting of magnesium or aluminum, and a powdered metal azide; [B] igniting the mixture and bringing it to a temperature at which self-sustaining combustion occurs; [C] shocking the mixture at the end of the combustion thereof with a high pressure wave, thereby forming as a reaction product, wurtzitic or cubic boron nitride and occluded metal oxide; and, optionally [D] removing the occluded metal oxide from the reaction product. Also disclosed are reaction products made by the process described.
Stationary phase analysis of generalized cubic phase mask wavefront coding
NASA Astrophysics Data System (ADS)
Liu, Ming; Dong, Liquan; Zhao, Yuejin; Hui, Mei; Jia, Wei
2013-07-01
The modified generalized cubic phase mask (GCPM) has recently been applied in wavefront coding systems including infrared imaging and microscopy. In this paper, the stationary phase method is employed to analyze the GCPM characteristics. The SPA of the modulation transfer function (MTF) under misfocus aberration is derived for a wavefront coding system with a GCPM. The approximation corresponds with the Fast Fourier Transform (FFT) approach. On the basis of this approximation, we compare the characteristics of GCPM and cubic phase masks (CPM). A GCPM design approach based on stationary phase approximation is presented which helps to determine the initial parameter of phase mask, significantly decreasing the computational time required for numerical simulation.
The singular cubical set of a topological space
NASA Astrophysics Data System (ADS)
Antolini, Rosa; Wiest, Bert
1999-01-01
For any topological space X let C(X) be the realization of the singular cubical set of X; let * be the topological space consisting of one point. In [1] Antolini proves, as a corollary to a general theorem about cubical sets, that C(X) and X×C(*) are homotopy equivalent, provided X is a CW-complex. In this note we give a short geometric proof that for any topological space X there is a natural weak homotopy equivalence between C(X) and X×C(*).
Kim, Youngkyoo; Nelson, Jenny; Zhang, Tong; Cook, Steffan; Durrant, James R; Kim, Hwajeong; Park, Jiho; Shin, Minjung; Nam, Sungho; Heeney, Martin; McCulloch, Iain; Ha, Chang-Sik; Bradley, Donal D C
2009-09-22
We found that 1-(3-methoxycarbonyl)propyl-1-phenyl-(6,6)C(61) (PCBM) molecules make a distorted asymmetric body-centered cubic crystal nanostructure in the bulk heterojunction films of reigoregular poly(3-hexylthiophene) and PCBM. The wider angle of distortion in the PCBM nanocrystals was approximately 96 degrees , which can be assigned to the influence of the attached side group to the fullerene ball of PCBM to bestow solubility. Atom concentration analysis showed that after thermal annealing the PCBM nanocrystals do preferentially distribute above the layer of P3HT nanocrystals inside devices.
Dynamical stabilization of solitons in cubic-quintic nonlinear Schroedinger model
Abdullaev, Fatkhulla Kh.; Garnier, Josselin
2005-09-01
We consider the existence of a dynamically stable soliton in the one-dimensional cubic-quintic nonlinear Schroedinger model with strong cubic nonlinearity management for periodic and random modulations. We show that the predictions of the averaged cubic-quintic nonlinear Schroedinger (NLS) equation and modified variational approach for the arrest of collapse coincide. The analytical results are confirmed by numerical simulations of a one-dimensional cubic-quintic NLS equation with a rapidly and strongly varying cubic nonlinearity coefficient.
Masui, Toshiyuki; Nagai, Ryosuke; Imanaka, Nobuhito
2014-12-15
Cubic fluorite-type solid solutions based on Pr{sub 6}O{sub 11} and CeO{sub 2} were synthesized and oxide anion vacancies were intentionally introduced into the cubic fluorite-type lattice through the charge compensating mechanism by Mg{sup 2+} and/or Ca{sup 2+} doping into their lattices. The oxide anion vacancies bring about positive effect on NO decomposition catalysis. The reason for the increase in the catalytic activity was attributed to defect fluorite-type structures close to the C-type cubic one, because C-type cubic rare earth oxides, in which one-quarter of the oxygen atoms in the fluorite-type structure are removed, show high NO decomposition activity. In particular, the positive effect of the formation of oxide anion vacancies was significant for Pr{sub 6}O{sub 11} and its solid solutions, because the molar volume of Pr{sub 6}O{sub 11} is larger than that of CeO{sub 2}, and Pr{sub 6}O{sub 11} contains Pr{sup 3+} as well as Pr{sup 4+} and thereby a small amount of oxide anion vacancies exist inherently in the lattice. - Graphical abstract: Oxide anion vacancies intentionally introduced into the cubic fluorite-type lattice bring about positive effect on NO decomposition catalysis. - Highlights: • Cubic fluorite-type solid solutions were synthesized. • Oxide anion vacancies were intentionally introduced into the cubic fluorite-type lattice. • The oxide anion vacancies bring about positive effect on NO decomposition catalysis. • The activity was enhanced by making the structure close to the C-type cubic one.
1992-12-01
AD-A258 804 Final Technical Report Ii Growth, Nitrogen Vacancy Reduction and Solid Solution Formation in Cubic GaN Thin Films and the Subsequent...Technical 6/1/86-12/31/92 4. TITLE AND SUBTITLE Growth, Nitrogen Vacancy Reduction and 5. FUNDING NUMBERS Solid Solution Formation in Cubic GaN Thin...According to the structural and chemical analyses, there is no reason to believe that a homogeneous solid solution close to this composition had
Grain growth and phase stability of nanocrystalline cubic zirconia under ion irradiation
Zhang, Yanwen; Jiang, Weilin; Wang, Chong M.; Namavar, Fereydoon; Edmondson, Philip D.; Zhu, Zihua; Gao, Fei; Lian, Jie; Weber, William J.
2010-11-10
Grain growth, oxygen stoichiometry and phase stability of nanostructurally-stabilized zirconia (NSZ) in pure cubic phase are investigated under 2 MeV Au ion bombardment at 160 and 400 K to doses up to 35 displacements per atom (dpa). The NSZ films are produced by ion-beam-assisted deposition technique at room temperature with an average grain size of 7.7 nm. The grain size increases with dose, and follows a power law (n=6) to a saturation value of ~30 nm that decreases with temperature. Slower grain growth is observed under 400 K irradiations, as compared to 160 K irradiations, indicating that thermal grain growth is not activated and defect-stimulated grain growth is the dominating mechanism. While cubic phase is perfectly retained and no new phases are identified after the high-dose irradiations, reduction of oxygen in the irradiated NSZ films is detected. The ratio of O to Zr decreases from ~2.0 for the as-deposited films to ~1.65 after irradiation to ~35 dpa. Significant increase of oxygen vacancies in nanocrystalline zirconia suggests substantially enhanced oxygen diffusion under ion irradiation, a materials behavior far from equilibrium. The oxygen deficiency may be essential in stabilizing cubic phase to larger grain sizes.
Cubic Gallium Nitride on Micropatterned Si (001) for Longer Wavelength LEDs
Durniak, Mark T.; Chaudhuri, Anabil; Smith, Michael L.; Allerman, Andrew A.; Lee, S. C.; Brueck, S. R. J.; Wetzel, Christian
2016-03-01
GaInN/GaN heterostructures of cubic phase have the potential to overcome the limitations of wurtzite structures commonly used for light emitting and laser diodes. Wurtzite GaInN suffers from large internal polarization fields, which force design compromises ( 0001 ) towards ultra-narrow quantum wells and reduce recombination volume and efficiency. Cubic GaInN microstripes grown at Rensselaer Polytechnic Institute by metal organic vapor phase epitaxy on micropatterned Si , with {111} v-grooves oriented along Si ( 001 ) , offer a system free of internal polarization fields, wider quantum wells, and smaller <00$\\bar1$> bandgap energy. We prepared 6 and 9 nm Ga _{x} In _{1-x} N/GaN single quantum well structures with peak wavelength ranges from 520 to 570 nm with photons predominately polarized perpendicular to the grooves. We estimate a cubic InN composition range of 0 < x < 0.5 and an upper limit of the internal quantum efficiency of 50%. Stripe geometry and polarization may be suitable for mode confinement and reduced threshold stimulated emission.
Rheology of cubic particles suspended in a Newtonian fluid.
Cwalina, Colin D; Harrison, Kelsey J; Wagner, Norman J
2016-05-18
Many real-world industrial processes involve non-spherical particles suspended in a fluid medium. Knowledge of the flow behavior of these suspensions is essential for optimizing their transport properties and designing processing equipment. In the present work, we explore and report on the rheology of concentrated suspensions of cubic-shaped colloidal particles under steady and dynamic shear flow. These suspensions exhibit a rich non-Newtonian rheology that includes shear thickening and normal stress differences at high shear stresses. Scalings are proposed to connect the material properties of these suspensions of cubic particle to those measured for suspensions of spherical particles. Negative first normal stress differences indicate that lubrication hydrodynamic forces dominate the stress in the shear-thickened state. Accounting for the increased lubrication hydrodynamic interactions between the flat surfaces of the cubic particles allows for a quantitative comparison of the deviatoric stress in the shear-thickened state to that of spherical particles. New semi-empirical models for the viscosity and normal stress difference coefficients are presented for the shear-thickened state. The results of this study indicate that cubic particles offer new and unique opportunities to formulate colloidal dispersions for field-responsive materials.
Tangent Lines without Derivatives for Quadratic and Cubic Equations
ERIC Educational Resources Information Center
Carroll, William J.
2009-01-01
In the quadratic equation, y = ax[superscript 2] + bx + c, the equation y = bx + c is identified as the equation of the line tangent to the parabola at its y-intercept. This is extended to give a convenient method of graphing tangent lines at any point on the graph of a quadratic or a cubic equation. (Contains 5 figures.)
An effective packing density of binary cubic crystals
NASA Astrophysics Data System (ADS)
Eremin, I. E.; Eremina, V. V.; Sychev, M. S.; Moiseenko, V. G.
2015-04-01
The methodology of effective macroscopic calculation of numerical values of internuclear distances in binary crystals of a cubic crystal system is based on the use of coefficients of the structural packing density of the crystal lattice. The possibility of combining the reference data on the main physicochemical parameters of the substance is implemented by synthesis of the corresponding mathematical models.
Connecting the Dots Parametrically: An Alternative to Cubic Splines.
ERIC Educational Resources Information Center
Hildebrand, Wilbur J.
1990-01-01
Discusses a method of cubic splines to determine a curve through a series of points and a second method for obtaining parametric equations for a smooth curve that passes through a sequence of points. Procedures for determining the curves and results of each of the methods are compared. (YP)
Cubic surfaces and their invariants: Some memories of Raymond Stora
NASA Astrophysics Data System (ADS)
Bauer, Michel
2016-11-01
Cubic surfaces embedded in complex projective 3-space are a classical illustration of the use of old and new methods in algebraic geometry. Recently, they made their appearance in physics, and in particular aroused the interest of Raymond Stora, to the memory of whom these notes are dedicated, and to whom I'm very much indebted.
Lattice Green's Function for the Body-Centered Cubic Lattice
NASA Astrophysics Data System (ADS)
Sakaji, A. J.
2002-05-01
An expression for the Green's function (GF) of Body-Centered Cubic (BCC) lat tice is evaluated analytically and numerically for a single impurity lattice. Th e density of states (DOS), phase shift, and scattering cross section are express ed in terms of complete elliptic integrals of the first kind.
NASA Astrophysics Data System (ADS)
Li, She-Qiang; Fu, Xing-Qiu; Hu, Bing; Deng, Jia-Jun; Chen, Lei
2009-11-01
The oxidation of formic acid on edge-truncated cubic platinum nanoparticles/C catalysts is investigated. X-ray photoelectron spectroscopy analysis indicates that the surface of edge-truncated cubic platinum nanoparticles is composed of two types of coordination sites. The oxidation behavior of formic acid on edge-truncated cubic platinum nanoparticles/C is investigated using cyclic voltammetry. The apparent activation energies are found to be 54.2, 55.0, 61.8, 69.5, 71.9, 69.26, 65.28kJ/mol at 0.15, 0.3, 0.4, 0.5, 0.6, 0.65, 0.7V, respectively. A specific surface area activity of 1.76 mA·cm-2 at 0.4 V indicates that the edge-truncated cubic Platinum nanoparticles are a promising anode catalyst for direct formic acid fuel cells.
Volatility and Wear Characteristics of a Variety of Liquid Lubricants for Space Applications
NASA Technical Reports Server (NTRS)
Nguyen, Quynhgiao N.; Jones, William R., Jr.
2001-01-01
The vapor pressures and near characteristics are critical properties for liquid lubricants to assure long-term reliability and performance in space applications. Vapor pressures, obtained using a Knudsen cell technique, and near properties, obtained using a vacuum four-ball apparatus, were measured for a series of unformulated liquid lubricants. These include: two multiple alkylated cyclopentanes (MACs) (X-1000 and X-2000), two linear perfluoropolyalkylethers (PFPAEs) (Z-25 and 815Z), and four silahydrocarbons (a tri-, a tetra-, and two pentas). Vapor pressures were measured at three elevated temperatures (423, 448, and 498 K) and extrapolated to room temperature 298 K. The lowest 298 K vapor pressure of 5.7 x 10(exp -14) Pa, was obtained with the PFPAE fluid (815Z) and the highest value with the low molecular weight MAC (X-1000) at 3.6 x 10(exp -7) Pa. In addition, vacuum near rates were determined for some of the lubricants. The lowest wear rates (approximately 3 x 10(exp -11) cubic mm/mm) were observed for three of the silahydrocarbons while the highest wear rate (approximately 2 x 10(exp-9) cubic mm/mm) were observed with the two PFPAE fluids (Z-25 and 815Z). The MAC (X-2000) yielded a wear rate of about 10(exp -10) cubic mm/mm. The results indicated that the silahydrocarbon class of liquid lubricants offers the better potential for space applications.
Volatility and Wear Characteristics of a Variety of Liquid Lubricants for Space Applications
NASA Technical Reports Server (NTRS)
Nguyen, QuynhGiao N.; Jones, William R., Jr.
2001-01-01
The vapor pressures and wear characteristics are critical properties for liquid lubricants to assure long-term reliability and performance in space applications. Vapor pressures, obtained using a Knudsen cell technique, and wear properties, obtained using a vacuum four-ball apparatus, were measured for a series of unformulated liquid lubricants. These included two multiply alkylated cyclopentanes (MACs) (X-1000 and X2000), two linear perfluoropolyalkylethers (PFPAEs) (Z-25 and 815Z), and four silahydrocarbons (a tri, a tetra, and two pentas). Vapor pressures were measured at three elevated temperatures (423, 448, and 498 K) and extrapolated to room temperature 298 K. The lowest 298 K vapor pressure of 5.7 x 10(exp -14) Pa was obtained with the PFPAE fluid (815Z) and the highest value with the low molecular weight MAC (X-1000) at 3.6 x 10(exp -7) Pa. In addition, vacuum wear rates were determined for some of the lubricants. The lowest wear rates (approximately 3 x 10(exp -11) cubic mm/mm) were observed for three of the silahydrocarbons while the highest wear rates (approximately 2 x 10(exp -9) cubic mm/mm) were observed with the two PFPAE fluids (Z-25 and 815Z). The MAC (X-2000) yielded a wear rate of about 10(exp -10) cubic mm/mm. The results indicated that the silahydrocarbon class of liquid lubricants offers the better potential for space applications.
Extreme values of the Poisson's ratio of cubic crystals
NASA Astrophysics Data System (ADS)
Epishin, A. I.; Lisovenko, D. S.
2016-10-01
The problem of determining the extrema of Poisson's ratio for cubic crystals is considered, and analytical expressions are derived to calculate its extreme values. It follows from the obtained solution that, apart from extreme values at standard orientations, extreme values of Poisson's ratio can also be detected at special orientations deviated from the standard ones. The derived analytical expressions are used to calculate the extreme values of Poisson's ratio for a large number of known cubic crystals. The extremely high values of Poisson's ratio are shown to be characteristic of metastable crystals, such as crystals with the shape memory effect caused by martensitic transformation. These crystals are mainly represented by metallic alloys. For some crystals, the absolute extrema of Poisson's ratio can exceed the standard values, which are-1 for a standard minimum and +2 for a standard maximum.
Nonlinear optical imaging of defects in cubic silicon carbide epilayers.
Hristu, Radu; Stanciu, Stefan G; Tranca, Denis E; Matei, Alecs; Stanciu, George A
2014-06-11
Silicon carbide is one of the most promising materials for power electronic devices capable of operating at extreme conditions. The widespread application of silicon carbide power devices is however limited by the presence of structural defects in silicon carbide epilayers. Our experiment demonstrates that optical second harmonic generation imaging represents a viable solution for characterizing structural defects such as stacking faults, dislocations and double positioning boundaries in cubic silicon carbide layers. X-ray diffraction and optical second harmonic rotational anisotropy were used to confirm the growth of the cubic polytype, atomic force microscopy was used to support the identification of silicon carbide defects based on their distinct shape, while second harmonic generation microscopy revealed the detailed structure of the defects. Our results show that this fast and noninvasive investigation method can identify defects which appear during the crystal growth and can be used to certify areas within the silicon carbide epilayer that have optimal quality.
Cubic ideal ferromagnets at low temperature and weak magnetic field
NASA Astrophysics Data System (ADS)
Hofmann, Christoph P.
2017-04-01
The low-temperature series for the free energy density, pressure, magnetization and susceptibility of cubic ideal ferromagnets in weak external magnetic fields are discussed within the effective Lagrangian framework up to three loops. The structure of the simple, body-centered, and face-centered cubic lattice is taken into account explicitly. The expansion involves integer and half-integer powers of the temperature. The corresponding coefficients depend on the magnetic field and on low-energy effective constants that can be expressed in terms of microscopic quantities. Our formulas may also serve as efficiency or consistency check for other techniques like Green's function methods, where spurious terms in the low-temperature expansion have appeared. We explore the sign and magnitude of the spin-wave interaction in the pressure, magnetization and susceptibility, and emphasize that our effective field theory approach is fully systematic and rigorous.
Infinite geometric frustration in a cubic dipole cluster
NASA Astrophysics Data System (ADS)
Schönke, Johannes; Schneider, Tobias M.; Rehberg, Ingo
2015-01-01
The geometric arrangement of interacting (magnetic) dipoles is a question of fundamental importance in physics, chemistry, and engineering. Motivated by recent progress concerning the self-assembly of magnetic structures, the equilibrium orientation of eight interacting dipoles in a cubic cluster is investigated in detail. Instead of discrete equilibria we find a type of ground state consisting of infinitely many orientations. This continuum of energetically degenerate states represents a yet unknown form of magnetic frustration. The corresponding dipole rotations in the flat potential valley of this Goldstone mode enable the construction of frictionless magnetic couplings. Using computer-assisted algebraic geometry methods, we moreover completely enumerate all equilibrium configurations. The seemingly simple cubic system allows for exactly 9536 unstable discrete equilibria falling into 183 distinct energy families.
Data reduction using cubic rational B-splines
NASA Technical Reports Server (NTRS)
Chou, Jin J.; Piegl, Les A.
1992-01-01
A geometric method is proposed for fitting rational cubic B-spline curves to data that represent smooth curves including intersection or silhouette lines. The algorithm is based on the convex hull and the variation diminishing properties of Bezier/B-spline curves. The algorithm has the following structure: it tries to fit one Bezier segment to the entire data set and if it is impossible it subdivides the data set and reconsiders the subset. After accepting the subset the algorithm tries to find the longest run of points within a tolerance and then approximates this set with a Bezier cubic segment. The algorithm uses this procedure repeatedly to the rest of the data points until all points are fitted. It is concluded that the algorithm delivers fitting curves which approximate the data with high accuracy even in cases with large tolerances.
Circular dichroism in biological photonic crystals and cubic chiral nets.
Saba, M; Thiel, M; Turner, M D; Hyde, S T; Gu, M; Grosse-Brauckmann, K; Neshev, D N; Mecke, K; Schröder-Turk, G E
2011-03-11
Nature provides impressive examples of chiral photonic crystals, with the notable example of the cubic so-called srs network (the label for the chiral degree-three network modeled on SrSi2) or gyroid structure realized in wing scales of several butterfly species. By a circular polarization analysis of the band structure of such networks, we demonstrate strong circular dichroism effects: The butterfly srs microstructure, of cubic I4(1)32 symmetry, shows significant circular dichroism for blue to ultraviolet light, that warrants a search for biological receptors sensitive to circular polarization. A derived synthetic structure based on four like-handed silicon srs nets exhibits a large circular polarization stop band of a width exceeding 30%. These findings offer design principles for chiral photonic devices.
Hermite cubic spline multi-wavelets on the cube
NASA Astrophysics Data System (ADS)
Cvejnová, Daniela; Černá, Dana; Finěk, Václav
2015-11-01
In 2000, W. Dahmen et al. proposed a construction of Hermite cubic spline multi-wavelets adapted to the interval [0, 1]. Later, several more simple constructions of wavelet bases based on Hermite cubic splines were proposed. We focus here on wavelet basis with respect to which both the mass and stiffness matrices are sparse in the sense that the number of non-zero elements in each column is bounded by a constant. Then, a matrix-vector multiplication in adaptive wavelet methods can be performed exactly with linear complexity for any second order differential equation with constant coefficients. In this contribution, we shortly review these constructions, use an anisotropic tensor product to obtain bases on the cube [0, 1]3, and compare their condition numbers.
Alpha decay self-damage in cubic and monoclinic zirconolite
Clinard, F.W. Jr.; Land, C.C.; Peterson, D.E.; Rohr, D.L.; Roof, R.B.
1981-01-01
Samples of primarily-monoclinic /sup 238/Pu-doped zirconolite were stored at ambient temperature to allow accumulation of alpha decay self-damage to a dose of 1 x 10/sup 24/ ..cap alpha../m/sup 3/ (equivalent to a SYNROC age of approx. 10/sup 3/y). Bulk swelling reached 2.3 vol% with no tendency toward saturation, a damage response similar to that observed for cubic Pu-doped zirconolite. X-ray volumetric swelling at 4 x 10/sup 24/ ..cap alpha../m/sup 3/ was 1 vol%, considerably less than that for the cubic material. Changes in cell dimensions differed significantly from those reported by others for a monoclinic natural mineral. Extensive microcracking was observed, and is attributed at least partially to swelling differences between the matrix and minor phases.
Multiscale Modeling of Point and Line Defects in Cubic Lattices
2007-01-01
and discli- nations with finite micropolar elastoplasticity . Int. J. Plasticity. 22:210–256, 2006. 56. Menzel, A., and Steinmann, P., On the contin...Voyiadjis, G. Z., A finite strain plastic- damage model for high velocity impact using combined viscosity and gradient localization limiters: Part I...Theoretical for- mulation. Int. J. Damage Mech. 15:293–334, 2006. 58. Milstein, F., and Chantasiriwan, S,. Theoretical study of the response of 12 cubic
Quadratic and Cubic Nonlinear Oscillators with Damping and Their Applications
NASA Astrophysics Data System (ADS)
Li, Jibin; Feng, Zhaosheng
We apply the qualitative theory of dynamical systems to study exact solutions and the dynamics of quadratic and cubic nonlinear oscillators with damping. Under certain parametric conditions, we also consider the van der Waals normal form, Chaffee-Infante equation, compound Burgers-KdV equation and Burgers-KdV equation for explicit representations of kink-profile wave solutions and unbounded traveling wave solutions.
Why GPCRs behave differently in cubic and lamellar lipidic mesophases
2012-01-01
Recent successes in the crystallographic determination of structures of transmembrane proteins in the G protein-coupled receptor (GPCR) family have established the lipidic cubic phase (LCP) environment as the medium of choice for growing structure-grade crystals by the method termed “in meso”. The understanding of in meso crystallogenesis is currently at a descriptive level. To enable an eventual quantitative, energy-based description of the nucleation and crystallization mechanism, we have examined the properties of the lipidic cubic phase system and the dynamics of the GPCR rhodopsin reconstituted into the LCP with coarse-grained molecular dynamics simulations with the Martini force-field. Quantifying the differences in the hydrophobic/hydrophilic exposure of the GPCR to lipids in the cubic and lamellar phases, we found that the highly curved geometry of the cubic phase provides more efficient shielding of the protein from unfavorable hydrophobic exposure, which leads to a lesser hydrophobic mismatch and less unfavorable hydrophobic–hydrophilic interactions between the protein and lipid–water interface in the LCP, compared to the lamellar phase. Since hydrophobic mismatch is considered a driving force for oligomerization, the differences in exposure mismatch energies between the LCP and the lamellar structures suggest that the latter provide a more favorable setting in which GPCRs can oligomerize as a prelude to nucleation and crystal growth. These new findings lay the foundation for future investigations of in meso crystallization mechanisms related to the transition from the LCP to the lamellar phase and studies aimed at an improved rational approach for generating structure-quality crystals of membrane proteins. PMID:22931253
Cubic lattice nanosheets: thickness-driven light emission.
Golberg, Dmitri; Zhang, Chao; Xu, Zhi
2014-07-22
Silicon has a diamond-like cubic crystal lattice for which two-dimensional (2D) nanometer thickness nanosheet crystallization appears not to be trivial. However, in this issue of ACS Nano, the group led by Heon-Jin Choi demonstrates the gas-phase dendritic growth of Si nanosheets, only 1 to 13 nm thick. Moreover, such nanosheets display strong thickness-dependent photoluminescence in a visible range with red, green, and blue emission each documented.
Photon-pair generation in arrays of cubic nonlinear waveguides.
Solntsev, Alexander S; Sukhorukov, Andrey A; Neshev, Dragomir N; Kivshar, Yuri S
2012-11-19
We study photon-pair generation in arrays of cubic nonlinear waveguides through spontaneous four-wave mixing. We analyze numerically the quantum statistics of photon pairs at the array output as a function of waveguide dispersion and pump beam power. We show flexible spatial quantum state control such as pump-power-controlled transition between bunching and anti-bunching correlations due to nonlinear self-focusing.
A resurgence analysis for cubic and quartic anharmonic potentials
NASA Astrophysics Data System (ADS)
Gahramanov, Ilmar; Tezgin, Kemal
2017-02-01
In this work, we explicitly show resurgence relations between perturbative and one instanton sectors of the resonance energy levels for cubic and quartic anharmonic potentials in one-dimensional quantum mechanics. Both systems satisfy the Dunne-Ünsal relation and hence we are able to derive one-instanton nonperturbative contributions with the fluctuation terms to the energy merely from the perturbative data. We confirm our results with previous results obtained in the literature.
Distribution coefficients of rare earth ions in cubic zirconium dioxide
NASA Astrophysics Data System (ADS)
Romer, H.; Luther, K.-D.; Assmus, W.
1994-08-01
Cubic zirconium dioxide crystals are grown with the skull melting technique. The effective distribution coefficients for Nd(exp 3+), Sm(exp 3+) and Er(sup 3+) as dopants are determined experimentally as a function of the crystal growth velocity. With the Burton-Prim-Slichter theory, the equilibrium distribution coefficients can be calculated. The distribution coefficients of all other trivalent rare earth ions can be estimated by applying the correlation towards the ionic radii.
Higher-order numerical solutions using cubic splines
NASA Technical Reports Server (NTRS)
Rubin, S. G.; Khosla, P. K.
1976-01-01
A cubic spline collocation procedure was developed for the numerical solution of partial differential equations. This spline procedure is reformulated so that the accuracy of the second-derivative approximation is improved and parallels that previously obtained for lower derivative terms. The final result is a numerical procedure having overall third-order accuracy of a nonuniform mesh. Solutions using both spline procedures, as well as three-point finite difference methods, are presented for several model problems.
Lattice dynamics of cubic PbTiO3
NASA Astrophysics Data System (ADS)
Tomeno, Izumi; Fernandez-Baca, Jaime A.; Marty, Karol J.; Tsunoda, Yorihiko; Oka, Kunihiko
2012-02-01
The lattice dynamics of cubic PbTiO3 has been investigated using inelastic neutron scattering. We found four kinds of soft modes in cubic PbTiO3: (1) the TO modes toward the γ point, (2) the TA λ3 mode toward the R point, (3) the TA λ3 mode around the midpoint (1/4,1/4,1/4), and (4) the TA branches in the entire range. Moreover, the TO σ4 branch becomes flat away from the zone center. The steep dispersion of the TO modes toward γ is isotropic and confined to the region ξ<0.2. The temperature dependence of the γ15 mode up to 1173 K is explained by a combination of the Lydanne-Sachs-Taller relation and the Curie-Weiss law. In contrast, the TA λ3 modes at the midpoint and R point are weakly temperature dependent. The coexistence of the soft γ15 and R25 modes is in agreement with the predicted phonon instability. The midpoint softening suggests the tendency toward forming a fourfold periodicity along the [1,1,1] direction. The energy of the TO δ5 branch for cubic PbTiO3 is considerably higher than that for Pb(Zn1/3Nb2/3)O3. This indicates that the TO modes are dominated by the B-site atom motion.
Cubic and Hexagonal Liquid Crystals as Drug Delivery Systems
Chen, Yulin; Ma, Ping; Gui, Shuangying
2014-01-01
Lipids have been widely used as main constituents in various drug delivery systems, such as liposomes, solid lipid nanoparticles, nanostructured lipid carriers, and lipid-based lyotropic liquid crystals. Among them, lipid-based lyotropic liquid crystals have highly ordered, thermodynamically stable internal nanostructure, thereby offering the potential as a sustained drug release matrix. The intricate nanostructures of the cubic phase and hexagonal phase have been shown to provide diffusion controlled release of active pharmaceutical ingredients with a wide range of molecular weights and polarities. In addition, the biodegradable and biocompatible nature of lipids demonstrates the minimum toxicity and thus they are used for various routes of administration. Therefore, the research on lipid-based lyotropic liquid crystalline phases has attracted a lot of attention in recent years. This review will provide an overview of the lipids used to prepare cubic phase and hexagonal phase at physiological temperature, as well as the influencing factors on the phase transition of liquid crystals. In particular, the most current research progresses on cubic and hexagonal phases as drug delivery systems will be discussed. PMID:24995330
Zhang,F.; Chupas, P.; Lui, S.; Hanson, J.; Caliebe, W.; Lee, P.; Chan, S.
2007-01-01
The amorphous-to-cubic (a-c) crystallization of nanoZrO{sub 2} in a reducing environment was studied by synchrotron X-ray diffraction. Rietveld analysis was performed to study the changes in crystallite size and lattice parameter as the cubic phase emerged. The pair distribution function (PDF) was obtained from the Fourier transformation of the normalized XRD patterns. A reverse Monte Carlo (RMC) simulation was applied to provide details of the local structure during the crystallization process as well as to calculate partial PDFs of Zr-Zr and Zr-O during the crystallization. The number of Zr's next-nearest neighbors of Zr remains 12, whereas the number of O's as nearest neighbors of Zr increases from 6.7 to 7.3 as the material evolves from an amorphous into a cubic structure, suggesting the persistence of a high concentration of oxygen vacancies. These simulated atomic structures show that the local structure of the amorphous phase bears resemblance to the short-range arrangement of cubic ZrO2, consistent with the results of X-ray absorption near edge spectroscopy (XANES) at Zr L{sub II} and L{sub III}. The amorphous-to-crystalline phase transformation is affected by the environment. Under an oxidizing condition, the amorphous phase crystallizes directly to tetragonal and subsequently to monoclinic zirconia.
Zhang, F.; Chupas, P. J.; Lui, S. L. A.; Hanson, J. C.; Caliebe, W. A.; Lee, P. L.; Chan, S.-W.; X-Ray Science Division; Columbia Univ.; State Univ. of New York at Stony Brook; BNL
2007-01-01
The amorphous-to-cubic (a-c) crystallization of nanoZrO{sub 2} in a reducing environment was studied by synchrotron X-ray diffraction. Rietveld analysis was performed to study the changes in crystallite size and lattice parameter as the cubic phase emerged. The pair distribution function (PDF) was obtained from the Fourier transformation of the normalized XRD patterns. A reverse Monte Carlo (RMC) simulation was applied to provide details of the local structure during the crystallization process as well as to calculate partial PDFs of Zr-Zr and Zr-O during the crystallization. The number of Zr's next-nearest neighbors of Zr remains 12, whereas the number of O's as nearest neighbors of Zr increases from 6.7 to 7.3 as the material evolves from an amorphous into a cubic structure, suggesting the persistence of a high concentration of oxygen vacancies. These simulated atomic structures show that the local structure of the amorphous phase bears resemblance to the short-range arrangement of cubic ZrO{sub 2}, consistent with the results of X-ray absorption near edge spectroscopy (XANES) at Zr L{sub II} and L{sub III}. The amorphous-to-crystalline phase transformation is affected by the environment. Under an oxidizing condition, the amorphous phase crystallizes directly to tetragonal and subsequently to monoclinic zirconia.
NASA Technical Reports Server (NTRS)
Burger, A.; Chattopadhyay, K.; Ndap, J.-O.; Ma, X.; Morgan, S. H.; Rablau, C. I.; Su, C. H.; Feth, S.
2000-01-01
We report the investigation by photoluminescence lifetime measurements of the near-IR emissions from a series of chromium-doped ZnSe samples, correlated to their preparation conditions. The samples were polycrystalline or single crystals prepared by post growth diffusion doping or single crystals doped during growth by the physical vapor transport method. Room temperature lifetime values between 6 and 8 micro seconds were measured for samples with Cr2+ from low 10(exp 17) to high 10(exp 18) / cubic cm range. Lifetime data taken down to 78 K was found to be rather temperature independent, reconfirming previous reports indicating a quantum yield of the corresponding emission of close to 100% at room temperature. A strong decrease in the room temperature lifetime was found for chromium concentrations higher than 10(exp 19) / cubic CM.
NASA Technical Reports Server (NTRS)
Burger, A.; Chattopadhyay, K.; Ndap, J.-O.; Ma, X.; Morgan, S. H.; Rablau, C. I.; Su, C.-H.; Feth, S.; Page, Ralph H.; Schaffers, Kathleen I.; Rose, M. Franklin
2000-01-01
We report the investigation by photoluminescence lifetime measurements of the near-IR emissions from a series of chromium-doped ZnSe samples, correlated to their preparation conditions. The samples were polycrystalline or single crystals prepared by post growth diffusion doping or single crystals doped during growth by the Physical Vapor Transport method. Room temperature lifetime values between 6 and 8 microseconds were measured for samples with Cr (2+) concentrations from low 10 (exp 17) to high 10 (exp 18) per cubic centimeter range. Lifetime data taken down to 78 K was found to be rather temperature independent, reconfirming previous reports indicating a quantum yield of the corresponding emission of close to 100% at room temperature. A strong decrease in the room temperature lifetime was found for chromium concentrations higher than 10 (exp 19) per cubic centimeter.
Real-Tme Boron Nitride Erosion Measurements of the HiVHAc Thruster via Cavity Ring-Down Spectroscopy
NASA Technical Reports Server (NTRS)
Lee, Brian C.; Yalin, Azer P.; Gallimore, Alec; Huang, Wensheng; Kamhawi, Hani
2013-01-01
Cavity ring-down spectroscopy was used to make real-time erosion measurements from the NASA High Voltage Hall Accelerator thruster. The optical sensor uses 250 nm light to measure absorption of atomic boron in the plume of an operating Hall thruster. Theerosion rate of the High Voltage Hall Accelerator thruster was measured for discharge voltages ranging from 330 to 600 V and discharge powers ranging from 1 to 3 kW. Boron densities as high as 6.5 x 10(exp 15) per cubic meter were found within the channel. Using a very simple boronvelocity model, approximate volumetric erosion rates between 5.0 x 10(exp -12) and 8.2 x 10(exp -12) cubic meter per second were found.
Thermal expansion of the cubic (3C) polytype of SiC
NASA Technical Reports Server (NTRS)
Li, Z.; Bradt, R. C.
1986-01-01
Thermal expansion of the cubic beta or (3C) polytype of SiC was measured from 20 to 1000 C by the X-ray-diffraction technique. Over that temperature range, the coefficient of thermal expansion can be expressed by a second-order polynomial. It increases continuously from about 3.2 x 10 to the -6th/C at room temperature to 5.1 x 10 to the -6th/C at 1000 C, with an average value of 4.45 x 10 to the -6th/C between room temperature and 1000 C. This trend is compared with other published results and is discussed in terms of structural contributions to the thermal expansion.
Microstructural Evolution of Ti-6Al-4V during High Strain Rate Conditions of Metal Cutting
NASA Technical Reports Server (NTRS)
Dong, Lei; Schneider, Judy
2009-01-01
The microstructural evolution following metal cutting was investigated within the metal chips of Ti-6Al-4V. Metal cutting was used to impose a high strain rate on the order of approx.10(exp 5)/s within the primary shear zone as the metal was removed from the workpiece. The initial microstructure of the parent material (PM) was composed of a bi-modal microstructure with coarse prior grains and equiaxed primary located at the boundaries. After metal cutting, the microstructure of the metal chips showed coarsening of the equiaxed primary grains and lamellar. These metallographic findings suggest that the metal chips experienced high temperatures which remained below the transus temperature.
Chen, Jun; Kuncewicz, Thomas; Kharlampieva, Eugenia; Godin, Biana
2015-01-01
Blood-borne objects display a non-spherical shape with in-flow dimensions much larger than the vascular endothelial fenestrations, yet, at the diseased state, are able to traverse through these fenestrations owing to their elasticity. The role of physical parameters including shape and elasticity in the behavior of objects found in the tumor microenvironment needs to be understood to ultimately enhance chemotherapy and minimize its side-effects. In this study, sphere and cube-shaped biocompatible elastic microparticles (EM) made via layer-by-layer (LbL) assembly of hydrogen-bonded tannic acid/poly(N-vinylpyrrolidone)/ (TA/PVPON) as hollow polymer shells and their rigid core-shell precursors (RM) are explored. In contrast to rigid 5-bilayer (TA/PVPON) core-shells, hollow shells are unrecognized by J774A.1 macrophages yet interact with endothelial and breast cancer cells. Internalization of cubical shells by HMVEC (endothelial) is 5-fold more efficient and 6- and 2.5-fold more efficient for MDA-MB-231 and by SUM159 (breast cancer cells), respectively, compared to spherical shells. The interaction of cubical (TA/PVPON)5 shells with endothelial cells is similar under 10 s−1 (characteristic of tumor vasculature) and 100 s−1 shear rate (normal vasculature) while it is decreased at 100 s−1 shear rate for the spherical shells. Our data suggest that cubical geometry promotes interaction of particles with breast cancer cells, while elasticity prevents engulfment by phagocytic cells in the tumor microenvironment. PMID:26424126
Nagel-Alne, G E; Krontveit, R; Bohlin, J; Valle, P S; Skjerve, E; Sølverød, L S
2014-07-01
In 2001, the Norwegian Goat Health Service initiated the Healthier Goats program (HG), with the aim of eradicating caprine arthritis encephalitis, caseous lymphadenitis, and Johne's disease (caprine paratuberculosis) in Norwegian goat herds. The aim of the present study was to explore how control and eradication of the above-mentioned diseases by enrolling in HG affected milk yield by comparison with herds not enrolled in HG. Lactation curves were modeled using a multilevel cubic spline regression model where farm, goat, and lactation were included as random effect parameters. The data material contained 135,446 registrations of daily milk yield from 28,829 lactations in 43 herds. The multilevel cubic spline regression model was applied to 4 categories of data: enrolled early, control early, enrolled late, and control late. For enrolled herds, the early and late notations refer to the situation before and after enrolling in HG; for nonenrolled herds (controls), they refer to development over time, independent of HG. Total milk yield increased in the enrolled herds after eradication: the total milk yields in the fourth lactation were 634.2 and 873.3 kg in enrolled early and enrolled late herds, respectively, and 613.2 and 701.4 kg in the control early and control late herds, respectively. Day of peak yield differed between enrolled and control herds. The day of peak yield came on d 6 of lactation for the control early category for parities 2, 3, and 4, indicating an inability of the goats to further increase their milk yield from the initial level. For enrolled herds, on the other hand, peak yield came between d 49 and 56, indicating a gradual increase in milk yield after kidding. Our results indicate that enrollment in the HG disease eradication program improved the milk yield of dairy goats considerably, and that the multilevel cubic spline regression was a suitable model for exploring effects of disease control and eradication on milk yield.
The Synthesis of New Cubic Conductive Cu7-xO8-yMX (M=In, Sc, X=NO3, Cl) Compounds
NASA Astrophysics Data System (ADS)
Yazawa, Ichiro; Sugise, Ryoji; Terada, Norio; Jo, Masatoshi; Oka, Kunihiko; Ihara, Hideo
1990-09-01
New cubic conductive Cu6O8-yMX (M=In, Sc, X=NO3, Cl) compounds were synthesized for the first time. These compounds were prepared in the thermal decomposition process of a mixed copper and metal-element nitrate and chloride solution. The decomposition temperatures of the Cu6O8-yMNO3 were raised by replacing the NO3- ion by the Cl- ion. The lattice constant of the cubic compound was related to the value of the ion radius of M and X.
DeMars, D.J.
1996-03-01
Four tables give cubic-foot and board-foot volume estimates for Alaska-cedar given breast-height diameter outside bark (DBHOB) and either total tree height or number of logs to a 6-inch top. The values for DBHOB and total tree height (or number of logs in the tree) that are in the tables have been limited to the ranges these variables had in the sample data.
DeMars, D.J.
1996-02-01
Four tables give cubic-foot and board-foot volume estimates for western redcedar given breast height diameter outside bark (DBHOB) and either total tree height or number of logs to a 6-inch top. The values for DBHOB and total tree height (or number of logs in the tree) that are in the tables have been limited to the ranges these variables had in the sample data.
Cubic Phases, Cubosomes and Ethosomes for Cutaneous Application.
Esposito, Elisabetta; Drechsler, Markus; Nastruzzi, Claudio; Cortesi, Rita
2016-01-01
Cutaneous administration represents a good strategy to treat skin diseases, avoiding side effects related to systemic administration. Apart from conventional therapy, based on the use of semi-solid formulation such as gel, ointments and creams, recently the use of specialized delivery systems based on lipid has been taken hold. This review provides an overview about the use of cubic phases, cubosomes and ethosomes, as lipid systems recently proposed to treat skin pathologies. In addition in the final part of the review cubic phases, cubosomes and ethosomes are compared to solid lipid nanoparticles and lecithin organogel with respect to their potential as delivery systems for cutaneous application. It has been reported that lipid nanosystems are able to dissolve and deliver active molecules in a controlled fashion, thereby improving their bioavailability and reducing side-effects. Particularly lipid matrixes are characterized by skin affinity and biocompatibility allowing their application on skin. Indeed, after cutaneous administration, the lipid matrix of cubic phases and cubosomes coalesces with the lipids of the stratum comeum and leads to the formation of a lipid depot from which the drug associated to the nanosystem can be released in the deeper skin strata in a controlled manner. Ethosomes are characterized by a malleable structure that promotes their interaction with skin, improving their potential as skin delivery systems with respect to liposomes. Also in the case of solid lipid nanoparticles it has been suggested a deep interaction between lipid matrix and skin strata that endorses sustained and prolonged drug release. Concerning lecithin organogel, the peculiar structure of this system, where lecithin exerts a penetration enhancer role, allows a deep interaction with skin strata, promoting the transdermal absorption of the encapsulated drugs.
Explosive attractor solutions to a universal cubic delay equation
NASA Astrophysics Data System (ADS)
Sanz-Orozco, David
2016-10-01
This presentation describes new explosive attractor solutions to the universal cubic delay equation found in both the fluid and (for a kinetic system) in the plasma literature. Our results will be explained in the notation of the plasma problem, where a cubic delay equation describes the evolution of a wave in a kinetic system, and is characterized by a control parameter ϕ (its value is determined by the linear properties of the kinetic response). The linear eigenvalues do not exist in absence of the kinetic response (with exceptions for ϕ = 0 or π) but with the kinetic contribution, marginally unstable modes emerge when the kinetic drive is at a critical level. The simulation of the temporal evolution reveals the development of an explosive mode, i.e. a mode growing without bound in a finite time. The two main features of the response are: (1) a well-known explosive envelope (t0 - t) - 5 / 2, with t0 the blow-up time of the amplitude; (2) a spectrum with ever-increasing oscillation frequencies that is critically-dependent upon the parameter ϕ. A code has been constructed that resolves these oscillations over many periods by calculating their Fourier transform with respect to the pseudo-time x = - ln (t0 - t) . In addition, our analytic modeling explains the results and quantitatively nearly replicates the attractor solutions found in the simulations. A physical result of these solutions is the development of frequency chirping of the observed wave. This effect continues beyond the applicability of the cubic delay equation, and thus the attractor solutions that we study represent precursors to long-lived phenomena that may be used in an experimental situation to understand the nature of a system's equilibrium. Dr. Herbert L. Berk.
Vacancy-induced mechanical stabilization of cubic tungsten nitride
NASA Astrophysics Data System (ADS)
Balasubramanian, Karthik; Khare, Sanjay; Gall, Daniel
2016-11-01
First-principles methods are employed to determine the structural, mechanical, and thermodynamic reasons for the experimentally reported cubic WN phase. The defect-free rocksalt phase is both mechanically and thermodynamically unstable, with a negative single crystal shear modulus C44=-86 GPa and a positive enthalpy of formation per formula unit Hf=0.623 eV with respect to molecular nitrogen and metallic W. In contrast, WN in the NbO phase is stable, with C44=175 GPa and Hf=-0.839 eV . A charge distribution analysis reveals that the application of shear strain along [100] in rocksalt WN results in an increased overlap of the t2 g orbitals which causes electron migration from the expanded to the shortened W-W <110 > bond axes, yielding a negative shear modulus due to an energy reduction associated with new bonding states 8.1-8.7 eV below the Fermi level. A corresponding shear strain in WN in the NbO phase results in an energy increase and a positive shear modulus. The mechanical stability transition from the NaCl to the NbO phase is explored using supercell calculations of the NaCl structure containing Cv=0 %-25 % cation and anion vacancies, while keeping the N-to-W ratio constant at unity. The structure is mechanically unstable for Cv<5 % . At this critical vacancy concentration, the isotropic elastic modulus E of cubic WN is zero, but increases steeply to E =445 GPa for Cv=10 % , and then less steeply to E =561 GPa for Cv=25 % . Correspondingly, the hardness estimated using Tian's model increases from 0 to 15 to 26 GPa as Cv increases from 5% to 10% to 25%, indicating that a relatively small vacancy concentration stabilizes the cubic WN phase and that the large variations in reported mechanical properties of WN can be attributed to relatively small changes in Cv.
Preparation of superhydrophobic nanodiamond and cubic boron nitride films
NASA Astrophysics Data System (ADS)
Zhou, Y. B.; Yang, Y.; Liu, W. M.; Ye, Q.; He, B.; Zou, Y. S.; Wang, P. F.; Pan, X. J.; Zhang, W. J.; Bello, I.; Lee, S. T.
2010-09-01
Superhydrophobic surfaces were achieved on the hardest and the second hardest materials, diamond and cubic boron nitride (cBN) films. Various surface nanostructures of nanocrystalline diamond (ND) and cBN films were constructed by carrying out bias-assisted reactive ion etching in hydrogen/argon plasmas; and it is shown that surface nanostructuring may enhance dramatically the hydrophobicity of ND and cBN films. Together with surface fluorination, superhydrophobic ND and cBN surfaces with a contact angle greater than 150° and a sliding angle smaller than 10° were demonstrated. The origin of hydrophobicity enhancement is discussed based on the Cassie model.
Pseudorecurrence and chaos of cubic-quintic nonlinear Schroedinger equation
Zhou, C.; Lai, C.H.
1996-12-01
Recurrence, pseudorecurrence, and chaotic solutions for a continuum Hamiltonian system in which there exist spatial patterns of solitary wave structures are investigated using the nonlinear Schrodinger equation (NSE) with cubic and quintic terms. The theoretical analyses indicate that there may exist Birkhoff`s recurrence for the arbitrary parameter values. The numerical experiments show that there may be Fermi-Pasta-Ulam (FPU) recurrence, pseudorecurrence, and chaos when different initial conditions are chosen. The fact that the system energy is effectively shared by finite Fourier modes suggests that it may be possible to describe the continuum system in terms of some effective degrees of freedom.
Emission properties of body-centered cubic elemental metal photocathodes
Li, Tuo; Rickman, Benjamin L. Schroeder, W. Andreas
2015-04-07
A first principles analysis of photoemission is developed to explain the lower than expected rms transverse electron momentum measured using the solenoid scan technique for the body-centered cubic Group Vb (V, Nb, and Ta) and Group VIb (Cr, Mo, and W) metallic photocathodes. The density functional theory based analysis elucidates the fundamental role that the electronic band structure (and its dispersion) plays in determining the emission properties of solid-state photocathodes and includes evaluation of work function anisotropy using a thin-slab method.
Inhomogeneous atomic Bose-Fermi mixtures in cubic lattices.
Cramer, M; Eisert, J; Illuminati, F
2004-11-05
We determine the ground state properties of inhomogeneous mixtures of bosons and fermions in cubic lattices and parabolic confining potentials. For finite hopping we determine the domain boundaries between Mott-insulator plateaux and hopping-dominated regions for lattices of arbitrary dimension within mean-field and perturbation theory. The results are compared with a new numerical method that is based on a Gutzwiller variational approach for the bosons and an exact treatment for the fermions. The findings can be applied as a guideline for future experiments with trapped atomic Bose-Fermi mixtures in optical lattices.
A cubic extended interior penalty function for structural optimization
NASA Technical Reports Server (NTRS)
Prasad, B.; Haftka, R. T.
1979-01-01
This paper describes an optimization procedure for the minimum weight design of complex structures. The procedure is based on a new cubic extended interior penalty function (CEIPF) used with the sequence of unconstrained minimization technique (SUMT) and Newton's method. The Hessian matrix of the penalty function is approximated using only constraints and their derivatives. The CEIPF is designed to minimize the error in the approximation of the Hessian matrix, and as a result the number of structural analyses required is small and independent of the number of design variables. Three example problems are reported. The number of structural analyses is reduced by as much as 50 per cent below previously reported results.
A topological coordinate system for the diamond cubic grid.
Čomić, Lidija; Nagy, Benedek
2016-09-01
Topological coordinate systems are used to address all cells of abstract cell complexes. In this paper, a topological coordinate system for cells in the diamond cubic grid is presented and some of its properties are detailed. Four dependent coordinates are used to address the voxels (triakis truncated tetrahedra), their faces (hexagons and triangles), their edges and the points at their corners. Boundary and co-boundary relations, as well as adjacency relations between the cells, can easily be captured by the coordinate values. Thus, this coordinate system is apt for implementation in various applications, such as visualizations, morphological and topological operations and shape analysis.
Orbital Non-Fermi-Liquid Behavior in Cubic Ruthenates
NASA Astrophysics Data System (ADS)
Laad, M. S.; Bradarić, I.; Kusmartsev, F. V.
2008-03-01
We peruse various anomalous physical responses of the cubic (ferromagnetic SrRuO3 and paramagnetic CaRuO3) ruthenates, such as fractional power-law conductivity, anomalous Raman line shapes, and Hall currents. We show how these exciting power-law observations are naturally described within a new, local (orbital) non-Fermi-liquid state arising from strong, multiorbital Coulomb interactions. Introducing a multiorbital, correlated model treated within the dynamical mean-field theory, we also find two distinct relaxation rates for relaxation of transport in complete agreement with experiment.
Orbital non-fermi-liquid behavior in cubic ruthenates.
Laad, M S; Bradarić, I; Kusmartsev, F V
2008-03-07
We peruse various anomalous physical responses of the cubic (ferromagnetic SrRuO3 and paramagnetic CaRuO3) ruthenates, such as fractional power-law conductivity, anomalous Raman line shapes, and Hall currents. We show how these exciting power-law observations are naturally described within a new, local (orbital) non-Fermi-liquid state arising from strong, multiorbital Coulomb interactions. Introducing a multiorbital, correlated model treated within the dynamical mean-field theory, we also find two distinct relaxation rates for relaxation of transport in complete agreement with experiment.
Bistable Helmholtz solitons in cubic-quintic materials
Christian, J. M.; McDonald, G. S.; Chamorro-Posada, P.
2007-09-15
We propose a nonlinear Helmholtz equation for modeling the evolution of broad optical beams in media with a cubic-quintic intensity-dependent refractive index. This type of nonlinearity is appropriate for some semiconductor materials, glasses, and polymers. Exact analytical soliton solutions are presented that describe self-trapped nonparaxial beams propagating at any angle with respect to the reference direction. These spatially symmetric solutions are, to the best of our knowledge, the first bistable Helmholtz solitons to be derived. Accompanying conservation laws (both integral and particular forms) are also reported. Numerical simulations investigate the stability of the solitons, which appear to be remarkably robust against perturbations.
Stable single-crystalline body centered cubic Fe nanoparticles.
Lacroix, Lise-Marie; Huls, Natalie Frey; Ho, Don; Sun, Xiaolian; Cheng, Kai; Sun, Shouheng
2011-04-13
We report a facile synthesis of body centered cubic (bcc) Fe nanoparticles (NPs) via the thermal decomposition of iron pentacarbonyl, Fe(CO)(5), in the presence of hexadecylammonium chloride. These bcc-Fe NPs exhibit a drastically increased stability and magnetic moment (M(s) = 164 A·m(2)·kg(-1)(Fe)) even in physiological solutions, and have much enhanced magnetic imaging contrast (r(2) = 220 s(-1)·mM(-1)) and heating (SAR = 140 W·g(-1)(Fe)) effects. They may serve as robust probes for imaging and therapeutic applications.
Local environment of silicon in cubic boron nitride
Murata, Hidenobu Taniguchi, Takashi; Hishita, Shunichi; Yamamoto, Tomoyuki; Oba, Fumiyasu; Tanaka, Isao
2013-12-21
Si-doped cubic boron nitride (c-BN) is synthesized at high pressure and high temperature, and the local environment of Si is investigated using X-ray absorption near edge structure (XANES) and first-principles calculations. Si-K XANES indicates that Si in c-BN is surrounded by four nitrogen atoms. According to first-principles calculations, the model for substitutional Si at the B site well reproduces experimental Si-K XANES, and it is energetically more favorable than substitutional Si at the N site. Both the present experimental and theoretical results indicate that Si in c-BN prefers the B site to the N site.
Cubic versus spherical magnetic nanoparticles: the role of surface anisotropy.
Salazar-Alvarez, G; Qin, J; Sepelák, V; Bergmann, I; Vasilakaki, M; Trohidou, K N; Ardisson, J D; Macedo, W A A; Mikhaylova, M; Muhammed, M; Baró, M D; Nogués, J
2008-10-08
The magnetic properties of maghemite (gamma-Fe2O3) cubic and spherical nanoparticles of similar sizes have been experimentally and theoretically studied. The blocking temperature, T(B), of the nanoparticles depends on their shape, with the spherical ones exhibiting larger T(B). Other low temperature properties such as saturation magnetization, coercivity, loop shift or spin canting are rather similar. The experimental effective anisotropy and the Monte Carlo simulations indicate that the different random surface anisotropy of the two morphologies combined with the low magnetocrystalline anisotropy of gamma-Fe2O3 is the origin of these effects.
Cubic to tetragonal crystal lattice reconstruction during ordering or decomposition
Cheong, Byung-kl
1992-09-01
This thesis studied thermodynamic stability and morphology of product phases in diffusional phase transformations involving cubic-to-tetragonal crystal lattice reconstructions. Two different kinds of diffusional transformations were examined: L1{sub 0} ordering (fcc to fct lattice change) and decomposition of off-stoichiometric B2 ordering alloys accompanying bcc to fcc Bain transformation. In the first case, Fe-45 at.% Pd alloys were studied by TEM; in the second, the Bain strain relaxation during decomposition of hyper-eutectoid Cu-9.04 wt% Be alloy was studied. CuAu and InMg were also studied.
Cubic-tetragonal phase transition in KMnF3: excess entropy and spontaneous strain
NASA Astrophysics Data System (ADS)
Hayward, S. A.; Romero, F. J.; Gallardo, M. C.; del Cerro, J.; Gibaud, A.; Salje, E. K. H.
2000-02-01
The transition between cubic and tetragonal phases in KMnF3 has been studied by x-ray diffraction rocking curves and calorimetry. Comparison of the excess entropy with the order parameter Q obtained from spontaneous strain shows that the mean field relationship icons/Journals/Common/Delta" ALT="Delta" ALIGN="TOP"/> Sicons/Journals/Common/propto" ALT="propto" ALIGN="TOP"/> Q 2 is obeyed to within experimental error. The data are fitted to a Landau free energy expression icons/Journals/Common/Delta" ALT="Delta" ALIGN="TOP"/> G = 1/2 A (T -TC )Q 2 +(1/4) BQ 4 +(1/6)CQ 6 , with A = 2.781 J K-1 mol-1 , B = -57.63 J mol-1 , C = 574.2 J mol-1 , TC = 185.76 K. No significant excess specific heat is found at T >>TC .
Burger, Arnold; Rowe, Emmanuel; Groza, Michael; Morales Figueroa, Kristle; Cherepy, Nerine J.; Beck, Patrick R.; Hunter, Steven; Payne, Stephen A.
2015-10-05
We report on the scintillation properties of Cs{sub 2}HfCl{sub 6} (cesium hafnium chloride or CHC) as an example of a little-known class of non-hygroscopic compounds having the generic cubic crystal structure of K{sub 2}PtCl{sub 6}. The crystals are easily growable from the melt using the Bridgman method with minimal precursor treatments or purification. CHC scintillation is centered at 400 nm, with a principal decay time of 4.37 μs and a light yield of up to 54 000 photons/MeV when measured using a silicon CCD photodetector. The light yield is the highest ever reported for an undoped crystal, and CHC also exhibits excellent light yield nonproportionality. These desirable properties allowed us to build and test CHC gamma-ray spectrometers providing energy resolution of 3.3% at 662 keV.
Proton Ordering of Cubic Ice Ic: Spectroscopy and Computer Simulations.
Geiger, Philipp; Dellago, Christoph; Macher, Markus; Franchini, Cesare; Kresse, Georg; Bernard, Jürgen; Stern, Josef N; Loerting, Thomas
2014-05-22
Several proton-disordered crystalline ice structures are known to proton order at sufficiently low temperatures, provided that the right preparation procedure is used. For cubic ice, ice Ic, however, no proton ordering has been observed so far. Here, we subject ice Ic to an experimental protocol similar to that used to proton order hexagonal ice. In situ FT-IR spectroscopy carried out during this procedure reveals that the librational band of the spectrum narrows and acquires a structure that is observed neither in proton-disordered ice Ic nor in ice XI, the proton-ordered variant of hexagonal ice. On the basis of vibrational spectra computed for ice Ic and four of its proton-ordered variants using classical molecular dynamics and ab initio simulations, we conclude that the features of our experimental spectra are due to partial proton ordering, providing the first evidence of proton ordering in cubic ice. We further find that the proton-ordered structure with the lowest energy is ferroelectric, while the structure with the second lowest energy is weakly ferroelectric. Both structures fit the experimental spectral similarly well such that no unique assignment of proton order is possible based on our results.
Four-dimensional black holes in Einsteinian cubic gravity
NASA Astrophysics Data System (ADS)
Bueno, Pablo; Cano, Pablo A.
2016-12-01
We construct static and spherically symmetric generalizations of the Schwarzschild- and Reissner-Nordström-(anti-)de Sitter [RN-(A)dS] black-hole solutions in four-dimensional Einsteinian cubic gravity (ECG). The solutions are characterized by a single function which satisfies a nonlinear second-order differential equation. Interestingly, we are able to compute independently the Hawking temperature T , the Wald entropy S and the Abbott-Deser mass M of the solutions analytically as functions of the horizon radius and the ECG coupling constant λ . Using these we show that the first law of black-hole mechanics is exactly satisfied. Some of the solutions have positive specific heat, which makes them thermodynamically stable, even in the uncharged and asymptotically flat case. Further, we claim that, up to cubic order in curvature, ECG is the most general four-dimensional theory of gravity which allows for nontrivial generalizations of Schwarzschild- and RN-(A)dS characterized by a single function which reduce to the usual Einstein gravity solutions when the corresponding higher-order couplings are set to zero.
Nano-Engineered Cubic Zirconia for Orthopaedic Implant Applications
NASA Astrophysics Data System (ADS)
Namavar, F.; Rubinstein, A.; Sabirianov, R.; Thiele, G.; Sharp, J.; Pokharel, U.; Namavar, R.; Garvin, K.
2012-02-01
Osseointegration failure of the prosthesis prevents long-term stability, which contributes to pain, implant loosening, and infection that usually necessitates revision surgery. Cell attachment and spreading in vitro is generally mediated by adhesive proteins such as fibronectin and vitronectin. We designed and produced pure cubic zirconia (ZrO2) ceramic coatings by ion beam assisted deposition (IBAD) with nanostructures comparable to the size of proteins. Our ceramic coatings exhibit high hardness and a zero contact angle with serum. In contrast to Hydroxyapatite (HA), nano-engineered zirconia films possess excellent adhesion to all orthopaedic materials. Adhesion and proliferation experiments were performed with a bona fide mesenchymal stromal cells cell line (OMA-AD). Our experimental results indicated that nano-engineered cubic zirconia is superior in supporting growth, adhesion, and proliferation. We performed a comparative analysis of adsorption energies of the FN fragment using quantum mechanical calculations and Monte Carlo simulation on both types of surfaces: smooth and nanostructured. We have found that the initial FN fragment adsorbs significantly stronger on the nanostructured surface than on the smooth surface.
Microstructural characterization of random packings of cubic particles
Malmir, Hessam; Sahimi, Muhammad; Tabar, M. Reza Rahimi
2016-01-01
Understanding the properties of random packings of solid objects is of critical importance to a wide variety of fundamental scientific and practical problems. The great majority of the previous works focused, however, on packings of spherical and sphere-like particles. We report the first detailed simulation and characterization of packings of non-overlapping cubic particles. Such packings arise in a variety of problems, ranging from biological materials, to colloids and fabrication of porous scaffolds using salt powders. In addition, packing of cubic salt crystals arise in various problems involving preservation of pavements, paintings, and historical monuments, mineral-fluid interactions, CO2 sequestration in rock, and intrusion of groundwater aquifers by saline water. Not much is known, however, about the structure and statistical descriptors of such packings. We have developed a version of the random sequential addition algorithm to generate such packings, and have computed a variety of microstructural descriptors, including the radial distribution function, two-point probability function, orientational correlation function, specific surface, and mean chord length, and have studied the effect of finite system size and porosity on such characteristics. The results indicate the existence of both spatial and orientational long-range order in the packing, which is more distinctive for higher packing densities. The maximum packing fraction is about 0.57. PMID:27725736
Partially Blended Constrained Rational Cubic Trigonometric Fractal Interpolation Surfaces
NASA Astrophysics Data System (ADS)
Chand, A. K. B.; Tyada, K. R.
2016-08-01
Fractal interpolation is an advance technique for visualization of scientific shaped data. In this paper, we present a new family of partially blended rational cubic trigonometric fractal interpolation surfaces (RCTFISs) with a combination of blending functions and univariate rational trigonometric fractal interpolation functions (FIFs) along the grid lines of the interpolation domain. The developed FIFs use rational trigonometric functions pi,j(θ) qi,j(θ), where pi,j(θ) and qi,j(θ) are cubic trigonometric polynomials with four shape parameters. The convergence analysis of partially blended RCTFIS with the original surface data generating function is discussed. We derive sufficient data-dependent conditions on the scaling factors and shape parameters such that the fractal grid line functions lie above the grid lines of a plane Π, and consequently the proposed partially blended RCTFIS lies above the plane Π. Positivity preserving partially blended RCTFIS is a special case of the constrained partially blended RCTFIS. Numerical examples are provided to support the proposed theoretical results.
Magnetic ground states in nanocuboids of cubic magnetocrystalline anisotropy
NASA Astrophysics Data System (ADS)
Bonilla, F. J.; Lacroix, L.-M.; Blon, T.
2017-04-01
Flower and easy-axis vortex states are well-known magnetic configurations that can be stabilized in small particles. However, <111> vortex (V<111>), i.e. a vortex state with its core axis along the hard-axis direction, has been recently evidenced as a stable configuration in Fe nanocubes of intermediate sizes in the flower/vortex transition. In this context, we present here extensive micromagnetic simulations to determine the different magnetic ground states in ferromagnetic nanocuboids exhibiting cubic magnetocrystalline anisotropy (MCA). Focusing our study in the single-domain/multidomain size range (10-50 nm), we showed that V<111> is only stable in nanocuboids exhibiting peculiar features, such as a specific size, shape and magnetic environment, contrarily to the classical flower and easy-axis vortex states. Thus, to track experimentally these V<111> states, one should focused on (i) nanocuboids exhibiting a nearly perfect cubic shape (size distorsion <12%) made of (ii) a material which combines a zero or positive MCA and a high saturation magnetization, such as Fe or FeCo; and (iii) a low magnetic field environment, V<111> being only observed in virgin or remanent states.
Observation of Body-Centered Cubic Gold Nanocluster.
Liu, Chao; Li, Tao; Li, Gao; Nobusada, Katsuyuki; Zeng, Chenjie; Pang, Guangsheng; Rosi, Nathaniel L; Jin, Rongchao
2015-08-17
The structure of nanoparticles plays a critical role in dictating their material properties. Gold is well known to adopt face-centered cubic (fcc) structure. Herein we report the first observation of a body-centered cubic (bcc) gold nanocluster composed of 38 gold atoms protected by 20 adamantanethiolate ligands and two sulfido atoms ([Au38S2(SR)20], where R=C10H15) as revealed by single-crystal X-ray crystallography. This bcc structure is in striking contrast with the fcc structure of bulk gold and conventional Au nanoparticles, as well as the bi-icosahedral structure of [Au38(SCH2CH2Ph)24]. The bcc nanocluster has a distinct HOMO-LUMO gap of ca. 1.5 eV, much larger than the gap (0.9 eV) of the bi-icosahedral [Au38(SCH2CH2Ph)24]. The unique structure of the bcc gold nanocluster may be promising in catalytic applications.
Proton Ordering of Cubic Ice Ic: Spectroscopy and Computer Simulations
2014-01-01
Several proton-disordered crystalline ice structures are known to proton order at sufficiently low temperatures, provided that the right preparation procedure is used. For cubic ice, ice Ic, however, no proton ordering has been observed so far. Here, we subject ice Ic to an experimental protocol similar to that used to proton order hexagonal ice. In situ FT-IR spectroscopy carried out during this procedure reveals that the librational band of the spectrum narrows and acquires a structure that is observed neither in proton-disordered ice Ic nor in ice XI, the proton-ordered variant of hexagonal ice. On the basis of vibrational spectra computed for ice Ic and four of its proton-ordered variants using classical molecular dynamics and ab initio simulations, we conclude that the features of our experimental spectra are due to partial proton ordering, providing the first evidence of proton ordering in cubic ice. We further find that the proton-ordered structure with the lowest energy is ferroelectric, while the structure with the second lowest energy is weakly ferroelectric. Both structures fit the experimental spectral similarly well such that no unique assignment of proton order is possible based on our results. PMID:24883169
Blunt body near wake flow field at Mach 6
NASA Technical Reports Server (NTRS)
Horvath, Thomas J.; McGinley, Catherine B.; Hannemann, Klaus
1996-01-01
Tests were conducted in a Mach 6 flow to examine the reattachment process of an axisymmetric free shear layer associated with the near wake of a 70 deg. half angle, spherically blunted cone with a cylindrical after body. Model angle of incidence was fixed at 0 deg. and free-stream Reynolds numbers based on body diameter ranged from 0.5 x 10(exp 6) to 4 x 10(exp 6). The sensitivity of wake shear layer transition on reattachment heating was investigated. The present perfect gas study was designed to compliment results obtained previously in facilities capable of producing real gas effects. The instrumented blunted cone model was designed primarily for testing in high enthalpy hypervelocity shock tunnels in both this country and abroad but was amenable for testing in conventional hypersonic blowdown wind tunnels as well. Surface heating rates were inferred from temperature - time histories from coaxial surface thermocouples on the model forebody and thin film resistance gages along the model base and cylindrical after body. General flow feature (bow shock, wake shear layer, and recompression shock) locations were visually identified by schlieren photography. Mean shear layer position and growth were determined from intrusive pitot pressure surveys. In addition, wake surveys with a constant temperature hot-wire anemometer were utilized to qualitatively characterize the state of the shear layer prior to reattachment. Experimental results were compared to laminar perfect gas predictions provided by a 3-D Navier Stokes code (NSHYP). Shear layer impingement on the instrumented cylindrical after body resulted in a localized heating maximum that was 21 to 29 percent of the forebody stagnation point heating. Peak heating resulting from the reattaching shear layer was found to be a factor of 2 higher than laminar predictions, which suggested a transitional shear layer. Schlieren flow visualization and fluctuating voltage time histories and spectra from the hot wire surveys
NASA Astrophysics Data System (ADS)
Sippel, Christian; Koza, Michael M.; Hansen, Thomas C.; Kuhs, Werner F.
2010-05-01
The possible atmospheric implication of ice Ic (cubic ice) has already been suggested some time ago in the context of snow crystal formation [1]. New findings from air-borne measurements in cirrus clouds and contrails have put ice Ic into the focus of interest to understand the so-called "supersaturation puzzle" [2,3,4]. Our recent microstructural work on ice Ic [5,6] appears to be highly relevant in this context. We have found that ice Ic is characterized by a complex stacking fault pattern, which changes as a function of temperature as well as time. Indeed, from our own [7] and other group's work [8] one knows that (in contrast to earlier believe) ice Ic can form up to temperatures at least as high as 240K - thus in the relevant range for cirrus clouds. We have good preliminary evidence that the "cubicity" (which can be related to stacking fault probabilities) as well as the particle size of ice Ic are the relevant parameters for this correlation. The "cubicity" of stacking faulty ice Ic (established by diffraction) correlates nicely with the increased supersaturation at decreasing temperatures observed in cirrus clouds and contrails, a fact, which may be considered as further evidence for the presence of ice Ic. Recently, we have studied the time-dependency of the changes in both "cubicity" and particle size at various temperatures of relevance for cirrus clouds and contrails by in-situ neutron powder diffraction. The timescales over which changes occur (several to many hours) are similar to the life-time of cirrus clouds and contrails and suggest that the supersaturation situation may change within this time span in the natural environment too. Some accompanying results obtained by cryo-SEM (scanning electron microscopy) work will also be presented and suggest that stacking-faulty ice Ic has kinky surfaces providing many more active centres for heterogeneous reactions on the surface than in the usually assumed stable hexagonal form of ice Ih with its rather
Lattice Theory of Face-Shear and Thickness-Twist Waves in Body-Centered Cubic Crystal Plates.
An analytical study is made of face-shear and thickness-twist waves propagating along the (100) and (110) directions of a body - centered cubic lattice...in the (100) direction of simple-cubic and face-centered cubic plates. In the (100) direction of the body - centered cubic plate, the situation is quite
NASA Astrophysics Data System (ADS)
Masui, Toshiyuki; Nagai, Ryosuke; Imanaka, Nobuhito
2014-12-01
Cubic fluorite-type solid solutions based on Pr6O11 and CeO2 were synthesized and oxide anion vacancies were intentionally introduced into the cubic fluorite-type lattice through the charge compensating mechanism by Mg2+ and/or Ca2+ doping into their lattices. The oxide anion vacancies bring about positive effect on NO decomposition catalysis. The reason for the increase in the catalytic activity was attributed to defect fluorite-type structures close to the C-type cubic one, because C-type cubic rare earth oxides, in which one-quarter of the oxygen atoms in the fluorite-type structure are removed, show high NO decomposition activity. In particular, the positive effect of the formation of oxide anion vacancies was significant for Pr6O11 and its solid solutions, because the molar volume of Pr6O11 is larger than that of CeO2, and Pr6O11 contains Pr3+ as well as Pr4+ and thereby a small amount of oxide anion vacancies exist inherently in the lattice.
Dian, Linghui; Yang, Zhiwen; Li, Feng; Wang, Zhouhua; Pan, Xin; Peng, Xinsheng; Huang, Xintian; Guo, Zhefei; Quan, Guilan; Shi, Xuan; Chen, Bao; Li, Ge; Wu, Chuanbin
2013-01-01
In order to improve the oral bioavailability of ibuprofen, ibuprofen-loaded cubic nanoparticles were prepared as a delivery system for aqueous formulations. The cubic inner structure was verified by cryogenic transmission electron microscopy. With an encapsulation efficiency greater than 85%, the ibuprofen-loaded cubic nanoparticles had a narrow size distribution around a mean size of 238 nm. Differential scanning calorimetry and X-ray diffraction determined that ibuprofen was in an amorphous and molecular form within the lipid matrix. The in vitro release of ibuprofen from cubic nanoparticles was greater than 80% at 24 hours, showing sustained characteristics. The pharmacokinetic study in beagle dogs showed improved absorption of ibuprofen from cubic nanoparticles compared to that of pure ibuprofen, with evidence of a longer half-life and a relative oral bioavailability of 222% (P < 0.05). The ibuprofen-loaded cubic nanoparticles provide a promising carrier candidate with an efficient drug delivery for therapeutic treatment. PMID:23468008
Electrical transport in three-dimensional cubic Skyrmion crystal
NASA Astrophysics Data System (ADS)
Zhang, Xiao-Xiao; Nagaosa, Naoto
2015-03-01
Two-dimensional magnetic Skyrmions have been well confirmed via various experimental techniques in the bulk or on epitaxial thin films. Besides, a topologically nontrivial three-dimensional cubic Skyrmion crystal in the bulk, which is essentially a hedgehog-antihedgehog pair texture predicted theoretically, has also been tentatively observed. Equipped with a sophisticated spectral analysis program, we adopt Matsubara Green's function technique to study electrical transport, especially diagonal conductivity, in such system. We consider conduction electrons interacting with spinwaves via the strong Hund's rule coupling, wherein fluctuation of monopolar emergent electromagnetic field exits within adiabatic approximation. We describe in detail the influence of temperature and Skyrmion number on both dc and ac conductivities. Possible deviation from Fermi liquid behavior will also be discussed.
Adaptive image coding based on cubic-spline interpolation
NASA Astrophysics Data System (ADS)
Jiang, Jian-Xing; Hong, Shao-Hua; Lin, Tsung-Ching; Wang, Lin; Truong, Trieu-Kien
2014-09-01
It has been investigated that at low bit rates, downsampling prior to coding and upsampling after decoding can achieve better compression performance than standard coding algorithms, e.g., JPEG and H. 264/AVC. However, at high bit rates, the sampling-based schemes generate more distortion. Additionally, the maximum bit rate for the sampling-based scheme to outperform the standard algorithm is image-dependent. In this paper, a practical adaptive image coding algorithm based on the cubic-spline interpolation (CSI) is proposed. This proposed algorithm adaptively selects the image coding method from CSI-based modified JPEG and standard JPEG under a given target bit rate utilizing the so called ρ-domain analysis. The experimental results indicate that compared with the standard JPEG, the proposed algorithm can show better performance at low bit rates and maintain the same performance at high bit rates.
Palladium in cubic silicon carbide: Stability and kinetics
NASA Astrophysics Data System (ADS)
Roma, Guido
2009-12-01
Several technological applications of silicon carbide are concerned with the introduction of palladium impurities. Be it intentional or not, this may lead to the formation of silicides. Not only this process is not well understood, but the basic properties of palladium impurities in silicon carbide, such as solubility or diffusion mechanisms, are far from being known. Here the stability and kinetics of isolated Pd impurities in cubic silicon carbide are studied by first principles calculations in the framework of density functional theory. The preferential insertion sites, as well as the main migration mechanisms, are analyzed and presented here, together with the results for solution and migration energies. The early stages of nucleation are discussed based on the properties of isolated impurities and the smallest clusters.
Quantum-Carnot engine for particle confined to cubic potential
Sutantyo, Trengginas Eka P. Belfaqih, Idrus H. Prayitno, T. B.
2015-09-30
Carnot cycle consists of isothermal and adiabatic processes which are reversible. Using analogy in quantum mechanics, these processes can be well explained by replacing variables in classical process with a quantum system. Quantum system which is shown in this paper is a particle that moves under the influence of a cubic potential which is restricted only to the state of the two energy levels. At the end, the efficiency of the system is shown as a function of the width ratio between the initial conditions and the farthest wall while expanding. Furthermore, the system efficiency will be considered 1D and 2D cases. The providing efficiencies are different due to the influence of the degeneration of energy and the degrees of freedom of the system.
Submicron cubic boron nitride as hard as diamond
Liu, Guoduan; Kou, Zili E-mail: yanxz@hpstar.ac.cn; Lei, Li; Peng, Fang; Wang, Qiming; Wang, Kaixue; Wang, Pei; Li, Liang; Li, Yong; Wang, Yonghua; Yan, Xiaozhi E-mail: yanxz@hpstar.ac.cn; Li, Wentao; Bi, Yan; Leng, Yang; He, Duanwei
2015-03-23
Here, we report the sintering of aggregated submicron cubic boron nitride (sm-cBN) at a pressure of 8 GPa. The sintered cBN compacts exhibit hardness values comparable to that of single crystal diamond, fracture toughness about 5-fold that of cBN single crystal, in combination with a high oxidization temperature. Thus, another way has been demonstrated to improve the mechanical properties of cBN besides reducing the grain size to nano scale. In contrast to other ultrahard compacts with similar hardness, the sm-cBN aggregates are better placed for potential industrial application, as their relative low pressure manufacturing perhaps be easier and cheaper.
Supersymmetry breaking and Nambu-Goldstone fermions with cubic dispersion
NASA Astrophysics Data System (ADS)
Sannomiya, Noriaki; Katsura, Hosho; Nakayama, Yu
2017-03-01
We introduce a lattice fermion model in one spatial dimension with supersymmetry (SUSY) but without particle number conservation. The Hamiltonian is defined as the anticommutator of two nilpotent supercharges Q and Q†. Each supercharge is built solely from spinless fermion operators and depends on a parameter g . The system is strongly interacting for small g , and in the extreme limit g =0 , the number of zero-energy ground states grows exponentially with the system size. By contrast, in the large-g limit, the system is noninteracting and SUSY is broken spontaneously. We study the model for modest values of g and show that under certain conditions spontaneous SUSY breaking occurs in both finite and infinite chains. We analyze the low-energy excitations both analytically and numerically. Our analysis suggests that the Nambu-Goldstone fermions accompanying the spontaneous SUSY breaking have cubic dispersion at low energies.
Bistable dark solitons of a cubic-quintic Helmholtz equation
Christian, J. M.; McDonald, G. S.; Chamorro-Posada, P.
2010-05-15
We provide a report on exact analytical bistable dark spatial solitons of a nonlinear Helmholtz equation with a cubic-quintic refractive-index model. Our analysis begins with an investigation of the modulational instability characteristics of Helmholtz plane waves. We then derive a dark soliton by mapping the desired asymptotic form onto a uniform background field and obtain a more general solution by deploying rotational invariance laws in the laboratory frame. The geometry of the new soliton is explored in detail, and a range of new physical predictions is uncovered. Particular attention is paid to the unified phenomena of arbitrary-angle off-axis propagation and nondegenerate bistability. Crucially, the corresponding solution of paraxial theory emerges in a simultaneous multiple limit. We conclude with a set of computer simulations that examine the role of Helmholtz dark solitons as robust attractors.
On the cubic velocity deviations in lattice Boltzmann methods
NASA Astrophysics Data System (ADS)
Házi, Gábor; Kávrán, Péter
2006-03-01
The macroscopic equations derived from the lattice Boltzmann equation are not exactly the Navier-Stokes equations. Here the cubic deviation terms and the methods proposed to eliminate them are studied. The most popular two- and three-dimensional models (D2Q9, D3Q15, D3Q19, D3Q27) are considered in the paper. It is demonstrated that the compensation methods provide only partial elimination of the deviations for these models. It is also shown that the compensation of Qian and Zhou (1998 Europhys. Lett. 42 359) using the compensation parameter K = 1 in a D2Q9 or D3Q27 model can eliminate all the cross terms perfectly, but the deviation terms ∂xρu3x, ∂yρu3y and ∂zρu3z still survive the compensation.
Electron spin dynamics in cubic GaN
NASA Astrophysics Data System (ADS)
Buß, J. H.; Schupp, T.; As, D. J.; Brandt, O.; Hägele, D.; Rudolph, J.
2016-12-01
The electron spin dynamics in cubic GaN is comprehensively investigated by time-resolved magneto-optical Kerr-rotation spectroscopy over a wide range of temperatures, magnetic fields, and doping densities. The spin dynamics is found to be governed by the interplay of spin relaxation of localized electrons and Dyakonov-Perel relaxation of delocalized electrons. Localized electrons significantly contribute to spin relaxation up to room temperature at moderate doping levels, while Dyakonov-Perel relaxation dominates for high temperatures or degenerate doping levels. Quantitative agreement to Dyakonov-Perel theory requires a larger value of the spin-splitting constant than theoretically predicted. Possible reasons for this discrepancy are discussed, including the role of charged dislocations.
Serial femtosecond crystallography of soluble proteins in lipidic cubic phase
Fromme, Raimund; Ishchenko, Andrii; Metz, Markus; ...
2015-08-04
Serial femtosecond crystallography (SFX) at X-ray free-electron lasers (XFELs) enables high-resolution protein structure determination using micrometre-sized crystals at room temperature with minimal effects from radiation damage. SFX requires a steady supply of microcrystals intersecting the XFEL beam at random orientations. An LCP–SFX method has recently been introduced in which microcrystals of membrane proteins are grown and delivered for SFX data collection inside a gel-like membrane-mimetic matrix, known as lipidic cubic phase (LCP), using a special LCP microextrusion injector. Here, it is shown enabling a dramatic reduction in the amount of crystallized protein required for data collection compared with crystals deliveredmore » by liquid injectors. High-quality LCP–SFX data sets were collected for two soluble proteins, lysozyme and phycocyanin, using less than 0.1 mg of each protein.« less
Serial femtosecond crystallography of soluble proteins in lipidic cubic phase
Fromme, Raimund; Ishchenko, Andrii; Metz, Markus; Chowdhury, Shatabdi Roy; Basu, Shibom; Boutet, Sébastien; Fromme, Petra; White, Thomas A.; Barty, Anton; Spence, John C. H.; Weierstall, Uwe; Liu, Wei; Cherezov, Vadim
2015-08-04
Serial femtosecond crystallography (SFX) at X-ray free-electron lasers (XFELs) enables high-resolution protein structure determination using micrometre-sized crystals at room temperature with minimal effects from radiation damage. SFX requires a steady supply of microcrystals intersecting the XFEL beam at random orientations. An LCP–SFX method has recently been introduced in which microcrystals of membrane proteins are grown and delivered for SFX data collection inside a gel-like membrane-mimetic matrix, known as lipidic cubic phase (LCP), using a special LCP microextrusion injector. Here, it is shown enabling a dramatic reduction in the amount of crystallized protein required for data collection compared with crystals delivered by liquid injectors. High-quality LCP–SFX data sets were collected for two soluble proteins, lysozyme and phycocyanin, using less than 0.1 mg of each protein.
A cubic autocatalytic reaction in a continuous stirred tank reactor
Yakubu, Aisha Aliyu; Yatim, Yazariah Mohd
2015-10-22
In the present study, the dynamics of the cubic autocatalytic reaction model in a continuous stirred tank reactor with linear autocatalyst decay is studied. This model describes the behavior of two chemicals (reactant and autocatalyst) flowing into the tank reactor. The behavior of the model is studied analytically and numerically. The steady state solutions are obtained for two cases, i.e. with the presence of an autocatalyst and its absence in the inflow. In the case with an autocatalyst, the model has a stable steady state. While in the case without an autocatalyst, the model exhibits three steady states, where one of the steady state is stable, the second is a saddle point while the last is spiral node. The last steady state losses stability through Hopf bifurcation and the location is determined. The physical interpretations of the results are also presented.
Numerical Simulation of Carbon Simple Cubic by Dynamic Compression
NASA Astrophysics Data System (ADS)
Kato, Kaori; Aoki, Takayuki; Sekine, Toshimori
2001-02-01
An impact scheme of a slab target and flyer with a layered structure is proposed to achieve low-entropy dynamic compression of diamond. The thermodynamic state of diamond during compression is examined using one-dimensional Lagrangian hydrodynamic code and the tabulated equation of state library, SESAME@. The use of a material with a small shock impedance for the impact interfaces markedly decreases the strength of the primary shock wave. It is found that a gradient of shock impedance across the thickness of the flyer generates small multiple shock waves into the diamond and is effective for low-entropy compression. The thermodynamic conditions required for carbon simple cubic and low-entropy dynamic compression is achieved.
On the undamped vibration absorber with cubic stiffness characteristics
NASA Astrophysics Data System (ADS)
Gatti, G.
2016-09-01
In order to improve the performance of a vibration absorber, a nonlinear spring can be used on purpose. This paper presents an analytical insight on the characteristics of an undamped nonlinear vibration absorber when it is attached to a linear spring-mass-damper oscillator. In particular, the nonlinear attachment is modelled as a Duffing's oscillator with a spring characteristics having a linear positive stiffness term plus a cubic stiffness term. The effects of the nonlinearity, mass ratio and frequency ratio are investigated based on an approximate analytical formulation of the amplitude-frequency equation. Comparisons to the linear case are shown in terms of the frequency response curves. The nonlinear absorber seems to show an improved robustness to mistuning respect to the corresponding linear device. However, such a better robustness may be limited by some instability of the expected harmonic response.
Structure and energetics of nanotwins in cubic boron nitrides
NASA Astrophysics Data System (ADS)
Zheng, Shijian; Zhang, Ruifeng; Huang, Rong; Taniguchi, Takashi; Ma, Xiuliang; Ikuhara, Yuichi; Beyerlein, Irene J.
2016-08-01
Recently, nanotwinned cubic boron nitrides (NT c-BN) have demonstrated extraordinary leaps in hardness. However, an understanding of the underlying mechanisms that enable nanotwins to give orders of magnitude increases in material hardness is still lacking. Here, using transmission electron microscopy, we report that the defect density of twin boundaries depends on nanotwin thickness, becoming defect-free, and hence more stable, as it decreases below 5 nm. Using ab initio density functional theory calculations, we reveal that the Shockley partials, which may dominate plastic deformation in c-BNs, show a high energetic barrier. We also report that the c-BN twin boundary has an asymmetrically charged electronic structure that would resist migration of the twin boundary under stress. These results provide important insight into possible nanotwin hardening mechanisms in c-BN, as well as how to design these nanostructured materials to reach their full potential in hardness and strength.
Principal spectra describing magnetooptic permittivity tensor in cubic crystals
NASA Astrophysics Data System (ADS)
Hamrlová, Jana; Legut, Dominik; Veis, Martin; Pištora, Jaromír; Hamrle, Jaroslav
2016-12-01
We provide unified phenomenological description of magnetooptic effects being linear and quadratic in magnetization. The description is based on few principal spectra, describing elements of permittivity tensor up to the second order in magnetization. Each permittivity tensor element for any magnetization direction and any sample surface orientation is simply determined by weighted summation of the principal spectra, where weights are given by crystallographic and magnetization orientations. The number of principal spectra depends on the symmetry of the crystal. In cubic crystals owning point symmetry we need only four principal spectra. Here, the principal spectra are expressed by ab initio calculations for bcc Fe, fcc Co and fcc Ni in optical range as well as in hard and soft x-ray energy range, i.e. at the 2p- and 3p-edges. We also express principal spectra analytically using modified Kubo formula.
Lipidic cubic phase serial millisecond crystallography using synchrotron radiation
Nogly, Przemyslaw; James, Daniel; Wang, Dingjie; White, Thomas A.; Zatsepin, Nadia; Shilova, Anastasya; Nelson, Garrett; Liu, Haiguang; Johansson, Linda; Heymann, Michael; Jaeger, Kathrin; Metz, Markus; Wickstrand, Cecilia; Wu, Wenting; Båth, Petra; Berntsen, Peter; Oberthuer, Dominik; Panneels, Valerie; Cherezov, Vadim; Chapman, Henry; Schertler, Gebhard; Neutze, Richard; Spence, John; Moraes, Isabel; Burghammer, Manfred; Standfuss, Joerg; Weierstall, Uwe
2015-01-01
Lipidic cubic phases (LCPs) have emerged as successful matrixes for the crystallization of membrane proteins. Moreover, the viscous LCP also provides a highly effective delivery medium for serial femtosecond crystallography (SFX) at X-ray free-electron lasers (XFELs). Here, the adaptation of this technology to perform serial millisecond crystallography (SMX) at more widely available synchrotron microfocus beamlines is described. Compared with conventional microcrystallography, LCP-SMX eliminates the need for difficult handling of individual crystals and allows for data collection at room temperature. The technology is demonstrated by solving a structure of the light-driven proton-pump bacteriorhodopsin (bR) at a resolution of 2.4 Å. The room-temperature structure of bR is very similar to previous cryogenic structures but shows small yet distinct differences in the retinal ligand and proton-transfer pathway. PMID:25866654
Quantum-Carnot engine for particle confined to cubic potential
NASA Astrophysics Data System (ADS)
Sutantyo, Trengginas Eka P.; Belfaqih, Idrus H.; Prayitno, T. B.
2015-09-01
Carnot cycle consists of isothermal and adiabatic processes which are reversible. Using analogy in quantum mechanics, these processes can be well explained by replacing variables in classical process with a quantum system. Quantum system which is shown in this paper is a particle that moves under the influence of a cubic potential which is restricted only to the state of the two energy levels. At the end, the efficiency of the system is shown as a function of the width ratio between the initial conditions and the farthest wall while expanding. Furthermore, the system efficiency will be considered 1D and 2D cases. The providing efficiencies are different due to the influence of the degeneration of energy and the degrees of freedom of the system.
Elastic constants of cubic and wurtzite boron nitrides
NASA Astrophysics Data System (ADS)
Nagakubo, A.; Ogi, H.; Sumiya, H.; Kusakabe, K.; Hirao, M.
2013-06-01
We synthesized pure polycrystalline cubic boron nitride (cBN) and wurtzite boron nitride (wBN) by the direct conversion method from hexagonal boron nitride, and measured their longitudinal-wave elastic constants CL between 20 and 300 K using picosecond ultrasound spectroscopy. Their room-temperature values are 945 ± 3 GPa and 930 ± 18 GPa for cBN and wBN, respectively. The shear modulus G of cBN was also determined by combining resonance ultrasound spectroscopy and micromechanics calculation as G = 410 GPa. We performed ab-initio calculations and confirmed that the generalized gradient approximation potential fails to yield correct elastic constants, which indicated the necessity of a hybrid-functional method.
High-order numerical solutions using cubic splines
NASA Technical Reports Server (NTRS)
Rubin, S. G.; Khosla, P. K.
1975-01-01
The cubic spline collocation procedure for the numerical solution of partial differential equations was reformulated so that the accuracy of the second-derivative approximation is improved and parallels that previously obtained for lower derivative terms. The final result is a numerical procedure having overall third-order accuracy for a nonuniform mesh and overall fourth-order accuracy for a uniform mesh. Application of the technique was made to the Burger's equation, to the flow around a linear corner, to the potential flow over a circular cylinder, and to boundary layer problems. The results confirmed the higher-order accuracy of the spline method and suggest that accurate solutions for more practical flow problems can be obtained with relatively coarse nonuniform meshes.
A cubic spline approximation for problems in fluid mechanics
NASA Technical Reports Server (NTRS)
Rubin, S. G.; Graves, R. A., Jr.
1975-01-01
A cubic spline approximation is presented which is suited for many fluid-mechanics problems. This procedure provides a high degree of accuracy, even with a nonuniform mesh, and leads to an accurate treatment of derivative boundary conditions. The truncation errors and stability limitations of several implicit and explicit integration schemes are presented. For two-dimensional flows, a spline-alternating-direction-implicit method is evaluated. The spline procedure is assessed, and results are presented for the one-dimensional nonlinear Burgers' equation, as well as the two-dimensional diffusion equation and the vorticity-stream function system describing the viscous flow in a driven cavity. Comparisons are made with analytic solutions for the first two problems and with finite-difference calculations for the cavity flow.
A cubic autocatalytic reaction in a continuous stirred tank reactor
NASA Astrophysics Data System (ADS)
Yakubu, Aisha Aliyu; Yatim, Yazariah Mohd
2015-10-01
In the present study, the dynamics of the cubic autocatalytic reaction model in a continuous stirred tank reactor with linear autocatalyst decay is studied. This model describes the behavior of two chemicals (reactant and autocatalyst) flowing into the tank reactor. The behavior of the model is studied analytically and numerically. The steady state solutions are obtained for two cases, i.e. with the presence of an autocatalyst and its absence in the inflow. In the case with an autocatalyst, the model has a stable steady state. While in the case without an autocatalyst, the model exhibits three steady states, where one of the steady state is stable, the second is a saddle point while the last is spiral node. The last steady state losses stability through Hopf bifurcation and the location is determined. The physical interpretations of the results are also presented.
Low-pressure phase transformation from rhombohedral to cubic BN: Experiment and theory
NASA Astrophysics Data System (ADS)
Levitas, Valery I.; Shvedov, Leonid K.
2002-03-01
An irreversible phase transformation (PT) from the rhombohedral phase of boron nitride rBN to cubic cBN was recently recorded at the surprisingly low pressure of 5.6 GPa at room temperature. In this paper, a very nontrivial and unexpected explanation of this phenomenon is found, based on our criterion for the PT in plastic materials and approximate solution of corresponding plastic problems. It is found that due to orientational plastic instability and rotational softening in rBN and the higher yield stress of cBN, stresses grow drastically in the transforming region during the PT (despite a volume decrease by a factor of 1.53). This allows the fulfillment of the PT criterion which takes into account the whole stress history during the transformation process. It appears that the above experimental phenomenon is connected to the mechanical behavior of the system of transforming particles+surrounding materials at the millimeter scale.
Wang, Yangang; Wang, Yanqin; Liu, Xiaohui; Guo, Yun; Guo, Yanglong; Lu, Guanzhong; Schüth, Ferdi
2008-11-01
Mesoporous metal oxides and mixed oxides, such as NiO, CeO2, Cr2O3, Fe203, Mn2O3, NiFe2O4 and Ce(x)Zr(1-x)O2 (x=0.8 and 0.6) have been synthesized by nanocasting from mesoporous cubic (la3d) vinyl-functionalized silica (vinylsilica). Their structural properties were characterized by XRD, TEM, N2-sorption and Raman spectra. Thus-prepared mesoporous materials possess a high BET surface area (110-190 m2g(-1)), high pore volume (0.25-0.40 cm3g(-1)) and relatively ordered structures. The catalytic properties of Cr2O3 were tested in the oxidation of toluene. The mesoporous Cr2O3 exhibits unusually high catalytic activity in the complete oxidation of toluene as compared with commercial Cr2O3.
Extension of the Neoclassical Theory of Capillarity to Advanced Cubic Equations of State
NASA Astrophysics Data System (ADS)
Wemhoff, Aaron P.
2010-02-01
The neoclassical Redlich-Kwong (RK) theory of capillarity is extended to the Soave-Redlich-Kwong (SRK) and Peng-Robinson (PR) equations of state. Use of the SRK and PR fluid models results in poorer predictions of interfacial tension compared to the RK model because the RK overpredicts vapor densities to a greater extent than SRK or PR, reducing the corresponding RK interfacial tension predictions to be in better agreement with accepted values. The limits of the theory applied to cubic equations are reached by proposing modified SRK and PR fluid models based on a known interfacial tension datum and knowledge of the fluid molecular structure. These modified fluid models provide improved accuracy in interfacial tension predictions of 6% (SRK) and 10% (PR) for the fluid set in this study when compared to applying the RK model (17%). These modified fluid models also provide improved predictions of bulk liquid density, but sacrifice accuracy in pressure and vapor density predictions.
Experiment and molecular dynamics simulation of nanoindentation of body centered cubic iron.
Lu, Cheng; Gao, Yuan; Michal, Guillaume; Deng, Guanyu; Huynh, Nam N; Zhu, Hongtao; Liu, Xianghua; Tieu, Anh Kiet
2009-12-01
Experiments and molecular dynamics (MD) simulations have been conducted to investigate the nanoindentation behaviours of iron with body centered cubic (BCC) structure. The experiments show that the indentation hardness decreases with the indentation depth and it changes sharply for a small depth. Two cases with different crystallographic orientations have been simulated. The indentation plane is (010) for Case I and (111) for Case II, respectively. The calculated harness (17.4 GPa for Case I and 22.6 GPa for Case II) are in reasonable agreement with the experimental value (24.2 GPa). The simulation results show that the crystallographic orientation significantly influences the indentation deformation. Case I and Case II exhibit different deformation patterns. The indentation force and the hardness in Case I are smaller than Case II. It is also found that the pileup around the indenter is mainly formed along [110] direction for both cases.
An equational characterization of the conic construction of cubic curves
McCune, W.; Padmanabhan, R.
1995-05-17
An n-ary Steiner law f(x{sub 1},x{sub 2},{hor_ellipsis},x{sub n}) on a projective curve {Gamma} over an algebraically closed field k is a totally symmetric n-ary morphism f from {Gamma}{sup n} to {Gamma} satisfying the universal identity f(x{sub 1},x{sub 2},{hor_ellipsis},x{sub n-1}, f(x{sub 1},x{sub 2},{hor_ellipsis},x{sub n})) = x{sub n}. An element e in {Gamma} is called an idempotent for f if f(e,e,{hor_ellipsis},e) = e. The binary morphism x * y of the classical chord-tangent construction on a nonsingular cubic curve is an example of a binary Steiner law on the curve, and the idempotents of * are precisely the inflection points of the curve. In this paper, the authors prove that if f and g are two 5-ary Steiner laws on an elliptic curve {Gamma} sharing a common idempotent, then f = g. They use a new rule of inference rule =(gL){implies}, extracted from a powerful local-to-global principal in algebraic geometry. This rule is implemented in the theorem-proving program OTTER. Then they use OTTER to automatically prove the uniqueness of the 5-ary Steiner law on an elliptic curve. Very much like the binary case, this theorem provides an algebraic characterization of a geometric construction process involving conics and cubics. The well-known theorem of the uniqueness of the group law on such a curve is shown to be a consequence of this result.
Nonlinear structure formation in the cubic Galileon gravity model
Barreira, Alexandre; Li, Baojiu; Hellwing, Wojciech A.; Baugh, Carlton M.; Pascoli, Silvia E-mail: baojiu.li@durham.ac.uk E-mail: c.m.baugh@durham.ac.uk
2013-10-01
We model the linear and nonlinear growth of large scale structure in the Cubic Galileon gravity model, by running a suite of N-body cosmological simulations using the ECOSMOG code. Our simulations include the Vainshtein screening effect, which reconciles the Cubic Galileon model with local tests of gravity. In the linear regime, the amplitude of the matter power spectrum increases by ∼ 20% with respect to the standard ΛCDM model today. The modified expansion rate accounts for ∼ 15% of this enhancement, while the fifth force is responsible for only ∼ 5%. This is because the effective unscreened gravitational strength deviates from standard gravity only at late times, even though it can be twice as large today. In the nonlinear regime (k∼>0.1h Mpc{sup −1}), the fifth force leads to only a modest increase (∼<8%) in the clustering power on all scales due to the very efficient operation of the Vainshtein mechanism. Such a strong effect is typically not seen in other models with the same screening mechanism. The screening also results in the fifth force increasing the number density of halos by less than 10%, on all mass scales. Our results show that the screening does not ruin the validity of linear theory on large scales which anticipates very strong constraints from galaxy clustering data. We also show that, whilst the model gives an excellent match to CMB data on small angular scales (l∼>50), the predicted integrated Sachs-Wolfe effect is in tension with Planck/WMAP results.
Adaptive Predistortion Using Cubic Spline Nonlinearity Based Hammerstein Modeling
NASA Astrophysics Data System (ADS)
Wu, Xiaofang; Shi, Jianghong
In this paper, a new Hammerstein predistorter modeling for power amplifier (PA) linearization is proposed. The key feature of the model is that the cubic splines, instead of conventional high-order polynomials, are utilized as the static nonlinearities due to the fact that the splines are able to represent hard nonlinearities accurately and circumvent the numerical instability problem simultaneously. Furthermore, according to the amplifier's AM/AM and AM/PM characteristics, real-valued cubic spline functions are utilized to compensate the nonlinear distortion of the amplifier and the following finite impulse response (FIR) filters are utilized to eliminate the memory effects of the amplifier. In addition, the identification algorithm of the Hammerstein predistorter is discussed. The predistorter is implemented on the indirect learning architecture, and the separable nonlinear least squares (SNLS) Levenberg-Marquardt algorithm is adopted for the sake that the separation method reduces the dimension of the nonlinear search space and thus greatly simplifies the identification procedure. However, the convergence performance of the iterative SNLS algorithm is sensitive to the initial estimation. Therefore an effective normalization strategy is presented to solve this problem. Simulation experiments were carried out on a single-carrier WCDMA signal. Results show that compared to the conventional polynomial predistorters, the proposed Hammerstein predistorter has a higher linearization performance when the PA is near saturation and has a comparable linearization performance when the PA is mildly nonlinear. Furthermore, the proposed predistorter is numerically more stable in all input back-off cases. The results also demonstrate the validity of the convergence scheme.
Intuitionistic fuzzy stability of a general mixed additive-cubic equation
NASA Astrophysics Data System (ADS)
Xu, Tian Zhou; Rassias, John Michael; Xu, Wan Xin
2010-06-01
We establish some stability results concerning the general mixed additive-cubic functional equation, f(kx +y)+f(kx -y)=kf(x +y)+kf(x -y)+2f(kx)-2kf(x ),in intuitionistic fuzzy normed spaces. In addition, we show under some suitable conditions that an approximately mixed additive-cubic function can be approximated by a mixed additive and cubic mapping.
Verma, Purnima; Ahuja, Munish
2016-10-01
The purpose of this study was to investigate the potential of cubic liquid crystalline nanoparticles for ocular delivery of tropicamide. Ultrasound-assisted fragmentation of cubic liquid crystalline bulk phases resulted in cubic liquid crystalline nanoparticles employing Pluronic F127 as dispersant. The effects of process variables such as sonication time, sonication amplitude, sonication depth, and pre-mixing time on particle size and polydispersity index was investigated using central composite design. The morphology of tropicamide-loaded nanoparticles was found to be nearly cubical in shape by transmission electron microscopy observation. Further, small angle X-ray scattering experiment confirmed the presence of D and P phase cubic structures in coexistence. The optimized tropicamide-loaded cubic nanoparticles showed in vitro corneal permeation of tropicamide across isolated porcine cornea comparable to its commercial preparation, Tropicacyl®. Ocular tolerance was evaluated by Hen's egg-chorioallantoic membrane test and histological studies. The results of in vivo mydriatic response study demonstrated a remarkably higher area under mydriatic response curve (AUC0→1440 min) values of cubic nanoparticles over Tropicacyl® indicating better therapeutic value of cubic nanoparticles. Furthermore, tropicamide-loaded cubic nanoparticles exhibited prolonged mydriatic effect on rabbits as compared to commercial conventional aqueous ophthalmic solution.
ON THE THERMODYNAMICS OF SOLID INTRUSION SOLUTIONS WITH BODY-CENTERED CUBIC LATTICE
THE PROPERTIES OF AN ELASTICALLY DEFORMED SOLID INTRUSION SOLUTION WITH BODY - CENTERED CUBIC LATTICE, UNBALANCED WITH RESPECT TO ENERGETICALLY DIFFERENT POSITIONS OF THE ATOMS OF THE DISSOLVED SUBSTANCE.
Pauling, L
1989-11-01
The twofold-axis electron-diffraction photographs of icosahedral quasicrystals are of three kinds, reflecting three different structures of the cubic crystals that by icosahedral twinning form the quasicrystals. The first kind, represented by Al(13)Cu(4)Fe(3), contains two very large icosahedral complexes, each of about 4680 atoms, in the body-centered arrangement, with six smaller icosahedral complexes (104 atoms each) in the principal interstices. The second kind, represented by Al(5)Mn, contains four of the very large complexes in the face-centered arrangement (cubic close packing), with four of the smaller clusters in the interstices. The third kind, represented by Al(6)CuLi(3), contains eight icosahedral complexes, each of about 1350 atoms, in the beta-W arrangement. The supporting evidence for these cubic structures is discussed as well as other evidence showing that the simple quasicrystal theory, which states that quasicrystals do not involve any translational identity operations, has to be modified.
NASA Technical Reports Server (NTRS)
Pfyl, Frank A.; Presley, Leroy L.
1961-01-01
The local recovery factor was determined experimentally along the surface of a thin-walled 20 deg included angle cone for Mach numbers near 6.0 at stagnation temperatures between 1200 deg R and 2600 deg R. In addition, a similar cone configuration was tested at Mach numbers near 4.5 at stagnation temperatures of approximately 612 deg R. The local Reynolds number based on flow properties at the edge of the boundary layer ranged between 0.1 x 10(exp 4) and 3.5 x 10(exp 4) for tests at temperatures above 1200 deg R and between 6 x 10(exp 4) and 25 x 10(exp 4) for tests at temperatures near 612 deg R. The results indicated, generally, that the recovery factor can be predicted satisfactorily using the square root of the Prandtl number. No conclusion could be made as to the necessity of evaluating the Prandtl number at a reference temperature given by an empirical equation, as opposed to evaluating the Prandtl number at the wall temperature or static temperature of the gas at the cone surface. For the tests at temperatures above 1200 deg R (indicated herein as the tests conducted in the slip-flow region), two definite trends in the recovery data were observed - one of increasing recovery factor with decreasing stagnation pressure, which was associated with slip-flow effects and one of decreasing recovery factor with increasing temperature. The true cause of the latter trend could not be ascertained, but it was shown that this trend was not appreciably altered by the sources of error of the magnitude considered herein. The real-gas equations of state were used to determine accurately the local stream properties at the outer edge of the boundary layer of the cone. Included in the report, therefore, is a general solution for the conical flow of a real gas using the Beattie-Bridgeman equation of state. The largest effect of temperature was seen to be in the terms which were dependent upon the internal energy of the gas. The pressure and hence the pressure drag terms were
NASA Technical Reports Server (NTRS)
Horvath, Thomas J.; Berry, Scott A.; Hamilton, H. Harris
2001-01-01
An experimental investigation was conducted on a 5-degree-half-angle cone with a flare in a conventional Mach 6 wind tunnel to examine the effect of facility noise on boundary layer transition. The effect of tunnel noise was inferred by comparing transition onset locations determined from the present test to that previously obtained in a Mach 6 quiet tunnel. Together, the two sets of experiments are believed to represent the first direct comparison of transition onset between a conventional and a quiet hypersonic wind tunnel using a common test model. In the present conventional hypersonic tunnel experiment, adiabatic wall temperatures were measured and heat transfer distributions were inferred on the cone flare model at zero degree angle of attack over a range of length Reynolds numbers (2 x 10(exp 6) to 10 x 10(exp 6)) which resulted in laminar and turbulent flow. Wall-to-total temperature ratio for the transient heating measurements and the adiabatic wall temperature measurements were 0.69 and 0.86, respectively. The cone flare nosetip radius was varied from 0.0001 to 0.125-inch to examine the effects of bluntness on transition onset. At comparable freestream conditions the transition onset Reynolds number obtained on the cone flare model in the conventional "noisy" tunnel was approximately 25% lower than that measured in the low disturbance tunnel.
Extending a Property of Cubic Polynomials to Higher-Degree Polynomials
ERIC Educational Resources Information Center
Miller, David A.; Moseley, James
2012-01-01
In this paper, the authors examine a property that holds for all cubic polynomials given two zeros. This property is discovered after reviewing a variety of ways to determine the equation of a cubic polynomial given specific conditions through algebra and calculus. At the end of the article, they will connect the property to a very famous method…
Integral representations for products of Airy functions Part 2. Cubic products
NASA Astrophysics Data System (ADS)
Reid, W. H.
Integral representations are obtained for some cubic products of the Airy functions Ai(z) and Bi(z). These integral representations are of the Laplace contour type but they involve the modified Bessel functions of order 16. From these results it is then possible to evaluate a number of definite integrals involving such cubic products.
Dependence of Adsorption Properties on Surface Structure for Body-Centered-Cubic Substrates
1965-12-01
cell area of each of the eight highest surface density planes of a body - centered - cubic substrate. From the calculations, topographical maps of...to transition-metal - transition-metal combination predicts that the 110 surface is the lowest energy configuration for a body - centered - cubic crystal.
Deformation-induced structural transition in body-centred cubic molybdenum.
Wang, S J; Wang, H; Du, K; Zhang, W; Sui, M L; Mao, S X
2014-03-07
Molybdenum is a refractory metal that is stable in a body-centred cubic structure at all temperatures before melting. Plastic deformation via structural transitions has never been reported for pure molybdenum, while transformation coupled with plasticity is well known for many alloys and ceramics. Here we demonstrate a structural transformation accompanied by shear deformation from an original <001>-oriented body-centred cubic structure to a <110>-oriented face-centred cubic lattice, captured at crack tips during the straining of molybdenum inside a transmission electron microscope at room temperature. The face-centred cubic domains then revert into <111>-oriented body-centred cubic domains, equivalent to a lattice rotation of 54.7°, and ~15.4% tensile strain is reached. The face-centred cubic structure appears to be a well-defined metastable state, as evidenced by scanning transmission electron microscopy and nanodiffraction, the Nishiyama-Wassermann and Kurdjumov-Sachs relationships between the face-centred cubic and body-centred cubic structures and molecular dynamics simulations. Our findings reveal a deformation mechanism for elemental metals under high-stress deformation conditions.
Deformation-induced structural transition in body-centred cubic molybdenum
Wang, S. J.; Wang, H.; Du, K.; Zhang, W.; Sui, M. L.; Mao, S. X.
2014-01-01
Molybdenum is a refractory metal that is stable in a body-centred cubic structure at all temperatures before melting. Plastic deformation via structural transitions has never been reported for pure molybdenum, while transformation coupled with plasticity is well known for many alloys and ceramics. Here we demonstrate a structural transformation accompanied by shear deformation from an original <001>-oriented body-centred cubic structure to a <110>-oriented face-centred cubic lattice, captured at crack tips during the straining of molybdenum inside a transmission electron microscope at room temperature. The face-centred cubic domains then revert into <111>-oriented body-centred cubic domains, equivalent to a lattice rotation of 54.7°, and ~15.4% tensile strain is reached. The face-centred cubic structure appears to be a well-defined metastable state, as evidenced by scanning transmission electron microscopy and nanodiffraction, the Nishiyama–Wassermann and Kurdjumov–Sachs relationships between the face-centred cubic and body-centred cubic structures and molecular dynamics simulations. Our findings reveal a deformation mechanism for elemental metals under high-stress deformation conditions. PMID:24603655
Internal structure of hexagonal skyrmion lattices in cubic helimagnets
NASA Astrophysics Data System (ADS)
McGrouther, D.; Lamb, R. J.; Krajnak, M.; McFadzean, S.; McVitie, S.; Stamps, R. L.; Leonov, A. O.; Bogdanov, A. N.; Togawa, Y.
2016-09-01
We report the most precise observations to date concerning the spin structure of magnetic skyrmions in a nanowedge specimen of cubic B20 structured FeGe. Enabled by our development of advanced differential phase contrast (DPC) imaging (in a scanning transmission electron microscope (STEM)) we have obtained high spatial resolution quantitative measurements of skyrmion internal spin profile. For hexagonal skyrmion lattice cells, stabilised by an out-plane applied magnetic field, mapping of the in-plane component of magnetic induction has revealed precise spin profiles and that the internal structure possesses intrinsic six-fold symmetry. With increasing field strength, the diameter of skyrmion cores was measured to decrease and accompanied by a nonlinear variation of the lattice periodicity. Variations in structure for individual skyrmions across an area of the lattice were also studied utilising a new increased sensitivity DPC detection scheme and a variety of symmetry lowering distortions were observed. To provide insight into fundamental energetics we have constructed a phenomenological model, with which our experimental observations of spin profiles and field induced core diameter variation are in good agreement with predicted structure in the middle of the nanowedge crystal. In the vicinity of the crystal surfaces, our model predicts the existence of in-plane twisting distortions which our current experimental observations were not sensitive to. As an alternative to the requirement for as yet unidentified sources of magnetic anisotropy, we demonstrate that surface states could provide the energetic stabilisation needed for predomination over the conical magnetic phase.
Serial femtosecond crystallography of soluble proteins in lipidic cubic phase
Fromme, Raimund; Ishchenko, Andrii; Metz, Markus; Chowdhury, Shatabdi Roy; Basu, Shibom; Boutet, Sébastien; Fromme, Petra; White, Thomas A.; Barty, Anton; Spence, John C. H.; Weierstall, Uwe; Liu, Wei; Cherezov, Vadim
2015-08-04
Serial femtosecond crystallography (SFX) at X-ray free-electron lasers (XFELs) enables high-resolution protein structure determination using micrometre-sized crystals at room temperature with minimal effects from radiation damage. SFX requires a steady supply of microcrystals intersecting the XFEL beam at random orientations. An LCP–SFX method has recently been introduced in which microcrystals of membrane proteins are grown and delivered for SFX data collection inside a gel-like membrane-mimetic matrix, known as lipidic cubic phase (LCP), using a special LCP microextrusion injector. Here, it is demonstrated that LCP can also be used as a suitable carrier medium for microcrystals of soluble proteins, enabling a dramatic reduction in the amount of crystallized protein required for data collection compared with crystals delivered by liquid injectors. High-quality LCP–SFX data sets were collected for two soluble proteins, lysozyme and phycocyanin, using less than 0.1 mg of each protein.
Liquid water in the domain of cubic crystalline ice Ic
NASA Technical Reports Server (NTRS)
Jenniskens, P.; Banham, S. F.; Blake, D. F.; McCoustra, M. R.
1997-01-01
Vapor-deposited amorphous water ice when warmed above the glass transition temperature (120-140 K), is a viscous liquid which exhibits a viscosity vs temperature relationship different from that of liquid water at room temperature. New studies of thin water ice films now demonstrate that viscous liquid water persists in the temperature range 140-210 K. where it coexists with cubic crystalline ice. The liquid character of amorphous water above the glass transition is demonstrated by (1) changes in the morphology of water ice films on a nonwetting surface observed in transmission electron microscopy (TEM) at around 175 K during slow warming, (2) changes in the binding energy of water molecules measured in temperature programmed desorption (TPD) studies, and (3) changes in the shape of the 3.07 micrometers absorption band observed in grazing angle reflection-absorption infrared spectroscopy (RAIRS) during annealing at high temperature. whereby the decreased roughness of the water surface is thought to cause changes in the selection rules for the excitation of O-H stretch vibrations. Because it is present over such a wide range of temperatures, we propose that this form of liquid water is a common material in nature. where it is expected to exist in the subsurface layers of comets and on the surfaces of some planets and satellites.
Photoluminescence and electronic transitions in cubic silicon nitride.
Museur, Luc; Zerr, Andreas; Kanaev, Andrei
2016-01-04
A spectroscopic study of cubic silicon nitride (γ-Si3N4) at cryogenic temperatures of 8 K in the near IR - VUV range of spectra with synchrotron radiation excitation provided the first experimental evidence of direct electronic transitions in this material. The observed photoluminescence (PL) bands were assigned to excitons and excited and centers formed after the electron capture by neutral structural defects. The excitons are weakly quenched on neutral and strongly on charged defects. The fundamental band-gap energy of 5.05 ± 0.05 eV and strong free exciton binding energy ~0.65 eV were determined. The latter value suggests a high efficiency of the electric power transformation in light in defect-free crystals. Combined with a very high hardness and exceptional thermal stability in air, our results indicate that γ-Si3N4 has a potential for fabrication of robust and efficient photonic emitters.
Taylor line swimming in microchannels and cubic lattices of obstacles
NASA Astrophysics Data System (ADS)
Münch, Jan L.; Alizadehrad, Davod; Babu, Sujin B.; Stark, Holger
Microorganisms naturally move in microstructured fluids. Using the simulation method of multi-particle collision dynamics, we study an undulatory Taylor line swimming in a two-dimensional microchannel and in a cubic lattice of obstacles, which represent simple forms of a microstructured environment. In the microchannel the Taylor line swims at an acute angle along a channel wall with a clearly enhanced swimming speed due to hydrodynamic interactions with the bounding wall. While in a dilute obstacle lattice swimming speed is also enhanced, a dense obstacle lattice gives rise to geometric swimming. This new type of swimming is characterized by a drastically increased swimming speed. Since the Taylor line has to fit into the free space of the obstacle lattice, the swimming speed is close to the phase velocity of the bending wave traveling along the Taylor line. While adjusting its swimming motion within the lattice, the Taylor line chooses a specific swimming direction, which we classify by a lattice vector. When plotting the swimming velocity versus the magnitude of the lattice vector, all our data collapse on a single master curve. Finally, we also report more complex trajectories within the obstacle lattice.
Taylor line swimming in microchannels and cubic lattices of obstacles.
Münch, Jan L; Alizadehrad, Davod; Babu, Sujin B; Stark, Holger
2016-09-21
Microorganisms naturally move in microstructured fluids. Using the simulation method of multi-particle collision dynamics, we study in two dimensions an undulatory Taylor line swimming in a microchannel and in a cubic lattice of obstacles, which represent simple forms of a microstructured environment. In the microchannel the Taylor line swims at an acute angle along a channel wall with a clearly enhanced swimming speed due to hydrodynamic interactions with the bounding wall. While in a dilute obstacle lattice swimming speed is also enhanced, a dense obstacle lattice gives rise to geometric swimming. This new type of swimming is characterized by a drastically increased swimming speed. Since the Taylor line has to fit into the free space of the obstacle lattice, the swimming speed is close to the phase velocity of the bending wave traveling along the Taylor line. While adjusting its swimming motion within the lattice, the Taylor line chooses a specific swimming direction, which we classify by a lattice vector. When plotting the swimming velocity versus the magnitude of the lattice vector, all our data collapse on a single master curve. Finally, we also report more complex trajectories within the obstacle lattice.
Photoluminescence and electronic transitions in cubic silicon nitride
Museur, Luc; Zerr, Andreas; Kanaev, Andrei
2016-01-01
A spectroscopic study of cubic silicon nitride (γ-Si3N4) at cryogenic temperatures of 8 K in the near IR - VUV range of spectra with synchrotron radiation excitation provided the first experimental evidence of direct electronic transitions in this material. The observed photoluminescence (PL) bands were assigned to excitons and excited and centers formed after the electron capture by neutral structural defects. The excitons are weakly quenched on neutral and strongly on charged defects. The fundamental band-gap energy of 5.05 ± 0.05 eV and strong free exciton binding energy ~0.65 eV were determined. The latter value suggests a high efficiency of the electric power transformation in light in defect-free crystals. Combined with a very high hardness and exceptional thermal stability in air, our results indicate that γ-Si3N4 has a potential for fabrication of robust and efficient photonic emitters. PMID:26725937
Hardness analysis of cubic metal mononitrides from first principles
NASA Astrophysics Data System (ADS)
Fulcher, B. D.; Cui, X. Y.; Delley, B.; Stampfl, C.
2012-05-01
Density functional theory calculations are performed to evaluate the hardness of various cubic metal nitrides: rocksalt TiN, VN, ZrN, NbN, AlN, and SiN; zincblende AlN and BN; and diamond C for comparison. The isotropic elastic stiffness constants cij, bulk modulus K, shear modulus G, Young's modulus E, and isotropic Poisson's ratio ν¯ are calculated. From simulated uniaxial stress-strain curves, ideal strength values σmax in the [100], [110], and [111] directions are also evaluated for all systems. In particular, rocksalt AlN is found to possess both high elastic moduli and ideal strength. These quantities are then compared for correlations with existing experimental Vicker's hardness data. The bulk modulus is found to be a poor indicator of hardness, while E, G, 1/ν¯, and σmax all exhibit stronger correlations. With a view to circumvent the need to run computationally expensive relaxation steps, different methodologies for approximating uniaxial stress-strain curves are introduced. Utilizing the anisotropic Poisson's ratio to approximate the relaxed transverse lattice parameters at a given axial strain is a good approximation to stress-strain curves, and the ideal strengths obtained in this way exhibit strong correlations to experimental Vicker's hardness values.
Twinning of cubic diamond explains reported nanodiamond polymorphs
Németh, Péter; Garvie, Laurence A. J.; Buseck, Peter R.
2015-01-01
The unusual physical properties and formation conditions attributed to h-, i-, m-, and n-nanodiamond polymorphs has resulted in their receiving much attention in the materials and planetary science literature. Their identification is based on diffraction features that are absent in ordinary cubic (c-) diamond (space group: Fd-3m). We show, using ultra-high-resolution transmission electron microscope (HRTEM) images of natural and synthetic nanodiamonds, that the diffraction features attributed to the reported polymorphs are consistent with c-diamond containing abundant defects. Combinations of {113} reflection and <011> rotation twins produce HRTEM images and d-spacings that match those attributed to h-, i-, and m-diamond. The diagnostic features of n-diamond in TEM images can arise from thickness effects of c-diamonds. Our data and interpretations strongly suggest that the reported nanodiamond polymorphs are in fact twinned c-diamond. We also report a new type of twin (<11> rotational), which can give rise to grains with dodecagonal symmetry. Our results show that twins are widespread in diamond nanocrystals. A high density of twins could strongly influence their applications. PMID:26671288
Serial femtosecond crystallography of soluble proteins in lipidic cubic phase
Fromme, Raimund; Ishchenko, Andrii; Metz, Markus; Chowdhury, Shatabdi Roy; Basu, Shibom; Boutet, Sébastien; Fromme, Petra; White, Thomas A.; Barty, Anton; Spence, John C. H.; Weierstall, Uwe; Liu, Wei; Cherezov, Vadim
2015-01-01
Serial femtosecond crystallography (SFX) at X-ray free-electron lasers (XFELs) enables high-resolution protein structure determination using micrometre-sized crystals at room temperature with minimal effects from radiation damage. SFX requires a steady supply of microcrystals intersecting the XFEL beam at random orientations. An LCP–SFX method has recently been introduced in which microcrystals of membrane proteins are grown and delivered for SFX data collection inside a gel-like membrane-mimetic matrix, known as lipidic cubic phase (LCP), using a special LCP microextrusion injector. Here, it is demonstrated that LCP can also be used as a suitable carrier medium for microcrystals of soluble proteins, enabling a dramatic reduction in the amount of crystallized protein required for data collection compared with crystals delivered by liquid injectors. High-quality LCP–SFX data sets were collected for two soluble proteins, lysozyme and phycocyanin, using less than 0.1 mg of each protein. PMID:26306196
Cubic-quintic solitons in the checkerboard potential
Driben, Rodislav; Zyss, Joseph; Malomed, Boris A.; Gubeskys, Arthur
2007-12-15
We introduce a two-dimensional (2D) model which combines a checkerboard potential, alias the Kronig-Penney (KP) lattice, with the self-focusing cubic and self-defocusing quintic nonlinear terms. The beam-splitting mechanism and soliton multistability are explored in this setting, following the recently considered 1D version of the model. Families of single- and multi-peak solitons (in particular, five- and nine-peak species naturally emerge in the 2D setting) are found in the semi-infinite gap, with both branches of bistable families being robust against perturbations. For single-peak solitons, the variational approximation (VA) is developed, providing for a qualitatively correct description of the transition from monostability to the bistability. 2D solitons found in finite band gaps are unstable. Also constructed are two different species of stable vortex solitons, arranged as four-peak patterns ('oblique' and 'straight' ones). Unlike them, compact 'crater-shaped' vortices are unstable, transforming themselves into randomly walking fundamental beams.
Assembly of body-centered cubic crystals in hard spheres.
Xu, W-S; Sun, Z-Y; An, L-J
2011-05-01
We investigate the crystallization of monodisperse hard spheres confined by two square patterned substrates (possessing the basic character of the body-centered cubic (bcc) crystal structure) at varying substrate separations via molecular dynamics simulation. Through slowly increasing the density of the system, we find that crystallization under the influence of square patterned substrates can set in at lower densities compared with the homogeneous crystallization. As the substrate separation decreases, the density, where crystallization occurs (i.e., pressure drops), becomes small. Moreover, two distinct regimes are identified in the plane of bcc particle fraction and density for the separation range investigated. For large substrate separations, the bcc particle fraction displays a local maximum as the density is increased, and the resulting formed crystals have a polycrystalline structure. However, and more importantly, another situation emerges for small substrate separations: the capillary effects (stemming from the presence of two substrates) overwhelm the bulk driving forces (stemming from the spontaneous thermal fluctuations in the bulk) during the densification, eventually resulting in the formation of a defect-free bcc crystal (unstable with respect to the bulk hard-sphere crystals) by using two square patterned substrates.
Interplay between cubic and hexagonal phases in block copolymer solutions.
Park, Moon Jeong; Char, Kookheon; Bang, Joona; Lodge, Timothy P
2005-02-15
The phase behavior of a symmetric styrene-isoprene (SI) diblock copolymer in a styrene-selective solvent, diethylphthalate, was investigated by in situ small-angle X-ray scattering on isotropic and shear-oriented solutions and by rheology and birefringence. A remarkable new feature in this phase diagram is the coexistence of both body-centered cubic (bcc) and hexagonally close-packed (hcp) sphere phases, in a region between close-packed spheres (cps) and hexagonally packed cylinders (hex) over the concentration range phi approximately 0.33-0.45. By focusing on the transitions among these various ordered phases during heating and cooling cycles, we observed a strong hysteresis: supercooled cylinders persisted upon cooling. The stability of these supercooled cylinders is quite dependent on concentration, and for phi > or = 0.40, the supercooled cylinders do not revert to spheres even after quiescent annealing for 1 month. The spontaneous formation of spheres due to the dissociation of cylinders is kinetically hindered in this case, and the system is apparently not amenable to any pretransitional fluctuations of cylinders prior to the cylinder-to-sphere transition. This contrasts with the case of cylinders transforming to spheres upon heating in the melt. The application of large amplitude shear to the supercooled cylinders is effective in restoring the equilibrium sphere phases.
Femtosecond crystallography of membrane proteins in the lipidic cubic phase
Liu, Wei; Wacker, Daniel; Wang, Chong; Abola, Enrique; Cherezov, Vadim
2014-01-01
Despite recent technological advances in heterologous expression, stabilization and crystallization of membrane proteins (MPs), their structural studies remain difficult and require new transformative approaches. During the past two years, crystallization in lipidic cubic phase (LCP) has started gaining a widespread acceptance, owing to the spectacular success in high-resolution structure determination of G protein-coupled receptors (GPCRs) and to the introduction of commercial instrumentation, tools and protocols. The recent appearance of X-ray free-electron lasers (XFELs) has enabled structure determination from substantially smaller crystals than previously possible with minimal effects of radiation damage, offering new exciting opportunities in structural biology. The unique properties of LCP material have been exploited to develop special protocols and devices that have established a new method of serial femtosecond crystallography of MPs in LCP (LCP-SFX). In this method, microcrystals are generated in LCP and streamed continuously inside the same media across the intersection with a pulsed XFEL beam at a flow rate that can be adjusted to minimize sample consumption. Pioneering studies that yielded the first room temperature GPCR structures, using a few hundred micrograms of purified protein, validate the LCP-SFX approach and make it attractive for structure determination of difficult-to-crystallize MPs and their complexes with interacting partners. Together with the potential of femtosecond data acquisition to interrogate unstable intermediate functional states of MPs, LCP-SFX holds promise to advance our understanding of this biomedically important class of proteins. PMID:24914147
Twinning of cubic diamond explains reported nanodiamond polymorphs
NASA Astrophysics Data System (ADS)
Németh, Péter; Garvie, Laurence A. J.; Buseck, Peter R.
2015-12-01
The unusual physical properties and formation conditions attributed to h-, i-, m-, and n-nanodiamond polymorphs has resulted in their receiving much attention in the materials and planetary science literature. Their identification is based on diffraction features that are absent in ordinary cubic (c-) diamond (space group: Fd-3m). We show, using ultra-high-resolution transmission electron microscope (HRTEM) images of natural and synthetic nanodiamonds, that the diffraction features attributed to the reported polymorphs are consistent with c-diamond containing abundant defects. Combinations of {113} reflection and <011> rotation twins produce HRTEM images and d-spacings that match those attributed to h-, i-, and m-diamond. The diagnostic features of n-diamond in TEM images can arise from thickness effects of c-diamonds. Our data and interpretations strongly suggest that the reported nanodiamond polymorphs are in fact twinned c-diamond. We also report a new type of twin (<11> rotational), which can give rise to grains with dodecagonal symmetry. Our results show that twins are widespread in diamond nanocrystals. A high density of twins could strongly influence their applications.
Cubic scaling G W : Towards fast quasiparticle calculations
NASA Astrophysics Data System (ADS)
Liu, Peitao; Kaltak, Merzuk; Klimeš, Jiří; Kresse, Georg
2016-10-01
Within the framework of the full potential projector-augmented wave methodology, we present a promising low-scaling G W implementation. It allows for quasiparticle calculations with a scaling that is cubic in the system size and linear in the number of k points used to sample the Brillouin zone. This is achieved by calculating the polarizability and self-energy in the real-space and imaginary-time domains. The transformation from the imaginary time to the frequency domain is done by an efficient discrete Fourier transformation with only a few nonuniform grid points. Fast Fourier transformations are used to go from real space to reciprocal space and vice versa. The analytic continuation from the imaginary to the real frequency axis is performed by exploiting Thiele's reciprocal difference approach. Finally, the method is applied successfully to predict the quasiparticle energies and spectral functions of typical semiconductors (Si, GaAs, SiC, and ZnO), insulators (C, BN, MgO, and LiF), and metals (Cu and SrVO3). The results are compared with conventional G W calculations. Good agreement is achieved, highlighting the strength of the present method.
Liquid water in the domain of cubic crystalline ice Ic.
Jenniskens, P; Banham, S F; Blake, D F; McCoustra, M R
1997-07-22
Vapor-deposited amorphous water ice when warmed above the glass transition temperature (120-140 K), is a viscous liquid which exhibits a viscosity vs temperature relationship different from that of liquid water at room temperature. New studies of thin water ice films now demonstrate that viscous liquid water persists in the temperature range 140-210 K. where it coexists with cubic crystalline ice. The liquid character of amorphous water above the glass transition is demonstrated by (1) changes in the morphology of water ice films on a nonwetting surface observed in transmission electron microscopy (TEM) at around 175 K during slow warming, (2) changes in the binding energy of water molecules measured in temperature programmed desorption (TPD) studies, and (3) changes in the shape of the 3.07 micrometers absorption band observed in grazing angle reflection-absorption infrared spectroscopy (RAIRS) during annealing at high temperature. whereby the decreased roughness of the water surface is thought to cause changes in the selection rules for the excitation of O-H stretch vibrations. Because it is present over such a wide range of temperatures, we propose that this form of liquid water is a common material in nature. where it is expected to exist in the subsurface layers of comets and on the surfaces of some planets and satellites.
An analytic reconstruction method for PET based on cubic splines
NASA Astrophysics Data System (ADS)
Kastis, George A.; Kyriakopoulou, Dimitra; Fokas, Athanasios S.
2014-03-01
PET imaging is an important nuclear medicine modality that measures in vivo distribution of imaging agents labeled with positron-emitting radionuclides. Image reconstruction is an essential component in tomographic medical imaging. In this study, we present the mathematical formulation and an improved numerical implementation of an analytic, 2D, reconstruction method called SRT, Spline Reconstruction Technique. This technique is based on the numerical evaluation of the Hilbert transform of the sinogram via an approximation in terms of 'custom made' cubic splines. It also imposes sinogram thresholding which restricts reconstruction only within object pixels. Furthermore, by utilizing certain symmetries it achieves a reconstruction time similar to that of FBP. We have implemented SRT in the software library called STIR and have evaluated this method using simulated PET data. We present reconstructed images from several phantoms. Sinograms have been generated at various Poison noise levels and 20 realizations of noise have been created at each level. In addition to visual comparisons of the reconstructed images, the contrast has been determined as a function of noise level. Further analysis includes the creation of line profiles when necessary, to determine resolution. Numerical simulations suggest that the SRT algorithm produces fast and accurate reconstructions at realistic noise levels. The contrast is over 95% in all phantoms examined and is independent of noise level.
Mechanical properties for irradiated face-centred cubic nanocrystalline metals.
Xiao, X Z; Song, D K; Chu, H J; Xue, J M; Duan, H L
2015-05-08
In this paper, a self-consistent plasticity theory is proposed to model the mechanical behaviours of irradiated face-centred cubic nanocrystalline metals. At the grain level, a tensorial crystal model with both irradiation and grain size effects is applied for the grain interior (GI), whereas both grain boundary (GB) sliding with irradiation effect and GB diffusion are considered in modelling the behaviours of GBs. The elastic-viscoplastic self-consistent method with considering grain size distribution is developed to transit the microscopic behaviour of individual grains to the macroscopic properties of nanocrystals (NCs). The proposed theory is applied to model the mechanical properties of irradiated NC copper, and the feasibility and efficiency have been validated by comparing with experimental data. Numerical results show that: (i) irradiation-induced defects can lead to irradiation hardening in the GIs, but the hardening effect decreases with the grain size due to the increasing absorption of defects by GBs. Meanwhile, the absorbed defects would make the GBs softer than the unirradiated case. (ii) There exists a critical grain size for irradiated NC metals, which separates the grain size into the irradiation hardening dominant region (above the critical size) and irradiation softening dominant region (below the critical size). (iii) The distribution of grain size has a significant influence on the mechanical behaviours of both irradiated and unirradiated NCs. The proposed model can offer a valid theoretical foundation to study the irradiation effect on NC materials.
Random walks on cubic lattices with bond disorder
Ernst, M.H.; van Velthoven, P.F.J.
1986-12-01
The authors consider diffusive systems with static disorder, such as Lorentz gases, lattice percolation, ants in a labyrinth, termite problems, random resistor networks, etc. In the case of diluted randomness the authors can apply the methods of kinetic theory to obtain systematic expansions of dc and ac transport properties in powers of the impurity concentration c. The method is applied to a hopping model on a d-dimensional cubic lattice having two types of bonds with conductivity sigma and sigma/sub 0/ = 1, with concentrations c and 1-c, respectively. For the square lattice the authors explicitly calculate the diffusion coefficient D(c,sigma) as a function of c, to O(c/sup 2/) terms included for different ratios of the bond conductivity sigma. The probability of return at long times is given by P/sub 0/(t) approx. (4..pi..D(c,sigma)t)/sup -d/2/, which is determined by the diffusion coefficient of the disordered system.
The Structure of the Cubic Coincident Site Lattice Rotation Group
Reed, B W; Minich, R W; Rudd, R E; Kumar, M
2004-01-13
This work is intended to be a mathematical underpinning for the field of grain boundary engineering and its relatives. The interrelationships within the set of rotations producing coincident site lattices in cubic crystals are examined in detail. Besides combining previously established but widely scattered results into a unified context, the present work details newly developed representations of the group structure in terms of strings of generators (based on quaternionic number theory, and including uniqueness proofs and rules for algebraic manipulation) as well as an easily visualized topological network model. Important results that were previously obscure or not universally understood (e.g. the {Sigma} combination rule governing triple junctions) are clarified in these frameworks. The methods also facilitate several general observations, including the very different natures of twin-limited structures in two and three dimensions, the inadequacy of the {Sigma} combination rule to determine valid quadruple nodes, and a curious link between allowable grain boundary assignments and the four-color map theorem. This kind of understanding is essential to the generation of realistic statistical models of grain boundary networks (particularly in twin-dominated systems) and is especially applicable to the field of grain boundary engineering.
Alsobrook, Andera N.; Hauser, B. G.; Hupp, Joseph T.; Alekseev, Evgeny V.; Depmeier, Wulf; Albrecht-Schmitt, Thomas E.
2010-11-01
Four heterobimetallic U(VI)/M(II) (M = Mn, Co, Cd) carboxyphosphonates have been synthesized. M_{2}[(UO_{2})_{6}(PO_{3}CH_{2}CO_{2})_{3}O_{3}(OH)(H_{2}O)_{2}]·16H_{2}O (M = Mn(II), Co(II), and Cd(II)) adopt cubic three-dimensional network structures with large cavities approximately 16 Å in diameter that are filled with co-crystallized water molecules. [Cd_{3}(UO_{2})_{6}(PO_{3}CH_{2}CO_{2})_{6}(H_{2}O)_{13}]·6H^{2 }O forms a rhombohedral channel structure with hydrated Cd(II) within the channels. The cubic compound (Co) displays differential gas absorption with a surface area for CO_{2} uptake of 40 m^{2 }g^{-1} at 273 K, and no uptake of N_{2} at 77 K.
Maximizing cubic phase gallium nitride surface coverage on nano-patterned silicon (100)
NASA Astrophysics Data System (ADS)
Liu, R.; Bayram, C.
2016-07-01
Here we investigate the hexagonal-to-cubic phase transition in metalorganic-chemical-vapor-deposition-grown gallium nitride enabled via silicon (100) nano-patterning. Electron backscatter diffraction and depth-resolved cathodoluminescence experiments show complete cubic phase GaN surface coverage when GaN deposition thickness ( hc ), etch depth ( td ), and opening width ( p ) obey hc≈1.06 p -0.75 td ; in line with a geometrical model based on crystallography. Cubic GaN uniformity is studied via electron backscatter diffraction and cathodoluminescence measurements. Atomic force microscopy reveals a smooth cubic GaN surface. Phase-transition cubic GaN shows promising optical and structural quality for integrated photonic devices.
Moreno, M; Barriuso, M T; Aramburu, J A; García-Fernández, P; García-Lastra, J M
2006-05-03
This article reviews the microscopic origin of properties due to transition-metal (TM) impurities, M, in insulator materials. Particular attention is paid to the influence of pressure upon impurity properties. Basic concepts such as the electronic localization in an MX(N) complex, the electrostatic potential, V(R), arising from the rest of the lattice ions or the elastic coupling of the complex to the host lattice are initially exposed. The dependence of optical and magnetic parameters on the impurity-ligand distance, R, in cubic lattices is discussed in a first step. Emphasis is put on the actual origin of the R dependence of 10Dq. Examples revealing that laws for strict cubic symmetry cannot in general be transferred to lower symmetries are later given. This relevant fact is shown to come from allowed hybridizations like nd-(n+1)s as well as the influence of V(R). As a salient feature the different colour in ruby and emerald is stressed to arise from distinct V(R) potentials in Al(2)O(3) and Be(3)Si(6)Al(2)O(18). The last part of this review deals with electronic instabilities. The phenomena associated with the Jahn-Teller (JT) effect in cubic lattices, the origin of the energy barrier among equivalent minima and the existence of coherent tunnelling in systems like MgO:Cu(2+) are discussed. An increase of elastic coupling is pointed out to favour a transition from an elongated to a compressed equilibrium conformation. Interestingly the equilibrium geometry of JT ions in non-cubic lattices is shown to be controlled by mechanisms different to those in cubic systems, V(R) playing again a key role. The relevance of first principles calculations for clarifying the subtle mechanisms behind off-centre instabilities is also pointed out. Examples concern monovalent and divalent TM impurities in lattices with the CaF(2) structure. The instability due to the transition from the ground to an excited state is finally considered. For complexes with significant elastic coupling
Rate Coefficients of C2H with C2H4, C2H6, and H2 from 150 to 359 K
NASA Technical Reports Server (NTRS)
Opansky, Brian J.; Leone, Stephen R.
1996-01-01
Rate coefficients for the reactions C2H with C2H4, C2H6, and H2 are measured over the temperature range 150-359 K using transient infrared laser absorption spectroscopy. The ethynyl radical is formed by photolysis of C2H2 with a pulsed excimer laser at 193 nm, and its transient absorption is monitored with a color center laser on the Q(sub 11)(9) line of the A(sup 2) Pi-Chi(sup 2) Sigma transition at 3593.68 cm(exp -1). Over the experimental temperature range 150-359 K the rate constants of C2H with C2H4, C2H6, and H2 can be fitted to the Arrhenius expressions k(sub C2H4) = (7.8 +/- 0.6) x 10(exp -11) exp[(134 +/- 44)/T], k(sub C2H6) = (3.5 +/- 0.3) x 10(exp -11) exp[(2.9 +/- 16)/T], and k(sub H2) = (1.2 +/- 0.3) x 10(exp -11) exp[(-998 +/- 57)]/T cm(exp 3) molecule(exp -1) sec(exp -1). The data for C2H with C2H4 and C2H6 indicate a negligible activation energy to product formation shown by the mild negative temperature dependence of both reactions. When the H2 data are plotted together with the most recent high-temperature results from 295 to 854 K, a slight curvature is observed. The H2 data can be fit to the non-Arrhenius form k(sub H2) = 9.2 x 10(exp -18) T(sup 2.17 +/- 0.50) exp[(-478 +/- 165)/T] cm(exp 3) molecules(exp -1) sec(exp -1). The curvature in the Arrhenius plot is discussed in terms of both quantum mechanical tunneling of the H atom from H2 to the C2H radical and bending mode contributions to the partition function.
NASA Technical Reports Server (NTRS)
Hollis, Brian R.
2009-01-01
An investigation of the aeroheating environment of the Project Orion Crew Entry Vehicle has been performed in the Langley Research Center 20-Inch Mach 6 Air Tunnel. Data were measured on a approx.3.5% scale model (0.1778-m/7-inch diameter) of the vehicle using coaxial thermocouples at free stream Reynolds numbers of 2.0 10(exp 6)/ft to 7.30 10(exp 6)/ft and computational predictions were generated for all test conditions. The primary goals of this test were to obtain convective heating data for use in assessing the accuracy of the computational technique and to validate test methodology and heating data from a test of the same wind tunnel model in the Arnold Engineering Development Center Tunnel 9. Secondary goals were to determine the extent of transitional/turbulent data which could be produced on a CEV model in this facility, either with or without boundary-layer trips, and to demonstrate continuous pitch-sweep operation in this tunnel for heat transfer testing.
Role of Adsorption Phenomena in Cubic Tricalcium Aluminate Dissolution.
Myers, Rupert J; Geng, Guoqing; Li, Jiaqi; Rodríguez, Erich D; Ha, Juyoung; Kidkhunthod, Pinit; Sposito, Garrison; Lammers, Laura N; Kirchheim, Ana Paula; Monteiro, Paulo J M
2017-01-10
The workability of fresh Portland cement (PC) concrete critically depends on the reaction of the cubic tricalcium aluminate (C3A) phase in Ca- and S-rich pH >12 aqueous solution, yet its rate-controlling mechanism is poorly understood. In this article, the role of adsorption phenomena in C3A dissolution in aqueous Ca-, S-, and polynaphthalene sulfonate (PNS)-containing solutions is analyzed. The zeta potential and pH results are consistent with the isoelectric point of C3A occurring at pH ∼12 and do not show an inversion of its electric double layer potential as a function of S or Ca concentration, and PNS adsorbs onto C3A, reducing its zeta potential to negative values at pH >12. The S and Ca K-edge X-ray absorption spectroscopy (XAS) data obtained do not indicate the structural incorporation or specific adsorption of SO4(2-) on the partially dissolved C3A solids analyzed. Together with supporting X-ray ptychography and scanning electron microscopy results, a model for C3A dissolution inhibition in hydrated PC systems is proposed whereby the formation of an Al-rich leached layer and the complexation of Ca-S ion pairs onto this leached layer provide the key inhibiting effect(s). This model reconciles the results obtained here with the existing literature, including the inhibiting action of macromolecules such as PNS and polyphosphonic acids upon C3A dissolution. Therefore, this article advances the understanding of the rate-controlling mechanism in hydrated C3A and thus PC systems, which is important to better controlling the workability of fresh PC concrete.
Study of nonlinear waves described by the cubic Schroedinger equation
Walstead, A.E.
1980-03-12
The cubic Schroedinger equation (CSE) is ubiquitous as a model equation for the long-time evolution of finite-amplitude near-monochromatic dispersive waves. It incorporates the effects of the radiation field pressure on the constitutive properties of the supporting medium in a self-consistent manner. The properties of the uniformly transiating periodic wave solutions of the one-dimensional CSE are studied here. These (so-called cnoidal) waves are characterized by the values of four parameters. Whitham's averaged variational principle is used to derive a system of quasilinear evolution equations (the modulational equations) for the values of these parameters when they are slowly varying in space and time. Explicit expressions for the characteristic velocities of the modulational equations are obtained for the full set of cnoidal waves. Riemann invariants are obtained for several limits for the stable case, and growth rates are obtained for several limits, including the solitary wave chain, for the unstable case. The results for several nontrivial limiting cases agree with those obtained by independent methods by others. The dynamics of the CSE generalized to two spatial dimensions are studied for the unstable case. A large class of similarity solutions with cylindrical symmetry are obtained systematically using infinitesimal transformation group techniques. The methods are adapted to obtain the symmetries of the action functional of the CSE and to deduce nine integral invariants. A numerical study of the self-similar solutions reveals that they are modulationally unstable and that singularities dominate the dynamics of the CSE in two dimensions. The CSE is derived using perturbation theory for a specific problem in plasma physics: the evolution of the envelope of a near-monochromatic electromagnetic wave in a cold magnetized plasma. 13 figures, 2 tables.
Electron affinity of cubic boron nitride terminated with vanadium oxide
Yang, Yu; Sun, Tianyin; Shammas, Joseph; Hao, Mei; Nemanich, Robert J.; Kaur, Manpuneet
2015-10-28
A thermally stable negative electron affinity (NEA) for a cubic boron nitride (c-BN) surface with vanadium-oxide-termination is achieved, and its electronic structure was analyzed with in-situ photoelectron spectroscopy. The c-BN films were prepared by electron cyclotron resonance plasma-enhanced chemical vapor deposition employing BF{sub 3} and N{sub 2} as precursors. Vanadium layers of ∼0.1 and 0.5 nm thickness were deposited on the c-BN surface in an electron beam deposition system. Oxidation of the metal layer was achieved by an oxygen plasma treatment. After 650 °C thermal annealing, the vanadium oxide on the c-BN surface was determined to be VO{sub 2}, and the surfaces were found to be thermally stable, exhibiting an NEA. In comparison, the oxygen-terminated c-BN surface, where B{sub 2}O{sub 3} was detected, showed a positive electron affinity of ∼1.2 eV. The B{sub 2}O{sub 3} evidently acts as a negatively charged layer introducing a surface dipole directed into the c-BN. Through the interaction of VO{sub 2} with the B{sub 2}O{sub 3} layer, a B-O-V layer structure would contribute a dipole between the O and V layers with the positive side facing vacuum. The lower enthalpy of formation for B{sub 2}O{sub 3} is favorable for the formation of the B-O-V layer structure, which provides a thermally stable surface dipole and an NEA surface.
NASA Technical Reports Server (NTRS)
Belikov, Ruslan; Give'on, Amir; Trauger, John T.; Carr, Michael; Kasdin, Jeremy N.; Vanderbei, Robert J.; Shi, Fang; Balasubramanian, Kunjithapatham; Kuhnert, Andreas
2006-01-01
Experimental demonstration of wavefront control with shaped pupils. Contrast level is maintained across different wavelengths and 10% broadband light. Further improvements in contrast believed to have been possible with more time and parameter optimizations.
Identification of silver cubic structures during ultrasonication of chitosan AgNO3 solution.
Raghavendra, Gownolla Malegowd; Jung, Jeyoung; Kim, Dowan; Varaprasad, Kokkarachedu; Seo, Jongchul
2016-11-05
During ultrasonication of chitosan AgNO3 solution (10mM), silver cubic structures were identified along with other dispersed silver nanoparticles. Temperature influenced the formation of the cubic structures. Formation of the silver cubic structures occurred via initial formation of 'four petal flower-like' structures that underwent transformation to the "cubic morphology" in the latter stages. Aging of the reaction mixture led to formation of complete dendrites. These dendrites comprised a large quantity of silver nanoparticles. Upon repetition of the experiment with starch instead of chitosan, the identified silver cubic structures were completely absent, indicating that formation of the 'silver cubic structures' is dependent on the polysaccharide used. It is believed that the structural features of chitosan facilitate the formation of 'silver cubic structures' under ultrasonic conditions. The phenomena occurring during the experiments were evaluated via scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS), ultraviolet-visible (UV-vis) spectra, transmission electron microscopy (TEM), and selected area electron diffraction (SAED) analysis.
BV analysis of tachyon fluctuation around multi-brane solutions in cubic string field theory
NASA Astrophysics Data System (ADS)
Hata, Hiroyuki
2016-05-01
We study whether the tachyon mode exists as a physical fluctuation on the 2-brane solution and on the tachyon vacuum solution in cubic open string field theory. Our analysis is based on the Batalin-Vilkovisky formalism. We first construct a set of six string states which corresponds to the set of fields and anti-fields containing the tachyon field. Whether the tachyon field can exist as a physical fluctuation is determined by the 6 × 6 matrix defining the anti-bracket in the present sector. If the matrix is degenerate/non-degenerate, the tachyon field is physical/unphysical. Calculations for the pure-gauge type solutions in the framework of the KBc algebra and using the K ɛ -regularization lead to the expected results. Namely, the matrix for the anti-bracket is degenerate/non-degenerate in the case of the 2-brane/tachyon-vacuum solution. Our analysis is not complete, in particular, in that we have not identified the four-fold degeneracy of tachyon fluctuation on the 2-brane solution, and moreover that the present six states do not satisfy the hermiticity condition.
The compressibility of cubic white, orthorhombic black and rhombohedral black phosphorus
Clark, S; Zaug, J M
2009-06-05
The effect of pressure on the crystal structure of white phosphorus has been studied up to 22.4 GPa. The {alpha} phase was found to transform into the {alpha}' phase at 0.87 {+-} 0.04 GPa with a volume change of 0.1 {+-} 0.3 cc/mol. A fit of a second order Birch-Murghanan equation to the data gave Vo = 16.94 {+-} 0.08 cc/mol and K{sub o} = 6.7 {+-} 0.5 GPa for the {alpha} phase and Vo = 16.4 {+-} 0.1 cc/mol and K{sub o} = 9.1 {+-} 0.3 GPa for the {alpha}' phase. The {alpha}' phase was found to transform to the A17 phase of black phosphorus at 2.68 {+-} 0.34 GPa and then with increasing pressure to the A7 and then simple cubic phase of black phosphorus. A fit of a second order Birch-Murnaghan equation to our orthorhombic and rhombohedral black phosphorus data gave Vo = 11.43 {+-} 0.02 cc/mol and K{sub o} = 34.7 {+-} 0.5 GPa for the A17 phase and Vo = 9.62 {+-} 0.01 cc/mol and K{sub o} = 65.0 {+-} 0.6 GPa for the A7 phase.
Elevated Temperature Deformation of Fe-39.8Al and Fe-15.6Mn-39.4Al
NASA Technical Reports Server (NTRS)
Whittenberger, J. Daniel
2004-01-01
The elevated temperature compressive properties of binary Fe-39.8 at % Al and Fe-15.6Mn-39.4Al have been measured between 1000 and 1300 K at strain rates between 10(exp 7) and 10(exp 3)/ s. Although the Mn addition to iron aluminide did not change the basic deformation characteristics, the Mn-modified alloy was slightly weaker. In the regime where deformation of FeAl occurs by a high stress exponent mechanism (n = 6), strength increases as the grain size decreases at least for diameters between approx. 200 and approx. 10 microns. Due to the limitation in the grain size-flow stress-temperature-strain rate database, the influence of further reductions of the grain size on strength is uncertain. Based on the appearance of subgrains in deformed iron aluminide, the comparison of grain diameters to expected subgrain sizes, and the grain size exponent and stress exponent calculated from deformation experiments, it is believed that grain size strengthening is the result of an artificial limitation on subgrain size as proposed by Sherby, Klundt and Miller.
NASA Technical Reports Server (NTRS)
Rinsland, C. P.; Goldman, A.; Murcray, F. J.; David, S. J.; Blatherwick, R. D.; Murcray, D. G.
1994-01-01
About 200 i.r. solar spectra recorded at 0.01/ cm resolution on 71 days between November 1991 and July 1993 at the Network for the Detection of Stratospheric Change (NDSC) station at Mauna Loa, Hawaii (latitude 19.53 deg N, longitude 155.58 deg W, elevation 3.459 km) have been analyzed with a nonlinear least-squares spectral fitting technique to study temporal variations in the total column of atmospheric ethane (C2H6) above the site. The results were derived from the analysis of the unresolved nu(sub 7) band (sup P)Q(sub 3) subbranch at 2976.8/cm. A distinct seasonal cycle is observed with a factor of 2 variation, a maximum total column of 1.1 6 x 10(exp 16) mol /sq cm at the end of winter, and a minimum total column of 0.53 x 10(exp 16) mol/sq cm at the end of summer. Our measurements are compared with previous observations and model predictions.
Chiral Surface Twists and Skyrmion Stability in Nanolayers of Cubic Helimagnets
NASA Astrophysics Data System (ADS)
Leonov, A. O.; Togawa, Y.; Monchesky, T. L.; Bogdanov, A. N.; Kishine, J.; Kousaka, Y.; Miyagawa, M.; Koyama, T.; Akimitsu, J.; Koyama, Ts.; Harada, K.; Mori, S.; McGrouther, D.; Lamb, R.; Krajnak, M.; McVitie, S.; Stamps, R. L.; Inoue, K.
2016-08-01
Theoretical analysis and Lorentz transmission electron microscopy (LTEM) investigations in an FeGe wedge demonstrate that chiral twists arising near the surfaces of noncentrosymmetric ferromagnets [Meynell et al., Phys. Rev. B 90, 014406 (2014)] provide a stabilization mechanism for magnetic Skyrmion lattices and helicoids in cubic helimagnet nanolayers. The magnetic phase diagram obtained for freestanding cubic helimagnet nanolayers shows that magnetization processes differ fundamentally from those in bulk cubic helimagnets and are characterized by the first-order transitions between modulated phases. LTEM investigations exhibit a series of hysteretic transformation processes among the modulated phases, which results in the formation of the multidomain patterns.
Chiral Surface Twists and Skyrmion Stability in Nanolayers of Cubic Helimagnets.
Leonov, A O; Togawa, Y; Monchesky, T L; Bogdanov, A N; Kishine, J; Kousaka, Y; Miyagawa, M; Koyama, T; Akimitsu, J; Koyama, Ts; Harada, K; Mori, S; McGrouther, D; Lamb, R; Krajnak, M; McVitie, S; Stamps, R L; Inoue, K
2016-08-19
Theoretical analysis and Lorentz transmission electron microscopy (LTEM) investigations in an FeGe wedge demonstrate that chiral twists arising near the surfaces of noncentrosymmetric ferromagnets [Meynell et al., Phys. Rev. B 90, 014406 (2014)] provide a stabilization mechanism for magnetic Skyrmion lattices and helicoids in cubic helimagnet nanolayers. The magnetic phase diagram obtained for freestanding cubic helimagnet nanolayers shows that magnetization processes differ fundamentally from those in bulk cubic helimagnets and are characterized by the first-order transitions between modulated phases. LTEM investigations exhibit a series of hysteretic transformation processes among the modulated phases, which results in the formation of the multidomain patterns.
Comparison of cubic B-spline and Zernike-fitting techniques in complex wavefront reconstruction
Ares, M.; Royo, S
2006-09-20
We analyze an alternative to classical Zernike fitting based on the cubic B-spline model, and compare the strengths and weaknesses of each representation over a set of different wave fronts that cover a wide range of shape complexity. The results obtained show that a Zernike low-degree polynomial expansion or a cubic B-spline with a low number of breakpoints are the best choices for fitting simple wave fronts, whereas the cubic B-spline approach performs much better when more complex wave fronts are involved.The effect of noise level in the fit quality for the different wave fronts is also studied.
Mechanism of the body-centered cubic--hexagonal close-packed phase transition in iron.
Bassett, W A; Huang, E
1987-11-06
The transition from body-centered cubic to hexagonal close-packed phase in iron has been studied in a diamond anvil cell with synchrotron radiation. The hexagonal close-packed phase, when it first appears, has a ratio of lattice parameters that is significantly larger than normal. This is attributed to a displacive mechanism that causes a distortion of the hexagonal close-packed structure in a body-centered cubic matrix. The hexagonal close-packed phase adjacent to a boundary with the body-centered cubic phase is stretched in the c direction and compressed in the a direction when it first forms.
Segregation and H2 transport rate control in body-centered cubic PdCu membranes.
Yuan, Lixiang; Goldbach, Andreas; Xu, Hengyong
2007-09-20
The H2 permeation of a supported 2 microm thick Pd48Cu52 membrane was investigated between 373 and 909 K at DeltaP=0.1 MPa. The initial H2 flux was 0.3 mol.m(-2).s(-1) at 723 K with an ideal H2/N2 selectivity better than 5000. The membrane underwent a bcc-fcc (body-centered cubic to face-centered cubic) phase transition between 723 and 873 K resulting in compositional segregation. After reannealing at 723 K the alloy layer reverted to a bcc structure although a small fcc fraction remained behind. The mixed-phase morphology was analyzed combining X-ray diffraction with scanning electron microscopy-energy-dispersive spectroscopic analysis (SEM-EDS) measurements, which revealed micrometer-scale Cu-enriched bcc and Cu-depleted fcc domains. The H2 flux JH2 of the fcc Pd48Cu52 single phase layer prevailing above 873 K could be described by an Arrhenius law with JH2=(7.6+/-4.9) mol.m(-2).s(-1) exp[(-32.9+/-4.5) kJ.mol(-1)/(RT)]. The characterization of the H2 flux in the mixed-phase region required two Arrhenius laws, i.e., JH2=(1.35+/-0.14) mol.m(-2).s(-1) exp[(-10.3+/-0.5) kJ.mol(-1)/(RT)] between 523 and ca. 700 K and JH2=(56.1+/-9.3) mol.m(-2).s(-1) exp[(-25.3+/-0.6) kJ.mol(-1)/(RT)] below 454 K. The H2 flux exhibited a square root pressure dependence above 523 K, but the pressure exponent gradually increased to 0.77 upon cooling to 373 K. The activation energy and pressure dependence in the intermediate temperature range are consistent with a diffusion-limited H2 transport, while the changes of these characteristics at lower temperatures indicate a desorption-limited H2 flux. The prevalence of desorption as the permeation rate-limiting step below 454 K is attributed to the pairing of an extraordinarily high hydrogen diffusivity with a marginal hydrogen solubility in bcc PdCu alloys. These result in an acceleration of the bulk diffusion rate and a deceleration of the desorption rate, respectively, allowing the bulk diffusion rate to surpass the desorption rate up to
Zhang, Lei; Zhou, Liang; Wu, Hao Bin; Xu, Rong; Lou, Xiong Wen David
2012-07-16
Kept cubic: MnS microboxes, which act as an anode material for lithium ion batteries, are synthesized by a simple H(2)S gas sulfidation approach (TEM images show porous and hollow microcubes and a microbox). The formation of the single crystals is aided by the intrinsic cubic crystal structure and the nearly cubic shape of the MnCO(3) precursor.
ERIC Educational Resources Information Center
Hawkins, John A.; Rittenhouse, Jeffrey L.; Soper, Linda M.; Rittenhouse, Robert C.
2008-01-01
One of the most important crystal structures adopted by metals is characterized by the "abcabc"...stacking of close-packed layers. This structure is commonly referred to in textbooks as the cubic close-packed (ccp) or face-centered cubic (fcc) structure, since the entire lattice can be generated by replication of a face-centered cubic unit cell…
Two cubic phases in kimzeyite garnet from the type locality Magnet Cove, Arkansas
Antao, Sytle M.; Cruickshank, Laura A.
2016-11-08
The crystal structure of an optically anisotropic kimzeyite garnet from Magnet Cove, Arkansas, USA, where it was first discovered, was refined with the Rietveld method, cubic space group, Ia\\overline 3 d, and monochromatic [λ = 0.41422 (2) Å] synchrotron high-resolution powder X-ray diffraction (HRPXRD) data. The Rietveld refinement reduced χ^{2}and overall
Population II Li-6 as a probe of nucleosynthesis and stellar structure and evolution
NASA Technical Reports Server (NTRS)
Steigman, Gary; Fields, Brian D.; Olive, Keith A.; Schramm, David N.; Walker, Terry P.
1993-01-01
We discuss the importance of Population II Li-6 as a diagnostic for models of primordial nucleosynthesis, cosmic-ray nucleosyntheses in the early Galaxy, and the structure and evolution of metal-poor solar-type stars. The observation of Li-6 in the subdwarf HD 84937 is shown to be consistent with the existing Population II LiBeB data within the context of a simple three-component model: (1) standard big bang nucleosynthesis, (2) Population II cosmic-ray nucleosynthesis, (3) standard (nonrotating) stellar LiBeB depletion. If this interpretation is correct, we predict a potentially detectable boron abundance for this star: about 2 x 10 exp -12. Subsequent Population II LiBeB observations, and in particular further observations of Population II Li-6, are shown to be crucial to our understanding of the primordial and early galactic creation and destruction mechanisms for light elements.
X-ray Structure Refinements and Strain Analysis of Substituted Cubic Lead Pyrochlores Pb
Nalini, G.; Somashekar, R.; Guru Row T. N.
2001-01-01
The phase diagrams in the PbO-Nb{sub 2}O{sub 5} system and the PbO-Ta{sub 2}O{sub 5} system depict pyrochlore structure at certain molar ratios. Compositions Pb{sub 2}Nb{sub 1.51}Pb{sub 0.49}O{sub 6.30} (1), Pb{sub 2}Ta{sub 1.4}Pb{sub 0.6}O{sub 6.21} (2), and Pb{sub 2}Ta{sub 1.25}Pb{sub 0.75}O{sub 6.57} (3) belonging to this family, are refined in the cubic space group Fd{ovr 3}m (Z=8; lattice parameter a=10.762(1), 10.744(1), 10.757(5) {angstrom}, respectively) using the Rietveld refinement approach. The analyses suggest that the B-site is partially occupied by Pb leading to the general formula Pb{sub 2}(M{sub 2-y}Pb{sub y})O{sub 7-{delta}}(0.0 < y < 0.8; M=Nb or Ta). There is an overall broadening observed in the X-ray peak widths in 1, 2, and 3 compared to the Pb-deficient parent phases. It is observed that the X-ray peak widths of 2 is broad, while 3 displays narrow peak widths. It is found via strain analysis that the line broadening observed correlates with the strain in the lattice.
NASA Technical Reports Server (NTRS)
Cody, Regina J.; Romani, Paul N.; Nesbitt, Fred L.; Iannone, Mark A.; Tardy, Dwight C.; Stief, Louis J.
2003-01-01
The column abundances of CH3 observed by the Infrared Space Observatory (ISO) satellite on Saturn and Neptune were lower than predicted by atmospheric photochemical models, especially for Saturn. It has been suggested that the models underestimated the loss of CH3 due to poor knowledge of the rate constant k of the CH3 + CH3 self-reaction at the low temperatures and pressures of these atmospheres. Motivated by this suggestion, we undertook a combined experimental and photochemical modeling study of the CH3 + CH3 reaction and its role in determining planetary CH3 abundances. In a discharge flow-mass spectrometer system, k was measured at T = 155 K and three pressures of He. The results in units of cu cm/molecule/s are k(0.6 Torr) = 6.82 x 10(exp -11), k(1.0 Torr) = 6.98 x 10(exp -11), and k(1.5 Torr) = 6.91 x 10(exp -11). Analytical expressions for k were derived that (1) are consistent with the present laboratory data at T = 155 K, our previous data at T = 202 K and 298 K, and those of other studies in He at T = 296-298 K and (2) have some theoretical basis to provide justification for extrapolation. The derived analytical expressions were then used in atmospheric photochemical models for both Saturn and Neptune. These model results reduced the disparity with observations of Saturn, but not with observations of Neptune. However, the disparity for Neptune is much smaller. The solution to the remaining excess CH3 prediction in the models relative to the ISO observations lies, to a large extent, elsewhere in the CH3 photochemistry or transport, not in the CH3 + CH3 rate.
NASA Astrophysics Data System (ADS)
Zhu, Lei; Sun, Lu; Ge, Qing; Quirk, Roderic P.; Cheng, Stephen Z. D.; Hsiao, Benjamin S.; Sics, Igors; Avila-Orta, Carlos
2004-03-01
Complex phase transformations between bicontinuous cubic and hexagonal cylinder (Hex) phases in a polystyrene-block-poly(ethylene oxide) (PS-b-PEO) diblock copolymer were investigated using small angle X-ray scattering (SAXS), transmission electron microscope (TEM), rheology, and polarized light microscope (PLM). The sample exhibited a typical double gyroid (G) phase, together with a minority plumbers nightmare (P) phase which was only ˜6 vol.% as calculated from the SAXS scattering intensities for each phase. These two bicontinuous cubic phases had the same unit cell dimensions. Under a large-amplitude reciprocating shear, the bicontinuous cubic sample transformed into a single-crystal Hex phase. Annealing this sample at 150 ^oC for 40 min, the Hex phase partially transformed into well-oriented G and P twin structures, as evidenced by two-dimensional synchrotron SAXS experiments. Epitaxial phase transformation relationships between the Hex/G and Hex/P phases were identified. The phase transformations were further confirmed by rheology study and PLM observations. The P phase was metastable with respect to the G phase, and it disappeared when the sample was heated above the order-disorder transition temperature and annealed at 150 ^oC. The mechanism of the Hex arrow G transformation was investigated by TEM. Generally, in a hexagonal cell, three cylinders evolved into left-handed helices, while the other three formed right-handed helices. An intermediate five-fold junction was speculated to facilitate the phase transformation. The Hex -> G phase transformation was observed to follow a nucleation and growth mechanism, and the phase transition zone was less than one unit cell.
NASA Technical Reports Server (NTRS)
Hollis, Brian R.; Horvath, Thomas J.; Berry, Scott A.
2003-01-01
Measurements and predictions of the X-33 turbulent aeroheating environment have been performed at Mach 6, perfect-gas air conditions. The purpose of this investigation was to compare measured turbulent aeroheating levels on smooth models, models with discrete trips, and models with arrays of bowed panels (which simulate bowed thermal protections system tiles) with each other and with predictions from two Navier-Stokes codes, LAURA and GASP. The wind tunnel testing was conducted at free stream Reynolds numbers based on length of 1.8 x 10(exp 6) to 6.1 x 10(exp 6) on 0.0132 scale X-33 models at a = 40-deg. Turbulent flow was produced by the discrete trips and by the bowed panels at ill but the lowest Reynolds number, but turbulent flow on the smooth model was produced only at the highest Reynolds number. Turbulent aeroheating levels on each of the three model types were measured using global phosphor thermography and were found to agree to within .he estimated uncertainty (plus or minus 15%) of the experiment. Computations were performed at the wind tunnel free stream conditions using both codes. Turbulent aeroheating levels predicted using the LAURA code were generally 5%-10% lower than those from GASP, although both sets of predictions fell within the experimental accuracy of the wind tunnel data.
CHARACTERIZATION OF PRECIPITATES IN CUBIC SILICON CARBIDE IMPLANTED WITH 25Mg+ IONS
Jiang, Weilin; Spurgeon, Steven R.; Liu, Jia; Edwards, Danny J.; Schreiber, Daniel K.; Henager, Charles H.; Kurtz, Richard J.; Wang, Yongqiang
2016-09-26
The aim of this study is to characterize precipitates in Mg+ ion implanted and high-temperature annealed cubic silicon carbide using scanning transmission electron microscopy, electron energy loss spectroscopy and atom probe tomography.
Structure of the body-centered cubic phase of lipid systems.
Saludjian, P; Reiss-Husson, F
1980-12-01
A new model is proposed for the structure of the body-centered cubic phase of lipid systems. Infinite rods of polar groups (and water) are arranged with axes parallel to the four cubic [unk]1 1 1[unk] directions. The hydrocarbon chains fill the space between the rods to form a continuous matrix. With this unified topology, the model explains satisfactorily the x-ray diffraction patterns of strontium soaps, lecithin, galactolipids, potassium soaps, and hexadecyltrimethylammonium bromide and explains the transition between cubic/H(II) phases. The paradoxical thermal effects on the lipid cubic phase, in particular the decrease of unit cell dimensions with increasing temperature, can be explained with the proposed model by mechanisms similar to those used for the monodimensional and bidimensional (mesomorphic) phases.
ERIC Educational Resources Information Center
Yamana, Shukichi
1987-01-01
Illustrates the 18 steps to the development of a model of a coordination polyhedron that represents the cubic closest-packed structure. Uses a sealed, empty envelope in developing the model in teaching about stereochemistry. (TW)
Effects of quadratic and cubic nonlinearities on a perfectly tuned parametric amplifier
NASA Astrophysics Data System (ADS)
Neumeyer, S.; Sorokin, V. S.; Thomsen, J. J.
2017-01-01
We consider the performance of a parametric amplifier with perfect tuning (two-to-one ratio between the parametric and direct excitation frequencies) and quadratic and cubic nonlinearities. A forced Duffing-Mathieu equation with appended quadratic nonlinearity is considered as the model system, and approximate analytical steady-state solutions and corresponding stabilities are obtained by the method of varying amplitudes. Some general effects of pure quadratic, and mixed quadratic and cubic nonlinearities on parametric amplification are shown. In particular, the effects of mixed quadratic and cubic nonlinearities may generate additional amplitude-frequency solutions. In this case an increased response and a more phase sensitive amplitude (phase between excitation frequencies) is obtained, as compared to the case with either pure quadratic or cubic nonlinearity. Furthermore, jumps and bi-stability in the amplitude-phase characteristics are predicted, supporting previously reported experimental observations.
Effect of Percolation on the Cubic Susceptibility of Metal Nanoparticle Composites
NASA Technical Reports Server (NTRS)
Smith, David D.; Bender, Matthew W.; Boyd, Robert W.
1998-01-01
Generalized two-dimensional and three-dimensional Maxwell Garnett and Bruggeman geometries reveal that a sign reversal in the cubic susceptibility occurs for metal nanoparticle composites near the percolation threshold.
Adaptive solution of the biharmonic problem with shortly supported cubic spline-wavelets
NASA Astrophysics Data System (ADS)
Černá, Dana; Finěk, Václav
2012-09-01
In our contribution, we design a cubic spline-wavelet basis on the interval. The basis functions have small support and wavelets have vanishing moments. We show that stiffness matrices arising from discretization of the two-dimensional biharmonic problem using a constructed wavelet basis have uniformly bounded condition numbers and these condition numbers are very small. We compare quantitative behavior of adaptive wavelet method with a constructed basis and other cubic spline-wavelet bases, and show the superiority of our construction.
NASA Technical Reports Server (NTRS)
Park, Yeonjoon (Inventor); Choi, Sang H. (Inventor); King, Glen C. (Inventor)
2011-01-01
Hetero-epitaxial semiconductor materials comprising cubic crystalline semiconductor alloys grown on the basal plane of trigonal and hexagonal substrates, in which misfit dislocations are reduced by approximate lattice matching of the cubic crystal structure to underlying trigonal or hexagonal substrate structure, enabling the development of alloyed semiconductor layers of greater thickness, resulting in a new class of semiconductor materials and corresponding devices, including improved hetero-bipolar and high-electron mobility transistors, and high-mobility thermoelectric devices.
Strain dependent electron spin dynamics in bulk cubic GaN
Schaefer, A.; Buß, J. H.; Hägele, D.; Rudolph, J.; Schupp, T.; Zado, A.; As, D. J.
2015-03-07
The electron spin dynamics under variable uniaxial strain is investigated in bulk cubic GaN by time-resolved magneto-optical Kerr-rotation spectroscopy. Spin relaxation is found to be approximately independent of the applied strain, in complete agreement with estimates for Dyakonov-Perel spin relaxation. Our findings clearly exclude strain-induced relaxation as an effective mechanism for spin relaxation in cubic GaN.
Log-Cubic Method for Generation of Soil Particle Size Distribution Curve
2013-01-01
Particle size distribution (PSD) is a fundamental physical property of soils. Traditionally, the PSD curve was generated by hand from limited data of particle size analysis, which is subjective and may lead to significant uncertainty in the freehand PSD curve and graphically estimated cumulative particle percentages. To overcome these problems, a log-cubic method was proposed for the generation of PSD curve based on a monotone piecewise cubic interpolation method. The log-cubic method and commonly used log-linear and log-spline methods were evaluated by the leave-one-out cross-validation method for 394 soil samples extracted from UNSODA database. Mean error and root mean square error of the cross-validation show that the log-cubic method outperforms two other methods. What is more important, PSD curve generated by the log-cubic method meets essential requirements of a PSD curve, that is, passing through all measured data and being both smooth and monotone. The proposed log-cubic method provides an objective and reliable way to generate a PSD curve from limited soil particle analysis data. This method and the generated PSD curve can be used in the conversion of different soil texture schemes, assessment of grading pattern, and estimation of soil hydraulic parameters and erodibility factor. PMID:23766698
Log-cubic method for generation of soil particle size distribution curve.
Shang, Songhao
2013-01-01
Particle size distribution (PSD) is a fundamental physical property of soils. Traditionally, the PSD curve was generated by hand from limited data of particle size analysis, which is subjective and may lead to significant uncertainty in the freehand PSD curve and graphically estimated cumulative particle percentages. To overcome these problems, a log-cubic method was proposed for the generation of PSD curve based on a monotone piecewise cubic interpolation method. The log-cubic method and commonly used log-linear and log-spline methods were evaluated by the leave-one-out cross-validation method for 394 soil samples extracted from UNSODA database. Mean error and root mean square error of the cross-validation show that the log-cubic method outperforms two other methods. What is more important, PSD curve generated by the log-cubic method meets essential requirements of a PSD curve, that is, passing through all measured data and being both smooth and monotone. The proposed log-cubic method provides an objective and reliable way to generate a PSD curve from limited soil particle analysis data. This method and the generated PSD curve can be used in the conversion of different soil texture schemes, assessment of grading pattern, and estimation of soil hydraulic parameters and erodibility factor.
Cubic PdNP-based air-breathing cathodes integrated in glucose hybrid biofuel cells
NASA Astrophysics Data System (ADS)
Faggion Junior, D.; Haddad, R.; Giroud, F.; Holzinger, M.; Maduro de Campos, C. E.; Acuña, J. J. S.; Domingos, J. B.; Cosnier, S.
2016-05-01
Cubic Pd nanoparticles (PdNPs) were synthesized using ascorbic acid as a reducing agent and were evaluated for the catalytic oxygen reduction reaction. PdNPs were confined with multiwalled carbon nanotube (MWCNT) dispersions to form black suspensions and these inks were dropcast onto glassy carbon electrodes. Different nanoparticle sizes were synthesized and investigated upon oxygen reduction capacities (onset potential and electrocatalytic current densities) under O2 saturated conditions at varying pH values. Strong evidence of O2 diffusion limitation was demonstrated. In order to overcome oxygen concentration and diffusion limitations in solution, we used a gas diffusion layer to create a PdNP-based air-breathing cathode, which delivered -1.5 mA cm-2 at 0.0 V with an onset potential of 0.4 V. This air-breathing cathode was combined with a specially designed phenanthrolinequinone/glucose dehydrogenase-based anode to form a complete glucose/O2 hybrid bio-fuel cell providing an open circuit voltage of 0.554 V and delivering a maximal power output of 184 +/- 21 μW cm-2 at 0.19 V and pH 7.0.Cubic Pd nanoparticles (PdNPs) were synthesized using ascorbic acid as a reducing agent and were evaluated for the catalytic oxygen reduction reaction. PdNPs were confined with multiwalled carbon nanotube (MWCNT) dispersions to form black suspensions and these inks were dropcast onto glassy carbon electrodes. Different nanoparticle sizes were synthesized and investigated upon oxygen reduction capacities (onset potential and electrocatalytic current densities) under O2 saturated conditions at varying pH values. Strong evidence of O2 diffusion limitation was demonstrated. In order to overcome oxygen concentration and diffusion limitations in solution, we used a gas diffusion layer to create a PdNP-based air-breathing cathode, which delivered -1.5 mA cm-2 at 0.0 V with an onset potential of 0.4 V. This air-breathing cathode was combined with a specially designed phenanthrolinequinone
Photocurrent generation in carbon nanotube/cubic-phase HfO2 nanoparticle hybrid nanocomposites
Galeckas, Augustinas; Salumaa, Martin; Ducroquet, Frédérique; Rauwel, Erwan
2016-01-01
Summary A hybrid material consisting of nonfunctionalized multiwall carbon nanotubes (MWCNTs) and cubic-phase HfO2 nanoparticles (NPs) with an average diameter of 2.6 nm has been synthesized. Free standing HfO2 NPs present unusual optical properties and a strong photoluminescence emission in the visible region, originating from surface defects. Transmission electron microscopy studies show that these NPs decorate the MWCNTs on topological defect sites. The electronic structure of the C K-edge in the nanocomposites was probed by electron energy loss spectroscopy, highlighting the key role of the MWCNT growth defects in anchoring HfO2 NPs. A combined optical emission and absorption spectroscopy approach illustrated that, in contrast to HfO2 NPs, the metallic MWCNTs do not emit light but instead expose their discrete electronic structure in the absorption spectra. The hybrid material manifests characteristic absorption features with a gradual merger of the MWCNT π-plasmon resonance band with the intrinsic defect band and fundamental edge of HfO2. The photoluminescence of the nanocomposites indicates features attributed to combined effects of charge desaturation of HfO2 surface states and charge transfer to the MWCNTs with an overall reduction of radiative recombination. Finally, photocurrent generation under UV–vis illumination suggests that a HfO2 NP/MWCNT hybrid system can be used as a flexible nanodevice for light harvesting applications. PMID:27547626
High pressure-induced distortion in face-centered cubic phase of thallium
NASA Astrophysics Data System (ADS)
Kotmool, Komsilp; Li, Bing; Chakraborty, Sudip; Bovornratanaraks, Thiti; Luo, Wei; Mao, Ho-kwang; Ahuja, Rajeev
2016-10-01
The complex and unusual high-pressure phase transition of III-A (i.e. Al, Ga, and In) metals have been investigated in the last several decades because of their interesting periodic table position between the elements having metallic and covalent bonding. Our present first principles-based electronic structure calculations and experimental investigation have revealed the unusual distortion in face-centered cubic (f.c.c.) phase of the heavy element thallium (Tl) induced by the high pressure. We have predicted body-centered tetragonal (b.c.t) phase at 83 GPa using an evolutionary algorithm coupled with ab initio calculations, and this prediction has been confirmed with a slightly distorted parameter (2 × a - c)/c lowered by 1% using an angle-dispersive X-ray diffraction technique. The density functional theory (DFT)-based calculations suggest that s-p mixing states and the valence-core overlapping of 6s and 5d states play the most important roles for the phase transitions along the pathway h.c.p→b.c.t.
Fukuoka, Hiroshi; Imoto, Hideo; Saito, Taro
1995-10-01
A reduced phase of niobium pyrophosphate containing Nb{sup 4+} has been prepared from the reaction of Nb{sup 6}Cl{sub 14}{center_dot}8H{sub 2}O and phosphoric acid. The X-ray powder diffraction and electron diffraction studies have shown that the compound belongs to the Pa3 space group and has the ZrP{sub 2}O{sub 7} structure with a cubic superstructure (a{prime} = 3a{sub 0}). Magnetic susceptibility was measured for two samples, and the mean oxidation numbers of niobium in them are deduced to by + 4.66 and +4.88. The cell constants of these samples are a = 8.0830(4) and 8.0705(2) {angstrom}, respectively. As the mean oxidation number of niobium increases, the color of the compound varies from brown to gray. When the compound is heated in oxygen, it changes into the known white niobium pyrophosphate, in which all niobium is in the +5 oxidation state. Rietveld refinements indicate that niobium pyrophosphates have defects in the phosphorus sites. The topotactic extraction of the phosphorus atoms in the reaction with oxygen was confirmed by the analysis of phosphorus oxide generated during the reaction.
The effect of voids on the hardening of body-centered cubic Fe
NASA Astrophysics Data System (ADS)
Nakai, Ryosuke; Yabuuchi, Kiyohiro; Nogami, Shuhei; Hasegawa, Akira
2016-04-01
The mechanical properties of metals are affected by various types of defects. Hardening is usually described through the interaction between dislocations and obstacles, in the so-called line tension theory. The strength factor in the line tension theory represents the resistance of a defect against the dislocation motion. In order to understand hardening from the viewpoint of the microstructure, an accurate determination of the strength factor of different types of defects is essential. In the present study, the strength factor of voids in body-centered cubic (BCC) Fe was investigated by two different approaches: one based on the Orowan equation to link the measured hardness with the average size and density of voids, and the other involving direct observation of the interaction between dislocations and voids by transmission electron microscope (TEM). The strength factor of voids induced by ion irradiation estimated by the Orowan equation was 0.6, whereas the strength factor estimated by the direct TEM approach was 0.8. The difference in the strength factors measured by the two approaches is due to the positional relationship between dislocations and voids: the central region of a void is stronger than the tip. Moreover, the gliding plane and the direction of dislocation may also affect the strength factor of voids. This study determined the strength factor of voids in BCC Fe accurately, and suggested that the contribution of voids to the irradiation hardening is larger than that of dislocation loops and Cu-rich precipitates.
Imura, Tomohiro; Ikeda, Shintaro; Aburai, Kenichi; Taira, Toshiaki; Kitamoto, Dai
2013-01-01
The lyotropic phase behavior of the cyclic form surfactin (CS) produced by Bacillus subtilis and its linear derivative in aqueous solution was evaluated for the first time by using polarized light microscopy and small-angle X-ray scattering (SAXS). By polarized light microscopy, the aqueous solutions of CS at the concentrations above 50 wt% were optically anisotropic and gave mosaic textures, suggesting the formation of lamella structures, while those of the linear surfactin (LS) were optically isotropic and no distinctive textures were observed. SAXS diffractograms of the CS solution above 50 wt% clearly gave the three peaks whose spacing ratio of 1: 2: 3, indicating the presence of the lamellar (L(α)) phase, while those of the LS solution gave multiple peaks whose spacing ratios of √2: √3: √4: √6: √8, confirming the bicontinuous cubic (V₂) phase of the symmetry Pn3m. It was also found that the lamellar phase with CS was composed of not ordinary bilayer but interdigitated bilayer with the unusual packing of the acyl chain region. These results clearly demonstrated that the cyclic peptide structure plays a key role in regulating their self-assembly, and naturally occurring CS is likely to form lamellar structure by balancing bulky peptide headgroups with interdigitated packing of their acyl chains.
NASA Astrophysics Data System (ADS)
Yung, Tung-Yuan; Lee, Jer-Yeu; Liu, Ling-Kang
2013-06-01
We present our recent results on Pt nanoparticles on graphene sheets (Pt-NPs/G), a nanocomposite prepared with microwave assistance in ionic liquid 2-hydroxyethanaminiumformate. Preparation of Pt-NPs/G was achieved without the addition of extra reductant such as hydrazine or ethylene glycol. The Pt nanoparticles on graphene have a cubic-like shape (about 60 wt% Pt loading, Pt-NPs/G) and the particle size is 6 ± 3 nm from transmission electron microscopy results. Electrochemical cyclic voltammetry studies in 0.5 M aqueous H2SO4 were performed using Pt-NPs/G and separately, for comparison, using a commercially available electrocatalyst (60 wt% Pt loading, Pt/C). The electrochemical surface ratio of Pt-NPs/G to Pt/C is 0.745. The results of a methanol oxidation reaction (MOR) in 0.5 M aqueous H2SO4 + 1.0 M methanol for the two samples are presented. The MOR results show that the ratios of the current density of oxidation (If) to the current density of reduction (Ib) are 3.49 (Pt-NPs/G) and 1.37 (Pt/C), respectively, with a preference by 2.55 times favoring Pt-NPs/G. That is, the tolerance CO poisoning of Pt-NPs/G is better than that of commercial Pt/C.
Frewin, Christopher L; Locke, Christopher; Saddow, Stephen E; Weeber, Edwin J
2011-01-01
Single crystal silicon carbide (SiC) is a wide band-gap semiconductor which has shown both bio- and hemo-compatibility [1-5]. Although single crystalline SiC has appealing bio-sensing potential, the material has not been extensively characterized. Cubic silicon carbide (3C-SiC) has superior in vitro biocompatibility compared to its hexagonal counterparts [3, 5]. Brain machine interface (BMI) systems using implantable neuronal prosthetics offer the possibility of bi-directional signaling, which allow sensory feedback and closed loop control. Existing implantable neural interfaces have limited long-term reliability, and 3C-SiC may be a material that may improve that reliability. In the present study, we investigated in vivo 3C-SiC biocompatibility in the CNS of C56BL/6 mice. 3C-SiC was compared against the known immunoreactive response of silicon (Si) at 5, 10, and 35 days. The material was examined to detect CD45, a protein tyrosine phosphatase (PTP) expressed by activated microglia and macrophages. The 3C-SiC surface revealed limited immunoresponse and significantly reduced microglia compared to Si substrate.
High pressure-induced distortion in face-centered cubic phase of thallium.
Kotmool, Komsilp; Li, Bing; Chakraborty, Sudip; Bovornratanaraks, Thiti; Luo, Wei; Mao, Ho-Kwang; Ahuja, Rajeev
2016-10-04
The complex and unusual high-pressure phase transition of III-A (i.e. Al, Ga, and In) metals have been investigated in the last several decades because of their interesting periodic table position between the elements having metallic and covalent bonding. Our present first principles-based electronic structure calculations and experimental investigation have revealed the unusual distortion in face-centered cubic (f.c.c.) phase of the heavy element thallium (Tl) induced by the high pressure. We have predicted body-centered tetragonal (b.c.t) phase at 83 GPa using an evolutionary algorithm coupled with ab initio calculations, and this prediction has been confirmed with a slightly distorted parameter ([Formula: see text] × a - c)/c lowered by 1% using an angle-dispersive X-ray diffraction technique. The density functional theory (DFT)-based calculations suggest that s-p mixing states and the valence-core overlapping of 6s and 5d states play the most important roles for the phase transitions along the pathway h.c.p[Formula: see text]f.c.c.[Formula: see text]b.c.t.
Yung, Tung-Yuan; Lee, Jer-Yeu; Liu, Ling-Kang
2013-01-01
We present our recent results on Pt nanoparticles on graphene sheets (Pt-NPs/G), a nanocomposite prepared with microwave assistance in ionic liquid 2-hydroxyethanaminiumformate. Preparation of Pt-NPs/G was achieved without the addition of extra reductant such as hydrazine or ethylene glycol. The Pt nanoparticles on graphene have a cubic-like shape (about 60 wt% Pt loading, Pt-NPs/G) and the particle size is 6 ± 3 nm from transmission electron microscopy results. Electrochemical cyclic voltammetry studies in 0.5 M aqueous H2SO4 were performed using Pt-NPs/G and separately, for comparison, using a commercially available electrocatalyst (60 wt% Pt loading, Pt/C). The electrochemical surface ratio of Pt-NPs/G to Pt/C is 0.745. The results of a methanol oxidation reaction (MOR) in 0.5 M aqueous H2SO4 + 1.0 M methanol for the two samples are presented. The MOR results show that the ratios of the current density of oxidation (If) to the current density of reduction (Ib) are 3.49 (Pt-NPs/G) and 1.37 (Pt/C), respectively, with a preference by 2.55 times favoring Pt-NPs/G. That is, the tolerance CO poisoning of Pt-NPs/G is better than that of commercial Pt/C. PMID:27877574
Prediction of superhard cubic boron-carbon nitride through first principles.
Yuge, Koretaka
2009-10-14
Superhard cubic boron-carbon nitride (c-BNC) in terms of bulk modulus along a composition range of (BN)((1-x))(C(2))(x) (0≤x≤1) is systematically explored by Monte Carlo simulations and cluster expansion techniques based on first-principles calculation. Bulk moduli for the c-BNC ordered structures are reasonably expanded up to quadruplet clusters, indicating that dependence of the bulk modulus on atomic arrangements is not simply attributed to pairwise interactions. A negative correlation can be seen between bulk modulus and formation energies, which is consistent with previous theoretical works. Monte Carlo simulation reveals that all the ordered structures with the highest bulk modulus at each composition exhibit a strong preference of neighboring B-N and C-C atoms, which is consistent with the bond counting rule previously suggested. A composition dependence of these ordered structures can be observed. At a BN-rich composition of x = 0.25, C atoms form a nearest-neighbor network with a hexagonal cluster shape, while at equiatomic and diamond-rich compositions of x = 0.5 and 0.75, B and N atoms form nearest-neighbor networks with a planar shape. At x = 0.875, c-BNC ordered structure with neighboring B and N atoms forming a stereoscopic shape exhibit the highest bulk modulus of 459.3 GPa, which is ∼0.6% smaller than that of diamond.
Electronic band structure and optical properties of the cubic, Sc, Y and La hydride systems
Peterman, D.J.
1980-01-01
Electronic band structure calculations are used to interpret the optical spectra of the cubic Sc, Y and La hydride systems. Self-consistent band calculations of ScH/sub 2/ and YH/sub 2/ were carried out. The respective joint densities of states are computed and compared to the dielectric functions determined from the optical measurements. Additional calculations were performed in which the Fermi level or band gap energies are rigidly shifted by a small energy increment. These calculations are then used to simulate the derivative structure in thermomodulation spectra and relate the origin of experimental interband features to the calculated energy bands. While good systematic agreement is obtained for several spectral features, the origin of low-energy interband transitions in YH/sub 2/ cannot be explained by these calculated bands. A lattice-size-dependent premature occupation of octahedral sites by hydrogen atoms in the fcc metal lattice is suggested to account for this discrepancy. Various non-self-consistent calculations are used to examine the effect of such a premature occupation. Measurements of the optical absorptivity of LaH/sub x/ with 1.6 < x < 2.9 are presented which, as expected, indicate a more premature occupation of the octahedral sites in the larger LaH/sub 2/ lattice. These experimental results also suggest that, in contrast to recent calculations, LaH/sub 3/ is a small-band-gap semiconductor.
High pressure-induced distortion in face-centered cubic phase of thallium
Kotmool, Komsilp; Li, Bing; Chakraborty, Sudip; Bovornratanaraks, Thiti; Luo, Wei; Mao, Ho-kwang; Ahuja, Rajeev
2016-01-01
The complex and unusual high-pressure phase transition of III-A (i.e. Al, Ga, and In) metals have been investigated in the last several decades because of their interesting periodic table position between the elements having metallic and covalent bonding. Our present first principles-based electronic structure calculations and experimental investigation have revealed the unusual distortion in face-centered cubic (f.c.c.) phase of the heavy element thallium (Tl) induced by the high pressure. We have predicted body-centered tetragonal (b.c.t) phase at 83 GPa using an evolutionary algorithm coupled with ab initio calculations, and this prediction has been confirmed with a slightly distorted parameter (2 × a − c)/c lowered by 1% using an angle-dispersive X-ray diffraction technique. The density functional theory (DFT)-based calculations suggest that s–p mixing states and the valence-core overlapping of 6s and 5d states play the most important roles for the phase transitions along the pathway h.c.p→f.c.c.→b.c.t. PMID:27655891
NASA Technical Reports Server (NTRS)
Rinsland, C. P.; Goldman, A.; Murcray, F. J.; David, S. J.; Blatherwick, R. D.; Murcray, D. G.
1994-01-01
About 200 i.r. solar spectra recorded at 0.01/cm resolution on 71 days between November 1991 and July 1993 at the Network for the Detection of Stratospheric Change (NDSC) station at Mauna Loa, Hawaii (latitude 19.53 deg N, longitude 155.58 deg W, elevation 3.459 km) have been analyzed with a nonlinear least-squares spectral fitting technique to study temporal variations in the total column of atmospheric ethane (C2H6) above the site. The results were derived from the analysis of the unresolved nu(sub 7) band (P)Q(sub 3) subbranch at 2976.8/cm. A distinct seasonal cycle is observed with a factor of 2 variation, a maximum total column of 1.16 x 10(exp 16) mol/sq cm at the end of winter, and a minimum total column of 0.53 x 10(exp 16) mol/sq cm at the end of summer. Our measurements are compared with previous observations and model predictions.
Mid-infrared spectroscopic study of crystallization of cubic spinel phase from metakaolin
Ptacek, Petr
2011-10-15
The structural changes during thermal conversion of metakaolinite into cubic spinel phase that was in literature considered as Al-Si spinel or {gamma}-Al{sub 2}O{sub 3} were investigated by mid-infrared spectroscopy (FT-IR) and differential scanning calorimetry (DSC) using medium ordered kaolin with high content of kaolinite. Spectrum features were studied in the mid-infrared region from 4000 to 400 cm{sup -1} as function of fractional conversion that resulted from DSC experiments. The increasing contends of Al-O bonds in the octahedral position (AlO{sub 6}) was observed during thermal transformation. The high ratio of antisymmetric stretching of {identical_to}Si-O-Al= and {identical_to}Si-O-Si{identical_to} bands and bands belonging to stretching of =Al-O bonds in the (AlO{sub 4}) tetrahedra and (AlO{sub 6}) octahedra decreases exponentially with fractional conversion. The antisymmetric stretching band of {identical_to}Si-O-Si{identical_to} bond in the (SiO{sub 4}) tetrahedra becomes more expressive due to formation of amorphous SiO{sub 2} phase. - Graphical abstract: The thermal conversion of metakaolinite into spinel phase was investigated by mid-infrared spectroscopy to found relationship between bands features and fractional convesrion. Highlights: > Formation of spinel phase from metakaolinite was studied by FT-IR. > Relationship between spectrum features and fractional conversion was investigated. > Intensity ratios of (AlO{sub 4}) and (AlO{sub 6}) decreases exponentially. > Antisymmetric stretching of (SiO{sub 4}) becomes more expressive during transformation.
Chong, Ketpin; Tan, Olivia Li Ling; Almsherqi, Zakaria A; Lin, Qingsong; Kohlwein, Sepp D; Deng, Yuru
2015-03-01
Biological membranes with cubic symmetry are a hallmark of virus-infected or diseased cells. The mechanisms of formation and specific cellular functions of cubic membranes, however, are unclear. The best-documented cubic membrane formation occurs in the free-living giant amoeba Chaos carolinense. In that system, mitochondrial inner membranes undergo a reversible structural change from tubular to cubic membrane organization upon starvation of the organism. As a prerequisite to further analyze the structural and functional features of cubic membranes, we adapted protocols for the isolation of mitochondria from starved amoeba and have identified buffer conditions that preserve cubic membrane morphology in vitro. The requirement for high concentration of ion-chelating agents in the isolation media supports the importance of a balanced ion milieu in establishing and maintaining cubic membranes in vivo.
NASA Technical Reports Server (NTRS)
Liechty, Derek S.
2008-01-01
An experimental wind tunnel program is being conducted in support of an Agency wide effort to develop a replacement for the Space Shuttle and to support the NASA s long-term objective of returning to the moon and then on to Mars. This paper documents experimental measurements made on several scaled ceramic heat transfer models of the proposed Crew Exploration Vehicle. Global heat transfer images and heat transfer distributions obtained using phosphor thermography were used to infer interference heating on the Crew Exploration Vehicle Cycle 1 heat shield from local protuberances and penetrations for both laminar and turbulent heating conditions. Test parametrics included free stream Reynolds numbers of 1.0x10(exp 6)/ft to 7.25x10(exp 6)/ft in Mach 6 air at a fixed angle-of-attack. Single arrays of discrete boundary layer trips were used to trip the boundary layer approaching the protuberances/penetrations to a turbulent state. Also, the effects of three compression pad diameters, two radial locations of compression pad/tension tie location, compression pad geometry, and rotational position of compression pad/tension tie were examined. The experimental data highlighted in this paper are to be used to validate CFD tools that will be used to generate the flight aerothermodynamic database. Heat transfer measurements will also assist in the determination of the most appropriate engineering methods that will be used to assess local flight environments associated with protuberances/penetrations of the CEV thermal protection system.
Gonzales, Matthew J.; Sturgeon, Gregory; Krishnamurthy, Adarsh; Hake, Johan; Jonas, René; Stark, Paul; Rappel, Wouter-Jan; Narayan, Sanjiv M.; Zhang, Yongjie; Segars, W. Paul; McCulloch, Andrew D.
2013-01-01
High-order cubic Hermite finite elements have been valuable in modeling cardiac geometry, fiber orientations, biomechanics, and electrophysiology, but their use in solving three-dimensional problems has been limited to ventricular models with simple topologies. Here, we utilized a subdivision surface scheme and derived a generalization of the “local-to-global” derivative mapping scheme of cubic Hermite finite elements to construct bicubic and tricubic Hermite models of the human atria with extraordinary vertices from computed tomography images of a patient with atrial fibrillation. To an accuracy of 0.6 millimeters, we were able to capture the left atrial geometry with only 142 bicubic Hermite finite elements, and the right atrial geometry with only 90. The left and right atrial bicubic Hermite meshes were G1 continuous everywhere except in the one-neighborhood of extraordinary vertices, where the mean dot products of normals at adjacent elements were 0.928 and 0.925. We also constructed two biatrial tricubic Hermite models and defined fiber orientation fields in agreement with diagrammatic data from the literature using only 42 angle parameters. The meshes all have good quality metrics, uniform element sizes, and elements with aspect ratios near unity, and are shared with the public. These new methods will allow for more compact and efficient patient-specific models of human atrial and whole heart physiology. PMID:23602918
Gonzales, Matthew J; Sturgeon, Gregory; Krishnamurthy, Adarsh; Hake, Johan; Jonas, René; Stark, Paul; Rappel, Wouter-Jan; Narayan, Sanjiv M; Zhang, Yongjie; Segars, W Paul; McCulloch, Andrew D
2013-07-01
High-order cubic Hermite finite elements have been valuable in modeling cardiac geometry, fiber orientations, biomechanics, and electrophysiology, but their use in solving three-dimensional problems has been limited to ventricular models with simple topologies. Here, we utilized a subdivision surface scheme and derived a generalization of the "local-to-global" derivative mapping scheme of cubic Hermite finite elements to construct bicubic and tricubic Hermite models of the human atria with extraordinary vertices from computed tomography images of a patient with atrial fibrillation. To an accuracy of 0.6 mm, we were able to capture the left atrial geometry with only 142 bicubic Hermite finite elements, and the right atrial geometry with only 90. The left and right atrial bicubic Hermite meshes were G1 continuous everywhere except in the one-neighborhood of extraordinary vertices, where the mean dot products of normals at adjacent elements were 0.928 and 0.925. We also constructed two biatrial tricubic Hermite models and defined fiber orientation fields in agreement with diagrammatic data from the literature using only 42 angle parameters. The meshes all have good quality metrics, uniform element sizes, and elements with aspect ratios near unity, and are shared with the public. These new methods will allow for more compact and efficient patient-specific models of human atrial and whole heart physiology.
NASA Technical Reports Server (NTRS)
Everhart, Joel L.; Ashby, George C., Jr.; Monta, William J.
1992-01-01
A propulsion/airframe integration experiment conducted in the NASA Langley 20-Inch Mach 6 Tunnel using a 16.8-in.-long version of the Langley Test Technique Demonstrator configuration with simulated scramjet propulsion is described. Schlieren and vapor screen visualization of the nozzle flow field is presented and correlated with pitot-pressure flow-field surveys. The data were obtained at nominal free-stream conditions of Re = 2.8 x 10 exp 6 and a nominal engine total pressure of 100 psia. It is concluded that pitot-pressure surveys coupled to schlieren and vapor-screen photographs, and oil flows have revealed flow features including vortices, free shear layers, and shock waves occurring in the model flow field.
Structural and magnetic properties of a chemically ordered face-centered-cubic (111) Mn alloy film
NASA Astrophysics Data System (ADS)
Zhou, Zhuowei; Li, Qiangyong; Venus, D.
2006-04-01
A 4 ML Ni/W(110) substrate is used to establish a (111) face-centered-cubic (fcc) template upon which 3 ML of Fe is deposited and annealed to 580 K to form a substrate with very good short and long range fcc (111) order, that is Fe rich at the surface. Mn alloy films are formed by annealing a subsequent Mn deposit of 0.3-1.6 ML. Low-energy electron diffraction (LEED), Auger electron spectroscopy (AES), and directional AES show that an ordered alloy is not formed until an annealing temperature of 580 K, upon which a multilayer alloy with a P(23×23)R30° LEED pattern is created. The alloy films formed from 0.3 to 0.5 ML of Mn have magnetic properties similar to the FeNi substrate. Hysteresis loops and ac-susceptibility curves measured using the Kerr effect give square loops with a ferromagnetic moment along the in-plane fcc [-211] direction and a Curie temperature TC of about 460 K. There is an increase in coercive field likely due to the inhomogeneities introduced by the Mn. Alloy films formed from 0.8 to 1.6 ML of Mn show a marked increase in the width of the susceptibility peak, and a decrease in the peak temperature. The hysteresis loop becomes slanted with a reduced coercive field. The measurements are consistent with a paramagnetic or antiferromagnetic Mn alloy forming an uneven interface within the FeNi film, so that the remaining FeNi film has a wide distribution in TC.
Wu, L; Chen, X L; Li, H; He, M; Xu, Y P; Li, X Z
2005-09-05
A series of novel borates, MM'4(BO3)3 (M = Li, M' = Sr; M = Na, M' = Sr, Ba), have been successfully synthesized by standard solid-state reaction. The crystal structures have been determined from powder X-ray diffraction data. They crystallize in the cubic space group Iad with large lattice parameters: a = 14.95066(5) A for LiSr4(BO3)3, a = 15.14629(6) A for NaSr4(BO3)3, and a = 15.80719(8) A for NaBa4(BO3)3. The structure was built up from 64 small cubic grids, in which the M' atoms took up the corner angle and the BO3 triangles or MO6 cubic octahedra filled in the interspaces. The isolated [BO3]3- anionic groups are perpendicular to each other, distributed along three 100 directions. The anisotropic polarizations were counteracting, forming an isotropic crystal. Sr and Ba atoms were found to be completely soluble in the solid solution NaSr(4-)xBax(BO3)3 (0 < or = x < or = 4). The photoluminescence of samples doped with the ions Eu2+ and Eu3+ was studied, and effective yellow and red emission was detected, respectively. The results are consistent with the crystallographic study. The DTA and TGA curves of them show that they are chemically stable and congruent melting compounds.
NASA Technical Reports Server (NTRS)
Alexander, Michael G.; Anders, Scott G.; Johnson, Stuart K.
2005-01-01
A wind tunnel test was conducted on a six percent thick slightly cambered elliptical circulation control airfoil with both upper and lower surface blowing. Parametric evaluations of jet slot heights and Coanda surface shapes were conducted at mass flow coefficients (C(sub mu)) from 0.0 to 0.12. The test data was acquired in the NASA Langley Transonic Dynamics Tunnel at Mach numbers of 0.8 and 0.3 at Reynolds numbers per foot of 1.05 x 10(exp 6) and 2.43 x 10(exp 5) respectively. For the transonic condition, (Mach = 0.8 at alpha = +3 deg), it was generally found that the smaller slot and larger Coanda surface were more effective overall than other slot/Coanda surface combinations. Generally it was found at Mach = 0.3 at alpha = 6 deg that the smaller slot and smaller Coanda surface were more effective overall than other slot/Coanda surface combinations.
Cubic zirconia as a high-quality facet coating for semiconductor lasers
NASA Astrophysics Data System (ADS)
Chin, A. K.; Satyanarayan, A.; Zarrabi, J. H.; Vetterling, W.
1988-08-01
In this paper we describe the properties of high-quality, semiconductor laser facet coatings based on yttria-stabilizied cubic zirconia (90-m% ZrO2/10-m% Y2O3). We have found that cubic zirconia films can be reproducibly deposited by electron-beam evaporation with an index of refraction of 1.98 at 6328 Å, almost ideal for use as a single-layer antireflection coating for GaAs/GaAlAs-based lasers. ZrO2 has a monoclinic crystal structure at room temperature, but changes to tetragonal, hexagonal, and cubic phases upon heating to higher temperatures. However, the addition of the Y2O3 stabilizes ZrO2 in the cubic form, thus allowing electron-beam deposition of thin films of this material to be more controllable and reproducible without the usual addition of oxygen into the vacuum chamber during deposition. Preliminary aging tests of high-power GaAs/GaAlAs lasers show that cubic zirconia films suppress the photo-enhanced oxidation of laser facets that degrades device performance.
Dislocation mechanism for transformation between cubic ice Ic and hexagonal ice Ih
NASA Astrophysics Data System (ADS)
Hondoh, T.
2015-11-01
Cubic ice Ic is metastable, yet can form by the freezing of supercooled water, vapour deposition at low temperatures and by depressurizing high-pressure forms of ice. Its structure differs from that of common hexagonal ice Ih in the order its molecular layers are stacked. This stacking order, however, typically has considerable disorder; that is, not purely cubic, but alternating in hexagonal and cubic layers. In time, stacking-disordered ice gradually decreases in cubicity (fraction having cubic structure), transforming to hexagonal ice. But, how does this disorder originate and how does it transform to hexagonal ice? Here we use numerical data on dislocations in hexagonal ice Ih to show that (1) stacking-disordered ice (or Ic) can be viewed as fine-grained polycrystalline ice with a high density of extended dislocations, each a widely extended stacking fault bounded by partial dislocations, and (2) the transformation from ice Ic to Ih is caused by the reaction and motion of these partial dislocations. Moreover, the stacking disorder may be in either a higher stored energy state consisting of a sub-boundary network arrangement of partial dislocations bounding stacking faults, or a lower stored energy state consisting of a grain structure with a high density of stacking faults, but without bounding partial dislocations. Each state transforms to Ih differently, with a duration to fully transform that strongly depends on temperature and crystal grain size. The results are consistent with the observed transformation rates, transformation temperatures and wide range in heat of transformation.
Advanced CUBIC protocols for whole-brain and whole-body clearing and imaging.
Susaki, Etsuo A; Tainaka, Kazuki; Perrin, Dimitri; Yukinaga, Hiroko; Kuno, Akihiro; Ueda, Hiroki R
2015-11-01
Here we describe a protocol for advanced CUBIC (Clear, Unobstructed Brain/Body Imaging Cocktails and Computational analysis). The CUBIC protocol enables simple and efficient organ clearing, rapid imaging by light-sheet microscopy and quantitative imaging analysis of multiple samples. The organ or body is cleared by immersion for 1-14 d, with the exact time required dependent on the sample type and the experimental purposes. A single imaging set can be completed in 30-60 min. Image processing and analysis can take <1 d, but it is dependent on the number of samples in the data set. The CUBIC clearing protocol can process multiple samples simultaneously. We previously used CUBIC to image whole-brain neural activities at single-cell resolution using Arc-dVenus transgenic (Tg) mice. CUBIC informatics calculated the Venus signal subtraction, comparing different brains at a whole-organ scale. These protocols provide a platform for organism-level systems biology by comprehensively detecting cells in a whole organ or body.
NMR studies on polyphosphide Ce6Ni6P17
NASA Astrophysics Data System (ADS)
Koyama, T.; Yamada, H.; Ueda, K.; Mito, T.; Aoyama, Y.; Nakano, T.; Takeda, N.
2016-02-01
We report the result of 31P nuclear magnetic resonance (NMR) studies on Ce6Ni6P17. The observed NMR spectra show a Lorentzian-type and an asymmetric shapes, reflecting the local symmetry around each P site in the cubic unit cell. We have identified the observed NMR lines corresponding to three inequivalent P sites and deduced the temperature dependence of the Knight shift for each site. The Knight shifts increase with decreasing temperature down to 1.5 K, indicating a localized spin system of Ce6Ni6P17. Antiferromagnetic correlation between 4f spins is suggested from the negative sign of the Weiss-temperature.
NASA Astrophysics Data System (ADS)
Kudryavtsev, Y. V.; Perekos, A. E.; Uvarov, N. V.; Kolchiba, M. R.; Synoradzki, K.; Dubowik, J.
2016-05-01
Magnetic and transport properties of near stoichiometric metastable FexMnyGaz alloys (46 ≤ x ≤ 52, 17 ≤ y ≤ 25, 26 ≤ z ≤ 30) with face-centered cubic (FCC), body-centered cubic (BCC), and two-phase (FCC + BCC) structures are investigated. The experimental results are analyzed in terms of first-principles calculations of stoichiometric Fe2MnGa alloy with the L21, L12, and the tetragonally distorted L21 structural orderings. It is shown that the pure BCC and FCC phases have distinct magnetic and transport properties. Two-phase Fe2MnGa alloys have magnetic and transport properties typical of the mixed BCC and FCC phases. Among the investigated alloys, Fe46Mn24Ga30 has a martensitic transformation accompanied with significant changes of its magnetic and transport properties.
Aughterson, Robert D.; Lumpkin, Gregory R.; Reyes, Massey de los; Sharma, Neeraj; Ling, Christopher D.; Gault, Baptiste; Smith, Katherine L.; Avdeev, Maxim; Cairney, Julie M.
2014-05-01
A series of single phase compounds with nominal stoichiometry Sm{sub (x)}Yb{sub (2−x)}TiO{sub 5} (x=2, 1.4, 1, 0.6, and 0) have been successfully fabricated to generate a range of crystal structures covering the most common polymorphs previously discovered in the Ln{sub 2}TiO{sub 5} series (Ln=lanthanides and yttrium). Four of the five samples have not been previously fabricated in bulk, single phase form so their crystal structures are refined and detailed using powder synchrotron and single crystal x-ray diffraction, neutron diffraction and transmission electron microscopy. Based on the phase information from diffraction data, there are four crystal structure types in this series; orthorhombic Pnma, hexagonal P6{sub 3}/mmc, cubic (pyrochlore-like) Fd-3m and cubic (fluorite-like) Fm-3m. The cubic materials show modulated structures with variation between long and short range ordering and the variety of diffraction techniques were used to describe these complex crystal structure types. - Graphical abstract: A high resolution image of the compound Sm{sub 0.6}Yb{sub 1.4}TiO{sub 5} showing contrast from lattice fringes and the corresponding fast Fourier transform (FFT) of the HREM image with pyrochlore related diffraction spots marked “P” and fluorite marked “F”. The crystal is oriented down the [1 1 0] zone axis based on the Fd-3m structure. The ideal crystal structure (no vacancies) of the cubic, pyrochlore-like (Sm{sub 0.6}Yb{sub 1.4}TiO{sub 5}). - Highlights: • First fabrication of bulk single-phase material with stoichiometry Sm{sub 2}TiO{sub 5}. • Systematic study of crystal structure types within Ln{sub 2}TiO{sub 5} series (Ln=lanthanides). • A novel technique using IFFT of HREM images to study cubic structures.
Stability of a new cubic monoxide of Thorium under pressure
Sun, Weiwei; Luo, Wei; Ahuja, Rajeev
2015-01-01
Density functional theory has been applied to elucidate the stability of thorium monoxide (ThO). It is found out that the pressure can stabilize the rocksalt phase of ThO, and the transition pressure is estimated between 14 and 22 GPa. The stability of ThO can be attributed due to the gradually filling 5f orbitals at the expense of 7s and 6d electrons in Th metal. For ThO, the pressure induces stronger Th-O bond reflected by the newly established 6d-2p hybridization which is the dominant cause of its stability. The phonon dispersion curves of the rocksalt phase show the positive frequencies which indicates its dynamical stability. Our successful prediction of the stabilization of the metallic ThO has proposed a route to synthesize novel actinide monoxides. PMID:26337015
Meridional Variations of C2H2 and C2H6 in Jupiter's Atmosphere from Cassini CIRS Infrared Spectra
NASA Technical Reports Server (NTRS)
Nixon, C. A.; Achterberg, R. K.; Conrath, B. J.; Irwin, P. G. J.; Fouchet, T.; Parrish, P. D.; Romani, P. N.; Abbas, M.; LeClair, A.; Strobel, D.
2004-01-01
Hydrocarbons such as acetylene (C2H2) and ethane (C2H6) are important tracers in Jupiter's atmosphere, constraining our models of the chemical and dynamical processes. However, our knowledge of the vertical and meridional variations of their abundances has remained sparse. During the flyby of the Cassini spacecraft in December 2000, the Composite Infrared Spectrometer (CIRS) instrument was used to map the spatial variation of emissions from 10-1400 cm(sup -1) (1000-7 microns). In this paper we analyze a zonally-averaged set of CIRS spectra taken at the highest (0.5 cm(sup -1)) resolution, to infer atmospheric temperatures in the stratosphere at 0.5-20 mbar via the v4 band of CH4, and in the troposphere at 150-400 mbar, via the H2 absorption at 600-800 cm(sup -1). Simultaneously, we retrieve the abundances of C2H2 and C2H6 via the v5 and vg bands respectively. Tropospheric absorption and stratospheric emission are highly anti-correlated at the CIRS resolution, introducing a non-uniqueness into the retrievals, such that vertical gradient and column abundance cannot both be found without additional constraints. Assuming profile gradients from photochemical calculations, we show that the column abundance of C2H2 decreases sharply towards the poles by a factor approximately 4, while C2H6 is unchanged in the north and increasing in the south, by a factor approximately 1.8. An explanation for the meridional trends is proposed in terms of a combination of photochemistry and dynamics. Poleward, the decreasing UV flux is predicted to decrease the abundances of C2H2 and C2H6 by factors 2.7 and 3.5 respectively at a latitude 70 deg. However, the lifetime of C2H6 in the stratosphere (5 x 10(exp 9)) is much longer than the dynamical timescale for meridional motions inferred from SL-9 debris (5 x 10(exp 8 s)), and therefore the constant or rising abundance towards high latitudes likely indicates that meridional mixing dominates over photochemical effects. For C2H2, the opposite
Quasiparticle energies for cubic BN, BP, and BAs
Surh, M.P.; Louie, S.G.; Cohen, M.L. Materials Sciences Division, Lawrence Berkeley Laboratory, Berkeley, California 94720)
1991-04-15
Electronic excitation energies at the high-symmetry points {Gamma}, {ital X}, and {ital L} are obtained for zinc-blende-structure BN, BP, and BAs in the {ital GW} approximation using a model dielectric function. A model for the static screening matrix makes use of the {ital ab} {ital initio} ground-state charge density and either experimental values or empirical estimates for {epsilon}{sub {infinity}}, the electronic contribution to the macroscopic dielectric constant. Wave functions from an {ital ab} {ital initio} local-density-approximation calculation with norm-conserving pseudopotentials are employed along with the self-consistent quasiparticle spectrum to obtain the energy-dependent one-particle Green function {ital G}. The minimum band gaps are found to be 6.3, 1.9, and 1.6 eV for BN, BP, and BAs, respectively, in close agreement with existing measurements of 6.1 and 2.0 eV for BN and BP, respectively. The BN direct band gap is predicted to be 11.4 eV versus the experimental value of 14.5 eV, and the BP direct band gap is predicted to be 4.4 eV versus 5.0 eV from experiment.
CVD Diamond, DLC, and c-BN Coatings for Solid Film Lubrication
NASA Technical Reports Server (NTRS)
Miyoshi, Kazuhisa; Murakawa, Masao; Watanabe, Shuichi; Takeuchi, Sadao; Miyake, Shojiro; Wu, Richard L. C.
1998-01-01
The main criteria for judging coating performance were coefficient of friction and wear rate, which had to be less than 0.1 and 10(exp -6) cubic MM /(N*m), respectively. Carbon- and nitrogen-ion-implanted, fine-grain, chemical-vapor-deposited (CVD) diamond and diamondlike carbon (DLC) ion beam deposited on fine-grain CVD diamond met the criteria regardless of environment (vacuum, nitrogen, and air).
Evaluation of closed cubic failure criterion for graphite/epoxy laminates
NASA Technical Reports Server (NTRS)
Tennyson, R. C.; Jiang, Zhiqing
1987-01-01
An analytical method has been developed to ensure closure of the cubic form of the tensor polynomial strength criterion. The intrinsic complexity of the cubic function is such that special conditions must be met to close the failure surface in three-dimensional stress space. These requirements are derived in terms of non-intersecting conditions for asymptotes and an asymptotic plane. To demonstrate the validity of this approach, closed failure surfaces were derived for two graphite/epoxy material systems (3M SP288-T300 and IM7 8551-7). The agreement of test data with this model clearly shows that it is possible to use a higher order cubic failure theory with confidence.
Field theory and anisotropy of a cubic ferromagnet near the Curie point
NASA Astrophysics Data System (ADS)
Kudlis, A.; Sokolov, A. I.
2017-02-01
It is known that critical fluctuations can change the effective anisotropy of a cubic ferromagnet near the Curie point. If the crystal undergoes a phase transition into the orthorhombic phase and the initial anisotropy is not too strong, then the effective anisotropy acquires the universal value A* = v*/ u* at T c, where u* and v* are the coordinates of the cubic fixed point of the renormalization group equations in the scaling equation of state and expressions for nonlinear susceptibilities. Using the pseudo-ɛ-expansion method, we find the numerical value of the anisotropy parameter A at the critical point. Padé resummation of the six-loop pseudo-ɛ-expansions for u*, v*, and A* leads to the estimate A* = 0.13 ± 0.01, giving evidence that observation of anisotropic critical behavior of cubic ferromagnets in physical and computer experiments is entirely possible.
Effect of pressure on itinerant magnetism and spin disorder in cubic FeGe.
Pulikkotil, J J; Auluck, S; Rout, P K; Budhani, R C
2012-03-07
The results of ab initio calculations of the pressure dependence of Fe magnetism in cubic FeGe are presented. We find that when the pressure-volume scale is set by means of generalized gradient approximation total energies and magnetism is described by means of the local density approximation, the critical pressure at which the magnetic phase transition occurs is estimated at ≈18 GPa, which is in good agreement with experiments. Using the disordered local moment method we find a localized to itinerant model cross-over of Fe magnetism in cubic FeGe, as a function of volume. Moreover, our calculations also suggest subtle signatures of longitudinal spin fluctuations in cubic FeGe, and that the stiffness parameter softens with increasing pressure. We associate the retention of metallicity in FeGe under pressure with the spin-disorder scattering. The effect of spin-orbit coupling on the electronic structure is also discussed.
The curvature elastic-energy function of the lipid-water cubic mesophase
NASA Astrophysics Data System (ADS)
Chung, Hesson; Caffrey, Martin
1994-03-01
CELL and lipid membranes are able to bend, as manifested during membrane fusion and the formation of non-lamellar lyotropic mesopbases in water. But there is an energy cost to bending of lipid layers, called the curvature elastic energy. Although the functional form of this energy is known1, a complete quantitative knowledge of the curvature elastic energy, which is central to predicting the relative stability of the large number of phases that lipid membranes can adopt, has been lacking. Here we use X-ray synchrotron diffraction measurements of the variation of lattice parameter with pressure and temperature for the periodic Ia3d (Q230) cubic phase of hydrated monoolein to calculate the complete curvature elastic-energy function for the lipid cubic mesophase. This allows us to predict the stabilities of different cubic and lamellar phases for this system as a function of composition.
Direct visualization of dispersed lipid bicontinuous cubic phases by cryo-electron tomography
Demurtas, Davide; Guichard, Paul; Martiel, Isabelle; Mezzenga, Raffaele; Hébert, Cécile; Sagalowicz, Laurent
2015-01-01
Bulk and dispersed cubic liquid crystalline phases (cubosomes), present in the body and in living cell membranes, are believed to play an essential role in biological phenomena. Moreover, their biocompatibility is attractive for nutrient or drug delivery system applications. Here the three-dimensional organization of dispersed cubic lipid self-assembled phases is fully revealed by cryo-electron tomography and compared with simulated structures. It is demonstrated that the interior is constituted of a perfect bicontinuous cubic phase, while the outside shows interlamellar attachments, which represent a transition state between the liquid crystalline interior phase and the outside vesicular structure. Therefore, compositional gradients within cubosomes are inferred, with a lipid bilayer separating at least one water channel set from the external aqueous phase. This is crucial to understand and enhance controlled release of target molecules and calls for a revision of postulated transport mechanisms from cubosomes to the aqueous phase. PMID:26573367
Vibrational effects on surface energies and band gaps in hexagonal and cubic ice
NASA Astrophysics Data System (ADS)
Engel, Edgar A.; Monserrat, Bartomeu; Needs, Richard J.
2016-07-01
Surface energies of hexagonal and cubic water ice are calculated using first-principles quantum mechanical methods, including an accurate description of anharmonic nuclear vibrations. We consider two proton-orderings of the hexagonal and cubic ice basal surfaces and three proton-orderings of hexagonal ice prism surfaces, finding that vibrations reduce the surface energies by more than 10%. We compare our vibrational densities of states to recent sum frequency generation absorption measurements and identify surface proton-orderings of experimental ice samples and the origins of characteristic absorption peaks. We also calculate zero point quantum vibrational corrections to the surface electronic band gaps, which range from -1.2 eV for the cubic ice basal surface up to -1.4 eV for the hexagonal ice prism surface. The vibrational corrections to the surface band gaps are up to 12% smaller than for bulk ice.
Interaction in equilibrium plasmas of charged macroparticles located in nodes of cubic lattices
NASA Astrophysics Data System (ADS)
Filippov, A. V.
2016-11-01
Interaction of two charged pointlike macroparticles located at nodes of simple cubic (sc), body-centered cubic (bcc) and face-centered cubic (fcc) lattices in an equilibrium plasma is studied within the linearized Poisson-Boltzmann model. It is shown that the boundary shape has a strong influence on the electrostatic interaction between two macroparticles, which switches from repulsion at small interparticle distances to attraction as it approaches the halflength of a computational cell. It is found that in a case of dust particles arranged in the nodes of the sc, bcc and fcc lattices, the electrostatic force acting on them is equal to zero and the nature of the interaction changes from repulsion to attraction; hence, the infinite sc, bcc and fcc lattices of charged dust particles are thermodynamically stable at rather low temperatures.
Testing a generalized cubic Galileon gravity model with the Coma Cluster
Terukina, Ayumu; Yamamoto, Kazuhiro; Okabe, Nobuhiro; Matsushita, Kyoko; Sasaki, Toru E-mail: kazuhiro@hiroshima-u.ac.jp E-mail: matusita@rs.kagu.tus.ac.jp
2015-10-01
We obtain a constraint on the parameters of a generalized cubic Galileon gravity model exhibiting the Vainshtein mechanism by using multi-wavelength observations of the Coma Cluster. The generalized cubic Galileon model is characterized by three parameters of the turning scale associated with the Vainshtein mechanism, and the amplitude of modifying a gravitational potential and a lensing potential. X-ray and Sunyaev-Zel'dovich (SZ) observations of the intra-cluster medium are sensitive to the gravitational potential, while the weak-lensing (WL) measurement is specified by the lensing potential. A joint fit of a complementary multi-wavelength dataset of X-ray, SZ and WL measurements enables us to simultaneously constrain these three parameters of the generalized cubic Galileon model for the first time. We also find a degeneracy between the cluster mass parameters and the gravitational modification parameters, which is influential in the limit of the weak screening of the fifth force.
NASA Astrophysics Data System (ADS)
Ishikawa, Takahiro; Nagara, Hitose; Suzuki, Naoshi; Shimizu, Katsuya
2012-12-01
The crystal structure of the simple cubic phase in calcium is investigated by first-principles molecular dynamics simulations at pressure of 40 GPa and at temperatures of 300 and 10 K. For the k-point sampling over the Brillouin zone, at least 3 × 3 × 3 k-points are required to achieve reliable dynamic behavior of the simulation cell consisting of 4 × 4 × 4 simple cubic primitive cells. As a result of the simulation, a dynamically fluctuating simple cubic lattice emerges at 300 K. The dynamic structure is distorted slightly from the cubic lattice at 10 K, which is consistent with previous experimental observations. A static crystal structure obtained by reducing the particle velocities in the course of the simulation becomes an orthorhombic structure, which is far from the simple cubic structure. Our molecular dynamics study indicates that thermal contribution is crucial for a discussion about the emergence of the simple cubic calcium.
Cubic Phases in Phosphatidylcholine-Cholesterol Mixtures: Cholesterol as Membrane 'Fusogen'
Tenchov, Boris G.; MacDonald, Robert C.; Siegel, David P.
2010-01-18
X-ray diffraction reveals that mixtures of some unsaturated phosphatidylcholines (PCs) with cholesterol (Chol) readily form inverted bicontinuous cubic phases that are stable under physiological conditions. This effect was studied in most detail for dioleoyl PC/Chol mixtures with molar ratios of 1:1 and 3:7. Facile formation of Im3m and Pn3m phases with lattice constants of 30-50nm and 25-30nm, respectively, took place in phosphate-buffered saline, in sucrose solution, and in water near the temperature of the L{alpha}HII transition of the mixtures, as well as during cooling of the HII phase. Once formed, the cubic phases displayed an ability to supercool and replace the initial L{sub {alpha}} phase over a broad range of physiological temperatures. Conversion into stable cubic phases was also observed for mixtures of Chol with dilinoleoyl PC but not for mixtures with palmitoyl-linoleoyl PC or palmitoyl-oleoyl PC, for which only transient cubic traces were recorded at elevated temperatures. A saturated, branched-chain PC, diphytanoyl PC, also displayed a cubic phase in mixture with Chol. Unlike the PEs, the membrane PCs are intrinsically nonfusogenic lipids: in excess water they only form lamellar phases and not any of the inverted phases on their own. Thus, the finding that Chol induces cubic phases in mixtures with unsaturated PCs may have important implications for its role in fusion. In ternary mixtures, saturated PCs and sphingomyelin are known to separate into liquid-ordered domains along with Chol. Our results thus suggest that unsaturated PCs, which are excluded from these domains, could form fusogenic domains with Chol. Such a dual role of Chol may explain the seemingly paradoxical ability of cell membranes to simultaneously form rigid, low-curvature raft-like patches while still being able to undergo facile membrane fusion.
Mirzaei, H R; Pitchford, W S; Verbyla, A P
2011-09-27
Two analyses, cubic and piecewise random regression, were conducted to model growth of crossbred cattle from birth to about two years of age, investigating the ability of a piecewise procedure to fit growth traits without the complications of the cubic model. During a four-year period (1994-1997) of the Australian "Southern Crossbreeding Project", mature Hereford cows (N = 581) were mated to 97 sires of Angus, Belgian Blue, Hereford, Jersey, Limousin, South Devon, and Wagyu breeds, resulting in 1141 steers and heifers born over four years. Data included 13 (for steers) and eight (for heifers) live body weight measurements, made approximately every 50 days from birth until slaughter. The mixed model included fixed effects of sex, sire breed, age (linear, quadratic and cubic), and their interactions between sex and sire breed with age. Random effects were sire, dam, management (birth location, year, post-weaning groups), and permanent environmental effects and for each of these when possible, their interactions with linear, quadratic and cubic growth. In both models, body weights of all breeds increased over pre-weaning period, held fairly steady (slightly flattening) over the dry season then increased again towards the end of the feedlot period. The number of estimated parameters for the cubic model was 22 while for the piecewise model it was 32. It was concluded that the piecewise model was very similar to the cubic model in the fit to the data; with the piecewise model being marginally better. The piecewise model seems to fit the data better at the end of the growth period.
Sun, Jifeng; Mukhopadhyay, Saikat; Subedi, Alaska; ...
2015-03-26
Ge2Sb2Te5 (GST) has been widely used as a popular phase change material. In this study, we show that it exhibits high Seebeck coe cients 200 - 300 μV/K in its cubic crystalline phase (c-GST) at remarkably high p-type doping levels of 1 1019 - 6 1019 cm-3 at room temperature. More importantly, at low temperature (T = 200 K), the Seebeck coe cient was found to exceed 200 μV/K for a doping range 1 1019 - 3.5 1019 cm-3. Given that the lattice thermal conductivity in this phase has already been measured to be extremely low ( 0.7 W/m-K atmore » 300 K), our results suggest the possibility of using c-GST as a low-temperature thermoelectric material.« less
Stem cubic-foot volume tables for tree species in the Delta area. Forest Service research paper
Clark, A.; Souter, R.A.
1996-03-01
Steamwood cubic-foot volume inside bark tables are presented for 13 species and 6 species groups based on equations used to estimate timber sale volumes on national forests in the Delta Area. Tables are based on form class measurement data for 990 trees sampled in the Delta Area and taper data collected across the South. A series of tables is presented for each species based on diameter at breast height (d.b.h.) in combination with total height and height to a 4-inch diameter outside bark (d.o.b.) top. Volume tables are also presented based on diameter outside of the bark (d.o.b.) in combination with height with to a 9-inch d.o.b. top.
Crystal field effects on interionic distance in cubic MgO crystal doped with Fe2+ ions
NASA Astrophysics Data System (ADS)
Ivascu, S.; Gruia, A. S.; Avram, N. M.
2014-10-01
The exchange charge model of crystal field was applied to determine the dependence of the crystal field strength 10Dq on interionic distances R between the Fe2+ impurity ion and O2- ligands in cubic MgO:Fe2+. The obtained results were extrapolated by the power law and was shown that 10Dq depends on R as 1/R, with n=6.3486. The deviations of these values from the value n=5 (predicted by the simple point charge model of crystal field) is explained by the covalent and exchange effects between impurity ion and ligands; the contribution of these effects into the total crystal field strength was considered separately. The 10Dq functions obtained as a result of our calculations were used for estimations of the electron-vibrational constants, Huang-Rhys parameters, and Jahn-Teller stabilization energy, and compared with available literature data.
Residual strength of cracked 7075 T6 Al-alloy sheets under high loading rates
NASA Astrophysics Data System (ADS)
Vasek, A.; Schijve, J.
1995-04-01
Dynamic tests were carried out on long sheet specimens with two collinear cracks. First the ligament between the two cracks fails, which implies that the cracks are linked up to a single crack. Linking up did increase the loading rate (dK/dt) of the outer crack tips up to 2 x 10(exp 4) MPa (sq root) m/s. COD measurements during the fast running crack were made. The residual strength was decreased by about 10 percent as compared to the quasi-static result. Fractographic evidence indicates that a high dK/dt has some effect on the shear lips. It promotes some plane-strain influence, associated with an increased yield stress, due to the high plastic strain rate in the crack tip zone. The results were evaluated in terms of fracture mechanics. The results are bearing on the damage tolerance of aircraft structures built up from 7075-T6 sheet material.
Finite Element Treatment of Vortex States in 3D Cubic Superconductors in a Tilted Magnetic Field
NASA Astrophysics Data System (ADS)
Peng, Lin; Cai, Chuanbing
2017-03-01
The time-dependent Ginzburg-Landau equations have been solved numerically by a finite element analysis for superconducting samples with a cubic shape in a tilted magnetic field. We obtain different vortex patterns as a function of the external magnetic field. With a magnetic field not parallel to the x- or y-axis, the vortices attempt to change their orientation accordingly. Our analysis of the corresponding changes in the magnetic response in different directions can provide information not only about vorticity but also about the three-dimensional vortex arrangement, even about the very subtle changes for the superconducting samples with a cubic shape in a tilted magnetic field.
Three-dimensional skyrmion states in thin films of cubic helimagnets
NASA Astrophysics Data System (ADS)
Rybakov, F. N.; Borisov, A. B.; Bogdanov, A. N.
2013-03-01
A direct three-dimensional minimization of the standard energy functional shows that in thin films of cubic helimagnets, chiral skyrmions are modulated along three spatial directions. The structure of such three-dimensional skyrmions can be thought of as a superposition of conical modulations along the skyrmion axis and double-twist rotation in the perpendicular plane. We show that chiral modulations across the layer thickness radically change the skyrmion energetics and provide a thermodynamical stability of a skyrmion lattice in a broad range of applied magnetic fields. These results disclose a basic physical mechanism underlying the formation of skyrmion states recently observed in nanolayers of cubic helimagnets.
A high pressure optical cell utilizing single crystal cubic zirconia anvil windows
NASA Astrophysics Data System (ADS)
Russell, T. P.; Piermarini, G. J.
1997-04-01
A high pressure optical cell capable of producing pressures up to 13.2 GPa using gem-cut single crystal cubic zirconia (CZ) anvils was developed. Maximum pressures obtainable were found to depend upon the particular pressure transmitting medium and gasket material employed. The cubic zirconia anvil high pressure cell (CZAC) provides advantages over the diamond anvil cell in optical and infrared spectroscopy while still maintaining a substantial pressure capability. To demonstrate these advantages, microRaman, optical fluorescence, and infrared absorption measurements were made on diamond, ruby, and 1,3,5-trinitrohexahydro-1,3,5-triazine samples, respectively, using the CZAC cell under high pressure conditions.
Optical properties of GaAs 2D hexagonal and cubic photonic crystal
Arab, F. Assali, A.; Grain, R.; Kanouni, F.
2015-03-30
In this paper we present our theoretical study of 2D hexagonal and cubic rods GaAs in air, with plan wave expansion (PWE) and finite difference time domain (FDTD) by using BandSOLVE and FullWAVE of Rsoft photonic CAD package. In order to investigate the effect of symmetry and radius, we performed calculations of the band structures for both TM and TE polarization, contour and electromagnetic propagation and transmission spectra. Our calculations show that the hexagonal structure gives a largest band gaps compare to cubic one for a same filling factor.
Conn, Charlotte E.; Ces, Oscar; Mulet, Xavier; Seddon, John M.; Templer, Richard H.; Finet, Stephanie; Winter, Roland
2006-03-17
The liquid crystalline lamellar (L{sub {alpha}}) to double-diamond inverse bicontinuous cubic (Q{sub II}{sup D}) phase transition for the amphiphile monoelaidin in excess water exhibits a remarkable sequence of structural transformations for pressure or temperature jumps. Our data imply that the transition dynamics depends on a coupling between changes in molecular shape and the geometrical and topological constraints of domain size. We propose a qualitative model for this coupling based on theories of membrane fusion via stalks and existing knowledge of the structure and energetics of bicontinuous cubic phases.
Preconditioning cubic spline collocation method by FEM and FDM for elliptic equations
Kim, Sang Dong
1996-12-31
In this talk we discuss the finite element and finite difference technique for the cubic spline collocation method. For this purpose, we consider the uniformly elliptic operator A defined by Au := -{Delta}u + a{sub 1}u{sub x} + a{sub 2}u{sub y} + a{sub 0}u in {Omega} (the unit square) with Dirichlet or Neumann boundary conditions and its discretization based on Hermite cubic spline spaces and collocation at the Gauss points. Using an interpolatory basis with support on the Gauss points one obtains the matrix A{sub N} (h = 1/N).
Kuzmina, M S; Khazanov, E A
2013-10-31
The problem on laser radiation propagation in a birefringent medium is solved with the allowance made for thermally induced linear birefringence under the conditions of cubic nonlinearity. It is shown that at high average and peak radiation powers the degree of isolation in a Faraday isolator noticeably reduces due to the cubic nonlinearity: by more than an order of magnitude when the B-integral is equal to unity. This effect is substantial for pulses with the energy of 0.2 – 3 J, duration of 10 ps to 4 ns and pulse repetition rate of 0.2 – 40 kHz. (components of laser devices)
The quantization of the radii of coordination spheres cubic crystals and cluster systems
NASA Astrophysics Data System (ADS)
Melnikov, G.; Emelyanov, S.; Ignatenko, N.; Ignatenko, G.
2016-02-01
The article deals with the creation of an algorithm for calculating the radii of coordination spheres and coordination numbers cubic crystal structure and cluster systems in liquids. Solution has important theoretical value since it allows us to calculate the amount of coordination in the interparticle interaction potentials, to predict the processes of growth of the crystal structures and processes of self-organization of particles in the cluster system. One option accounting geometrical and quantum factors is the use of the Fibonacci series to construct a consistent number of focal areas for cubic crystals and cluster formation in the liquid.
3D imaging in CUBIC-cleared mouse heart tissue: going deeper
Nehrhoff, Imke; Bocancea, Diana; Vaquero, Javier; Vaquero, Juan José; Ripoll, Jorge; Desco, Manuel; Gómez-Gaviro, María Victoria
2016-01-01
The ability to acquire high resolution 3D images of the heart enables to study heart diseases more in detail. In this work, the CUBIC (clear, unobstructed brain imaging cocktails and computational analysis) clearing protocol was optimized for thick mouse heart sections to enhance the penetration depth of the confocal microscope lasers into the tissue. In addition, the optimized CUBIC clearing of the heart enhances antibody penetration into the tissue by a factor of five. The present protocol enables deep 3D high-quality image acquisition in the heart allowing a much more accurate assessment of the cellular and structural changes that underlie heart diseases. PMID:27699132
3D imaging in CUBIC-cleared mouse heart tissue: going deeper.
Nehrhoff, Imke; Bocancea, Diana; Vaquero, Javier; Vaquero, Juan José; Ripoll, Jorge; Desco, Manuel; Gómez-Gaviro, María Victoria
2016-09-01
The ability to acquire high resolution 3D images of the heart enables to study heart diseases more in detail. In this work, the CUBIC (clear, unobstructed brain imaging cocktails and computational analysis) clearing protocol was optimized for thick mouse heart sections to enhance the penetration depth of the confocal microscope lasers into the tissue. In addition, the optimized CUBIC clearing of the heart enhances antibody penetration into the tissue by a factor of five. The present protocol enables deep 3D high-quality image acquisition in the heart allowing a much more accurate assessment of the cellular and structural changes that underlie heart diseases.
NASA Technical Reports Server (NTRS)
Tennyson, R. C.; Nanyaro, A. P.; Wharram, G. E.
1980-01-01
A comparative failure analysis is presented based on the application of quadratic and cubic forms of the tensor polynomial lamina strength criterion to various composite structural configurations in a plane stress state. Failure loads have been predicted for off-angle laminates under simple loading conditions and for symmetric-balanced laminates subject to varying degrees of biaxial tension, including configurations subject to multimode failures. Some experimental data are also provided to support these calculations. From these results, the necessity of employing a cubic strength criterion to accurately predict the failure of composite laminae is demonstrated.
Degenerate higher order scalar-tensor theories beyond Horndeski up to cubic order
NASA Astrophysics Data System (ADS)
Achour, J. Ben; Crisostomi, M.; Koyama, K.; Langlois, D.; Noui, K.; Tasinato, G.
2016-12-01
We present all scalar-tensor Lagrangians that are cubic in second derivatives of a scalar field, and that are degenerate, hence avoiding Ostrogradsky instabilities. Thanks to the existence of constraints, they propagate no more than three degrees of freedom, despite having higher order equations of motion. We also determine the viable combinations of previously identified quadratic degenerate Lagrangians and the newly established cubic ones. Finally, we study whether the new theories are connected to known scalar-tensor theories such as Horndeski and beyond Horndeski, through conformal or disformal transformations.
Zhang, Lijia; Liu, Bo; Xin, Xiangjun
2015-06-15
A secure optical generalized filter bank multi-carrier (GFBMC) system with carrier-less amplitude-phase (CAP) modulation is proposed in this Letter. The security is realized through cubic constellation-masked method. Large key space and more flexibility masking can be obtained by cubic constellation masking aligning with the filter bank. An experiment of 18 Gb/s encrypted GFBMC/CAP system with 25-km single-mode fiber transmission is performed to demonstrate the feasibility of the proposed method.
NASA Technical Reports Server (NTRS)
Kirkpatrick, J. C.
1976-01-01
A tabulation of selected altitude-correlated values of pressure, density, speed of sound, and coefficient of viscosity for each of six models of the atmosphere is presented in block data format. Interpolation for the desired atmospheric parameters is performed by using cubic spline functions. The recursive relations necessary to compute the cubic spline function coefficients are derived and implemented in subroutine form. Three companion subprograms, which form the preprocessor and processor, are also presented. These subprograms, together with the data element, compose the spline fit atmosphere package. Detailed FLOWGM flow charts and FORTRAN listings of the atmosphere package are presented in the appendix.
NASA Astrophysics Data System (ADS)
Ferrighi, Lara; Frediani, Luca; Ruud, Kenneth
2010-01-01
The theory and an implementation of the solvent contribution to the cubic response function for the polarizable continuum model for multiconfigurational self-consistent field wave functions is presented. The excited-state polarizability of benzene, para-nitroaniline, and nitrobenzene has been obtained from the double residue of the cubic response function calculated in the presence of an acetonitrile and dioxane solvent. The calculated excited-state polarizabilities are compared to results obtained from the linear response function of the explicitly optimized excited states.
Nakatani, Tomotaka; Yoshiasa, Akira; Nakatsuka, Akihiko; Hiratoko, Tatsuya; Mashimo, Tsutomu; Okube, Maki; Sasaki, Satoshi
2016-02-01
A variable-temperature single-crystal X-ray diffraction study of a synthetic BaTiO3 perovskite has been performed over the temperature range 298-778 K. A transition from a tetragonal (P4mm) to a cubic (Pm3m) phase has been revealed near 413 K. In the non-centrosymmetric P4mm symmetry group, both Ti and O atoms are displaced along the c-axis in opposite directions with regard to the Ba position fixed at the origin, so that Ti(4+) and Ba(2+) cations occupy off-center positions in the TiO6 and BaO12 polyhedra, respectively. Smooth temperature-dependent changes of the atomic coordinates become discontinuous with the phase transition. Our observations imply that the cations remain off-center even in the high-temperature cubic phase. The temperature dependence of the mean-square displacements of Ti in the cubic phase includes a significant static component which means that Ti atoms are statistically distributed in the off-center positions.
Heteroepitaxial growth of highly oriented diamond on cubic silicon carbide
Kawarada, H.; Wild, C.; Herres, N.; Locher, R.; Koidl, P.; Nagasawa, H.
1997-04-01
We have deposited epitaxial diamond films with very low angular spread on epitaxial {beta}-phase silicon carbide layers on silicon (001) substrates. From x-ray rocking curve measurements, half-widths of the angular spread of the crystal orientation as low as 0.6{degree} have been determined, which is the smallest value ever reported in heteroepitaxial diamond films and appears to be smaller than those of the {beta}-phase silicon carbide underlayers. The film surface exhibits a roughness of about 100 nm with very few discernible boundaries due to misorientation. The optimization of the bias-enhanced nucleation process and the control of selective growth are the main factors for the improvement of the crystallinity. {copyright} {ital 1997 American Institute of Physics.}
Origin of the Galactic Disk 6.7 kev Line Emission
NASA Technical Reports Server (NTRS)
Churchwell, Ed
1997-01-01
The goal of this program was to determine if the extended FeXXV 6.7 kev line emission might possibly be produced and confined by the hot wind-shocked bubbles to accompany UC HII regions. The main result of this study are: (1) FeXXV is detected in the W3 complex, but at a level that could only explain a small fraction of the galactic disk emission if all UC HII regions emit at about the same intensity as the W3 complex; (2) Two X-ray sources are detected in W3. W3-X 1 coincides with the radio image of this region, but W3-X2 has no radio, optical, or infrared counterpart; (3) There is no evidence for variability of W3-X1 during the period of observations (approx, 40,000 sec); (4) The X-ray spectrum of W3-X1 has no emission shortward of 1 kev, it peaks at approx. 2 kev and show significant emission out to approx. 6 kev. No individual lines are resolved. There is currently no generally accepted theory for extended hard X-ray emission in HII regions. Perhaps the most significant discovery of this program has been the detection of extended hard X-rays and the realization that some entirely new processes must be invoked to understand this; and (5)A minimum (chi)(sup 2) fit of the spectrum implies a H absorbing column of N(sub H) approx, equals to 2.1 x 10(exp 22)/ cm, a temperature of the emitting plasma of 7 x 10(exp 7) K, and a luminosity of approx. equal to 10(33)erg/s.
NASA Astrophysics Data System (ADS)
Cao, Wenwu
1987-09-01
Perovskite compounds, ABX(,3), have been studied both experimentally and theoretically above and below the cubic-tetragonal improper ferroelastic phase transition. The second order elastic constants of Potassium Manganese Fluoride KMnF(,3) were measured as function of temperature in the cubic prototype phase. Along 100 and 110 the two longitudinal modes were measured from 190 K to 430 K, and the two independent transverse modes from 190 K to 350 K. Strong anomalies were observed near the phase transition (T(,c) = 186 K). The three independent pressure derivatives of the elastic constants were measured from 200 K to 400 K and also show anomalous behavior near T(,c). By means of second harmonic generation, the nonlinearity parameter was measured in 100 , 110 and 111 from 298 K to 348 K. In this temperature range, all six independent third order elastic constants have been determined. Above 320 K the second and third order elastic constants show linear temperature dependence. The values pertaining to the static crystal were obtained by linear extrapolation to T = 0 from the high temperature region where the effect of the phase transition has subsided. A Landau-Ginzburg continuum model for the interphase boundaries in the heterotype phase has been developed. It includes nonlinear local terms and nonlocal gradient terms for the three-component primary order parameter (the rotation angles of the BX(,6) octahedra). By means of group theoretical methods, the gradient coefficients have been expressed in terms of the nonlinear dispersion of the soft phonon mode near the R-point. Analytic and numerical kink-type soliton solutions for both antiphase and twin boundaries were obtained. According to this model, the symmetry in the center of the twin boundary should be trigonal (rather than cubic, as for a proper ferroelastic). Numerical application to Strontium Titanate, SrTiO(,3), shows that at T = 0 the domain wall thickness is 12 (ANGSTROM), and the domain wall energy density
Thompson, Corey M.; Blakely, Colin K.; Flacau, Roxana; Greedan, John E.; Poltavets, Viktor V.
2014-11-15
The oxyfluoride SrFeO{sub 2}F has been prepared via a low temperature route involving the infinite-layer SrFeO{sub 2} and XeF{sub 2}. SrFeO{sub 2}F crystallizes in the cubic space group Pm-3m with disordered oxygen and fluorine atoms on the anion site. Recent reports demonstrated that SrFeO{sub 2}F is antiferromagnetic at room temperature and the zero field cooled and field cooled curves diverge at ∼150 K and ∼60 K, suggesting that the material has a spin glassy magnetic state at low temperatures. In this article, variable-temperature neutron diffraction (4–723 K) was performed to clarify the magnetic behavior observed in this material. Neutron powder diffraction measurements confirmed the antiferromagnetic (AFM) ordering of the system at room temperature. Below 710(1) K, the magnetic structure is a G-type AFM structure characterized by a propagation vector k=(1/2 , 1/2 , 1/2 ). The ordered moments on Fe{sup 3+} are 4.35(6)µ{sub B} at 4 K and 4.04(5)µ{sub B} at 290 K. Our results indicate that the cubic structure is retained all the way to base temperature (4 K) in contrast to PbFeO{sub 2}F. These results are compared with those of Pb and Ba analogs which exhibit very similar magnetic behavior. Furthermore, the observation of magnetic reflections at 4 K in the diffraction pattern shows the absence of the previously proposed spin glassy behavior at low temperatures. Previous proposals to explain the ZFC/FC divergences are examined. - Graphical abstract: Variable temperature powder neutron diffraction was employed to follow the evolution of the long range antiferromagnetic state in SrFeO{sub 2}F. - Highlights: • SrFeO{sub 2}F prepared via low temperature route involving SrFeO{sub 2} and XeF{sub 2}. • The cubic structure, Pm-3m, is retained at low temperatures, 4 K. • The magnetic structure is G-type AFM with T{sub N}=710 K and Fe{sup 3+} moment of 4.35µ{sub B}. • A small volume, bulk decoupled, spin glassy domain/cluster mechanism is proposed.
ERIC Educational Resources Information Center
Ogbonnaya, Ugorji I.; Mogari, David L.; Machisi, Eric
2013-01-01
In this study, repeated measures design was employed to compare low performing students' achievements in factoring cubic polynomials using three strategies. Twenty-five low-performing Grade 12 students from a secondary school in Limpopo province took part in the study. Data was collected using achievement test and was analysed using repeated…
Why Do Membranes of Some Unhealthy Cells Adopt a Cubic Architecture?
2016-01-01
Nonlamellar lipid arrangements, including cubosomes, appear in unhealthy cells, e.g., when they are subject to stress, starvation, or viral infection. The bioactivity of cubosomes—nanoscale particles exhibiting bicontinuous cubic structures—versus more common vesicles is an unexplored area due to lack of suitable model systems. Here, glycodendrimercubosomes (GDCs)—sugar-presenting cubosomes assembled from Janus glycodendrimers by simple injection into buffer—are proposed as mimics of biological cubic membranes. The bicontinuous cubic GDC architecture has been demonstrated by electron tomography. The stability of these GDCs in buffer enabled studies on lectin-dependent agglutination, revealing significant differences compared with the vesicular glycodendrimersome (GDS) counterpart. In particular, GDCs showed an increased activity toward concanavalin A, as well as an increased sensitivity and selectivity toward two variants of banana lectins, a wild-type and a genetically modified variant, which is not exhibited by GDSs. These results suggest that cells may adapt under unhealthy conditions by undergoing a transformation from lamellar to cubic membranes as a method of defense. PMID:28058284
Lee, H.; Habas, S.E.; Somorjai, G.A.; Yang, P.
2008-03-20
Binary Pt/Pd nanoparticles were synthesized by localized overgrowth of Pd on cubic Pt seeds for the investigation of electrocatalytic formic acid oxidation. The binary particles exhibited much less self-poisoning and a lower activation energy relative to Pt nanocubes, consistent with the single crystal study.
Cubic Trigonometric B-spline Galerkin Methods for the Regularized Long Wave Equation
NASA Astrophysics Data System (ADS)
Irk, Dursun; Keskin, Pinar
2016-10-01
A numerical solution of the Regularized Long Wave (RLW) equation is obtained using Galerkin finite element method, based on Crank Nicolson method for the time integration and cubic trigonometric B-spline functions for the space integration. After two different linearization techniques are applied, the proposed algorithms are tested on the problems of propagation of a solitary wave and interaction of two solitary waves.
Vibrational renormalisation of the electronic band gap in hexagonal and cubic ice
NASA Astrophysics Data System (ADS)
Engel, Edgar A.; Monserrat, Bartomeu; Needs, Richard J.
2015-12-01
Electron-phonon coupling in hexagonal and cubic water ice is studied using first-principles quantum mechanical methods. We consider 29 distinct hexagonal and cubic ice proton-orderings with up to 192 molecules in the simulation cell to account for proton-disorder. We find quantum zero-point vibrational corrections to the minimum electronic band gaps ranging from -1.5 to -1.7 eV, which leads to improved agreement between calculated and experimental band gaps. Anharmonic nuclear vibrations play a negligible role in determining the gaps. Deuterated ice has a smaller band-gap correction at zero-temperature of -1.2 to -1.4 eV. Vibrations reduce the differences between the electronic band gaps of different proton-orderings from around 0.17 eV to less than 0.05 eV, so that the electronic band gaps of hexagonal and cubic ice are almost independent of the proton-ordering when quantum nuclear vibrations are taken into account. The comparatively small reduction in the band gap over the temperature range 0 - 240 K of around 0.1 eV does not depend on the proton ordering, or whether the ice is protiated or deuterated, or hexagonal, or cubic. We explain this in terms of the atomistic origin of the strong electron-phonon coupling in ice.
Yang, Tao; Zhang, Liqin; Hou, Xinmei; Chen, Junhong; Chou, Kuo-Chih
2016-01-01
Fabrication of eletrochemical sensors based on wide bandgap compound semiconductors has attracted increasing interest in recent years. Here we report for the first time electrochemical nitrite sensors based on cubic silicon carbide (SiC) nanowires (NWs) with smooth surface and boron-doped cubic SiC NWs with fin-like structure. Multiple techniques including scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and electron energy loss spectroscopy (EELS) were used to characterize SiC and boron-doped SiC NWs. As for the electrochemical behavior of both SiC NWs electrode, the cyclic voltammetric results show that both SiC electrodes exhibit wide potential window and excellent electrocatalytic activity toward nitrite oxidation. Differential pulse voltammetry (DPV) determination reveals that there exists a good linear relationship between the oxidation peak current and the concentration in the range of 50–15000 μmoL L−1 (cubic SiC NWs) and 5–8000 μmoL L−1 (B-doped cubic SiC NWs) with the detection limitation of 5 and 0.5 μmoL L−1 respectively. Compared with previously reported results, both as-prepared nitrite sensors exhibit wider linear response range with comparable high sensitivity, high stability and reproducibility. PMID:27109361
Yang, Tao; Zhang, Liqin; Hou, Xinmei; Chen, Junhong; Chou, Kuo-Chih
2016-04-25
Fabrication of eletrochemical sensors based on wide bandgap compound semiconductors has attracted increasing interest in recent years. Here we report for the first time electrochemical nitrite sensors based on cubic silicon carbide (SiC) nanowires (NWs) with smooth surface and boron-doped cubic SiC NWs with fin-like structure. Multiple techniques including scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and electron energy loss spectroscopy (EELS) were used to characterize SiC and boron-doped SiC NWs. As for the electrochemical behavior of both SiC NWs electrode, the cyclic voltammetric results show that both SiC electrodes exhibit wide potential window and excellent electrocatalytic activity toward nitrite oxidation. Differential pulse voltammetry (DPV) determination reveals that there exists a good linear relationship between the oxidation peak current and the concentration in the range of 50-15000 μmoL L(-1) (cubic SiC NWs) and 5-8000 μmoL L(-1) (B-doped cubic SiC NWs) with the detection limitation of 5 and 0.5 μmoL L(-1) respectively. Compared with previously reported results, both as-prepared nitrite sensors exhibit wider linear response range with comparable high sensitivity, high stability and reproducibility.
Chong, Ketpin; Deng, Yuru
2012-01-01
Biological membranes are generally perceived as phospholipid bilayer structures that delineate in a lamellar form the cell surface and intracellular organelles. However, much more complex and highly convoluted membrane organizations are ubiquitously present in many cell types under certain types of stress, states of disease, or in the course of viral infections. Their occurrence under pathological conditions make such three-dimensionally (3D) folded and highly ordered membranes attractive biomarkers. They have also stimulated great biomedical interest in understanding the molecular basis of their formation. Currently, the analysis of such membrane arrangements, which include tubulo-reticular structures (TRS) or cubic membranes of various subtypes, is restricted to electron microscopic methods, including tomography. Preservation of membrane structures during sample preparation is the key to understand their true 3D nature. This chapter discusses methods for appropriate sample preparations to successfully examine and analyze well-preserved highly ordered membranes by electron microscopy. Processing methods and analysis conditions for green algae (Zygnema sp.) and amoeba (Chaos carolinense), mammalian cells in culture and primary tissue cells are described. We also discuss methods to identify cubic membranes by transmission electron microscopy (TEM) with the aid of a direct template matching method and by computer simulation. A 3D analysis of cubic cell membrane topology by electron tomography is described as well as scanning electron microscopy (SEM) to investigate surface contours of isolated mitochondria with cubic membrane arrangement.
CENTER CONDITIONS AND CYCLICITY FOR A FAMILY OF CUBIC SYSTEMS: COMPUTER ALGEBRA APPROACH.
Ferčec, Brigita; Mahdi, Adam
2013-01-01
Using methods of computational algebra we obtain an upper bound for the cyclicity of a family of cubic systems. We overcame the problem of nonradicality of the associated Bautin ideal by moving from the ring of polynomials to a coordinate ring. Finally, we determine the number of limit cycles bifurcating from each component of the center variety.
Observation of an unprecedented body centered cubic micellar mesophase from rod-coil molecules.
Lee, Eunji; Ryu, Ja-Hyoung; Park, Myoung-Hwan; Lee, Myongsoo; Han, Kyung-Hee; Chung, Yeon-Wook; Cho, Byoung-Ki
2007-07-28
We have demonstrated that rod-coil molecules based on a tetra-p-phenylene rod and a poly(propylene oxide) coil self-assemble into an unprecedented body centered cubic micellar structure in the melt, through detailed morphological analysis by X-ray scattering and transmission electron microscopy experiments.
Tlidi, M; Pieroux, D; Mandel, Paul
2003-09-15
We show that coupling diffraction and chromatic dispersion lead to body-centered cubic and hexagonally packed cylinders of dissipative optical crystals in a degenerate optical parametric oscillator. The stabilization of these crystals is a direct consequence of the interaction between the modulational and the quasi-neutral modes.
Magnetic and thermodynamic properties of face-centered cubic Fe-Ni alloys.
Lavrentiev, M Yu; Wróbel, J S; Nguyen-Manh, D; Dudarev, S L
2014-08-14
A model lattice ab initio parameterized Heisenberg-Landau magnetic cluster expansion Hamiltonian spanning a broad range of alloy compositions and a large variety of chemical and magnetic configurations has been developed for face-centered cubic Fe-Ni alloys. The thermodynamic and magnetic properties of the alloys are explored using configuration and magnetic Monte Carlo simulations over a temperature range extending well over 1000 K. The predicted face-centered cubic-body-centered cubic coexistence curve, the phase stability of ordered Fe3Ni, FeNi, and FeNi3 intermetallic compounds, and the predicted temperatures of magnetic transitions simulated as functions of alloy composition agree well with experimental observations. Simulations show that magnetic interactions stabilize the face-centered cubic phase of Fe-Ni alloys. Both the model Hamiltonian simulations and ab initio data exhibit a particularly large number of magnetic configurations in a relatively narrow range of alloy compositions corresponding to the occurrence of the Invar effect.
CENTER CONDITIONS AND CYCLICITY FOR A FAMILY OF CUBIC SYSTEMS: COMPUTER ALGEBRA APPROACH
Ferčec, Brigita; Mahdi, Adam
2013-01-01
Using methods of computational algebra we obtain an upper bound for the cyclicity of a family of cubic systems. We overcame the problem of nonradicality of the associated Bautin ideal by moving from the ring of polynomials to a coordinate ring. Finally, we determine the number of limit cycles bifurcating from each component of the center variety. PMID:24223469
Nature of the cubic to tetragonal phase transition in methylammonium lead iodide perovskite.
Saidi, Wissam A; Choi, Joshua J
2016-10-14
Hybrid organic-inorganic perovskites, as well as the perovskites in general, are known for their phase complexity evidenced by the stabilization of different polymorphs, and thus an understanding of their regions of stability and transitions can be important for their photovoltaic and optoelectronic technologies. Here we use a multiscale approach based on first-principles calculations with van der Waals corrections and classical force-field molecular dynamics to determine the finite-temperature properties of the tetragonal and cubic phases of CH3NH3PbI3. Temperature effects are implicitly included using the quasi-harmonic approximation that can describe anharmonic behavior due to thermal expansion through the dependence of the harmonic frequencies on structural parameters. Our finite-temperature free-energy surfaces predict the lattice and elastic moduli evolution with temperature, and show in particular that the calculated lattice parameters of the cubic and tetragonal phases are to within 1% of experimental values. Further, our results show that the phonons are the major contributing factor for stabilizing the cubic phase at high temperatures mainly due to the low-energy phonon modes that are associated with the inorganic lattice. On the other hand, the configurational entropy due to CH3NH3(+) rotational degrees of freedom is slightly more favored in the cubic phase and amounts to less than 0.2% of the T = 0 K free-energy difference between the two phases.
Nature of the cubic to tetragonal phase transition in methylammonium lead iodide perovskite
NASA Astrophysics Data System (ADS)
Saidi, Wissam A.; Choi, Joshua J.
2016-10-01
Hybrid organic-inorganic perovskites, as well as the perovskites in general, are known for their phase complexity evidenced by the stabilization of different polymorphs, and thus an understanding of their regions of stability and transitions can be important for their photovoltaic and optoelectronic technologies. Here we use a multiscale approach based on first-principles calculations with van der Waals corrections and classical force-field molecular dynamics to determine the finite-temperature properties of the tetragonal and cubic phases of CH3NH3PbI3. Temperature effects are implicitly included using the quasi-harmonic approximation that can describe anharmonic behavior due to thermal expansion through the dependence of the harmonic frequencies on structural parameters. Our finite-temperature free-energy surfaces predict the lattice and elastic moduli evolution with temperature, and show in particular that the calculated lattice parameters of the cubic and tetragonal phases are to within 1% of experimental values. Further, our results show that the phonons are the major contributing factor for stabilizing the cubic phase at high temperatures mainly due to the low-energy phonon modes that are associated with the inorganic lattice. On the other hand, the configurational entropy due to CH3NH3+ rotational degrees of freedom is slightly more favored in the cubic phase and amounts to less than 0.2% of the T = 0 K free-energy difference between the two phases.
NASA Astrophysics Data System (ADS)
Yang, Tao; Zhang, Liqin; Hou, Xinmei; Chen, Junhong; Chou, Kuo-Chih
2016-04-01
Fabrication of eletrochemical sensors based on wide bandgap compound semiconductors has attracted increasing interest in recent years. Here we report for the first time electrochemical nitrite sensors based on cubic silicon carbide (SiC) nanowires (NWs) with smooth surface and boron-doped cubic SiC NWs with fin-like structure. Multiple techniques including scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and electron energy loss spectroscopy (EELS) were used to characterize SiC and boron-doped SiC NWs. As for the electrochemical behavior of both SiC NWs electrode, the cyclic voltammetric results show that both SiC electrodes exhibit wide potential window and excellent electrocatalytic activity toward nitrite oxidation. Differential pulse voltammetry (DPV) determination reveals that there exists a good linear relationship between the oxidation peak current and the concentration in the range of 50-15000 μmoL L-1 (cubic SiC NWs) and 5-8000 μmoL L-1 (B-doped cubic SiC NWs) with the detection limitation of 5 and 0.5 μmoL L-1 respectively. Compared with previously reported results, both as-prepared nitrite sensors exhibit wider linear response range with comparable high sensitivity, high stability and reproducibility.
On the spectral-spatial instability of a light wave in a medium with cubic nonlinearity
Afanas'ev, Anatolii A; Volkov, V M
2003-11-30
Based on the analysis of frequency-nondegenerate four-photon parametric scattering, the spectral-angular dependences of the increments of perturbing modes are obtained in the field of an intense light wave propagating in a medium with cubic nonlinearity. (nonlinear optical phenomena)
Non--Cubic Symmetry of the Electronic Response in AFM Late Transition--Metal Oxides.
NASA Astrophysics Data System (ADS)
Posternak, M.; Baldereschi, A.; Massidda, S.; Resta, R.
1998-03-01
The late transition--metal monoxides (MnO, FeO, CoO, NiO) have the rocksalt structure in their paramagnetic phase, while below the Neel temperature a weak structural distortion accompanies an AFM ordering of type II. Therefore, it is generally assumed that most nonmagnetic (i.e. spin--integrated) crystalline properties are essentially cubic: we give here convincing evidence of the contrary. We focus on the half--filled d shell oxide MnO as the most suitable case study, on which we perform accurate ab--initio, all--electron calculations, within different one--particle schemes. In order to study the symmetry lowering due to AFM ordering, we assume an ideal cubic geometry throughout. The calculated TO frequencies and Born effective charge tensor do not have cubic symmetry. The standard LSD severely exaggerates the deviations from cubic symmetry, confirming its unreliability for calculating properties of insulating AFM oxides, while a model self--energy correction scheme(S. Massidda et al.), Phys. Rev. B 55, 13494 (1997). reduces considerably the anisotropy. We also explain the origin and the magnitude of this effect in terms of the mixed charge--transfer/Mott--Hubbard character of MnO.
Yang, Yu; Yao, Hongwei
2015-01-01
Nonlamellar lipid membranes are frequently induced by proteins that fuse, bend, and cut membranes. Understanding the mechanism of action of these proteins requires the elucidation of the membrane morphologies that they induce. While hexagonal phases and lamellar phases are readily identified by their characteristic solid-state NMR lineshapes, bicontinuous lipid cubic phases are more difficult to discern, since the static NMR spectra of cubic-phase lipids consist of an isotropic 31P or 2H peak, indistinguishable from the spectra of isotropic membrane morphologies such as micelles and small vesicles. To date, small-angle X-ray scattering is the only method to identify bicontinuous lipid cubic phases. To explore unique NMR signatures of lipid cubic phases, we first describe the orientation distribution of lipid molecules in cubic phases and simulate the static 31P chemical shift lineshapes of oriented cubic-phase membranes in the limit of slow lateral diffusion. We then show that 31P T2 relaxation times differ significantly between isotropic micelles and cubic-phase membranes: the latter exhibit two-orders-of magnitude shorter T2 relaxation times. These differences are explained by the different timescales of lipid lateral diffusion on the cubic-phase surface versus the timescales of micelle tumbling. Using this relaxation NMR approach, we investigated a DOPE membrane containing the transmembrane domain (TMD) of a viral fusion protein. The static 31P spectrum of DOPE shows an isotropic peak, whose T2 relaxation times correspond to that of a cubic phase. Thus, the viral fusion protein TMD induces negative Gaussian curvature, which is an intrinsic characteristic of cubic phases, to the DOPE membrane. This curvature induction has important implications to the mechanism of virus-cell fusion. This study establishes a simple NMR diagnostic probe of lipid cubic phases, which is expected to be useful for studying many protein-induced membrane remodeling phenomena in biology
On structural transitions in a discontinuous micellar cubic phase loaded with sodium diclofenac.
Efrat, R; Aserin, A; Garti, N
2008-05-01
An intermediate mesophase of lyotropic liquid crystalline structure from the ternary mixtures of glycerol monooleate, water, and ethanol was recently characterized in our lab. This mesophase, termed Q(L), consists of discrete discontinuous micelles arranged in a cubic array. The Q(L) phase can solubilize very significant loads of water-insoluble anti-inflamatory drug sodium diclofenac (Na-DFC). Close examination of the internal structures of the lyotropic liquid structure upon increasing the solubilization loads reveals the existence of three structural transitions controlled by the Na-DFC levels. Up to 0.4 wt% Na-DFC, the Q(L) structure remains intact with some influence on the hydration of the headgroups and on the intermicellar forces. However, at 0.8 to 1.2 wt% Na-DFC, the discontinuous micellar cubic phase is transformed into a more condensed mesophase of a bicontinuous cubic phase. At > or =1.2 wt% Na-DFC, the cubic phase is converted into a lamellar phase (L(alpha)). Within 5.5 to 7.3 wt% Na-DFC the mesophase is progressively transformed into a less ordered lamellar structure. At 12 wt% Na-DFC crystals tend to precipitate out. At low Na-DFC concentrations the drug behaves like a lyotropic or kosmotropic salt and can salt-out the surfactant from its water layer, but at higher levels it behaves like a hydrotropic, chaotropic salt and can salt-in the surfactant. The Na-DFC location and position within the interface as well as its polarization and partial ionization are strongly affected by its solubilization contents and the structure that it is inducing. In the cubic phase the drug is located less close to the hydration layer while once transition occurs it is exposed more to the water layer and the surfactant headgroups.
Spray dried glyceryl monooleate-magnesium trisilicate dry powder as cubic phase precursor.
Shah, Manish H; Biradar, Shailesh V; Paradkar, Anant R
2006-10-12
Glyceryl monooleate (GMO) is a polar amphiphilic lipid, which forms different sequential lyotropic liquid crystals upon hydration. GMO has been utilized for various delivery systems and routes of administrations. Owing to sticky and waxy nature of GMO, preparation of oral solid dosage form utilizing GMO is still a challenge for pharmaceutical researchers. Therefore, the objective of the present work was to fabricate dry powder precursors using GMO, which upon hydration in situ forms cubic phase and can be wisely used for fabrication of oral solid dosage forms. In addition to this, dry powder precursor was evaluated for drug loading, in vitro release behavior and in vivo performance of model drug diclofenac sodium (DiNa). The dry powder precursor was obtained by spray-drying GMO with DiNa using magnesium trisilicate (MTS) as adsorbent. The percent drug entrapment of various batches of powder precursor was in the range of 84-93% indicating high content uniformity. SEM and image analysis showed that as the amount of MTS in powder precursor was increased, the particle size decreased. Furthermore, the viscosity of powder precursor was function of amount of MTS. The rate of water uptake of powder precursor was higher due to uniform layer of GMO on the MTS surface, which led to faster transformation of lamellar phase into cubic phase. The polarizing light microscopy confirmed that cubic phase was formed upon hydration of powder precursor. The drug released from powder precursor was initially governed by the cubic phase formed and in later stage it depends upon dynamic swelling behavior of hexagonally packed cylindrical aggregates. The drug loaded powder precursor was found to have more effective and prolonged anti-inflammatory and analgesic activity as compared to pure drug. Thus the dry powder precursor of cubic phase was prepared in which drug release was entirely governed by the mesophases formed.
Self-Assembled Cubic Liquid Crystalline Nanoparticles for Transdermal Delivery of Paeonol
Li, Jian-Chun; Zhu, Na; Zhu, Jin-Xiu; Zhang, Wen-Jing; Zhang, Hong-Min; Wang, Qing-Qing; Wu, Xiao-Xiang; Wang, Xiu; Zhang, Jin; Hao, Ji-Fu
2015-01-01
Background The aim of this study was to optimize the preparation method for self-assembled glyceryl monoolein-based cubosomes containing paeonol and to characterize the properties of this transdermal delivery system to improve the drug penetration ability in the skin. Material/Methods In this study, the cubic liquid crystalline nanoparticles loaded with paeonol were prepared by fragmentation of glyceryl monoolein (GMO)/poloxamer 407 bulk cubic gel by high-pressure homogenization. We evaluated the Zeta potential of these promising skin-targeting drug-delivery systems using the Malvern Zeta sizer examination, and various microscopies and differential scanning calorimetry were also used for property investigation. Stimulating studies were evaluated based on the skin irritation reaction score standard and the skin stimulus intensity evaluation standard for paeonol cubosomes when compared with commercial paeonol ointment. In vitro tests were performed on excised rat skins in an improved Franz diffusion apparatus. The amount of paeonol over time in the in vitro penetration and retention experiments both was determined quantitatively by HPLC. Results Stimulating studies were compared with the commercial ointment which indicated that the paeonol cubic liquid crystalline nanoparticles could reduce the irritation in the skin stimulating test. Thus, based on the attractive characteristics of the cubic crystal system of paeonol, we will further exploit the cosmetic features in the future studies. Conclusions The transdermal delivery system of paeonol with low-irritation based on the self-assembled cubic liquid crystalline nanoparticles prepared in this study might be a promising system of good tropical preparation for skin application. PMID:26517086
Fohlmeister, Jürgen F
2015-06-01
The structural similarity between the primary molecules of voltage-gated Na and K channels (alpha subunits) and activation gating in the Hodgkin-Huxley model is brought into full agreement by increasing the model's sodium kinetics to fourth order (m(3) → m(4)). Both structures then virtually imply activation gating by four independent subprocesses acting in parallel. The kinetics coalesce in four-dimensional (4D) cubic diagrams (16 states, 32 reversible transitions) that show the structure to be highly failure resistant against significant partial loss of gating function. Rate constants, as fitted in phase plot data of retinal ganglion cell excitation, reflect the molecular nature of the gating transitions. Additional dimensions (6D cubic diagrams) accommodate kinetically coupled sodium inactivation and gating processes associated with beta subunits. The gating transitions of coupled sodium inactivation appear to be thermodynamically irreversible; response to dielectric surface charges (capacitive displacement) provides a potential energy source for those transitions and yields highly energy-efficient excitation. A comparison of temperature responses of the squid giant axon (apparently Arrhenius) and mammalian channel gating yields kinetic Q10 = 2.2 for alpha unit gating, whose transitions are rate-limiting at mammalian temperatures; beta unit kinetic Q10 = 14 reproduces the observed non-Arrhenius deviation of mammalian gating at low temperatures; the Q10 of sodium inactivation gating matches the rate-limiting component of activation gating at all temperatures. The model kinetics reproduce the physiologically large frequency range for repetitive firing in ganglion cells and the physiologically observed strong temperature dependence of recovery from inactivation.
2015-01-01
The structural similarity between the primary molecules of voltage-gated Na and K channels (alpha subunits) and activation gating in the Hodgkin-Huxley model is brought into full agreement by increasing the model's sodium kinetics to fourth order (m3 → m4). Both structures then virtually imply activation gating by four independent subprocesses acting in parallel. The kinetics coalesce in four-dimensional (4D) cubic diagrams (16 states, 32 reversible transitions) that show the structure to be highly failure resistant against significant partial loss of gating function. Rate constants, as fitted in phase plot data of retinal ganglion cell excitation, reflect the molecular nature of the gating transitions. Additional dimensions (6D cubic diagrams) accommodate kinetically coupled sodium inactivation and gating processes associated with beta subunits. The gating transitions of coupled sodium inactivation appear to be thermodynamically irreversible; response to dielectric surface charges (capacitive displacement) provides a potential energy source for those transitions and yields highly energy-efficient excitation. A comparison of temperature responses of the squid giant axon (apparently Arrhenius) and mammalian channel gating yields kinetic Q10 = 2.2 for alpha unit gating, whose transitions are rate-limiting at mammalian temperatures; beta unit kinetic Q10 = 14 reproduces the observed non-Arrhenius deviation of mammalian gating at low temperatures; the Q10 of sodium inactivation gating matches the rate-limiting component of activation gating at all temperatures. The model kinetics reproduce the physiologically large frequency range for repetitive firing in ganglion cells and the physiologically observed strong temperature dependence of recovery from inactivation. PMID:25867741
Electrical studies on cubic boron nitride MIS structures
NASA Astrophysics Data System (ADS)
Daniel, Abishai
A systematic investigation of the electrical properties of Metal-cBN-p-Silicon MIS structures through Capacitance-Voltage and Leakage Current measurements was undertaken. Electrical leakage measurements were performed using an HP4145B Semiconductor Parameter Analyzer and Capacitance-Voltage results were obtained using an LCZ Meter. Poole-Frenkel conduction was observed to be dominant in cBN MIS structures at low electric fields. Trap height values obtained for the films were ˜0.8 eV. Schottky conduction was observed to be the dominant conduction in predominantly cBN MIS structures. The gold-cBN barrier height was obtained to be ˜0.6 eV. For a fraction of MIS structures incorporating indium gate metal, Poole-Frenkel and Schottky conduction was observed. For other contacts evidence was observed of the alloying of indium with cBN resulting in Ohmic-like behavior analogous to the behavior of indium with GaAs. Evidence of the pinning of the Fermi level at the Metal-Insulator interface was obtained from the similarity of the gold-cBN and indium-cBN barrier heights. MIS structures incorporating tBN as the insulating layer exhibited similar conduction behavior to the cBN MIS structures. The gold-tBN barrier height obtained was ˜0.68 eV and the trap height obtained was ˜0.86 eV. A correlation between leakage current and RMS roughness of the surface was observed providing evidence of roughness mediated field enhancement at the metal insulator interface resulting in higher leakage currents. Leakage current of the cBN MIS structures at high electric fields exhibit a similar functional relationship to post Soft Breakdown I-V curves of ultrathin oxides at high electric fields. Hard Breakdown was not observed for our films at fields up to 2 MV/cm. This sets a lower bound for the breakdown field for our BN films. Resistivity values in the range 109 O-cm to 1012 O-cm were obtained for cBN and tBN films. To our knowledge, we obtained the first Capacitance-Voltage results on BN
Cubic ice and large humidity with respect to ice in cold cirrus clouds
NASA Astrophysics Data System (ADS)
Bogdan, A.; Loerting, T.
2009-04-01
Recently several studies have reported about the possible formation of cubic ice in upper-tropospheric cirrus ice clouds and its role in the observed elevated relative humidity with respect to hexagonal ice, RHi, within the clouds. Since cubic ice is metastable with respect to stable hexagonal ice, its vapour pressure is higher. A key issue in determining the ratio of vapour pressures of cubic ice Pc and hexagonal ice Ph is the enthalpy of transformation from cubic to hexagonal ice Hcâh. By dividing the two integrated forms of the Clausius-Clapeyron equation for cubic ice and hexagonal ice, one obtains the relationship (1): ln Pc-- ln P*c-=--(Hcâh--) Ph P*h R 1T-- 1T* (1) from which the importance of Hcâh is evident. In many literature studies the approximation (2) is used: ln Pc-= Hc-âh. Ph RT (2) Using this approximated form one can predict the ratio of vapour pressures by measuring Hcâh. Unfortunately, the measurement of Hcâh is difficult. First, the enthalpy difference is very small, and the transition takes place over a broad temperature range, e.g., between 230 K and 260 K in some of our calorimetry experiments. Second, cubic ice (by contrast to hexagonal ice) can not be produced as a pure crystal. It always contains hexagonal stacking faults, which are evidenced by the (111)-hexagonal Bragg peak in the powder diffractogram. If the number of hexagonal stacking faults in cubic ice is high, then one could even consider this material as hexagonal ice with cubic stacking faults. Using the largest literature value of the change of enthalpy of transformation from cubic to hexagonal ice, Hcâh ? 160 J/mol, Murphy and Koop (2005) calculated that Pc would be ~10% higher than that of hexagonal ice Phat 180 K - 190 K, which agrees with the measurements obtained later by Shilling et al. (2006). Based on this result Shilling et al. concluded that "the formation of cubic ice at T < 202 K may significantly contribute to the persistent in
van 't Hag, Leonie; Shen, Hsin-Hui; Lu, Jingxiong; Hawley, Adrian M; Gras, Sally L; Drummond, Calum J; Conn, Charlotte E
2015-11-10
Lipidic bicontinuous cubic mesophases with encapsulated amphiphilic proteins are widely used in a range of biological and biomedical applications, including in meso crystallization, as drug delivery vehicles for therapeutic proteins, and as biosensors and biofuel cells. However, the effect of amphiphilic protein encapsulation on the cubic phase nanostructure is not well-understood. In this study, we illustrate the effect of incorporating the bacterial amphiphilic membrane protein Ag43, and its individual hydrophobic β(43) and hydrophilic α(43) domains, in bicontinuous cubic mesophases. For the monoolein, monoalmitolein, and phytantriol cubic phases with and without 8% w/w cholesterol, the effect of the full length amphiphilic protein Ag43 on the cubic phase nanostructure was more significant than the sum of the individual hydrophobic β(43) and hydrophilic α(43) domains. Several factors were found to potentially influence the impact of the hydrophobic β(43) domain on the cubic phase internal nanostructure. These include the size of the hydrophobic β(43) domain relative to the thickness of the lipid bilayer, as well as its charge and diameter. The size of the hydrophilic α(43) domain relative to the water channel radius of the cubic mesophase was also found to be important. The secondary structure of the Ag43 proteins was affected by the hydrophobic thickness and physicochemical properties of the lipid bilayer and the water channel diameter of the cubic phase. Such structural changes may be small but could potentially affect membrane protein function.
Robertson, LA; Schenkel, MR; Wiesenauer, BR; Gin, DL
2013-01-01
New ionic amphiphiles with a hexyl-bridged bis(imidazolium) headgroup; Br-, BF4-, or Tf2N- anions; and a long n-alkyl tail can form thermotropic bicontinuous cubic liquid crystal phases in neat form and/or lyotropic bicontinuous cubic phases with several non-aqueous solvents or water.
A novel cubic phase of medium chain lipid origin for the delivery of poorly water soluble drugs.
Kossena, Greg A; Charman, William N; Boyd, Ben J; Porter, Christopher J H
2004-09-30
The existence of a novel cubic liquid crystalline phase is described within the pseudo-ternary system comprising lauric acid, monolaurin, and simulated endogenous intestinal fluid (SEIF). This phase behaviour has been characterized using cross-polarizing light microscopy (CPLM), and the structure of the cubic phase identified by small angle X-ray scattering (SAXS). The presence of the cubic phase was found to be temperature sensitive within the 20-37 degrees C range making it putative material for in situ gelation purposes. The cubic phase was shown to have a high capacity to solubilise a model poorly water-soluble drug, cinnarizine, and initial in vitro release data highlight the potential of this phase to provide sustained release. Absorption of cinnarizine from the cubic phase was studied in an unconscious rat model via duodenal administration and blood sampling via the carotid artery. The rate of absorption was significantly reduced when compared to a simple suspension formulation, a likely combination of retarded erosion of the cubic phase together with hindered drug release from the cubic matrix. The results of this study suggest that this cubic phase may potentially be of benefit in the delivery of poorly water-soluble compounds due to its high loading capacity and potential for sustained release. The ability to manipulate this system using temperature may warrant further interest in delivery applications via other routes of administration.
ERIC Educational Resources Information Center
Cui, Zhongmin; Kolen, Michael J.
2009-01-01
This article considers two new smoothing methods in equipercentile equating, the cubic B-spline presmoothing method and the direct presmoothing method. Using a simulation study, these two methods are compared with established methods, the beta-4 method, the polynomial loglinear method, and the cubic spline postsmoothing method, under three sample…
NASA Astrophysics Data System (ADS)
Moreno, M.; Barriuso, M. T.; Aramburu, J. A.; García-Fernández, P.; García-Lastra, J. M.
2006-05-01
This article reviews the microscopic origin of properties due to transition-metal (TM) impurities, M, in insulator materials. Particular attention is paid to the influence of pressure upon impurity properties. Basic concepts such as the electronic localization in an MXN complex, the electrostatic potential, VR, arising from the rest of the lattice ions or the elastic coupling of the complex to the host lattice are initially exposed. The dependence of optical and magnetic parameters on the impurity-ligand distance, R, in cubic lattices is discussed in a first step. Emphasis is put on the actual origin of the R dependence of 10Dq. Examples revealing that laws for strict cubic symmetry cannot in general be transferred to lower symmetries are later given. This relevant fact is shown to come from allowed hybridizations like nd-(n+1)s as well as the influence of VR. As a salient feature the different colour in ruby and emerald is stressed to arise from distinct VR potentials in Al2O3 and Be3Si6Al2O18. The last part of this review deals with electronic instabilities. The phenomena associated with the Jahn-Teller (JT) effect in cubic lattices, the origin of the energy barrier among equivalent minima and the existence of coherent tunnelling in systems like MgO:Cu2+ are discussed. An increase of elastic coupling is pointed out to favour a transition from an elongated to a compressed equilibrium conformation. Interestingly the equilibrium geometry of JT ions in non-cubic lattices is shown to be controlled by mechanisms different to those in cubic systems, VR playing again a key role. The relevance of first principles calculations for clarifying the subtle mechanisms behind off-centre instabilities is also pointed out. Examples concern monovalent and divalent TM impurities in lattices with the CaF2 structure. The instability due to the transition from the ground to an excited state is finally considered. For complexes with significant elastic coupling vibrational frequencies
NASA Technical Reports Server (NTRS)
Cintala, Mark J.; Horz, Friedrich
2007-01-01
A fragment of an L6 chondrite (ALH 85017,13) with an initial mass (M(sub 0)) of 464.1 g was the target in a series of experimental impacts in which the largest remaining fragment (M(sub R)) after each shot was impacted by a 3.18-mm ceramic sphere at a nominal speed of 2 km/s. This continued until the mass of the largest remaining piece was less than half the mass of the target presented to that shot (M(sub S)). Two chunks of Bushveldt gabbro with similar initial masses were also impacted under the same conditions until M(sub R) was less than half M(sub 0). The two gabbro targets required a total of 1.51x10(exp 7) and 1.75x10(exp 7) erg/g to attain 0.27 and 0.33 M(sub R)/M(sub 0), respectively; the chondrite, however, was considerably tougher, reaching 0.40 and 0.21 M(sub R)/M(sub 0) only after receiving 2.37x10(exp 7) and 3.10x10(exp 7) erg g-1, respectively. The combined ejecta and spallation products from the gabbro impacts were coarser than those from the chondrite and in sufficient quantities that the new surface areas exceeded those from the meteorite until the fifth shot in the chondrite series, which was the number of impacts required to disrupt each gabbro target (i.e., MR/M0 = 0.5). Unlike the behavior shown in previous regolith-evolution series, neither gabbro target produced an enhancement in the size fraction reflecting the mean size of the crystals composing the rock (about 3 mm), an effect possibly related to the width of the shock pulse. The original chondrite was so fine-grained and fractured, and the variance in its grain-size distribution so large, that effects related to grain-size were relegated to the <63- m fraction. Impacts into ALH 85017 produced abundant, fine-grained debris, but otherwise the slopes of its size distributions were comparable to those from other experiments involving natural and fabricated terrestrial targets. The characteristic slopes of the chondrite's size distributions, however, were notably more constant over the entire
The phase space of the focused cubic Schroedinger equation: A numerical study
Burlakov, Yuri O.
1998-05-01
In a paper of 1988 [41] on statistical mechanics of the nonlinear Schroedinger equation, it was observed that a Gibbs canonical ensemble associated with the nonlinear Schroedinger equation exhibits behavior reminiscent of a phase transition in classical statistical mechanics. The existence of a phase transition in the canonical ensemble of the nonlinear Schroedinger equation would be very interesting and would have important implications for the role of this equation in modeling physical phenomena; it would also have an important bearing on the theory of weak solutions of nonlinear wave equations. The cubic Schroedinger equation, as will be shown later, is equivalent to the self-induction approximation for vortices, which is a widely used equation of motion for a thin vortex filament in classical and superfluid mechanics. The existence of a phase transition in such a system would be very interesting and actually very surprising for the following reasons: in classical fluid mechanics it is believed that the turbulent regime is dominated by strong vortex stretching, while the vortex system described by the cubic Schroedinger equation does not allow for stretching. In superfluid mechanics the self-induction approximation and its modifications have been used to describe the motion of thin superfluid vortices, which exhibit a phase transition; however, more recently some authors concluded that these equations do not adequately describe superfluid turbulence, and the absence of a phase transition in the cubic Schroedinger equation would strengthen their argument. The self-induction approximation for vortices takes into account only very localized interactions, and the existence of a phase transition in such a simplified system would be very unexpected. In this thesis the authors present a numerical study of the phase transition type phenomena observed in [41]; in particular, they find that these phenomena are strongly related to the splitting of the phase space into
NASA Technical Reports Server (NTRS)
Feofilov, A. G.; Kutepov, A. A.; She, C.-Y.; Smith, A. K.; Pesnell, W. D.; Goldberg, R. A.
2012-01-01
Among the processes governing the energy balance in the mesosphere and lower thermosphere (MLT), the quenching of CO2(nu2) vibrational levels by collisions with O atoms plays an important role. However, there is a factor of 3-4 discrepancy between the laboratory measurements of the CO2-O quenching rate coefficient, k(sub VT),and its value estimated from the atmospheric observations. In this study, we retrieve k(sub VT) in the altitude region85-105 km from the coincident SABER/TIMED and Fort Collins sodium lidar observations by minimizing the difference between measured and simulated broadband limb 15 micron radiation. The averaged k(sub VT) value obtained in this work is 6.5 +/- 1.5 X 10(exp -12) cubic cm/s that is close to other estimates of this coefficient from the atmospheric observations.However, the retrieved k(sub VT) also shows altitude dependence and varies from 5.5 1 +/-1 10(exp -12) cubic cm/s at 90 km to 7.9 +/- 1.2 10(exp -12) cubic cm/s at 105 km. Obtained results demonstrate the deficiency in current non-LTE modeling of the atmospheric 15 micron radiation, based on the application of the CO2-O quenching and excitation rates, which are linked by the detailed balance relation. We discuss the possible model improvements, among them accounting for the interaction of the non-thermal oxygen atoms with CO2 molecules.
Three-dimensional kinetic Monte Carlo simulations of cubic transition metal nitride thin film growth
NASA Astrophysics Data System (ADS)
Nita, F.; Mastail, C.; Abadias, G.
2016-02-01
A three-dimensional kinetic Monte Carlo (KMC) model has been developed and used to simulate the microstructure and growth morphology of cubic transition metal nitride (TMN) thin films deposited by reactive magnetron sputtering. Results are presented for the case of stoichiometric TiN, chosen as a representative TMN prototype. The model is based on a NaCl-type rigid lattice and includes deposition and diffusion events for both N and Ti species. It is capable of reproducing voids and overhangs, as well as surface faceting. Simulations were carried out assuming a uniform flux of incoming particles approaching the surface at normal incidence. The ballistic deposition model is parametrized with an interaction parameter r0 that mimics the capture distance at which incoming particles may stick on the surface, equivalently to a surface trapping mechanism. Two diffusion models are implemented, based on the different ways to compute the site-dependent activation energy for hopping atoms. The influence of temperature (300-500 K), deposition flux (0.1-100 monolayers/s), and interaction parameter r0 (1.5-6.0 Å) on the obtained growth morphology are presented. Microstructures ranging from highly porous, [001]-oriented straight columns with smooth top surface to rough columns emerging with different crystallographic facets are reproduced, depending on kinetic restrictions, deposited energy (seemingly captured by r0), and shadowing effect. The development of facets is a direct consequence of the diffusion model which includes an intrinsic (minimum energy-based) diffusion anisotropy, although no crystallographic diffusion anisotropy was explicitly taken into account at this stage. The time-dependent morphological evolution is analyzed quantitatively to extract the growth exponent β and roughness exponent α , as indicators of kinetic roughening behavior. For dense TiN films, values of α ≈0.7 and β =0.24 are obtained in good agreement with existing experimental data. At this
NASA Technical Reports Server (NTRS)
Lerch, Bradley A.; Arnold, Steven M.
2014-01-01
In support of an effort on damage prognosis, the viscoelastic behavior of Ti-6Al-4V (Ti-6-4) was investigated. This report documents the experimental characterization of this titanium alloy. Various uniaxial tests were conducted to low load levels over the temperature range of 20 to 538 C to define tensile, creep, and relaxation behavior. A range of strain rates (6x10(exp -7) to 0.001/s) were used to document rate effects. All tests were designed to include an unloading portion, followed by a hold time at temperature to allow recovery to occur either at zero stress or strain. The titanium alloy was found to exhibit viscoelastic behavior below the "yield" point and over the entire range of temperatures (although at lower temperatures the magnitude is extremely small). These experimental data will be used for future characterization of a viscoelastic model.
High-Field Fast-Risetime Pulse Failures in 4H- and 6H-SiC pn Junction Diodes
NASA Technical Reports Server (NTRS)
Neudeck, Philip G.; Fazi, Christian
1996-01-01
We report the observation of anomalous reverse breakdown behavior in moderately doped (2-3 x 10(exp 17 cm(exp -3)) small-area micropipe-free 4H- and 6H-SiC pn junction diodes. When measured with a curve tracer, the diodes consistently exhibited very low reverse leakage currents and sharp repeatable breakdown knees in the range of 140-150 V. However, when subjected to single-shot reverse bias pulses (200 ns pulsewidth, 1 ns risetime), the diodes failed catastrophically at pulse voltages of less than 100 V. We propose a possible mechanism for this anomalous reduction in pulsed breakdown voltage relative to dc breakdown voltage. This instability must be removed so that SiC high-field devices can operate with the same high reliability as silicon power devices.
Renaturing Membrane Proteins in the Lipid Cubic Phase, a Nanoporous Membrane Mimetic
Li, Dianfan; Caffrey, Martin
2014-01-01
Membrane proteins play vital roles in the life of the cell and are important therapeutic targets. Producing them in large quantities, pure and fully functional is a major challenge. Many promising projects end when intractable aggregates or precipitates form. Here we show how such unfolded aggregates can be solubilized and the solution mixed with lipid to spontaneously self-assemble a bicontinuous cubic mesophase into the bilayer of which the protein, in a confined, chaperonin-like environment, reconstitutes with 100% efficiency. The test protein, diacylglycerol kinase, reconstituted in the bilayer of the mesophase, was then crystallized in situ by the in meso or lipid cubic phase method providing an X-ray structure to a resolution of 2.55 Å. This highly efficient, inexpensive, simple and rapid approach should find application wherever properly folded, membrane reconstituted and functional proteins are required where the starting material is a denatured aggregate. PMID:25055873
Dynamics of cubic-quintic nonlinear Schrödinger equation with different parameters
NASA Astrophysics Data System (ADS)
Wei, Hua; Xue-Shen, Liu; Shi-Xing, Liu
2016-05-01
We study the dynamics of the cubic-quintic nonlinear Schrödinger equation by the symplectic method. The behaviors of the equation are discussed with harmonically modulated initial conditions, and the contributions from the quintic term are discussed. We observe the elliptic orbit, homoclinic orbit crossing, quasirecurrence, and stochastic motion with different nonlinear parameters in this system. Numerical simulations show that the changing processes of the motion of the system and the trajectories in the phase space are various for different cubic nonlinear parameters with the increase of the quintic nonlinear parameter. Project supported by the National Natural Science Foundation of China (Grant Nos. 11301350, 11472124, and 11271158) and the Doctor Start-up Fund in Liaoning Province, China (Grant No. 20141050).
Interplay between lattice dynamics and the low-pressure phase of simple cubic polonium
NASA Astrophysics Data System (ADS)
Zaoui, A.; Belabbes, A.; Ahuja, R.; Ferhat, M.
2011-04-01
Low-pressure structural properties of simple cubic polonium are explored through first-principles density-functional theory based relativistic total energy calculations using pseudopotentials and plane-wave basis set, as well as linear-response theory. We have found that Po undergoes structural phase transition at low pressure near 2 GPa, where the element transforms from simple cubic to a mixture of two trigonal phases namely, hR1 (α=86°) and hR2 (α=97.9°) structures. The lattice dynamics calculations provide strong support for the observed phase transition, and show the dynamical stability (instability) of the hR2 (hR1) phase.
High temperature ferromagnetism in cubic Mn-doped ZrO2 thin films
NASA Astrophysics Data System (ADS)
Hong, Nguyen Hoa; Park, Chul-Kwon; Raghavender, A. T.; Ruyter, Antoine; Chikoidze, Ekaterina; Dumont, Yves
2012-09-01
Theory has predicted that high temperature ferromagnetism (FM) should be found in cubic fake-diamonds, Mn-doped ZrO2. Experimentally, it is shown that Mn-doped ZrO2 ceramics are not ferromagnetic, but the nanosized Mn-doped ZrO2 thin films grown on LaAlO3 substrates can be ferromagnets with TC above 400 K. The largest saturated magnetic moment (Ms) is huge as of about 230 emu/cm3 for the Mn0.05Zr0.95O2 films, and it decreases as the Mn content increases. The intrinsic FM is strongly associated with the cubic structure of Mn-doped ZrO2, and the Mn-Mn interactions via oxygen intermediates are important. No electrical conductivity is observed. Mn-doped ZrO2 thin films can be truly considered as excellent candidates for spintronic applications.
pH-responsive lyotropic liquid crystals for the preparation of pure cubic zirconia nanoparticles
NASA Astrophysics Data System (ADS)
He, Wei Yan; Liu, Jin Rong; He, Zhang; Cao, Zhen Zhu; Li, Cai Hong; Gao, Yan Fang
2016-07-01
We present a lyotropic liquid crystal system consisting of SDS/Triton X-100/water at 25 °C. This system is respond to pH variations with a phase switch. When pH is altered from alkaline (pH 13) to acidic (pH 2) conditions, phase change occurs from a bicontinuous hexagonal phase to a partially hexagonal phase until it disappears. The hexagonal phase under alkaline conditions is stable. Thus, this system is an ideal candidate for the preparation of pure cubic ZrO2 nanoparticles. XRD results confirm that the as-synthesized powder is composed of pure cubic ZrO2. These nanoparticles also exhibit a thermal stability of up to 800 °C. The size and morphological characteristics of the nanoparticles are greatly affected by ZrOCl2 concentration. The mechanism of zirconia nanoparticle synthesis in a lyotropic hexagonal phase was proposed.
Singh, A V; Ferri, M; Tamplenizza, M; Borghi, F; Divitini, G; Ducati, C; Lenardi, C; Piazzoni, C; Merlini, M; Podestà, A; Milani, P
2012-11-30
Nanostructured cubic zirconia is a strategic material for biomedical applications since it combines superior structural and optical properties with a nanoscale morphology able to control cell adhesion and proliferation. We produced nanostructured cubic zirconia thin films at room temperature by supersonic cluster beam deposition of nanoparticles produced in the gas phase. Precise control of film roughness at the nanoscale is obtained by operating in a ballistic deposition regime. This allows one to study the influence of nanoroughness on cell adhesion, while keeping the surface chemistry constant. We evaluated cell adhesion on nanostructured zirconia with an osteoblast-like cell line using confocal laser scanning microscopy for detailed morphological and cytoskeleton studies. We demonstrated that the organization of cytoskeleton and focal adhesion formation can be controlled by varying the evolution of surface nanoroughness.
Bragg reflection band width and optical rotatory dispersion of cubic blue-phase liquid crystals
NASA Astrophysics Data System (ADS)
Yoshida, Hiroyuki; Anucha, Konkanok; Ogawa, Yasuhiro; Kawata, Yuto; Ozaki, Masanori; Fukuda, Jun-ichi; Kikuchi, Hirotsugu
2016-10-01
The Bragg reflection band width and optical rotatory dispersion of liquid crystalline cholesteric blue phases (BPs) I and II are compared by numerical simulations. Attention is paid to the wavelength regions for which the reflection bands with lowest photon energies appear, i.e., the [110 ] direction for BP I and the [100 ] direction for BP II. Finite difference time domain and 4 ×4 matrix calculations performed on the theoretical director tensor distribution of BPs with the same material parameters show that BP II, which has simple cubic symmetry, has a wider photonic band gap than BP I, which has body centered cubic symmetry, possibly due to the fact that the density of the double-twist cylinders in BP II are twice that in BP I. The theoretical results on the Bragg reflection band width are supported by reflectance measurements performed on BPs I and II for light incident along the [110 ] and [100 ] directions, respectively.
Banerjee, M; Rai, Archana
2007-06-01
Nanocrystalline cubic CuFe2O4 have been prepared by co-precipitation method. The experimental conditions have been controlled to produce CuFe2O4 with particle size 18 nm, 7.2 nm, and 3.2 nm as calculated by Scherrer formula. Room temperature Mössbauer spectra show that 18 nm and 7.2 nm CuFe2O4 exhibit ferrimagnetism while 3.2 nm CuFe2O4 exhibits superparamagnetism. The cationic distribution calculated using Mössbauer spectra confirm to the cubic structure confirming the findings of XRD study. XPS data corroborates the finding. Low temperature Mössbauer measurements on 3.2 nm particles show gradual transformation to ferrimagnetic state.
NASA Astrophysics Data System (ADS)
Narayanan, Rajesh; Vojta, Thomas
2001-01-01
We study the quantum phase transition of an itinerant antiferromagnet with cubic anisotropy in the presence of quenched disorder, paying particular attention to the locally ordered spatial regions that form in the Griffiths region. We derive an effective action where these rare regions are described in terms of static annealed disorder. A one-loop renormalization-group analysis of the effective action shows that for order-parameter dimensions p<4, the rare regions destroy the conventional critical behavior, and the renormalized disorder flows to infinity. For order-parameter dimensions p>4, the critical behavior is not influenced by the rare regions; it is described by the conventional dirty cubic fixed point. We also discuss the influence of the rare regions on the fluctuation-driven first-order transition in this system.
Cubic spline interpolation of functions with high gradients in boundary layers
NASA Astrophysics Data System (ADS)
Blatov, I. A.; Zadorin, A. I.; Kitaeva, E. V.
2017-01-01
The cubic spline interpolation of grid functions with high-gradient regions is considered. Uniform meshes are proved to be inefficient for this purpose. In the case of widely applied piecewise uniform Shishkin meshes, asymptotically sharp two-sided error estimates are obtained in the class of functions with an exponential boundary layer. It is proved that the error estimates of traditional spline interpolation are not uniform with respect to a small parameter, and the error can increase indefinitely as the small parameter tends to zero, while the number of nodes N is fixed. A modified cubic interpolation spline is proposed, for which O((ln N/N)4) error estimates that are uniform with respect to the small parameter are obtained.
Surprising stability of neutral interstitial hydrogen in diamond and cubic BN
Lyons, J. L.; Van de Walle, C. G.
2016-01-21
We report that in virtually all semiconductors and insulators, hydrogen interstitials (H_{i}) act as negative-U centers, implying that hydrogen is never stable in the neutral charge state. Using hybrid density functional calculations, we find a different behavior for H_{i} in diamond and cubic BN. In diamond, H_{i} is a very strong positive-U center, and the H^{0}_{i}charge state is stable over a Fermi-level range of more than 2 eV. In cubic BN, a III-V compound similar to diamond, we also find positive-U behavior, though over a much smaller Fermi-level range. Finally, these results highlight the unique behavior of Hi in these covalent wide-band-gap semiconductors.
Magnetic properties of cubic FeCo nanoparticles with anisotropic long chain structure
NASA Astrophysics Data System (ADS)
Liu, Jinming; Wu, Kai; Wang, Jian-Ping
2016-05-01
Cubic FeCo alloy nanoparticles (NPs) with body-centered cubic (bcc) phase were prepared using sputter based gas-condensation method. When the NPs formed long chain assemblies, the magnetic properties were quite different from that of well-dispersed NPs. Most of the well-dispersed NPs were superparamagnetic at room temperature while the long chain NP assemblies were ferromagnetic with coercivities around 765 Oe, which displayed quite different magnetic properties. The ferromagnetism of long chain NPs was from the exchange coupling between NPs, which eventually led to the transition from superparamagnetism (SPM) to superferromagetism (SFM). Zero-field-cooled (ZFC) and field-cooled (FC) curves were obtained and long chain NP assemblies displayed ferromagnetism at the temperature ranging from 10 K to 400 K. Time-dependent remanent magnetic moment curves also indicated that the long chain structure had better thermal stability due to the strong exchange coupling.
Bragg reflection band width and optical rotatory dispersion of cubic blue-phase liquid crystals.
Yoshida, Hiroyuki; Anucha, Konkanok; Ogawa, Yasuhiro; Kawata, Yuto; Ozaki, Masanori; Fukuda, Jun-Ichi; Kikuchi, Hirotsugu
2016-10-01
The Bragg reflection band width and optical rotatory dispersion of liquid crystalline cholesteric blue phases (BPs) I and II are compared by numerical simulations. Attention is paid to the wavelength regions for which the reflection bands with lowest photon energies appear, i.e., the [110] direction for BP I and the [100] direction for BP II. Finite difference time domain and 4×4 matrix calculations performed on the theoretical director tensor distribution of BPs with the same material parameters show that BP II, which has simple cubic symmetry, has a wider photonic band gap than BP I, which has body centered cubic symmetry, possibly due to the fact that the density of the double-twist cylinders in BP II are twice that in BP I. The theoretical results on the Bragg reflection band width are supported by reflectance measurements performed on BPs I and II for light incident along the [110] and [100] directions, respectively.
Cubic Mn2Ga thin films: crossing the spin gap with ruthenium.
Kurt, H; Rode, K; Stamenov, P; Venkatesan, M; Lau, Y-C; Fonda, E; Coey, J M D
2014-01-17
Cubic Mn2Ga films with the half-Heusler C1b structure are grown on V (001) epitaxial films. The phase is a soft ferrimagnet, with Curie temperature TC = 225 K and magnetization Ms=280 kA m(-1), equivalent to 1.65μB per formula. Adding ruthenium leads to an increase of TC up to 550 K in cubic Mn2Ru(x)Ga films with x = 0.33 and a collapse of the net magnetization. The anomalous Hall effect changes sign at x = 0.5, where the sign of the magnetization changes and the magnetic easy direction flips from in plane to perpendicular to the film. The Mn2Ru0.5Ga compound with a valence electron count of 21 is identified as a zero-moment ferrimagnet with high spin polarization, which shows evidence of half-metallicity.
Repeat-until-success cubic phase gate for universal continuous-variable quantum computation
Marshall, Kevin; Pooser, Raphael; Siopsis, George; Weedbrook, Christian
2015-03-24
We report that to achieve universal quantum computation using continuous variables, one needs to jump out of the set of Gaussian operations and have a non-Gaussian element, such as the cubic phase gate. However, such a gate is currently very difficult to implement in practice. Here we introduce an experimentally viable “repeat-until-success” approach to generating the cubic phase gate, which is achieved using sequential photon subtractions and Gaussian operations. Ultimately, we find that our scheme offers benefits in terms of the expected time until success, as well as the fact that we do not require any complex off-line resource state, although we require a primitive quantum memory.
Cubic Zig-Zag Enrichment of the Classical Kirchhoff Kinematics for Laminated and Sandwich Plates
NASA Technical Reports Server (NTRS)
Nemeth, Michael P.
2012-01-01
A detailed anaylsis and examples are presented that show how to enrich the kinematics of classical Kirchhoff plate theory by appending them with a set of continuous piecewise-cubic functions. This analysis is used to obtain functions that contain the effects of laminate heterogeneity and asymmetry on the variations of the inplane displacements and transverse shearing stresses, for use with a {3, 0} plate theory in which these distributions are specified apriori. The functions used for the enrichment are based on the improved zig-zag plate theory presented recently by Tessler, Di Scuva, and Gherlone. With the approach presented herein, the inplane displacements are represented by a set of continuous piecewise-cubic functions, and the transverse shearing stresses and strains are represented by a set of piecewise-quadratic functions that are discontinuous at the ply interfaces.
Green cubic GaInN/GaN light-emitting diode on microstructured silicon (100)
Stark, Christoph J. M.; Detchprohm, Theeradetch; Wetzel, Christian; Lee, S. C.; Brueck, S. R. J.; Jiang, Y.-B.
2013-12-02
GaInN/GaN light-emitting diodes free of piezoelectric polarization were prepared on standard electronic-grade Si(100) substrates. Micro-stripes of GaN and GaInN/GaN quantum wells in the cubic crystal structure were grown on intersecting (111) planes of microscale V-grooved Si in metal-organic vapor phase epitaxy, covering over 50% of the wafer surface area. Crystal phases were identified in electron back-scattering diffraction. A cross-sectional analysis reveals a cubic structure virtually free of line defects. Electroluminescence over 20 to 100 μA is found fixed at 487 nm (peak), 516 nm (dominant). Such structures therefore should allow higher efficiency, wavelength-stable light emitters throughout the visible spectrum.
ISAR Imaging of Ship Targets Based on an Integrated Cubic Phase Bilinear Autocorrelation Function.
Zheng, Jibin; Liu, Hongwei; Liu, Zheng; Liu, Qing Huo
2017-03-03
For inverse synthetic aperture radar (ISAR) imaging of a ship target moving with ocean waves, the image constructed with the standard range-Doppler (RD) technique is blurred and the range-instantaneous-Doppler (RID) technique has to be used to improve the image quality. In this paper, azimuth echoes in a range cell of the ship target are modeled as noisy multicomponent cubic phase signals (CPSs) after the motion compensation and a RID ISAR imaging algorithm is proposed based on the integrated cubic phase bilinear autocorrelation function (ICPBAF). The ICPBAF is bilinear and based on the two-dimensionally coherent energy accumulation. Compared to five other estimation algorithms, the ICPBAF can acquire higher cross term suppression and anti-noise performance with a reasonable computational cost. Through simulations and analyses with the synthetic model and real radar data, we verify the effectiveness of the ICPBAF and corresponding RID ISAR imaging algorithm.
Analytic cubic and quartic force fields using density-functional theory
NASA Astrophysics Data System (ADS)
Ringholm, Magnus; Jonsson, Dan; Bast, Radovan; Gao, Bin; Thorvaldsen, Andreas J.; Ekström, Ulf; Helgaker, Trygve; Ruud, Kenneth
2014-01-01
We present the first analytic implementation of cubic and quartic force constants at the level of Kohn-Sham density-functional theory. The implementation is based on an open-ended formalism for the evaluation of energy derivatives in an atomic-orbital basis. The implementation relies on the availability of open-ended codes for evaluation of one- and two-electron integrals differentiated with respect to nuclear displacements as well as automatic differentiation of the exchange-correlation kernels. We use generalized second-order vibrational perturbation theory to calculate the fundamental frequencies of methane, ethane, benzene, and aniline, comparing B3LYP, BLYP, and Hartree-Fock results. The Hartree-Fock anharmonic corrections agree well with the B3LYP corrections when calculated at the B3LYP geometry and from B3LYP normal coordinates, suggesting that the inclusion of electron correlation is not essential for the reliable calculation of cubic and quartic force constants.
Performance evaluation of a micro ultrasonic motor using a one-cubic-millimeter stator.
Mashimo, Tomoaki
2015-10-01
A piezoelectric ultrasonic motor has two significant advantages, high energy density and simple structure, and these advantages can help in the miniaturization of the motor. We build a prototype micro ultrasonic motor using a stator with a volume of approximately 1 cubic millimeter. To evaluate its representative performance values (torque, angular velocity, and energy efficiency), we built an experimental setup and operated the prototype motor by varying experimental conditions, such as the preload between the stator and rotor and the amplitude of voltages applied to motor. The performance values obtained at the millimeter to sub-millimeter scale are discussed analytically using the macro scale models of ultrasonic motors. Experimentally, the prototype motor has generated a torque of more than 10 μNm with a 1-cubic-millimeter stator. The motor described herein is now the smallest micro ultrasonic motor with a practical torque, although its efficiency is still low.
PVTx measurements of the N-methylpyrrolidone/methanol mixed solvent: cubic and SAFT EOS analyses.
Aparicio, Santiago; García, Begoña; Alcalde, Rafael; Davila, María J; Leal, José M
2006-04-06
The PVTx behavior for the x N-methylpyrrolidone (NMP) + (1 - x) methanol compressed liquid solvent is reported over the full composition range and within wide pressure and temperature ranges. The derived excess properties were analyzed in terms of structural effects and intermolecular interactions and revealed strong H-bonding heteroassociations between the two components. The cubic equations of state by Soave (SRK), Peng-Robinson (PR), Patel-Teja (PT), and Sako-Wu-Prausnitz (SWP), and the statistical associating fluid theory (SAFT) equation of state, combined with a number of selected mixing rules, were used to correlate and predict the behavior of both the pure components and mixed solvent. While the classical cubic equations of state were not successful in describing the properties of this system, the SWP equation of state and the SAFT yielded reasonably good results.
Repeat-until-success cubic phase gate for universal continuous-variable quantum computation
Marshall, Kevin; Pooser, Raphael; Siopsis, George; ...
2015-03-24
We report that to achieve universal quantum computation using continuous variables, one needs to jump out of the set of Gaussian operations and have a non-Gaussian element, such as the cubic phase gate. However, such a gate is currently very difficult to implement in practice. Here we introduce an experimentally viable “repeat-until-success” approach to generating the cubic phase gate, which is achieved using sequential photon subtractions and Gaussian operations. Ultimately, we find that our scheme offers benefits in terms of the expected time until success, as well as the fact that we do not require any complex off-line resource state,more » although we require a primitive quantum memory.« less
ISAR Imaging of Ship Targets Based on an Integrated Cubic Phase Bilinear Autocorrelation Function
Zheng, Jibin; Liu, Hongwei; Liu, Zheng; Liu, Qing Huo
2017-01-01
For inverse synthetic aperture radar (ISAR) imaging of a ship target moving with ocean waves, the image constructed with the standard range-Doppler (RD) technique is blurred and the range-instantaneous-Doppler (RID) technique has to be used to improve the image quality. In this paper, azimuth echoes in a range cell of the ship target are modeled as noisy multicomponent cubic phase signals (CPSs) after the motion compensation and a RID ISAR imaging algorithm is proposed based on the integrated cubic phase bilinear autocorrelation function (ICPBAF). The ICPBAF is bilinear and based on the two-dimensionally coherent energy accumulation. Compared to five other estimation algorithms, the ICPBAF can acquire higher cross term suppression and anti-noise performance with a reasonable computational cost. Through simulations and analyses with the synthetic model and real radar data, we verify the effectiveness of the ICPBAF and corresponding RID ISAR imaging algorithm. PMID:28273800
Numerical method using cubic B-spline for a strongly coupled reaction-diffusion system.
Abbas, Muhammad; Majid, Ahmad Abd; Md Ismail, Ahmad Izani; Rashid, Abdur
2014-01-01
In this paper, a numerical method for the solution of a strongly coupled reaction-diffusion system, with suitable initial and Neumann boundary conditions, by using cubic B-spline collocation scheme on a uniform grid is presented. The scheme is based on the usual finite difference scheme to discretize the time derivative while cubic B-spline is used as an interpolation function in the space dimension. The scheme is shown to be unconditionally stable using the von Neumann method. The accuracy of the proposed scheme is demonstrated by applying it on a test problem. The performance of this scheme is shown by computing L∞ and L2 error norms for different time levels. The numerical results are found to be in good agreement with known exact solutions.
Surprising stability of neutral interstitial hydrogen in diamond and cubic BN
Lyons, J. L.; Van de Walle, C. G.
2016-01-21
We report that in virtually all semiconductors and insulators, hydrogen interstitials (Hi) act as negative-U centers, implying that hydrogen is never stable in the neutral charge state. Using hybrid density functional calculations, we find a different behavior for Hi in diamond and cubic BN. In diamond, Hi is a very strong positive-U center, and the H0icharge state is stable over a Fermi-level range of more than 2 eV. In cubic BN, a III-V compound similar to diamond, we also find positive-U behavior, though over a much smaller Fermi-level range. Finally, these results highlight the unique behavior of Hi in thesemore » covalent wide-band-gap semiconductors.« less
NASA Technical Reports Server (NTRS)
Fiske, David R.
2004-01-01
In an earlier paper, Misner (2004, Class. Quant. Grav., 21, S243) presented a novel algorithm for computing the spherical harmonic components of data represented on a cubic grid. I extend Misner s original analysis by making detailed error estimates of the numerical errors accrued by the algorithm, by using symmetry arguments to suggest a more efficient implementation scheme, and by explaining how the algorithm can be applied efficiently on data with explicit reflection symmetries.
Transformation of a cubic precipitate to a butterfly shape due to localized instabilities
Colin, J.; Grilhe, J.; Junqua, N.
1998-02-13
Localized surface instabilities have been used to explain the transformation to a butterfly shape of a cubic precipitate submitted to epitaxial stress. An energy variation calculation shows that each of the precipitate-matrix interfaces can develop by diffusion of a Mexican hat shaped instability to minimize the stored elastic energy. Using classical results of stress induced diffusion, the most probable dimension of the resulting fluctuations has been determined. A typical butterfly configuration can be obtained with characteristic dimensions.
Lattice distortions and oxygen vacancies produced in Au+ irradiated nano-crystalline cubic zirconia
Edmondson, Philip D; Weber, William J; Namavar, Fereydoon; Zhang, Yanwen
2011-01-01
The structural impact of oxygen vacancies in nanocrystalline cubic zirconia is investigated. A non-equilibrium number of oxygen vacancies in introduced to the lattice by ion irradiation. The lattice is observed to be initially compressed, undergoes a relaxation at 0.7 displacements per atom (dpa), and experiences a contraction before reaching a temperature dependent steady state value at above 7 dpa. The level of lattice distortion is related to the charge state of the accumulating oxygen vacancies.
Strong phonon anomalies and Fermi surface nesting of simple cubic Polonium
NASA Astrophysics Data System (ADS)
Belabbes, A.; Zaoui, A.; Ferhat, M.
2010-12-01
The unknown lattice dynamics of simple cubic Polonium is calculated using first-principles density-functional perturbation theory with pseudopotentials and a plane-wave basis set. We notice several phonon anomalies, in particular along major symmetry directions namely M-R, R-Γ, Γ-M, M-X, and X-Γ. The analysis of the Fermi surface strongly suggests that the observed phonon anomalies are Kohn anomalies arising from strong Fermi surface nesting.
NASA Astrophysics Data System (ADS)
Tang, Chengchun; Bando, Yoshio; Huang, Yang; Zhi, Chunyi; Golberg, Dmitri; Xu, Xuewen; Zhao, Jianling; Li, YangXian
2010-03-01
Cubic spinel structured gallium oxynitride has been synthesized through the reaction of metallic gallium and water in the presence of organic ethylenediamine. The relative content of the mixed solvent of water and ethylenediamine controls the product morphology and structure. A novel well-defined nanoporous structure has finally been obtained, whose large surface area and peculiar surface chemistry will generate novel physical and chemical properties. As an example, lithium intercalation properties for prospective applications in lithium ion batteries are demonstrated in this work.
The cubic period-distance relation for the Kate reversible pendulum
NASA Astrophysics Data System (ADS)
Rossi, Michele; Zaninetti, Lorenzo
2005-12-01
We describe the correct cubic relation between the mass configuration of a Kater reversible pendulum and its period of oscillation. From an analysis of its solutions we conclude that there could be as many as three distinct mass configurations for which the periods of small oscillations about the two pivots of the pendulum have the same value. We also discuss a real compound Kater pendulum that realizes this property.
NASA Astrophysics Data System (ADS)
Majeed, Abdul; Piah, Abd Rahni Mt
2015-10-01
Spline has been used extensively in engineering design and modelling for representation, analysis and manufacturing purposes. This paper presents an application of spline methods in bio-medical modelling. We reconstruct craniofacial fractured skull bone images using rational cubic Ball interpolant with two free parameters. The free parameters are optimized with the help of genetic algorithm. Our emphasis is placed on the accuracy and smoothness of the reconstructed images.
Effects of spatial and temporal noise on a cubic-autocatalytic reaction-diffusion model
NASA Astrophysics Data System (ADS)
Gagnon, Jean-Sébastien; Hochberg, David; Pérez-Mercader, Juan
2017-03-01
We characterize the influence that external noise, with both spatial and temporal correlations, has on the scale dependence of the reaction parameters of a cubic autocatalytic reaction diffusion (CARD) system. Interpreting the CARD model as a primitive reaction scheme for a living system, the results indicate that power-law correlations in environmental fluctuations can either decrease or increase the rates of nutrient decay and the rate of autocatalysis (replication) on small spatial and temporal scales.
Sankhagowit, Shalene; Lee, Ernest Y; Wong, Gerard C L; Malmstadt, Noah
2016-03-15
Oxidation is associated with conditions related to chronic inflammations and aging. Cubic structures have been observed in the smooth endoplasmic reticulum and mitochondrial membranes of cells under oxidative stress (e.g., tumor cells and virus-infected cells). It has been previously suspected that oxidation can result in the rearrangement of lipids from a fluid lamellar phase to a cubic structure in organelles containing membranes enriched with amphiphiles that have nonzero intrinsic curvature, such as phosphatidylethanolamine (PE) and cardiolipin. This study focuses on the oxidation of 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), a lipid that natively forms an inverted hexagonal phase at physiological conditions. The oxidized samples contain an approximately 3:2 molar ratio of nonoxidized to oxidized DOPE. Optical microscopy images collected during the hydration of this mixture from a dried film suggest that the system evolves into a coexistence of a stable fluid lamellar phase and transient square lattice structures with unit cell sizes of 500-600 nm. Small-angle X-ray scattering of the same lipid mixture yielded a body-centered Im3m cubic phase with the lattice parameter of 14.04 nm. On average, the effective packing parameter of the oxidized DOPE species was estimated to be 0.657 ± 0.069 (standard deviation). This suggests that the oxidation of PE leads to a group of species with inverted molecular intrinsic curvature. Oxidation can create amphiphilic subpopulations that potently impact the integrity of the membrane, since negative Gaussian curvature intrinsic to cubic phases can enable membrane destabilization processes.
Forced cubic Schrödinger equation with Robin boundary data: large-time asymptotics.
Kaikina, Elena I
2013-11-08
We consider the initial-boundary-value problem for the cubic nonlinear Schrödinger equation, formulated on a half-line with inhomogeneous Robin boundary data. We study traditionally important problems of the theory of nonlinear partial differential equations, such as the global-in-time existence of solutions to the initial-boundary-value problem and the asymptotic behaviour of solutions for large time.
Evidence for a bicritical point in the XXZ Heisenberg antiferromagnet on a simple cubic lattice.
Selke, Walter
2011-04-01
The classical Heisenberg antiferromagnet with uniaxial exchange anisotropy (XXZ model) in a field on a simple cubic lattice is studied with the help of extensive Monte Carlo simulations. We analyze, in particular, various staggered susceptibilities and Binder cumulants and present clear evidence for the triple point of the antiferromagnetic, spin-flop, and paramagnetic phases being a bicritical point with Heisenberg symmetry. Results are compared to previous predictions applying various theoretical approaches.
Orthogonal cubic spline collocation method for the extended Fisher-Kolmogorov equation
NASA Astrophysics Data System (ADS)
Danumjaya, P.; Pani, Amiya K.
2005-02-01
A second-order splitting combined with orthogonal cubic spline collocation method is formulated and analysed for the extended Fisher-Kolmogorov equation. With the help of Lyapunov functional, a bound in maximum norm is derived for the semidiscrete solution. Optimal error estimates are established for the semidiscrete case. Finally, using the monomial basis functions we present the numerical results in which the integration in time is performed using RADAU 5 software library.
A Cubic Radial Basis Function in the MLPG Method for Beam Problems
NASA Technical Reports Server (NTRS)
Raju, I. S.; Phillips, D. R.
2002-01-01
A non-compactly supported cubic radial basis function implementation of the MLPG method for beam problems is presented. The evaluation of the derivatives of the shape functions obtained from the radial basis function interpolation is much simpler than the evaluation of the moving least squares shape function derivatives. The radial basis MLPG yields results as accurate or better than those obtained by the conventional MLPG method for problems with discontinuous and other complex loading conditions.
Yang, Dandan; Chen, Dongdan; He, Huilin; Pan, Qiwen; Xiao, Quanlan; Qiu, Jianrong; Dong, Guoping
2016-01-01
The morphology of hexagonal phase NaYF4:Er3+ nanorods synthesized by hydrothermal method changed greatly after a continuing calcination, along with a phase transformation to cubic phase. Photoluminescence (PL) spectra indicated that mid-infrared (MIR) emission was obtained in both hexagonal and cubic phase NaYF4:Er3+ nanocrystals for the first time. And the MIR emission of NaYF4:Er3+ nanocrystals enhanced remarkably at higher calcination temperature. To prevent uncontrollable morphology from phase transformation, the cubic phase NaYF4:Er3+ nanospheres with an average size of ~100 nm were prepared via a co-precipitation method directly. In contrast, the results showed better morphology and size of cubic phase NaYF4:Er3+ nanocrystals have realized when calcined at different temperatures. And PL spectra demonstrated a more intense MIR emission in the cubic phase NaYF4:Er3+ nanocrystals with an increasing temperature. Besides, the MIR emission peak of Er3+ ions had an obvious splitting in cubic phase NaYF4. Therefore, cubic phase NaYF4:Er3+ nanospheres with more excellent MIR luminescent properties seems to provide a new material for nanocrystal-glass composites, which is expected to open a broad new field for the realization of MIR lasers gain medium. PMID:27453150
NASA Astrophysics Data System (ADS)
Moore, R. C.; Fujimaru, S.; Kotovsky, D. A.; Gołkowski, M.
2013-12-01
Extremely-low-frequency (ELF, 3-3000 Hz) and very-low-frequency (VLF, 3-30 kHz) waves generated by the excitation of the thermal cubic nonlinearity are observed for the first time at the High-Frequency Active Auroral Research Program high-frequency transmitter in Gakona, Alaska. The observed ELF and VLF field amplitudes are the strongest generated by any high frequency (HF, 3-30 MHz) heating facility using this mechanism to date. This manner of ELF and VLF generation is independent of naturally forming currents, such as the auroral electrojet current system. Time-of-arrival analysis applied to experimental observations shows that the thermal cubic ELF and VLF source region is located within the collisional D-region ionosphere. Observations are compared with the predictions of a theoretical HF heating model using perturbation theory. For the experiments performed, two X-mode HF waves were transmitted at frequencies ω1 and ω2, with |ω2-2ω1| being in the ELF and VLF frequency range. In contrast with previous work, we determine that the ELF and VLF source is dominantly produced by the interaction between collision frequency oscillations at frequency ω2-ω1 and the polarization current density associated with the lower frequency HF wave at frequency ω1. This specific interaction has been neglected in past cubic thermal nonlinearity work, and it plays a major role in the generation of ELF and VLF waves.
Moore, R C; Fujimaru, S; Kotovsky, D A; Gołkowski, M
2013-12-06
Extremely-low-frequency (ELF, 3-3000 Hz) and very-low-frequency (VLF, 3-30 kHz) waves generated by the excitation of the thermal cubic nonlinearity are observed for the first time at the High-Frequency Active Auroral Research Program high-frequency transmitter in Gakona, Alaska. The observed ELF and VLF field amplitudes are the strongest generated by any high frequency (HF, 3-30 MHz) heating facility using this mechanism to date. This manner of ELF and VLF generation is independent of naturally forming currents, such as the auroral electrojet current system. Time-of-arrival analysis applied to experimental observations shows that the thermal cubic ELF and VLF source region is located within the collisional D-region ionosphere. Observations are compared with the predictions of a theoretical HF heating model using perturbation theory. For the experiments performed, two X-mode HF waves were transmitted at frequencies ω1 and ω2, with |ω2-2ω1| being in the ELF and VLF frequency range. In contrast with previous work, we determine that the ELF and VLF source is dominantly produced by the interaction between collision frequency oscillations at frequency ω2-ω1 and the polarization current density associated with the lower frequency HF wave at frequency ω1. This specific interaction has been neglected in past cubic thermal nonlinearity work, and it plays a major role in the generation of ELF and VLF waves.
Modulational instability in two-component discrete media with cubic-quintic nonlinearity.
Baizakov, B B; Bouketir, A; Messikh, A; Umarov, B A
2009-04-01
The effect of cubic-quintic nonlinearity and associated intercomponent couplings on the modulational instability (MI) of plane-wave solutions of the two-component discrete nonlinear Schrödinger (DNLS) equation is considered. Conditions for the onset of MI are revealed and the growth rate of small perturbations is analytically derived. For the same set of initial parameters as equal amplitudes of plane waves and intercomponent coupling coefficients, the effect of quintic nonlinearity on MI is found to be essentially stronger than the effect of cubic nonlinearity. Analytical predictions are supported by numerical simulations of the underlying coupled cubic-quintic DNLS equation. Relevance of obtained results to dense Bose-Einstein condensates (BECs) in deep optical lattices, when three-body processes are essential, is discussed. In particular, the phase separation under the effect of MI in a two-component repulsive BEC loaded in a deep optical lattice is predicted and found in numerical simulations. Bimodal light propagation in waveguide arrays fabricated from optical materials with non-Kerr nonlinearity is discussed as another possible physical realization for the considered model.
Pronounced negative thermal expansion from a simple structure : Cubic ScF{sub 3}.
Greve, B. K.; Martin, K. L.; Lee, P. L.; Chupas, P. J.; Chapman, K. W.; Wilkinson, A. P.; X-Ray Science Division; Georgia Inst. of Tech.
2010-10-19
Scandium trifluoride maintains a cubic ReO{sub 3} type structure down to at least 10 K, although the pressure at which its cubic to rhombohedral phase transition occurs drops from >0.5 GPa at {approx}300 K to 0.1-0.2 GPa at 50 K. At low temperatures it shows strong negative thermal expansion (NTE) (60-110 K, {alpha}{sub l} {approx} -14 ppm K{sup -1}). On heating, its coefficient of thermal expansion (CTE) smoothly increases, leading to a room temperature CTE that is similar to that of ZrW{sub 2}O{sub 8} and positive thermal expansion above {approx}1100 K. While the cubic ReO{sub 3} structure type is often used as a simple illustration of how negative thermal expansion can arise from the thermally induced rocking of rigid structural units, ScF{sub 3} is the first material with this structure to provide a clear experimental illustration of this mechanism for NTE.
Geometrical aspects of the frustration in the cubic phases of lyotropic liquid crystals.
Anderson, D M; Gruner, S M; Leibler, S
1988-01-01
Bicontinuous cubic phases, composed of bilayers arranged in the geometries of periodic minimal surfaces, are found in a variety of different lipid/water systems. It has been suggested recently that these cubic structures arrive as the result of competition between two free-energy terms: the curvature energy of each monolayer and the stretching energy of the lipid chains. This scenario, closely analogous to the one that explains the origin of the hexagonal phases, is investigated here by means of simple geometrical calculations. It is first assumed that the lipid bilayer is of constant thickness and the distribution of the (local) mean curvature of the phospholipid-water interfaces is calculated. Then, assuming the mean curvature of these interfaces is constant, the distribution of the bilayer's thickness is calculated. Both calculations quantify the fact that the two energy terms are frustrated and cannot be satisfied simultaneously. However, the amount of the frustration can be smaller for the cubic phase than for the lamellar and hexagonal structures. Therefore, this phase can appear in the phase diagram between the other two, as observed in many recent experiments. PMID:3399497
Wiener index on rows of unit cells of the face-centred cubic lattice.
Mujahed, Hamzeh; Nagy, Benedek
2016-03-01
The Wiener index of a connected graph, known as the `sum of distances', is the first topological index used in chemistry to sum the distances between all unordered pairs of vertices of a graph. The Wiener index, sometimes called the Wiener number, is one of the indices associated with a molecular graph that correlates physical and chemical properties of the molecule, and has been studied for various kinds of graphs. In this paper, the graphs of lines of unit cells of the face-centred cubic lattice are investigated. This lattice is one of the simplest, the most symmetric and the most usual, cubic crystal lattices. Its graphs contain face centres of the unit cells and other vertices, called cube vertices. Closed formulae are obtained to calculate the sum of shortest distances between pairs of cube vertices, between cube vertices and face centres and between pairs of face centres. Based on these formulae, their sum, the Wiener index of a face-centred cubic lattice with unit cells connected in a row graph, is computed.
Formation of hexagonal and cubic ice during low-temperature growth.
Thürmer, Konrad; Nie, Shu
2013-07-16
From our daily life we are familiar with hexagonal ice, but at very low temperature ice can exist in a different structure--that of cubic ice. Seeking to unravel the enigmatic relationship between these two low-pressure phases, we examined their formation on a Pt(111) substrate at low temperatures with scanning tunneling microscopy and atomic force microscopy. After completion of the one-molecule-thick wetting layer, 3D clusters of hexagonal ice grow via layer nucleation. The coalescence of these clusters creates a rich scenario of domain-boundary and screw-dislocation formation. We discovered that during subsequent growth, domain boundaries are replaced by growth spirals around screw dislocations, and that the nature of these spirals determines whether ice adopts the cubic or the hexagonal structure. Initially, most of these spirals are single, i.e., they host a screw dislocation with a Burgers vector connecting neighboring molecular planes, and produce cubic ice. Films thicker than ~20 nm, however, are dominated by double spirals. Their abundance is surprising because they require a Burgers vector spanning two molecular-layer spacings, distorting the crystal lattice to a larger extent. We propose that these double spirals grow at the expense of the initially more common single spirals for an energetic reason: they produce hexagonal ice.
Bobrowski, Piotr; Faryna, Marek; Pędzich, Zbigniew
2014-09-15
Highlights: • Cubic zirconia sinters were investigated in three dimensions using dual-beam FEGSEM. • The 3D-EBSD technique was successfully applied to non-conductive ceramics. • New sample preparation approach to automated 3D-EBSD was proposed. • Grain boundary microstructures were reconstructed from inverse pole figure maps. • Pore microstructures were reconstructed from image quality maps. - Abstract: Three-dimensional electron backscatter diffraction technique was used for the visualization of grain boundary geometry and pore morphology in cubic zirconia. A set of four samples sintered under different conditions was investigated. Specimens which were characterized by energy dispersive spectroscopy and X-ray diffraction were entirely composed of cubic phase. Investigations of boundaries and pore structures were carried out in a dual-beam scanning electron microscope. For each sample, a volume of 1000 μm{sup 3} was investigated. The analysis of grain boundary networks reconstructed from inverse pole figure maps revealed a strong dependence between grain boundary density and sample preparation parameters. Sintering also affects the size and distribution of pores. The total number of grains analyzed varied from 17 to 357 and the calculated volume of cavities from 0.01% to 21%. This paper shows the application of three-dimensional crystallographic orientation analysis to characterize the microstructure of yttria stabilized zirconia ceramics.
Soo, Y. L.; Chen, P. J.; Huang, S. H.; Shiu, T. J.; Tsai, T. Y.; Chow, Y. H.; Lin, Y. C.; Weng, S. C.; Chang, S. L.; Wang, G.; Cheung, C. L.; Sabirianov, R. F.; Mei, W. N.; Namavar, F.; Haider, H.; Garvin, K. L.; Lee, J. F.; Lee, H. Y.; Chu, P. P.
2008-12-01
Local environment surrounding Zr atoms in the thin films of nanocrystalline zirconia (ZrO{sub 2}) has been investigated by using the extended x-ray absorption fine structure (EXAFS) technique. These films prepared by the ion beam assisted deposition exhibit long-range structural order of cubic phase and high hardness at room temperature without chemical stabilizers. The local structure around Zr probed by EXAFS indicates a cubic Zr sublattice with O atoms located on the nearest tetragonal sites with respect to the Zr central atoms, as well as highly disordered locations. Similar Zr local structure was also found in a ZrO{sub 2} nanocrystal sample prepared by a sol-gel method. Variations in local structures due to thermal annealing were observed and analyzed. Most importantly, our x-ray results provide direct experimental evidence for the existence of oxygen vacancies arising from local disorder and distortion of the oxygen sublattice in nanocrystalline ZrO{sub 2}. These oxygen vacancies are regarded as the essential stabilizing factor for the nanostructurally stabilized cubic zirconia.
Self-assembly of the simple cubic lattice with an isotropic potential.
Rechtsman, Mikael C; Stillinger, Frank H; Torquato, Salvatore
2006-08-01
Conventional wisdom presumes that low-coordinated crystal ground states require directional interactions. Using our recently introduced optimization procedure to achieve self-assembly of targeted structures [M. C. Rechtsman, Phys. Rev. Lett. 95, 228301 (2005); Phys. Rev. E 73, 011406 (2006)], we present an isotropic pair potential V(r) for a three-dimensional many-particle system whose classical ground state is the low-coordinated simple cubic lattice. This result is part of an ongoing pursuit by the authors to develop analytical and computational tools to solve statistical-mechanical inverse problems for the purpose of achieving targeted self-assembly. The purpose of these methods is to design interparticle interactions that cause self-assembly of technologically important target structures for applications in photonics, catalysis, separation, sensors, and electronics. We also show that standard approximate integral-equation theories of the liquid state that utilize pair correlation function information cannot be used in the reverse mode to predict the correct simple cubic potential. We report in passing optimized isotropic potentials that yield the body-centered-cubic and simple hexagonal lattices, which provide other examples of non-close-packed structures that can be assembled using isotropic pair interactions.
Structure and luminescence properties of eu3+-doped cubic mesoporous silica thin films.
Lu, Qingshan; Wang, Zhongying; Wang, Peiyu; Li, Jiangong
2010-02-11
Eu3+ ions-doped cubic mesoporous silica thin films with a thickness of about 205 nm were prepared on silicon and glass substrates using triblock copolymer as a structure-directing agent using sol-gel spin-coating and calcination processes. X-ray diffraction and transmission electron microscopy analysis show that the mesoporous silica thin films have a highly ordered body-centered cubic mesoporous structure. High Eu3+ ion loading and high temperature calcination do not destroy the ordered cubic mesoporous structure of the mesoporous silica thin films. Photoluminescence spectra show two characteristic emission peaks corresponding to the transitions of5D0-7F1 and 5D0-7F2 of Eu3+ ions located in low symmetry sites in mesoporous silica thin films. With the Eu/Si molar ratio increasing to 3.41%, the luminescence intensity of the Eu3+ ions-doped mesoporous silica thin films increases linearly with increasing Eu3+ concentration.
The influence of coordinated defects on inhomogeneous broadening in cubic lattices
NASA Astrophysics Data System (ADS)
Matheson, P. L.; Sullivan, Francis P.; Evenson, William E.
2016-12-01
The joint probability distribution function (JPDF) of electric field gradient (EFG) tensor components in cubic materials is dominated by coordinated pairings of defects in shells near probe nuclei. The contributions from these inner shell combinations and their surrounding structures contain the essential physics that determine the PAC-relevant quantities derived from them. The JPDF can be used to predict the nature of inhomogeneous broadening (IHB) in perturbed angular correlation (PAC) experiments by modeling the G 2 spectrum and finding expectation values for V zz and η. The ease with which this can be done depends upon the representation of the JPDF. Expanding on an earlier work by Czjzek et al. (Hyperfine Interact. 14, 189-194, 1983), Evenson et al. (Hyperfine Interact. 237, 119, 2016) provide a set of coordinates constructed from the EFG tensor invariants they named W 1 and W 2. Using this parameterization, the JPDF in cubic structures was constructed using a point charge model in which a single trapped defect (TD) is the nearest neighbor to a probe nucleus. Individual defects on nearby lattice sites pair with the TD to provide a locus of points in the W 1- W 2 plane around which an amorphous-like distribution of probability density grows. Interestingly, however, marginal, separable PDFs appear adequate to model IHB relevant cases. We present cases from simulations in cubic materials illustrating the importance of these near-shell coordinations.
Structure and optical properties of cubic gallium oxynitride synthesized by solvothermal route
Oberländer, Andreas; Kinski, Isabel; Zhu, Wenliang; Pezzotti, Giuseppe; Michaelis, Alexander
2013-04-15
Cubic gallium oxynitride was synthesized using a solvothermal processing route. Crystal structure, chemical composition, optical properties and the influence of heat treatment in either reactive or inert atmospheres have been investigated. Despite a strongly distorted lattice revealed using X-ray diffraction, the Raman active modes of a cubic gallium oxynitride structure could be observed. With diffusive reflectance UV–Vis spectroscopy a band gap at around 4.8 eV has been observed. Additionally, cathodoluminescence spectroscopy exhibited observable luminescence caused by defect-related transitions within the optical gap. Cathodoluminescence and photoluminescence spectra collected after heat treatments showed significant changes in the defect structure. In particular, for annealing in ammonia the main spectral modifications were related to the substitution of oxygen by nitrogen on anion sites. - Graphical abstract: CL spectra of gallium oxynitride: As-prepared and heat-treated at temperatures of 500 °C in different atmospheres. Highlights: ► Raman spectrum of cubic gallium oxynitride. ► Experimental determination of optical band gap. ► Shift of band gap energy due to heat treatment. ► Nitrogen incorporation leads to deep level acceptor states. ► Red shifted luminescence spectrum.
Chen, Zhigang; Li, Lianhui; Cong, Shan; Xuan, Jinnan; Zhang, Dengsong; Geng, Fengxia; Zhang, Ting; Zhao, Zhigang
2017-01-11
A key challenge in current superhard materials research is the design of novel superhard nanocrystals (NCs) whereby new and unexpected properties may be predicted. Cubic boron nitride (c-BN) is a superhard material which ranks next to diamond; however, downsizing c-BN material below the 10 nm scale is rather challenging, and the interesting new properties of c-BN NCs remain unexplored and wide open. Herein we report an electrochemical shock method to prepare uniform c-BN NCs with a lateral size of only 3.4 ± 0.6 nm and a thickness of only 0.74 ± 0.3 nm at ambient temperature and pressure. The fabrication process is simple and fast, with c-BN NCs produced in just a few minutes. Most interestingly, the NCs exhibit excellent piezoelectric performance with a large recordable piezoelectric coefficient of 25.7 pC/N, which is almost 6 times larger than that from bulk c-BN and even competitive to conventional piezoelectric materials. The phenomenon of enhancement in the piezoelectric properties of BN NCs might arise from the nanoscale surface effect and nanoscale shape effect of BN NCs. This work paves an interesting route for exploring new properties of superhard NCs.
NASA Astrophysics Data System (ADS)
Li, Wenchao; Yang, Jianyu; Huang, Yulin; Kong, Lingjiang
For Doppler parameter estimation of forward-looking SAR, the third-order Doppler parameter can not be neglected. In this paper, the azimuth signal of the transmitter fixed bistatic forward-looking SAR is modeled as a cubic polynomial phase signal (CPPS) and multiple time-overlapped CPPSs, and the modified cubic phase function is presented to estimate the third-order Doppler parameter. By combining the cubic phase function (CPF) with Radon transform, the method can give an accurate estimation of the third-order Doppler parameter. Simulations validate the effectiveness of the algorithm.
Tondu, B.; Bazaz, S.A.
1999-09-01
An original method called the three-cubic method is proposed to generate online robot joint trajectories interpolating given position points with associated velocities. The method is based on an acceleration profile composed of three cubic polynomial segments, which ensure a zero acceleration at each intermediate point. Velocity and acceleration continuity is obtained, and this three-cubics combination allows the analytical solution to the minimum time trajectory problem under maximum velocity and acceleration constraints. Possible wandering is detected and can be overcome. Furthermore, the analytical solution to the minimum time trajectory problem leads to an online trajectory computation.
Darmanin, Connie; Conn, Charlotte E; Newman, Janet; Mulet, Xavier; Seabrook, Shane A; Liang, Yi-Lynn; Hawley, Adrian; Kirby, Nigel; Varghese, Joseph N; Drummond, Calum J
2012-04-09
A protocol is presented for the high-throughput (HT) production of lyotropic liquid crystalline phases from libraries of lipids and lipid mixtures using standard liquid dispensing robotics, implementing methods that circumvent the problems traditionally associated with handling the highly viscous cubic phase. In addition, the ability to structurally characterize lipidic phases and assess functionality for membrane proteins contained within cubic phases, in a HT manner, is demonstrated. The techniques are combined and exemplified using the application of membrane protein crystallization within lipidic cubic phases.
Possible significance of cubic water-ice, H2O-Ic, in the atmospheric water cycle of Mars
NASA Technical Reports Server (NTRS)
Gooding, James L.
1988-01-01
The possible formation and potential significance of the cubic ice polymorph on Mars is discussed. When water-ice crystallizes on Earth, the ambient conditions of temperature and pressure result in the formation of the hexagonal ice polymorph; however, on Mars, the much lower termperature and pressures may permit the crystallization of the cubic polymorph. Cubic ice has two properties of possible importance on Mars: it is an excellant nucleator of other volatiles (such as CO2), and it undergoes an exothermic transition to hexagonal ice at temperatures above 170 K. These properties may have significant implications for both martian cloud formation and the development of the seasonal polar caps.
Mante, Pierre-Adrien; Chen, Chien-Cheng; Wen, Yu-Chieh; Sheu, Jinn-Kong; Sun, Chi-Kuang
2013-11-27
A phonon nanoscopy method, based on the picosecond ultrasonics technique, capable of studying the complex acoustic reflection coefficient at frequency up to 1 THz is proposed and demonstrated. By measuring the reflection coefficient at the same surface location at the interface between GaN and air, and between GaN and the material to characterize, we get access to the THz amplitude and phase spectra of the acoustic phonon reflection. The retrieval of both these pieces of information then allows the calculation of the attenuation in a wide range of frequency and gives new insight into the Kapitza anomaly. This method is then applied to cubic ice, and the measurements of the elastic properties, the phonon anharmonic decay spectrum up to 1 THz, as well as the measurements of the thermal phonon lifetime at 150 K are all achieved.
Oka, Toshihiko; Saiki, Takahiro; Alam, Jahangir Md; Yamazaki, Masahito
2016-02-09
Electrostatic interaction is an important factor for phase transitions between lamellar liquid-crystalline (Lα) and inverse bicontinuous cubic (QII) phases. We investigated the effect of temperature on the low-pH-induced Lα to double-diamond cubic (QII(D)) phase transition in dioleoylphosphatidylserine (DOPS)/monoolein (MO) using time-resolved small-angle X-ray scattering with a stopped-flow apparatus. Under all conditions of temperature and pH, the Lα phase was directly transformed into an intermediate inverse hexagonal (HII) phase, and subsequently the HII phase slowly converted to the QII(D) phase. We obtained the rate constants of the initial step (i.e., the Lα to HII phase transition) and of the second step (i.e., the HII to QII(D) phase transition) using the non-negative matrix factorization method. The rate constant of the initial step increased with temperature. By analyzing this result, we obtained the values of its apparent activation energy, Ea (Lα → HII), which did not change with temperature but increased with an increase in pH. In contrast, the rate constant of the second step decreased with temperature at pH 2.6, although it increased with temperature at pH 2.7 and 2.8. These results indicate that the value of Ea (HII → QII(D)) at pH 2.6 increased with temperature, but the values of Ea (HII → QII(D)) at pH 2.7 and 2.8 were constant with temperature. The values of Ea (HII → QII(D)) were smaller than those of Ea (Lα → HII) at the same pH. We analyzed these results using a modified quantitative theory on the activation energy of phase transitions of lipid membranes proposed initially by Squires et al. (Squires, A. M.; Conn, C. E.; Seddon, J. M.; Templer, R. H. Soft Matter 2009, 5, 4773). On the basis of these results, we discuss the mechanism of this phase transition.
Yang, Jing; Chang, Xiao-Yong; Sham, Kiu-Chor; Yiu, Shek-Man; Kwong, Hoi-Lun; Che, Chi-Ming
2016-05-01
M8L12 cubic cages (M = Mn(II), Zn(II) or Cd(II)), with all eight metal ions having all facial Δ or facial Λ configurations and having an encapsulated anion, were prepared by the self-assembly of m-xylene-bridged imidazolyl-imine ligands and MX2 (X = PF6(-), SbF6(-), TfO(-)) salts; the encapsulated anion exchange with different anions (SbF6(-), Tf2N(-), NO3(-), TsO(-)) was studied and the results with NO3(-) and TsO(-) indicate that anions on the cage surfaces affect the encapsulated anion exchange and the occupancy of the cage.
NASA Technical Reports Server (NTRS)
Ren, Z. F.; Wang, C. A.; Wang, J. H.; Miller, D. J.; Goretta, K. C.
1995-01-01
Epitaxial (Tl,Bi)Sr(1.6)Ba(0.4)Ca2Cu3O(x) ((Tl,Bi)-1223) thin films on (100) single crystal LaAlO3 substrates were synthesized by a two-step procedure. Phase development, microstructure, and relationships between film and substrate were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Resistance versus temperature, zero-field-cooled and field cooled magnetization, and transport critical current density (J(sub c)) were measured. The zero-resistance temperature was 105-111 K. J(sub c) at 77 K and zero field was greater than 2 x 10(exp 6) A/sq cm. The films exhibited good flux pinning properties.
NASA Astrophysics Data System (ADS)
Michelot, F.
2004-04-01
We underline some inconsistencies in the work [J. Mol. Spectrosc. 219 (2003) 313] concerning symmetry adaptation in cubic groups. Also we show that some rather complicated methods presented can be easily avoided.
Procedure for converting a Wilson-Fowler spline to a cubic B-spline with double knots
Fritsch, F.N.
1987-10-14
The Wilson-Fowler spline (WF-spline) has been used by the DOE Weapons Complex for over twenty years to represent point-defined smooth curves. Most modern CADCAM systems use parametric B-spline curves (or, more recently, rational B-splines) for this same purpose. The WF-spline is a parametric piecewise cubic curve. It has been shown that a WF-spline can be reparametrized so that its components are C/sup 1/ piecewise cubic functions (functions that are cubic polynomials on each parameter interval, joined so the function and first derivative are continuous). The purpose of these notes is to show explicitly how to convert a given WF-spline to a cubic B-spline with double knots. 7 refs.
Chevalier, Jérôme; Deville, Sylvain; Münch, Etienne; Jullian, Romain; Lair, Frédéric
2004-11-01
The isothermal tetragonal-to-monoclinic transformation of 3Y-TZP ceramics sintered at two different temperatures (1450 degrees C and 1550 degrees C) and duration (2 and 5h) is investigated at 134 degrees C in steam. Particular attention is paid to the presence of a cubic phase and its effect on isothermal aging. Sintering at 1550 degrees C can result in a significant amount of large cubic grains in the specimens, that have a detrimental impact on aging resistance, especially for the first stage of the aging process. Cubic grains appear to be enriched in yttrium, which in turn leads to a depletion of yttrium in the neighboring tetragonal grains. These grains will act as nucleation sites for tetragonal-to-monoclinic transformation. Even for specimens sintered at lower temperature, i.e. 1450 degrees C, the presence of a cubic phase is expected from the phase diagram, leading to a significant effect on aging sensitivity.
Abnormal thermal expansion properties of cubic NaZn13-type La(Fe,Al)13 compounds.
Li, Wen; Huang, Rongjin; Wang, Wei; Zhao, Yuqiang; Li, Shaopeng; Huang, Chuanjun; Li, Laifeng
2015-02-28
The cubic NaZn13-type La(Fe,Al)13 compounds were synthesized, and their linear thermal expansion properties were investigated in the temperature range of 4.2-300 K. It was found that these compounds exhibit abnormal thermal expansion behavior, i.e., pronounced negative thermal expansion (NTE) or zero thermal expansion (ZTE) behavior, below the Curie temperature due to the magnetovolume effect (MVE). Moreover, in the La(Fe,Al)13 compounds, the modification of the coefficient of thermal expansion (CTE) as well as the abnormal thermal expansion (ATE) temperature-window is achieved through optimizing the proportion of Fe and Al. Typically, the average CTE of the LaFe13-xAlx compounds with x = 1.8 reaches as large as -10.47 × 10(-6) K(-1) between 100 and 225 K (ΔT = 125 K). Also, the ZTE temperature-window of the LaFe13-xAlx compounds with x = 2.5 and x = 2.7 could be broadened to 245 K (from 5 to 250 K). Besides, the magnetic properties of these compounds were measured and correlated with the abnormal thermal expansion behavior. The present results highlight the potential application of such La(Fe,Al)13 compounds with abnormal thermal expansion properties in cryogenic engineering.
Structure and magnetic properties of the cubic oxide fluoride BaFeO{sub 2}F
Berry, Frank J.; Coomer, Fiona C.; Hancock, Cathryn; Helgason, Orn; Moore, Elaine A.; Slater, Peter R.; Wright, Adrian J.; Thomas, Michael F.
2011-06-15
Fluorination of the parent oxide, BaFeO{sub 3-{delta}}, with polyvinylidine fluoride gives rise to a cubic compound with a=4.0603(4) A at 298 K. {sup 57}Fe Moessbauer spectra confirmed that all the iron is present as Fe{sup 3+}. Neutron diffraction data showed complete occupancy of the anion sites, indicating a composition BaFeO{sub 2}F, with a large displacement of the iron off-site. The magnetic ordering temperature was determined as T{sub N}=645{+-}5 K. Neutron diffraction data at 4.2 K established G-type antiferromagnetism with a magnetic moment per Fe{sup 3+} ion of 3.95 {mu}{sub B}. However, magnetisation measurements indicated the presence of a weak ferromagnetic moment that is assigned to the canting of the antiferromagnetic structure. {sup 57}Fe Moessbauer spectra in the temperature range 10-300 K were fitted with a model of fluoride ion distribution that retains charge neutrality of the perovskite unit cell. - Graphical abstract: The cubic oxide fluoride of composition BaFeO{sub 2}F has been synthesised and characterised. Highlights: > Fluorination of BaFeO{sub 3-{delta}} with polyvinylidene fluoride gives a cubic oxide fluoride of composition BaFeO{sub 2}F. > BaFeO{sub 2}F adopts a canted antiferromagnetic structure and is different from the related phase of composition SrFeO{sub 2}F. > A model of fluoride ion distribution about iron in BaFeO{sub 2}F has been explored.
Self-similar optical pulses in competing cubic-quintic nonlinear media with distributed coefficients
Zhang Jiefang; Tian Qing; Wang Yueyue; Dai Chaoqing; Wu Lei
2010-02-15
We present a systematic analysis of the self-similar propagation of optical pulses within the framework of the generalized cubic-quintic nonlinear Schroedinger equation with distributed coefficients. By appropriately choosing the relations between the distributed coefficients, we not only retrieve the exact self-similar solitonic solutions, but also find both the approximate self-similar Gaussian-Hermite solutions and compact solutions. Our analytical and numerical considerations reveal that proper choices of the distributed coefficients could make the unstable solitons stable and could restrict the nonlinear interaction between the neighboring solitons.
NASA Astrophysics Data System (ADS)
Borghi, F.; Sogne, E.; Lenardi, C.; Podestà, A.; Merlini, M.; Ducati, C.; Milani, P.
2016-08-01
Nanostructured zirconium dioxide (zirconia) films are very promising for catalysis and biotechnological applications: a precise control of the interfacial properties of the material at different length scales and, in particular, at the nanoscale, is therefore necessary. Here, we present the characterization of cluster-assembled zirconia films produced by supersonic cluster beam deposition possessing cubic structure at room temperature and controlled nanoscale morphology. We characterized the effect of thermal annealing in reducing and oxidizing conditions on the crystalline structure, grain dimensions, and topography. We highlight the mechanisms of film growth and phase transitions, which determine the observed interfacial morphological properties and their resilience against thermal treatments.
Generating Erler-Schnabl-type solution for the tachyon vacuum in cubic superstring field theory
NASA Astrophysics Data System (ADS)
Aldo Arroyo, E.
2010-11-01
We study a new set of identity-based solutions to analyze the problem of tachyon condensation in open bosonic string field theory and cubic superstring field theory. Even though these identity-based solutions seem to be trivial, it turns out that after performing a suitable gauge transformation, we are left with the known Erler-Schnabl-type solutions which correctly reproduce the value of the D-brane tension. This result shows explicitly that a seemingly trivial solution can generate a non-trivial configuration which precisely represents the tachyon vacuum.