Sample records for 10sup minus11 cmsup

  1. Ultrahigh B doping ({<=}10{sup 22} cm{sup -3}) during Si(001) gas-source molecular-beam epitaxy: B incorporation, electrical activation, and hole transport

    SciTech Connect

    Glass, G.; Kim, H.; Desjardins, P.; Taylor, N.; Spila, T.; Lu, Q.; Greene, J. E.


    Si(001) layers doped with B concentrations C{sub B} between 1x10{sup 17} and 1.2x10{sup 22} cm{sup -3} (24 at %) were grown on Si(001)2x1 at temperatures T{sub s}=500-850 degree sign C by gas-source molecular-beam epitaxy from Si{sub 2}H{sub 6} and B{sub 2}H{sub 6}. C{sub B} increases linearly with the incident precursor flux ratio J{sub B{sub 2}}{sub H{sub 6}}/J{sub Si{sub 2}}{sub H{sub 6}} and B is incorporated into substitutional electrically active sites at concentrations up to C{sub B}{sup *}(T{sub s}) which, for T{sub s}=600 degree sign C, is 2.5x10{sup 20} cm{sup -3}. At higher B concentrations, C{sub B} increases faster than J{sub B{sub 2}}{sub H{sub 6}}/J{sub Si{sub 2}}{sub H{sub 6}} and there is a large and discontinuous decrease in the activated fraction of incorporated B. However, the total activated B concentration continues to increase and reaches a value of N{sub B}=1.3x10{sup 21} cm{sup -3} with C{sub B}=1.2x10{sup 22} cm{sup -3}. High-resolution x-ray diffraction (HR-XRD) and reciprocal space mapping measurements show that all films, irrespective of C{sub B} and T{sub s}, are fully strained. No B precipitates or misfit dislocations were detected by HR-XRD or transmission electron microscopy. The lattice constant in the film growth direction a{sub (perpendicular} {sub sign)} decreases linearly with increasing C{sub B} up to the limit of full electrical activation and continues to decrease, but nonlinearly, with C{sub B}>C{sub B}{sup *}. Room-temperature resistivity and conductivity mobility values are in good agreement with theoretical values for B concentrations up to C{sub B}=2.5x10{sup 20} and 2x10{sup 21} cm{sup -3}, respectively. All results can be explained on the basis of a model which accounts for strong B surface segregation to the second-layer with a saturation coverage {theta}{sub B,sat} of 0.5 ML (corresponding to C{sub B}=C{sub B}{sup *}). At higher C{sub B} (i.e., {theta}{sub B}>{theta}{sub B,sat}), B accumulates in the upper layer as

  2. Si[sub 3]N[sub 4]/Si/[ital n]-GaAs capacitor with minimum interface density in the 10[sup 10] eV[sup [minus]1] cm[sup [minus]2] range

    SciTech Connect

    Wang, Z.; Lin, M.E.; Biswas, D.; Mazhari, B.; Teraguchi, N.; Fan, Z.; Gui, X.; Morkoc, H. )


    We report significant improvements in the electrical characteristics of Si[sub 3]N[sub 4]/Si/GaAs capacitors with the assistance of atomic hydrogen during the [ital in] [ital situ] growth of Si on GaAs. Si[sub 3]N[sub 4]/Si/GaAs capacitors have shown a minimum interface state density as low as 3[times]10[sup 10] eV[sup [minus]1] cm[sup [minus]2] as determined by the low-frequency capacitance method. The hysteresis and frequency dispersion in the GaAs metal-insulator-semiconductor capacitor are very small (200 and 100 meV, respectively). These results represent significant advances over previous reports.

  3. Auxiliary titanium sublimation pump produces ultrahigh /10 to the minus 11 torr/ vacuum

    NASA Technical Reports Server (NTRS)

    Outlaw, R. A.


    Sublimated titanium as a gettering agent in conjunction with a turbine-type pump provides a two-step procedure for obtaining an ultrahigh vacuum of 10 to the minus 11 torr. The pump alone evacuates the chamber to a pressure of 10 to the minus 9 torr. The residual gas is removed by the gettering agent at a pumping speed of 15 liters per second per square inch.

  4. Logrithmic current simulator generates electrical currents accurately between 10 to the minus 11 ampere to 10 to the minus 3 ampere

    NASA Technical Reports Server (NTRS)

    Wilson, J.


    Current generator accurately simulates electric currents in the range of 10 to the minus 11th power to 0.001 ampere. Compensation networks have been devised to improve the accuracy at the lower current levels.

  5. Hollow electron beam with a pulse length 10/sup -4/ s from a multitip explosive-emission cathode

    SciTech Connect

    Vasilevskii, M.A.; Nikonov, A.G.; Roife, I.M.; Savel'ev, Y.M.; Engel'ko, V.I.


    In this letter we report experiments in which a hollow electron beam with a pulse length 0/sup -4/ s is produced. The cathode has a conical working surface of 1.5 x 10/sup -3/ cm/sup 2/ on which there are 500 fine tips made of carbon fibers. (AIP)

  6. Phenomenology of 10{sup 32} dark sectors

    SciTech Connect

    Dvali, Gia; Redi, Michele


    We postulate an exact permutation symmetry acting on 10{sup 32} standard model copies as the largest possible symmetry extension of the standard model. This setup automatically lowers the fundamental gravity cutoff down to TeV, and thus, accounts for the quantum stability of the weak scale. We study the phenomenology of this framework and show that below TeV energies the copies are well hidden, obeying all the existing observational bounds. Nevertheless, we identify a potential low energy window into the hidden world, the oscillation of the neutron into its dark copies. At the same time, proton decay can be suppressed by gauging the diagonal baryon number of the different copies. This framework offers an alternative approach to several particle physics questions. For example, we suggest a novel mechanism for generating naturally small neutrino masses that are suppressed by the number of neutrino species. The mirror copies of the standard model naturally house dark matter candidates. The general experimentally observable prediction of this scenario is an emergence of strong gravitational effects at the LHC. The low energy permutation symmetry powerfully constrains the form of this new gravitational physics and allows to make observational predictions, such as, production of micro black holes with very peculiar properties.

  7. PROCESS OF PRODUCING Cm$sup 244$ AND Cm$sup 24$$sup 5$


    Manning, W.M.; Studier, M.H.; Diamond, H.; Fields, P.R.


    A process is presented for producing Cm and Cm/sup 245/. The first step of the process consists in subjecting Pu/sup 2339/ to a high neutron flux and subsequently dissolving the irradiated material in HCl. The plutonium is then oxidized to at least the tetravalent state and the solution is contacted with an anion exchange resin, causing the plutonium values to be absorbed while the fission products and transplutonium elements remain in the effluent solution. The effluent solution is then contacted with a cation exchange resin causing the transplutonium, values to be absorbed while the fission products remain in solution. The cation exchange resin is then contacted with an aqueous citrate solution and tbe transplutonium elements are thereby differentially eluted in order of decreasing atomic weight, allowing collection of the desired fractions.

  8. Primordial black holes with mass 10{sup 16}−10{sup 17} g and reionization of the Universe

    SciTech Connect

    Belotsky, K.M.; Kirillov, A.A. E-mail:


    Primordial black holes (PBHs) with mass 10{sup 16}−10{sup 17} g almost escape constraints from observations so could essentially contribute to dark matter density. Hawking evaporation of such PBHs produces with a steady rate γ- and e{sup ±}-radiations in MeV energy range, which can be absorbed by ordinary matter. Simplified estimates show that a small fraction of evaporated energy had to be absorbed by baryonic matter what can turn out to be enough to heat the matter so it is fully ionized at the redshift z∼ 5... 10. The result is found to be close to a borderline case where the effect appears, what makes it sensitive to the approximation used. In our approximation, degree of gas ionization reaches 50-100% by z∼ 5 for PBH mass (3...7)× 10{sup 16} g with their abundance corresponding to the upper limit.

  9. Cosmic rays: the spectrum and chemical composition from 10{sup 10} to 10{sup 20} eV

    SciTech Connect

    Peixoto, C.J. Todero; De Souza, Vitor; Biermann, Peter L. E-mail:


    The production of energetic particles in the universe remains one of the great mysteries of modern science. The mechanisms of acceleration in astrophysical sources and the details about the propagation through the galactic and extragalactic media are still to be defined. In recent years, the cosmic ray flux has been measured with high precision in the energy range from 10{sup 10} to 10{sup 20.5} eV by several experiments using different techniques. In some energy ranges, it has been possible to determine the flux of individual elements (hydrogen to iron nuclei). This paper explores an astrophysical scenario in which only our Galaxy and the radio galaxy Cen A produce all particles measured on Earth in the energy range from 10{sup 10} to 10{sup 20.5} eV . Data from AMS-02, CREAM, KASCADE, KASCADE-Grande and the Pierre Auger Observatories are considered. The model developed here is compared to the total and if available to the individual particle flux of the experiments considered.The flux of each element as determined by AMS-02, CREAM, KASCADE and KASCADE-Grande and the mass sensitivity parameter X{sub max} measured by the Pierre Auger Observatory above 10 eV are also explored within the framework of the model. The transition from 10{sup 16} to 10{sup 18} eV is carefully analyzed. It is shown that the flux measured in this energy range suggest the existence of an extra component of cosmic rays yet to be understood.


    SciTech Connect

    Cheng, K.-S.; Chernyshov, D. O.; Dogiel, V. A.; Ko, C.-M.; Wang, Y.; Ip, W.-H.


    The Fermi Large Area Telescope has recently discovered two giant gamma-ray bubbles that extend north and south of the Galactic center with diameters and heights of the order of H {approx} 10 kpc. We suggest that the periodic star capture processes by the Galactic supermassive black hole Sgr A*, with a capture rate of {tau}{sup -1}{sub cap} {approx} 3 Multiplication-Sign 10{sup -5} yr{sup -1} and an energy release of W {approx} 3 Multiplication-Sign 10{sup 52} erg per capture, can result in hot plasma injecting into the Galactic halo at a wind velocity of u {approx} 10{sup 8} cm s{sup -1}. The periodic injection of hot plasma can produce a series of shocks. Energetic protons in the bubble are re-accelerated when they interact with these shocks. We show that for energy larger than E > 10{sup 15} eV, the acceleration process can be better described by the stochastic second-order Fermi acceleration. We propose that hadronic cosmic rays (CRs) within the 'knee' of the observed CR spectrum are produced by Galactic supernova remnants distributed in the Galactic disk. Re-acceleration of these particles in the Fermi Bubble produces CRs beyond the knee. With a mean CR diffusion coefficient in this energy range in the bubble D{sub B} {approx} 3 Multiplication-Sign 10{sup 30} cm{sup 2} s{sup -1}, we can reproduce the spectral index of the spectrum beyond the knee and within it. The conversion efficiency from shock energy of the bubble into CR energy is about 10%. This model provides a natural explanation of the observed CR flux, spectral indices, and matching of spectra at the knee.

  11. A technique for extending by ∼10{sup 3} the dynamic range of compact proton spectrometers for diagnosing ICF implosions on the National Ignition Facility and OMEGA

    SciTech Connect

    Sio, H. Séguin, F. H.; Frenje, J. A.; Gatu Johnson, M.; Zylstra, A. B.; Rinderknecht, H. G.; Rosenberg, M. J.; Li, C. K.; Petrasso, R. D.


    Wedge Range Filter (WRF) proton spectrometers are routinely used on OMEGA and the NIF for diagnosing ρR and ρR asymmetries in direct- and indirect-drive implosions of D{sup 3}He-, D{sub 2}-, and DT-gas-filled capsules. By measuring the optical opacity distribution in CR-39 due to proton tracks in high-yield applications, as opposed to counting individual tracks, WRF dynamic range can be extended by 10{sup 2} for obtaining the spectral shape, and by 10{sup 3} for mean energy (ρR) measurement, corresponding to proton fluences of 10{sup 8} and 10{sup 9} cm{sup −2}, respectively. Using this new technique, ρR asymmetries can be measured during both shock and compression burn (proton yield ∼10{sup 8} and ∼10{sup 12}, respectively) in 2-shock National Ignition Facility implosions with the standard WRF accuracy of ±∼10 mg/cm{sup 2}.

  12. The All-Particle Spectrum of Primary Cosmic Rays in the Wide Energy Range from 10{sup 14} to 10{sup 17} eV Observed with the Tibet-III Air-Shower Array

    SciTech Connect

    Amenomori, M.; Bi, X. J.; Ding, L. K.; Feng, Zhaoyang; He, H. H.; Hu, H. B.; Chen, D.; Cui, S. W.; Danzengluobu; Ding, X. H.; Guo, H. W.; Hu, Haibing; Fan, C.; Feng, C. F.; He, M.; Feng, Z. Y.; Gao, X. Y.; Geng, Q. X.; Hibino, K.; Hotta, N.


    We present an updated all-particle energy spectrum of primary cosmic rays in a wide range from 10{sup 14} to 10{sup 17} eV using 5.5 x 10{sup 7} events collected from 2000 November through 2004 October by the Tibet-III air-shower array located 4300 m above sea level (an atmospheric depth of 606 g cm{sup -2}). The size spectrum exhibits a sharp knee at a corresponding primary energy around 4 PeV. This work uses increased statistics and new simulation calculations for the analysis. We discuss our extensive Monte Carlo calculations and the model dependencies involved in the final result, assuming interaction models QGSJET01c and SIBYLL2.1, and heavy dominant (HD) and proton dominant (PD) primary composition models. Pure proton and pure iron primary models are also examined as extreme cases. A detector simulation was also performed to improve our accuracy in determining the size of the air showers and the energy of the primary particle. We confirmed that the all-particle energy spectra obtained under various plausible model parameters are not significantly different from each other, which was the expected result given the characteristics of the experiment at high altitude, where the air showers of the primary energy around the knee reach near-maximum development, with their features dominated by electromagnetic components, leading to a weak dependence on the interaction model or the primary mass. This is the highest statistical and the best systematics-controlled measurement covering the widest energy range around the knee energy region.

  13. Acceptances for space-based and ground-based fluorescence detectors, and inference of the neutrino-nucleon cross-section above 10{sup 19} eV

    SciTech Connect

    Palomares-Ruiz, Sergio; Irimia, Andrei; Weiler, Thomas J.


    Detection of ultrahigh energy neutrinos will be useful for unraveling the dynamics of the most violent sources in the cosmos and for revealing the neutrino cross-section at extreme energy. If there exists a Greisen-Zatsepin-Kuz'min (GZK) suppression of cosmic-ray events above E{sub GZK}{approx}5x10{sup 19} eV, as predicted by theory, then the only messengers of energies beyond E{sub GZK} are neutrinos. Cosmic neutrino fluxes can initiate air-showers through interaction in the atmosphere, or in the Earth. Neutrino trajectories will be downgoing to nearly horizontal in the former case, and 'Earth-skimming' in the latter case. Thus it is important to know the acceptances (event rate/flux) of proposed air-shower experiments for detecting both types of neutrino-initiated events. We calculate these acceptances for fluorescence detectors, both space-based as with the EUSO and OWL proposals, and ground-based, as with Auger, HiRes and Telescope Array. The neutrino cross-section {sigma}{sub {nu}}{sub N}{sup CC} is unknown at energies above 5.2x10{sup 13} eV. Although the popular QCD extrapolation of lower-energy physics offers the cross-section value of 0.54x10{sup -31}(E{sub {nu}}/10{sup 20} eV){sup 0.36} cm{sup 2}, new physics could raise or lower this value. Therefore, we present the acceptances of horizontal (HAS) and upgoing (UAS) air-showers as a function of {sigma}{sub {nu}}{sub N}{sup CC} over the range 10{sup -34} to 10{sup -30} cm{sup 2}. The dependences of acceptances on neutrino energy, shower-threshold energy, shower length, and shower column density are also studied. We introduce a cloud layer, and study its effect on rates as viewed from space and from the ground. For UAS, we present acceptances for events over land (rock), and over the ocean (water). Acceptances over water are larger by about an order of magnitude, thus favoring space-based detectors. We revisit the idea of Kusenko and Weiler [Phys. Rev. Lett. 88, 161101 (2002)] to infer {sigma}{sub {nu

  14. CO/H{sub 2} abundance ratio ≈ 10{sup –4} in a protoplanetary disk

    SciTech Connect

    France, Kevin; McJunkin, Matthew; Herczeg, Gregory J.; Penton, Steven V.


    The relative abundances of atomic and molecular species in planet-forming disks around young stars provide important constraints on photochemical disk models and provide a baseline for calculating disk masses from measurements of trace species. A knowledge of absolute abundances, those relative to molecular hydrogen (H{sub 2}), are challenging because of the weak rovibrational transition ladder of H{sub 2} and the inability to spatially resolve different emission components within the circumstellar environment. To address both of these issues, we present new contemporaneous measurements of CO and H{sub 2} absorption through the 'warm molecular layer' of the protoplanetary disk around the Classical T Tauri Star RW Aurigae A. We use a newly commissioned observing mode of the Hubble Space Telescope Cosmic Origins Spectrograph to detect warm H{sub 2} absorption in this region for the first time. An analysis of the emission and absorption spectrum of RW Aur shows components from the accretion region near the stellar photosphere, the molecular disk, and several outflow components. The warm H{sub 2} and CO absorption lines are consistent with a disk origin. We model the 1092-1117 Å spectrum of RW Aur to derive log{sub 10} N(H{sub 2}) = 19.90{sub −0.22}{sup +0.33} cm{sup –2} at T {sub rot}(H{sub 2}) = 440 ± 39 K. The CO A - X bands observed from 1410 to 1520 Å are best fit by log{sub 10} N(CO) = 16.1 {sub −0.5}{sup +0.3} cm{sup –2} at T {sub rot}(CO) = 200{sub −125}{sup +650} K. Combining direct measurements of the H I, H{sub 2}, and CO column densities, we find a molecular fraction in the warm disk surface of f {sub H2} ≥ 0.47 and derive a molecular abundance ratio of CO/H{sub 2} = 1.6{sub −1.3}{sup +4.7} × 10{sup –4}, both consistent with canonical interstellar dense cloud values.


    SciTech Connect

    Arvidsson, K.; Kerton, C. R.; Alexander, M. J.; Kobulnicky, H. A.; Uzpen, B. E-mail: kerton@iastate.ed E-mail: chipk@uwyo.ed E-mail: buzpen@itt-tech.ed


    In an effort to understand the factors that govern the transition from low- to high-mass star formation, for the first time we identify a sample of intermediate-mass star-forming regions (IM SFRs) where stars up to (but not exceeding) {approx}8 M{sub sun} are being produced. We use IRAS colors and Spitzer Space Telescope mid-IR images, in conjunction with millimeter continuum and {sup 13}CO maps, to compile a sample of 50 IM SFRs in the inner Galaxy. These are likely to be precursors to Herbig AeBe stars and their associated clusters of low-mass stars. IM SFRs constitute embedded clusters at an early evolutionary stage akin to compact H II regions, but they lack the massive ionizing central star(s). The photodissociation regions that demarcate IM SFRs have typical diameters of {approx}1 pc and luminosities of {approx}10{sup 4} L{sub sun}, making them an order of magnitude less luminous than (ultra-)compact H II regions. IM SFRs coincide with molecular clumps of mass {approx}10{sup 3} M{sub sun} which, in turn, lie within larger molecular clouds spanning the lower end of the giant molecular cloud mass range, 10{sup 4}-10{sup 5} M{sub sun}. The IR luminosity and associated molecular mass of IM SFRs are correlated, consistent with the known luminosity-mass relationship of compact H II regions. Peak mass column densities within IM SFRs are {approx}0.1-0.5 g cm{sup -2}, a factor of several lower than ultra-compact H II regions, supporting the proposition that there is a threshold for massive star formation at {approx}1 g cm{sup -2}.

  16. A technique for extending by ~10<sup>3 the dynamic range of compact proton spectrometers for diagnosing ICF implosions on the National Ignition Facility and OMEGAa)

    SciTech Connect

    Sio, H.; Séguin, F. H.; Frenje, J. A.; Gatu Johnson, M.; Zylstra, A. B.; Rinderknecht, H. G.; Rosenberg, M. J.; Li, C. K.; Petrasso, R. D.


    Wedge Range Filter (WRF) proton spectrometers are routinely used on OMEGA and the NIF for diagnosing ρR and ρR asymmetries in direct- and indirect-drive implosions of D3He-, D2-, and DT-gas-filled capsules. By measuring the optical opacity distribution in CR-39 due to proton tracks in high-yield applications, as opposed to counting individual tracks, WRF dynamic range can be extended by 10<sup>2 for obtaining the spectral shape, and by 10<sup>3 for mean energy (ρR) measurement, corresponding to proton fluences of 10<sup>8 and 10<sup>9 cm>-2, respectively. Finally, using this new technique, ρR asymmetries can be measured during both shock and compression burn (proton yield ~10<sup>8 and ~10<sup>12, respectively) in 2-shock National Ignition Facility implosions with the standard WRF accuracy of ±~10 mg/cm2.

  17. Subpicosecond KrF{asterisk}-laser plasma interaction at intensities between 10{sup 14} and 10{sup 17} W/cm{sup 2}

    SciTech Connect

    Teubner, U.; Gibbon, P.; Foerster, E.; Fallies, F.; Audebert, P.; Geindre, J.P.; Gauthier, J.C.


    The interaction of high-intensity subpicosecond KrF{asterisk}-laser pulses with aluminium plasmas is investigated at intensities between 10{sup 14} and 10{sup 17} W/cm{sup 2}. Using a one-dimensional hydrocode, the laser energy absorption and time evolution of plasma parameters have been studied as a function of laser intensity, incidence angle, and polarization. Complementary particle-in-cell simulations have also been performed to check the collisionless absorption component carried by hot electrons and ions. These simulations are compared to previous experiments on laser pulse absorption and x-ray generation. {copyright} {ital 1996 American Institute of Physics.}


    SciTech Connect

    Narayanan, Anand; Wakker, Bart P.; Savage, Blair D.; Keeney, Brian A.; Shull, J. Michael; Stocke, John T.; Sembach, Kenneth R. E-mail: wakker@astro.wisc.ed


    We present a clear detection of a broad Ly{alpha} absorber (BLA) with a matching O VI line in the nearby universe. The BLA is detected at z(Ly{alpha})=0.01028 in the high signal-to-noise ratio spectrum of Mrk 290 obtained using the Cosmic Origins Spectrograph. The Ly{alpha} absorption has two components, with b(H i) = 55{+-}1 km s{sup -1} and b(H i) = 33{+-}1 km s{sup -1}, separated in velocity by v {approx} 115 km s{sup -1}. The O VI, detected by the Far-Ultraviolet Spectroscopic Explorer at z(O vi) = 0.01027, has a b(O vi) = 29{+-}3 km s{sup -1} and is kinematically well aligned with the broader H I component. The non-detection of other ions such as C II, Si II, Fe II, C III, Si III, C IV, Si IV, and N V at the same velocity as the BLA and the O VI implies that the absorber is tracing highly ionized gas. The different line widths of the BLA and O VI suggest a temperature of T = 1.4 x 10{sup 5} K in the absorber. Photoionization, collisional ionization equilibrium as well as non-equilibrium collisional ionization models do not explain the ion ratios at this temperature. The observed line strength ratios and line widths favor an ionization scenario in which both ion-electron collisions and UV photons contribute to the ionization in the gas. Such a model requires a low metallicity of {approx}-1.7 dex, ionization parameter of log U {approx} -1.4, a large total hydrogen column density of N(H) {approx} 4 x 10{sup 19} cm{sup -2}, and a path length of {approx}400 kpc. The line of sight to Mrk 290 intercepts at the redshift of the absorber, a megaparsec scale filamentary structure extending over {approx}20{sup 0} in the sky, with several luminous galaxies distributed within {approx}1.5 h {sup -1} Mpc projected distance from the absorber. The collisionally ionized gas phase of this absorber is most likely tracing a shock-heated gaseous structure, consistent with a few different scenarios for the origin including an overdense region of the warm-hot intergalactic medium in

  19. Charmed meson physics accessible to an L = 10/sup 33/ cm/sup /minus/2/ sec/sup /minus/1/ e/sup +/e/sup /minus// collider operating near charm threshold

    SciTech Connect

    Schindler, R.H.


    In this report, the potential for dedicated charmed D/sup 0/, D/sup +/ and D/sub s/ meson physics in a high-luminosity e/sup +/e/sup /minus// collider operated near charm threshold is explored. The construction of such a high-luminosity collider or Tau-Charm Factory in conjunction with a new detector whose design draws heavily on the extensive operational experience of previous detectors at SPEAR, could achieve three orders-of-magnitude improvement in sensitivity in most areas of charmed meson studies. 27 refs., 10 figs., 9 tabs.

  20. Long-Distance Frequency Dissemination with a Resolution of 10{sup -17}

    SciTech Connect

    Daussy, C.; Lopez, O.; Amy-Klein, A.; Goncharov, A.; Guinet, M.; Chardonnet, C.; Narbonneau, F.; Lours, M.; Chambon, D.; Bize, S.; Clairon, A.; Santarelli, G.; Tobar, M.E.; Luiten, A.N.


    We use a new technique to disseminate microwave reference signals along ordinary optical fiber. The fractional frequency resolution of a link of 86 km in length is 10{sup -17} for a one day integration time, a resolution higher than the stability of the best microwave or optical clocks. We use the link to compare the microwave reference and a CO{sub 2}/OsO{sub 4} frequency standard that stabilizes a femtosecond laser frequency comb. This demonstrates a resolution of 3x10{sup -14} at 1 s. An upper value of the instability introduced by the femtosecond laser-based synthesizer is estimated as 1x10{sup -14} at 1 s.

  1. An optical beam frequency reference with 10{sup -14} range frequency instability

    SciTech Connect

    McFerran, J. J.; Hartnett, J. G.; Luiten, A. N.


    The authors report on a thermal beam optical frequency reference with a fractional frequency instability of 9.2x10{sup -14} at 1 s reducing to 2.0x10{sup -14} at 64 s before slowly rising. The {sup 1}S{sub 0}{r_reversible}{sup 3}P{sub 1} intercombination line in neutral {sup 40}Ca is used as a frequency discriminator. A diode laser at 423 nm probes the ground state population after a Ramsey-Borde sequence of 657 nm light-field interactions on the atoms. The measured fractional frequency instability is an order of magnitude improvement on previously reported thermal beam optical clocks. The photon shot-noise of the read-out produces a limiting square root {lambda}-variance of 7x10{sup -14}/{radical}({tau})

  2. Absorption-line detections of 10{sup 5}-10{sup 6} K gas in spiral-rich groups of galaxies

    SciTech Connect

    Stocke, John T.; Keeney, Brian A.; Danforth, Charles W.; Syphers, David; Yamamoto, H.; Shull, J. Michael; Green, James C.; Froning, Cynthia; Savage, Blair D.; Wakker, Bart; Kim, Tae-Sun; Ryan-Weber, Emma V.; Kacprzak, Glenn G.


    Using the Cosmic Origins Spectrograph (COS) on the Hubble Space Telescope, the COS Science Team has conducted a high signal-to-noise survey of 14 bright QSOs. In a previous paper, these far-UV spectra were used to discover 14 'warm' (T ≥ 10{sup 5} K) absorbers using a combination of broad Lyα and broad O VI absorptions. A reanalysis of a few of this new class of absorbers using slightly relaxed fitting criteria finds as many as 20 warm absorbers could be present in this sample. A shallow, wide spectroscopic galaxy redshift survey has been conducted around these sight lines to investigate the warm absorber environment, which is found to be spiral-rich groups or cluster outskirts with radial velocity dispersions σ = 250-750 km s{sup –1}. While 2σ evidence is presented favoring the hypothesis that these absorptions are associated with the galaxy groups and not with the individual, nearest galaxies, this evidence has considerable systematic uncertainties and is based on a small sample size so it is not entirely conclusive. If the associations are with galaxy groups, the observed frequency of warm absorbers (dN/dz = 3.5-5 per unit redshift) requires them to be very extended as an ensemble on the sky (∼1 Mpc in radius at high covering factor). Most likely these warm absorbers are interface gas clouds whose presence implies the existence of a hotter (T ∼ 10{sup 6.5} K), diffuse, and probably very massive (>10{sup 11} M {sub ☉}) intra-group medium which has yet to be detected directly.

  3. Mg dopant in Cu{sub 2}SnSe{sub 3}: An n-type former and a promoter of electrical mobility up to 387 cm{sup 2} V{sup −1} s{sup −1}

    SciTech Connect

    Kuo, Dong-Hau Wubet, Walelign


    Mg-doped Cu{sub 2}SnSe{sub 3} bulk materials with the (Cu{sub 2−x}Mg{sub x})SnSe{sub 3} (Mg-x-CTSe) formula at x=0, 0.05, 0.1, 0.15, and 0.2 were prepared at 550 °C for 2 h with soluble sintering aids of Sb{sub 2}S{sub 3} and Te. Defect chemistry was studied by measuring structural and electrical properties of Mg-doped Cu{sub 2}SnSe{sub 3} as a function of dopant concentration. Mg-x-CTSe pellets show p-type at x=0, 0.05 and 0.1 and n-type at x=0.15 and 0.2. The low hole concentration of 3.2×10{sup 17} cm{sup −3} and high mobility of 387 cm{sup 2} V{sup −1} s{sup −1} were obtained for (Cu{sub 2−x}Mg{sub x})SnSe{sub 3} bulks at x=0.1 (5% Mg) as compared to 2.2×10{sup 18} cm{sup −3} and 91 cm{sup 2} V{sup −1} s{sup −1} for the undoped one. The explanation based upon the Mg-to-Cu antisite donor defect for the changes in electrical property was declared. A high Mg content for Mg-x-CTSe at x≥0.1 can lead to the formation of second phases. The study in bulk Mg-x-CTSe has been based upon defect states and is consistent and supported by the data of structural and electrical properties. - Graphical abstract: The effects of extrinsic doping of Mg{sup 2+} on the electrical properties of Cu{sub 2}SnSe{sub 3} bulks. - Highlights: • p-Type Mg-CTSe with n{sub p} of 3.2×10{sup 17} cm{sup −3} and μ{sub p} of 387 cm{sup 2} V{sup −1} s{sup −1} was obtained. • This p-type occurred for 5%Mg-doped CTSe with the (Cu{sub 1.9}Mg{sub 0.1})SnSe{sub 3} formula. • Mg dopant acts as a donor to lower n{sub p} and an accelerator to increase mobility. • High Mg content leads to the p-to-n transitions. • Defect was explored by measuring electrical property and lattice parameter.


    SciTech Connect

    Jennings, Donald E.; Anderson, C. M.; Samuelson, R. E.; Flasar, F. M.; Nixon, C. A.; Bjoraker, G. L.; Romani, P. N.; Achterberg, R. K.; Cottini, V.; Hesman, B. E.; Kunde, V. G.; Carlson, R. C.; De Kok, R.; Coustenis, A.; Vinatier, S.; Bampasidis, G.; Teanby, N. A.; Calcutt, S. B.


    An emission feature at 220 cm{sup -1} which has been attributed to a cloud of condensed material in Titan's winter stratosphere has been seen for the first time in the south. This feature had previously been found only at high northern latitudes during northern winter and spring. The material emitting at 220 cm{sup -1}, as yet unidentified, may be volatiles associated with nitrile gases that accumulate in the absence of ultraviolet sunlight. Not detected as recently as 2012 February, the 220 cm{sup -1} feature clearly appeared at the south pole in Cassini spectra recorded on 2012 July 24, indicating a rapid onset of the emission. This is the first indication of the winter buildup of condensation in the southern stratosphere that has been expected as the south pole moves deeper into shadow. In the north the 220 cm{sup -1} feature continued to decrease in intensity with a half-life of 3 years.

  5. Communication: Global minimum search of Ag{sub 10}{sup +} with molecular beam optical spectroscopy

    SciTech Connect

    Shayeghi, A. Schäfer, R.; Johnston, R. L.


    The present study is focused on the optical properties of the Ag{sub 10}{sup +} cluster in the photon energy range ℏω = 1.9–4.4 eV. Absorption spectra are recorded by longitudinal molecular beam depletion spectroscopy and compared to optical response calculations using time-dependent density functional theory. Several cluster isomers obtained by the new pool-based parallel implementation of the Birmingham Cluster Genetic Algorithm, coupled with density functional theory, are used in excited state calculations. The experimental observations, together with additional simulations of ion mobilities for the several geometries found within this work using different models, clearly identify the ground state isomer of Ag{sub 10}{sup +} to be composed of two orthogonal interpenetrating pentagonal bipyramids, having overall D{sub 2d} symmetry.

  6. Lattice-Induced Frequency Shifts in Sr Optical Lattice Clocks at the 10{sup -17} Level

    SciTech Connect

    Westergaard, P. G.; Lodewyck, J.; Lecallier, A.; Millo, J.; Lemonde, P.; Lorini, L.; Burt, E. A.; Zawada, M.


    We present a comprehensive study of the frequency shifts associated with the lattice potential in a Sr lattice clock by comparing two such clocks with a frequency stability reaching 5x10{sup -17} after a 1 h integration time. We put the first experimental upper bound on the multipolar M1 and E2 interactions, significantly smaller than the recently predicted theoretical upper limit, and give a 30-fold improved upper limit on the effect of hyperpolarizability. Finally, we report on the first observation of the vector and tensor shifts in a Sr lattice clock. Combining these measurements, we show that all known lattice related perturbations will not affect the clock accuracy down to the 10{sup -17} level, even for lattices as deep as 150 recoil energies.

  7. {sup 87}Sr Lattice Clock with Inaccuracy below 10{sup -15}

    SciTech Connect

    Boyd, Martin M.; Ludlow, Andrew D.; Blatt, Sebastian; Foreman, Seth M.; Ido, Tetsuya; Zelevinsky, Tanya; Ye Jun


    Aided by ultrahigh resolution spectroscopy, the overall systematic uncertainty of the {sup 1}S{sub 0}-{sup 3}P{sub 0} clock resonance for lattice-confined {sup 87}Sr has been characterized to 9x10{sup -16}. This uncertainty is at a level similar to the Cs-fountain primary standard, while the potential stability for the lattice clocks exceeds that of Cs. The absolute frequency of the clock transition has been measured to be 429 228 004 229 874.0(1.1) Hz, where the 2.5x10{sup -15} fractional uncertainty represents the most accurate measurement of a neutral-atom-based optical transition frequency to date.

  8. A large-scale magnetic shield with 10{sup 6} damping at millihertz frequencies

    SciTech Connect

    Altarev, I.; Bales, M.; Fierlinger, K.; Fierlinger, P.; Kuchler, F.; Marino, M. G.; Niessen, B.; Petzoldt, G.; Singh, J. T.; Stoepler, R.; Stuiber, S.; Sturm, M.; Taubenheim, B.; Beck, D. H.; Chupp, T.; Lins, T.; Schläpfer, U.; Schnabel, A.; Voigt, J.


    We present a magnetically shielded environment with a damping factor larger than 1 × 10{sup 6} at the mHz frequency regime and an extremely low field and gradient over an extended volume. This extraordinary shielding performance represents an improvement of the state-of-the-art in the difficult regime of damping very low-frequency distortions by more than an order of magnitude. This technology enables a new generation of high-precision measurements in fundamental physics and metrology, including searches for new physics far beyond the reach of accelerator-based experiments. We discuss the technical realization of the shield with its improvements in design.

  9. Calcium optical frequency standard with ultracold atoms: Approaching 10{sup -15} relative uncertainty

    SciTech Connect

    Degenhardt, Carsten; Stoehr, Hardo; Lisdat, Christian; Wilpers, Guido; Schnatz, Harald; Lipphardt, Burghard; Nazarova, Tatiana; Pottie, Paul-Eric; Sterr, Uwe; Helmcke, Juergen; Riehle, Fritz


    An optical frequency standard based on an ensemble of neutral calcium atoms laser-cooled to 12 {mu}K has been realized. By using ultracold atoms, one major previous source of uncertainty, the residual Doppler effect, was reduced. We show that cold collisions contribute a negligible amount to the uncertainty. The influence of a temporal evolution of the phase of the laser pulses used to interrogate the clock transition was measured and corrected for. The frequency of the clock transition at 657 nm was referenced to the caesium fountain clock of PTB utilizing a femtosecond comb generator with a fractional uncertainty of 1.2x10{sup -14}. The transition frequency was determined to be (455 986 240 494 144{+-}5.3) Hz, making the calcium clock transition one of the most accurately known optical transitions. A frequency stability of 3x10{sup -15} at 100 s averaging time was achieved and the noise contributions that limit to the observed stability were analyzed in detail. Additionally, the natural linewidth of the clock transition has been determined.

  10. Raman and infrared studies of the Sharp 890 cm{sup -1} mode in organic superconductors.

    SciTech Connect

    Eldridge, J. E.; Lin, Y.; Schlueter, J. A.; Wang, H. H.; Kini, A. M.


    Raman and infrared spectra of several organic superconductors are presented, showing some unusual behaviors of a sharp line at 890 cm{sup {minus}} in both spectra. These include a frequency shift below T{sub c}, a positive deuterium isotope shift, frequency softening at low temperatures and sensitivity to lattice superstructure. It is proposed that either the ion or the neutral molecule has a distortion with a strong v{sub 60}(B{sub 3g}) mode component.

  11. Permanent Prostate Brachytherapy in Prostate Glands <20 cm{sup 3}

    SciTech Connect

    Mayadev, Jyoti; Merrick, Gregory S.; Reed, Joshua R.; Butler, Wayne M.; Galbreath, Robert W.; Allen, Zachariah A.; Wallner, Kent E.


    Purpose: To investigate the dosimetry, treatment-related morbidity, and biochemical outcomes for brachytherapy in patients with prostate glands <20 cm{sup 3}. Methods and Materials: From November 1996 to October 2006, 104 patients with prostate glands <20 cm{sup 3} underwent brachytherapy. Multiple prostate, urethral, and rectal dosimetric parameters were evaluated. Treatment-related urinary and rectal morbidity were assessed from patient questionnaires. Cause-specific survival, biochemical progression-free survival, and overall survival were recorded. Results: The median patient age, follow up, and pre-treatment ultrasound volume was 64 years, 5.0 years and 17.6cm{sup 3}, respectively. Median day 0 dosimetry was significant for the following: V100 98.5%, D90 126.1% and R100 <0.5% of prescription dose. The mean urethral and maximum urethral doses were 119.6% and 133.8% of prescription. The median time to International Prostate Symptom Score resolution was 4 months. There were no RTOG grade III or IV rectal complications. The cause-specific survival, biochemical progression-free survival, and overall survival rates were 100%, 92.5%, and 77.8% at 9 years. For biochemically disease-free patients, the median most recent postbrachytherapy PSA value was 0.02 ng/mL. Conclusion: Our results demonstrate that brachytherapy for small prostate glands is highly effective, with an acceptable morbidity profile, excellent postimplant dosimetry, acceptable treatment-related morbidity, and favorable biochemical outcomes.

  12. A search for. mu. yields e. gamma. at the level of 10 sup minus 13

    SciTech Connect

    Amann, J.F.; Black, K.; Bolton, R.D.; Carius, S.; Cooper, M.D.; Foreman, W.; Hansen, C.; Harrison, R.; Hart, G.; Hart, V.; Hoffman, C.M.; Hoffman, N.; Hunter, T.; Hogan, G.E.; June, N.; Kercher, D.; Little, J.; Kozlowski, T.; Mischke, R.E.; Naivar, F.J.; Novak, J.; Oothoudt, M.A.; Pillai, C.; Schilling, S.; Smith, W.; Stanislaus, S.; Sturrock, J.; Szymanski, J.; Van Dyke, J.; Werbeck, R.D.; Whitehouse, D.; Wilkinson, C. (Los A


    The status of the MEGA experiment is described. It is a search for the decay {mu} {r arrow} e{gamma} with a branching ratio sensitivity of approximately 10{sup {minus}13}. The observation of this decay would indicate the existence of physics outside the standard model of electroweak interactions. The experiment employs highly modular, fast detectors, state-of-the-art electronics, and a staged trigger with on-line filters. The detectors are contained in a 1.5 T solenoidal field produced by a superconducting magnet. Positrons are confined to the central region and are measured by a set of thin MWPCs. Photons are measured by one of four layers of pair spectrometers in the outer region. Most aspects of the detector design have been validated in engineering runs; data taking will begin in 1990 with most of the electron arm and one pair spectrometer layer installed. 5 refs., 4 figs.

  13. Determination of the lithium ion diffusion coefficient in graphite

    SciTech Connect

    Yu, P.; Popov, B.N.; Ritter, J.A.; White, R.E.


    A complex impedance model for spherical particles was used to determine the lithium ion diffusion coefficient in graphite as a function of the state of charge (SOC) and temperature. The values obtained range from 1.12 {times} 10{sup {minus}10} to 6.51 {times} 10{sup {minus}11} cm{sup 2}/s at 25 C for 0 and 30% SOC, respectively, and for 0% SOC, the value at 55 C was 1.35 {times} 10{sup {minus}10} cm{sup 2}/s. The conventional potentiostatic intermittent titration technique (PITT) and Warburg impedance approaches were also evaluated, and the advantages and disadvantages of these techniques were exposed.

  14. Beyond y and μ: the shape of the CMB spectral distortions in the intermediate epoch, 1.5 × 10{sup 4}∼10{sup 5}

    SciTech Connect

    Khatri, Rishi; Sunyaev, Rashid A. E-mail:


    We calculate numerical solutions and analytic approximations for the intermediate-type spectral distortions. Detection of a μ-type distortion (saturated comptonization) in the CMB will constrain the time of energy injection to be at a redshift 2 × 10{sup 6}∼>z∼>2 × 10{sup 5}, while a detection of a y-type distortion (minimal comptonization) will mean that there was heating of CMB at redshift z∼<1.5 × 10{sup 4}. We point out that the partially comptonized spectral distortions, generated in the redshift range 1.5 × 10{sup 4}∼10{sup 5}, are much richer in information than the pure y and μ-type distortions. The spectrum created during this period is intermediate between y and μ-type distortions and depends sensitively on the redshift of energy injection. These intermediate-type distortions cannot be mimicked by a mixture of y and μ-type distortions at all frequencies and vice versa. The measurement of these intermediate-type CMB spectral distortions has the possibility to constrain precisely not only the amount of energy release in the early Universe but also the mechanism, for example, particle annihilation and Silk damping can be distinguished from particle decay. The intermediate-type distortion templates and software code using these templates to calculate the CMB spectral distortions for user-defined energy injection rate is made publicly available.

  15. Frequency Stability of 1X10(sup -13) in a compensated Saphirre Oscillator Operating Above 77K

    NASA Technical Reports Server (NTRS)

    Dick, G. John; Santiago, David G.; Wang, Rabi T.


    We report on tests of a compensated saphirre oscillator (CS) which shows frequency-stable operation at temperatures above 77k.The frequency stability for this oscillator shows an apparent flicker floor of 7.5X10(sup -14) for measuring times between 3 and 10 seconds, and stability is better than 2X10(sup -13) for all measuring times between 10 and 100 seconds... Frequency sensitivities os the microwave sapphire resonator to temperature and temperature rate have been characterized, and a careful analysis of several aspects of the ac frequency-lock.

  16. Heavy Ion Storage Ring for Atomic Physics (HISTRAP) vacuum test stand for pressures of 10/sup -12/ Torr

    SciTech Connect

    Johnson, J.W.; Atkins, W.H.; Dowling, D.T.; McConnell, J.W.; Milner, W.T.; Olsen, D.K.


    HISTRAP (Heavy Ion Storage Ring for Atomic Physics) is a proposed synchrotron/cooler/storage ring accelerator optimized for advanced atomic physics research. The ring has a circumference of 46.8 m, a bore diameter of /similar to/15 cm, and requires a vacuum of 10/sup -12/ Torr to decelerate highly charged, very heavy ions down to low energies. To be able to test components and procedures to achieve this pressure, a test stand approximately modeling 1/16 of the ring vacuum chamber has been built. The 3.5-m-long test stand has been fabricated from 10-cm-diam components, with 316LN stainless-steel flanges. Prior to assembly, these components were vacuum fired at 950 /sup 0/C at a pressure of 10/sup -4/ Torr. The test stand is bakable in situ at 300 /sup 0/C. Pumping is achieved with two 750 l/s titanium sublimator pumps and one 60 l/s ion pump. Pressure is measured with two extractor ion gauges and a 10/sup -4/ partial pressure residual gas analyser. The roughing for the test stand consists of cryosorption pumps followed by a cryopump. A pressure of 4 x 10/sup -12/ Torr has been achieved.

  17. HISTRAP (Heavy Ion Storage Ring for Atomic Physics) vacuum test stand for pressures of 10/sup -12/ Torr

    SciTech Connect

    Johnson, J.W.; Atkins, W.H.; Dowling, D.T.; McConnell, J.W.; Milner, W.T.; Olsen, D.K.


    HISTRAP, Heavy Ion Storage Ring for Atomic Physics, is a proposed synchrotron/cooler/storage ring accelerator optimized for advanced atomic physics research. The ring has a circumference of 46.8 m, a bore diameter of about 15 cm, and requires a vacuum of 10/sup -12/ Torr in order to decelerate highly-charged very-heavy ions down to low energies. To be able to test components and procedures to achieve this pressure, a test stand approximately modeling one-sixteenth of the ring vacuum chamber has been built. The 3.5-m-long test stand has been fabricated from 10-cm-diameter components, with 316LN stainless steel flanges. Prior to assembly, these components were vacuum fired at 950/degree/C at a pressure of 10/sup -4/ Torr. The test stand is bakeable in situ at 300/degree/C. Pumping is achieved with two 750-L/s titanium sublimator pumps and one 60-L/s ion pump. Pressure is measured with two extractor ion gauges and a 10/sup -14/ PP RGA. The roughing for the test stand consists of cryosorption pumps followed by a cryopump. A pressure of 4 x 10/sup -12/ Torr has been achieved. 7 refs., 5 figs.

  18. Single plasma mirror providing 10<sup>4 contrast enhancement and 70% reflectivity for intense femtosecond lasers.


    Inoue, Shunsuke; Maeda, Kazuya; Tokita, Shigeki; Mori, Kazuaki; Teramoto, Kensuke; Hashida, Masaki; Sakabe, Shuji


    To efficiently eliminate picosecond pre-pulses that accompany ultrashort pulses emitted from high-power chirped-pulse-amplification laser systems, we have developed a high-performance plasma mirror system. By reducing the reflectivity of the antireflection coating on the substrate for the plasma mirror to the limit of current technology (∼0.006%), we achieved the highest pre-pulse contrast enhancement reported to date for a single plasma mirror of 10<sup>4 at 1 ps before the pulse peak. By optimizing the laser incidence to the plasma mirror and the laser fluence, the reflectivity of the plasma mirror has been improved to 70%. The contrast improvement indicates extensibility to 100 PW class lasers by doubling this plasma mirror system. Contrast enhancement of 10<sup>8 should be possible without a serious reduction in energy (no more than 50%). PMID:27463920

  19. Search for discrete gamma-ray sources emitting at energies greater than 10/sup 15/ eV

    SciTech Connect

    Samorski, M.; Stamm, W.


    The data of the extensive air shower experiment at Kiel have been scanned systematically for possible discrete ..gamma..-ray sources in the energy range E>10/sup 15/ eV and in the declination band delta = 25/sup 0/-75/sup 0/. Photon fluxes for celestial positions with the statistically most significant excesses of showers and 3 sigma upper limit photon fluxes for COS B ..gamma..-ray sources visible to the extensive air shower experiment at Kiel are presented.

  20. Searching for a correlation between cosmic-ray sources above 10{sup 19} eV and large scale structure

    SciTech Connect

    Kashti, Tamar; Waxman, Eli E-mail:


    We study the anisotropy signature which is expected if the sources of ultrahigh energy, >10{sup 19} eV, cosmic rays (UHECRs) are extra-galactic and trace the large scale distribution of luminous matter. Using the PSCz galaxy catalog as a tracer of the large scale structure (LSS), we derive the expected all sky angular distribution of the UHECR intensity. We define a statistic that measures the correlation between the predicted and observed UHECR arrival direction distributions, and show that it is more sensitive to the expected anisotropy signature than the power spectrum and the two-point correlation function. The distribution of the correlation statistic is not sensitive to the unknown redshift evolution of UHECR source density and to the unknown strength and structure of inter-galactic magnetic fields. We show, using this statistic, that recently published >5.7 Multiplication-Sign 10{sup 19} eV Auger data are inconsistent with isotropy at Asymptotically-Equal-To 98% CL, and consistent with a source distribution that traces LSS, with some preference for a source distribution that is biased with respect to the galaxy distribution. The anisotropy signature should be detectable also at lower energy, >4 Multiplication-Sign 10{sup 19} eV. A few-fold increase of the Auger exposure is likely to increase the significance to >99% CL, but not to>99.9% CL (unless the UHECR source density is comparable to or larger than that of galaxies). In order to distinguish between different bias models, the systematic uncertainty in the absolute energy calibration of the experiments should be reduced to well below the current Asymptotically-Equal-To 25%.

  1. Reducing SS 304/316 hydrogen outgassing to 2x10{sup -15} torr l/cm{sup 2} s

    SciTech Connect

    Sasaki, Y. Tito


    Significant reduction in the outgassing rate of 300-series stainless steel is routinely attained through combination of electropolishing and vacuum baking. Preferential removal of Ni, Fe, and Mn from the surface of stainless steel by electropolishing creates a chromium-enriched surface. It also reduces the atomic surface area of the work piece closer to its geometric surface area. When the material is vacuum fired to remove interstitial hydrogen, the resultant stainless steel exhibits an outgassing rate of about 2x10{sup -15} torr l/cm{sup 2} s, as well as drastically reduced adsorption, absorption, and catalytic behaviors.

  2. {sup 39}Ar Detection at the 10{sup -16} Isotopic Abundance Level with Atom Trap Trace Analysis

    SciTech Connect

    Jiang, W.; Williams, W.; Bailey, K.; O'Connor, T. P.; Mueller, P.; Davis, A. M.; Hu, S.-M.; Sun, Y. R.; Lu, Z.-T.; Purtschert, R.; Sturchio, N. C.


    Atom trap trace analysis, a laser-based atom counting method, has been applied to analyze atmospheric {sup 39}Ar (half-life=269 yr), a cosmogenic isotope with an isotopic abundance of 8x10{sup -16}. In addition to the superior selectivity demonstrated in this work, the counting rate and efficiency of atom trap trace analysis have been improved by 2 orders of magnitude over prior results. The significant applications of this new analytical capability lie in radioisotope dating of ice and water samples and in the development of dark matter detectors.


    SciTech Connect

    Devereux, Nick; Heaton, Emily E-mail:


    Adopting a spherically symmetric steady-state ballistic inflow as the kinematic model for the gas distribution responsible for producing the H{alpha} emission line, and a central black hole (BH) mass of 1.7 Multiplication-Sign 10{sup 6} M{sub Sun} determined from prior reverberation mapping, leads to the following dimensions for the size of the broad line region (BLR) in NGC 4051; an inner radius {approx}3 lt-day and a lower limit to the outer radius {approx}475 lt-day. Thus, the previously determined reverberation size for the BLR marks just the inner radius of a much larger volume of ionized gas. The number of ionizing photons required to sustain the H{alpha} emission line luminosity exceeds the number observed to be available from the central active galactic nucleus (AGN) by a factor of 3-4. Such a large ionizing deficit can be reconciled if the BLR is ionized by a 10{sup 5} K accretion disk that is hidden from direct view by the high opacity of intervening H gas. A new definition is introduced for the ionization parameter that acknowledges the fact that H opacity significantly attenuates the flux of ionizing photons in the large, partially ionized nebula surrounding the AGN. Collectively, the results have important implications for BH masses estimated using reverberation radii and the structure of the BLR inferred from velocity-delay maps.

  4. Comparison of aperture determinations on RHIC for single particles tracked 10[sup 6] turns and 100 particles, having randomly generated initial coordinates, tracked for 1000 turns

    SciTech Connect

    Dell, G.F.


    Aperture determinations from 100 particles tracked for 1000 turns using randomly selected initial coordinates are compared with results from 10[sup 6] turn runs when initial coordinates are defined by [epsilon][sub x] = [epsilon][sub y] and X[sub i][prime] = Y[sub i][prime] = 0. Measurements were made with ten distributions of magnetic field errors. The results from tracking 100 particles for 10[sup 3] turns are equivalent to those from 10[sup 6] turn runs, have a distribution of considerably less width, and require only one tenth the computer time.

  5. Comparison of aperture determinations on RHIC for single particles tracked 10{sup 6} turns and 100 particles, having randomly generated initial coordinates, tracked for 1000 turns

    SciTech Connect

    Dell, G.F.


    Aperture determinations from 100 particles tracked for 1000 turns using randomly selected initial coordinates are compared with results from 10{sup 6} turn runs when initial coordinates are defined by {epsilon}{sub x} = {epsilon}{sub y} and X{sub i}{prime} = Y{sub i}{prime} = 0. Measurements were made with ten distributions of magnetic field errors. The results from tracking 100 particles for 10{sup 3} turns are equivalent to those from 10{sup 6} turn runs, have a distribution of considerably less width, and require only one tenth the computer time.

  6. Large transverse momenta in nuclear interaction at E{sub 0} > 10{sup 16} eV detected in stratosphere

    SciTech Connect

    Managadze, A. K. Osedlo, V. I.; Roganova, T. M.; Sveshnikova, L. G.; Galkin, V. I.; Rakobolskaya, I. V.; Goncharova, L. A.; Kotelnikov, K. A.; Polukhina, N. G.


    A gamma-hadron superfamily of cosmic-rays created by a primary cosmic-ray particle with energy above 10{sup 16} eV was detected at an altitude of 30 km by a stratospheric balloon-borne emulsion chamber. Being of superhigh energy, this event is the unique example in the world statistics of practically pure nuclear interactions in the energy range unattainable for modern accelerators. The present analysis allowed one to estimate the interaction height above the chamber and transverse momenta of the secondaries produced in the interaction. The mean value of transverse momenta appears to be very large ( > 2.5 GeV/c)

  7. A 10{sup 10} solar mass flow of molecular gas in the A1835 brightest cluster galaxy

    SciTech Connect

    McNamara, B. R.; Russell, H. R.; Main, R. A.; Vantyghem, A. N.; Kirkpatrick, C. C.; Nulsen, P. E. J.; Edge, A. C.; Murray, N. W.; Hamer, S.; Combes, F.; Salome, P.; Fabian, A. C.; Baum, S. A.; O'Dea, C. P.; Bregman, J. N.; Donahue, M.; Voit, G. M.; Egami, E.; Oonk, J. B. R.; Tremblay, G.


    We report ALMA Early Science observations of the A1835 brightest cluster galaxy (BCG) in the CO (3-2) and CO (1-0) emission lines. We detect 5 × 10{sup 10} M {sub ☉} of molecular gas within 10 kpc of the BCG. Its ensemble velocity profile width of ∼130 km s{sup –1} FWHM is too narrow for the molecular clouds to be supported in the galaxy by dynamic pressure. The gas may instead be supported in a rotating, turbulent disk oriented nearly face-on. Roughly 10{sup 10} M {sub ☉} of molecular gas is projected 3-10 kpc to the northwest and to the east of the nucleus with line-of-sight velocities lying between –250 km s{sup –1} and +480 km s{sup –1} with respect to the systemic velocity. The high-velocity gas may be either inflowing or outflowing. However, the absence of high-velocity gas toward the nucleus that would be expected in a steady inflow, and its bipolar distribution on either side of the nucleus, are more naturally explained as outflow. Star formation and radiation from the active galactic nucleus (AGN) are both incapable of driving an outflow of this magnitude. The location of the high-velocity gas projected behind buoyantly rising X-ray cavities and favorable energetics suggest an outflow driven by the radio AGN. If so, the molecular outflow may be associated with a hot outflow on larger scales reported by Kirkpatrick and colleagues. The molecular gas flow rate of approximately 200 M {sub ☉} yr{sup –1} is comparable to the star formation rate of 100-180 M {sub ☉} yr{sup –1} in the central disk. How radio bubbles would lift dense molecular gas in their updrafts, how much gas will be lost to the BCG, and how much will return to fuel future star formation and AGN activity are poorly understood. Our results imply that radio-mechanical (radio-mode) feedback not only heats hot atmospheres surrounding elliptical galaxies and BCGs, but it is able to sweep higher density molecular gas away from their centers.

  8. A compact, robust, and transportable ultra-stable laser with a fractional frequency instability of 1 × 10{sup −15}

    SciTech Connect

    Chen, Qun-Feng; Nevsky, Alexander; Cardace, Marco; Schiller, Stephan; Legero, Thomas; Häfner, Sebastian; Uhde, Andre; Sterr, Uwe


    We present a compact and robust transportable ultra-stable laser system with minimum fractional frequency instability of 1 × 10{sup −15} at integration times between 1 and 10 s. The system was conceived as a prototype of a subsystem of a microwave-optical local oscillator to be used on the satellite mission Space-Time Explorer and QUantum Equivalence Principle Space Test (STE-QUEST) ( ). It was therefore designed to be compact, to sustain accelerations occurring during rocket launch, to exhibit low vibration sensitivity, and to reach a low frequency instability. Overall dimensions of the optical system are 40 cm × 20 cm × 30 cm. The acceleration sensitivities of the optical frequency in the three directions were measured to be 1.7 × 10{sup −11}/g, 8.0 × 10{sup −11}/g, and 3.9 × 10{sup −10}/g, and the absolute frequency instability was determined via a three-cornered hat measurement. Two additional cavity-stabilized lasers were used for this purpose, one of which had an instability σ{sub y} < 4 × 10{sup −16} at 1 s integration time. The design is also appropriate and useful for terrestrial applications.

  9. Scaling Time Warp-based Discrete Event Execution to 10<sup>4 Processors on Blue Gene Supercomputer

    SciTech Connect

    Perumalla, Kalyan S


    Lately, important large-scale simulation applications, such as emergency/event planning and response, are emerging that are based on discrete event models. The applications are characterized by their scale (several millions of simulated entities), their fine-grained nature of computation (microseconds per event), and their highly dynamic inter-entity event interactions. The desired scale and speed together call for highly scalable parallel discrete event simulation (PDES) engines. However, few such parallel engines have been designed or tested on platforms with thousands of processors. Here an overview is given of a unique PDES engine that has been designed to support Time Warp-style optimistic parallel execution as well as a more generalized mixed, optimistic-conservative synchronization. The engine is designed to run on massively parallel architectures with minimal overheads. A performance study of the engine is presented, including the first results to date of PDES benchmarks demonstrating scalability to as many as 16,384 processors, on an IBM Blue Gene supercomputer. The results show, for the first time, the promise of effectively sustaining very large scale discrete event execution on up to 10<sup>4 processors.

  10. Proton emission from thin hydrogenated targets irradiated by laser pulses at 10{sup 16} W/cm{sup 2}

    SciTech Connect

    Torrisi, L.; Giuffrida, L.; Cirrone, P.; Cutroneo, M.; Picciotto, A.; Krasa, J.; Margarone, D.; Velyhan, A.; Laska, L.; Ullschmied, J.; Wolowski, J.; Badziak, J.; Rosinski, M.


    The iodine laser at PALS Laboratory in Prague, operating at 1315 nm fundamental harmonics and at 300 ps FWHM pulse length, is employed to irradiate thin hydrogenated targets placed in vacuum at intensities on the order of 10{sup 16} W/cm{sup 2}. The laser-generated plasma is investigated in terms of proton and ion emission in the forward and backward directions. The time-of-flight technique, using ion collectors and semiconductor detectors, is used to measure the ion currents and the corresponding velocities and energies. Thomson parabola spectrometer is employed to separate the contribution of the ion emission from single laser shots. A particular attention is given to the proton production in terms of the maximum energy, emission yield, and angular distribution as a function of the laser energy, focal position, target thickness, and composition. Metallic and polymeric targets allow to generate protons with large energy range and different yield, depending on the laser, target composition, and target geometry properties.


    SciTech Connect

    Abreu, P.; Andringa, S.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allard, D.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muniz, J.; Alves Batista, R.; Ambrosio, M.; Aramo, C.; Aminaei, A.; Anchordoqui, L.; Antici'c, T.; Arganda, E.; Collaboration: Pierre Auger Collaboration; and others


    A thorough search for large-scale anisotropies in the distribution of arrival directions of cosmic rays detected above 10{sup 18} eV at the Pierre Auger Observatory is presented. This search is performed as a function of both declination and right ascension in several energy ranges above 10{sup 18} eV, and reported in terms of dipolar and quadrupolar coefficients. Within the systematic uncertainties, no significant deviation from isotropy is revealed. Assuming that any cosmic-ray anisotropy is dominated by dipole and quadrupole moments in this energy range, upper limits on their amplitudes are derived. These upper limits allow us to test the origin of cosmic rays above 10{sup 18} eV from stationary Galactic sources densely distributed in the Galactic disk and predominantly emitting light particles in all directions.

  12. Characteristics of copper shaped-charge liner materials at tensile strain rates of 10 sup 4 s sup minus 1

    SciTech Connect

    Gourdin, W.H.


    We have studied the mechanical behavior of 81-mm shaped-charge liners made from oxygen-free electronic (OFE) and electrolytic tough pitch (ETP) copper at tensile strain rates of 10{sup 4} s{sup {minus}1} by using electromagnetic ring expansion. The OFE copper was processed to yield an uniform grain size of approximately 25 {mu}m, whereas the ETP material was reportedly processed in such a way as to encourage excessive grain growth and a broad distribution of grain sizes. However, the microstructures of the materials we studied are all similar, and we find no evidence of gross secondary grain growth in the ETP liners, although they do contain oxide inclusions. The OFE liners are characterized by reproducible stress-strain relationships nearly identical to independently processed OFE copper of comparable grain size. The flow stress of the ETP specimens, in contrast, is both lower and generally more erratic than that of the OFE specimens. Elongation at failure for the OFE linear materials are consistently large (0.55 {plus minus} 0.01) and are significantly larger than values observed for annealed 10-{mu}m OFE (0.49 {plus minus} 0.04). The ETP materials appear to show somewhat less elongation at failure, although their erratic behavior makes comparisons difficult. We suggest that the erratic behavior of ETP shaped-charge liners under test and their poor performance relative to OFE copper are the result of chemical impurities and related microstructural nonuniformities, rather than differences in grain size alone. 12 refs., 9 figs., 2 tabs.

  13. Heterogeneous collision velocity for hydrated ions in aqueous solutions is nearly 10{sup 4} cm/s

    SciTech Connect

    Anderson, O.S.; Feldberg, S.W.


    The heterogeneous collision velocity (v{sub o}, units of centimeters/second) is the average velocity of a solution particle toward a surface. V{sub o} thus defines the maximum flux of the particles to the surface. Einstein argued that v{sub o} in condensed phases and in gases may be deduced in a precisely analogous manner and that v{sub o} in aqueous solution therefore should be nearly 10{sup 4} cm/s (for particles with a mass of 100 Da). Values of v{sub o} for several aqueous monovalent cations (Na{sup +}, K{sup +}, Rb{sup +}, Cs{sup +} and NH{sub 4}{sup +}) were estimated from steady-state limiting current measurements through single gramicidin A channels spanning lipid bilayer membranes. The collisional and diffusional current components were separated by making use of the different viscosities of H{sub 2}O and D{sub 2}O solutions. The transfer of ions from the bulk solution to the channel entrance is modeled using a hemispherical entrance and an extension of the classical analysis of diffusion to a (hemi)sphere in which we relax the assumption that the jump distance (associated with three-dimensional diffusion of an ion in the bulk phase) be small compared to the hemispherical capture radius. Our estimate of v{sub o} agrees well with the prediction of Einstein. We therefore conclude that ion dehydration (only partially hydrated ions can pass through the gramicidin A channel) cannot be a rate-controlling step - a conclusion that is consistent with known rate constants for water exchange for these ions. 36 refs., 7 figs., 1 tab.

  14. Measurement of the cosmic ray spectrum above 4×10<sup>18 eV using inclined events detected with the Pierre Auger Observatory

    SciTech Connect

    Aab, Alexander


    A measurement of the cosmic-ray spectrum for energies exceeding 4×10<sup>18 eV is presented, which is based on the analysis of showers with zenith angles greater than 60° detected with the Pierre Auger Observatory between 1 January 2004 and 31 December 2013. The measured spectrum confirms a flux suppression at the highest energies. Above 5.3×10<sup>18 eV, the ``ankle'', the flux can be described by a power law E–γ with index γ=2.70 ± 0.02 (stat) ± 0.1 (sys) followed by a smooth suppression region. For the energy (Es) at which the spectral flux has fallen to one-half of its extrapolated value in the absence of suppression, we find Es=(5.12±0.25 (stat)+1.0–1.2 (sys))×10<sup>19 eV.

  15. High e+/e– ratio dense pair creation with 10<sup>–2 laser irradiating solid targets

    SciTech Connect

    Liang, E.; Clarke, T.; Henderson, A.; Fu, W.; Lo, W.; Taylor, D.; Chaguine, P.; Zhou, S.; Hua, Y.; Cen, X.; Wang, X.; Kao, J.; Hasson, H.; Dyer, G.; Serratto, K.; Riley, N.; Donovan, M.; Ditmire, T.


    In this study, we report results of new pair creation experiments using ~100 Joule pulses of the Texas Petawatt Laser to irradiate solid gold and platinum targets, with intensities up to ~1.9 × 10<sup>21–2 and pulse durations as short as ~130 fs. Positron to electron (e+/e–) ratios >15% were observed for many thick disk and rod targets, with the highest e+/e– ratio reaching ~50% for a Pt rod. The inferred pair yield was ~ few ×10<sup>10sup> with emerging pair density reaching ~10<sup>15/cm3 so that the pair skin depth becomes < pair jet transverse size. These results represent major milestones towards the goal of creating a significant quantity of dense pair-dominated plasmas with e+/e– approaching 100% and pair skin depth << pair plasma size, which will have wide-ranging applications to astrophysics and fundamental physics.

  16. Design considerations and initial performance of a 1.2 cm{sup 2} beta imaging intra-operative probe

    SciTech Connect

    Tornai, M.P.; MacDonald, L.R.; Levin, C.S.; Siegel, S.; Hoffman, E.J.


    A novel small area beta ({beta}{sup {+-}}) detector is under development for nuclear emission imaging of surgically exposed, radiolabeled tumor beds. The imaging device front-end consists of a 0.5 mm thick by 1.25 cm diameter CaF{sub 2}(Eu) scintillator disk coupled to a rapid bundle of 2 mm diameter double clad optical fibers through a polystyrene light diffuser. The detector area (1.2 cm{sup 2}) was determined by the requirement of introducing the probe into small cavities, e.g. during neuro-surgical lesion resection, but large enough to produce images of clinical significance. Flexible back-end optical fibers (1.9 m long) were coupled to the front-end components allowing {approximately} 75 photoelectrons to e detected for mean beta energies of 250 keV, indicating that sufficient signal can be obtained with clinical beta emitters (e.g. {sup 18}F, {sup 131}I). The long flexible fibers guide the scintillation light to a Philips XP1700 series, fiber optical faceplate, Multi-Channel PMT. The parallel MC-PMT outputs re fed into a variable gain, charge divider network and an i-V pre-amplifier/line driver network, whose resulting four outputs are digitized and histogrammed with standard Anger positioning logic. The various components in the imaging chain were evaluated and optimized by both simulations and measurements. Line spread functions measured in the 10.8 mm FOV were 0.50 mm {+-} 0.038 mm and 0.55 mm {+-} 0.065 mm FWHM in X and Y, respectively. A 20% variation in pulse height and minimal variation in spatial resolution was observed. The differential image uniformity was measured to be {+-}15.6% with {approximately} 150 cts/pixel. Preliminary images show excellent reproduction of phantom activity distributions.

  17. Modulation of over 10{sup 14} cm{sup −2} electrons in SrTiO{sub 3}/GdTiO{sub 3} heterostructures

    SciTech Connect

    Boucherit, M.; Shoron, O.; Polchinski, C.; Jackson, C. A.; Cain, T. A.; Buffon, M. L. C.; Stemmer, S.; Rajan, S.


    We demonstrate charge modulation of over 10{sup 14} cm{sup −2} electrons in a two-dimensional electron gas formed in SrTiO{sub 3}/GdTiO{sub 3} inverted heterostructure field-effect transistors. Increased charge modulation was achieved by reducing the effect of interfacial region capacitances through thick SrTiO{sub 3} cap layers. Transport and device characteristics of the heterostructure field-effect transistors were found to match a long channel field effect transistor model. SrTiO{sub 3} impurity doped metal–semiconductor field effect transistors were also demonstrated with excellent pinch-off and current density exceeding prior reports. The work reported here provides a path towards oxide-based electronics with extreme charge modulation exceeding 10{sup 14} cm{sup −2}.

  18. Gamma-ray emission in near critical density plasmas at laser intensities of 10{sup 21 }W/cm{sup 2}

    SciTech Connect

    Wang, H. Y.; Liu, B.; Yan, X. Q.; Zepf, M.


    We study synchrotron radiation emission from laser interaction with near critical density (NCD) plasmas at intensities of 10{sup 21 }W∕cm{sup 2} using three-dimensional particle-in-cell simulations. It is found that the electron dynamics depend on the laser shaping process in NCD plasmas, and thus the angular distribution of the emitted photons changes as the laser pulse evolves in space and time. The final properties of the resulting synchrotron radiation, such as its overall energy, the critical photon energy, and the radiation angular distribution, are strongly affected by the laser polarization and plasma density. By using a 420 TW∕50 fs laser pulse at the optimal plasma density (∼1n{sub c}), about 10{sup 8} photons/0.1% bandwidth are produced at multi-MeV photon energies, providing a route to ultraintense, femtosecond gamma ray pulses.

  19. Investigation of broadening and shift of vapour absorption lines of H{sub 2}{sup 16}O in the frequency range 7184 – 7186 cm{sup -1}

    SciTech Connect

    Nadezhdinskii, A I; Pereslavtseva, A A; Ponurovskii, Ya Ya


    We present the results of investigation of water vapour absorption spectra in the 7184 – 7186 cm{sup -1} range that is of particular interest from the viewpoint of possible application of the data obtained for monitoring water vapour in the Earth's stratosphere. The doublet of H{sub 2}{sup 16}O near ν = 7185.596 cm{sup -1} is analysed. The coefficients of broadening and shift of water vapour lines are found in the selected range in mixtures with buffer gases and compared to those obtained by other authors. (laser spectroscopy)

  20. L-shell emission from high-Z solid targets by intense 10{sup 19}W/cm{sup 2} irradiation with a 248nm laser

    SciTech Connect

    Nelson, T.R.; Borisov, A.B.; Boyer, K.


    Efficient (1.2% yield) multikilovolt x-ray emission from Ba(L) (2.4--2.8{angstrom}) and Gd(L) (1.7--2.1{angstrom}) is produced by ultraviolet (248nm) laser-excited BaF{sub 2} and Gd solids. The high efficiency is attributed to an inner shell-selective collisional electron ejection. Much effort has been expended recently in attempts to develop an efficient coherent x-ray source suitable for high-resolution biological imaging. To this end, many experiments have been performed studying the x-ray emissions from high-Z materials under intense (>10{sup 18}W/cm{sup 2}) irradiation, with the most promising results coming from the irradiation of Xe clusters with a UV (248nm) laser at intensities of 10{sup 18}--10{sup 19}W/cm{sup 2}. In this paper the authors report the production of prompt x-rays with energies in excess of 5keV with efficiencies on the order of 1% as a result of intense irradiation of BaF{sub 2} and Gd targets with a terawatt 248nm laser. The efficiency is attributed to an inner shell-selective collisional electron ejection mechanism in which the previously photoionized electrons are ponderomotively driven into an ion while retaining a portion of their atomic phase and symmetry. This partial coherence of the laser-driven electrons has a pronounced effect on the collisional cross-section for the electron ion interaction.

  1. On the temperature dependence of collisional linewidths of the 10{sup 0}0 - 00{sup 0}1 laser transition in the CO{sub 2} molecule

    SciTech Connect

    Arshinov, Konstantin I; Arshinov, M K; Nevdakh, Vladimir V


    Unsaturated absorption coefficients in pure carbon dioxide and CO{sub 2} - N{sub 2} and CO{sub 2} - He binary mixtures are measured at a pressure of 100 Torr in the temperature range of 300-700 K using a frequency-stabilised tunable CO{sub 2} laser. The relative coefficients of collisional broadening caused by N{sub 2} and He buffer gases and their temperature dependence are determined for the R(22) absorption line (10{sup 0}0 - 00{sup 0}1 transition) of the CO{sub 2} molecule. (active media)

  2. Effect of strain rates from 10/sup -2/ to 10 sec/sup -1/ in triaxial compression tests on three rocks

    SciTech Connect

    Blanton, T.L.


    Room-temperature, compression tests at strain rates from 10/sup -2/ to 10 sec/sup -1/ have been run on Charcoal Granodiorite to 0.45 GPa confining pressure and on Berea Sandstone and Indiana Limestone to 0.25 GPa confining pressure. For each rock at each confining pressure, the differential stress at failure is relatively constant up to a strain rate of 1 sec/sup -1/ and apparently increases abruptly above this strain rate. Dynamic analysis of the testing apparatus indicates that the apparent sudden increase in strength is due to machine inertia and does not reflect a real increase in the strength of the rocks. Taking inertia into account, the actual failure stresses of the three rocks are relatively independent of strain rate betweeen 10/sup -2/ and 10 sec/sup -1/. In the same interval, the strains at which the unconfined rocks begin to fragment tend to be lower at higher strain rates. The combination of decreasing strains and relatively constant stresses with increasing strain rate suggests that the energy necessary to fragment the unconfined rocks is lower at higher strain rates.


    SciTech Connect

    Krolik, Julian H.; Piran, Tsvi E-mail:


    We propose that the remarkable object Swift J1644+57, in which multiple recurring hard X-ray flares were seen over a span of several days, is a system in which a white dwarf was tidally disrupted by an intermediate-mass black hole. Disruption of a white dwarf rather than a main-sequence star offers a number of advantages in understanding the multiple, and short, timescales seen in the light curve of this system. In particular, the short internal dynamical timescale of a white dwarf offers a more natural way of understanding the short rise times ({approx}100 s) observed. The relatively long intervals between flares ({approx}5 Multiplication-Sign 10{sup 4} s) may also be readily understood as the period between successive pericenter passages of the remnant white dwarf. In addition, the expected jet power is larger when a white dwarf is disrupted. If this model is correct, the black hole responsible must have a mass {approx}< 10{sup 5} M{sub Sun }.

  4. High-gain 87 cm>-1 Raman line of KYW and its impact on continuous-wave Raman laser operation.


    Sarang, Soumya; Williams, Robert J; Lux, Oliver; Kitzler, Ondrej; McKay, Aaron; Jasbeer, Hadiya; Mildren, Richard P


    We report a quasi-continuous-wave external cavity Raman laser based on potassium yttrium tungstate (KYW). Laser output efficiency and spectrum are severely affected by the presence of high gain Raman modes of low frequency (< 250 cm>-1) that are characteristic of this crystal class. Output spectra contained frequency combs spaced by the low frequency modes but with the overall pump-to-Stokes conversion efficiency at least an order of magnitude lower than that typically obtained in other crystal Raman lasers. We elucidate the primary factors affecting laser performance by measuring the Raman gain coefficients of the low energy modes and numerically modeling the cascading dynamics. For a pump polarization aligned to the Ng crystallo-optic axis, the 87 cm>-1 Raman mode has a gain coefficient of 9.2 cm/GW at 1064 nm and a dephasing time T2 = 9.6 ps, which are both notably higher than for the 765 cm>-1 mode usually considered to be the prominent Raman mode of KYW. The implications for continuous-wave Raman laser design and the possible advantages for applications are discussed. PMID:27661886

  5. 10sup>B(n, Z) measurements in the energy range 0.7 to 5.0 MeV

    SciTech Connect

    Massey, T. N.; Ralston, J.; Grimes, S. M.; Haight, R. C.


    Four ΔE E telescopes were used at the WNR (n,Z) station to investigate the production of charged particles from 10sup>B. The telescope consisted of a gas proportional detector and a silicon surface barrier detector. The flux was determined using a 238U fission chamber. A clear separation of the ground state alpha group and first excited state a was not achieved due to the target thickness. Proton emission was also observed. Furthermore, the proton branch was up to an order of magnitude larger than predicted in ENDF/B-VII A simple R-matrix analysis has been performed on the available data

  6. Investigation of gamma-ray families originating from nucleus-nucleus interactions at ultrahigh energies E{sub 0} in excess of 10{sup 16} eV

    SciTech Connect

    Yuldashbaev, T. S.; Nuritdinov, Kh.


    Various spatial and energy features of gamma-ray families originating from the interactions of primary nuclei of galactic cosmic rays with nuclei of atmospheric atoms (AA interactions) are studied. The mass composition of galactic cosmic rays is analyzed on the basis of data from x-ray emulsion chambers of the Pamir experiment with the aid of a criterion for selecting gamma-ray families originating from AA interactions (A families) at energies E{sub 0} of primary galactic cosmic rays in excess of 10{sup 16} eV. According to the results obtained in this way only the experimental spatial parameters R{sub 1E} and ρ differ from their counterparts in the MC0 model.

  7. Self-Organizing GeV, Nanocoulomb, Collimated Proton Beam from Laser Foil Interaction at 7x10{sup 21} W/cm{sup 2}

    SciTech Connect

    Yan, X. Q.; Wu, H. C.; Meyer-ter-Vehn, J.; Sheng, Z. M.; Chen, J. E.


    We report on a self-organizing, quasistable regime of laser proton acceleration, producing 1 GeV nanocoulomb proton bunches from laser foil interaction at an intensity of 7x10{sup 21} W/cm{sup 2}. The results are obtained from 2D particle-in-cell simulations, using a circular polarized laser pulse with Gaussian transverse profile, normally incident on a planar, 500 nm thick hydrogen foil. While foil plasma driven in the wings of the driving pulse is dispersed, a stable central clump with 1-2lambda diameter is forming on the axis. The stabilization is related to laser light having passed the transparent parts of the foil in the wing region and enfolding the central clump that is still opaque. Varying laser parameters, it is shown that the results are stable within certain margins and can be obtained both for protons and heavier ions such as He{sup 2+}.

  8. Cantilever stress measurements for pulsed laser deposition of perovskite oxides at 1000 K in an oxygen partial pressure of 10{sup −4} millibars

    SciTech Connect

    Premper, J.; Sander, D.; Kirschner, J.


    An in situ stress measurement setup using an optical 2-beam curvature technique is described which is compatible with the stringent growth conditions of pulsed laser deposition (PLD) of perovskite oxides, which involves high substrate temperatures of 1000 K and oxygen partial pressures of up to 1 × 10{sup −4} millibars. The stress measurements are complemented by medium energy electron diffraction (MEED), Auger electron spectroscopy, and additional growth rate monitoring by a quartz microbalance. A shielded filament is used to allow for simultaneous stress and MEED measurements at high substrate temperatures. A computer-controlled mirror scans an excimer laser beam over a stationary PLD target. This avoids mechanical noise originating from rotating PLD targets, and the setup does not suffer from limited lifetime issues of ultra high vacuum (UHV) rotary feedthroughs.

  9. Evaluation of cross sections for neutron-induced reactions in sodium. [10/sup -5/ eV to 20 MeV

    SciTech Connect

    Larson, D.C.


    An evaluation of the neutron-induced cross sections of /sup 23/Na has been done for the energy range from 10/sup -5/ eV to 20 MeV. All significant cross sections are given, including differential cross sections for production of gamma rays. The recommended values are based on experimental data where available, and use results of a consistent model code analysis of available data to predict cross sections where there are no experimental data. This report describes the evaluation that was submitted to the Cross Section Evaluation Working Group (CSEWG) for consideration as a part of the Evaluated Nuclear Data File, Version V, and subsequently issued as MAT 1311. 126 references, 130 figures, 14 tables.

  10. {sup 248}Cm({sup 22}Ne,xn){sup 270-x}Sg reaction and the decay properties of {sup 265}Sg reexamined

    SciTech Connect

    Duellmann, Ch. E.; Tuerler, A.


    Recent studies of the hot fusion reaction {sup 248}Cm({sup 26}Mg,xn){sup 274-x}Hs have provided new nuclear decay data on {sup 265,266}Sg and confirmed the existence of an isomeric state in {sup 261}Rf. The results reported in [J. Dvorak et al., Phys. Rev. Lett. 100, 132503 (2008)] suggest that all decay chains observed in previous studies of the reaction {sup 248}Cm({sup 22}Ne,xn){sup 270-x}Sg, which were originally attributed to {sup 266}Sg, originated from {sup 265}Sg. Here, the decay properties of {sup 265}Sg are reevaluated. Indications for the existence of an isomeric state in {sup 265}Sg are found. The half-lives and main {alpha} particle energies of the two {sup 265}Sg states are 8.9 s/8.85 MeV and 16.2 s/8.70 MeV, respectively. Direct production of this isotope as an evaporation residue of a nuclear fusion reaction populates both states with similar intensity while {alpha} decay of {sup 269}Hs into {sup 265}Sg preferentially populates the longer-lived state, which in turn decays almost exclusively into the short-lived state in {sup 261}Rf. The cross section of the reaction {sup 248}Cm({sup 22}Ne,5n){sup 265}Sg is reanalyzed and found to be of the order of a few hundred pb, assuming that {alpha} decay is the only decay mode of {sup 265}Sg. A decay scheme that is consistent with the published data on {sup 265}Sg and {sup 261}Rf is proposed, which can serve as a working hypothesis in the design of new experiments dedicated to study the production and decay of these two isotopes.

  11. Intramolecular energy transfer in actinide complexes of 6-methyl-2-(2-pyridyl)-benzimidazole (biz): comparison between Cm{sup 3+} and Tb{sup 3+} systems

    SciTech Connect

    Assefa, Zerihun . E-mail:; Yaita, T.; Haire, R.G.; Tachimori, S.


    Coordination of the 6-methyl-2-(2-pyridyl)-benzimidazole ligand with actinide and lanthanide species can produce enhanced emission due to increased efficiency of intramolecular energy transfer to metal centers. A comparison between the curium and terbium systems indicates that the position of the ligand's triplet state is critical for the enhanced emission. The energy gap between the ligand's triplet state and the acceptor level in curium is about 1000cm{sup -1}, as compared to a {approx}600cm{sup -1} gap in the terbium system. Due to the larger gap, the back transfer with curium is reduced and the radiative yield is significantly higher. The quantum yield for this 'sensitized' emission increases to 6.2%, compared to the 0.26% value attained for the metal centered excitation prior to ligand addition. In the terbium case, the smaller donor/acceptor gap enhances back transfer and the energy transfer is less efficient than with the curium system.

  12. Cross section limits for the {sup 248}Cm({sup 25}Mg,4n-5n){sup 268,269}Hs reactions

    SciTech Connect

    Dvorak, J.; Dvorakova, Z.; Schuber, R.; Tuerler, A.; Yakushev, A.; Bruechle, W.; Duellmann, Ch. E.; Jaeger, E.; Schaedel, M.; Schausten, B.; Schimpf, E.; Eberhardt, K.; Thoerle, P.; Eichler, R.; Nagame, Y.; Qin, Z.; Semchenkov, A.; Wegrzecki, M.


    We report on an attempt to produce and detect {sup 268}Hs and {sup 269}Hs in the nuclear fusion reaction {sup 25}Mg+{sup 248}Cm using the gas phase chemistry apparatus COMPACT. No decay chains attributable to the decay of hassium isotopes were observed during the course of this experiment. From the nonobservation of {sup 269}Hs we derive a cross section limit of 0.4 pb (63% confidence limit) for the reaction {sup 248}Cm({sup 25}Mg,4n){sup 269}Hs at a center-of-target beam energy of 140 MeV. The evaluated cross section limit for the {sup 248}Cm({sup 25}Mg,5n){sup 268}Hs reaction depends on the assumed half-life of unknown {sup 268}Hs. Current systematics of the half-lives for even-even Hs isotopes suggests a value of 0.5 s, resulting in a cross section limit of 1.3 pb.

  13. Cannabinoid receptor-2 (CB2) agonist ameliorates colitis in IL-10{sup −/−} mice by attenuating the activation of T cells and promoting their apoptosis

    SciTech Connect

    Singh, Udai P.; Singh, Narendra P.; Singh, Balwan; Price, Robert L.; Nagarkatti, Mitzi; Nagarkatti, Prakash S.


    Inflammatory bowel disease (IBD) is a chronic intestinal inflammation caused by hyperactivated effector immune cells that produce pro-inflammatory cytokines. Recent studies have shown that the cannabinoid system may play a critical role in mediating protection against intestinal inflammation. However, the effect of cannabinoid receptor induction after chronic colitis progression has not been investigated. Here, we investigate the effect of cannabinoid receptor-2 (CB2) agonist, JWH-133, after chronic colitis in IL-10{sup −/−} mice. JWH-133 effectively attenuated the overall clinical score, and reversed colitis-associated pathogenesis and decrease in body weight in IL-10{sup −/−} mice. After JWH-133 treatment, the percentage of CD4{sup +} T cells, neutrophils, mast cells, natural killer (NK1.1) cells, and activated T cells declined in the intestinal lamina propria (LP) and mesenteric lymph nodes (MLN) of mice with chronic colitis. JWH-133 was also effective in ameliorating dextran sodium sulfate (DSS)-induced colitis. In this model, JWH-133 reduced the number and percentage of macrophages and IFN-γ expressing cells that were induced during colitis progression. Treatment with aminoalkylindole 6-iodo-pravadoline (AM630), a CB2 receptor antagonist, reversed the colitis protection provided by JWH-133 treatment. Also, activated T cells were found to undergo apoptosis following JWH-133 treatment both in-vivo and in-vitro. These findings suggest that JWH-133 mediates its effect through CB2 receptors, and ameliorates chronic colitis by inducing apoptosis in activated T cells, reducing the numbers of activated T cells, and suppressing induction of mast cells, NK cells, and neutrophils at sites of inflammation in the LP. These results support the idea that the CB2 receptor agonists may serve as a therapeutic modality against IBD. -- Highlights: ► JWH-133, a cannnabinoid receptor-2 agonist ameliorates experimental colitis. ► JWH-133 suppressed inflammation and

  14. Forecasts for CMB μ and i-type spectral distortion constraints on the primordial power spectrum on scales 8∼10{sup 4} Mpc{sup −1} with the future Pixie-like experiments

    SciTech Connect

    Khatri, Rishi; Sunyaev, Rashid A. E-mail:


    Silk damping at redshifts 1.5 × 10{sup 4}∼10{sup 6} erases CMB anisotropies on scales corresponding to the comoving wavenumbers 8∼10{sup 4} Mpc{sup −1} (10{sup 5}∼10{sup 8}). This dissipated energy is gained by the CMB monopole, creating distortions from a blackbody in the CMB spectrum of the μ-type and the i-type. We study, using Fisher matrices, the constraints we can get from measurements of these spectral distortions on the primordial power spectrum from future experiments such as Pixie, and how these constraints change as we change the frequency resolution and the sensitivity of the experiment. We show that the additional information in the shape of the i-type distortions, in combination with the μ-type distortions, allows us to break the degeneracy between the amplitude and the spectral index of the power spectrum on these scales and leads to much tighter constraints. We quantify the information contained in both the μ-type distortions and the i-type distortions taking into account the partial degeneracy with the y-type distortions and the temperature of the blackbody part of the CMB. We also calculate the constraints possible on the primordial power spectrum when the spectral distortion information is combined with the CMB anisotropies measured by the WMAP, SPT, ACT and Planck experiments.

  15. The reaction of glass during gamma irradiation in a saturated tuff environment: Part 3, long-term experiments at 1 x 10{sup 4}rad/hour

    SciTech Connect

    Abrajano, T.A. Jr.; Bates, J.K.; Gerding, T.J.; Ebert, W.L.


    Savannah River Laboratory 165 type glass was leached with equilibrated J-13 groundwater at 90{degree}C for times up to 182 days. These experiments were performed as part of an effort by the Nevada Nuclear Waste Storage Investigations Project to assess the importance of radiation effects on repository performance and waste glass corrosion. The gamma radiation field used in this work was 1. 0 +- 0.2 x 10{sup 4} rad/h. Glass dissolution is notably incongruent throughout the entire experimental periods and normalized releases follow the sequence Li {ge} Na {ge} B {approx_equal} U {ge} Si. The normalized leach rates of these elements, as well as the measured growth rates of the reaction layers, decreased with time. The only significant variation observed in the abundance of anions is the systematic decrease in NO{sub 3}/sup {minus}//NO{sub 2}/sup {minus}/ ratio from the starting EJ-13 groundwater to the EJ-13 blank experiments to the tuff- and glass-containing experiments. A leaching model that is consistent with the observed solution data and depth profiles is presented. The applicability and limitation of the present results in predicting the actual interactions that may occur in the NNWSI repository are discussed. 35 refs., 30 figs., 12 tabs.

  16. Backward-propagating MeV electrons from 10{sup 18} W/cm{sup 2} laser interactions with water

    SciTech Connect

    Morrison, J. T.; Chowdhury, E. A.; Frische, K. D.; Ovchinnikov, V. M.; Feister, S. Orban, C.; Nees, J. A.; Freeman, R. R.; Roquemore, W. M.


    We present an experimental study of the generation of ∼MeV electrons opposite to the direction of laser propagation following the relativistic interaction at normal incidence of a ∼3 mJ, 10{sup 18} W/cm{sup 2} short pulse laser with a flowing 30 μm diameter water column target. Faraday cup measurements record hundreds of pC charge accelerated to energies exceeding 120 keV, and energy-resolved measurements of secondary x-ray emissions reveal an x-ray spectrum peaking above 800 keV, which is significantly higher energy than previous studies with similar experimental conditions and more than five times the ∼110 keV ponderomotive energy scale for the laser. We show that the energetic x-rays generated in the experiment result from backward-going, high-energy electrons interacting with the focusing optic, and vacuum chamber walls with only a small component of x-ray emission emerging from the target itself. We also demonstrate that the high energy radiation can be suppressed through the attenuation of the nanosecond-scale pre-pulse. These results are supported by 2D particle-in-cell simulations of the laser-plasma interaction, which exhibit beam-like backward-propagating MeV electrons.


    SciTech Connect

    Gonzalez, Anthony H.; Gettings, Daniel P.; Decker, Bandon; Brodwin, Mark; Eisenhardt, Peter R. M.; Stern, Daniel; Marrone, Daniel P.; Greer, Christopher H.; Stanford, S. A.; Wylezalek, Dominika; Aldering, Greg; Boone, Kyle; Fagrelius, Parker; Hayden, Brian; Abdulla, Zubair; Carlstrom, John; Leitch, Erik M.; Lin, Yen-Ting; Mantz, Adam B.; Muchovej, Stephen; and others


    We present confirmation of the cluster MOO J1142+1527, a massive galaxy cluster discovered as part of the Massive and Distant Clusters of WISE Survey. The cluster is confirmed to lie at z = 1.19, and using the Combined Array for Research in Millimeter-wave Astronomy we robustly detect the Sunyaev–Zel’dovich (SZ) decrement at 13.2σ. The SZ data imply a mass of M{sub 200m} = (1.1 ± 0.2) × 10{sup 15}M{sub ⊙}, making MOO J1142+1527 the most massive galaxy cluster known at z > 1.15 and the second most massive cluster known at z > 1. For a standard ΛCDM cosmology it is further expected to be one of the ∼5 most massive clusters expected to exist at z ≥ 1.19 over the entire sky. Our ongoing Spitzer program targeting ∼1750 additional candidate clusters will identify comparably rich galaxy clusters over the full extragalactic sky.

  18. Conditions for efficient and stable ion acceleration by moderate circularly polarized laser pulses at intensities of 10{sup 20} W/cm{sup 2}

    SciTech Connect

    Qiao, B.; Zepf, M.; Borghesi, M.; Dromey, B.; Kar, S.; Geissler, M.; Gibbon, P.; Schreiber, J.


    Conditions for efficient and stable ion radiation pressure acceleration (RPA) from thin foils by circularly polarized laser pulses at moderate intensities are theoretically and numerically investigated. It is found that the unavoidable decompression of the co-moving electron layer in Light-Sail RPA leads to a change of the local electrostatic field from a ''bunching'' to a ''debunching'' profile, ultimately resulting in premature termination of ion acceleration. One way to overcome this instability is the use of a multispecies foil where the high-Z ions act as a sacrificial species to supply excess co-moving electrons for preserving stable acceleration of the lower-Z ion species. It is shown by 2D particle-in-cell simulations that 100 MeV/u monoenergetic C{sup 6+} ion beams are produced by irradiation of a Cu-C-mixed foil with laser pulses at intensities 5 x 10{sup 20} W/cm{sup 2}, which can be easily achieved by current day lasers.


    SciTech Connect

    Willott, Chris J.; Omont, Alain; Bergeron, Jacqueline


    We present Atacama Large Millimeter Array observations of rest-frame far-infrared continuum and [C II] line emission in two z = 6.4 quasars with black hole masses of Almost-Equal-To 10{sup 8} M{sub Sun }. CFHQS J0210-0456 is detected in the continuum with a 1.2 mm flux of 120 {+-} 35 {mu}Jy, whereas CFHQS J2329-0301 is undetected at a similar noise level. J2329-0301 has a star formation rate limit of <40 M{sub Sun} yr{sup -1}, considerably below the typical value at all redshifts for this bolometric luminosity. Through comparison with hydro simulations, we speculate that this quasar is observed at a relatively rare phase where quasar feedback has effectively shut down star formation in the host galaxy. [C II] emission is also detected only in J0210-0456. The ratio of [C II] to far-infrared luminosity is similar to that of low-redshift galaxies of comparable luminosity, suggesting that the previous finding of an offset in the relationships between this ratio and far-infrared luminosity at low and high redshifts may be partially due to a selection effect due to the limited sensitivity of previous continuum data. The [C II] line of J0210-0456 is relatively narrow (FWHM = 189 {+-} 18 km s{sup -1}), indicating a dynamical mass substantially lower than expected from the local black hole-velocity dispersion correlation. The [C II] line is marginally resolved at 0.''7 resolution with the blue and red wings spatially offset by 0.''5 (3 kpc) and a smooth velocity gradient of 100 km s{sup -1} across a scale of 6 kpc, possibly due to the rotation of a galaxy-wide disk. These observations are consistent with the idea that stellar mass growth lags black hole accretion for quasars at this epoch with respect to more recent times.

  20. Kinetics of the reaction of OH with HI between 246 and 353 K

    SciTech Connect

    Campuzano-Jost, P.; Crowley, J.N.


    Iodine chemistry is believed to play a role in tropospheric, and, potentially, also stratospheric ozone loss. The laser-flash photolysis technique combined with resonance fluorescence detection of OH was used to investigate the kinetics of the title reaction at temperatures between 246 and 353 K and at a total pressure of 75 {+-} 1 Torr Ar. Under these conditions the rate coefficient shows a negative temperature dependence which is described by {kappa}{sub 4}(246--353 K) = 7.0{sub {minus}0.4}{sup +1.9} {times} 10{sup {minus}11}(T/298){sup 1.5{+-}0.5} cm{sup 3} s{sup {minus}1}. Both the large rate coefficient and trends in the reactivity of OH with HCl, HBr, and HI are suggestive of a reaction mechanism that proceeds without a significant activation barrier. The room temperature (294 K) rate constant is {kappa}{sub 4} = 6.5{sub {minus}0.4}{sup +2} {times} 10{sup {minus}11} cm{sup 3} s{sup {minus}1}, which is significantly larger than previous measurements. Reasons for this difference and the implications of the new rate coefficients for the lifetime of HI in the atmosphere are discussed.

  1. Molecular eigenstate spectroscopy: Application to the intramolecular dynamics of some polyatomic molecules in the 3000 to 7000 cm{sup {minus}1} region

    SciTech Connect

    Perry, D.S.


    Intramolecular vibrational redistribution (IVR) appears to be a universal property of polyatomic molecules in energy regions where the vibrational density of states is greater than about 5 to 30 states per cm{sup {minus}1}. Interest in IVR stems from its central importance to the spectroscopy, photochemistry, and reaction kinetics of these molecules. A bright state, {var_phi}{sub s}, which may be a C-H stretching vibration, carries the oscillator strength from the ground state. This bright state may mix with bath rotational-vibrational levels to form a clump of molecular eigenstates, each of which carries a portion of the oscillator strength from the ground state. In this work the authors explicitly resolve transitions to each of these molecular eigenstates. Detailed information about the nature of IVR is contained in the frequencies and intensities of the observed discrete transitions. The primary goal of this research is to probe the coupling mechanisms by which IVR takes place. The most fundamental distinction to be made is between anharmonic coupling which is independent of molecular rotation and rotationally-mediated coupling. The authors are also interested in the rate at which IVR takes place. Measurements are strictly in the frequency domain but information is obtained about the decay of the zero order state, {var_phi}{sub s}, which could be prepared in a hypothetical experiment as a coherent excitation of the clump of molecular eigenstates. As the coherent superposition dephases, the energy would flow from the initially prepared mode into nearby overtones and combinations of lower frequency vibrational modes. The decay of the initially prepared mode is related to a pure sequence infrared absorption spectrum by a Fourier transform.

  2. Origin of the 900 cm{sup −1} broad double-hump OH vibrational feature of strongly hydrogen-bonded carboxylic acids

    SciTech Connect

    Van Hoozen, Brian L.; Petersen, Poul B.


    Medium and strong hydrogen bonds are common in biological systems. Here, they provide structural support and can act as proton transfer relays to drive electron and/or energy transfer. Infrared spectroscopy is a sensitive probe of molecular structure and hydrogen bond strength but strongly hydrogen-bonded structures often exhibit very broad and complex vibrational bands. As an example, strong hydrogen bonds between carboxylic acids and nitrogen-containing aromatic bases commonly display a 900 cm{sup −1} broad feature with a remarkable double-hump structure. Although previous studies have assigned this feature to the OH, the exact origin of the shape and width of this unusual feature is not well understood. In this study, we present ab initio calculations of the contributions of the OH stretch and bend vibrational modes to the vibrational spectrum of strongly hydrogen-bonded heterodimers of carboxylic acids and nitrogen-containing aromatic bases, taking the 7-azaindole—acetic acid and pyridine—acetic acid dimers as examples. Our calculations take into account coupling between the OH stretch and bend modes as well as how both of these modes are affected by lower frequency dimer stretch modes, which modulate the distance between the monomers. Our calculations reproduce the broadness and the double-hump structure of the OH vibrational feature. Where the spectral broadness is primarily caused by the dimer stretch modes strongly modulating the frequency of the OH stretch mode, the double-hump structure results from a Fermi resonance between the out of the plane OH bend and the OH stretch modes.

  3. Long-term phase-locking technique for locking the repetition rate of an optical frequency comb laser with 1.67 × 10<sup>-19 precision.


    Ci, Cheng; Zhang, Xuesong; Li, Xinran; Chen, Xing; Cui, Yifan; Zhao, Yingxin; Liu, Bo; Wu, Hong


    An ultrahigh stable phase-locked loop system for synchronization of an optical frequency comb to a hydrogen maser has been proposed and experimentally demonstrated. A mathematical model has been set up to investigate the feasibility and steady state of the phase-locking system. The fractional frequency instability is evaluated by measuring the mixed-phase signal of an improved experimental system. Experimental results show that the fractional frequency instability of the phase-locked loop system lies from 8.83×10<sup>-16 at 1 s to 1.67×10<sup>-19 at 1000 s, which indicates our proposed phase-locking system possesses ultrahigh measurement precision with good long-term stabilization performance. PMID:27556998

  4. Stimulated-emission cross sections of the /sup 5/F/sub 1/--/sup 5/I/sub 5/ and /sup 5/F/sub 1/--/sup 5/I/sub 6/ transitions of Pm/sup 3+/ in a phosphate glass

    SciTech Connect

    Beach, R.; Weinzapfel, S.; Staver, R.; Solarz, R.; Shinn, M.; Krupke, W.


    We report a laser cavity measurement of stimulated-emission cross sections for both the /sup 5//ital F//sub 1/--/sup 5//ital I//sub 5/ (0.93-/mu/m) and /sup 5//ital F//sub 1/--/sup 5//ital I//sub 6/ (1.1-/mu/m) laser transitions of Pm/sup 3+/ ions in a lead--indium--phosphate glass host. The measured cross sections for these two transitions are 1.8/times/10/sup /minus/20/ (/plus minus/11%) and 2.8/times/10/sup /minus/20/ cm/sup 2/ (/plus minus/22%), respectively. These values agree with previously reported values based on a Judd--Ofelt-type analysis of spectroscopic data.

  5. Infrared spectrum of the simplest Criegee intermediate CH{sub 2}OO at resolution 0.25 cm{sup −1} and new assignments of bands 2ν{sub 9} and ν{sub 5}

    SciTech Connect

    Huang, Yu-Hsuan; Li, Jun E-mail:; Guo, Hua; Lee, Yuan-Pern E-mail:


    The simplest Criegee intermediate CH{sub 2}OO is important in atmospheric chemistry. It has been detected in the reaction of CH{sub 2}I + O{sub 2} with various spectral methods, including infrared spectroscopy; infrared absorption of CH{sub 2}OO was recorded at resolution 1.0 cm{sup −1} in our laboratory. We have improved our system and recorded the infrared spectrum of CH{sub 2}OO at resolution 0.25 cm{sup −1} with rotational structures partially resolved. Observed vibrational wavenumbers and relative intensities are improved from those of the previous report and agree well with those predicted with quantum-mechanical calculations using the MULTIMODE method on an accurate potential energy surface. Observed rotational structures also agree with the simulated spectra according to theoretical predictions. In addition to derivation of critical vibrational and rotational parameters of the vibrationally excited states to confirm the assignments, the spectrum with improved resolution provides new assignments for bands 2ν{sub 9} at 1234.2 cm{sup −1} and ν{sub 5} at 1213.3 cm{sup −1}; some hot bands and combination bands are also tentatively assigned.

  6. Electrocatalytic H2 production with a turnover frequency >10<sup>7 s-1: the medium provides an increase in rate but not overpotential

    SciTech Connect

    Hou, Jianbo; Fang, Ming; Cardenas, Allan Jay P.; Shaw, Wendy J.; Helm, Monte L.; Bullock, R. Morris; Roberts, John A. S.; O'Hagan, Molly


    In this paper, rapid proton movement results in exceptionally fast electrocatalytic H2 production (up to 3 × 10<sup>7 s-1) at overpotentials of ~400 mV when catalysed by [Ni(PPh2NC6H4x2)2]2+ complexes in an acidic ionic liquid–water medium ([(DMF)H]NTf2–H2O, χH2O = 0.71).

  7. Probing of the neutrino magnetic moment at the level of 10{sup -22} μ{sub B} with an intense tritium source of (anti)neutrino and helium target (project)

    SciTech Connect

    Martemyanov, V.P.; Aleshin, V.I.; Tarasenko, V.G.; Tsinoev, V.G.; Sabelnikov, A.A.; Yukhimchuk, A.A.; Popov, V.V.; Baluev, V.V.; Golubkov, A.N.; Klevtsov, V.G.; Kuryakin, A.V.; Sitdikov, D.T.; Bogdanova, L.N.


    We present research results of the preparation project for the experimental measurement of the (anti)neutrino magnetic moment at the level of 10{sup -12} μ{sub B} using an intense tritium source of antineutrinos and a liquid helium scintillation detector. The neutrino detection in the scintillation detector is based on the scattering of neutrinos by the electrons of the helium atoms that produces fast electrons able to ionize and exciting helium atoms. The detection of the atomic radiation emitted during the relaxation process of the helium atoms and the knowledge of its parameters will allow us to conclude on the neutrino properties.

  8. Searches for large-scale anisotropy in the arrival directions of cosmic rays detected above energy of 10{sup 19} eV at the Pierre Auger observatory and the telescope array

    SciTech Connect

    Aab, A.; Abreu, P.; Andringa, S.; Aglietta, M.; Ahn, E. J.; Al Samarai, I.; Albuquerque, I. F. M.; Allekotte, I.; Asorey, H.; Allen, J.; Allison, P.; Almela, A.; Castillo, J. Alvarez; Alvarez-Muñiz, J.; Batista, R. Alves; Ambrosio, M.; Aramo, C.; Aminaei, A.; Anchordoqui, L.; Arqueros, F.; Collaboration: Pierre Auger Collaboration; Telescope Array Collaboration; and others


    Spherical harmonic moments are well-suited for capturing anisotropy at any scale in the flux of cosmic rays. An unambiguous measurement of the full set of spherical harmonic coefficients requires full-sky coverage. This can be achieved by combining data from observatories located in both the northern and southern hemispheres. To this end, a joint analysis using data recorded at the Telescope Array and the Pierre Auger Observatory above 10{sup 19} eV is presented in this work. The resulting multipolar expansion of the flux of cosmic rays allows us to perform a series of anisotropy searches, and in particular to report on the angular power spectrum of cosmic rays above 10{sup 19} eV. No significant deviation from isotropic expectations is found throughout the analyses performed. Upper limits on the amplitudes of the dipole and quadrupole moments are derived as a function of the direction in the sky, varying between 7% and 13% for the dipole and between 7% and 10% for a symmetric quadrupole.

  9. Highly accurate potential energy surface, dipole moment surface, rovibrational energy levels, and infrared line list for {sup 32}S{sup 16}O{sub 2} up to 8000 cm{sup −1}

    SciTech Connect

    Huang, Xinchuan E-mail:; Schwenke, David W.; Lee, Timothy J. E-mail:


    A purely ab initio potential energy surface (PES) was refined with selected {sup 32}S{sup 16}O{sub 2} HITRAN data. Compared to HITRAN, the root-mean-squares error (σ{sub RMS}) for all J = 0–80 rovibrational energy levels computed on the refined PES (denoted Ames-1) is 0.013 cm{sup −1}. Combined with a CCSD(T)/aug-cc-pV(Q+d)Z dipole moment surface (DMS), an infrared (IR) line list (denoted Ames-296K) has been computed at 296 K and covers up to 8000 cm{sup −1}. Compared to the HITRAN and CDMS databases, the intensity agreement for most vibrational bands is better than 85%–90%. Our predictions for {sup 34}S{sup 16}O{sub 2} band origins, higher energy {sup 32}S{sup 16}O{sub 2} band origins and missing {sup 32}S{sup 16}O{sub 2} IR bands have been verified by most recent experiments and available HITRAN data. We conclude that the Ames-1 PES is able to predict {sup 32/34}S{sup 16}O{sub 2} band origins below 5500 cm{sup −1} with 0.01–0.03 cm{sup −1} uncertainties, and the Ames-296K line list provides continuous, reliable and accurate IR simulations. The K{sub a}-dependence of both line position and line intensity errors is discussed. The line list will greatly facilitate SO{sub 2} IR spectral experimental analysis, as well as elimination of SO{sub 2} lines in high-resolution astronomical observations.

  10. Electronic state spectroscopy of diiodomethane (CH{sub 2}I{sub 2}): Experimental and computational studies in the 30 000–95 000 cm{sup −1} region

    SciTech Connect

    Mandal, Anuvab; Jagatap, B. N.; Singh, Param Jeet; Shastri, Aparna


    The electronic absorption spectrum of diiodomethane in the 30 000–95 000 cm{sup −1} region is investigated using synchrotron radiation; the spectrum in the 50 000–66 500 cm{sup −1} region is reported for the first time. The absorption bands in the 30 000–50 000 cm{sup −1} region are attributed to valence transitions, while the vacuum ultraviolet (VUV) spectrum (50 000–95 000 cm{sup −1}) is dominated by several Rydberg series converging to the first four ionization potentials of CH{sub 2}I{sub 2} at 9.46, 9.76, 10.21, and 10.56 eV corresponding to the removal of an electron from the outermost 3b{sub 2}, 2b{sub 1}, 1a{sub 2}, and 4a{sub 1} non-bonding orbitals, respectively. Rydberg series of ns, np, and nd type converging to each of the four ionization potentials are assigned based on a quantum defect analysis. Time dependent density functional theory calculations of excited states support the analysis and help in interpretation of the Rydberg and valence nature of observed transitions. Density functional theory calculations of the neutral and ionic ground state geometries and vibrational frequencies are used to assign the observed vibronic structure. Vibronic features accompanying the Rydberg series are mainly due to excitation of the C-I symmetric stretch (ν{sub 3}) and CH{sub 2} wag (ν{sub 8}) modes, with smaller contributions from the C-H symmetric stretch (ν{sub 1}). UV absorption bands are assigned to low lying valence states 1{sup 1}B{sub 2}, 1{sup 1}B{sub 1}, 2{sup 1}A{sub 1}, 3{sup 1}A{sub 1}, 2{sup 1}B{sub 1}, and 2{sup 1}B{sub 2} and the unusually high underlying intensity in parts of the VUV spectrum is attributed to valence states with high oscillator strength. This is the first report of a comprehensive Rydberg series and vibronic analysis of the VUV absorption spectrum of CH{sub 2}I{sub 2} in the 50 000–85 000 cm{sup −1} region. The VUV absorption spectrum of CD{sub 2}I{sub 2} which serves to verify and

  11. Electron velocity of 6 × 10{sup 7 }cm/s at 300 K in stress engineered InAlN/GaN nano-channel high-electron-mobility transistors

    SciTech Connect

    Arulkumaran, S. Manoj Kumar, C. M.; Ranjan, K.; Teo, K. L.; Ng, G. I.; Shoron, O. F.; Rajan, S.; Bin Dolmanan, S.; Tripathy, S.


    A stress engineered three dimensional (3D) Triple T-gate (TT-gate) on lattice matched In{sub 0.17}Al{sub 0.83}N/GaN nano-channel (NC) Fin-High-Electron-Mobility Transistor (Fin-HEMT) with significantly enhanced device performance was achieved that is promising for high-speed device applications. The Fin-HEMT with 200-nm effective fin-width (W{sub eff}) exhibited a very high I{sub Dmax} of 3940 mA/mm and a highest g{sub m} of 1417 mS/mm. This dramatic increase of I{sub D} and g{sub m} in the 3D TT-gate In{sub 0.17}Al{sub 0.83}N/GaN NC Fin-HEMT translated to an extracted highest electron velocity (v{sub e}) of 6.0 × 10{sup 7 }cm/s, which is ∼1.89× higher than that of the conventional In{sub 0.17}Al{sub 0.83}N/GaN HEMT (3.17 × 10{sup 7 }cm/s). The v{sub e} in the conventional III-nitride transistors are typically limited by highly efficient optical-phonon emission. However, the unusually high v{sub e} at 300 K in the 3D TT-gate In{sub 0.17}Al{sub 0.83}N/GaN NC Fin-HEMT is attributed to the increase of in-plane tensile stress component by SiN passivation in the formed NC which is also verified by micro-photoluminescence (0.47 ± 0.02 GPa) and micro-Raman spectroscopy (0.39 ± 0.12 GPa) measurements. The ability to reach the v{sub e} = 6 × 10{sup 7 }cm/s at 300 K by a stress engineered 3D TT-gate lattice-matched In{sub 0.17}Al{sub 0.83}N/GaN NC Fin-HEMTs shows they are promising for next-generation ultra-scaled high-speed device applications.

  12. On the anisotropy of E{sub 0} Greater-Than-Or-Slanted-Equal-To 5.5 Multiplication-Sign 10{sup 19} eV cosmic rays according to data of the Pierre Auger Collaboration

    SciTech Connect

    Glushkov, A. V.


    The Pierre Auger Collaboration discovered, in a solid angle of radius about 18 Degree-Sign , a local group of cosmic rays having energies in the region E{sub 0} {>=} 5.5 Multiplication-Sign 10{sup 19} eV and coming from the region of the Gen A radio galaxy, whose galactic coordinates are l{sub G} 309.5 Degree-Sign and b{sub G} = 19.4 Degree-Sign . Near it, there is the Centaur supercluster of galaxies, its galactic coordinates being l{sub G} = 302.4 Degree-Sign and b{sub G} = 21.6 Degree-Sign . It is noteworthy that the Great Attractor, which may have a direct bearing on the observed picture, is also there.

  13. Calorimetry at L = 10/sup 33

    NASA Astrophysics Data System (ADS)

    Selove, W.; Theodosiou, G.


    Existing scintillation calorimetry techniques make operation at collision rates of 10 to the 8th power sec feasible for most rare events are shown. The pp colliders at L = 10 to the 33rd power, with DC operation are analyzed. Possible misleading effects due to pile up are discussed.

  14. Decay Properties of {sup 266}Bh and {sup 262}Db Produced in the {sup 248}Cm+{sup 23}Na Reaction - Further Confirmation of the {sup 278}113 Decay Chain

    SciTech Connect

    Morita, K.; Morimoto, K.; Kaji, D.; Haba, H.; Ozeki, K.; Kudou, Y.; Yoneda, A.; Ichikawa, T.; Katori, K.; Yoshida, A.; Sato, N.; Sumita, T.; Fujimori, Y.; Tokanai, F.; Goto, S.; Ideguchi, E.; Kasamatsu, Y.; Koura, H.; Tsukada, K.; Komori, Y.


    Decay properties of an isotope {sup 266}Bh and its daughter nucleus {sup 262}Db produced by the {sup 248}Cm({sup 23}Na,5n) reaction were studied by using a gas-filled recoil separator coupled with a position-sensitive semiconductor detector. {sup 266}Bh was clearly identified from the correlation of the known nuclide, {sup 262}Db. The obtained decay properties of {sup 266}Bh and {sup 262}Db are consistent with those observed in the {sup 278}113 chain by RIKEN collaboration, which provided further confirmation of the discovery of {sup 278}113.

  15. Ion beam injected point defects in crystalline silicon: Migration, interaction, and trapping phenomena

    SciTech Connect

    Priolo, F.; Libertino, S. |; Privitera, V.; Coffa, S.


    The recent work on the room temperature migration and trapping phenomena of ion beam generated point defects in crystalline Si is reviewed. It is shown that a small fraction ({approximately}10{sup {minus}6}) of the defects generated at the surface by a shallow implant is injected into the bulk. These defects undergo a long range trap-limited diffusion and interact with both impurities, dopants and preexisting defects along their path. In particular, these interactions result in dopant deactivation and/or partial annihilation of pre-existing vacancy-type defect markers. It is found that in highly pure, epitaxial Si layers, these effects extend to several microns from the surface, demonstrating a long range migration of point defects at room temperature. By a detailed analysis of the experimental evidences the authors have identified the Si self-interstitials as the major responsible for the observed phenomena. This allowed them to give a lower limit of 6 {times} 10{sup {minus}11} cm{sup 2}/s for the room temperature diffusion coefficient of the Si self-interstitials. Room temperature trap-limited migration of vacancies is also detected as a broadening in the divacancy profile of as implanted samples. In this case the room temperature diffusion coefficient of vacancies has been found to be {ge}3 {times} 10{sup {minus}12} cm{sup 2}/s. These data are presented and their implications discussed.

  16. Branching ratio measurements of the predissociation of {sup 12}C{sup 16}O by time-slice velocity-map ion imaging in the energy region from 108 000 to 110 500 cm{sup -1}

    SciTech Connect

    Gao Hong; Song Yu; Yang Lei; Shi Xiaoyu; Ng, C. Y.; Jackson, William M.; Yin Qingzhu


    Direct branching ratio measurements of the three lowest dissociation channels of {sup 12}C{sup 16}O that produce C({sup 3}P) + O({sup 3}P), C({sup 1}D) + O({sup 3}P), and C({sup 3}P) + O({sup 1}D) are reported in the vacuum ultraviolet region from 108 000 cm{sup -1} (92.59 nm) to 110 500 cm{sup -1} (90.50 nm) using the time-slice velocity-map ion imaging and nonlinear resonant four-wave mixing techniques. Rotationally, resolved carbon ion yield spectra for both {sup 1}{Sigma}{sup +} and {sup 1}{Pi} bands of CO in this region have been obtained. Our measurements using this technique show that the branching ratio in this energy region, especially the relative percentages of the two spin-forbidden channels, is strongly dependent on the particular electronic and vibrational energy levels of CO that are excited.

  17. Survey of the high resolution infrared spectrum of methane ({sup 12}CH{sub 4} and {sup 13}CH{sub 4}): Partial vibrational assignment extended towards 12 000 cm{sup −1}

    SciTech Connect

    Ulenikov, O. N.; Bekhtereva, E. S.; Albert, S.; Bauerecker, S.; Niederer, H. M.; Quack, M.


    We have recorded the complete infrared spectrum of methane {sup 12}CH{sub 4} and its second most abundant isotopomer {sup 13}CH{sub 4} extending from the fundamental range starting at 1000 cm{sup −1} up to the overtone region near 12 000 cm{sup −1} in the near infrared at the limit towards the visible range, at temperatures of about 80 K and also at 298 K with Doppler limited resolution in the gas phase by means of interferometric Fourier transform spectroscopy using the Bruker IFS 125 HR prototype (ZP 2001) of the ETH Zürich laboratory. This provides the so far most complete data set on methane spectra in this range at high resolution. In the present work we report in particular those results, where the partial rovibrational analysis allows for the direct assignment of pure (J = 0) vibrational levels including high excitation. These results substantially extend the accurate knowledge of vibrational band centers to higher energies and provide a benchmark for both the comparison with theoretical results on the one hand and atmospheric spectroscopy on the other hand. We also present a simple effective Hamiltonian analysis, which is discussed in terms of vibrational level assignments and {sup 13}C isotope effects.

  18. REACTIONS FORMING C{sub n=2,10}{sup (0,+)}, C{sub n=2,4}H{sup (0,+)}, AND C{sub 3}H{sub 2}{sup (0,+)} IN THE GAS PHASE: SEMIEMPIRICAL BRANCHING RATIOS

    SciTech Connect

    Chabot, M.; Jallat, A.; Beroff, K.; Gratier, P.; Wakelam, V.


    The aim of this paper is to provide a new set of branching ratios (BRs) for interstellar and planetary chemical networks based on a semiempirical model. We applied, instead of zero-order theory (i.e., only the most exoergic decaying channel is considered), a statistical microcanonical model based on the construction of breakdown curves and using experimental high velocity collision BRs for their parameterization. We applied the model to ion-molecule, neutral-neutral, and ion-pair reactions implemented in the few popular databases for astrochemistry, such as KIDA, OSU, and UMIST. We studied the reactions of carbon and hydrocarbon species with electrons, He{sup +}, H{sup +}, CH{sup +}, CH, C, and C{sup +} leading to intermediate complexes of the type C{sub n=2,10}, C{sub n=2,4}H, C{sub 3}H{sub 2}, C{sub n=2,10}{sup +}, C{sub n=2,4}H{sup +}, or C{sub 3}H{sub 2}{sup +}. Comparison of predictions with measurements supports the validity of the model. Huge deviations with respect to database values are often obtained. Effects of the new BRs in time-dependent chemistry for dark clouds and for photodissociation region chemistry with conditions similar to those found in the Horsehead Nebula are discussed.

  19. The rare crystallographic structure of d(CGCGCG){sub 2}: The natural spermidine molecule bound to the minor groove of left-handed Z-DNA d(CGCGCG){sub 2} at 10 {sup o}C

    SciTech Connect

    Ohishi, Hirofumi . E-mail:; Tozuka, Yoshitaka; Da-Yang, Zhou; Ishida, Toshimasa; Nakatani, Kazuhiko


    Several crystal structure analyses of complexes of synthetic polyamine compounds, including N {sup 1}-(2-(2-aminoethylamino))ethyl)ethane-1,2-diamine PA(222) and N {sup 1}-(2-(2-(2-aminoethylamino)ethylamino)ethyl)ethane-1,2-diamine PA(2222), and left-handed Z-DNA d(CGCGCG){sub 2} have been reported. However, until now, there have been no examples of naturally occurring polyamines bound to the minor groove of the left-handed Z-DNA of d(CGCGCG){sub 2} molecule. We have found that spermidine, a natural polyamine, is connected to the minor groove of left-handed Z-DNA of d(CGCGCG){sub 2} molecule in a crystalline complex grown at 10 {sup o}C. The electron density of the DNA molecule was clear enough to determine that the spermidine was connected in the minor groove of two symmetry related molecules of left-handed Z-DNA d(CGCGCG){sub 2}. This is the first example that a spermidine molecule can form a bridge conformation between two symmetry related molecules of left-handed Z-DNA d(CGCGCG){sub 2} in the minor groove.

  20. Photochemistry of O/sub 3//HNCO mixtures

    SciTech Connect

    Ongstad, A.P.; Liu, X.; Coombe, R.D.


    Pulsed photolysis of gaseous O/sub 3//HNCO mixtures at 249 nm produces emission from the NH A/sup 3/II ..-->.. X/sup 3/..sigma../sup -/ transition near 336 nm. The data suggest that the excited NH is produced by the reaction O(/sup 1/D) + HNCO ..-->.. NH + CO/sub 2/. The branching fraction to the alternate products OH + NCO is less than 0.1. This mechanism is quite different from that of the analogous O(/sup 1/D) + HN/sub 3/, NH(/sup 1/ + HN/sub 3/, and NH(/sup 1/ + HNCO reactions. From the time profile of the NH emission, the rate constant for O(/sup 1/D) + HNCO is determined to be (4.6 /plus minus/ 0.4) /times/ 10/sup /minus/11/ cm/sup 3/s/sup /minus/1/.

  1. Results of charpy V-notch impact testing of structural steel specimens irradiated at {approximately}30{degrees}C to 1 x 10{sup 16} neutrons/cm{sup 2} in a commercial reactor cavity

    SciTech Connect

    Iskander, S.K.; Stoller, R.E.


    A capsule containing Charpy V-notch (CVN) and mini-tensile specimens was irradiated at {approximately} 30{degrees}C ({approximately} 85{degrees}F) in the cavity of a commercial nuclear power plant to a fluence of 1 x 10{sup 16} neutrons/cm{sup 2} (> 1MeV). The capsule included six CVN impact specimens of archival High Flux Isotope Reactor A212 grade B ferritic steel and five CVN impact specimens of a well-studied A36 structural steel. This irradiation was part of the ongoing study of neutron-induced damage effects at the low temperature and flux experienced by reactor supports. The plant operators shut down the plant before the planned exposure was reached. The exposure of these specimens produced no significant irradiation-induced embrittlement. Of interest were the data on unirradiated specimens in the L-T orientation machined from a single plate of A36 structural steel, which is the same specification for the structural steel used in some reactor supports. The average CVN energy of five unirradiated specimens obtained from one region of the plate and tested at room temperature was {approximately} 99 J, while the energy of 11 unirradiated specimens from other locations of the same plate was 45 J, a difference of {approximately} 220%. The CVN impact energies for all 18 specimens ranged from a low of 32 J to a high of 111 J. Moreover, it appears that the University of Kansas CVN impact energy data of the unirradiated specimens at the 100-J level are shifted toward higher temperatures by about 20 K. The results were an example of the extent of scatter possible in CVN impact testing. Generic values for the CVN impact energy of A36 should be used with caution in critical applications.


    SciTech Connect

    Mastrapa, R. M.; Dalle Ore, C. M.; Sandford, S. A.; Cruikshank, D. P.; Roush, T. L.


    Using new laboratory spectra, we have calculated the real and imaginary parts of the index of refraction of amorphous and crystalline H{sub 2}O-ice from 20-150 K in the wavelength range 2.5-22 {mu}m (4000-455 cm{sup -1}) and joined these results with previous measurement from 1.25 to 2.5 {mu}m. These optical constants improve on previous measurements by having better temperature and spectral resolution and can be used to create model spectra for comparison to spectra of solar system objects and interstellar materials. In this wavelength range, the infrared band shapes and positions of amorphous H{sub 2}O-ice are strongly dependent on deposition temperature. Amorphous and crystalline H{sub 2}O-ice have distinctive spectral bands at all wavelengths in this region with bands weakening and shifting to shorter wavelength in amorphous H{sub 2}O-ice compared to crystalline H{sub 2}O-ice. Some notable exceptions are the band near 6 {mu}m, which is stronger in amorphous H{sub 2}O-ice, and the bands near 4.5 {mu}m and 12.5 {mu}m, which shift to longer wavelength in amorphous H{sub 2}O-ice.

  3. Measurements of production cross sections of 10sup>Be and 26Al by 120 GeV and 392 MeV proton bombardment of 89Y, 159Tb, and natCu targets

    SciTech Connect

    Sekimoto, S.; Okumura, S.; Yashima, H.; Matsushi, Y.; Matsuzaki, H.; Matsumura, H.; Toyoda, A.; Oishi, K.; Matsuda, N.; Kasugai, Y.; Sakamoto, Y.; Nakashima, H.; Boehnlein, D.; Coleman, R.; Lauten, G.; Leveling, A.; Mokhov, N.; Ramberg, E.; Soha, A.; Vaziri, K.; Ninomiya, K.; Omoto, T.; Shima, T.; Takahashi, N.; Shinohara, A.; Caffee, M. W.; Welten, K. C.; Nishiizumi, K.; Shibata, S.; Ohtsuki, T.


    The production cross sections of 10sup>Be and 26Al were measured by accelerator mass spectrometry using 89Y, 159Tb, and natCu targets bombarded by protons with energies Ep of 120 GeV and 392 MeV. The production cross sections obtained for 10sup>Be and 26Al were compared with those previously reported using Ep = 50 MeV–24 GeV and various targets. It was found that the production cross sections of 10sup>Be monotonically increased with increasing target mass number when the proton energy was greater than a few GeV. On the other hand, it was also found that the production cross sections of 10sup>Be decreased as the target mass number increased from that of carbon to those near the mass numbers of nickel and zinc when the proton energy was below approximately 1 GeV. They also increased as the target mass number increased from near those of nickel and zinc to that of bismuth, in the same proton energy range. Similar results were observed in the production cross sections of 26Al, though the absolute values were quite different between 10sup>Be and 26Al. As a result, the difference between these production cross sections may depend on the impact parameter (nuclear radius) and/or the target nucleus stiffness.

  4. Infrared absorption spectroscopy and chemical kinetics of free radicals. Progress report, February 1, 1991--March 1, 1994

    SciTech Connect

    Curl, R.F.; Glass, G.P.


    Rate of reaction of ketenyl radical with O{sub 2} at room temperature was determined as 6.5(6) {times} 10-{sup {minus}13} CM{sup 3} molecules{sup {minus}1} s{sup {minus}1} and an upper bound of 1 {times} 10{sup {minus}13} cm{sup 3} molecule{sup {minus}1} s{sup {minus}1} was estimated for the reaction rate of acetylene with ketenyl. The high resolution spectrum of the {nu}1 acetylenic CH stretch of propargy1 radical (HCCCH{sub 2}) near 3322 cm{sup {minus}1} has obtained and analyzed. Nuclear spin weights demonstrate that the CH{sub 2} hydrogen atoms are in the carbon atom plane. We have attempted to measure the propargy1 recombination rate constant at 296 K; however, the observed rate constant of (1.2{times}0.2) x 10{sup {minus}10} cc-molecule{sup {minus}1}-s{sup {minus}1} may be affected by other reactions. The CH stretch fundamental, {nu}1, of HCCN has been observed, assigned, and analyzed. Analysis of the hot bands associated with bending shows that HCCN is a quasilinear molecule with a very floppy potential function for the HCC bending angle. The barrier to linearity is estimated to be about 100 cm{sup {minus}1}. Rate of the reaction between C{sub 2}H and H{sub 2} has been measured at 295--855 K. The rate constant exhibited a non-Arrhenius form well represented by k = (9.44{plus_minus}0.50) {times} 10{sup {minus}14}T{sup 0.9}exp(-1003{plus_minus}40/T)cm{sup 3}molecule{sup {minus}1}s{sup {minus}1}. The reaction between atomic oxygen and the amidogen radical, NH{sub 2} has been studied at 295 K; the room temperature rate constant was measured as (6.5 {plus_minus} 1.3) {times} 10{sup {minus}1} s{sup {minus}1}. The minor channel leading to NH + OH was observed but accounted for at most about 8% of the NH{sub 2} reacting. The rate constant for the reaction NH+O was determined from fitting the NH time profile to be 6.6{plus_minus}10{sub {minus}11} cm{sup 3} molecule{sup {minus}1} s{sup {minus}1}.

  5. Properties of H, O and C in GaN

    SciTech Connect

    Pearton, S.J.; Abernathy, C.R.; Lee, J.W.


    The electrical properties of the light ion impurities H, O and C in GaN have been examined in both as-grown and implanted material. H is found to efficiently passivate acceptors such as Mg, Ca and C. Reactivation occurs at {ge} 450 C and is enhanced by minority carrier injection. The hydrogen does not leave the GaN crystal until > 800 C, and its diffusivity is relatively high ({approximately} 10{sup {minus}11} cm{sup 2}/s) even at low temperatures (< 200 C) during injection by wet etching, boiling in water or plasma exposure. Oxygen shows a low donor activation efficiency when implanted into GaN, with an ionization level of 30--40 meV. It is essentially immobile up to 1,100 C. Carbon can produce low p-type levels (3 {times} 10{sup 17} cm{sup {minus}3}) in GaN during MOMBE, although there is some evidence it may also create n-type conduction in other nitrides.

  6. Electrochemical vapor deposition of doped LaCrO{sub 3}

    SciTech Connect

    Dieten, V.E.J. van; Schoonman, J.


    CVD/EVD of Mg-doped LaCrO{sub 3} on porous calcia-stabilized zirconia (CSZ) has been investigated in the temperature range of 1,473 to 1,523 K using the metal chlorides as reactants. During the EVD stage, doped LaCrO{sub 3} is formed as long as the supply of LaCl{sub 3} is sufficient, otherwise Cr{sub 2}O{sub 3} will be formed simultaneously. The magnesium content of the LaCrO{sub 3} films is very low (< 2%), despite the excess of MgCl{sub 2} in the reactant stream, as expected from thermodynamic calculations. Film growth shows parabolic behavior, indicating that the deposition is controlled by solid state diffusion. The parabolic growth rate constant is determined to be 8.2{times}10{sup {minus}11} cm{sup 2}/s at 1,473 K, and 1.1{times}10{sup {minus}10} cm{sup 2}/s at 1,523 K. Dense films of doped LaCrO{sub 3} can also be grown by the EVD process on gas tight oxygen ion conducting substrates. Sr-doped LaCrO{sub 3} has been deposited on gas tight YSZ at a temperature of about 1,413 K. The metal chlorides were generated by chlorination of the metals with HCl. Like magnesium, strontium is difficult to incorporate into EVD grown LaCrO{sub 3} films, as the presence of strontium was not confirmed using EDX analysis. At a temperature of 1,410 K, film growth on 200 to 600 {micro}m thick YSZ substrates is parabolic beyond 2 {micro}m film thickness, indicating that the reaction is solely determined by solid state diffusion through the growing film. The parabolic growth rate constant at that temperature is determined to be 6.5{times}10{sup {minus}11}cm{sup 2}/s.

  7. Improved upper limits on B(K{sub L}{sup 0} {r_arrow} {mu}e) and B(K{sub L}{sup 0} {r_arrow} ee) and a new value for B(K{sub L}{sup 0} {r_arrow} {mu}{mu})

    SciTech Connect

    Molzon, W.R.


    The author gives recent results from E791 at BNL with improved upper limits on the branching fractions B(K{sub L}{sup 0} {r_arrow} {mu}e) and B(K{sub L}{sup 0} {r_arrow} ee) of 8.5 {times} 10{sup {minus}11} and 11.6 {times} 10{sup {minus}11} at 90% C.L. He also gives a preliminary result of a new measurement B(K{sub L}{sup 0} {r_arrow} {mu}{mu}) = 7.6 {+-} 0.5(stat) {+-} 0.4(syst) {times} 10{sup {minus}9}.

  8. Kinetics and mechanisms of reactions involving small aromatic reactive intermediates. Annual report

    SciTech Connect

    Lin, M.C.


    Phenyl (C{sub 6}H{sub 5}), phenoxy (C{sub 6}H{sub 5}O) and benzyne (C{sub 6}H{sub 4}) are fundamentally important prototype molecules. C{sub 6}H{sub 5} and C{sub 6}H{sub 5}O are also very important reactive intermediates in hydrocarbon combustion systems, particularly with regard to soot formation chemistry, as well as to the combustion chemistry of aromatic additives in gasoline. The authors proposed to study the kinetics and mechanisms of these three benchmark reactive intermediates using two complementary laser diagnostic techniques -- laser resonance absorption (LRA) and resonance enhanced multiphoton ionization mass spectrometry (REMPI/MS). In the first year of this contractual work, they have employed a new type of LRA, i.e. the intra-cavity resonance absorption technique, to measure the rate constants for C{sub 6}H{sub 5} reactions, extending the limit of rate constant measurement down to 10{sup {minus}18} cm{sup 3}/s. They have tested this method for the following reactions: C{sub 6}H{sub 5} + HBr, CH{sub 2}O, O{sub 2}, C{sub 2}H{sub 2} and C{sub 2}H{sub 4} at 297 K and obtained their rate constants to be 3.0 {times} 10{sup {minus}11}, 1.2 {times} 10{sup {minus}14}, 1.0 {times} 10{sup {minus}16}, 7.0 {times} 10{sup {minus}18} and 6.7 {times} 10{sup {minus}18} cm{sup 3}/s, respectively. In the second study, the REMPI spectroscopy of C{sub 6}H{sub 5} is being investigated with the two laser pump-probe surface photolysis method. The desorbed C{sub 6}H{sub 5} photofragment is ionized by (1+1) MPI in the spectral range 200--260 nm. Similarly, the NO photofragment is also detected by (1+1) MPI in the same spectral region. The detailed photofragmentation of the absorbed C{sub 6}H{sub 5}NO at 193 and 248 nm is being analyzed presently and a new experiment with acetophenone on a quartz surface is under way.

  9. Mg dopant in Cu{sub 2}ZnSnSe{sub 4}: An n-type former and a promoter of electrical mobility up to 120 cm{sup 2} V{sup −1} s{sup −1}

    SciTech Connect

    Kuo, Dong-Hau Wubet, Walelign


    Mg-doped Cu{sub 2}ZnSnSe{sub 4} (CZTSe) bulk materials with the (Cu{sub 2−x}Mg{sub x})ZnSnSe{sub 4} formula at x=0, 0.1, 0.2, 0.3, and 0.4 were prepared at 600 °C for 2 h with soluble sintering aids of Sb{sub 2}S{sub 3} and Te. Defect chemistry was studied by measuring structural and electrical properties of Mg-doped CZTSe as a function of dopant concentration. Except at x=0, all Mg-doped CZTSe pellets showed an n-type behavior. The Mg-doped CZTSe pellets showed an n-type behavior. n-Type Mg-CZTSe pellets at x=0.1 showed the highest electrical conductivity of 24.6 S cm{sup −1} and the net hole mobility of 120 cm{sup 2} V{sup −1} s{sup −1}, while they were 11.8 S cm{sup −1} and 36.5 cm{sup 2} V{sup −1} s{sup −1} for the undoped p-type CZTSe. Mg dopant is a strong promoter of electrical mobility. Mg dopant behaves as a donor defect in CZTSe at a 5% doping content, but is also used as an acceptor at a high content above 5%. Mg doping has further developed CZTSe into a promising semiconductor. - Graphical abstract: The effects of extrinsic doping of Mg{sup 2+} on the electrical properties of Cu{sub 2}ZnSnSe{sub 4} bulks. - Highlights: • (Cu{sub 2−x}Mg{sub x})ZnSnSe{sub 4} bulks were fabricated by liquid-phase sintering at 600 °C. • All Mg-x-CZTSe pellets except at x=0 exhibited n-type conductivity. • Electrical properties of CZTSe pellets changed with the Cu and Mg ratios. • Mg{sup 2+} goes to the Cu{sup 1+} site to form the Mg{sub Cu}{sup 1+} donor defect for the n-type CZTSe. • n-Type Mg-0.1-CZTSe bulk with 5% Mg showed the highest mobility of 120 cm{sup 2} V{sup −1} s{sup −1}.

  10. Getter pumping speed measurements in the range 10/sup -2/ to 10/sup -7/ liters per second

    SciTech Connect

    Mehrhoff, T.K.; Barnes, L.W.


    A procedure for measurement of pumping speeds several orders of magnitude below the lowest reported rates is described. The method has been found to be useful in evaluating ambient hydrogen pumping characteristics for small getters in the presence of trace contaminant gases (less than 0.13 micromoles). Poisoning effects are described for the action of carbon monoxide and carbon dioxide on a zirconium-titanium nickel alloy bulk getter. Results obtained indicate the poisoning effect is much less severe in the case of barium flash getters.

  11. Laser flash photolysis studies of radical-radical reaction kinetics: The HO{sub 2} + IO reaction

    SciTech Connect

    Cronkhite, J.M.; Stickel, R.E.; Nicovich, J.M.; Wine, P.H.


    Reactive iodine as a potential tropospheric O{sub 3} sink has received considerable attention recently. Laser flash photolysis of Cl{sub 2}/CH{sub 3}OH/O{sub 2}/I{sub 2}/NO{sub 2}/SF{sub 6}N{sub 2} mixtures at 308 nm has been coupled with simultaneous time-resolved detection of HO{sub 2} (by infrared tunable diode laser absorption spectroscopy) and IO (by visible absorption spectroscopy) to investigate the kinetics of the atmospherically important reaction HO{sub 2} + IO {r_arrow} products over the temperature range 274--373 K in N{sub 2} buffer gas at pressures of 12 and 25 Torr. All experiments were performed under near pseudo-first-order conditions with HO{sub 2} in excess over IO. At 298 K, the rate coefficient was determined to be (9.7 {+-} 2.9) {times} 10{sup {minus}11} cm{sup 3} molecule{sup {minus}1}s{sup {minus}1}, with the primary source of uncertainty being knowledge of the infrared line strength(s) required to convert measured HO{sub 2} absorbances to absolute concentrations. The temperature dependence of the HO{sub 2} + IO rate coefficient was found to be adequately described by the Arrhenius expression k = 9.3 {times} 10{sup {minus}12} exp(680/T) cm{sup 3} molecule{sup {minus}1} s{sup {minus}1}. The results reported in this study are compared with other recent studies of HO{sub 2} + IO kinetics, and the potential roles of this reaction in atmospheric chemistry are discussed.

  12. A correlated k-distribution model of the heating rates for atmospheric mixtures of H{sub 2}O, CO{sub 2}, O{sub 3}, CH{sub 4}, and N{sub 2}O in the 0-2500 cm{sup {minus}1} wave number region at altitudes between 0 and 60 km

    SciTech Connect

    Grossman, A.S.; Grant, K.E.


    The main purposes of this paper are to first use the direct method of GGFP to calculate the transmission of the individual molecules H{sub 2}O, CO{sub 2}, O{sub 3}, CH{sub 4}, and N{sub 2}O, plus the transmission of a mixture of all these molecules. Second, to use the G2 model for overlapping k-distributions to calculate the transmission for the CH{sub 4}-N{sub 2}O and H{sub 2}O-CO{sub 2} systems in the spectral regions in which there are overlapping absorption features. For the wavenumber interval 0--2500 cm{sup {minus}1} and altitude range of 0--60 km, a calculation of the atmospheric heating rates, upward fluxes, and downward fluxes will be made for each of the above cases and compared to line by line calculations.

  13. Evidence for transition from polaron to bipolaron conduction in electroactive Li{sub x}Cr{sub 0.11}V{sub 2}O{sub 5.16} powders: A dynamic study from 10 to 10{sup 10} Hz

    SciTech Connect

    Badot, J.C.; Dubrunfaut, O.


    This paper presents a study on the electrical transport properties of lithiated Cr{sub 0.11}V{sub 2}O{sub 5.16}, which can be used as a rechargeable cathodic material in lithium batteries. Dielectric and conductivity spectra of Li{sub x}Cr{sub 0.11}V{sub 2}O{sub 5.16} powders (x=0, 0.05, 0.40 and 1.20) were recorded in a broad frequency range of 10-10{sup 10} Hz at temperature varying between 300 and 400 K. Complex resistivity diagrams have enabled to obtain thermal behaviors of bulk dc-conductivity. Dielectric relaxations were found, attributed to small polarons and (intersite) bipolarons hopping. The transport properties are shown to be consistent with small polaron and bipolaron conduction models. The change from polaronic to bipolaronic conduction has been evidenced with the increase of the lithium content x from 0.40 to 1.20. This work opens up new prospects for a more fundamental understanding of the electronic transport in relation with the electrochemical properties of Cr{sub 0.11}V{sub 2}O{sub 5.16}. - Graphical Abstract: Schematic structure of Cr{sub 0.11}V{sub 2}O{sub 5.16}. Highlights: Black-Right-Pointing-Pointer Chromium-vanadium mixed oxide as cathodic material. Black-Right-Pointing-Pointer Broadband dielectric spectroscopy from low frequencies to microwaves. Black-Right-Pointing-Pointer Transition from polaron to bipolaron conduction as lithium content increases.

  14. Spectroscopy and reaction kinetics of HCO

    SciTech Connect

    Guo, Yili


    The high-resolution infrared spectrum of the C-H stretching fundamental of HCO has been studied by means of infrared flash kinetic spectroscopy. HCO was generated by flash photolysis of acetaldehyde or formaldehyde using a 308 nm (XeCl) excimer laser. The transient absorption was probed with an infrared difference frequency laser system. The high resolution spectra obtained were assigned and fitted with rotational, spin-rotational, and centrifugal distortion constants. The 1/ band origin is 2434.48 cm/sup /minus/1/. New ground state constants have been derived from a least-squares fit combining the 1/ data with previous microwave and FIR LMR measurements. A new set of spectroscopic constants for the (1, 0, 0) state, the equilibrium rotational constants, and the orientation of the transition dipole moment are also reported. The kinetics and product branching ratios of the HCO + NO/sub 2/ reaction have been studied using visible and infrared laser flash kinetic spectroscopy. The rate constant for the disappearance of HCO radical at 296 K is (5.7 +- 0.9) /times/ 10/sup /minus/11/ cm/sup 3/ molec/sup /minus/1/ sec/sup /minus/1/, and it is independent of the pressure of SF/sub 6/ buffer gas up to 700 torr. Less than 10% of the reaction goes through the most exothermic product channel, HNO + CO/sub 2/. The product channel, H + CO/sub 2/ + NO, is responsible for 52% of the reaction. HONO has been observed, though not quantitatively, as a reaction product corresponding to the HONO + CO channel. 51 refs., 21 figs., 8 tabs.

  15. Identification of third-order (approx. 10{sup 6} yrs) and fourth-order (approx. 10{sup 5}/10{sup 4} yrs) stratigraphic cycles in the South Addition, West Cameron Lease Area, Louisiana offshore

    SciTech Connect

    Lowrie, A.; Meeks, P.; Hoffman, K.


    In the highly explored South Addition of the West Cameron Lease Area, Louisiana offshore, interpretation of a six-mile ({approx}10 km) seismic section across a single intraslope basin yielded 20 sediment packages. Several interpretive tools were necessary. Seismic stratigraphy indicated that the shallower zone was an outer shelf marked by 8 major sea level oscillations. In the portion between 1 and 3 seconds, seismic stratigraphy and paleontology led to the interpretation of depositional environments such as upper slope, and paleobathymetrically deeper intervals with descent through the section. The intraslope basin, while small, may be viewed as a micro-continental margin. Each sea level oscillation cycle apparently made a distinct progradational unit, decipherable in the seismic data. Fourth order cycles have been provisionally interpreted, throughout most of the entire 3.7 second section. Such precision is possible only in explored basins with excellent seismic data. The sequence thickness showed a seven-fold variability, from 0.08 to 0.58 seconds. The shallower section, deposited along an outer shelf, has an average individual sequence thickness of 0.13 seconds. Individual seismic sequences in the deeper section, interpreted to have been deposited on an upper slope, have average thicknesses of 0.25 seconds. The thinner sequences of the shallower section are compatible with the notion that the outer shelf was a bypass zone during a glacial epoch. The thicker sequences of the deeper section are the result of deposition onto an aggrading upper slope within an intraslope basin during a highstand.

  16. Polarity control and transport properties of Mg-doped (0001) InN by plasma-assisted molecular beam epitaxy

    SciTech Connect

    Choi, Soojeong; Wu Feng; Bierwagen, Oliver; Speck, James S.


    The authors report on the plasma-assisted molecular beam epitaxy growth and carrier transport of Mg-doped In-face (0001) InN. The 1.2 {mu}m thick InN films were grown on GaN:Fe templates under metal rich conditions with Mg concentration from 1 Multiplication-Sign 10{sup 17}/cm{sup 3} to 3 Multiplication-Sign 10{sup 20}/cm{sup 3}. A morphological transition, associated with the formation of V-shape polarity inversion domains, was observed at Mg concentration over 7 Multiplication-Sign 10{sup 19}/cm{sup 3} by atomic force microscopy and transmission electron microscopy. Seebeck measurements indicated p-type conductivity for Mg-concentrations from 9 Multiplication-Sign 10{sup 17}/cm{sup 3} to 7 Multiplication-Sign 10{sup 19}/cm{sup 3}, i.e., as it exceeded the compensating (unintentional) donor concentration.

  17. Blood lead concentrations in marine mammals validate estimates of 10{sup 2}- to 10{sup 3}-fold increase in human blood lead concentrations

    SciTech Connect

    Owen, B.D.; Flegal, A.R.


    Measurements of ultra-low ambient blood lead (PbB) concentrations (mean {+-} SD = 0.13 {+-} 0.06 {micro}g/dL) in Northern elephant seals (Mirounga angustirostris) validate previous estimates of ultra-low PbB levels in preindustrial humans. These estimates had been unsubstituted, since PbB levels in this range had never been measured in any organisms prior to this study. Similarities in PbB levels among these contemporary and preindustrial mammals are consistent with similarities in their measured and estimated lead exposures, respectively. The marginally higher PbB levels and rates of lead exposure in contemporary marine mammals are, also, consistent with lead isotopic composition analyses that indicate their PbB levels have been elevated from exposure to industrial lead. Consequently, these analyses substantiate concerns that current baseline PbB levels in humans, which are estimated to be two to three orders of magnitude above natural levels, may still constitute public health risks.

  18. Laser Plasma Interactions at Intensities from 10{sup 12}W/cm{sup 2} to 10{sup 21} W/cm{sup 2}

    SciTech Connect

    Kruer, W L


    A tutorial introduction is given to some important physics and current challenges in laser plasma interactions. The topics are chosen to illustrate a few of John Dawson's many pioneering contributions to the physics and modeling of plasmas. In each case, a current frontier is also briefly discussed, including the .53{micro}m option for laser fusion, kinetic inflation of instability levels, and new regimes accessed with ultra-high power lasers.

  19. Instrumentation and control of the AGS Booster vacuum system

    SciTech Connect

    Gabusi, J.; Geller, J.; Hseuh, H.C.; Rosas, P.; Sandburg, J.; Shen, B.; Stattel, P.; Zapasek, R.


    The AGS Booster is a synchrotron for the acceleration of both protons and heavy ions. A pressure of low 10{sup {minus}11} Torr is required for the acceleration of the partially stripped, low {Beta}, very heavy ions. This paper describes the power supplies and controls for this ultra-high vacuum system with the emphasis on the operation of the ion gauge system over long cable length and on equipment interlock 4 refs., 2 figs., 1 tab.

  20. Atom trap trace analysis

    SciTech Connect

    Lu, Z.-T.; Bailey, K.; Chen, C.-Y.; Du, X.; Li, Y.-M.; O'Connor, T. P.; Young, L.


    A new method of ultrasensitive trace-isotope analysis has been developed based upon the technique of laser manipulation of neutral atoms. It has been used to count individual {sup 85}Kr and {sup 81}Kr atoms present in a natural krypton sample with isotopic abundances in the range of 10{sup {minus}11} and 10{sup {minus}13}, respectively. The atom counts are free of contamination from other isotopes, elements,or molecules. The method is applicable to other trace-isotopes that can be efficiently captured with a magneto-optical trap, and has a broad range of potential applications.

  1. Production of ozone and nitrogen oxides by laser filamentation

    SciTech Connect

    Petit, Yannick; Henin, Stefano; Kasparian, Jerome; Wolf, Jean-Pierre


    We have experimentally measured that laser filaments in air generate up to 10{sup 14}, 3x10{sup 12}, and 3x10{sup 13} molecules of O{sub 3}, NO, and NO{sub 2}, respectively. The corresponding local concentrations in the filament active volume are 10{sup 16}, 3x10{sup 14}, and 3x10{sup 15} cm{sup -3}, and allows efficient oxidative chemistry of nitrogen, resulting in concentrations of HNO{sub 3} in the parts per million range. The latter forming binary clusters with water, our results provide a plausible pathway for the efficient nucleation recently observed in laser filaments.

  2. Growth mechanism of hydrogen clusters

    SciTech Connect

    Nickel, N.H.; Anderson, G.B.; Johnson, N.M.; Walker, J.


    It is demonstrated that the exposure of polycrystalline silicon (poly-Si) to monatomic hydrogen results in the formation of H clusters. These H stabilized platelets appear in the near-surface region (100 nm) and are predominantly oriented along {l_brace}111{r_brace} crystallographic planes. Platelet concentrations of {approx}5 x 10{sup 15}, 1.5 x 10{sup 16} -cm{sup {minus}3}, and 2.4 x 10{sup 17} cm{sup {minus}3} were observed in nominally undoped poly-Si, phosphorous doped poly-Si (P = 10{sup 17} cm{sup {minus}3}), and phosphorous doped single crystal silicon (P > 3 x 10{sup 18} cm{sup {minus}3}), respectively. Results obtained on doped c-Si demonstrate that platelet generation occurs only at Fermi-level positions of E{sub C} - E{sub F} < 0.4 eV.

  3. A kinetics study of the O( sup 3 P) + CH sub 3 Cl reaction over the 556-1485 K range by the HTP and LP-ST techniques

    SciTech Connect

    Ko, Taeho; Fontijn, A. . High-Temperature Reaction Kinetics Lab.); Lim, K.P.; Michael, J.V. )


    The high-temperature photochemistry (HTP) and laser photolysis-shock tube (LP-ST) techniques have been combined to study the kinetics of the reaction between ground-state oxygen atoms with CH{sub 3}Cl over the temperature range, 556--1485 K. In the HTP reactor, used for the 556--1291 K range, O atoms were generated by flash photolysis of O{sub 2}, CO{sub 2} or SO{sub 2}, and the atom concentrations were monitored by resonance fluorescence, while with the LP-ST technique, used for the 916--1485 K range, O atoms were generated by the photolysis of either SO{sub 2} or NO with the 193 nm light from a pulsed ArF excimer laser, and atomic resonance absorption spectroscopy (ARAS) was used to monitor (O){sub t}. In both studies, rate coefficients were derived from the (O) profiles under the pseudo-first-order condition, (O){much lt}(CH{sub 3}Cl). The data obtained by the two techniques are in excellent agreement and are best represented by the expression, k(T) = 2.57 {times} 10{sup {minus}11} (T/K){sup 0.31} exp({minus}5633 K/T) cm{sup 3} molecule{sup {minus}1} s{sup {minus}1} with a 2{sigma} precision varying from {plus minus}6 {plus minus}22% and an estimated 2{sigma} accuracy of {plus minus}21% to {plus minus}30%, depending on temperature. The rate coefficients for the title reaction are essentially identical to those for the O + CH{sub 4} reaction over the observed temperature range, the reasons for which are discussed.

  4. A kinetics study of the O({sup 3}P) + CH{sub 3}Cl reaction over the 556-1485 K range by the HTP and LP-ST techniques

    SciTech Connect

    Ko, Taeho; Fontijn, A.; Lim, K.P.; Michael, J.V.


    The high-temperature photochemistry (HTP) and laser photolysis-shock tube (LP-ST) techniques have been combined to study the kinetics of the reaction between ground-state oxygen atoms with CH{sub 3}Cl over the temperature range, 556--1485 K. In the HTP reactor, used for the 556--1291 K range, O atoms were generated by flash photolysis of O{sub 2}, CO{sub 2} or SO{sub 2}, and the atom concentrations were monitored by resonance fluorescence, while with the LP-ST technique, used for the 916--1485 K range, O atoms were generated by the photolysis of either SO{sub 2} or NO with the 193 nm light from a pulsed ArF excimer laser, and atomic resonance absorption spectroscopy (ARAS) was used to monitor [O]{sub t}. In both studies, rate coefficients were derived from the [O] profiles under the pseudo-first-order condition, [O]{much_lt}[CH{sub 3}Cl]. The data obtained by the two techniques are in excellent agreement and are best represented by the expression, k(T) = 2.57 {times} 10{sup {minus}11} (T/K){sup 0.31} exp({minus}5633 K/T) cm{sup 3} molecule{sup {minus}1} s{sup {minus}1} with a 2{sigma} precision varying from {plus_minus}6 {plus_minus}22% and an estimated 2{sigma} accuracy of {plus_minus}21% to {plus_minus}30%, depending on temperature. The rate coefficients for the title reaction are essentially identical to those for the O + CH{sub 4} reaction over the observed temperature range, the reasons for which are discussed.

  5. Possibility of applying a hydrodynamic model to describe the laser erosion of metals irradiated by high-intensity nanosecond pulses

    SciTech Connect

    Kozadaev, K V


    We report the results of experimental investigations of the production and development of plasma-vapour plumes upon irradiation of metal targets by nanosecond (10–100 ns) pulses with a high (10{sup 8}–10{sup 10} W cm{sup -2}) power density under atmospheric conditions. The transition from a quasi-stationary thermal mechanism of metal erosion to an explosion hydrodynamic one takes place when the radiation power density increases from 10{sup 8} to 10{sup 9} W cm{sup -2}. The resultant experimental information is extremely important for the laser deposition of metal nanostructures under atmospheric conditions, which is possible only for power densities of 10{sup 8}–10{sup 9} W cm{sup -2}. (interaction of laser radiation with matter)

  6. Boron- and phosphorus-doped polycrystalline silicon thin films prepared by silver-induced layer exchange

    SciTech Connect

    Antesberger, T.; Wassner, T. A.; Jaeger, C.; Algasinger, M.; Kashani, M.; Scholz, M.; Matich, S.; Stutzmann, M.


    Intentional boron and phosphorus doping of polycrystalline silicon thin films on glass prepared by the silver-induced layer exchange is presented. A silver/(titanium) oxide/amorphous silicon stack is annealed at temperatures below the eutectic temperature of the Ag/Si system, leading to a complete layer exchange and simultaneous crystallization of the amorphous silicon. Intentional doping of the amorphous silicon prior to the exchange process results in boron- or phosphorus-doped polycrystalline silicon. Hall effect measurements show carrier concentrations between 2 Multiplication-Sign 10{sup 17} cm{sup -3} and 3 Multiplication-Sign 10{sup 20} cm{sup -3} for phosphorus and 4 Multiplication-Sign 10{sup 18} cm{sup -3} to 3 Multiplication-Sign 10{sup 19} cm{sup -3} for boron-doped layers, with carrier mobilities up to 90 cm{sup 2}/V s.

  7. Preliminary design for a standard 10 sup 7 bit Solid State Memory (SSM)

    NASA Technical Reports Server (NTRS)

    Hayes, P. J.; Howle, W. M., Jr.; Stermer, R. L., Jr.


    A modular concept with three separate modules roughly separating bubble domain technology, control logic technology, and power supply technology was employed. These modules were respectively the standard memory module (SMM), the data control unit (DCU), and power supply module (PSM). The storage medium was provided by bubble domain chips organized into memory cells. These cells and the circuitry for parallel data access to the cells make up the SMM. The DCU provides a flexible serial data interface to the SMM. The PSM provides adequate power to enable one DCU and one SMM to operate simultaneously at the maximum data rate. The SSM was designed to handle asynchronous data rates from dc to 1.024 Mbs with a bit error rate less than 1 error in 10 to the eight power bits. Two versions of the SSM, a serial data memory and a dual parallel data memory were specified using the standard modules. The SSM specification includes requirements for radiation hardness, temperature and mechanical environments, dc magnetic field emission and susceptibility, electromagnetic compatibility, and reliability.

  8. The afterglow of GRB 130427A from 1 to 10{sup 16} GHz

    SciTech Connect

    Perley, D. A.; Cenko, S. B.; Corsi, A.; Tanvir, N. R.; Wiersema, K.; Levan, A. J.; Kann, D. A.; Greiner, J.; Sonbas, E.; Zheng, W.; Clubb, K. I.; Zhao, X.-H.; Bai, J.-M.; Chang, L.; Bremer, M.; Castro-Tirado, A. J.; Fruchter, A.; Göğüş, E.; Güver, T.; and others


    We present multiwavelength observations of the afterglow of GRB 130427A, the brightest (in total fluence) gamma-ray burst (GRB) of the past 29 yr. Optical spectroscopy from Gemini-North reveals the redshift of the GRB to be z = 0.340, indicating that its unprecedented brightness is primarily the result of its relatively close proximity to Earth; the intrinsic luminosities of both the GRB and its afterglow are not extreme in comparison to other bright GRBs. We present a large suite of multiwavelength observations spanning from 300 s to 130 days after the burst and demonstrate that the afterglow shows relatively simple, smooth evolution at all frequencies, with no significant late-time flaring or rebrightening activity. The entire data set from 1 GHz to 10 GeV can be modeled as synchrotron emission from a combination of reverse and forward shocks in good agreement with the standard afterglow model, providing strong support to the applicability of the underlying theory and clarifying the nature of the GeV emission observed to last for minutes to hours following other very bright GRBs. A tenuous, wind-stratified circumburst density profile is required by the observations, suggesting a massive-star progenitor with a low mass-loss rate, perhaps due to low metallicity. GRBs similar in nature to GRB 130427A, inhabiting low-density media and exhibiting strong reverse shocks, are probably not uncommon but may have been difficult to recognize in the past owing to their relatively faint late-time radio emission; more such events should be found in abundance by the new generation of sensitive radio and millimeter instruments.

  9. Shear banding in titanium with controlled elongations at 10/sup 6//sec

    SciTech Connect

    Staudhammer, K.P.; Gray, A.J.


    Adiabatic shear bands were obtained in titanium with controlled strains to 10.8%. Two types of shear bands were observed and characterized. In general the quantity and shear band width increased with increasing elongation. At elongations below /approximately/5% the shear bands were typically characteristic of shear bands observed at lower strain rates. Above 5% elongations many of the shear bands contained a boundary regime adjacent to the shear band and increased in width with increasing total elongation. This effect was attributed to the strain heat. 14 refs., 9 figs.

  10. Long term operation of the 100-cm{sup 2} class single cell of MCFC

    SciTech Connect

    Tanimoto, Kazumi; Yanagida, Masahiro; Kojima, Toshikatsu


    The R&D on Molten Carbonate Fuel Cell (MCFC) is proceeding as one of the New Sun Shine Project sponsored by Japanese government. In ONRI (Osaka National Research Institute), the tested MCFCs were assembled with the state-of-the-art components and operated under the load condition for 40000 hours and 34000 hours. We analyzed the performance reduction.

  11. The stability of sodalite in the system NaAlSiO sub 4 -NaCl

    SciTech Connect

    Sharp, Z.D. ); Helffrich, G.R. ); Bohlen, S.R. ); Essene, E.J. )


    The reaction sodalite = {beta}-nepheline + NaCl (s) was reversed in solid-medium apparatus and the reaction sodalite = carnegieite + NaCl (l) was reversed at 1 bar (1,649-1,652 K). The experimental reversals between 923 K and 973 K can be fit with a dP/dT of {minus}11 bar/K, suggesting that the excess entropy for sodalite is present only above 923 K. A phase diagram for the NaAlSiO{sub 4}-NaCl system that is consistent with the measured thermochemical data and the experiments between 973 and 1,650 K can be generated if the 61.7 J/mol{center dot}K entropy contribution is included in the S{sup 0}{sub 298} of sodalite. This entropy contribution must be removed below 973 K for the experiments to fit with calculations. Previously unreported thermodynamic data estimated in this study are {Delta}G{sup 0}{sub 298} for sodalite ({minus}12,697 kJ/mol) and carnegieite (NaAlSiO{sub 4}) ({minus}1,958 kJ/mol), S{sup 0}{sub 298} of carnegieite (129.6 J/mol{center dot}K) and compressibility of NaCl{sub liquid} (V{sup P}{sub 298} (cm{sup 3}) = 31.6{center dot}(1 - 24.7{center dot}10{sup {minus}3}{center dot}P + 800{center dot}10{sup {minus}6}{center dot}P{sup 2}))(T in K; P in kbar). Sodalite is a high-temperature, low-pressure phase, stable well above the solidus in sodic silica-undersaturated magmas enriched in NaCl, and its presence constrains NaCl activities in magmas. Estimates of minimum NaCl (l) activities in the Mont St-Hilaire sodalite syenites are 0.05 at 1,073 K and 0.13 at 1,273 K. Density calculations are consistent with the field observations that sodalite phenocrysts will float in a nepheline syenite liquid. This explains the enrichment of sodalite in the upper levels of the sodalite syenites at Mont St.Hilaire and elsewhere.

  12. Temperature Dependent Capacitance-Voltage And Deep Level Transient Spectroscopy Study Of Self-Assembled Ge Quantum Dots Embedded In P-type Silicon

    SciTech Connect

    Rangel-Kuoppa, Victor-Tapio; Chen Gang; Jantsch, Wolfgang


    Temperature dependent Capacitance-Voltage (TCV) and Deep Level Transient Spectroscopy (DLTS) techniques were used to study how Ge Quantum Dots (QDs) embedded in Silicon trap charge. Atomic Force Microscopy (AFM) is used to obtain the density of QDs, which is in the order of 3x10{sup 11} cm{sup -2}. Three shallow levels, with activation energies of 40, 65 and 90 meV, and densities around 10{sup 16} cm{sup -3}, are found and are related to Boron. Four deep levels, with activation energies of 110, 150, 330 and 380 meV, and densities between 2x10{sup 15} cm{sup -3} and 5x10{sup 15} cm{sup -3}, are also found. TCV results suggest they are related to the Ge QDs.

  13. Comparison of the optical parameters of a CaF{sub 2} single crystal and optical ceramics

    SciTech Connect

    Palashov, O V; Khazanov, E A; Mukhin, I B; Mironov, I A; Smirnov, A N; Dukel'skii, K V; Fedorov, Pavel P; Osiko, Vyacheslav V; Basiev, Tasoltan T


    Single crystal and optical ceramic CaF{sub 2} samples are studied by the method of thermally induced depolarisation of laser radiation at 1076 nm. The absorption coefficients of the single crystal and ceramics are estimated as {alpha} < 4.5x10{sup -4} cm{sup -1} and {alpha} < 1.33x10{sup -3} cm{sup -1}, respectively. (letters)



    Balt, R.O.


    A method is described for conducting mechanical operations necessitating the use of a lubricant in a medium operaject to reactor irradiation of 0.5 x 10/ sup 12/ to 1 x 10/sup 12/ neut rons/ cm/sup 2//sec. A thiopolyether lubricant such as 16, 19-dioxa-13, 22-dithiatetratriacontane is used. (AEC)

  15. Ultra High Vacuum Instrumentation Development Studies

    SciTech Connect

    Dong, C.; Myneni, G.R.


    Attempts at using the Spindt-type molybdenum field emitter arrays in the extractor gauge (EG) and residual gas analyzer (RGA) are presented in this paper. The sensitivity of the field emitter gauge (FEG) is as high as 11 Torr{sup {minus}1}. There is an excellent measurement linearity for FEG and the linear deviation is smaller than 10% in the pressure range of 10{sup {minus}11}--10{sup {minus}6}Torr. We achieved quite stable sensitivities for nitrogen, helium and hydrogen with the field emitter RGA (FERGA) below 10{sup {minus}7} Torr. The slightly reduced emission current and sensitivity, after long-term operation, are of concern and need to be addressed. Residual gas spectra indicate that when using field emitters, the electron stimulated desorbtion (ESD) ions (O+, F+ and Cl+) are lower than those of hot filament generated spectra.

  16. Electrical and morphological properties of CdTe films synthesized by the method of molecular deposition

    SciTech Connect

    Mayorov, V. A. Yafaysov, A. M.; Bogevolnov, V. B.; Radanstev, V. F.


    Films of cadmium telluride are synthesized by molecular deposition on the substrates made of graphite, mica, and Si. Homogeneous photosensitive layers with the area 65 cm{sup 2} and thickness from 0.5 to 5 {mu}m and hole concentration of 6.3 x 10{sup 16} cm{sup -3} (300 K) are obtained.

  17. Collisional-radiative recombination Ar{sup +} + e + e: Experimental study at 77-180 K

    SciTech Connect

    Kotrik, Tomas; Dohnal, Petr; Roucka, Stepan; Jusko, Pavol; Plasil, Radek; Glosik, Juraj; Johnsen, Rainer


    Rate coefficients for collisional-radiative recombination (CRR) of Ar{sup +} ions with electrons have been measured at temperatures from 77 to 180 K in a helium-buffered flowing-afterglow (Cryo-FALP) experiment at electron densities n{sub e} from 10{sup 8} to 10{sup 10} cm{sup -3}. The measured ternary rate coefficient K{sub CRR} at 77 K is (1.1{+-}0.4)x10{sup -17} cm{sup 6}s{sup -1} and the observed variation with temperature agrees well with the theoretical T{sup -4.5} dependence.

  18. Methods for the doping of silicon layers in growth by sublimation MBE

    SciTech Connect

    Shengurov, V. G.; Svetlov, S. P. Chalkov, V. Yu.; Shengurov, D. V.; Denisov, S. A.


    Epitaxial layers doped with various impurities were grown by sublimation MBE on Si (100) substrates. Doping with phosphorus was controlled at electron densities ranging from 2x10{sup 13} to 10{sup 19} cm{sup -3}. A high dopant concentration of {approx}10{sup 20} cm{sup -3} was obtained from the evaporation of partly molten Si sources. It shown that the type and concentration of an impurity in the sublimation MBE process can be controlled by the fabrication of multilayer p{sup +}-n{sup +} structures.

  19. Rotationally resolved spectroscopy of a librational fundamental band of hydrogen fluoride tetramer

    SciTech Connect

    Blake, Thomas A.; Sharpe, Steven W.; Xantheas, Sotiris S.


    The rotationally resolved spectrum of a fundamental band of hydrogen fluoride tetramer has been recorded using a pulsed slit-jet, diode laser spectrometer. The band has a parallel rotational structure and is assigned as the H-F out-of-plane libration fundamental with A{sub u} symmetry. Ninety-five ground state combination differences were fit to a symmetric top Hamiltonian to give the following ground state rotational constants: B{sup ''}=0.132 081(7) cm{sup -1}, D{sub J}{sup ''}=7.1(7)x10{sup -7} cm{sup -1}, D{sub JK}{sup ''}=-9(2)x10{sup -7} cm{sup -1}, H{sub JJJ}{sup ''}=6(2)x10{sup -10} cm{sup -1}, H{sub JJK}{sup ''}=9(7)x10{sup -10} cm{sup -1}, H{sub JKK}{sup ''}=-1.3(8)x10{sup -10} cm{sup -1}. A total of 190 transitions were fit to determine the upper state spectroscopic constants: v{sub 4}=714.7849(1) cm{sup -1}, B{sup '}=0.129 634(5) cm{sup -1}, {delta}(C-B)=0.001 344 cm{sup -1}, D{sub J}{sup '}=6.4(5)x10{sup -7} cm{sup -1}, D{sub JK}{sup '}=-4.5(6)x10{sup -7} cm{sup -1}, {delta}D{sub K}=2.92(8)x10{sup -6} cm{sup -1}, H{sub JJJ}{sup '}=3(1)x10{sup -10} cm{sup -1}, H{sub JKK}{sup '}=-1.55(6)x10{sup -8} cm{sup -1}; {delta}H{sub KKK}=-4.65(6)x10{sup -8} cm{sup -1}. Furthermore, a perpendicular band centered at 752.7 cm{sup -1} was observed. The band has a rotational line spacing that gives an approximate B{sup ''} value of 0.132 cm{sup -1}; it has been assigned as the E{sub u} symmetry, H-F in-plane libration fundamental of the HF tetramer. Finally, a parallel band was observed at 741.0 cm{sup -1} with B{sup ''}=0.076 cm{sup -1} and has been assigned as the A{sup ''} symmetry, H-F out-of-plane libration fundamental of the HF pentamer. Structural parameters and harmonic vibrational frequencies are estimated from first-principles, correlated MP2 and CCSD(T) calculations. These are the largest calculations performed to date for this system with respect to both orbital basis set and level of electron correlation. The CCSD(T) harmonic frequencies are, in particular

  20. Plasma resistivity measurements in the Wisconsin levitated octupole

    SciTech Connect

    Brouchous, D. A.


    Resistivity measurements parallel to the magnetic field were made on gun injected plasmas ranging in density from 10/sup 9/cm/sup -3/ to 10/sup 1/parallelcm/sup -3/ in the Wisconsin levitated octupole with toroidal and poloidal magnetic fields. The 10/sup 9/cm/sup -3/ plasma was collisionless with lambda/sub mfp/ > 100 mirror lengths, had T/sub e/ = 10 eV, T/sub i/ = 30 eV and was found to have anomalous resistivity scaling like eta = ..sqrt..T/sub e//n/sub e/ when E/sub parallel/ > E/su c/ is the Dreicer critical field. The 10/sup 12/cm/sup -3/ plasma was collisional with lambda/sub mfp/ < mirror length, had T/sub e/ = T/sub i/ approx. = .2 eV and was found to have Spitzer resistivity when E/sub parallel/ < E/sub c/.

  1. P-type conductivity in annealed strontium titanate

    SciTech Connect

    Poole, Violet M.; Corolewski, Caleb D.; McCluskey, Matthew D.


    Hall-effect measurements indicate p-type conductivity in bulk, single-crystal strontium titanate (SrTiO{sub 3}, or STO) samples that were annealed at 1200°C. Room-temperature mobilities above 100 cm{sup 2}/V s were measured, an order of magnitude higher than those for electrons (5-10 cm{sup 2}/V s). Average hole densities were in the 10{sup 9}-10{sup 10} cm{sup −3} range, consistent with a deep acceptor.

  2. Mass composition of 10{sup 17}- to 10{sup 18}-eV primary cosmic rays according to data on the lateral distribution of radio emission from extensive air showers

    SciTech Connect

    Kalmykov, N. N. Konstantinov, A. A.; Vedeneev, O. V.


    Experimental data obtained for the lateral distribution of radio emission from extensive air showers (EAS) at the array of Moscow State University (30-34 MHz) and the LOPES array (40-80 MHz) were comparedwith the results of calculations performed within amicroscopic approach based on aMonte Carlo simulation of EAS (CORSIKA code). The same experimental data were used to reconstruct the distribution of the depth of the EAS maximum at cosmic-ray energies in the range of 1017-1018 eV. The energy dependence of the depth of the EAS maximum was constructed for the case of data from the LOPES array, and the mass composition of cosmic rays was estimated for this case. From the resulting dependences, it follows that the mass composition shows a trend toward becoming lighter in the energy range being considered.

  3. Neutrino emission by the pair, plasma, and photo processes in the Weinberg-Salam model

    SciTech Connect

    Schinder, P.J.; Schramm, D.N.; Witta, P.J.; Margolis, S.H.; Tubbs, D.L.


    The results of numerical integrations of the rates and emissivities of the photo, pair, and plasma neutrino emission mechanisms in the Weinberg-Salam theory of the weak interaction are presented. The range of densities 10 gm cm/sup -3/ less than or equal to rho < 10/sup 14/ gm cm/sup -3/ and the temperature range 10/sup 8/K less than or equal to T less than or equal to 10/sup 11/K are considered. Fitting formulae, similar to those provided by Beaudet, Petrosian, and Salpeter, which reproduce the numerical result for the total emissivity to within 20% in the temperature range 10/sup 8.2/K less than or equal to T less than or equal to 10/sup 11/K are presented. 24 refs., 21 figs., 1 tab.

  4. Frequency Stability of 1X10(sup -13) in a Compensated Sapphire Oscillator Operating Above 77 K

    NASA Technical Reports Server (NTRS)

    Santiago, D. G.; Dick, G. J.; Wang, R. T.


    We report on a frequency-stable temperature compensated sapphire oscillator (CSO) at temperatures above 77 K. Previously, high stability in sapphire oscillators had only been obtained with liquid helium cooling.

  5. Portable TXRF Spectrometer with 10{sup -11}g Detection Limit and Portable XRF Spectromicroscope with Sub-mm Spatial Resolution

    SciTech Connect

    Kunimura, Shinsuke; Hatakeyama, So; Sasaki, Nobuharu; Yamamoto, Takashi; Kawai, Jun


    A portable total reflection X-ray fluorescence (TXRF) spectrometer that we have developed is applied to trace elemental analysis of water solutions. Although a 5 W X-ray tube is used in the portable TXRF spectrometer, detection limits of several ppb are achieved for 3d transition metal elements and trace elements in a leaching solution of soils, a leaching solution of solder, and alcoholic beverages are detected. Portable X-ray fluorescence (XRF) spectromicroscopes with a 1 W X-ray tube and an 8 W X-ray tube are also presented. Using the portable XRF spectromicroscope with the 1 W X-ray tube, 93 ppm of Cr is detected with an about 700 {mu}m spatial resolution. Spatially resolved elemental analysis of a mug painted with blue, red, green, and white is performed using the two portable spectromicroscopes, and the difference in elemental composition at each paint is detected.

  6. Frequency Stability of 1x10(sup -13) in a Compensated Sapphire Oscillator Operating Above 77K

    NASA Technical Reports Server (NTRS)

    Dick, G. J.; Santiago, D. G.; Wang, R. T.


    We report on the design and test of a whispering gallery sapphire resonator for which the dominant (WGH(sub n11)) microwave mode family shows frequency-stable, compensated operation for temperatures above 77 kelvin. The resonator makes possible a new ultra-stable oscillator (USO) capability that promises performance improvements over the best available crystal quartz oscillators in a compact cryogenic package.

  7. Stable dense plasma jets produced at laser power densities around 10{sup 14} W/cm{sup 2}

    SciTech Connect

    Kasperczuk, A.; Pisarczyk, T.; Borodziuk, S.; Ullschmied, J.; Krousky, E.; Masek, K.; Rohlena, K.; Skala, J.; Hora, H.


    The results of investigations are presented that are connected with defocused laser beam-planar target interaction. Following the very large focus laser-plasma interaction experiments on the Nova [H. T. Powell, J. A. Caird, J. E. Murray, and C. E. Thompson, 1991 ICF Annual Report UCRL-LR-105820-91, p. 163 (1991)] and GEKKO-XII [C. Yamanaka, Y. Kato, Y. Izawa, K. Yoshida, T. Yamanaka, T. Sasaki, T. Nakatsuka, J. Kuroda, and S. Nakai, IEEE J. Quantum Electron. QE-17, 1639 (1981)] lasers, as well as on the National Ignition Facility (NIF) laser [W. J. Hogan, E. I. Moses, B. E. Warner, M. S. Sorem, and J. M. Soures, Nucl. Fusion 41, 567 (2001)] with generation of high Mach number jets, this paper is devoted to similar jet generation with very detailed measurements of density profiles by using high-power lasers at large focus conditions. The experiment was carried out with target materials of different mass densities (Al, Cu, Ag, Ta, and Pb) using the Prague Asterix Laser System (PALS) iodine laser [K. Jungwirth, A. Cejnarova, L. Juha, B. Kralikowa, J. Krasa, E. Krousky, P. Krupickova, L. Laska, K. Masek, A. Prag, O. Renner, K. Rohlena, B. Rus, J. Skala, P. Straka, and J. Ullschmied, Phys. Plasmas 8, 2495 (2001)]. The investigations were conducted for the laser radiation energy of 100 J at two wavelengths of 1.315 and 0.438 {mu}m (the first and third harmonics of laser radiation), pulse duration of 0.4 ns, and a focal spot radius of 300 {mu}m. Most of the experimental data were obtained by means of a three-frame laser interferometer and an x-ray streak camera; the crater parameters were obtained by using the crater replica technique. These investigations have shown that stable dense plasma jets can be produced in a simple configuration of laser beam-planar target interaction, provided that a proper target material is used.

  8. Laser-matter interaction at intensities of 10 sup 12 W/cm sup 2 and below

    SciTech Connect

    Goldman, S.R.; Dingus, R.S.; Kirkpatrick, R.C.; Kopp, R.A.; Stover, E.K.; Watt, R.G.


    For single pulsed laser-matter interactions at sufficiently high intensity, the electron density in the ablated vapor is large enough to absorb the laser radiation before it can reach the dense target material. The resulting interaction can be described in terms of energy flows: laser energy is absorbed in the plasma in front of the target and reappears as thermal electron energy and secondary radiation, part of which impinges upon and heats the dense target material at the dense material-vapor interface. This heating in turn drives ablation, thereby providing a self-consistent mass source for the laser absorption, energy conversion, and transmission. Under typical conditions of laser intensity, pulse width and spot size, the flow patterns can be strongly two-dimensional. We have modified the inertial confinement fusion code LASNEX to simulate gaseous and some dense material aspects for the relatively low intensity, long-pulse-length conditions to interest in many laser-related applications. The unique aspect to our treatment consists of an ablation model which defines a dense material vapor interface and then calculates the mass flow across this interface. The model, at present, treats the dense material as a rigid, two-dimensional simulational mass and heat reservoir, suppressing all hydrodynamical motion in the dense material. The modeling is being developed and refined through simulation of experiments, as well as through the investigation of internal inconsistencies, and some simulations of model problems. 5 refs., 14 figs., 1 tab.

  9. Ion transport and loss in the Earth`s quiet ring current 1. Data and standard model

    SciTech Connect

    Sheldon, R.B.; Hamilton, D.C.


    The authors have studied the transport and loss of ions in the Earth`s quiet time ring current, comparing the standard radial diffusion model developed for the higher-energy radiation belt particles with measurements of the lower-energy ring current ions. They compiled a data set with full local time coverage from the quietest days seen by the AMPTE/CCE/CHEM instrument in near-equatorial orbit at L=2-9 R{sub E}. This data set provides, for the first time, ionic composition information in an energy range that includes the bulk of the ring current energy density, 1-300 keV/e. Protons were found to dominate the quiet time energy density at all altitudes, peaking near L{approximately}4 at 60 keV cm{sup {minus}3}, with much smaller contributions from O{sup +} (1-10%), He{sup +} (1-5%), and He{sup ++} (<1%). The authors improved on previously used model loss processes by incorporating the latest atomic physics cross sections from the literature, updating the last survey done 15 years ago. They also included the effects of finite electron temperature on Coulomb drag. A {chi}{sup 2} minimization procedure was used to fit the amplitudes of the standard electric radial diffusion coefficient, giving D{sub LL}{sup E} = 5.8 x 10{sup {minus}11} R{sub E}{sup 2}/s. Yet the model was unable to fit the data (to within a factor of 10) over 50% of the energy and radial ranges of the data set, particularly at L<4 or E<30 keV. Assuming that the loss terms in the model are correct, the data can be inverted to extract a radial diffusion coefficient that had nearly constant amplitude from 2-7 R{sub E}. This suggests that another transport mechanism is operating in the ring current region, which is strongest at smaller radial distances. The authors speculate that fluctuating ionospheric electric fields may be the source of this additional diffusion. 164 refs., 14 figs., 3 tabs.

  10. Electronic properties and deep traps in electron-irradiated n-GaN

    SciTech Connect

    Brudnyi, V. N.; Verevkin, S. S.; Govorkov, A. V.; Ermakov, V. S.; Kolin, N. G.; Korulin, A. V.; Polyakov, A. Ya.; Smirnov, N. B.


    The study is concerned with the effect of electron irradiation (with the energies E = 7 and 10 MeV and doses D = 10{sup 16}-10{sup 18} cm{sup -2}) and subsequent heat treatments in the temperature range 100-1000 Degree-Sign C on the electrical properties and the spectrum of deep traps of undoped (concentration of electrons n = 1 Multiplication-Sign 10{sup 14}-1 Multiplication-Sign 10{sup 16} cm{sup -3}), moderately Si-doped (n = (1.2-2) Multiplication-Sign 10{sup 17} cm{sup -3}), and heavily Si-doped (n = (2-3.5) Multiplication-Sign 10{sup 18} cm{sup -3}) epitaxial n-GaN layers grown on Al{sub 2}O{sub 3} substrates by metal-organic chemical vapor deposition. It is found that, on electron irradiation, the resistivity of n-GaN increases, this is due to a shift of the Fermi level to the limiting position close to E{sub c} -0.91 eV. The spectrum of deep traps is studied for the initial and electron-irradiated n-GaN. It is shown that the initial properties of the irradiated material are restored in the temperature range 100-1000 Degree-Sign C, with the main stage of the annealing of radiation defects at about 400 Degree-Sign C.

  11. Neutron-transmuted carbon-14 in neutron-irradiated GaN: Compensation of DX-like center

    SciTech Connect

    Ida, T.; Oga, T.; Kuriyama, K.; Kushida, K.; Xu, Q.; Fukutani, S.


    The transmuted-C related luminescence and net carrier concentration are studied by combining photoluminescence, liquid scintillation, and Raman scattering. GaN single crystal films grown by metalorganic-vapor-phase epitaxy are irradiated with fast and thermal neutrons at fluxes of 3.9 × 10{sup 13} cm{sup −2}s{sup −1} and 8.15 × 10{sup 13} cm{sup −2}s{sup −1}, respectively. Irradiation time is 48 hours. The calculated {sup 72}Ge and {sup 14}C concentrations are 1.24 × 10{sup 18} cm{sup −3} and 1.13 × 10{sup 18} cm{sup −3}, respectively. The transmuted {sup 14}C is detected by the liquid scintillation method to survey β-rays emitted in the process of {sup 14}C decays from {sup 14}N. Tritium ({sup 3}H) is also emitted by a (n,t) reaction of {sup 14}N due to the neutron irradiation above 4.5 MeV. Photoluminescence relating to C, DX-like center of Ge and yellow luminescence band are observed in 1000 °C annealed NTD-GaN. The free electron concentration estimated from Raman scattering is 4.97 × 10{sup 17} cm{sup −3}. This value is lower than that from the transmuted Ge concentration, suggesting the compensation due to the transmuted {sup 14}C acceptors.

  12. Recycler ring conceptual design study

    SciTech Connect

    Jackson, G.


    The Tevatron Collider provides the highest center of mass energy collisions in the world. To fully exploit this unique tool, Fermilab is committed to a program of accelerator upgrades for the purpose of increasing the Collider luminosity. Over the past 7 years the luminosity has been increased from a peak of 1.6{times}10{sup 30}cm{sup {minus}2}sec{sup {minus}1} in 1989 to over 3{times}10{sup 31}cm{sup {minus}2}sec{sup {minus}1} during 1995. The Main Injector will supply a larger flux of protons for antiproton production and more intense proton bunches for use in the Collider, and this is expected to increase the peak luminosity to close to 1{times}10{sup 32}cm{sup {minus}2}sec{sup {minus}1}. Further increases in luminosity will require additional upgrades to the Fermilab accelerator complex. This report documents the design of a new fixed-energy storage ring to be placed in the Main Injector tunnel which will provide an initial factor of 2 increase to 2{times}10{sup 32}cm{sup {minus}2}sec{sup {minus}1}, and ultimately provide the basis for an additional order of magnitude luminosity increase up to 1{times}10{sup 33}cm{sup {minus}2}sec{sup {minus}1}.

  13. P-type and N-type doping in GaSb and Ga{sub 0.8}In{sub 0.2}Sb layers grown by metalorganic vapor phase epitaxy

    SciTech Connect

    Ehsani, H.; Bhat, I.; Hitchcock, C.; Gutmann, R.J.; Charache, G.; Freeman, M.


    P-type and n-type GaSb and GA{sub 0.8}In{sub 0.2}Sb layers have been grown on GaSb and GaAs substrates by metalorganic vapor phase epitaxy (MOVPE) using silane and diethyltellurium (DETe) as the dopant precursors, respectively. Hall measurements show that the concentration and mobility of holes and electrons in GaSb and GA{sub 0.8}In{sub 0.2}Sb are higher when the layers are grown on GaSb substrates than when grown on GaAs substrates. Secondary ion mass spectrometry (SIMS) results show that the incorporation of Si and Te is higher when GaSb substrates are used. The electron concentration increased from 5 {times} 10{sup 16} cm{sup {minus}3} to 1.5 {times} 10{sup 18} cm{sup {minus}3} as the Te concentration was increased from 1 {times} 10{sup 17} cm{sup {minus}3} to 5 {times} 10{sup 18} cm{sup {minus}3}. As the Te concentration was increased further, the electron concentration decreased, with only about 1% of the Te electrically active at a Te concentration of 2 {times} 10{sup 20} cm{sup {minus}3}.

  14. Tellurium doping of Ga{sub 0.8}In{sub 0.2}Sb layers grown by metalorganic vapor phase epitaxy

    SciTech Connect

    Ehsani, H.; Bhat, I.; Hitchcock, C.; Gutmann, R.J.; Charache, G.; Freeman, M.


    N-type Ga{sub 0.8}In{sub 0.2}Sb epitaxial layers have been grown on GaSb and GaAs substrates by metalorganic vapor phase epitaxy (MOVPE) using diethyltelluride (DETe) as the dopant source. The incorporation efficiency of Te in Ga{sub 0.8}In{sub 0.2}Sb and the electron mobility were found to be higher with GaSb substrates compared to using GaAs substrates. The electron concentration increased from 5 {times} 10{sup 16} cm{sup {minus}3} to 1.5 {times} 10{sup 18} cm{sup {minus}3} as the Te concentration was increased from 1 {times} 10{sup 17} cm{sup {minus}3} to 5 {times} 10{sup 18} cm{sup {minus}3}. As the Te concentration was increased further, the electron concentration decreased, with only about 1% of the Te electrically active at a Te concentration of 2 {times} 10{sup 20} cm{sup {minus}3}.

  15. Investigation of epitaxial silicon layers as a material for radiation hardened silicon detectors

    SciTech Connect

    Li, Z.; Eremin, V.; Ilyashenko, I.; Ivanov, A.; Verbitskaya, E.; CERN RD-48 ROSE Collaboration


    Epitaxial grown thick layers ({ge} 100 micrometers) of high resistivity silicon (Epi-Si) have been investigated as a possible candidate of radiation hardened material for detectors for high-energy physics. As grown Epi-Si layers contain high concentration (up to 2 {times} 10{sup 12} cm{sup {minus}3}) of deep levels compared with that in standard high resistivity bulk Si. After irradiation of test diodes by protons (E{sub p} = 24 GeV) with a fluence of 1.5 {times} 10{sup 11} cm{sup {minus}2}, no additional radiation induced deep traps have been detected. A reasonable explanation is that there is a sink of primary radiation induced defects (interstitial and vacancies), possibly by as-grown defects, in epitaxial layers. The ``sinking`` process, however, becomes non-effective at high radiation fluences (10{sup 14} cm{sup {minus}2}) due to saturation of epitaxial defects by high concentration of radiation induced ones. As a result, at neutron fluence of 1 {times} 10{sup 14} cm{sup {minus}2} the deep level spectrum corresponds to well-known spectrum of radiation induced defects in high resistivity bulk Si. The net effective concentration in the space charge region equals to 3 {times} 10{sup 12} cm{sup {minus}3} after 3 months of room temperature storage and reveals similar annealing behavior for epitaxial as compared to bulk silicon.

  16. Optical evaluation of multichannel radiative transitions originating from {sup 4}G{sub 5/2} level of Sm{sup 3+} in heavy-metal-gallate glasses

    SciTech Connect

    Zhang, J.; Yang, D. L.; Gong, H.; Lin, H.; Pun, E. Y. B.


    Conventional visible and novel infrared (IR) emissions of Sm{sup 3+} in heavy-metal-gallate glasses (Li{sub 2}O-K{sub 2}O-BaO-PbO-Bi{sub 2}O{sub 3}-Ga{sub 2}O{sub 3}, LKBPBG for short) with low phonon energy have been observed. Judd-Ofelt parameters {Omega}{sub 2} (3.00x10{sup -20} cm{sup 2}), {Omega}{sub 4} (5.19x10{sup -20} cm{sup 2}), and {Omega}{sub 6} (1.69x10{sup -20} cm{sup 2}) indicate a higher asymmetry and stronger covalent environment in the optical glasses. For the visible fluorescence bands peaked at 564, 601, 648, and 710 nm, the maximum stimulated emission cross-sections ({sigma}{sub e}) were derived to be 1.35x10{sup -22}, 9.21x10{sup -22}, 9.58x10{sup -22}, and 3.91x10{sup -22} cm{sup 2}, respectively, the values are larger than those in phosphate, oxyfluoroborate, tellurite, and calibo glasses obviously. The observed 1185 nm IR emission lies in the low-loss window of telecommunication system, and the maximum value of {sigma}{sub e} for this band was obtained to be 6.09x10{sup -23} cm{sup 2}. The characterization of multichannel radiative transitions of Sm{sup 3+} in LKBPBG glasses is beneficial in exposing its potential applications in visible and IR optoelectronic devices.

  17. Large third-order optical nonlinearity in Au:SiO{sub 2} composite films near the percolation threshold

    SciTech Connect

    Liao, H.B.; Xiao, R.F.; Fu, J.S.; Yu, P.; Wong, G.K.; Sheng, P.


    Very large third-order optical nonlinearity, {chi}{sup (3)}{approximately}2.5{times}10{sup {minus}6} esu, measured by a degenerate four wave mixing method using a short pulse (70 picosecond) laser, has been found in the rapid-thermal annealed Au:SiO{sub 2} composite films at concentrations below the Au percolation threshold. The dependence of the {chi}{sup (3)} on Au concentration, p, follows a cubic power law. The maximum figure of merit, {chi}{sup (3)}/{alpha} (with {alpha} being the absorption coefficient) is about 10{sup {minus}11} esu cm. We explain this result as due to local field enhancement arising from the Mie resonance of the Au nanoclusters, with strong interaction between the nanoclusters further promoting the effect. {copyright} {ital 1997 American Institute of Physics.}

  18. Decay of sup 226 Ra by sup 14 C emission

    SciTech Connect

    Weselka, D.; Hille, P.; Chalupka, A. )


    Previous observation of heavy-ion emission from {sup 226}Ra has been confirmed. Charge and energy of the emitted fragment were measured using thin {sup 226}Ra sources and polycarbonate track-recording films. Decay by {sup 14}C emission could be identified unambiguously. The track-detector was calibrated with tandem-accelerated {sup 14}C and {sup 16}O ions and tested by observing the {sup 14}C emission from {sup 223}Ra yielding a branching ratio of (5.0{plus minus}1.0){times}10{sup {minus}10}. In the case of {sup 226}Ra our result for the {sup 14}C/{alpha} ratio is (2.3{plus minus}0.8){times}10{sup {minus}11}. Estimates of partial half-lives of Ra isotopes for {sup 14}C emission are discussed.

  19. Pesticides sensing by surface plasmon resonance

    SciTech Connect

    Kalabina, N.A.; Ksenevich, T.I.; Beloglazov, A.A.; Nikitin, P.I.


    High toxicity of pesticides and their wide use in agriculture, represent a general danger for environmental welfare and could become a real threat to life. Screening of pesticides in the environment has become very important during last years due to low threshold values for pesticides in drinking water. An optical biosensor has been developed for detection of pesticides, based on surface plasmon resonance (SPR) technique. Concentration of the pesticides was measured in liquid or gas. The authors specially originated organic film on a disposable element. A setup on the base of the Kretschmann arrangement was improved by using a computer-controlled angular scanning system. The detection concentration limit of dinitrophenole (DNP) was 10{sup {minus}9} M. Some samples exhibited effect down to 10{sup {minus}11} M of DNP. The results obtained provide reason for further development of SPR sensor as applied to pesticides monitoring.

  20. On the solution to the Polonyi problem with no-scale type supergravity

    SciTech Connect

    Moroi, T.


    We study the solution to the Polonyi problem in the framework of no-scale type supergravity. In such a model, Polonyi field can weigh as O(10TeV) and decay just before the big-bang nucleosynthesis. It is shown that in spite of a large entropy production by the decay of the Polonyi field, one can naturally explain the present value of the baryon-to-entropy ratio, {eta}{sub B}/S {approximately} (10{sup {minus}10} {minus} 10{sup {minus}11}) if the Affleck-Dine mechanism for baryogenesis works. It is pointed out, however, that there is another cosmological problem related to the abundance of the lightest superparticles produced by the decay of the Polonyi field.

  1. Properties of iron-doped multicrystalline silicon grown by the float-zone technique

    SciTech Connect

    Ciszek, T.F.; Wang, T.H.; Ahrenkiel, R.K.; Matson, R.


    Multicrystalline Fe-doped Si ingots were float-zoned from high-purity feed rods. Fe was introduced by pill-doping, which gives uniform impurity content for small segregation coefficients (k {approximately} 10{sup {minus}5} for Fe in Si). Fe concentrations were calculated from the initial weight of the Fe pill, the molten zone geomet and the growth parameters. Values in the range of 10{sup 12}-10{sup 16} atoms/cm{sup 3} were targeted. No additional electrically active dopants were introduced. Minority charge carrier lifetime (via YAG-laser-excited, 430-MHz ultra-high-frequency-coupled, photoconductive decay) was measured on the ingots, and wafers were cut to examine grain structure and electron-beam-induced current response of grain boundaries. Observed lifetimes decreased monotonically with increasing Fe content for similar grain sizes (from {approximately}10 {mu}s to 2 {mu}s for < 10{sup {minus}3} cm{sup 2} grains, from {approximately}30 {mu}s to 2 {mu}s for {approximately}5 x 10{sup {minus}3} cm{sup 2} grains, and from {approximately}300 {mu}s to 2 {mu}s for > 10{sup {minus}2} cm{sup 2} grains) as the Fe content increased to 1 {times} 10{sup 16} atoms/cm{sup 3}.

  2. Gas Ionization by Beam Electron Collisions and by Electron Avalanching in the Self Ez Field of a 2 kA Relativistic Electron Beam Focused on a Conducting Target

    SciTech Connect

    Lauer, E


    About 1.5 x 10{sup 12} positive ions are predicted to be required to disrupt the focusing (for 0.25 cm radius and 0.2 electric neutralization fraction). Beam electron collisions are predicted to produce this number in 20 ns with 6 x 10{sup 15} water molecules/cm{sup 2}. Electron avalanching is predicted to be intense at time zero in a gas layer about 10{sup -3} cm thick with 1.4 x 10{sup 16} cm{sup -2}. With increasing time, space charge reduces the E-field and so the avalanching decreases. With 0.25 cm radius, 1.9 x 10{sup 11} are predicted in 0.6 ns and with 1 cm radius, 7.4 x 10{sup 11} are predicted in 1.5 ns.


    SciTech Connect

    Kutsuna, Masamichi; Shigeyama, Toshikazu


    We investigate the effects of the magnetic field on the propagation of laminar flames of nuclear reactions taking place in white dwarfs with masses close to the Chandrasekhar limit. We calculate the velocities of laminar flames parallel and perpendicular to uniform magnetic fields as eigenvalues of steady solutions for magnetic hydrodynamical equations. As a result, we find that even when the magnetic pressure does not dominate the entire pressure it is possible for the magnetic field to suppress the flame propagation through the thermal conduction. Above the critical magnetic field, the flame velocity decreases with increasing magnetic field strength as v {approx} B{sup -1}. In media with densities of 10{sup 7}, 10{sup 8}, and 10{sup 9} g cm{sup -3}, the critical magnetic fields are orders of {approx}10{sup 10}, 10{sup 11}, and 10{sup 12} G, respectively.

  4. Processing and evaluation of the AGS Booster ultra-high vaccum system

    SciTech Connect

    Hseuh, H.C.; Mapes, M.; Schnitzenbaumer, P.; Shen, B.; Sikora, R.; Stattel, P.


    The AGS Booster is a synchrotron for the acceleration of both protons and heavy ions. To minimize the beam loss due to charge exchange of the partially stripped, low {Beta} very heavy ions with the residual gas molecules, pressure of low 10{sup {minus}11} Torr is required for the 200 m booster ring. To achieve this ultra high vacuum, chemical cleaning, vacuum furnace degassing and insitu bake were employed for all chambers and beam components. Using these procedures, vacuums of low 10{sup {minus}11} Torr have been routinely achieved during the testing of individual half cells and beam components, and during the commissioning of the vacuum sectors. In this paper, the design and layout of chambers, flanges and bakeout hardware is briefly described. The vacuum processing of different components and the results of bakeout and evaluation are summarized. The experience gained during the construction and commissioning of this ultra-high vacuum system is also given. 3 refs., 3 figs., 1 tab.

  5. Time-resolved electron thermal conduction by probing of plasma formation in transparent solids with high power subpicosecond laser pulses

    SciTech Connect

    Vu, B.T.V.


    This dissertation work includes a series of experimental measurements in a search for better understanding of high temperature (10{sup 4}-10{sup 6}K) and high density plasmas (10{sup 22}-10{sup 24}cm{sup {minus}3}) produced by irradiating a transparent solid target with high intensity (10{sup 13} - 10{sup 15}W/cm{sup 2}) and subpicosecond (10{sup {minus}12}-10{sup {minus}13}s) laser pulses. Experimentally, pump and probe schemes with both frontside (vacuum-plasma side) and backside (plasma-bulk material side) probes are used to excite and interrogate or probe the plasma evolution, thereby providing useful insights into the plasma formation mechanisms. A series of different experiments has been carried out so as to characterize plasma parameters and the importance of various nonlinear processes. Experimental evidence shows that electron thermal conduction is supersonic in a time scale of the first picosecond after laser irradiation, so fast that it was often left unresolved in the past. The experimental results from frontside probing demonstrate that upon irradiation with a strong (pump) laser pulse, a thin high temperature ({approximately}40eV) super-critical density ({approximately}10{sup 23}/cm{sup 3}) plasma layer is quickly formed at the target surface which in turn becomes strongly reflective and prevents further transmission of the remainder of the laser pulse. In the bulk region behind the surface, it is also found that a large sub-critical ({approximately}10{sup 18}/cm{sup 3}) plasma is produced by inverse Bremsstrahlung absorption and collisional ionization. The bulk underdense plasma is evidenced by large absorption of the backside probe light. A simple and analytical model, modified from the avalanche model, for plasma evolution in transparent materials is proposed to explain the experimental results. Elimination of the bulk plasma is then experimentally illustrated by using targets overcoated with highly absorptive films.

  6. Electron Emission from Slightly Oxidized Depleted Uranium Generated by its Own Radioactivity Measured by Electron Spectroscopy, and Electron-Induced Dissociation and Ionization of Hydrogen Near its Surface.

    SciTech Connect

    Siekhaus, W J; Nelson, A J


    Energy dependent electron emission (counts per second) between zero and 1.4 keV generated by the natural reactivity of uranium was measured by an electrostatic spectrometer with known acceptance angle and acceptance area. The electron intensity decreases continuously with energy, but at different rates in different energy regimes, suggesting that a variety of processes may be involved in producing the observed electron emission. The spectrum was converted to energy dependent electron flux (e-/cm{sup 2} s) using the assumption that the emission has a cosine angular distribution. The flux decreased rapidly from {approx}10{sup 6}/cm{sup 2}s to {approx}10{sup 5}/cm{sup 2}s in the energy range from zero to 200 eV, and then more slowly from {approx}10{sup 5}/cm{sup 2}s to {approx}3*10{sup 4}/cm{sup 2} s in the range from 200 to 1400 eV. The energy dependent electron mean free path in gases together with literature cross sections for electron induced reactions were used to determine the number of ionization and dissociation reactions per cm{sup 2}s within the inelastic mean free path of electrons, and found to be about 1.3*10{sup 8}/cm{sup 2}s and 1.5*10{sup 7}/cm{sup 2}s, respectively, for hydrogen. An estimate of the number of ionization and dissociation reactions occurring within the total range, rather than the mean free path of electrons in gases resulted in 6.2*10{sup 9}/cm{sup 2}s and 1.3*10{sup 9}/cm{sup 2}s, respectively. The total energy flux carried by electrons from the surface is suspiciously close to the total possible energy generated by one gram of uranium. A likely source of error is the assumption that the electron emission has a cosine distribution. Angular distribution measurements of the electron emission would check that assumption, and actual measurement of the total current emanating from the surface are needed to confirm the value of the current calculated in section II. These results must therefore be used with caution - until they are confirmed


    SciTech Connect

    Tripathi, Shruti; Misra, R.; Dewangan, G. C.; Cheeran, J.; Abraham, S.; Philip, N. S.


    We analyze Suzaku and XMM-Newton data of the highly variable Seyfert 2, IRAS 18325-5926. The spectra of the source are well modeled as a primary component described as an absorbed power law and a secondary power-law component which is consistent with being scattered emission from an on-axis extended highly ionized medium. We show that while the primary component varies on a wide range of timescales from 10{sup 4}-10{sup 8} s, the scattered emission is variable only on timescales longer than 10{sup 5} s. This implies that the extent of the scattering medium is greater than 10{sup 16} cm. The ratio of the scattered to primary flux ({approx}0.03) implies a column density for the scattering medium to be {approx}10{sup 23} cm{sup -2}. We argue that for such a medium to be highly ionized it must be located less than 10{sup 17} cm from the X-ray source. Thus, we localize the position and extent of scattering region to be {approx}a few Multiplication-Sign 10{sup 16} cm, with an average particle density of {approx}10{sup 6} cm{sup -3}. We consider the physical interpretation of these results, and as an aside we confirm the presence of a broad iron line emission in both the XMM-Newton and Suzaku observations.

  8. Critical oxygen concentration in hydrogenated amorphous silicon solar cells dependent on the contamination source

    SciTech Connect

    Woerdenweber, Jan; Merdzhanova, Tsvetelina; Gordijn, Aad; Stiebig, Helmut; Beyer, Wolfhard


    For hydrogenated amorphous silicon (a-Si:H) solar cells, the critical concentration of a given impurity defines the lowest concentration which causes a decay of solar cell efficiency. Values of 2-5x10{sup 19} cm{sup -3} are commonly found for the critical oxygen concentration (C{sub O}{sup crit}) of a-Si:H. Here we report a dependence of C{sub O}{sup crit} on the contamination source. For state-of-the-art a-Si:H solar cells prepared at the same plasma deposition conditions, we obtain with a (controllable) chamber wall leak C{sub O}{sup crit} approx2x10{sup 19} cm{sup -3} while for a leak in the gas supply line a higher C{sub O}{sup crit} of approx2x10{sup 20} cm{sup -3} is measured. No such dependence is observed for nitrogen.

  9. Review and assessment of measured values of the nonlinear refractive-index coefficient of fused silica

    SciTech Connect

    Milam, D.


    The literature describes more than 30 measurements, at wavelengths between 249 and 1550 nm, of the absolute value of the nonlinear refractive-index coefficient of fused silica. Results of these experiments were assessed and best currently available values were selected for the wavelengths of 351, 527, and 1053 nm. The best values are (3.6{plus_minus}0.64){times}10{sup {minus}16} cm{sup 2}/W at 351 nm, (3.0{plus_minus}0.35){times}10{sup {minus}16} cm{sup 2}/W at 527 nm, and (2.74{plus_minus}0.17){times}10{sup {minus}16} cm{sup 2}/W at 1053 nm. {copyright} 1998 Optical Society of America

  10. Permanent optical doping of amorphous metal oxide semiconductors by deep ultraviolet irradiation at room temperature

    SciTech Connect

    Seo, Hyungtak; Cho, Young-Je; Bobade, Santosh M.; Park, Kyoung-Youn; Choi, Duck-Kyun; Kim, Jinwoo; Lee, Jaegab


    We report an investigation of two photon ultraviolet (UV) irradiation induced permanent n-type doping of amorphous InGaZnO (a-IGZO) at room temperature. The photoinduced excess electrons were donated to change the Fermi-level to a conduction band edge under the UV irradiation, owing to the hole scavenging process at the oxide interface. The use of optically n-doped a-IGZO channel increased the carrier density to approx10{sup 18} cm{sup -3} from the background level of 10{sup 16} cm{sup -3}, as well as the comprehensive enhancement upon UV irradiation of a-IGZO thin film transistor parameters, such as an on-off current ratio at approx10{sup 8} and field-effect mobility at 22.7 cm{sup 2}/V s.

  11. Nanostructures from hydrogen implantation of metals.

    SciTech Connect

    McWatters, Bruce Ray; Causey, Rion A.; DePuit, Ryan J.; Yang, Nancy Y. C.; Ong, Markus D.


    This study investigates a pathway to nanoporous structures created by hydrogen implantation in aluminum. Previous experiments for fusion applications have indicated that hydrogen and helium ion implantations are capable of producing bicontinuous nanoporous structures in a variety of metals. This study focuses specifically on hydrogen and helium implantations of aluminum, including complementary experimental results and computational modeling of this system. Experimental results show the evolution of the surface morphology as the hydrogen ion fluence increases from 10{sup 17} cm{sup -2} to 10{sup 18} cm{sup -2}. Implantations of helium at a fluence of 10{sup 18} cm{sup -2} produce porosity on the order of 10 nm. Computational modeling demonstrates the formation of alanes, their desorption, and the resulting etching of aluminum surfaces that likely drives the nanostructures that form in the presence of hydrogen.

  12. Electrical properties of Zinc-Tin diarsenide (ZnSnAs{sub 2}) irradiated with H{sup +} ions

    SciTech Connect

    Brudnyi, V. N. Vedernikova, T. V.


    The results of studying the electrical properties and isochronous annealing of p-ZnSnAs{sub 2} irradiated with H{sup +} ions (energy E = 5 MeV, dose D = 2 x 10{sup 16} cm{sup -2}) are reported. The limiting electrical characteristics of irradiated material (the Hall coefficient R{sub H} (D){sub lim} {approx} -4 x 10{sup 3} cm{sup 3} C{sup -1}, conductivity {sigma} (D){sub lim} {approx} 2.9 x 10{sup -2} {omega}{sup -1} cm{sup -1}, and the Fermi level position F{sub lim} {approx} 0.58 eV above the valence-band top at 300 K) are determined. The energy position of the 'neutral' point for the ZnSnAs{sub 2} compound is calculated.

  13. Deactivation of krypton atoms in the metastable 5s({sup 3}P{sub 2}) state in collisions with krypton and argon atoms

    SciTech Connect

    Zayarnyi, D A; L'dov, A Yu; Kholin, I V


    The collision deactivation of the metastable 5s[3/2]{sub 2}{sup o}({sup 3}P{sub 2}) state of krypton atoms is studied by the absorption probe method in electron-beam-excited high-pressure Ar-Kr mixtures with a low krypton content. The rate constants of plasma-chemical reactions Kr* + Kr + Ar {yields} Kr{sub 2}* + Ar [(4.1{+-}0.4)x10{sup -33} cm{sup 6} s{sup -1}] and Kr* + 2Ar {yields} ArKr* + Ar (less than 10{sup -35} cm{sup 6} s{sup -1}) are measured for the first time and the rate constant of the reaction Kr* + Ar {yields} products + Ar [(3.8{+-}0.4)x10{sup -15} cm{sup 3} s{sup -1}] is refined. (active media)

  14. Temperature dependences of the contact resistivity in ohmic contacts to n{sup +}-InN

    SciTech Connect

    Sachenko, A. V.; Belyaev, A. E.; Boltovets, N. S.; Brunkov, P. N.; Jmerik, V. N.; Ivanov, S. V.; Kapitanchuk, L. M.; Konakova, R. V. Klad’ko, V. P.; Romanets, P. N.; Saja, P. O.; Safryuk, N. V.; Sheremet, V. N.


    The temperature dependences of the contact resistivity (ρ{sub c}) of ohmic contacts based on the Au-Ti-Pd-InN system are measured at an InN doping level of 2 × 10{sup 18} cm{sup −3} in the temperature range of 4.2–300 K. At temperatures T > 150 K, linearly increasing dependences ρ{sub c}(T) are obtained. The dependences are explained within the mechanism of thermionic current flow through metal shunts associated with dislocations. Good agreement between theoretical and experimental dependences is achieved assuming that the flowing current is limited by the total resistance of the metal shunts, and the density of conductive dislocations is ∼5 × 10{sup 9} cm{sup −2}. Using the X-ray diffraction method, the density of screw and edge dislocations in the structure under study is measured: their total density exceeds 10{sup 10} cm{sup −2}.

  15. P-type InGaN across the entire alloy composition range

    SciTech Connect

    Wang, K.; Araki, T.; Katsuki, T.; Yu, K. M.; Mayer, M. A.; Ager, J. W. III; Walukiewicz, W.; Alarcon-Llado, E.; Nanishi, Y.


    A systematic investigation on Mg doped and undoped InGaN epilayers grown by plasma-assisted molecular beam epitaxy has been conducted. Single phase InGaN alloys across the entire composition range were synthesized and Mg was doped into In{sub x}Ga{sub 1-x}N (0.1 {<=} x {<=} 0.88) epilayers up to {approx}10{sup 20}/cm{sup 3}. Hall effect, thermopower, and electrochemical capacitance voltage experimental results demonstrate the realization of p-type InGaN across the entire alloy composition range for properly Mg doped InGaN. Hole densities have been measured or estimated to be in the lower {approx}10{sup 18}/cm{sup 3} range when the net acceptor concentrations are in the lower {approx}10{sup 19}/cm{sup 3} range across the composition range.

  16. A comparative study of heavily irradiated silicon and non irradiated SI LEC GaAs detectors

    SciTech Connect

    Biggeri, U.; Borchi, E.; Bruzzi, M.


    Silicon p{sup +}n junctions irradiated with neutron and proton fluences in the range 5 {times} 10{sup 11}--4 {times} 10{sup 15} cm{sup {minus}2} and non-irradiated Semi Insulating (SI) LEC GaAs Schottky barriers have been analyzed. In silicon the concentration N{sub t} of the main radiation-induced deep traps (Et {approx} 0.44--0.54 eV) is found to increase as N{sub t} {alpha} f achieving values up to 5 {times} 10{sup 15} cm{sup {minus}3} and a mobility saturation at 100 cm{sup 2}/Vs has been observed at the highest fluences. A quantitative comparison between heavily irradiated silicon and non-irradiated GaAs evidenced similar charge collection efficiencies, a quasi-intrinsic bulk and similar concentrations of deep defects. On this basis, a unique model, correlating the lattice disorder and the detector performance, is suggested.

  17. Effect of molarity on properties of spray pyrolysed SnO{sub 2}:F thin films

    SciTech Connect

    Deepu, D. R. Kartha, C. Sudha Vijayakumar, K. P.


    Fluorine doped tin oxide (FTO) thin films were prepared by using automated Chemical Spray Pyrolysis (CSP) machine and the effect of concentration of the precursors on the conductivity and transmittance of the films were studied. The resistivity (ρ) and mobility (μ) are in the range of 10{sup −3}–10{sup −4} Ω-cm and 8.2–13.5 cm{sup 2}V{sup −1}s{sup −1} respectively. The electron density lies between 3.4 × 10{sup 20} and 6.6×10{sup 20} cm{sup −3}. The film transmittance varies between 70 to 80% and the films shows very good reflectivity in the IR-NIR region. Prepared films can be used as transparent electrodes in photo voltaic and optoelectronic devices.

  18. A compact laser head with high-frequency stability for Rb atomic clocks and optical instrumentation

    SciTech Connect

    Affolderbach, Christoph; Mileti, Gaetano


    We present a compact and frequency-stabilized laser head based on an extended-cavity diode laser. The laser head occupies a volume of 200 cm{sup 3} and includes frequency stabilization to Doppler-free saturated absorption resonances on the hyperfine components of the {sup 87}Rb D{sub 2} lines at 780 nm, obtained from a simple and compact spectroscopic setup using a 2 cm{sup 3} vapor cell. The measured frequency stability is {<=}2x10{sup -12} over integration times from 1 s to 1 day and shows the potential to reach 2x10{sup -13} over 10{sup 2}-10{sup 5} s. Compact laser sources with these performances are of great interest for applications in gas-cell atomic frequency standards, atomic magnetometers, interferometers and other instruments requiring stable and narrow-band optical sources.

  19. Atomic layer deposition of Al-incorporated Zn(O,S) thin films with tunable electrical properties

    SciTech Connect

    Park, Helen Hejin; Jayaraman, Ashwin; Heasley, Rachel; Yang, Chuanxi; Hartle, Lauren; Gordon, Roy G.; Mankad, Ravin; Haight, Richard; Gunawan, Oki; Mitzi, David B.


    Zinc oxysulfide, Zn(O,S), films grown by atomic layer deposition were incorporated with aluminum to adjust the carrier concentration. The electron carrier concentration increased up to one order of magnitude from 10{sup 19} to 10{sup 20} cm{sup −3} with aluminum incorporation and sulfur content in the range of 0 ≤ S/(Zn+Al) ≤ 0.16. However, the carrier concentration decreased by five orders of magnitude from 10{sup 19} to 10{sup 14} cm{sup −3} for S/(Zn+Al) = 0.34 and decreased even further when S/(Zn+Al) > 0.34. Such tunable electrical properties are potentially useful for graded buffer layers in thin-film photovoltaic applications.

  20. Metabolic responses to subacute toxicity of trace metals in a marine microalga (Thalassiosira weissflogii) measured by calorespirometry

    SciTech Connect

    Reinfelder, J.R.; Jablonka, R.E.; Cheney, M.


    Metabolic responses to the subacute toxicities of Cd, Cu, and Zn were measured in the coastal marine diatom Thalassiosira weissflogii using calorespirometry. Respiratory heat production and oxygen consumption rates were measured in diatom cells grown with concentrations of Cd{sup 2+} (10{sup {minus}12} to 10{sup {minus}8} M), Cu{sup 2+} (10{sup {minus}13.8} to 10{sup {minus}9.8} M), and Zn{sup 2+} (10{sup {minus}10.9} to 10{sup {minus}6.9} M). Respiratory heat rates in cells grown with elevated, but non-growth-rate-inhibiting free Cu{sup 2+} ion concentrations (10{sup {minus}11.8} to 10{sup {minus}9.8} M) were up to 40% higher and oxygen consumption rates were 50 to 75% lower than control ([Cu{sup 2+}] = 10{sup {minus}13.8} M) cells indicating a subacute depression of respiratory efficiency in Cu-exposed cells. Exposure to elevated free Cd{sup 2+} concentrations (10{sup {minus}10} to 10{sup {minus}8} M) caused dramatic short-term (hours) increases (five- to eight-fold) in respiratory oxygen consumption rates, which returned to normal in acclimated cells, suggesting a transient disruption of metabolism upon Cd exposure. Zinc did not significantly affect either respiratory parameter up to a free Zn concentration of 10{sup {minus}7.9} M, above which diatom growth rate was significantly reduced. The subacute toxic effects of Cd and Cu were more pronounced in low Mn than in Mn-replete cells, consistent with proposed Mn-Cd, -Cu antagonisms in marine phytoplankton. The range of free Cu{sup 2+} ion concentrations in coastal waters is similar to that found to cause a decrease in respiratory efficiency in T. weissflogii, thus coastal marine diatoms may be subject to the subacute metabolic toxicity of Cu. Free Cd{sup 2+} concentration in coastal waters are below those found to cause transient subacute stress in T. weissflogii. calorespirometry proved to be a sensitive tool for the assessment of the subacute toxicity of contaminant trace metals.

  1. Ionic conductivity of Bi{sub 2}Ni{sub x}V{sub 1−x}O{sub 5.5−3x/2} (0.1 ≤ x ≤ 0.2) oxides prepared by a low temperature sol-gel route

    SciTech Connect

    Rusli, Rolan; Patah, Aep Prijamboedi, Bambang Ismunandar; Abrahams, Isaac


    Solid oxides fuel cells (SOFCs) is one technology that could contribute toward future sustainable energy. One of the most important components of an SOFC is the electrolyte, which must have high ionic conductivity. Cation substitution of vanadium in Bi{sub 4}V{sub 2}O{sub 11} yields a family of fast oxide ion conducting solids known collectively as the BIMEVOXes (bismuth metal vanadium oxide), which have the potential to be applied as electrolytes in SOFCs. The purpose of this work is to study the effect of Ni concentration, when used as a dopant, on the ionic conductivity of Bi{sub 2}Ni{sub x}V{sub 1−x}O{sub 5.5−3x/2} (BINIVOX) oxides (0.1 ≤ x ≤ 0.2) when prepared by a sol gel method. The gels were calcined at 600 °C for 24 h to produce pure BINIVOX. These oxides were found to exhibit the γ-phase structure with tetragonal symmetry in space group I4/mmm. Ionic conductivity of BINIVOX at 300 °C were 6.9 × 10{sup −3} S cm{sup −1}, 1.2 × 10{sup −3} S cm{sup −1}, and 8.2 × 10{sup −4} S cm{sup −1}, for x = 0.1; 0.15; and 0.2; respectively; and at 600 °C were 1.1 × 10{sup −1} S cm{sup −1}, 5.3 × 10{sup −2} S cm{sup −1}, and 2.8 ×10{sup −2} S cm{sup −1}, for x = 0.1; 0.15; and 0.2; respectively.

  2. Minority carrier lifetime in iodine-doped molecular beam epitaxy-grown HgCdTe

    SciTech Connect

    Madni, I.; Umana-Membreno, G. A.; Lei, W.; Gu, R.; Antoszewski, J.; Faraone, L.


    The minority carrier lifetime in molecular beam epitaxy grown layers of iodine-doped Hg{sub 1−x}Cd{sub x}Te (x ∼ 0.3) on CdZnTe substrates has been studied. The samples demonstrated extrinsic donor behavior for carrier concentrations in the range from 2 × 10{sup 16} cm{sup −3} to 6 × 10{sup 17} cm{sup −3} without any post-growth annealing. At a temperature of 77 K, the electron mobility was found to vary from 10{sup 4} cm{sup 2}/V s to 7 × 10{sup 3} cm{sup 2}/V s and minority carrier lifetime from 1.6 μs to 790 ns, respectively, as the carrier concentration was increased from 2 × 10{sup 16} cm{sup −3} to 6 × 10{sup 17} cm{sup −3}. The diffusion of iodine is much lower than that of indium and hence a better alternative in heterostructures such as nBn devices. The influence of carrier concentration and temperature on the minority carrier lifetime was studied in order to characterize the carrier recombination mechanisms. Measured lifetimes were also analyzed and compared with the theoretical models of the various recombination processes occurring in these materials, indicating that Auger-1 recombination was predominant at higher doping levels. An increase in deep-level generation-recombination centers was observed with increasing doping level, which suggests that the increase in deep-level trap density is associated with the incorporation of higher concentrations of iodine into the HgCdTe.

  3. Remote photoacoustic measurements in aqueous solutions using an optical fiber

    SciTech Connect

    Russo, R.E. ); Rojas, D. ); Robouch, P.; Silva, R.J. )


    A photoacoustic spectrometer was developed for remote optical absorption measurements in aqueous solutions using an 85-m optical fiber to deliver pulsed tunable dye laser radiation to a sample cuvette located in a glove box. The spectrometer was tested using aqueous solutions of praseodymium ions. Beer's law was verified down to a concentration of 8{times}10{sup {minus}6}M for an equivalent absorptance of 3.2{times}10{sup {minus}5} cm{sup {minus}1}.

  4. Crystallographically oriented Zn nanocrystals formed in ZnO by Mn{sup +}-implantation

    SciTech Connect

    Li, Y. J.; Zhang, B.; Lu, W.; Wang, Y.; Zou, J.


    The nanostructural characteristics of ZnO implanted with Mn{sup +} to doses ranging from 1x10{sup 15} to 1x10{sup 17} cm{sup -2} are systematically studied for both as-implanted and postannealed cases. The detailed structural characterizations confirmed that the Mn{sup +} implantation and postannealing result in (1) the formation of crystallographically orientated Zn nanocrystals in the ZnO matrix and (2) Mn atoms occupy the Zn sites in ZnO.

  5. Heating of the magnetic-ion spin system in modulation doped ZnMnSe/ZnBeSe quantum wells by means of photoexcitation.

    SciTech Connect

    Keller, D.; Astakhov, G. V.; Yakovlev, D. R.; Barrick, T.; Crooker, S. A.; Hansen, L.; Ossau, W.; Molenkamp, L. W.


    Heating of the spin system of magnetic ions by means of photoexcited carriers has been studied in modulation-doped (Zn,Mn)Se/(Zn,Be)Se quantum well structures with different electron densities varying from about 10{sup 9} to 5.5 x 10{sup 11} cm{sup -2}. The elevated temperature of the magnetic ions manifests in a reduced Zeeman splitting of the carriers already for low excitation densities. The efficiency of the heating decreases with increasing electron concentration.

  6. Profiles of neutral lines emitted from weakly non-ideal helium plasmas produced in flashlamps

    SciTech Connect

    Vitel, Yves; El Bezzari, Mohammed; D'yachkov, Lev G.; Kurilenkov, Yuri K.


    High pressure helium arcs are created in linear flashlamps. Plasma diagnostics taking into account non-ideality effects, give on axis electron densities in the range 2 10{sup 17}-1.7 10{sup 18} cm{sup -3} and temperatures included between 20000 and 30000 K. In these conditions of dense plasmas, profiles of emitted neutral lines are recorded and compared with other experimental values and theoretical calculations.

  7. Kinetics of the gas-phase reactions of NO/sub 3/ radicals with a series of dialkenes, cycloalkenes, and monoterpenes at 295 +/- 1 K

    SciTech Connect

    Atkinson, R.; Aschmann, S.M.; Winer, A.M.; Pitts, J.N. Jr.


    Rate constants for the gas-phase reactions of the NO/sub 3/ radical, an important reactive constituent of nighttime ambient atmospheres, have been determined for the first time for a series of dialkenes, cycloalkenes, and monoterpenes by using a relative rate technique. By use of a rate constant for the reaction of NO/sub 3/ radicals with trans-2-butene of (2.11 +/- 0.24) x 10 /sup -13/ cm/sup 3/ molecule /sup -1/s/sup -1/, the rate constants obtained at 295 +/- 1 K were the following (in cm/sup 3/ molecule/sup -1/s/sup -1/ units): 1,3-butadiene, (5.34 +/- 0.62) x 10/sup -14/; isoprene, (3.23 +/- 0.38) x 10/sup -13/; cyclohexene, (2.87 +/- 0.34) x 10/sup -13/; 1,3-cyclohexadiene, (7.2 +/- 1.7) x 10/sup -12/; 1,4-cyclohexadiene, (2.89 +/- 0.35) x 10/sup -13/; 1,3-cycloheptadiene, (3.8 +/- 0.9) x 10/sup -12/; ..cap alpha..-pinene, (3.4 +/- 0.8) x 10/sup -12/; ..beta..-pinene, (1.4 +/- 0.3) x 10/sup -12/; 3/-carene, (5.9 +/- 1.3) x 10/sup -12/; d-limonene, (7.7 +/- 1.7) x 10/sup -12/. These NO/sub 3/ radical rate constants for the naturally emitted hydrocarbons isoprene and the monoterpenes, in conjunction with measured ambient NO/sub 3/ radical concentrations, show that nighttime reaction with the NO/sub 3/ radical can be an important, if not dominant, loss process for these organics. Similarly, these reactions can also be an important loss process for NO/sub 3/ radicals, and hence for NO/sub x/, during nighttime hours. 43 references.

  8. Parameters for a Super-Flavor-Factory

    SciTech Connect

    Seeman, J.T.; Cai, Y.; Ecklund, S.; Novokhatski, A.; Seryi, A.; Sullivan, M.; Wienands, U.; Biagini, M.; Raimondi, P.; /Frascati


    A Super Flavor Factory, an asymmetric energy e{sup +}e{sup -} collider with a luminosity of order 10{sup 36} cm{sup -2} s{sup -1}, can provide a sensitive probe of new physics in the flavor sector of the Standard Model. The success of the PEP-II and KEKB asymmetric colliders in producing unprecedented luminosity above 10{sup 34} cm{sup -2} s{sup -1} has taught us about the accelerator physics of asymmetric e{sup +}e{sup -} collider in a new parameter regime. Furthermore, the success of the SLAC Linear Collider and the subsequent work on the International Linear Collider allow a new Super-Flavor collider to also incorporate linear collider techniques. This note describes the parameters of an asymmetric Flavor-Factory collider at a luminosity of order 10{sup 36} cm{sup -2} s{sup -1} at the Y(4S) resonance and about 10{sup 35} cm{sup -2} s{sup -1} at the {tau} production threshold. Such a collider would produce an integrated luminosity of about 10,000 fb{sup -1} (10 ab{sup -1}) in a running year (10{sup 7} sec) at the Y(4S) resonance. In the following note only the parameters relative to the Y(4S) resonance will be shown, the ones relative to the lower energy operations are still under study.

  9. Measurements of the Ultraviolet Fluorescence Cross Sections and Spectra of Bacillus Anthracis Simulants

    SciTech Connect

    Stephens, J.R.


    Measurements of the ultraviolet autofluorescence spectra and absolute cross sections of the Bacillus anthracis (Ba) simulants Bacillus globigii (Bg), Bacillus megaterium (Bm), Bacillus subtilis (Bs), and Bacillus cereus (Bc) were measured. Fluorescence spectra and cross sections of pine pollen (Pina echinata) were measured for comparison. Both dried vegetative cells and spores separated from the sporulated vegetative material were studied. The spectra were obtained by suspending a small number (<10) of particles in air in our Single Particle Spectroscopy Apparatus (SPSA), illuminating the particles with light from a spectrally filtered arc lamp, and measuring the fluorescence spectra of the particles. The illumination was 280 nm (20 nm FWHM) and the fluorescence spectra was measured between 300 and 450 nm. The fluorescence cross section of vegetative Bg peaks at 320 nm with a maximum cross section of 5 X 10{sup -14} cm{sup 2}/sr-nm-particle while the Bg spore fluorescence peaks at 310 nm with peak fluorescence of 8 X 10{sup -15} cm{sup 2}/sr-nm-particle. Pine pollen particles showed a higher fluorescence peaking at 355 nm with a cross section of 1.7 X 10{sup -13} cm{sup 2}/sr-nm-particle. Integrated cross sections ranged from 3.0 X 10{sup -13} for the Bg spores through 2.25 X 10{sup -12} (cm{sup 2}/sr-particle) for the vegetative cells.

  10. Methods of enhancing conductivity of a polymer-ceramic composite electrolyte


    Kumar, Binod


    Methods for enhancing conductivity of polymer-ceramic composite electrolytes are provided which include forming a polymer-ceramic composite electrolyte film by a melt casting technique and uniaxially stretching the film from about 5 to 15% in length. The polymer-ceramic composite electrolyte is also preferably annealed after stretching such that it has a room temperature conductivity of from 10.sup.-4 S cm.sup.-1 to 10.sup.-3 S cm.sup.-1. The polymer-ceramic composite electrolyte formed by the methods of the present invention may be used in lithium rechargeable batteries.


    SciTech Connect

    Hunter, Deidre A.; Zahedy, Fakhri; Bowsher, Emily C.; Wilcots, Eric M.; Kepley, Amanda A.; Gaal, Veronika E-mail: E-mail:


    We present large field H I-line emission maps obtained with the single-dish Green Bank Telescope centered on the dwarf irregular galaxies Sextans A, NGC 2366, and WLM. We do not detect the extended skirts of emission associated with the galaxies that were reported from Effelsberg observations. The ratio of H I at 10{sup 19} atoms cm{sup -2} to optical extents of these galaxies is instead 2-3, which is normal for this type of galaxy. There is no evidence for a truncation in the H I distribution {>=}10{sup 19} atoms cm{sup -2}.

  12. Population inversion in a stationary recombining plasma

    SciTech Connect

    Otsuka, M.


    Population inversion, which occurs in a recombining plasma when a stationary He plasma is brought into contact with a neutral gas, is examined. With hydrogen as a contact gas, noticeable inversion between low-lying levels of H as been found. The overpopulation density is of the order of 10/sup 8/ cm/sup -3/, which is much higher then that (approx. =10/sup 5/ cm/sup -3/) obtained previously with He as a contact gas. Relations between these experimental results and the conditions for population inversion are discussed with the CR model.

  13. Spectrally resolved four-wave mixing experiments on bulk GaAs with 14-fs pulses

    SciTech Connect

    Wehner, M.U.; Steinbach, D.; Wegener, M.; Marschner, T.; Stolz, W.


    We investigate the coherent dynamics at the band edge of GaAs at low temperatures for carrier densities ranging from 4.3{times}10{sup 14} cm{sup {minus}3} to 4.4{times}10{sup 17} cm{sup {minus}3} by means of spectrally resolved transient four-wave mixing with 14-fs pulses. At large nonequilibrium carrier densities we observe oscillations with an energy-dependent oscillation period related to interference among continuum states. The experimental findings are compared with a simple model. This comparison delivers a weak energy dependence of dephasing in the initial buildup phase of screening. {copyright} {ital 1996 Optical Society of America.}

  14. Methods of enhancing conductivity of a polymer-ceramic composite electrolyte

    NASA Technical Reports Server (NTRS)

    Kumar, Binod (Inventor)


    Methods for enhancing conductivity of polymer-ceramic composite electrolytes are provided which include forming a polymer-ceramic composite electrolyte film by a melt casting technique and uniaxially stretching the film from about 5 to 15% in length. The polymer-ceramic composite electrolyte is also preferably annealed after stretching such that it has a room temperature conductivity of from 10.sup.-4 S cm.sup.-1 to 10.sup.-3 S cm.sup.-1. The polymer-ceramic composite electrolyte formed by the methods of the present invention may be used in lithium rechargeable batteries.

  15. Subpicosecond high-brightness uv laser system

    SciTech Connect

    Gibson, R.B.


    A laser system that produces intense subpicosecond pulses of 248 nm light is under development. Ultrashort pulses are generated in the visible in a synchronously-pumped mode-locked dye oscillator, heterodyned into the uv by two KDP crystals, and amplified in a chain of KrF* amplifiers. Front end output of 5 is amplified to 20 mJ and focused to peak intensities of order 10/sup 17/ W cm/sup -2/. Additional amplification is expected to permit experiments at intensities >10/sup 20/ W cm/sup -2/.

  16. Co{sup 2+}:GGG nonlinear optical crystal for the 1.3 - 1.7 -{mu}m spectral range

    SciTech Connect

    Kravchenko, V B; Sadovskii, Pavel I; Sobolev, A T; Zakharov, L Yu; Sadovskii, S P


    A cobalt-doped GGG crystal is grown and its properties are studied. The absorption and fluorescence spectra in the visible and IR regions are measured. The absorption cross sections of the Co{sup 2+} ion in the GGG crystal at a wavelength of 1535 nm are determined for transitions from the ground ({sigma}{sub gs} = 4.8 x 10{sup -20} cm{sup 2}) and metastable states ({sigma}{sub es} = 1.4 x 10{sup -20} cm{sup 2}). Preliminary experimental results on Q-switching of erbium laser radiation by a Co{sup 2+}:GGG passive Q-switch are presented. (active media)

  17. The Effect of Grain Size and Phosphorous-doping of Polycrystalline 3C-SiC on Infrared Reflectance Spectra

    SciTech Connect

    I. J. van Rooyen; J. A. A. Engelbrecht; A. Henry; E. Janzen; J. H. Neethling; P. M. van Rooyen


    The effect of P-doping and grain size of polycrystalline 3C-SiC on the infrared reflectance spectra is reported. The relationship between grain size and full width at half maximum (FWHM) suggest that the behaviour of the 3C-SiC with the highest phosphorous doping level (of 1.2 x 10{sup 19} at. cm{sup -3}) is different from those with lower doping levels (< 6.6 x 10{sup 18} at. cm{sup -3}). It is also further demonstrated that the plasma resonance frequency (w{sub p}) is not influenced by the grain size.

  18. Solid composite electrolytes for lithium batteries


    Kumar, Binod; Scanlon, Jr., Lawrence G.


    Solid composite electrolytes are provided for use in lithium batteries which exhibit moderate to high ionic conductivity at ambient temperatures and low activation energies. In one embodiment, a polymer-ceramic composite electrolyte containing poly(ethylene oxide), lithium tetrafluoroborate and titanium dioxide is provided in the form of an annealed film having a room temperature conductivity of from 10.sup.-5 S cm.sup.-1 to 10.sup.-3 S cm.sup.-1 and an activation energy of about 0.5 eV.

  19. Magneto-transport of an electron bilayer system in an undoped Si/SiGe double-quantum-well heterostructure

    SciTech Connect

    Laroche, Dominique; Huang, ShiHsien; Nielsen, Erik; Liu, Chee Wee; Li, Jiun -Yun; Lu, Tzu -Ming


    We report the design, the fabrication, and the magneto-transport study of an electron bilayer system embedded in an undoped Si/SiGe double-quantum-well heterostructure. Additionally, the combined Hall densities (n Hall ) ranging from 2.6 × 10<sup>10sup> cm>-2 to 2.7 × 10<sup>11 cm>-2 were achieved, yielding a maximal combined Hall mobility (μHall ) of 7.7 × 10<sup>5 cm>2/(V • s) at the highest density. Simultaneous electron population of both quantum wells is clearly observed through a Hall mobility drop as the Hall density is increased to nHall > 3.3 × 10<sup>10 sup>cm-2, consistent with Schrödinger-Poisson simulations. Furthermore, the integer and fractional quantum Hall effects are observed in the device, and single-layer behavior is observed when both layers have comparable densities, either due to spontaneous interlayer coherence or to the symmetric-antisymmetric gap.

  20. The effect of neutron irradiation and annealing temperature on the electrical properties and lattice constant of epitaxial gallium nitride layers

    SciTech Connect

    Boyko, V. M.; Verevkin, S. S.; Kolin, N. G. Korulin, A. V.; Merkurisov, D. I.; Polyakov, A. Y.; Chevychelov, V. A.


    Effect of irradiation with high reactor-neutron fluences ({Phi} = 1.5 Multiplication-Sign 10{sup 17}-8 Multiplication-Sign 10{sup 19} cm{sup -2}) and subsequent heat treatments in the temperature range 100-1000 Degree-Sign C on the electrical properties and lattice constant of epitaxial GaN layers grown on an Al{sub 2}O{sub 3} substrate is considered. It is shown that, with the neutron fluence increasing to (1-2) Multiplication-Sign 10{sup 18} cm{sup -2}, the resistivity of the material grows to values of about 10{sup 10} {Omega} cm because of the formation of radiation defects, and, with the fluence raised further, the resistivity passes through a maximum and then decreases to 2 Multiplication-Sign 10{sup 6} {Omega} cm at 300 K, which is accounted for by the appearance of a hopping conductivity via deep defects in the overlapping outer parts of disordered regions. With the neutron fluence raised to 8 Multiplication-Sign 10{sup 19} cm{sup -2}, the lattice constant c increases by 0.38% at a nearly unchanged parameter a. Heat treatment of irradiated samples at temperatures as high as 1000 Degree-Sign C does not fully restore the lattice constant and the electrical parameters of the material.

  1. Plutonium leachability from alternative transuranic incinerator ash waste forms

    SciTech Connect

    Neilson, R Jr; Colombo, P; Bradley, D


    Leaching experiments were conducted to determine the rate of plutonium release from Portland cement, urea-formaldehyde, and polyester-styrene waste forms incorporating incinerator ash waste. A modified IAEA leach test procedure was employing using demineralized water, simulated WIPP Brine B, simplified sodium dominated groundwater, simplified calcium dominated groundwater and simplified bicarbonate dominated groundwater leachants. The data obtained provided a good fit to a diffusion release model for semi-infinite media. This model allows the calculation of effective diffusivities for plutonium release and provides a means for the prediction of long-term plutonium releases from full-scale waste forms. The effective diffusivities determined for Portland cement and polyester-styrene waste forms varied from 1.6 x 10/sup -22/ to 3.9 x 10/sup -20/ cm/sup 2//sec. Plutonium release was more rapid from urea-formaldehyde waste forms which exhibited effective diffusivities of 2.3 x 10/sup -18/ to 1.1 x 10/sup -14/ cm/sup 2//sec. The lowest release rates were obtained for leaching in WIPP Brine B. Effective diffusivities in the range of 10/sup -22/ to 10/sup -20/ cm/sup 2//sec result in predicted fraction plutonium releases of 1.9 x 10/sup -6/ to 1.9 x 10/sup -5/ in 10/sup 5/ years (neglecting decay) from 210 liter (55 gallon drum) waste forms. As a result of the low effective diffusivities determined and for the long half-lives of TRU radionuclides, waste form stability may be the primary determinant of activity release over the time period that must be considered for TRU waste disposal.

  2. Effects of growth temperature on Mg-doped GaN grown by ammonia molecular beam epitaxy

    SciTech Connect

    Hurni, Christophe A.; Lang, Jordan R.; Burke, Peter G.; Speck, James S.


    The hole concentration p in Mg-doped GaN films grown by ammonia molecular beam epitaxy depends strongly on the growth temperature T{sub GR}. At T{sub GR}=760 Degree-Sign C, GaN:Mg films showed a hole concentration of p=1.2 Multiplication-Sign 10{sup 18} cm{sup -3} for [Mg]=4.5 Multiplication-Sign 10{sup 19} cm{sup -3}, while at T{sub GR}=840 Degree-Sign C, p=4.4 Multiplication-Sign 10{sup 16} cm{sup -3} for [Mg]=7 Multiplication-Sign 10{sup 19} cm{sup -3}. Post-growth annealing did not increase p. The sample grown at 760 Degree-Sign C exhibited a low resistivity of 0.7 {Omega}cm. The mobility for all the samples was around 3-7 cm{sup 2}/V s. Temperature-dependent Hall measurements and secondary ion mass spectroscopy suggest that the samples grown at T{sub GR}>760 Degree-Sign C are compensated by an intrinsic donor rather than hydrogen.

  3. Amorphous tin-cadmium oxide films and the production thereof

    SciTech Connect

    Li, Xiaonan; Gessert, Timothy A


    A tin-cadmium oxide film having an amorphous structure and a ratio of tin atoms to cadmium atoms of between 1:1 and 3:1. The tin-cadmium oxide film may have an optical band gap of between 2.7 eV and 3.35 eV. The film may also have a charge carrier concentration of between 1.times.10.sup.20 cm.sup.-3 and 2.times.10.sup.20 cm.sup.-3. The tin cadmium oxide film may also exhibit a Hall mobility of between 40 cm.sup.2V.sup.-1 s.sup.-1 and 60 cm.sup.2V.sup.-1 s.sup.-1. Also disclosed is a method of producing an amorphous tin-cadmium oxide film as described and devices using same.

  4. Model Calculations of Continuous-Wave Laser Ionization of Krypton

    SciTech Connect

    Bret D. Cannon


    This report describes modeling of a scheme that uses continuous-wave (CW) lasers to ionize selected isotopes of krypton with high isotopic selectivity. The models predict that combining this ionization scheme with mass spectrometric measurement of the resulting ions can be the basis for ultra-sensitive methods to measure {sup 85}Kr in the presence of a 10{sup 11} excess of the stable krypton isotopes. Two experimental setups are considered in this model: the first setup is for krypton as a static gas, the second is for krypton in an atomic beam. In the static gas experiment, for a total krypton press of 10{sup {minus}4} torr and 10 W of power in the cavity, the model predicts a total krypton ion current of 4.6 x 10{sup 8} s{sup {minus}1} and for a {sup 85}Kr/Kr of 10{sup {minus}11} a {sup 85}Kr ion current of 3.5 s{sup {minus}1} or about 10,000 per hour. The atomic beam setup allowed higher isotopic selectivity; the model predicts a {sup 85}Kr ion current of 18 s{sup {minus}1} or 65,000 per hour.

  5. Analysis of instability growth and collisionless relaxation in thermionic converters using 1-D PIC simulations

    SciTech Connect

    Kreh, B.B.


    This work investigates the role that the beam-plasma instability may play in a thermionic converter. The traditional assumption of collisionally dominated relaxation is questioned, and the beam-plasma instability is proposed as a possible dominant relaxation mechanism. Theory is developed to describe the beam-plasma instability in the cold-plasma approximation, and the theory is tested with two common Particle-in-Cell (PIC) simulation codes. The theory is first confirmed using an unbounded plasma PIC simulation employing periodic boundary conditions, ES1. The theoretically predicted growth rates are on the order of the plasma frequencies, and ES1 simulations verify these predictions within the order of 1%. For typical conditions encountered in thermionic converters, the resulting growth period is on the order of 7 {times} 10{sup {minus}11} seconds. The bounded plasma simulation PDP1 was used to evaluate the influence of finite geometry and the electrode boundaries. For this bounded plasma, a two-stream interaction was supported and resulting in nearly complete thermalization in approximately 5 {times} 10{sup {minus}10} seconds. Since the electron-electron collision rate of 10{sup 9} Hz and the electron atom collision rate of 10{sup 7} Hz are significantly slower than the rate of development of these instabilities, the instabilities appear to be an important relaxation mechanism.

  6. Preliminary performance assessment of the engineered barriers for a low- and intermediate-level radioactive waste repository

    SciTech Connect

    Cho, W.J.; Lee, J.O.; Hahn, P.S.; Chun, K.S.


    Radionuclide release from an engineered barrier in a low- and intermediate-level waste repository is evaluated. The results of experimental studies conducted to determine the radionuclide diffusion coefficients and the hydraulic conductivities of calcium bentonite and crushed granite mixtures are presented. The hydraulic conductivity of the mixture is relatively low even at low dry density and clay content, and the principal mechanism of radionuclide migration through the mixture is diffusion. The measured values of apparent diffusion coefficients in calcium bentonite with a dry density of 1.4 Mg/m{sup 3} are of the order of 10{sup {minus}13} to 10{sup {minus}12} m{sup 2}/s for cations and 10{sup {minus}11} m{sup 2}/s for iodine. These values are similar to those in sodium bentonite. The radionuclide release rates from the engineered barrier composed of the concrete structure and the clay-based backfill were calculated. Carbon-14 and {sup 99}Tc are the important nuclides; however, their maximum release rates are <10{sup {minus}5} GBq/yr. To quantify the effect of uncertainties of input parameters on the radionuclide release rates, Latin Hypercube sampling was used, and the ranges of release rates were estimated statistically with a confidence level of 95%. The uncertainties of the assessment results of the radionuclide release rate are larger in the case of the sorbing nuclides such as {sup 137}Cs. Finally, the sensitivity of the input parameter to release rate is also evaluated.

  7. Hydraulic and diffusive properties of clay-based backfill material for a low- and intermediate-level waste repository

    SciTech Connect

    Cho, W.J.; Lee, J.O.; Hahn, P.S.; Park, H.H.


    The results of experimental studies performed to determine the radionuclide diffusion coefficients in a compacted clay and the hydraulic conductivities of clay/crushed granite mixtures with various clay contents are presented. Clay used in the experiments is a natural clay from the southeastern part of Korea, and it contains mainly calcium bentonite. The hydraulic conductivities of clay/crushed granite mixtures decreased with increasing clay content. In case of clay content of 50 wt.%, they maintain the considerably lower values even at the dry density of 1.5 Mg/m{sup 3}. The diffusion coefficients for {sup 90}Sr, {sup 137}Cs, {sup 60}Co and {sup 125}I in water saturated clay at a dry density of 1.4 Mg/m{sup 3} were measured at room temperature. The average apparent diffusion coefficients obtained are 4.5 {times} 10{sup {minus}12} m{sup 2}/s, 9.0 {times} 10{sup {minus}13} m{sup 2}/s, 3.4 {times} 10{sup {minus}13} m{sup 2}/s, and 6.7 {times} 10{sup {minus}11} m{sup 2}/s for {sup 90}Sr, {sup 137}Cs, {sup 60}Co, and {sup 125}I, respectively.

  8. On the modes of evaporation of Si and dopants in vacuum epitaxy procedures

    SciTech Connect

    Kuznetsov, V. P. Alyabina, N. A.; Bozhenkin, V. A.; Belova, O. V.; Kuznetsov, M. V.


    Silicon layers are grown by sublimation molecular beam epitaxy at the rate 1 {mu}m h{sup -1} at temperatures 500-900 Degree-Sign C in vacuum at the pressure 10{sup -5} Pa. The possibility of varying the Sb concentration in the Si layers in the range from 10{sup 15} to 10{sup 20} cm{sup -3} by varying the temperature of epitaxy is shown. The potentialities of different modes of vacuum evaporation of Si and dopants are analyzed.

  9. Linear collider approach to a B anti B factory

    SciTech Connect

    Wilson, P.B.


    In this paper we consider the basic design expression and principal design constraints for a linear collider suitable for a B anti-B factory: Energy approx. =10 GeV, luminosity 10/sup 33/-10/sup 34/ cm/sup -2/s/sup -1/, energy resolution approx. =10/sup -2/. The design of room temperature linear colliders for a B factory is discussed. In such colliders, the rf energy stored in the linac structure is thrown away after each linac pulse. Linear colliders using superconducting rf cavities are considered. Some brief conclusions are presented.

  10. High quality transparent conducting oxide thin films


    Gessert, Timothy A.; Duenow, Joel N.; Barnes, Teresa; Coutts, Timothy J.


    A transparent conducting oxide (TCO) film comprising: a TCO layer, and dopants selected from the elements consisting of Vanadium, Molybdenum, Tantalum, Niobium, Antimony, Titanium, Zirconium, and Hafnium, wherein the elements are n-type dopants; and wherein the transparent conducting oxide is characterized by an improved electron mobility of about 42 cm.sup.2/V-sec while simultaneously maintaining a high carrier density of .about.4.4e.times.10.sup.20 cm.sup.-3.

  11. Optimization study for an epithermal neutron beam for boron neutron capture therapy at the University of Virginia Research Reactor

    SciTech Connect

    Burns, T.D. Jr.


    The non-surgical brain cancer treatment modality, Boron Neutron Capture Therapy (BNCT), requires the use of an epithermal neutron beam. This purpose of this thesis was to design an epithermal neutron beam at the University of Virginia Research Reactor (UVAR) suitable for BNCT applications. A suitable epithermal neutron beam for BNCT must have minimal fast neutron and gamma radiation contamination, and yet retain an appreciable intensity. The low power of the UVAR core makes reaching a balance between beam quality and intensity a very challenging design endeavor. The MCNP monte carlo neutron transport code was used to develop an equivalent core radiation source, and to perform the subsequent neutron transport calculations necessary for beam model analysis and development. The code accuracy was validated by benchmarking output against experimental criticality measurements. An epithermal beam was designed for the UVAR, with performance characteristics comparable to beams at facilities with cores of higher power. The epithermal neutron intensity of this beam is 2.2 {times} 10{sup 8} n/cm{sup 2} {center_dot} s. The fast neutron and gamma radiation KERMA factors are 10 {times} 10{sup {minus}11}cGy{center_dot}cm{sup 2}/n{sub epi} and 20 {times} 10{sup {minus}11} cGy{center_dot}cm{sup 2}/n{sub epi}, respectively, and the current-to-flux ratio is 0.85. This thesis has shown that the UVAR has the capability to provide BNCT treatments, however the performance characteristics of the final beam of this study were limited by the low core power.

  12. Einstein X-ray observations of Proxima Centauri and the surrounding region

    SciTech Connect

    Haisch, B.M.; Linsky, J.L.; Harnden, F.R. Jr.; Rosner, R.; Seward, F.D.; Vaiana, G.S.


    We report the first detection of both quiescent and flaring soft X-ray emission from a dMe flare star, Proxima Centauri (dM5e). The data are analyzed for temporal variability and spectral characteristics. The quiescent state is characterized by a mean X-ray luminosity of approx.1.5 x 10/sup 27/ ergs s/sup -1/, corresponding to a mean surface flux of approx.7 x 10/sup 5/ ergs cm/sup -2/ s/sup -1/, and an inferred temperature of approx.4 x 10/sup 6/ K. The flare we have detected has a peak flux of approx.7.4 x 10/sup 27/ ergs s/sup -1/ and a peak temperature of approx.17 x 10/sup 6/ K. We discuss implications of these data for models of the quiescent and flare coronae of dMe stars.

  13. Extended soft x-ray source in Delphinus: H2027+19

    SciTech Connect

    Stern, R.A.; Charles, P.A.; Walker, B.C.; Nugent, J.J.; Garmire, G.P.


    We report the detection of an extended (approx.3/sup 0/) source of soft X-ray emission. H2027+19, observed with the HEAO 1 A-2 experiment. The object emits primarily in the 0.16--0.4 keV band, with a total flux in this band of approx.2 x 10/sup -11/ ergs cm/sup -2/ S/sup -1/. Although our data can be formally modeled with two discrete sources, a detailed analysis suggests that this alternative is not likely to be the case. We fine that both simple continuum and coronal plasma models provide good fits to the observed pulse-height spectrum. The source parameters are restricted to 10/sup 5.8/ 10/sup 6.5/K, N/sub x/<10/sup 21.3/ cm/sup -2/ (Raymond and Smith plasma), and 10/sup 5.8/10/sup 7.0/, N/sub x/<10/sup 21.2/ (exponential+Gaunt factor) at the 90% confidence level. The most likely physical models are either that the source is an old supernova remnant or that it is a region of enhanced soft X-ray emission surrounding an H I cloud imbedded in a cornal plasma, as suggested by Hayakawa et al. for the Lupus Loop.


    SciTech Connect

    Miljanic, Scepan S.; Moore, C.Bradley


    The method of laser-excited vibrational fluorescence has been used to measure vibrational relaxation rates for the bending mode of D{sub 2}O in collisions with D{sub 2}O, D{sub 2}, HD, H{sub 2}, He, and Ar. The rate constants at 295 K are found to be (3.2 {+-} 0.2) x 10{sup -11}, (3.6 {+-} 0.2) x 10{sup -13}, (1.2 {+-} 0.1) x 10{sup -12}, (3.3 {+-} 0.2) x 10{sup -12}, (7.1 {+-} 0.9) x 10{sup -14}, and (3.0 {+-} 1.2) x 10{sup -14} cm{sup 3} molecule{sup -1} sec{sup -1}, respectively. Relaxation times have been measured for two D{sub 2}O-HDO-H{sub 2}O mixtures and relaxation probabilities, PD{sub 2}O-HDO and PD{sub 2}O-H{sub 2}O were estimated to be not very different from PD{sub 2}O-D{sub 2}O. The temperature dependence of the relaxation was measured for pure D{sub 2}O. The rates are (1.80 {+-} 0.08) x 10{sup -11} at 400, (2.1 {+-} 0.1) x 10{sup -11} at 350 and (4.0 {+-} 0.3) x 10{sup -11} cm{sup 3} molecule{sup -1} sec{sup -1} at 260 K. The corresponding probabilities are fit by P(T) = C exp({epsilon}/kT) with {epsilon} = (778 {+-} 34) K and C = 1.1 x 10{sup -2}.

  15. Two-dimensional metal-insulator transition and in-plane magnetoresistance in a high mobility strained Si quantum well.

    SciTech Connect

    Schaffler, F.; Muhlberger, M.; Lai, K. W.; Lyon, S.A.; Tsui, Daniel Chee; Pan, W. Y.


    The apparent metal-insulator transition is observed in a high-quality two-dimensional electron system (2DES) in the strained Si quantum well of a Si/Si{sub 1-x}Ge{sub x} heterostructure with mobility {mu} = 1.9 x 10{sup 5} cm{sup 2}/V s at density n = 1.45 x 10{sup 11} cm{sup -2}. The critical density, at which the thermal coefficient of low T resistivity changes sign, is -0.32 x 10{sup 11} cm{sup -2}, a very low value obtained in Si-based 2D systems. The in-plane magnetoresistivity {rho}(B{sub ip}) was measured in the density range, 0.35 x 10{sup 11} < n < 1.45 x 10{sup 11} cm{sup -2}, where the 2DES shows the metallic-like behavior. It first increases and then saturates to a finite value {rho}(B{sub c}) for B{sub ip}>B{sub c} , with B{sub c} the full spin-polarization field. Surprisingly, {rho}(B{sub c})/{rho}(0)-1.8 for all the densities, even down to n = 0.35 x 10{sup 11} cm{sup -2}, only 10% higher than n{sub c}. This is different from that in clean Si metal-oxide-semiconductor field-effect transistors, where the enhancement is strongly density dependent and {rho}(B{sub c})/{rho}(0) appears to diverge as n {yields} n{sub c}. Finally, we show that in the fully spin-polarized regime, dependent on the 2DES density, the temperature dependence of {rho}(B{sub ip}) can be either metallic-like or insulating.


    SciTech Connect

    Muccino, M.; Ruffini, R.; Bianco, C. L.; Izzo, L.; Penacchioni, A. V.; Pisani, G. B.


    GRB 090510, observed by both Fermi and AGILE satellites, is the first bright short-hard gamma-ray burst (GRB) with an emission from the keV up to the GeV energy range. Within the Fireshell model, we interpret the faint precursor in the light curve as the emission at the transparency of the expanding e {sup +} e {sup -} plasma: the Proper-GRB. From the observed isotropic energy, we assume a total plasma energy E{sup tot}{sub e{sup +}e{sup -}}=(1.10{+-}0.06) Multiplication-Sign 10{sup 53} erg and derive a Baryon load B = (1.45 {+-} 0.28) Multiplication-Sign 10{sup -3} and a Lorentz factor at transparency {Gamma}{sub tr} = (6.7 {+-} 1.6) Multiplication-Sign 10{sup 2}. The main emission {approx}0.4 s after the initial spike is interpreted as the extended afterglow, due to the interaction of the ultrarelativistic baryons with the CircumBurst Medium (CBM). Using the condition of fully radiative regime, we infer a CBM average spherically symmetric density of (n{sub CBM}) = (1.85 {+-} 0.14) Multiplication-Sign 10{sup 3} particles cm{sup -3}, one of the highest found in the Fireshell model. The value of the filling factor, 1.5 Multiplication-Sign 10{sup -10}{<=}R{<=}3.8 Multiplication-Sign 10{sup -8}, leads to the estimate of filaments with densities n{sub fil} = n{sub CBM}/R approx. (10{sup 6}-10{sup 14}) particles cm{sup -3}. The sub-MeV and the MeV emissions are well reproduced. When compared to the canonical GRBs with (n{sub CBM}) Almost-Equal-To 1 particles cm{sup -3} and to the disguised short GRBs with (n{sub CBM}) Almost-Equal-To 10{sup -3} particles cm{sup -3}, the case of GRB 090510 leads to the existence of a new family of bursts exploding in an overdense galactic region with (n{sub CBM}) Almost-Equal-To 10{sup 3} particles cm{sup -3}. The joint effect of the high {Gamma}{sub tr} and the high density compresses in time and 'inflates' in intensity the extended afterglow, making it appear as a short burst, which we here define as a 'disguised short GRB by excess

  17. Dy{sup 3+}-doped Ga–Sb–S chalcogenide glasses for mid-infrared lasers

    SciTech Connect

    Zhang, Mingjie; Yang, Anping; Peng, Yuefeng; Zhang, Bin; Ren, He; Guo, Wei; Yang, Yan; Zhai, Chengcheng; Wang, Yuwei; Yang, Zhiyong; Tang, Dingyuan


    Highlights: • Novel Ga–Sb–S chalcogenide glasses doped with Dy{sup 3+} ions were synthesized. • The glasses show good thermal stability and excellent infrared transparency. • The glasses show low phonon energy and intense mid-infrared emissions. • The mid-infrared emissions have high quantum efficiency. • The mid-infrared emissions have large stimulated emission cross sections. - Abstract: Novel Ga–Sb–S chalcogenide glasses doped with different amount of Dy{sup 3+} ions were prepared. Their thermal stability, optical properties, and mid-infrared (MIR) emission properties were investigated. The glasses show good thermal stability, excellent infrared transparency, very low phonon energy (∼306 cm{sup −1}), and intense emissions centered at 2.95, 3.59, 4.17 and 4.40 μm. Three Judd–Ofelt intensity parameters (Ω{sub 2} = 8.51 × 10{sup −20} cm{sup 2}, Ω{sub 4} = 2.09 × 10{sup −20} cm{sup 2}, and Ω{sub 6} = 1.60 × 10{sup −20} cm{sup 2}) are obtained, and the related radiative transition properties are evaluated. The high quantum efficiencies and large stimulated emission cross sections of the MIR emissions (88.10% and 1.11 × 10{sup −20} cm{sup 2} for 2.95 μm emission, 75.90% and 0.38 × 10{sup −20} cm{sup 2} for 4.40 μm emission, respectively) in the Dy{sup 3+}-doped Ga–Sb–S glasses make them promising gain materials for the MIR lasers.

  18. Simultaneous X-ray, ultraviolet, optical, and radio observations of the flare star Proxima Centauri

    SciTech Connect

    Haisch, B.M.; Linsky, J.L.; Slee, O.B.; Siegman, B.C.; Nikoloff, I.; Candy, M.; Harwood, D.; Verveer, A.; Quinn, P.J.; Wilson, I.; Page, A.A.; Higson, P.; Seward, F.D.


    We report on a coordinated program involving X-ray, ultraviolet, optical, and radio observations of the dM5e flare star Proxima Centauri. We detected one major X-ray flare event with L/sub x/(0.2--4.0 keV)roughly-equal6.0 x 10/sup 27/ ergs s/sup -1/, T = 1.7 x 10/sup 7/ K, and EM = 7.5 x 10/sup 50/ cm/sup -3/ during the rise phase and L/sub x/roughly-equal7.4 x 10/sup 27/ ergs s/sup -1/, T = 1.2 x 10/sup 7/ K, and EM = 12.0 x 10/sup 50/ cm/sup -3/ during the decay phase. This is the first detection of a time-resolved stellar X-ray flare that shows changes in its spectral flux distribution. We detected no ultraviolet, optical or radio emission corresponding to this flare, but we did detect a total of five optical and 12 possible radio flares, including one event with simultaneous radio and optical emission. We interpret the absence of optical and ultraviolet emission at the time of the X-ray flare in terms of an arch model in which the flare cools predominently by X-ray radiation. The observed 20 min expotential cooling time is consistent with an electron density of 1.0 x 10/sup 11/ cm/sup -3/ during the decay phase and a flare of total arch length of ..pi.. x 10/sup 10/ cm, comparable to the size of the star itself. We conclude that we have observed an X-ray flare more like a typical strong solar flare than heretofore seen on a flare star.

  19. Excited-state absorption in the lasing wavelength region of Alexandrite

    SciTech Connect

    Shand, M.L.; Walling, J.C.


    The excited-state absorption cross section sigma/sub 2/ /sub a/ (E) in the gain wavelength region of alexandrite has been determined and is shown to limit the vibronic laser range at both high and low energy. The maximum in vibronic laser emission is due to a minimum in sigma/sub 2/ /sub a/ (E) near 13 000 cm/sup -1/. sigma/sub 2/ /sub a/ (E) is less than 10/sup -20/ cm/sup 2/ between 12 000 and 14 000 cm/sup -1/.

  20. Investigation of deep level defects in epitaxial semiconducting zinc sulpho-selenide. Progress report, June 15, 1980-June 14, 1981

    SciTech Connect

    Wessels, B.W.


    High conductivity ZnSe single crystalline films have been heteroepitaxially deposited on GaAs substrates using open tube chemical vapor transport. Unintentionally doped films had net donor densities of 10/sup 14/ - 10/sup 16/ cm/sup -3/ and resistivities of 1 to 10/sup 3/ ohm cm. Resistivity was found to be strongly dependent upon zinc partial pressure during deposition. Electron mobilities of the order of 50 to 200 cm/sup 2//V sec were observed which suggested that the films are highly compensated. Properties of the deep level defects in heteroepitaxially grown ZnSe have been investigated using transient capacitance spectroscopy. A series of electron traps were observed with activation energies of 0.33, 0.35, 0.42, 0.71 and 0.86 eV in Au/ZnSe Schottky diodes. Trap concentration ranged from 10/sup 12/ to 10/sup 14/ cm/sup -3/ and depended on the zinc partial pressure. A model for the defect structure of ZnSe was proposed. Growth studies of ZnS/sub x/Se/sub 1-x/ on GaAs were begun.

  1. Contacts for high-resistivity (Cd,Mn)Te crystals

    SciTech Connect

    Witkowska-Baran, M.; James, R.; Mycielski, A.; Kochanowska, D.; Szadkowski, A.J.; Jakiela, R.; Witkowska, B.; Kaliszek, W.; Domagala, J.; Lusakowska, E.; Domukhovski, V.; Dybko, K.; Cui, Y.; and James, R.B.


    Semi-insulating (Cd,Mn)Te crystals offer a material that may compete well with the commonly used (Cd,Zn)Te crystals for manufacturing large-area X- and gamma-ray detectors. The Bridgman growth method yields good quality, high-resistivity (10{sup 9} - 10{sup 10} {Omega} {center_dot} cm) crystals of (Cd,Mn)Te:V. Doping the as-grown crystals with the compensating agent vanadium ({approx} 10{sup 16} cm{sup -3}) ensures their high resistivity; thereafter, annealing them in cadmium vapors reduces the number of cadmium vacancies. Applying the crystals as detectors necessitates having satisfactory electrical contacts. Accordingly, we explored various techniques of ensuring good electrical contacts to these semi-insulating (Cd,Mn)Te crystals, assessing metallic layers, monocrystalline semiconductor layers, and amorphous (or nanocrystalline) semiconductor layers. We found that ZnTe heavily doped ({approx} 10{sup 18} cm{sup -3}) with Sb, and CdTe heavily doped ({approx} 10{sup 17} cm{sup -3}) with In, proved satisfactory semiconductor contact layers. They subsequently enabled us to establish good contacts (with only narrow tunneling barriers) to the Au layer that usually constitutes the most external contact layer. We outline our technology of applying electrical contacts to semi-insulating (Cd,Mn)Te, and describe some important properties.

  2. Surface segregation as a means of gettering Cu in liquid-phase-epitaxy silicon thin layers grown from Al-Cu-Si solutions

    SciTech Connect

    Wang, T.H.; Ciszek, T.F.; Reedy, R.; Asher, S.; King, D.


    The authors demonstrate that, by using the natural surface segregation phenomenon, Cu can be gettered to the surface from the bulk of silicon layers so that its concentrations in the liquid-phase-epitaxy (LPE) layers are much lower than its solubility at the layer growth temperature and the reported 10{sup 17} cm{sup {minus}3} degradation threshold for solar-cell performance. Secondary-ion mass spectroscopy (SIMS) analysis indicates that, within a micron-deep sub-surface region, Cu accumulates even in as-grown LPE samples. Slower cooling after growth to room temperature enhances this Cu enrichment. X-ray photoelectron spectroscopy (XPS) measurement shows as much as 3.2% Cu in a surface region of about 50 {Angstrom}. More surface-sensitive, ion-scattering spectroscopy (ISS) analysis further reveals about 7% of Cu at the top surface. These results translate to an areal gettering capacity of about 1.0 x 10{sup 16} cm{sup {minus}2}, which is higher than the available total-area density of Cu in the layer and substrate (3.6 x 10{sup 15} cm{sup {minus}2} for a uniform 1.2 x 10{sup 17}cm{sup {minus}3} Cu throughout the layer and substrate with a total thickness of 300 {mu}m).

  3. The CDF LEVEL3 trigger

    SciTech Connect

    Carroll, T.; Joshi, U.; Auchincloss, P.


    CDF is currently taking data at a luminosity of 10{sup 30} cm{sup -2} sec{sup -1} using a four level event filtering scheme. The fourth level, LEVEL3, uses ACP (Fermilab`s Advanced Computer Program) designed 32 bit VME based parallel processors (1) capable of executing algorithms written in FORTRAN. LEVEL3 currently rejects about 50% of the events.

  4. Current transport in W and WSI{sub x} ohmic contacts to InGaN and InN

    SciTech Connect

    Vartuli, C.B.; Pearton, S.J.; Abernathy, C.R.


    The temperature dependence of the specific contact resistance of W and WSi{sub 0.44} contacts on n{sup +} In{sub 0.65}Ga{sub 0.35}N and InN was measured in the range -50 {degrees}C to 125 {degrees}C. The results were compared to theoretical values for different conduction mechanisms, to further elucidate the conduction mechanism in these contact schemes for all but as-deposited metal to InN where thermionic emission appears to be the dominant mechanism. The contacts were found to produce low specific resistance ohmic contacts to InGaN at room temperature, e{sup c} {approximately} 10{sup -7} {Omega} {center_dot} cm{sup 2} for W and e{sub c} of 4x 10{sup -7} {Omega} {center_dot} cm{sup 2} for WSi{sub x}. InN metallized with W produced ohmic contacts with e{sub c} {approximately} 10{sup -7} {Omega} {center_dot} cm{sup 2} and e{sub c} {approximately} 10{sup -6} {Omega} {center_dot} cm{sup 2} for WSi{sub x} at room temperature.

  5. Radiation environment and shielding for the GEM experiment at the SSC

    SciTech Connect

    Diwan, M.; Fisyak, Y.; Mokhov, N.


    We have performed a comprehensive study of the radiation environment for the proposed GEM detector at the SSC. As a result of this study, we have developed a shielding scenario that will ensure that the detector will operate with its design performance for at least 10 years at the luminosity of 10{sup 33} cm{sup {minus}2}s{sup {minus}1}.

  6. Method of preparing thin film polymeric gel electrolytes


    Derzon, D.K.; Arnold, C. Jr.


    Novel hybrid thin film electrolyte is described, based on an organonitrile solvent system, which are compositionally stable, environmentally safe, can be produced efficiently in large quantity and which, because of their high conductivities {approx_equal}10{sup {minus}3}{Omega}{sup {minus}1}cm{sup {minus}1} are useful as electrolytes for rechargeable lithium batteries. 1 fig.

  7. Thin film polymeric gel electrolytes


    Derzon, Dora K.; Arnold, Jr., Charles; Delnick, Frank M.


    Novel hybrid thin film electrolyte, based on an organonitrile solvent system, which are compositionally stable, environmentally safe, can be produced efficiently in large quantity and which, because of their high conductivities .apprxeq.10.sup.-3 .OMEGA..sup.-1 cm.sup.-1 are useful as electrolytes for rechargeable lithium batteries.

  8. Method of preparing thin film polymeric gel electrolytes


    Derzon, Dora K.; Arnold, Jr., Charles


    Novel hybrid thin film electrolyte, based on an organonitrile solvent system, which are compositionally stable, environmentally safe, can be produced efficiently in large quantity and which, because of their high conductivities .apprxeq.10.sup.-3 .OMEGA..sup.-1 cm.sup.-1 are useful as electrolytes for rechargeable lithium batteries.

  9. Low dislocation GaN via defect-filtering, self-assembled SiO2-sphere layers.

    SciTech Connect

    Wang, George T.; Li, Qiming


    The III-nitride (AlGaInN) materials system forms the foundation for white solid-state lighting, the adoption of which could significantly reduce U.S. energy needs. While the growth of GaN-based devices relies on heteroepitaxy on foreign substrates, the heteroepitaxial layers possess a high density of dislocations due to poor lattice and thermal expansion match. These high dislocation densities have been correlated with reduced internal quantum efficiency and lifetimes for GaN-based LEDs. Here, we demonstrate an inexpensive method for dislocation reduction in GaN grown on sapphire and silicon substrates. This technique, which requires no lithographic patterning, GaN is selectively grown through self-assembled layers of silica microspheres which act to filter out dislocations. Using this method, the threading dislocation density for GaN on sapphire was reduced from 3.3 x 10{sup 9} cm{sup -2} to 4.0 x 10{sup 7} cm{sup -2}, and from the 10{sup 10} cm{sup -2} range to {approx}6.0 x 10{sup 7} cm{sup -2} for GaN on Si(111). This large reduction in dislocation density is attributed to a dislocation blocking and bending by the unique interface between GaN and silica microspheres.

  10. Heating of a three-component current-free plasma by Alfven waves in the Uragan-2 stellarator

    SciTech Connect

    Shvets, O.M.; Kalinichenko, S.S.; Lysoivan, A.I.; Nazarov, N.I.; Slavnyi, A.S.; Stepanov, K.N.; Tarasenko, V.F.


    A hydrogen-deuterium plasma has been heated at ion cyclotron resonance. An anomalously rapid heating of nonresonant ions has been observed. A dense (> or approx. =10/sup 13/ cm/sup -3/), current-free plasma can be produced and heated through the simultaneous use of two rf oscillators at different frequencies.

  11. Deep Levels in p-Type InGaAsN Lattice Matched to GaAs

    SciTech Connect

    Allerman, A.A.; Jones, E.D.; Kaplar, R.J.; Kurtz, S.R.; Kwon, D.; Ringel, S.A.


    Deep level transient spectroscopy (DLTS) measurements were utilized to investigate deep level defects in metal-organic chemical deposition (MOCVD)-grown unintentionally doped p-type InGaAsN films lattice matched to GaAs. The as-grown material displayed a high concentration of deep levels distributed within the bandgap, with a dominant hole trap at E{sub v} + 0.10 eV. Post-growth annealing simplified the deep level spectra, enabling the identification of three distinct hole traps at 0.10 eV, 0.23 eV, and 0.48 eV above the valence band edge, with concentrations of 3.5 x 10{sup 14} cm{sup {minus}3}, 3.8 x 10{sup 14} cm{sup {minus}3}, and 8.2 x 10{sup 14} cm{sup {minus}3}, respectively. A direct comparison between the as-grown and annealed spectra revealed the presence of an additional midgap hole trap, with a concentration of 4 x 10{sup 14} cm{sup {minus}3} in the as-grown material. The concentration of this trap is sharply reduced by annealing, which correlates with improved material quality and minority carrier properties after annealing. Of the four hole traps detected, only the 0.48 eV level is not influenced by annealing, suggesting this level may be important for processed InGaAsN devices in the future.

  12. Potential for measurement of the tensor polarizabilities of nuclei in storage rings by the frozen spin method

    SciTech Connect

    Silenko, Alexander J.


    The frozen spin method can be effectively used for a high-precision measurement of the tensor electric and magnetic polarizabilities of the deuteron and other nuclei in storage rings. For the deuteron, this method would provide the determination of the deuteron's polarizabilities with absolute precision of the order of 10{sup -43} cm{sup 3}.

  13. Annealing studies of heteroepitaxial InSbN on GaAs grown by molecular beam epitaxy for long-wavelength infrared detectors

    SciTech Connect

    Patra, Nimai C.; Bharatan, Sudhakar; Li Jia; Iyer, Shanthi


    We report the effect of annealing on the structural, vibrational, electrical, and optical properties of heteropepitaxially grown InSbN epilayers on GaAs substrate by molecular beam epitaxy for long-wavelength infrared detector applications. As-grown epilayers exhibited high N incorporation in the both substitutional and interstitial sites, with N induced defects as evidenced from high resolution x-ray diffraction, secondary ion mass spectroscopy, and room temperature (RT) micro-Raman studies. The as-grown optical band gap was observed at 0.132 eV ({approx}9.4 {mu}m) and the epilayer exhibited high background carrier concentration at {approx}10{sup 18} cm{sup -3} range with corresponding mobility of {approx}10{sup 3} cm{sup 2}/Vs. Ex situ and in situ annealing at 430 Degree-Sign C though led to the loss of N but improved InSb quality due to effective annihilation of N related defects and other lattice defects attested to enhanced InSb LO phonon modes in the corresponding Raman spectra. Further, annealing resulted in the optical absorption edge red shifting to 0.12 eV ({approx}10.3 {mu}m) and the layers were characterized by reduced background carrier concentration in the {approx}10{sup 16} cm{sup -3} range with enhanced mobility in {approx}10{sup 4} cm{sup 2}/Vs range.

  14. Features of the electrical conductivity of TlInSe{sub 2} under photoexcitation and X-ray excitation

    SciTech Connect

    Madatov, R. S. Najafov, A. I.; Mustafayev, Yu. M.; Gazanfarov, M. R.; Movsumova, I. M.


    The current–voltage characteristics of TlInSe{sub 2} crystals under photoexcitation and X-ray excitation are studied. The parameters of the trap, which are equal to N{sub t} = 5 × 10{sup 16} cm{sup –3}, n{sub t} = 4.5 × 10{sup 12} cm{sup –3}, and ΔE{sub t} = 0.42 eV, are calculated. The calculated values of N{sub t} and n{sub t} before and after X-ray excitation are equal to 3 × 10{sup 16} cm{sup –3} and 3.2 × 10{sup 12} cm{sup –3}, respectively. The dependences of the X-ray conductances on the radiation intensity are studied for TlInSe{sub 2} crystals at various accelerating voltages V{sub a} and it is determined that the X-ray conductance K{sub σ} decreases exponentially as the accelerating voltage V{sub a} and radiation dose increase.

  15. Sinterless Formation Of Contacts On Indium Phosphide

    NASA Technical Reports Server (NTRS)

    Weizer, Victor G.; Fatemi, Navid S.


    Improved technique makes it possible to form low-resistivity {nearly equal to 10(Sup-6) ohm cm(Sup2)} electrical contacts on indium phosphide semiconductor devices without damaging devices. Layer of AgP2 40 Angstrom thick deposited on InP before depositing metal contact. AgP2 interlayer sharply reduces contact resistance, without need for sintering.

  16. Thin film polymeric gel electrolytes


    Derzon, D.K.; Arnold, C. Jr.; Delnick, F.M.


    Novel hybrid thin film electrolytes, based on an organonitrile solvent system, which are compositionally stable, environmentally safe, can be produced efficiently in large quantity and which, because of their high conductivities {approx_equal}10{sup {minus}3}{Omega}{sup {minus}1} cm{sup {minus}1} are useful as electrolytes for rechargeable lithium batteries. 1 fig.


    SciTech Connect

    Tanaka, T.; Abe, K.; Hayato, Y.; Iida, T.; Kameda, J.; Koshio, Y.; Kouzuma, Y.; Miura, M.; Moriyama, S.; Nakahata, M.; Nakayama, S.; Obayashi, Y.; Sekiya, H.; Shiozawa, M.; Suzuki, Y.; Takeda, A.; Takenaga, Y.; Ueno, K.; Ueshima, K.; Yamada, S.; Collaboration: Super-Kamiokande Collaboration; and others


    We present the result of an indirect search for high energy neutrinos from Weakly Interacting Massive Particle (WIMP) annihilation in the Sun using upward-going muon (upmu) events at Super-Kamiokande. Data sets from SKI-SKIII (3109.6 days) were used for the analysis. We looked for an excess of neutrino signal from the Sun as compared with the expected atmospheric neutrino background in three upmu categories: stopping, non-showering, and showering. No significant excess was observed. The 90% C.L. upper limits of upmu flux induced by WIMPs of 100 GeV c{sup -2} were 6.4 Multiplication-Sign 10{sup -15} cm{sup -2} s{sup -1} and 4.0 Multiplication-Sign 10{sup -15} cm{sup -2} s{sup -1} for the soft and hard annihilation channels, respectively. These limits correspond to upper limits of 4.5 Multiplication-Sign 10{sup -39} cm{sup -2} and 2.7 Multiplication-Sign 10{sup -40} cm{sup -2} for spin-dependent WIMP-nucleon scattering cross sections in the soft and hard annihilation channels, respectively.

  18. The SuperB project

    SciTech Connect

    Lesiak, Tadeusz


    This paper presents a very short review of the SuperB project which aims to construct a new generation flavour factory with a designed luminosity of at least 10{sup 36} cm{sup -2} s{sup -1}. The main issues related to the physics programme, together with the description of the conceptual design of the accelerator and detector are briefly discussed.


    SciTech Connect

    Aota, Takuhiro; Aikawa, Yuri; Inoue, Tsuyoshi


    Recent Atacama Large Millimeter/submillimeter Array observations of young protostellar objects detected warm SO emission, which could be associated with a forming protostellar disk. In order to investigate if such warm gas can be produced by accretion shock onto the forming disk, we calculate the sputtering and thermal desorption of various grain-surface species in one-dimensional shock waves. We find that thermal desorption is much more efficient than the sputtering in the post-shock region. While H{sub 2}O can be thermally desorbed, if the accretion velocity is larger than 8 km s{sup –1} with the pre-shock gas number density of 10{sup 9} cm{sup –3}, SO is desorbed if the accretion velocity ≳2 km s{sup –1} and ≳4 km s{sup –1}, with the pre-shock density of 10{sup 9} cm{sup –3} and 10{sup 8} cm{sup –3}, respectively. We also find that the column density of hydrogen nuclei in warm post-shock gas is N {sub warm} ∼ 10{sup 21} cm{sup –2}.

  20. Damped acceleration cavities

    SciTech Connect

    Palmer, R.B.


    Structures with slots to strongly damp higher order longitudinal and transverse modes should allow the use, in linear colliders, of multiple bunches, and thus attain luminosities of over 10/sup 34/cm/sup /minus/2/sec/sup /minus/1/. Preliminary measurements on model structures suggest that such damping can be achieved. 10 refs., 9 figs.

  1. Charged Particle Tracking and Vertex Detection Group summary report

    SciTech Connect

    Hanson, G.; Meyer, D.


    Charged particle tracking is essential in order to investigate the new physics expected at the SSC. The Tracking Group studied radiation damage and rate limitations to tracking devices, vertex detectors, and central tracking. The Group concluded that silicon strips and large wire tracking chambers with small cells can probably survive at the design luminosity of 10/sup 33/ cm/sup -2/ sec/sup -1/; however, the presently designed electronics for silicon strip vertex detectors can withstand a luminosity of only 10/sup 31/ cm/sup -2/ sec/sup -1/. Wire chambers at a radius of less than about 25 cm can withstand a luminosity of less than or equal to 10/sup 32/ cm/sup -2/ sec/sup -1/ only. Actual tracking and pattern recognition in central tracking chambers at a luminosity of 10/sup 33/ cm/sup -2/ sec/sup -1/ will be very difficult because of multiple interactions within the resolving time of the chambers; detailed simulations are needed in order to decide whether tracking is indeed possible at this luminosity. Scintillating glass fibers are an interesting possibility both for vertex detectors and for central trackers, but much research and development is still needed both on the fibers themselves and on the readout.


    SciTech Connect

    Edwards, J. L.; Ziurys, L. M.


    Millimeter and sub-millimeter molecular-line observations of planetary nebula (PN) NGC 6537 (Red Spider) have been carried out using the Sub-Millimeter Telescope and the 12 m antenna of the Arizona Radio Observatory in the frequency range 86-692 GHz. CN, HCN, HNC, CCH, CS, SO, H{sub 2}CO, HCO{sup +} and N{sub 2}H{sup +}, along with the J = 3 {yields} 2 and 6 {yields} 5 lines of CO and those of several isotopologues, were detected toward the Red Spider, estimated to be {approx}1600 yr old. This extremely high excitation PN evidently fosters a rich molecular environment. The presence of CS and SO suggest that sulfur may be sequestered in molecular form in such nebulae. A radiative transfer analysis of the CO and CS spectra indicate a kinetic temperature of T{sub K} {approx} 60-80 K and gas densities of n(H{sub 2}) {approx} 1-8 Multiplication-Sign 10{sup 5} cm{sup -3} in NGC 6537. Column densities of the molecules in the nebula and their fractional abundances relative to H{sub 2} ranged from N{sub tot} {approx} 10{sup 16} cm{sup -2} and f {approx} 10{sup -4} for CO, to {approx}7 Multiplication-Sign 10{sup 11} cm{sup -2} and f {approx} 8 Multiplication-Sign 10{sup -9} for the least abundant species, N{sub 2}H{sup +}. For SO and CS, N{sub tot} {approx} 2 Multiplication-Sign 10{sup 12} cm{sup -2} and 10{sup 13} cm{sup -2}, respectively, with f {approx} 10{sup -7} and 2 Multiplication-Sign 10{sup -8}. It was also found that HCN/HNC Almost-Equal-To 2. A low {sup 12}C/{sup 13}C ratio of {approx}4 was measured, indicative of hot-bottom burning. These results, coupled with past observations, suggest that molecular abundances in PNe are governed principally by the physical and chemical properties of the individual object and its progenitor star, rather than nebular age.

  3. A study of ferrocene diffusion dynamics in network poly(ethylene oxide) polymer electrolyte by solid-state voltammetry

    SciTech Connect

    Watanabe, M.; Longmire, M.L.; Murray, R.W. )


    The diffusion rates of five ferrocene derivatives dissolved in an amorphous, cross-linked poly(ethylene oxide) (PEO) polymer electrolyte are measured by an electrochemical technique which detects the rate of their transport to an oxidizing microdisk electrode. The diffusion coefficients in dilute ferrocene/polymer solutions at 65{degree}C vary from 3 {times} 10{sup {minus}7} to 2 {times} 10{sup {minus}8} cm{sup 2} s{sup {minus}1} depending on the size of the ferrocene derivative. The diffusion coefficients decrease with increasing ferrocene concentration, increasing LiClO{sub 4} electrolyte concentration, and decreasing temperature; values approaching 10{sup {minus}10} cm{sup 2} s{sup {minus}1} are encountered at room temperature.

  4. Ultra-low density InAs quantum dots

    SciTech Connect

    Dubrovskii, V. G. Cirlin, G. E.; Brunkov, P. A.; Perimetti, U.; Akopyan, N.


    We show that InAs quantum dots (QDs) can be grown by molecular beam epitaxy (MBE) with an ultralow density of sin 10{sup 7} cm{sup -2} without any preliminary or post-growth surface treatment. The strain-induced QD formation proceeds via the standard Stranski-Krastanow mechanism, where the InAs coverage is decreased to 1.3-1.5 monolayers (MLs). By using off-cut GaAs (100) substrates, we facilitate the island nucleation in this subcritical coverage range without any growth interruption. The QD density dependences on the InAs coverage are studied by photoluminescence, atomic force microscopy, transmission electron microscopy, and are well reproduced by the universal double exponential shapes. This method enables the fabrication of InAs QDs with controllable density in the range 10{sup 7}-10{sup 8} cm{sup -2}, exhibiting bright photoluminescence.

  5. Heteronuclear ionizing collisions between laser-cooled metastable helium atoms

    SciTech Connect

    McNamara, J. M.; Stas, R. J. W.; Hogervorst, W.; Vassen, W.


    We have investigated cold ionizing heteronuclear collisions in dilute mixtures of metastable (2 {sup 3}S{sub 1}) {sup 3}He and {sup 4}He atoms, extending our previous work on the analogous homonuclear collisions [R. J. W. Stas et al., Phys. Rev. A 73, 032713 (2006)]. A simple theoretical model of such collisions enables us to calculate the heteronuclear ionization rate coefficient, for our quasiunpolarized gas, in the absence of resonant light (T=1.2 mK): K{sub 34}{sup (th)}=2.4x10{sup -10} cm{sup 3}/s. This calculation is supported by a measurement of K{sub 34} using magneto-optically trapped mixtures containing about 1x10{sup 8} atoms of each species, K{sub 34}{sup (exp)}=2.5(8)x10{sup -10} cm{sup 3}/s. Theory and experiment show good agreement.

  6. Hydrogen concentration and distribution in high-purity germanium crystals

    SciTech Connect

    Hansen, W.L.; Haller, E.E.; Luke, P.N.


    High-purity germanium crystals used for making nuclear radiation detectors are usually grown in a hydrogen ambient from a melt contained in a high-purity silica crucible. The benefits and problems encountered in using a hydrogen ambient are reviewed. A hydrogen concentration of about 2 x 10/sup 15/cm/sup -3/ has been determined by growing crystals in hydrogen spiked with tritium and counting the tritium ..beta..-decays in detectors made from these crystals. Annealing studies show that the hydrogen is strongly bound, either to defects or as H/sub 2/ with a dissociation energy > 3 eV. This is lowered to 1.8 eV when copper is present. Etching defects in dislocation-free crystals grown in hydrogen have been found by etch stripping to have a density of about 1 x 10/sup 7/ cm/sup -3/ and are estimated to contain 10/sup 8/ H atoms each.

  7. Photoelectric and electrical properties of soluble polyphenylquinolines containing an oxygen or phenylamine bridge group between quinoline moieties

    SciTech Connect

    Aleksandrova, E. L.; Svetlychnyi, V. M. Miagkova, L. A.; Nekrasova, T. N.; Tameev, A. R.; Vannikov, A. V.; Kudryavtsev, V. V.


    Photoelectric and electrical properties of polyphenylquinolines differing in the structure of donor bridge groups between quinoline moieties have been studied. It is demonstrated that films of the polymers synthesized exhibit a photosensitivity at the level of 10{sup 5} cm{sup 2} J{sup -1} (integrated sensitivity 5 x 10{sup -4} lx{sup -1} . s{sup -1}), with a quantum yield of carrier photogeneration of 0.07 and a carrier drift mobility on the order of 10{sup -6} cm{sup 2} V{sup -1} s{sup -1}. The fact that the electron and hole drift mobilities in polyphenylquinoline with a phenylamine bridge group are balanced makes the polymer promising for development of film-type devices based on the bipolar conductivity of a material (e.g., single-layer light-emitting diode)

  8. InP synthesis by the synthesis, solute diffusion (SSD) method using glassy-carbon crucibles

    SciTech Connect

    Miskys, C.R.; Oliveira, C.E.M. de; Carvalho, M.M.G. de


    An Indium Phosphide (InP) Synthesis system by the Synthesis, Solute Diffusion (SSD) method has been built. It provides high purity InP charges with low carrier densities (3 {times} 10{sup 14} to 2 {times} 10{sup 15} cm{sup {minus}3}) to be used as starting material for InP single-crystal Liquid Encapsulated Czochralski (LEC) growth. Glassy-carbon is a refractory material with low vapor pressure that can be moulded in various forms and sizes. Indeed the glassy-carbon crucible is reusable after the synthesis because InP does not stick to its walls. Preliminary electrical characteristics measurements showed residual carrier concentration below 3 {times} 10{sup 15} cm{sup {minus}3}. These results are comparable with those achieved utilizing quartz crucibles. The features denoted makes glassy-carbon an interesting alternative in comparison with quartz and PBN crucibles.

  9. Thermal property measurements in a fresh pumice flow at Mt. St. Helens

    SciTech Connect

    Hardee, H.C.


    A thermal penetrator that was air dropped into a freshly emplaced pumice flow at Mt. St. Helens yielded information on the in-situ thermal properties of the pumice. The in-situ conductivity-density-specific heat product at a depth of 60 cm was found to be 7.24 x 10/sup -5/ cal/sup 2/cm//sup 4/ s- /sup 0/C/sup 2/ at an average pumice temperature of 200 /sup 0/C. Using this data, values for the average in-situ thermal conductivity (2.9 x 10/sup -4/ cal/cm-s-/sup 0/C) and thermal diffusivity (1.2 x 10/sup -3/ cm/sup 2//s) were estimated. These thermal properties are of use in studies of pumice cooling and in the interpretation of infrared remote sensing data.

  10. Electrical Properties of Er-doped In0.53Ga0.47As

    SciTech Connect

    Burke, Peter G.; Lu, Hong; Rudawski, Nicholas G.; Stemmer, Susanne; Gossard, Arthur C.; Bahk, Je-Hyeong; Bowers, John E.


    The electrical properties of In0.53Ga0.47As As thin films Er-doped to concentrations of 1.5×10<sup>17 –7.2×10<sup>20 cm>-3 grown by molecular beam epitaxy at 490 °C on (001) InP substrates were studied. Electrical conductivity, carrier density, and carrier mobility as a function of Er doping were measured by Hall effect at temperatures of 20–750 K. Additionally, high-angle annular dark-field scanning transmission electron microscopy and infrared absorption spectroscopy confirmed the presence of epitaxially embedded ErAs nanoparticles at Er concentrations ≥8×10<sup>19 cm>-3. The observed electrical properties are discussed in terms of the dependence of ErAs nanoparticle formation with Er doping.

  11. Impact of ethylene carbonate on ion transport characteristics of PVdF-AgCF{sub 3}SO{sub 3} polymer electrolyte system

    SciTech Connect

    Austin Suthanthiraraj, S.; Joice Sheeba, D.; Joseph Paul, B.


    The ionic transport in thin film plasticized polymer electrolytes based on polyvinylidene fluoride (PVdF) as the polymer host, silver triflate (AgCF{sub 3}SO{sub 3}) as salt and ethylene carbonate (EC) as plasticizer prepared by solution casting technique has been reported. Addition of silver triflate has resulted in an increase in the room temperature (298 K) electrical conductivity of the polymer from 10{sup -6} to 10{sup -5} S cm{sup -1} whereas incorporation of EC as the plasticizer has further enhanced the conductivity value by an order of magnitude to 10{sup -4} S cm{sup -1} owing to the possible decrease in crystallinity of the polymer matrix as revealed by the detailed temperature-dependent complex impedance, silver ionic transference number, Fourier transform infrared and X-ray diffraction measurements.

  12. Versatile, high-sensitivity faraday cup array for ion implanters


    Musket, Ronald G.; Patterson, Robert G.


    An improved Faraday cup array for determining the dose of ions delivered to a substrate during ion implantation and for monitoring the uniformity of the dose delivered to the substrate. The improved Faraday cup array incorporates a variable size ion beam aperture by changing only an insertable plate that defines the aperture without changing the position of the Faraday cups which are positioned for the operation of the largest ion beam aperture. The design enables the dose sensitivity range, typically 10.sup.11 -10.sup.18 ions/cm.sup.2 to be extended to below 10.sup.6 ions/cm.sup.2. The insertable plate/aperture arrangement is structurally simple and enables scaling to aperture areas between <1 cm.sup.2 and >750 cm.sup.2, and enables ultra-high vacuum (UHV) applications by incorporation of UHV-compatible materials.

  13. Effect of the defectiveness of semiconductor on the characteristics of Pd-GaAs contacts

    SciTech Connect

    Parkhomenko, R.P.; Glushchenko, V.A.; Yakubenya, M.P.; Grigor'ev, Yu.A.; Potrepalov, A.A.


    A study was made of the volt-ampere characteristics of Pd-GaAs Schottky barriers in relation to the defectiveness of the gallium arsenide. The defect content of the material was checked metallographically and by the method of x-ray topography. Single crystals of GaAs doped with Ge, Ge + Sb, and Ge + In were studied. Here, the electron concentration was (1-4) /times/ 10/sup 16/ cm/sup /minus/3/, and mean dislocation density ranged from 4 /times/ 10/sup 4/ to 2 /times/ 10/sup 2/ cm/sup /minus/2/. The defectiveness of the material was altered by the introduction of different concentrations of isovalent impurities. It was shown that for diodes produced by the same technology, the manifestation of low-temperature VAC anomalies and the current mechanism are determined by structural features of the semiconductor (by dislocations and microdefects).

  14. Measurement and Modeling of Density-Sensitive Lines of Fe XIII in the Extreme Ultraviolet

    SciTech Connect

    Yamamoto, N; Kato, T; Beiersdorfer, P; Lepson, J K


    We present an analysis of the spectral emission of Fe XIII near 200 {angstrom}. High resolution spectra were recorded at two densities ({approx} x 10{sup 11} and {approx} 10{sup 13} cm{sup -3}) in the laboratory and compared to collisional radiative model calculations based on the CHIANTI data base as well as to models using atomic data from distorted-wave and R-matrix calculations. The Fe XIII lines in this wavelength range are sensitive indicators of plasma density below {approx} 10{sup 11} cm{sup -3}. The laboratory data thus test the calculations in the astrophysically high-density limit. Significant differences between the measurements and models were found for several line ratios. Differences in the wavelengths employed in the different models also changed the agreement with the measurements. Best agreement was found in the comparisons with CHIANTI.

  15. Magnetic trap for thulium atoms

    SciTech Connect

    Sukachev, D D; Sokolov, A V; Chebakov, K A; Akimov, A V; Kolachevskii, N N; Sorokin, Vadim N


    For the first time ultra-cold thulium atoms were trapped in a magnetic quadrupole trap with a small field gradient (20 Gs cm{sup -1}). The atoms were loaded from a cloud containing 4x10{sup 5} atoms that were preliminarily cooled in a magneto-optical trap to the sub-Doppler temperature of 80 {mu}K. As many as 4x10{sup 4} atoms were trapped in the magnetic trap at the temperature of 40 {mu}K. By the character of trap population decay the lifetime of atoms was determined (0.5 s) and an upper estimate was obtained for the rate constant of inelastic binary collisions for spin-polarised thulium atoms in the ground state (g{sub in} < 10{sup -11}cm{sup 3} s{sup -1}). (magnetic traps)

  16. Atriopeptin II stimulates chloride secretion in the isolated operculum epithelium of Fundulus heteroclitus

    SciTech Connect

    Zadunaisky, J.A.; Scheide, J.I.


    Whole killifish efflux of /sup 36/Cl was increased more than 2x with the addition of 1.4 x 10/sup -7/ M atriopeptin (ANF) to the seawater bath. Atriopeptin II (10/sup -7/ M) added serosally to the isolated Fundulus heteroclitus opercular epithelium resulted in a consistent stimulation of the short-circuit current, from 129.5 +/- 12.3 to 153.5 +/- 13.4 2/. Tissue resistance was decreased 10% from 114.9 +/- 14.2 to 103.9 +/- 11.8 Omega x cm/sup 2/ indicating a change in chloride conductance. The effect of ANF was maximal at 10/sup -7/M and mucosal addition of ANF was ineffective in stimulating the opercular current. The ANF current stimulation did not interfere with the isoproterenol (10/sup -6/ M) response but ANF did not stimulate the current if added after isoproterenol. Serosal addition of propranolol (10/sup -5/ M), sufficient to inhibit 10/sup -6/ M isoproterenol, had no effect on the ANF response. The serosal addition of 10/sup -6/ M tetrodotoxin or 10/sup -4/ M diltiazem did not inhibit the ANF response. The stimulatory effect observed by ANF did not involve the isoproterenol receptor or nerve activation; however, it was a distinct stimulatory response on the isolated opercular epithelium.

  17. Microstructure damage of thin aluminum films by irradiation with alpha particles and fission fragments

    SciTech Connect

    Sadi, S.; Paulenova, A.; Loveland, W.D.; Watson, P.R.


    The atomic force microscopy (AFM) has been used to study the microstructure damage of thin aluminum film surfaces induced by bombardment of alpha particles and fission fragments from {sup 252}Cf source. Different types of defects (dislocations lines, loops, voids, and blisters) and their complex morphologies appeared under both the beam of alpha particles and a mix of alpha particles and fission fragments. The first surface damage became clearly visible only after 250 hr irradiation of a mix of alpha particles and fission fragments (8.65 x 10{sup 8} ff/cm{sup 2} and 1.36 x 10{sup 10} {alpha}/cm{sup 2}). The number of voids and dislocation lines created on the aluminum surface were (3.8 {+-} 0.8) x 10{sup 7} cm{sup -2} and (2.1 {+-} 0.8) x 10{sup 6} cm{sup -2}, respectively. Single blisters were observed with the mean diameter of (933 {+-} 22) nm and the mean height of (102 {+-} 15) nm. The first ellipsoidal dislocation loops appeared at the fluence of (1.03 x 10{sup 9} ff/cm{sup 2} and 1.62 x 10{sup 10} {alpha}/cm{sup 2}). However, these ellipsoidal loops were not seen with low energetic alpha particles at the same fluence. Our results suggest that the fission fragments might maximize large voids and dislocations and increase the degradation in depth resolution. (authors)

  18. Study of damage induced by room-temperature Al ion implantation in Hg{sub 0.8}Cd{sub 0.2}Te by x-ray diffuse scattering

    SciTech Connect

    Renault, P.O.; Declemy, A.; Leveque, P.; Fayoux, C.; Bessiere, M.; Lefebvre, S.; Corbel, C.; Baroux, L.


    Ion-implantation is a widely used doping technique in II{endash}VI semiconductors. Nevertheless, ion-implantation damage has to be better understood to properly control this process. In order to investigate the implantation-induced defects in such compounds, room-temperature implantations of 320 keV Al ions have been performed on crystalline samples of [111] Hg{sub 1{minus}x}Cd{sub x}Te (x{approx}20{percent}) for doses ranging from 10{sup 13} to 10{sup 15}cm{sup {minus}2}. We report the first measurements of x-ray diffuse scattering close to different Bragg reflections on such as-implanted samples. The evolution of the diffuse intensity as a function of the dose has been observed. The defect-induced diffuse intensity arises mainly from interstitial dislocation loops. Nevertheless, vacancy loops are observed above 3{times}10{sup 14}Al/cm{sup 2}. The mean radius of the dislocation loops increases in size by three to four times when the dose rises from 10{sup 13} to 10{sup 15}cm{sup {minus}2}. Finally, the saturation of point defects has been observed independently of their clustering at about 5{times}10{sup 13}Al/cm{sup 2}, that is in the same range as the saturation dose of the sheet electron concentration. {copyright} {ital 1997 American Institute of Physics.}

  19. Gold and silver in stream sediments from reconnaissance of 3 x 10/sup 5/ KM/sup 2/ of the western United States

    SciTech Connect

    Van Konynenburg, R.A.; McMillan, G.G.; Higgins, G.H.


    As part of the National Uranium Resource Evaluation (NURE) Program, Lawrence Livermore National Laboratory analyzed about 30,000 stream sediment samples from selected areas of the western United States for numerous chemical elements. The analysis was performed by neutron activation. Data for the concentrations of gold and silver for the samples in which they were detected are presented. Gold was detected in 310 samples, and silver in 19. Latitudes and longitudes are given for the sites from which these samples were taken.

  20. Geologic form and setting of a hydrothermal vent field at latitude 10/sup 0/56'N, East Pacific Rise: a detailed study using Angus and Alvin

    SciTech Connect

    McConachy, T.F.; Ballard, R.D.; Mottl, M.J.; Von Herzen, R.P.


    A hydrothermal vent field, here called the Feather Duster site, occurs on the eastern marginal high near the edge of a narrow (95-m) and shallow (15-20-m) axial graben, within an area dominated by sheet flows and collapse features. The sheet flows are intermediate in relative age between younger fluid-flow lavas on the floor of the axial graben and older pillow (constructional) lavas on the marginal highs. Hydrothermal activity occurs in two zones within a 65 by 45 m area. The main zone is located where a fissure system and sulfide-sulfate chimneys vent warm (9-47/sup 0/C) and hot (347/sup 0/C) hydrothermal fluids. Here, two mounds of massive sulfide totaling about 200 t are forming. One occurs at the base of a 3-m-high scarp which is the wall of a drained lava lake; the other is perched on top of the scarp. 19 references, 4 figures.

  1. L-shell emission from high-Z solid targets by intense (10{sup 19}W/cm{sup 2}) irradiation with a 248nm laser

    SciTech Connect

    Nelson, T. R.; Borisov, A. B.; Boyer, K.; Schroeder, W. A.; Santoro, J.; Van Tassle, A. J.; Rhodes, C. K.; Luk, T. S.; Cameron, S.; Longworth, J. W.; McPherson, A.


    Efficient (1.2% yield) multikilovolt x-ray emission from Ba(L) (2.4--2.8{angstrom}) and Gd(L) (1.7--2.1{angstrom}) is produced by ultraviolet (248nm) laser-excited BaF{sub 2} and Gd solids. The high efficiency is attributed to an inner shell-selective collisional electron ejection.

  2. Percutaneous absorption of (7. 10-/sup 14/C)benzo(a)pyrene and (7,12-/sup 14/C)dimethylbenz(a)anthracene in mice

    SciTech Connect

    Sanders, C.L.; Skinner, C.; Gelman, R.A.


    The percutaneous penetration, tissue distribution, and excretion of /sup 14/C-labeled benzo(a)pyrene (BaP) and dimethylbenz(a)anthracene (DMBA) were studied in mice. Both BaP and DMBA rapidly penetrated the skin and were excreted more in the feces than in the urine. The proportion of BaP or DMBA absorbed was less with increasing applied dose due to apparent saturation of the uptake process. Uptake from the dorsal skin of the nose was similar to uptake from the dorsal nuchal skin. 24 references.

  3. Heavy ion collisions with A = 10/sup 57/: Aspects of nuclear stability and the nuclear equation of state in coalescing neutron-star binary systems

    SciTech Connect

    Mathews, G.J.; Wilson, J.R.; Evans, C.R.; Detweiler, S.L.


    The dynamics of the final stages of the coalescence of two neturon stars (such as the binary pulsar PSR 1913+16) is an unsolved problem in astrophysics. Such systems are probably efficient generators of gravitational radiation, and may be significant contributors to heavy-element nucleosynthesis. The input physics for the study of such systems is similar to that required for the strudy of heavy-ion collision hydrodynamics; e.g., a finite temperature nuclear equation of state, properties of nuclei away from stability, etc. We discuss the development of a relativistic hydrodynamics code in three spatial dimensions for the purpose of studying such neutron-star systems. The properties of the mass-radius relation (determined by the nuclear equation of state) may lead to a proposed mechanism by which hot, highly neutronized matter is ejected from the coalescing stars. This material is photodisintegrated into a free (mostly) neutron gas which may subsequently experience rapid-neutron capture (r-process) nucleosynthesis. 15 refs., 4 figs.

  4. Operation of a high-P/sub T spectrometer arm at 10/sup 33 cm-2 sec-1 with praticle identification

    NASA Astrophysics Data System (ADS)

    Aronson, S.; Goldberg, M.; Holder, M.; Loh, E.


    A high-PT spectrometer pair as a prototype high luminosity experiment was presented. An updated version of this apparatus is considered with the following questions: (1) Rate capabilities required to cope with L = 10 to the 33rd power sq cm sec -1; (2) segmentation needed to deal with the particle densities expected in high PT jets; (3) is the resulting device within the reach of present technology. The current version of the device and the expected rates is presented. The rates an the segmentation of the components and the results of calculations related to event pile up and triggering are discussed. It is concluded that particle identification is feasible at these rates.

  5. Studies of Pulsed Plasma-Ion Streams During Their Free Propagation And Interaction With Carbon-Tungsten Targets In PF-1000 Facility

    SciTech Connect

    Skladnik-Sadowska, E.; Malinowski, K.; Marchenko, A.; Sadowski, M. J.; Scholz, M.; Karpinski, L.; Paduch, M.; Zielinska, B.; Gribkov, V. A.


    The paper presents results of recent experimental studies within the PF-1000 plasma-focus facility [1], which were performed during the free propagation of pulsed plasma-ion streams inside the vacuum chamber, and during their interaction with different targets. Optical spectra were recorder by means of a Mechelle registered 900 spectrometer operated with some delays in relation to the discharge current peculiarity (dip) and with exposition varied from 100 ns to 100 {mu}s. The recorded spectral lines were used to estimate the density of the free-propagating plasma stream. The electron concentration, as estimated from the Stark broadening of the D{sub {beta}} line recorded at a distance of z = 30 cm from the electrode ends, changed from about 4x10{sup 17} cm{sup -3} to 2x10{sup 16} cm{sup -3} in about 30 {mu}s. Analogous spectroscopic measurements were carried out in experiments performed with targets made of carbon and sintered tungsten, which were placed at a distance of 15 cm from the electrode outlet, where q = 10{sup 10} W/cm{sup 2}, and at a distance of 30 cm, where q = 10{sup 9} W/cm{sup 2}. Particular attention was paid to investigation of a plasma layer formed in the front of the target. In that case the electron density, as estimated on the basis of carbon-and deuterium-ion lines, changed from about 3x10{sup 18} cm{sup -3} to 3x10{sup 16} cm{sup -3} in 30 {mu}s. For the target made of the sintered tungsten, which was placed at a distance of 30 cm, the recorded optical spectr a showed intense D{sub {alpha}} and D{sub {beta}} lines as well as CII-CIV lines, which covered tungsten (WI and WII) lines.


    SciTech Connect

    Henley, David B.; Shelton, Robin L.


    We present measurements of the Galactic halo's X-ray emission for 110 XMM-Newton sight lines selected to minimize contamination from solar wind charge exchange emission. We detect emission from few million degree gas on {approx}4/5 of our sight lines. The temperature is fairly uniform (median = 2.22 Multiplication-Sign 10{sup 6} K, interquartile range = 0.63 Multiplication-Sign 10{sup 6} K), while the emission measure and intrinsic 0.5-2.0 keV surface brightness vary by over an order of magnitude ({approx}(0.4-7) Multiplication-Sign 10{sup -3} cm{sup -6} pc and {approx}(0.5-7) Multiplication-Sign 10{sup -12} erg cm{sup -2} s{sup -1} deg{sup -2}, respectively, with median detections of 1.9 Multiplication-Sign 10{sup -3} cm{sup -6} pc and 1.5 Multiplication-Sign 10{sup -12} erg cm{sup -2} s{sup -1} deg{sup -2}, respectively). The high-latitude sky contains a patchy distribution of few million degree gas. This gas exhibits a general increase in emission measure toward the inner Galaxy in the southern Galactic hemisphere. However, there is no tendency for our observed emission measures to decrease with increasing Galactic latitude, contrary to what is expected for a disk-like halo morphology. The measured temperatures, brightnesses, and spatial distributions of the gas can be used to place constraints on models for the dominant heating sources of the halo. We provide some discussion of such heating sources, but defer comparisons between the observations and detailed models to a later paper.


    SciTech Connect

    Codella, C.; Vasta, M.; Ceccarelli, C.; Lefloch, B.; Faure, A.; Wiesenfeld, L.; Salez, M.; Cabrit, S.; Viti, S.


    We present the first detection of hydrogen chloride in a protostellar shock by observing the fundamental transition at 626 GHz with the HIFI spectrometer. We detected two of the three hyperfine lines from which we derived a line opacity {<=}1. Using a non-local thermodynamic equilibrium large velocity gradient code, we constrained the HCl column density, temperature, and density of the emitting gas. The hypothesis that the emission originates in the molecular cloud is ruled out because it would imply a very dense gas. Conversely, assuming that the emission originates in the 10''-15'' size shocked gas previously observed at the IRAM Plateau de Bure Interferometer, we obtain N(HCl) = 0.7-2 Multiplication-Sign 10{sup 13} cm{sup -2}, temperature >15 K, and density >3 Multiplication-Sign 10{sup 5} cm{sup -3}. Combining these with the Herschel HIFI CO(5-4) observations allows us to further constrain the gas density and temperature, 10{sup 5}-10{sup 6} cm{sup -3} and 120-250 K, respectively, as well as the HCl column density, 2 Multiplication-Sign 10{sup 13} cm{sup -2}, and, finally, the abundance {approx}3-6 Multiplication-Sign 10{sup -9}. The estimated HCl abundance is consistent with that previously observed in low- and high-mass protostars. This puzzling result in the L1157-B1 shock, where species from volatile and refractory grain components are enhanced, suggests either that HCl is not the main reservoir of chlorine in the gas phase, which goes against previous chemical model predictions, or that the elemental chlorine abundance is low in L1157-B1. Astrochemical modeling suggests that HCl is in fact formed in the gas phase at low temperatures prior to the occurrence of the shock; the latter does not enhance its abundance.

  8. Irradiation-assisted stress corrosion cracking of model austenitic stainless steel.

    SciTech Connect

    Chung, H. M.; Ruther, W. E.; Strain, R. V.; Shack, W. J.; Karlsen, T. M.


    Slow-strain-rate tensile (SSRT) tests were conducted on model austenitic stainless steel (SS) alloys that were irradiated at 289 C in He. After irradiation to {approx}0.3 x 10{sup 21} n {center_dot} cm{sup 2} and {approx} 0.9 x 10{sup 21} n {center_dot} cm{sup -2} (E > 1 MeV), significant heat-to-heat variations in the degree of intergranular and transgranular stress corrosion cracking (IGSCC and TGSCC) were observed. At {approx}0.3 x 10{sup 21} n {center_dot} cm{sup -2}, a high-purity heat of Type 316L SS that contains a very low concentration of Si exhibited the highest susceptibility to IGSCC. In unirradiated state, Types 304 and 304L SS did not exhibit a systematic effect of Si content on alloy strength. However, at {approx}0.3 x 10{sup 21} n {center_dot} cm{sup -2}, yield and maximum strengths decreased significantly as Si content was increased to >0.9 wt.%. Among alloys that contain low concentrations of C and N, ductility and resistance to TGSCC and IGSCC were significantly greater for alloys with >0.9 wt.% Si than for alloys with <0.47 wt.% Si. Initial data at {approx}0.9 x 10{sup 21} n {center_dot} cm{sup -2} were also consistent with the beneficial effect of high Si content. This indicates that to delay onset of and reduce susceptibility to irradiation-assisted stress corrosion cracking (IASCC), at least at low fluence levels, it is helpful to ensure a certain minimum concentration of Si. High concentrations of Cr were also beneficial; alloys that contain <15.5 wt.% Cr exhibited greater susceptibility to IASCC than alloys with {approx}18 wt.% Cr, whereas an alloy that contains >21 wt.% Cr exhibited less susceptibility than the lower-Cr alloys under similar conditions.

  9. Interface trap density and mobility extraction in InGaAs buried quantum well metal-oxide-semiconductor field-effect-transistors by gated Hall method

    SciTech Connect

    Chidambaram, Thenappan; Madisetti, Shailesh; Greene, Andrew; Yakimov, Michael; Tokranov, Vadim; Oktyabrsky, Serge; Veksler, Dmitry; Hill, Richard


    In this work, we are using a gated Hall method for measurement of free carrier density and electron mobility in buried InGaAs quantum well metal-oxide-semiconductor field-effect-transistor channels. At room temperature, mobility over 8000 cm{sup 2}/Vs is observed at ∼1.4 × 10{sup 12} cm{sup −2}. Temperature dependence of the electron mobility gives the evidence that remote Coulomb scattering dominates at electron density <2 × 10{sup 11} cm{sup −2}. Spectrum of the interface/border traps is quantified from comparison of Hall data with capacitance-voltage measurements or electrostatic modeling. Above the threshold voltage, gate control is strongly limited by fast traps that cannot be distinguished from free channel carriers just by capacitance-based methods and can be the reason for significant overestimation of channel density and underestimation of carrier mobility from transistor measurements.

  10. Conductivity compensation in p-6H-SiC in irradiation with 8-MeV protons

    SciTech Connect

    Lebedev, A. A.; Kozlovski, V. V.; Belov, S. V.; Bogdanova, E. V.; Oganesyan, G. A.


    Carrier removal rate (V{sub d}) in p-6H-SiC in its irradiation with 8-MeV protons has been studied. The p-6H-SiC samples were produced by sublimation in vacuum. V{sub d} was determined by analysis of capacitance-voltage characteristics and from results of Hall effect measurements. It was found that complete compensation of samples with initial value of N{sub a} - N{sub d} Almost-Equal-To 1.5 Multiplication-Sign 10{sup 18} cm{sup -3} occurs at an irradiation dose of {approx}1.1 Multiplication-Sign 10{sup 16} cm{sup -2}. In this case, the carrier removal rate was {approx}130 cm{sup -1}.

  11. Hyperfine relaxation of an optically pumped cesium vapor

    SciTech Connect

    Tornos, J.; Amare, J.C.


    The relaxation of hyperfine orientation indirectly induced by optical pumping with a sigma-polarized D/sub 1/-light in a cesium vapor in the presence of Ar is experimentally studied. The detection technique ensures the absence of quadrupole relaxation contributions in the relaxation signals. The results from the dependences of the hyperfine relaxation rate on the temperature and argon pressure are: diffusion coefficient of Cs in Ar, D/sub 0/ = 0.101 +- 0.010 cm/sup 2/s/sup -1/ at 0/sup 0/C and 760 Torr; relaxation cross section by Cs-Ar collisions, sigma/sub c/ = (104 +- 5) x 10/sup -23/ cm/sup 2/; relaxation cross section by Cs-Cs (spin exchange) collisions, sigma/sub e//sub x/ = (1.63 +- 0.13) x 10/sup -14/ cm/sup 2/.

  12. The Super Fixed Target beauty facility at the SSC

    SciTech Connect

    Lau, Kwong; The SFT Collaboration


    The rationale for pursuing beauty physics at the SSC in a fixed target configuration is described. The increased beauty production cross section at the SSC, combined with high interaction rate capability of the proposed detector, results in 10{sup 10{minus}11} produced BB events per year. The long decay length of the B hadrons ({approx_equal} 10 cm) allows direct observation of B decays in the high resolution silicon microstrip vertex detector. To optimize the operation of the proposed beauty spectrometer and the SSC, parasitic extraction of attendant or artificially generated large amplitude protons using crystal channeling is proposed and explored. The large sample of fully reconstructed B events allows detailed studies of various CP violating decays with requisite statistics to confront the standard model. The CP physics potential of the proposed experiment is evaluated and compared with alternative approaches, such as symmetric e{sup +}e{sup {minus}} B Factories and specialized hadron colliders.

  13. Epidermal growth factor-mediated effects on equine vascular smooth muscle cells

    SciTech Connect

    Grosenbaugh, D.A.; Amoss, M.S.; Hood, D.M.; Morgan, S.J.; Williams, J.D. )


    Epidermal growth factor (EGF) receptor binding kinetics and EGF-mediated stimulation of DNA synthesis and cellular proliferation were studied in cultured vascular smooth muscle cells (VSMC) from the equine thoracic aorta. Binding studies, using murine {sup 125}I-labeled EGF, indicate the presence of a single class of high-affinity binding sites, with an estimated maximal binding capacity of 5,800 sites/cells. EGF stimulated ({sup 3}H)thymidine uptake in confluent quiescent monolayers in a dose-dependent fashion, half-maximal stimulation occurring at 7.5 {times} 10{sup {minus}11} M. Likewise, EGF-mediated cellular proliferation was dose dependent under reduced serum concentrations. Equine VSMC contain specific receptors for EGF, and EGF can stimulate DNA synthesis and proliferation in these cultured cells, which suggests that EGF may participate in the proliferative changes observed in equine distal digital peripheral vascular disease.

  14. Fabrication of an infrared bolometer with a high T sub c superconducting thermometer

    SciTech Connect

    Vergjese, S.; Richards, P.L. . Dept. of Physics Lawrence Berkeley Lab., CA ); Char, K.; Sachtjen, S.A. )


    A sensitive high {Tc} superconducting bolometer has been fabricated on a 20 {mu}m thick sapphire substrate with a YBCO thin film transition edge thermometer. Optical measurements with a He-Ne laser gave a noise equivalent power of 2.4{center dot}10{sup {minus}11} W/Hz{sup 1/2} at 10 Hz and a responsivity of 17 V/W in good agreement with electrical bolometer measurements. Gold black smoke was then deposited on the back side of the assembled bolometer as an absorber. Spectral measurements on a Fourier transform spectrometer show that the bolometer has useful sensitivity from visible wavelengths to beyond {approximately}100 {mu}m. This performance is clearly superior to that of a commercial room temperature pyroelectric detector. Some improvement appears possible. 10 refs., 5 figs.

  15. Anomalous effects in the character of the carbonyl absorption (ca. 1700 cm/sup -1/) in the infrared spectra of petroleum resins and asphaltenes

    SciTech Connect

    Speight, J.G.; Moschopedis, S.E.


    The presence of the carbonyl functional groups in asphaltenes and resins were detected by ir spectroscopy following saponification. By following the spectra through a reaction sequence, the bituminous extracts from fresh oil sands showed the presence of esters and carboxylic acids. The extracts from a hot water process showed either carboxylic acids or esters. 1 figure, 2 tables.

  16. Polymer-based solar cells having an active area of 1.6 cm{sup 2} fabricated via spray coating

    SciTech Connect

    Scarratt, N. W.; Griffin, J.; Zhang, Y.; Lidzey, D. G.; Wang, T.; Yi, H.; Iraqi, A.


    We demonstrate the fabrication of polymer solar cells in which both a PEDOT:PSS hole transport and a PCDTBT:PC{sub 71}BM photoactive layer are deposited by spray-casting. Two device geometries are explored, with devices having a pixel area of 165 mm{sup 2} attaining a power conversion efficiency of 3.7%. Surface metrology indicates that the PEDOT:PSS and PCDTBT:PC{sub 71}BM layers have a roughness of 2.57 nm and 1.18 nm over an area of 100 μm{sup 2}. Light beam induced current mapping reveals fluctuations in current generation efficiency over length-scales of ∼2 mm, with the average photocurrent being 75% of its maximum value.

  17. Open-circuit voltage, fill factor, and efficiency of a CdS/CdTe solar cell

    SciTech Connect

    Kosyachenko, L. A. Grushko, E. V.


    The dependences of the open-circuit voltage, fill factor, and efficiency of the thin-film CdS/CdTe solar cell on the resistivity {rho} and carrier lifetime {tau} in the absorbing CdTe layer were studied. In the common case in which the uncompensated acceptor concentration and the electron lifetime in the CdTe layer are within 10{sup 15}-10{sup 16} cm{sup -3} and 10{sup -10}-10{sup -9} s, the calculation results correspond to the achieved efficiency of the best thin-film CdS/CdTe solar cells. It was shown that, by decreasing {rho} and increasing {tau} in the absorbing CdTe layer, the open-circuit voltage, fill factor, and efficiency can be substantially increased, with their values approaching the theoretical limit for such devices.

  18. Synthesis of p-azobenzenediazoaminoazobenzene sulfonic acid and its application for spectrophotometric determination of cadmium

    SciTech Connect

    Jiang Wanquan; Zhu Yurui ); Teng Enjiang; Wei Fusheng )


    The synthesis and characteristics of a new chromogenic reagent p-azobenzenediazoaminoazobenzene sulfonic acid (ADAAS) is reported. ADAAS forms a dark-violet red complex with cadmium in the presence of Triton X-100 and in ammonia medium. The molar absorptivity of the complex is 2.02 {times} 10{sup 5} 1 mol{sup {minus}1} cm{sup {minus}1} at 532 nm, and the formation constant of the complex is 6 {times} 10{sup 21}. Beer's law is obeyed for cadmium concentrations of between 3.6 {times} 10{sup {minus}8} M and 4.3 {times} 10{sup {minus}6} M. The effect of foreign ion can been eliminated completely by use of masking agents. The proposed method has been used for the determination of trace amounts of cadmium in water samples.

  19. Low energy Mott polarimetry of electrons from negative electron affinity photocathodes

    SciTech Connect

    Ciccacci, F.; De Rossi, S.; Campbell, D.M.


    We present data on the spin polarization {ital P} and quantum yield {ital Y} of electrons photoemitted from negative electron affinity semiconductors, including GaAs(100), GaAsP(100) alloy, and strained GaAs layer epitaxially grown on a GaAsP(100) buffer. Near photothreshold the following values for {ital P}({ital Y}) are, respectively, obtained: 26% (2.5{times}10{sup {minus}2}), 40% (1{times}10{sup {minus}3}), and 60% (1.5{times}10{sup {minus}4}). We describe in detail the apparatus used containing a low energy (10--25 keV) Mott polarimeter. The system, completely fitted in a small volume ({similar_to}10{sup 4} cm{sup 3}) ultrahigh vacuum chamber, is intended as a test facility for characterizing candidate photocathode materials for spin polarized electron sources. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  20. Influence of radiation defects on electrical losses in silicon diodes irradiated with electrons

    SciTech Connect

    Poklonski, N. A. Gorbachuk, N. I.; Shpakovski, S. V.; Lastovskii, S. B.; Wieck, A.


    Silicon diodes with a p{sup +}-n junction irradiated with 3.5-MeV electrons (the fluence ranged from 10{sup 15} to 4 x 10{sup 16} cm{sup -2}) have been studied. It is established that the dependence of the tangent of the angle of electrical losses tan{delta} on the frequency f of alternating current in the range f = 10{sup 2}-10{sup 6} Hz is a nonmonotonic function with two extrema: a minimum and a maximum. Transformation of the dependences tan{delta}(f) as the electron fluence and annealing temperature are increased is caused by a variation in the resistance of n-Si (the base region of the diodes) as a result of accumulation (as the fluence is increased) or disappearance and reconfiguration (in the course of annealing) of radiation defects. The role of time lag of the defect recharging in the formation of tan{delta}(f) is insignificant.

  1. Tunable two-mode Cr{sup 2+} : ZnSe laser with a frequency-noise spectral density of 0.03 Hz Hz{sup -1/2}

    SciTech Connect

    Gubin, Mikhail A; Kireev, A N; Kozlovskii, Vladimir I; Korostelin, Yurii V; Pnev, A B; Podmar'kov, Yu P; Tyurikov, D A; Frolov, M P; Shelestov, D A; Shelkovnikov, Aleksandr S


    An optically pumped cw laser on a Cr{sup 2+} : ZnSe crystal with a tunable (in the range of 2.3 - 2 .6 mm) wavelength, operating with generation of two axial modes, has been developed. It is shown that the minimum laser frequency-noise spectral density does not exceed 0.03 Hz Hz{sup -1/2}. Application of this laser in problems of Doppler and Doppler-free spectroscopy makes it possible to detect spectral absorption lines of gases with sensitivities of 5 Multiplication-Sign 10{sup -12} and 2 Multiplication-Sign 10{sup -10} cm{sup -1}, respectively (averaging time {tau} = 1 s). Having stabilised this laser with respect to the Doppler-free resonances of saturated dispersion of methane molecule, one can obtain a short-term frequency stability of 10{sup -15} - 10{sup -16} ({tau} = 1 s).

  2. High-resolution surveys of the Sagittarius a molecular cloud complex in ammonia, carbon monoxide, and isocyanic acid

    SciTech Connect

    Armstrong, J.T.; Barrett, A.H.


    We have observed the Sagittarius A molecular cloud complex in 10 molecular transitions. We find that excitation temperatures of CO and HNCO are in the range 10--30 K, with the CO temperatures slightly higher, while the rotation temperature T/sub rot/(NH/sub 3/ (2--1)) is approx.35 K. In contrast, T/sub rot/(NH/sub 3/ (6--3)) is approx.80 K. All these temperatures are relatively uniform across the complex. The masses of individual clouds are estimated by two methods; the resulting estimates are in good agreement in most cases. The three largest clouds have masses of densities approx.3--5 x 10/sup 5/ M/sub sun/, while four smaller features have masses of approx.10/sup 5/ M/sub sun/. The resulting estimated mean number densities are approx.10/sup 4/--10/sup 5/ cm/sup -3/.

  3. Neutrino emissivity from e sup minus synchrotron and e sup minus e+ annihilation processes in a strong magnetic field: General formalism and nonrelativistic limit

    SciTech Connect

    Kaminker, A.D.; Levenfish, K.P.; Yakovlev, D.G. ); Amsterdamski, P.; Haensel, P. )


    A general formalism is developed for calculating the neutrino emissivities of synchrotron and {ital e}{sup {minus}}{ital e+} annihilation radiations in a plasma in the presence of a large magnetic field {ital B}{similar to}10{sup 12}--10{sup 14} G. As a first step, the formalism is used to calculate the synchrotron and annihilation radiations from a nonrelativistic electron plasma (density {rho}{approx lt}10{sup 6} g cm{sup {minus}3}, temperature {ital T}{approx lt}6{times}10{sup 9} K) including the cases of nondegenerate and degenerate electrons, and of quantizing and nonquantizing magnetic fields. We conclude that these processes can be important for neutrino production in a hot plasma of neutron star envelopes.


    SciTech Connect

    Haggard, Daryl; Cool, Adrienne M.; Heinke, Craig O.; Van der Marel, Roeland; Anderson, Jay; Cohn, Haldan N.; Lugger, Phyllis M. E-mail:


    We report a sensitive X-ray search for the proposed intermediate-mass black hole (IMBH) in the massive Galactic cluster, {omega} Centauri (NGC 5139). Combining Chandra X-ray Observatory data from Cycles 1 and 13, we obtain a deep ({approx}291 ks) exposure of the central regions of the cluster. We find no evidence for an X-ray point source near any of the cluster's proposed dynamical centers, and place an upper limit on the X-ray flux from a central source of f{sub X}(0.5-7.0 keV) {<=}5.0 Multiplication-Sign 10{sup -16} erg cm{sup -2} s{sup -1}, after correcting for absorption. This corresponds to an unabsorbed X-ray luminosity of L{sub X}(0.5-7.0 keV) {<=}1.6 Multiplication-Sign 10{sup 30} erg s{sup -1}, for a cluster distance of 5.2 kpc, Galactic column density N{sub H} = 1.2 Multiplication-Sign 10{sup 21} cm{sup -2}, and power-law spectrum with {Gamma} = 2.3. If a {approx}10{sup 4} M{sub sun} IMBH resides in the cluster's core, as suggested by some stellar dynamical studies, its Eddington luminosity would be L{sub Edd} {approx}10{sup 42} erg s{sup -1}. The new X-ray limit would then establish an Eddington ratio of L{sub X}/L{sub Edd} {approx}< 10{sup -12}, a factor of {approx}10 lower than even the quiescent state of our Galaxy's notoriously inefficient supermassive black hole Sgr A*, and imply accretion efficiencies as low as {eta} {approx}< 10{sup -6}-10{sup -8}. This study leaves open three possibilities: either {omega} Cen does not harbor an IMBH or, if an IMBH does exist, it must experience very little or very inefficient accretion.

  5. Spectroscopic studies of magnesium plasma produced by fundamental and second harmonics of Nd:YAG laser

    SciTech Connect

    Haq, S. U. Ahmat, L.; Mumtaz, M.; Nadeem, A.; Shakeel, Hira; Mahmood, S.


    In the present experimental work, laser induced magnesium plasma has been characterized using plasma parameters. The plasma has been generated by the fundamental (1064 nm) and second harmonics (532 nm) of Nd:YAG laser. The plasma parameters such as electron temperature and electron number density have been extracted using Boltzmann plot method and Stark broadened line profile, respectively. The laser irradiance dependence and spatial behavior of electron temperature and number density in laser induced magnesium plasma have been studied. The electron temperature as a function of laser irradiance (0.5 to 6.5 GW/cm{sup 2}) ranges from (9.16–10.37) × 10{sup 3 }K and (8.5–10.1)× 10{sup 3 }K, and electron number density from (0.99–1.08) × 10{sup 16} cm{sup −3} and (1.04–1.22) × 10{sup 16}cm{sup −3} for 1064 and 532 nm, respectively. These parameters exhibit fast increase at low laser irradiance and slow increase at high irradiance. The spatial distribution of electron temperature and electron number density shows same decreasing trend up to 2.25 mm from the target surface. The electron temperature and number density decrease from (9.5–8.6) × 10{sup 3 }K, (1.27–1.15) × 10{sup 16}cm{sup −3} and (10.56–8.85)× 10{sup 3 }K, (1.08–0.99) × 10{sup 16} cm{sup −3} for 532 nm and 1064 nm laser ablation wavelengths, respectively.


    SciTech Connect

    Grcevich, Jana; Putman, Mary E E-mail:


    We examine the H I content and environment of all of the Local Group dwarf galaxies (M {sub tot} < 10{sup 10} M {sub sun}), including the numerous newly discovered satellites of the Milky Way and M31. All of the new dwarfs, with the exception of Leo T, have no detected H I. The majority of dwarf galaxies within {approx}270 kpc of the Milky Way or Andromeda are undetected in H I (<10{sup 4} M {sub sun} for Milky Way dwarfs), while those further than {approx}270 kpc are predominantly detected with masses {approx}10{sup 5} to 10{sup 8} M {sub sun}. Analytical ram-pressure arguments combined with velocities obtained via proper motion studies allow for an estimate of the halo density of the Milky Way at several distances. This halo density is constrained to be greater than 2x 10{sup -4}-3 x 10{sup -4} cm{sup -3} out to distances of at least 70 kpc. This is broadly consistent with theoretical models of the diffuse gas in a Milky Way-like halo and is consistent with this component hosting a large fraction of a galaxy's baryons. Accounting for completeness in the dwarf galaxy count, gasless dwarf galaxies could have provided at most 2.1 x 10{sup 8} M {sub sun} of H I gas to the Milky Way, which suggests that most of our Galaxy's star formation fuel does not come from accreted small satellites in the current era.

  7. Interactions of ion-implantation-induced interstitials with boron at high concentrations in silicon

    SciTech Connect

    Haynes, T.E.; Eaglesham, D.J.; Stolk, P.A.; Gossmann, H.; Jacobson, D.C.; Poate, J.M.


    Ion implantation of Si (60 keV, 1{times}10{sup 14}/cm{sup 2}) has been used to introduce excess interstitials into silicon predoped with high background concentrations of B, which were varied between 1{times}10{sup 18} and 1{times}10{sup 19}/cm{sup 3}. Following post-implantation annealing at 740{degree}C for 15 min to allow agglomeration of the available interstitials into elongated {l_brace}311{r_brace} defects, the density of the agglomerated interstitials was determined by plan-view transmission electron microscopy observation of the defects. We report a significant reduction in the fraction of excess interstitials trapped in {l_brace}311{r_brace} defects as a function of boron concentration, up to nearly complete disappearance of the {l_brace}311{r_brace} defects at boron concentrations of 1{times}10{sup 19}/cm{sup 3}. The reduction of the excess interstitial concentration is interpreted in terms of boron-interstitial clustering, and implications for transient-enhanced diffusion of B at high concentrations are discussed. {copyright} {ital 1996 American Institute of Physics.}

  8. Anomalous behavior of the optical band gap of nanocrystalline zinc oxide thin films

    SciTech Connect

    Srikant, V.; Clarke, D.R.


    The optical band gap of ZnO films on fused silica in the carrier concentration regime of 10{sup 18}{endash}10{sup 20}/cm{sup 3} is reported. Contrary to theoretical predictions there is an anomalous increase in the band gap of ZnO films at a carrier concentration of 5{times}10{sup 18}/cm{sup 3}, followed by an abrupt decrease at a critical concentration of 3{endash}4{times}10{sup 19}/cm{sup 3} before the optical band gap rises again. Similar observations have been made before, but an explanation of these observations was lacking. We propose a model based on the existence of potential barriers at the grain boundaries, causing quantum confinement of the electrons in the small grains realized in these films. Quantum confinement leads to the initial rise in the optical band gap. On increasing the carrier concentration to the critical value the potentials at the grain boundaries collapse leading, to the abrupt decrease in the optical band gap. Above this carrier concentration the films behave according to existing many-body theories. {copyright} {ital 1997 Materials Research Society.}

  9. Control of emission wavelength for InGaAs/GaAs quantum wells and laser structures on their basis by means of proton irradiation

    SciTech Connect

    Akhlestina, S. A.; Vasil'ev, V. K.; Vikhrova, O. V. Danilov, Yu. A.; Zvonkov, B. N.; Nekorkin, S. M.


    Features of controlling the wavelength of emission from laser heterostructures with strained InGaAs/GaAs quantum wells by irradiation with medium-energy (with the energy as high as 150 keV) protons are studied. It is established that irradiation with H{sup +} ions and subsequent thermal annealing at a temperature of 700 deg. C make it possible to decrease the wavelength of emission from quantum wells. As the dose of ions is increased from 10{sup 13} to 10{sup 16} cm{sup -2}, the magnitude of change in the wavelength increases to 20 nm. Starting with a dose of 10{sup 15} cm{sup -2}, a significant decrease in the intensity of emission is observed. The optimum dose of H{sup +} ions (6 x 10{sup 14} cm{sup -2}) and annealing temperature (700 deg. C) for modifying the InGaAs/GaAs/InGaP laser structures are determined; it is shown that, in this case, one can obtain a shift of {approx}(8-10) nm for the wavelength of laser radiation with low losses in intensity with the quality of the surface of laser structures retained. The observed 'blue' shift is caused by implantation-stimulated processes of intermixing of the In and Ga atoms at the InGaAs/GaAs interface.

  10. Optical and electrical properties of heavily carbon-doped GaAs fabricated by high-energy ion-implantation

    SciTech Connect

    Shima, Takayuki |; Makita, Yunosuke; Kimura, Shinji


    High-energy (400 keV) implantation of carbon (C) ions was made into LEC-GaAs substrates with C concentration ([C]) of 10{sup 19}--10{sup 22} cm{sup {minus}3}. 2 K photoluminescence (PL) and Hall effect measurements indicated that activation rate of C in LEC GaAs is both optically and electrically extremely low even after furnace-annealing at 850 C for 20 min. For [C] = 1 {times} 10{sup 22} cm{sup {minus}3}, two novel strong emissions were obtained and PL measurements as a function of excitation power and sample temperature suggested that the two emissions one at 1.485 eV and the other at 1.305 eV should reflect the formation of a new alloy between GaAs and C. Dual implantation of C{sup +} and Ga{sup +} ions was carried out to improve the activation or substitution rate. The authors found that nearly 90% activation rate can be achieved for C dose of 2.2 {times} 10{sup 13} cm{sup {minus}2}.

  11. Magneto-optical trap for metastable helium at 389 nm

    SciTech Connect

    Koelemeij, J.C.J.; Stas, R.J.W.; Hogervorst, W.; Vassen, W.


    We have constructed a magneto-optical trap (MOT) for metastable triplet helium atoms utilizing the 2 {sup 3}S{sub 1}{yields}3 {sup 3}P{sub 2} line at 389 nm as the trapping and cooling transition. The far-red-detuned MOT (detuning {delta}=-41 MHz) typically contains few times 10{sup 7} atoms at a relatively high ({approx}10{sup 9} cm{sup -3}) density, which is a consequence of the large momentum transfer per photon at 389 nm and a small two-body loss rate coefficient (2x10{sup -10} cm{sup 3}/s<{beta}<1.0x10{sup -9} cm{sup 3}/s). The two-body loss rate is more than five times smaller than in a MOT on the commonly used 2 {sup 3}S{sub 1}{yields}2 {sup 3}P{sub 2} line at 1083 nm. Furthermore, laser cooling at 389 nm results in temperatures somewhat lower than those achieved using 1083 nm. The 389-nm MOT exhibits small losses due to two-photon ionization, which have been investigated as well.

  12. Initial results from the scoop limiter experiment in PDX

    SciTech Connect

    Budny, R.; Bell, M.; Bol, K.; Boyd, D.; Buchenauer, D.; Cavallo, A.; Couture, P.; Crowley, T.; Darrow, D.; Dylla, F.


    A particle scoop limiter with a graphite face backed by a 50 liter volume for collecting particles was used in PDX. Experiments were performed to test its particle control and power handling capabilities with up to 5 MW of D/sup 0/ power injected into D/sup +/ plasmas. Line average plasma densities up to 8 x 10/sup 13/ cm/sup -3/ and currents up to 450 kA were obtained. Plasma densities in the scoop channels greater than 2 x 10/sup 13/ cm/sup -3/ and neutral densities in the scoop volume greater than 5 x 10/sup 14/ cm/sup -3/ were observed. There is evidence that recycling may have occurred in the scoop channels for several discharges with large line-averaged plasma density. At beam powers up to 2.5 MW, energy confinement times above 40 ms were deduced from magnetics measurements and from transport analysis. Pressures in the vacuum vessel were in the 10/sup -5/ Torr range, and recycling source neutral densities in the central plasma were low.

  13. Helium measurements of pore-fluids obtained from SAFOD drillcore

    SciTech Connect

    Ali, S.; Stute, M.; Torgersen, T.; Winckler, G.; Kennedy, B.M.


    {sup 4}He accumulated in fluids is a well established geochemical tracer used to study crustal fluid dynamics. Direct fluid samples are not always collectable; therefore, a method to extract rare gases from matrix fluids of whole rocks by diffusion has been adapted. Helium was measured on matrix fluids extracted from sandstones and mudstones recovered during the San Andreas Fault Observatory at Depth (SAFOD) drilling in California, USA. Samples were typically collected as subcores or from drillcore fragments. Helium concentration and isotope ratios were measured 4-6 times on each sample, and indicate a bulk {sup 4}He diffusion coefficient of 3.5 {+-} 1.3 x 10{sup -8} cm{sup 2}s{sup -1} at 21 C, compared to previously published diffusion coefficients of 1.2 x 10{sup -18} cm{sup 2}s{sup -1} (21 C) to 3.0 x 10{sup -15} cm{sup 2}s{sup -1} (150 C) in the sands and clays. Correcting the diffusion coefficient of {sup 4}He{sub water} for matrix porosity ({approx}3%) and tortuosity ({approx}6-13) produces effective diffusion coefficients of 1 x 10{sup -8} cm{sup 2}s{sup -1} (21 C) and 1 x 10{sup -7} (120 C), effectively isolating pore fluid {sup 4}He from the {sup 4}He contained in the rock matrix. Model calculations indicate that <6% of helium initially dissolved in pore fluids was lost during the sampling process. Complete and quantitative extraction of the pore fluids provide minimum in situ porosity values for sandstones 2.8 {+-} 0.4% (SD, n=4) and mudstones 3.1 {+-} 0.8% (SD, n=4).

  14. Two proton-conductive hybrids based on 2-(3-pyridyl)benzimidazole molecules and Keggin-type heteropolyacids

    SciTech Connect

    Wei, Mei-Lin Wang, Yu-Xia; Wang, Xin-Jun


    Two proton-conductive organic/inorganic complexes were constructed by Keggin-type heteropolyacids and 2-(3-pyridyl)benzimidazole molecules. Single-crystal X-ray diffraction analyses revealed that two complexes crystallized in the monoclinic space group P2{sub 1}/c, exhibited different unit cell parameters, and presented different hydrogen-bonded networks constructed by 2-(3-pyridyl)benzimidazole molecules, [PMo{sub 12}O{sub 40}]{sup 3−} anions and solvent molecules. The results of thermogravimetric analyses suggest that two supramolecular complexes have different thermal stability based on the different hydrogen-bonded networks. Two complexes at 100 °C under 35–98% relative humidity showed a good proton conductivity of about 10{sup −3} S cm{sup −1}. The proton conductivities of two complexes under 98% relative humidity both increase on a logarithmic scale with temperature range from 25 to 100 °C. At 100 °C, both complexes showed poor proton conductivities of 10{sup −8}–10{sup −9} S cm{sup −1} under acetonitrile or methanol vapor. - Graphical abstract: Two molecular hybrids constructed by Keggin-type heteropolyacids and 2-(3-pyridyl)benzimidazole molecules showed good proton conductivities of 10{sup −3} S cm{sup −1} at 100 °C under 35–98% relative humidity. Display Omitted - Highlights: • 2-(3-Pyridyl)benzimidazole could form hydrogen bonds via the N–H groups. • Heteropolyacids have suitable characteristics to be used excellent proton conductors. • Two proton-conductive hybrids based on Keggin HPAs and 3-PyBim were constructed. • The structures were determined by using single-crystal X-ray diffraction data. • They showed good proton conductivities of 10{sup −3} S cm{sup −1} at 100 °C under 35–98% RH.

  15. Electron beam processing of ZnGeP{sub 2}: A nonlinear optical material for the infrared

    SciTech Connect

    Schunemann, P.G.; Drevinsky, P.J.; Ohmer, M.C.; Mitchel, W.C.; Fernelius, N.C.


    Zinc germanium phosphide, an important frequency-conversion material for producing mid-infrared lasers, is plagued by a defect-related absorption band extending from the fundamental edge (0.62 microns) to {approximately}3 microns. The level of absorption varies with melt composition, and can be reduced by post-growth annealing treatments. In these experiments, further reduction of the near-band-edge absorption was achieved by irradiating with 1--1.5 MeV electrons at cumulative fluence levels up to 2.75 {times} 10{sup 18}cm{sup {minus}2}. Ge-rich, ZnP{sub 2}-rich, and both as-grown and annealed stoichiometric crystals were studied. The near-edge absorption of the higher-loss, nonstoichiometric samples decreased monotonically with each subsequent irradiation, whereas the absorption in the lower-loss, stoichiometric samples was minimized after cumulative electron fluences of 2 {times} 10{sup 18}cm{sup {minus}2} and 1 {times} 10{sup 18}cm{sup {minus}2} for as-grown and annealed material respectively, The minimum absorption coefficient achieved at 1 {micro}m was {approximately}4.4 cm{sup {minus}1} in both stoichiometric samples, representing a factor two decrease for the as-grown crystal. Further exposure after reaching saturation served only to increase the losses at longer wavelengths.


    SciTech Connect

    Wheeler, J. Craig; Johnson, Vincent E-mail:


    We explore the potential cumulative energy production of stellar-mass black holes in early galaxies. Stellar-mass black holes may accrete substantially from the higher density interstellar media (ISMs) of primordial galaxies, and their energy release would be distributed more uniformly over the galaxies, perhaps providing a different mode of energy feedback into young galaxies than central supermassive black holes. We construct a model for the production and growth of stellar-mass black holes over the first few gigayears of a young galaxy. With the simplifying assumption of a constant density of the ISM, n {approx} 10{sup 4}-10{sup 5} cm{sup -3}, we estimate the number of accreting stellar-mass black holes to be {approx}10{sup 6} and the potential energy production to be as high as 10{sup 61} erg over several billion years. For densities less than 10{sup 5} cm{sup -3}, stellar-mass black holes are unlikely to reach their Eddington limit luminosities. The framework we present could be incorporated in numerical simulations to compute the feedback from stellar-mass black holes with inhomogeneous, evolving ISMs.

  17. Raman measurements in silica glasses irradiated with energetic ions

    SciTech Connect

    Saavedra, R. Martin, P.; Vila, R.; León, M.; Jiménez-Rey, D.; Girard, S.; Boukenter, A.; Ouerdane, Y.


    Ion irradiation with energetic He{sup +} (2.5 MeV), O{sup 4+} (13.5 MeV), Si{sup 4+} (24.4 MeV) and Cu{sup 7+} (32.6 MeV) species at several fluences (from 5 × 10{sup 12} to 1.65 × 10{sup 15} ion/cm{sup 2}) were performed in three types of SiO{sub 2} glasses with different OH content (KU1, KS-4V and Infrasil 301). After ion implantation the Raman spectra were measured and compared with the spectra of unirradiated samples. Irradiated samples of the three fused silica grades exhibit changes in the broad and asymmetric R-band (ω{sub 1} around 445 cm{sup −1}), in D{sub 1} (490 cm−1) and D{sub 2} (605 cm{sup −1}) bands associated to small-membered rings. The D{sub 2} band shows an increase with increasing fluences for different ions, indicating structural changes. Raman spectra of ion-irradiated samples were compared with the spectra of neutron irradiated samples at fluences 10{sup 17} n/cm{sup 2} and 1018 n/cm{sup 2}. Macroscopic surface cracking was detected, mainly at fluences corresponding to deposited energies between 10{sup 23} eV/cm{sup 3} and 10{sup 24} eV/cm{sup 3} (after ion beam shutdown)

  18. Effects of gamma-ray irradiation on dislocations in sodium nitrate single crystals

    SciTech Connect

    Solnick-Legg, H.; Herley, P.J.; Levy, P.W.


    The topography of the etch pits formed on the (100) cleavage surfaces of unirradiated and irradiated NaNO/sub 3/ single crystals has been studied. The principal etch pit alignments are consistent with dislocation families of the type (100) (011), (211) (011), and (111) (011). The pit density increases from 1.4 (+-0.2) x 10/sup 4//cm/sup 2/ at zero dose to 7.3 (+-0.2) x 10/sup 5//cm/sup 2/ at 5.0 x 10/sup 8/ rad. With increasing dose the pit density distribution narrows and clusters at 1.0 x 10/sup 6/ pits/cm/sup 2/ at doses above 5.0 x 10/sup 8/ rad. Above this dose radiolytic-induced micro bumps or structures are observed that precede the onset of radiolytic decomposition that is visible at 2.5 x 0/sup 9/ rad. These asymmetric structures appear to nucleate at the same sites as the chemically created etch pits and are aligned in the same principal directions. These observations indicate that dislocations are important sites for nucleating radiation induced decomposition and internal radiolytic gas generation. 12 references, 9 figures, 1 table.

  19. Multichannel transition emissions of Dy{sup 3+} in fiber-adaptive germanium tellurite glasses

    SciTech Connect

    Li, Y. H.; Chen, B. J.; Lin, H.; Pun, E. Y. B.


    Multichannel transition visible and near-infrared (NIR) fluorescences have been captured in Dy{sup 3+}-doped fiber-adaptive Na{sub 2}O-ZnO-PbO-GeO{sub 2}-TeO{sub 2} glasses. The maximum stimulated emission cross-sections {sigma}{sub em-max} were derived to be 0.33 Multiplication-Sign 10{sup -21}, 3.66 Multiplication-Sign 10{sup -21}, and 0.67 Multiplication-Sign 10{sup -21} cm{sup 2} for conventional visible emissions assigned to {sup 4}F{sub 9/2}{yields}{sup 6}H{sub J} (J = 15/2, 13/2, and 11/2) transitions, respectively. Infrequent multi-peak NIR emissions were recorded in the spectral range of 900-1500 nm, among which the values of {sigma}{sub em-max} were solved to be 1.05 Multiplication-Sign 10{sup -22} and 1.56 Multiplication-Sign 10{sup -22} cm{sup 2} for {approx}1.02 and {approx}1.18 {mu}m emission bands. Internal quantum efficiency for the {sup 4}F{sub 9/2} level and external quantum yield for visible emissions of Dy{sup 3+} were determined to be 88.44% and 12.38%, severally. Effective multichannel radiative emissions reveal a potential in developing fiber-lighting sources, tunable lasers, and NIR optical amplifiers.

  20. Electron attachment to MoF{sub 6}, ReF{sub 6}, and WF{sub 6}; reaction of MoF{sub 6}{sup -} with ReF{sub 6} and reaction of Ar{sup +} with MoF{sub 6}

    SciTech Connect

    Friedman, Jeffrey F.; Stevens, Amy E.; Miller, Thomas M.; Viggiano, A.A.


    Rate constants were measured for electron attachment to MoF{sub 6}, ReF{sub 6}, and WF{sub 6} in 133 Pa of helium gas using a flowing-afterglow Langmuir-probe apparatus. The experiment is a thorny one because the molecules tend to form oxide impurities on feedline surfaces and because of thermal decomposition of MoF{sub 6} on surfaces as the gas temperature is increased. The electron attachment rate constant for MoF{sub 6} is (2.3{+-}0.8)x10{sup -9} cm{sup 3} s{sup -1} at 297 K; only MoF{sub 6}{sup -} is formed in the temperature range of 297-385 K. The rate constant increases with temperature up to the point where decomposition becomes apparent. Electron attachment to ReF{sub 6} occurs with a rate constant of (2.4{+-}0.8)x10{sup -9} cm{sup 3} s{sup -1} at 297 K; only ReF{sub 6}{sup -} is produced. MoF{sub 6}{sup -} reacts with ReF{sub 6} to form ReF{sub 6}{sup -} on essentially every collision, showing definitively that the electron affinity of ReF{sub 6} is greater than that of MoF{sub 6}. A rate constant of (5.0{+-}1.3)x10{sup -10} cm{sup 3} s{sup -1} was measured for this ion-molecule reaction at 304 K. The reverse reaction is not observed. The reaction of Ar{sup +} with MoF{sub 6} was found to produce MoF{sub 5}{sup +}+F, with a rate constant of (1.8{+-}0.5)x10{sup -9} cm{sup 3} s{sup -1}. WF{sub 6} attaches electrons so slowly at room temperature that the attachment rate was below detection level ({<=}10{sup -12} cm{sup 3} s{sup -1}). By 552 K, the attachment rate constant reaches a value of (2{+-}1)x10{sup -10} cm{sup 3} s{sup -1}.

  1. Differential stress, strain rate, and temperatures of mylonitization in the Ruby Mountains, Nevada: Implications for the rate and duration of uplift

    SciTech Connect

    Hacker, B.R.; An Yin; Christie, J.M. ); Snoke, A.W. )


    Knowledge of the magnitude of the differential stress during the formation of mylonitic rocks provides constraints on mechanical and thermal models for the exhumation of the metamorphosed footwalls of major low-angle detachment faults. The authors have analyzed the differential flow stress during the mylonitization of quartoze rocks in the Ruby Mountains, Nevada, using grain-size piezometers and kinetic laws for grain growth. Quartzites from mylonitic shear zones in Lamoille Canyon and Secret Creek gorge have grain sizes of 91-151 {mu}m and 42-64 {mu}m, respectively. The peak temperature during mylonitization was 630 {plus minus} 50C, and analysis of grain-growth kinetics indicates that mylonitization continued during cooling to temperatures {le}450C. Quartz grain-size piezometers suggest that the mylonitization occurred under differential stresses of 38-64 MPa, or maximum shear stresses of 19-32 MPa. Extrapolation of quartzite flow laws indicates that the mylonitization occurred at strain rates between 10{sup {minus}10} and 10{sup {minus}13} s{sup {minus}1}; arguments presented in the paper suggest that the likely range of strain rates is 10{sup {minus}11} to 10{sup {minus}12} s{sup {minus}1}. These strain rates are compatible with displacement rates of the order of 23 mm yr{sup {minus}1} along a 1.5-km-thick simple shear zone. Such a shear zone dipping 15{degree} would produce an uplift rate of 5.8 km/m.y. and a horizontal extension rate of 22 km/m.y. This uplift rate indicates that midcrustal mylonitic rocks could have been lifted up along a 1.5-km-thick simple shear zone dipping 15{degree} in 2.6 m.y.

  2. Interpretation of brine-permeability tests of the Salado Formation at the Waste Isolation Pilot Plant site: First interim report

    SciTech Connect

    Beauheim, R.L. ); Saulnier, G.J. Jr.; Avis, J.D. )


    Pressure-pulse tests have been performed in bedded evaporites of the Salado Formation at the Waste Isolation Pilot Plant (WIPP) site to evaluate the hydraulic properties controlling brine flow through the Salado. Hydraulic conductivities ranging from about 10{sup {minus}14} to 10{sup {minus}11} m/s (permeabilities of about 10{sup {minus}21} to 10{sup {minus}18} m{sup 2}) have been interpreted from nine tests conducted on five stratigraphic intervals within eleven meters of the WIPP underground excavations. Tests of a pure halite layer showed no measurable permeability. Pore pressures in the stratigraphic intervals range from about 0.5 to 9.3 MPa. An anhydrite interbed (Marker Bed 139) appears to be one or more orders of magnitude more permeable than the surrounding halite. Hydraulic conductivities appear to increase, and pore pressures decrease, with increasing proximity to the excavations. These effects are particularly evident within two to three meters of the excavations. Two tests indicated the presence of apparent zero-flow boundaries about two to three meters from the boreholes. The other tests revealed no apparent boundaries within the radii of influence of the tests, which were calculated to range from about four to thirty-five meters from the test holes. The data are insufficient to determine if brine flow through evaporites results from Darcy-like flow driven by pressure gradients within naturally interconnected porosity or from shear deformation around excavations connecting previously isolated pores, thereby providing pathways for fluids at or near lithostatic pressure to be driven towards the low-pressure excavations. Future testing will be performed at greater distances from the excavations to evaluate hydraulic properties and processes beyond the range of excavation effects.

  3. Processes of chemoionization in the course of inflammation of a methane-oxygen mixture by a high-current gliding surface discharge in a closed chamber

    SciTech Connect

    Artem’ev, K. V.; Berezhetskaya, N. K.; Kossyi, I. A. Misakyan, M. A.; Popov, N. A.; Tarasova, N. M.


    Results are presented from experiments on the inflammation of a stoichiometric methane-oxygen mixture by a high-current multielectrode spark-gap in a closed cylindrical chamber. It is shown that, in both the preflame and well-developed flame stages, the gas medium is characterized by a high degree of ionization (n{sub e} ≈ 10{sup 12} cm{sup −3}) due to chemoionization processes and a high electron-neutral collision frequency (ν{sub e0} ≈ 10{sup 12} s{sup −1})

  4. Radiation trapping in rubidium optical pumping at low buffer-gas pressures

    SciTech Connect

    Rosenberry, M. A.; Reyes, J. P.; Gay, T. J.; Tupa, D.


    We have made a systematic study of rubidium optical pumping in a simple cylindrical cell geometry with a high-power 10 W diode laser array, low magnetic fields, and buffer-gas pressures of less than 50 torr. We have determined rubidium polarizations experimentally for H{sub 2}, N{sub 2}, He, and Ar buffer gases, with Rb number densities from 10{sup 12} to 10{sup 13} cm{sup -3}. Comparison to a relatively simple optical pumping model allows us to extract useful information about radiation trapping and quenching effects.

  5. Effect of active-ion concentration on holmium fibre laser efficiency

    SciTech Connect

    Kurkov, Andrei S; Sholokhov, E M; Marakulin, A V; Minashina, L A


    We have measured the fraction of holmium ions that relax nonradiatively to the ground level as a result of interaction at a metastable level in optical fibres with a silica-based core doped with holmium ions to 2 x 10{sup 19} - 2 x 10{sup 20} cm{sup -3}. The percentage of such ions has been shown to depend on the absolute active-ion concentration. The fibres have been used to make a number of 2.05-{mu}m lasers, and their slope efficiency has been measured. The laser efficiency decreases with increasing holmium concentration in the fibres (lasers)

  6. Effect of the active-ion concentration on the lasing dynamics of holmium fibre lasers

    SciTech Connect

    Kurkov, Andrei S; Sholokhov, E M; Marakulin, A V; Minashina, L A


    The lasing dynamics of fibre lasers with a core based on quartz glass doped with holmium ions to concentrations in the range of 10{sup 19}-10{sup 20} cm{sup -3} is investigated. It is shown that fibre lasers with a high concentration of active holmium ions generate pulses, but a decrease in the holmium concentration changes the lasing from pulsed to cw regime. At the same time, a decrease in the active-ion concentration and the corresponding increase in the fibre length in the cavity reduce the lasing efficiency. (lasers)

  7. Reproducing continuous radio blackout using glow discharge plasma

    SciTech Connect

    Xie, Kai; Li, Xiaoping; Liu, Donglin; Shao, Mingxu; Zhang, Hanlu


    A novel plasma generator is described that offers large-scale, continuous, non-magnetized plasma with a 30-cm-diameter hollow structure, which provides a path for an electromagnetic wave. The plasma is excited by a low-pressure glow discharge, with varying electron densities ranging from 10{sup 9} to 2.5 × 10{sup 11} cm{sup −3}. An electromagnetic wave propagation experiment reproduced a continuous radio blackout in UHF-, L-, and S-bands. The results are consistent with theoretical expectations. The proposed method is suitable in simulating a plasma sheath, and in researching communications, navigation, electromagnetic mitigations, and antenna compensation in plasma sheaths.

  8. Reticle blanks for extreme ultraviolet lithography: Ion beam sputter deposition of low defect density Mo/Si multilayers

    SciTech Connect

    Vernon, S.P.; Kania, D.R.; Kearney, P.A.; Levesque, R.A.; Hayes, A.V.; Druz, B.; Osten, E.; Rajan, R.; Hedge, H.


    We report on growth of low defect density Mo/Si multilayer (ML) coatings. The coatings were grown in a deposition system designed for EUVL reticle blank fabrication. Complete, 81 layer, high reflectance Mo/Si ML coatings were deposited on 150 mm dia (100) oriented Si wafer substrates using ion beam sputter deposition. Added defects, measured by optical scattering, correspond to defect densities of 2x10{sup -2}/cm{sup 2}. This represents a reduction in defect density of Mo/Si ML coatings by a factor of 10{sup 5}.

  9. A near infrared organic photodiode with gain at low bias voltage

    SciTech Connect

    Campbell, Ian H; Crone, Brian K


    We demonstrate an organic photodiode with near infrared optical response out to about 1100 run with a gain of {approx}10 at 1000 run under 5V reverse bias. The diodes employ a soluble naphthalocyanine with a peak absorption coefficient of {approx}10{sup 5} cm{sup -1} at 1000 nm. In contrast to most organic photodiodes, no exciton dissociating material is used. At zero bias, the diodes are inefficient with an external quantum efficiency of {approx} 10{sup -2}. In reverse bias, large gain occurs and is linear with bias voltage above 4V. The observed gain is consistent with a photoconductive gain mechanism.

  10. Photoelectric Effect at Ultrahigh Intensities

    SciTech Connect

    Sorokin, A. A.; Bobashev, S. V.; Feigl, T.; Tiedtke, K.; Wabnitz, H.; Richter, M.


    In the spectral range of the extreme ultraviolet at a wavelength of 13.3 nm, we have studied the photoionization of xenon at ultrahigh intensities. For our ion mass-to-charge spectroscopy experiments, irradiance levels from 10{sup 12} to 10{sup 16} W cm{sup -2} were achieved at the new free-electron laser in Hamburg FLASH by strong beam focusing with the aid of a spherical multilayer mirror. Ion charges up to Xe{sup 21+} were observed and investigated as a function of irradiance. Our surprising results are discussed in terms of a perturbative and nonperturbative description.

  11. Beat wave current drive experiment on the Davis Diverted Tokamak (DDT). Final report

    SciTech Connect

    Hwang, D.Q.; Horton, R.D.; Rogers, J.H. |


    The beatwave current drive experiment is summarized. The first phase of the experiment was the construction of the microwave sources and the diagnostics needed to demonstrate the beat wave effects, i.e. the measurement of the electrostatic plasma wave produced by the beating of two high intensity electromagnetic waves. In order to keep the cost of the experiments to a minimum, a low density filament plasma source (10{sup 8}) to (10{sup 10} particles cm{sup {minus}3}) was employed and the magnetic field in the toroidal plasma was produced by a dc power supply.

  12. Positron plasma control techniques for the production of cold antihydrogen

    SciTech Connect

    Funakoshi, R.; Hayano, R. S.; Amoretti, M.; Macri, M.; Testera, G.; Variola, A.; Bonomi, G.; Bowe, P. D.; Hangst, J. S.; Madsen, N.; Canali, C.; Carraro, C.; Lagomarsino, V.; Manuzio, G.; Cesar, C. L.; Charlton, M.; Joergensen, L. V.; Mitchard, D.; Werf, D. P. van der; Doser, M.


    An observation of a clear dependence of antihydrogen production on positron plasma shapes is reported. For this purpose a plasma control method has been developed combining the plasma rotating-wall technique with a mode diagnostic system. With the help of real-time and nondestructive observations, the rotating-wall parameters have been optimized. The positron plasma can be manipulated into a wide range of shapes (aspect ratio 6.5{<=}{alpha} < or approx. 80) and densities (1.5x10{sup 8}{<=}n < or approx. 7x10{sup 9} cm{sup -3}) within a short duration (25 s) compatible with the ATHENA antihydrogen production cycle.

  13. High dislocation density of tin induced by electric current

    SciTech Connect

    Liao, Yi-Han; Liang, Chien-Lung; Lin, Kwang-Lung; Wu, Albert T.


    A dislocation density of as high as 10{sup 17} /m{sup 2} in a tin strip, as revealed by high resolution transmission electron microscope, was induced by current stressing at 6.5 x 10{sup 3} A/ cm{sup 2}. The dislocations exist in terms of dislocation line, dislocation loop, and dislocation aggregates. Electron Backscattered Diffraction images reflect that the high dislocation density induced the formation of low deflection angle subgrains, high deflection angle Widmanstätten grains, and recrystallization. The recrystallization gave rise to grain refining.

  14. Millimeter observations of CS, HCO{sup +}, and CO toward five planetary nebulae: following molecular abundances with nebular age

    SciTech Connect

    Edwards, J. L.; Ziurys, L. M.; Cox, E. G.


    Millimeter and sub-millimeter observations of CO, CS, and HCO{sup +} have been conducted toward five planetary nebulae (PNe: K4-47, NGC 6537 (Red Spider), M2-48, NGC 6720 (Ring), and NGC 6853 (Dumbbell)), spanning an age range of 900-10,000 yr, using the Sub-Millimeter Telescope and the 12 m antenna of the Arizona Radio Observatory. The J = 5 → 4, J = 3 → 2, and J = 2 → 1 transitions of CS at 245, 147, and 98 GHz, as well as the J = 3 → 2 and J = 1 → 0 lines of HCO{sup +} at 268 and 89 GHz, were detected toward each source. At least three rotational transitions of CO have also been observed, including the J = 6 → 5 and J = 4 → 3 lines at 691 and 461 GHz. CS had not been definitively identified previously in PNe, and new detections of HCO{sup +} were made in four of the five nebulae. From a radiative transfer analysis of the CO and CS data, kinetic temperatures of T {sub K} ∼ 10-80 K and gas densities of n(H{sub 2}) ∼ 0.1-1 × 10{sup 6} cm{sup –3} were determined for the molecular material in these sources. Column densities for CO, CS, and HCO{sup +} were N {sub tot} ∼ 0.2-5 × 10{sup 16} cm{sup –2}, N {sub tot} ∼ 0.4-9 × 10{sup 12} cm{sup –2}, and N {sub tot} ∼ 0.3-5 × 10{sup 12} cm{sup –2}, respectively, with fractional abundances, relative to H{sub 2}, of f ∼ 0.4-2 × 10{sup –4}, f ∼ 1-4 × 10{sup –8}, and f ∼ 1 × 10{sup –8}, with the exception of M2-48, which had f(HCO{sup +}) ∼ 10{sup –7}. Overall, the molecular abundances do not significantly vary over a duration of 10,000 yr, in contrast to predictions of chemical models. The abundances reflect the remnant asymptotic giant branch shell material, coupled with photochemistry in the early PN phase. These observations also suggest that PNe eject substantial amounts of molecular material into the diffuse interstellar medium.

  15. Infrared reflection spectra in contactless nondestructive measurements of the electron density and mobility in indium phosphide

    SciTech Connect

    Il'in, M.A.; Karasev, P.Yu.; Denisova, N.A.; Rezvov, A.V.; Tyurina, S.V.


    On the basis of numerical calculations and experimental studies we analyze the possibilities of measuring the electrophysical parameters of indium phosphide by means of infrared reflection spectra at wavelengths ranging from 5 to 200 /mu/m. We demonstrate that contactless nondestructive measurements of the electron density in the range 10/sup 16/-10/sup 20/ cm/sup /minus/3/ can be made with a relative error not exceeding 15%, and of mobility with a relative error not exceeding 25%. A nomogram method is presented for rapid conversion of data form infrared reflection spectra into the parameters being measured.

  16. Crystal growth of cadmium oxide from the vapor phase

    SciTech Connect

    Shimada, S.; Nomura, S.; Kodaira, K.; Matsushita, T.


    Single crystals of CdO were grown at temperatures of 930/sup 0/ to 1080/sup 0/C from the vapor phase by air oxidation of Cd vapors which were generated at a constant rate by reaction of CdO with graphite. A prolonged growth up to 70 h at 1030/sup 0/C produced a crystal conglomerate with a maximum size of 13.5 mm. The electrical resistivity and electron density of the crystal in the direction of <100> were 5x10/sup -4/ ..cap and 1.3x10/sup 20/cm/sup 3/, respectively, at 20/sup 0/C.oefficients

  17. Propagation of a narrow plasma beam in an oblique magnetic field

    SciTech Connect

    Heidbrink, W.W.; Adams, D.; Drum, S.; Evans, K.; Manson, J.; Price, T.; Urayama, P.; Wessel, F.J. )


    The propagation of an intense neutralized ion beam ({ital v}{similar to}5{times}10{sup 8} cm/sec, {ital n}{similar to}10{sup 10} cm{sup {minus}3}) through a large insulated vacuum chamber is measured as a function of magnetic field strength and direction. When the beam propagates parallel to the applied field, beam divergence is reduced. When the beam propagates perpendicular to the applied field, the downstream beam density decreases with increasing field strength. When the beam velocity vector intersects the magnetic field at an oblique angle, beam propagation is determined primarily by the perpendicular component of the field.

  18. Influence of an electric field on near-surface processes in laser processing of metals

    SciTech Connect

    Vasil'ev, S V; Ivanov, A Yu


    It is shown that by varying the external electric field with different polarity from 0 to 10{sup 6} V m{sup -1} in the course of laser processing with the mean radiation flux density {approx}10{sup 6} W cm{sup -2} the change in the evolution features of the plasma torch at the surface of some metals (Cu, Al, Sn, Pb) at early stages is quantitative rather than qualitative. At the same time the characteristic size of the target material droplets, carried out from the irradiated zone, becomes essentially (by several times) smaller as the amplitude of the external electric field strength grows, independently of its polarity. (laser technologies)

  19. Cationic exchange membrane for the zinc-ferricyanide battery. Final report

    SciTech Connect

    Pemsler, J.P.; Dempsey, M.D.


    In this one year effort of research into supported-liquid-membrane (SLM) separators for the zinc-ferricyanide battery systems, at least one SLM separator (80% LT27/M80 on 0.13 mm PTFE), has been found that approaches the required specifications with separator resistance in the 2 to 3 ohm-cm/sup 2/ range, 1 x 10/sup -3/ mmoles Fe/h-cm/sup 2/ iron transport and 2 x 10/sup -4/ mmoles Zn/h-cm/sup 2/ zinc transport. This separator is still being tested in a 60-cm/sup 2/ zinc-ferricyanide battery and is exhibiting encouraging results.

  20. A chemical bonding model for photo-induced defects in hydrogenated amorphous silicon (a-Si:H): Intrinsic and extrinsic reaction pathways

    SciTech Connect

    Lucovsky, G.; Yang, H.


    In device grade a-Si:H photo- or light-induced defect generation is an intrinsic effect for impurity concentrations of oxygen and nitrogen below about 10{sup 19} to 10{sup 20} cm{sup {minus}3}; however, at higher concentrations it increases with increasing impurity content. Charged defect configurations are identified by empirical chemistry and are studied by ab initio calculations. This paper addresses: (1) the chemical stability of charged defects; (2) the reaction pathways for defect metastability; and (3) the transition between extrinsic and intrinsic behavior.

  1. Wrought stainless steel compositions having engineered microstructures for improved heat resistance


    Maziasz, Philip J [Oak Ridge, TN; Swindeman, Robert W [Oak Ridge, TN; Pint, Bruce A [Knoxville, TN; Santella, Michael L [Knoxville, TN; More, Karren L [Knoxville, TN


    A wrought stainless steel alloy composition includes 12% to 25% Cr, 8% to 25% Ni, 0.05% to 1% Nb, 0.05% to 10% Mn, 0.02% to 0.15% C, 0.02% to 0.5% N, with the balance iron, the composition having the capability of developing an engineered microstructure at a temperature above C. The engineered microstructure includes an austenite matrix having therein a dispersion of intragranular NbC precipitates in a concentration in the range of 10.sup.10 to 10.sup.17 precipitates per cm.sup.3.

  2. Search for the Dirac Monopole with 30-bev Protons

    DOE R&D Accomplishments Database

    Purcell, E.M.; Collins, G.B.; Fujii, T.; Hornbostel, J.; Turkot, F.


    A search was made at the Brookhaven alternating gradient synchrotron for magnetic monopoles produced either in collisions of 30-Bev protons with light nuclei, or produced by gamma rays secondary to these protons in the Coulomb field of protons or of carbon nuclei. In runs using 5.7 x 10{sup 15} circulating protons, no monopole-like event was found. This implies an upper limit for production in protonnucleon interactions of about 2 x 10{sup -40} cm{sup 2}. Experimental limits are also derived for the photoproduction of pole pairs. (auth)

  3. Influence of germanium on the formation of thermal donors in silicon

    SciTech Connect

    Dashevskii, M.Ya.; Dokuchaeva, A.A.; Anisimov K.I.


    In silicon samples doped with germanium to a concentration 5 x 10/sup 19/-10/sup 20/ cm/sup -3/ after heat treatment at 450/sup 0/C the breakdown of the thermal donors and restoration of the electrical resistivity to a value close to the resistivity of the unannealed samples, proceed faster, than in samples not doped with germanium. It is indirectly confirmed by the assumption that the oxygen solubility in germanium-doped silicon samples is higher at 450/sup 0/C than in the undoped samples.

  4. Limits on the abundance and coupling of cosmic axions

    SciTech Connect

    DePanfilis, S.; Melissinos, A.C.; Moskowitz, B.E.; Rogers, J.T.; Semertzidis, Y.K.; Wuensch, W.U.; Halama, H.J.; Prodell, A.G.; Fowler, W.B.; Kerns, Q.


    We report preliminary results from a search for galactic axions in the mass range 4.5 < m/sub a/ < 5.0 For an axion line width GAMMA/sub a/ less than or equal to 8 x 10/sup -13/ eV, we obtain the experimental limit (g/sub a..gamma gamma../m/sub a/)/sup 2/rho/sub a/ < 1.4 x 10/sup -41/. The theoretical prediction is (g/sub a..gamma gamma../m/sub a/)/sup 2/rho/sub a/ = 3.9 x 10/sup -44/ with the local galactic axion density rho/sub a/ = 300 MeV/cm/sup 3/. We have also searched for the presence of a continuous spectrum of light pseudoscalar particles; assuming that the local galactic axion density is composed of axions with masses uniformly distributed between 4.5 and 5.0, we find that g/sub a..gamma gamma../ < 2 x 10/sup -30/ MeV/sup 1/2/ cm/sup 3/2/ approx. = 10/sup 11/ GeV/sup -1/. Limits have also been set on the production of light pseudoscalar x particles; we find g/sub x..gamma gamma../ < 10/sup -24/ MeV/sup 1/2/ cm/sup 3/2/ approx. = 10/sup -5/ GeV/sup -1/ for 0< m/sub x/ less than or equal to 20 refs., 7 figs., 1 tab.

  5. Fourier-transform spectroscopy and potential construction of the (2){sup 1}Π state in KCs

    SciTech Connect

    Birzniece, I.; Nikolayeva, O.; Tamanis, M.; Ferber, R.


    The paper presents an empirical pointwise potential energy curve (PEC) of the (2){sup 1}Π state of the KCs molecule constructed by applying the Inverted Perturbation Approach routine. The experimental term values in the energy range E(v′, J′) ∈ [15 407; 16 579] cm{sup −1} involved in the fit were based on Fourier-Transform spectroscopy data obtained with 0.01 cm{sup −1} accuracy from the laser-induced (2){sup 1}Π → X{sup 1}Σ{sup +} fluorescence spectra. Buffer gas Ar was used to facilitate the appearance of rotation relaxation lines in the spectra, thus enlarging the (2){sup 1}Π data set and allowing determination of the Λ-splitting constants. The data set included vibrational v′ ∈ [0, 28] and rotational J′ ∈ [7, 274] quantum numbers covering about 67% of the potential well. The present PEC reproduces the overall set of data included in the fit with a standard deviation of 0.5 cm{sup −1}. The obtained value of the Λ-doubling constant q = + 1.8 × 10{sup −6} cm{sup −1} for J′ > 50 and v′ ∈ [0, 6] is in an excellent agreement with q = + 1.84 × 10{sup −6} cm{sup −1} reported in Kim, Lee, and Stolyarov [J. Mol. Spectrosc. 256, 57-67 (2009)].

  6. Growth of CuInTe{sub 2} single crystals by iodine transport and their characterization

    SciTech Connect

    Prabukanthan, P.; Dhanasekaran, R.


    The single crystals with stoichiometry close to 1:1:2 of CuInTe{sub 2} (CIT) have been grown by chemical vapor transport (CVT) technique using iodine as the transporting agent at different growth temperatures. Single crystal X-ray diffraction studies have confirmed the chalcopyrite structure for the grown crystals and the volume of unit cell is found to be the same for the crystals grown at different conditions. Energy dispersive X-ray (EDAX) analysis of CIT single crystals grown shows almost the same stoichiometric compositions. Scanning electron microscope (SEM) analysis reveals kink, step and layer patterns on the surface of CIT single crystals depending on the growth temperatures. The optical absorption spectra of as-grown CIT single crystals grown at different conditions show that they have same band gap energies (1.0405 eV). Raman spectra exhibit a high intensity peak of A{sub 1} mode at 123 cm{sup -1}. Annealed at 473 K in nitrogen atmosphere for 40 h CIT single crystals have higher hole mobility (105.6 cm{sup 2}V{sup -1}s{sup -1}) and hole concentration (23.28 x 10{sup 17} cm{sup -3}) compared with values of hole mobility (63.69 cm{sup 2} V{sup -1} s{sup -1}) and hole concentration (6.99 x 10{sup 15} cm{sup -3}) of the as-grown CIT single crystals.

  7. RF ion source development for neutral beam application

    SciTech Connect

    Leung, K.N.; Ehlers, K.W.; Kippenhan, D.; Vella, M.C.


    At Lawrence Berkeley Laboratory, a 24 x 24 cm/sup 2/ RF source has been tested with beam acceleration. Recently, we have been investigating the characteristics of plasmas generated with different kinds of antenna coatings. The antenna coil was installed inside a cylindrical multicusp source (20-cm diam by 24-cm long) and was driven by a 500 W amplifier. A tiny light bulb filament was used to start a background plasma. The RF was then switched on and a steady-state hydrogen plasma of moderate density (n approx. = 10/sup 11//cm/sup 3/) could be sustained even with the filament turned off.

  8. Effects of copper excess and copper deficiency on the structural and electrical properties of bulk Cu{sub x}SnSe{sub 3} with x=1.6–2.2

    SciTech Connect

    Wubet, Walelign; Kuo, Dong-Hau


    Effects of the Cu variation on the morphological, structural, and electrical properties of bulk Cu{sub x}SnSe{sub 3} (CTSe) with x=1.6–2.2 have been investigated. Dense CTSe pellets with grains of 3–4 µm were obtained after sintering at 550 °C. All CTSe pellets showed a dominant p-type behavior. CTSe at x=2.0 with a hole concentration (n{sub p}) of 1.02×10{sup 18} cm{sup −3} and Hall mobility (μ) of 225 cm{sup 2}/V/s had a highest conductivity (σ) of 39 S/cm. CTSe at x=1.6 with n{sub p} of 5.0×10{sup 17} cm{sup −3} and of 11 cm{sup 2}/V/s had a lowest of 0.90 S/cm. The explanation, based upon vacancies and antisite defects, for the changes in electrical property with the Cu content is supported by the data from lattice parameter. The study in bulk properties of CTSe and its defects is helpful for selecting the suitable absorber composition to fabricate thin film solar cells. - Graphical abstract: Cu{sub 2}SnSe{sub 3} is an absorber candidate for solar cells. The Cu stoichiometry on electrical properties, which is important for CIGS and CZTS, is investigated and the Cu-deficiency composition is recommended. - Highlights: • Cu{sub x}SnSe{sub 3} (CTSe) bulks with 1.6≤x≤2.2 were prepared by reactive sintering. • Cu{sub 2}SnSe{sub 3} with n{sub p} of 1.02×10{sup 18} cm{sup −3} and μ of 225 cm{sup 2}/V/s had highest σ of 39 S/cm. • Cu{sub 1.6}SnSe{sub 3} with n{sub p}=5.0×10{sup 17} cm{sup −3} and μ=11 cm{sup 2}/V/s had lowest σ=0.90 S/cm. • Lower n{sub p} at CTSe at x=1.6 is related to the formation of the Sn-to-Cu defect. • The drop in n{sub p} for CTSe at x=2.2 indicates V{sub Sn}{sup 4−} dominates over Cu{sub Sn}{sup 3−} defect.

  9. Process for growing epitaxial gallium nitride and composite wafers


    Weber, Eicke R.; Subramanya, Sudhir G.; Kim, Yihwan; Kruger, Joachim


    A novel growth procedure to grow epitaxial Group III metal nitride thin films on lattice-mismatched substrates is proposed. Demonstrated are the quality improvement of epitaxial GaN layers using a pure metallic Ga buffer layer on c-plane sapphire substrate. X-ray rocking curve results indicate that the layers had excellent structural properties. The electron Hall mobility increases to an outstandingly high value of .mu.>400 cm.sup.2 /Vs for an electron background concentration of 4.times.10.sup.17 cm.sup.-3.

  10. Titanium doped silicon layers with very high concentration

    SciTech Connect

    Olea, J.; Toledano-Luque, M.; Pastor, D.; Gonzalez-Diaz, G.; Martil, I.


    Ion implantation of Ti into Si at high doses has been performed. After laser annealing the maximum average of substitutional Ti atoms is about 10{sup 18} cm{sup -3}. Hall effect measurements show n-type samples with mobility values of about 400 cm{sup 2}/V s at room temperature. These results clearly indicate that Ti solid solubility limit in Si has been exceeded by far without the formation of a titanium silicide layer. This is a promising result toward obtaining of an intermediate band into Si that allows the design of a new generation of high efficiency solar cell using Ti implanted Si wafers.

  11. Two-dimensional electron gas in monolayer InN quantum wells

    SciTech Connect

    Pan, Wei; Dimakis, Emmanouil; Wang, George T.; Moustakas, Theodore D.; Tsui, Daniel C.


    We report in this letter experimental results that confirm the two-dimensional nature of the electron systems in monolayer InN quantum wells embedded in GaN barriers. The electron density and mobility of the two-dimensional electron system (2DES) in these InN quantum wells are 5×10<sup>15 cm>-2 and 420 cm>2 /Vs, respectively. Moreover, the diagonal resistance of the 2DES shows virtually no temperature dependence in a wide temperature range, indicating the topological nature of the 2DES.

  12. Measurements of the helium propagation at 4.4 K in a 480 m long stainless steel pipe

    SciTech Connect

    Hseuh, H.C.; Wallen, E.


    The relativistic heavy ion collider (RHIC), with two concentric rings 3.8 km in circumference, uses superconducting magnets to focus the high energy beams. Each sextant of RHIC will have continuous cryostats up to 480 m in length housing the magnets and the cold beam pipes. For an acceptable lifetime of the stored beam, the pressure in the cold beam pipe will be {lt}10{sup {minus}11} Torr. The characteristics of He pressure front propagation due to He leaks will be of importance for beam lifetimes and for vacuum monitoring due to the high vapor pressure of He at 4.4 K, even with small surface coverage. The travels of the He pressure fronts along a 480 m long, 6.9 cm I.D. stainless steel beam pipe cooled to 4.4 K have recently been measured during the RHIC first sextant test. The experiment was carried out over a 12-day period by bleeding in a calibrated He leak of 3{times}10{sup {minus}5}Torrl/s (20{degree}C) while measuring the He pressures along this 480 m cold tube at approximately 30 m intervals. The measured speed of the pressure fronts and the pressure profiles are summarized and compared with the calculated ones. {copyright} {ital 1998 American Vacuum Society.}

  13. Measurements of the helium propagation at 4.4 K in a 480 m long stainless steel pipe

    SciTech Connect

    Hseuh, H.C.; Wallen, E.


    The Relativistic Heavy Ion Collider (RHIC), with two concentric rings 3.8 km in circumference, uses superconducting magnets to focus the high energy beams. Each sextant of RHIC will have continuous cryostats up to 480 m in length housing the magnets and the cold beam pipes. For an acceptable lifetime of the stored beam, the pressure in the cold beam pipe will be < 10{sup {minus}11} Torr. The characteristics of He pressure front propagation due to He leaks will be of importance for beam lifetimes and for vacuum monitoring due to the high vapor pressure of He at 4.4 K, even with small surface coverage. The travel of the He pressure fronts along a 480 m long, 6.9 cm I.D. stainless steel beam pipe cooled to 4.4 K has recently been measured during the RHIC first sextant test. The experiment was carried out over a 12-day period by bleeding in a calibrated He leak of 3 {times} 10{sup {minus}5} Torr{center_dot}l/s (20 C) while measuring the He pressures along this 480 m cold tube at {approximately} 30 m intervals. The measured speed of the pressure fronts and the pressure profiles are summarized and compared with the calculated ones.

  14. Coupled chemical and diffusion model for compacted bentonite

    SciTech Connect

    Olin, M.; Lehikoinen, J.; Muurinen, A.


    A chemical equilibrium model has been developed for ion-exchange and to a limited extent for other reactions, such as precipitation or dissolution of calcite or gypsum, in compacted bentonite water systems. The model was successfully applied to some bentonite experiments, especially as far as monovalent ions were concerned. The fitted log-binding constants for the exchange of sodium for potassium, magnesium, and calcium were 0.27, 1.50, and 2.10, respectively. In addition, a coupled chemical and diffusion model has been developed to take account of diffusion in pore water, surface diffusion and ion-exchange.d the model was applied to the same experiments as the chemical equilibrium model, and its validation was found partly successful. The above values for binding constants were used also in the coupled model. The apparent (both for anions and cations) and surface diffusion (only for cations) constants yielding the best agreement between calculated and experimental data were 3.0 {times} 10{sup {minus}11} m{sup 2}/s and 6.0 {times} 10{sup {minus}12} m{sup 2}/s, respectively. These values are questionable, however, as experimental results good enough for fitting are currently not available.

  15. Influence of stress intensity and loading mode on intergranular stress corrosion cracking of Alloy 600 in primary waters of pressurized water reactors

    SciTech Connect

    Rebak, R.B.; Szklarska-Smialowska, Z. . Fontana Corrosion Center)


    The steam generator in a pressurized water reactor (PWR) of a nuclear power plant consists mainly of a shell made of carbon (C) steel and tubes made of alloy 600 (UNS N06600). However, alloy 600 suffers environmentally induced cracking with exposure to high-temperature primary water. The susceptibility of alloy 600 to integranular stress corrosion cracking (IGSCC) was investigated as a function of the level of applied stresses and mode of loading. Constant load tests were conducted with specimens prepared from thin wall tubes, and constant deformation tests were conducted using specimens prepared from plates. With tubes exposed to primary water at 330 C, the crack propagation rate (CPR) was found to increase from 1 [times] 10[sup [minus]11] m/s at a stress intensity (K[sub i]) of 10 MPa[radical]m to 1 [times] 10[sup [minus]9] at K[sub i] = 60 MPa[radical]m. CPR obtained using compact specimens prepared from plates were 1 order of magnitude lower than values measured in tubes at the same temperature and in the same solution at each stress intensity. The corollary was that values of crack propagation and threshold stress intensities obtained using compact specimens could not be extrapolated to the behavior of thin wall tubes.

  16. Glass transition and density fluctuations in the fragile glass former orthoterphenyl

    SciTech Connect

    Monaco, G.; Fioretto, D.; Comez, L.; Ruocco, G.


    High-resolution Brillouin light scattering is used to measure the dynamic structure factor of the fragile glass former orthoterphenyl (OTP) in a wide temperature range around the glass transition region and up to the boiling point. The whole set of spectra is described in terms of a phenomenological generalized hydrodynamic model. In the supercooled phase, we show the contemporary existence of the structural process, whose main features come out to be consistent with the results obtained with other spectroscopies, and of a secondary, activated process, which occurs on the 10{sup {minus}11} s time scale and has a low activation energy (E{sub a}{sup f}=0.28 kcal/mol). This latter process, which is also present in the glassy phase and seems to be insensitive to the glass transition, is attributed to the coupling between the density modes and intramolecular degrees of freedom. In the normal liquid phase, the two processes merge together, and the resulting characteristic time is no longer consistent with those derived with other spectroscopies. The analysis points to the conclusion that, for what concerns the long-wavelength density fluctuations in fragile glass formers such as OTP, the universal dynamical features related to the glass transition come out clearly only in the supercooled phase and at frequencies lower than {approximately}10{sup 6} Hz.

  17. Vacuum outgassing of artificial dielectric ceramics

    SciTech Connect

    Nguyen-Tuong, V. )


    A special aluminum nitride (AlN)--glassy carbon artificial dielectric ceramic for microwave absorption at low temperature has been developed at the Continuous Electron Beam Accelerator Facility to manufacture the higher order mode (HOM) loads used in the superconducting cavities of the machine. As the HOM loads share the same ultrahigh vacuum as the superconducting cavities, very tight vacuum requirements are imposed on the HOM load's material. Vacuum outgassing rates have been measured and compared for AlN--15% glassy carbon artificial ceramic in fully degassed condition produced by heating to high temperature in a vacuum furnace. In addition, the effect of exposure to air, nitrogen gas, and isopropanol is discussed. A typical outgassing rate at room temperature is 2.5[times]10[sup [minus]11] Torr l/s/cm[sup 2], 24 h after initial pump down. Baking 24 h at 150 [degree]C was sufficient to attain an outgassing rate of less than 4[times]10[sup [minus]12] Torr l/s/cm[sup 2]. However, when the ceramic has a lower bulk density or a higher apparent porosity, the outgassing rates can be two orders of magnitude higher.


    SciTech Connect

    Vieregg, A. G.; Belov, K.; Palladino, K.; Allison, P.; Baughman, B. M.; Beatty, J. J.; Connolly, A.; Grashorn, E. W.; Besson, D. Z.; Detrixhe, M.; Bevan, S.; Binns, W. R.; Dowkontt, P. F.; Chen, C.; Chen, P.; Clem, J. M.; De Marco, D.; DuVernois, M.; Gorham, P. W.; Hill, B.


    We set the first limits on the ultra-high energy (UHE) neutrino fluence at energies greater than 10{sup 9} GeV from gamma-ray bursts (GRBs) based on data from the second flight of the Antarctic Impulsive Transient Antenna (ANITA). During the 31 day flight of ANITA-II, 26 GRBs were recorded by Swift or Fermi. Of these, we analyzed the 12 GRBs which occurred during quiet periods when the payload was away from anthropogenic activity. In a blind analysis, we observe 0 events on a total background of 0.0044 events in the combined prompt window for all 12 low-background bursts. We also observe 0 events from the remaining 14 bursts. We place a 90% confidence level limit on the E{sup -4} prompt neutrino fluence between 10{sup 8} GeV < E < 10{sup 12} GeV of E{sup 4}{Phi} = 2.5 x 10{sup 17} GeV{sup 3} cm{sup -2} from GRB090107A. This is the first reported limit on the UHE neutrino fluence from GRBs above 10{sup 9} GeV, and the strongest limit above 10{sup 8} GeV.

  19. Continuous wave cavity ring-down spectroscopy for velocity distribution measurements in plasma

    SciTech Connect

    McCarren, D.; Scime, E.


    We report the development of a continuous wave cavity ring-down spectroscopic (CW-CRDS) diagnostic for real-time, in situ measurement of velocity distribution functions of ions and neutral atoms in plasma. This apparatus is less complex than conventional CW-CRDS systems. We provide a detailed description of the CW-CRDS apparatus as well as measurements of argon ions and neutrals in a high-density (10{sup 9} cm{sup −3} < plasma density <10{sup 13} cm{sup −3}) plasma. The CW-CRDS measurements are validated through comparison with laser induced fluorescence measurements of the same absorbing states of the ions and neutrals.

  20. Linearly tapered discharge capillary waveguides as a medium for a laser plasma wakefield accelerator

    SciTech Connect

    Abuazoum, S.; Wiggins, S. M.; Ersfeld, B.; Hart, K.; Vieux, G.; Yang, X.; Welsh, G. H.; Issac, R. C.; Reijnders, M. P.; Jones, D. R.; Jaroszynski, D. A.


    Gas-filled capillary discharge waveguides are commonly used as media for plasma wakefield accelerators. We show that effective waveguides can be manufactured using a femtosecond laser micromachining technique to produce a linearly tapered plasma density, which enables the energy of the accelerator to be enhanced significantly. A laser guiding efficiency in excess of 82% at sub-relativistic intensities has been demonstrated in a 40 mm long capillary with a diameter tapering from 320 {mu}m to 270 {mu}m, which gives rise to an on-axis, time-averaged plasma density that varies from 1.0 x 10{sup 18} cm{sup -3} to 1.6 x 10{sup 18} cm{sup -3}.

  1. Sulfur passivation of surface electrons in highly Mg-doped InN

    SciTech Connect

    Linhart, W. M.; Veal, T. D.; Chai, J.; McConville, C. F.; Durbin, S. M.


    Electron accumulation with a sheet density greater than 10{sup 13} cm{sup −2} usually occurs at InN surfaces. Here, the effects of treatment with ammonium sulfide ((NH{sub 4}){sub 2}S{sub x}) on the surface electronic properties of highly Mg-doped InN (>4×10{sup 18} cm{sup −3}) have been investigated with high resolution x-ray photoemission spectroscopy. The valence band photoemission spectra show that the surface Fermi level decreases by approximately 0.08 eV with (NH{sub 4}){sub 2}S{sub x} treatment, resulting in a decrease of the downward band bending and up to a 70% reduction in the surface electron sheet density.

  2. Optical limiting effects in nanostructured silicon carbide thin films

    SciTech Connect

    Borshch, A A; Starkov, V N; Volkov, V I; Rudenko, V I; Boyarchuk, A Yu; Semenov, A V


    We present the results of experiments on the interaction of nanosecond laser radiation at 532 and 1064 nm with nanostructured silicon carbide thin films of different polytypes. We have found the effect of optical intensity limiting at both wavelengths. The intensity of optical limiting at λ = 532 nm (I{sub cl} ∼ 10{sup 6} W cm{sup -2}) is shown to be an order of magnitude less than that at λ = 1064 nm (I{sub cl} ∼ 10{sup 7} W cm{sup -2}). We discuss the nature of the nonlinearity, leading to the optical limiting effect. We have proposed a method for determining the amount of linear and two-photon absorption in material media. (nonlinear optical phenomena)

  3. 40.8% Efficient Inverted Triple-Junction Solar Cell with Two Independently Metamorphic Junctions

    SciTech Connect

    Geisz, J. F.; Friedman, D. J.; Ward, J. S.; Duda, A.; Olavarria, W. J.; Moriarty, T. E.; Kiehl, J. T.; Romero, M. J.; Norman, A. G.; Jones, K. M.


    A photovoltaic conversion efficiency of 40.8% at 326 suns concentration is demonstrated in a monolithically grown, triple-junction III-V solar cell structure in which each active junction is composed of an alloy with a different lattice constant chosen to maximize the theoretical efficiency. The semiconductor structure was grown by organometallic vapor phase epitaxy in an inverted configuration with a 1.83 eV Ga{sub .51}In{sub .49}P top junction lattice-matched to the GaAs substrate, a metamorphic 1.34 eV In{sub .04}Ga{sub .96}As middle junction, and a metamorphic 0.89 eV In{sub .37}Ga{sub .63}As bottom junction. The two metamorphic junctions contained approximately 1 x 10{sup 5} cm{sup -2} and 2-3 x 10{sup 6} cm{sup -2} threading dislocations, respectively.

  4. Temporal evolution of electron density and temperature in capillary discharge plasmas

    SciTech Connect

    Oh, Seong Y.; Kang, Hoonsoo; Uhm, Han S.; Lee, In W.; Suk, Hyyong


    Time-resolved spectroscopic measurements of a capillary discharge plasma of helium gas were carried out to obtain detailed information about dynamics of the discharge plasma column, where the fast plasma dynamics is determined by the electron density and temperature. Our measurements show that the electron density of the capillary plasma column increases sharply after gas breakdown and reaches its peak of the order of 10{sup 18} cm{sup -3} within less than 100 ns, and then it decreases as time goes by. The result indicates that a peak electron density of 2.3x10{sup 18} cm{sup -3} occurs about 65 ns after formation of the discharge current, which is ideal for laser wakefield acceleration experiments reported by Karsch et al. [New J. Phys. 9, 415 (2007)].

  5. Long-range-ordered CdTe/GaAs nanodot arrays grown as replicas of nanoporous alumina masks

    SciTech Connect

    Jung, Mi; Mho, Sun-il; Park, Hong Lee


    Long-range-ordered CdTe nanodot arrays with controlled size and density were grown on GaAs substrates by using molecular-beam epitaxy with ultrathin nanoporous alumina masks. The CdTe/GaAs nanodot arrays were grown as replicas of the self-assembled porous alumina masks in spite of the large lattice mismatch between GaAs and CdTe. Using ultrathin alumina masks (ca. 200 nm in thickness), we fabricated CdTe nanodot arrays with uniform dot sizes in the ranges of 35 nm (with a density of {approx}2.5x10{sup 10} cm{sup -2}) and 80 nm (with a density of {approx}8.1x10{sup 9} cm{sup -2}). This is the report on controlling both the size and the density of II-VI/III-V heterostructure semiconductor nanodots.

  6. Helium-ion-induced release of hydrogen from graphite

    SciTech Connect

    Langley, R.A.


    The ion-induced release of hydrogen from AXF-5Q graphite was studied for 350-eV helium ions. The hydrogen was implanted into the graphite with a low energy (approx.200 eV) and to a high fluence. This achieved a thin (approx.10-nm), saturated near-surface region. The release of hydrogen was measured as a function of helium fluence. A model that includes ion-induced detrapping, retrapping, and surface recombination was used to analyze the experimental data. A value of (1.65 +- 0.2) x 10/sup -16/ cm/sup 2/ was obtained from the detrapping cross section, and a value of (0.5 to 4) x 10/sup -14/ cm/sup 4//atoms was obtained for the recombination coefficient. 11 refs., 4 figs.

  7. Cyclotron resonance at microwave frequencies in two-dimensional hole system in AlGaAs/GaAs quantum wells.

    SciTech Connect

    Ong, N. P.; Bayrakci, S. P.; Lai, K. W.; Pan, Wei; Tsui, Daniel Chee; West, Ken W.; Pfeiffer, Loren N.


    Cyclotron resonance at the microwave frequency is used to measure the band edge mass (m{sub b}) in the two-dimensional hole (2DH) system, confined in 30 nm quantum wells in the Al{sub 0.1}Ga{sub 0.9}As/GaAs/Al{sub 0.1}Ga{sub 0.9}As heterostructures. We find that for 2DH density p {le} 1.0 x 10{sup 10} cm{sup -2}, m{sub b} is nearly constant, {approx}0.35m{sub e}. It increases with increasing density, to {approx}0.5m{sub e} at p = 7.4 x 10{sup 10} cm{sup -2}.

  8. Low-cost, high-efficiency solar cells utilizing GaAs-on-Si technology

    SciTech Connect

    Vernon, S.M. )


    This report describes work to develop technology to deposit GaAs on Si using a nucleation layer of atomic-layer-epitaxy-grown GaAs or AlAs on Si. This ensures two-dimensional nucleation and should lead to fewer defects in the final GaAs layer. As an alternative, we also developed technology for depositing GaAs on sawtooth-patterned Si. Preliminary studies showed that this material can have a very low defect density, [approximately] 1 [times] 10[sup 5] cm[sup [minus]5], as opposed to our conventionally grown GaAs on SL which has a typical defect density of over 1 [times]10[sup 7] cm[sup [minus]2]. Using these two now methods of GaAs-on-Si material growth, we made solar cells that are expected to show higher efficiencies than those of previous cells.


    SciTech Connect

    Wright, J; Ferguson, B; Peters, B; Mcwhorter, S


    A compact two-gas sensor based on quartz enhanced photoacoustic spectroscopy (QEPAS) was developed for trace methane and ammonia quantification in impure hydrogen. The sensor is equipped with a micro-resonator to confine the sound wave and enhance QEPAS signal. The normalized noise-equivalent absorption coefficients (1{sigma}) of 2.45 x 10{sup -8} cm{sup -1}W/{radical}Hz and 9.1 x 10{sup -9} cm{sup -1}W/{radical}Hz for CH{sub 4} detection at 200 Torr and NH{sub 3} detection at 50 Torr were demonstrated with the QEPAS sensor configuration, respectively. The influence of water vapor on the CH{sub 4} channel was also investigated.

  10. Materials properties and dislocation dynamics in InAsP compositionally graded buffers on InP substrates

    SciTech Connect

    Jandl, Adam Bulsara, Mayank T.; Fitzgerald, Eugene A.


    The properties of InAs{sub x}P{sub 1−x} compositionally graded buffers grown by metal organic chemical vapor deposition are investigated. We report the effects of strain gradient (ε/thickness), growth temperature, and strain initiation sequence (gradual or abrupt strain introduction) on threading dislocation density, surface roughness, epi-layer relaxation, and tilt. We find that gradual introduction of strain causes increased dislocation densities (>10{sup 6}/cm{sup 2}) and tilt of the epi-layer (>0.1°). A method of abrupt strain initiation is proposed which can result in dislocation densities as low as 1.01 × 10{sup 5} cm{sup −2} for films graded from the InP lattice constant to InAs{sub 0.15}P{sub 0.85}. A model for a two-energy level dislocation nucleation system is proposed based on our results.

  11. Rate constants for the gas phase reactions of the OH radical with CF sub 3 CF sub 2 CHCl sub 2 (HCFC-225ca) and CF sub 2 ClCF sub 2 CHClF (HCFC-225cb)

    SciTech Connect

    Zhang, Zhengyu; Liu, Renzhang; Huie, R.E.; Kurylo, M.J. )


    Rate constants have been measured for the gas phase reactions of the hydroxyl radical (OH) with the hydrochlorofluorocarbons CF{sub 3}Cf{sub 2}CHCl{sub 2} (HCFC-225ca) over the temperature range 270 to 400 K and CF{sub 2}ClCF{sub 2}CHClF (HCFC-225cb) over the temperature range 298 to 400 K. The Arrhenius expressions k(225ca) = (1.92 {plus minus} 0.52) {times} 10{sup {minus}12} exp({minus}1290 {plus minus} 90/T) cm{sup 3} molecule {sup {minus}1} s{sup {minus}1} and k (225cb) = (6.75 {plus minus} 3.70) {times} 10{sup {minus}13} exp({minus}1,300 {plus minus} 180/T) cm{sup 3} molecule{sup {minus}1} s{sup {minus}1} were derived from the kinetic data.

  12. Surface transfer doping of diamond by MoO{sub 3}: A combined spectroscopic and Hall measurement study

    SciTech Connect

    Russell, Stephen A. O. Crawford, Kevin G.; Moran, David A. J.; Cao, Liang; Qi, Dongchen; Tallaire, Alexandre; Wee, Andrew T. S.


    Surface transfer doping of diamond has been demonstrated using MoO{sub 3} as a surface electron acceptor material. Synchrotron-based high resolution photoemission spectroscopy reveals that electrons are transferred from the diamond surface to MoO{sub 3}, leading to the formation of a sub-surface quasi 2-dimensional hole gas within the diamond. Ex-situ electrical characterization demonstrated an increase in hole carrier concentration from 1.00 × 10{sup 13}/cm{sup 2} for the air-exposed hydrogen-terminated diamond surface to 2.16 × 10{sup 13}/cm{sup 2} following MoO{sub 3} deposition. This demonstrates the potential to improve the stability and performance of hydrogen-terminated diamond electronic devices through the incorporation of high electron affinity transition metal oxides.

  13. Response function stability of single crystal diamond detectors to 14 MeV neutrons

    SciTech Connect

    Zbořil, Miroslav Zimbal, Andreas


    Detectors based on single crystal synthetic diamond show promise as neutron spectrometers for the ITER project. In this work, the stability of the response function of two diamond detectors was tested at the Physikalisch-Technische Bundesanstalt (PTB) accelerator using a 14 MeV neutron field and a method of time-resolved fluence monitoring. In addition, measurements at the PTB ion-microbeam were made to investigate the charge collection properties of the detectors in more detail. The {sup 12}C(n,α){sup 9}Be peak response of one of the detectors was found to be stable within 1% after irradiation with a neutron fluence of 8 × 10{sup 9} cm{sup −2}. The absolute value of the peak response of this detector was determined as 8.65(26) × 10{sup −5} cm{sup 2}.

  14. Comparison of various NLTE codes in computing the charge-state populations of an argon plasma

    SciTech Connect

    Stone, S.R.; Weisheit, J.C.


    A comparison among nine computer codes shows surprisingly large differences where it had been believed that the theroy was well understood. Each code treats an argon plasma, optically thin and with no external photon flux; temperatures vary around 1 keV and ion densities vary from 6 x 10/sup 17/ cm/sup -3/ to 6 x 10/sup 21/ cm/sup -3/. At these conditions most ions have three or fewer bound electrons. The calculated populations of 0-, 1-, 2-, and 3-electron ions differ from code to code by typical factors of 2, in some cases by factors greater than 300. These differences depend as sensitively on how may Rydberg states a code allows as they do on variations among computed collision rates. 29 refs., 23 figs.

  15. Interaction Region Upgrades of e+ e- B-Factories

    SciTech Connect

    Sullivan, M.; /SLAC


    Both the PEP-II and KEKB B-Factories have plans to upgrade their Interaction Regions (IRs) in order to improve luminosity performance. Last summer PEP-II added cooling to the IR beam pipe in order to increase beam currents thereby raising the luminosity. In addition, PEP-II is working on a design that modifies the permanent magnets near the Interaction Point (IP) for an even higher luminosity increase. KEKB is also planning an improvement to their IR that will decrease the detector beam pipe radius. In addition, KEK has a design to increase the luminosity of KEKB to 1 x 10{sup 35} cm{sup -2} sec{sup -1} which includes changes to the IR. PEP-II is also investigating the feasibility of a 1 x 10{sup 36} cm{sup -2} sec{sup -1} luminosity design. I summarize these various upgrades and concentrate on issues common to the different designs.

  16. Scientific opportunities with advanced facilities for neutron scattering

    SciTech Connect

    Lander, G.H.; Emery, V.J.


    The present report documents deliberations of a large group of experts in neutron scattering and fundamental physics on the need for new neutron sources of greater intensity and more sophisticated instrumentation than those currently available. An additional aspect of the Workshop was a comparison between steady-state (reactor) and pulsed (spallation) sources. The main conclusions were: (1) the case for a new higher flux neutron source is extremely strong and such a facility will lead to qualitatively new advances in condensed matter science and fundamental physics; (2) to a large extent the future needs of the scientific community could be met with either a 5 x 10/sup 15/ n cm/sup -2/s/sup -1/ steady state source or a 10/sup 17/ n cm/sup -2/s/sup -1/ peak flux spallation source; and (3) the findings of this Workshop are consistent with the recommendations of the Major Materials Facilities Committee.

  17. Search for fractionally charged particles in Kamiokande II

    SciTech Connect

    Mori, M.; Oyama, Y.; Suzuki, A.; Takahashi, K.; Yamada, M. , Ibaraki 305, Japan ); Miyano, K.; Miyata, H.; Takei, H. ); Hirata, K.S.; Kajita, T.; Kihara, K.; Nakahata, M.; Nakamura, K.; Ohara, S.; Sato, N.; Suzuki, Y.; Totsuka, Y.; Yaginuma, Y. ); Koshiba, M. ); Suda, T.; Tajima, T. ); Fukuda, Y.; Nagashima, Y.; Takita, M. ); Kaneyuki, K.; Tanimori, T. ); Beier, E.W.; Frank, E.D.; Frati, W.; Kim, S.B.; Mann, A.K.; Newcomer, F.M.; Van Berg, R.; Zhang, W. (Department of Physics, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (USA


    A search has been made for fractionally charged particles with {vert bar}{ital Q}{vert bar}=1/3 and {vert bar}{ital Q}{vert bar}=2/3 which might have passed through the Kamiokande II detector. No positive evidence for such particles is observed in 1009 days of observation. The 90%-C.L. upper limits obtained on the fluxes of fractionally charged particles are 2.1{times}10{sup {minus}15} cm{sup {minus}2} s{sup {minus}1} sr{sup {minus}1} for {vert bar}{ital Q}{vert bar}=1/3 and 2.3{times}10{sup {minus}15} cm{sup {minus}2} s{sup {minus}1} sr{sup {minus}1} for {vert bar}{ital Q}{vert bar}=2/3, improving the existing limits by two orders of magnitude.

  18. Thick amorphous silicon layers suitable for the realization of radiation detectors

    SciTech Connect

    Hong, Wan-Shick; Drewery, J.S.; Jing, Tao; Lee, Hyong-Koo; Perez-Mendez, V.; Petrova-Koch, V.


    Thick silicon films with good electronic quality have been prepared by glow discharge of He-diluted SiH{sub 4} at a substrate temperature {approximately} 150{degree}C and subsequent annealing at 160{degree}C for about 100 hours. The stress in the films obtained this way decreased to {approximately} 100 MPa compared to the 350 MPa in conventional a-Si:H. The post-annealing helped to reduce the ionized dangling bond density from 2.5 {times} 10{sup 15} cm{sup {minus}3} to 7 {times} 10{sup 14} cm{sup {minus}3} without changing the internal stress. IR spectroscopy and hydrogen effusion measurements implied the existence of microvoids and tiny crystallites in the material showing satisfactory electronic properties. P-I-N diodes for radiation detection applications have been realized out of the new material.

  19. Blistering of implanted crystalline silicon by plasma hydrogenation investigated by Raman scattering spectroscopy

    SciTech Connect

    Duengen, W.; Job, R.; Mueller, T.; Ma, Y.; Fahrner, W. R.; Keller, L. O.; Horstmann, J. T.; Fiedler, H.


    Czochralski silicon wafers were implanted with H{sup +} ions at a dose of 1x10{sup 16} cm{sup -2} followed by hydrogen plasma treatments at different temperatures. The minimum hydrogen implantation dose required for silicon surface exfoliation of 3x10{sup 16} H{sup +}/cm{sup 2} without further hydrogen incorporation was reduced to one-third by subsequent plasma hydrogenation. The corresponding local vibrational modes of hydrogen molecules, vacancy-hydrogen complexes, and Si-H bonds on surfaces have been analyzed by micro-Raman scattering spectroscopy to investigate blistering and platelet formation. The surface profile has been studied by atomic force microscopy and scanning electron microscopy. The plasma treated samples were annealed to investigate the mechanism and applicability of the induced exfoliation. <111>-platelet formation occurred below plasma hydrogenation temperatures of 350 deg. C. At temperatures above 450 deg. C, <100>-platelet nucleation induced blistering.

  20. Determination of the global recombination rate coefficient for the ISX-B Tokamak

    SciTech Connect

    Langley, R.A.; Howe, H.C.


    The global recombination rate coefficient for hydrogen has been measured for the ISX-B tokamak vacuum vessel for various surface conditions. The measurements were performed by observing the rate of decrease of gas pressure in the vessel during a glow discharge. The parameters of the glow discharge and the complete experimental method are described. Previously published analytic and numerical models are used for data analysis. The effects of surface contamination on the results are described. For ''unclean'' wall conditions sigmak/sub r/ = 1.8 x 10/sup -28/ cm/sup 4//atom.s at 296 K and increases to sigmak/sub r/ = 4.4 x 10/sup -28/ cm/sup 4//atoms.s for ''clean'' conditions and remains constant until subsequent exposure to air.

  1. Molecular beam epitaxy of n-Zn(Mg)O as a low-damping plasmonic material at telecommunication wavelengths

    SciTech Connect

    Sadofev, Sergey; Kalusniak, Sascha; Schaefer, Peter; Henneberger, Fritz


    We demonstrate that Zn(Mg)O:Ga layers can be grown by molecular beam epitaxy in a two-dimensional mode with high structural perfection up to Ga mole fractions of about 6.5%. The doping efficiency is practically 100% so that free-carrier concentrations of almost 10{sup 21} cm{sup -3} can be realized providing a zero-crossover wavelength of the real part of the dielectric function as short as 1.36 {mu}m, while the plasmonic damping does not exceed 50 meV. Structural, electrical, and optical data consistently demonstrate a profound change of the Ga incorporation mode beyond concentrations of 10{sup 21} cm{sup -3} attended by deterioration of the plasmonic features.

  2. Temporal evolution of nanoporous layer in off-normally ion irradiated GaSb

    SciTech Connect

    Datta, D. P.; Garg, S. K.; Som, T.; Kanjilal, A.; Sahoo, P. K.; Kanjilal, D.


    Room temperature irradiation of GaSb by 60 keV Ar{sup +}-ions at an oblique incidence of 60° leads to simultaneous formation of a nanoporous layer and undulations at the interface with the underlying substrate. Interestingly, with increasing ion fluence, a gradual embedding of the dense nanoporous layer takes place below ridge-like structures (up to the fluence of 1 × 10{sup 17} ions cm{sup −2}), which get extended to form a continuous layer (at fluences ≥4 × 10{sup 17} ions cm{sup −2}). Systematic compositional analyses reveal the co-existence of Ga{sub 2}O{sub 3} and Sb{sub 2}O{sub 3} in the surface layer. The results are discussed in terms of a competition between ion-induced defect accumulation and re-deposition of sputtered atoms on the surface.

  3. Tungsten-doped tin oxide thin films prepared by pulsed plasma deposition

    SciTech Connect

    Huang Yanwei; Zhang Qun Li Guifeng; Yang Ming


    Transparent conductive oxide tungsten-doped tin oxide thin films were deposited on glass substrates from ceramic targets by the pulsed plasma deposition method. The structural, electrical and optical properties have been investigated as functions of tungsten doping content and oxygen partial pressure. The lowest resistivity of 2.1 x 10{sup -3} {omega}{center_dot}cm was reproducibly obtained, with carrier mobility of 30 cm{sup 2}V{sup -1}s{sup -1} and carrier concentration of 9.6 x 10{sup 19} cm{sup -3} at the oxygen partial pressure of 1.8 Pa. The average optical transmission was in excess of 80% in the visible region from 400 to 700 nm, with the optical band gap ranging from 3.91 to 4.02 eV.

  4. Results From the DAFNE High Luminosity Test

    SciTech Connect

    Milardi, C.; Alesini, D.; Biagini, M.E.; Boni, R.; Boscolo, M.; Bossi, F.; Buonomo, B.; Clozza, A.; Delle Monache, G.; Demma, T.; Di Pasquale, E.; Di Pirro, G.; Drago, A.; Gallo, A.; Ghigo, A.; Guiducci, S.; Ligi, C.; Marcellini, F.; Mazzitelli, G.; Murtas, F.; Pellegrino, L.; /Frascati /Novosibirsk, IYF /CERN /INFN, Cosenza /INFN, Rome /KEK, Tsukuba /Orsay, LAL /Rome U. /Pisa U. /INFN, Pisa /INFN, Rome3 /SLAC


    The DAPHNE collider, based on a new collision scheme including Large Piwinsky angle and Crab-Waist, has been successfully commissioned and is presently delivering luminosity to the SIDDHARTA detector. Large crossing angle and Crab-Waist scheme proved to be effective in: (1) Increasing luminosity, now a factor 2.7 higher than in the past; and (2) controlling transverse beam blow-up due to the beam-beam. Work is in progress to reach the ultimate design luminosity goal 5.0 {center_dot} 10{sup 32} cm{sup -2}s{sup -1}. The new collision scheme is the main design concept for a new project aimed at building a Super-B factory that is expected to achieve a luminosity of the order of 10{sup 36} cm{sup -2} s{sup -1} and it has been also taken into account to upgrade one of the LHC interaction regions.

  5. Magnetoresistivity in a tilted magnetic field in p-Si/SiGe/Si heterostructures with an anisotropic g-factor. Part II

    SciTech Connect

    Drichko, I. L.; Smirnov, I. Yu.; Suslov, A. V.; Mironov, O. A.; Leadley, D. R.


    The magnetoresistance components {rho}xx and {rho}xy are measured in two p-Si/SiGe/Si quantum wells that have an anisotropic g-factor in a tilted magnetic field as a function of the temperature, field, and tilt angle. Activation energy measurements demonstrate the existence of a ferromagnetic-paramagnetic (F-P) transition for the sample with the hole density p = 2 Multiplication-Sign 10{sup 11} cm{sup -2}. This transition is due to the crossing of the 0{up_arrow} and 1{down_arrow} Landau levels. However, in another sample with p = 7.2 Multiplication-Sign 10{sup 10} cm{sup -2}, the 0{up_arrow} and 1{down_arrow} Landau levels coincide for angles {theta} = 0-70 Degree-Sign . Only for {theta} > 70 Degree-Sign do the levels start to diverge which, in turn, results in the energy gap opening.

  6. Anomalous intense driver (AID) concept

    SciTech Connect

    Thode, L.E.


    An optimized electron bunching mechanism is utilized to efficiently couple the energy of a 5 to 100 MeV, 1 to 30 TW electron beam into a 3 to 50 cm/sup 3/ plasma of electron density 10/sup 17/ to 10/sup 20/ cm-/sup 3/. An efficient coupling of beam energy and momentum to the plasma is possible due to the relativistic nature of the beam dynamics combined with the short wavelength of the bunching mechanism in a high-density plasma. The rapidly produced multi-kilovolt plasma can be used directly to develop a pulsed neutron and x-ray source. Alternatively, the plasma can be used to drive a hierarchy of inertial confinement or x-ray devices. Utilizing this novel concept, controlled thermonuclear fusion may be achievable within present or near term relativistic electron beam technology.

  7. Nature of Defects Induced by Au Implantation in Hexagonal Silicon Carbide Single Crystals

    SciTech Connect

    Gentils, Aurelie; Barthe, Marie-France; Egger, Werner; Sperr, Peter


    Pulsed-slow-positron-beam-based positron lifetime spectroscopy was used to investigate the nature of vacancy defects induced by 20 MeV Au implantation in single crystals 6H-SiC. Preliminary analysis of the data shows that at lower fluence, below 10{sup 14} cm{sup -2}, a positron lifetime of 220 ps has been obtained: it could be associated with the divacancy V{sub Si}-V{sub C} in comparison with the literature. At higher fluence, above 10{sup 15} cm{sup -2}, a positron lifetime of 260-270 ps, increasing with the incident positron energy, has been observed after decomposition of the lifetime spectra. By comparison with lifetime calculations, open-volumes such as quadrivacancy (V{sub Si}-V{sub C}){sub 2} clusters could be associated with this value.

  8. Concentration quenching of rhodamine 6G fluorescence in the adsorbed state

    SciTech Connect

    Zemskii, V.I.; Meshkovskii, I.K.; Sokolov, I.A.


    Porous glass to which molecules of organic dyes have been added is a promising active solid medium for tunable lasers. The spectroluminescent characteristics of samples of porous glass activated with rhodamine 6G molecules have been studied. It is shown that molecules of rhodamine 6G adsorbed in porus glass retain their capacity for fluorescence with a high quantum yield. Fixation of rhodamine 6G molecules on the pore walls interferes with their association in the concentration range up to 10/sup 19/ cm/sup -3/. Concentration quenching of fluorescence is observed starting with a concentration of dye molecules of 5 x 10/sup 15/ cm/sup -3/; this is explained by inductive-resonance energy transfer between monomeric molecules under conditions of inhomogeneous broadening of the electronic spectra of the adsorbed molecules.

  9. Electron attachment to propargyl chloride, 305-540 K

    SciTech Connect

    Bopp, Joseph C.; Miller, Thomas M.; Friedman, Jeffrey F.; Shuman, Nicholas S.; Viggiano, A. A.


    Electron attachment to propargyl chloride (HC{identical_to}C-CH{sub 2}Cl) was studied in a flowing-afterglow Langmuir-probe apparatus from 305 to 540 K. The sole ion product in this temperature range is Cl{sup -}. Electron attachment is very inefficient, requiring correction for a competing process of electron recombination with molecular cations produced in reaction between Ar{sup +} and propargyl chloride and subsequent ion-molecule reactions. The electron attachment rate coefficient was measured to be 1.6x10{sup -10} cm{sup 3} s{sup -1} at 305 K and increased to 1.1x10{sup -9} cm{sup 3} s{sup -1} at 540 K.

  10. Recovery of the chemical ordering in L1{sub 0} MnAl epitaxial thin films irradiated by 2 MeV protons

    SciTech Connect

    Anuniwat, Nattawut; Cui, Yishen; Wolf, Stuart A.; Lu, Jiwei; Weaver, Bradley D.


    Epitaxial MnAl films with a high chemical ordering were synthesized and characterized during a series of irradiations by 2 MeV protons (H{sup +}). The chemical ordering was first reduced to a minimum at a total fluence (TF) of 1 Multiplication-Sign 10{sup 15} H{sup +}/cm{sup 2}, and consequently was recovered at the final total fluence of 2 Multiplication-Sign 10{sup 15} H{sup +}/cm{sup 2}. We attributed the recovery of chemical ordering to thermal effects and the enhanced diffusion caused by the high energy protons. In addition, the damages by the protons have little effect on the magnetic scattering processing in MnAl characterized by the anomalous Hall effect.

  11. Bidirectional propagation of cold atoms in a 'stadium'-shaped magnetic guide

    SciTech Connect

    Wu Saijun; Rooijakkers, Wilbert; Striehl, Pierre; Prentiss, Mara


    We demonstrate the bidirectional propagation of more than 10{sup 7} atoms ({sup 87}Rb) around a 'stadium'-shaped magnetic ring that encloses an area of 10.9 cm{sup 2}, with a flux density exceeding 10{sup 11} atom s{sup -1} cm{sup -2}. Atoms are loaded into the guide from a two-dimensional (and higher) magneto-optical trap at one side of the 'stadium'. An optical standing wave pulse is applied to increase the propagation velocity of atoms along the waveguide. The atom sample fills the entire ring in 200 ms when counterpropagating atom sections of the original atom cloud recombine at their initial positions after a full revolution.

  12. Saturation of the Two-Plasmon Decay Instability in Long-Scale-Length Plasmas Relevant to Direct-Drive Inertial Confinement Fusion

    SciTech Connect

    Froula, D. H.; Yaakobi, B.; Hu, S. X.; Chang, P-Y.; Craxton, R. S.; Edgell, D. H.; Follett, R.; Michel, D. T.; Myatt, J. F.; Seka, W.; Short, R. W.; Solodov, A.; Stoeckl, C.


    Measurements of the hot-electron generation by the two-plasmon-decay instability are made in plasmas relevant to direct-drive inertial confinement fusion. Density-scale lengths of 400 {micro}m at n{sub cr}/4 in planar CH targets allowed the two-plasmon-decay instability to be driven to saturation for vacuum intensities above ~3.5 x 10{sup 14} W cm{sup -2}. In the saturated regime, ~1% of the laser energy is converted to hot electrons. The hot-electron temperature is measured to increase rapidly from 25 to 90 keV as the laser beam intensity is increased from 2 to 7 x 10{sup 14} W cm{sup -2}. This increase in the hot-electron temperature is compared with predictions from nonlinear Zakharov models.

  13. Formation of ZnTe:Cu/Ti Contacts at High Temperature for CdS/CdTe Devices (Presentation)

    SciTech Connect

    Gessert, T. A.; Asher, S.; Johnston, S.; Duda, A.; Young, M. R.; Moriarty, T.


    The conclusions of this report are that Cu diffusion from a ZnTe:Cu contact causes good and bad things. The good (Cu in CdS < low 10{sup 18} cm{sup -3})--increase in CdTe N{sub A}-N{sub D} that leads to V{sub oc} and FF improvement. The bad (Cu in CdS > low 10{sup 18} cm{sup -3})--(1) possibly decreased of shunt resistance (?); (2) depletion width in CdTe can become too narrow for optimum current collection at J{sub MPP}; (3) donor reduction in CdS (significant FF loss in LIV); and (4) excessive Cu diffusion into CdS readily observed by red-light bias QE.

  14. Modified Johnson model for ferroelectric lead lanthanum zirconate titanate at very high fields and below Curie temperature.

    SciTech Connect

    Narayanan, M.; Tong, S.; Ma, B.; Liu, S.; Balachandran, U.


    A modified Johnson model is proposed to describe the nonlinear field dependence of the dielectric constant ({var_epsilon}-E loop) in ferroelectric materials below the Curie temperature. This model describes the characteristic ferroelectric 'butterfly' shape observed in typical {var_epsilon}-E loops. The predicted nonlinear behavior agreed well with the measured values in both the low- and high-field regions for lead lanthanum zirconate titanate films. The proposed model was also validated at different temperatures below the ferroelectric-to-paraelectric Curie point. The anharmonic coefficient in the model decreased from 6.142 x 10{sup -19} cm{sup 2}/V{sup 2} to 2.039 x 10{sup -19} cm{sup 2}/V{sup 2} when the temperature increased from 25 C to 250 C.

  15. High-energy 4{omega} probe laser for laser-plasma experiments at nova

    SciTech Connect

    Glenzer, S. H., LLNL


    For the characterization of inertial confinement fusion plasmas we implemented a high-energy 4{omega} probe laser at the Nova laser facility. A total energy of > 50 Joules at 4{omega}, a focal spot size of order 100 {micro}m, and a pointing accuracy of 100 {micro}m was demonstrated for target shots. This laser provides intensities of up to 3 x 10{sup 14}W cm{sup -2} and therefore fulfills high-power requirements for laser-plasma interaction experiments. The 4{omega} probe laser is now routinely used for Thomson scattering. Successful experiments were performed in gas-filled hohlraums at electron densities of n{sub e} > 2 X 10{sup 21}cm{sup -3} which represents the highest density plasma so far being diagnosed with Thomson scattering.

  16. On the electronic properties of GaSb irradiated with reactor neutrons and its charge neutrality level

    SciTech Connect

    Boiko, V. M.; Brudnii, V. N.; Ermakov, V. S.; Kolin, N. G.; Korulin, A. V.


    The electronic properties and the limiting position of the Fermi level in p-GaSb crystals irradiated with full-spectrum reactor neutrons at up to a fluence of 8.6 × 10{sup 18} cm{sup −2} are studied. It is shown that the irradiation of GaSb with reactor neutrons results in an increase in the concentration of free holes to p{sub lim} = (5−6) × 10{sup 18} cm{sup −3} and in pinning of the Fermi level at the limiting position F{sub lim} close to E{sub V} + 0.02 eV at 300 K. The effect of the annealing of radiation defects in the temperature range 100–550°C is explored.

  17. Low Band Gap Thiophene-Perylene Diimide Systems with Tunable Charge Transport Properties

    SciTech Connect

    Balaji, Ganapathy; Kale, Tejaswini S.; Keerthi, Ashok; Della Pelle, Andrea M.; Thayumanavan, S.; Vallyaveettil, Surech


    Perylenediimide-pentathiophene systems with varied architecture of thiophene units were synthesized. The photophysical, electrochemical, and charge transport behavior of the synthesized compounds were studied. Both molecules showed a low band gap of ~1.4 eV. Surprisingly, the molecule with pentathiophene attached via β-position to the PDI unit upon annealing showed a predominant hole mobility of 1 × 10<sup>-4 cm>2 V-1 s-1 whereas the compound with branched pentathiophene attached via β-position showed an electron mobility of 9.8 × 10<sup>-7 cm>2 V-1 s-1. This suggests that charge transport properties can be tuned by simply varying the architecture of pentathiophene units.

  18. Ion Implanted Ge:B Far Infrard Blocked Impurity BandDetectors

    SciTech Connect

    Beeman, J.W.; Goyal, S.; Reichertz, L.A.; Haller, E.E.


    Ge Blocked Impurity Band (BIB) photoconductors have the potential to replace stressed Ge:Ga photoconductors for far-infrared astronomical observations. A novel planar BIB device has been fabricated in which ion-implanted boron is used to form the blocking and absorbing layers of necessary purity and compensation. The effect of doping in the infrared active layer on the far-infrared photoconductive response has been studied, and the optimum doping concentration is found to be {approx} 4 x 10{sup 16} cm{sup -3}. Devices doped near this concentration show good blocking characteristics with low dark currents. The spectral response extends to {approx} 45 cm{sup -1}, clearly showing the formation of an impurity band. Under low background testing conditions these devices attain a responsivity of 0.12 A/W and NEP of 5.23 x 10{sup -15} W/Hz{sup -1/2}.

  19. Inelastic cross sections for positron scattering from atomic hydrogen

    SciTech Connect

    Weber, M.; Hofmann, A.; Raith, W.; Sperber, W.; Jacobsen, F.; Lynn, K.G.


    Positronium formation (Ps) cross sections for positrons impinging on atomic hydrogen were measured in the impact energy range from 13eV to 255eV at the High Intensity Positron (HIP) beam at Brookhaven National Laboratory (BNL). The Ps-formation cross section was found to rise rapidly from the threshold at 6.8eV to a maximum value of (2.98 {plus_minus} 0.18) {times} 10{sup {minus}16} cm{sup 2} for {approx} 15eV positrons. By 75eV it drops below the detection limit of 0.17 {times} 10{sup {minus}16} cm{sup 2} which is the present level of statistical uncertainty. The experiment was modified to enable the measurement of doubly differential scattering cross sections.

  20. Interaction of divalent plutonium and curium

    SciTech Connect

    Mikheev, N.B.; Kazakevich, M.Z.; Rumer, I.A.


    It has been established that at plutonium concentrations ranging from 10/sup -5/ to 10/sup -4/ mole % the oxidation potentials of the Pu/sup 3 +//Pu/sup 2 +/ and Cm/sup 3 +//Cm/sup 2 +/ pairs increased by 0.15-0.2 V due to the dimerization of Pu/sup 2 +/ and the formation of mixed dimers of plutonium and curium. Promethium(2+) does not have a similar ability to form mixed dimers owing to the fact that Pm/sup 2 +/ does not have a free d electron. The oxidation potential of the Pm/sup 3 +//Pm/sup 2 +/ pair does not vary in the presence of massive quantities of plutonium

  1. 132 ns Bunch Spacing in the Tevatron Proton-Antiproton Collider

    SciTech Connect

    Holmes, S.D.; Holt, J.; Johnstone, J.A.; Marriner, J.; Martens, M.; McGinnis, D.


    Following completion of the Fermilab Main Injector it is expected that the Tevatron proton-antiproton collider will be operating at a luminosity in excess of 5{times}10{sup 3l} cm{sup {minus}2} with 36 proton and antiproton bunches spaced at 396 nsec. At this luminosity, each of the experimental detectors will see approximately 1.3 interactions per crossing. Potential improvements to the collider low beta and rf systems could push the luminosity beyond 10{times}10{sup 3l} cm{sup {minus}2}sec{sup {minus}1}, resulting in more than three interactions per crossing if the bunch separation is left unchanged. This paper discusses issues related to moving to {approx}100 bunch operation, with bunch spacings of 132 nsec, in the Tevatron. Specific scenarios and associated hardware requirements are described.

  2. Low-cost, high-efficiency solar cells utilizing GaAs-on-Si technology. Annual subcontract report, 1 August 1991--31 July 1992

    SciTech Connect

    Vernon, S.M.


    This report describes work to develop technology to deposit GaAs on Si using a nucleation layer of atomic-layer-epitaxy-grown GaAs or AlAs on Si. This ensures two-dimensional nucleation and should lead to fewer defects in the final GaAs layer. As an alternative, we also developed technology for depositing GaAs on sawtooth-patterned Si. Preliminary studies showed that this material can have a very low defect density, {approximately} 1 {times} 10{sup 5} cm{sup {minus}5}, as opposed to our conventionally grown GaAs on SL which has a typical defect density of over 1 {times}10{sup 7} cm{sup {minus}2}. Using these two now methods of GaAs-on-Si material growth, we made solar cells that are expected to show higher efficiencies than those of previous cells.

  3. Measurement of sodium-argon cluster ion recombination by coherent microwave scattering

    SciTech Connect

    Wu Yue; Sawyer, Jordan; Zhang Zhili; Shneider, Mikhail N.; Viggiano, Albert A.


    This present work demonstrates a non-intrusive measurement of the rate constant for sodium-argon cluster ions (Na{sup +}{center_dot}Ar) recombining with electrons. The measurements begin with resonance enhanced multi-photon ionization of the Na followed by coherent microwave scattering (radar) to monitor the plasma density. The Na{sup +}{center_dot}Ar adduct was formed in a three-body reaction. The plasma decay due to recombination reactions was monitored as a function of time and modeled to determine the rate constant. At 473 K, the rate constant is 1.8{sub -0.5}{sup +0.7}x10{sup -6}cm{sup 3}/s in an argon buffer at 100 Torr and initial Na number density of 5.5 x 10{sup 10} cm{sup -3}.

  4. Low resistance wavelength-reproducible [ital p]-type (Al,Ga)As distributed Bragg reflectors grown by molecular beam epitaxy

    SciTech Connect

    Chalmers, S.A.; Lear, K.L.; Killeen, K.P. )


    We report the reproducible molecular beam epitaxial growth of Be-doped piecewise linearly graded (Al,Ga)As distributed Bragg reflectors that have vertical series resistivities near bulk values. For mirrors with three linear segments per interface, the center wavelength reproducibility is 0.1% and the series resistivity is as low as 1.8[times]10[sup [minus]5] [Omega] cm[sup 2] for hole concentrations of 5[times]10[sup 18] cm[sup [minus]3]. Measured reflectivities of 6.0% per interface are comparable to conventional single-linear-grade mirrors. Vertical-cavity surface-emitting lasers incorporating these mirrors exhibit record-low voltage thresholds of less than 1.5 V.

  5. Computer simulation of plasma behavior in open-ended linear theta machines. Scientific report 81-5

    SciTech Connect

    Stover, E. K.


    Zero-dimensional and one-dimensional fluid plasma computer models have been developed to study the behavior of linear theta pinch plasmas. Computer simulation results generated from these codes are compared with data obtained from two theta pinch experiments so that significant machine plasma behavior can be identified. The experiments examined are a collisional experiment, T/sub i/ approx. 50 eV, n/sub e/ approx. 10/sup 17/ cm/sup -3/, where the plasma mean-free-path was significantly less than the plasma column length, and a hot ion species experiment, T/sub i/ approx. 3 keV, n/sub e/ approx. 10/sup 16/ cm/sup -3/, where the ion mean-free-path was on the order of the plasma column length.

  6. Kinetics of CO and H atom production from the decomposition of HNCO in shock waves

    SciTech Connect

    Wu, C.H.; Wang, H.T. ); Lin, M.C. ); Fifer, R.A. )


    The production of CO and H atoms from the thermal decomposition of HNCO in shock waves at temperatures between 2,120 and 2,570 K has been measured by resonance absorption. Kinetic modeling of these product formation rates using a recently established mechanism yielded the second-order rate constants for the primary decomposition processes HNCO + Ar {yields} NH + CO + Ar (1) and HNCO + Ar {yields} H + NCO + Ar (2): k{sub 1} = 10{sup 15.41 {plus minus}0.16} exp({minus}39,800 {plus minus} 700/T) cm{sup 3}/(mol {times} s) and k{sub 2} = 10{sup 17.0} exp({minus}56,400/T) cm{sup 3}/(mol {times} s).

  7. SiH{sub x} film growth precursors during high-rate nanocrystalline silicon deposition

    SciTech Connect

    Kessels, W. M. M.; Nadir, K.; Sanden, M. C. M. van de


    The densities of the silane radicals Si, SiH, and SiH{sub 3} have been measured in a remote SiH{sub 4} plasma for various H{sub 2} dilution ratios yielding amorphous and nanocrystalline silicon film growth. The measurements carried out under high deposition rate conditions of nanocrystalline silicon reveal typical densities of {approx}10{sup 12} cm{sup -3} for SiH{sub 3} and {approx}10{sup 11} cm{sup -3} for both Si and SiH. It is concluded that SiH{sub 3} is the dominant silane radical in the plasma for both amorphous and nanocrystalline silicon depositions although the importance of Si and SiH to film growth increases drastically when going from amorphous to nanocrystalline material.

  8. Spectrometry of the Rutherford backscattering of ions and the Raman scattering of light in GaS single crystals irradiated with 140-keV H{sub 2}{sup +} ions

    SciTech Connect

    Garibov, A. A.; Madatov, R. S.; Komarov, F. F.; Pilko, V. V.; Mustafayev, Yu. M.; Akhmedov, F. I.; Jakhangirov, M. M.


    The methods of the Raman scattering of light and Rutherford backscattering are used to study the degree of structural disorder in layered GaS crystals before and after irradiation with 140-keV H{sub 2}{sup +} ions. It is shown that the distribution of the crystal’s components over depth is homogeneous; for doses as high as 5 × 10{sup 15} cm{sup −2}, the stoichiometric composition of the compound’s components is retained. The experimental value of the critical dose for the beginning of amorphization amounts to about 5 × 10{sup 15} cm{sup −2} and is in accordance with the calculated value. The results obtained by the method of the Raman scattering of light confirm conservation of crystalline structure and the start of the amorphization process.

  9. Plasma resonances in a microwave-driven microdischarge

    SciTech Connect

    Xue, J.; Urdahl, R. S.; Cooley, J. E.


    This work investigates resonances in a capacitively coupled, low pressure krypton microdischarge operated at 2.5 GHz. A circuit model for the device, which has a length dimension of approximately 1 mm, calculates impedance values for a range of electron densities. The model results predict several 'parallel' and 'series' resonances at the driving frequency when the electron density is approximately 8 x 10{sup 11} cm{sup -3} and 5 x 10{sup 12} cm{sup -3}. The series resonance occurs when the resistance approaches the output impedance of the radio-frequency signal source, minimizing the reflected power. These resonances explain an experimentally observed jump in intensity with increasing input power.

  10. Characteristics of the three-half-turn-antenna-driven RF discharge in the Uragan-3M torsatron

    SciTech Connect

    Grigor’eva, L. I.; Chechkin, V. V. Moiseenko, V. E.; Grekov, D. L.; Pavlichenko, R. O.; Lozin, A. V.; Tarasov, I. K.; Kulaga, A. Ye.; Zamanov, N. V.; Tretiak, K. K.; Kozulya, M. M.; Beletskii, A. A.; Kasilov, A. A.; Mironov, Yu. K.; Romanov, V. S.; Voitsenya, V. S.


    In the ℓ = 3 Uragan-3M torsatron hydrogen plasma is produced by RF fields in the Alfvén range of frequencies (ω ≤ ω{sub ci}). The initial (target) plasma with the line-averaged density of units 10{sup 12} cm{sup −3} is produced by a frame antenna with a broad spectrum of generated parallel wavenumbers. After this, to heat the plasma and bring its density to ∼10{sup 13} cm{sup –3}, another, shorter wavelength three-half-turn antenna with large transverse currents is used. The behavior of the density, electron temperature, and loss of the plasma supported by the three-half-turn antenna is studied depending on the RF power fed to the antenna and initial values of the density and electron temperature supplied by the frame antenna.

  11. Nonequilibrium atmospheric pressure plasma with ultrahigh electron density and high performance for glass surface cleaning

    SciTech Connect

    Iwasaki, Masahiro; Matsudaira, Yuto; Hori, Masaru; Inui, Hirotoshi; Kano, Hiroyuki; Yoshida, Naofumi; Ito, Masafumi


    We produced a nonequilibrium atmospheric pressure plasma by applying an alternative current between two electrodes. The gas temperature and electron density were evaluated using optical emission spectroscopy. It was found that the plasma had gas temperatures from 1800 to 2150 K and ultrahigh electron densities in the order of 10{sup 16} cm{sup -3}. A remarkably high oxygen radical concentration of 1.6x10{sup 15} cm{sup -3} was obtained at a 1% O{sub 2}/Ar gas flow rate of 15 slm (standard liters per minute). Contact angles below 10 deg. were obtained in the process of glass cleaning with a plasma exposure time of 23 ms.

  12. Supercontinuum generation in thulium-doped fibres

    SciTech Connect

    Kurkov, Andrei S; Kamynin, V A; Tsvetkov, V B; Sadovnikova, Ya E; Marakulin, A V; Minashina, L A


    Supercontinuum generation in thulium-doped fibres under pumping at 1.59 {mu}m is investigated. Amplification of supercontinuum in the range of 1.8--2.0 {mu}m is found for a fibre doped to a level of 2 Multiplication-Sign 10{sup 19} cm{sup -3}. For a fibre with an activator concentration of 2 Multiplication-Sign 10{sup 20} cm{sup -3} amplification is also observed in the (2.1 - 2.45)-{mu}m band, which suggests the occurrence of the {sup 3}H{sub 4} {yields} {sup 3}H{sub 5} optical transition in the fibre. The occupation of the {sup 3}H{sub 4} level can be explained by cooperative effects. (optical fibres, lasers and amplifiers. properties and applications)

  13. Enhanced hard x-ray emission from microdroplet preplasma

    SciTech Connect

    Anand, M.; Kahaly, S.; Ravindra Kumar, G.; Krishnamurthy, M.; Sandhu, A.S.; Gibbon, P.


    We perform a comparative study of hard x-ray emission from femtosecond laser plasmas in 15 {mu}m methanol microdroplets and Perspex target. The hard x-ray yield from droplet plasmas is {approx_equal}68 times more than that obtained from solid plasmas at 2x10{sup 15} W cm{sup -2}. A 10 ns prepulse at about 5% of the main pulse appears to be essential for hard x-ray generation from droplets. Hot electron temperature of 36 keV is measured from the droplets at 8x10{sup 14} W cm{sup -2}, whereas a three times higher intensity is needed to obtain similar hot electron temperatures from Perspex plasmas. Particle-in-cell simulations with very long scale-length density profiles support experimental observations.

  14. Photodetectors on the basis of Ge/Si(001) heterostructures grown by the hot-wire CVD technique

    SciTech Connect

    Shengurov, V. G. Chalkov, V. Yu.; Denisov, S. A.; Alyabina, N. A.; Guseinov, D. V.; Trushin, V. N.; Gorshkov, A. P.; Volkova, N. S.; Ivanova, M. M.; Kruglov, A. V.; Filatov, D. O.


    The fabrication of photodetectors for the wavelength range of communications λ = 1.3–1.55 µm on the basis of Ge/Si(001) heterostructures with thick (∼0.5 µm) Ge layers grown by the hot-wire technique at reduced growth temperatures (350°C) is reported. The single-crystal Ga layers are distinguished by a low density of threading dislocations (∼10{sup 5} cm{sup –2}). The photodetectors exhibit a rather high quantum efficiency (∼0.05 at λ = 1.5 µm and 300 K) at moderate reverse saturation current densities (∼10{sup –2} A cm{sup –2}). Thus, it is shown that the hot-wire technique offers promise for the formation of integrated photodetectors for the wavelength range of communications, especially in the case of limitations on the conditions of heat treatments.

  15. Dissociative electron attachment to C{sub 2}F{sub 5} radicals

    SciTech Connect

    Haughey, Sean A.; Field, Thomas A.; Langer, Judith; Shuman, Nicholas S.; Miller, Thomas M.; Friedman, Jeffrey F.; Viggiano, A. A.


    Dissociative electron attachment to the reactive C{sub 2}F{sub 5} molecular radical has been investigated with two complimentary experimental methods; a single collision beam experiment and a new flowing afterglow Langmuir probe technique. The beam results show that F{sup -} is formed close to zero electron energy in dissociative electron attachment to C{sub 2}F{sub 5}. The afterglow measurements also show that F{sup -} is formed in collisions between electrons and C{sub 2}F{sub 5} molecules with rate constants of 3.7 Multiplication-Sign 10{sup -9} cm{sup 3} s{sup -1} to 4.7 Multiplication-Sign 10{sup -9} cm{sup 3} s{sup -1} at temperatures of 300-600 K. The rate constant increases slowly with increasing temperature, but the rise observed is smaller than the experimental uncertainty of 35%.

  16. Characterization of ι-carrageenan and its derivative based green polymer electrolytes

    SciTech Connect

    Jumaah, Fatihah Najirah; Mobaraka, Nadhratun Naiim; Ahmad, Azizan; Ramli, Nazaruddin


    The new types of green polymer electrolytes based on ι-carrageenan derivative have been prepared. ι-carrageenan act as precursor was reacted with monochloroacetic acid to produce carboxymethyl ι-carrageenan. The powders were characterized by Attenuated Total Reflection Fourier Transform infrared (ATR-FTIR) spectroscopy and {sup 1}H nuclear magnetic resonance (NMR) to confirm the substitution of targeted functional group in ι-carrageenan. The green polymer electrolyte based on ι-carrageenan and carboxymethyl ι-carrageenan was prepared by solution-casting technique. The films were characterized by electrochemical impedance spectroscopy to determine the ionic conductivity. The ionic conductivity ι-carrageenan film were higher than carboxymethyl ι-carrageenan which 4.87 ×10{sup −6} S cm{sup −1} and 2.19 ×10{sup −8} S cm{sup −1}, respectively.

  17. Dopant and carrier concentration in silicon, in equilibrium with SiP precipitates

    SciTech Connect

    Solmi, S.; Parisini, A.; Armigliato, A.; Angelucci, R.


    The methods recently reported to study the equilibria hi the Si-As system, were extended to the Si-P. On this line the behaviour of Silicon slices very heavily implanted with 1.5 x 10{sup 17} P{sup +}/cm{sup 2}, was followed by transmission electron microscopy (TEM) and secondary neutral mass spectrometry (SNMS) after annealing at 800, 850, 900 and 1000 C. Precipitation of large monoclinic, and partially orthorhombic, SiP takes place hi the most heavily doped region. From the shape of the SNMS profiles in the dissolution stage of these precipitates, we determined for the First time, the concentration C{sub e} of P hi equilibrium with the conjugate phase: C. = 2.45 x 10{sup 23} exp (- 0.62/ kT) cm{sup -3}, were kT is in eV.

  18. Liquid phase epitaxial growth and characterization of germanium far infrared blocked impurity band detectors

    SciTech Connect

    Bandaru, Jordana


    Germanium Blocked Impurity Band (BIB) detectors require a high purity blocking layer (< 10{sup 13} cm{sup -3}) approximately 1 mm thick grown on a heavily doped active layer ({approx} 10{sup 16} cm{sup -3}) approximately 20 mm thick. Epilayers were grown using liquid phase epitaxy (LPE) of germanium out of lead solution. The effects of the crystallographic orientation of the germanium substrate on LPE growth modes were explored. Growth was studied on substrates oriented by Laue x-ray diffraction between 0.02{sup o} and 10{sup o} from the {l_brace}111{r_brace} toward the {l_brace}100{r_brace}. Terrace growth was observed, with increasing terrace height for larger misorientation angles. It was found that the purity of the blocking layer was limited by the presence of phosphorus in the lead solvent. Unintentionally doped Ge layers contained {approx}10{sup 15} cm{sup -3} phosphorus as determined by Hall effect measurements and Photothermal Ionization Spectroscopy (PTIS). Lead purification by vacuum distillation and dilution reduced the phosphorus concentration in the layers to {approx} 10{sup 14} cm{sup -3} but further reduction was not observed with successive distillation runs. The graphite distillation and growth components as an additional phosphorus source cannot be ruled out. Antimony ({approx}10{sup 16} cm{sup -3}) was used as a dopant for the active BIB layer. A reduction in the donor binding energy due to impurity banding was observed by variable temperature Hall effect measurements. A BIB detector fabricated from an Sb-doped Ge layer grown on a pure substrate showed a low energy photoconductive onset ({approx}6 meV). Spreading resistance measurements on doped layers revealed a nonuniform dopant distribution with Sb pile-up at the layer surface, which must be removed by chemomechanical polishing. Sb diffusion into the pure substrate was observed by Secondary Ion Mass Spectroscopy (SIMS) for epilayers grown at 650 C. The Sb concentration at the interface


    SciTech Connect

    Zack, L. N.; Ziurys, L. M.


    Observations of CO, HCO{sup +}, and H{sub 2}CO have been carried out at nine positions across the Helix Nebula (NGC 7293) using the Submillimeter Telescope and the 12 m antenna of the Arizona Radio Observatory. Measurements of the J = 1 {yields} 0, 2 {yields} 1, and 3 {yields}2 transitions of CO, two transitions of HCO{sup +} (J = 1 {yields} 0 and 3 {yields}2), and five lines of H{sub 2}CO (J{sub Ka,Kc} = 1{sub 0,1} {yields} 0{sub 0,0}, 2{sub 1,2} {yields} 1{sub 1,1}, 2{sub 0,2} {yields} 1{sub 0,1}, 2{sub 1,1} {yields} 1{sub 1,0}, and 3{sub 0,3} {yields}2{sub 0,2}) were conducted in the 0.8, 1, 2, and 3 mm bands toward this highly evolved planetary nebula. HCO{sup +} and H{sub 2}CO were detected at all positions, along with three transitions of CO. From a radiative transfer analysis, the kinetic temperature was found to be T{sub K} {approx} 15-40 K across the Helix with a gas density of n(H{sub 2}) {approx} 0.1-5 Multiplication-Sign 10{sup 5} cm{sup -3}. The warmer gas appears to be closer to the central star, but high density material is distributed throughout the nebula. For CO, the column density was found to be N{sub tot} {approx} 0.25-4.5 Multiplication-Sign 10{sup 15} cm{sup -2}, with a fractional abundance of f (CO/H{sub 2}) {approx} 0.3-6 Multiplication-Sign 10{sup -4}. Column densities for HCO{sup +} and H{sub 2}CO were determined to be N{sub tot} {approx} 0.2-5.5 Multiplication-Sign 10{sup 11} cm{sup -2} and 0.2-1.6 Multiplication-Sign 10{sup 12} cm{sup -2}, respectively, with fractional abundances of f (HCO{sup +}/H{sub 2}) {approx} 0.3-7.3 Multiplication-Sign 10{sup -8} and f (H{sub 2}CO/H{sub 2}) {approx} 0.3-2.1 Multiplication-Sign 10{sup -7}-several orders of magnitude higher than predicted by chemical models. Polyatomic molecules in the Helix appear to be well-protected from photodissociation and may actually seed the diffuse interstellar medium.


    SciTech Connect

    Tenenbaum, E. D.; Woolf, N. J.; Ziurys, L. M.; Milam, S. N. E-mail: nwoolf@as.arizona.ed E-mail: Stefanie.N.Milam@nasa.go


    H{sub 2}CO, c-C{sub 3}H{sub 2}, and C{sub 2}H have been identified in the neutral envelope of the highly evolved planetary nebula (PN), the Helix (also know as NGC 7293). Emission from these species were detected toward a peak position in CO, 372'' east of the central star, using the facilities of the Arizona Radio Observatory (ARO). C{sub 2}H and c-C{sub 3}H{sub 2} were identified on the basis of their 3 mm transitions, measured with the ARO 12 m, while five lines of H{sub 2}CO were observed using the 12 m at 2 and 3 mm and the ARO Submillimeter Telescope at 1 mm. From a radiative transfer analysis of the formaldehyde emission, the molecular material was determined to have a density of n(H{sub 2}) approx3 x 10{sup 5} cm{sup -3}, with a kinetic temperature of T {sub kin} approx20 K. Column densities for C{sub 2}H, H{sub 2}CO, and c-C{sub 3}H{sub 2} of N {sub tot} approx1.4 x 10{sup 13} cm{sup -2}, 1.1 x 10{sup 12} cm{sup -2}, and 3 x 10{sup 11} cm{sup -2}, respectively, were derived, corresponding to fractional abundances relative to H{sub 2} of f (H{sub 2}CO) = 1 x 10{sup -7}, f (c-C{sub 3}H{sub 2}) = 3 x 10{sup -8}, and f (C{sub 2}H) = 1 x 10{sup -6} {sub .} The physical conditions found support the notion that molecules in evolved PNe survive in dense clumps in pressure equilibrium, shielded from photodissociation. The presence of H{sub 2}CO, c-C{sub 3}H{sub 2}, and C{sub 2}H, along with the previously observed species CN, HNC, HCN, and HCO{sup +}, indicates that a relatively complex chemistry can occur in the late stages of PN evolution, despite potentially destructive ultraviolet radiation. These molecules have also been observed in diffuse clouds, suggesting a possible connection between molecular material in evolved PNe and the diffuse ISM.


    SciTech Connect

    Smith, Britton D.; Hallman, Eric J.; Shull, J. Michael; O'Shea, Brian W. E-mail:


    We perform a series of cosmological simulations using Enzo, an Eulerian adaptive-mesh refinement, N-body + hydrodynamical code, applied to study the warm/hot intergalactic medium (WHIM). The WHIM may be an important component of the baryons missing observationally at low redshift. We investigate the dependence of the global star formation rate and mass fraction in various baryonic phases on spatial resolution and methods of incorporating stellar feedback. Although both resolution and feedback significantly affect the total mass in the WHIM, all of our simulations find that the WHIM fraction peaks at z {approx} 0.5, declining to 35%-40% at z = 0. We construct samples of synthetic O VI absorption lines from our highest-resolution simulations, using several models of oxygen ionization balance. Models that include both collisional ionization and photoionization provide excellent fits to the observed number density of absorbers per unit redshift over the full range of column densities (10{sup 13} cm{sup -2} {approx}< N{sub OVI} {approx}< 10{sup 15} cm{sup -2}). Models that include only collisional ionization provide better fits for high column density absorbers (N{sub OVI} {approx}> 10{sup 14} cm{sup -2}). The distribution of O VI in density and temperature exhibits two populations: one at T {approx} 10{sup 5.5} K (collisionally ionized, 55% of total O VI) and one at T {approx} 10{sup 4.5} K (photoionized, 37%) with the remainder located in dense gas near galaxies. While not a perfect tracer of hot gas, O VI provides an important tool for a WHIM baryon census.


    SciTech Connect

    Goodman, Michael L.; Judge, Philip G. E-mail:


    An MHD model of a hydrogen plasma with flow, an energy equation, NLTE ionization and radiative cooling, and an Ohm's law with anisotropic electrical conduction and thermoelectric effects is used to self-consistently generate atmospheric layers over a 50 km height range. A subset of these solutions contains current sheets and has properties similar to those of the lower and middle chromosphere. The magnetic field profiles are found to be close to Harris sheet profiles, with maximum field strengths {approx}25-150 G. The radiative flux F{sub R} emitted by individual sheets is {approx}4.9 Multiplication-Sign 10{sup 5}-4.5 Multiplication-Sign 10{sup 6} erg cm{sup -2} s{sup -1}, to be compared with the observed chromospheric emission rate of {approx}10{sup 7} erg cm{sup -2} s{sup -1}. Essentially all emission is from regions with thicknesses {approx}0.5-13 km containing the neutral sheet. About half of F{sub R} comes from sub-regions with thicknesses 10 times smaller. A resolution {approx}< 5-130 m is needed to resolve the properties of the sheets. The sheets have total H densities {approx}10{sup 13}-10{sup 15} cm{sup -3}. The ionization fraction in the sheets is {approx}2-20 times larger, and the temperature is {approx}2000-3000 K higher than in the surrounding plasma. The Joule heating flux F{sub J} exceeds F{sub R} by {approx}4%-34%, the difference being balanced in the energy equation mainly by a negative compressive heating flux. Proton Pedersen current dissipation generates {approx}62%-77% of the positive contribution to F{sub J} . The remainder of this contribution is due to electron current dissipation near the neutral sheet where the plasma is weakly magnetized.

  3. The helix nebula viewed in HCO{sup +}: Large-scale mapping of the J = 1 → 0 transition

    SciTech Connect

    Zeigler, N. R.; Zack, L. N.; Ziurys, L. M.; Woolf, N. J.


    The J = 1 → 0 transition of HCO{sup +} at 89 GHz has been mapped across the Helix Nebula (NGC 7293) with 70'' spatial resolution (1.68 km s{sup –1} velocity resolution) using the Arizona Radio Observatory 12 m telescope. This work is the first large-scale mapping project of a dense gas tracer (n(H{sub 2}) ∼ 10{sup 5} cm{sup –3}) in old planetary nebulae. Observations of over 200 positions encompassing the classical optical image were conducted with a 3σ noise level of ∼20 mK. HCO{sup +} was detected at most positions, often exhibiting multiple velocity components indicative of complex kinematic structures in dense gas. The HCO{sup +} spectra suggest that the Helix is composed of a bipolar, barrel-like structure with red- and blue-shifted halves, symmetric with respect to the central star and oriented ∼10° east from the line of sight. A second bipolar, higher velocity outflow exists as well, situated along the direction of the Helix 'plumes'. The column density of HCO{sup +} across the Helix is N {sub tot} ∼ 1.5 × 10{sup 10}-5.0 × 10{sup 11} cm{sup –2}, with an average value N {sub ave} ∼ 1 × 10{sup 11} cm{sup –2}, corresponding to an abundance, relative to H{sub 2}, of f ∼ 1.4 × 10{sup –8}. This value is similar to that observed in young PN, and contradicts chemical models, which predict that the abundance of HCO{sup +} decreases with nebular age. This study indicates that polyatomic molecules readily survive the ultraviolet field of the central white dwarf, and can be useful in tracing nebular morphology in the very late stages of stellar evolution.

  4. Experimental and theoretical study of the ion-ion mutual neutralization reactions Ar{sup +}+SF{sub n}{sup -} (n=6, 5, and 4)

    SciTech Connect

    Bopp, Joseph C.; Miller, Thomas M.; Viggiano, Albert A.; Troe, Juergen


    The ion-ion mutual neutralization reactions Ar{sup +}+SF{sub n}{sup -}{yields}Ar+SF{sub n} (n=6, 5, and 4) have been studied in a flowing afterglow-Langmuir probe (FALP) apparatus at 300 K and 1 Torr of He buffer gas. Electron concentrations and product ion fractions were measured, and neutralization rate constants of 4.0x10{sup -8}, 3.8x10{sup -8}, and 4x10{sup -8} cm{sup 3} s{sup -1} for SF{sub 6}{sup -}, SF{sub 5}{sup -}, and SF{sub 4}{sup -}, respectively, were derived, with uncertainties of {+-}25% ({+-}35% for SF{sub 4}{sup -}). During the neutralization process, excited neutrals are generated that are able to dissociate to neutral fragments. In the case of SF{sub 6}, the formation of SF{sub 5} and SF{sub 4}, and similarly in the case of SF{sub 5}, the formation of SF{sub 4} and SF{sub 3} were observed and quantified. The mechanism of primary and secondary reaction was analyzed in detail, and rate constants for the dissociative electron attachments e{sup -}+SF{sub 5}{yields}F{sup -}+SF{sub 4} (k=3x10{sup -9} cm{sup 3} s{sup -1},{+-}40%) and e{sup -}+SF{sub 3}{yields}F{sup -}+SF{sub 2} (k=2x10{sup -8} cm{sup 3} s{sup -1},+400%,-75%) were also derived. The experimental ion-ion neutralization rate constants were found to be in good agreement with estimates from an optimum two-state double-passage Landau-Zener model. It was also found that energy partitioning in the neutralization is related to the extent of electronic excitation of Ar generated by the electron transfer processes.

  5. Methods for passivating silicon devices at low temperature to achieve low interface state density and low recombination velocity while preserving carrier lifetime


    Chen, Zhizhang; Rohatgi, Ajeet


    A new process has been developed to achieve a very low SiO.sub.x /Si interface state density, low recombination velocity S (<2 cm/s), and high effective carrier lifetime T.sub.eff (>5 ms) for oxides deposited on silicon substrates at low temperature. The technique involves direct plasma-enhanced chemical vapor deposition (PECVD), with appropriate growth conditions, followed by a photo-assisted rapid thermal annealing (RTA) process. Approximately 500-A-thick SiO.sub.x layers are deposited on Si by PECVD at C. with 0.02 W/cm.sup.-2 rf power, then covered with SiN or an evaporated thin aluminum layer, and subjected to a photo-assisted anneal in forming gas ambient at C., resulting in an interface state density in the range of about 1-4.times.10.sup.10 cm.sup.-2 eV.sup.-1, which sets a record for the lowest interface state density for PECVD oxides fabricated to date. Detailed analysis shows that the PECVD deposition conditions, photo-assisted anneal, forming gas ambient, and the presence of an aluminum layer on top of the oxides during the anneal, all contributed to this low value of interface state density Detailed metal-oxide semiconductor analysis and model calculations show that such a low recombination velocity S is the result of moderately high positive oxide charge (5.times.10.sup.11 -1.times.10.sup.12 cm.sup.-2) and relatively low midgap interface state density (1.times.10.sup.10 -4.times.10.sup.10 cm.sup.-2 eV.sup.-1). Photo-assisted anneal was found to be superior to furnace annealing, and a forming gas ambient was better than a nitrogen ambient for achieving a very low surface recombination velocity S.

  6. Good electrical contacts for high resistivity (Cd,Mn)Te crystals

    SciTech Connect

    Witkowska-Baran,M.; Mycielski, A.; Kochanowska, D.; Szadkowski, A. J.; Jakiela, r.; Witkowska, B.; Kaliszek, W.; Domagala, J.; Lusakowska, E.; Domukhovski, V.; Dybko, K.; Cui, Y.; James, R. B.


    We consider that semi-insulating (Cd,Mn)Te crystals may well successfully replace the commonly used (Cd,Zn)Te crystals as a material for manufacturing large-area X- and gamma-ray detectors. The Bridgman growth method yields good quality and high-resistivity (10{sup 9}-10{sup 10} {Omega}-cm) crystals of (Cd,Mn)Te:V. Doping with vanadium ({approx} 10{sup 16} cm{sup -3}), which acts as a compensating agent, and annealing in cadmium vapors, which reduces the number of cadmium vacancies in the as-grown crystal, ensure this high resistivity. Detector applications of the crystals require satisfactory electrical contacts. Hence, we explored techniques of ensuring good electrical contacts to semi-insulating (Cd,Mn)Te crystals. Our findings are reported here. Before depositing the contact layers, we prepared an 'epi-ready' surface of the crystal platelet by a procedure described earlier for various tellurium-based II-VI compound crystals. A molecular beam epitaxy (MBE) apparatus was used to deposit various types of contact layers: Monocrystalline semiconductor layers, amorphous- and nanocrystalline semiconductor layers, and metal layers were studied. We employed ZnTe heavily doped ({approx} 10{sup 18} cm{sup -3}) with Sb, and CdTe heavily doped ({approx} 10{sup 17} cm{sup -3}) with In as the semiconductors to create contact layers that subsequently enable good contact (with a narrow, tunneling barrier) to the Au layer that usually is applied as the top contact layer. We describe and discuss the technology and some properties of the electrical contacts to semi-insulating (Cd,Mn)Te.

  7. Neodymium Fluorescence Quenching by Hydroxyl Groups in Phosphate Laser Glasses

    SciTech Connect

    Ehrmann, P R; Carlson, K; Campbell, J H; Click, C A; Brow, R K


    Non-radiative losses due to OH fluorescence quenching of the Nd{sup 3+} {sup 4}F{sub 3/2} state are quantified over a range of OH concentrations from 4 x 10{sup 18}/cm{sup 3} to 4 x 10{sup 20}/cm{sup 3} and Nd doping levels from 0.4 to 9 x 10{sup 20}/cm{sup 3} in two K{sub 2}O-MgO-Al{sub 2}O{sub 3}-P{sub 2}O{sub 5} metaphosphate glasses having different K/Mg ratios ({approx}1/1 and 2/1). The quenching rate is found to vary linearly with the Nd and OH concentrations as predicted by Forster-Dexter theory. However, in contrast to theory the OH quenching rate extrapolates to a non-zero value at low Nd{sup 3+} doping levels. It is proposed that at low Nd{sup 3+} concentrations the OH is correlated with Nd sites in the glass. The quenching strength of OH on a per ion basis is found to be weak compared to other common transition metal impurities (e.g. Fe{sup 2+}, Co{sup 2+}, Ni{sup 2+}, Cu{sup 2+}). Nevertheless, OH dominates the Nd quenching in phosphate glass because under most processing conditions OH is present at concentrations 10{sup 2} to 10{sup 3} greater than transition metal ion impurities. A correlation of the quenching strength of OH and common metal impurity ions with the degree of spectral overlap of the impurity absorption bands and the four {sup 4}F{sub 3/2} to {sup 4}I{sub J} transitions shows good agreement.


    SciTech Connect

    Codella, C.; Fontani, F.; Gómez-Ruiz, A.; Vasta, M.; Viti, S.; Ceccarelli, C.; Lefloch, B.; Podio, L.; Caselli, P.


    We present the first detection of N{sub 2}H{sup +} toward a low-mass protostellar outflow, namely, the L1157-B1 shock, at ∼0.1 pc from the protostellar cocoon. The detection was obtained with the IRAM 30 m antenna. We observed emission at 93 GHz due to the J = 1-0 hyperfine lines. Analysis of this emission coupled with HIFI CHESS multiline CO observations leads to the conclusion that the observed N{sub 2}H{sup +}(1-0) line originated from the dense (≥10{sup 5} cm{sup –3}) gas associated with the large (20''-25'') cavities opened by the protostellar wind. We find an N{sub 2}H{sup +} column density of a few 10{sup 12} cm{sup –2} corresponding to an abundance of (2-8) × 10{sup –9}. The N{sub 2}H{sup +} abundance can be matched by a model of quiescent gas evolved for more than 10{sup 4} yr, i.e., for more than the shock kinematical age (≅2000 yr). Modeling of C-shocks confirms that the abundance of N{sub 2}H{sup +} is not increased by the passage of the shock. In summary, N{sub 2}H{sup +} is a fossil record of the pre-shock gas, formed when the density of the gas was around 10{sup 4} cm{sup –3}, and then further compressed and accelerated by the shock.

  9. Spectroscopic characteristics of chromium doped mullite glass-ceramics

    SciTech Connect

    Wojtowicz, A.J.; Meng, W.; Lempicki, A.; Beall, G.H.; Hall, D.W.; Chin, T.C.


    Characteristics of chromium doped mullite ceramics are discussed with reference to possible laser applications. Dominant features are attributed to large and inherent spectroscopic inhomogeneity of mullite. The spectroscopic data are analyzed using a generalized McCumber theory. The peak stimulated emission cross section is 0.54 x 10/sup -20/ cm/sup 2/. This, together with preliminary single-pass measurements, indicate that gain for mullite is about 2.6 times smaller than gain for alexandrite.

  10. Results of IR working group

    SciTech Connect

    Ritson, D. |


    The IP luminosity at the Eloisatron will direct very large fluxes of hadronic debris into the IR quads. For instance at 1.10{sup 35} cm{sup 2}/sec the flux corresponds to 180 kilowatts. Already at the SSC fluxes in the neighborhood of 2 kilowatts are expected to require special handling. Scaling from SSC design experience we propose a configuration for the first IR quads at the Eloisatron capable of handling the heat load and radiation problems.

  11. Operation of silicon microstrip detectors in a high radiation environment

    SciTech Connect

    Kapustinsky, J.S.; Alde, D.M.; Boissevain, J.G.; Jeppesen, R.G.; Lane, D.W.; Leitch, M.J.; Lillberg, J.W.; Lopez, T.A.; McGaughey, P.L.; Moss, J.M.; Peng, J.C. ); Brooks, B.M.; Isenhower, L.D.; Sadler, M.E. ); Lederman, L.M.; Schub, M.H. ); Brown, C.N.; Cooper, W.E.; Gounder, K.; Hsiung, Y.B.; Mishra, C.S. (Fermi National


    A Silicon Microstrip Spectrometer was recently installed and operated in an 800 GeV proton beamline at Fermilab as a major new component of experiment E789. The detectors received an estimated radiation exposure of up to 7.8 {times} 10{sup 12} minimum ionizing particles per cm{sup 2} over a period of two months. We report on the changes in detector performance that we have observed following preliminary data analysis. 5 refs., 4 figs.


    SciTech Connect

    Usman, S. M.; Murray, S. S.; Hickox, R. C.; Brodwin, M.


    We explore the connection between absorption by neutral gas and extinction by dust in mid-infrared (IR) selected luminous quasars. We use a sample of 33 quasars at redshifts 0.7 < z ≲ 3 in the 9 deg{sup 2} Boötes multiwavelength survey field that are selected using Spitzer Space Telescope Infrared Array Camera colors and are well-detected as luminous X-ray sources (with >150 counts) in Chandra observations. We divide the quasars into dust-obscured and unobscured samples based on their optical to mid-IR color, and measure the neutral hydrogen column density N {sub H} through fitting of the X-ray spectra. We find that all subsets of quasars have consistent power law photon indices Γ ≈ 1.9 that are uncorrelated with N {sub H}. We classify the quasars as gas-absorbed or gas-unabsorbed if N {sub H} > 10{sup 22} cm{sup –2} or N {sub H} < 10{sup 22} cm{sup –2}, respectively. Of 24 dust-unobscured quasars in the sample, only one shows clear evidence for significant intrinsic N {sub H}, while 22 have column densities consistent with N {sub H} < 10{sup 22} cm{sup –2}. In contrast, of the nine dust-obscured quasars, six show evidence for intrinsic gas absorption, and three are consistent with N {sub H} < 10{sup 22} cm{sup –2}. We conclude that dust extinction in IR-selected quasars is strongly correlated with significant gas absorption as determined through X-ray spectral fitting. These results suggest that obscuring gas and dust in quasars are generally co-spatial, and confirm the reliability of simple mid-IR and optical photometric techniques for separating quasars based on obscuration.

  13. High luminosity operation, beam-beam effects and their compensation in Tevatron

    SciTech Connect

    Shiltsev, V.; /Fermilab


    Over the past 2 years the Tevatron peak luminosity steadily progressed and reached the level of 3.15 {center_dot} 10{sup 32} cm{sup -2} s{sup -1} which exceeds the Run II Upgrade goal. We discuss the collider performance, illustrate limitations and understanding of beam-beam effects and present experimental results of compensation of the beam-beam effects by electron lenses--a technique of great interest for the LHC.

  14. The influence of ions, photons, and electrons on the doping and growth of [ital p]-CdTe films

    SciTech Connect

    Fahrenbruch, A.L.; Kim, D.; Lopez-Otero, A.; Bube, R.H. )


    This paper reviews our recent research on ion- and photon-assisted doping and growth of homoepitaxial CdTe thin films. Our earlier work demonstrated doping to 2[times]10[sup 17] cm[sup [minus]3] with 60 eV P ions during growth by vacuum deposition, but gave low values of minority-carrier diffusion length [ital L][sub [ital d

  15. Giacobini-Zinner magnetotail: Tail configuration and current sheet

    SciTech Connect

    McComas, D.J.; Gosling, J.T.; Bame, S.J.; Slavin, J.A.; Smith, E.J.; Steinberg, J.L.


    The high-resolution plasma electron and magnetic field data sets from the ICE tail traversal of comet Giacobini-Zinner have been combined to make a detailed study of the draped Giacobini-Zinner magnetotail in general, and its field-reversing current sheet in particular. The goemetry of the magnetotail at the time of the ICE crossing is determined and is shown to be consistent with a circular tail cross section rotated 10.5 in the normal sense of aberration and 9.9/sup 0/ above the ecliptic plane, bisected by a cross-tail current sheet which is rotated 43/sup 0/ out of the ecliptic about the solar wind velocity vector. MHD continuity, momentum, and energy equations are combined with the plasma and field observations to determine unmeasured plasma properties at ICE and upstream at the average point along each stream-line where the cometary ions are picked up. The ion temperature, beta, and flow speed at ICE range from 1--1.5 x 10/sup 6/ K, 1--4, and --20 to --30 km s/sup -1/, respectively, in the draped lobes to --1.2 x 10/sup 5/ K, up to --40, and ----20 km s/sup -1/ in the current sheet. Upstream at the average pickup locations, the flow velocity, ion temperature, density, and ion source rates range from ----75 km s/sup -1/, --4. x 10/sup 6/ K, --20 cm/sup -3/, and --1.5 cm/sup -3/ s/sup -1/ in the regions upstream from the lobes to ---12 km s/sup -1/, --1 x 10/sup 5/ K, 200--600 cm/sup -3/, and --3.6 cm/sup -3/ s/sup -1/ in the prime mass-loading region upstream from the current sheet.

  16. Breakdown and discharges in dense gases governed by runaway electrons

    SciTech Connect

    Babich, L.P.


    The phenomenon of runaway electrons (REs) at high values of the ratio field intensity/gas number density {ital E}/{ital N} and {ital N} up to the Loshmidt number {ital N}{sub {ital L}}{approx_equal}2.7{times}10{sup 19} cm{sup {minus}3} is described. REs are shown to govern the breakdown and discharges at such condition. {copyright} {ital 1996 American Institute of Physics.}

  17. Thermal resistance of ultra-small-diameter disk microlasers

    SciTech Connect

    Zhukov, A. E. Kryzhanovskaya, N. V.; Maximov, M. V.; Lipovskii, A. A.; Savelyev, A. V.; Shostak, I. I.; Moiseev, E. I.; Kudashova, Yu. V.; Kulagina, M. M.; Troshkov, S. I.


    The thermal resistance of AlGaAs/GaAs microlasers of the suspended-disk type with a diameter of 1.7–4 μm and InAs/InGaAs quantum dots in the active region is inversely proportional to the squared diameter of the microdisk. The proportionality factor is 3.2 × 10{sup −3} (K cm{sup 2})/W, and the thermal resistance is 120–20°C/mW.

  18. DETECTIONS OF C{sub 2}H, CYCLIC-C{sub 3}H{sub 2}, AND H{sup 13}CN IN NGC 1068

    SciTech Connect

    Nakajima, T.; Takano, S.; Kohno, K.; Inoue, H.


    We used the Nobeyama 45 m telescope to conduct a spectral line survey in the 3 mm band (85.1-98.4 GHz) toward one of the nearest galaxies with an active galactic nucleus (AGN), NGC 1068, and the prototypical starburst galaxy NGC 253. The beam size of this telescope is {approx} 18'', which was sufficient to spatially separate the nuclear molecular emission from the emission of the circumnuclear starburst region in NGC 1068. We detected rotational transitions of C{sub 2}H, cyclic-C{sub 3}H{sub 2}, and H{sup 13}CN in NGC 1068. These are detections of carbon-chain and carbon-ring molecules in NGC 1068. In addition, the C{sub 2}H N = 1-0 lines were detected in NGC 253. The column densities of C{sub 2}H were determined to be 3.4 x 10{sup 15} cm{sup -2} in NGC 1068 and 1.8 x 10{sup 15} cm{sup -2} in NGC 253. The column densities of cyclic-C{sub 3}H{sub 2} were determined to be 1.7 x 10{sup 13} cm{sup -2} in NGC 1068 and 4.4 x 10{sup 13} cm{sup -2} in NGC 253. We calculated the abundances of these molecules relative to CS for both NGC 1068 and NGC 253, and found that there were no significant differences in the abundances between the two galaxies. This result suggests that the basic carbon-containing molecules are either insusceptible to AGN or are tracing cold (T{sub rot} {approx} 10 K) molecular gas rather than X-ray irradiated hot gas.

  19. Current ramp-up by lower hybrid waves in the PLT tokamak

    SciTech Connect

    Jobes, F.C.; Bernabei, S.; Chu, T.K.; Hooke, W.M.; Meservey, E.B.; Motley, R.W.; Stevens, J.E.; von Goeler, S.


    Recent lower hybrid current drive experiments have clearly demonstrated that the current in a tokamak discharge can be maintained by rf drive alone. We have extended the operating regime of such plasma to include ramping-up of the current. We find that at densities of approx. 2 x 10/sup 12/ cm/sup -3/ approximately 25% of the launched rf power is converted to magnetic field energy.

  20. Poloidal OHMIC heating in a multipole

    SciTech Connect

    Holly, D.J.


    The feasibility of using poloidal currents to heat plasmas confined by a multipole field has been examined experimentaly in Tokapole II. The machine is operated as a toroidal octupole, with a time-varying toroidal magnetic field driving poloidal plasma currents I/sub plasma/ - 20 kA to give densities n/sub e/ - 10/sup 13/ cm/sup -3/ and temperatures T/sub e/ - 30 eV.

  1. Deep traps in n-type GaN epilayers grown by plasma assisted molecular beam epitaxy

    SciTech Connect

    Kamyczek, P.; Placzek-Popko, E.; Zielony, E.; Gumienny, Z.; Zytkiewicz, Z. R.


    In this study, we present the results of investigations on Schottky Au-GaN diodes by means of conventional DLTS and Laplace DLTS methods within the temperature range of 77 K–350 K. Undoped GaN layers were grown using the plasma-assisted molecular beam epitaxy technique on commercial GaN/sapphire templates. The quality of the epilayers was studied by micro-Raman spectroscopy (μ-RS) which proved the hexagonal phase and good crystallinity of GaN epilayers as well as a slight strain. The photoluminescence spectrum confirmed a high crystal quality by intense excitonic emission but it also exhibited a blue emission band of low intensity. DLTS signal spectra revealed the presence of four majority traps: two high-temperature and two low-temperature peaks. Using the Laplace DLTS method and Arrhenius plots, the apparent activation energy and capture cross sections were obtained. For two high-temperature majority traps, they were equal to E{sub 1} = 0.65 eV, σ{sub 1} = 8.2 × 10{sup −16} cm{sup 2} and E{sub 2} = 0.58 eV, σ{sub 2} = 2.6 × 10{sup −15} cm{sup 2} whereas for the two low-temperature majority traps they were equal to E{sub 3} = 0.18 eV, σ{sub 3} = 9.7 × 10{sup −18} cm{sup 2} and E{sub 4} = 0.13 eV, σ{sub 4} = 9.2 × 10{sup −18} cm{sup 2}. The possible origin of the traps is discussed and the results are compared with data reported elsewhere.

  2. Doped GaN nanowires on diamond: Structural properties and charge carrier distribution

    SciTech Connect

    Schuster, Fabian Winnerl, Andrea; Weiszer, Saskia; Hetzl, Martin; Garrido, Jose A.; Stutzmann, Martin


    In this work, we present a detailed study on GaN nanowire doping, which is vital for device fabrication. The nanowires (NWs) are grown by means of molecular beam epitaxy on diamond (111) substrates. Dopant atoms are found to facilitate nucleation, thus an increasing NW density is observed for increasing dopant fluxes. While maintaining nanowire morphology, we demonstrate the incorporation of Si and Mg up to concentrations of 9× 10{sup 20}cm{sup −3} and 1 × 10{sup 20}cm{sup −3}, respectively. The dopant concentration in the nanowire cores is determined by the thermodynamic solubility limit, whereas excess dopants are found to segregate to the nanowire surface. The strain state of the NWs is investigated by X-ray diffraction, which confirms a negligible strain compared to planar thin films. Doping-related emissions are identified in low-temperature photoluminescence spectroscopy and the temperature quenching yields ionization energies of Si donors and Mg acceptors of 17 meV and 167 meV, respectively. At room temperature, luminescence and absorption spectra are found to coincide and the sub-band gap absorption is suppressed in n-type NWs. The charge carrier distribution in doped GaN nanowires is simulated under consideration of surface states at the non-polar side facets. For doping concentrations below 10{sup 17}cm{sup −3}, the nanowires are depleted of charge carriers, whereas they become highly conductive above 10{sup 19}cm{sup −3}.

  3. Size effect on electronic transport in nC–Si/SiO{sub x} core/shell quantum dots

    SciTech Connect

    Das, Debajyoti; Samanta, Arup


    Highlights: ► Electrical conductivity (σ) demonstrated to exhibit quantum size effect for Si-QDs. ► High σ ∼ 4 × 10{sup −2} S cm{sup −1} for Si-QDs of average size ∼3.7 nm, number density ∼4.8 × 10{sup 11} cm{sup −2}. ► Heterojunction-like band-structure at the QD interface controls electronic transport. -- Abstract: Electronic transport in silicon quantum dots (Si-QDs) in core/shell configuration was studied. The nC–Si cores encapsulated by protective SiO{sub x} shells embedded in a-Si matrix were obtained from one-step and spontaneous plasma processing, at low substrate temperature (300 °C) compatible for device fabrication. The size, density and distribution of nC–Si QDs were controlled by optimizing the plasma parameters. Very high electrical conductivity, σ ∼ 4 × 10{sup −2} S cm{sup −1}, was achieved at a total number density of Si-QDs, N ∼ 4.8 × 10{sup 11} cm{sup −2}, corresponding to the lowering in its average core size, d ∼ 3.7 nm, to the order of the bulk Si exciton Bohr radius and the associated quantum confinement effects. The electrical conductivity was demonstrated to exhibit quantum size (3 < d (nm) < 10) effect in zero dimensional quantum dots. The underlying electronic transport was explained using heteroquantum-dot model, the nC–SiO{sub x}:H QDs possess hetero-junction like band structure in the interface regions, due to their different band gaps.

  4. Physics of a high-luminosity Tau-Charm Factory

    SciTech Connect

    King, M.E.


    This paper highlights the physics capabilities of a Tau-Charm Factory; i.e., high luminosity ({approximately}10{sup 33}cm{sup {minus}2}s{sup {minus}1}) e{sup +}e{sup {minus}} collider operating in the center-of-mass energy range of 3-5 GeV, with a high-precision, general-purpose detector. Recent developments in {tau} and charm physics are emphasized.

  5. Compact Magneto-optical Trap for Rubidium Atoms

    SciTech Connect

    Chapovsky, P.L.


    The characteristics of a magneto-optical trap (MOT) using small-diameter cooling laser beams are considered. Trapping and cooling of Rb atoms from the surrounding gas of warm atoms takes place in the trap. A compact (140 {mu}m) and stable atomic cloud is obtained with a density of 7 x 10{sup 10} cm{sup -3}, which is three orders of magnitude higher than the density of the surrounding gas.

  6. High-luminosity considerations

    SciTech Connect

    Platner, E.D.


    There appears to be some controversy over how high a luminosity one can use before a variety of detector limitations impose a practical limit. Factors leading to flux limitations for a variety of detector types are discussed, and practical considerations to extending those limits are reviewed. Also, a method of reducing the effects of pileup inherent in calorimeter use at L = 10/sup 33//cm/sup 2//sec is given.

  7. Growth of InP single crystals by liquid encapsulated Czochralski (LEC) using glassy-carbon crucibles

    SciTech Connect

    Oliveira, C.E.M. de; Miskys, C.R.; Carvalho, M.M.G. de


    Using a high pressure puller and Glassy-Carbon crucibles, undoped InP single crystals weighing 100g and with 25 mm diameter were grown in the <100> direction. The residual carrier concentration of samples, measure by the Van der Pauw method at 300K, was about 5 {times} 10{sup 15}cm{sup {minus}3}, result as good as those obtained with Quartz crucibles with the advantage that Glassy-Carbon crucibles are fully reusable.

  8. Neutron fluence calculations for the SDC detector and the results of codes comparison

    SciTech Connect

    Job, P.K.; Handler, T.; Gabriel, T.A.; Slater, C.O.; Waters, L.S.; Palounek, A.P.T.; Zeitnitz, C.


    CALOR89, A Monte Carlo particle physics code package in conjunction with ISAJET, a high energy particle collision code, has been successfully used to evaluate the radiation environment of a high energy physics collider detector. We found that for a collider luminosity of 10{sup 33} cm{sup {minus}2sec{minus}1}, the neutron fluences can be significant at certain detector locations.

  9. Are cosmic rays modulated beyond the heliopause?

    SciTech Connect

    Kóta, J.; Jokipii, J. R.


    We discuss the possible spatial variation of Galactic and anomalous cosmic rays (GCRs and ACRs) at and beyond the heliopause (HP). Remaining within the framework of the Parker transport equation and assuming incompressible plasma in the heliosheath, we consider highly idealized simple-flow models and compare our GCR results with recent publications of Scherer et al. and Strauss et al. First, we discuss an order-of-magnitude estimate and a simple spherical model to demonstrate that the modulation of GCRs beyond the HP must be quite small if the diffusion coefficient beyond the HP is greater than ≈10{sup 26} cm{sup 2} s{sup –1}, a value that is two orders of magnitude smaller than the value of 10{sup 28} cm{sup 2} s{sup –1} determined from observations of GCR composition. Second, we construct a non-spherical model, which allows lateral deflection of the flow and uses different diffusion coefficients parallel and perpendicular to the magnetic field. We find that modulation of GCRs beyond the HP remains small even if the perpendicular diffusion coefficient beyond the HP is quite small (≈10{sup 22} cm{sup 2} s{sup –1}) as long as the parallel diffusion is sufficiently fast. We also consider the case when the parallel diffusion beyond the HP is fast, but the perpendicular diffusion is as small as ≈10{sup 20} cm{sup 2} s{sup –1}; this results in a sharp, almost step-like increase of GCR flux (and decrease of ACRs) at the HP. Possible implications are briefly discussed. We further suggest the possibility that the observed sharp gradient of GCRs at the HP might push the HP closer to the Sun than previously thought.

  10. Lanthanum-NaY zeolite ion exchange. 2; Kinetics

    SciTech Connect

    Lee, T.Y.; Lu, T.S.; Chen, S.H.; Chao, K.J. )


    This paper reports on La-NaY ion exchange breakthrough curves which were obtained experimentally at 27 and 60{degrees}C. A mathematical model of an ion exchanger was formulated and employed to calculate the ion exchanger coefficients. An ionic diffusion coefficient of the order of 10{sup {minus}8} cm{sup 2}/s was obtained. The effects of zeolite particle size, temperature, and column packing conditions on the kinetics of the exchange were investigated also.

  11. Polymeric Ionic Networks with High Charge Density: Solid-like Electrolytes in Lithium Metal Batteries

    SciTech Connect

    Zhang, Pengfei; Li, Mingtao; Jiang, Xueguang; Fang, Youxing; Veith, Gabriel M.; Sun, Xiao-Guang; Dai, Sheng


    Polymerized ionic networks (PINs) with six ion pairs per repeating unit are synthesized by nucleophilic-substitution-mediated polymerization or radical polymerization of monomers bearing six 1-vinylimidazolium cations. PIN-based solid-like electrolytes show good ionic conductivities (up to 5.32 × 10<sup>-3 S cm>-1 at 22 °C), wide electrochemical stability windows (up to 5.6 V), and good interfacial compatibility with the electrodes.

  12. Confinement scaling and ignition in tokamaks

    SciTech Connect

    Perkins, F.W.; Sun, Y.C.


    A drift wave turbulence model is used to compute the scaling and magnitude of central electron temperature and confinement time of tokamak plasmas. The results are in accord with experiment. Application to ignition experiments shows that high density (1 to 2) . 10/sup 15/ cm/sup -3/, high field, B/sub T/ > 10 T, but low temperature T approx. 6 keV constitute the optimum path to ignition.

  13. Highly ionized plasma plume generation by long-pulse CO/sub 2/ laser irradiation of solid targets in strong axial magnetic fields

    SciTech Connect

    Hoffman, A L; Crawford, E A


    The present work utilizes high f number optics and is directed primarily at controlling the conditions in the magnetically confined plume. Typically, fully ionized carbon plasmas have been produced with 10/sup 18/ cm/sup -3/ electron densities and 100 to 150 eV electron temperatures. These carbon plasmas have been doped with high Z atoms in order to study ionization and emission rates at the above conditions.

  14. Refractory oxide hosts for a high power, broadly tunable laser with high quantum efficiency and method of making same


    Chen, Yok; Gonzalez, R.


    Refractory oxide crystals having high-quantum efficiency and high thermal stability for use as broadly tunable laser host materials. The crystals are formed by removing hydrogen from a single crystal of the oxide material to a level below about 10/sup 12/ protons per cm/sup 3/ and subsequently thermochemically reducing the oxygen content of the crystal to form sufficient oxygen anion vacancies so that short-lived F/sup +/ luminescence is produced when the crystal is optically excited.

  15. Refractory oxide hosts for a high power, broadly tunable laser with high quantum efficiency and method of making same


    Chen, Yok; Gonzalez, Roberto


    Refractory oxide crystals having high-quantum efficiency and high thermal stability for use as broadly tunable laser host materials. The crystals are formed by removing hydrogen from a single crystal of the oxide material to a level below about 10.sup.12 protons per cm.sup.3 and subsequently thermochemically reducing the oxygen content of the crystal to form sufficient oxygen anion vacancies so that short-lived F.sup.+ luminescence is produced when the crystal is optically excited.

  16. Accuracy of K-shell spectra modeling in high-density plasmas

    SciTech Connect

    Glenzer, S. H.; Decker, C.; Hammel, B. A.; Lee, R. W.; Lours, L.; Osterheld, A. L.


    We present spectroscopic measurements of the helium-like and lithium-like argon emission supported by Thomson scattering diagnostics on gas bag targets. These data provide critical tests of plasma spectroscopic K-shell models. In particular, we have measured the line radiation in the wavelength region of the He-like Ar 1s{sup 2}-1s3l transition (He-{beta}) that is of interest for density and temperature measurements of plasmas from gas-filled targets (n{sub e}{<=}10{sup 21} cm{sup -3}), laser ablation targets (n{sub e}{<=}10{sup 22} cm{sup -3}), and inertial confinement fusion capsule implosions (n{sub e}{>=}10{sup 24} cm{sup -3}). The spectra show lithium-like dielectronic satellites on the red wing of the He-{beta} line that are temperature sensitive and are known to influence the shape of the Stark-broadened line profiles observed from implosions. To examine the kinetics modeling of this complex, i.e., the He-{beta} and its associated satellites, we have performed experiments in gas bag plasmas at densities of (0.6-1.1)x10{sup 21} cm{sup -3} where we independently determine the electron temperature with ultraviolet Thomson scattering. The comparison of the satellite intensities with kinetics modeling shows good agreement for satellites whose upper states are populated by dielectronic capture, but shows discrepancies for inner-shell collisional excited transitions. (c) 2000 The American Physical Society.

  17. Electro-optical effects of externally applied <100> uniaxial stress on InGaAsP 1. 3 and 1. 5. mu. m injection lasers

    SciTech Connect

    Swaminathan, V.; Parayanthal, P.; Hartman, R.L.


    The changes in the polarization of the emission, spectrum, and light-current (L-I) behavior of a 1.3 and 1.5 InGaAsP channeled substrate buried heterostructure laser and double-channel planar buried heterostructure laser under an external uniaxial compressive stress perpendicular to the junction were studied at room temperature. It was found that the TM emission (electric vector perpendicular to the junction) reached threshold even at a stress level of approx.1 x 10/sup 8/ dyn cm/sup -2/. For stress less than or equal to4 x 10/sup 8/ dyn cm/sup -2/, the TM emission, although reaching threshold first, was found to exist only over a limited range of currents. At high currents only TE emission (electric vector parallel to the junction) was observed. The appearance of the TE emission gave rise to nonlinear L-I characteristics. When both TM and TE emissions were seen, the former occurred at a higher energy. The limited stability of TM emission with current at low stresses is explained by invoking spectral hole burning effects which reduce the gain saturation power for TM mode than the TE mode. At high stresses greater than or equal to4 x 10/sup 8/ dyn cm/sup -2/, the increased gain for TM-polarized light ensures its stability at all currents. From our results it can be concluded that to avoid TM emission, and the associated spectral changes and nonlinear L-I characteristics, the tensile stress in the plane of the active layer should be less than 10/sup 8/ dyn cm/sup -2/.

  18. Improved dot size uniformity and luminescense of InAs quantum dots on InP substrate

    NASA Technical Reports Server (NTRS)

    Qiu, Y.; Uhl, D.


    InAs self-organized quantum dots have been grown in InGaAs quantum well on InP substrates by metalorganic vapor phase epitaxy. Atomic Force Microscopy confirmed of quantum dot formation with dot density of 3X10(sup 10) cm(sup -2). Improved dot size uniformity and strong room temperature photoluminescence up to 2 micron were observed after modifying the InGaAs well.

  19. Evidence of energy transfer in an aluminosilicate glass codoped with Si nanoaggregates and Er{sup 3+} ions

    SciTech Connect

    Enrichi, F.; Mattei, G.; Sada, C.; Trave, E.; Pacifici, D.; Franzo, G.; Priolo, F.; Iacona, F.; Prassas, M.; Falconieri, M.; Borsella, E.


    The enhancement of the Er{sup 3+} ions' photoluminescence (PL) emission at 1.54 {mu}m in a Si and Er coimplanted aluminosilicate glass is investigated in detail. A postimplantation thermal treatment has been performed to recover the damage induced by the implantation process and to promote Si aggregation. It will be shown that 1 h treatment in N{sub 2} atmosphere is not sufficient to induce Si precipitation for temperatures up to 500 deg. C. Nevertheless, the most intense Er{sup 3+} PL emission at 1.54 {mu}m is achieved after a thermal treatment at 400 deg. C. Such emission has been investigated by pumping in and out of resonance, showing a very efficient energy transfer process in the whole excitation wavelength range (360-515 nm). These results suggest that good energy transfer mediators could be small Si aggregates and not only crystalline clusters. For the best performing sample, the effective Er excitation cross section has been measured to be higher than 10{sup -17} cm{sup 2} at 379 and 390 nm and about 2x10{sup -16} cm{sup 2} at 476 nm, that is, several orders of magnitude higher than the Er direct absorption cross section (of the order of 10{sup -21} cm{sup 2} in this glass). Moreover the coefficient of cooperative upconversion has been evaluated to be 2.7x10{sup -18} cm{sup 3} s{sup -1}. The structural and optical properties of this material are discussed and compared to those found for Si and Er codoped silica.

  20. Leach and EP (extraction procedure) toxicity tests on grouted waste from Tank 106-AN

    SciTech Connect

    Serne, R.J.; Martin, W.J.; Lokken, R.O.; LeGore, V.L.; Lindenmeier, C.W.; Martin, P.F.C.


    Pacific Northwest Laboratory is conducting laboratory experiments to produce leach rate data for various waste species that will be contained in grout at Hanford. In the work reported here, grout made from Tank 106-AN liquid waste was used to produce empirical leach rate data for several radionuclides ({sup 60}Co, {sup 90}Sr, {99}Tc, {129}I, {137}Cs, and {sup 241}Am), stable major components (NO{sub 3}{sup {minus}}, NO{sub 2}{sup {minus}}, F, Cl, and Na), and trace metals (Cr, Mo, and Ni). Two types of tests were used to produce leach rate data: an intermittent replacement leach test (ANS 16.1 leach test) and a static leach test. Measured effective diffusivities of key species are as follows: 4 to 6 {times} 10{sup {minus}8} cm{sup 2}/sec for {sup 99}Tc, 3 to 7 {times} 10{sup {minus}8} cm{sup 2}/sec for {sup 129}I, 4 to 6 {times} 10{sup {minus}9} cm{sup 2}/sec for nitrate, and 6 to 7 {times} 10{sup {minus}9} cm{sup 2}/sec for nitrite. The leach indices of all species studied are above (more favorable than) the waste form criteria. The leach indices for {sup 99}Tc and {sup 129}I are 7.4 {plus minus} 1.2 and 7.6 {plus minus} 0.4, respectively, and are being further investigated in continuing studies of double-shell slurry feed grouts. An Extraction Procedure (EP) toxicity test was also conducted and the grouted water is considered nontoxic per this test protocol. 19 refs., 9 figs., 8 tabs.

  1. Phosphorus doping of 4H SiC by liquid immersion excimer laser irradiation

    SciTech Connect

    Ikeda, Akihiro; Nishi, Koji; Ikenoue, Hiroshi; Asano, Tanemasa


    Phosphorus doping of 4H SiC is performed by KrF excimer laser irradiation of 4H SiC immersed in phosphoric acid. Phosphorus is incorporated to a depth of a few tens of nanometers at a concentration of over 10{sup 20}/cm{sup 3} without generating significant crystal defects. Formation of a pn junction diode with an ideality factor of 1.06 is demonstrated.

  2. Behavior of buckminsterfullerene (C sub 60 ) in chlorobenzene with regard to beer's law in the visible and ultraviolet regions

    SciTech Connect

    Honeychuck, R.V. George Mason Univ., Fairfax, VA ); Cruger, T.W. )


    The ultraviolet and visible absorption spectra of buckminsterfullerene have been recorded in chlorobenzene, from 288 nm to 820 nm, using a large concentration range (4.0 {times} 10{sup {minus}6} to 2.5 {times} 10{sup {minus}3} mol L{sup {minus}1}). The molar absorptivity {epsilon} of the 334 nm peak, determined in a range which excludes the point of highest absorbance, is higher than values reported in hexane; it is 6.0 {times} 10{sup 4} L mol{sup {minus}1} cm{sup {minus}1}. Beer's Law plots of the data at 334 and 406 nm are very linear, falling off only at the highest concentration at 334 nm. The implications of these findings with reference to the possible aggregation of buckminsterfullerene are presented.

  3. Plasma Parameter of a Capillary Discharge-Produced Plasma Channel to Guide an Ultrashort Laser Pulse

    SciTech Connect

    Higashiguchi, Takeshi; Terauchi, Hiromitsu; Bai, Jin-xiang; Yugami, Noboru


    We have observed the optical guiding of a 100-fs laser pulse with the laser intensity in the range of 10{sup 16} W/cm{sup 2} using a 1.5-cm long capillary discharge-produced plasma channel for compact electron acceleration applications. The optical pulse propagation using the plasma channel is achieved with the electron densities of 10{sup 17}-10{sup 18} cm{sup -3} and the electron temperatures of 0.5-4 eV at a discharge time delay of around 150 ns and a discharge current of 500 A with a pulse duration of 100-150 ns. An energy spectrum of the accelerated electrons from a laser-plasma acceleration scheme showed a peak at 1.3 MeV with a maximum energy tail of 1.6 MeV.

  4. Surface backgrounds in the DEAP-3600 dark matter experiment

    SciTech Connect

    Cai, B.; Boulay, M.; Pollmann, T.; Cleveland, B.


    DEAP-3600 is a dark matter experiment using 3.6 tons of liquid argon to search for Weakly Interacting Massive Particles (WIMPs), with a target sensitivity to the spin-independent WIMP-nucleon cross-section of 10{sup -46} cm{sup 2}. The detector is designed to allow for a three year background-free run with a 1-ton fiducial volume. We identify in this paper the potential sources of surface contamination. We require {sup 238}U and {sup 232}Th contaminations on the order of 10{sup -12} g/g or less, a level achieved by the SNO experiment, and {sup 210}Pb not significantly out of equilibrium with {sup 238}U, i.e., 10{sup -20} g/g or less {sup 210}Pb in the acrylic vessel or TPB wavelength shifter, which should be achievable with appropriate control of exposure to radon.

  5. Oxygen diffusion of anodic surface oxide film on titanium studied by Auger electron spectroscopy. [Oxygen diffusivity

    SciTech Connect

    Wang, P.S.; Wittberg, T.N.; Keil, R.G.


    TiO/sub 2/ films of about 1000 A were grown onto titanium foils anodically under galvanostatic conditions at 20 mA/cm/sup 2/ in saturated aqueous solutions of ammonium tetraborate. The samples were then aged at 450, 500, and 550/sup 0/C, and oxygen diffusion was observed by Auger electron spectroscopy (AES) profilings. The oxygen diffusivities were calculated by Fick's Second Law, using the Boltzmann-Matano solution, to be 9.4 x 10/sup -17/, 2.6 x 10/sup -16/, and 1.2 x 10/sup -15/ cm/sup 2//sec at 450, 500, and 550/sup 0/C, respectively. The diffusivities obtained by this method were also compared with those obtained using an exact solution to Fick's Second Law. The activation energy was calculated to be 30 kcal/mole.

  6. Energy upconversion in holmium doped lead-germano-tellurite glass

    SciTech Connect

    Kamma, Indumathi; Reddy, B. Rami


    Holmium doped lead-germano-tellurite glass was prepared by the melt quenching technique. The Judd-Ofelt intensity parameters were estimated as {Omega}{sub 2}=7.6x10{sup -20}, {Omega}{sub 4}=12.9x10{sup -20}, and {Omega}{sub 6}=2.5x10{sup -20} cm{sup 2}. Radiative transition probabilities and lifetimes were also determined for some of the levels. Room temperature upconversion emissions have been observed from Ho{sup 3+} at 497 nm under 532 nm laser excitation, and at 557 and 668 nm under 762 nm laser excitation. The upconversion emission mechanisms were found to be due to a step wise excitation process. Upconversion emission intensity enhanced in a heat treated glass.

  7. Z-scan: A simple technique for determination of third-order optical nonlinearity

    SciTech Connect

    Singh, Vijender; Aghamkar, Praveen


    Z-scan is a simple experimental technique to measure intensity dependent nonlinear susceptibilities of third-order nonlinear optical materials. This technique is used to measure the sign and magnitude of both real and imaginary part of the third order nonlinear susceptibility (χ{sup (3)}) of nonlinear optical materials. In this paper, we investigate third-order nonlinear optical properties of Ag-polymer composite film by using single beam z-scan technique with Q-switched, frequency doubled Nd: YAG laser (λ=532 nm) at 5 ns pulse. The values of nonlinear absorption coefficient (β), nonlinear refractive index (n{sub 2}) and third-order nonlinear optical susceptibility (χ{sup (3)}) of permethylazine were found to be 9.64 × 10{sup −7} cm/W, 8.55 × 10{sup −12} cm{sup 2}/W and 5.48 × 10{sup −10} esu, respectively.

  8. A biresonant plasma source based on a gapped linear microwave vibrator

    SciTech Connect

    Gritsinin, S. I.; Davydov, A. M.; Kossyi, I. A.; Arapov, K. A.; Chapkevich, A. A.


    The operating principle of a novel microwave plasma source-a linear microwave vibrator with a gap-is discussed. The source is placed on a microwave-transparent window of a chamber filled with a plasma-forming gas (argon or methane). The device operation is based on the combination of two resonances-geometric and plasma ones. The results of experimental tests of the source are presented. For a microwave frequency of 2.45 GHz, microwave power of {<=}1 kW, and plasma-forming gas pressure in the range 5 Multiplication-Sign 10{sup -2}-10{sup -1} Torr, the source is capable of filling the reactor volume with a plasma having an electron density of about 10{sup 12} cm{sup -3} and electron temperature of a few electronvolts.

  9. Two-color magneto-optical trap for metastable helium

    SciTech Connect

    Tychkov, A.S.; Koelemeij, J.C.J.; Jeltes, T.; Hogervorst, W.; Vassen, W.


    We describe a powerful scheme which combines laser cooling on two transitions of metastable helium to obtain a high phase-space density. By running a sequence of a large 1083 nm magneto-optical trap (MOT) and a compressed 389 nm MOT, a density increase of more than one order of magnitude is achieved within 5 ms. After compression, 8x10{sup 8} atoms at a central density of 5x10{sup 10} cm{sup -3} remain, while the temperature of the cloud has been reduced from 1 mK to 0.4 mK. The resulting phase-space density (4.1x10{sup -6}) is more than one order of magnitude higher than what we achieved by 1083 nm laser cooling only.

  10. In situ spectroscopic ellipsometry studies of hydrogen ion bombardment of crystalline silicon

    SciTech Connect

    Hu, Y.Z.; Li, M.; Conrad, K.; Andres, J.W.; Irene, E.A.; Denker, M.; Ray, M.; McGuire, G.


    Hydrogen-bombardment induced damage in single crystal silicon as a function of the substrate temperature, ion energy, and ion dose was studied using in situ spectroscopic ellipsometry over the photon energy range 2.0-5.5 eV under high vacuum conditions. The incident hydrogen ion energies were 300 and 1000 eV, and the doses were 10{sup 15}-10{sup 18} ions/cm{sup 2}. In situ spectroscopic ellipsometry results showed that the damage layer thicknesses for the samples bombarded at elevated temperatures are smaller than for samples bombarded at room temperature and subsequently annealed at the same elevated temperature. The diffusion coefficient for hydrogen in silicon of 6 x 10{sup {minus}15} cm{sup {minus}2}/s was obtained from the in situ spectroscopic ellipsometry data. 40 refs., 11 figs., 1 tab.

  11. Low-temperature growth of silicon epitaxial layers codoped with erbium and oxygen atoms

    SciTech Connect

    Shengurov, D. V.; Chalkov, V. Yu.; Denisov, S. A.; Shengurov, V. G.; Stepikhova, M. V.; Drozdov, M. N.; Krasilnik, Z. F.


    The fabrication technology and properties of light-emitting Si structures codoped with erbium and oxygen are reported. The layers are deposited onto (100) Si by molecular beam epitaxy (MBE) using an Er-doped silicon sublimation source. The partial pressure of the oxygen-containing gases in the growth chamber of the MBE facility before layer growth is lower than 5 Multiplication-Sign 10{sup -10} Torr. The oxygen and erbium concentrations in the Si layers grown at 450 Degree-Sign C is {approx}1 Multiplication-Sign 10{sup 19} and 10{sup 18} cm{sup -3}, respectively. The silicon epitaxial layers codoped with erbium and oxygen have high crystal quality and yield effective photoluminescence and electroluminescence signals with the dominant optically active Er-1 center forming upon postgrowth annealing at a temperature of 800 Degree-Sign C.

  12. Highly efficient tabletop x-ray laser at {lambda}=41.8 nm in Pd-like xenon pumped by optical-field ionization in a cluster jet

    SciTech Connect

    Ivanova, E. P.


    The atomic-kinetic calculations of gain at 41.8 nm in Pd-like xenon are performed. The interpretation of known experiments has proved that x-ray laser in Pd-like xenon is feasible in the extremely wide range of atomic densities: 10{sup 17}{<=}[Xe{sup 8+}]{<=} 3 x 10{sup 19} cm{sup -3}. This result is due to the large cross sections (and rates) of level excitations in Pd-like xenon by electron impact. We propose a highly efficient tabletop x-ray laser pumped by optical-field ionization in a xenon cluster jet. The efficiency of {approx}0.5% is possible with a pump laser pulse energy of {>=}0.001 J and an intensity of {approx}10{sup 16} W/cm{sup 2}.

  13. Time-resolved spectroscopy measurements of hydrogen-alpha, -beta, and -gamma emissions

    SciTech Connect

    Parigger, Christian G.; Dackman, Matthew; Hornkohl, James O


    Hydrogen emission spectroscopy results are reported following laser-induced optical breakdown with infrared Nd:YAG laser radiation focused into a pulsed methane flow. Measurements of Stark-broadened atomic hydrogen-alpha, -beta, and -gamma lines show electron number densities of 0.3 to 4x10{sup 17} cm{sup -3} for time delays of 2.1 to 0.4 {mu}s after laser-induced optical breakdown. In methane flow, recombination molecular spectra of the {delta}{nu}=+2 progression of the C2 Swan system are discernable in the H{beta} and H{gamma} plasma emissions within the first few microseconds. The recorded atomic spectra indicate the occurrence of hydrogen self-absorption for pulsed CH4 flow pressures of 2.7x10{sup 5} Pa (25 psig) and 6.5x10{sup 5} Pa (80 psig)

  14. Properties of Cometary Nuclei

    NASA Technical Reports Server (NTRS)

    Rahe, J.; Vanysek, V.; Weissman, P. R.


    Active long- and short-period comets contribute about 20 to 30 % of the major impactors on the Earth. Cometary nuclei are irregular bodies, typically a few to ten kilometers in diameter, with masses in the range 10(sup 15) to 10(sup 18) g. The nuclei are composed of an intimate mixture of volatile ices, mostly water ice and hydrocarbon and silicate grains. The composition is the closest to solar composition of any known bodies in the solar system. The nuclei appear to be weakly bonded agglomerations of smaller icy planetesimals, and material strengths estimated from observed tidal disruption events are fairly low, typically 10(sup 2) to 10(sup 4) N m(sup -2). Density estimates range between 0.2 and 1.2 g cm(sup -3) but are very poorly determined, if at all. As comets age they develop nonvolitile crusts on their surfaces which eventually render them inactive, similar in appearance to carbonaceous asteroids. However, dormant comets may continue to show sporadic activity and outbursts for some time before they become truly extinct. The source of the long-period comets is the Oort cloud, a vast spherical cloud of perhaps 10(sup 12) to 10(sup 13) comets surrounding the solar system and extending to interstellar distances. The likely source for short-period comets is the Kuiper belt. a ring of perhaps 10(sup 8) to 10(sup 10) remnant icy planetesimals beyond the orbit of Neptune, though some short-period comets may also be long-period comets from the Oort cloud which have been perturbed into short-period orbits.

  15. Admittance spectroscopy of solar cells based on GaPNAs layers

    SciTech Connect

    Baranov, A. I. Gudovskikh, A. S.; Zelentsov, K. S.; Nikitina, E. V.; Egorov, A. Yu.


    Admittance spectroscopy is used to study defect levels in the layers of a GaPNAs quaternary solid solution. Centers with an activation energy of 0.22 eV and a capture cross section of ∼2.4 × 10{sup −15} cm{sup 2} are found in doped n-GaPNAs layers grown on GaP substrates. These centers correspond to already known Si{sub Ga} + V{sub P} defects in n-GaP; annealing decreases their concentration by several times. A level with an activation energy of 0.23–0.24 eV and capture cross section of ∼9.0 × 10{sup −20} cm{sup 2} is found in undoped GaPNAs layers grown on Si and GaP substrates. The concentration of these centers substantially decreases upon annealing, and, at annealing temperatures exceeding 600°C, there is absolutely no response from these defects. For undoped GaPNAs layers grown on GaP substrates, a level with an activation energy of 0.18 eV and capture cross section of ∼1.1 × 10{sup −16} cm{sup 2} is also found. The concentration of these centers remains unchanged upon annealing.

  16. Thomson scattering on ELMO Bumpy Torus

    SciTech Connect

    Cobble, J.A.


    Below 10/sup 12/ cm/sup -3/ density, a Thomson scattering experiment is an exacting task. Aside from the low signal level, the core plasma in this instance is bathed in high-energy x rays, surrounded by a glowing molecular surface plasma, and heated steady state by microwaves. This means that the noise level from radiation is high and the environment is extremely harsh-so harsh that much effort is required to overcome system damage. In spite of this, the ELMO Bumpy Torus (EBT) system has proven itself capable of providing reliable n/sub e/ and T/sub e/ measurements at densities as low as 2 x 10/sup 11/ cm/sup -3/. Radial scans across 20 cm of the plasma diameter have been obtained on a routine basis, and the resulting information has been a great help in understanding confinement in the EBT plasma. The bulk electron properties are revealed as flat profiles of n/sub e/ and T/sub e/, with density ranging from 0.5 to 2.0 x 10/sup 12/ cm/sup -3/ and temperature decreasing from 100 to 20 eV as pressure in the discharge is increased at constant power. Evidence is presented for a suprathermal tail, which amounts to about 10% of the electron distribution at low pressures. The validity of this conclusion is supported by two independent sensitivity calibrations.

  17. Ion composition of the topside equatorial ionosphere during solar minimum

    SciTech Connect

    Gonzalez, S.A.; Fejer, B.G. ); Heelis, R.A.; Hanson, W.B. )


    The authors have used observations from both the Bennett ion mass spectrometer and the retarding potential analyzer on board the Atmosphere Explorer E satellite to study the longitudinally averaged O{sup +}, H{sup +}, and He{sup +} concentrations from 150 to 1,100 km in the equatorial ionosphere during the 1975-1976 solar minimum. The results suggest that the ion mass spectrometer measurements need to be increased by a factor of 2.15 to agree with the densities from the retarding potential analyzer and with ground-based measurements. The peak H{sup +} concentrations are about 2.5 {times} 10{sup 4} cm{sup {minus}3} during the day and 10{sup 4} cm{sup {minus}3} at night and vary little with season. The O{sup +}/H{sup +} transition altitude lies between 750 and 825 km during the day and between 550 and 600 km at night. He{sup +} is a minor species at all altitudes; its concentration is highly variable with a maximum value of about 10{sup 3} cm{sup {minus}3} during equinox daytime.

  18. Apparatus and method for quantitative measurement of small differences in optical absorptivity between two samples using differential interferometry and the thermooptic effect


    Cremers, D.A.; Keller, R.A.


    An apparatus and method for the measurement of small differences in optical absorptivity of weakly absorbing solutions using differential interferometry and the thermooptic effect has been developed. Two sample cells are placed in each arm of an interferometer and are traversed by colinear probe and heating laser beams. The interrogation probe beams are recombined forming a fringe pattern, the intensity of which can be related to changes in optical pathlength of these laser beams through the cells. This in turn can be related to small differences in optical absorptivity which results in different amounts of sample heating when the heating laser beams are turned on, by the fact that the index of refraction of a liquid is temperature dependent. A critical feature of this invention is the stabilization of the optical path of the probe beams against drift. Background (solvent) absorption can then be suppressed by a factor of approximately 400. Solute absorptivities of about 10/sup -5/ cm/sup -1/ can then be determined in the presence of background absorptions in excess of 10/sup -3/ cm/sup -1/. In addition, the smallest absorption measured with the instant apparatus and method is about 5 x 10/sup -6/ cm/sup -1/.

  19. Apparatus and method for quantitative measurement of small differences in optical absorptivity between two samples using differential interferometry and the thermooptic effect


    Cremers, D.A.; Keller, R.A.


    An apparatus and method for the measurement of small differences in optical absorptivity of weakly absorbing solutions using differential interferometry and the thermooptic effect have been developed. Two sample cells are placed in each arm of an interferometer and are traversed by colinear probe and heating laser beams. The interrogation probe beams are recombined forming a fringe pattern, the intensity of which can be related to changes in optical path length of these laser beams through the cells. This in turn can be related to small differences in optical absorptivity which results in different amounts of sample heating when the heating laser beams are turned on, by the fact that the index of refraction of a liquid is temperature dependent. A critical feature of this invention is the stabilization of the optical path of the probe beams against drift. Background (solvent) absorption can then be suppressed by a factor of approximately 400. Solute absorptivities of about 10[sup [minus]5] cm[sup [minus]1] can then be determined in the presence of background absorptions in excess of 10[sup [minus]3] cm[sup [minus]1]. In addition, the smallest absorption measured with the instant apparatus and method is about 5 [times] 10[sup [minus]6] cm[sup [minus]1]. 6 figs.

  20. Implementation of moire-schlieren deflectometry on a small scale fast capillary plasma discharge

    SciTech Connect

    Valenzuela, J. C.; Wyndham, E. S.; Chuaqui, H.; Cortes, D. S.; Favre, M.; Bhuyan, H.


    We present the results of an implementation of a refractive diagnostic to study fast dynamics in capillary discharges. It consists of a moire-schlieren deflectometry technique that provides a quantitative analysis of the refractive index gradients. The technique is composed of an angular deflection mapping system (moire deflectometry) and a spatial Fourier filter (schlieren). Temporal resolution of 12 ps, 50 {mu}m of spatial resolution and minimum detectable gradient of ({nabla}n{sub e}){sub min}=6x10{sup 18}cm{sup -4} were obtained. With these parameters, a large aspect ratio capillary discharge of 15 ns half period current was studied; the diagnostic was implemented axially along the alumina tube of 1.6 mm inner diameter and 21 mm length. The detectable electron density for these conditions was 1x10{sup 17}cm{sup -3}. From the interpretation of the fringe displacement, we are able to measure the velocity of the radial compression wave and the compression ratio due to the Lorentz force. On axis, electron densities of the order of 5x10{sup 17}cm{sup -3} were obtained at the time of maximum soft x-ray emission.

  1. Apparatus and method for quantitative measurement of small differences in optical absorptivity between two samples using differential interferometry and the thermooptic effect


    Cremers, David A.; Keller, Richard A.


    An apparatus and method for the measurement of small differences in optical absorptivity of weakly absorbing solutions using differential interferometry and the thermooptic effect has been developed. Two sample cells are placed in each arm of an interferometer and are traversed by colinear probe and heating laser beams. The interrogation probe beams are recombined forming a fringe pattern, the intensity of which can be related to changes in optical pathlength of these laser beams through the cells. This in turn can be related to small differences in optical absorptivity which results in different amounts of sample heating when the heating laser beams are turned on, by the fact that the index of refraction of a liquid is temperature dependent. A critical feature of this invention is the stabilization of the optical path of the probe beams against drift. Background (solvent) absorption can then be suppressed by a factor of approximately 400. Solute absorptivities of about 10.sup.-5 cm.sup.-1 can then be determined in the presence of background absorptions in excess of 10.sup.-3 cm.sup.-1. In addition, the smallest absorption measured with the instant apparatus and method is about 5.times. 10.sup.-6 cm.sup.-1.

  2. Al{sub 2}O{sub 3}/GeO{sub x}/Ge gate stacks with low interface trap density fabricated by electron cyclotron resonance plasma postoxidation

    SciTech Connect

    Zhang, R.; Iwasaki, T.; Taoka, N.; Takenaka, M.; Takagi, S.


    An electron cyclotron resonance (ECR) plasma postoxidation method has been employed for forming Al{sub 2}O{sub 3}/GeO{sub x}/Ge metal-oxide-semiconductor (MOS) structures. X-ray photoelectron spectroscopy and transmission electron microscope characterizations have revealed that a GeO{sub x} layer is formed beneath the Al{sub 2}O{sub 3} capping layer by exposing the Al{sub 2}O{sub 3}/Ge structures to ECR oxygen plasma. The interface trap density (D{sub it}) of Au/Al{sub 2}O{sub 3}/GeO{sub x}/Ge MOS capacitors is found to be significantly suppressed down to lower than 10{sup 11} cm{sup -2} eV{sup -1}. Especially, a plasma postoxidation time of as short as 10 s is sufficient to reduce D{sub it} with maintaining the equivalent oxide thickness (EOT). As a result, the minimum D{sub it} values and EOT of 5x10{sup 10} cm{sup -2} eV{sup -1} and 1.67 nm, and 6x10{sup 10} cm{sup -2} eV{sup -1} and 1.83 nm have been realized for Al{sub 2}O{sub 3}/GeO{sub x}/Ge MOS structures with p- and n-type substrates, respectively.

  3. Optical properties of C-doped bulk GaN wafers grown by halide vapor phase epitaxy

    SciTech Connect

    Khromov, S.; Hemmingsson, C.; Monemar, B.; Hultman, L.; Pozina, G.


    Freestanding bulk C-doped GaN wafers grown by halide vapor phase epitaxy are studied by optical spectroscopy and electron microscopy. Significant changes of the near band gap (NBG) emission as well as an enhancement of yellow luminescence have been found with increasing C doping from 5 × 10{sup 16} cm{sup −3} to 6 × 10{sup 17} cm{sup −3}. Cathodoluminescence mapping reveals hexagonal domain structures (pits) with high oxygen concentrations formed during the growth. NBG emission within the pits even at high C concentration is dominated by a rather broad line at ∼3.47 eV typical for n-type GaN. In the area without pits, quenching of the donor bound exciton (DBE) spectrum at moderate C doping levels of 1–2 × 10{sup 17} cm{sup −3} is observed along with the appearance of two acceptor bound exciton lines typical for Mg-doped GaN. The DBE ionization due to local electric fields in compensated GaN may explain the transformation of the NBG emission.

  4. Oxygen diffusivity in silicon derived from dynamical X-ray diffraction

    SciTech Connect

    Will, J.; Groeschel, A.; Bergmann, C.; Steinrueck, H.-G.; Magerl, A.; Kot, D.; Schubert, M. A.; Kissinger, G.


    Thickness dependent Pendelloesung oscillations are highly sensitive to strain fields from defects in a host crystal. Based on this, we present a novel technique to measure the precipitation kinetics of oxygen in silicon already at its early stage of clustering at high temperatures. At 900 Degree-Sign C, precipitates with a radius smaller than 4 nm and with a density of 1 {+-} 0.5 Multiplication-Sign 10{sup 13} 1/cm{sup 3} were observed. The technique was calibrated by complementary scanning transmission electron microscope and energy dispersive X-ray measurements in the range of normal diffusivity yielding a diffusion constant of 1.7 {+-} 0.1 Multiplication-Sign 10{sup -12}cm{sup 2}/s, which is close to the literature value of 2.074 Multiplication-Sign 10{sup -12}cm{sup 2}/s. The measurements have been made with the characteristic K{sub {alpha}1}-line of a high voltage tungsten X-ray tube at 59.31 keV, which provides the opportunity to illuminate through complex sample environments like high temperature scattering furnaces.


    SciTech Connect

    Abbasi, R.; Aguilar, J. A.; Andeen, K.; Baker, M.; Abdou, Y.; Abu-Zayyad, T.; Adams, J.; Ahlers, M.; Auffenberg, J.; Becker, K.-H.; Bai, X.; Barwick, S. W.; Bay, R.; Bazo Alba, J. L.; Benabderrahmane, M. L.; Berdermann, J.; Beattie, K.; Beatty, J. J.; Bechet, S.; Becker, J. K.


    We present the results of searches for high-energy muon neutrinos from 41 gamma-ray bursts (GRBs) in the northern sky with the IceCube detector in its 22 string configuration active in 2007/2008. The searches cover both the prompt and a possible precursor emission as well as a model-independent, wide time window of -1 hr to +3 hr around each GRB. In contrast to previous searches with a large GRB population, we do not utilize a standard Waxman-Bahcall GRB flux for the prompt emission but calculate individual neutrino spectra for all 41 GRBs from the burst parameters measured by satellites. For all of the three time windows, the best estimate for the number of signal events is zero. Therefore, we place 90% CL upper limits on the fluence from the prompt phase of 3.7 x 10{sup -3} erg cm{sup -2} (72 TeV-6.5 PeV) and on the fluence from the precursor phase of 2.3 x 10{sup -3} erg cm{sup -2} (2.2-55 TeV), where the quoted energy ranges contain 90% of the expected signal events in the detector. The 90% CL upper limit for the wide time window is 2.7 x 10{sup -3} erg cm{sup -2} (3 TeV-2.8 PeV) assuming an E {sup -2} flux.

  6. Quenching of the resonance 5s({sup 3}P{sub 1}) state of krypton atoms in collisions with krypton and helium atoms

    SciTech Connect

    Zayarnyi, D A; L'dov, A Yu; Kholin, I V


    The processes of collision quenching of the resonance 5s[3/2]{sub 1}{sup o}({sup 3}P{sub 1}) state of the krypton atom are studied by the absorption probe method in electron-beam-excited high-pressure He – Kr mixtures with a low content of krypton. The rate constants of plasmochemical reactions Kr* + Kr + He → Kr*{sub 2} + He [(4.21 ± 0.42) × 10{sup -33} cm{sup 6} s{sup -1}], Kr* + 2He → HeKr* + He [(4.5 ± 1.2) × 10{sup -36} cm{sup 6} s{sup -1}] and Kr* + He → products + He [(2.21 ± 0.22) × 10{sup -15} cm{sup 3} s{sup -1}] are measured for the first time. The rate constants of similar reactions are refined for krypton in the metastable 5s[3/2]{sub 2}{sup o} ({sup 3}P{sub 2}) state. (laser applications and other topics in quantum electronics)

  7. Quenching of krypton atoms in the metastable 5s ({sup 3}P{sub 2}) state in collisions with krypton and helium atoms

    SciTech Connect

    Zayarnyi, D A; L'dov, A Yu; Kholin, I V


    We have used the absorption probe method to study the processes of collisional quenching of the metastable 5s [3/2]{sup o}{sub 2}({sup 3}P{sub 2}) state of the krypton atom in electron-beam-excited high-pressure He – Kr mixtures with a low content of krypton. The rate constants of plasma-chemical reactions Kr* + Kr + He → Kr*{sub 2}+He [(2.88 ± 0.29) × 10{sup -33} cm{sup 6} s{sup -1}], Kr* + 2He → HeKr* + He [(4.6 ± 1.3) × 10{sup -36} cm{sup 6} s{sup -1}] and Kr* + He → products + He [(1.51 ± 0.15) × 10{sup -15} cm{sup 3} s{sup -1}] are measured for the first time. The rate constants of similar reactions in the Ar – Kr mixture are refined. (active media)

  8. Constraining Dark Matter Models from a Combined Analysis of Milky Way Satellites with the Fermi Large Area Telescope

    SciTech Connect

    Ackermann, M.; Ajello, M.; Albert, A.; Atwood, W.B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Blandford, R.D.; Bloom, E.D.; Bonamente, E.; Borgland, A.W.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Burnett, T.H.; Buson, S.; /more authors..


    Satellite galaxies of the Milky Way are among the most promising targets for dark matter searches in gamma rays. We present a search for dark matter consisting of weakly interacting massive particles, applying a joint likelihood analysis to 10 satellite galaxies with 24 months of data of the Fermi Large Area Telescope. No dark matter signal is detected. Including the uncertainty in the dark matter distribution, robust upper limits are placed on dark matter annihilation cross sections. The 95% confidence level upper limits range from about 10{sup -26} cm{sup 3} s{sup -1} at 5 GeV to about 5 x 10{sup -23} cm{sup 3} s{sup -1} at 1 TeV, depending on the dark matter annihilation final state. For the first time, using gamma rays, we are able to rule out models with the most generic cross section ({approx}3 x 10{sup -26} cm{sup 3} s{sup -1} for a purely s-wave cross section), without assuming additional boost factors.

  9. Conduction below 100 °C in nominal Li6ZnNb4O14

    SciTech Connect

    Li, Yunchao; Paranthaman, Mariappan Parans; Gill, Lance W.; Edward W. Hagaman; Wang, Yangyang; Sokolov, Alexei P.; Dai, Sheng; Ma, Cheng; Chi, Miaofang; Veith, Gabriel M.; Manthiram, Arumugam; Goodenough, John B.


    The increasing demand for a safe rechargeable battery with a high energy density per cell is driving a search for a novel solid electrolyte with a high Li+ or Na+ conductivity that is chemically stable in a working Li-ion or Na-ion battery. Li6ZnNb4O14 has been reported to exhibit a σ Li > 10<sup>-2 S cm>-1 at 250 °C, but to disproportionate into multiple phases on cooling from 850 °C to room temperature. An investigation of the room-temperature Li-ion conductivity in a porous pellet of a multiphase product of a nominal Li6ZnNb4O14 composition is shown to have bulk σ Li 3.3 x 10<sup>-5 S cm>-1 at room temperature that increases to 1.4 x 10<sup>-4 S cm>-1 by 50 °C. 7Li MAS NMR spectra were fitted to two Lorentzian lines, one of which showed a dramatic increase with increasing temperature. As a result, a test for water stability indicates that Li+ may move to the particle and grain surfaces to react with adsorbed water as occurs in the garnet Li+ conductors.

  10. InGaN based micro light emitting diodes featuring a buried GaN tunnel junction

    SciTech Connect

    Malinverni, M. Martin, D.; Grandjean, N.


    GaN tunnel junctions (TJs) are grown by ammonia molecular beam epitaxy. High doping levels are achieved with a net acceptor concentration close to ∼10{sup 20 }cm{sup −3}, thanks to the low growth temperature. This allows for the realization of p-n junctions with ultrathin depletion width enabling efficient interband tunneling. n-p-n structures featuring such a TJ exhibit low leakage current densities, e.g., <5 × 10{sup −5} A cm{sup −2} at reverse bias of 10 V. Under forward bias, the voltage is 3.3 V and 4.8 V for current densities of 20 A cm{sup −2} and 2000 A cm{sup −2}, respectively. The specific series resistance of the whole device is 3.7 × 10{sup −4} Ω cm{sup 2}. Then micro-light emitting diodes (μ-LEDs) featuring buried TJs are fabricated. Excellent current confinement is demonstrated together with homogeneous electrical injection, as seen on electroluminescence mapping. Finally, the I-V characteristics of μ-LEDs with various diameters point out the role of the access resistance at the current aperture edge.

  11. Specific features of the effect of irradiation with electrons and neutrons on photoelectric properties of CdS single crystals nominally undoped and doped with Cu

    SciTech Connect

    Davidyuk, H. Ye.; Bozhko, V. V.; Bulatetska, L. V.


    Electrical, photoelectric, and magnetic properties of CdS single crystals undoped and doped with copper (N{sub Cu} {approx} 10{sup 18} cm{sup -3}) and irradiated with electrons (E = 1.2 MeV, {phi} = 2 x 10{sup 17} cm{sup -2}) and neutrons (E = 2 MeV, {phi} = 10{sup 18} cm{sup -2}) are studied. It is shown that the donor-acceptor pairs are responsible for extrinsic photoconductivity and paramagnetic properties; in particular, these pairs are represented by Cu{sub Cd}{sup -}-D{sup +} complexes that are destroyed during irradiation and are formed again with time (as secondary radiation defects) in irradiated samples. It is established that the majority of paramagnetic centers and donor-acceptor pairs are located in the near-surface region of the crystal. It is confirmed that large structural defects (defect clusters) formed by irradiation with neutrons are efficient sinks for copper atoms. Specific features of isochronous annealing of paramagnetic centers and donor-acceptor pairs responsible for the variation in magnetic parameters and in the photoconductivity spectra of irradiated undoped and Cu-doped CdS samples are studied.

  12. Fe-rich ejecta in the supernova remnant G352.7–0.1 with Suzaku

    SciTech Connect

    Sezer, A.; Gök, F.


    In this work, we present results from a ∼201.6 ks observation of G352.7–0.1 using the X-ray Imaging Spectrometer on board Suzaku X-ray Observatory. The X-ray emission from the remnant is well described by two-temperature thermal models of non-equilibrium ionization with variable abundances with a column density of N{sub H} ∼ 3.3 × 10{sup 22} cm{sup –2}. The soft component is characterized by an electron temperature of kT{sub e} ∼ 0.6 keV, an ionization timescale of τ ∼ 3.4 × 10{sup 11} cm{sup –3} s, and enhanced Si, S, Ar, and Ca abundances. The hard component has kT{sub e} ∼ 4.3 keV, τ ∼ 8.8 × 10{sup 9} cm{sup –3} s, and enhanced Fe abundance. The elemental abundances of Si, S, Ar, Ca, and Fe are found to be significantly higher than the solar values that confirm the presence of ejecta. We detected strong Fe K-shell emission and determined its origin to be the ejecta for the first time. The detection of Fe ejecta with a lower ionization timescale favors a Type Ia origin for this remnant.

  13. Theoretical study of radiative electron attachment to CN, C{sub 2}H, and C{sub 4}H radicals

    SciTech Connect

    Douguet, Nicolas; Fonseca dos Santos, S.; Orel, Ann E.; Raoult, Maurice; Dulieu, Olivier


    A first-principle theoretical approach to study the process of radiative electron attachment is developed and applied to the negative molecular ions CN{sup −}, C{sub 4}H{sup −}, and C{sub 2}H{sup −}. Among these anions, the first two have already been observed in the interstellar space. Cross sections and rate coefficients for formation of these ions by direct radiative electron attachment to the corresponding neutral radicals are calculated. For the CN molecule, we also considered the indirect pathway, in which the electron is initially captured through non-Born-Oppenheimer coupling into a vibrationally resonant excited state of the anion, which then stabilizes by radiative decay. We have shown that the contribution of the indirect pathway to the formation of CN{sup −} is negligible in comparison to the direct mechanism. The obtained rate coefficients for the direct mechanism at 30 K are 7 × 10{sup −16} cm{sup 3}/s for CN{sup −}, 7 × 10{sup −17} cm{sup 3}/s for C{sub 2}H{sup −}, and 2 × 10{sup −16} cm{sup 3}/s for C{sub 4}H{sup −}. These rates weakly depend on temperature between 10 K and 100 K. The validity of our calculations is verified by comparing the present theoretical results with data from recent photodetachment experiments.

  14. Structural, electrical and electrochemical properties of Li{sub 4}Zr{sub x}Si{sub 1-x}O{sub 4} (0.02 ≤ x ≤ 0.06) ceramic electrolytes

    SciTech Connect

    Adnan, S. B. R. S.; Mohamed, N. S.


    The aim of this work was to investigate the structural, electrical and electrochemical properties of Li{sub 4}Zr{sub x}Si{sub 1-x}O{sub 4} (0.02 ≤ x ≤ 0.06) compounds prepared via sol gel method. The X-ray Diffraction results showed that all compounds can be indexed to monoclinic structure in space group P2{sub 1/m}. The Li{sub 4}Zr{sub 0.06}Si{sub 0.94}O{sub 4} compound showed highest bulk, grain boundary and total conductivity values of 1.19 × 10{sup −4} S cm{sup −1}, 4.75 × 10{sup −5} S cm{sup −1} and 3.41 × 10{sup −5} S cm{sup −1} respectively. The insertion of Zr{sup 4+} is found to enhance conductivity of the parent sample Li{sub 4}SiO{sub 4}. Linear sweep voltammetry results showed that Li{sub 4}Zr{sub 0.06}Si{sub 0.94}O{sub 4} ceramic electrolytes was electrochemically stable up to 5.07 V versus a Li{sup +}/Li{sup +} reference electrode.

  15. Ion implantation and dynamic recovery of tin-doped indium oxide films

    SciTech Connect

    Shigesato, Yuzo; Paine, D.C.; Haynes, T.E.


    The effect of O{sup +} on implantation on the electronic (carrier density, mobility), resistivity and microstructural properties of thin film Sn-doped In{sub 2}O{sub 3} (ITO) was studied. Both polycrystalline (c-) and amorphous (a-) ITO thin films, 200 nm thick, were implanted at substrate temperatures ranging from {minus}196 to 300{degrees} C with 80 keV O{sup +} at doses ranging from 0 to 4.0{times}10{sup 15} cm{sup {minus}2}. X-ray diffraction studies show that polycrystalline ITO remains crystalline even after implantation with 80 keV O{sup +} at {minus}196{degrees}C to a dose of 4.0{times}10{sup 15} cm{sup {minus}2} which suggests that dynamic recovery processes are active in ITO at this low temperature. Although the x-ray diffraction pattern of the polycrystalline ITO remains unchanged with implant dose, the electrical properties were seen to degrade when implanted to a dose of 1.0{times}10{sup 15}cm{sup {minus}2} below 200{degrees}C. In contrast, amorphous ITO films remains amorphous upon ion implantation and shows almost no degradation in resistivity when implanted below 16{degrees}C. The recrystallization temperature of amorphous ITO is about 150{degrees}C in the absence of ion implantation.

  16. Hadron colliders (SSC/LHC)

    SciTech Connect

    Chao, A.W.; Palmer, R.B. |; Evans, L.; Gareyte, J.; Siemann, R.H.


    The nominal SSC and LHC designs should operate conservatively at luminosities up to 10{sup 33} cm{sup {minus}2} s{sup {minus}1}. This luminosity is dictated by the event rates that can be handled by the detectors. However, this limit is event dependent (e.g. it does not take much of a detector to detect the event pp {yields} elephant; all one needs is extremely high luminosity). As such, it is useful to explore the possibility of going beyond the 10{sup 33} cm{sup {minus}2} s{sup {minus}1} level. Such exploration will also improve the accelerator physics understanding of pp collider designs. If the detector limitations are removed, the first accelerator limits occur when the luminosity is at the level of 10{sup 34} cm{sup {minus}2}s{sup {minus}1}. These accelerator limits will first be reviewed. The authors will then continue on to explore even higher luminosity as the ultimate limit of pp colliders. Accelerator technologies needed to achieve this ultimate luminosity as well as the R and D needed to reach it are discussed.

  17. Recombination Parameters for Antimonide-Based Semiconductors using RF Photoreflection Techniques

    SciTech Connect

    R.J. Kumar; J.M. Borrego; P.S. Dutta; R.J. Gutmann; C.A. Wang; R.U. Martinelli; G. Nichols


    RF photoreflection measurements and PC-1D simulations have been used to evaluate bulk and surface recombination parameters in antimonide-based materials. PC-1D is used to simulate the photoconductivity response of antimonide-based substrates and doubly-capped epitaxial layers and also to determine how to extract the recombination parameters using experimental results. Excellent agreement has been obtained with a first-order model and test structure simulation when Shockley-Reed-Hall (SRH) recombination is the bulk recombination process. When radiative, Auger and surface recombination are included, the simulation results show good agreement with the model. RF photoreflection measurements and simulations using PC-1D are compatible with a radiative recombination coefficient (B) of approximately 5 x 10{sup -11} cm{sup 3}/s, Auger coefficient (C) {approx} 1.0 x 10{sup -28} cm{sup 6}/s and surface recombination velocity (SRV) {approx} 600 cm/s for 0.50-0.55 eV doubly-capped InGaAsSb material with GaSb capping layers using the experimentally determined active layer doping of 2 x 10{sup 17} cm{sup -3}. Photon recycling, neglected in the analysis and simulations presented, will affect the extracted recombination parameters to some extent.

  18. Electrical and optical properties of Fe doped AlGaN grown by molecular beam epitaxy

    SciTech Connect

    Polyakov, A. Y.; Smirnov, N. B.; Govorkov, A. V.; Kozhukhova, E. A.; Dabiran, A. M.; Chow, P. P.; Wowchak, A. M.; Pearton, S. J.


    Electrical and optical properties of AlGaN grown by molecular beam epitaxy were studied in the Al composition range 15%-45%. Undoped films were semi-insulating, with the Fermi level pinned near E{sub c}-0.6-0.7 eV. Si doping to (5-7)x10{sup 17} cm{sup -3} rendered the 15% Al films conducting n-type, but a large portion of the donors were relatively deep (activation energy 95 meV), with a 0.15 eV barrier for capture of electrons giving rise to strong persistent photoconductivity (PPC) effects. The optical threshold of this effect was {approx}1 eV. Doping with Fe to a concentration of {approx}10{sup 17} cm{sup -3} led to decrease in concentration of uncompensated donors, suggesting compensation by Fe acceptors. Addition of Fe strongly suppressed the formation of PPC-active centers in favor of ordinary shallow donors. For higher Al compositions, Si doping of (5-7)x10{sup 17} cm{sup -3} did not lead to n-type conductivity. Fe doping shifted the bandedge luminescence by 25-50 meV depending on Al composition. The dominant defect band in microcathodoluminescence spectra was the blue band near 3 eV, with the energy weakly dependent on composition.

  19. On compensation and impurities in state-of-the-art GaN epilayers grown on sapphire

    SciTech Connect

    Wickenden, A.E.; Gaskill, D.K.; Koleske, D.D.; Doverspike, K.; Simons, D.S.; Chi, P.H.


    A comparison between 300 K electron transport data for state-of-the-art wurtzite GaN grown on sapphire substrates and corresponding theoretical calculations shows a large difference, with experimental mobility less than the predicted mobility for a given carrier concentration. The comparison seems to imply that GaN films are greatly compensated, but the discrepancy may also be due to the poorly known values of the materials parameters used in the calculations. In this work, recent analysis of transport and SIMS measurements on silicon-doped GaN films are shown to imply that the compensation, N{sub A}/N{sub D}, is less than 0.3. In addition, the determination of an activation energy of 34 meV in a GaN film doped to a level of 6 {times} 10{sup 16} cm{sup {minus}3} suggests either that a second, native donor exists in the doped films at a level of between 6 {times} 10{sup 16} cm{sup {minus}3} and 1 {times} 10{sup 17} cm{sup {minus}3}, or that the activation energy of Si in GaN is dependent on the concentration, being influenced by impurity banding or some other physical effect. GaN films grown without silicon doping are highly resistive.


    SciTech Connect

    Muller, Sebastien; Dinh-V-Trung


    We have investigated the presence of dense gas toward the radio source Cen A by looking at the absorption of the HCO{sup +} and HCN (3-2) lines in front of the bright continuum source with the Submillimeter Array. We detect narrow HCO{sup +} (3-2) absorption, and tentatively HCN (3-2), close to the systemic velocity. For both molecules, the J = 3 - 2 absorption is much weaker than for the J = 1 - 0 line. From simple excitation analysis, we conclude that the gas density is of the order of a few 10{sup 4} cm{sup -3} for a column density N(HCO{sup +})/{delta}V of 3 x 10{sup 12} cm{sup -2} km{sup -1} s and a kinetic temperature of 10 K. In particular, we find no evidence for molecular gas density higher than a few 10{sup 4} cm{sup -3} on the line of sight to the continuum source. We discuss the implications of our finding on the nature of the molecular gas responsible for the absorption toward Cen A.

  1. Investigating the impact of source/drain doping dependent effective masses on the transport characteristics of ballistic Si-nanowire field-effect-transistors

    SciTech Connect

    Nag Chowdhury, Basudev; Chattopadhyay, Sanatan


    This article studies the impact of doping dependent carrier effective masses of the source/drain regions on transport properties of Si-nanowire field effect transistors within ballistic limit. The difference of carrier effective mass in channel and that in the source/drain regions leads to a misalignment of respective sub-bands and forms non-ideal contacts. Such non-idealities are incorporated by modifying the relevant self-energies which control the effective electronic transport from source to drain through the channel. Non-ideality also arises in the nature of local density of states in the channel due to sub-band misalignment, resulting to a reduction of drain current by almost 50%. The highest values of drain current, leakage current, and their ratio are obtained for the S/D doping concentrations of 3 × 10{sup 20} cm{sup −3}, 8 × 10{sup 20} cm{sup −3}, and 2 × 10{sup 20} cm{sup −3}, respectively, for the nanowire of length 10 nm and diameter of 3 nm. Interestingly, the maximum of sub-threshold swing, minimum of threshold voltage, and the maximum of leakage current are observed to be apparent at the same doping concentration.

  2. Defect reduction in (11-20) a-plane GaN by two step epitaxiallateral overgrowth

    SciTech Connect

    Ni, X.; Ozgur, U.; Fu, Y.; Biyikii, N.; Morkoc, H.; Liliental-Weber, Z.


    We report a two-step growth method to obtain uniformly coalesced epitaxial lateral overgrown a-plane GaN by metal-organic chemical vapor deposition (MOCVD). By obtaining a large wing height to width aspect ratio in the first step followed by enhanced lateral growth in the second step via controlling the growth temperature, we reduced the tilt angle between the advancing Ga-polar and N-polar wings for improved properties. Transmission electron microscopy (TEM) showed that the threading dislocation density in the wing area was 1.0 x 10{sup 8}cm{sup -2}, more than two orders of magnitude lower than that in the window area (4.2 x 10{sup 10} cm{sup -2}). However, a high density of basal stacking faults, 1.2 x 10{sup 4} cm{sup -1}, was still observed in the wing area. Near field scanning optical microscopy (NSOM) at room temperature revealed that the luminescence was mainly from the wing regions with very little contribution from the windows and meeting fronts. These observations suggest that due to significant reduction of threading dislocations radiative recombination is enhanced in the wings.

  3. Charge transport studies in donor-acceptor block copolymer PDPP-TNT and PC71BM based inverted organic photovoltaic devices processed in room conditions

    SciTech Connect

    Srivastava, Shashi B.; Singh, Samarendra P.; Sonar, Prashant


    Diketopyrrolopyrole-naphthalene polymer (PDPP-TNT), a donor-acceptor co-polymer, has shown versatile behavior demonstrating high performances in organic field-effect transistors (OFETs) and organic photovoltaic (OPV) devices. In this paper we report investigation of charge carrier dynamics in PDPP-TNT, and [6,6]-phenyl C{sub 71} butyric acid methyl ester (PC71BM) bulk-heterojunction based inverted OPV devices using current density-voltage (J-V) characteristics, space charge limited current (SCLC) measurements, capacitance-voltage (C-V) characteristics, and impedance spectroscopy (IS). OPV devices in inverted architecture, ITO/ZnO/PDPP-TNT:PC71BM/MoO{sub 3}/Ag, are processed and characterized at room conditions. The power conversion efficiency (PCE) of these devices are measured ∼3.8%, with reasonably good fill-factor 54.6%. The analysis of impedance spectra exhibits electron’s mobility ∼2 × 10{sup −3} cm{sup 2}V{sup −1}s{sup −1}, and lifetime in the range of 0.03-0.23 ms. SCLC measurements give hole mobility of 1.12 × 10{sup −5} cm{sup 2}V{sup −1}s{sup −1}, and electron mobility of 8.7 × 10{sup −4} cm{sup 2}V{sup −1}s{sup −1}.

  4. UV absorption spectrum of the C2 Criegee intermediate CH{sub 3}CHOO

    SciTech Connect

    Smith, Mica C.; Ting, Wei-Lun; Chang, Chun-Hung; Takahashi, Kaito; Boering, Kristie A.; Lin, Jim Jr-Min


    The UV spectrum of CH{sub 3}CHOO was measured by transient absorption in a flow cell at 295 K. The absolute absorption cross sections of CH{sub 3}CHOO were measured by laser depletion in a molecular beam to be (1.06 ± 0.09) × 10{sup −17} cm{sup 2} molecule{sup −1} at 308 nm and (9.7 ± 0.6) × 10{sup −18} cm{sup 2} molecule{sup −1} at 352 nm. After scaling the UV spectrum of CH{sub 3}CHOO to the absolute cross section at 308 nm, the peak UV cross section is (1.27 ± 0.11) × 10{sup −17} cm{sup 2} molecule{sup −1} at 328 nm. Compared to the simplest Criegee intermediate CH{sub 2}OO, the UV absorption band of CH{sub 3}CHOO is similar in intensity but blue shifted by 14 nm, resulting in a 20% slower photolysis rate estimated for CH{sub 3}CHOO in the atmosphere.

  5. Point defects and p-type conductivity in Zn{sub 1–x}Mn{sub x}GeAs{sub 2}

    SciTech Connect

    Kilanski, L.; Podgórni, A.; Dynowska, E.; Dobrowolski, W.


    Positron annihilation spectroscopy is used to study point defects in Zn{sub 1–x}Mn{sub x}GeAs{sub 2} crystals with low Mn content 0≤x≤0.042 with disordered zincblende and chalcopyrite structure. The role of negatively charged vacancies and non-open-volume defects is discussed with respect to the high p-type conductivity with carrier concentration 10{sup 19}≤p≤10{sup 21}cm{sup −3} in our samples. Neutral As vacancies, together with negatively charged Zn vacancies and non-open-volume defects with concentrations around 10{sup 16}−10{sup 18}cm{sup −3}, are observed to increase with increasing Mn content in the alloy. The observed concentrations of defects are not sufficient to be responsible for the strong p-type conductivity of our crystals. Therefore, we suggest that other types of defects, such as extended defects, have a strong influence on the conductivity of Zn{sub 1–x}Mn{sub x}GeAs{sub 2} crystals.

  6. Langmuir probe diagnostics of plasma in high current electron cyclotron resonance proton ion source

    SciTech Connect

    Roychowdhury, P.; Kewlani, H.; Mishra, L.; Mittal, K. C.; Patil, D. S.


    A high current Electron Cyclotron Resonance (ECR) proton ion source has been developed for low energy high intensity proton accelerator at Bhabha Atomic Research Centre. Langmuir probe diagnostics of the plasma generated in this proton ion source is performed using Langmuir probe. The diagnostics of plasma in the ion source is important as it determines beam parameters of the ion source, i.e., beam current, emittance, and available species. The plasma parameter measurement in the ion source is performed in continuously working and pulsed mode using hydrogen as plasma generation gas. The measurement is performed in the ECR zone for operating pressure and microwave power range of 10{sup −4}–10{sup −3} mbar and 400–1000 W. An automated Langmuir probe diagnostics unit with data acquisition system is developed to measure these parameters. The diagnostics studies indicate that the plasma density and plasma electron temperature measured are in the range 5.6 × 10{sup 10} cm{sup −3} to 3.8 × 10{sup 11} cm{sup −3} and 4–14 eV, respectively. Using this plasma, ion beam current of tens of mA is extracted. The variations of plasma parameters with microwave power, gas pressure, and radial location of the probe have been studied.


    SciTech Connect

    Allafort, A.; Bottacini, E.; Cameron, R. A.; Baldini, L.; Ballet, J.; Chaves, R.C.G.; Baring, M. G.; Bastieri, D.; Buson, S.; Bellazzini, R.; Bregeon, J.; Bonamente, E.; Cecchi, C.; Brandt, T. J.; Bruel, P.; Caliandro, G. A.; Caraveo, P. A.; Chekhtman, A. E-mail:; and others


    Long-term monitoring of PSR J2021+4026 in the heart of the Cygnus region with the Fermi Large Area Telescope unveiled a sudden decrease in flux above 100 MeV over a timescale shorter than a week. The 'jump' was near MJD 55850 (2011 October 16), with the flux decreasing from (8.33 ± 0.08) × 10{sup –10} erg cm{sup –2} s{sup –1} to (6.86 ± 0.13) × 10{sup –10} erg cm{sup –2} s{sup –1}. Simultaneously, the frequency spindown rate increased from (7.8 ± 0.1) × 10{sup –13} Hz s{sup –1} to (8.1 ± 0.1) × 10{sup –13} Hz s{sup –1}. Significant (>5σ) changes in the pulse profile and marginal (<3σ) changes in the emission spectrum occurred at the same time. There is also evidence for a small, steady flux increase over the 3 yr preceding MJD 55850. This is the first observation at γ-ray energies of mode changes and intermittent behavior, observed at radio wavelengths for other pulsars. We argue that the change in pulsed γ-ray emission is due to a change in emission beaming and we speculate that it is precipitated by a shift in the magnetic field structure, leading to a change of either effective magnetic inclination or effective current.

  8. Initial dislocation structure and dynamic dislocation multiplication in Mo single crystals

    SciTech Connect

    Hsiung, L M; Lassila, D H


    Initial dislocation structure in annealed high-purity Mo single crystals and deformation substructure in a crystal subjected to 1% compression have been examined and studied in order to investigate dislocation multiplication mechanisms in the early stages of plastic deformation. The initial dislocation density is in a range of 10{sup 6} {approx} 10{sup 7} cm{sup -2}, and the dislocation structure is found to contain many grown-in superjogs along dislocation lines. The dislocation density increases to a range of 10{sup 8} {approx} 10{sup 9} cm{sup -2}, and the average jog height is also found to increase after compressing for a total strain of 1%. It is proposed that the preexisting jogged screw dislocations can act as (multiple) dislocation multiplication sources when deformed under quasi-static conditions. Both the jog height and length of link segment (between jogs) can increase by stress-induced jog coalescence, which takes place via the lateral migration (drift) of superjogs driven by unbalanced line-tension partials acting on link segments of unequal lengths. Applied shear stress begins to push each link segment to precede dislocation multiplication when link length and jog height are greater than critical lengths. This dynamic dislocation multiplication source is subsequently verified by direct simulations of dislocation dynamics under stress to be crucial in the early stages of plastic deformation in Mo single crystals.


    SciTech Connect

    Sakai, Nami; Watanabe, Yoshimasa; Yamamoto, Satoshi; Shirley, Yancy L.; Sakai, Takeshi; Hirota, Tomoya


    The millimeter-wave rotational transition line (J{sub K} = 1{sub 0}-0{sub 0}) of deuterated methane CH{sub 3}D has tentatively been detected toward the low-mass Class 0 protostar IRAS 04368+2557 in L1527 with the Heinrich Hertz Submillimeter Telescope. This is the first detection of CH{sub 3}D in interstellar clouds, if confirmed. The column density and fractional abundance of CH{sub 3}D are determined to be (9.1 {+-} 3.4) Multiplication-Sign 10{sup 15} cm{sup -2} and (3.0 {+-} 1.1) Multiplication-Sign 10{sup -7}, respectively, where we assume the rotational temperature of 25 K. The column density and fractional abundance of the gaseous CH{sub 4} are estimated to be (1.3-4.6) Multiplication-Sign 10{sup 17} cm{sup -2} and (4.3-15.2) Multiplication-Sign 10{sup -6}, respectively, by adopting the molecular D/H ratios of 2%-7% reported for various molecules in L1527. The fractional abundance of CH{sub 4} is higher than or comparable to that found in high-mass star-forming cores by infrared observations. It is sufficiently high to trigger the efficient production of various carbon-chain molecules in a lukewarm region near the protostar, which supports the scenario of warm carbon-chain chemistry.

  10. Electron and hole drift mobility measurements on thin film CdTe solar cells

    SciTech Connect

    Long, Qi; Dinca, Steluta A.; Schiff, E. A.; Yu, Ming; Theil, Jeremy


    We report electron and hole drift mobilities in thin film polycrystalline CdTe solar cells based on photocarrier time-of-flight measurements. For a deposition process similar to that used for high-efficiency cells, the electron drift mobilities are in the range of 10{sup −1}–10{sup 0} cm{sup 2}/V s, and holes are in the range of 10{sup 0}–10{sup 1} cm{sup 2}/V s. The electron drift mobilities are about a thousand times smaller than those measured in single crystal CdTe with time-of-flight; the hole mobilities are about ten times smaller. Cells were examined before and after a vapor phase treatment with CdCl{sub 2}; treatment had little effect on the hole drift mobility, but decreased the electron mobility. We are able to exclude bandtail trapping and dispersion as a mechanism for the small drift mobilities in thin film CdTe, but the actual mechanism reducing the mobilities from the single crystal values is not known.

  11. Doping of MBE grown cubic GaN on 3C-SiC (001) by CBr{sub 4}

    SciTech Connect

    Zado, A.; Tschumak, E.; Lischka, K.; As, D. J.; Gerlach, J. W.


    We report on carbon doping of cubic GaN by CBr{sub 4} using plasma-assisted molecular beam epitaxy on 3C-SiC (001) substrates. The samples consist of a 70 nm thick GaN buffer followed by a 550 nm thick GaN:C layer. Carbon doping is realized with a home-made carbon tetrabromide sublimation source. The CBr{sub 4} beam equivalent pressure was established by a needle valve and was varied between 2x10{sup -9} mbar and 6x10{sup -6} mbar. The growth was controlled by in-situ reflection high energy electron diffraction. The incorporated carbon concentration is obtained from secondary ion mass spectroscopy. Capacitance voltage characteristics were measured using metal-insulator-semiconductor structures. Capacitance voltage measurements on nominally undoped cubic GaN showed n-type conductivity with N{sub D}-N{sub A} = 1x10{sup 17} cm{sup -3}. With increasing CBr{sub 4} flux the conductivity type changes to p-type and for the highest CBr{sub 4} flux N{sub A}-N{sub D} = 4{center_dot}5x10{sup 18} cm{sup -3} was obtained.

  12. Dislocation Multiplication in the Early Stage of Deformation in Mo Single Crystals

    SciTech Connect

    Hsiung, L.; Lassila, D.H.


    Initial dislocation structure in annealed high-purity Mo single crystals and deformation substructure in a crystal subjected to 1% compression have been examined and studied using transmission electron microscopy (TEM) techniques in order to investigate dislocation multiplication mechanisms in the early stage of plastic deformation. The initial dislocation density is in a range of 10{sup 6} {approx} 10{sup 7} cm{sup -2}, and the dislocation structure is found to contain many grown-in superjogs along dislocation lines. The dislocation density increases to a range of 10{sup 8} {approx} 10{sup 9} cm{sup -2}, and the average jog height is also found to increase after compressing for a total strain of 1%. It is proposed that the preexisting jogged screw dislocations can act as (multiple) dislocation multiplication sources when deformed under quasi-static conditions. The jog height can increase by stress-induced jog coalescence, which takes place via the lateral migration (drift) of superjogs driven by unbalanced line-tension partials acting on link segments of unequal lengths. The coalescence of superjogs results in an increase of both link length and jog height. Applied shear stress begins to push each link segment to precede dislocation multiplication when link length and jog height are greater than critical lengths. This ''dynamic'' dislocation multiplication source is suggested to be crucial for the dislocation multiplication in the early stage of plastic deformation in Mo.

  13. Transport properties of cubic crystalline Ge2Sb2Te5: a potential low-temperature thermoelectric material.

    SciTech Connect

    Sun, Jifeng; Mukhopadhyay, Saikat; Subedi, Alaska; Siegrist, Theo; Singh, David J.


    Ge2Sb2Te5 (GST) has been widely used as a popular phase change material. In this study, we show that it exhibits high Seebeck coe cients 200 - 300 μV/K in its cubic crystalline phase (c-GST) at remarkably high p-type doping levels of 1 10<sup>19 - 6 10<sup>19 cm>-3 at room temperature. More importantly, at low temperature (T = 200 K), the Seebeck coe cient was found to exceed 200 μV/K for a doping range 1 10<sup>19 - 3.5 10<sup>19 cm>-3. Given that the lattice thermal conductivity in this phase has already been measured to be extremely low ( 0.7 W/m-K at 300 K), our results suggest the possibility of using c-GST as a low-temperature thermoelectric material.

  14. Formerly utilized MED/AEC sites remedial action program: radiological survey of the Building Site 421, United States, Watertown Arsenel, Watertown, MA. Final report

    SciTech Connect


    This report contains the results of surveys of the current radiological condition of the Building Site 421, United States Arsenal Watertown, Watertown, Massachusetts. Findings of this survey indicate there are four spots involving an area of less than 6000 cm/sup 2/ of identifiable low-level residual radioactivity on the concrete pad which is all that remains of Building Site 421. The largest spot is approximately 5000 cm/sup 2/. The other three spots are 100 cm/sup 2/ or less. The beta-gamma readings at these spots are 8.4 x 10/sup 2/ dis/min-100 cm/sup 2/, 2.2 x 10/sup 5/ dis/min-100 cm/sup 2/, 2.2 x 10/sup 5/ dis/min-100 cm/sup 2/ and 8.5 x 10/sup 4/ dis/min-100 cm/sup 2/. No alpha contamination was found at these locations. Gamma spectral analysis of a chip of contaminated concrete from one of the spots indicates that the contaminant is natural uranium. This contamination is fixed in the concrete and does not present an internal or external exposure hazard under present conditions. A hypothetical hazard analysis under a conservative set of assumed conditions indicates minimal internal hazard. The highest End Window contact reading was 0.09 mR/h. None of the other three spots indicated an elevated direct reading with the End Window Detector. Radon daughter concentrations were determined at three locations on the Building 421 pad. These were 0.00013 WL, 0.00011 WL and 0.00009 WL. According to the Surgeon General's Guidelines found in 10 CFR 712, radon daughter concentrations below 0.03 WL do not require remedial action in structures other than private dwellings and schools. Soil samples taken about the site indicate no elevated levels above the natural background levels in the soil. A gamma spectral analysis of a water sample obtained from the storm sewer line near the Building 421 pad indicates no elevated radioactivity in the sample. It was therefore felt that no contamination is present in this sewer.


    SciTech Connect

    Seale, Jonathan P.; Looney, Leslie W.; Wong, Tony; Ott, Juergen; Klein, Uli; Pineda, Jorge L.


    We report the results of a high spatial (parsec) resolution HCO{sup +} (J = 1 {yields} 0) and HCN (J = 1 {yields} 0) emission survey toward the giant molecular clouds of the star formation regions N 105, N 113, N 159, and N 44 in the Large Magellanic Cloud (LMC). The HCO{sup +} and HCN observations at 89.2 and 88.6 GHz, respectively, were conducted in the compact configuration of the Australia Telescope Compact Array. The emission is imaged into individual clumps with masses between 10{sup 2} and 10{sup 4} M{sub Sun} and radii of <1 pc to {approx}2 pc. Many of the clumps are coincident with indicators of current massive star formation, indicating that many of the clumps are associated with deeply embedded forming stars and star clusters. We find that massive young stellar object (YSO) bearing clumps tend to be larger ({approx}>1 pc), more massive (M {approx}> 10{sup 3} M{sub Sun }), and have higher surface densities ({approx}1 g cm{sup -2}), while clumps without signs of star formation are smaller ({approx}<1 pc), less massive (M {approx}< 10{sup 3} M{sub Sun }), and have lower surface densities ({approx}0.1 g cm{sup -2}). The dearth of massive (M > 10{sup 3} M{sub Sun }) clumps not bearing massive YSOs suggests that the onset of star formation occurs rapidly once the clump has attained physical properties favorable to massive star formation. Using a large sample of LMC massive YSO mid-IR spectra, we estimate that {approx}2/3 of the massive YSOs for which there are Spitzer mid-IR spectra are no longer located in molecular clumps; we estimate that these young stars/clusters have destroyed their natal clumps on a timescale of at least {approx}3 Multiplication-Sign 10{sup 5} yr.

  16. Fundamental studies of the plasma extraction and ion beam formation processes in inductively coupled plasma mass spectrometry

    SciTech Connect

    Niu, Hongsen


    The fundamental and practical aspects are described for extracting ions from atmospheric pressure plasma sources into an analytical mass spectrometer. Methodologies and basic concepts of inductively coupled plasma mass spectrometry (ICP-MS) are emphasized in the discussion, including ion source, sampling interface, supersonic expansion, slumming process, ion optics and beam focusing, and vacuum considerations. Some new developments and innovative designs are introduced. The plasma extraction process in ICP-MS was investigated by Langmuir measurements in the region between the skimmer and first ion lens. Electron temperature (T{sub e}) is in the range 2000--11000 K and changes with probe position inside an aerosol gas flow. Electron density (n{sub e}) is in the range 10{sup 8}--10{sup 10} {sup {minus}cm }at the skimmer tip and drops abruptly to 10{sup 6}--10{sup 8} cm{sup {minus}3} near the skimmer tip and drops abruptly to 10{sup 6}--10{sup 8} cm{sup {minus}3} downstream further behind the skimmer. Electron density in the beam leaving the skimmer also depends on water loading and on the presence and mass of matrix elements. Axially resolved distributions of electron number-density and electron temperature were obtained to characterize the ion beam at a variety of plasma operating conditions. The electron density dropped by a factor of 101 along the centerline between the sampler and skimmer cones in the first stage and continued to drop by factors of 10{sup 4}--10{sup 5} downstream of skimmer to the entrance of ion lens. The electron density in the beam expansion behind sampler cone exhibited a 1/z{sup 2} intensity fall-off (z is the axial position). An second beam expansion originated from the skimmer entrance, and the beam flow underwent with another 1/z{sup 2} fall-off behind the skimmer. Skimmer interactions play an important role in plasma extraction in the ICP-MS instrument.

  17. Molecular beam epitaxial growth of metamorphic AlInSb/GaInSb high-electron-mobility-transistor structures on GaAs substrates for low power and high frequency applications

    SciTech Connect

    Loesch, R.; Aidam, R.; Kirste, L.; Leuther, A.


    We report on molecular beam epitaxial growth of AlInSb/GaInSb metamorphic high-electron-mobility-transistor structures for low power, high frequency applications on 4 in. GaAs substrates. The structures consist of a Ga{sub 0.4}In{sub 0.6}Sb channel embedded in Al{sub 0.4}In{sub 0.6}Sb barrier layers which are grown on top of an insulating metamorphic buffer, which is based on the linear exchange of Ga versus In and a subsequent exchange of As versus Sb. Precise control of group V fluxes and substrate temperature in the Al{sub 0.4}In{sub 0.6}As{sub 1-x}Sb{sub x} buffer is essential to achieve high quality device structures. Good morphological properties were achieved demonstrated by the appearance of crosshatching and root mean square roughness values of 2.0 nm. Buffer isolation is found to be >100 k{Omega}/{open_square} for optimized growth conditions. Hall measurements at room temperature reveal electron densities of 2.8x10{sup 12} cm{sup -2} in the channel at mobility values of 21.000 cm{sup 2}/V s for single-sided Te volume doping and 5.4x10{sup 12} cm{sup -2} and 17.000 cm{sup 2}/V s for double-sided Te {delta}-doping, respectively.

  18. Electrophysical properties of solid solutions of silver in PbTe

    SciTech Connect

    Sharov, M. K.


    The thermopower coefficient {alpha}{sub 0} and the electrical conductivity {sigma} of Pb{sub 1-x}Ag{sub x}Te solid solutions, where x = (0-0.007), are measured at T = 300 K. The hole concentration p is calculated. All samples are of the p type. With increasing silver content, {alpha}{sub 0} decreases, while p and {sigma} increase. For undoped crystals, {alpha}{sub 0} = 251.0 {mu}V/K, p = 1.1 Multiplication-Sign 10{sup 18} cm{sup -3}, and {sigma} = 165 {Omega}{sup -1} cm{sup -1}. At the silver-solubility limit for x = 0.007, {alpha}{sub 0} = 193.8 {mu}V/K, p = 2.3 Multiplication-Sign 10{sup 18} cm{sup -3}, and {sigma} = 216 {Omega}{sup -1} cm{sup -1}. The hole concentration in all samples is much lower than the concentration of introduced silver atoms. The hole gas in Pb{sub 1-x}Ag{sub x}Te solid solutions is weakly degenerate in the entire silver-concentration range.

  19. GaN photovoltaic leakage current and correlation to grain size

    SciTech Connect

    Matthews, K. D.; Chen, X.; Hao, D.; Schaff, W. J.; Eastman, L. F.


    GaN p-i-n solar PV structures grown by rf plasma assisted molecular beam epitaxy (MBE) produce high performance IV characteristics with a leakage current density of less than 1x10{sup -4} mA cm{sup -2} at 0.1 V forward bias and an on-resistance of 0.039 {Omega} cm{sup 2}. Leakage current measurements taken for different size diodes processed on the same sample containing the solar cells reveal that current density increases with diode area, indicating that leakage is not a large function of surface leakage along the mesa. Nonannealed Pt/Au Ohmic p-contacts produce a contact resistivity of 4.91x10{sup -4} {Omega} cm{sup -2} for thin Mg doped contact layers with sheet resistivity of 62196 {Omega}/{open_square}. Under concentrated sunlight the cells produce an open-circuit voltage of 2.5 V and short circuit currents as high as 30 mA cm{sup -2}. Multiple growths comprised the study and on each wafer the IV curves representing several diodes showed considerable variation in parasitic leakage current density at low voltages on some wafers and practically no variation on others. It appears that a smaller grain size within the GaN thin film accounts for higher levels of dark current.

  20. Growth of p-type and n-type m-plane GaN by molecular beam epitaxy

    SciTech Connect

    McLaurin, M.; Mates, T. E.; Wu, F.; Speck, J. S.


    Plasma-assisted molecular beam epitaxial growth of Mg-doped, p-type and Si-doped, n-type m-plane GaN on 6H m-plane SiC is demonstrated. Phase-pure, m-plane GaN films exhibiting a large anisotropy in film mosaic ({approx}0.2 deg. full width at half maximum, x-ray rocking curve scan taken parallel to [1120] versus {approx}2 deg. parallel to [0001]) were grown on m-plane SiC substrates. Maximum hole concentrations of {approx}7x10{sup 18} cm{sup -3} were achieved with p-type conductivities as high as {approx}5 {omega}{sup -1} cm{sup -1} without the presence of Mg-rich inclusions or inversion domains as viewed by cross-section transmission electron microscopy. Temperature dependent Hall effect measurements indicate that the Mg-related acceptor state in m-plane GaN is the same as that exhibited in c-plane GaN. Free electron concentrations as high as {approx}4x10{sup 18} cm{sup -3} were measured in the Si-doped m-plane GaN with corresponding mobilities of {approx}500 cm{sup 2}/V s measured parallel to the [1120] direction.