Science.gov

Sample records for 10th solar masses

  1. Standing adult human phantoms based on 10th, 50th and 90th mass and height percentiles of male and female Caucasian populations

    NASA Astrophysics Data System (ADS)

    Cassola, V. F.; Milian, F. M.; Kramer, R.; de Oliveira Lira, C. A. B.; Khoury, H. J.

    2011-07-01

    Computational anthropomorphic human phantoms are useful tools developed for the calculation of absorbed or equivalent dose to radiosensitive organs and tissues of the human body. The problem is, however, that, strictly speaking, the results can be applied only to a person who has the same anatomy as the phantom, while for a person with different body mass and/or standing height the data could be wrong. In order to improve this situation for many areas in radiological protection, this study developed 18 anthropometric standing adult human phantoms, nine models per gender, as a function of the 10th, 50th and 90th mass and height percentiles of Caucasian populations. The anthropometric target parameters for body mass, standing height and other body measures were extracted from PeopleSize, a well-known software package used in the area of ergonomics. The phantoms were developed based on the assumption of a constant body-mass index for a given mass percentile and for different heights. For a given height, increase or decrease of body mass was considered to reflect mainly the change of subcutaneous adipose tissue mass, i.e. that organ masses were not changed. Organ mass scaling as a function of height was based on information extracted from autopsy data. The methods used here were compared with those used in other studies, anatomically as well as dosimetrically. For external exposure, the results show that equivalent dose decreases with increasing body mass for organs and tissues located below the subcutaneous adipose tissue layer, such as liver, colon, stomach, etc, while for organs located at the surface, such as breasts, testes and skin, the equivalent dose increases or remains constant with increasing body mass due to weak attenuation and more scatter radiation caused by the increasing adipose tissue mass. Changes of standing height have little influence on the equivalent dose to organs and tissues from external exposure. Specific absorbed fractions (SAFs) have also

  2. Lunar and Planetary Science Conference, 10th, Houston, Tex., March 19-23, 1979, Proceedings. Volume 2 - Early solar system and lunar regolith

    NASA Technical Reports Server (NTRS)

    Merrill, R. B.

    1979-01-01

    Papers are presented concerning studies of the lunar regolith, the remote sensing of the surface compositions of the moon and planets, and the origin and evolution of the solar system. Specific topics include the stratigraphy and depositional history of the Apollo 17 deep drill core, the trace element and metallic iron abundances in fractions of the Apollo 15 deep drill core, the surface chemistry of lunar impact glasses, cosmic ray-produced noble gases in lunar samples, and the properties of microcraters and cosmic dust less than 1000 A in diameter. Attention is also given to the remote sensing of mare surface titanium concentrations, Viking Lander multispectral images, star and planetary system formation in collapsing, viscous, rotating clouds and the importance of planet size to basaltic volcanism.

  3. The Solar Mass Ejection Imager

    NASA Technical Reports Server (NTRS)

    Jackson, B. V.; Buffington, A.; Hick, P. L.; Kahler, S. W.; Altrock, R. C.; Gold, R. E.; Webb, D. F.

    1995-01-01

    We are designing a Solar Mass Ejection Imager (SMEI) capable of observing the Thomson-scattered signal from transient density features in the heliosphere from a spacecraft situated near AU. The imager is designed to trace these features, which include coronal mass ejections. corotating structures and shock waves, to elongations greater than 90 deg from the Sun. The instrument may be regarded as a progeny of the heliospheric imaging capability shown possible by the zodiacal-light photometers of the HELIOS spacecraft. The instrument we are designing would make more effective use of in-situ solar wind data from spacecraft in the vicinity of the imager by extending these observations to the surrounding environment. The observations from the instrument should allow deconvolution of these structures from the perspective views obtained as they pass the spacecraft. An imager at Earth could allow up to three days warning of the arrival of a mass ejection from the Sun .

  4. Solar mass emission and climate

    NASA Astrophysics Data System (ADS)

    Mursula, Kalevi

    2016-07-01

    The properties of the solar wind and the heliospheric magnetic field (HMF) have been directly measured by satellite observations since the early 1960s, thus covering only the declining phase of the Grand modern maximum (GMM) of solar activity. The information on the properties of solar wind and HMF in the earlier decades is based on different indices of geomagnetic activity, based on observations of the geomagnetic field since the 1840s. While the 19th century is covered by a rather small number of observations, there are several independent series of observations from the early 1900s onwards, yielding a fairly reliable view of solar wind and HMF over the whole GMM. Geomagnetic activity is mainly produced by two major solar wind structures: coronal mass ejections (CME) and high-speed solar wind streams (HSS), whose properties and occurrences differ notably. While CMEs cause the most dramatic individual storms, HSSs are the most effective long-term driver of magnetospheric energetic particles, for which homogeneous, long-term databases of fluxes have recently become available. The new long-term information also allows interesting possibilities to more reliably study the long-term evolution of solar effects in the Earth's atmosphere and climate. E.g., there is evidence that processes related to HSSs may modulate regional/hemispheric climate patterns, in particular the NAO/NAM oscillation. Moreover, other, independent climate effects due to the HMF have been suggested. We review the different approaches used to obtain information on the centennial solar wind and HMF, as well as their suggested atmospheric and climatic effects.

  5. Mass motion in solar flares

    NASA Technical Reports Server (NTRS)

    Sturrock, P. A.

    1973-01-01

    Mass motions in solar flares are here considered in terms of a previously proposed model. Particle acceleration occurs during reconnection of a current sheet located at coronal heights. The downward component of the particle flux produces an impulsive hard X-ray burst and heats the upper layers of the chromosphere sufficiently to lead to explosive evaporation. Some of the evaporated gas remains trapped in newly closed magnetic field lines and is responsible for the soft thermal component of X-ray emission. Gas which flows along open magnetic field lines subsequently forms a plasmoid which is ejected by magnetic stresses into interplanetary space and may subsequently cause a geomagnetic storm. Analysis of a highly simplified model leads to formulas for the density, temperature, and other parameters of the flare-produced plasma in terms of a length scale and mean magnetic field strength for the flare.

  6. Mass ejections. [during solar flares

    NASA Technical Reports Server (NTRS)

    Rust, D. M.; Hildner, E.; Hansen, R. T.; Dryer, M.; Mcclymont, A. N.; Mckenna-Lawlor, S. M. P.; Mclean, D. J.; Schmahl, E. J.; Steinolfson, R. S.; Tandberg-Hanssen, E.

    1980-01-01

    Observations and model simulations of solar mass ejection phenomena are examined in an investigation of flare processes. Consideration is given to Skylab and other observations of flare-associated sprays, eruptive prominences, surges and coronal transients, and to MHD, gas dynamic and magnetic loop models developed to account for them. Magnetic forces are found to confine spray material, which originates in preexisting active-region filaments, within steadily expanding loops, while surges follow unmoving, preexisting magnetic field lines. Simulations of effects of a sudden pressure pulse at the bottom of the corona are found to exhibit many characteristics of coronal transients associated with flares, and impulsive heating low in the chromosphere is found to be able to account for surges. The importance of the magnetic field as the ultimate source of energy which drives eruptive phenomena as well as flares is pointed out.

  7. 10th World Earthquake Engineering Conference

    NASA Astrophysics Data System (ADS)

    Ranguelov, Boyko; Housner, George

    The 10th World Conference on Earthquake Engineering (10WCEE) took place from July 19 to 24 in Madrid, Spain. More than 1500 participants from 51 countries attended the conference. All aspects of earthquake engineering were covered and a worldwide update of modern research and practice, as well as future directions in the field, was provided through reports, papers, posters, two keynote lectures, ten state-ofthe-art reports, and eleven special theme sessions.

  8. Early solar mass loss, element diffusion, and solar oscillation frequencies

    SciTech Connect

    Guzik, J.A.; Cox, A.N.

    1994-07-01

    Swenson and Faulkner, and Boothroyd et al. investigated the possibility that early main-sequence mass loss via a stronger early solar wind could be responsible for the observed solar lithium and beryllium depiction. This depletion requires a total mass loss of {approximately}0.1 M{circle_dot}, nearly independent of the mass loss timescale. We have calculated the evolution and oscillation frequencies of solar models including helium and element diffusion, and such early solar mass loss. We show that extreme mass loss of 1 M{circle_dot} is easily ruled out by the low-degree p-modes that probe the solar center and sense the steeper molecular weight gradient produced by the early phase of more rapid hydrogen burning. The effects on central structure are much smaller for models with an initial mass of 1.1 M{circle_dot} and exponentially-decreasing mass loss irate with e-folding timescale 0.45 Gyr. While such mass loss slightly worsens the agreement between observed and calculated low-degree modes, the observational uncertainties of several tenths of a microhertz weaken this conclusion. Surprisingly, the intermediate-degree modes with much smaller observational uncertainties that probe the convection zone bottom prove to be the key to discriminating between models: The early mass loss phase decreases the total amount of helium and heavier elements diffused from the convection zone, and the extent of the diffusion produced composition gradient just below the convection zone, deteriorating the agreement with observed frequencies for these modes. Thus it appears that oscillations can also rule out this smaller amount of gradual early main-sequence mass loss in the young Sun. The mass loss phase must be confined to substantially under a billion years, probably 0.5 Gyr or less, to simultaneously solve the solar Li/Be problem and avoid discrepancies with solar oscillation frequencies.

  9. A Search for Early Optical Emission at Gamma-Ray Burst Locations by the Solar Mass Ejection Imager (SMEI)

    NASA Technical Reports Server (NTRS)

    Band, David L.; Buffington, Andrew; Jackson, Bernard V.; Hick, P. Paul; Smith, Aaron C.

    2005-01-01

    The Solar Mass Ejection Imager (SMEI) views nearly every point on the sky once every 102 minutes and can detect point sources as faint as R approx. 10th magnitude. Therefore, SMEI can detect or provide upper limits for the optical afterglow from gamma-ray bursts in the tens of minutes after the burst when different shocked regions may emit optically. Here we provide upper limits for 58 bursts between 2003 February and 2005 April.

  10. PREFACE: 10th Joint Conference on Chemistry

    NASA Astrophysics Data System (ADS)

    2016-02-01

    The 10th Joint Conference on Chemistry is an international conference organized by 4 chemistry departments of 4 universities in central Java, Indonesia. The universities are Sebelas Maret University, Diponegoro University, Semarang State University and Soedirman University. The venue was at Solo, Indonesia, at September 8-9, 2015. The total conference participants are 133 including the invited speakers. The conference emphasized the multidisciplinary chemical issue and impact of today's sustainable chemistry which covering the following topics: • Material innovation for sustainable goals • Development of renewable and sustainable energy based on chemistry • New drug design, experimental and theoretical methods • Green synthesis and characterization of material (from molecule to functionalized materials) • Catalysis as core technology in industry • Natural product isolation and optimization

  11. Neutrino masses and solar neutrinos

    SciTech Connect

    Wolfenstein, L.

    1992-11-01

    It has been pointed out by Bahcall and Bethe and others that all solar neutrino data can be explained by MSW oscillations with m({nu}{sub {mu}}) {approximately} 10{sup {minus}3} eV consistent with ideas grand unified theories (GUTS). There is a second possibility consistent with GUTS ideas with m({nu}{sub {tau}}) {approximately} 10{sup {minus}2} eV and m({nu} {sub {mu}}) {approximately} 10 {sup {minus}4} eV. The two cases can be distinguished by a measurement of the solar neutrinos from {sup {tau}}Be.

  12. 10th Arnual Great Moonbuggy Race

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Students from across the United States and as far away as Puerto Rico came to Huntsville, Alabama for the 10th annual Great Moonbuggy Race at the U.S. Space Rocket Center. Sixty-eight teams, representing high schools and colleges from all over the United States, and Puerto Rico, raced human powered vehicles over a lunar-like terrain. Vehicles powered by two team members, one male and one female, raced one at a time over a half-mile obstacle course of simulated moonscape terrain. The competition is inspired by development, some 30 years ago, of the Lunar Roving Vehicle (LRV), a program managed by the Marshall Space Flight Center. The LRV team had to design a compact, lightweight, all-terrain vehicle that could be transported to the Moon in the small Apollo spacecraft. The Great Moonbuggy Race challenges students to design and build a human powered vehicle so they will learn how to deal with real-world engineering problems similar to those faced by the actual NASA LRV team. In this photograph, Team No. 1 from North Dakota State University in Fargo conquers one of several obstacles on their way to victory. The team captured first place honors in the college level competition.

  13. 10th Arnual Great Moonbuggy Race

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Students from across the United States and as far away as Puerto Rico came to Huntsville, Alabama for the 10th annual Great Moonbuggy Race at the U.S. Space Rocket Center. Sixty-eight teams, representing high schools and colleges from all over the United States, and Puerto Rico, raced human powered vehicles over a lunar-like terrain. Vehicles powered by two team members, one male and one female, raced one at a time over a half-mile obstacle course of simulated moonscape terrain. The competition is inspired by development, some 30 years ago, of the Lunar Roving Vehicle (LRV), a program managed by the Marshall Space Flight Center. The LRV team had to design a compact, lightweight, all-terrain vehicle that could be transported to the Moon in the small Apollo spacecraft. The Great Moonbuggy Race challenges students to design and build a human powered vehicle so they will learn how to deal with real-world engineering problems similar to those faced by the actual NASA LRV team. In this photograph, racers from C-1 High School in Lafayette County, Missouri, get ready to tackle the course. The team pedaled its way to victory over 29 other teams to take first place honors. It was the second year in a row a team from the school has placed first in the high school division. (NASA/MSFC)

  14. The solar cycle variation of coronal mass ejections and the solar wind mass flux

    NASA Technical Reports Server (NTRS)

    Webb, David F.; Howard, Russell A.

    1994-01-01

    Coronal mass ejections (CMEs) are an important aspect of coronal physics and a potentially significant contributor to perturbations of the solar wind, such as its mass flux. Sufficient data on CMEs are now available to permit study of their longer-term occurrency patterns. Here we present the results of a study of CME occurrence rates over more than a complete 11-year solar sunspot cycle and a comparison of these rates with those of other activity related to CMEs and with the solar wind particle flux at 1 AU. The study includes an evaluation of correlations to the CME rates, which include instrument duty cycles, visibility functions, mass detection thresholds, and geometrical considerations. The main results are as follows: (1) The frequency of occurrence of CMEs tends to track the solar activity cycle in both amplitude and phase; (2) the CME rates from different instruments, when corrected for both duty cycles and visibility functions, are reasonably consistent; (3) considering only longer-term averages, no one class of solar activity is better correlated with CME rate than any other; (4) the ratio of the annualized CME to solar wind mass flux tends to track the solar cycle; and (5) near solar maximum, CMEs can provide a significant fraction (i.e., approximately equals 15%) of the average mass flux to the near-ecliptic solar wind.

  15. PREFACE: 10th International LISA Symposium

    NASA Astrophysics Data System (ADS)

    Ciani, Giacomo; Conklin, John W.; Mueller, Guido

    2015-05-01

    large mission in Europe, and a potential comprehensive technology development program followed by a number one selection in the 2020 Decadal Survey in the U.S. The selection of L2 was combined with the selection of L3 and the newly formed eLISA consortium submitted an updated NGO concept under the name eLISA, or Evolved LISA, to the competition. It was widely believed that the launch date of 2028 for L2, would be seen by the selection committee as providing sufficient time to retire any remaining technological risks for LISA. However, the committee selected the 'Hot and Energetic Universe', an X-ray mission, as the science theme for L2 and the 'Gravitational Universe', the eLISA science theme, for L3. Although very disappointed, it was not a surprising decision. LPF did experience further delays just prior to and during the selection process, which may have influenced the decision. The strong technology program in the U.S. never materialized because WFIRST, the highest priority large mission in the 2010 Decadal following JWST, not only moved ahead but was also up-scoped significantly. The L3 selection, the WFIRST schedule, and the missing comprehensive technology development in the U.S. will make a launch of a GW mission in the 2020s very difficult. Although many in the LISA community, including ourselves, did not want to accept this harsh reality, this was the situation just prior to the 10th LISA symposium. However, despite all of this, the LISA team is now hopeful! In May of 2014 the LISA community gathered at the University of Florida in Gainesville to discuss progress in both the science and technology of LISA. The most notable plenary and contributed sessions included updates on the progress of LISA Pathfinder, which remains on track for launch in the second half of 2015(!), the science of LISA which ranges from super-massive black hole mergers and cosmology to the study of compact binaries within our own galaxy, and updates from other programs that share some of

  16. Mass properties survey of solar array technologies

    NASA Technical Reports Server (NTRS)

    Kraus, Robert

    1991-01-01

    An overview of the technologies, electrical performance, and mass characteristics of many of the presently available and the more advanced developmental space solar array technologies is presented. Qualitative trends and quantitative mass estimates as total array output power is increased from 1 kW to 5 kW at End of Life (EOL) from a single wing are shown. The array technologies are part of a database supporting an ongoing solar power subsystem model development for top level subsystem and technology analyses. The model is used to estimate the overall electrical and thermal performance of the complete subsystem, and then calculate the mass and volume of the array, batteries, power management, and thermal control elements as an initial sizing. The array types considered here include planar rigid panel designs, flexible and rigid fold-out planar arrays, and two concentrator designs, one with one critical axis and the other with two critical axes. Solar cell technologies of Si, GaAs, and InP were included in the analyses. Comparisons were made at the array level; hinges, booms, harnesses, support structures, power transfer, and launch retention mountings were included. It is important to note that the results presented are approximations, and in some cases revised or modified performance and mass estimates of specific designs.

  17. Solar Eruptions: Coronal Mass Ejections and Flares

    NASA Technical Reports Server (NTRS)

    Gopalswamy, Nat

    2012-01-01

    This lecture introduces the topic of Coronal mass ejections (CMEs) and solar flares, collectively known as solar eruptions. During solar eruptions, the released energy flows out from the Sun in the form of magnetized plasma and electromagnetic radiation. The electromagnetic radiation suddenly increases the ionization content of the ionosphere, thus impacting communication and navigation systems. Flares can be eruptive or confined. Eruptive flares accompany CMEs, while confined flares hav only electromagnetic signature. CMEs can drive MHD shocks that accelerate charged particles to very high energies in the interplanetary space, which pose radiation hazard to astronauts and space systems. CMEs heading in the direction of Earth arrive in about two days and impact Earth's magnetosphere, producing geomagnetic storms. The magnetic storms result in a number of effects including induced currnts that can disrupt power grids, railroads, and underground pipelines

  18. Energetics of solar coronal mass ejections

    NASA Astrophysics Data System (ADS)

    Subramanian, P.; Vourlidas, A.

    2007-05-01

    Aims:We investigate whether solar coronal mass ejections are driven mainly by coupling to the ambient solar wind or through the release of internal magnetic energy. Methods: We examine the energetics of 39 flux-rope like coronal mass ejections (CMEs) from the Sun using data in the distance range ~2-20 R⊙ from the Large Angle Spectroscopic Coronograph (LASCO) aboard the Solar and Heliospheric Observatory (SOHO). This comprises a complete sample of the best examples of flux-rope CMEs observed by LASCO in 1996-2001. Results: We find that 69% of the CMEs in our sample experience a clearly identifiable driving power in the LASCO field of view. For those CMEs that are driven, we examine if they might be deriving most of their driving power by coupling to the solar wind. We do not find conclusive evidence in favor of this hypothesis. On the other hand, we find that their internal magnetic energy is a viable source of the required driving power. We have estimated upper and lower limits on the power that can possibly be provided by the internal magnetic field of a CME. We find that, on average, the lower limit to the available magnetic power is around 74% of what is required to drive the CMEs, while the upper limit can be as much as an order of magnitude larger.

  19. Collapse of 9 solar mass stars

    NASA Technical Reports Server (NTRS)

    Baron, E.; Cooperstein, J.; Kahana, S.

    1987-01-01

    General relativistic hydrodynamical calculations of the collapse of O + Ne + Mg cores of a 9 solar mass star are reported. Collapse is induced by rapid electron captures as the O + Ne + Mg is burned to nuclear statistical equilibrium. The high entropy in the core after burning leads to a large abundance of free protons which readily capture electrons. This leads to large neutrino losses and a correspondingly small infalling homologous core. The hydrodynamic shock thus forms at a small mass point. The shock stalls before reaching the edge of the O + Ne + Mg core and thereby fails to produce a successful supernova explosion by the direct mechanism. No enhancement in the shock energy due to nuclear burning is found.

  20. Status of the Solar Mass Ejection Imager

    NASA Astrophysics Data System (ADS)

    Johnston, J. C.; Radick, R. R.; Webb, D. F.

    2001-05-01

    The Solar Mass Ejection Imager (SMEI) is a proof-of-concept experiment designed to detect and track coronal mass ejections (CMEs) as they propagate from the Sun through interplanetary space to the Earth and beyond. SMEI will Image CMEs by sensing sunlight scattered from the free electrons in these structures (Thomson scattering). SMEI will be launched by a Titan II rocket into a circular, sun-synchronous (830 km) orbit in 2002 as part of the Space Test Program's CORIOLIS mission. SMEI will image the entire sky once per spacecraft orbit over a mission lifetime of three years. The major subsystems of SMEI are three electronic camera assemblies and a data-handling unit. Each camera consists of a baffle, a radiator, a bright object sensor, an electronics box, and a strongbox containing a shutter, optics and a CCD. Each camera images a 3x60 degree field. Together, they view a 180-degree slice of sky, and sweep over the entire sky once per orbit. SMEI's basic data product will be a 100-minute cadence of all-sky maps of heliospheric brightness, with stars removed, having an angular resolution of about one degree and a photometric precision of about 0.1%. Successful operation of SMEI will represent a major step in improving space weather forecasts. When combined with in-situ solar wind measurements from upstream monitors such as WIND and ACE, SMEI will provide one- to three-day predictions of impending geomagnetic storms at the Earth. SMEI will complement missions such as SoHO, GOES SXI, Solar-B, and STEREO by providing data relating solar drivers to terrestrial effects. Other benefits of SMEI will include observations of variable stars, extra-Solar planetary transits, novae and supernovae, comets and asteroids. The SMEI experiment is being designed and constructed by a team of scientists and engineers from the Air Force Research Laboratory, the University of Birmingham (UB) in the United Kingdom, the University of California at San Diego (UCSD), and Boston University. The

  1. EDITORIAL: STAM celebrates its 10th anniversary STAM celebrates its 10th anniversary

    NASA Astrophysics Data System (ADS)

    Ushioda, Sukekatsu

    2010-02-01

    I would like to extend my warmest greetings to the readers and staff of Science and Technology of Advanced Materials (STAM), on the occasion of its 10th anniversary. Launched in 2000, STAM marks this year an important milestone in its history. This is a great occasion to celebrate. STAM was founded by Tsuyoshi Masumoto in collaboration with Teruo Kishi and Toyonobu Yoshida as a world-class resource for the materials science community. It was initially supported by several materials research societies and was published as a regular peer-reviewed journal. Significant changes occurred in 2008, when the National Institute for Materials Science (NIMS) became solely responsible for all the costs of maintaining the journal. STAM was transformed into an open-access journal published by NIMS in partnership with IOP Publishing. As a result, the publication charges were waived and the entire STAM content, including all back issues, became freely accessible through the IOP Publishing website. The transition has made STAM more competitive and successful in global publication communities, with innovative ideas and approaches. The journal has also changed its publication strategy, aiming to publish a limited number of high-quality articles covering the frontiers of materials science. Special emphasis has been placed on reviews and focus issues, providing recent summaries of hot materials science topics. Publication has become electronic only; however, selected issues are printed and freely distributed at major international scientific events. The Editorial Board has been expanded to include leading experts from all over the world and, together with the Editorial Office, the board members are doing their best to transform STAM into a leading materials science journal. These efforts are paying off, as shown by the rapidly increasing number of article downloads and citations in 2009. I believe that the STAM audience can not only deepen their knowledge in their own specialties but

  2. Comprehensive Analysis of Coronal Mass Ejection Mass and Energy Properties Over a Full Solar Cycle

    DTIC Science & Technology

    2010-01-01

    the evolution of the solar corona and coronal mass ejections (CMEs) over a full solar cycle with high quality images and regular cadence. This is the...observed the evolution of the solar corona and coronal mass ejections (CMEs) over a full solar cycle with high quality images and regular cadence. This is...1985) and Vourlidas et al. (2002). We discuss several aspects that emerge from the statistical analysis of such a large event sample such as solar

  3. Nineth Rib Syndrome after 10th Rib Resection

    PubMed Central

    Yu, Hyun Jeong; Jeong, Yu Sub; Lee, Dong Hoon

    2016-01-01

    The 12th rib syndrome is a disease that causes pain between the upper abdomen and the lower chest. It is assumed that the impinging on the nerves between the ribs causes pain in the lower chest, upper abdomen, and flank. A 74-year-old female patient visited a pain clinic complaining of pain in her back, and left chest wall at a 7 on the 0-10 Numeric Rating scale (NRS). She had a lateral fixation at T12-L2, 6 years earlier. After the operation, she had multiple osteoporotic compression fractures. When the spine was bent, the patient complained about a sharp pain in the left mid-axillary line and radiating pain toward the abdomen. On physical examination, the 10th rib was not felt, and an image of the rib-cage confirmed that the left 10th rib was severed. When applying pressure from the legs to the 9th rib of the patient, pain was reproduced. Therefore, the patient was diagnosed with 9th rib syndrome, and ultrasound-guided 9th and 10th intercostal nerve blocks were performed around the tips of the severed 10th rib. In addition, local anesthetics with triamcinolone were administered into the muscles beneath the 9th rib at the point of the greatest tenderness. The patient's pain was reduced to NRS 2 point. In this case, it is suspected that the patient had a partial resection of the left 10th rib in the past, and subsequent compression fractures at T8 and T9 led to the deformation of the rib cage, causing the tip of the remaining 10th rib to impinge on the 9th intercostal nerves, causing pain. PMID:27413484

  4. V are Interplanetary Coronal Mass Ejections Observed with the SOlar Mass Ejection Imager

    DTIC Science & Technology

    2007-01-01

    SUBTITLE V arc interplanetary coronal mass ejections observed with the Solar Mass Ejection Imager 5a. CONTRACT NUMBER 5b. GRANT NUMBER a. 5c...doi: 10.1029/2007JA012358 14. ABSTRACT Since February 2003, The Solar Mass Ejection Imager (SMEI) has been observing interplanetary- coronal mass...ejections (ICMEs) at solar elongation angles ^ > 20 degrees. The ICMEs generally appear as loops or arcs in the sky, but five show distinct outward

  5. Solar origins of coronal mass ejections

    NASA Technical Reports Server (NTRS)

    Kahler, Stephen

    1987-01-01

    The large scale properties of coronal mass ejections (CMEs), such as morphology, leading edge speed, and angular width and position, have been cataloged for many events observed with coronagraphs on the Skylab, P-78, and SMM spacecraft. While considerable study has been devoted to the characteristics of the SMEs, their solar origins are still only poorly understood. Recent observational work has involved statistical associations of CMEs with flares and filament eruptions, and some evidence exists that the flare and eruptive-filament associated CMEs define two classes of events, with the former being generally more energetic. Nevertheless, it is found that eruptive-filament CMEs can at times be very energetic, giving rise to interplanetary shocks and energetic particle events. The size of the impulsive phase in a flare-associated CME seems to play no significant role in the size or speed of the CME, but the angular sizes of CMEs may correlate with the scale sizes of the 1-8 angstrom x-ray flares. At the present time, He 10830 angstrom observations should be useful in studying the late development of double-ribbon flares and transient coronal holes to yield insights into the CME aftermath. The recently available white-light synoptic maps may also prove fruitful in defining the coronal conditions giving rise to CMEs.

  6. The Solar Mass Ejection Imager (SMEI) Space Experiment

    DTIC Science & Technology

    2015-01-30

    SoloHI for Solar Orbiter [84] and WISPR for Solar Probe Plus [85]) that are scheduled for launch near the end of the decade. In addition, other more...Halain, J- P., and Lamy, P. L., “The Solar and Heliospheric Imager (SoloHI) Instrument for the Solar Orbiter Mission,” Proc. SPIE, 8862, Sep 2013...AFRL-RV-PS- AFRL-RV-PS- TR-2014-0197 TR-2014-0197 THE SOLAR MASS EJECTION IMAGER (SMEI) SPACE EXPERIMENT Richard R. Radick 30 January 2015

  7. The solar wind mass flux problem

    NASA Technical Reports Server (NTRS)

    Leer, E.; Holzer, T. E.

    1991-01-01

    The variation of the proton flux with coronal temperature and density in thermally driven solar wind models is discussed. It is shown that the rapid increase of the proton flux with increasing temperature can be reduced by adiabatic cooling of the expanding plasma. A significant coronal helium abundance can also act as a 'regulator' for the solar wind proton flux.

  8. What accelerator mass spectrometry can do for solar physics

    NASA Astrophysics Data System (ADS)

    Newkirk, Gordon

    1984-11-01

    We review some of the empirical aspects of the solar magnetic activity and the convective dynamo models developed to account for the magnetic cycle. Alternative hypotheses which have recently emerged are sketched. Possible applications of accelerator mass spectrometry to solar physics and the important questions that proxy data on past solar activity might answer are evaluated. The National Center for Atmospheric Research is sponsored by the National Science Foundation.

  9. The Automatic Detection of Coronal Mass Ejections Using the Solar Mass Ejection Imager

    DTIC Science & Technology

    2009-10-30

    Res., 112, A09103, doi: 10.1029/2007JA012358, 2007. Low, B.C., Solar activity and the corona , Solar Phys. 167, p217, 1996. Robbrecht, E., and D...AFRL-RV-HA-TR-2009-1104 Q- o o o p o The Automatic Detection of Coronal Mass Ejections Using the Solar Mass Ejection Imager Timothy A. Howard... Solar Mass Ejection Imager 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6340IF 6. AUTHORS Timothy A. Howard S. James Tappin

  10. Marijuana Use Among 10th Grade Students - Washington, 2014.

    PubMed

    Shah, Anar; Stahre, Mandy

    2016-12-30

    Some studies have suggested that long-term, regular use of marijuana starting in adolescence might impair brain development and lower intelligence quotient (1,2). Since 2012, purchase of recreational or retail marijuana has become legal for persons aged ≥21 years in the District of Columbia, Alaska, California, Colorado, Maine, Massachusetts, Nevada, Oregon, and Washington, raising concern about increased marijuana access by youths. The law taxing and regulating recreational or retail marijuana was approved by Washington voters in 2012 and the first retail licenses were issued in July 2014; medical marijuana use has been legal since 1998. To examine the prevalence, characteristics, and behaviors of current marijuana users among 10th grade students, the Washington State Department of Health analyzed data from the state's 2014 Healthy Youth Survey (HYS) regarding current marijuana use. In 2014, 18.1% of 10th grade students (usually aged 15-16 years) reported using marijuana during the preceding 30 days; of these students, 32% reported using it on ≥10 days. Among the marijuana users, 65% reported obtaining marijuana through their peer networks, which included friends, older siblings, or at a party. Identification of comprehensive and sustainable public health interventions are needed to prevent and reduce youth marijuana use. Establishment of state and jurisdiction surveillance of youth marijuana use could be useful to anticipate and monitor the effects of legalization and track trends in use before states consider legalizing recreational or retail marijuana.

  11. High temperature - low mass solar blanket

    NASA Technical Reports Server (NTRS)

    Mesch, H. G.

    1979-01-01

    Interconnect materials and designs for use with ultrathin silicon solar cells are discussed, as well as the results of an investigation of the applicability of parallel-gap resistance welding for interconnecting these cells. Data relating contact pull strength and cell electrical degradation to variations in welding parameters such as time, voltage and pressure are presented. Methods for bonding ultrathin cells to flexible substances and for bonding thin (75 micrometers) covers to these cells are described. Also, factors influencing fabrication yield and approaches for increasing yield are discussed. The results of vacuum thermal cycling and thermal soak tests on prototype ultrathin cell test coupons and one solar module blanket are presented.

  12. Solar heater/cooler for mass market

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Electrical energy consumption is reduced by half for 2 1/2 story office building. 138 liquid flat plate solar collectors are mounted on building roof, which faces nearly due south. Final project report includes detailed drawings and photographs, operation and maintenance manual, acceptance test plan, and related information.

  13. Byzantine psychosomatic medicine (10th- 15th century).

    PubMed

    Eftychiadis, A C

    1999-01-01

    Original elements of the psychosomatic medicine are examined by the most important byzantine physicians and medico-philosophers during the 10th -15th centuries. These topics concern the psycosomatic unity of the human personality, the psychosomatic disturbances, diseases and interactions, organic diseases, which cause psychical disorders, psychical pathological reactions, which result in somatic diseases, the psychology of the depth of the soul, the psychosomatic pathogenetic reasons of psychiatric and neurological diseases and suicide, the influence of witchcraft on psychosomatic affections, maniac and demoniac patients. The psychosomatic treatment has a holistic preventive and curative character and encloses sanitary and dietary measures, physiotherapy, curative bathing, strong purgation, pharmaceutical preparations proportional to the disease, religious disposition, psychoanalysis and psychotherapy with dialogue and the contribution of the divine factor. The late byzantine medical science contributed mainly to the progress of the psychosomatic medicine and therapeutics. The saint woman physician Hermione (1st -2nd cent.) is considered as the protectress of psychosomatic medicine.

  14. The X-ray signature of solar coronal mass

    NASA Technical Reports Server (NTRS)

    Harrison, R. A.; Waggett, P. W.; Bentley, R. D.; Phillips, K. J. H.; Bruner, M.

    1985-01-01

    The coronal response to six solar X-ray flares has been investigated. At a time coincident with the projected onset of the white-light coronal mass ejection associated with each flare, there is a small, discrete soft X-ray enhancement. These enhancements (precursors) precede by typically about 20 m the impulsive phase of the solar flare which is dominant by the time the coronal mass ejection has reached an altitude above 0.5 solar radii. Motions of hot X-ray emitting plasma, during the precursors, which may well be a signature of the mass ejection onsets, are identified. Further investigations have also revealed a second class of X-ray coronal transient, during the main phase of the flare. These appear to be associated with magnetic reconnection above post-flare loop systems.

  15. MEASURING THE MASS OF SOLAR SYSTEM PLANETS USING PULSAR TIMING

    SciTech Connect

    Champion, D. J.; Hobbs, G. B.; Manchester, R. N.; Edwards, R. T.; Burke-Spolaor, S.; Sarkissian, J. M.; Backer, D. C.; Bailes, M.; Bhat, N. D. R.; Van Straten, W.; Coles, W.; Demorest, P. B.; Ferdman, R. D.; Purver, M. B.; Folkner, W. M.; Hotan, A. W.; Kramer, M.; Lommen, A. N.; Nice, D. J.; Stairs, I. H.

    2010-09-10

    High-precision pulsar timing relies on a solar system ephemeris in order to convert times of arrival (TOAs) of pulses measured at an observatory to the solar system barycenter. Any error in the conversion to the barycentric TOAs leads to a systematic variation in the observed timing residuals; specifically, an incorrect planetary mass leads to a predominantly sinusoidal variation having a period and phase associated with the planet's orbital motion about the Sun. By using an array of pulsars (PSRs J0437-4715, J1744-1134, J1857+0943, J1909-3744), the masses of the planetary systems from Mercury to Saturn have been determined. These masses are consistent with the best-known masses determined by spacecraft observations, with the mass of the Jovian system, 9.547921(2) x10{sup -4} M {sub sun}, being significantly more accurate than the mass determined from the Pioneer and Voyager spacecraft, and consistent with but less accurate than the value from the Galileo spacecraft. While spacecraft are likely to produce the most accurate measurements for individual solar system bodies, the pulsar technique is sensitive to planetary system masses and has the potential to provide the most accurate values of these masses for some planets.

  16. Age and mass of solar twins constrained by lithium abundance

    NASA Astrophysics Data System (ADS)

    Do Nascimento, J. D., Jr.; Castro, M.; Meléndez, J.; Bazot, M.; Théado, S.; Porto de Mello, G. F.; de Medeiros, J. R.

    2009-07-01

    Aims: We analyze the non-standard mixing history of the solar twins HIP 55 459, HIP 79 672, HIP 56 948, HIP 73 815, and HIP 100 963, to determine as precisely as possible their mass and age. Methods: We computed a grid of evolutionary models with non-standard mixing at several metallicities with the Toulouse-Geneva code for a range of stellar masses assuming an error bar of ±50 K in T_eff. We choose the evolutionary model that reproduces accurately the observed low lithium abundances observed in the solar twins. Results: Our best-fit model for each solar twin provides a mass and age solution constrained by their Li content and T_eff determination. HIP 56 948 is the most likely solar-twin candidate at the present time and our analysis infers a mass of 0.994 ± 0.004 {M⊙} and an age of 4.71 ± 1.39 Gyr. Conclusions: Non-standard mixing is required to explain the low Li abundances observed in solar twins. Li depletion due to additional mixing in solar twins is strongly mass dependent. An accurate lithium abundance measurement and non-standard models provide more precise information about the age and mass more robustly than determined by classical methods alone. The models are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/501/687 or via http://andromeda.dfte.ufrn.br

  17. Ion implantation of solar cell junctions without mass analysis

    NASA Technical Reports Server (NTRS)

    Fitzgerald, D.; Tonn, D. G.

    1981-01-01

    This paper is a summary of an investigation to determine the feasibility of producing solar cells by means of ion implantation without the use of mass analysis. Ion implants were performed using molecular and atomic phosphorus produced by the vaporization of solid red phosphorus and ionized in an electron bombardment source. Solar cell junctions were ion implanted by mass analysis of individual molecular species and by direct unanalyzed implants from the ion source. The implant dose ranged from 10 to the 14th to 10 to the 16th atoms/sq cm and the energy per implanted atom ranged from 5 KeV to 40 KeV in this study.

  18. COMPREHENSIVE ANALYSIS OF CORONAL MASS EJECTION MASS AND ENERGY PROPERTIES OVER A FULL SOLAR CYCLE

    SciTech Connect

    Vourlidas, A.; Howard, R. A.; Esfandiari, E.; Patsourakos, S.; Yashiro, S.; Michalek, G.

    2010-10-20

    The LASCO coronagraphs, in continuous operation since 1995, have observed the evolution of the solar corona and coronal mass ejections (CMEs) over a full solar cycle with high-quality images and regular cadence. This is the first time that such a data set becomes available and constitutes a unique resource for the study of CMEs. In this paper, we present a comprehensive investigation of the solar cycle dependence on the CME mass and energy over a full solar cycle (1996-2009) including the first in-depth discussion of the mass and energy analysis methods and their associated errors. Our analysis provides several results worthy of further studies. It demonstrates the possible existence of two event classes: 'normal' CMEs reaching constant mass for >10 R{sub sun} and {sup p}seudo{sup -}CMEs which disappear in the C3 field of view. It shows that the mass and energy properties of CME reach constant levels and therefore should be measured only above {approx}10 R{sub sun}. The mass density (g/R {sup 2}{sub sun}) of CMEs varies relatively little (< order of magnitude) suggesting that the majority of the mass originates from a small range in coronal heights. We find a sudden reduction in the CME mass in mid-2003 which may be related to a change in the electron content of the large-scale corona and we uncover the presence of a 6 month periodicity in the ejected mass from 2003 onward.

  19. STOCHASTICITY AND PERSISTENCE OF SOLAR CORONAL MASS EJECTIONS

    SciTech Connect

    Telloni, D.; Antonucci, E.; Carbone, V.; Lepreti, F.

    2014-01-20

    The study of the statistical properties of coronal mass ejections (CMEs) reveals that their properties depend on the period of solar activity. In particular, when investigating the origin of the waiting time distribution between CMEs, a significant departure from a Poisson process during periods of high solar activity has been found, thus suggesting the existence of at least two physical processes underlying the origin of CMEs. One acts continuously, perhaps related to randomly occurring magnetic reconfigurations of the solar corona at large scales. The other plays a role only during the solar maximum, probably due to the photospheric emergence of magnetic flux as a statistically persistent mechanism, which generates long correlation times among CME events strong enough not to be destroyed by the former random process.

  20. MAGNETIC FIELD STRUCTURES TRIGGERING SOLAR FLARES AND CORONAL MASS EJECTIONS

    SciTech Connect

    Kusano, K.; Bamba, Y.; Yamamoto, T. T.; Iida, Y.; Toriumi, S.; Asai, A.

    2012-11-20

    Solar flares and coronal mass ejections, the most catastrophic eruptions in our solar system, have been known to affect terrestrial environments and infrastructure. However, because their triggering mechanism is still not sufficiently understood, our capacity to predict the occurrence of solar eruptions and to forecast space weather is substantially hindered. Even though various models have been proposed to determine the onset of solar eruptions, the types of magnetic structures capable of triggering these eruptions are still unclear. In this study, we solved this problem by systematically surveying the nonlinear dynamics caused by a wide variety of magnetic structures in terms of three-dimensional magnetohydrodynamic simulations. As a result, we determined that two different types of small magnetic structures favor the onset of solar eruptions. These structures, which should appear near the magnetic polarity inversion line (PIL), include magnetic fluxes reversed to the potential component or the nonpotential component of major field on the PIL. In addition, we analyzed two large flares, the X-class flare on 2006 December 13 and the M-class flare on 2011 February 13, using imaging data provided by the Hinode satellite, and we demonstrated that they conform to the simulation predictions. These results suggest that forecasting of solar eruptions is possible with sophisticated observation of a solar magnetic field, although the lead time must be limited by the timescale of changes in the small magnetic structures.

  1. The Comparative Toxicogenomics Database's 10th year anniversary: update 2015

    PubMed Central

    Davis, Allan Peter; Grondin, Cynthia J.; Lennon-Hopkins, Kelley; Saraceni-Richards, Cynthia; Sciaky, Daniela; King, Benjamin L.; Wiegers, Thomas C.; Mattingly, Carolyn J.

    2015-01-01

    Ten years ago, the Comparative Toxicogenomics Database (CTD; http://ctdbase.org/) was developed out of a need to formalize, harmonize and centralize the information on numerous genes and proteins responding to environmental toxic agents across diverse species. CTD's initial approach was to facilitate comparisons of nucleotide and protein sequences of toxicologically significant genes by curating these sequences and electronically annotating them with chemical terms from their associated references. Since then, however, CTD has vastly expanded its scope to robustly represent a triad of chemical–gene, chemical–disease and gene–disease interactions that are manually curated from the scientific literature by professional biocurators using controlled vocabularies, ontologies and structured notation. Today, CTD includes 24 million toxicogenomic connections relating chemicals/drugs, genes/proteins, diseases, taxa, phenotypes, Gene Ontology annotations, pathways and interaction modules. In this 10th year anniversary update, we outline the evolution of CTD, including our increased data content, new ‘Pathway View’ visualization tool, enhanced curation practices, pilot chemical–phenotype results and impending exposure data set. The prototype database originally described in our first report has transformed into a sophisticated resource used actively today to help scientists develop and test hypotheses about the etiologies of environmentally influenced diseases. PMID:25326323

  2. Coronal mass ejections and solar wind mass fluxes over the heliosphere during solar cycles 23 and 24 (1996-2014)

    NASA Astrophysics Data System (ADS)

    Lamy, P.; Floyd, O.; Quémerais, E.; Boclet, B.; Ferron, S.

    2017-01-01

    Coronal mass ejections (CMEs) play a major role in the heliosphere, and their contribution to the solar wind mass flux, already considered in the Skylab and Solwind eras with conflicting results, is reexamined in the light of 19 years (1996-2014) of SOHO observations with the Large Angle and Spectroscopic Coronagraph (LASCO-C2) for the CMEs and extended for the first time to all latitudes thanks to the whole-heliosphere data from the Solar Wind ANisotropies (SWAN) instrument supplemented by in situ data aggregated in the OMNI database. First, several mass estimates reported in the ARTEMIS (Automated Recognition of Transient Events and Marseille Inventory from Synoptic maps) catalog of LASCO CMEs are compared with determinations based on the combined observations with the twin STEREO/Sun Earth Connection Coronal and Heliospheric Investigation coronagraphs in order to ascertain their validity. A simple geometric model of the CMEs is introduced to generate Carrington maps of their mass flux and then to produce annualized synoptic maps. The Lyman α SWAN data are inverted to similarly produce synoptic maps to be compared with those of the CME flux. The ratio of the annualized CME to solar wind mass flux is found to closely track the solar cycle over the heliosphere. In the near-ecliptic region and at latitudes up to ˜55°, this ratio was negligibly small during the solar minima of cycles 22/23 and 23/24 and rose to 6% and 5%, respectively, at the maximum of solar cycles 23 and 24. These maximum ratios increased at higher latitudes, but this result is likely biased by the inherent limitation of determining the true latitude of CMEs.

  3. Solar cycle dependence of Wind/EPACT protons, solar flares and coronal mass ejections

    NASA Astrophysics Data System (ADS)

    Miteva, R.; Samwel, S. W.; Costa-Duarte, M. V.; Malandraki, O. E.

    2017-01-01

    The aim of this work is to compare the occurrence and overall properties of solar energetic particles (SEPs), solar flares and coronal mass ejections (CMEs) over the first seven years in solar cycles (SCs) 23 and 24. For the case of SEP events, we compiled a new proton event catalog using data from the Wind/EPACT instrument. We confirm the previously known reduction of high energy proton events in SC24 compared to the same period in SC23; our analysis shows a decrease of 25-50 MeV protons by about 30%. The similar trend is found for X to C-class solar flares which are less by about 40% and also for faster than 1000 km/s CMEs, which are reduced by about 45%. In contrast, slow CMEs are more numerous in the present solar cycle. We discuss the implications of these results for the population of SEP-productive flares and CMEs.

  4. PREFACE: ISEC 2005: The 10th International Superconductive Electronics Conference

    NASA Astrophysics Data System (ADS)

    Rogalla, Horst

    2006-05-01

    The 10th International Superconductive Electronics Conference took place in Noordwijkerhout in the Netherlands, 5-9 September 2005, not far from the birthplace of superconductivity in Leiden nearly 100 years ago. There have been many reasons to celebrate the 10th ISEC: not only was it the 20th anniversary, but also the achievements since the first conference in Tokyo in 1987 are tremendous. We have seen whole new groups of superconductive materials come into play, such as oxide superconductors with maximum Tc in excess of 100 K, carbon nanotubes, as well as the realization of new digital concepts from saturation logic to the ultra-fast RSFQ-logic. We have learned that superconductors not only show s-wave symmetries in the spatial arrangement of the order parameter, but also that d-wave dependence in oxide superconductors is now well accepted and can even be successfully applied to digital circuits. We are now used to operating SQUIDs in liquid nitrogen; fT sensitivity of SQUID magnetometers is not surprising anymore and can even be reached with oxide-superconductor based SQUIDs. Even frequency discriminating wide-band single photon detection with superconductive devices, and Josephson voltage standards with tens of thousands of junctions, nowadays belong to the daily life of advanced laboratories. ISEC has played a very important role in this development. The first conferences were held in 1987 and 1989 in Tokyo, and subsequently took place in Glasgow (UK), Boulder (USA), Nagoya (Japan), Berlin (Germany), Berkeley (USA), Osaka (Japan), Sydney (Australia), and in 2005 for the first time in the Netherlands. These conferences have provided platforms for the presentation of the research and development results of this community and for the vivid discussion of achievements and strategies for the further development of superconductive electronics. The 10th conference has played a very important role in this context. The results in laboratories show great potential and

  5. Mass fractionation of the lunar surface by solar wind sputtering

    NASA Technical Reports Server (NTRS)

    Switkowski, Z. E.; Haff, P. K.; Tombrello, T. A.; Burnett, D. S.

    1977-01-01

    An investigation is conducted concerning the mass-fractionation effects produced in connection with the bombardment of the moon by the solar wind. Most of the material ejected by sputtering escapes the moon's gravity, but some returning matter settles back onto the lunar surface. This material, which is somewhat richer in heavier atoms than the starting surface, is incorporated into the heavily radiation-damaged outer surfaces of grains. The investigation indicates that sputtering of the lunar surface by the solar wind will give rise to significant surface heavy atom enrichments if the grain surfaces are allowed to come into sputtering equilibrium.

  6. Coronal Mass Ejections and Solar Radio Emissions

    NASA Technical Reports Server (NTRS)

    Gopalswamy, Nat

    2010-01-01

    Coronal mass ejections (CMEs) have important connections to various types of radio emissions from the Sun. The persistent noise storm radiation (type I storm at metric wavelengths, type III storms at longer wavelengths) can be clearly interrupted by the occurrence of a CME in the active region that produces the storm. Sometimes the noise storm completely disappears and other times, it reappears in the active region. Long-lasting type III bursts are associated with CME eruption, thought to be due to the reconnection process taking place beneath the erupting CME. Type II bursts are indicative of electron acceleration in the CME-driven shocks and hence considered to be the direct response of the CME propagation in the corona and interplanetary medium. Finally type IV bursts indicate large-scale post-eruption arcades containing trapped electrons that produce radio emission. This paper summarizes some key results that connect CMEs to various types of radio emission and what we can learn about particle acceleration in the corona) and interplanetary medium. Particular emphasis will be placed on type If bursts because of their connection to interplanetary shocks detected in situ.

  7. High-Altitude Air Mass Zero Calibration of Solar Cells

    NASA Technical Reports Server (NTRS)

    Woodyard, James R.; Snyder, David B.

    2005-01-01

    Air mass zero calibration of solar cells has been carried out for several years by NASA Glenn Research Center using a Lear-25 aircraft and Langley plots. The calibration flights are carried out during early fall and late winter when the tropopause is at the lowest altitude. Measurements are made starting at about 50,000 feet and continue down to the tropopause. A joint NASA/Wayne State University program called Suntracker is underway to explore the use of weather balloon and communication technologies to characterize solar cells at elevations up to about 100 kft. The balloon flights are low-cost and can be carried out any time of the year. AMO solar cell characterization employing the mountaintop, aircraft and balloon methods are reviewed. Results of cell characterization with the Suntracker are reported and compared with the NASA Glenn Research Center aircraft method.

  8. Stars Just Got Bigger - A 300 Solar Mass Star Uncovered

    NASA Astrophysics Data System (ADS)

    2010-07-01

    Using a combination of instruments on ESO's Very Large Telescope, astronomers have discovered the most massive stars to date, one weighing at birth more than 300 times the mass of the Sun, or twice as much as the currently accepted limit of 150 solar masses. The existence of these monsters - millions of times more luminous than the Sun, losing weight through very powerful winds - may provide an answer to the question "how massive can stars be?" A team of astronomers led by Paul Crowther, Professor of Astrophysics at the University of Sheffield, has used ESO's Very Large Telescope (VLT), as well as archival data from the NASA/ESA Hubble Space Telescope, to study two young clusters of stars, NGC 3603 and RMC 136a in detail. NGC 3603 is a cosmic factory where stars form frantically from the nebula's extended clouds of gas and dust, located 22 000 light-years away from the Sun (eso1005). RMC 136a (more often known as R136) is another cluster of young, massive and hot stars, which is located inside the Tarantula Nebula, in one of our neighbouring galaxies, the Large Magellanic Cloud, 165 000 light-years away (eso0613). The team found several stars with surface temperatures over 40 000 degrees, more than seven times hotter than our Sun, and a few tens of times larger and several million times brighter. Comparisons with models imply that several of these stars were born with masses in excess of 150 solar masses. The star R136a1, found in the R136 cluster, is the most massive star ever found, with a current mass of about 265 solar masses and with a birthweight of as much as 320 times that of the Sun. In NGC 3603, the astronomers could also directly measure the masses of two stars that belong to a double star system [1], as a validation of the models used. The stars A1, B and C in this cluster have estimated masses at birth above or close to 150 solar masses. Very massive stars produce very powerful outflows. "Unlike humans, these stars are born heavy and lose weight as

  9. Reconnection in the lower solar atmosphere and coronal mass ejections

    NASA Astrophysics Data System (ADS)

    Wang, Jingxiu

    2006-01-01

    In 1985, a phenomenon in the solar photosphere, called magnetic flux cancellation, was first described in detail by Livi et al. (1985) [The cancellation of magnetic flux. I On the quiet sun, Aust. J. Phys. 38, 855 873, 1985] and Martin et al. (1985) [The cancellation of magnetic flux. II In a decaying active region, Aust. J. Phys. 38, 929 959, 1985]. Since then, it has been revealed that flux cancellation is intrinsically correlated to most, if not all, types of solar activity, such as flare, filament formation and eruption, and ubiquitous small-scale activity, e.g., X-ray bright point, explosive event, mini-filament eruption and so on. Only recently, it was discovered that flux cancellation appeared to be a key part of magnetic evolution leading to the initiation of coronal mass ejections (CMEs) [Zhang et al., Magnetic flux cancellation associated withthe major solar event on 2000 July 14. Astrophys. J. 548, L99 102, 2001; Zhang et al., 2001b. Filament-associated halo coronal mass ejection, Chin. J. Astron. Astrophys., 1, 85 98, 2001; Zhang and Wang, Filament eruptions and halo coronal mass ejections, Astrophys. J. 554, 474 487, 2001]. On the other hand, the nature of flux cancellation has been a topic of persistent interest and debate. We review the observational properties of magnetic flux cancellation and the relevant theoretical studies, describe the vector magnetic field changes in flux cancellation in CME-associated active regions (ARs), and demonstrate that the well-observed flux cancellations fit nicely the scenario of magnetic reconnection in the lower solar atmosphere. It is suggested that magnetic reconnection in the lower solar atmosphere is a ubiquitous process on the Sun. It is a key element in the magnetic evolution of CMEs.

  10. Formation of the low-mass solar nebula

    NASA Technical Reports Server (NTRS)

    Ruzmaikina, T. V.; Khatuncev, I. V.; Konkina, T. V.

    1993-01-01

    We study an accretional stage of the formation and early evolution of the solar nebula with relatively small angular momentum. We investigate the evolution of the disk and its vertical structure, particularly the shock front between disk and infalling material. Calculations start at a moment when a low-mass star-like core surrounded by small embryo disk have been formed at the center of the presolar nebula and the bulk of mass remained in the envelope. The forming solar nebula is approximated as a thin viscous disk surrounded by accreting envelope. The distribution of temperature in the infalling envelope is determined by solving spherically symmetric equations of radiative transfer. As the energy source, we take into account all energy released within the centrifugal radius of the infalling matter. Other aspects of this study are discussed.

  11. Mass fractionation of the lunar surface by solar wind sputtering

    NASA Technical Reports Server (NTRS)

    Switkowski, Z. E.; Haff, P. K.; Tombrello, T. A.; Burnett, D. S.

    1975-01-01

    The sputtering of the lunar surface by the solar wind is examined as a possible mechanism of mass fractionation. Simple arguments based on current theories of sputtering and the ballistics of the sputtered atoms suggest that most ejected atoms will have sufficiently high energy to escape lunar gravity. However, the fraction of atoms which falls back to the surface is enriched in the heavier atomic components relative to the lighter ones. This material is incorporated into the heavily radiation-damaged outer surfaces of grains where it is subject to resputtering. Over the course of several hundred years an equilibrium surface layer, enriched in heavier atoms, is found to form. The dependence of the calculated results upon the sputtering rate and on the details of the energy spectrum of sputtered particles is investigated. It is concluded that mass fractionation by solar wind sputtering is likely to be an important phenomenon on the lunar surface.

  12. Solar energetic proton events and coronal mass ejections near solar minimum

    NASA Technical Reports Server (NTRS)

    Kahler, S. W.; Cliver, E. W.; Cane, H. V.; Mcguire, R. E.; Reames, D. V.; Sheeley, N. R., Jr.; Howard, R. A.

    1987-01-01

    We have examined the association of coronal mass ejections (CME's) with solar energetic (9-23 MeV) proton (SEP) events during the 1983-1985 approach to solar minimum. Twenty-two of 25 SEP events were associated with CME's, a result comparable to that previously found for the period 1979-1982 around solar maximum. Peak SEP fluxes were correlated with CME speeds but not with CME angular sizes. In addition, many associated CME's lay well out of the ecliptic plane. In a reverse study using all west hemisphere CME's of speeds exceeding 800 km/s and covering the period 1979-1985, we found that 29 of 31 events originating on the solar disk or limb were associated with observed SEP's. However, in contrast to the previous study, we found no cases of SEP events associated with magnetically well connected flares of short duration that lacked CME's.

  13. Mass flow velocity distribution in the solar chromosphere

    NASA Technical Reports Server (NTRS)

    Tripp, D. A.

    1981-01-01

    A study of chromospheric lines (those of Si-II and Si-III) was made using the data from high resolution telescope and spectrograph (HRTS). The optically thick line profiles such as lambda 1206 due to Si-III and lambda 1265 and lambda 1533 due to Si-II were to be investigated in detail using the techniques of spectrum synthesis in an attempt to model the mass flow velocity distribution in the region of the solar atmosphere.

  14. Early solar mass loss, opacity uncertainties, and the solar abundance problem

    SciTech Connect

    Guzik, Joyce Ann; Keady, John; Kilcrease, David

    2009-01-01

    Solar models calibrated with the new element abundance mixture of Asplund et al. published in 2005 no longer produce good agreement with the sound speed, convection zone depth, and convection zone helium abundance inferred from solar oscillation data. Attempts to modify the input physics of the standard model, for example, by including enhanced diffusion, increased opacities, accretion, convective overshoot, or gravity waves have not restored the good agreement attained with the prior abundances. Here we present new models including early mass loss via a stronger solar wind. Early mass loss has been investigated prior to the solar abundance problem to deplete lithium and resolve the 'faint early sun problem'. We find that mass loss modifies the core structure and deepens the convection zone, and so improves agreement with oscillation data using the new abundances: however the amount of mass loss must be small to avoid destroying all of the surface lithium, and agreement is not fully restored. We also considered the prospects for increasing solar interior opacities. In order to increase mixture opacities by the 30% required to mitigate the abundance problem, the opacities of individual elements (e.g., O, N, C, and Fe) must be revised by a factor of two to three for solar interior conditions: we are investigating the possibility of broader calculated line wings for bound-bound transitions at the relevant temperatures to enhance opacity. We find that including all of the elements in the AGS05 opacity mixture (through uranium at atomic number Z=92) instead of only the 17 elements in the OPAL opacity mixture increases opacities by a negligible 0.2%.

  15. Early Solar Mass Loss, Opacity Uncertainties, and the Solar Abundance Problem

    NASA Astrophysics Data System (ADS)

    Guzik, Joyce Ann; Keady, J. J.; Kilcrease, D. P.

    2009-09-01

    Solar models calibrated with the new element abundance mixture of Asplund et al. published in 2005 no longer produce good agreement with the sound speed, convection zone depth, and convection zone helium abundance inferred from solar oscillation data. Attempts to modify the input physics of the standard model, for example, by including enhanced diffusion, increased opacities, accretion, convective overshoot, or gravity waves have not restored the good agreement attained with the prior abundances. Here we present new models including early mass loss via a stronger solar wind. Early mass loss has been investigated prior to the solar abundance problem to deplete lithium and resolve the `faint early sun problem'. We find that mass loss modifies the core structure and deepens the convection zone, and so improves agreement with oscillation data using the new abundances; however the amount of mass loss must be small to avoid destroying all of the surface lithium, and agreement is not fully restored. We also considered the prospects for increasing solar interior opacities. In order to increase mixture opacities by the 30% required to mitigate the abundance problem, the opacities of individual elements (e.g., O, N, C, and Fe) must be revised by a factor of two to three for solar interior conditions; we are investigating the possibility of broader calculated line wings for bound-bound transitions at the relevant temperatures to enhance opacity. We find that including all of the elements in the AGS05 opacity mixture (through uranium at atomic number Z = 92) instead of only the 17 elements in the OPAL opacity mixture increases opacities by a negligible 0.2%.

  16. Dynamical limits on dark mass in the outer solar system

    SciTech Connect

    Hogg, D.W.; Quinlan, G.D.; Tremaine, S. MIT, Cambridge, MA )

    1991-06-01

    Simplified model solar systems with known observational errors are considered in conducting a dynamical search for dark mass and its minimum detectable amount, and in determining the significance of observed anomalies. The numerical analysis of the dynamical influence of dark mass on the orbits of outer planets and comets is presented in detail. Most conclusions presented are based on observations of the four giant planets where the observational errors in latitude and longitude are independent Gaussian variables with a standard deviation. Neptune's long orbital period cannot be predicted by modern ephemerides, and no evidence of dark mass is found in considering this planet. Studying the improvement in fit when observations are fitted to models that consider dark mass is found to be an efficient way to detect dark mass. Planet X must have a mass of more than about 10 times the minimum detectable mass to locate the hypothetical planet. It is suggested that the IRAS survey would have already located the Planet X if it is so massive and close that it dynamically influences the outer planets. Orbital residuals from comets are found to be more effective than those from planets in detecting the Kuiper belt. 35 refs.

  17. Ultramassive (about 10 to the 11th solar mass) dark core in the luminous infrared galaxy NGC 6240?

    NASA Technical Reports Server (NTRS)

    Bland-Hawthorn, Jonathan; Wilson, Andrew S.; Tully, R. Brent

    1991-01-01

    The first complete kinematic maps for the superluminous IR galaxy NGC 6240 are reported. The data reveal two dynamical disks that exhibit radically different rotation and are closely spaced in velocity and position. One disk is roughly aligned with the major axis of the near-IR continuum and exhibits flat rotation out to about 20 arsec in radius, centered on the doubled nucleus seen at optical, near-IR, and radio wavelengths. The rotation turns over at r(t1) roughly 7.2 arcsec with a peak-to-peak velocity amplitude of roughly 280/sin i1 km/s, where i1 is the disk inclination. The rotation curve of the second disk comprises an unresolved or marginally resolved central velocity gradient with a peak-to-peak amplitude of roughly 800/sin i2 km/s within r(t2) of 2.5 arcsec, and a faster than Keplerian dropoff outside r(t2). The peak rotation implies a compact mass M2 greater than 4.5 x 10 to the 10th solar mass/sin-squared i2 within a radius of 1.2 kpc.

  18. Energetic Correlation Between Solar Flares and Coronal Mass Ejections

    NASA Technical Reports Server (NTRS)

    Dennis, Brian R.; Medlin, Drew A.; Haga, Leah; Schwartz, Richard a.; Tolbert, A. Kimberly

    2007-01-01

    We find a strong correlation between the kinetic energies (KEs) of the coronal mass ejections (CMEs) and the radiated energies of the associated solar flares for the events that occurred during the period of intense solar activity between 18 October and 08 November 2003. CME start times, speeds, mass and KEs were taken from Gopalswamy et al. (2005), who used SOHO/LASCO observations. The GOES observations of the associated flares were analyzed to find the peak soft X-ray (SXR) flux, the radiated energy in SXRs (L(sub sxR)), and the radiated energy from the emitting plasma across all wavelengths (L(sub hot)). RHESSI observations were also used to find the energy in non-thermal electrons, ions, and the plasma thermal energy for some events. For two events, SORCE/TIM observations of the total solar irradiance during a flare were also available to give the total radiated flare energy (L(sub total)).W e find that the total flare energies of the larger events are of the same order of magnitude as the CME KE with a stronger correlation than has been found in the past for other time intervals.

  19. Prompt solar proton events and coronal mass ejections

    NASA Technical Reports Server (NTRS)

    Kahler, S. W.; Hildner, E.; Van Hollebeke, M. A. I.

    1978-01-01

    Data from the HAO white-light coronagraph and the X-ray telescope on Skylab have been used to investigate the coronal manifestations of 18 prompt solar proton events observed on the IMP 7 spacecraft during the Skylab period. Evidence is found that a mass-ejection event is a necessary condition for the occurrence of a prompt proton event. Mass-ejection events can be observed directly in the white-light coronagraph when they occur near the limb and inferred from the presence of a long-decay X-ray event when they occur on the disk. It is suggested that: (1) the occurrence of mass-ejection events facilitates the escape of protons - whether accelerated at low or high altitudes - to the interplanetary medium; and (2) there may exist a proton acceleration region above or around the outward moving ejecta far above the flare site.

  20. Mass and heat transfer model of Tubular Solar Still

    SciTech Connect

    Ahsan, Amimul; Fukuhara, Teruyuki

    2010-07-15

    In this paper, a new mass and heat transfer model of a Tubular Solar Still (TSS) was proposed incorporating various mass and heat transfer coefficients taking account of the humid air properties inside the still. The heat balance of the humid air and the mass balance of the water vapor in the humid air were formulized for the first time. As a result, the proposed model enabled to calculate the diurnal variations of the temperature, water vapor density and relative humidity of the humid air, and to predict the hourly condensation flux besides the temperatures of the water, cover and trough, and the hourly evaporation flux. The validity of the proposed model was verified using the field experimental results carried out in Fukui, Japan and Muscat, Oman in 2008. The diurnal variations of the calculated temperatures and water vapor densities had a good agreement with the observed ones. Furthermore, the proposed model can predict the daily and hourly production flux precisely. (author)

  1. Project TALENT's Nonrespondent Follow-up Survey: The 10th Grade Special Sample. Interim Report.

    ERIC Educational Resources Information Center

    Carrel, Kathleen S.; And Others

    Described are procedures used in the location of a sample of individuals not responding to follow-up questionnaires, eleven years after they were originally interviewed in 1960 as 10th graders. The individuals in question were a subset of more than 400,000 9th, 10th, 11th and 12th grade students used in Project TALENT's longitudinal study of the…

  2. AN IMPROVEMENT ON MASS CALCULATIONS OF SOLAR CORONAL MASS EJECTIONS VIA POLARIMETRIC RECONSTRUCTION

    SciTech Connect

    Dai, Xinghua; Wang, Huaning; Huang, Xin; Du, Zhanle; He, Han

    2015-03-01

    The mass of a coronal mass ejection (CME) is calculated from the measured brightness and assumed geometry of Thomson scattering. The simplest geometry for mass calculations is to assume that all of the electrons are in the plane of the sky (POS). With additional information like source region or multiviewpoint observations, the mass can be calculated more precisely under the assumption that the entire CME is in a plane defined by its trajectory. Polarization measurements provide information on the average angle of the CME electrons along the line of sight of each CCD pixel from the POS, and this can further improve the mass calculations as discussed here. A CME event initiating on 2012 July 23 at 2:20 UT observed by the Solar Terrestrial Relations Observatory is employed to validate our method.

  3. Associations between coronal mass ejections and solar energetic proton events

    NASA Technical Reports Server (NTRS)

    Kahler, S. W.; Sheeley, N. R., Jr.; Howard, R. A.; Michels, D. J.; Koomen, M. J.; Mcguire, R. E.; Von Rosenvinge, T. T.; Reames, D. V.

    1984-01-01

    A comparison between proton events and coronal mass ejections (CMEs) based on nearly three years of observations around the recent maximum of solar activity is presented. Peak proton fluxes are found to correlate with both the speeds and the angular sizes of the associated CMEs. It is shown that CME speeds do not significantly correlate with CME angular sizes, so that peak proton fluxes are correlated with two independent CME parameters. With larger angular sizes, CMEs are more likely to be loops and fans rather than jets and spikes and are more likely to intersect the ecliptic.

  4. Mass motion in upper solar chromosphere detected from solar eclipse observation

    NASA Astrophysics Data System (ADS)

    Li, Zhi; Qu, Zhongquan; Yan, Xiaoli; Dun, Guangtao; Chang, Liang

    2016-05-01

    The eclipse-observed emission lines formed in the upper solar atmosphere can be used to diagnose the atmosphere dynamics which provides an insight to the energy balance of the outer atmosphere. In this paper, we analyze the spectra formed in the upper chromospheric region by a new instrument called Fiber Arrayed Solar Optic Telescope (FASOT) around the Gabon total solar eclipse on November 3, 2013. The double Gaussian fits of the observed profiles are adopted to show enhanced emission in line wings, while red-blue (RB) asymmetry analysis informs that the cool line (about 104 K) profiles can be decomposed into two components and the secondary component is revealed to have a relative velocity of about 16-45 km s^{-1}. The other profiles can be reproduced approximately with single Gaussian fits. From these fittings, it is found that the matter in the upper solar chromosphere is highly dynamic. The motion component along the line-of-sight has a pattern asymmetric about the local solar radius. Most materials undergo significant red shift motions while a little matter show blue shift. Despite the discrepancy of the motion in different lines, we find that the width and the Doppler shifts both are function of the wavelength. These results may help us to understand the complex mass cycle between chromosphere and corona.

  5. Studying Geoeffective Interplanetary Coronal Mass Ejections Between the Sun and Earth: Space Weather Implications of Solar Mass Ejection Imager Observations

    DTIC Science & Technology

    2009-05-14

    during the Mav 12th, 1997 ICME, /. Ahnos. Sol. Terr. Phys., 66, 1295-1309. Billings, D. E. (1966), A Guide to the Solar Corona , Academic, San Diego...SUBTITLE Studying geoeffective interplanetary coronal mass ejections Between the Sun and Earth: Space weather implications of Solar Mass Ejection...DISTRIBUTION . „ . ru^en.1 nomicmcni Approved for Public Release; Distribution Unlimited. *Boston College, Chestnut Hill, MA, **AFRL, National Solar Ob

  6. Physical properties and evolutionary time scales of disks around solar-type and intermediate mass stars

    NASA Technical Reports Server (NTRS)

    Strom, Stephen E.; Edwards, Suzan

    1993-01-01

    Recent observations of circumstellar disks and their evolutionary timescales are reviewed. It is concluded that disks appear to be a natural outcome of the star-formation process. The disks surrounding young stars initially are massive, with optically thick structures comprised of gas and micron-sized grains. Disk masses are found to range from 0.01 to 0.2 solar masses for solar-type PMS stars, and from 0.01 to 6 solar masses for young, intermediate mass stars. Massive, optically thick accretion disks have accretion rates between 10 exp -8 and 10 exp -6 solar masses/yr for solar type PMS stars and between 10 exp -6 and 10 exp -4 solar masses/yr for intermediate stars. The results suggest that a significant fraction of the mass comprising the star may have passed through a circumstellar accretion disk.

  7. Kepler 453 b - The 10th Kepler Transiting Circumbinary Planet

    NASA Astrophysics Data System (ADS)

    Welsh, William F.; Orosz, Jerome A.; Short, Donald R.; Cochran, William D.; Endl, Michael; Brugamyer, Erik; Haghighipour, Nader; Buchhave, Lars A.; Doyle, Laurance R.; Fabrycky, Daniel C.; Hinse, Tobias Cornelius; Kane, Stephen R.; Kostov, Veselin; Mazeh, Tsevi; Mills, Sean M.; Müller, Tobias W. A.; Quarles, Billy; Quinn, Samuel N.; Ragozzine, Darin; Shporer, Avi; Steffen, Jason H.; Tal-Or, Lev; Torres, Guillermo; Windmiller, Gur; Borucki, William J.

    2015-08-01

    We present the discovery of Kepler-453 b, a 6.2 {R}\\oplus planet in a low-eccentricity, 240.5 day orbit about an eclipsing binary. The binary itself consists of a 0.94 and 0.195 {M}⊙ pair of stars with an orbital period of 27.32 days. The plane of the planet's orbit is rapidly precessing, and its inclination only becomes sufficiently aligned with the primary star in the latter portion of the Kepler data. Thus three transits are present in the second half of the light curve, but none of the three conjunctions that occurred during the first half of the light curve produced observable transits. The precession period is ˜103 years, and during that cycle, transits are visible only ˜8.9% of the time. This has the important implication that for every system like Kepler-453 that we detect, there are ˜11.5 circumbinary systems that exist but are not currently exhibiting transits. The planet's mass is too small to noticeably perturb the binary, and consequently its mass is not measurable with these data; however, our photodynamical model places a 1σ upper limit of 16 {M}\\oplus . With a period 8.8 times that of the binary, the planet is well outside the dynamical instability zone. It does, however, lie within the habitable zone of the binary, making it the third of 10 Kepler circumbinary planets to do so. Based on observations obtained with the Hobby-Eberly Telescope, which is a joint project of the University of Texas at Austin, the Pennsylvania State University, Stanford University, Ludwig-Maximilians-Universität München, and Georg-August-Universität Göttingen.

  8. The 8th-10 th January 2009 snowfalls: a case of Mediterranean warm advection event

    NASA Astrophysics Data System (ADS)

    Aguado, F.; Ayensa, E.; Barriga, M.; Del Hoyo, J.; Fernández, A.; Garrido, N.; Martín, A.; Martín, F.; Roa, I. Martínez, A.; Pascual, R.

    2009-09-01

    From 8 th to 10 th of January 2009, significant snowfalls were reported in many areas of the Iberian Peninsula and the Balearic Islands. This relevant event was very important from the meteorological and social impact point of views. The snow affected many zones, especially the regions of Madrid, Castilla & León and Castilla-La Mancha (Spanish central plateau) with the persistence and thickness of solid precipitation. Up to twenty-five centimetres of snow were reported in some places. On 9th of January the snowfalls caused great social and media impact due to the fact that they took place in the early hours in the Madrid metropolitan areas, affecting both air traffic and land transport. The "Madrid-Barajas" airport was closed and the city was collapsed during several hours. A study of this situation appears in the poster. The snowstorm was characterized by the previous irruption of an European continental polar air mass, that subsequently interacted with a wet and warm air mass of Mediterranean origin, all preceded by low level easterly flows. This type of snowfall is called "warm advection". These winter situations are very efficient from precipitation point of view, generating significant snowfalls and affecting a lot of areas.

  9. 10th Anniversary Review: a changing climate for coral reefs.

    PubMed

    Lough, Janice M

    2008-01-01

    Tropical coral reefs are charismatic ecosystems that house a significant proportion of the world's marine biodiversity. Their valuable goods and services are fundamental to the livelihood of large coastal populations in the tropics. The health of many of the world's coral reefs, and the goods and services they provide, have already been severely compromised, largely due to over-exploitation by a range of human activities. These local-scale impacts, with the appropriate government instruments, support and management actions, can potentially be controlled and even ameliorated. Unfortunately, other human actions (largely in countries outside of the tropics), by changing global climate, have added additional global-scale threats to the continued survival of present-day coral reefs. Moderate warming of the tropical oceans has already resulted in an increase in mass coral bleaching events, affecting nearly all of the world's coral reef regions. The frequency of these events will only increase as global temperatures continue to rise. Weakening of coral reef structures will be a more insidious effect of changing ocean chemistry, as the oceans absorb part of the excess atmospheric carbon dioxide. More intense tropical cyclones, changed atmospheric and ocean circulation patterns will all affect coral reef ecosystems and the many associated plants and animals. Coral reefs will not disappear but their appearance, structure and community make-up will radically change. Drastic greenhouse gas mitigation strategies are necessary to prevent the full consequences of human activities causing such alterations to coral reef ecosystems.

  10. The distribution of mass and angular momentum in the solar system

    SciTech Connect

    Marochnik, L.S.; Mukhin, L.M.; Sagdeev, R.Z. )

    1989-01-01

    This book describes the contribution of the comets in the Oort cloud to the angular momentum of the solar system. Topics covered include: Nuclear mass of the new comets observed, Mass of the Oort cloud, Mass distribution in the solar system, Zone of comet formation, Angular momentum of the Oort cloud, and Angular momentum of the Hills cloud.

  11. Research and Education: The Foundations for Rehabilitation Service Delivery--10th Annual National Rehabilitation Educators Conference April 6th-10th, 2010

    ERIC Educational Resources Information Center

    Chou, Chih Chin

    2010-01-01

    The theme of the 10th annual National Rehabilitation Educators conference emphasized research and teaching ideals in the areas of clinical supervision, evidence-based practice in rehabilitation, rehabilitation counseling process, effective rehabilitation counseling training strategies, accreditation and licensure, rehabilitation ethics, and…

  12. The structures, mass motions and footpoints of solar filaments

    NASA Astrophysics Data System (ADS)

    Venkataramanasastry, Aparna

    This thesis focuses on identifying the mechanism by which solar filaments acquire mass. Some of the speculations for how a filament gets its mass are 1) injection of mass from the chromosphere into the filament structure, and 2) condensation of mass from the corona into the region of the filament channel. Mass motion at the footpoints of the filaments is studied to detect mass entering and leaving the filament body. The magnetic properties of the footpoints of the filaments are also studied. Recommendations are drawn by comparing observational properties obtained in this study with the features used in some of the previously developed models. The datasets used for this study are high-resolution image sets of centerline and Doppler wings of Halpha, obtained using the Dutch Open Telescope (DOT). The data were obtained on Oct 30, 2010. The data set contains three filaments in an active region in the northern hemisphere of the Sun. The images in each wavelength are aligned and made into movies to find the footpoints of the filaments through which the mass goes into and comes out of the filaments from and to the chromosphere, respectively. The magnetic properties of the footpoints are studied by overlaying the magnetogram images with the DOT images by using full-disk Halpha images for matching the features in the two. Of the three filaments, one of the filaments is observed to be stable throughout the duration of the observations; another filament erupts after about two hours of the beginning of observations; and the third filament is in its early stages of formation. The ends of the stable filament are clearly observed whereas the ends of the erupting filament and the forming filament are observed clearly intermittently during the duration of the observations. The animations of the region near the ends of filament 1 reveal definite injection and draining of mass via the footpoints into and out of the filament. The mass motion into and out of the filaments are observed

  13. Global Energetics of Solar Flares. IV. Coronal Mass Ejection Energetics

    NASA Astrophysics Data System (ADS)

    Aschwanden, Markus J.

    2016-11-01

    This study entails the fourth part of a global flare energetics project, in which the mass m cme, kinetic energy E kin, and the gravitational potential energy E grav of coronal mass ejections (CMEs) is measured in 399 M and X-class flare events observed during the first 3.5 years of the Solar Dynamics Observatory (SDO) mission, using a new method based on the EUV dimming effect. EUV dimming is modeled in terms of a radial adiabatic expansion process, which is fitted to the observed evolution of the total emission measure of the CME source region. The model derives the evolution of the mean electron density, the emission measure, the bulk plasma expansion velocity, the mass, and the energy in the CME source region. The EUV dimming method is truly complementary to the Thomson scattering method in white light, which probes the CME evolution in the heliosphere at r ≳ 2 R ⊙, while the EUV dimming method tracks the CME launch in the corona. We compare the CME parameters obtained in white light with the LASCO/C2 coronagraph with those obtained from EUV dimming with the Atmospheric Imaging Assembly onboard the SDO for all identical events in both data sets. We investigate correlations between CME parameters, the relative timing with flare parameters, frequency occurrence distributions, and the energy partition between magnetic, thermal, nonthermal, and CME energies. CME energies are found to be systematically lower than the dissipated magnetic energies, which is consistent with a magnetic origin of CMEs.

  14. 1. Historic American Buildings Survey Joseph Hill, Photographer August 10th, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Historic American Buildings Survey Joseph Hill, Photographer August 10th, 1936 (Copied from small photo taken by survey members) OLD APARTMENT HOUSE - Jansonist Colony, Old Apartment House, Main Street, Bishop Hill, Henry County, IL

  15. 16. NORTHEAST CORNER VIEW OF 10TH AND 11TH FLOOR WINDOWS. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. NORTHEAST CORNER VIEW OF 10TH AND 11TH FLOOR WINDOWS. CORNER SHOWS THE DIAGONALLY FLUTED SPIRAL DESIGN OF THE RELIEF COLUMN. - Pacific Telephone & Telegraph Company Building, 1519 Franklin Street, Oakland, Alameda County, CA

  16. Automated Detection, Characterisation and Tracking of Solar Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Gallagher, Peter; Carley, Eoin; Byrne, Jason; Morgan, Huw; Refojo, Jose

    Coronal mass ejections (CMEs) are large eruptions of plasma and magnetic flux from the Sun through interplanetary space. If they impact the Earth, they can cause space weather effects that are detrimental to technological systems upon which society is highly dependent. It is therefore important to automatically identify and track CMEs in near-realtime in order to better forecast their possible arrival at Earth. Due to the diffuse nature and comparatively high speeds of CMEs, it is computationally challenging to automatically identify, characterise and track them as they move through the solar corona and inner heliosphere. Here, we review and discuss current state-of-the-art image processing techniques, and how they are being used to automatically generate catalogues of CME properties in near-realtime and for space weather purposes. Furthermore, we discus recent advances in the reconstruction and visualisation of CMEs in 3D, which is crucial to our understanding of their detailed structure and resulting evolution through space.

  17. Rotational periods of solar-mass young stars in Orion

    NASA Astrophysics Data System (ADS)

    Marilli, E.; Frasca, A.; Covino, E.; Alcalá, J. M.; Catalano, S.; Fernández, M.; Arellano Ferro, A.; Rubio-Herrera, E.; Spezzi, L.

    2007-03-01

    Context: The evolution of the angular momentum in young low-mass stars is still a debated issue. The stars presented here were discovered as X-ray sources in the ROSAT All-Sky Survey (RASS) of the Orion complex and subsequently optically identified thanks to both low and high resolution spectroscopy. Aims: The determination of the rotational periods in young low-mass stars of different age is fundamental for the understanding of the angular momentum evolution. Methods: We performed a photometric monitoring program on a sample of 40 solar-mass young stars in the Orion star-forming region, almost all previously identified as weak T Tauri stars (WTTS) candidates. Photometric B and V data were collected from 1999 to 2006 at Catania Astrophysical Observatory (OAC). Data were also acquired in December 1998 at Calar Alto Observatory (CA) and in 1999, 2000, and 2003 at San Pedro Martir (SPM). From the observed rotational modulation, induced by starspots, we derived the rotation periods, using both the Lomb-Scargle periodogram and the CLEAN deconvolution algorithms. Results: In total, we were able to determine the rotation periods for 39 stars, spanning from about 0.5 to 13 days, showing a rather flat distribution with a peak around 1-2 days. Though some of these stars were found to be spectroscopic binaries, only the systems with shorter orbital periods and circular orbits turned out to be synchronized. In the other cases, the rotational period is shorter than the period of pseudo-synchronization at periastron. Conclusions: .The new data provide further evidence for the spin up of solar-mass stars predicted by models of angular momentum evolution of pre-main sequence (PMS) stars. Based on observations collected at the Catania Astrophysical Observatory (Italy), at the Estación de Observación de Calar Alto (Spain), and San Pedro Martir Observatory (México). Appendix A is only available in electronic form at http://www.aanda.org

  18. Optimization of solar cells for air mass zero operation and a study of solar cells at high temperatures, phase 2

    NASA Technical Reports Server (NTRS)

    Hovel, H.; Woodall, J. M.

    1976-01-01

    Crystal growth procedures, fabrication techniques, and theoretical analysis were developed in order to make GaAlAs-GaAs solar cell structures which exhibit high performance at air mass 0 illumination and high temperature conditions.

  19. Reduction of Martian Sample Return Mission Launch Mass with Solar Sail Propulsion

    NASA Technical Reports Server (NTRS)

    Russell, Tiffany E.; Heaton, Andrew; Thomas, Scott; Thomas, Dan; Young, Roy; Baysinger, Mike; Capizzo, Pete; Fabisinski, Leo; Hornsby, Linda; Maples, Dauphne; Miernik, Janie

    2013-01-01

    Solar sails have the potential to provide mass and cost savings for spacecraft traveling within the inner solar system. Companies like L'Garde have demonstrated sail manufacturability and various in-space deployment methods. The purpose of this study was to evaluate a current Mars sample return architecture and to determine how cost and mass would be reduced by incorporating a solar sail propulsion system. The team validated the design proposed by L'Garde, and scaled the design based on a trajectory analysis. Using the solar sail design reduced the required mass, eliminating one of the three launches required in the original architecture.

  20. Reduction of Martian Sample Return Mission Launch Mass with Solar Sail Propulsion

    NASA Technical Reports Server (NTRS)

    Russell, Tiffany E.; Heaton, Andy F.; Young, Roy; Baysinger, Mike; Schnell, Andrew R.

    2013-01-01

    Solar sails have the potential to provide mass and cost savings for spacecraft traveling within the innter solar system. Companies like L'Garde have demonstrated sail manufacturability and various i-space development methods. The purpose of this study was to evaluate a current Mars sample return architecture and to determine how cost and mass would be reduced by incorporating a solar sail propulsion system. The team validated the design proposed by L'Garde, and scaled the design based on a trajectory analysis. Using the solar sail design reduced the required mass, eliminating one of the three launches required in the original architecture.

  1. Solar flares, coronal mass ejections and solar energetic particle event characteristics

    NASA Astrophysics Data System (ADS)

    Papaioannou, Athanasios; Sandberg, Ingmar; Anastasiadis, Anastasios; Kouloumvakos, Athanasios; Georgoulis, Manolis K.; Tziotziou, Kostas; Tsiropoula, Georgia; Jiggens, Piers; Hilgers, Alain

    2016-12-01

    A new catalogue of 314 solar energetic particle (SEP) events extending over a large time span from 1984 to 2013 has been compiled. The properties as well as the associations of these SEP events with their parent solar sources have been thoroughly examined. The properties of the events include the proton peak integral flux and the fluence for energies above 10, 30, 60 and 100 MeV. The associated solar events were parametrized by solar flare (SF) and coronal mass ejection (CME) characteristics, as well as related radio emissions. In particular, for SFs: the soft X-ray (SXR) peak flux, the SXR fluence, the heliographic location, the rise time and the duration were exploited; for CMEs the plane-of-sky velocity as well as the angular width were utilized. For radio emissions, type III, II and IV radio bursts were identified. Furthermore, we utilized element abundances of Fe and O. We found evidence that most of the SEP events in our catalogue do not conform to a simple two-class paradigm, with the 73% of them exhibiting both type III and type II radio bursts, and that a continuum of event properties is present. Although, the so-called hybrid or mixed events are found to be present in our catalogue, it was not possible to attribute each SEP event to a mixed/hybrid sub-category. Moreover, it appears that the start of the type III burst most often precedes the maximum of the SF and thus falls within the impulsive phase of the associated SF. At the same time, type III bursts take place within ≈5.22 min, on average, in advance from the time of maximum of the derivative of the SXR flux (Neupert effect). We further performed a statistical analysis and a mapping of the logarithm of the proton peak flux at E > 10 MeV, on different pairs of the parent solar source characteristics. This revealed correlations in 3-D space and demonstrated that the gradual SEP events that stem from the central part of the visible solar disk constitute a significant radiation risk. The velocity of

  2. Tracking Coronal Mass Ejections with a Heliospheric Imager: Case Studies from the Solar Mass Ejection Imager

    NASA Astrophysics Data System (ADS)

    Johnston, J. C.; Mizuno, D. R.; Webb, D. F.; Kuchar, T. A.; Howard, T. A.

    2005-05-01

    The Solar Mass Ejection Imager (SMEI) was launched on board the DoD Space Test Program's Coriolis satellite in January 2003. Two-thirds through its planned 3-year lifetime, SMEI has observed Coronal Mass Ejections (CMEs), comets and asteroids as they move through the heliosphere. More than 140 CMEs have been detected with the SMEI instrument, including well-documented "halo" events that led to geomagnetic storm conditions on Earth. These observations demonstrate the potential of a heliospheric imager for space weather specification and prediction purposes. We present several case studies of CMEs as they propagate through the SOHO LASCO and SMEI fields of view, and examine SMEI's "hit" rate for detection of geoeffective CMEs.

  3. A SOLAR CORONAL JET EVENT TRIGGERS A CORONAL MASS EJECTION

    SciTech Connect

    Liu, Jiajia; Wang, Yuming; Shen, Chenglong; Liu, Kai; Pan, Zonghao; Wang, S.

    2015-11-10

    In this paper, we present multi-point, multi-wavelength observations and analysis of a solar coronal jet and coronal mass ejection (CME) event. Employing the GCS model, we obtained the real (three-dimensional) heliocentric distance and direction of the CME and found it to propagate at a high speed of over 1000 km s{sup −1}. The jet erupted before the CME and shared the same source region. The temporal and spacial relationship between these two events lead us to the possibility that the jet triggered the CME and became its core. This scenario hold the promise of enriching our understanding of the triggering mechanism of CMEs and their relations to coronal large-scale jets. On the other hand, the magnetic field configuration of the source region observed by the Solar Dynamics Observatory (SDO)/HMI instrument along with the off-limb inverse Y-shaped configuration observed by SDO/AIA in the 171 Å passband provide the first detailed observation of the three-dimensional reconnection process of a large-scale jet as simulated in Pariat et al. The eruption process of the jet highlights the importance of filament-like material during the eruption of not only small-scale X-ray jets, but likely also of large-scale EUV jets. Based on our observations and analysis, we propose the most probable mechanism for the whole event, with a blob structure overlaying the three-dimensional structure of the jet, to describe the interaction between the jet and the CME.

  4. ISOTOPIC MASS FRACTIONATION OF SOLAR WIND: EVIDENCE FROM FAST AND SLOW SOLAR WIND COLLECTED BY THE GENESIS MISSION

    SciTech Connect

    Heber, Veronika S.; Baur, Heinrich; Wieler, Rainer; Bochsler, Peter; McKeegan, Kevin D.; Neugebauer, Marcia; Reisenfeld, Daniel B.; Wiens, Roger C.

    2012-11-10

    NASA's Genesis space mission returned samples of solar wind collected over {approx}2.3 years. We present elemental and isotopic compositions of He, Ne, and Ar analyzed in diamond-like carbon targets from the slow and fast solar wind collectors to investigate isotopic fractionation processes during solar wind formation. The solar wind provides information on the isotopic composition for most volatile elements for the solar atmosphere, the bulk Sun and hence, on the solar nebula from which it formed 4.6 Ga ago. Our data reveal a heavy isotope depletion in the slow solar wind compared to the fast wind composition by 63.1 {+-} 2.1 per mille for He, 4.2 {+-} 0.5 per mille amu{sup -1} for Ne and 2.6 {+-} 0.5 per mille amu{sup -1} for Ar. The three Ne isotopes suggest that isotopic fractionation processes between fast and slow solar wind are mass dependent. The He/H ratios of the collected slow and fast solar wind samples are 0.0344 and 0.0406, respectively. The inefficient Coulomb drag model reproduces the measured isotopic fractionation between fast and slow wind. Therefore, we apply this model to infer the photospheric isotopic composition of He, Ne, and Ar from our solar wind data. We also compare the isotopic composition of oxygen and nitrogen measured in the solar wind with values of early solar system condensates, probably representing solar nebula composition. We interpret the differences between these samples as being due to isotopic fractionation during solar wind formation. For both elements, the magnitude and sign of the observed differences are in good agreement with the values predicted by the inefficient Coulomb drag model.

  5. Eruption Mechanism of the 10th Century Eruption in Baitoushan Volcano, China/North Korea

    NASA Astrophysics Data System (ADS)

    Shimano, T.; Miyamoto, T.; Nakagawa, M.; Ban, M.; Maeno, F.; Nishimoto, J.; Jien, X.; Taniguchi, H.

    2005-12-01

    Baitoushan volcano, China/North Korea, is one of the most active volcanoes in Northeastern Asia, and the 10th century eruption was the most voluminous eruption in the world in recent 2000 years. The sequence of the eruption reconstructed recently consists mainly of 6 units of deposits (Miyamoto et al., 2004); plinian airfall (unit B), large pyroclastic flow (unit C), plinian airfall with some intra- plinian pyroclastic flows (unit D), sub-plinian airfall (unit E), and large pyroclastic flow (unit F) with base surge (unit G) in ascending order. The magma erupted during steady eruption in earlier phase was comendite (unit B-C; Phase 1), whereas the magma during fluctuating eruptions in later phase is characterized by trachyte to trachyandesite with various amount of comendite (unit D-G; Phase 2). The wide variety in composition and occurrence of banded pumices strongly indicate mixing or mingling of the two magmas just prior to or during the eruption. The initial water contents had been determined for comendite by melt inclusion analyses (ca. 5.2 wt.%; Horn and Schmincke, 2000). Although the initial water content of the trachytic magma has not been correctly determined yet, the reported water contents of trachytic melt inclusions are lower (3-4 wt.%) than those of comenditic melt (Horn and Schmincke, 2000). We investigated juvenile materials of the eruption sequentially in terms of vesicularity, H2O content in matrix glass and textural characteristics. The vesicularity of pumices are generally high (>0.75) for all units. The residual water contents of the comenditic pumices during Phase 1 are relatively uniform (1.6 wt.%), whereas those of the trachytic scoria during Phase 2 and gray pumices during Phase 1 are low (ca. 0.7-1.3 wt.%). These facts may indicate that the difference in the initial water content, rather than the ascent mechanism of magma, controls the steadiness or fluctuation in eruption styles and the mass flux during the eruption.

  6. A Historic View of Solar Coronal Mass Ejections (CMEs)

    NASA Technical Reports Server (NTRS)

    SaintCyr, Orville C.

    2010-01-01

    We present a historic overview of CME observations, ending with concepts for future measurement capabilities. One of the first detections of what we now call a CME was provided by instrumentation on OSO-7 and reported by Tousey (1973); but the phrase "corona) mass ejection" was coined after the Skylab/ATM coronagraph detected dozens of the transients over its nine month observing run (e.g., Munro et al., 1979). Pre-discovery identification of likely CMEs were then reported in historic eclipse photographs and drawings (e.g., Eddy, 1974; Cliver, 1989). Multi-year observations followed with groundbased MLSO MK3/4 coronagraph (1980-present), and spacebased missions: Solwind (1979-1985), SMM (1980-1989), SOHO LASCO/EIT (1996-present), SMEI (2003-present), and STEREO SECCHI (2006-present). The Spartan 201 coronagraph flew in space multiple times. The influential Gosling (1993) "solar flare myth" manuscript identified CMEs as the cause of the most severe geomagnetic storms, thus cementing their importance in Sun-Earth connection studies. A new window into CMEs was opened with the launch of SOHO in 1995 when the UVCS spectrometer began returning plasma diagnostics of a significant number of events (e.g., Ciaravella et al., 2006). What about the future for CME research? Statistical properties of the UVCS CME observations are forthcoming; the STEREO mission should continue to return views of CMEs from unique vantage points; and the recent launch of SDO should provide new insights into the small spatial scale dynamics of activity associated with CMEs. Several new observing techniques have been demonstrated at total eclipses, and inclusion on spacebased platforms in the future could also prove valuable for understanding CMEs. A common element of several recent proposals is to image the white-light corona with extremely high spatial resolution. The momentary glimpses of the corona during total solar eclipses have shown fine structure that is not captured by global models, and

  7. Genesis Solar Wind Interstream, Coronal Hole and Coronal Mass Ejection Samples: Update on Availability and Condition

    NASA Technical Reports Server (NTRS)

    Allton, J. H.; Gonzalez, C. P.; Allums, K. K.

    2017-01-01

    Recent refinement of analysis of ACE/SWICS data (Advanced Composition Explorer/Solar Wind Ion Composition Spectrometer) and of onboard data for Genesis Discovery Mission of 3 regimes of solar wind at Earth-Sun L1 make it an appropriate time to update the availability and condition of Genesis samples specifically collected in these three regimes and currently curated at Johnson Space Center. ACE/SWICS spacecraft data indicate that solar wind flow types emanating from the interstream regions, from coronal holes and from coronal mass ejections are elementally and isotopically fractionated in different ways from the solar photosphere, and that correction of solar wind values to photosphere values is non-trivial. Returned Genesis solar wind samples captured very different kinds of information about these three regimes than spacecraft data. Samples were collected from 11/30/2001 to 4/1/2004 on the declining phase of solar cycle 23. Meshik, et al is an example of precision attainable. Earlier high precision laboratory analyses of noble gases collected in the interstream, coronal hole and coronal mass ejection regimes speak to degree of fractionation in solar wind formation and models that laboratory data support. The current availability and condition of samples captured on collector plates during interstream slow solar wind, coronal hole high speed solar wind and coronal mass ejections are de-scribed here for potential users of these samples.

  8. EPA presents award to Oregon 10th grader for work on marine oil spills

    EPA Pesticide Factsheets

    (Seattle-May 6, 2015) The U.S. Environmental Protection Agency, Region 10 is awarding the President's Environmental Youth Award to 10th grader Sahil Veeramoney for his development of a novel and efficient method to clean up marine oil spills. Veeramoney is

  9. MedlinePlus en español marks its 10th anniversary

    MedlinePlus

    ... medlineplus.gov/spanishanniversary.html MedlinePlus en español Marks its 10 th Anniversary To use the sharing features ... Spanish greatly expands NIH's ability to carry out its mission to communicate with the public.” MedlinePlus en ...

  10. A PAIR OF 10TH CAVALRY AMBULANCES, PARKED NEXT TO ONE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    A PAIR OF 10TH CAVALRY AMBULANCES, PARKED NEXT TO ONE OF THE STABLE LABELED "M.D. 10." PHOTOGRAPH TAKEN CIRCA 1918 (FORT HUACHUCA HISTORICAL MUSEUM, PHOTOGRAPH 1918.00.00.135, PHOTOGRAPHER UNIDENTIFIED, CREATED BY AND PROPERTY OF THE UNITED STATES ARMY) - Fort Huachuca, Cavalry Stables, Clarkson Road, Sierra Vista, Cochise County, AZ

  11. Interracial Best Friendships: Relationship with 10th Graders' Academic Achievement Level

    ERIC Educational Resources Information Center

    Newgent, Rebecca A.; Lee, Sang Min; Daniel, Ashley F.

    2007-01-01

    The authors examined the relationships between interracial best friendships and 10th-grade students' academic achievement. The analysis consisted of data from 13,134 participants in the ELS:2002 database. The results indicated that interracial best friendships for minority students (African Americans, Latino Americans, Asian Americans, and…

  12. The Effect of Case-Based Instruction on 10th Grade Students' Understanding of Gas Concepts

    ERIC Educational Resources Information Center

    Yalçinkaya, Eylem; Boz, Yezdan

    2015-01-01

    The main purpose of the present study was to investigate the effect of case-based instruction on remedying 10th grade students' alternative conceptions related to gas concepts. 128 tenth grade students from two high schools participated in this study. In each school, one of the classes was randomly assigned as the experimental group and the other…

  13. County Data Book, 2000: Kentucky Kids Count. 10th Annual Edition.

    ERIC Educational Resources Information Center

    Albright, Danielle; Hall, Douglas; Mellick, Donna; Miller, Debra; Town, Jackie

    This 10th annual Kids Count data book reports on trends in the well-being of Kentucky's children. The statistical portrait is based on indicators in the areas of well being, child risk factors, and demography. The indicators are as follows: (1) healthy births, including birth weights and prenatal care; (2) maternal risk characteristics, including…

  14. Problem-Based Learning Method: Secondary Education 10th Grade Chemistry Course Mixtures Topic

    ERIC Educational Resources Information Center

    Üce, Musa; Ates, Ismail

    2016-01-01

    In this research; aim was determining student achievement by comparing problem-based learning method with teacher-centered traditional method of teaching 10th grade chemistry lesson mixtures topic. Pretest-posttest control group research design is implemented. Research sample includes; two classes of (total of 48 students) an Anatolian High School…

  15. Changes in Educational Expectations between 10th and 12th Grades across Cohorts

    ERIC Educational Resources Information Center

    Park, Sueuk; Wells, Ryan; Bills, David

    2015-01-01

    The mean levels of educational expectations of American high school students have increased over the past generation; individual educational expectations change as students mature. Using the National Education Longitudinal Study and the Education Longitudinal Study, we examined simultaneously the changes in individuals' expectations from 10th to…

  16. A Structural Model of Student Career Aspiration and Science Education: The 10th Grade Investigation.

    ERIC Educational Resources Information Center

    Wang, Jianjun; Turner, Dianne

    Career aspiration is an important factor articulating student academic preparation and career orientation. On the basis of H. Walberg's educational productivity theory, 10th grade national data from the Longitudinal Study of American Youth have been analyzed to examine structural relations between educational productivity and career aspiration in…

  17. The Solar Atmosphere at Three Temperatures During a Coronal Mass Ejection

    NASA Technical Reports Server (NTRS)

    Zhitnik, I.; Pertzov, A.; Oparin, S.; Oraevsky, V.; Slemzin, V.; Sobelman, I.; Feynman, J.; Goldstein, B.

    1998-01-01

    On April 14, 1994 a major coronal mass ejection (CME) occured while the solar atmosphere was being observed in XUV by the Terek C instrument aboard the CORONAS spacecraft. We here compare the TEREK data before and after the CME with the Yohkoh soft x-ray data and the National Solar Observatory He I 10830 data from April 13 and 14.

  18. Interplanetary Coronal Mass Ejections in the Near-Earth Solar Wind During 1996-2002

    NASA Technical Reports Server (NTRS)

    Cane, H. V.; Richardson, I. G.

    2003-01-01

    We summarize the occurrence of interplanetary coronal mass injections (ICMEs) in the near-Earth solar wind during 1996-2002, corresponding to the increasing and maximum phases of solar cycle 23. In particular, we give a detailed list of such events. This list, based on in-situ observations, is not confined to subsets of ICMEs, such as magnetic clouds or those preceded by halo CMEs observed by the SOHO/LASCO coronagraph, and provides an overview of 214 ICMEs in the near-Earth solar wind during this period. The ICME rate increases by about an order of magnitude from solar minimum to solar maximum (when the rate is approximately 3 ICMEs/solar rotation period). The rate also shows a temporary reduction during 1999, and another brief, deeper reduction in late 2000-early 2001, which only approximately track variations in the solar 10 cm flux. In addition, there are occasional periods of several rotations duration when the ICME rate is enhanced in association with high solar activity levels. We find an indication of a periodic variation in the ICME rate, with a prominent period of approximately 165 days similar to that previously reported in various solar phenomena. It is found that the fraction of ICMEs that are magnetic clouds has a solar cycle variation, the fraction being larger near solar minimum. For the subset of events that we could associate with a CME at the Sun, the transit speeds from the Sun to the Earth were highest after solar maximum.

  19. LITHIUM ABUNDANCE AS A PREDICTOR OF MASS AND AGE IN SOLAR-ANALOG STARS

    SciTech Connect

    Li, T. D.; Bi, S. L.; Liu, K.; Tian, Z. J.; Ge, Z. S.; Chen, Y. Q.

    2012-02-20

    In order to estimate the mass and age of stars, we construct a grid of stellar models for eight solar-analog stars including diffusion and rotation-induced mixing for the given ranges of stellar mass, metallicity, and rotational rate. By combining stellar models with observational data including lithium abundance, we obtain more accurate estimations of mass and age for solar-analog stars. The results indicate that stars HIP 56948, HIP 73815, and HIP 78399 are three possible solar twins. Furthermore, we find that lithium depletion due to extra-mixing in solar analogs strongly depends on mass, metallicity, and rotational history. Therefore, lithium abundance can be used as a good constraint in stellar modeling.

  20. Optical and microphysical properties of mineral dust and biomass burning aerosol observed over Warsaw on 10th July 2013

    NASA Astrophysics Data System (ADS)

    Janicka, Lucja; Stachlewska, Iwona; Veselovskii, Igor; Baars, Holger

    2016-04-01

    Biomass burning aerosol originating from Canadian forest fires was widely observed over Europe in July 2013. Favorable weather conditions caused long-term westward flow of smoke from Canada to Western and Central Europe. During this period, PollyXT lidar of the University of Warsaw took wavelength dependent measurements in Warsaw. On July 10th short event of simultaneous advection of Canadian smoke and Saharan dust was observed at different altitudes over Warsaw. Different origination of both air masses was indicated by backward trajectories from HYSPLIT model. Lidar measurements performed with various wavelength (1064, 532, 355 nm), using also Raman and depolarization channels for VIS and UV allowed for distinguishing physical differences of this two types of aerosols. Optical properties acted as input for retrieval of microphysical properties. Comparisons of microphysical and optical properties of biomass burning aerosols and mineral dust observed will be presented.

  1. Optimization of solar cells for air mass zero operation and a study of solar cells at high temperatures, phase 3

    NASA Technical Reports Server (NTRS)

    Blakeslee, A. E.; Hovel, H. J.; Woodall, J. M.

    1977-01-01

    The etch-back epitaxy process is described for producing thin, graded composition GaAlAs layers. The palladium-aluminum contact system is discussed along with its associated problems. Recent solar cell results under simulated air mass zero light and at elevated temperatures are reported and the growth of thin polycrystalline GaAs films on foreign substrates is developed.

  2. A 400-solar-mass black hole in the galaxy M82.

    PubMed

    Pasham, Dheeraj R; Strohmayer, Tod E; Mushotzky, Richard F

    2014-09-04

    M82 X-1, the brightest X-ray source in the galaxy M82, has been thought to be an intermediate-mass black hole (100 to 10,000 solar masses) because of its extremely high luminosity and variability characteristics, although some models suggest that its mass may be only about 20 solar masses. The previous mass estimates were based on scaling relations that use low-frequency characteristic timescales which have large intrinsic uncertainties. For stellar-mass black holes, we know that the high-frequency quasi-periodic oscillations (100-450 hertz) in the X-ray emission that occur in a 3:2 frequency ratio are stable and scale in frequency inversely with black hole mass with a reasonably small dispersion. The discovery of such stable oscillations thus potentially offers an alternative and less ambiguous means of mass determination for intermediate-mass black holes, but has hitherto not been realized. Here we report stable, twin-peak (3:2 frequency ratio) X-ray quasi-periodic oscillations from M82 X-1 at frequencies of 3.32 ± 0.06 hertz and 5.07 ± 0.06 hertz. Assuming that we can extrapolate the inverse-mass scaling that holds for stellar-mass black holes, we estimate the black hole mass of M82 X-1 to be 428 ± 105 solar masses. In addition, we can estimate the mass using the relativistic precession model, from which we get a value of 415 ± 63 solar masses.

  3. Making a Difference: Education at the 10th International Conference on Zebrafish Development and Genetics

    PubMed Central

    Liang, Jennifer O.; Pickart, Michael A.; Pierret, Chris; Tomasciewicz, Henry G.

    2012-01-01

    Abstract Scientists, educators, and students met at the 10th International Conference on Zebrafish Development and Genetics during the 2-day Education Workshop, chaired by Dr. Jennifer Liang and supported in part by the Genetics Society of America. The goal of the workshop was to share expertise, to discuss the challenges faced when using zebrafish in the classroom, and to articulate goals for expanding the impact of zebrafish in education. PMID:23244686

  4. From the corner of N. 10th St. and W. O'Neill ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    From the corner of N. 10th St. and W. O'Neill Ave. Looking west. Housing # 157-162 are on the right, building 156 is straight ahead, and buildings 153, 152, 116, and 115 are to the left. The golf course is directly west of these buildings. - Fitzsimons General Hospital, Bounded by East Colfax to south, Peoria Street to west, Denver City/County & Adams County Line to north, & U.S. Route 255 to east, Aurora, Adams County, CO

  5. Assessing Compensation Reform: Research in Support of the 10th Quadrennial Review of Military Compensation

    DTIC Science & Technology

    2008-01-01

    heterogeneous. Nested Logit Specification The active/reserve dynamic retention model describes individual behav- ior as a series of choices regarding...for error correlation between the reserve and civilian alternatives, we modify the model to a nested logit form for the reserve or civilian choice ...plex job-tenure decisions in circumstances in which current choices iv Assessing Compensation Reform in Support of the 10th QRMC affect future

  6. 14. CLOSEUP VIEW OF THE 10TH AND 11TH FLOOR WINDOWS. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. CLOSE-UP VIEW OF THE 10TH AND 11TH FLOOR WINDOWS. WINDOWS HAVE WHITE TERRA COTTA SILLS, HEADS AND MULLIONS. ARCHES ARE OF TERRA COTTA INCLUDING ORNAMENTATION ABOVE THE 11TH FLOOR WINDOWS. CIRCULAR ORNAMENTATIONS BETWEEN ARCHES ARE TERRA COTTA PAINTED IN BRONZE COLOR. LOUVERS ON THE WINDOWS ARE NOT PART OF THE ORIGINAL DESIGN. THIS IS THE FRONT ELEVATION. - Pacific Telephone & Telegraph Company Building, 1519 Franklin Street, Oakland, Alameda County, CA

  7. Mass-loading of the solar wind at 67P/Churyumov-Gerasimenko. Observations and modelling

    NASA Astrophysics Data System (ADS)

    Behar, E.; Lindkvist, J.; Nilsson, H.; Holmström, M.; Stenberg-Wieser, G.; Ramstad, R.; Götz, C.

    2016-11-01

    Context. The first long-term in-situ observation of the plasma environment in the vicinity of a comet, as provided by the European Rosetta spacecraft. Aims: Here we offer characterisation of the solar wind flow near 67P/Churyumov-Gerasimenko (67P) and its long term evolution during low nucleus activity. We also aim to quantify and interpret the deflection and deceleration of the flow expected from ionization of neutral cometary particles within the undisturbed solar wind. Methods: We have analysed in situ ion and magnetic field data and combined this with hybrid modeling of the interaction between the solar wind and the comet atmosphere. Results: The solar wind deflection is increasing with decreasing heliocentric distances, and exhibits very little deceleration. This is seen both in observations and in modeled solar wind protons. According to our model, energy and momentum are transferred from the solar wind to the coma in a single region, centered on the nucleus, with a size in the order of 1000 km. This interaction affects, over larger scales, the downstream modeled solar wind flow. The energy gained by the cometary ions is a small fraction of the energy available in the solar wind. Conclusions: The deflection of the solar wind is the strongest and clearest signature of the mass-loading for a small, low-activity comet, whereas there is little deceleration of the solar wind.

  8. Advanced solar concentrator mass production, operation, and maintenance cost assessment

    NASA Technical Reports Server (NTRS)

    Niemeyer, W. A.; Bedard, R. J.; Bell, D. M.

    1981-01-01

    The object of this assessment was to estimate the costs of the preliminary design at: production rates of 100 to 1,000,000 concentrators per year; concentrators per aperture diameters of 5, 10, 11, and 15 meters; and various receiver/power conversion package weights. The design of the cellular glass substrate Advanced Solar Concentrator is presented. The concentrator is an 11 meter diameter, two axis tracking, parabolic dish solar concentrator. The reflective surface of this design consists of inner and outer groups of mirror glass/cellular glass gores.

  9. Solar Wind Mass-Loading Due to Dust in the Vicinity of the Sun

    NASA Astrophysics Data System (ADS)

    Rasca, A.; Horanyi, M.

    2012-12-01

    Collisionless shocks due to mass-loading were first discussed to describe the solar wind flow around a cometary atmosphere, showing its choking effects on the flow. Recent observations have led to an increased interest in mass-loading occurring in the solar corona, due to sun-grazing comets and also due to collisional debris production by sunward migrating interplanetary dust particles. Using one-dimensional simulations with a hydrodynamic model we have shown the impact on the solar wind from abrupt mass-loading in the coronal region. Full three-dimensional MHD simulations using the Block-Adaptive-Tree-Solarwind-Roe-Upwind-Scheme (BATS-R-US) accomplish more to mimic specific events applicable to modeling the mass-loaded coronal wind caused by the presence of a sun-grazing comet, for example.

  10. On the deficit problem of mass and energy of solar coronal mass ejections connected with interplanetary shocks

    NASA Technical Reports Server (NTRS)

    Ivanchuk, V. I.; Pishkalo, N. I.

    1995-01-01

    Mean values of a number of parameters of the most powerful coronal mass ejections (CMEs) and interplanetary shocks generated by these ejections are estimated using an analysis of data obtained by the cosmic coronagraphs and spacecrafts, and geomagnetic storm measurements. It was payed attention that the shock mass and mechanical energy, averaging 5 x 10(exp 16) grm and 2 x 10(exp 32) erg respectively, are nearly 10 times larger than corresponding parameters of the ejections. So, the CME energy deficit problem seems to exist really. To solve this problem one can make an assumption that the process of the mass and energy growth of CMEs during their propagation out of the Sun observed in the solar corona is continued in supercorona too up to distances of 10-30 solar radii. This assumption is confirmed by the data analysis of five events observed using zodiacal light photometers of the HELIOS- I and HELIOS-2 spacecrafts. The mass growth rate is estimated to be equal to (1-7) x 10(exp 11) grm/sec. It is concluded that the CME contribution to mass and energy flows in the solar winds probably, is larger enough than the value of 3-5% adopted usually.

  11. INFLUENCE OF THE AMBIENT SOLAR WIND FLOW ON THE PROPAGATION BEHAVIOR OF INTERPLANETARY CORONAL MASS EJECTIONS

    SciTech Connect

    Temmer, Manuela; Rollett, Tanja; Moestl, Christian; Veronig, Astrid M.; Vrsnak, Bojan; Odstrcil, Dusan

    2011-12-20

    We study three coronal mass ejection (CME)/interplanetary coronal mass ejection (ICME) events (2008 June 1-6, 2009 February 13-18, and 2010 April 3-5) tracked from Sun to 1 AU in remote-sensing observations of Solar Terrestrial Relations Observatory Heliospheric Imagers and in situ plasma and magnetic field measurements. We focus on the ICME propagation in interplanetary (IP) space that is governed by two forces: the propelling Lorentz force and the drag force. We address the question: which heliospheric distance range does the drag become dominant and the CME adjust to the solar wind flow. To this end, we analyze speed differences between ICMEs and the ambient solar wind flow as a function of distance. The evolution of the ambient solar wind flow is derived from ENLIL three-dimensional MHD model runs using different solar wind models, namely, Wang-Sheeley-Arge and MHD-Around-A-Sphere. Comparing the measured CME kinematics with the solar wind models, we find that the CME speed becomes adjusted to the solar wind speed at very different heliospheric distances in the three events under study: from below 30 R{sub Sun }, to beyond 1 AU, depending on the CME and ambient solar wind characteristics. ENLIL can be used to derive important information about the overall structure of the background solar wind, providing more reliable results during times of low solar activity than during times of high solar activity. The results from this study enable us to obtain greater insight into the forces acting on CMEs over the IP space distance range, which is an important prerequisite for predicting their 1 AU transit times.

  12. The Implementation of Effective Teaching Practices in English Classroom for Grades 8th, 9th, and 10th.

    ERIC Educational Resources Information Center

    Al-Hilawani, Yasser A.; And Others

    This study explored teachers' behavior as related to effective teaching practices in 8th, 9th, and 10th grade English classrooms in Jordan. The study also examined some variables that could predict teachers' implementation of effective teaching practices and aimed at finding an estimate of the percentage of students in 8th, 9th, and 10th grades…

  13. An Early Warning System: Predicting 10th Grade FCAT Success from 6th Grade FCAT Performance. Research Brief. Volume 0711

    ERIC Educational Resources Information Center

    Froman, Terry; Brown, Shelly; Lapadula, Maria

    2008-01-01

    This Research Brief presents a method for predicting 10th grade Florida Comprehensive Assessment Test (FCAT) success from 6th grade FCAT performance. A simple equation provides the most probable single score prediction, and give-or-take error margins define high and low probability zones for expected 10th grade scores. In addition, a double-entry…

  14. Explaining solar neutrinos with heavy Higgs masses in partial split supersymmetry

    SciTech Connect

    Diaz, Marco Aurelio; Garay, Francisca; Koch, Benjamin

    2009-12-01

    Partial Split Supersymmetry with violation of R-parity as a model for neutrino masses is explored. It is shown that at the one-loop level the model can give predictions that are in agreement with all present experimental values for the neutrino sector. An analytical result is that the small solar neutrino mass difference can be naturally explained in the decoupling limit for the heavy Higgs mass eigenstates.

  15. Activity associated with coronal mass ejections at solar minimum - SMM observations from 1984-1986

    NASA Technical Reports Server (NTRS)

    St. Cyr, O. C.; Webb, D. F.

    1991-01-01

    Seventy-three coronal mass ejections (CMEs) observed by the coronagraph aboard SMM between 1984 and 1986 were examined in order to determine the distribution of various forms of solar activity that were spatially and temporally associated with mass ejections during solar minimum phase. For each coronal mass ejection a speed was measured, and the departure time of the transient from the lower corona estimated. Other forms of solar activity that appeared within 45 deg longitude and 30 deg latitude of the mass ejection and within +/-90 min of its extrapolated departure time were explored. The statistical results of the analysis of these 73 CMEs are presented, and it is found that slightly less than half of them were infrequently associated with other forms of solar activity. It is suggested that the distribution of the various forms of activity related to CMEs does not change at different phases of the solar cycle. For those CMEs with associations, it is found that eruptive prominences and soft X-rays were the most likely forms of activity to accompany the appearance of mass ejections.

  16. Solar wind iron charge states as identifiers of coronal mass ejections and the characterization of a new low energy particle detector

    NASA Astrophysics Data System (ADS)

    Lepri, Susan Therese

    2004-08-01

    We examine Fe charge state distributions in the solar wind. The ionic composition of the solar wind directly reflects corona conditions within 4 5 solar radii. Charge state information can be used to determine coronal electron temperatures of source region plasma. Examination of the Fe charge states obtained by the Solar Wind Ion Composition Spectrometer (SWICS) on the Advanced Composition Explorer (ACE), shows a high correlation of the abundance ratio of Fe≥16+/FeTot > 10% with interplanetary coronal mass ejections (ICMEs) observed at 1 A.U. We designate these as “hot ICMEs” due to their associated high charge states. We use the abundance ratio to develop a threshold average Fe charge state, threshold , applicable to charge state data from other spacecraft unable to determine charge state abundances. Applying the threshold to in-ecliptic data from ACE and data from Ulysses along its polar orbit, we identify hot ICMEs as a function of latitude. We find a factor of four fewer hot ICMEs at high latitude than in the ecliptic. After studying features on the Sun near the time of the ICME eruption, we determine that solar flares are likely the source of the observed high Fe charge states. This result has important implications in understanding the relationship between solar flares and CMEs. For years, a controversy has existed over the causal relationship between flares and CMEs. Now, through the work of this thesis, compositional data provides convincing evidence of an association of flares and CMEs. In addition, we also characterize a new delta-doped charge-coupled device (CCD). The new delta-doped CCD has a dead layer that is ˜1/10 th the thickness of previous SSDs used in ACE/SWIGS. Using this detector, we are able to detect H+ and N+ ions with energies ranging from 1 10 keV in the laboratory. This is a remarkable increase in sensitivity for solid-state particle detectors which currently can only detect particles with energies >30 keV. Application of

  17. Two ten-billion-solar-mass black holes at the centres of giant elliptical galaxies.

    PubMed

    McConnell, Nicholas J; Ma, Chung-Pei; Gebhardt, Karl; Wright, Shelley A; Murphy, Jeremy D; Lauer, Tod R; Graham, James R; Richstone, Douglas O

    2011-12-08

    Observational work conducted over the past few decades indicates that all massive galaxies have supermassive black holes at their centres. Although the luminosities and brightness fluctuations of quasars in the early Universe suggest that some were powered by black holes with masses greater than 10 billion solar masses, the remnants of these objects have not been found in the nearby Universe. The giant elliptical galaxy Messier 87 hosts the hitherto most massive known black hole, which has a mass of 6.3 billion solar masses. Here we report that NGC 3842, the brightest galaxy in a cluster at a distance from Earth of 98 megaparsecs, has a central black hole with a mass of 9.7 billion solar masses, and that a black hole of comparable or greater mass is present in NGC 4889, the brightest galaxy in the Coma cluster (at a distance of 103 megaparsecs). These two black holes are significantly more massive than predicted by linearly extrapolating the widely used correlations between black-hole mass and the stellar velocity dispersion or bulge luminosity of the host galaxy. Although these correlations remain useful for predicting black-hole masses in less massive elliptical galaxies, our measurements suggest that different evolutionary processes influence the growth of the largest galaxies and their black holes.

  18. Solar Flares and Coronal Mass Ejections Are Aspects of Same Event

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    Solar flares and coronal mass ejections from the Sun are intertwined aspects of the same event, rather than two separate events, it was announced at a meeting of the American Astronomical Society's Solar Physics Division on 18 June. The finding resolves ``a chicken-and-egg type of problem as to which came first,'' according to Peter Gallagher, solar physicist with the NASA Goddard Space Flight Center. He said that the problem had been debated for several decades. Gallagher is research scientist for two of the three spacecraft involved with the findings: NASA's Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI), and NASA's Transition Region and Coronal Explorer, (TRACE). The third spacecraft is the Solar and Heliospheric Observatory spacecraft (SOHO), which is a cooperative effort of NASA and the European Space Agency.

  19. Nanoetching process on silicon solar cell wafers during mass production for surface texture improvement.

    PubMed

    Ahn, Chisung; Kulkarni, Atul; Ha, Soohyun; Cho, Yujin; Kim, Jeongin; Park, Heejin; Kim, Taesung

    2014-12-01

    Major challenge in nanotechnology is to improve the solar cells efficiency. This can be achieved by controlling the silicon solar cell wafer surface structure. Herein, we report a KOH wet etching process along with an ultrasonic cleaning process to improve the surface texture of silicon solar cell wafers. We evaluated the KOH temperature, concentration, and ultra-sonication time. It was observed that the surface texture of the silicon solar wafer changed from a pyramid shape to a rectangular shape under edge cutting as the concentration of the KOH solution was increased. We controlled the etching time to avoid pattern damage and any further increase of the reflectance. The present study will be helpful for the mass processing of silicon solar cell wafers with improved reflectance.

  20. Coronal Mass Ejections and Solar Proton Events During the Great March 1989 Disturbances

    NASA Technical Reports Server (NTRS)

    Feynman, J.

    1995-01-01

    The great active region of March 1989 was the most prolific in X- rays in the preceding 15 years, and produced very large bright optical solar flares. The accompanying solar energetic particle event was one of the four most intense episodes since 1963. These increases in particle fluxes are compared to the major X-ray and optical flares and to the major coronal mass ejections in order to test hypothesis.

  1. Development of mass-producible line-focus tracking concentrating solar collectors. Category 2: Control systems

    NASA Astrophysics Data System (ADS)

    Hickman, T. E.

    1984-08-01

    The system design criteria and concept of a mass producible modular electronic control system for solar industrial process heating installations are discussed. The control system consists of: the master controller; the weather tower, including a solar tracking angle reference; and overtemperature switch, group control box, tracker/controller, and drive motor for each group of single axis tracking parabolic trough solar collectors. System automatic operation is outlined for unattended installations. The production approach and cost estimates, both based on a production rate of 5 million ft(2) of collector aperature per year, are discussed here. The potential for further development of the system is also presented.

  2. Influence of a stellar wind on the evolution of a star of 30 solar masses

    NASA Technical Reports Server (NTRS)

    Stothers, R.; Chin, C.

    1980-01-01

    A coarse grid of theoretical evolutionary tracks was calculated for a 30 solar mass star to determine the role of mass loss in the evolution of the star during core He burning. The Cox-Stewart opacities were applied, and the rate of mass loss, criterion for convection, and initial chemical composition were taken into consideration. Using the Schwarzschild criterion, the star undergoes little mass loss during core He burning and remains a blue supergiant separated from main sequence stars on the H-R diagram. The stellar remnant consists of the original He core and may appear bluer than equally luminous main sequence stars; a variety of possible evolutionary tracks can be obtained for an initial solar mass of 30 with proper choices of free parameters.

  3. Solar Radio Emission as a Prediction Technique for Coronal Mass Ejections' registration

    NASA Astrophysics Data System (ADS)

    Sheiner, Olga; Fridman, Vladimir

    2016-07-01

    The concept of solar Coronal Mass Ejections (CMEs) as global phenomenon of solar activity caused by the global magnetohydrodynamic processes is considered commonly accepted. These processes occur in different ranges of emission, primarily in the optical and the microwave emission being generated near the surface of the sun from a total of several thousand kilometers. The usage of radio-astronomical data for CMEs prediction is convenient and promising. Actually, spectral measurements of solar radio emission cover all heights of solar atmosphere, sensitivity and accuracy of measurements make it possible to record even small energy changes. Registration of the radio emission is provided by virtually all-weather ground-based observations, and there is the relative cheapness to obtain the corresponding information due to a developed system of monitoring observations. On the large statistical material there are established regularities of the existence of sporadic radio emission at the initial stage of CMEs' formation and propagation in the lower layers of the solar atmosphere during the time interval from 2-3 days to 2 hours before registration of CMEs on coronagraph. In this report we present the prediction algorithm and scheme of short-term forecasting developed on the base of statistical analysis regularities of solar radio emission data prior to "isolated" solar Coronal Mass Ejections registered in 1998, 2003, 2009-2013.

  4. Mass study for modular approaches to a solar electric propulsion module

    NASA Technical Reports Server (NTRS)

    Sharp, G. R.; Cake, J. E.; Oglebay, J. C.; Shaker, F. J.

    1977-01-01

    The propulsion module comprises six to eight 30-cm thruster and power processing units, a mercury propellant storage and distribution system, a solar array ranging in power from 18 to 25 kW, and the thermal and structure systems required to support the thrust and power subsystems. Launch and on-orbit configurations are presented for both modular approaches. The propulsion module satisfies the thermal design requirements of a multimission set including: Mercury, Saturn, and Jupiter orbiters, a 1-AU solar observatory, and comet and asteroid rendezvous. A detailed mass breakdown and a mass equation relating the total mass to the number of thrusters and solar array power requirement is given for both approaches.

  5. Development of 10th Grade Norms for the ASVAB (Armed Services Vocational Aptitude Battery).

    DTIC Science & Technology

    1987-05-01

    OPERATIO D R DIVOI ET AL UNCLASSIFIED MAY 87 CRC-562 N88814-87-C-088i F/G 5 /8 NL. EIh EE EEEnhEhhEEEjhh *i ""’ 1. LI.2 IIuu, - 11111-112.2 02. 1125I...APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 41 "ERFORMING ORGANIZA71ON REPORT %uM8ER(S) 5 . MONITORING ORGANIZATION REPORT NU MBER(S) CRC 562 ASa...copies) ’ 5 ’, Si S .. j’- , CRC 562 /May 1987 DEVELOPMENT OF 10TH GRADE NORMS FOR THE ASVAB D- R. Divgi Gary E. Home Marine Corps Operations Analysis Group

  6. Collaborating to Move Research Forward: Proceedings of the 10th Annual Bladder Cancer Think Tank.

    PubMed

    Kamat, Ashish M; Agarwal, Piyush; Bivalacqua, Trinity; Chisolm, Stephanie; Daneshmand, Sia; Doroshow, James H; Efstathiou, Jason A; Galsky, Matthew; Iyer, Gopa; Kassouf, Wassim; Shah, Jay; Taylor, John; Williams, Stephen B; Quale, Diane Zipursky; Rosenberg, Jonathan E

    2016-04-27

    The 10th Annual Bladder Cancer Think Tank was hosted by the Bladder Cancer Advocacy Network and brought together a multidisciplinary group of clinicians, researchers, representatives and Industry to advance bladder cancer research efforts. Think Tank expert panels, group discussions, and networking opportunities helped generate ideas and strengthen collaborations between researchers and physicians across disciplines and between institutions. Interactive panel discussions addressed a variety of timely issues: 1) data sharing, privacy and social media; 2) improving patient navigation through therapy; 3) promising developments in immunotherapy; 4) and moving bladder cancer research from bench to bedside. Lastly, early career researchers presented their bladder cancer studies and had opportunities to network with leading experts.

  7. [Contribution of the 10th International Classification of Diseases to pediatric and adolescent psychiatry].

    PubMed

    Vojtík, V

    1993-12-01

    The 10th revision of the classification of mental disorders and behavioural disorders is due to description of clinical symptoms and diagnostic criteria more accurate and enriches the activities of departments of child and adolescent psychiatry. Diagnostics, therapy and prevention profit not only from sections dealing with newly conceived disorders which begin in childhood and adolescence but also other sections where problems relating to children and adolescents are pointed out. The Czech translation inovates clinical pictures given in our textbook of Child psychiatry published in 1963 and thus replaces partly a hitherto not published modern Czech textbook of child and adolescent psychiatry.

  8. From the corner of E. Mccloskey Ave. and N. 10th ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    From the corner of E. Mccloskey Ave. and N. 10th St., looking west with building 135 (gas station) on the left. Beyond it is building 119 and to the right of 119 is the gable end of the north side of 120. Beyond and perpendicular to building 120 are 118 and 117. - Fitzsimons General Hospital, Bounded by East Colfax to south, Peoria Street to west, Denver City/County & Adams County Line to north, & U.S. Route 255 to east, Aurora, Adams County, CO

  9. Health Policy Basics: Implementation of the International Classification of Disease, 10th Revision.

    PubMed

    Outland, Brian; Newman, Mary M; William, Margo J

    2015-10-06

    The International Classification of Diseases (ICD) standardizes diagnostic codes into meaningful criteria to enable the storage and retrieval of information regarding patient care. Whereas other countries have been using ICD, 10th Revision (ICD-10), for years, the United States will transition from ICD, Ninth Revision, Clinical Modification (ICD-9-CM), to ICD-10, on 1 October 2015. This transition is one of the largest and most technically challenging changes that the medical community has experienced in the past several decades. This article outlines the implications of moving to ICD-10 and recommends resources to facilitate the transition.

  10. Epigenetics in autoimmune disorders: highlights of the 10th Sjögren's syndrome symposium.

    PubMed

    Lu, Qianjin; Renaudineau, Yves; Cha, Seunghee; Ilei, Gabor; Brooks, Wesley H; Selmi, Carlo; Tzioufas, Athanasios; Pers, Jacques-Olivier; Bombardieri, Stefano; Gershwin, M Eric; Gay, Steffen; Youinou, Pierre

    2010-07-01

    During the 10th International Symposium on Sjögren's Syndrome held in Brest, France, from October 1-3, 2009 (http://www.sjogrensymposium-brest2009.org), the creation of an international epigenetic autoimmune group has been proposed to establish gold standards and to launch collaborative studies. During this "epigenetics session", leading experts in the field presented and discussed the most recent developments of this topic in Sjögren's Syndrome research. The "Brest epigenetic task force" was born and has scheduled a meeting in Ljubljana, Slovenia during the 7th Autoimmunity congress in May 2010.The following is a report of that session.

  11. Search for sub-eV mass solar axions by the CERN Axion Solar Telescope with 3He buffer gas.

    PubMed

    Arik, M; Aune, S; Barth, K; Belov, A; Borghi, S; Bräuninger, H; Cantatore, G; Carmona, J M; Cetin, S A; Collar, J I; Dafni, T; Davenport, M; Eleftheriadis, C; Elias, N; Ezer, C; Fanourakis, G; Ferrer-Ribas, E; Friedrich, P; Galán, J; García, J A; Gardikiotis, A; Gazis, E N; Geralis, T; Giomataris, I; Gninenko, S; Gómez, H; Gruber, E; Guthörl, T; Hartmann, R; Haug, F; Hasinoff, M D; Hoffmann, D H H; Iguaz, F J; Irastorza, I G; Jacoby, J; Jakovčić, K; Karuza, M; Königsmann, K; Kotthaus, R; Krčmar, M; Kuster, M; Lakić, B; Laurent, J M; Liolios, A; Ljubičić, A; Lozza, V; Lutz, G; Luzón, G; Morales, J; Niinikoski, T; Nordt, A; Papaevangelou, T; Pivovaroff, M J; Raffelt, G; Rashba, T; Riege, H; Rodríguez, A; Rosu, M; Ruz, J; Savvidis, I; Silva, P S; Solanki, S K; Stewart, L; Tomás, A; Tsagri, M; van Bibber, K; Vafeiadis, T; Villar, J A; Vogel, J K; Yildiz, S C; Zioutas, K

    2011-12-23

    The CERN Axion Solar Telescope (CAST) has extended its search for solar axions by using (3)He as a buffer gas. At T=1.8 K this allows for larger pressure settings and hence sensitivity to higher axion masses than our previous measurements with (4)He. With about 1 h of data taking at each of 252 different pressure settings we have scanned the axion mass range 0.39 eV≲m(a)≲0.64 eV. From the absence of excess x rays when the magnet was pointing to the Sun we set a typical upper limit on the axion-photon coupling of g(aγ)≲2.3×10(-10) GeV(-1) at 95% C.L., the exact value depending on the pressure setting. Kim-Shifman-Vainshtein-Zakharov axions are excluded at the upper end of our mass range, the first time ever for any solar axion search. In the future we will extend our search to m(a)≲1.15 eV, comfortably overlapping with cosmological hot dark matter bounds.

  12. Exploring Mass Loss, Low-Z Accretion, and Convective Overshoot in Solar Models to Mitigate the Solar Abundance Problem

    NASA Astrophysics Data System (ADS)

    Guzik, Joyce Ann; Mussack, Katie

    2010-04-01

    Solar models using the new lower abundances of Asplund et al. or Caffau et al. do not agree as well with helioseismic inferences as models that use the higher Grevesse & Noels or Grevesse & Sauval abundances. Adopting the new abundances leads to models with sound-speed discrepancies of up to 1.4% below the base of the convection zone (CZ) compared to discrepancies of less than 0.4% with the old abundances; a CZ that is too shallow; and a CZ helium abundance that is too low. Here we briefly review recent attempts to restore agreement, and we evaluate three changes to the models: early mass loss, accretion of low-Z material, and convective overshoot. One goal of these attempts is to explore models that could preserve the structure in the interior obtained with the old abundances while accommodating the new abundances at the surface. Although the mass-losing and accretion models show some improvement in agreement with seismic constraints, a satisfactory resolution to the solar abundance problem remains to be found. In addition, we perform a preliminary analysis of models with the Caffau et al. abundances that shows that the sound-speed discrepancy is reduced to only about 0.6% at the CZ base, compared to 1.4% for the Asplund et al. abundances and 0.4% for the Grevesse & Noels abundances. Furthermore, including mass loss in models with the Caffau et al. abundances may improve sound-speed agreement and help resolve the solar lithium problem.

  13. Energy considerations for solar prominences with mass inflow

    NASA Astrophysics Data System (ADS)

    Anzer, U.; Heinzel, P.

    2000-06-01

    In this Letter we study the inflow of enthalpy and ionisation energy into solar prominences. We use 1D stationary slab models for the prominence to calculate this inflow. We compare the resulting energy gain with the integrated radiative losses obtained for such slab models. We find that for reasonable inflow velocities many of our models can be in energy equilibrium; only the very massive prominences will either require some additional heating or they have to cool down to low central temperatures. We also discuss the possibility or heating the prominence by vertical downflows.

  14. EDITORIAL: The 10th International Symposium on Measurement Technology and Intelligent Instruments (ISMTII 2011) The 10th International Symposium on Measurement Technology and Intelligent Instruments (ISMTII 2011)

    NASA Astrophysics Data System (ADS)

    Kim, Seung-Woo

    2012-05-01

    Measurement and instrumentation have long played an important role in production engineering, through supporting both the traditional field of manufacturing and the new field of micro/nanotechnology. Papers published in this special feature were selected and updated from those presented at The 10th International Symposium on Measurement Technology and Intelligent Instruments (ISMTII 2011) held at KAIST, Daejeon, South Korea, on 29 June-2 July 2011. ISMTII 2011 was organized by ICMI (The International Committee on Measurements and Instrumentation), Korean Society for Precision Engineering (KSPE), Japan Society for Precision Engineering (JSPE), Chinese Society for Measurement (CSM) and KAIST. The Symposium was also supported by the Korea BK21 Valufacture Institute of Mechanical Engineering at KAIST. A total of 225 papers, including four keynote papers, were presented at ISMTII 2011, covering a wide range of topics, including micro/nanometrology, precision measurement, online & in-process measurement, surface metrology, optical metrology & image processing, biomeasurement, sensor technology, intelligent measurement & instrumentation, uncertainty, traceability & calibration, and signal processing algorithms. The organizing members recommended publication of updated versions of some of the best ISMTII 2011 papers in this special feature of Measurement Science and Technology. As guest editor, I believe that this special feature presents the newest information on advances in measurement technology and intelligent instruments from basic research to applied systems for production engineering. I would like to thank all the authors for their great contributions to this special feature and the referees for their careful reviews of the papers. I would also like to express our thanks and appreciation to the publishing staff of MST for their dedicated efforts that have made this special feature possible.

  15. Evidence for a solar cause of the Pleistocene mass extinction.

    NASA Astrophysics Data System (ADS)

    Laviolette, Paul A.

    2011-06-01

    The hypothesis is presented that an abrupt rise in atmospheric radiocarbon concentration evident in the Cariaco Basin varve record at 12,837±10 cal yrs BP contemporaneous with the Rancholabrean termination, may have been produced by a super-sized solar proton event (SPE) having a fluence of ~1.3 X 10^11 protons/cm^2. A SPE of this magnitude would have been large enough to deliver a lethal radiation dose of at least 3 - 6 Sv to the Earth's surface, and hence could have been a principal cause of the final termination of the Pleistocene megafauna and several genera of smaller mammals and birds. The event time-correlates with a large magnitude acidity spike found at 1708.65 m in the GISP2 Greenland ice record, which is associated with high NO-3 ion concentrations and a rapid rise in 10^Be deposition rate, all of which are indicators of a sudden cosmic ray influx. The depletion of nitrate ion within this acidic ice layer suggests that the snowpack surface at that time was exposed to intense UV for a prolonged period which is consistent with a temporary destruction of the polar ozone layer by solar cosmic rays. The acidity event also coincides with a large magnitude, abrupt climatic excursion and is associated with elevated ammonium ion concentrations, an indicator of global fires.

  16. Axisymmetric Ab Initio Core-Collapse Supernova Simulations of 12--25 Solar Mass Stars

    SciTech Connect

    Bruenn, S. W.; Mezzacappa, Anthony; Hix, William Raphael; Lentz, E. J.; Messer, Bronson; Lingerfelt, Eric J; Blondin, J. M.; Endeve, Eirik; Marronetti, Pedro; Yakunin, Konstantin

    2013-01-01

    We present an overview of four ab initio axisymmetric core-collapse supernova simulations employing detailed spectral neutrino transport computed with our CHIMERA code and initiated from Woosley & Heger (2007) progenitors of mass 12, 15, 20, and 25 M_sun. All four models exhibit shock revival over ~ 200 ms (leading to the possibility of explosion), driven by neutrino energy deposition. Hydrodynamic instabilities that impart substantial asymmetries to the shock aid these revivals, with convection appearing first in the 12 solar mass model and the standing accretion shock instability (SASI) appearing first in the 25 solar mass model. Three of the models have developed pronounced prolate morphologies (the 20 solar mass model has remained approximately spherical). By 500 ms after bounce the mean shock radii in all four models exceed 3,000 km and the diagnostic explosion energies are 0.33, 0.66, 0.65, and 0.70 Bethe (B=10^{51} ergs) for the 12, 15, 20, and 25 solar mass models, respectively, and are increasing. The three least massive of our models are already sufficiently energetic to completely unbind the envelopes of their progenitors (i.e., to explode), as evidenced by our best estimate of their explosion energies, which first become positive at 320, 380, and 440 ms after bounce. By 850 ms the 12 solar mass diagnostic explosion energy has saturated at 0.38 B, and our estimate for the final kinetic energy of the ejecta is ~ 0.3 B, which is comparable to observations for lower-mass progenitors.

  17. The Slow and Fast Solar Wind Boundary, Corotating Interaction Regions, and Coronal Mass Ejection observations with Solar Probe Plus and Solar Orbiter (Invited)

    NASA Astrophysics Data System (ADS)

    Velli, M. M.

    2013-12-01

    The Solar Probe Plus and Solar Orbiter missions have as part of their goals to understand the source regions of the solar wind and of the heliospheric magnetic field. In the heliosphere, the solar wind is made up of interacting fast and slow solar wind streams as well as a clearly intermittent source of flow and field, arising from coronal mass ejections (CMEs). In this presentation a summary of the questions associated with the distibution of wind speeds and magnetic fields in the inner heliosphere and their origin on the sun will be summarized. Where and how does the sharp gradient in speeds develop close to the Sun? Is the wind source for fast and slow the same, and is there a steady component or is its origin always intermittent in nature? Where does the heliospheric current sheet form and how stable is it close to the Sun? What is the distribution of CME origins and is there a continuum from large CMEs to small blobs of plasma? We will describe our current knowledge and discuss how SPP and SO will contribute to a more comprehensive understanding of the sources of the solar wind and magnetic fields in the heliosphere.

  18. Solar cycle variation of some mass dependent characteristics of upflowing beams of terrestrial ions

    NASA Technical Reports Server (NTRS)

    Collin, H. L.; Peterson, W. K.; Shelley, E. G.

    1987-01-01

    Examination of the S3-3 and DE ion composition data spread over a solar cycle indicates that some characteristics of energetic upflowing terrestrial ion beams above the auroral zone show dependence on solar cycle. At solar maximum the different ion beam mass components have comparable mean energies, and O(+) dominates the beam composition. The ion energies are consistent with having been acquired from the potential drop below the satellite inferred from the electron loss cone distributions. At solar minimum the beam composition is dominated by H(+), but the O(+) has a higher mean energy and is hotter than the H(+) component. Also, the O(+) has more energy than it could itself have acquired from the potential drop. These observations are qualitatively consistent with the ion beams having acquired their energies from a parallel electric field and being partially thermalized through the two-stream instability between the two ion species, with this effect being modulated by the beam composition.

  19. Tracking Nonradial Motions and Azimuthal Expansions of Interplanetary CMEs with the Solar Mass Ejection Imager

    SciTech Connect

    Kahler, Stephen

    2010-03-25

    The trajectories of interplanetary CMEs (ICMEs) are modified by their interactions with solar wind streams. These interactions can result in non-radial deflections of ICME trajectories and changes to their rates of azimuthal expansion. The Solar Mass Ejection Imager (SMEI), launched earlier in 2003 January, has provided heliospheric images of several hundred ICMEs during the declining portion of solar cycle 23. We selected three SMEI ICMEs, each traversing a range of solar elongation angles epsilon>20 deg. , and measured the time changes of their leading-edge profiles plotted against position angle, PA. The parabolic fits to those profiles yielded the propagation directions of the ICMEs as well as their leading-edge curvatures and time profiles. The selected ICMEs were associated with LASCO CMEs, so we tracked the PA variations in their propagation over 1 to 3-day periods. We found good fits for two of the ICMEs, but one yielded generally poor fits.

  20. Dynamic model of heat and mass transfer in rectangular adsorber of a solar adsorption machine

    NASA Astrophysics Data System (ADS)

    Chekirou, W.; Boukheit, N.; Karaali, A.

    2016-10-01

    This paper presents the study of a rectangular adsorber of solar adsorption cooling machine. The modeling and the analysis of the adsorber are the key point of such studies; because of the complex coupled heat and mass transfer phenomena that occur during the working cycle. The adsorber is heated by solar energy and contains a porous medium constituted of activated carbon AC-35 reacting by adsorption with methanol. To study the solar collector type effect on system's performances, the used model takes into account the variation of ambient temperature and solar intensity along a simulated day, corresponding to a total daily insolation of 26.12 MJ/m2 with ambient temperature average of 27.7 °C, which is useful to know the daily thermal behavior of the rectangular adsorber.

  1. Models of material ejection. [of solar coronal mass

    NASA Technical Reports Server (NTRS)

    Steinolfson, R. S.

    1990-01-01

    Some recently developed models related to the formation of a coronal mass ejection (CME) are reviewed. The models individually consider the stability of a prominence, the eruption of a coupled prominence and CME configuration with driven reconnection below the prominence, magnetic arcade equilibrium, and coronal evolution due to shear motion. No effort is made to critique the various models. Their relevance to actual observed material ejections will ultimately be determined by detailed comparison with present and future observations.

  2. Solar Energetic Particle Acceleration by a Shock Wave Accompanying a Coronal Mass Ejection in the Solar Atmosphere

    NASA Astrophysics Data System (ADS)

    Petukhova, A. S.; Petukhov, I. S.; Petukhov, S. I.; Ksenofontov, L. T.

    2017-02-01

    Solar energetic particle acceleration by a shock wave accompanying a coronal mass ejection (CME) is studied. The description of the accelerated particle spectrum evolution is based on the numerical calculation of the diffusive transport equation with a set of realistic parameters. The relation between the CME and shock speeds, which depend on the initial CME radius, is determined. Depending on the initial CME radius, its speed, and the magnetic energy of the scattering Alfvén waves, the accelerated particle spectrum is established 10–60 minutes from the beginning of CME motion. The maximum energies of particles reach 0.1–10 GeV. The CME radii of 3–5 {R}ȯ and the shock radii of 5–10 {R}ȯ agree with observations. The calculated particle spectra agree with the observed ones in events registered by ground-based detectors if the turbulence spectrum in the solar corona significantly differs from the Kolmogorov one.

  3. New directions in research: report from the 10th International Conference on AIDS.

    PubMed Central

    Berger, P B

    1995-01-01

    Research findings presented at the 10th International Conference on AIDS, held in Yokohama, Japan, in August 1994, indicate that few advances have been made in standard antiretroviral therapy for HIV infection. The perinatal administration of AZT (zidovudine) was reported to reduce transmission of HIV from mother to child, and its use in combination with acyclovir appears to improve survival among patients with advanced disease. Other research has focused on asymptomatic patients with long-standing HIV infection. Their survival may be related to the activity of cell antiviral factor, a cytokine produced by CD8+ cells. In gene therapy research, one approach involved the genetic alteration of target cells to enable them to render the virus harmless. A second approach consisted of enhancing the function of CD8+ cells to allow them to compensate for dysfunctional CD4+ cells. The author believes that gene therapy may offer the greatest hope of an effective treatment for HIV infection. PMID:7780908

  4. 10th World IHEA and ECHE Joint Congress: health economics in the age of longevity.

    PubMed

    Jakovljevic, Mihajlo B; Getzen, Thomas E; Torbica, Aleksandra; Anegawa, Tomofumi

    2014-12-01

    The 10th consecutive World Health Economics conference was organized jointly by International Health Economics Association and European Conference on Health Economics Association and took place at The Trinity College, Dublin, Ireland in July 2014. It has attracted broad participation from the global professional community devoted to health economics teaching,research and policy applications. It has provided a forum for lively discussion on hot contemporary issues such as health expenditure projections, reimbursement regulations,health technology assessment, universal insurance coverage, demand and supply of hospital services, prosperity diseases, population aging and many others. The high-profile debate fostered by this meeting is likely to inspire further methodological advances worldwide and spreading of evidence-based policy practice from OECD towards emerging markets.

  5. Tuskegee Bioethics Center 10th anniversary presentation: "Commemorating 10 years: ethical perspectives on origin and destiny".

    PubMed

    Prograis, Lawrence J

    2010-08-01

    More than 70 years have passed since the beginning of the Public Health Service syphilis study in Tuskegee, Alabama, and it has been over a decade since President Bill Clinton formally apologized for it and held a ceremony for the Tuskegee study participants. The official launching of the Tuskegee University National Center for Bioethics in Research and Health Care took place two years after President Clinton's apology. How might we fittingly discuss the Center's 10th Anniversary and the topic 'Commemorating 10 Years: Ethical Perspectives on Origin and Destiny'? Over a decade ago, a series of writers, many of them African Americans, wrote a text entitled 'African-American Perspectives on Biomedical Ethics'; their text was partly responsible for a prolonged reflection by others to produce a subsequent work, 'African American Bioethics: Culture, Race and Identity'. What is the relationship between the discipline of bioethics and African American culture? This and related questions are explored in this commentary.

  6. Space Commerce 1994 Forum: The 10th National Space Symposium. Proceedings report

    NASA Astrophysics Data System (ADS)

    Lipskin, Beth Ann; Patterson, Sara; Aragon, Larry; Brescia, David A.; Flannery, Jack; Mossey, Roberty; Regan, Christopher; Steeby, Kurt; Suhr, Stacy; Zimkas, Chuck

    1994-04-01

    The theme of the 10th National Space Symposium was 'New Windows of Opportunity'. These proceedings cover the following: Business Trends in High Tech Commercialization; How to Succeed in Space Technology Business -- Making Dollars and Sense; Obstacles and Opportunities to Success in Technology Commercialization NASA's Commercial Technology Mission -- a New Way of Doing Business: Policy and Practices; Field Center Practices; Practices in Action -- A New Way: Implementation and Business Opportunities; Space Commerce Review; Windows of Opportunity; the International Space Station; Space Support Forum; Spacelift Update; Competitive Launch Capabilities; Supporting Life on Planet Earth; National Security Space Issues; NASA in the Balance; Earth and Space Observations -- Did We Have Cousins on Mars?; NASA: A New Vision for Science; and Space Technology Hall of Fame.

  7. Collaborating to Move Research Forward: Proceedings of the 10th Annual Bladder Cancer Think Tank

    PubMed Central

    Kamat, Ashish M.; Agarwal, Piyush; Bivalacqua, Trinity; Chisolm, Stephanie; Daneshmand, Sia; Doroshow, James H.; Efstathiou, Jason A.; Galsky, Matthew; Iyer, Gopa; Kassouf, Wassim; Shah, Jay; Taylor, John; Williams, Stephen B.; Quale, Diane Zipursky; Rosenberg, Jonathan E.

    2016-01-01

    The 10th Annual Bladder Cancer Think Tank was hosted by the Bladder Cancer Advocacy Network and brought together a multidisciplinary group of clinicians, researchers, representatives and Industry to advance bladder cancer research efforts. Think Tank expert panels, group discussions, and networking opportunities helped generate ideas and strengthen collaborations between researchers and physicians across disciplines and between institutions. Interactive panel discussions addressed a variety of timely issues: 1) data sharing, privacy and social media; 2) improving patient navigation through therapy; 3) promising developments in immunotherapy; 4) and moving bladder cancer research from bench to bedside. Lastly, early career researchers presented their bladder cancer studies and had opportunities to network with leading experts. PMID:27376139

  8. Space Commerce 1994 Forum: The 10th National Space Symposium. Proceedings report

    NASA Technical Reports Server (NTRS)

    Lipskin, Beth Ann (Editor); Patterson, Sara (Editor); Aragon, Larry (Editor); Brescia, David A. (Editor); Flannery, Jack (Editor); Mossey, Roberty (Editor); Regan, Christopher (Editor); Steeby, Kurt (Editor); Suhr, Stacy (Editor); Zimkas, Chuck (Editor)

    1994-01-01

    The theme of the 10th National Space Symposium was 'New Windows of Opportunity'. These proceedings cover the following: Business Trends in High Tech Commercialization; How to Succeed in Space Technology Business -- Making Dollars and Sense; Obstacles and Opportunities to Success in Technology Commercialization NASA's Commercial Technology Mission -- a New Way of Doing Business: Policy and Practices; Field Center Practices; Practices in Action -- A New Way: Implementation and Business Opportunities; Space Commerce Review; Windows of Opportunity; the International Space Station; Space Support Forum; Spacelift Update; Competitive Launch Capabilities; Supporting Life on Planet Earth; National Security Space Issues; NASA in the Balance; Earth and Space Observations -- Did We Have Cousins on Mars?; NASA: A New Vision for Science; and Space Technology Hall of Fame.

  9. HAT-P-26b: A Neptune-mass Exoplanet with Primordial Solar Heavy Element Abundance

    NASA Astrophysics Data System (ADS)

    Wakeford, Hannah; Sing, David; Deming, Drake; Kataria, Tiffany; Lopez, Eric

    2016-10-01

    A trend in giant planet mass and atmospheric heavy elemental abundance was first noted last century from observations of planets in our own solar system. These four data points from Jupiter, Saturn, Uranus, and Neptune have served as a corner stone of planet formation theory. Here we add another point in the mass-metallicity trend from a detailed observational study of the extrasolar planet HAT-P-26b, which inhabits the critical mass regime near Neptune and Uranus. Neptune-sized worlds are among the most common planets in our galaxy and frequently exist in orbital periods very different from that of our own solar system ice giants. Atmospheric studies are the principal window into these worlds, and thereby into their formation and evolution, beyond those of our own solar system. Using the Hubble Space Telescope and Spitzer, from the optical to the infrared, we conducted a detailed atmospheric study of the Neptune-mass exoplanet HAT-P-26b over 0.5 to 4.5 μm. We detect prominent H2O absorption at 1.4 μm to 525 ppm in the atmospheric transmission spectrum. We determine that HAT-P-26b's atmosphere is not rich in heavy elements (≈1.8×solar), which goes distinctly against the solar system mass-metallicity trend. This likely indicates that HAT-P-26b's atmosphere is primordial and obtained its gaseous envelope late in its disk lifetime with little contamination from metal-rich planetesimals.

  10. HAT-P-26b: A Neptune-mass Exoplanet with Primordial Solar Heavy Element Abundance

    NASA Astrophysics Data System (ADS)

    Wakeford, Hannah R.; Sing, David K.; Kataria, Tiffany; Deming, Drake; Nikolov, Nikolay; Lopez, Eric; Tremblin, Pascal; Skalid Amundsen, David; Lewis, Nikole K.; Mandell, Avi; Fortney, Jonathan J.; Knutson, Heather; Benneke, Björn; Evans, Tom M.

    2017-01-01

    A trend in giant planet mass and atmospheric heavy elemental abundance was first noted last century from observations of planets in our own solar system. These four data points from Jupiter, Saturn, Uranus, and Neptune have served as a corner stone of planet formation theory. Here we add another point in the mass-metallicity trend from a detailed observational study of the extrasolar planet HAT-P-26b, which inhabits the critical mass regime near Neptune and Uranus. Neptune-sized worlds are among the most common planets in our galaxy and frequently exist in orbital periods very different from that of our own solar system ice giants. Atmospheric studies are the principal window into these worlds, and thereby into their formation and evolution, beyond those of our own solar system. Using the Hubble Space Telescope and Spitzer, from the optical to the infrared, we conducted a detailed atmospheric study of the Neptune-mass exoplanet HAT-P-26b over 0.5 to 4.5 μm. We detect prominent H2O absorption at 1.4 μm to 525 ppm in the atmospheric transmission spectrum. We determine that HAT-P-26b’s atmosphere is not rich in heavy elements (≈1.8×solar), which goes distinctly against the solar system mass-metallicity trend. This likely indicates that HAT-P-26b’s atmosphere is primordial and obtained its gaseous envelope late in its disk lifetime with little contamination from metal-rich planetesimals.

  11. Mass breakdown model of solar-photon sail shuttle: The case for Mars

    NASA Astrophysics Data System (ADS)

    Vulpetti, Giovanni; Circi, Christian

    2016-02-01

    The main aim of this paper is to set up a many-parameter model of mass breakdown to be applied to a reusable Earth-Mars-Earth solar-photon sail shuttle, and analyze the system behavior in two sub-problems: (1) the zero-payload shuttle, and (2) given the sailcraft sail loading and the gross payload mass, find the sail area of the shuttle. The solution to the subproblem-1 is of technological and programmatic importance. The general analysis of subproblem-2 is presented as a function of the sail side length, system mass, sail loading and thickness. In addition to the behaviors of the main system masses, useful information for future work on the sailcraft trajectory optimization is obtained via (a) a detailed mass model for the descent/ascent Martian Excursion Module, and (b) the fifty-fifty solution to the sailcraft sail loading breakdown equation. Of considerable importance is the evaluation of the minimum altitude for the rendezvous between the ascent rocket vehicle and the solar-photon sail propulsion module, a task performed via the Mars Climate Database 2014-2015. The analysis shows that such altitude is 300 km; below it, the atmospheric drag prevails over the solar-radiation thrust. By this value, an example of excursion module of 1500 kg in total mass is built, and the sailcraft sail loading and the return payload are calculated. Finally, the concept of launch opportunity-wide for a shuttle driven by solar-photon sail is introduced. The previous fifty-fifty solution may be a good initial guess for the trajectory optimization of this type of shuttle.

  12. Impurity characterization of solar wind collectors for the genesis discovery mission by resonance ionization mass spectrometry.

    SciTech Connect

    Calaway, W. F.

    1999-02-01

    NASA's Genesis Discovery Mission is designed to collect solar matter and return it to earth for analysis. The mission consists of launching a spacecraft that carries high purity collector materials, inserting the spacecraft into a halo orbit about the L1 sun-earth libration point, exposing the collectors to the solar wind for two years, and then returning the collectors to earth. The collectors will then be made available for analysis by various methods to determine the elemental and isotopic abundance of the solar wind. In preparation for this mission, potential collector materials are being characterized to determine baseline impurity levels and to assess detection limits for various analysis techniques. As part of the effort, potential solar wind collector materials have been analyzed using resonance ionization mass spectrometry (RIMS). RIMS is a particularly sensitivity variation of secondary neutral mass spectrometry that employs resonantly enhanced multiphoton ionization (REMPI) to selectively postionize an element of interest, and thus discriminates between low levels of that element and the bulk material. The high sensitivity and selectivity of RIMS allow detection of very low concentrations while consuming only small amounts of sample. Thus, RIMS is well suited for detection of many heavy elements in the solar wind, since metals heavier than Fe are expected to range in concentrations from 1 ppm to 0.2 ppt. In addition, RIMS will be able to determine concentration profiles as a function of depth for these implanted solar wind elements effectively separating them from terrestrial contaminants. RIMS analyses to determine Ti concentrations in Si and Ge samples have been measured. Results indicate that the detection limit for RIMS analysis of Ti is below 100 ppt for 10{sup 6} averages. Background analyses of the mass spectra indicate that detection limits for heavier elements will be similar. Furthermore, detection limits near 1 ppt are possible with higher

  13. High-power, ultralow-mass solar arrays: FY-77 solar arrays technology readiness assessment report, volume 2

    NASA Technical Reports Server (NTRS)

    Costogue, E. N.; Young, L. E.; Brandhorst, H. W., Jr.

    1978-01-01

    Development efforts are reported in detail for: (1) a lightweight solar array system for solar electric propulsion; (2) a high efficiency thin silicon solar cell; (3) conceptual design of 200 W/kg solar arrays; (4) fluorocarbon encapsulation for silicon solar cell array; and (5) technology assessment of concentrator solar arrays.

  14. Influences mass concentration of P3HT and PCBM to application of organic solar cells

    NASA Astrophysics Data System (ADS)

    Supriyanto, A.; Maya; Rosa, E. S.; Iriani, Y.; Ramelan, A. H.; Nurosyid, F.

    2016-11-01

    Poly (3-hexylthiophene) (P3HT) and [6, 6] -phenyl-C61-butyric acid methyl ester (PCBM) are used for the organic solar cell applications. P3HT and PCBM act as donors and acceptors, respectively. In this study the efficiency of the P3HT: PCBM organic solar cells as function of the mass concentration of the blend P3HT: PCBM with 1, 2, 8, 16 mg/ml. Deposition P3HT:PCBM film using spin coating with a rotary speed of 2500 rpm for 10 seconds. Optical properties of absorption spectra characteristic using a UV-Visible Spectrometer Lambda 25 and electrical properties of I-V characteristic using Keithley 2602 instrument. The results of absoption spectra for P3HT:PCBM within different mass concentration obtained 500-600 nm wavelengths. The Energy-gap obtained about 1.9eV. The organic solar cells device performance were investigated using I-V cahractyeristic. For mass concentration of 1, 2, 8 and 16 mg/ml P3HT:PCBM were obtained 0.5×10-3%, 2.2×10-3%, 5.9×10-3%, and 6.1×10-3% efficiency of organics solar cells respectively.

  15. Solar flare associated coronal mass ejections causing geo-effectiveness and Forbush decreases

    NASA Astrophysics Data System (ADS)

    Bhatt, Beena; Chandra, Harish

    2017-02-01

    In the present study, we have selected 35 halo Coronal Mass Ejections (CMEs) associated with solar flares, Geomagnetic Storms (GSs) and Forbush decrease (Fd) chosen from 1st January 2000 to 31st December 2007 (i.e., the descending phase of solar cycle 23) observed by the Large Angle Spectrometric Coronagraph (LASCO) on board the SOHO spacecraft. Statistical analyses are performed to look at the distribution of solar flares associated with halo CMEs causing GSs and Fd and investigated the relationship between solar flare and halo CME parameters with GSs and Fd. Forbush decrease is the phenomenon of rapid decrease in cosmic ray intensity following the CME. Our analysis indicates that during 2000 to 2007 the northern region produced 44 % of solar flares associated with halo CMEs, GSs, and Fd, whereas 56 % solar flares associated with halo CMEs, GSs, and Fd were produced in the southern region. The northern and the southern hemispheres between 10° to 20° latitudinal belts are found to be more effective in producing events leading to Fd. From our selected events, we found that about 60 % of super-intense storms (Dst ≤ -200 nT) caused by halo CMEs are associated with X-class flares. Fast halo CMEs associated with X-class flares originating from 0° to 25° latitudes are better potential candidates in producing super-intense GSs than the slow halo CMEs associated with other classes of flares.

  16. Three-dimensional global MHD modeling of a coronal mass ejection interacting with the solar wind

    NASA Astrophysics Data System (ADS)

    An, J.; Inoue, S.; Magara, T.; Lee, H.; Kang, J.; Hayashi, K.; Tanaka, T.; Den, M.

    2013-12-01

    We developed a three-dimensional (3D) magnetohydrodynamic (MHD) code to reproduce the structure of the solar wind, the propagation of a coronal mass ejection (CME), and the interaction between them. This MHD code is based on the finite volume method and total diminishing (TVD) scheme with an unstructured grid system. In particular, this grid system can avoid the singularity at the north and south poles and relax tight CFL conditions around the poles, both of which would arise in the spherical coordinate system (Tanaka 1995). In this study, we constructed a model of the solar wind driven by the physical values at 50 solar radii obtained from the MHD tomographic method (Hayashi et al. 2003) where an interplanetary scintillation (IPS) observational data is used. By comparing the result to the observational data obtained from the near-Earth OMNI dataset, we confirmed that our simulation reproduces the velocity, temperature and density profiles obtained from the near-Earth OMNI dataset. We then insert a spheromak-type CME (Kataoka et al. 2009) into our solar-wind model and investigate the propagation process of the CME interacting with the solar wind. In particular, we discuss how the magnetic twist accumulated in a CME affects the CME-solar wind interaction.

  17. Investigation of the Large Scale Evolution and Topology of Coronal Mass Ejections in the Solar Wind

    NASA Technical Reports Server (NTRS)

    Riley, Peter

    1999-01-01

    This investigation is concerned with the large-scale evolution and topology of Coronal Mass Ejections (CMEs) in the solar wind. During this reporting period we have analyzed a series of low density intervals in the ACE (Advanced Composition Explorer) plasma data set that bear many similarities to CMEs. We have begun a series of 3D, MHD (Magnetohydrodynamics) coronal models to probe potential causes of these events. We also edited two manuscripts concerning the properties of CMEs in the solar wind. One was re-submitted to the Journal of Geophysical Research.

  18. Identification of Interplanetary Coronal Mass Ejections at 1 AU Using Multiple Solar Wind Plasma Composition Anomalies

    NASA Technical Reports Server (NTRS)

    Richardson, I. G.; Cane, H. V.

    2004-01-01

    We investigate the use of multiple simultaneous solar wind plasma compositional anomalies, relative to the composition of the ambient solar wind, for identifying interplanetary coronal mass ejection (ICME) plasma. We first summarize the characteristics of several solar wind plasma composition signatures (O(+7)/O(+6), Mg/O, Ne/O, Fe charge states, He/p) observed by the ACE and WIND spacecraft within the ICMEs during 1996 - 2002 identsed by Cane and Richardson. We then develop a set of simple criteria that may be used to identify such compositional anomalies, and hence potential ICMEs. To distinguish these anomalies from the normal variations seen in ambient solar wind composition, which depend on the wind speed, we compare observed compositional signatures with those 'expected' in ambient solar wind with the same solar wind speed. This method identifies anomalies more effectively than the use of fixed thresholds. The occurrence rates of individual composition anomalies within ICMEs range from approx. 70% for enhanced iron and oxygen charge states to approx. 30% for enhanced He/p (> 0.06) and Ne/O, and are generally higher in magnetic clouds than other ICMEs. Intervals of multiple anomalies are usually associated with ICMEs, and provide a basis for the identification of the majority of ICMEs. We estimate that Cane and Richardson, who did not refer to composition data, probably identitied approx. 90% of the ICMEs present. However, around 10% of their ICMEs have weak compositional anomalies, suggesting that the presence of such signatures does not provide a necessary requirement for an ICME. We note a remarkably similar correlation between the Mg/O and O(7)/O(6) ratios in hourly-averaged data both within ICMEs and the ambient solar wind. This 'universal' relationship suggests that a similar process (such as minor ion heating by waves inside coronal magnetic field loops) produces the first-ionization potential bias and ion freezing-in temperatures in the source regions

  19. Advanced Heat/Mass Exchanger Technology for Geothermal and Solar Renewable Energy Systems

    SciTech Connect

    Greiner, Miles; Childress, Amy; Hiibel, Sage; Kim, Kwang; Park, Chanwoo; Wirtz, Richard

    2014-12-16

    Northern Nevada has abundant geothermal and solar energy resources, and these renewable energy sources provide an ample opportunity to produce economically viable power. Heat/mass exchangers are essential components to any energy conversion system. Improvements in the heat/mass exchange process will lead to smaller, less costly (more efficient) systems. There is an emerging heat transfer technology, based on micro/nano/molecular-scale surface science that can be applied to heat/mass exchanger design. The objective is to develop and characterize unique coating materials, surface configurations and membranes capable of accommodating a 10-fold increase in heat/mass exchanger performance via phase change processes (boiling, condensation, etc.) and single phase convective heat/mass transfer.

  20. Anomalous Expansion of Coronal Mass Ejections During Solar Cycle 24 and Its Space Weather Implications

    NASA Technical Reports Server (NTRS)

    Gopalswamy, Nat; Akiyama, Sachiko; Yashiro, Seiji; Xie, Hong; Makela, Pertti; Michalek, Grzegorz

    2014-01-01

    The familiar correlation between the speed and angular width of coronal mass ejections (CMEs) is also found in solar cycle 24, but the regression line has a larger slope: for a given CME speed, cycle 24 CMEs are significantly wider than those in cycle 23. The slope change indicates a significant change in the physical state of the heliosphere, due to the weak solar activity. The total pressure in the heliosphere (magnetic + plasma) is reduced by approximately 40%, which leads to the anomalous expansion of CMEs explaining the increased slope. The excess CME expansion contributes to the diminished effectiveness of CMEs in producing magnetic storms during cycle 24, both because the magnetic content of the CMEs is diluted and also because of the weaker ambient fields. The reduced magnetic field in the heliosphere may contribute to the lack of solar energetic particles accelerated to very high energies during this cycle.

  1. Identification of Interplanetary Coronal Mass Ejections at Ulysses Using Multiple Solar Wind Signatures

    NASA Astrophysics Data System (ADS)

    Richardson, I. G.

    2014-10-01

    Previous studies have discussed the identification of interplanetary coronal mass ejections (ICMEs) near the Earth based on various solar wind signatures. In particular, methods have been developed of identifying regions of anomalously low solar wind proton temperatures ( T p) and plasma compositional anomalies relative to the composition of the ambient solar wind that are frequently indicative of ICMEs. In this study, similar methods are applied to observations from the Ulysses spacecraft that was launched in 1990 and placed in a heliocentric orbit over the poles of the Sun. Some 279 probable ICMEs are identified during the spacecraft mission, which ended in 2009. The identifications complement those found independently in other studies of the Ulysses data, but a number of additional events are identified. The properties of the ICMEs detected at Ulysses and those observed near the Earth and in the inner heliosphere are compared.

  2. Report on the 10th International Conference of the Asian Clinical Oncology Society (ACOS 2012).

    PubMed

    Kim, Yeul Hong; Yang, Han-Kwang; Kim, Tae Won; Lee, Jung Shin; Seong, Jinsil; Lee, Woo Yong; Ahn, Yong Chan; Lim, Ho Yeong; Won, Jong-Ho; Park, Kyong Hwa; Cho, Kyung Sam

    2013-04-01

    The 10th International Conference of the Asian Clinical Oncology Society (ACOS 2012) in conjunction with the 38th Annual Meeting of the Korean Cancer Association, was held on June 13 to 15 (3 days) 2012 at COEX Convention and Exhibition Center in Seoul, Korea. ACOS has a 20-year history starting from the first conference in Osaka, Japan, which was chaired by Prof. Tetsuo Taguchi and the ACOS conferences have since been conducted in Asian countries every 2 years. Under the theme of "Work Together to Make a Difference for Cancer Therapy in Asia", the 10th ACOS was prepared to discuss various subjects through a high-quality academic program, exhibition, and social events. The ACOS 2012 Committee was composed of the ACOS Organizing Committee, Honorary Advisors, Local Advisors, and ACOS 2012 Organizing Committee. The comprehensive academic program had a total of 92 sessions (3 Plenary Lectures, 1 Award Lectures, 1 Memorial Lectures, 9 Special Lectures, 15 Symposia, 1 Debate & Summary Sessions, 1 Case Conferences, 19 Educational Lectures, 1 Research & Development Session, 18 Satellite Symposia, 9 Meet the Professors, 14 Oral Presentations) and a total 292 presentations were delivered throughout the entire program. Amongst Free Papers, 462 research papers (110 oral presentations and 352 poster presentations) were selected to be presented. This conference was the largest of all ACOS conferences in its scale with around 1,500 participants from 30 countries. Furthermore, despite strict new financial policies and requirements governing fundraising alongside global economic stagnation, a total of 14 companies participated as sponsors and an additional 35 companies purchased 76 exhibition booths. Lastly, the conference social events provided attendees with a variety of opportunities to experience and enjoy Korea's rich culture and traditions during the Opening Ceremony, Welcome Reception, Invitee Dinner, Banquet, and Closing Ceremony. Overall, ACOS 2012 reinforced and promoted

  3. A mass of less than 15 solar masses for the black hole in an ultraluminous X-ray source.

    PubMed

    Motch, C; Pakull, M W; Soria, R; Grisé, F; Pietrzyński, G

    2014-10-09

    Most ultraluminous X-ray sources have a typical set of properties not seen in Galactic stellar-mass black holes. They have luminosities of more than 3 × 10(39) ergs per second, unusually soft X-ray components (with a typical temperature of less than about 0.3 kiloelectronvolts) and a characteristic downturn in their spectra above about 5 kiloelectronvolts. Such puzzling properties have been interpreted either as evidence of intermediate-mass black holes or as emission from stellar-mass black holes accreting above their Eddington limit, analogous to some Galactic black holes at peak luminosity. Recently, a very soft X-ray spectrum was observed in a rare and transient stellar-mass black hole. Here we report that the X-ray source P13 in the galaxy NGC 7793 is in a binary system with a period of about 64 days and exhibits all three canonical properties of ultraluminous sources. By modelling the strong optical and ultraviolet modulations arising from X-ray heating of the B9Ia donor star, we constrain the black hole mass to be less than 15 solar masses. Our results demonstrate that in P13, soft thermal emission and spectral curvature are indeed signatures of supercritical accretion. By analogy, ultraluminous X-ray sources with similar X-ray spectra and luminosities of up to a few times 10(40) ergs per second can be explained by supercritical accretion onto massive stellar-mass black holes.

  4. Modeling solar wind mass-loading in the vicinity of the Sun using 3-D MHD simulations

    NASA Astrophysics Data System (ADS)

    Rasca, A. P.; Horányi, M.; Oran, R.; Holst, B.

    2014-01-01

    Collisionless shocks due to mass-loading were first discussed to describe the solar wind flow around a cometary atmosphere, showing its choking effects on the flow. Recent observations have led to an increased interest in mass-loading occurring in the solar corona due to both sungrazing comets and collisional debris production by sunward migrating interplanetary dust particles. The 1-D simulations with a hydrodynamic model have illustrated the impact on the solar wind from abrupt mass-loading in the coronal region. Full 3-D magnetohydrodynamic (MHD) simulations using a solar corona model based on the Block-Adaptive-Tree-Solarwind-Roe-Upwind-Scheme code provide a more realistic coronal environment for modeling specific events applicable to modeling the mass-loaded coronal wind. A specific application is introduced modeling the mass-loading effects from a sungrazing comet.

  5. Ion composition experiment. [ISEE-C solar wind ion mass spectroscopy

    NASA Technical Reports Server (NTRS)

    Coplan, M. A.; Ogilvie, K. W.; Bochsler, P. A.; Geiss, J.

    1978-01-01

    An investigation using a novel ion mass spectrometer for measuring the ionic composition of the solar wind from the ISEE-C spacecraft is described. The resolution and dynamic range of the instrument are sufficient to be able to resolve up to twelve individual ions or groups of ions. This will permit the solution of a number of fundamental problems related to solar abundances and the formation of the solar wind. The spectrometer is composed of a stigmatic Wien filter and hemispherical electrostatic energy analyzer. The use of curved electric field plates in the filter results in a substantial saving of weight with respect to a conventional filter of the same resolution and angular acceptance. The spectrometer is controlled by a microprocessor based on a special purpose computer which has three modes of operations: full and partial survey modes and a search mode. In the search mode, the instrument locks on to the solar wind. This allows four times the time resolution of the full survey mode and yields a full mass spectrum every 12.6 min.

  6. FINE MAGNETIC STRUCTURE AND ORIGIN OF COUNTER-STREAMING MASS FLOWS IN A QUIESCENT SOLAR PROMINENCE

    SciTech Connect

    Shen, Yuandeng; Liu, Yu; Xu, Zhi; Liu, Zhong; Liu, Ying D.; Chen, P. F.; Su, Jiangtao

    2015-11-20

    We present high-resolution observations of a quiescent solar prominence that consists of a vertical and a horizontal foot encircled by an overlying spine and has ubiquitous counter-streaming mass flows. While the horizontal foot and the spine were connected to the solar surface, the vertical foot was suspended above the solar surface and was supported by a semicircular bubble structure. The bubble first collapsed, then reformed at a similar height, and finally started to oscillate for a long time. We find that the collapse and oscillation of the bubble boundary were tightly associated with a flare-like feature located at the bottom of the bubble. Based on the observational results, we propose that the prominence should be composed of an overlying horizontal spine encircling a low-lying horizontal and vertical foot, in which the horizontal foot consists of shorter field lines running partially along the spine and has ends connected to the solar surface, while the vertical foot consists of piling-up dips due to the sagging of the spine fields and is supported by a bipolar magnetic system formed by parasitic polarities (i.e., the bubble). The upflows in the vertical foot were possibly caused by the magnetic reconnection at the separator between the bubble and the overlying dips, which intruded into the persistent downflow field and formed the picture of counter-streaming mass flows. In addition, the counter-streaming flows in the horizontal foot were possibly caused by the imbalanced pressure at the both ends.

  7. Understanding the Global Structure and Evolution of Coronal Mass Ejections in the Solar Wind

    NASA Technical Reports Server (NTRS)

    Riley, Pete

    2004-01-01

    This report summarizes the technical progress made during the first six months of the second year of the NASA Living with a Star program contract Understanding the global structure and evolution of coronal mass ejections in the solar wind, between NASA and Science Applications International Corporation, and covers the period November 18, 2003 - May 17,2004. Under this contract SAIC has conducted numerical and data analysis related to fundamental issues concerning the origin, intrinsic properties, global structure, and evolution of coronal mass ejections in the solar wind. During this working period we have focused on a quantitative assessment of 5 flux rope fitting techniques. In the following sections we summarize the main aspects of this work and our proposed investigation plan for the next reporting period. Thus far, our investigation has resulted in 6 refereed scientific publications and we have presented the results at a number of scientific meetings and workshops.

  8. Influence of mass moment of inertia on normal modes of preloaded solar array mast

    NASA Technical Reports Server (NTRS)

    Armand, Sasan C.; Lin, Paul

    1992-01-01

    Earth-orbiting spacecraft often contain solar arrays or antennas supported by a preloaded mast. Because of weight and cost considerations, the structures supporting the spacecraft appendages are extremely light and flexible; therefore, it is vital to investigate the influence of all physical and structural parameters that may influence the dynamic behavior of the overall structure. The study primarily focuses on the mast for the space station solar arrays, but the formulations and the techniques developed in this study apply to any large and flexible mast in zero gravity. Furthermore, to determine the influence on the circular frequencies, the mass moment of inertia of the mast was incorporated into the governing equation of motion for bending. A finite element technique (MSC/NASTRAN) was used to verify the formulation. Results indicate that when the mast is relatively flexible and long, the mass moment inertia influences the circular frequencies.

  9. [Report of the 10th Annual Meeting of the Chinese society of Clinical Oncology].

    PubMed

    Cho, William Chi-Shing

    2008-03-01

    The 10th Annual Meeting of the Chinese Society of Clinical Oncology (CSCO) was held on 19-23 September 2007 in Harbin. The theme of this conference was "putting standard multidisciplinary cancer management into practice" and special reports of standard multidisciplinary management on various cancers were presented. Over 3 500 clinical oncologists and scientists participated in the 2007 CSCO Annual Meeting where more than ten international top experts were invited to exchange valuable experiences with the delegates. The programs consisted of Education Session, Satellite Symposium and Meet the Professor Session. The latest research results were presented as oral presentations and posters at the congress. Several hotspots were particularly highlighted in this report, including innovative radiotherapy and chemotherapy methods, researches on molecular targets and clinical trials of targeted therapy, such as endostatin, volociximab, cetuximab, bevacizumab and temozolomide. The remarkable research results of anti-cancer Chinese medicine, cancer screening and prognosis were also introduced. This article tries to call the attention to some hot topics in the program that are both new and noteworthy, and it may serve as a highlight of this important international cancer research meeting for clinical oncologists and scientists.

  10. Does STES-Oriented Science Education Promote 10th-Grade Students' Decision-Making Capability?

    NASA Astrophysics Data System (ADS)

    Levy Nahum, Tami; Ben-Chaim, David; Azaiza, Ibtesam; Herskovitz, Orit; Zoller, Uri

    2010-07-01

    Today's society is continuously coping with sustainability-related complex issues in the Science-Technology-Environment-Society (STES) interfaces. In those contexts, the need and relevance of the development of students' higher-order cognitive skills (HOCS) such as question-asking, critical-thinking, problem-solving and decision-making capabilities within science teaching have been argued by several science educators for decades. Three main objectives guided this study: (1) to establish "base lines" for HOCS capabilities of 10th grade students (n = 264) in the Israeli educational system; (2) to delineate within this population, two different groups with respect to their decision-making capability, science-oriented (n = 142) and non-science (n = 122) students, Groups A and B, respectively; and (3) to assess the pre-post development/change of students' decision-making capabilities via STES-oriented HOCS-promoting curricular modules entitled Science, Technology and Environment in Modern Society (STEMS). A specially developed and validated decision-making questionnaire was used for obtaining a research-based response to the guiding research questions. Our findings suggest that a long-term persistent application of purposed decision-making, promoting teaching strategies, is needed in order to succeed in affecting, positively, high-school students' decision-making ability. The need for science teachers' involvement in the development of their students' HOCS capabilities is thus apparent.

  11. FOREWORD: 10th Anglo-French Physical Acoustics Conference (AFPAC 2011)

    NASA Astrophysics Data System (ADS)

    Lhémery, Alain; Saffari, Nader

    2012-03-01

    The Anglo-French Physical Acoustics Conference (AFPAC) had its 10th annual meeting in Villa Clythia, Fréjus, France, from 19-21 January 2011. This series of meetings is a collaboration between the Physical Acoustics Group (PAG) of the Institute of Physics and the Groupe d'Acoustique Physique, Sous-marine et UltraSonore (GAPSUS) of the Société Française d'Acoustique. The conference has its loyal supporters whom we wish to thank. It is their loyalty that has made this conference a success. AFPAC alternates between the UK and France and its format has been designed to ensure that it remains a friendly meeting of very high scientific quality, offering a broad spectrum of subjects, welcoming young researchers and PhD students and giving them the opportunity to give their first presentations in an 'international' conference, but with limited pressure. For the third consecutive year AFPAC is followed by the publication of its proceedings in the form of 18 peer-reviewed papers, which cover the most recent research developments in the field of Physical Acoustics in the UK and France. Alain Lhémery CEA, France Nader Saffari UCL, United Kingdom

  12. INTERACTION BETWEEN TWO CORONAL MASS EJECTIONS IN THE 2013 MAY 22 LARGE SOLAR ENERGETIC PARTICLE EVENT

    SciTech Connect

    Ding, Liu-Guan; Xu, Fei; Gu, Bin; Zhang, Ya-Nan; Li, Gang; Jiang, Yong; Le, Gui-Ming; Shen, Cheng-Long; Wang, Yu-Ming; Chen, Yao

    2014-10-01

    We investigate the eruption and interaction of two coronal mass ejections (CMEs) during the large 2013 May 22 solar energetic particle event using multiple spacecraft observations. Two CMEs, having similar propagation directions, were found to erupt from two nearby active regions (ARs), AR11748 and AR11745, at ∼08:48 UT and ∼13:25 UT, respectively. The second CME was faster than the first CME. Using the graduated cylindrical shell model, we reconstructed the propagation of these two CMEs and found that the leading edge of the second CME caught up with the trailing edge of the first CME at a height of ∼6 solar radii. After about two hours, the leading edges of the two CMEs merged at a height of ∼20 solar radii. Type II solar radio bursts showed strong enhancement during this two hour period. Using the velocity dispersion method, we obtained the solar particle release (SPR) time and the path length for energetic electrons. Further assuming that energetic protons propagated along the same interplanetary magnetic field, we also obtained the SPR time for energetic protons, which were close to that of electrons. These release times agreed with the time when the second CME caught up with the trailing edge of the first CME, indicating that the CME-CME interaction (and shock-CME interaction) plays an important role in the process of particle acceleration in this event.

  13. Non-mass-analyzed ion implantation equipment for high volume solar cell production

    NASA Technical Reports Server (NTRS)

    Armini, A. J.; Bunker, S. N.; Spitzer, M. B.

    1982-01-01

    Equipment designed for junction formation in silicon solar cells is described. The equipment, designed for a production level of approximately one megawatt per year, consists of an ion implanter and annealer. Low cost is achieved by foregoing the use of mass analysis during the implantation, and by the use of a belt furnace for annealing. Results of process development, machine design and cost analysis are presented.

  14. Solar neutrino limit on axions and keV-mass bosons

    SciTech Connect

    Gondolo, Paolo; Raffelt, Georg G.

    2009-05-15

    The all-flavor solar neutrino flux measured by the Sudbury Neutrino Observatory constrains nonstandard energy losses to less than about 10% of the Sun's photon luminosity, superseding a helioseismological argument and providing new limits on the interaction strength of low-mass particles. For the axion-photon coupling strength we find g{sub a{gamma}}<7x10{sup -10} GeV{sup -1}. We also derive explicit limits on the Yukawa coupling to electrons of pseudoscalar, scalar, and vector bosons with keV-scale masses.

  15. Nonuniform viscosity in the solar nebula and large masses of Jupiter and Saturn

    NASA Astrophysics Data System (ADS)

    Jin, L.

    2004-08-01

    I report a novel theory that nonuniform viscous frictional force in the solar nebula accounts for the largest mass of Jupiter and Saturn and their largest amount of H and He among the planets, two outstanding facts that are unsolved puzzles in our understanding of origin of the Solar System. It is shown that the nebula model of uniform viscosity does not match the present planet masses. By studying current known viscosity mechanisms, I show that viscosity is more efficient in the inner region inside Mercury and the outer region outside Jupiter-Saturn than the intermediate region. The more efficient viscosity drives faster radial inflow of material during the nebula evolution. Because the inflow in the outer region is faster than the intermediate region, the material tends to accumulate in Jupiter-Saturn region which is between the outer and intermediate region. It is demonstrated that the gas trapping time of Jovian planets is longer than the inflow time in the outer region. Therefore the gas already flows to Jupiter-Saturn region before Uranus and Neptune can capture significant gas. But the inflow in the Jupiter-Saturn region is so slow that they can capture large amount of gas before the gas can flow further inward. Hence they have larger masses with larger H and He content than Uranus and Neptune. I also extend the discussion to the masses of the terrestrial planets, especially low mass of Mercury. The advantages of this theory are discussed.

  16. The Fraction of Interplanetary Coronal Mass Ejections That Are Magnetic Clouds: Evidence for a Solar Cycle Variation

    NASA Technical Reports Server (NTRS)

    Richardson, I. G.; Cane, H. V.

    2004-01-01

    "Magnetic clouds" (MCs) are a subset of interplanetary coronal mass ejections (ICMEs) characterized by enhanced magnetic fields with an organized rotation in direction, and low plasma beta. Though intensely studied, MCs only constitute a fraction of all the ICMEs that are detected in the solar wind. A comprehensive survey of ICMEs in the near- Earth solar wind during the ascending, maximum and early declining phases of solar cycle 23 in 1996 - 2003 shows that the MC fraction varies with the phase of the solar cycle, from approximately 100% (though with low statistics) at solar minimum to approximately 15% at solar maximum. A similar trend is evident in near-Earth observations during solar cycles 20 - 21, while Helios 1/2 spacecraft observations at 0.3 - 1.0 AU show a weaker trend and larger MC fraction.

  17. 10th annual meeting of the Safety Pharmacology Society: an overview.

    PubMed

    Cavero, Icilio

    2011-03-01

    The 10th annual meeting of the Safety Pharmacology (SP) Society covered numerous topics of educational and practical research interest. Biopolymers - the theme of the keynote address - were presented as essential components of medical devices, diagnostic tools, biosensors, human tissue engineering and pharmaceutical formulations for optimized drug delivery. Toxicology and SP investigators - the topic of the Distinguished Service Award Lecture - were encouraged to collaborate in the development of SP technologies and protocols applicable to toxicology studies. Pharmaceutical companies, originally organizations bearing all risks for developing their portfolios, are increasingly moving towards fully integrated networks which outsource core activities (including SP studies) to large contract research organizations. Future nonclinical data are now expected to be of such high quality and predictability power that they may obviate the need for certain expensive and time-consuming clinical investigations. In this context, SP is called upon to extend its risk assessment purview to areas which currently are not systematically covered, such as drug-induced QRS interval prolongation, negative emotions and feelings (e.g., depression), and minor chronic cardiovascular and metabolic changes (e.g., as produced by drugs for type 2 diabetes) which can be responsible for delayed morbidity and mortality. The recently approved ICH S9 guidance relaxes the traditional regulatory SP package in order to accelerate the clinical access to anticancer drugs for patients with advanced malignancies. The novel FDA 'Animal Rule' guidance proposes that for clinical candidates with well-understood toxicities, marketing approval may be granted exclusively on efficacy data generated in animal studies as human clinical investigations for these types of drugs are either unfeasible or unethical. In conclusion, the core messages of this meeting are that SP should consistently operate according to the 'fit

  18. Progression in Complexity: Contextualizing Sustainable Marine Resources Management in a 10th Grade Classroom

    NASA Astrophysics Data System (ADS)

    Bravo-Torija, Beatriz; Jiménez-Aleixandre, María-Pilar

    2012-01-01

    Sustainable management of marine resources raises great challenges. Working with this socio-scientific issue in the classroom requires students to apply complex models about energy flow and trophic pyramids in order to understand that food chains represent transfer of energy, to construct meanings for sustainable resources management through discourse, and to connect them to actions and decisions in a real-life context. In this paper we examine the process of elaboration of plans for resources management in a marine ecosystem by 10th grade students (15-16 year) in the context of solving an authentic task. A complete class ( N = 14) worked in a sequence about ecosystems. Working in small groups, the students made models of energy flow and trophic pyramids, and used them to solve the problem of feeding a small community for a long time. Data collection included videotaping and audiotaping of all of the sessions, and collecting the students' written productions. The research objective is to examine the process of designing a plan for sustainable resources management in terms of the discursive moves of the students across stages in contextualizing practices, or different degrees of complexity (Jiménez-Aleixandre & Reigosa International Journal of Science Education, 14(1): 51-61 2006), understood as transformations from theoretical statements to decisions about the plan. The analysis of students' discursive moves shows how the groups progressed through stages of connecting different models, between them and with the context, in order to solve the task. The challenges related to taking this sustainability issue to the classroom are discussed.

  19. Report: Combustion Byproducts and Their Health Effects: Summary of the 10th International Congress

    PubMed Central

    Dellinger, Barry; D'Alessio, Antonio; D'Anna, Andrea; Ciajolo, Anna; Gullett, Brian; Henry, Heather; Keener, Mel; Lighty, JoAnn; Lomnicki, Slawomir; Lucas, Donald; Oberdörster, Günter; Pitea, Demetrio; Suk, William; Sarofim, Adel; Smith, Kirk R.; Stoeger, Tobias; Tolbert, Paige; Wyzga, Ron; Zimmermann, Ralf

    2008-01-01

    Abstract The 10th International Congress on Combustion Byproducts and their Health Effects was held in Ischia, Italy, from June 17–20, 2007. It is sponsored by the US NIEHS, NSF, Coalition for Responsible Waste Incineration (CRWI), and Electric Power Research Institute (EPRI). The congress focused on: the origin, characterization, and health impacts of combustion-generated fine and ultrafine particles; emissions of mercury and dioxins, and the development/application of novel analytical/diagnostic tools. The consensus of the discussion was that particle-associated organics, metals, and persistent free radicals (PFRs) produced by combustion sources are the likely source of the observed health impacts of airborne PM rather than simple physical irritation of the particles. Ultrafine particle-induced oxidative stress is a likely progenitor of the observed health impacts, but important biological and chemical details and possible catalytic cycles remain unresolved. Other key conclusions were: (1) In urban settings, 70% of airborne fine particles are a result of combustion emissions and 50% are due to primary emissions from combustion sources, (2) In addition to soot, combustion produces one, possibly two, classes of nanoparticles with mean diameters of ~10 nm and ~1 nm. (3) The most common metrics used to describe particle toxicity, viz. surface area, sulfate concentration, total carbon, and organic carbon, cannot fully explain observed health impacts, (4) Metals contained in combustion-generated ultrafine and fine particles mediate formation of toxic air pollutants such as PCDD/F and PFRs. (5) The combination of metal-containing nanoparticles, organic carbon compounds, and PFRs can lead to a cycle generating oxidative stress in exposed organisms. PMID:22476005

  20. Two-step forecast of geomagnetic storm using coronal mass ejection and solar wind condition.

    PubMed

    Kim, R-S; Moon, Y-J; Gopalswamy, N; Park, Y-D; Kim, Y-H

    2014-04-01

    To forecast geomagnetic storms, we had examined initially observed parameters of coronal mass ejections (CMEs) and introduced an empirical storm forecast model in a previous study. Now we suggest a two-step forecast considering not only CME parameters observed in the solar vicinity but also solar wind conditions near Earth to improve the forecast capability. We consider the empirical solar wind criteria derived in this study (Bz  ≤ -5 nT or Ey  ≥ 3 mV/m for t≥ 2 h for moderate storms with minimum Dst less than -50 nT) and a Dst model developed by Temerin and Li (2002, 2006) (TL model). Using 55 CME-Dst pairs during 1997 to 2003, our solar wind criteria produce slightly better forecasts for 31 storm events (90%) than the forecasts based on the TL model (87%). However, the latter produces better forecasts for 24 nonstorm events (88%), while the former correctly forecasts only 71% of them. We then performed the two-step forecast. The results are as follows: (i) for 15 events that are incorrectly forecasted using CME parameters, 12 cases (80%) can be properly predicted based on solar wind conditions; (ii) if we forecast a storm when both CME and solar wind conditions are satisfied (∩), the critical success index becomes higher than that from the forecast using CME parameters alone, however, only 25 storm events (81%) are correctly forecasted; and (iii) if we forecast a storm when either set of these conditions is satisfied (∪), all geomagnetic storms are correctly forecasted.

  1. Two-step forecast of geomagnetic storm using coronal mass ejection and solar wind condition

    PubMed Central

    Kim, R-S; Moon, Y-J; Gopalswamy, N; Park, Y-D; Kim, Y-H

    2014-01-01

    To forecast geomagnetic storms, we had examined initially observed parameters of coronal mass ejections (CMEs) and introduced an empirical storm forecast model in a previous study. Now we suggest a two-step forecast considering not only CME parameters observed in the solar vicinity but also solar wind conditions near Earth to improve the forecast capability. We consider the empirical solar wind criteria derived in this study (Bz ≤ −5 nT or Ey ≥ 3 mV/m for t≥ 2 h for moderate storms with minimum Dst less than −50 nT) and a Dst model developed by Temerin and Li (2002, 2006) (TL model). Using 55 CME-Dst pairs during 1997 to 2003, our solar wind criteria produce slightly better forecasts for 31 storm events (90%) than the forecasts based on the TL model (87%). However, the latter produces better forecasts for 24 nonstorm events (88%), while the former correctly forecasts only 71% of them. We then performed the two-step forecast. The results are as follows: (i) for 15 events that are incorrectly forecasted using CME parameters, 12 cases (80%) can be properly predicted based on solar wind conditions; (ii) if we forecast a storm when both CME and solar wind conditions are satisfied (∩), the critical success index becomes higher than that from the forecast using CME parameters alone, however, only 25 storm events (81%) are correctly forecasted; and (iii) if we forecast a storm when either set of these conditions is satisfied (∪), all geomagnetic storms are correctly forecasted. PMID:26213515

  2. MAXIMUM CORONAL MASS EJECTION SPEED AS AN INDICATOR OF SOLAR AND GEOMAGNETIC ACTIVITIES

    SciTech Connect

    Kilcik, A.; Yurchyshyn, V. B.; Abramenko, V.; Goode, P. R.; Gopalswamy, N.; Ozguc, A.; Rozelot, J. P.

    2011-01-20

    We investigate the relationship between the monthly averaged maximal speeds of coronal mass ejections (CMEs), international sunspot number (ISSN), and the geomagnetic Dst and Ap indices covering the 1996-2008 time interval (solar cycle 23). Our new findings are as follows. (1) There is a noteworthy relationship between monthly averaged maximum CME speeds and sunspot numbers, Ap and Dst indices. Various peculiarities in the monthly Dst index are correlated better with the fine structures in the CME speed profile than that in the ISSN data. (2) Unlike the sunspot numbers, the CME speed index does not exhibit a double peak maximum. Instead, the CME speed profile peaks during the declining phase of solar cycle 23. Similar to the Ap index, both CME speed and the Dst indices lag behind the sunspot numbers by several months. (3) The CME number shows a double peak similar to that seen in the sunspot numbers. The CME occurrence rate remained very high even near the minimum of the solar cycle 23, when both the sunspot number and the CME average maximum speed were reaching their minimum values. (4) A well-defined peak of the Ap index between 2002 May and 2004 August was co-temporal with the excess of the mid-latitude coronal holes during solar cycle 23. The above findings suggest that the CME speed index may be a useful indicator of both solar and geomagnetic activities. It may have advantages over the sunspot numbers, because it better reflects the intensity of Earth-directed solar eruptions.

  3. Binary Cepheids: Separations and Mass Ratios in 5 Solar Mass Binaries

    DTIC Science & Technology

    2013-10-01

    material: color figures 1. INTRODUCTION Binary-star studies are valuable for what they provide directly (e.g., stellar masses), as well as for the...the high stellar density in the cluster, this could be a chance alignment. 3.2.2. Approximate Orbital Periods We used the angular separations in Table...subsequent evolution of the system will be drastically altered. For Cepheids we have a good estimation of where this effect sets in. Z Lac—not in our sample

  4. A 17-billion-solar-mass black hole in a group galaxy with a diffuse core.

    PubMed

    Thomas, Jens; Ma, Chung-Pei; McConnell, Nicholas J; Greene, Jenny E; Blakeslee, John P; Janish, Ryan

    2016-04-21

    Quasars are associated with and powered by the accretion of material onto massive black holes; the detection of highly luminous quasars with redshifts greater than z = 6 suggests that black holes of up to ten billion solar masses already existed 13 billion years ago. Two possible present-day 'dormant' descendants of this population of 'active' black holes have been found in the galaxies NGC 3842 and NGC 4889 at the centres of the Leo and Coma galaxy clusters, which together form the central region of the Great Wall--the largest local structure of galaxies. The most luminous quasars, however, are not confined to such high-density regions of the early Universe; yet dormant black holes of this high mass have not yet been found outside of modern-day rich clusters. Here we report observations of the stellar velocity distribution in the galaxy NGC 1600--a relatively isolated elliptical galaxy near the centre of a galaxy group at a distance of 64 megaparsecs from Earth. We use orbit superposition models to determine that the black hole at the centre of NGC 1600 has a mass of 17 billion solar masses. The spatial distribution of stars near the centre of NGC 1600 is rather diffuse. We find that the region of depleted stellar density in the cores of massive elliptical galaxies extends over the same radius as the gravitational sphere of influence of the central black holes, and interpret this as the dynamical imprint of the black holes.

  5. The rapid assembly of an elliptical galaxy of 400 billion solar masses at a redshift of 2.3.

    PubMed

    Fu, Hai; Cooray, Asantha; Feruglio, C; Ivison, R J; Riechers, D A; Gurwell, M; Bussmann, R S; Harris, A I; Altieri, B; Aussel, H; Baker, A J; Bock, J; Boylan-Kolchin, M; Bridge, C; Calanog, J A; Casey, C M; Cava, A; Chapman, S C; Clements, D L; Conley, A; Cox, P; Farrah, D; Frayer, D; Hopwood, R; Jia, J; Magdis, G; Marsden, G; Martínez-Navajas, P; Negrello, M; Neri, R; Oliver, S J; Omont, A; Page, M J; Pérez-Fournon, I; Schulz, B; Scott, D; Smith, A; Vaccari, M; Valtchanov, I; Vieira, J D; Viero, M; Wang, L; Wardlow, J L; Zemcov, M

    2013-06-20

    Stellar archaeology shows that massive elliptical galaxies formed rapidly about ten billion years ago with star-formation rates of above several hundred solar masses per year. Their progenitors are probably the submillimetre bright galaxies at redshifts z greater than 2. Although the mean molecular gas mass (5 × 10(10) solar masses) of the submillimetre bright galaxies can explain the formation of typical elliptical galaxies, it is inadequate to form elliptical galaxies that already have stellar masses above 2 × 10(11) solar masses at z ≈ 2. Here we report multi-wavelength high-resolution observations of a rare merger of two massive submillimetre bright galaxies at z = 2.3. The system is seen to be forming stars at a rate of 2,000 solar masses per year. The star-formation efficiency is an order of magnitude greater than that of normal galaxies, so the gas reservoir will be exhausted and star formation will be quenched in only around 200 million years. At a projected separation of 19 kiloparsecs, the two massive starbursts are about to merge and form a passive elliptical galaxy with a stellar mass of about 4 × 10(11) solar masses. We conclude that gas-rich major galaxy mergers with intense star formation can form the most massive elliptical galaxies by z ≈ 1.5.

  6. History and development of coronal mass ejections as a key player in solar terrestrial relationship

    NASA Astrophysics Data System (ADS)

    Gopalswamy, N.

    2016-12-01

    Coronal mass ejections (CMEs) are relatively a recently discovered phenomenon—in 1971, some 15 years into the Space Era. It took another two decades to realize that CMEs are the most important players in solar terrestrial relationship as the root cause of severe weather in Earth's space environment. CMEs are now counted among the major natural hazards because they cause large solar energetic particle (SEP) events and major geomagnetic storms, both of which pose danger to humans and their technology in space and ground. Geomagnetic storms discovered in the 1700s, solar flares discovered in the 1800s, and SEP events discovered in the 1900s are all now found to be closely related to CMEs via various physical processes occurring at various locations in and around CMEs, when they interact with the ambient medium. This article identifies a number of key developments that preceded the discovery of white-light CMEs suggesting that CMEs were waiting to be discovered. The last two decades witnessed an explosion of CME research following the launch of the Solar and Heliospheric Observatory mission in 1995, resulting in the establishment of a full picture of CMEs.

  7. Evidence for mass outflow in the low solar corona over a large sunspot

    NASA Technical Reports Server (NTRS)

    Neupert, Werner M.; Brosius, Jeffrey W.; Thomas, Roger J.; Thompson, William T.

    1992-01-01

    Spatially resolved EUV coronal emission-line profiles have been obtained in a solar active region, including a large sunspot, using an EUV imaging spectrograph. Relative Doppler velocities were measured in the lines of Mg IX, Fe XV, and Fe XVI with a sensitivity of 2-3 km/s at 350 A. The only significant Doppler shift occurred over the umbra of the large sunspot, in the emission line of Mg IX (at Te of about 1.1 x 10 exp 6 K). The maximum shift corresponded to a peak velocity toward the observer of 14 +/- 3 km/s relative to the mean of measurements in this emission line made elsewhere over the active region. The magnetic field in the low corona was aligned to within 10 deg of the line of sight at the location of maximum Doppler shift. Depending on the closure of the field, such a mass flow could either contribute to the solar wind or reappear as a downflow of material in distant regions on the solar surface. The site of the source, near a major photospheric field boundary, was consistent with origins of low-speed solar wind typically inferred from interplanetary plasma observations.

  8. Numerical study of the propagation characteristics of coronal mass ejections in a structured ambient solar wind

    NASA Astrophysics Data System (ADS)

    Zhou, Yufen; Feng, Xueshang

    2017-02-01

    Using a three-dimensional (3-D) magnetohydrodynamics (MHD) model, we analyze and study the propagation characteristics of coronal mass ejections (CMEs) launched at different positions in a realistic structured ambient solar wind. Here the ambient solar wind structure during the Carrington rotation 2095 is selected, which is the characteristics of activity rising phase. CMEs with a simple spherical plasmoid structure are initiated at different solar latitudes with respect to the heliospheric current sheet (HCS) and the Earth in the same ambient solar wind. Then, we numerically obtained the evolution process of the CMEs from the Sun to the interplanetary space. When the Earth and the CME launch position are located on the same side of the HCS, the arrival time of the shock at the Earth is faster than that when the Earth and the CME launch position are located on the opposite side of the HCS. The disturbance amplitudes for the same side event are also larger than those for the opposite side event. This may be due to the fact that the HCS between the CME and the Earth for the opposite side event hinders its propagation and weaken it. The CMEs tend to deflect toward the HCS in the latitudinal direction near the corona and then propagate almost parallel to the HCS in the interplanetary space. This deflecting tendency may be caused by the dynamic action of near-Sun magnetic pressure gradient force on the ejected coronal plasma.

  9. Solar signatures and eruption mechanism of the August 14, 2010 coronal mass ejection (CME)

    NASA Astrophysics Data System (ADS)

    D'Huys, Elke; Seaton, Daniel B.; De Groof, Anik; Berghmans, David; Poedts, Stefaan

    2017-03-01

    On August 14, 2010 a wide-angled coronal mass ejection (CME) was observed. This solar eruption originated from a destabilized filament that connected two active regions and the unwinding of this filament gave the eruption an untwisting motion that drew the attention of many observers. In addition to the erupting filament and the associated CME, several other low-coronal signatures that typically indicate the occurrence of a solar eruption were associated with this event. However, contrary to what was expected, the fast CME (v > 900 km s-1) was accompanied by only a weak C4.4 flare. We investigate the various eruption signatures that were observed for this event and focus on the kinematic evolution of the filament in order to determine its eruption mechanism. Had this solar eruption occurred just a few days earlier, it could have been a significant event for space weather. The risk of underestimating the strength of this eruption based solely on the C4.4 flare illustrates the need to include all eruption signatures in event analyses in order to obtain a complete picture of a solar eruption and assess its possible space weather impact.

  10. Scaling Relations in Coronal Mass Ejections and Energetic Proton Events Associated with Solar Superflares

    NASA Astrophysics Data System (ADS)

    Takahashi, Takuya; Mizuno, Yoshiyuki; Shibata, Kazunari

    2016-12-01

    In order to discuss the potential impact of solar “superflares” on space weather, we investigated statistical relations among energetic proton peak flux with energy higher than 10 MeV (F p ), CME speed near the Sun (V CME) obtained by Solar and Heliospheric Observatory/LASCO coronagraph, and flare soft X-ray peak flux in the 1-8 Å band (F SXR) during 110 major solar proton events recorded from 1996 to 2014. The linear regression fit results in the scaling relations {V}{CME}\\propto {F}{SXR}α , {F}p\\propto {F}{SXR}β , and {F}p\\propto {V}{CME}γ with α = 0.30 ± 0.04, β = 1.19 ± 0.08, and γ = 4.35 ± 0.50, respectively. On the basis of simple physical assumptions, on the other hand, we derive scaling relations expressing CME mass (M CME), CME speed, and energetic proton flux in terms of total flare energy (E flare) as {M}{CME}\\propto {E}{flare}2/3, {V}{CME}\\propto {E}{flare}1/6, and {F}p\\propto {E}{flare}5/6\\propto {V}{CME}5, respectively. We then combine the derived scaling relations with observation and estimated the upper limit of V CME and F p to be associated with possible solar superflares.

  11. KINEMATIC TREATMENT OF CORONAL MASS EJECTION EVOLUTION IN THE SOLAR WIND

    NASA Technical Reports Server (NTRS)

    Riley, Pete; Crooker, N. U.

    2004-01-01

    We present a kinematic study of the evolution of coronal mass ejections (CMEs) in the solar wind. Specifically, we consider the effects of (1) spherical expansion and (2) uniform expansion due to pressure gradients between the interplanetary CME (ICME) and the ambient solar wind. We compare these results with an MHD model that allows us to isolate these effects h m the combined kinematic and dynamical effects, which are included in MHD models. They also provide compelling evidence that the fundamental cross section of so-called "force-free" flux ropes (or magnetic clouds) is neither circular or elliptical, but rather a convex-outward, "pancake" shape. We apply a force-free fit to the magnetic vectors from the MHD simulation to assess how the distortion of the flux rope affects the fit. In spite of these limitations, force-free fits, which are straightforward to apply, do provide an important description of a number of parameters, including the radial dimension, orientation, and chirality of the ICME. Subject headings: MHD - solar wind - Sun: activity - Sun: corona - Sun: coronal mass ejections (CMEs) - On-line material color figures Sun: magnetic fields

  12. 77 FR 21773 - Filing Dates for The New Jersey Special Election in The 10th Congressional District

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-11

    ... Filing Dates for The New Jersey Special Election in The 10th Congressional District AGENCY: Federal Election Commission. ACTION: Notice of filing dates for special election. SUMMARY: New Jersey has scheduled... the New Jersey Special Primary and Special General Elections shall file a 12-day Pre-Primary Report...

  13. School Climate and the Relationship to Student Learning of Hispanic 10th Grade Students in Arizona Schools

    ERIC Educational Resources Information Center

    Nava Delgado, Mauricio

    2011-01-01

    This study provided an analysis of Hispanic 10th grade student academic achievement in the areas of mathematics, reading and writing as measured by the Arizona's Instrument to Measure Standards. The study is based on data of 163 school districts and 25,103 (95%) students in the state of Arizona as published by the Arizona Department of Education.…

  14. A Comparison of 9th and 10th Grade Boys' and Girls' Bullying Behaviors in Two States.

    ERIC Educational Resources Information Center

    Isernhagen, Jody; Harris, Sandy

    This study examined the incidences of bullying behaviors among male and female 9th and 10th graders in rural Nebraska and suburban Texas schools. Nebraska students were predominantly Caucasion, and Texas students were African American, Hispanic American, and Caucasion. Student surveys examined such issues as how often bullying occurred, where it…

  15. Proceedings of the International Conference on Mobile Learning 2014. (10th, Madrid, Spain, February 28-March 2, 2014)

    ERIC Educational Resources Information Center

    Sánchez, Inmaculada Arnedillo, Ed.; Isaías, Pedro, Ed.

    2014-01-01

    These proceedings contain the papers of the 10th International Conference on Mobile Learning 2014, which was organised by the International Association for Development of the Information Society, in Madrid, Spain, February 28-March 2, 2014. The Mobile Learning 2014 International Conference seeks to provide a forum for the presentation and…

  16. Examining General and Specific Factors in the Dimensionality of Oral Language and Reading in 4th-10th Grades

    ERIC Educational Resources Information Center

    Foorman, Barbara R.; Koon, Sharon; Petscher, Yaacov; Mitchell, Alison; Truckenmiller, Adrea

    2015-01-01

    The objective of this study was to explore dimensions of oral language and reading and their influence on reading comprehension in a relatively understudied population--adolescent readers in 4th through 10th grades. The current study employed latent variable modeling of decoding fluency, vocabulary, syntax, and reading comprehension so as to…

  17. Graduate Students Lend Their Voices: Reflections on the 10th Seminar in Health and Environmental Education Research

    ERIC Educational Resources Information Center

    Russell, Joshua; White, Peta; Fook, Tanya Chung Tiam; Kayira, Jean; Muller, Susanne; Oakley, Jan

    2010-01-01

    Graduate students were invited by their faculty advisors to attend the 10th Seminar in Health and Environmental Education Research. Afterward, they were encouraged to comment on their experiences, involvement, and positioning. Two main authors developed survey questions and retrieved, analyzed, and synthesized the responses of four other graduate…

  18. Predicting 3rd Grade and 10th Grade FCAT Success for 2006-07. Research Brief. Volume 0601

    ERIC Educational Resources Information Center

    Froman, Terry; Rubiera, Vilma

    2006-01-01

    For the past few years the Florida School Code has set the Florida Comprehensive Assessment Test (FCAT) performance requirements for promotion of 3rd graders and graduation for 10th graders. Grade 3 students who do not score at level 2 or higher on the FCAT SSS Reading must be retained unless exempted for special circumstances. Grade 10 students…

  19. Factors Related to Alcohol Use among 6th through 10th Graders: The Sarasota County Demonstration Project

    ERIC Educational Resources Information Center

    Eaton, Danice K.; Forthofer, Melinda S.; Zapata, Lauren B.; Brown, Kelli R. McCormack; Bryant, Carol A.; Reynolds, Sherri T.; McDermott, Robert J.

    2004-01-01

    Alcohol consumption by youth can produce negative health outcomes. This study identified correlates of lifetime alcohol use, recent alcohol use, and binge drinking among youth in sixth through 10th grade (n = 2,004) in Sarasota County, Fla. Results from a closed-ended, quantitative survey acknowledged a range of personal, social and environmental…

  20. Students' Transition Experience in the 10th Year of Schooling: Perceptions That Contribute to Improving the Quality of Schools

    ERIC Educational Resources Information Center

    Torres, Ana Cristina; Mouraz, Ana

    2015-01-01

    The study followed students in their 10th year of schooling that entered a new secondary education school in order to examine their perceptions of their previous schools' work and of its relationship with the difficulties they experience when in the transition. The analysis of 155 completed questionnaires of previous students of nine basic…

  1. Investigating the Effects of a DNA Fingerprinting Workshop on 10th Grade Students' Self Efficacy and Attitudes toward Science.

    ERIC Educational Resources Information Center

    Sonmez, Duygu; Simcox, Amanda

    The purpose of this study was investigate the effects of a DNA Fingerprinting Workshop on 10th grade students' self efficacy and attitudes toward science. The content of the workshop based on high school science curriculum and includes multimedia instruction, laboratory experiment and participation of undergraduate students as mentors. N=93…

  2. 3 CFR 8938 - Proclamation 8938 of March 1, 2013. 10th Anniversary of the United States Department of Homeland...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... of the United States Department of Homeland Security 8938 Proclamation 8938 Presidential Documents Proclamations Proclamation 8938 of March 1, 2013 Proc. 8938 10th Anniversary of the United States Department of Homeland SecurityBy the President of the United States of America A Proclamation Ten years ago, when...

  3. Risk Communication and Public Education in Edmonton, Alberta, Canada on the 10th Anniversary of the "Black Friday" Tornado

    ERIC Educational Resources Information Center

    Blanchard-Boehm, R. Denise; Cook, M. Jeffrey

    2004-01-01

    In July 1997, on the 10th anniversary of the great "Black Friday" Tornado, city officials of Edmonton, the print and broadcast media, agencies dealing in emergency management, and the national weather organisation recounted stories of the 1987, F5 tornado that struck Edmonton on a holiday weekend. The information campaign also presented…

  4. Selected Papers from the International Conference on College Teaching and Learning (10th, Jacksonville, Florida, April 1999).

    ERIC Educational Resources Information Center

    Chambers, Jack A., Ed.

    These 20 papers were selected from those presented at the 10th International Conference on College Teaching and Learning. Papers have the following titles and authors: (1) "Case It! A Project to Integrate Collaborative Case-Based Learning into International Undergraduate Biology Curricula" (Bergland, Klyczek, Lundeberg, Mogen, Johnson); (2) "The…

  5. Influence of V-Diagrams on 10th Grade Turkish Students' Achievement in the Subject of Mechanical Waves

    ERIC Educational Resources Information Center

    Tekes, Hanife; Gonen, Selahattin

    2012-01-01

    The purpose of the present study was to examine how the use of V-diagrams one of the learning techniques used in laboratory studies in experiments conducted regarding the 10th grade lesson unit of "waves" influenced students' achievements. In the study, a quasi-experimental design with a pretest and posttest control group was used. The…

  6. MAST - A mass spectrometer telescope for studies of the isotopic composition of solar, anomalous, and galactic cosmic ray nuclei

    NASA Technical Reports Server (NTRS)

    Cook, Walter R.; Cummings, Alan C.; Cummings, Jay R.; Garrard, Thomas L.; Kecman, Branislav; Mewaldt, Richard A.; Selesnick, Richard S.; Stone, Edward C.; Von Rosenvinge, T. T.

    1993-01-01

    The Mass Spectrometer Telescope (MAST) on SAMPEX is designed to provide high resolution measurements of the isotopic composition of energetic nuclei from He to Ni (Z = 2 to 28) over the energy range from about 10 to several hundred MeV/nuc. During large solar flares MAST will measure the isotopic abundances of solar energetic particles to determine directly the composition of the solar corona, while during solar quiet times MAST will study the isotopic composition of galactic cosmic rays. In addition, MAST will measure the isotopic composition of both interplanetary and trapped fluxes of anomalous cosmic rays, believed to be a sample of the nearby interstellar medium.

  7. Coronal mass ejections and the injection profiles of solar energetic particle events

    NASA Technical Reports Server (NTRS)

    Kahler, S. W.; Reames, D. V.; Sheeley, N. R., Jr.

    1990-01-01

    Previous studies using Skylab and Solwind coronagraph observations have shown that almost all E greater than 10 MeV solar energetic proton (SEP) events are associated with the occurrence of a coronal mass ejection (CME). These earlier studies did not address the relationship between the position of the associated CME and the timing of the injection of particles into the interplanetary medium. Ten cases are selected in which a SEP event observed with the GSFC detectors on the IMP 8 or ISEE 3 spacecraft was correlated to a CME well observed by the Solwind coronagraph. The height of the leading edge of the CME is compared with the particle injection profiles for several energy ranges using the solar release times for the particles. The derived injection profiles are found to be increasing and sometimes reaching maximum while the associated CMEs are at heights of 2-10 Ro.

  8. Impact of thermal energy storage properties on solar dynamic space power conversion system mass

    NASA Technical Reports Server (NTRS)

    Juhasz, Albert J.; Coles-Hamilton, Carolyn E.; Lacy, Dovie E.

    1987-01-01

    A 16 parameter solar concentrator/heat receiver mass model is used in conjunction with Stirling and Brayton Power Conversion System (PCS) performance and mass computer codes to determine the effect of thermal energy storage (TES) material property changes on overall PCS mass as a function of steady state electrical power output. Included in the PCS mass model are component masses as a function of thermal power for: concentrator, heat receiver, heat exchangers (source unless integral with heat receiver, heat sink, regenerator), heat engine units with optional parallel redundancy, power conditioning and control (PC and C), PC and C radiator, main radiator, and structure. Critical TES properties are: melting temperature, heat of fusion, density of the liquid phase, and the ratio of solid-to-liquid density. Preliminary results indicate that even though overall system efficiency increases with TES melting temperature up to 1400 K for concentrator surface accuracies of 1 mrad or better, reductions in the overall system mass beyond that achievable with lithium fluoride (LiF) can be accomplished only if the heat of fusion is at least 800 kJ/kg and the liquid density is comparable to that of LiF (1800 kg/cu m).

  9. Impact of thermal energy storage properties on solar dynamic space power conversion system mass

    NASA Technical Reports Server (NTRS)

    Juhasz, Albert J.; Coles-Hamilton, Carolyn E.; Lacy, Dovie E.

    1987-01-01

    A 16 parameter solar concentrator/heat receiver mass model is used in conjunction with Stirling and Brayton Power Conversion System (PCS) performance and mass computer codes to determine the effect of thermal energy storage (TES) material property changes on overall PCS mass as a function of steady state electrical power output. Included in the PCS mass model are component masses as a function of thermal power for: concentrator, heat receiver, heat exchangers (source unless integral with heat receiver, heat sink, regenerator), heat engine units with optional parallel redundancy, power conditioning and control (PC and C), PC and C radiator, main radiator, and structure. Critical TES properties are: melting temperature, heat of fusion, density of the liquid phase, and the ratio of solid-to-liquid density. Preliminary results indicate that even though overalll system efficiency increases with TES melting temperature up to 1400 K for concentrator surface accuracies of 1 mrad or better, reductions in the overall system mass beyond that achievable with lithium fluoride (LiF) can be accomplished only if the heat of fusion is at least 800 kJ/kg and the liquid density is comparable to that of LiF (1880 kg/cu m.

  10. On the Rates of Coronal Mass Ejections: Remote Solar and In Situ Observations

    NASA Technical Reports Server (NTRS)

    Riley, Pete; Schatzman, C.; Cane, H. V.; Richardson, I. G.; Gopalswamy, N.

    2006-01-01

    We compare the rates of coronal mass ejections (CMEs) as inferred from remote solar observations and interplanetary CMEs (ICMEs) as inferred from in situ observations at both 1 AU and Ulyssses from 1996 through 2004. We also distinguish between those ICMEs that contain a magnetic cloud (MC) and those that do not. While the rates of CMEs and ICMEs track each other well at solar minimum, they diverge significantly in early 1998, during the ascending phase of the solar cycle, with the remote solar observations yielding approximately 20 times more events than are seen at 1 AU. This divergence persists through 2004. A similar divergence occurs between MCs and non-MC ICMEs. We argue that these divergences are due to the birth of midlatitude active regions, which are the sites of a distinct population of CMEs, only partially intercepted by Earth, and we present a simple geometric argument showing that the CME and ICME rates are consistent with one another. We also acknowledge contributions from (1) an increased rate of high-latitude CMEs and (2) focusing effects from the global solar field. While our analysis, coupled with numerical modeling results, generally supports the interpretation that whether one observes a MC within an ICME is sensitive to the trajectory of the spacecraft through the ICME (i.e., an observational selection effect), one result directly contradicts it. Specifically, we find no systematic offset between the latitudinal origin of ICMEs that contain MCs at 1 AU in the ecliptic plane and that of those that do not.

  11. Compressive Acceleration of Solar Energetic Particles within Coronal Mass Ejections: Observations and Theory Relevant to the Solar Probe Plus and Solar Orbiter Missions

    NASA Astrophysics Data System (ADS)

    Roelof, E. C.

    2015-12-01

    Observations of solar energetic particles (SEPs) over Solar Cycles 22-24 included the measurement of their pitch-angle distributions (PADs). When only magnetically "well-connected" SEP events were selected, i.e., with the spacecraft on interplanetary magnetic field (IMF) lines whose coronal foot-points were within about 30 deg of the associated flare site, the PADs were usually "beam-like" during the rise-to-maximum phase (RTM) of the events. This nearly "scatter-free" propagation (due to magnetic focusing of the IMF) revealed that the injection times of the SEPs were delayed up to 10s of minutes after the onset of electromagnetic emissions from the flare. Direct comparison with the flare-associated coronal mass ejections (CMEs) from the western hemisphere indicated that the SEP acceleration/injection was occurring at least 1 Rs into the corona (and often continuing well above that radial distance). Moreover, the RTM profiles exhibited a continuum of shapes, from "spikes" to "pulses" to "ramps", and these shape characterizations ordered the properties of the associated CMEs. Most importantly, when compared at nearly the same near-relativistic velocities, electrons and protons exhibited similar PADs and RTM profiles. Clearly, such orderly patterns in the data call for a single dominant acceleration process that treats all particles of similar velocities the same, regardless of mass and charge. A simple theory that meets all of these requirements, based on nearly scatter-free propagation and energy change within particle "reservoirs" (such as the closed magnetic structure of a CME), has recently been proposed [Roelof, Proc. 14th Ann. Int'l. Astrophys. Conf., IOP, in press, 2015]. The acceleration results from compression (-divV) of the driver plasma, well sunward of the CME shock. Acceleration (e-folding) times of only a few minutes can be obtained from representative parameters of 1000 km/s CMEs. A companion paper [Roelof and Vourlidas, op. cit.], proposed a new

  12. Air mass 1.5 global and direct solar simulation and secondary reference cell calibration using a filtered large area pulsed solar simulator

    NASA Technical Reports Server (NTRS)

    Mueller, Robert L.

    1985-01-01

    Spectral mismatch between a solar simulator and a desired spectrum can result in nearly 20 percent measurement error in the output of photovoltaic devices. This occurs when a crystalline silicon cell monitors the intensity of an unfiltered large area pulsed solar simulator (LAPSS) simulating the ASTM air mass 1.5 direct spectrum and the test device is amorphous silicon. The LAPSS spectral irradiance is modified with readily available glass UV filters to closely match either the ASTM air mass 1.5 direct or global spectrum. Measurement error is reduced to about 1 percent when using either filter if the reference cell and test device are the same general type.

  13. Radio Tracking of a White-Light Coronal Mass Ejection from Solar Corona to Interplanetary Medium.

    PubMed

    Reiner; Kaiser; Plunkett; Prestage; Manning

    2000-01-20

    For a solar flare/coronal mass ejection (CME) event on 1999 May 3, type II radio emissions were observed from the metric through the hectometric wavelength regimes. By comparing the dynamics of the CME with that implied by the frequency range and frequency drift rates of the type II radio emissions, it is concluded that the decametric-hectometric type II radio emissions were associated with the CME. The dynamics implied by the metric type II radio burst suggest a distinct coronal shock, associated with the flare, which only produced radio emissions in the low corona.

  14. THE EVOLUTION OF THE SOLAR NEBULA I. EVOLUTION OF THE GLOBAL PROPERTIES AND PLANET MASSES

    SciTech Connect

    Jin Liping; Sui Ning E-mail: suining@email.jlu.edu.c

    2010-02-20

    We investigate the formation, structure, and evolution of the solar nebula by including nonuniform viscosity and the mass influx from the gravitational collapse of the molecular cloud core. The calculations are done by using currently accepted viscosity, which is nonuniform, and probable mass influx from star formation theory. In the calculation of the viscosity, we include the effect of magnetorotational instability. The radial distributions of the surface density and other physical quantities of the nebula are significantly different from nebula models with constant alpha viscosity and the models which do not include the mass influx. We find that the nebula starts to form from the inner boundary because of the inside-out collapse and then expands due to viscosity. The surface density is not a monotonic function of the radius like the case of uniform viscosity. There are minimums near 1.5 AU due to nonuniform viscosity. The general shape of the surface density is sustained before the mass influx stops because the mass supply offsets mass loss accreted onto the protosun and provides the mass needed for the nebula expansion. We show that not all protoplanetary disks experience gravitational instability during some periods of their lifetime. We find that the nebula becomes gravitationally unstable in some durations when the angular momentum of the cloud core is high. Our numerical calculations confirm Jin's early suggestion that nonuniform viscosity explains the differences in mass and gas content among Jovian planets. Our calculations of nebular evolution show that the nebula temperature is less than 1200 K. Even in the inner portion of the nebula, refractory material from the molecular cloud may survive and refractory condensates may form.

  15. Radio emission and mass loss rate limits of four young solar-type stars

    NASA Astrophysics Data System (ADS)

    Fichtinger, Bibiana; Güdel, Manuel; Mutel, Robert L.; Hallinan, Gregg; Gaidos, Eric; Skinner, Stephen L.; Lynch, Christene; Gayley, Kenneth G.

    2017-03-01

    Aims: Observations of free-free continuum radio emission of four young main-sequence solar-type stars (EK Dra, π1 UMa, χ1 Ori, and κ1 Cet) are studied to detect stellar winds or at least to place upper limits on their thermal radio emission, which is dominated by the ionized wind. The stars in our sample are members of The Sun in Time programme and cover ages of 0.1-0.65 Gyr on the main-sequence. They are similar in magnetic activity to the Sun and thus are excellent proxies for representing the young Sun. Upper limits on mass loss rates for this sample of stars are calculated using their observational radio emission. Our aim is to re-examine the faint young Sun paradox by assuming that the young Sun was more massive in its past, and hence to find a possible solution for this famous problem. Methods: The observations of our sample are performed with the Karl G. Jansky Very Large Array (VLA) with excellent sensitivity, using the C-band receiver from 4-8 GHz and the Ku-band from 12-18 GHz. Atacama Large Millimeter/Submillitmeter Array (ALMA) observations are performed at 100 GHz. The Common Astronomy Software Application (CASA) package is used for the data preparation, reduction, calibration, and imaging. For the estimation of the mass loss limits, spherically symmetric winds and stationary, anisotropic, ionized winds are assumed. We compare our results to 1) mass loss rate estimates of theoretical rotational evolution models; and 2) to results of the indirect technique of determining mass loss rates: Lyman-α absorption. Results: We are able to derive the most stringent direct upper limits on mass loss so far from radio observations. Two objects, EK Dra and χ1 Ori, are detected at 6 and 14 GHz down to an excellent noise level. These stars are very active and additional radio emission identified as non-thermal emission was detected, but limits for the mass loss rates of these objects are still derived. The emission of χ1 Ori does not come from the main target

  16. Modeling heat and mass transport phenomena at higher temperatures in solar distillation systems - The Chilton-Colburn analogy

    SciTech Connect

    Tsilingiris, P.T.

    2010-02-15

    In the present investigation efforts have been devoted towards developing an analysis suitable for heat and mass transfer processes modeling in solar distillation systems, when they are operating at higher temperatures. For this purpose the use of Lewis relation is not new although its validity is based on the assumptions of identical boundary layer concentration and temperature distributions, as well as low mass flux conditions, which are not usually met in solar distillation systems operating at higher temperatures associated with considerable mass transfer rates. The present analysis, taking into consideration these conditions and the temperature dependence of all pertinent thermophysical properties of the saturated binary mixture of water vapor and dry air, leads to the development of an improved predictive accuracy model. This model, having undergone successful first order validation against earlier reported measurements from the literature, appears to offer more accurate predictions of the transport processes and mass flow rate yield of solar stills when operated at elevated temperatures. (author)

  17. A CRITICAL EXAMINATION OF THE FUNDAMENTAL ASSUMPTIONS OF SOLAR FLARE AND CORONAL MASS EJECTION MODELS

    SciTech Connect

    Spicer, D. S.; Bingham, R.; Harrison, R.

    2013-05-01

    The fundamental assumptions of conventional solar flare and coronal mass ejection (CME) theory are re-examined. In particular, the common theoretical assumption that magnetic energy that drives flares and CMEs can be stored in situ in the corona with sufficient energy density is found wanting. In addition, the observational constraint that flares and CMEs produce non-thermal electrons with fluxes of order 10{sup 34}-10{sup 36} electrons s{sup -1}, with energies of order 10-20 keV, must also be explained. This constraint when imposed on the ''standard model'' for flares and CMEs is found to miss the mark by many orders of magnitude. We suggest, in conclusion, there are really only two possible ways to explain the requirements of observations and theory: flares and CMEs are caused by mass-loaded prominences or driven directly by emerging magnetized flux.

  18. Deflections of Fast Coronal Mass Ejections and the Properties of Associated Solar Energetic Particle Events

    NASA Technical Reports Server (NTRS)

    Kahler, S. W.; Akiyama, S.; Gopalswamy, N.

    2012-01-01

    The onset times and peak intensities of solar energetic particle (SEP) events at Earth have long been thought to be influenced by the open magnetic fields of coronal holes (CHs). The original idea was that a CH lying between the solar SEP source region and the magnetic footpoint of the 1 AU observer would result in a delay in onset and/or a decrease in the peak intensity of that SEP event. Recently, Gopalswamy et al. showed that CHs near coronal mass ejection (CME) source regions can deflect fast CMEs from their expected trajectories in space, explaining the appearance of driverless shocks at 1 AU from CMEs ejected near solar central meridian (CM). This suggests that SEP events originating in CME-driven shocks may show variations attributable to CH deflections of the CME trajectories. Here, we use a CH magnetic force parameter to examine possible effects of CHs on the timing and intensities of 41 observed gradual E approx 20 MeV SEP events with CME source regions within 20 deg. of CM. We find no systematic CH effects on SEP event intensity profiles. Furthermore, we find no correlation between the CME leading-edge measured position angles and SEP event properties, suggesting that the widths of CME-driven shock sources of the SEPs are much larger than the CMEs. Independently of the SEP event properties, we do find evidence for significant CME deflections by CH fields in these events

  19. Propagation of Solar Energetic Particles During Multiple Coronal Mass Ejection Events

    NASA Astrophysics Data System (ADS)

    Pohjolainen, Silja; Al-Hamadani, Firas; Valtonen, Eino

    2016-02-01

    We study solar energetic particle (SEP) events during multiple solar eruptions. The analysed sequences, on 24 - 26 November 2000, 9 - 13 April 2001, and 22 - 25 August 2005, consisted of halo-type coronal mass ejections (CMEs) that originated from the same active region and were associated with intense flares, EUV waves, and interplanetary (IP) radio type II and type III bursts. The first two solar events in each of these sequences showed SEP enhancements near Earth, but the third in the row did not. We observed that in these latter events the type III radio bursts were stopped at much higher frequencies than in the earlier events, indicating that the bursts did not reach the typical plasma density levels near Earth. To explain the missing third SEP event in each sequence, we suggest that the earlier-launched CMEs and the CME-driven shocks either reduced the seed particle population and thus led to inefficient particle acceleration, or that the earlier-launched CMEs and shocks changed the propagation paths or prevented the propagation of both the electron beams and SEPs, so that they were not detected near Earth even when the shock arrivals were recorded.

  20. DEFLECTIONS OF FAST CORONAL MASS EJECTIONS AND THE PROPERTIES OF ASSOCIATED SOLAR ENERGETIC PARTICLE EVENTS

    SciTech Connect

    Kahler, S. W.; Akiyama, S.; Gopalswamy, N.

    2012-08-01

    The onset times and peak intensities of solar energetic particle (SEP) events at Earth have long been thought to be influenced by the open magnetic fields of coronal holes (CHs). The original idea was that a CH lying between the solar SEP source region and the magnetic footpoint of the 1 AU observer would result in a delay in onset and/or a decrease in the peak intensity of that SEP event. Recently, Gopalswamy et al. showed that CHs near coronal mass ejection (CME) source regions can deflect fast CMEs from their expected trajectories in space, explaining the appearance of driverless shocks at 1 AU from CMEs ejected near solar central meridian (CM). This suggests that SEP events originating in CME-driven shocks may show variations attributable to CH deflections of the CME trajectories. Here, we use a CH magnetic force parameter to examine possible effects of CHs on the timing and intensities of 41 observed gradual E {approx} 20 MeV SEP events with CME source regions within 20 Degree-Sign of CM. We find no systematic CH effects on SEP event intensity profiles. Furthermore, we find no correlation between the CME leading-edge measured position angles and SEP event properties, suggesting that the widths of CME-driven shock sources of the SEPs are much larger than the CMEs. Independently of the SEP event properties, we do find evidence for significant CME deflections by CH fields in these events.

  1. DENSITY DIAGNOSTICS OF CORONAL MASS EJECTION CORES WITH THE SOLAR DYNAMICS OBSERVATORY/ATMOSPHERIC IMAGING ASSEMBLY

    SciTech Connect

    Landi, E.; Miralles, M. P.

    2014-01-01

    In this Letter, we investigate the application of the intensity ratio from pairs of narrow-band images from the Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory, the Extreme Ultraviolet (EUV) Imager (EUVI) on board the Sun Earth Connection Coronal and Heliospheric Investigation, and the EUV Imaging Telescope (EIT) on board the Solar and Heliospheric Observatory, to density diagnostics of optically thin plasmas. By inspecting the filtered spectra allowed by each instrument's effective area, we find that ratios between AIA images in the 171 Å and 193 Å channels can be used to determine the plasma electron density at transition region temperatures. This diagnostic potential is due to a pair of O V transitions which dominate the effective spectra of these two channels at temperatures around ≈2.5-3.0 × 10{sup 5} K. The temperature and electron density ranges where the 171/193 ratio is density sensitive are relevant for the cores of accelerating coronal mass ejections (CMEs) in the inner solar corona. We discuss how AIA series of images can be used for simultaneous temperature and density diagnostics of CME cores.

  2. Investigation of the Large Scale Evolution and Topology of Coronal Mass Ejections in the Solar Wind

    NASA Technical Reports Server (NTRS)

    Riley, Pete

    2001-01-01

    This investigation is concerned with the large-scale evolution and topology of coronal mass ejections (CMEs) in the solar wind. During the course of this three-year investigation, we have undertaken a number of studies that are discussed in more detail in this report. For example, we conducted an analysis of all CMEs observed by the Ulysses spacecraft during its in-ecliptic phase between 1 and 5 AU. In addition to studying the properties of the ejecta, we also analyzed the shocks that could be unambiguously associated with the fast CMEs. We also analyzed a series of 'density holes' observed in the solar wind that bear many similarities with CMEs. To complement this analysis, we conducted a series of 1-D and 2 1/2-D fluid, MHD, and hybrid simulations to address a number of specific issues related to CME evolution in the solar wind. For example, we used fluid simulations to address the interpretation of negative electron temperature-density relationships often observed within CME/cloud intervals. As part of this investigation, a number of fruitful international collaborations were forged. Finally, the results of this work were presented at nine scientific meetings and communicated in eight scientific, refereed papers.

  3. Realization of improved efficiency on nanostructured multicrystalline silicon solar cells for mass production.

    PubMed

    Lin, X X; Zeng, Y; Zhong, S H; Huang, Z G; Qian, H Q; Ling, J; Zhu, J B; Shen, W Z

    2015-03-27

    We report the realization of both excellent optical and electrical properties of nanostructured multicrystalline silicon solar cells by a simple and industrially compatible technique of surface morphology modification. The nanostructures are prepared by Ag-catalyzed chemical etching and subsequent NaOH treatment with controllable geometrical parameters and surface area enhancement ratio. We have examined in detail the influence of different surface area enhancement ratios on reflectance, carrier recombination characteristics and cell performance. By conducting a quantitative analysis of these factors, we have successfully demonstrated a higher-than-traditional output performance of nanostructured multicrystalline silicon solar cells with a low average reflectance of 4.93%, a low effective surface recombination velocity of 6.59 m s(-1), and a certified conversion efficiency of 17.75% on large size (156 × 156 mm(2)) silicon cells, which is ∼0.3% higher than the acid textured counterparts. The present work opens a potential prospect for the mass production of nanostructured solar cells with improved efficiencies.

  4. SOLAR RADIO TYPE-I NOISE STORM MODULATED BY CORONAL MASS EJECTIONS

    SciTech Connect

    Iwai, K.; Tsuchiya, F.; Morioka, A.; Misawa, H.; Miyoshi, Y.; Masuda, S.; Shimojo, M.; Shiota, D.; Inoue, S.

    2012-01-10

    The first coordinated observations of an active region using ground-based radio telescopes and the Solar Terrestrial Relations Observatory (STEREO) satellites from different heliocentric longitudes were performed to study solar radio type-I noise storms. A type-I noise storm was observed between 100 and 300 MHz during a period from 2010 February 6 to 7. During this period the two STEREO satellites were located approximately 65 Degree-Sign (ahead) and -70 Degree-Sign (behind) from the Sun-Earth line, which is well suited to observe the earthward propagating coronal mass ejections (CMEs). The radio flux of the type-I noise storm was enhanced after the preceding CME and began to decrease before the subsequent CME. This time variation of the type-I noise storm was directly related to the change of the particle acceleration processes around its source region. Potential-field source-surface extrapolation from the Solar and Heliospheric Observatory/Michelson Doppler Imager (SOHO/MDI) magnetograms suggested that there was a multipolar magnetic system around the active region from which the CMEs occurred around the magnetic neutral line of the system. From our observational results, we suggest that the type-I noise storm was activated at a side-lobe reconnection region that was formed after eruption of the preceding CME. This magnetic structure was deformed by a loop expansion that led to the subsequent CME, which then suppressed the radio burst emission.

  5. SOLAR JET–CORONAL HOLE COLLISION AND A CLOSELY RELATED CORONAL MASS EJECTION

    SciTech Connect

    Zheng, Ruisheng; Chen, Yao; Du, Guohui; Li, Chuanyang

    2016-03-10

    Jets are defined as impulsive, well-collimated upflows, occurring in different layers of the solar atmosphere with different scales. Their relationship with coronal mass ejections (CMEs), another type of solar impulsive events, remains elusive. Using high-quality imaging data from the Atmospheric Imaging Assembly/Solar Dynamics Observatory, we show a well-observed coronal jet event, in which the part of the jet with embedding coronal loops runs into a nearby coronal hole (CH) and gets bounced in the opposite direction. This is evidenced by the flat shape of the jet front during its interaction with the CH and the V-shaped feature in the time-slice plot of the interaction region. About a half-hour later, a CME with an initially narrow and jet-like front is observed by the LASCO C2 coronagraph propagating along the direction of the post-collision jet. We also observe some 304 Å dark material flowing from the jet–CH interaction region toward the CME. We thus suggest that the jet and the CME are physically connected, with the jet–CH collision and the large-scale magnetic topology of the CH being important in defining the eventual propagating direction of this particular jet–CME eruption.

  6. TRIGGER OF A BLOWOUT JET IN A SOLAR CORONAL MASS EJECTION ASSOCIATED WITH A FLARE

    SciTech Connect

    Li, Xiaohong; Yang, Shuhong; Chen, Huadong; Li, Ting; Zhang, Jun

    2015-11-20

    Using the multi-wavelength images and the photospheric magnetograms from the Solar Dynamics Observatory, we study the flare that was associated with the only coronal mass ejection (CME) in active region (AR) 12192. The eruption of a filament caused a blowout jet, and then an M4.0 class flare occurred. This flare was located at the edge of the AR instead of in the core region. The flare was close to the apparently “open” fields, appearing as extreme-ultraviolet structures that fan out rapidly. Due to the interaction between flare materials and “open” fields, the flare became an eruptive flare, leading to the CME. Then, at the same site of the first eruption, another small filament erupted. With the high spatial and temporal resolution Hα data from the New Vacuum Solar Telescope at the Fuxian Solar Observatory, we investigate the interaction between the second filament and the nearby “open” lines. The filament reconnected with the “open” lines, forming a new system. To our knowledge, the detailed process of this kind of interaction is reported for the first time. Then the new system rotated due to the untwisting motion of the filament, implying that the twist was transferred from the closed filament system to the “open” system. In addition, the twist seemed to propagate from the lower atmosphere to the upper layers and was eventually spread by the CME to the interplanetary space.

  7. A 17-billion-solar-mass black hole in a group galaxy with a diffuse core

    NASA Astrophysics Data System (ADS)

    Thomas, Jens; Ma, Chung-Pei; McConnell, Nicholas J.; Greene, Jenny E.; Blakeslee, John P.; Janish, Ryan

    2016-04-01

    Quasars are associated with and powered by the accretion of material onto massive black holes; the detection of highly luminous quasars with redshifts greater than z = 6 suggests that black holes of up to ten billion solar masses already existed 13 billion years ago. Two possible present-day ‘dormant’ descendants of this population of ‘active’ black holes have been found in the galaxies NGC 3842 and NGC 4889 at the centres of the Leo and Coma galaxy clusters, which together form the central region of the Great Wall—the largest local structure of galaxies. The most luminous quasars, however, are not confined to such high-density regions of the early Universe; yet dormant black holes of this high mass have not yet been found outside of modern-day rich clusters. Here we report observations of the stellar velocity distribution in the galaxy NGC 1600—a relatively isolated elliptical galaxy near the centre of a galaxy group at a distance of 64 megaparsecs from Earth. We use orbit superposition models to determine that the black hole at the centre of NGC 1600 has a mass of 17 billion solar masses. The spatial distribution of stars near the centre of NGC 1600 is rather diffuse. We find that the region of depleted stellar density in the cores of massive elliptical galaxies extends over the same radius as the gravitational sphere of influence of the central black holes, and interpret this as the dynamical imprint of the black holes.

  8. Two-Step Forecast of Geomagnetic Storm Using Coronal Mass Ejection and Solar Wind Condition

    NASA Technical Reports Server (NTRS)

    Kim, R.-S.; Moon, Y.-J.; Gopalswamy, N.; Park, Y.-D.; Kim, Y.-H.

    2014-01-01

    To forecast geomagnetic storms, we had examined initially observed parameters of coronal mass ejections (CMEs) and introduced an empirical storm forecast model in a previous study. Now we suggest a two-step forecast considering not only CME parameters observed in the solar vicinity but also solar wind conditions near Earth to improve the forecast capability. We consider the empirical solar wind criteria derived in this study (Bz = -5 nT or Ey = 3 mV/m for t = 2 h for moderate storms with minimum Dst less than -50 nT) (i.e. Magnetic Field Magnitude, B (sub z) less than or equal to -5 nanoTeslas or duskward Electrical Field, E (sub y) greater than or equal to 3 millivolts per meter for time greater than or equal to 2 hours for moderate storms with Minimum Disturbance Storm Time, Dst less than -50 nanoTeslas) and a Dst model developed by Temerin and Li (2002, 2006) (TL [i.e. Temerin Li] model). Using 55 CME-Dst pairs during 1997 to 2003, our solar wind criteria produce slightly better forecasts for 31 storm events (90 percent) than the forecasts based on the TL model (87 percent). However, the latter produces better forecasts for 24 nonstorm events (88 percent), while the former correctly forecasts only 71 percent of them. We then performed the two-step forecast. The results are as follows: (i) for 15 events that are incorrectly forecasted using CME parameters, 12 cases (80 percent) can be properly predicted based on solar wind conditions; (ii) if we forecast a storm when both CME and solar wind conditions are satisfied (n, i.e. cap operator - the intersection set that is comprised of all the elements that are common to both), the critical success index becomes higher than that from the forecast using CME parameters alone, however, only 25 storm events (81 percent) are correctly forecasted; and (iii) if we forecast a storm when either set of these conditions is satisfied (?, i.e. cup operator - the union set that is comprised of all the elements of either or both

  9. Fortified Settlements of the 9th and 10th Centuries ad in Central Europe: Structure, Function and Symbolism.

    PubMed

    Herold, Hajnalka

    2012-11-01

    THE STRUCTURE, FUNCTION(S) and symbolism of early medieval (9th-10th centuries ad) fortified settlements from central Europe, in particular today's Austria, Hungary, Czech Republic and Slovakia, are examined in this paper. It offers an overview of the current state of research together with new insights based on analysis of the site of Gars-Thunau in Lower Austria. Special emphasis is given to the position of the fortified sites in the landscape, to the elements of the built environment and their spatial organisation, as well as to graves within the fortified area. The region under study was situated on the SE border of the Carolingian (and later the Ottonian) Empire, with some of the discussed sites lying in the territory of the 'Great Moravian Empire' in the 9th and 10th centuries. These sites can therefore provide important comparative data for researchers working in other parts of the Carolingian Empire and neighbouring regions.

  10. Dwarf planets (to the 10th anniversary of the introduction of the new class of planets)

    NASA Astrophysics Data System (ADS)

    Vidmachenko, A. P.

    2015-12-01

    02.18.1930 a new body was discovered beyond the orbit of Neptune. Pluto is quite a large body rotates around the sun and is not a single on its orbit. That is why International Astronomical Union (IAU) by its resolution of 24.08.2006 gave this "large" planet lower status. It was one of several new objects which are called dwarf planets. In the same decision, MAC, Ceres was transferred from the status of "asteroid" in the status of "dwarf" planet. 04.06.2002 was discovered Kuiper Belt objects (50000) Kuaoar with a diameter of 1 110 km; 21.10.2003 was discovered Eris (UB313), which classified as dwarf planet when determined its large size and weight. (136108) Haumea with size of 1 960 × 1 518 × 996 km, and Makemake (2005 FY9) with a diameter of 1 502 km were discovered in 2005. 03.05.2004 was announced the discovery of the farthest object in the Solar system - Sedna, on distant from the Sun a nearly 100 a.u. Thus the decade that had passed since the introduction of the new class of these large objects in the solar system as dwarf planets - has indicated on the correctness of this step of astronomical community. After all, most of the main methods of researches is quite specific and different from the methods for the study of great classical planets. They also differ significantly and in their physical parameters.

  11. Proceedings of the 10th study presentation meeting of Japan Society of Energy and Resources

    NASA Astrophysics Data System (ADS)

    Concerning solar/natural energy, reports are made on a design of wind turbine arrays, hydrogen production by solar thermal conversion, demonstration tests with the interconnected system, etc. About the combustion, discussions are made on efficiency and pollution abatement measures. Besides solid electrolyte and internal-heat-reforming type molten carbonate fuel cells, test runs of phosphoric acid fuel cells for the district heat supply/on-site use are conducted. Furthermore, studies on the ocean thermal energy conversion and the wave power generation are taken up. The global energy system is also proposed which combines the photovoltaic power generation, hydrogen production and methanol fuel synthesis using flue gas CO2 transported by tanker in the desert for the global warming prevention/resource recycling. Reports on energy conservation using energy storage and heat pumps are made. Application of electric power to superconductivity technology is reported on. As for the energy system, district cooling and heating, alternative energy, cogeneration, etc. are introduced, and then many examples of energy conservation and non-pollution are presented.

  12. The Earlier the Better? Taking the AP® in 10th Grade. Research Report No. 2012-10

    ERIC Educational Resources Information Center

    Rodriguez, Awilda; McKillip, Mary E. M.; Niu, Sunny X.

    2013-01-01

    In this report, the authors examine the impact of scoring a 1 or 2 on an AP® Exam in 10th grade on later AP Exam participation and performance. As access to AP courses increases within and across schools, a growing number of students are taking AP courses and exams in the earlier grades of high school. Using a matched sample of AP and no-AP…

  13. IS SOLAR CYCLE 24 PRODUCING MORE CORONAL MASS EJECTIONS THAN CYCLE 23?

    SciTech Connect

    Wang, Y.-M.; Colaninno, R. E-mail: robin.colaninno@nrl.navy.mil

    2014-04-01

    Although sunspot numbers are roughly a factor of two lower in the current cycle than in cycle 23, the rate of coronal mass ejections (CMEs) appears to be at least as high in 2011-2013 as during the corresponding phase of the previous cycle, according to three catalogs that list events observed with the Large Angle and Spectrometric Coronagraph (LASCO). However, the number of CMEs detected is sensitive to such factors as the image cadence and the tendency (especially by human observers) to under-/overcount small or faint ejections during periods of high/low activity. In contrast to the total number, the total mass of CMEs is determined mainly by larger events. Using the mass measurements of 11,000 CMEs given in the manual CDAW catalog, we find that the mass loss rate remains well correlated with the sunspot number during cycle 24. In the case of the automated CACTus and SEEDS catalogs, the large increase in the number of CMEs during cycle 24 is almost certainly an artifact caused by the near-doubling of the LASCO image cadence after mid-2010. We confirm that fast CMEs undergo a much stronger solar-cycle variation than slow ones, and that the relative frequency of slow and less massive CMEs increases with decreasing sunspot number. We conclude that cycle 24 is not only producing fewer CMEs than cycle 23, but that these ejections also tend to be slower and less massive than those observed one cycle earlier.

  14. Is Solar Cycle 24 Producing More Coronal Mass Ejections Than Cycle 23?

    NASA Astrophysics Data System (ADS)

    Wang, Y.-M.; Colaninno, R.

    2014-04-01

    Although sunspot numbers are roughly a factor of two lower in the current cycle than in cycle 23, the rate of coronal mass ejections (CMEs) appears to be at least as high in 2011-2013 as during the corresponding phase of the previous cycle, according to three catalogs that list events observed with the Large Angle and Spectrometric Coronagraph (LASCO). However, the number of CMEs detected is sensitive to such factors as the image cadence and the tendency (especially by human observers) to under-/overcount small or faint ejections during periods of high/low activity. In contrast to the total number, the total mass of CMEs is determined mainly by larger events. Using the mass measurements of 11,000 CMEs given in the manual CDAW catalog, we find that the mass loss rate remains well correlated with the sunspot number during cycle 24. In the case of the automated CACTus and SEEDS catalogs, the large increase in the number of CMEs during cycle 24 is almost certainly an artifact caused by the near-doubling of the LASCO image cadence after mid-2010. We confirm that fast CMEs undergo a much stronger solar-cycle variation than slow ones, and that the relative frequency of slow and less massive CMEs increases with decreasing sunspot number. We conclude that cycle 24 is not only producing fewer CMEs than cycle 23, but that these ejections also tend to be slower and less massive than those observed one cycle earlier.

  15. COMPARING SPATIAL DISTRIBUTIONS OF SOLAR PROMINENCE MASS DERIVED FROM CORONAL ABSORPTION

    SciTech Connect

    Gilbert, Holly; Kilper, Gary; Kucera, Therese; Alexander, David

    2011-01-20

    In a previous study, Gilbert et al. derived the column density and total mass of solar prominences using a new technique, which measures how much coronal radiation in the Fe XII (195 A) spectral band is absorbed by prominence material, while considering the effects of both foreground and background radiation. In the present work, we apply this method to a sample of prominence observations in three different wavelength regimes: one in which only H{sup 0} is ionized (504 A < {lambda} < 911 A), a second where both H{sup 0} and He{sup 0} are ionized (228 A < {lambda} < 504 A), and finally at wavelengths where H{sup 0}, He{sup 0}, and He{sup +} are all ionized ({lambda} < 228 A). This approach, first suggested by Kucera et al., permits the separation of the contributions of neutral hydrogen and helium to the total column density in prominences. Additionally, an enhancement of the technique allowed the calculation of the two-dimensional (2D) spatial distribution of the column density from the continuum absorption in each extreme-ultraviolet observation. We find the total prominence mass is consistently lower in the 625 A observations compared to lines in the other wavelength regimes. There is a significant difference in total mass between the 625 A and 195 A lines, indicating the much higher opacity at 625 A is causing a saturation of the continuum absorption and thus, a potentially large underestimation of mass.

  16. Probing the eV-Mass Range for Solar Axions with CAST

    SciTech Connect

    Vogel, J K; Pivovaroff, M J; Soufli, R; van Bibber, K; CAST, C

    2010-11-11

    The CERN Axion Solar Telescope (CAST) is searching for solar axions which could be produced in the core of the Sun via the so-called Primakoff effect. Not only would these hypothetical particles solve the strong CP problem, but they are also one of the favored candidates for dark matter. In order to look for axions originating from the Sun, CAST uses a decommissioned LHC prototype magnet. In its 10 m long magnetic field region of 9 Tesla, axions could be reconverted into X-ray photons. Different X-ray detectors are installed on both ends of the magnet, which is mounted on a structure built to follow the Sun during sunrise and sunset for a total of about 3 hours per day. The analysis of the data acquired during the first phase of the experiment with vacuum in the magnetic field region yielded the most restrictive experimental upper limit on the axion-to-photon coupling constant for axion masses up to about 0.02 eV. In order to extend the sensitivity of the experiment to a wider mass range, the CAST experiment continues its search for axions with helium in the magnet bores. In this way it is possible to restore coherence of conversion for larger masses. Changing the pressure of the helium gas enables the experiment to scan different axion masses in the range of up to about 1.2 eV. Especially at high pressures, a precise knowledge of the gas density distribution is crucial to obtain accurate results. In the first part of this second phase of CAST, {sup 4}He was used and the axion mass region was extended up to 0.39 eV, a part of phase space favored by axion models. In CAST's ongoing {sup 3}He phase the studied mass range is now being extended further. In this contribution the final results of CAST's {sup 4}He phase will be presented and the current status of the {sup 3}He run will be given. This includes latest results as well as prospects of future axion experiments.

  17. Altitude variations in the thermosphere mass density response to geomagnetic activity during the recent solar minimum

    NASA Astrophysics Data System (ADS)

    Liu, X.; Thayer, J. P.; Burns, A.; Wang, W.; Sutton, E.

    2014-03-01

    Accelerometer data from coplanar orbits of Challenging Minisatellite Payload (CHAMP) and Gravity Recovery and Climate Experiment (GRACE) satellites were used to study the complex altitude and latitude variations of the thermosphere mass density response to geomagnetic activity during 1-10 December 2008 near 09 LT. Helium number densities near 500 km altitude were extracted from the CHAMP and GRACE measurements and clearly show the presence of a winter hemisphere helium bulge. This recent extreme solar minimum indicates that wintertime helium concentrations exceed NRLMSISE-00 model estimates by 30%-70% during quiet geomagnetic activity after adjusting F10.7 input into MSIS. The perturbation in mass density from quiet to active conditions is found to be less enhanced in the winter hemisphere at the higher GRACE altitudes (25%) than at the lower CHAMP altitudes (60%) and is attributed to dynamic behavior in the helium/oxygen transition. The investigation revealed the maximum storm time density perturbation to occur near the He/O transition region with a much weaker maximum near the O/N2 transition region. The altitude of maximum density perturbation occurs where the perturbation in the weighted pressure scale height is equal and opposite to the perturbation in the weighted mean molecular weight scale height. The altitude structure of density scale height perturbation is significantly influenced by the changes in the molecular weight scale height and can account for 50% of the change in mass density scale height in a region correspondingly close to the He/O transition during the 2008 solar minimum period.

  18. Predictions for Dusty Mass Loss from Asteroids During Close Encounters with Solar Probe Plus

    NASA Astrophysics Data System (ADS)

    Cranmer, Steven R.

    2016-11-01

    The Solar Probe Plus ( SPP) mission will explore the Sun's corona and innermost solar wind starting in 2018. The spacecraft will also come close to a number of Mercury-crossing asteroids with perihelia less than 0.3 AU. At small heliocentric distances, these objects may begin to lose mass, thus becoming "active asteroids" with comet-like comae or tails. This paper assembles a database of 97 known Mercury-crossing asteroids that may be encountered by SPP, and it presents estimates of their time-dependent visible-light fluxes and mass loss rates. Assuming a similar efficiency of sky background subtraction as was achieved by STEREO , we find that approximately 80 % of these asteroids are bright enough to be observed by the Wide-field Imager for SPP (WISPR). A model of gas/dust mass loss from these asteroids is developed and calibrated against existing observations. This model is used to estimate the visible-light fluxes and spatial extents of spherical comae. Observable dust clouds occur only when the asteroids approach the Sun closer than 0.2 AU. The model predicts that during the primary SPP mission between 2018 and 2025, there should be 113 discrete events (for 24 unique asteroids) during which the modeled comae have angular sizes resolvable by WISPR. The largest of these correspond to asteroids 3200 Phaethon, 137924, 155140, and 289227, all with angular sizes of roughly 15-30 arcminutes. We note that the SPP trajectory may still change, but no matter the details there should still be multiple opportunities for fruitful asteroid observations.

  19. Mass extinctions, galactic orbits in the solar neighborhood and the Sun: a connection?

    NASA Astrophysics Data System (ADS)

    Porto de Mello, G. F.; Dias, W. S.; Lépine, J. R. D.; Lorenzo-Oliveira, D.; Siqueira, R. K.

    2014-10-01

    The orbits of the stars in the disk of the Galaxy, and their passages through the Galactic spiral arms, are a rarely mentioned factor of biosphere stability which might be important for long-term planetary climate evolution, with a possible bearing on mass extinctions. The Sun lies very near the co-rotation radius, where stars revolve around the Galaxy in the same period as the density wave perturbations of the spiral arms. Conventional wisdom generally considers that this status makes for few passages through the spiral arms. Controversy still surrounds whether time spent inside or around spiral arms is dangerous to biospheres and conducive to mass extinctions. Possible threats include giant molecular clouds disturbing the Oort comet cloud and provoking heavy bombardment; a higher exposure to cosmic rays near star forming regions triggering increased cloudiness in Earth's atmosphere and ice ages; and the destruction of Earth's ozone layer posed by supernova explosions. We present detailed calculations of the history of spiral arm passages for all 212 solar-type stars nearer than 20 parsecs, including the total time spent inside the spiral arms in the last 500 Myr, when the spiral arm position can be traced with good accuracy. We found that there is a large diversity of stellar orbits in the solar neighborhood, and the time fraction spent inside spiral arms can vary from a few percent to nearly half the time. The Sun, despite its proximity to the galactic co-rotation radius, has exceptionally low eccentricity and a low vertical velocity component, and therefore spends 30% of its lifetime crossing the spiral arms, more than most nearby stars. We discuss the possible implications of this fact to the long-term habitability of the Earth, and possible correlations of the Sun's passage through the spiral arms with the five great mass extinctions of the Earth's biosphere from the Late Ordovician to the Cretaceous-Tertiary.

  20. An Investigation of the Large Scale Evolution and Topology of Coronal Mass Ejections in the Solar Wind

    NASA Technical Reports Server (NTRS)

    Riley, Peter

    2000-01-01

    This investigation is concerned with the large-scale evolution and topology of coronal mass ejections (CMEs) in the solar wind. During this reporting period we have focused on several aspects of CME properties, their identification and their evolution in the solar wind. The work included both analysis of Ulysses and ACE observations as well as fluid and magnetohydrodynamic simulations. In addition, we analyzed a series of "density holes" observed in the solar wind, that bear many similarities with CMEs. Finally, this work was communicated to the scientific community at three meetings and has led to three scientific papers that are in various stages of review.

  1. Solar Flares, Type III Radio Bursts, Coronal Mass Ejections, and Energetic Particles

    NASA Technical Reports Server (NTRS)

    Cane, Hilary V.; Erickson, W. C.; Prestage, N. P.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    In this correlative study between greater than 20 MeV solar proton events, coronal mass ejections (CMEs), flares, and radio bursts it is found that essentially all of the proton events are preceded by groups of type III bursts and all are preceded by CMEs. These type III bursts (that are a flare phenomenon) usually are long-lasting, intense bursts seen in the low-frequency observations made from space. They are caused by streams of electrons traveling from close to the solar surface out to 1 AU. In most events the type III emissions extend into, or originate at, the time when type II and type IV bursts are reported (some 5 to 10 minutes after the start of the associated soft X-ray flare) and have starting frequencies in the 500 to approximately 100 MHz range that often get lower as a function of time. These later type III emissions are often not reported by ground-based observers, probably because of undue attention to type II bursts. It is suggested to call them type III-1. Type III-1 bursts have previously been called shock accelerated (SA) events, but an examination of radio dynamic spectra over an extended frequency range shows that the type III-1 bursts usually start at frequencies above any type II burst that may be present. The bursts sometimes continue beyond the time when type II emission is seen and, furthermore, sometimes occur in the absence of any type II emission. Thus the causative electrons are unlikely to be shock accelerated and probably originate in the reconnection regions below fast CMEs. A search did not find any type III-1 bursts that were not associated with CMEs. The existence of low-frequency type III bursts proves that open field lines extend from within 0.5 radius of the Sun into the interplanetary medium (the bursts start above 100 MHz, and such emission originates within 0.5 solar radius of the solar surface). Thus it is not valid to assume that only closed field lines exist in the flaring regions associated with CMEs and some

  2. Global Energetics of Solar Flares. V. Energy Closure in Flares and Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Aschwanden, Markus J.; Caspi, Amir; Cohen, Christina M. S.; Holman, Gordon; Jing, Ju; Kretzschmar, Matthieu; Kontar, Eduard P.; McTiernan, James M.; Mewaldt, Richard A.; O’Flannagain, Aidan; Richardson, Ian G.; Ryan, Daniel; Warren, Harry P.; Xu, Yan

    2017-02-01

    In this study we synthesize the results of four previous studies on the global energetics of solar flares and associated coronal mass ejections (CMEs), which include magnetic, thermal, nonthermal, and CME energies in 399 solar M- and X-class flare events observed during the first 3.5 yr of the Solar Dynamics Observatory (SDO) mission. Our findings are as follows. (1) The sum of the mean nonthermal energy of flare-accelerated particles ({E}{nt}), the energy of direct heating ({E}{dir}), and the energy in CMEs ({E}{CME}), which are the primary energy dissipation processes in a flare, is found to have a ratio of ({E}{nt}+{E}{dir}+{E}{CME})/{E}{mag}=0.87+/- 0.18, compared with the dissipated magnetic free energy {E}{mag}, which confirms energy closure within the measurement uncertainties and corroborates the magnetic origin of flares and CMEs. (2) The energy partition of the dissipated magnetic free energy is: 0.51 ± 0.17 in nonthermal energy of ≥slant 6 {keV} electrons, 0.17 ± 0.17 in nonthermal ≥slant 1 {MeV} ions, 0.07 ± 0.14 in CMEs, and 0.07 ± 0.17 in direct heating. (3) The thermal energy is almost always less than the nonthermal energy, which is consistent with the thick-target model. (4) The bolometric luminosity in white-light flares is comparable to the thermal energy in soft X-rays (SXR). (5) Solar energetic particle events carry a fraction ≈ 0.03 of the CME energy, which is consistent with CME-driven shock acceleration. (6) The warm-target model predicts a lower limit of the low-energy cutoff at {e}c≈ 6 {keV}, based on the mean peak temperature of the differential emission measure of T e = 8.6 MK during flares. This work represents the first statistical study that establishes energy closure in solar flare/CME events.

  3. Analysis of Solar Wind Samples Returned by Genesis Using Laser Post Ionization Secondary Neutral Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Veryovkin, I. V.; Calaway, W. F.; Tripa, C. E.; Pellin, M. J.; Burnett, D. S.

    2005-12-01

    A new secondary neutral mass spectrometry (SNMS) instrument implementing laser post ionization (LPI) of ion sputtered and laser desorbed neutral species has been developed and constructed for the specific purpose of quantitative analysis of metallic elements at ultra trace levels in solar wind collector samples returned to Earth by the Genesis Discovery mission. The first LPI SNMS measurements are focusing on determining Al, Ca, Cr, and Mg in these samples. These measurements provide the first concentration and isotopic abundances determinations for several key metallic elements and also elucidate possible fractionation effects between the photosphere and the solar wind compositions. It is now documented that Genesis samples suffered surface contamination both during flight and during the breach of the Sample Return Capsule when it crashed. Since accurate quantitative analysis is compromised by sample contamination, several features have been built into the new LPI SNMS instrument to mitigate this difficulty. A normally-incident, low-energy (<500 eV) ion beam combined with a keV energy ion beam and a desorbing laser beam (both microfocused) enables dual beam analyses. The low-energy ion beam can be used to remove surface contaminant by sputtering with minimum ion beam mixing. This low-energy beam also will be used to perform ion beam milling, while either the microfocused ion or laser beam probes the solar wind elemental compositions as a function of sample depth. Because of the high depth resolution of dual beam analyses, such depth profiles clearly distinguish between surface contaminants and solar wind implanted atoms. In addition, in-situ optical and electron beam imaging for observing and avoiding particulates and scratches on solar wind sample surfaces is incorporated in the new LPI SNMS instrument to further reduce quantification problems. The current status of instrument tests and analyses will be presented. This work is supported by the U. S. Department of

  4. Space Cryogenics Workshop, 10th, Cleveland, OH, June 18-20, 1991, Proceedings

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The present workshop on cryogenics discusses the anomalous on-orbit behavior of the Cosmic Background Explorer Dewar, the SHOOT orbital operations, cooling options for Astromag, and space IR telescope facility mission and cryogenic design. Attention is given to the design of a spaceworthy adiabatic demagnetization refrigerator, the evaluation of metal hydride compressors for applications in Joule-Thomson cryocoolers, diaphragm Stirling cryocooler developments, and a computer simulation model for Stirling refrigerators. Topics addressed include low-gravity thermal stratification of liquid helium on SHOOT, a screening program to select a resin for gravity probe-B composites, a simplified generic cryostat thermal model for predicting cryogen mass and lifetime, and the effect of gas mass flux on cryogenic liquid jet breakup. Also discussed are damping criteria for thermal acoustic oscillations in slush and liquid hydrogen systems, an STS-based cryogenic fluid management experiment, and the design and testing of a cryogenic mixer pump.

  5. A low-mass faraday cup experiment for the solar wind

    NASA Technical Reports Server (NTRS)

    Lazarus, A. J.; Steinberg, J. T.; Mcnutt, R. L., Jr.

    1993-01-01

    Faraday cups have proven to be very reliable and accurate instruments capable of making 3-D velocity distribution measurements on spinning or 3-axis stabilized spacecraft. Faraday cup instrumentation continues to be appropriate for heliospheric missions. As an example, the reductions in mass possible relative to the solar wind detection system about to be flown on the WIND spacecraft were estimated. Through the use of technology developed or used at the MIT Center for Space Research but were not able to utilize for WIND: surface-mount packaging, field-programmable gate arrays, an optically-switched high voltage supply, and an integrated-circuit power converter, it was estimated that the mass of the Faraday Cup system could be reduced from 5 kg to 1.8 kg. Further redesign of the electronics incorporating hybrid integrated circuits as well as a decrease in the sensor size, with a corresponding increase in measurement cycle time, could lead to a significantly lower mass for other mission applications. Reduction in mass of the entire spacecraft-experiment system is critically dependent on early and continual collaborative efforts between the spacecraft engineers and the experimenters. Those efforts concern a range of issues from spacecraft structure to data systems to the spacecraft power voltage levels. Requirements for flight qualification affect use of newer, lighter electronics packaging and its implementation; the issue of quality assurance needs to be specifically addressed. Lower cost and reduced mass can best be achieved through the efforts of a relatively small group dedicated to the success of the mission. Such a group needs a fixed budget and greater control over quality assurance requirements, together with a reasonable oversight mechanism.

  6. Proceedings of the Navy Symposium on Aeroballistics (10th) Held at the Sheraton Motor Inn, Fredericksburg, Virginia, on 15-16-17 July 1975. Volume 2

    DTIC Science & Technology

    1975-07-17

    Technical Report AFATL’.TR-73-l II, Air Force Armament Laboratoiv, May. 1973. 147 10th Navy Symposium on Aeroballistics Vol. 2 t 13. Miko , R. J., and...a’ the boiling temperature (or 322 10th Navy Symposium on Aeroballistics Ii!- Vol. 2 WD2503 FLOW CONTROL VALVE PISTON VALVE TADFLOWMETER PLUG WAND FL

  7. The Effect of Using the "SQP2RS via WTL" Strategy through Science Context to 10th Graders' Reading Comprehension in English in Palestine

    ERIC Educational Resources Information Center

    Qabaja, Ziad Mohammed Mahmoud; Nafi', Jamal Subhi Ismail; Abu-Nimah, Maisa' Issa Khalil

    2016-01-01

    The study aimed at investigating the effect of using the "SQP2RS via WTL" strategy through science context to 10th graders' reading comprehension in English in Bethlehem district in Palestine. The study has been applied on a purposeful sample of 10th grade students at public schools in Bethlehem district in the academic year 2015/2016.…

  8. Evaluation of the 10th Grade Computerized Mathematics Curriculum from the Perspective of the Teachers and Educational Supervisors in the Southern Region in Jordan

    ERIC Educational Resources Information Center

    Al-Tarawneh, Sabri Hassan; Al-Qadi, Haitham Mamdouh

    2016-01-01

    This study aimed at evaluating the 10th grade computerized mathematics curriculum from the perspective of the teachers and supervisors in the southern region in Jordan. The study population consisted of all the teachers who teach the 10th grade in the southern region, with the total of (309) teachers and (20) supervisors. The sample consisted of…

  9. Obtaining the Mass and Radius of Extra-Solar Giant Planets

    NASA Technical Reports Server (NTRS)

    Castellano, Tim; Mead, Susan (Technical Monitor)

    1998-01-01

    The scientific utility and feasibility of detecting transits of the 9 known extrasolar planets is explored. A transit of a solar-like star by a Jupiter mass planet produces a 1% decrease in the amount of light received from the star. Transit observation will remove the ambiguity in the measurement of the planetary mass inherent in the radial velocity method and confirm the planet's existence. The 9 known planets have a 33% chance of producing at least one observable transit. Additional extrasolar planet detections from the radial velocity surveys will increase this probability to greater than 90%. The radius of the planet can be determined by the fractional decrease in light received during transit. The mass and radius may distinguish rocky or gas giant planets from brown dwarfs. The probability of detection, the transit signal size and duration, and predictions of the transit times (including errors) are calculated for circular and elliptical orbits. Observational limits are investigated and it is shown that small telescopes and existing detectors are adequate enough to achieve the 0.1% photometry necessary to detect transits of the known extrasolar planets.

  10. DIRECT OBSERVATIONS OF MAGNETIC FLUX ROPE FORMATION DURING A SOLAR CORONAL MASS EJECTION

    SciTech Connect

    Song, H. Q.; Chen, Y.; Zhang, J.; Cheng, X.

    2014-09-10

    Coronal mass ejections (CMEs) are the most spectacular eruptive phenomena in the solar atmosphere. It is generally accepted that CMEs are the results of eruptions of magnetic flux ropes (MFRs). However, there is heated debate on whether MFRs exist prior to the eruptions or if they are formed during the eruptions. Several coronal signatures, e.g., filaments, coronal cavities, sigmoid structures, and hot channels (or hot blobs), are proposed as MFRs and observed before the eruption, which support the pre-existing MFR scenario. There is almost no reported observation of MFR formation during the eruption. In this Letter, we present an intriguing observation of a solar eruptive event that occurred on 2013 November 21 with the Atmospheric Imaging Assembly on board the Solar Dynamic Observatory, which shows the formation process of the MFR during the eruption in detail. The process began with the expansion of a low-lying coronal arcade, possibly caused by the flare magnetic reconnection underneath. The newly formed ascending loops from below further pushed the arcade upward, stretching the surrounding magnetic field. The arcade and stretched magnetic field lines then curved in just below the arcade vertex, forming an X-point. The field lines near the X-point continued to approach each other and a second magnetic reconnection was induced. It is this high-lying magnetic reconnection that led to the formation and eruption of a hot blob (∼10 MK), presumably an MFR, producing a CME. We suggest that two spatially separated magnetic reconnections occurred in this event, which were responsible for producing the flare and the hot blob (CME)

  11. Homologous Jet-driven Coronal Mass Ejections from Solar Active Region 12192

    NASA Astrophysics Data System (ADS)

    Panesar, Navdeep K.; Sterling, Alphonse C.; Moore, Ronald L.

    2016-05-01

    We report observations of homologous coronal jets and their coronal mass ejections (CMEs) observed by instruments onboard the Solar Dynamics Observatory (SDO) and the Solar and Heliospheric Observatory (SOHO) spacecraft. The homologous jets originated from a location with emerging and canceling magnetic field at the southeastern edge of the giant active region (AR) of 2014 October, NOAA 12192. This AR produced in its interior many non-jet major flare eruptions (X- and M- class) that made no CME. During October 20 to 27, in contrast to the major flare eruptions in the interior, six of the homologous jets from the edge resulted in CMEs. Each jet-driven CME (˜200-300 km s-1) was slower-moving than most CMEs, with angular widths (20°-50°) comparable to that of the base of a coronal streamer straddling the AR and were of the “streamer-puff” variety, whereby the preexisting streamer was transiently inflated but not destroyed by the passage of the CME. Much of the transition-region-temperature plasma in the CME-producing jets escaped from the Sun, whereas relatively more of the transition-region plasma in non-CME-producing jets fell back to the solar surface. Also, the CME-producing jets tended to be faster and longer-lasting than the non-CME-producing jets. Our observations imply that each jet and CME resulted from reconnection opening of twisted field that erupted from the jet base and that the erupting field did not become a plasmoid as previously envisioned for streamer-puff CMEs, but instead the jet-guiding streamer-base loop was blown out by the loop’s twist from the reconnection.

  12. Spectroscopic Observations of a Solar Flare and the Associated Coronal Mass Ejection

    NASA Astrophysics Data System (ADS)

    Murray, S.; Tian, H.; McKillop, S.

    2013-12-01

    We used data from the EUV Imaging Spectrometer (EIS) on board Hinode to examine a coronal mass ejection and a preceding flare observed on 21 November 2012 between 15:00 and 17:00 UT. Images from the Atmospheric Imaging Assembly on the Solar Dynamics Observatory were used to align the data from EIS with specific events occurring. We analyzed spectra of a few emission lines at three locations on the flare site and one location in the erupting prominence. On the flare site, we found line profiles showing typical characteristics of chromospheric evaporation: downflows at cooler lines and upflows at hotter lines. At one particular location on the flare site, we clearly identified dominant downflows on the order of 100 km/s in lines through Fe VIII to Fe XVI. To the best of our knowledge, this is the first time that such strong high-speed downflows have been spectroscopically observed in the impulsive phase of solar flares. The profile of the Fe VIII 184.54 line reveals two peaks and we were able to use the double Gaussian fit to separate the rapid downflows of dense material from the nearly stationary coronal background emission. For the erupting prominence, we were able to analyze multiple lines, cooler and warmer, of interest using this double Gaussian fit to separate the background emission from the emission of the ejected material. Our results show that the LOS velocities of the ejected material are about 100 km/s in the lower corona. Additionally, in each region of interest, we used the ratio of the density-sensitive line pair FeXII 195/186 to determine the electron density. Our results clearly show that the coronal densities were greatly enhanced during the flare. The density of the ejected material is also much larger than the typical coronal density. This research was supported by the NSF grant for the Solar Physics REU Program at the Smithsonian Astrophysical Observatory (AGS-1263241).

  13. OBSERVATION OF HEATING BY FLARE-ACCELERATED ELECTRONS IN A SOLAR CORONAL MASS EJECTION

    SciTech Connect

    Glesener, Lindsay; Bain, Hazel M.; Krucker, Säm; Lin, Robert P.

    2013-12-20

    We report a Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) observation of flare-accelerated electrons in the core of a coronal mass ejection (CME) and examine their role in heating the CME. Previous CME observations have revealed remarkably high thermal energies that can far surpass the CME's kinetic energy. A joint observation by RHESSI and the Atmospheric Imaging Assembly of a partly occulted flare on 2010 November 3 allows us to test the hypothesis that this excess energy is collisionally deposited by flare-accelerated electrons. Extreme ultraviolet (EUV) images show an ejection forming the CME core and sheath, with isothermal multifilter analysis revealing temperatures of ∼11 MK in the core. RHESSI images reveal a large (∼100 × 50 arcsec{sup 2}) hard X-ray (HXR) source matching the location, shape, and evolution of the EUV plasma, indicating that the emerging CME is filled with flare-accelerated electrons. The time derivative of the EUV emission matches the HXR light curve (similar to the Neupert effect observed in soft and HXR time profiles), directly linking the CME temperature increase with the nonthermal electron energy loss, while HXR spectroscopy demonstrates that the nonthermal electrons contain enough energy to heat the CME. This is the most direct observation to date of flare-accelerated electrons heating a CME, emphasizing the close relationship of the two in solar eruptive events.

  14. Injection profiles of solar energetic particles as functions of coronal mass ejection heights

    NASA Technical Reports Server (NTRS)

    Kahler, S.

    1994-01-01

    Previous studies with Skylab and Solwind coronal mass ejections (CMEs) have shown that nearly all large E greater than 10 MeV solar energetic particle (SEP) events are associated with fast (v greater than 400 km/sec) CMEs. We compare heights of CMEs observed on the SMM spacecraft with the flux-time profiles of five associated SEP events observed by the GOES spacecraft, including three events observed as ground-level events (GLEs) by neutron monitors. The SEP injection profiles as functions of the CME heights are estimated from the 'solar release times' and the effects of interplanetary scattering. We find that the peaks of the 470 MeV to 4 GeV injection profiles of the GLEs occur when CME heights reach 5 to 15 R(sub 0) or greater and that the onsets occur no earlier than the maxima of the flare impulsive phases. In those events SEP injection appears to result only from a single CME-driven shock and not from the flare impulsive phase or from separate coronal and interplanetary shocks. In one small SEP event an impulsive flux-time profile is consistent with injection during the flare impulsive phase but could also be due to injection from a coronal shock over a limited time.

  15. CORONAL MASS EJECTIONS AND THE SOLAR CYCLE VARIATION OF THE SUN’S OPEN FLUX

    SciTech Connect

    Wang, Y.-M.; Sheeley, N. R. Jr. E-mail: neil.sheeley@nrl.navy.mil

    2015-08-20

    The strength of the radial component of the interplanetary magnetic field (IMF), which is a measure of the Sun’s total open flux, is observed to vary by roughly a factor of two over the 11 year solar cycle. Several recent studies have proposed that the Sun’s open flux consists of a constant or “floor” component that dominates at sunspot minimum, and a time-varying component due to coronal mass ejections (CMEs). Here, we point out that CMEs cannot account for the large peaks in the IMF strength which occurred in 2003 and late 2014, and which coincided with peaks in the Sun’s equatorial dipole moment. We also show that near-Earth interplanetary CMEs, as identified in the catalog of Richardson and Cane, contribute at most ∼30% of the average radial IMF strength even during sunspot maximum. We conclude that the long-term variation of the radial IMF strength is determined mainly by the Sun’s total dipole moment, with the quadrupole moment and CMEs providing an additional boost near sunspot maximum. Most of the open flux is rooted in coronal holes, whose solar cycle evolution in turn reflects that of the Sun’s lowest-order multipoles.

  16. COMBINED STEREO/RHESSI STUDY OF CORONAL MASS EJECTION ACCELERATION AND PARTICLE ACCELERATION IN SOLAR FLARES

    SciTech Connect

    Temmer, M.; Veronig, A. M.; Krucker, S.; Vrsnak, B. E-mail: asv@igam.uni-graz.a E-mail: krucker@ssl.berkeley.ed

    2010-04-01

    Using the potential of two unprecedented missions, Solar Terrestrial Relations Observatory (STEREO) and Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI), we study three well-observed fast coronal mass ejections (CMEs) that occurred close to the limb together with their associated high-energy flare emissions in terms of RHESSI hard X-ray (HXR) spectra and flux evolution. From STEREO/EUVI and STEREO/COR1 data, the full CME kinematics of the impulsive acceleration phase up to {approx}4 R{sub sun} is measured with a high time cadence of <=2.5 minutes. For deriving CME velocity and acceleration, we apply and test a new algorithm based on regularization methods. The CME maximum acceleration is achieved at heights h <= 0.4 R{sub sun}, and the peak velocity at h <= 2.1 R{sub sun} (in one case, as small as 0.5 R{sub sun}). We find that the CME acceleration profile and the flare energy release as evidenced in the RHESSI HXR flux evolve in a synchronized manner. These results support the 'standard' flare/CME model which is characterized by a feedback relationship between the large-scale CME acceleration process and the energy release in the associated flare.

  17. The Solar Mass Ejection Imager Optics and Baffles: Design and Construction

    NASA Astrophysics Data System (ADS)

    Jackson, Bernard V.; Buffington, Andrew; Hick, P. P.

    2000-11-01

    The purpose of SMEI is a proof-of-concept of the ability to predict geomagnetic disturbances for Air Force space operations and to establish the feasibility of tracking interplanetary disturbances from the Sun to the Earth and beyond. The major subsystems of SMEI are an electronic Camera Assembly, a Data Handling Unit and interconnection harnesses. Each electronic Camera component consists of a baffle, radiator, bright object sensor, strongbox (CCD, mirrors and shutter) and electronics box. The electronic Camera Assembly is used to observe in visible light mass ejections from the Sun by sensing sunlight scattered from clouds of solar-produced interplanetary electrons. Predictions of arrival time at Earth of this disturbance can be made up to three days in advance.

  18. The evolution of rotating stars. 1: Method and exploratory calculations for a 7 solar mass star

    NASA Technical Reports Server (NTRS)

    Endal, A. S.; Sofia, S.

    1976-01-01

    A method was developed which allows us to study the evolution of rotating stars beyond the main sequence stage. Four different cases of redistribution of angular momentum in an evolving star are considered. Evolutionary sequences for a 7 solar mass star, rotating according to these different cases, were computed from the ZAMS to the double shell source stage. Each sequence was begun with a (typical) equatorial velocity of 210 km/sec. On the main sequence, the effects of rotation are of minor importance. As the core contracts during later stages, important effects arise in all physically plausible cases. The outer regions of the cores approach critical velocities and develop unstable angular velocity distributions. The effects of these instabilities should significantly alter the subsequent evolution.

  19. Low Solar Wind Density Causing the Fast Coronal Mass Ejection from 23 July 2012

    NASA Astrophysics Data System (ADS)

    Nitta, N.; Temmer, M.

    2015-12-01

    The fast coronal mass ejection (CME) from July 23, 2012 raised special attention due to its short propagation time of less than 21hrs from Sun to 1 AU. In-situ data from STEREO-A revealed the arrival of a fast forward shock having a velocity of more than 2200 km/s followed by a magnetic structure with a speed of almost 1900 km/s. We study the evolution of the CME in interplanetary (IP) space using the drag based model to reproduce the short propagation time and high impact speed as derived from in-situ data. We find that the ambient density must have been exceptionally low due to which the drag force is reduced such that the CME experienced almost no deceleration. The density is found to be rather low due to the weak solar activity and was lowered even more by a previous CME event.

  20. The central engine of quasars and AGNs - Scaling to solar mass black holes

    NASA Technical Reports Server (NTRS)

    Kazanas, D.

    1988-01-01

    The model of the previous paper (Ellison and Kazanas, hereafter EK) can be readily scaled to model systems with black holes 3-10 solar masses, such as those expected to exist in certain Galactic X-ray binaries. The model can account in a straightforward way for the bimodal behavior of Cyg X-1 and the other Galactic black hole candidates (White and Marshall 1984; White, et al., 1984). It is argued that the change in the spectrum with luminosity is due to the drastic increase of both the source compactness and luminosity with small changes in the accretion rate, and conversion of most of the energy into electron-positron pairs which render the source optically thick and modify its spectrum. It is also argued that similar effects may be observed in AGNs.

  1. A linear MHD instability analysis of solar mass ejections with gravitation

    NASA Technical Reports Server (NTRS)

    Song, M. T.; Wu, S. T.; Dryer, M.

    1987-01-01

    The linear MHD instability of a cylindrical plasma is used to investigate the origin of solar mass ejections, and the dispersion relation is solved numerically. The initial plasma-flow velocity is found to have a significant effect on the instability criteria and growth rate, and the instability growth-rate is shown to be larger in cases where plasma flow exists, relative to the static case. Results suggest that the plasma column may break into small pieces. Assuming a thin-tube approximation, gravity is found to have little effect on the instability of quasi-horizontal ejection, but to have considerable effect on the vertical ejection. In considering the gravitational force, an exact analytical solution is found for the vertical case, while asymptotic solutions are given for the horizontal and oblique cases.

  2. Mass transport, corrosion, plugging, and their reduction in solar dish/Stirling heat pipe receivers

    SciTech Connect

    Adkins, D.R.; Andraka, C.E.; Bradshaw, R.W.; Goods, S.H.; Moreno, J.B.; Moss, T.A.

    1996-07-01

    Solar dish/Stirling systems using sodium heat pipe receivers are being developed by industry and government laboratories here and abroad. The unique demands of this application lead to heat pipe wicks with very large surface areas and complex three-dimensional flow patterns. These characteristics can enhance the mass transport and concentration of constituents of the wick material, resulting in wick corrosion and plugging. As the test times for heat pipe receivers lengthen, we are beginning to see these effects both indirectly, as they affect performance, and directly in post-test examinations. We are also beginning to develop corrective measures. In this paper, we report on our test experiences, our post-test examinations, and on our initial effort to ameliorate various problems.

  3. EVIDENCE OF POSTERUPTION RECONNECTION ASSOCIATED WITH CORONAL MASS EJECTIONS IN THE SOLAR WIND

    NASA Technical Reports Server (NTRS)

    Riley, Pete; Linker, J. A.; Mikic, Z.; Odstracil, D.; Pizzo, V. J.; Webb, D. F.

    2002-01-01

    Using a coupled 2.5-dimensional, time-dependent MHD model of the solar corona and inner heliosphere, we have simulated the eruption and evolution of a coronal mass ejection containing a flux rope all the way from the Sun to 1 AU. Although idealized, we find that the simulation reproduces many generic features of magnetic clouds. In this paper we report on a new, intriguing aspect of these comparisons. Specifically, the results suggest that jetted outflow, driven by posteruptive reconnection underneath the flux rope, occurs and may remain intact out to 1 AU and beyond. We present an example of a magnetic cloud with precisely these signatures and show that the velocity perturbations are consistent with reconnection outflow. We suggest that other velocity and/or density enhancements observed trailing magnetic clouds may be signatures of such reconnection and, in some cases, may not be associated with prominence material, as has previously been suggested.

  4. ON THE ENHANCED CORONAL MASS EJECTION DETECTION RATE SINCE THE SOLAR CYCLE 23 POLAR FIELD REVERSAL

    SciTech Connect

    Petrie, G. J. D.

    2015-10-10

    Compared to cycle 23, coronal mass ejections (CMEs) with angular widths >30° have been observed to occur at a higher rate during solar cycle 24, per sunspot number. This result is supported by data from three independent databases constructed using Large Angle and Spectrometric Coronagraph Experiment coronagraph images, two employing automated detection techniques and one compiled manually by human observers. According to the two databases that cover a larger field of view, the enhanced CME rate actually began shortly after the cycle 23 polar field reversal, in 2004, when the polar fields returned with a 40% reduction in strength and the interplanetary radial magnetic field became ≈30% weaker. This result is consistent with the link between anomalous CME expansion and the heliospheric total pressure decrease recently reported by Gopalswamy et al.

  5. Is the 10th and 11th Intercostal Space a Safe Approach for Percutaneous Nephrostomy and Nephrolithotomy?

    SciTech Connect

    Muzrakchi, Ahmed Al; Szmigielski, W. Omar, Ahmed J.S.; Younes, Nagy M.

    2004-09-15

    The aim of this study was to determine the rate of complications in percutaneous nephrostomy (PCN) and nephrolithotomy (PCNL) performed through the 11th and 10th intercostal spaces using our monitoring technique and to discuss the safety of the procedure. Out of 398 PCNs and PCNLs carried out during a 3-year period, 56 patients had 57 such procedures performed using an intercostal approach. The 11th intercostal route was used in 42 and the 10th in 15 cases. One patient had two separate nephrostomies performed through the 10th and 11th intercostal spaces. The technique utilizes bi-planar fluoroscopy with a combination of a conventional angiographic machine to provide anterior-posterior fluoroscopy and a C-arm mobile fluoroscopy machine to give a lateral view, displayed on two separate monitors. None of the patients had clinically significant thoracic or abdominal complications. Two patients had minor chest complications. Only one developed changes (plate atelectasis, elevation of the hemi-diaphragm) directly related to the nephrostomy (2%). The second patient had bilateral plate atelectasis and unilateral congestive lung changes after PCNL. These changes were not necessarily related to the procedure but rather to general anesthesia during nephrolithotomy. The authors consider PCN or PCNL through the intercostal approach a safe procedure with a negligible complication rate, provided that it is performed under bi-planar fluoroscopy, which allows determination of the skin entry point just below the level of pleural reflection and provides three-dimensional monitoring of advancement of the puncturing needle toward the target entry point.

  6. Factors related to alcohol use among 6th through 10th graders: the Sarasota County Demonstration Project.

    PubMed

    Eaton, Danice K; Forthofer, Melinda S; Zapata, Lauren B; Brown, Kelli R; Bryant, Carol A; Reynolds, Sherri T; McDermott, Robert J

    2004-03-01

    Alcohol consumption by youth can produce negative health outcomes. This study identified correlates of lifetime alcohol use, recent alcohol use, and binge drinking among youth in sixth through 10th grade (n = 2,004) in Sarasota County, Fla. Results from a closed-ended, quantitative survey acknowledged a range of personal, social, and environmental influences. Breadth of these influences supports a need for multifaceted, community-based interventions for effective prevention of youth alcohol use. This study was unique because it represents population-specific research in which community partners are using the findings to develop community-specific social marketing interventions to prevent underage drinking and promote alternative behaviors.

  7. Analysis and test for space shuttle propellant dynamics (1/10th scale model test results). Volume 1: Technical discussion

    NASA Technical Reports Server (NTRS)

    Berry, R. L.; Tegart, J. R.; Demchak, L. J.

    1979-01-01

    Space shuttle propellant dynamics during ET/Orbiter separation in the RTLS (return to launch site) mission abort sequence were investigated in a test program conducted in the NASA KC-135 "Zero G" aircraft using a 1/10th-scale model of the ET LOX Tank. Low-g parabolas were flown from which thirty tests were selected for evaluation. Data on the nature of low-g propellant reorientation in the ET LOX tank, and measurements of the forces exerted on the tank by the moving propellent will provide a basis for correlation with an analytical model of the slosh phenomenon.

  8. Cold winters in Poland in the period from 10th century to the first decade of 21st century

    NASA Astrophysics Data System (ADS)

    Limanowka, D.; Cebulak, E.; Pyrc, R.

    2010-09-01

    Extreme weather phenomena together with their exceptional course and intensity have always been dangerous for people. In the historical documents such phenomena were marked as basic disasters. First notes about weather phenomena were made in Polish lands in the 10th century. Research included extremely cold and snowy winters which were described in historical documents as a extreme meteorological phenomena. Data from the period of instrumental measurements in the 20th century were studied in detail. The results were referred to last 500 years. The information obtained gives approximate image of extreme winters in the historical times in Polish lands. All available multi-proxy data were used

  9. THE HELIOCENTRIC DISTANCE WHERE THE DEFLECTIONS AND ROTATIONS OF SOLAR CORONAL MASS EJECTIONS OCCUR

    SciTech Connect

    Kay, C.; Opher, M.

    2015-10-01

    Understanding the trajectory of a coronal mass ejection (CME), including any deflection from a radial path, and the orientation of its magnetic field is essential for space weather predictions. Kay et al. developed a model, Forecasting a CME’s Altered Trajectory (ForeCAT), of CME deflections and rotation due to magnetic forces, not including the effects of reconnection. ForeCAT is able to reproduce the deflection of observed CMEs. The deflecting CMEs tend to show a rapid increase of their angular momentum close to the Sun, followed by little to no increase at farther distances. Here we quantify the distance at which the CME deflection is “determined,” which we define as the distance after which the background solar wind has negligible influence on the total deflection. We consider a wide range in CME masses and radial speeds and determine that the deflection and rotation of these CMEs can be well-described by assuming they propagate with constant angular momentum beyond 10 R{sub ⊙}. The assumption of constant angular momentum beyond 10 R{sub ⊙} yields underestimates of the total deflection at 1 AU of only 1%–5% and underestimates of the rotation of 10%. Since the deflection from magnetic forces is determined by 10 R{sub ⊙}, non-magnetic forces must be responsible for any observed interplanetary deflections or rotations where the CME has increasing angular momentum.

  10. Binary Stars with Components of Solar Type: 25 Orbits and System Masses

    NASA Astrophysics Data System (ADS)

    Docobo, J. A.; Ling, J. F.

    2009-10-01

    Revised orbits and system masses are presented for the following 25 visual double stars: WDS 00593-0040 (A 1902), WDS 00596-0111 (A 1903 AB), WDS 01023+0552 (A 2003), WDS 01049+3649 (A 1515), WDS 01234+5809 (STF 115 AB), WDS 02399+0009 (A 1928), WDS 03310+2937 (A 983), WDS 06573-3530 (I 65), WDS 07043-0303 (A 519), WDS 08267+2432 (A 1746 BC), WDS 10585+1711 (A 2375), WDS 11308+4117 (STT 234), WDS 15370+6426 (HU 1168), WDS 16044-1122 (STF 1998 AB), WDS 16283-1613 (RST 3950), WDS 17324+2848 (A 352), WDS 18466+3821 (HU 1191), WDS 19039+2642 (A 2992), WDS 19055+3352(HU 940), WDS 19282-1209 (SCJ 22), WDS 19487+1504 (A 1658), WDS 22400+0113 (A 2099), WDS 23506-5142 (SLR 14), WDS 23518-0637 (A 2700), and WDS 23529-0309 (FIN 359). In all of these systems, at least one component is of solar type. Total system masses were calculated in each case from the orbital period and semiaxis major together with the Hipparcos parallax, except in the cases for which there are no Hipparcos data or when these values are not precise. Other orbital and physical properties of these stars are also discussed. This paper is the second of three collating the revised double star orbits we have calculated in the past 15 yr.

  11. Characterisation of a smartphone image sensor response to direct solar 305nm irradiation at high air masses.

    PubMed

    Igoe, D P; Amar, A; Parisi, A V; Turner, J

    2017-06-01

    This research reports the first time the sensitivity, properties and response of a smartphone image sensor that has been used to characterise the photobiologically important direct UVB solar irradiances at 305nm in clear sky conditions at high air masses. Solar images taken from Autumn to Spring were analysed using a custom Python script, written to develop and apply an adaptive threshold to mitigate the effects of both noise and hot-pixel aberrations in the images. The images were taken in an unobstructed area, observing from a solar zenith angle as high as 84° (air mass=9.6) to local solar maximum (up to a solar zenith angle of 23°) to fully develop the calibration model in temperatures that varied from 2°C to 24°C. The mean ozone thickness throughout all observations was 281±18 DU (to 2 standard deviations). A Langley Plot was used to confirm that there were constant atmospheric conditions throughout the observations. The quadratic calibration model developed has a strong correlation between the red colour channel from the smartphone with the Microtops measurements of the direct sun 305nm UV, with a coefficient of determination of 0.998 and very low standard errors. Validation of the model verified the robustness of the method and the model, with an average discrepancy of only 5% between smartphone derived and Microtops observed direct solar irradiances at 305nm. The results demonstrate the effectiveness of using the smartphone image sensor as a means to measure photobiologically important solar UVB radiation. The use of ubiquitous portable technologies, such as smartphones and laptop computers to perform data collection and analysis of solar UVB observations is an example of how scientific investigations can be performed by citizen science based individuals and groups, communities and schools.

  12. Influences of atmospheric conditions and air mass on the ratio of ultraviolet to total solar radiation

    SciTech Connect

    Riordan, C.J.; Hulstrom, R.L.; Myers, D.R.

    1990-08-01

    The technology to detoxify hazardous wastes using ultraviolet (UV) solar radiation is being investigated by the DOE/SERI Solar Thermal Technology Program. One of the elements of the technology evaluation is the assessment and characterization of UV solar radiation resources available for detoxification processes. This report describes the major atmospheric variables that determine the amount of UV solar radiation at the earth's surface, and how the ratio of UV-to-total solar radiation varies with atmospheric conditions. These ratios are calculated from broadband and spectral solar radiation measurements acquired at SERI, and obtained from the literature on modeled and measured UV solar radiation. The following sections discuss the atmospheric effects on UV solar radiation and provide UV-to-total solar radiation ratios from published studies, as well as measured values from SERI's data. A summary and conclusions are also given.

  13. Celebrating Soft Matter's 10th anniversary: Testing the foundations of classical entropy: colloid experiments.

    PubMed

    Cates, Michael E; Manoharan, Vinothan N

    2015-09-07

    Defining the entropy of classical particles raises a number of paradoxes and ambiguities, some of which have been known for over a century. Several, such as Gibbs' paradox, involve the fact that classical particles are distinguishable, and in textbooks these are often 'resolved' by appeal to the quantum-mechanical indistinguishability of atoms or molecules of the same type. However, questions then remain of how to correctly define the entropy of large poly-atomic particles such as colloids in suspension, of which no two are exactly alike. By performing experiments on such colloids, one can establish that certain definitions of the classical entropy fit the data, while others in the literature do not. Specifically, the experimental facts point firmly to an 'informatic' interpretation that dates back to Gibbs: entropy is determined by the number of microstates that we as observers choose to treat as equivalent when we identify a macrostate. This approach, unlike some others, can account for the existence of colloidal crystals, and for the observed abundances of colloidal clusters of different shapes. We also address some lesser-known paradoxes whereby the physics of colloidal assemblies, which ought to be purely classical, seems to involve quantum mechanics directly. The experimental symptoms of such involvement are predicted to be 'isotope effects' in which colloids with different inertial masses, but otherwise identical sizes and properties, show different aggregation statistics. These paradoxes are caused by focussing one's attention on some classical degrees while neglecting others; when all are treated equally, all isotope effects are found to vanish.

  14. Fortified Settlements of the 9th and 10th Centuries ad in Central Europe: Structure, Function and Symbolism

    PubMed Central

    Herold, Hajnalka

    2012-01-01

    THE STRUCTURE, FUNCTION(S) and symbolism of early medieval (9th–10th centuries ad) fortified settlements from central Europe, in particular today’s Austria, Hungary, Czech Republic and Slovakia, are examined in this paper. It offers an overview of the current state of research together with new insights based on analysis of the site of Gars-Thunau in Lower Austria. Special emphasis is given to the position of the fortified sites in the landscape, to the elements of the built environment and their spatial organisation, as well as to graves within the fortified area. The region under study was situated on the SE border of the Carolingian (and later the Ottonian) Empire, with some of the discussed sites lying in the territory of the ‘Great Moravian Empire’ in the 9th and 10th centuries. These sites can therefore provide important comparative data for researchers working in other parts of the Carolingian Empire and neighbouring regions. PMID:23564981

  15. A grid of MHD models for stellar mass loss and spin-down rates of solar analogs

    SciTech Connect

    Cohen, O.; Drake, J. J.

    2014-03-01

    Stellar winds are believed to be the dominant factor in the spin-down of stars over time. However, stellar winds of solar analogs are poorly constrained due to observational challenges. In this paper, we present a grid of magnetohydrodynamic models to study and quantify the values of stellar mass loss and angular momentum loss rates as a function of the stellar rotation period, magnetic dipole component, and coronal base density. We derive simple scaling laws for the loss rates as a function of these parameters, and constrain the possible mass loss rate of stars with thermally driven winds. Despite the success of our scaling law in matching the results of the model, we find a deviation between the 'solar dipole' case and a real case based on solar observations that overestimates the actual solar mass loss rate by a factor of three. This implies that the model for stellar fields might require a further investigation with additional complexity. Mass loss rates in general are largely controlled by the magnetic field strength, with the wind density varying in proportion to the confining magnetic pressure B {sup 2}. We also find that the mass loss rates obtained using our grid models drop much faster with the increase in rotation period than scaling laws derived using observed stellar activity. For main-sequence solar-like stars, our scaling law for angular momentum loss versus poloidal magnetic field strength retrieves the well-known Skumanich decline of angular velocity with time, Ω{sub *}∝t {sup –1/2}, if the large-scale poloidal magnetic field scales with rotation rate as B{sub p}∝Ω{sub ⋆}{sup 2}.

  16. Coronal mass ejections and other extreme characteristics of the 2003 October-November solar eruptions

    NASA Astrophysics Data System (ADS)

    Gopalswamy, N.; Yashiro, S.; Liu, Y.; Michalek, G.; Vourlidas, A.; Kaiser, M. L.; Howard, R. A.

    2005-09-01

    Fast coronal mass ejections (CMEs), X-class flares, solar energetic particle (SEP) events, and interplanetary shocks were abundantly observed during the episode of intense solar activity in late October and early November 2003. Most of the 80 CMEs originated from three active regions (NOAA ARs 484, 486, and 488). We compare the statistical properties of these CMEs with those of the general population of CMEs observed during cycle 23. We find that (1) the 2003 October-November CMEs were fast and wide on the average and hence were very energetic, (2) nearly 20 percent of the ultrafast CMEs (speed ≥2000 km s-1) of cycle 23 occurred during the October-November interval, including the fastest CME of the study period (˜2700 km s-1 on 4 November 2003 at 1954 UT), (3) the rate of full-halo CMEs was nearly four times the average rate during cycle 23, (4) at least sixteen shocks were observed near the Sun, while eight of them were intercepted by spacecraft along the Sun-Earth line, (5) the CMEs were highly geoeffective: the resulting geomagnetic storms were among the most intense of cycle 23, (6) the CMEs were associated with very large SEP events, including the largest event of cycle 23. These extreme properties were commensurate with the size and energy of the associated active regions. This study suggests that the speed of CMEs may not be much higher than ˜3000 km s-1, consistent with the free energy available in active regions. An important practical implication of such a speed limit is that the Sun-Earth travel times of CME-driven shocks may not be less than ˜0.5 day. Two of the shocks arrived at Earth in <24 hours, the first events in ˜30 years and only the 14th and 15th documented cases of such events since 1859.

  17. Do interacting coronal mass ejections play a role in solar energetic particle events?

    SciTech Connect

    Kahler, S. W.; Vourlidas, A.

    2014-03-20

    Gradual solar energetic (E > 10 MeV) particle (SEP) events are produced in shocks driven by fast and wide coronal mass ejections (CMEs). With a set of western hemisphere 20 MeV SEP events, we test the possibility that SEP peak intensities, Ip, are enhanced by interactions of their associated CMEs with preceding CMEs (preCMEs) launched during the previous 12 hr. Among SEP events with no, 1, or 2 or more (2+) preCMEs, we find enhanced Ip for the groups with preCMEs, but no differences in TO+TR, the time from CME launch to SEP onset and the time from onset to SEP half-peak Ip. Neither the timings of the preCMEs relative to their associated CMEs nor the preCME widths W {sub pre}, speeds V {sub pre}, or numbers correlate with the SEP Ip values. The 20 MeV Ip of all the preCME groups correlate with the 2 MeV proton background intensities, consistent with a general correlation with possible seed particle populations. Furthermore, the fraction of CMEs with preCMEs also increases with the 2 MeV proton background intensities. This implies that the higher SEP Ip values with preCMEs may not be due primarily to CME interactions, such as the 'twin-CME' scenario, but are explained by a general increase of both background seed particles and more frequent CMEs during times of higher solar activity. This explanation is not supported by our analysis of 2 MeV proton backgrounds in two earlier preCME studies of SEP events, so the relevance of CME interactions for larger SEP event intensities remains unclear.

  18. A comparison of solar energetic particle event timescales with properties of associated coronal mass ejections

    SciTech Connect

    Kahler, S. W.

    2013-06-01

    The dependence of solar energetic proton (SEP) event peak intensities Ip on properties of associated coronal mass ejections (CMEs) has been extensively examined, but the dependence of SEP event timescales is not well known. We define three timescales of 20 MeV SEP events and ask how they are related to speeds v {sub CME} or widths W of their associated CMEs observed by LASCO/SOHO. The timescales of the EPACT/Wind 20 MeV events are TO, the onset time from CME launch to SEP onset; TR, the rise time from onset to half the peak intensity (0.5Ip); and TD, the duration of the SEP intensity above 0.5Ip. This is a statistical study based on 217 SEP-CME events observed during 1996-2008. The large number of SEP events allows us to examine the SEP-CME relationship in five solar-source longitude ranges. In general, we statistically find that TO declines slightly with v {sub CME}, and TR and TD increase with both v {sub CME} and W. TO is inversely correlated with log Ip, as expected from a particle background effect. We discuss the implications of this result and find that a background-independent parameter TO+TR also increases with v {sub CME} and W. The correlations generally fall below the 98% significance level, but there is a significant correlation between v {sub CME} and W which renders interpretation of the timescale results uncertain. We suggest that faster (and wider) CMEs drive shocks and accelerate SEPs over longer times to produce the longer TR and TD SEP timescales.

  19. A Comparison of Solar Energetic Particle Event Timescales with Properties of Associated Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Kahler, S. W.

    2013-06-01

    The dependence of solar energetic proton (SEP) event peak intensities Ip on properties of associated coronal mass ejections (CMEs) has been extensively examined, but the dependence of SEP event timescales is not well known. We define three timescales of 20 MeV SEP events and ask how they are related to speeds v CME or widths W of their associated CMEs observed by LASCO/SOHO. The timescales of the EPACT/Wind 20 MeV events are TO, the onset time from CME launch to SEP onset; TR, the rise time from onset to half the peak intensity (0.5Ip); and TD, the duration of the SEP intensity above 0.5Ip. This is a statistical study based on 217 SEP-CME events observed during 1996-2008. The large number of SEP events allows us to examine the SEP-CME relationship in five solar-source longitude ranges. In general, we statistically find that TO declines slightly with v CME, and TR and TD increase with both v CME and W. TO is inversely correlated with log Ip, as expected from a particle background effect. We discuss the implications of this result and find that a background-independent parameter TO+TR also increases with v CME and W. The correlations generally fall below the 98% significance level, but there is a significant correlation between v CME and W which renders interpretation of the timescale results uncertain. We suggest that faster (and wider) CMEs drive shocks and accelerate SEPs over longer times to produce the longer TR and TD SEP timescales.

  20. Do Interacting Coronal Mass Ejections Play a Role in Solar Energetic Particle Events?

    NASA Astrophysics Data System (ADS)

    Kahler, S. W.; Vourlidas, A.

    2014-03-01

    Gradual solar energetic (E > 10 MeV) particle (SEP) events are produced in shocks driven by fast and wide coronal mass ejections (CMEs). With a set of western hemisphere 20 MeV SEP events, we test the possibility that SEP peak intensities, Ip, are enhanced by interactions of their associated CMEs with preceding CMEs (preCMEs) launched during the previous 12 hr. Among SEP events with no, 1, or 2 or more (2+) preCMEs, we find enhanced Ip for the groups with preCMEs, but no differences in TO+TR, the time from CME launch to SEP onset and the time from onset to SEP half-peak Ip. Neither the timings of the preCMEs relative to their associated CMEs nor the preCME widths W pre, speeds V pre, or numbers correlate with the SEP Ip values. The 20 MeV Ip of all the preCME groups correlate with the 2 MeV proton background intensities, consistent with a general correlation with possible seed particle populations. Furthermore, the fraction of CMEs with preCMEs also increases with the 2 MeV proton background intensities. This implies that the higher SEP Ip values with preCMEs may not be due primarily to CME interactions, such as the "twin-CME" scenario, but are explained by a general increase of both background seed particles and more frequent CMEs during times of higher solar activity. This explanation is not supported by our analysis of 2 MeV proton backgrounds in two earlier preCME studies of SEP events, so the relevance of CME interactions for larger SEP event intensities remains unclear.

  1. TETHER-CUTTING RECONNECTION BETWEEN TWO SOLAR FILAMENTS TRIGGERING OUTFLOWS AND A CORONAL MASS EJECTION

    SciTech Connect

    Chen, Huadong; Zhang, Jun; Li, Leping; Ma, Suli

    2016-02-20

    Triggering mechanisms of solar eruptions have long been a challenge. A few previous case studies have indicated that preceding gentle filament merging via magnetic reconnection may launch following intense eruption, according to the tether-cutting (TC) model. However, the detailed process of TC reconnection between filaments has not been exhibited yet. In this work, we report the high-resolution observations from the Interface Region Imaging Spectrometer (IRIS) of TC reconnection between two sheared filaments in NOAA active region 12146. The TC reconnection commenced on ∼15:35 UT on 2014 August 29 and triggered an eruptive GOES C4.3-class flare ∼8 minutes later. An associated coronal mass ejection appeared in the field of view of the Solar and Heliospheric Observatory/LASCO C2 about 40 minutes later. Thanks to the high spatial resolution of IRIS data, bright plasma outflows generated by the TC reconnection are clearly observed, which moved along the subarcsecond fine-scale flux tube structures in the erupting filament. Based on the imaging and spectral observations, the mean plane-of-sky and line-of-sight velocities of the TC reconnection outflows are separately measured to be ∼79 and 86 km s{sup −1}, which derives an average real speed of ∼120 km s{sup −1}. In addition, it is found that spectral features, such as peak intensities, Doppler shifts, and line widths in the TC reconnection region are evidently enhanced compared to those in the nearby region just before the flare.

  2. Origin of the High-speed Jets Fom Magnetic Flux Emergence in the Solar Transition Region as well as Their Mass and Energy Contribuctions to the Solar Wind

    NASA Astrophysics Data System (ADS)

    Liping, Y.; He, J.; Peter, H.; Tu, C. Y.; Feng, X. S.

    2015-12-01

    In the solar atmosphere, the jets are ubiquitous and found to be at various spatia-temporal scales. They are significant to understand energy and mass transport in the solar atmosphere. Recently, the high-speed transition region jets are reported from the observation. Here we conduct a numerical simulation to investigate the mechanism in their formation, as well as their mass and energy contributions to the solar wind. Driven by the supergranular convection motion, the magnetic reconnection between the magnetic loop and the background open flux occurring in the transition region is simulated with a two-dimensional MHD model. The simulation results show that not only a fast hot jet, much resemble the found transition region jets, but also a adjacent slow cool jet, mostly like classical spicules, is launched. The force analysis shows that the fast hot jet is continually driven by the Lorentz force around the reconnection region, while the slow cool jet is induced by an initial kick through the Lorentz force associated with the emerging magnetic flux. Also, the features of the driven jets change with the amount of the emerging magnetic flux, giving the varieties of both jets.With the developed one-dimensional hydrodynamic solar wind model, the time-dependent pulses are imposed at the bottom to simulate the jet behaviors. The simulation results show that without other energy source, the injected plasmas are accelerated effectively to be a transonic wind with a substantial mass flux. The rapid acceleration occurs close to the Sun, and the resulting asymptotic speeds, number density at 0.3 AU, as well as mass flux normalized to 1 AU are compatible with in site observations. As a result of the high speed, the imposed pulses lead to a train of shocks traveling upward. By tracing the motions of the injected plasma, it is found that these shocks heat and accelerate the injected plasma to make part of them propagate upward and eventually escape. The parametric study shows

  3. The Effects of Post-Main-Sequence Solar Mass Loss on the Stability of Our Planetary System

    NASA Astrophysics Data System (ADS)

    Duncan, Martin J.; Lissauer, Jack J.

    1998-08-01

    We present the results of extensive long-term integrations of systems of planets with orbits initially identical to subsets of the planets within our Solar System, but with the Sun's mass decreased relative to the masses of the planets. For systems based on the giant planets, we find an approximate power-law correlation between the time elapsed until a pair of planetary orbits cross and the solar-to-planetary-mass ratio, provided that this ratio is ≲0.4 times its current value. However, deviations from this relationship at larger ratios suggest that this correlation may not be useful in predicting the lifetime of the current system. Detailed simulations of the evolution of planetary orbits through the solar mass loss phase at the end of the Sun's main-sequence lifetime suggest that the orbits of those terrestrial planets that survive the Sun's red giant phase are likely to remain stable for (possibly much) longer than a billion years and those of the giant planets are likely to remain stable for (possibly much) more than ten billion years. Pluto is likely to escape from its current 2:3 mean-motion resonance with Neptune within a few billion years beyond the Sun's main sequence lifetime if subject only to gravitational forces; its prognosis is likely to be even poorer when nongravitational forces are included. Implications for the effects of stellar mass loss on the stability of other planetary systems are discussed.

  4. Submillimetre galaxies reside in dark matter haloes with masses greater than 3 × 10(11) solar masses.

    PubMed

    Amblard, Alexandre; Cooray, Asantha; Serra, Paolo; Altieri, B; Arumugam, V; Aussel, H; Blain, A; Bock, J; Boselli, A; Buat, V; Castro-Rodríguez, N; Cava, A; Chanial, P; Chapin, E; Clements, D L; Conley, A; Conversi, L; Dowell, C D; Dwek, E; Eales, S; Elbaz, D; Farrah, D; Franceschini, A; Gear, W; Glenn, J; Griffin, M; Halpern, M; Hatziminaoglou, E; Ibar, E; Isaak, K; Ivison, R J; Khostovan, A A; Lagache, G; Levenson, L; Lu, N; Madden, S; Maffei, B; Mainetti, G; Marchetti, L; Marsden, G; Mitchell-Wynne, K; Nguyen, H T; O'Halloran, B; Oliver, S J; Omont, A; Page, M J; Panuzzo, P; Papageorgiou, A; Pearson, C P; Pérez-Fournon, I; Pohlen, M; Rangwala, N; Roseboom, I G; Rowan-Robinson, M; Portal, M Sánchez; Schulz, B; Scott, Douglas; Seymour, N; Shupe, D L; Smith, A J; Stevens, J A; Symeonidis, M; Trichas, M; Tugwell, K; Vaccari, M; Valiante, E; Valtchanov, I; Vieira, J D; Vigroux, L; Wang, L; Ward, R; Wright, G; Xu, C K; Zemcov, M

    2011-02-24

    The extragalactic background light at far-infrared wavelengths comes from optically faint, dusty, star-forming galaxies in the Universe with star formation rates of a few hundred solar masses per year. These faint, submillimetre galaxies are challenging to study individually because of the relatively poor spatial resolution of far-infrared telescopes. Instead, their average properties can be studied using statistics such as the angular power spectrum of the background intensity variations. A previous attempt at measuring this power spectrum resulted in the suggestion that the clustering amplitude is below the level computed with a simple ansatz based on a halo model. Here we report excess clustering over the linear prediction at arcminute angular scales in the power spectrum of brightness fluctuations at 250, 350 and 500 μm. From this excess, we find that submillimetre galaxies are located in dark matter haloes with a minimum mass, M(min), such that log(10)[M(min)/M(⊙)] = 11.5(+0.7)(-0.2) at 350 μm, where M(⊙) is the solar mass. This minimum dark matter halo mass corresponds to the most efficient mass scale for star formation in the Universe, and is lower than that predicted by semi-analytical models for galaxy formation.

  5. Applications of thin film technology toward a low-mass solar power satellite

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Cull, Ronald C.

    1990-01-01

    Previous concepts for solar power satellites have used conventional-technology photovoltaics and microwave tubes. The authors propose using thin film photovoltaics and an integrated solid state phased array to design an ultra-lightweight solar power satellite, resulting in a potential reduction in weight by a factor of ten to a hundred over conventional concepts for solar power satellites.

  6. Solar nebula constraints derived from the masses and formation times of Earth, Mars, Jupiter and Saturn

    NASA Astrophysics Data System (ADS)

    Mosqueira, Ignacio; Lichtig, Ryan

    2014-11-01

    Terrestrial planets accreted from the late-stage collisional evolution of planetary embryos (roughly Mars-sized) and leftover planetesimals (Chambers 2013). Since the timescale to produce Earth-like analogues is on the order of ~ 100 My, the solar nebula gas would have dissipated by then. On the other hand, Hf-W chronology yields a short accretion timescale for Mars ~9 My (Dauphas and Pourmand 2011), which is similar to the gas dissipation time (Haisch et al. 2011). The Grand-Tack model proposes that Jupiter and Saturn migrated inward until Saturn was caught in a 2:3 mean motion resonance then migrated outward, truncating the disk in the process and accounting for Mars’ orbit, accretion timescale, and small mass (Walsh et al. 2011). However, in order to power the migration of the giant planets this model assumes the presence of a massive (compared to Jupiter) viscously evolving gas disk. This means that the giant planets themselves would not have completed their growth. Thus, the Grand-Tack model provides an explanation for the small mass of Mars at the cost of ignoring the resulting problematic large mass of Saturn. Here we fix the locations and masses of Jupiter and Saturn and develop a model in which the depleted region is due to three key mechanisms: one, removal of collisional fragments by gas drag; two, coalescence of planetary embryos by sweeping secular resonances during gas disk dispersal; three, removal of planetary embryos by Type I tidal interaction with the gas disk. We use analytical and numerical N-body results to evaluate the consequences of the above processes for the disk of solids. We focus on the variables controlling the extent of the depleted region. We stress that the static giant planets nevertheless play a determining role: first, by filtering-out outer disk planetesimal fragments that would otherwise replenish the inner disk; second, by increasing the (phased) eccentricities of planetary embryos thereby allowing larger objects to form

  7. A 2000 Solar Mass Rotating Molecular Disk Around NGC 6334A

    NASA Technical Reports Server (NTRS)

    Kraemer, Kathleen E.; Jackson, James M.; Paglione, A. D.; Bolatto, Alberto D.

    1997-01-01

    We present millimeter and centimeter wave spectroscopic observations of the H II region NGC 6334A. We have mapped the source in several transitions of CO, CS, and NH3. The molecular emission shows a distinct flattened structure in the east-west direction. This structure is probably a thick molecular disk or torus (2.2 x 0.9 pc) responsible for the bipolarity of the near-infrared (NIR) and radio continuum emission which extends in two "lobes" to the north and south of the shell-like H II region. The molecular disk is rotating from west to east (omega approximately equals 2.4 km/s.pc) about an axis approximately parallel to the radio and NIR emission lobes. By assuming virial equilibrium, we find that the molecular disk contains approximately 2000 solar mass. Single-component gas excitation model calculations show that the molecular gas in the disk is warmer and denser (T(sub k) approximately equals 60 K, n approximately equals 3000/cc) than the gas to the north and south (T(sub k) approximately equals 50 K, n approximately equals 400/cc). High resolution (approximately 5 sec) NH3 (3, 3) images of NGC 6334A reveal several small (approximately 0.1 pc) clumps, one of which lies southwest of the radio continuum shell, and is spatially coincident with a near-infrared source, IRS 20. A second NH3 clump is coincident with an H2O maser and the center of a molecular outflow. The dense gas tracers, CS J = 5 approaches 4 and 7 approaches 6, peak near IRS 20 and the H2O maser, not at NGC 6334A. IRS 20 has a substantial far-infrared (FIR) luminosity L(sub FIR) approximately 10(exp 5) solar luminosity, which indicates the presence of an O 7.5 star but has no detected radio continuum (F(sub 6 cm) < 0.02 Jy). The combination of dense gas, a large FIR luminosity and a lack of radio continuum can best be explained if IRS 20 is a protostar. A third clump of NH3 emission lies to the west of IRS 20 but is not associated with any other molecular or continuum features. The star formation

  8. Predictors of intent to pursue a college health science education among high achieving minority 10(th) graders.

    PubMed

    Zebrak, Katarzyna A; Le, Daisy; Boekeloo, Bradley O; Wang, Min Qi

    Minority populations are underrepresented in fields of science, perhaps limiting scientific perspectives. Informed by recent studies using Social Cognitive Career Theory, this study examined whether three conceptual constructs: self-efficacy, perceived adult support, and perceptions of barriers, as well as several discrete and immutable variables, were associated with intent to pursue college science education in a sample (N = 134) of minority youth (70.1% female and 67.2% African American). A paper-and-pencil survey about pursuit of college science was administered to 10th graders with a B- or better grade point average from six high schools in an underserved community. Results indicated that the three conceptual constructs were bivariate correlates of intent to pursue college science education. Only perceived adult support and knowing whether a parent received college education were significant predictors in multivariate modeling. These results build on previous research and provide further insight into youth decision-making regarding pursuit of college science.

  9. Predictors of intent to pursue a college health science education among high achieving minority 10th graders

    PubMed Central

    Zebrak, Katarzyna A.; Le, Daisy; Boekeloo, Bradley O.; Wang, Min Qi

    2014-01-01

    Minority populations are underrepresented in fields of science, perhaps limiting scientific perspectives. Informed by recent studies using Social Cognitive Career Theory, this study examined whether three conceptual constructs: self-efficacy, perceived adult support, and perceptions of barriers, as well as several discrete and immutable variables, were associated with intent to pursue college science education in a sample (N = 134) of minority youth (70.1% female and 67.2% African American). A paper-and-pencil survey about pursuit of college science was administered to 10th graders with a B- or better grade point average from six high schools in an underserved community. Results indicated that the three conceptual constructs were bivariate correlates of intent to pursue college science education. Only perceived adult support and knowing whether a parent received college education were significant predictors in multivariate modeling. These results build on previous research and provide further insight into youth decision-making regarding pursuit of college science. PMID:25598654

  10. The Interpretations and Applications of Boethius's Introduction to the Arithmetic II,1 at the End of the 10th Century

    NASA Astrophysics Data System (ADS)

    Otisk, Marek

    This paper deals with comments and glosses to the first chapter of the second book of Boethius's Introduction to Arithmetic from the last quarter of the 10th century. Those texts were written by Gerbert of Aurillac (Scholium ad Boethii Arithmeticam Institutionem l. II, c. 1), Abbo of Fleury (commentary on the Calculus by Victorius of Aquitaine, the so-called De numero, mensura et pondere), Notker of Liège (De superparticularibus) and by the anonymous author (De arithmetica Boetii). The main aim of this paper is to show that Boethius's statements about the converting numerical sequences to equality from this work could be interpreted minimally in two different ways. This paper discussed also the application of this topic in other liberal arts (like astronomy, music, grammar etc.) and in playing game called rithmomachia, the medieval philosophers' game.

  11. Nearby solar-type star with a low-mass companion - New sensitivity limits reached using speckle imaging

    NASA Astrophysics Data System (ADS)

    Henry, Todd J.; McCarthy, Donald W., Jr.; Freeman, Jonathan; Christou, Julian C.

    1992-04-01

    The low-mass companion to the nearby solar-type star Gliese 67 is imaged using 2D IR speckle imaging techniques. The binary is resolved at J (1.25 micron), H (1.65 micron), and K (2.2 microns) to determine the magnitudes and colors of the components. In observations spanning 14 months the secondary is found at separations and position angles predicted by the astrometric orbit, and the component masses are found to be 0.97 and 0.29 solar mass. With a magnitude difference of 4.5 mag at K, these observations define a new sensitivity limit for companions at subarcsecond scales, 6-9 AU for the observations reported here of the Gliese 67 system. For the G dwarf/M dwarf pair, this brightness ratio corresponds to 7.5 mag at V, or a flux ratio of 1000. The data indicate that even greater sensitivity is possible, to companions six magnitudes fainter than their primaries in the infrared, thereby allowing us to search for very low-mass secondaries orbiting nearby solar-type stars.

  12. MAGNETOHYDRODYNAMIC SIMULATION OF THE X2.2 SOLAR FLARE ON 2011 FEBRUARY 15. II. DYNAMICS CONNECTING THE SOLAR FLARE AND THE CORONAL MASS EJECTION

    SciTech Connect

    Inoue, S.; Magara, T.; Choe, G. S.; Hayashi, K.; Park, Y. D.

    2015-04-20

    We clarify a relationship between the dynamics of a solar flare and a growing coronal mass ejection (CME) by investigating the dynamics of magnetic fields during the X2.2-class flare taking place in the solar active region 11158 on 2011 February 15, based on simulation results obtained from Inoue et al. We found that the strongly twisted lines formed through tether-cutting reconnection in the twisted lines of a nonlinear force-free field can break the force balance within the magnetic field, resulting in their launch from the solar surface. We further discover that a large-scale flux tube is formed during the eruption as a result of the tether-cutting reconnection between the eruptive strongly twisted lines and these ambient weakly twisted lines. The newly formed large flux tube exceeds the critical height of the torus instability. Tether-cutting reconnection thus plays an important role in the triggering of a CME. Furthermore, we found that the tangential fields at the solar surface illustrate different phases in the formation of the flux tube and its ascending phase over the threshold of the torus instability. We will discuss these dynamics in detail.

  13. Characteristics of coronal mass ejections associated with solar frontside and backside metric Type II bursts

    NASA Technical Reports Server (NTRS)

    Kahler, S. W.; Cliver, E. W.; Sheeley, N. R.; Howard, R. A.; Michels, D. J.; Koomen, M. J.

    1985-01-01

    Fast velocities of 500 km/s or greater coronal mass ejections (CME's) are compared with reported metric type II bursts to study the properties of CME's associated with coronal shocks. An earlier report of fast frontside CME's with no associated metric type II bursts is confirmed, and it is calculated that 33 + or - 15 percent of all fast frontside CME's are not associated with such bursts. Faster CME's are more likely to be associated with type II bursts, as expected from the hypothesis of piston-driven shocks. However, CME brightness and associated peak 3-cm burst intensity are also important factors, as might be inferred from the Wagner and MacQueen (1983) view of type II shocks decoupled from associated CME's. The equal visibility of solar frontside and backside CME's is used to deduce the observability of backside type II bursts. It is calculated that 23 + or - 7 percent of all backside type II bursts associated with fast CME's can be observed at the earth and that 13 + or - 4 percent of all type II bursts originate in backside flares. CME speed again is the most important factor in the obervability of backside type II bursts.

  14. Modelling the evolution of solar-mass stars with a range of metallicities using MESA

    NASA Astrophysics Data System (ADS)

    Jones, E. F.; Gore, P. M.

    2015-05-01

    The nuclides 1,2H, 3,4He, 7Li, 7Be, 8B, 12,13C, 13-15N, 14-18O, 17-19F, 18-22Ne, 22Mg, and 24Mg were used in the code package MESA (Modules for Experiments in Stellar Astrophysics)[Paxton] to model a one-solar-mass star with a range of metallicities, z, from 0 to 0.1. On HR diagrams of each star model's luminosity and effective temperature from before zero-age main sequence (pre-ZAMS) to white dwarf, oscillations were noted in the horizontal branch at intervals from z = 0 to 0.0070. At z, = 0, the calculated stellar lifetime is 6.09x109 years. The calculated lifetime of the model stars increases to a maximum of 1.25x1010 years at z = 0.022 and then decreases to 2.59x109 years at z = 0.1. A piecewise fit of the model lifetimes vs. metallicity was obtained.

  15. Analysis of Epsilon Aurigae light curve from the Solar Mass Ejection Imager

    NASA Astrophysics Data System (ADS)

    Clover, John; Jackson, B. V.; Buffington, A.; Hick, P. P.; Kloppenborg, B.; Stencel, R.

    2011-01-01

    The Solar Mass Ejection Imager (SMEI) was launched aboard the Coriolis spacecraft in 2003. It is equipped with 3 CCD cameras to measure the brightness of Thomson-scattered electrons in the heliosphere. Each CCD images a strip of the sky that is 3°x60°. The three cameras are mounted on the satellite with their fields of view aligned end-to-end so that SMEI sweeps nearly the entire sky each 102 minute orbit. SMEI has now accumulated stellar time series for about 5700 bright stars, including epsilon Aurigae, for each orbit where data is available. SMEI data provide nearly year-round coverage of epsilon Aurigae. The baffled SMEI optics provide more accurate photometric data than ground-based observations, particularly at mid-eclipse when epsilon Aurigae is close to the Sun. We present an analysis of the brightness variations of the epsilon Aurigae system, before and during the eclipse. The University of Denver participants are grateful for support under NSFgrant 10-16678 and the bequest of William Hershel Womble in support of astronomy at the University of Denver.

  16. The total number of spicules on the solar surface and their role in heating and mass balanace in the solar corona

    NASA Astrophysics Data System (ADS)

    Mamedov, S. G.; Kuli-Zade, D. M.; Alieva, Z. F.; Musaev, M. M.; Mustafa, F. R.

    2016-09-01

    A critical review of determinations of the number of spicules is presented, and the role of both classical and Type 2 spicules in heating and mass balance in the corona is considered. The total number of Type 2 spicules is determined, together with the upward fluxes of energy and mass to which they give rise. The total number of Type 2 spicules on the solar surface is found to be ~105, close to values obtained in other studies. The associated particle flux toward the corona is 2.5 × 1014 cm-2 s-1, an order of magnitude lower than the corresponding flux for classical spicules. The associated energy flux is 104 erg cm-2 s-1, an order of magnaitude lower than estimates obtained in other studies. The results indicate that Type 2 spicules can supply the mass lost from the corona, but are not able to fully explain coronal energy losses.

  17. Interactions of Dust Grains with Coronal Mass Ejections and Solar Cycle Variations of the F-Coronal Brightness

    NASA Technical Reports Server (NTRS)

    Ragot, B. R.; Kahler, S. W.

    2003-01-01

    The density of interplanetary dust increases sunward to reach its maximum in the F corona, where its scattered white-light emission dominates that of the electron K corona above about 3 Solar Radius. The dust will interact with both the particles and fields of antisunward propagating coronal mass ejections (CMEs). To understand the effects of the CME/dust interactions we consider the dominant forces, with and without CMEs. acting on the dust in the 3-5 Solar Radius region. Dust grain orbits are then computed to compare the drift rates from 5 to 3 Solar Radius. for periods of minimum and maximum solar activity, where a simple CME model is adopted to distinguish between the two periods. The ion-drag force, even in the quiet solar wind, reduces the drift time by a significant factor from its value estimated with the Poynting-Robertson drag force alone. The ion-drag effects of CMEs result in even shorter drift times of the large (greater than or approx. 3 microns) dust grains. hence faster depletion rates and lower dust-pain densities, at solar maxima. If dominated by thermal emission, the near-infrared brightness will thus display solar cycle variations close to the dust plane of symmetry. While trapping the smallest of the grains, the CME magnetic fields also scatter the grains of intermediate size (0.1-3 microns) in latitude. If light scattering by small grains close to the Sun dominates the optical brightness. the scattering by the CME magnetic fields will result in a solar cycle variation of the optical brightness distribution not exceeding 100% at high latitudes, with a higher isotropy reached at solar maxima. A good degree of latitudinal isotropy is already reached at low solar activity since the magnetic fields of the quiet solar wind so close to the Sun are able to scatter the small (less than or approx. 3 microns) grains up to the polar regions in only a few days or less, producing strong perturbations of their trajectories in less than half their orbital

  18. PREDICTION OF TYPE II SOLAR RADIO BURSTS BY THREE-DIMENSIONAL MHD CORONAL MASS EJECTION AND KINETIC RADIO EMISSION SIMULATIONS

    SciTech Connect

    Schmidt, J. M.; Cairns, Iver H.; Hillan, D. S.

    2013-08-20

    Type II solar radio bursts are the primary radio emissions generated by shocks and they are linked with impending space weather events at Earth. We simulate type II bursts by combining elaborate three-dimensional MHD simulations of realistic coronal mass ejections (CMEs) at the Sun with an analytic kinetic radiation theory developed recently. The modeling includes initialization with solar magnetic and active region fields reconstructed from magnetograms of the Sun, a flux rope of the initial CME dimensioned with STEREO spacecraft observations, and a solar wind driven with averaged empirical data. We demonstrate impressive accuracy in time, frequency, and intensity for the CME and type II burst observed on 2011 February 15. This implies real understanding of the physical processes involved regarding the radio emission excitation by shocks and supports the near-term development of a capability to predict and track these events for space weather prediction.

  19. Solar abundances and the role of nucleogenesis in low-to-medium mass stars in the galaxy

    NASA Technical Reports Server (NTRS)

    Aller, L. H.

    1985-01-01

    The pattern of solar elemental abundances agrees well with that shown by Cl chondrites for nonvolatile elements. For metals of the iron peak, the chief source of uncertainty seems to be the structure of the solar atmosphere. Lines of rare elements are frequently masked by atomic and molecular lines of abundant species. The vast majority of stars (including the sun) will do little to change the bulk composition of the interstellar medium from which new stars are formed. He, C, and N in small quantities are supplied by stars from 1 to 8 solar masses as they evolve and produce nebular envelopes that dissipate into the interstellar medium, but as has long been recognized, oxygen, heavier elements, and all r-process and proton-rich nuclides are made in massive stars.

  20. Solar Radiation Pressure Estimation and Analysis of a GEO Class of High Area-to-Mass Ratio Debris Objects

    NASA Technical Reports Server (NTRS)

    Kelecy, Tom; Payne, Tim; Thurston, Robin; Stansbery, Gene

    2007-01-01

    A population of deep space objects is thought to be high area-to-mass ratio (AMR) debris having origins from sources in the geosynchronous orbit (GEO) belt. The typical AMR values have been observed to range anywhere from 1's to 10's of m(sup 2)/kg, and hence, higher than average solar radiation pressure effects result in long-term migration of eccentricity (0.1-0.6) and inclination over time. However, the nature of the debris orientation-dependent dynamics also results time-varying solar radiation forces about the average which complicate the short-term orbit determination processing. The orbit determination results are presented for several of these debris objects, and highlight their unique and varied dynamic attributes. Estimation or the solar pressure dynamics over time scales suitable for resolving the shorter term dynamics improves the orbit estimation, and hence, the orbit predictions needed to conduct follow-up observations.

  1. COUPLING THE SOLAR DYNAMO AND THE CORONA: WIND PROPERTIES, MASS, AND MOMENTUM LOSSES DURING AN ACTIVITY CYCLE

    SciTech Connect

    Pinto, Rui F.; Brun, Allan Sacha; Grappin, Roland

    2011-08-20

    We study the connections between the Sun's convection zone and the evolution of the solar wind and corona. We let the magnetic fields generated by a 2.5-dimensional (2.5D) axisymmetric kinematic dynamo code (STELEM) evolve in a 2.5D axisymmetric coronal isothermal magnetohydrodynamic code (DIP). The computations cover an 11 year activity cycle. The solar wind's asymptotic velocity varies in latitude and in time in good agreement with the available observations. The magnetic polarity reversal happens at different paces at different coronal heights. Overall the Sun's mass-loss rate, momentum flux, and magnetic braking torque vary considerably throughout the cycle. This cyclic modulation is determined by the latitudinal distribution of the sources of open flux and solar wind and the geometry of the Alfven surface. Wind sources and braking torque application zones also vary accordingly.

  2. Onset of the Magnetic Explosion in Solar Flames and Coronal Mass Ejections

    NASA Technical Reports Server (NTRS)

    Moore, Ronald L.; Sterling, Alphonse C.; Hudson, Hugh S.; Lemen, James R.

    2001-01-01

    We present observations of the magnetic field configuration and its transformation in six solar eruptive events that show good agreement with the standard bipolar model for eruptive flares. The observations are X-ray images from the Yohkoh soft X-ray telescope (SXT) and magnetograms from Kitt Peak National Solar Observatory, interpreted together with the 1-8 Angstrom X-ray flux observed by Geostationary Operational Environmental Satellites (GOES). The observations yield the following interpretations: (1) Each event is a magnetic explosion that occurs in an initially closed single bipole in which the core field is sheared and twisted in the shape of a sigmoid, having an oppositely curved elbow on each end. The arms of the opposite elbows are sheared past each other so that they overlap and are crossed low above the neutral line in the middle of the bipole. The elbows and arms seen in the SXT images are illuminated strands of the sigmoidal core field, which is a continuum of sheared/twisted field that fills these strands as well as the space between and around them; (2) Although four of the explosions are ejective (appearing to blow open the bipole) and two are confined (appearing to be arrested within the closed bipole), all six begin the same way. In the SXT images, the explosion begins with brightening and expansion of the two elbows together with the appearance of short bright sheared loops low over the neutral line under the crossed arms and, rising up from the crossed arms, long strands connecting the far ends of the elbows; and (3) All six events are single-bipole events in that during the onset and early development of the explosion they show no evidence for reconnection between the exploding bipole and any surrounding magnetic fields. We conclude that in each of our events the magnetic explosion was unleashed by runaway tether-cutting via implosive/explosive reconnection in the middle of the sigmoid, as in the standard model. The similarity of the onsets of

  3. Solar system constraints on planetary Coriolis-type effects induced by rotation of distant masses

    SciTech Connect

    Iorio, Lorenzo

    2010-08-01

    We phenomenologically put local constraints on the rotation of distant masses by using the planets of the solar system. First, we analytically compute the orbital secular precessions induced on the motion of a test particle about a massive primary by a Coriolis-like force, treated as a small perturbation, in the case of a constant angular velocity vector Ψ directed along a generic direction in space. The semimajor axis a and the eccentricity e of the test particle do not secularly change, contrary to the inclination I, the longitude of the ascending node Ω, the longitude of the pericenter varpi and the mean anomaly M. Then, we compare our prediction for (dot varpi) with the corrections Δdot varpi to the usual perihelion precessions of the inner planets recently estimated by fitting long data sets with different versions of the EPM ephemerides. We obtain as preliminary upper bounds |Ψ{sub z}| ≤ 0.0006−0.013 arcsec cty{sup −1}, |Ψ{sub x}| ≤ 0.1−2.7 arcsec cty{sup −1}, |Ψ{sub y}| ≤ 0.3−2.3 arcsec cty{sup −1}. Interpreted in terms of models of space-time involving cosmic rotation, our results are able to yield constraints on cosmological parameters like the cosmological constant Λ and the Hubble parameter H{sub 0} not too far from their values determined with cosmological observations and, in some cases, several orders of magnitude better than the constraints usually obtained so far from space-time models not involving rotation. In the case of the rotation of the solar system throughout the Galaxy, occurring clockwise about the North Galactic Pole, our results for Ψ{sub z} are in disagreement with the expected value of it at more than 3−σ level. Modeling the Oort cloud as an Einstein-Thirring slowly rotating massive shell inducing Coriolis-type forces inside yields unphysical results for its putative rotation.

  4. Study of the geoeffectiveness of coronal mass ejections, corotating interaction regions and their associated structures observed during Solar Cycle 23

    NASA Astrophysics Data System (ADS)

    Badruddin, A.; Falak, Z.

    2016-08-01

    The interplanetary coronal mass ejections (ICMEs) and the corotating interaction regions (CIRs) are the two most important structures of the interplanetary medium affecting the Earth and the near-Earth space environment. We study the solar wind-magnetosphere coupling during the passage of ICMEs and CIRs, in the Solar Cycle 23 (Jan. 1995-Dec. 2009), and their relative geoeffectiveness. We utilize the timings of different features of these structures, their arrival and duration. As geomagnetic parameter, we utilize high time resolution data of Dst and AE indices. In addition to these geomagnetic indices, we utilize the simultaneous and similar time resolution data of interplanetary plasma and field, namely, solar wind velocity, interplanetary magnetic field, its north-south component and dawn-dusk electric field. We apply the method of superposed epoch analysis. Utilizing the properties of various structures during the passage of ICMEs and CIRs, and variations observed in plasma and field parameters during their passage along with the simultaneous changes observed in geomagnetic parameters, we identify the interplanetary conditions, plasma/field parameters and their relative importance in solar wind-magnetosphere coupling. Geospace consequences of ICMEs and CIRs, and the implications of these results for solar wind-magnetosphere coupling are discussed.

  5. Interplanetary Coronal Mass Ejections Resulting from Earth-Directed CMEs Using SOHO and ACE Combined Data During Solar Cycle 23

    NASA Astrophysics Data System (ADS)

    Paouris, Evangelos; Mavromichalaki, Helen

    2017-02-01

    In this work a total of 266 interplanetary coronal mass ejections observed by the Solar and Heliospheric Observatory/ Large Angle and Spectrometric Coronagraph (SOHO/LASCO) and then studied by in situ observations from Advanced Composition Explorer (ACE) spacecraft, are presented in a new catalog for the time interval 1996 - 2009 covering Solar Cycle 23. Specifically, we determine the characteristics of the CME which is responsible for the upcoming ICME and the associated solar flare, the initial/background solar wind plasma and magnetic field conditions before the arrival of the CME, the conditions in the sheath of the ICME, the main part of the ICME, the geomagnetic conditions of the ICME's impact at Earth and finally we remark on the visual examination for each event. Interesting results revealed from this study include the high correlation coefficient values of the magnetic field Bz component against the Ap index (r = 0.84), as well as against the Dst index (r = 0.80) and of the effective acceleration against the CME linear speed (r = 0.98). We also identify a north-south asymmetry for X-class solar flares and an east-west asymmetry for CMEs associated with strong solar flares (magnitude ≥ M1.0) which finally triggered intense geomagnetic storms (with Ap ≥179). The majority of the geomagnetic storms are determined to be due to the ICME main part and not to the extreme conditions which dominate inside the sheath. For the intense geomagnetic storms the maximum value of the Ap index is observed almost 4 hours before the minimum Dst index. The amount of information makes this new catalog the most comprehensive ICME catalog for Solar Cycle 23.

  6. Solar Wind Sputtering of Lunar Soil Analogs: The Effect of Ionic Charge and Mass

    NASA Technical Reports Server (NTRS)

    Hijazi, H.; Bannister, M. E.; Meyer, F. W.; Rouleau, C. M.; Barghouty, A. F.; Rickman, D. L.; Hijazi, H.

    2014-01-01

    In this contribution we report sput-tering measurements of anorthite, an analog material representative of the lunar highlands, by singly and multicharged ions representative of the solar wind. The ions investigated include protons, as well as singly and multicharged Ar ions (as proxies for the heavier solar wind constituents), in the charge state range +1 to +9, and had a fixed solar-wind-relevant impact velocity of approximately 310 km/s or 500 eV/ amu. The goal of the measurements was to determine the sputtering contribution of the heavy, multicharged minority solar wind constituents in comparison to that due to the dominant H+ fraction.

  7. Probing the cosmic ray mass composition in the knee region through TeV secondary particle fluxes from solar surroundings

    NASA Astrophysics Data System (ADS)

    Banik, Prabir; Bijay, Biplab; Sarkar, Samir K.; Bhadra, Arunava

    2017-03-01

    The possibility of estimating the mass composition of primary cosmic rays above the knee of their energy spectrum through the study of high-energy gamma rays, muons, and neutrinos produced in the interactions of cosmic rays with solar ambient matter and radiation is explored. It is found that the theoretical fluxes of TeV gamma rays, muons, and neutrinos from a region around 15° of the Sun are sensitive to a mass composition of cosmic rays in the PeV energy range. The experimental prospects for the detection of such TeV gamma rays/neutrinos by future experiments are discussed.

  8. Probing Cloud-Driven Variability on Two of the Youngest, Lowest-Mass Brown Dwarfs in the Solar Neighborhood

    NASA Astrophysics Data System (ADS)

    Schneider, Adam; Cushing, Michael; Kirkpatrick, J. Davy

    2016-08-01

    Young, late-type brown dwarfs share many properties with directly imaged giant extrasolar planets. They therefore provide unique testbeds for investigating the physical conditions present in this critical temperature and mass regime. WISEA 1147-2040 and 2MASS 1119-1137, two recently discovered late-type (~L7) brown dwarfs, have both been determined to be members of the ~10 Myr old TW Hya Association (Kellogg et al. 2016, Schneider et al. 2016). Each has an estimated mass of 5-6 MJup, making them two of the youngest and lowest-mass free floating objects yet found in the solar neighborhood. As such, these two planetary mass objects provide unparalleled laboratories for investigating giant planet-like atmospheres far from the contaminating starlight of a host sun. Condensate clouds play a critical role in shaping the emergent spectra of both brown dwarfs and gas giant planets, and can cause photometric variability via their non-uniform spatial distribution. We propose to photometrically monitor WISEA 1147-2040 and 2MASS 1119-1137 in order to search for the presence of cloud-driven variability to 1) investigate the potential trend of low surface gravity with high-amplitude variability in a previously unexplored mass regime and 2) explore the angular momentum evolution of isolated planetary mass objects.

  9. Are the Faint Structures Ahead of Solar Coronal Mass Ejections Real Signatures of Driven Shocks?

    NASA Astrophysics Data System (ADS)

    Lee, Jae-Ok; Moon, Y.-J.; Lee, Jin-Yi; Lee, Kyoung-Sun; Kim, Sujin; Lee, Kangjin

    2014-11-01

    Recently, several studies have assumed that the faint structures ahead of coronal mass ejections (CMEs) are caused by CME-driven shocks. In this study, we have conducted a statistical investigation to determine whether or not the appearance of such faint structures depends on CME speeds. For this purpose, we use 127 Solar and Heliospheric Observatory/Large Angle Spectroscopic COronagraph (LASCO) front-side halo (partial and full) CMEs near the limb from 1997 to 2011. We classify these CMEs into two groups by visual inspection of CMEs in the LASCO-C2 field of view: Group 1 has the faint structure ahead of a CME and Group 2 does not have such a structure. We find the following results. (1) Eighty-seven CMEs belong to Group 1 and 40 CMEs belong to Group 2. (2) Group 1 events have much higher speeds (average = 1230 km s-1 and median = 1199 km s-1) than Group 2 events (average = 598 km s-1 and median = 518 km s-1). (3) The fraction of CMEs with faint structures strongly depends on CME speeds (V): 0.93 (50/54) for fast CMEs with V >= 1000 km s-1, 0.65 (34/52) for intermediate CMEs with 500 km s-1 <= V < 1000 km s-1, and 0.14 (3/21) for slow CMEs with V < 500 km s-1. We also find that the fraction of CMEs with deca-hecto metric type II radio bursts is consistent with the above tendency. Our results indicate that the observed faint structures ahead of fast CMEs are most likely an enhanced density manifestation of CME-driven shocks.

  10. ARE THE FAINT STRUCTURES AHEAD OF SOLAR CORONAL MASS EJECTIONS REAL SIGNATURES OF DRIVEN SHOCKS?

    SciTech Connect

    Lee, Jae-Ok; Moon, Y.-J.; Lee, Kangjin; Lee, Jin-Yi; Lee, Kyoung-Sun; Kim, Sujin E-mail: moonyj@khu.ac.kr

    2014-11-20

    Recently, several studies have assumed that the faint structures ahead of coronal mass ejections (CMEs) are caused by CME-driven shocks. In this study, we have conducted a statistical investigation to determine whether or not the appearance of such faint structures depends on CME speeds. For this purpose, we use 127 Solar and Heliospheric Observatory/Large Angle Spectroscopic COronagraph (LASCO) front-side halo (partial and full) CMEs near the limb from 1997 to 2011. We classify these CMEs into two groups by visual inspection of CMEs in the LASCO-C2 field of view: Group 1 has the faint structure ahead of a CME and Group 2 does not have such a structure. We find the following results. (1) Eighty-seven CMEs belong to Group 1 and 40 CMEs belong to Group 2. (2) Group 1 events have much higher speeds (average = 1230 km s{sup –1} and median = 1199 km s{sup –1}) than Group 2 events (average = 598 km s{sup –1} and median = 518 km s{sup –1}). (3) The fraction of CMEs with faint structures strongly depends on CME speeds (V): 0.93 (50/54) for fast CMEs with V ≥ 1000 km s{sup –1}, 0.65 (34/52) for intermediate CMEs with 500 km s{sup –1} ≤ V < 1000 km s{sup –1}, and 0.14 (3/21) for slow CMEs with V < 500 km s{sup –1}. We also find that the fraction of CMEs with deca-hecto metric type II radio bursts is consistent with the above tendency. Our results indicate that the observed faint structures ahead of fast CMEs are most likely an enhanced density manifestation of CME-driven shocks.

  11. Signatures Of A Putative Planetary Mass Solar Companion On The Orbital Distribution Of Tno's And Centaurs

    NASA Astrophysics Data System (ADS)

    Gomes, Rodney S.; Soares, J. S.

    2012-05-01

    Gomes et al. 2006 (Icarus 184, 589) show that a planetary mass solar companion (PMSC) can produce orbits in an inner Oort cloud that can account for Sedna's orbit. On the other hand, one should expect that this faraway planet would also produce some peculiar orbital distribution for distant TNO's and Centaurs. A pair of interesting orbits in this respect are those of 2006 SQ372 and 2000 OO67. These objects have very large semimajor axes and perihelion between Uranus and Neptune orbits. It has been claimed that a likely source for 2006 SQ372 is the Oort cloud. Yet a PMSC has an important effect on objects at inner Oort cloud distances, say between 300 AU and 2000 AU, to make their perihelion distances to continually oscillate with a large enough amplitude to account for objects both inside and outside Neptune's orbit. This naturally produces an extra amount of TNO's with semimajor axes between 300 and 2000 AU and perihelion inside Neptune's orbit, like 2006 SQ372 and 2000 OO67. This signature should be found in present observations. To deal with this problem we construct a numerical simulator and apply it to populations of distant TNO's produced by numerical integration of planetesimals and planets according to the Nice model, either including or not a PMSC. With the results from the numerical simulator we compare the model with and without the PMSC with observations. We conclude that a PMSC is compatible with the existence of 2006 SQ372 and 2000 OO67 and, in fact, although not conclusively, we can also claim that the observations of 2006 SQ372 and 2000 OO67, compared to all other scattered objects, would be lucky events if no PMSC exists.

  12. PLASMA HEATING DURING A CORONAL MASS EJECTION OBSERVED BY THE SOLAR AND HELIOSPHERIC OBSERVATORY

    SciTech Connect

    Murphy, N. A.; Raymond, J. C.; Korreck, K. E.

    2011-07-01

    We perform a time-dependent ionization analysis to constrain plasma heating requirements during a fast partial halo coronal mass ejection (CME) observed on 2000 June 28 by the Ultraviolet Coronagraph Spectrometer (UVCS) aboard the Solar and Heliospheric Observatory (SOHO). We use two methods to derive densities from the UVCS measurements, including a density sensitive O V line ratio at 1213.85 and 1218.35 A, and radiative pumping of the O VI {lambda}{lambda}1032, 1038 doublet by chromospheric emission lines. The most strongly constrained feature shows cumulative plasma heating comparable to or greater than the kinetic energy, while features observed earlier during the event show plasma heating of order or less than the kinetic energy. SOHO Michelson Doppler Imager observations are used to estimate the active region magnetic energy. We consider candidate plasma heating mechanisms and provide constraints when possible. Because this CME was associated with a relatively weak flare, the contribution from flare energy (e.g., through thermal conduction or energetic particles) is probably small; however, the flare may have been partially behind the limb. Wave heating by photospheric motions requires heating rates to be significantly larger than those previously inferred for coronal holes, but the eruption itself could drive waves that heat the plasma. Heating by small-scale reconnection in the flux rope or by the CME current sheet is not significantly constrained. UVCS line widths suggest that turbulence must be replenished continually and dissipated on timescales shorter than the propagation time in order to be an intermediate step in CME heating.

  13. ASYMMETRIC MAGNETIC RECONNECTION IN SOLAR FLARE AND CORONAL MASS EJECTION CURRENT SHEETS

    SciTech Connect

    Murphy, N. A.; Miralles, M. P.; Pope, C. L.; Raymond, J. C.; Winter, H. D.; Reeves, K. K.; Van Ballegooijen, A. A.; Lin, J.; Seaton, D. B.

    2012-05-20

    We present two-dimensional resistive magnetohydrodynamic simulations of line-tied asymmetric magnetic reconnection in the context of solar flare and coronal mass ejection current sheets. The reconnection process is made asymmetric along the inflow direction by allowing the initial upstream magnetic field strengths and densities to differ, and along the outflow direction by placing the initial perturbation near a conducting wall boundary that represents the photosphere. When the upstream magnetic fields are asymmetric, the post-flare loop structure is distorted into a characteristic skewed candle flame shape. The simulations can thus be used to provide constraints on the reconnection asymmetry in post-flare loops. More hard X-ray emission is expected to occur at the footpoint on the weak magnetic field side because energetic particles are more likely to escape the magnetic mirror there than at the strong magnetic field footpoint. The footpoint on the weak magnetic field side is predicted to move more quickly because of the requirement in two dimensions that equal amounts of flux must be reconnected from each upstream region. The X-line drifts away from the conducting wall in all simulations with asymmetric outflow and into the strong magnetic field region during most of the simulations with asymmetric inflow. There is net plasma flow across the X-line for both the inflow and outflow directions. The reconnection exhaust directed away from the obstructing wall is significantly faster than the exhaust directed toward it. The asymmetric inflow condition allows net vorticity in the rising outflow plasmoid which would appear as rolling motions about the flux rope axis.

  14. Catalyzing Mass Production of Solar Photovoltaic Cells Using University Driven Green Purchasing

    ERIC Educational Resources Information Center

    Pearce, Joshua M.

    2006-01-01

    Purpose: The purpose of this paper is to explore the use of the purchase power of the higher education system to catalyze the economy of scale necessary to ensure market competitiveness for solar photovoltaic electricity. Design/methodology/approach: The approach used here was to first determine the demand necessary to construct "Solar City…

  15. Study of Relationship Between Coronal Mass Ejections and the Electron Component of Solar Energetic Particles

    DTIC Science & Technology

    1995-01-01

    distance to another one it’s necessary to employ some model notions. We used ideas of elementary diffusion model (for example, [Lin et al,1982]) and took...Solar Physics (Moscow, Dec. 6-8, 1995). Detailled paper for ", Astrophisical Journal" or "Solar Physics", is on preparation now. Acknowledgements. 19 We

  16. International Classification of Diseases 10th edition-based disability adjusted life years for measuring of burden of specific injury

    PubMed Central

    Kim, Yu Jin; Shin, Sang Do; Park, Hye Sook; Song, Kyoung Jun; Cho, Jin Sung; Lee, Seung Chul; Kim, Sung Chun; Park, Ju Ok; Ahn, Ki Ok; Park, Yu Mi

    2016-01-01

    Objective We aimed to develop an International Classification of Diseases (ICD) 10th edition injury code-based disability-adjusted life year (DALY) to measure the burden of specific injuries. Methods Three independent panels used novel methods to score disability weights (DWs) of 130 indicator codes sampled from 1,284 ICD injury codes. The DWs were interpolated into the remaining injury codes (n=1,154) to estimate DWs for all ICD injury codes. The reliability of the estimated DWs was evaluated using the test-retest method. We calculated ICD-DALYs for individual injury episodes using the DWs from the Korean National Hospital Discharge Injury Survey (HDIS, n=23,160 of 2004) database and compared them with DALY based on a global burden of disease study (GBD-DALY) regarding validation, correlation, and agreement for 32 injury categories. Results Using 130 ICD 10th edition injury indicator codes, three panels determined the DWs using the highest reliability (person trade-off 1, Spearman r=0.724, 0.788, and 0.875 for the three panel groups). The test-retest results for the reliability were excellent (Spearman r=0.932) (P<0.001). The HDIS database revealed injury burden (years) as follows: GBD-DALY (138,548), GBD-years of life disabled (130,481), and GBD-years of life lost (8,117) versus ICD-DALY (262,246), ICD-years of life disabled (255,710), and ICD-years of life lost (6,537), respectively. Spearman’s correlation coefficient of the DALYs between the two methods was 0.759 (P<0.001), and the Bland-Altman test displayed an acceptable agreement, with exception of two categories among 32 injury groups. Conclusion The ICD-DALY was developed to calculate the burden of injury for all injury codes and was validated with the GBD-DALY. The ICD-DALY was higher than the GBD-DALY but showed acceptable agreement. PMID:28168229

  17. The Solar Twin Planet Search. V. Close-in, low-mass planet candidates and evidence of planet accretion in the solar twin HIP 68468

    NASA Astrophysics Data System (ADS)

    Meléndez, Jorge; Bedell, Megan; Bean, Jacob L.; Ramírez, Iván; Asplund, Martin; Dreizler, Stefan; Yan, Hong-Liang; Shi, Jian-Rong; Lind, Karin; Ferraz-Mello, Sylvio; Galarza, Jhon Yana; dos Santos, Leonardo; Spina, Lorenzo; Maia, Marcelo Tucci; Alves-Brito, Alan; Monroe, TalaWanda; Casagrande, Luca

    2017-01-01

    Context. More than two thousand exoplanets have been discovered to date. Of these, only a small fraction have been detected around solar twins, which are key stars because we can obtain accurate elemental abundances especially for them, which is crucial for studying the planet-star chemical connection with the highest precision. Aims: We aim to use solar twins to characterise the relationship between planet architecture and stellar chemical composition. Methods: We obtained high-precision (1 m s-1) radial velocities with the HARPS spectrograph on the ESO 3.6 m telescope at La Silla Observatory and determined precise stellar elemental abundances ( 0.01 dex) using spectra obtained with the MIKE spectrograph on the Magellan 6.5 m telescope. Results: Our data indicate the presence of a planet with a minimum mass of 26 ± 4 Earth masses around the solar twin HIP 68468. The planet is more massive than Neptune (17 Earth masses), but unlike the distant Neptune in our solar system (30 AU), HIP 68468c is close-in, with a semi-major axis of 0.66 AU, similar to that of Venus. The data also suggest the presence of a super-Earth with a minimum mass of 2.9 ± 0.8 Earth masses at 0.03 AU; if the planet is confirmed, it will be the fifth least massive radial velocity planet candidate discovery to date and the first super-Earth around a solar twin. Both isochrones (5.9 ± 0.4 Gyr) and the abundance ratio [Y/Mg] (6.4 ± 0.8 Gyr) indicate an age of about 6 billion years. The star is enhanced in refractory elements when compared to the Sun, and the refractory enrichment is even stronger after corrections for Galactic chemical evolution. We determined a nonlocal thermodynamic equilibrium Li abundance of 1.52 ± 0.03 dex, which is four times higher than what would be expected for the age of HIP 68468. The older age is also supported by the low log () (-5.05) and low jitter (<1 m s-1). Engulfment of a rocky planet of 6 Earth masses can explain the enhancement in both lithium and the

  18. Systems efficiency and specific mass estimates for direct and indirect solar-pumped closed-cycle high-energy lasers in space

    NASA Technical Reports Server (NTRS)

    Monson, D. J.

    1978-01-01

    Based on expected advances in technology, the maximum system efficiency and minimum specific mass have been calculated for closed-cycle CO and CO2 electric-discharge lasers (EDL's) and a direct solar-pumped laser in space. The efficiency calculations take into account losses from excitation gas heating, ducting frictional and turning losses, and the compressor efficiency. The mass calculations include the power source, radiator, compressor, fluids, ducting, laser channel, optics, and heat exchanger for all of the systems; and in addition the power conditioner for the EDL's and a focusing mirror for the solar-pumped laser. The results show the major component masses in each system, show which is the lightest system, and provide the necessary criteria for solar-pumped lasers to be lighter than the EDL's. Finally, the masses are compared with results from other studies for a closed-cycle CO2 gasdynamic laser (GDL) and the proposed microwave satellite solar power station (SSPS).

  19. Isotopic mass fractionation laws for magnesium and their effects on 26Al-26Mg systematics in solar system materials

    NASA Astrophysics Data System (ADS)

    Davis, Andrew M.; Richter, Frank M.; Mendybaev, Ruslan A.; Janney, Philip E.; Wadhwa, Meenakshi; McKeegan, Kevin D.

    2015-06-01

    Magnesium isotope ratios are known to vary in solar system objects due to the effects of 26Al decay to 26Mg and mass-dependent fractionation, but anomalies of nucleosynthetic origin must also be considered. In order to infer the amount of enhancement of 26Mg/24Mg due to 26Al decay or to resolve small nucleogenetic anomalies, the exact relationship between 26Mg/24Mg and 25Mg/24Mg ratios due to mass-dependent fractionation, the mass-fractionation "law", must be accurately known so that the 25Mg/24Mg ratio can be used to correct the 26Mg/24Mg ratio for mass fractionation. Mass-dependent fractionation in mass spectrometers is reasonably well characterized, but not necessarily fully understood. It follows a simple power fractionation law, sometimes referred to as the "exponential law". In contrast, mass fractionation in nature, in particular that due to high temperature evaporation that likely caused the relatively large effects observed in calcium-, aluminum-rich inclusions (CAIs), is reasonably well understood, but mass-fractionation laws for magnesium have not been explored in detail. The magnesium isotopic compositions of CAI-like evaporation residues produced in a vacuum furnace indicate that the slope on a log 25Mg/24Mg vs. log 26Mg/24Mg plot is ∼0.5128, and different from those predicted by any of the commonly used mass-fractionation laws. Evaporation experiments on forsterite-rich bulk compositions give exactly the same slope, indicating that the measured mass-fractionation law for evaporation of magnesium is applicable to a wide range of bulk compositions. We discuss mass-fractionation laws and the implications of the measured fractionation behavior of magnesium isotopes for 26Al-26Mg chronology.

  20. Energy efficiency and comfort conditions in passive solar buildings: Effect of thermal mass at equatorial high altitudes

    NASA Astrophysics Data System (ADS)

    Ogoli, David Mwale

    This dissertation is based on the philosophy that architectural design should not just be a function of aesthetics, but also of energy-efficiency, advanced technologies and passive solar strategies. A lot of published literature is silent regarding buildings in equatorial highland regions. This dissertation is part of the body of knowledge that attempts to provide a study of energy in buildings using thermal mass. The objectives were to establish (1) effect of equatorial high-altitude climate on thermal mass, (2) effect of thermal mass on moderating indoor temperatures, (3) effect of thermal mass in reducing heating and cooling energy, and (4) the amount of time lag and decrement factor of thermal mass. Evidence to analyze the effect of thermal mass issues came from three sources. First, experimental physical models involving four houses were parametrically conducted in Nairobi, Kenya. Second, energy computations were made using variations in thermal mass for determining annual energy usage and costs. Third, the data gathered were observed, evaluated, and compared with currently published research. The findings showed that: (1) Equatorial high-altitude climates that have diurnal temperature ranging about 10--15°C allow thermal mass to moderate indoor temperatures; (2) Several equations were established that indicate that indoor mean radiant temperatures can be predicted from outdoor temperatures; (3) Thermal mass can reduce annual energy for heating and cooling by about 71%; (4) Time lag and decrement of 200mm thick stone and concrete thermal mass can be predicted by a new formula; (5) All windows on a building should be shaded. East and west windows when shaded save 51% of the cooling energy. North and south windows when fully shaded account for a further 26% of the cooling energy; (6) Insulation on the outside of a wall reduces energy use by about 19.6% below the levels with insulation on the inside. The basic premise of this dissertation is that decisions that

  1. The impact of helium on thermosphere mass density response to geomagnetic activity during the recent solar minimum

    NASA Astrophysics Data System (ADS)

    Thayer, J. P.; Liu, X.; Lei, J.; Pilinski, M.; Burns, A. G.

    2012-07-01

    High-resolution mass density observations inferred from accelerometer measurements on the CHAMP and GRACE satellites are employed to investigate the thermosphere mass density response with latitude and altitude to geomagnetic activity during the recent solar minimum. Coplanar orbital periods in February 2007 and December 2008 revealed the altitude and latitude response in thermosphere mass density for their respective winter hemispheres was influenced by the relative amount of helium and oxygen present. The CHAMP-to-GRACE (C/G) mass density ratio depends on two terms; the first proportional to the ratio of the mean molecular weight to temperature and the second proportional to the vertical gradient of the logarithmic mean molecular weight. For the relative levels of helium and oxygen in February 2007, the winter hemisphere C/G mass density response to geomagnetic activity, although similar to the summer hemisphere, was caused predominantly by changes in the vertical gradient of the logarithmic mean molecular weight. In December 2008, the significant presence of helium caused the mean molecular weight changes to exceed temperature changes in the winter hemisphere leading to an increase in the C/G ratio with increasing geomagnetic activity, in opposition to the decrease observed in the summer hemisphere that was caused primarily by temperature changes. The observed behavior is indicative of composition effects influencing the mass density response and the dynamic action of the oxygen to helium transition region in both latitude and altitude will lead to complex behaviors in the mass density at GRACE altitudes throughout the extended solar minimum from 2007 to 2010.

  2. The 10th anniversary of the Junior Members and Affiliates of the European Academy of Allergy and Clinical Immunology.

    PubMed

    Skevaki, Chrysanthi L; Maggina, Paraskevi; Santos, Alexandra F; Rodrigues-Alves, Rodrigo; Antolin-Amerigo, Dario; Borrego, Luis Miguel; Bretschneider, Isabell; Butiene, Indre; Couto, Mariana; Fassio, Filippo; Gardner, James; Xatzipsalti, Maria; Hovhannisyan, Lilit; Hox, Valerie; Makrinioti, Heidi; O Neil, Serena E; Pala, Gianni; Rudenko, Michael; Santucci, Annalisa; Seys, Sven; Sokolowska, Milena; Whitaker, Paul; Heffler, Enrico

    2011-12-01

    This year is the 10th anniversary of the European Academy of Allergy and Clinical Immunology (EAACI) Junior Members and Affiliates (JMAs). The aim of this review is to highlight the work and activities of EAACI JMAs. To this end, we have summarized all the initiatives taken by JMAs during the last 10 yr. EAACI JMAs are currently a group of over 2380 clinicians and scientists under the age of 35 yr, who support the continuous education of the Academy's younger members. For the past decade, JMAs enjoy a steadily increasing number of benefits such as free online access to the Academy's journals, the possibility to apply for Fellowships and the Mentorship Program, travel grants to attend scientific meetings, and many more. In addition, JMAs have been involved in task forces, cooperation schemes with other scientific bodies, organization of JMA focused sessions during EAACI meetings, and participation in the activities of EAACI communication platforms. EAACI JMA activities represent an ideal example of recruiting, training, and educating young scientists in order for them to thrive as future experts in their field. This model may serve as a prototype for other scientific communities, several of which have already adapted similar policies.

  3. XAFS study of copper and silver nanoparticles in glazes of medieval middle-east lustreware (10th-13th century)

    NASA Astrophysics Data System (ADS)

    Padovani, S.; Puzzovio, D.; Sada, C.; Mazzoldi, P.; Borgia, I.; Sgamellotti, A.; Brunetti, B. G.; Cartechini, L.; D'Acapito, F.; Maurizio, C.; Shokoui, F.; Oliaiy, P.; Rahighi, J.; Lamehi-Rachti, M.; Pantos, E.

    2006-06-01

    It has recently been shown that lustre decoration of medieval and Renaissance pottery consists of silver and copper nanoparticles dispersed in the glassy matrix of the ceramic glaze. Here the findings of an X-ray absorption fine structure (XAFS) study on lustred glazes of shards belonging to 10th and 13rd century pottery from the National Museum of Iran are reported. Absorption spectra in the visible range have been also measured in order to investigate the relations between colour and glaze composition. Gold colour is mainly due to Ag nanoparticles, though Ag+, Cu+ and Cu2+ ions can be also dispersed within the glassy matrix, with different ratios. Red colour is mainly due to Cu nanoparticles, although some Ag nanoparticles, Ag+ and Cu+ ions can be present. The achievement of metallic Cu and the absence of Cu2+ indicate a higher reduction of copper in red lustre. These findings are in substantial agreement with previous results on Italian Renaissance pottery. In spite of the large heterogeneity of cases, the presence of copper and silver ions in the glaze confirms that lustre formation is mediated by a copper- and silver-alkali ion exchange, followed by nucleation and growth of metal nanoparticles.

  4. Energy-drink consumption and its relationship with substance use and sensation seeking among 10th grade students in Istanbul.

    PubMed

    Evren, Cuneyt; Evren, Bilge

    2015-06-01

    Aim of this study was to determine the prevalence and correlates of energy-drink (ED) consumption among 10th grade students in Istanbul/Turkey. Cross-sectional online self-report survey conducted in 45 schools from the 15 districts in Istanbul. The questionnaire included sections about demographic data, self-destructive behavior and use of substances including tobacco, alcohol and drugs. Also Psychological Screening Test for Adolescents (PSTA) was used. The analyses were conducted based on the 4957 subjects. Rate of those reported a ED consumption once within last year was 62.0% (n=3072), whereas rate of those reported ED consumption at least once in a month was 31.1%. There were consistent, statistically significant associations between genders, lifetime substance use (tobacco, alcohol and drug use), measures of sensation seeking, psychological problems (depression, anxiety, anger, impulsivity) and self-destructive behavior (self-harming behavior and suicidal thoughts) with ED consumption. In logistic regression models male gender, sensation seeking, life-time tobacco, alcohol and drug use predicted all frequencies of ED consumption. In addition to these predictors, anger and self-harming behavior also predicted ED consumption at least once in a month. There were no interactions between the associations of lifetime tobacco, alcohol and drug use with ED consumption. The findings suggest that the ED consumption of male students is related with three clusters of substances (tobacco, alcohol and drug) through sensation seeking and these relationships do not interact with each other.

  5. [Thoracopagus symmetricus. On the separation of Siamese twins in the 10th century A. D. by Byzantine physicians].

    PubMed

    Geroulanos, S; Jaggi, F; Wydler, J; Lachat, M; Cakmakci, M

    1993-01-01

    The byzantine author, Leon Diakonos, mentions in 974/975 A.D. a pair of "siamese twins", e.g., a thoracopagus symmetricus. He had seen them personally several times in Asia Minor when they were about 30 years old. This pair is possibly the same that was "successfully" surgically separated after the death of one of the twins in the second half of the 10th century in Constantinople. This operation is mentioned by two historiographs, Leon Grammatikos and Theodoros Daphnopates. Although the second twin survived the operation, he died three days later. In spite of its lethal outcome, the operation left a long-lasting impression on the historians of that time and was even mentioned 150 years later by Johannes Skylitzes. Furthermore, the manuscript of Skylitzes, now in the library of Madrid, contains a miniature illuminating this operation. This is likely to be the earliest written report of a separation of siamese twins illustrating the high standard of byzantine medicine of that time.

  6. Genomic variation in a global village: report of the 10th annual Human Genome Variation Meeting 2008.

    PubMed

    Brookes, Anthony J; Chanock, Stephen J; Hudson, Thomas J; Peltonen, Leena; Abecasis, Gonçalo; Kwok, Pui-Yan; Scherer, Stephen W

    2009-07-01

    The Centre for Applied Genomics of the Hospital for Sick Children and the University of Toronto hosted the 10th Human Genome Variation (HGV) Meeting in Toronto, Canada, in October 2008, welcoming about 240 registrants from 34 countries. During the 3 days of plenary workshops, keynote address, and poster sessions, a strong cross-disciplinary trend was evident, integrating expertise from technology and computation, through biology and medicine, to ethics and law. Single nucleotide polymorphisms (SNPs) as well as the larger copy number variants (CNVs) are recognized by ever-improving array and next-generation sequencing technologies, and the data are being incorporated into studies that are increasingly genome-wide as well as global in scope. A greater challenge is to convert data to information, through databases, and to use the information for greater understanding of human variation. In the wake of publications of the first individual genome sequences, an inaugural public forum provided the opportunity to debate whether we are ready for personalized medicine through direct-to-consumer testing. The HGV meetings foster collaboration, and fruits of the interactions from 2008 are anticipated for the 11th annual meeting in September 2009.

  7. Genomic Variation in a Global Village: Report of the 10th Annual Human Genome Variation Meeting 2008

    PubMed Central

    Brookes, Anthony J.; Chanock, Stephen J.; Hudson, Thomas J.; Peltonen, Leena; Abecasis, Gonçalo; Kwok, Pui-Yan; Scherer, Stephen W.

    2013-01-01

    The Centre for Applied Genomics of the Hospital for Sick Children and the University of Toronto hosted the 10th Human Genome Variation (HGV) Meeting in Toronto, Canada, in October 2008, welcoming about 240 registrants from 34 countries. During the 3 days of plenary workshops, keynote address, and poster sessions, a strong cross-disciplinary trend was evident, integrating expertise from technology and computation, through biology and medicine, to ethics and law. Single nucleotide polymorphisms (SNPs) as well as the larger copy number variants (CNVs) are recognized by ever-improving array and next-generation sequencing technologies, and the data are being incorporated into studies that are increasingly genome-wide as well as global in scope. A greater challenge is to convert data to information, through databases, and to use the information for greater understanding of human variation. In the wake of publications of the first individual genome sequences, an inaugural public forum provided the opportunity to debate whether we are ready for personalized medicine through direct-to-consumer testing. The HGV meetings foster collaboration, and fruits of the interactions from 2008 are anticipated for the 11th annual meeting in September 2009. PMID:19384970

  8. Multi-wavelength fine structure and mass flows in solar microflares

    NASA Astrophysics Data System (ADS)

    Berkebile-Stoiser, S.; Gömöry, P.; Veronig, A. M.; Rybák, J.; Sütterlin, P.

    2009-10-01

    Aims: We study the multi-wavelength characteristics at high spatial resolution, as well as chromospheric evaporation signatures of solar microflares. To this end, we analyze the fine structure and mass flow dynamics in the chromosphere, transition region and corona of three homologous microflares (GOES class solar spectroscopic imager (≳3 keV) was carried out. EUV line spectra provided by the coronal diagnostic spectrometer are searched for Doppler shifts in order to study associated plasma flows at chromospheric (He i, T˜3.9× 104 K), transition region (e.g. O v, T˜ 2.6× 105 K), and coronal temperatures (Si xii, T˜ 2× 106 K). RHESSI X-ray spectra provide information about non-thermal electrons. Results: The multi-wavelength appearance of the microflares is in basic agreement with the characteristics of large flares. For the first event, a complex flare sequence is observed in TRACE 17.1 nm images (T≈ 1 MK), which show several brightenings, narrow loops of enhanced emission, and an EUV jet. EIT 19.5 nm data (T≈ 1.5 MK) exhibit similar features for the third event. DOT measurements show finely structured chromospheric flare brightenings for all three events, loop-shaped fibrils of increased emission between Hα brightenings, as well as a similar feature in Ca ii. For all three events, a RHESSI X-ray source (3-8 keV, T ≳ 10 MK) is located in between two chromospheric brightenings situated in magnetic flux of opposite polarity. We find the flow dynamics associated with the events to be very complex. In the chromosphere and transition region, CDS observed downflows for the first (v ≲ 40 km s-1), and

  9. Optimization of solar cells for air mass zero operation and study of solar cells at high temperatures, phase 4

    NASA Technical Reports Server (NTRS)

    Hovel, H. J.; Woodall, J. M.

    1980-01-01

    The Pd contact to GaAs was studied using backscattering, Auger analysis, and sheet resistance measurements. Several metallurgical phases were present at low temperatures, but PdGa was the dominant phase in samples annealed at 500 C. Ti/Pd/Ag contacts appeared to have the lowest contact resistance. Etchback epitaxy (EBE) was compared to saturated melt epitaxy (SME) method of growing liquid phase epitaxial layers. The SME method resulted in a lower density of Ga microdroplets in the grown layer, although the best solar cells were made by the EBE method. Photoluminescence was developed as a tool for contactless analysis of GaAs cells. Efficiencies of over 8 percent were measured at 250 C.

  10. Near-Earth Interplanetary Coronal Mass Ejections During Solar Cycle 23 (1996 - 2009): Catalog and Summary of Properties

    NASA Technical Reports Server (NTRS)

    Richardson, I. G.; Cane, H. V.

    2010-01-01

    In a previous study (Cane and Richardson, J. Geophys. Res. l08(A4), SSH6-1, we investigated the occurrence of interplanetary coronal mass ejections in the near-Earth solar wind during 1996 - 2002, corresponding to the increasing and maximum phases of solar cycle 23, and provided a "comprehensive" catalog of these events. In this paper, we present a revised and updated catalog of the approx. =300 near-Earth ICMEs in 1996-2009, encompassing the complete cycle 23, and summarize their basic properties and geomagnetic effects. In particular, solar wind .. composition and charge state observations are now considered when identifying the ICMEs. In general, these additional data confirm the earlier identifications based predominantly on other solar wind plasma and magnetic field parameters. However, the boundaries of ICME-like plasma based on charge state/composition data may deviate significantly from those based on conventional plasma/magnetic field parameters. Furthermore, the much studied "magnetic clouds", with flux-rope-like magnetic field configurations, may form just a substructure of the total ICME interval.

  11. Height of Shock Formation in the Solar Corona Inferred from Observations of Type II Radio Bursts and Coronal Mass Ejections

    NASA Technical Reports Server (NTRS)

    Gopalswamy, N.; Xie, H.; Makela, P.; Yashiro, S.; Akiyama, S.; Uddin, W.; Srivastava, A. K.; Joshi, N. C.; Chandra, R.; Manoharan, P. K.

    2013-01-01

    Employing coronagraphic and EUV observations close to the solar surface made by the Solar Terrestrial Relations Observatory (STEREO) mission, we determined the heliocentric distance of coronal mass ejections (CMEs) at the starting time of associated metric type II bursts. We used the wave diameter and leading edge methods and measured the CME heights for a set of 32 metric type II bursts from solar cycle 24. We minimized the projection effects by making the measurements from a view that is roughly orthogonal to the direction of the ejection. We also chose image frames close to the onset times of the type II bursts, so no extrapolation was necessary. We found that the CMEs were located in the heliocentric distance range from 1.20 to 1.93 solar radii (Rs), with mean and median values of 1.43 and 1.38 Rs, respectively. We conclusively find that the shock formation can occur at heights substantially below 1.5 Rs. In a few cases, the CME height at type II onset was close to 2 Rs. In these cases, the starting frequency of the type II bursts was very low, in the range 25-40 MHz, which confirms that the shock can also form at larger heights. The starting frequencies of metric type II bursts have a weak correlation with the measured CME/shock heights and are consistent with the rapid decline of density with height in the inner corona.

  12. Characterization of thin film tandem solar cells by radiofrequency pulsed glow discharge - Time of flight mass spectrometry.

    PubMed

    Fernandez, Beatriz; Lobo, Lara; Reininghaus, Nies; Pereiro, Rosario; Sanz-Medel, Alfredo

    2017-04-01

    Beside low production costs and the use of nontoxic and abundant raw materials, silicon based thin-film solar cells have the advantage to be built up as multi junction devices like tandem or triple junction solar cells. Silicon thin film modules made of tandem cells with hydrogenated amorphous silicon (a-Si:H) top cell and microcrystalline (μc) Si:H bottom cell are available on the market. In this work, the analytical potential of state-of-the art radiofrequency (rf) pulsed glow discharge (PGD) time of flight mass spectrometry (TOFMS) commercial instrumentation is investigated for depth profiling analysis of tandem-junctions solar cells on 2mm thick glass substrate with 1µm thick ZnO:Al. Depth profile characterization of two thin film tandem photovoltaic devices was compared using millisecond and sub-millisecond rf-PGD regimes, as well as the so-called "low mass mode" available in the commercial instrument used. Two procedures for sample preparation, namely using flat or rough cell substrates, were compared and the distribution of dopant elements (phosphorous, boron and germanium) was investigated in both cases. Experimental results obtained by rf-PGD-TOFMS as well as electrical measurements of the samples showed that a worse depth resolution of dopant elements in the silicon layers (e.g. distribution of boron in a thicker region that suggests a diffusion of this dopant in the coating of the sample) found using a rough sample substrate was related to a higher power conversion efficiency.

  13. Gravitational lensing of supernovae by dark matter candidates of mass M greater than about 0.001 solar masses

    NASA Technical Reports Server (NTRS)

    Wagoner, Robert V.; Linder, Eric V.

    1987-01-01

    A review is presented concerning the gravitational lensing of supernovae by intervening condensed objects, including dark matter candidates such as dim stars and black holes. the expansion of the supernova beam within the lens produces characteristic time-dependent amplification and polarization which depend upon the mass of the lens. The effects of the shearing of the beam due to surrounding masses are considered, although the study of these effects is confined to isolated masses whose size is much less than that of the supernova (about 10 to the 15th cm). Equations for the effects of lensing and graphs comparing these effects in different classes of supernovae are compared. It is found that candidates for lensing would be those supernovae at least as bright as their parent galaxy, or above the range of luminosities expected for their spectral class.

  14. Carpenter, tractors and microbes for the development of logical-mathematical thinking - the way 10th graders and pre-service teachers solve thinking challenges

    NASA Astrophysics Data System (ADS)

    Gazit, Avikam

    2012-12-01

    The objective of this case study was to investigate the ability of 10th graders and pre-service teachers to solve logical-mathematical thinking challenges. The challenges do not require mathematical knowledge beyond that of primary school but rather an informed use of the problem representation. The percentage of correct answers given by the 10th graders was higher than that of the pre-service teachers. Unlike the 10th graders, some of whom used various strategies for representing the problem, most of the pre-service teachers' answers were based on a technical algorithm, without using control processes. The obvious conclusion drawn from the findings supports and recommends expanding and enhancing the development of logical-mathematical thinking, both in specific lessons and as an integral part of other lessons in pre-service frameworks.

  15. EPA Enforcement Ensures that Solar Company Follows Stormwater Discharge Requirements at Warren, Mass. Facility

    EPA Pesticide Factsheets

    A settlement signed recently by a company that builds solar power facilities in Massachusetts will remind construction companies that the US Environmental Protection Agency continues to protect the environment from illegal discharges of sto

  16. Fluid Aspects of Solar Wind Disturbances Driven by Coronal Mass Ejections. Appendix 3

    NASA Technical Reports Server (NTRS)

    Gosling, J. T.; Riley, Pete

    2001-01-01

    Transient disturbances in the solar wind initiated by coronal eruptions have been modeled for many years, beginning with the self-similar analytical models of Parker and Simon and Axford. The first numerical computer code (one-dimensional, gas dynamic) to study disturbance propagation in the solar wind was developed in the late 1960s, and a variety of other codes ranging from simple one-dimensional gas dynamic codes through three-dimensional gas dynamic and magnetohydrodynamic codes have been developed in subsequent years. For the most part, these codes have been applied to the problem of disturbances driven by fast CMEs propagating into a structureless solar wind. Pizzo provided an excellent summary of the level of understanding achieved from such simulation studies through about 1984, and other reviews have subsequently become available. More recently, some attention has been focused on disturbances generated by slow CMEs, on disturbances driven by CMEs having high internal pressures, and disturbance propagation effects associated with a structured ambient solar wind. Our purpose here is to provide a brief tutorial on fluid aspects of solar wind disturbances derived from numerical gas dynamic simulations. For the most part we illustrate disturbance evolution by propagating idealized perturbations, mimicking different types of CMEs, into a structureless solar wind using a simple one-dimensional, adiabatic (except at shocks), gas dynamic code. The simulations begin outside the critical point where the solar wind becomes supersonic and thus do not address questions of how the CMEs themselves are initiated. Limited to one dimension (the radial direction), the simulation code predicts too strong an interaction between newly ejected solar material and the ambient wind because it neglects azimuthal and meridional motions of the plasma that help relieve pressure stresses. Moreover, the code ignores magnetic forces and thus also underestimates the speed with which

  17. Interactions of Dust Grains with Coronal Mass Ejections and Solar Cycle Variations of the F-Coronal Brightness

    NASA Astrophysics Data System (ADS)

    Ragot, B. R.; Kahler, S. W.

    2003-09-01

    The density of interplanetary dust increases sunward to reach its maximum in the F corona, where its scattered white-light emission dominates that of the electron K corona above about 3 Rsolar. The dust will interact with both the particles and fields of antisunward propagating coronal mass ejections (CMEs). To understand the effects of the CME/dust interactions we consider the dominant forces, with and without CMEs, acting on the dust in the 3-5 Rsolar region. Dust grain orbits are then computed to compare the drift rates from 5 to 3 Rsolar for periods of minimum and maximum solar activity, where a simple CME model is adopted to distinguish between the two periods. The ion-drag force, even in the quiet solar wind, reduces the drift time by a significant factor from its value estimated with the Poynting-Robertson drag force alone. The ion-drag effects of CMEs result in even shorter drift times of the large (>~3 μm) dust grains, hence faster depletion rates and lower dust-grain densities, at solar maxima. If dominated by thermal emission, the near-infrared brightness will thus display solar cycle variations close to the dust plane of symmetry. While trapping the smallest of the grains, the CME magnetic fields also scatter the grains of intermediate size (0.1-3 μm) in latitude. If light scattering by small grains close to the Sun dominates the optical brightness, the scattering by the CME magnetic fields will result in a solar cycle variation of the optical brightness distribution not exceeding 10% at high latitudes, with a higher isotropy reached at solar maxima. A good degree of latitudinal isotropy is already reached at low solar activity since the magnetic fields of the quiet solar wind so close to the Sun are able to scatter the small (<~3 μm) grains up to the polar regions in only a few days or less, producing strong perturbations of their trajectories in less than half their orbital periods. Finally, we consider possible observable consequences of

  18. Solar and interplanetary activities of isolated and non-isolated coronal mass ejections

    NASA Astrophysics Data System (ADS)

    Bendict Lawrance, M.; Shanmugaraju, A.; Moon, Y.-J.; Umapathy, S.

    2017-02-01

    We report our results on comparison of two halo Coronal Mass Ejections (CME) associated with X-class flares of similar strength (X1.4) but quite different in CME speed and acceleration, similar geo-effectiveness but quite different in Solar Energetic Particle (SEP) intensity. CME1 (non-isolated) was associated with a double event in X-ray flare and it was preceded by another fast halo CME of speed = 2684 km/s (pre-CME) associated with X-ray flare class X5.4 by 1 h from the same location. Since this pre-CME was more eastern, interaction with CME1 and hitting the earth were not possible. This event (CME1) has not suffered the cannibalism since pre-CME has faster speed than post-CME. Pre-CME plays a very important role in increasing the intensity of SEP and Forbush Decrease (FD) by providing energetic seed particles. So, the seed population is the major difference between these two selected events. CME2 (isolated) was a single event. We would like to address on the kinds of physical conditions related to such CMEs and their associated activities. Their associated activities such as, type II bursts, SEP, geomagnetic storm and FD are compared. The following results are obtained from the analysis. (1) The CME leading edge height at the start of metric/DH type II bursts are 2 R⊙/ 4 R⊙ for CME1, but 2 R⊙/ 2.75 R⊙ for CME2. (2) Peak intensity of SEP event associated with the two CMEs are quite different: 6530 pfu for CME1, but 96 pfu for CME2. (3) The Forbush decrease occurred with a minimum decrease of 9.98% in magnitude for CME1, but 6.90% for CME2. (4) These two events produced similar intense geomagnetic storms of intensity of Dst index -130 nT. (5) The maximum southward magnetic fields corresponding to Interplanetary CME (ICME) of these two events are nearly the same, but there is difference in Sheath Bz maximum (-14.2, -6.9 nT). (6) The time-line chart of the associated activities of two CMEs show some difference in the time delay between the onsets of

  19. A solar type II radio burst from coronal mass ejection-coronal ray interaction: Simultaneous radio and extreme ultraviolet imaging

    SciTech Connect

    Chen, Yao; Du, Guohui; Feng, Shiwei; Kong, Xiangliang; Wang, Bing; Feng, Li; Guo, Fan; Li, Gang

    2014-05-20

    Simultaneous radio and extreme ultraviolet (EUV)/white-light imaging data are examined for a solar type II radio burst occurring on 2010 March 18 to deduce its source location. Using a bow-shock model, we reconstruct the three-dimensional EUV wave front (presumably the type-II-emitting shock) based on the imaging data of the two Solar TErrestrial RElations Observatory spacecraft. It is then combined with the Nançay radio imaging data to infer the three-dimensional position of the type II source. It is found that the type II source coincides with the interface between the coronal mass ejection (CME) EUV wave front and a nearby coronal ray structure, providing evidence that the type II emission is physically related to the CME-ray interaction. This result, consistent with those of previous studies, is based on simultaneous radio and EUV imaging data for the first time.

  20. A Spectroscopic Examination of Accretion Diagnostics for Near Solar Mass Stars in IC 348

    NASA Astrophysics Data System (ADS)

    Dahm, S. E.

    2008-08-01

    High-resolution optical and moderate-resolution near-infrared spectra were obtained for 40 near solar mass (~2.0-0.5 M sun) members of the 2-3 Myr old cluster IC 348 in order to examine established accretion diagnostics and the coupling between inner disk gas and hot, micron-sized dust grains inferred from thermal and mid-infrared excesses. The stellar sample was drawn from the cluster census of Luhman in 2003 with membership being confirmed by radial velocity analysis and the presence of strong Li I λ6708 absorption. Of the stars included in this survey, 12 were classified by Lada in 2006 as hosting primordial, optically thick circumstellar disks, 5 as weak or transition disk systems, and 23 as non-excess stars using the measured slope of the stellar spectral energy distribution (SED) through the four Infrared Array Camera channels (3.6-8.0 μm) of Spitzer Space Telescope. Using the velocity width of Hα as an accretion indicator, we find that 11 primordial disk candidates are suspected accretors, suggesting a strong correlation between gaseous inner disks and optically thick dust emission. Of the five weak or transition disk systems observed, two (L21 and L67) exhibit spectroscopic features indicative of accretion. The presence of gas within the inner disk of these systems, which are free of infrared excess emission shortward of ~4.5 μm, may place constraints upon the physical mechanism responsible for inner disk clearing. Mass accretion rates (\\dot{M}) were determined for all suspected accretors using continuum excess measurements near λ6500 and established relationships between He I λ5876, Hα, Ca II λ8542, Paβ, and Brγ line fluxes and accretion luminosity. \\dot{M} values were found to range from log \\dot{M} = -8.7 to -7.2 M sun yr-1, with a median value of -8.1 M sun yr-1. Magnetospheric accretion models of Hα, Paβ, and Brγ emission by Muzerolle et al. and Kurosawa et al. are found to be in relative agreement with observed fluxes and derived \\dot

  1. Very Low Mass Stellar and Substellar Companions to Solar-like Stars from MARVELS. IV. A Candidate Brown Dwarf or Low-mass Stellar Companion to HIP 67526

    NASA Astrophysics Data System (ADS)

    Jiang, Peng; Ge, Jian; Cargile, Phillip; Crepp, Justin R.; De Lee, Nathan; Porto de Mello, Gustavo F.; Esposito, Massimiliano; Ferreira, Letícia D.; Femenia, Bruno; Fleming, Scott W.; Gaudi, B. Scott; Ghezzi, Luan; González Hernández, Jonay I.; Hebb, Leslie; Lee, Brian L.; Ma, Bo; Stassun, Keivan G.; Wang, Ji; Wisniewski, John P.; Agol, Eric; Bizyaev, Dmitry; Brewington, Howard; Chang, Liang; Nicolaci da Costa, Luiz; Eastman, Jason D.; Ebelke, Garrett; Gary, Bruce; Kane, Stephen R.; Li, Rui; Liu, Jian; Mahadevan, Suvrath; Maia, Marcio A. G.; Malanushenko, Viktor; Malanushenko, Elena; Muna, Demitri; Nguyen, Duy Cuong; Ogando, Ricardo L. C.; Oravetz, Audrey; Oravetz, Daniel; Pan, Kaike; Pepper, Joshua; Paegert, Martin; Allende Prieto, Carlos; Rebolo, Rafael; Santiago, Basilio X.; Schneider, Donald P.; Shelden Bradley, Alaina C.; Sivarani, Thirupathi; Snedden, Stephanie; van Eyken, J. C.; Wan, Xiaoke; Weaver, Benjamin A.; Zhao, Bo

    2013-09-01

    We report the discovery of a candidate brown dwarf (BD) or a very low mass stellar companion (MARVELS-5b) to the star HIP 67526 from the Multi-object Apache point observatory Radial Velocity Exoplanet Large-area Survey (MARVELS). The radial velocity curve for this object contains 31 epochs spread over 2.5 yr. Our Keplerian fit, using a Markov Chain Monte Carlo approach, reveals that the companion has an orbital period of 90.2695^{+0.0188}_{-0.0187} days, an eccentricity of 0.4375 ± 0.0040, and a semi-amplitude of 2948.14^{+16.65}_{-16.55} m s-1. Using additional high-resolution spectroscopy, we find the host star has an effective temperature T eff = 6004 ± 34 K, a surface gravity log g (cgs) =4.55 ± 0.17, and a metallicity [Fe/H] =+0.04 ± 0.06. The stellar mass and radius determined through the empirical relationship of Torres et al. yields 1.10 ± 0.09 M ⊙ and 0.92 ± 0.19 R ⊙. The minimum mass of MARVELS-5b is 65.0 ± 2.9M Jup, indicating that it is likely to be either a BD or a very low mass star, thus occupying a relatively sparsely populated region of the mass function of companions to solar-type stars. The distance to this system is 101 ± 10 pc from the astrometric measurements of Hipparcos. No stellar tertiary is detected in the high-contrast images taken by either FastCam lucky imaging or Keck adaptive optics imaging, ruling out any star with mass greater than 0.2 M ⊙ at a separation larger than 40 AU.

  2. VERY LOW MASS STELLAR AND SUBSTELLAR COMPANIONS TO SOLAR-LIKE STARS FROM MARVELS. IV. A CANDIDATE BROWN DWARF OR LOW-MASS STELLAR COMPANION TO HIP 67526

    SciTech Connect

    Jiang Peng; Ge Jian; De Lee, Nathan; Fleming, Scott W.; Lee, Brian L.; Ma Bo; Wang, Ji; Cargile, Phillip; Hebb, Leslie; Stassun, Keivan G.; Crepp, Justin R.; Porto de Mello, Gustavo F.; Ferreira, Leticia D.; Esposito, Massimiliano; Femenia, Bruno; Gonzalez Hernandez, Jonay I.; Ghezzi, Luan; Wisniewski, John P.; Agol, Eric; and others

    2013-09-15

    We report the discovery of a candidate brown dwarf (BD) or a very low mass stellar companion (MARVELS-5b) to the star HIP 67526 from the Multi-object Apache point observatory Radial Velocity Exoplanet Large-area Survey (MARVELS). The radial velocity curve for this object contains 31 epochs spread over 2.5 yr. Our Keplerian fit, using a Markov Chain Monte Carlo approach, reveals that the companion has an orbital period of 90.2695{sup +0.0188}{sub -0.0187} days, an eccentricity of 0.4375 {+-} 0.0040, and a semi-amplitude of 2948.14{sup +16.65}{sub -16.55} m s{sup -1}. Using additional high-resolution spectroscopy, we find the host star has an effective temperature T{sub eff} = 6004 {+-} 34 K, a surface gravity log g (cgs) =4.55 {+-} 0.17, and a metallicity [Fe/H] =+0.04 {+-} 0.06. The stellar mass and radius determined through the empirical relationship of Torres et al. yields 1.10 {+-} 0.09 M{sub Sun} and 0.92 {+-} 0.19 R{sub Sun }. The minimum mass of MARVELS-5b is 65.0 {+-} 2.9M{sub Jup}, indicating that it is likely to be either a BD or a very low mass star, thus occupying a relatively sparsely populated region of the mass function of companions to solar-type stars. The distance to this system is 101 {+-} 10 pc from the astrometric measurements of Hipparcos. No stellar tertiary is detected in the high-contrast images taken by either FastCam lucky imaging or Keck adaptive optics imaging, ruling out any star with mass greater than 0.2 M{sub Sun} at a separation larger than 40 AU.

  3. Examining General and Specific Factors in the Dimensionality of Oral Language and Reading in 4th–10th Grades

    PubMed Central

    Foorman, Barbara R.; Koon, Sharon; Petscher, Yaacov; Mitchell, Alison; Truckenmiller, Adrea

    2015-01-01

    The objective of this study was to explore dimensions of oral language and reading and their influence on reading comprehension in a relatively understudied population—adolescent readers in 4th through 10th grades. The current study employed latent variable modeling of decoding fluency, vocabulary, syntax, and reading comprehension so as to represent these constructs with minimal error and to examine whether residual variance unaccounted for by oral language can be captured by specific factors of syntax and vocabulary. A 1-, 3-, 4-, and bifactor model were tested with 1,792 students in 18 schools in 2 large urban districts in the Southeast. Students were individually administered measures of expressive and receptive vocabulary, syntax, and decoding fluency in mid-year. At the end of the year students took the state reading test as well as a group-administered, norm-referenced test of reading comprehension. The bifactor model fit the data best in all 7 grades and explained 72% to 99% of the variance in reading comprehension. The specific factors of syntax and vocabulary explained significant unique variance in reading comprehension in 1 grade each. The decoding fluency factor was significantly correlated with the reading comprehension and oral language factors in all grades, but, in the presence of the oral language factor, was not significantly associated with the reading comprehension factor. Results support a bifactor model of lexical knowledge rather than the 3-factor model of the Simple View of Reading, with the vast amount of variance in reading comprehension explained by a general oral language factor. PMID:26346839

  4. A direct gravitational lensing test for 10 exp 6 solar masses black holes in halos of galaxies

    NASA Technical Reports Server (NTRS)

    Wambsganss, Joachim; Paczynski, Bohdan

    1992-01-01

    We propose a method that will be able to detect or exclude the existence of 10 exp 6 solar masses black holes in the halos of galaxies. VLBA radio maps of two milliarcsecond jets of a gravitationally lensed quasar will show the signature of these black holes - if they exist. If there are no compact objects in this mass range along the line of sight, the two jets should be linear mappings of each other. If they are not, there must be compact objects of about 10 exp 6 solar masses in the halo of the galaxy that deform the images by gravitational deflection. We present numerical simulations for the two jets A and B of the double quasar 0957 + 561, but the method is valid for any gravitationally lensed quasar with structure on milliarcsecond scales. As a by-product from high-quality VLBA maps of jets A and B, one will be able to tell which features in the maps are intrinsic in the original jet and which are only an optical illusion, i.e., gravitational distortions by black holes along the line of sight.

  5. SMEI 3D RECONSTRUCTION OF A CORONAL MASS EJECTION INTERACTING WITH A COROTATING SOLAR WIND DENSITY ENHANCEMENT: THE 2008 APRIL 26 CME

    SciTech Connect

    Jackson, B. V.; Buffington, A.; Hick, P. P.; Clover, J. M.; Bisi, M. M.; Webb, D. F.

    2010-12-01

    The Solar Mass Ejection Imager (SMEI) has recorded the brightness responses of hundreds of interplanetary coronal mass ejections (CMEs) in the interplanetary medium. Using a three-dimensional (3D) reconstruction technique that derives its perspective views from outward-flowing solar wind, analysis of SMEI data has revealed the shapes, extents, and masses of CMEs. Here, for the first time, and using SMEI data, we report on the 3D reconstruction of a CME that intersects a corotating region marked by a curved density enhancement in the ecliptic. Both the CME and the corotating region are reconstructed and demonstrate that the CME disrupts the otherwise regular density pattern of the corotating material. Most of the dense CME material passes north of the ecliptic and east of the Sun-Earth line: thus, in situ measurements in the ecliptic near Earth and at the Solar-TErrestrial RElations Observatory Behind spacecraft show the CME as a minor density increase in the solar wind. The mass of the dense portion of the CME is consistent with that measured by the Large Angle Spectrometric Coronagraph on board the Solar and Heliospheric Observatory spacecraft, and is comparable to the masses of many other three-dimensionally reconstructed solar wind features at 1 AU observed in SMEI 3D reconstructions.

  6. Mass

    SciTech Connect

    Quigg, Chris

    2007-12-05

    In the classical physics we inherited from Isaac Newton, mass does not arise, it simply is. The mass of a classical object is the sum of the masses of its parts. Albert Einstein showed that the mass of a body is a measure of its energy content, inviting us to consider the origins of mass. The protons we accelerate at Fermilab are prime examples of Einsteinian matter: nearly all of their mass arises from stored energy. Missing mass led to the discovery of the noble gases, and a new form of missing mass leads us to the notion of dark matter. Starting with a brief guided tour of the meanings of mass, the colloquium will explore the multiple origins of mass. We will see how far we have come toward understanding mass, and survey the issues that guide our research today.

  7. Embedded Protostellar Disks Around (Sub-)Solar Stars. II. Disk Masses, Sizes, Densities, Temperatures, and the Planet Formation Perspective

    NASA Astrophysics Data System (ADS)

    Vorobyov, Eduard I.

    2011-03-01

    We present basic properties of protostellar disks in the embedded phase of star formation (EPSF), which is difficult to probe observationally using available observational facilities. We use numerical hydrodynamics simulations of cloud core collapse and focus on disks formed around stars in the 0.03-1.0 M sun mass range. Our obtained disk masses scale near-linearly with the stellar mass. The mean and median disk masses in the Class 0 and I phases (M mean d,C0 = 0.12 M sun, M mdn d,C0 = 0.09 M sun and M mean d,CI = 0.18 M sun, M mdn d,CI = 0.15 M sun, respectively) are greater than those inferred from observations by (at least) a factor of 2-3. We demonstrate that this disagreement may (in part) be caused by the optically thick inner regions of protostellar disks, which do not contribute to millimeter dust flux. We find that disk masses and surface densities start to systematically exceed that of the minimum mass solar nebular for objects with stellar mass as low as M * = 0.05-0.1 M sun. Concurrently, disk radii start to grow beyond 100 AU, making gravitational fragmentation in the disk outer regions possible. Large disk masses, surface densities, and sizes suggest that giant planets may start forming as early as in the EPSF, either by means of core accretion (inner disk regions) or direct gravitational instability (outer disk regions), thus breaking a longstanding stereotype that the planet formation process begins in the Class II phase.

  8. Upper limits to the masses of objects in the solar comet cloud

    SciTech Connect

    Hills, J.G.

    1985-01-01

    The lack of a large steady stream of long-period comets with semi-major axes less than 2 x 10/sup 4/ AU rules out the sun having a companion more massive than about 0.01 M/sub solar/ with a semi-major axis less than about 1 x 10/sup 4/ AU. Any companion with a semi-major axis between 1 x 10/sup 4/ AU and 5 x 10/sup 4/ AU has more than a 50% probability of having entered the planetary system during the lifetime of the Solar System. The lack of apparent damage to the planetary system rules out any companion more massive than about 0.02 M/sub solar/ with a semi-major axis less than about 5 x 10/sup 4/ AU.

  9. Creating Cultures of Peace: Pedagogical Thought and Practice. Selected Papers from the 10th Triennial World Conference (September 10-15, 2001, Madrid, Spain)

    ERIC Educational Resources Information Center

    Benton, Jean E., Ed.; Swami, Piyush, Ed.

    2007-01-01

    The 10th Triennial World Conference of the World Council for Curriculum and Instruction (WCCI) was held September 10-15, 2001 in Madrid, Spain. The theme of the conference was "Cultures of Peace." Thirty-four papers and presentations are divided into nine sections. Part I, Tributes to the Founders of WCCI, includes: (1) Tribute to Alice…

  10. Carpenter, Tractors and Microbes for the Development of Logical-Mathematical Thinking--The Way 10th Graders and Pre-Service Teachers Solve Thinking Challenges

    ERIC Educational Resources Information Center

    Gazit, Avikam

    2012-01-01

    The objective of this case study was to investigate the ability of 10th graders and pre-service teachers to solve logical-mathematical thinking challenges. The challenges do not require mathematical knowledge beyond that of primary school but rather an informed use of the problem representation. The percentage of correct answers given by the 10th…

  11. Trends in Substance Use among 6th-to 10th-Grade Students from 1998 to 2010: Findings from a National Probability Study

    ERIC Educational Resources Information Center

    Brooks-Russell, Ashley; Farhat, Tilda; Haynie, Denise; Simons-Morton, Bruce

    2014-01-01

    Of the handful of national studies tracking trends in adolescent substance use in the United States, only the Health Behavior in School-Aged Children (HBSC) study collects data from 6th through 10th graders. The purpose of this study was to examine trends from 1998 to 2010 (four time points) in the prevalence of tobacco, alcohol, and marijuana use…

  12. Perceptions of 9th and 10th Grade Students on How Their Environment, Cognition, and Behavior Motivate Them in Algebra and Geometry Courses

    ERIC Educational Resources Information Center

    Harootunian, Alen

    2012-01-01

    In this study, relationships were examined between students' perception of their cognition, behavior, environment, and motivation. The purpose of the research study was to explore the extent to which 9th and 10th grade students' perception of environment, cognition, and behavior can predict their motivation in Algebra and Geometry courses. A…

  13. An Examination of the Conditions of School Facilities Attended by 10th-Grade Students in 2002. E.D. TAB. NCES 2006-302

    ERIC Educational Resources Information Center

    Mike Planty; Jill F. DeVoe; Jeffrey A. Owings; Kathryn Chandler

    2005-01-01

    This report presents key findings from the Education Longitudinal Study of 2002 (ELS:2002) Facilities Checklist for all ELS:2002 public and private schools and students in the 10th grade. The facilities instrument was administered as a part of the ELS:2002 and focused on the conditions of school facilities, including disrepair, cleanliness,…

  14. Advances in Classification Research. Volume 10. Proceedings of the ASIS SIG/CR Classification Research Workshop (10th, Washington, DC, November 1-5, 1999). ASIST Monograph Series.

    ERIC Educational Resources Information Center

    Albrechtsen, Hanne, Ed.; Mai, Jens-Erik, Ed.

    This volume is a compilation of the papers presented at the 10th ASIS (American Society for Information Science) workshop on classification research. Major themes include the social and cultural informatics of classification and coding systems, subject access and indexing theory, genre analysis and the agency of documents in the ordering of…

  15. The Basic Program of Vocational Agriculture in Louisiana. Ag I and Ag II (9th and 10th Grades). Volume I. Bulletin 1690-I.

    ERIC Educational Resources Information Center

    Louisiana State Dept. of Education, Baton Rouge. Div. of Vocational Education.

    This document is the first volume of a state curriculum guide on vocational agriculture for use in the 9th and 10th grades in Louisiana. Three instructional areas are profiled in this volume: orientation to vocational agriculture, agricultural leadership, and soil science. The three units of the orientation area cover introducing beginning…

  16. Solar-wind/magnetospheric dynamos: MHD-scale collective entry of the solar wind energy, momentum and mass into the magnetosphere

    NASA Technical Reports Server (NTRS)

    Song, Yan; Lysak, Robert L.

    1992-01-01

    A quasi open MHD (Magnetohydrodynamic) scale anomalous transport controlled boundary layer model is proposed, where the MHD collective behavior of magnetofluids (direct dynamo effect, anomalous viscous interaction and anomalous diffusion of the mass and the magnetic field) plays the main role in the conversion of the Solar Wind (SW) kinetic and magnetic energy into electromagnetic energy in the Magnetosphere (MSp). The so called direct and indirect dynamo effects are based on inductive and purely dissipative energy conversion, respectively. The self organization ability of vector fields in turbulent magnetofluids implies an inductive response of the plasma, which leads to the direct dynamo effect. The direct dynamo effect describes the direct formation of localized field aligned currents and the transverse Alfven waves and provides a source for MHD scale anomalous diffusivity and viscosity. The SW/MSp coupling depends on the dynamo efficiency.

  17. Non-renormalizable operators for solar neutrino mass generation in Split SuSy with bilinear R-parity violation

    NASA Astrophysics Data System (ADS)

    Díaz, Marco Aurelio; Koch, Benjamin; Rojas, Nicolás

    2017-03-01

    The Minimal Supersymmetric Extension of the Standard Model (MSSM) is able to explain the current data from neutrino physics. Unfortunately Split Supersymmetry as low energy approximation of this theory fails to generate a solar square mass difference, including after the addition of bilinear R-Parity Violation. In this work, it is shown how one can derive an effective low energy theory from the MSSM in the spirit of Split Supersymmetry, which has the potential of explaining the neutrino phenomenology. This is achieved by going beyond leading order in the process of integrating out heavy scalars from the original theory, which results in non-renormalizable operators in the effective low energy theory. It is found that in particular a d = 8 operator is crucial for the generation of the neutrino mass differences.

  18. Induced mass and wave motions in the lower solar atmosphere. I - Effects of shear motion of flux tubes

    NASA Technical Reports Server (NTRS)

    Wu, S. T.; Hu, Y. Q.; Nakagawa, Y.; Tandberg-Hanssen, E.

    1983-01-01

    Observations indicate that various dynamic solar phenomena lead to enhanced emission of electromagnetic waves from radio to X-ray wavelengths which can be traced to magnetic activity in the photospheric level. A number of previous investigations have ignored the dynamic responses in the solar atmosphere. On the other hand, Nakagawa et al. (1978, 1981) have studied the atmospheric responses in the frame of MHD in the supersonic super-Alfvenic region. Studies of the slowly varying dynamic response (subsonic) have been unsuccessful because of the requirements of high accuracy in the numerical scheme in which a rigorous mathematical treatment of the boundary conditions is necessary. Recently, a numerical MHD model was constructed by using the full implicit continuous eulerian method. The present investigation makes use of a method which is written in a more convenient numerical code. A two-dimensional, time-dependent, nonplanar MHD model is used to investigate the induced mass and wave motions in the lower solar atmosphere due to the shear motion of flux tubes.

  19. Design and Performance of a Triple Source Air Mass Zero Solar Simulator

    NASA Technical Reports Server (NTRS)

    Jenkins, Phillip; Scheiman, David; Snyder, David

    2005-01-01

    Simulating the sun in a laboratory for the purpose of measuring solar cells has long been a challenge for engineers and scientists. Multi-junction cells demand higher fidelity of a solar simulator than do single junction cells, due to a need for close spectral matching as well as AM0 intensity. A GaInP/GaAs/Ge solar cell for example, requires spectral matching in three distinct spectral bands (figure 1). A commercial single source high-pressure xenon arc solar simulator such as the Spectrolab X-25 at NASA Glenn Research Center, can match the top two junctions of a GaInP/GaAs/Ge cell to within 1.3% mismatch, with the GaAs cell receiving slightly more current than required. The Ge bottom cell however, is mismatched +8.8%. Multi source simulators are designed to match the current for all junctions but typically have small illuminated areas, less uniformity and less beam collimation compared to an X-25 simulator. It was our intent when designing a multi source simulator to preserve as many aspects of the X-25 while adding multi-source capability.

  20. Lithium Inventory of 2 Solar Mass Red Clump Stars in Open Clusters: A Test of the Helium Flash Mechanism

    NASA Technical Reports Server (NTRS)

    Carlberg, Joleen K.; Cunha, Katia; Smith, Verne V.

    2016-01-01

    The temperature distribution of field Li-rich red giants suggests the presence of a population of Li-rich red clump (RC) stars. One proposed explanation for this population is that all stars with masses near 2 solar mass experience a shortlived phase of Li-richness at the onset of core He-burning. Many of these stars have low C-12/C-13, a signature of deep mixing that is presumably associated with the Li regeneration. To test this purported mechanism of Li enrichment, we measured abundances in 38 RC stars and 6 red giant branch (RGB) stars in four open clusters selected to have RC masses near 2 solar mass. We find six Li-rich stars (A(Li) greater than or equal to 1.50 dex) of which only two may be RC stars. None of the RC stars have Li exceeding the levels observed in the RGB stars, but given the brevity of the suggested Li-rich phase and the modest sample size, it is probable that stars with larger Li-enrichments were missed simply by chance. However, we find very few stars in our sample with low C-12/C-13. Such low C-12/C-13, seen in many field Li-rich stars, should persist even after lithium has returned to normal low levels. Thus, if Li synthesis during the He flash occurs, it is a rare, but potentially long-lived occurrence rather than a short-lived phase for all stars. We estimate a conservative upper limit of the fraction of stars going through a Li-rich phase to be less than 47%, based on stars that have low C-12/C-13 for their observed A(Li).

  1. FIRST PRECISION LIGHT CURVE ANALYSIS OF THE NEGLECTED EXTREME MASS RATIO SOLAR-TYPE BINARY HR BOOTIS

    SciTech Connect

    Samec, Ronald G.; Benkendorf, Barry; Dignan, James B.; Robb, Russell; Kring, James; Faulkner, Danny R.

    2015-04-15

    HR Bootis is a neglected binary that is found to be a solar-type (G2V) extreme mass ratio binary (EMRB). It was discovered by Hanley and Shapley in 1940. Surprisingly, little has been published in the intervening years. In 1999 it was characterized by a 0.31587 day orbital period. Since that time it has been observed by various observers who have determined ∼20 timings of minimum light over the past ∼15,000 orbits. Our observations in 2012 represent the first precision curves in the BVR{sub c}I{sub c} Johnson–Cousins wavelength bands. The light curves have rather low amplitudes, averaging some 0.5 magnitudes, yet they exhibit total eclipses, which is typical of the rare group of solar-type EMRBs. An improved linear ephemeris was computed along with a quadratic ephemeris showing a decaying orbit, which indicates magnetic breaking may be occurring. The light curve solution reveals that HR Boo is a contact system with a somewhat low 21% Roche-lobe fill-out but a mass ratio of q = 4.09 (0.2444), which defines it as an EMRB. Two spots, both hot, were allowed to iterate to fit the light curve asymmetries. Their radii are 32° and 16°. Both are high-latitude polar spots indicative of strong magnetic activity. The shallow contact yet nearly equal component temperatures makes it an unusual addition to this group.

  2. SPITZER OBSERVATIONS OF THE {lambda} ORIONIS CLUSTER. II. DISKS AROUND SOLAR-TYPE AND LOW-MASS STARS

    SciTech Connect

    Hernandez, Jesus; Morales-Calderon, Maria; Calvet, Nuria; Hartmann, L.; Muzerolle, J.; Gutermuth, R.; Luhman, K. L.; Stauffer, J. E-mail: muzerol@stsci.ed

    2010-10-20

    We present IRAC/MIPS Spitzer Space Telescope observations of the solar-type and the low-mass stellar population of the young ({approx}5 Myr) {lambda} Orionis cluster. Combining optical and Two Micron All Sky Survey photometry, we identify 436 stars as probable members of the cluster. Given the distance (450 pc) and the age of the cluster, our sample ranges in mass from 2 M{sub sun} to objects below the substellar limit. With the addition of the Spitzer mid-infrared data, we have identified 49 stars bearing disks in the stellar cluster. Using spectral energy distribution slopes, we place objects in several classes: non-excess stars (diskless), stars with optically thick disks, stars with 'evolved disks' (with smaller excesses than optically thick disk systems), and 'transitional disk' candidates (in which the inner disk is partially or fully cleared). The disk fraction depends on the stellar mass, ranging from {approx}6% for K-type stars (R{sub C} - J < 2) to {approx}27% for stars with spectral-type M5 or later (R{sub C} - J>4). We confirm the dependence of disk fraction on stellar mass in this age range found in other studies. Regarding clustering levels, the overall fraction of disks in the {lambda} Orionis cluster is similar to those reported in other stellar groups with ages normally quoted as {approx}5 Myr.

  3. Stacbeam - An efficient, low-mass, sequentially deployable structure. [for satellite solar power

    NASA Technical Reports Server (NTRS)

    Adams, L. R.

    1982-01-01

    Design features of the stacking triangular articulated compact beam (Stacbeam) as a candidate truss structure for GEOS spacecraft solar power arrays are explored. Solar arrays of increasing size require folding, noninterfering structures, minimal thermal effects, slow and controlled deployment, and a high aspect ratio. The Stacbeam consists of a triangular batten frame perpendicular to the beam axis, three longerons attached at the corners of the batten frame and mounted parallel to the beam axis, and three diagonals to provide shear and torsional stiffness. Locking hinges are installed at the midpoint and ends of each longeron and at the midpoint and ends of each diagonal. The material is graphite/epoxy composite with a 120 GPa modulus and a 1500 kg/sq m density. Successful vertical deployment on the ground has been effected with a prototype deployer, together with horizontal cantilever in a fully deployed configuration.

  4. Quantitative Imaging of the Solar Wind: CME Mass Evolution and the Interplanetary Magnetic Flux Balance

    NASA Astrophysics Data System (ADS)

    DeForest, Craig

    2012-05-01

    We recently developed post-processing techniques for heliospheric images from the STEREO spacecraft; the new data sets enable, for the first time, quantitative photometric studies of evolving wind features at distances up to 1 A.U. from the Sun. We have used the new data to trace several CMEs and magnetic disconnection events to their origins in the solar corona, and to infer the force balance and entrained magnetic flux in those features. We present recent results showing the relationship between ICME and CME anatomy, in particular the origin of an observed interplanetary flux rope and the relationship between original launched solar material and piled-up sheath material and flux in the storm at 1. A.U. We discuss implications for understanding space weather physics and predicting individual events, and point out the importance of future imaging technologies such as polarized heliospheric imaging.

  5. Calculating Coronal Mass Ejection Magnetic Field at 1 AU Using Solar Observables

    NASA Astrophysics Data System (ADS)

    Chen, J.; Kunkel, V.

    2013-12-01

    It is well-established that most major nonrecurrent geomagnetic storms are caused by solar wind structures with long durations of strong southward (Bz < 0) interplanetary magnetic field (IMF). Such geoeffective IMF structures are associated with CME events at the Sun. Unfortunately, neither the duration nor the internal magnetic field vector of the ejecta--the key determinants of geoeffectiveness--is measurable until the observer (e.g., Earth) passes through the ejecta. In this paper, we discuss the quantitative relationships between the ejecta magnetic field at 1 AU and remotely observable solar quantities associated with the eruption of a given CME. In particular, we show that observed CME trajectories (position-time data) within, say, 1/3 AU of the Sun, contain sufficient information to allow the calculation of the ejecta magnetic field (magnitude and components) at 1 AU using the Erupting Flux Rope (EFR) model of CMEs. Furthermore, in order to accurately determine the size and arrival time of the ejecta as seen by a fixed observer at 1 AU (e.g., ACE), it is essential to accurately calculate the three-dimensional geometry of the underlying magnetic structure. Accordingly, we have extended the physics-based EFR model to include a self-consistent calculation of the transverse expansion taking into account the non-symmetric drag coupling between an expanding CME flux rope and the ambient solar wind. The dependence of the minor radius of the flux rope at 1 AU that determines the perceived size of the ejecta on solar quantities is discussed. Work supported by the NRL Base Program.

  6. Mass and Energy of Erupting Solar Plasma Observed with the X-Ray Telescope on Hinode

    NASA Astrophysics Data System (ADS)

    Lee, Jin-Yi; Raymond, John C.; Reeves, Katharine K.; Moon, Yong-Jae; Kim, Kap-Sung

    2015-01-01

    We investigate seven eruptive plasma observations by Hinode/XRT. Their corresponding EUV and/or white light coronal mass ejection features are visible in some events. Five events are observed in several passbands in X-rays, which allows for the determination of the eruptive plasma temperature using a filter ratio method. We find that the isothermal temperatures vary from 1.6 to 10 MK. These temperatures are an average weighted toward higher temperature plasma. We determine the mass constraints of eruptive plasmas by assuming simplified geometrical structures of the plasma with isothermal plasma temperatures. This method provides an upper limit to the masses of the observed eruptive plasmas in X-ray passbands since any clumping causes the overestimation of the mass. For the other two events, we assume the temperatures are at the maximum temperature of the X-ray Telescope (XRT) temperature response function, which gives a lower limit of the masses. We find that the masses in XRT, ~3 × 1013-5 × 1014 g, are smaller in their upper limit than the total masses obtained by LASCO, ~1 × 1015 g. In addition, we estimate the radiative loss, thermal conduction, thermal, and kinetic energies of the eruptive plasma in X-rays. For four events, we find that the thermal conduction timescales are much shorter than the duration of eruption. This result implies that additional heating during the eruption may be required to explain the plasma observations in X-rays for the four events.

  7. Solar flares associated coronal mass ejections in case of type II radio bursts

    NASA Astrophysics Data System (ADS)

    Bhatt, Beena; Prasad, Lalan; Chandra, Harish; Garia, Suman

    2016-08-01

    We have statistically studied 220 events from 1996 to 2008 (i.e. solar cycle 23). Two set of flare-CME is examined one with Deca-hectometric (DH) type II and other without DH type II radio burst. Out of 220 events 135 (flare-halo CME) are accompanied with DH type II radio burst and 85 are without DH type II radio burst. Statistical analysis is performed to examine the distribution of solar flare-halo CME around the solar disk and to investigate the relationship between solar flare and halo CME parameters in case of with and without DH type II radio burst. In our analysis we have observed that: (i) 10-20° latitudinal belt is more effective than the other belts for DH type II and without DH type II radio burst. In this belt, the southern region is more effective in case of DH type II radio burst, whereas in case of without DH type II radio burst dominance exits in the northern region. (ii) 0-10° longitudinal belt is more effective than the other belts for DH type II radio burst and without DH type II radio burst. In this belt, the western region is more effective in case of DH type II radio burst, while in case of without DH type II radio burst dominance exits in the eastern region. (iii) Mean speed of halo CMEs (1382 km/s) with DH type II radio burst is more than the mean speed of halo CMEs (775 km/s) without DH type II radio burst. (iv) Maximum number of M-class flares is found in both the cases. (v) Average speed of halo CMEs in each class accompanied with DH type II radio burst is higher than the average speed of halo CMEs in each class without DH type II radio burst. (vi) Average speed of halo CMEs, associated with X-class flares, is greater than the other class of solar flares in both the cases.

  8. The Solar Neighborhood. XXXVII: The Mass-Luminosity Relation for Main-sequence M Dwarfs

    NASA Astrophysics Data System (ADS)

    Benedict, G. F.; Henry, T. J.; Franz, O. G.; McArthur, B. E.; Wasserman, L. H.; Jao, Wei-Chun; Cargile, P. A.; Dieterich, S. B.; Bradley, A. J.; Nelan, E. P.; Whipple, A. L.

    2016-11-01

    We present a mass-luminosity relation (MLR) for red dwarfs spanning a range of masses from 0.62 {{ M }}⊙ to the end of the stellar main sequence at 0.08 {{ M }}⊙ . The relation is based on 47 stars for which dynamical masses have been determined, primarily using astrometric data from Fine Guidance Sensors (FGS) 3 and 1r, white-light interferometers on the Hubble Space Telescope (HST), and radial velocity data from McDonald Observatory. For our HST/FGS sample of 15 binaries, component mass errors range from 0.4% to 4.0% with a median error of 1.8%. With these and masses from other sources, we construct a V-band MLR for the lower main sequence with 47 stars and a K-band MLR with 45 stars with fit residuals half of those of the V band. We use GJ 831 AB as an example, obtaining an absolute trigonometric parallax, π abs = 125.3 ± 0.3 mas, with orbital elements yielding {{ M }}{{A}}=0.270+/- 0.004 {{ M }}⊙ and {{ M }}{{B}}=0.145+/- 0.002 {{ M }}⊙ . The mass precision rivals that derived for eclipsing binaries. A remaining major task is the interpretation of the intrinsic cosmic scatter in the observed MLR for low-mass stars in terms of physical effects. In the meantime, useful mass values can be estimated from the MLR for the ubiquitous red dwarfs that account for 75% of all stars, with applications ranging from the characterization of exoplanet host stars to the contribution of red dwarfs to the mass of the universe. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.

  9. SOLAR CYCLE VARIATIONS OF CORONAL NULL POINTS: IMPLICATIONS FOR THE MAGNETIC BREAKOUT MODEL OF CORONAL MASS EJECTIONS

    SciTech Connect

    Cook, G. R.; Mackay, D. H.; Nandy, Dibyendu E-mail: duncan@mcs.st-and.ac.u

    2009-10-20

    , the spatio-temporal evolution of coronal nulls is found to follow the typical solar butterfly diagram and is in qualitative agreement with the observed time dependence of coronal mass ejection source-region locations.

  10. What can We Learn about Solar Coronal Mass Ejections, Coronal Dimmings, and Extreme-ultraviolet Jets through Spectroscopic Observations?

    NASA Astrophysics Data System (ADS)

    Tian, Hui; McIntosh, Scott W.; Xia, Lidong; He, Jiansen; Wang, Xin

    2012-04-01

    Solar eruptions, particularly coronal mass ejections (CMEs) and extreme-ultraviolet (EUV) jets, have rarely been investigated with spectroscopic observations. We analyze several data sets obtained by the EUV Imaging Spectrometer on board Hinode and find various types of flows during CMEs and jet eruptions. CME-induced dimming regions are found to be characterized by significant blueshift and enhanced line width by using a single Gaussian fit, while a red-blue (RB) asymmetry analysis and an RB-guided double Gaussian fit of the coronal line profiles indicate that these are likely caused by the superposition of a strong background emission component and a relatively weak (~10%), high-speed (~100 km s-1) upflow component. This finding suggests that the outflow velocity in the dimming region is probably of the order of 100 km s-1, not ~20 km s-1 as reported previously. These weak, high-speed outflows may provide a significant amount of mass to refill the corona after the eruption of CMEs, and part of them may experience further acceleration and eventually become solar wind streams that can serve as an additional momentum source of the associated CMEs. Density and temperature diagnostics of the dimming region suggest that dimming is primarily an effect of density decrease rather than temperature change. The mass losses in dimming regions as estimated from different methods are roughly consistent with each other, and they are 20%-60% of the masses of the associated CMEs. With the guide of RB asymmetry analysis, we also find several temperature-dependent outflows (speed increases with temperature) immediately outside the (deepest) dimming region. These outflows may be evaporation flows that are caused by the enhanced thermal conduction or nonthermal electron beams along reconnecting field lines, or induced by the interaction between the opened field lines in the dimming region and the closed loops in the surrounding plage region. In an erupted CME loop and an EUV jet

  11. Sixteen Years of Ulysses Interstellar Dust Measurements in the Solar System. I. Mass Distribution and Gas-to-dust Mass Ratio

    NASA Astrophysics Data System (ADS)

    Krüger, Harald; Strub, Peter; Grün, Eberhard; Sterken, Veerle J.

    2015-10-01

    In the early 1990s, contemporary interstellar dust penetrating deep into the heliosphere was identified with the in situ dust detector on board the Ulysses spacecraft. Between 1992 and the end of 2007 Ulysses monitored the interstellar dust stream. The interstellar grains act as tracers of the physical conditions in the local interstellar medium (ISM) surrounding our solar system. Earlier analyses of the Ulysses interstellar dust data measured between 1992 and 1998 implied the existence of a population of “big” interstellar grains (up to 10-13 kg). The derived gas-to-dust-mass ratio was smaller than the one derived from astronomical observations, implying a concentration of interstellar dust in the very local ISM. In this paper we analyze the entire data set from 16 yr of Ulysses interstellar dust measurements in interplanetary space. This paper concentrates on the overall mass distribution of interstellar dust. An accompanying paper investigates time-variable phenomena in the Ulysses interstellar dust data, and in a third paper we present the results from dynamical modeling of the interstellar dust flow applied to Ulysses. We use the latest values for the interstellar hydrogen and helium densities, the interstellar helium flow speed of {v}{ISM∞ }=23.2 {km} {{{s}}}-1, and the ratio of radiation pressure to gravity, β, calculated for astronomical silicates. We find a gas-to-dust mass ratio in the local interstellar cloud of {R}{{g}/{{d}}}={193}-57+85, and a dust density of (2.1 ± 0.6) × 10-24 kg m-3. For a higher inflow speed of 26 {km} {{{s}}}-1, the gas-to-dust mass ratio is 20% higher, and, accordingly, the dust density is lower by the same amount. The gas-to-dust mass ratio derived from our new analysis is compatible with the value most recently determined from astronomical observations. We confirm earlier results that the very local ISM contains “big” (i.e., ≈1 μm sized) interstellar grains. We find a dust density in the local ISM that is a

  12. Analysis of physics textbooks for 10th and 11th grades in accordance with the 2013 secondary school physics curriculum from the perspective of project-based learning

    NASA Astrophysics Data System (ADS)

    Kavcar, Nevzat; Erdem, Aytekin

    2017-02-01

    This study aims to investigate the 10th and 11th grade Physics textbooks in accordance with the 2013 Secondary School Physics Curriculum from the perspective of project-based learning method and to share the results with the physics education public. The research was carried out in the 2015-2016 academic year as part of an undergraduate course taught in physics teaching program at a faculty of education; and 10 senior students of physics teachercandidates participated in the study. The research method is the survey model based on qualitative research approach. Data collection tools consist of the reports written by the participants who examined the curriculum and textbooks for project-based learning problems. According to research findings, most of the educational gains in the 10th and 11th grade physics textbooks were supported with experimental activities; however, project-based assignments are needed.

  13. An ultraluminous quasar with a twelve-billion-solar-mass black hole at redshift 6.30.

    PubMed

    Wu, Xue-Bing; Wang, Feige; Fan, Xiaohui; Yi, Weimin; Zuo, Wenwen; Bian, Fuyan; Jiang, Linhua; McGreer, Ian D; Wang, Ran; Yang, Jinyi; Yang, Qian; Thompson, David; Beletsky, Yuri

    2015-02-26

    So far, roughly 40 quasars with redshifts greater than z = 6 have been discovered. Each quasar contains a black hole with a mass of about one billion solar masses (10(9) M Sun symbol). The existence of such black holes when the Universe was less than one billion years old presents substantial challenges to theories of the formation and growth of black holes and the coevolution of black holes and galaxies. Here we report the discovery of an ultraluminous quasar, SDSS J010013.02+280225.8, at redshift z = 6.30. It has an optical and near-infrared luminosity a few times greater than those of previously known z > 6 quasars. On the basis of the deep absorption trough on the blue side of the Lyman-α emission line in the spectrum, we estimate the proper size of the ionized proximity zone associated with the quasar to be about 26 million light years, larger than found with other z > 6.1 quasars with lower luminosities. We estimate (on the basis of a near-infrared spectrum) that the black hole has a mass of ∼1.2 × 10(10) M Sun symbol, which is consistent with the 1.3 × 10(10) M Sun symbol derived by assuming an Eddington-limited accretion rate.

  14. Transient heat and mass transfer analysis in a porous ceria structure of a novel solar redox reactor

    SciTech Connect

    Chandran, RB; Bader, R; Lipinski, W

    2015-06-01

    Thermal transport processes are numerically analyzed for a porous ceria structure undergoing reduction in a novel redox reactor for solar thermochemical fuel production. The cylindrical reactor cavity is formed by an array of annular reactive elements comprising the porous ceria monolith integrated with gas inlet and outlet channels. Two configurations are considered, with the reactor cavity consisting of 10 and 20 reactive elements, respectively. Temperature dependent boundary heat fluxes are obtained on the irradiated cavity wall by solving for the surface radiative exchange using the net radiation method coupled to the heat and mass transfer model of the reactive element. Predicted oxygen production rates are in the range 40-60 mu mol s(-1) for the geometries considered. After an initial rise, the average temperature of the reactive element levels off at 1660 and 1680 K for the two geometries, respectively. For the chosen reduction reaction rate model, oxygen release continues after the temperature has leveled off which indicates that the oxygen release reaction is limited by chemical kinetics and/or mass transfer rather than by the heating rate. For a fixed total mass of ceria, the peak oxygen release rate is doubled for the cavity with 20 reactive elements due to lower local oxygen partial pressure. (C) 2015 Elsevier Masson SAS. All rights reserved.

  15. Report of the 10(th) Asia-Pacific Federation of Societies for Surgery of the Hand Congress (Organising Chair and Scientific Chair).

    PubMed

    A, Roohi Sharifah; Abdullah, Shalimar

    2016-10-01

    A report on the 10(th) Asia-Pacific Federation of Societies for the Surgery of the Hand and 6(th) Asia-Pacific Federation of Societies for Hand Therapists is submitted detailing the numbers of attendees participating, papers presented and support received as well the some of the challenges faced and how best to overcome them from the local conference chair and scientific chair point of view.

  16. Injuries and Physical Fitness Before and After Deployments of the 10th Mountain Division to Afghanistan and the 1st Cavalry Division to Iraq, September 2005 - October 2008

    DTIC Science & Technology

    2008-10-01

    determined using the McNemar Test. The McNemar Test allows comparison of frequency data involving repeated measures on the same individuals.(71) (3...and After Deployment of the 10thMt Cohort (n=505 Men) Injury Index Injury Incidence p-value ( McNemar Test) Predeployment Postdeployment Period 1...Injury Incidence Before and After Deployment of the 1stCav Cohort – Men (n=3242) Injury Index Injury Incidence p-value ( McNemar Test) Predeployment

  17. Multipoint Observations of Coronal Mass Ejection and Solar Energetic Particle Events on Mars and Earth During November 2001

    NASA Technical Reports Server (NTRS)

    Falkenberg, T. V.; Vennerstrom, S.; Brain, D. A.; Delory, G.; Taktakishvili, A.

    2011-01-01

    Multipoint spacecraft observations provide unique opportunities to constrain the propagation and evolution of interplanetary coronal mass ejections (ICMEs) throughout the heliosphere. Using Mars Global Surveyor (MGS) data to study both ICME and solar energetic particle (SEP) events at Mars and OMNI and Geostationary Operational Environmental Satellite (GOES) data to study ICMEs and SEPs at Earth, we present a detailed study of three CMEs and flares in late November 2001. In this period, Mars trailed Earth by 56deg solar longitude so that the two planets occupied interplanetary magnetic field lines separated by only approx.25deg. We model the interplanetary propagation of CME events using the ENLIL version 2.6 3-D MHD code coupled with the Wang-Sheeley-Arge version 1.6 potential source surface model, using Solar and Heliospheric Observatory (SOHO) Large Angle and Spectrometric Coronagraph (LASCO) images to determine CME input parameters. We find that multipoint observations are essential to constrain the simulations of ICME propagation, as two very different ICMEs may look very similar in only one observational location. The direction and width of the CME as parameters essential to a correct estimation of arrival time and amplitude of the ICME signal. We find that these are problematic to extract from the analysis of SOHO/LASCO images commonly used for input to ICME propagation models. We further confirm that MGS magnetometer and electron reflectometer data can be used to study not only ICME events but also SEP events at Mars, with good results providing a consistent picture of the events when combined with near-Earth data.

  18. Combined Multipoint Remote and in situ Observations of the Asymmetric Evolution of a Fast Solar Coronal Mass Ejection

    NASA Astrophysics Data System (ADS)

    Rollett, T.; Möstl, C.; Temmer, M.; Frahm, R. A.; Davies, J. A.; Veronig, A. M.; Vršnak, B.; Amerstorfer, U. V.; Farrugia, C. J.; Žic, T.; Zhang, T. L.

    2014-07-01

    We present an analysis of the fast coronal mass ejection (CME) of 2012 March 7, which was imaged by both STEREO spacecraft and observed in situ by MESSENGER, Venus Express, Wind, and Mars Express. Based on detected arrivals at four different positions in interplanetary space, it was possible to strongly constrain the kinematics and the shape of the ejection. Using the white-light heliospheric imagery from STEREO-A and B, we derived two different kinematical profiles for the CME by applying the novel constrained self-similar expansion method. In addition, we used a drag-based model to investigate the influence of the ambient solar wind on the CME's propagation. We found that two preceding CMEs heading in different directions disturbed the overall shape of the CME and influenced its propagation behavior. While the Venus-directed segment underwent a gradual deceleration (from ~2700 km s-1 at 15 R ⊙ to ~1500 km s-1 at 154 R ⊙), the Earth-directed part showed an abrupt retardation below 35 R ⊙ (from ~1700 to ~900 km s-1). After that, it was propagating with a quasi-constant speed in the wake of a preceding event. Our results highlight the importance of studies concerning the unequal evolution of CMEs. Forecasting can only be improved if conditions in the solar wind are properly taken into account and if attention is also paid to large events preceding the one being studied.

  19. Direct evidence of an eruptive, filament-hosting magnetic flux rope leading to a fast solar coronal mass ejection

    SciTech Connect

    Chen, Bin; Gary, D. E.; Bastian, T. S.

    2014-10-20

    Magnetic flux ropes (MFRs) are believed to be at the heart of solar coronal mass ejections (CMEs). A well-known example is the prominence cavity in the low corona that sometimes makes up a three-part white-light (WL) CME upon its eruption. Such a system, which is usually observed in quiet-Sun regions, has long been suggested to be the manifestation of an MFR with relatively cool filament material collecting near its bottom. However, observational evidence of eruptive, filament-hosting MFR systems has been elusive for those originating in active regions. By utilizing multi-passband extreme-ultraviolet (EUV) observations from Solar Dynamics Observatory/Atmospheric Imaging Assembly, we present direct evidence of an eruptive MFR in the low corona that exhibits a hot envelope and a cooler core; the latter is likely the upper part of a filament that undergoes a partial eruption, which is later observed in the upper corona as the coiled kernel of a fast, WL CME. This MFR-like structure exists more than 1 hr prior to its eruption, and displays successive stages of dynamical evolution, in which both ideal and non-ideal physical processes may be involved. The timing of the MFR kinematics is found to be well correlated with the energy release of the associated long-duration C1.9 flare. We suggest that the long-duration flare is the result of prolonged energy release associated with the vertical current sheet induced by the erupting MFR.

  20. The Relation between Coronal Holes and Coronal Mass Ejections during the Rise, Maximum, and Declining Phases of Solar Cycle 23

    NASA Technical Reports Server (NTRS)

    Mohamed, A. A.; Gopalswamy, N; Yashiro, S.; Akiyama, S.; Makela, P.; Xie, H.; Jung, H.

    2012-01-01

    We study the interaction between coronal holes (CHs) and coronal mass ejections (CMEs) using a resultant force exerted by all the coronal holes present on the disk and is defined as the coronal hole influence parameter (CHIP). The CHIP magnitude for each CH depends on the CH area, the distance between the CH centroid and the eruption region, and the average magnetic field within the CH at the photospheric level. The CHIP direction for each CH points from the CH centroid to the eruption region. We focus on Solar Cycle 23 CMEs originating from the disk center of the Sun (central meridian distance =15deg) and resulting in magnetic clouds (MCs) and non-MCs in the solar wind. The CHIP is found to be the smallest during the rise phase for MCs and non-MCs. The maximum phase has the largest CHIP value (2.9 G) for non-MCs. The CHIP is the largest (5.8 G) for driverless (DL) shocks, which are shocks at 1 AU with no discernible MC or non-MC. These results suggest that the behavior of non-MCs is similar to that of the DL shocks and different from that of MCs. In other words, the CHs may deflect the CMEs away from the Sun-Earth line and force them to behave like limb CMEs with DL shocks. This finding supports the idea that all CMEs may be flux ropes if viewed from an appropriate vantage point.

  1. An estimate of the coronal magnetic field near a solar coronal mass ejection from low-frequency radio observations

    SciTech Connect

    Hariharan, K.; Ramesh, R.; Kishore, P.; Kathiravan, C.; Gopalswamy, N.

    2014-11-01

    We report ground-based, low-frequency (<100 MHz) radio imaging, spectral, and polarimeter observations of the type II radio burst associated with the solar coronal mass ejection (CME) that occurred on 2013 May 2. The spectral observations indicate that the burst has fundamental (F) and harmonic (H) emission components with split-band and herringbone structures. The imaging observations at 80 MHz indicate that the H component of the burst was located close to leading edge of the CME at a radial distance of r ≈ 2 R {sub ☉} in the solar atmosphere. The polarimeter observations of the type II burst, also at 80 MHz, indicate that the peak degree of circular polarization (dcp) corresponding to the emission generated in the corona ahead of and behind the associated MHD shock front are ≈0.05 ± 0.02 and ≈0.1 ± 0.01, respectively. We calculated the magnetic field B in the above two coronal regions by adopting the empirical relationship between the dcp and B for the harmonic plasma emission and the values are ≈(0.7-1.4) ± 0.2 G and ≈(1.4-2.8) ± 0.1 G, respectively.

  2. A HIGH-FREQUENCY TYPE II SOLAR RADIO BURST ASSOCIATED WITH THE 2011 FEBRUARY 13 CORONAL MASS EJECTION

    SciTech Connect

    Cho, K.-S.; Kim, R.-S.; Gopalswamy, N.; Kwon, R.-Y.; Yashiro, S.

    2013-03-10

    We examine the relationship between the high-frequency (425 MHz) type II radio burst and the associated white-light coronal mass ejection (CME) that occurred on 2011 February 13. The radio burst had a drift rate of 2.5 MHz s{sup -1}, indicating a relatively high shock speed. From SDO/AIA observations we find that a loop-like erupting front sweeps across high-density coronal loops near the start time of the burst (17:34:17 UT). The deduced distance of shock formation (0.06 Rs) from the flare center and speed of the shock (1100 km s{sup -1}) using the measured density from SDO/AIA observations are comparable to the height (0.05 Rs, from the solar surface) and speed (700 km s{sup -1}) of the CME leading edge observed by STEREO/EUVI. We conclude that the type II burst originates even in the low corona (<59 Mm or 0.08 Rs, above the solar surface) due to the fast CME shock passing through high-density loops.

  3. Evidence from stable isotopes and (10)Be for solar system formation triggered by a low-mass supernova.

    PubMed

    Banerjee, Projjwal; Qian, Yong-Zhong; Heger, Alexander; Haxton, W C

    2016-11-22

    About 4.6 billion years ago, some event disturbed a cloud of gas and dust, triggering the gravitational collapse that led to the formation of the solar system. A core-collapse supernova, whose shock wave is capable of compressing such a cloud, is an obvious candidate for the initiating event. This hypothesis can be tested because supernovae also produce telltale patterns of short-lived radionuclides, which would be preserved today as isotopic anomalies. Previous studies of the forensic evidence have been inconclusive, finding a pattern of isotopes differing from that produced in conventional supernova models. Here we argue that these difficulties either do not arise or are mitigated if the initiating supernova was a special type, low in mass and explosion energy. Key to our conclusion is the demonstration that short-lived (10)Be can be readily synthesized in such supernovae by neutrino interactions, while anomalies in stable isotopes are suppressed.

  4. Coronal mass ejection and solar flare initiation processes without appreciable changes of the large-scale magnetic field topology

    NASA Astrophysics Data System (ADS)

    Veselovsky, I. S.; Panasenco, O. A.

    We demonstrate that spurious three-dimensional re-constructions from two-dimensional images and movies of solar flares and coronal mass ejections can arise as a result of viewing conditions and projection effects, which are not always properly taken into account in the current literature. Theory and observations indicate that eruptions can proceed with or without large-scale topological changes of prominences and coronal magnetic fields. Electric currents and plasma drifts in crossed electric and magnetic fields play not negligible, but important role. This means that large-scale magnetic reconnections understood as topological transitions in the magnetic field are not always necessary for eruptions. The scenario of expanding and rising non-planar systems of preexisting loops and arcades, which are deforming when shearing at bottom parts, twisting and rotating at summits, satisfactory fits available observations. Movies are presented demonstrating this type of behavior with a preserved magnetic connectivity.

  5. The evolution of rotating stars. I - Method and exploratory calculations for a 7-solar-mass star

    NASA Technical Reports Server (NTRS)

    Endal, A. S.; Sofia, S.

    1976-01-01

    A method is developed which allows the evolution of rotating stars to be studied well beyond the main-sequence stage. Four different cases of redistribution of angular momentum in an evolving star are considered. Evolutionary sequences for a 7-solar-mass star, rotating according to these different cases, were computed from the zero-age main-sequence to the double-shell-source stage. Each sequence was begun with a (typical) equatorial rotational velocity of 210 km/s. On the main sequence, the effects of rotation are of minor importance. However, as the core contracts during later stages, important effects arise in all physically plausible cases. The outer regions of the cores approach critical velocities and develop unstable angular-velocity distributions. The effects of these instabilities should significantly alter the subsequent evolution.

  6. Evidence from stable isotopes and 10Be for solar system formation triggered by a low-mass supernova

    PubMed Central

    Banerjee, Projjwal; Qian, Yong-Zhong; Heger, Alexander; Haxton, W C

    2016-01-01

    About 4.6 billion years ago, some event disturbed a cloud of gas and dust, triggering the gravitational collapse that led to the formation of the solar system. A core-collapse supernova, whose shock wave is capable of compressing such a cloud, is an obvious candidate for the initiating event. This hypothesis can be tested because supernovae also produce telltale patterns of short-lived radionuclides, which would be preserved today as isotopic anomalies. Previous studies of the forensic evidence have been inconclusive, finding a pattern of isotopes differing from that produced in conventional supernova models. Here we argue that these difficulties either do not arise or are mitigated if the initiating supernova was a special type, low in mass and explosion energy. Key to our conclusion is the demonstration that short-lived 10Be can be readily synthesized in such supernovae by neutrino interactions, while anomalies in stable isotopes are suppressed. PMID:27873999

  7. Evidence from stable isotopes and 10Be for solar system formation triggered by a low-mass supernova

    NASA Astrophysics Data System (ADS)

    Banerjee, Projjwal; Qian, Yong-Zhong; Heger, Alexander; Haxton, W. C.

    2016-11-01

    About 4.6 billion years ago, some event disturbed a cloud of gas and dust, triggering the gravitational collapse that led to the formation of the solar system. A core-collapse supernova, whose shock wave is capable of compressing such a cloud, is an obvious candidate for the initiating event. This hypothesis can be tested because supernovae also produce telltale patterns of short-lived radionuclides, which would be preserved today as isotopic anomalies. Previous studies of the forensic evidence have been inconclusive, finding a pattern of isotopes differing from that produced in conventional supernova models. Here we argue that these difficulties either do not arise or are mitigated if the initiating supernova was a special type, low in mass and explosion energy. Key to our conclusion is the demonstration that short-lived 10Be can be readily synthesized in such supernovae by neutrino interactions, while anomalies in stable isotopes are suppressed.

  8. A Search for Transiting Neptune-Mass Extrasolar Planets in High-Precision Photometry of Solar-Type Stars

    NASA Technical Reports Server (NTRS)

    Henry, Stephen M.; Gillman, Amelie r.; Henry, Gregory W.

    2005-01-01

    Tennessee State University operates several automatic photometric telescopes (APTs) at Fairborn Observatory in southern Arizona. Four 0.8 m APTs have been dedicated to measuring subtle luminosity variations that accompany magnetic cycles in solar-type stars. Over 1000 program and comparison stars have been observed every clear night in this program for up to 12 years with a precision of approximately 0.0015 mag for a single observation. We have developed a transit-search algorithm, based on fitting a computed transit template for each trial period, and have used it to search our photometric database for transits of unknown companions. Extensive simulations with the APT data have shown that we can reliably recover transits with periods under 10 days as long as the transits have a depth of at least 0.0024 mag, or about 1.6 times the scatter in the photometric observations. Thus, due to our high photometric precision, we are sensitive to transits of possible short-period Neptune-mass planets that likely would have escaped detection by current radial velocity techniques. Our search of the APT data sets for 1087 program and comparison stars revealed no new transiting planets. However, the detection of several unknown grazing eclipsing binaries from among our comparison stars, with eclipse depths of only a few millimags, illustrates the success of our technique. We have used this negative result to place limits on the frequency of Neptune-mass planets in close orbits around solar-type stars in the Sun's vicinity.

  9. Comparing Spatial Distributions of Solar Prominence Mass Derived from Coronal Absorption

    NASA Technical Reports Server (NTRS)

    Gilbert, Holly; Kilper, Gary; Alexander, David; Kucera, Therese

    2010-01-01

    In the present work we extend the use of this mass-inference technique to a sample of prominences observed in at least two coronal lines. This approach, in theory, allows a direct calculation of prominence mass and helium abundance and how these properties vary spatially and temporally. Our motivation is two-fold: to obtain a He(exp 0)/H(exp 0) abundance ratio, and to determine how the relative spatial distribution of the two species varies in prominences. The first of these relies on the theoretical expectation that the amount of absorption at each EUV wavelength is well-characterized. However, in this work we show that due to a saturation of the continuum absorption in the 625 A and 368 A lines (which have much higher opacity compared to 195 A-) the uncertainties in obtaining the relative abundances are too high to give meaningful estimates. This is an important finding because of its impact on future studies in this area. The comparison of the spatial distribution of helium and hydrogen presented here augments previous observational work indicating that cross-field diffusion of neutrals is an important mechanism for mass loss. Significantly different loss timescales for neutral He and H (helium drains much more rapidly than hydrogen) can impact prominence structure, and both the present and past studies suggest this mechanism is playing a role in structure and possibly dynamics. Section 2 of this paper contains a description of the observations and Section 3 summarizes the method used to infer mass along with the criteria imposed in choosing prominences appropriate for this study. Section 3 also contains a discussion of the problems due to limitations of the available data and the implications for determining relative abundances. We present our results in Section 4, including plots of radial-like scans of prominence mass in different lines to show the spatial distribution of the different species. The last section contains a discussion summarizing the importance

  10. Effect of the relative optical air mass and the clearness index on solar erythemal UV irradiance.

    PubMed

    Moreno, J C; Serrano, M A; Cañada, J; Gurrea, G; Utrillas, M P

    2014-09-05

    This paper analyses the effects of the clearness index (Kt) and the relative optical air mass (mr) on erythemal UV irradiance (UVER). The UVER measurements were made in Valencia (Spain) from 6:00 am to 6:00 pm between June 2003 and December 2012 and (140,000 data points). Firstly, two models were used to calculate values for the erythemal ultraviolet irradiance clearness index (KtUVER) as a function of the global irradiance clearness index (Kt). Secondly, a potential regression model to measure the KtUVER as a function of the relative optical air mass was studied. The coefficients of this regression were evaluated for clear and cloudy days, as well as for days with high and low ozone levels. Thirdly, an analysis was made of the relationship between the two effects in the experimental database, with it being found that the highest degree of agreement, or the joint highest frequencies, are located in the optical mass range mr∈[1.0, 1.2] and the clearness index range of Kt∈[0.8, 1.0]. This is useful for establishing the ranges of parameters where models are more efficient. Simple equations have been tested that can provide additional information for the engineering projects concerning thermal installations. Fourthly, a high dispersion of radiation data was observed for intermediate values of the clearness for UV and UVER.

  11. GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Bejger, M.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; De, S.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fenyvesi, E.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fong, H.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gehrels, N.; Gemme, G.; Geng, P.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hamilton, H.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jian, L.; Jiménez-Forteza, F.; Johnson, W. W.; Johnson-McDaniel, N. K.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; K, Haris; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chi-Woong; Kim, Chunglee; Kim, J.; Kim, K.; Kim, N.; Kim, W.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kissel, J. S.; Klein, B.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Lewis, J. B.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Nedkova, K.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O. E. S.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Setyawati, Y.; Shaddock, D. A.; Shaffer, T.; Shahriar, M. S.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stevenson, S. P.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomlinson, C.; Tonelli, M.; Tornasi, Z.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yu, H.; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; Boyle, M.; Hemberger, D.; Kidder, L. E.; Lovelace, G.; Ossokine, S.; Scheel, M.; Szilagyi, B.; Teukolsky, S.; LIGO Scientific Collaboration; Virgo Collaboration

    2016-06-01

    We report the observation of a gravitational-wave signal produced by the coalescence of two stellar-mass black holes. The signal, GW151226, was observed by the twin detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO) on December 26, 2015 at 03:38:53 UTC. The signal was initially identified within 70 s by an online matched-filter search targeting binary coalescences. Subsequent off-line analyses recovered GW151226 with a network signal-to-noise ratio of 13 and a significance greater than 5 σ . The signal persisted in the LIGO frequency band for approximately 1 s, increasing in frequency and amplitude over about 55 cycles from 35 to 450 Hz, and reached a peak gravitational strain of 3. 4-0.9+0.7×10-22 . The inferred source-frame initial black hole masses are 14.2-3.7+8.3 M⊙ and 7. 5-2.3+2.3 M⊙, and the final black hole mass is 20.8-1.7+6.1 M⊙. We find that at least one of the component black holes has spin greater than 0.2. This source is located at a luminosity distance of 44 0-190+180 Mpc corresponding to a redshift of 0.0 9-0.04+0.03. All uncertainties define a 90% credible interval. This second gravitational-wave observation provides improved constraints on stellar populations and on deviations from general relativity.

  12. Influences of mass Chlorophyll-a blends using P3HT:PCBM for efficiency of organic solar cells

    NASA Astrophysics Data System (ADS)

    Lestari, E.; Supriyanto, A.; Iriani, Y.; Ramelan, A. H.; Nurosyid, F.

    2017-02-01

    Organic solar cells have been made using the material poly (3-hexylthiophene)(P3HT), [6, 6]-phenyl-C61-butyric acid methyl ester (PCBM), and Chlorophyll-a with blend metods. Active layer of P3HT:PCBM:Chlorophyll-a are deposited using spin coating with rotary speed of 2500 rpm for 10 seconds and subsequently heated at 1000C for 10 min. Mass of chlorophyll-a are 0.1 mg, 0.2 mg, and 0.3 mg. Thin layers are characterized by UV-Visible Spectrometer Lamda 25 for optical properties and Keithley 2602 for electrical properties. From the UV-Vis showed that absorbance of P3HT:PCBM:Chlorophyll-a are 400-614nm and 620-700 nm. Efficiency of P3HT:PCBM:Chlorophyll-a for mass chlorophyll 0.1 mg, 0.2 mg, and 0.3 mg are 2.68 x 10-2 %, 3.93 x 10-2 %, and 8.79 x 10-2 % respectively.

  13. Onset of the Magnetic Explosion in Solar Flares and Coronal Mass Ejections

    NASA Technical Reports Server (NTRS)

    Moore, R. L.; Sterling, A. C.; Hudson, H.; Lemen, J. R.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    We present observations of the magnetic field configuration and its transformation in six solar eruptive events that show good agreement with the Hirayama-Shibata model for eruptive flares. The observations arc X-ray images from the Yohkoh Soft X-ray Telescope (SXT) and magnetograms from Kitt Peak National Solar Observatory, interpreted together with the 1-8 Angstrom X-ray flux observed by GOES. The observations show: 1. Each event is a magnetic explosion that occurs in an initially closed magnetic bipole in which the core field is sheared and twisted in the shape of a sigmoid, having an oppositely curved elbow on each end. The arms of the opposite elbows are sheared past each other so that they overlap and are crossed low above the neutral line in the middle of the bipole. 2. Although four of the explosions arc ejective (blow open the bipole) and two are confined (arc arrested within the closed bipole), all six begin the same way. In the SXT iniages, the explosion begins with brightening and expansion of the two elbows together with the appearance of short bright sheared loops low over the neutral line under the crossed arms and, rising up from the crossed arms, long strands connecting the far ends of the elbows. 3. All six events arc single-bipole events in that during the onset and early development of the explosion they show no evidence for reconnection between the exploding bipole and any surrounding magnetic fields. We conclude that in each of our events the magnetic explosion was unleashed by runaway tether-cutting via implosive/explosive rcconnection in the middle of the sigmoid, as in the Hirayama-Shibata model. The similarity of the onsets of the two confined explosions to the onsets of the four ejective explosions and their agreement with the model indicate that runaway reconnection inside a sheared core field can begin whether or not the overlying fields (the envelope field and contiguous fields that press down on the envelope) allow the explosion to be

  14. Densities and mass motions in transition-zone plasmas in solar flares observed from Skylab

    NASA Technical Reports Server (NTRS)

    Cheng, C.-C.

    1980-01-01

    The electron densities and bulk motions in the transition-zone plasma of a solar flare are investigated by an analysis of EUV emission line spectra taken on Skylab. Spectra of three flares were obtained with the NRL normal incidence grating slit spectrograph in the ranges 1100-1940 and 1940-3940 A. The line ratios of transition-zone Si III lines and the intensity of the forbidden O IV 1401-A lines during flare maximum indicate electron densities on the order of 10 to the 12th/cu cm, decreasing by a factor of 2 to 3 in the flare decay phase. Line broadening of the transition-zone ions such as Si III, O IV, C IV and N V is noted, and the observed asymmetrical N V line profiles are approximated by a bi-Gaussian model of a stationary and a moving plasma component with a bulk velocity of 12 to 70 km/sec. Turbulent velocities of from 45 to 85 km/sec and from 20 to 40 km/sec are also indicated for the moving and stationary components of the transition-zone plasma, respectively.

  15. GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence.

    PubMed

    Abbott, B P; Abbott, R; Abbott, T D; Abernathy, M R; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Aiello, L; Ain, A; Ajith, P; Allen, B; Allocca, A; Altin, P A; Anderson, S B; Anderson, W G; Arai, K; Araya, M C; Arceneaux, C C; Areeda, J S; Arnaud, N; Arun, K G; Ascenzi, S; Ashton, G; Ast, M; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Babak, S; Bacon, P; Bader, M K M; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barta, D; Bartlett, J; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Baune, C; Bavigadda, V; Bazzan, M; Bejger, M; Bell, A S; Berger, B K; Bergmann, G; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Birch, J; Birney, R; Birnholtz, O; Biscans, S; Bisht, A; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blair, C D; Blair, D G; Blair, R M; Bloemen, S; Bock, O; Boer, M; Bogaert, G; Bogan, C; Bohe, A; Bond, C; Bondu, F; Bonnand, R; Boom, B A; Bork, R; Boschi, V; Bose, S; Bouffanais, Y; Bozzi, A; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Broida, J E; Brooks, A F; Brown, D A; Brown, D D; Brown, N M; Brunett, S; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cabero, M; Cadonati, L; Cagnoli, G; Cahillane, C; Calderón Bustillo, J; Callister, T; Calloni, E; Camp, J B; Cannon, K C; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Casanueva Diaz, J; Casentini, C; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C B; Cerboni Baiardi, L; Cerretani, G; Cesarini, E; Chamberlin, S J; Chan, M; Chao, S; Charlton, P; Chassande-Mottin, E; Cheeseboro, B D; Chen, H Y; Chen, Y; Cheng, C; Chincarini, A; Chiummo, A; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, S; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Coccia, E; Cohadon, P-F; Colla, A; Collette, C G; Cominsky, L; Constancio, M; Conte, A; Conti, L; Cook, D; Corbitt, T R; Cornish, N; Corsi, A; Cortese, S; Costa, C A; Coughlin, M W; Coughlin, S B; Coulon, J-P; Countryman, S T; Couvares, P; Cowan, E E; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Craig, K; Creighton, J D E; Cripe, J; Crowder, S G; Cumming, A; Cunningham, L; Cuoco, E; Dal Canton, T; Danilishin, S L; D'Antonio, S; Danzmann, K; Darman, N S; Dasgupta, A; Da Silva Costa, C F; Dattilo, V; Dave, I; Davier, M; Davies, G S; Daw, E J; Day, R; De, S; DeBra, D; Debreczeni, G; Degallaix, J; De Laurentis, M; Deléglise, S; Del Pozzo, W; Denker, T; Dent, T; Dergachev, V; De Rosa, R; DeRosa, R T; DeSalvo, R; Devine, R C; Dhurandhar, S; Díaz, M C; Di Fiore, L; Di Giovanni, M; Di Girolamo, T; Di Lieto, A; Di Pace, S; Di Palma, I; Di Virgilio, A; Dolique, V; Donovan, F; Dooley, K L; Doravari, S; Douglas, R; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Ducrot, M; Dwyer, S E; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H-B; Ehrens, P; Eichholz, J; Eikenberry, S S; Engels, W; Essick, R C; Etzel, T; Evans, M; Evans, T M; Everett, R; Factourovich, M; Fafone, V; Fair, H; Fairhurst, S; Fan, X; Fang, Q; Farinon, S; Farr, B; Farr, W M; Favata, M; Fays, M; Fehrmann, H; Fejer, M M; Fenyvesi, E; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Fiori, I; Fiorucci, D; Fisher, R P; Flaminio, R; Fletcher, M; Fong, H; Fournier, J-D; Frasca, S; Frasconi, F; Frei, Z; Freise, A; Frey, R; Frey, V; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gabbard, H A G; Gair, J R; Gammaitoni, L; Gaonkar, S G; Garufi, F; Gaur, G; Gehrels, N; Gemme, G; Geng, P; Genin, E; Gennai, A; George, J; Gergely, L; Germain, V; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, K; Glaefke, A; Goetz, E; Goetz, R; Gondan, L; González, G; Gonzalez Castro, J M; Gopakumar, A; Gordon, N A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Gouaty, R; Grado, A; Graef, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Green, A C; Groot, P; Grote, H; Grunewald, S; Guidi, G M; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Hacker, J J; Hall, B R; Hall, E D; Hamilton, H; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hannam, M D; Hanson, J; Hardwick, T; Harms, J; Harry, G M; Harry, I W; Hart, M J; Hartman, M T; Haster, C-J; Haughian, K; Healy, J; Heidmann, A; Heintze, M C; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Hennig, J; Henry, J; Heptonstall, A W; Heurs, M; Hild, S; Hoak, D; Hofman, D; Holt, K; Holz, D E; Hopkins, P; Hough, J; Houston, E A; Howell, E J; Hu, Y M; Huang, S; Huerta, E A; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Indik, N; Ingram, D R; Inta, R; Isa, H N; Isac, J-M; Isi, M; Isogai, T; Iyer, B R; Izumi, K; Jacqmin, T; Jang, H; Jani, K; Jaranowski, P; Jawahar, S; Jian, L; Jiménez-Forteza, F; Johnson, W W; Johnson-McDaniel, N K; Jones, D I; Jones, R; Jonker, R J G; Ju, L; K, Haris; Kalaghatgi, C V; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Kapadia, S J; Karki, S; Karvinen, K S; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, S; Kaur, T; Kawabe, K; Kéfélian, F; Kehl, M S; Keitel, D; Kelley, D B; Kells, W; Kennedy, R; Key, J S; Khalili, F Y; Khan, I; Khan, S; Khan, Z; Khazanov, E A; Kijbunchoo, N; Kim, Chi-Woong; Kim, Chunglee; Kim, J; Kim, K; Kim, N; Kim, W; Kim, Y-M; Kimbrell, S J; King, E J; King, P J; Kissel, J S; Klein, B; Kleybolte, L; Klimenko, S; Koehlenbeck, S M; Koley, S; Kondrashov, V; Kontos, A; Korobko, M; Korth, W Z; Kowalska, I; Kozak, D B; Kringel, V; Krishnan, B; Królak, A; Krueger, C; Kuehn, G; Kumar, P; Kumar, R; Kuo, L; Kutynia, A; Lackey, B D; Landry, M; Lange, J; Lantz, B; Lasky, P D; Laxen, M; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lebigot, E O; Lee, C H; Lee, H K; Lee, H M; Lee, K; Lenon, A; Leonardi, M; Leong, J R; Leroy, N; Letendre, N; Levin, Y; Lewis, J B; Li, T G F; Libson, A; Littenberg, T B; Lockerbie, N A; Lombardi, A L; London, L T; Lord, J E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J D; Lousto, C O; Lück, H; Lundgren, A P; Lynch, R; Ma, Y; Machenschalk, B; MacInnis, M; Macleod, D M; Magaña-Sandoval, F; Magaña Zertuche, L; Magee, R M; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Mandel, I; Mandic, V; Mangano, V; Mansell, G L; Manske, M; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markosyan, A S; Maros, E; Martelli, F; Martellini, L; Martin, I W; Martynov, D V; Marx, J N; Mason, K; Masserot, A; Massinger, T J; Masso-Reid, M; Mastrogiovanni, S; Matichard, F; Matone, L; Mavalvala, N; Mazumder, N; McCarthy, R; McClelland, D E; McCormick, S; McGuire, S C; McIntyre, G; McIver, J; McManus, D J; McRae, T; McWilliams, S T; Meacher, D; Meadors, G D; Meidam, J; Melatos, A; Mendell, G; Mercer, R A; Merilh, E L; Merzougui, M; Meshkov, S; Messenger, C; Messick, C; Metzdorff, R; Meyers, P M; Mezzani, F; Miao, H; Michel, C; Middleton, H; Mikhailov, E E; Milano, L; Miller, A L; Miller, A; Miller, B B; Miller, J; Millhouse, M; Minenkov, Y; Ming, J; Mirshekari, S; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moggi, A; Mohan, M; Mohapatra, S R P; Montani, M; Moore, B C; Moore, C J; Moraru, D; Moreno, G; Morriss, S R; Mossavi, K; Mours, B; Mow-Lowry, C M; Mueller, G; Muir, A W; Mukherjee, Arunava; Mukherjee, D; Mukherjee, S; Mukund, N; Mullavey, A; Munch, J; Murphy, D J; Murray, P G; Mytidis, A; Nardecchia, I; Naticchioni, L; Nayak, R K; Nedkova, K; Nelemans, G; Nelson, T J N; Neri, M; Neunzert, A; Newton, G; Nguyen, T T; Nielsen, A B; Nissanke, S; Nitz, A; Nocera, F; Nolting, D; Normandin, M E N; Nuttall, L K; Oberling, J; Ochsner, E; O'Dell, J; Oelker, E; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Oliver, M; Oppermann, P; Oram, Richard J; O'Reilly, B; O'Shaughnessy, R; Ottaway, D J; Overmier, H; Owen, B J; Pai, A; Pai, S A; Palamos, J R; Palashov, O; Palomba, C; Pal-Singh, A; Pan, H; Pankow, C; Pannarale, F; Pant, B C; Paoletti, F; Paoli, A; Papa, M A; Paris, H R; Parker, W; Pascucci, D; Pasqualetti, A; Passaquieti, R; Passuello, D; Patricelli, B; Patrick, Z; Pearlstone, B L; Pedraza, M; Pedurand, R; Pekowsky, L; Pele, A; Penn, S; Perreca, A; Perri, L M; Pfeiffer, H P; Phelps, M; Piccinni, O J; Pichot, M; Piergiovanni, F; Pierro, V; Pillant, G; Pinard, L; Pinto, I M; Pitkin, M; Poe, M; Poggiani, R; Popolizio, P; Post, A; Powell, J; Prasad, J; Predoi, V; Prestegard, T; Price, L R; Prijatelj, M; Principe, M; Privitera, S; Prix, R; Prodi, G A; Prokhorov, L; Puncken, O; Punturo, M; Puppo, P; Pürrer, M; Qi, H; Qin, J; Qiu, S; Quetschke, V; Quintero, E A; Quitzow-James, R; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Raja, S; Rajan, C; Rakhmanov, M; Rapagnani, P; Raymond, V; Razzano, M; Re, V; Read, J; Reed, C M; Regimbau, T; Rei, L; Reid, S; Reitze, D H; Rew, H; Reyes, S D; Ricci, F; Riles, K; Rizzo, M; Robertson, N A; Robie, R; Robinet, F; Rocchi, A; Rolland, L; Rollins, J G; Roma, V J; Romano, J D; Romano, R; Romanov, G; Romie, J H; Rosińska, D; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Sachdev, S; Sadecki, T; Sadeghian, L; Sakellariadou, M; Salconi, L; Saleem, M; Salemi, F; Samajdar, A; Sammut, L; Sanchez, E J; Sandberg, V; Sandeen, B; Sanders, J R; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Sauter, O E S; Savage, R L; Sawadsky, A; Schale, P; Schilling, R; Schmidt, J; Schmidt, P; Schnabel, R; Schofield, R M S; Schönbeck, A; Schreiber, E; Schuette, D; Schutz, B F; Scott, J; Scott, S M; Sellers, D; Sengupta, A S; Sentenac, D; Sequino, V; Sergeev, A; Setyawati, Y; Shaddock, D A; Shaffer, T; Shahriar, M S; Shaltev, M; Shapiro, B; Shawhan, P; Sheperd, A; Shoemaker, D H; Shoemaker, D M; Siellez, K; Siemens, X; Sieniawska, M; Sigg, D; Silva, A D; Singer, A; Singer, L P; Singh, A; Singh, R; Singhal, A; Sintes, A M; Slagmolen, B J J; Smith, J R; Smith, N D; Smith, R J E; Son, E J; Sorazu, B; Sorrentino, F; Souradeep, T; Srivastava, A K; Staley, A; Steinke, M; Steinlechner, J; Steinlechner, S; Steinmeyer, D; Stephens, B C; Stevenson, S P; Stone, R; Strain, K A; Straniero, N; Stratta, G; Strauss, N A; Strigin, S; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, L; Sunil, S; Sutton, P J; Swinkels, B L; Szczepańczyk, M J; Tacca, M; Talukder, D; Tanner, D B; Tápai, M; Tarabrin, S P; Taracchini, A; Taylor, R; Theeg, T; Thirugnanasambandam, M P; Thomas, E G; Thomas, M; Thomas, P; Thorne, K A; Thrane, E; Tiwari, S; Tiwari, V; Tokmakov, K V; Toland, K; Tomlinson, C; Tonelli, M; Tornasi, Z; Torres, C V; Torrie, C I; Töyrä, D; Travasso, F; Traylor, G; Trifirò, D; Tringali, M C; Trozzo, L; Tse, M; Turconi, M; Tuyenbayev, D; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; Vallisneri, M; van Bakel, N; van Beuzekom, M; van den Brand, J F J; Van Den Broeck, C; Vander-Hyde, D C; van der Schaaf, L; van Heijningen, J V; van Veggel, A A; Vardaro, M; Vass, S; Vasúth, M; Vaulin, R; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Verkindt, D; Vetrano, F; Viceré, A; Vinciguerra, S; Vine, D J; Vinet, J-Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Voss, D V; Vousden, W D; Vyatchanin, S P; Wade, A R; Wade, L E; Wade, M; Walker, M; Wallace, L; Walsh, S; Wang, G; Wang, H; Wang, M; Wang, X; Wang, Y; Ward, R L; Warner, J; Was, M; Weaver, B; Wei, L-W; Weinert, M; Weinstein, A J; Weiss, R; Wen, L; Weßels, P; Westphal, T; Wette, K; Whelan, J T; Whiting, B F; Williams, R D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M H; Winkler, W; Wipf, C C; Wittel, H; Woan, G; Woehler, J; Worden, J; Wright, J L; Wu, D S; Wu, G; Yablon, J; Yam, W; Yamamoto, H; Yancey, C C; Yu, H; Yvert, M; Zadrożny, A; Zangrando, L; Zanolin, M; Zendri, J-P; Zevin, M; Zhang, L; Zhang, M; Zhang, Y; Zhao, C; Zhou, M; Zhou, Z; Zhu, X J; Zucker, M E; Zuraw, S E; Zweizig, J; Boyle, M; Hemberger, D; Kidder, L E; Lovelace, G; Ossokine, S; Scheel, M; Szilagyi, B; Teukolsky, S

    2016-06-17

    We report the observation of a gravitational-wave signal produced by the coalescence of two stellar-mass black holes. The signal, GW151226, was observed by the twin detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO) on December 26, 2015 at 03:38:53 UTC. The signal was initially identified within 70 s by an online matched-filter search targeting binary coalescences. Subsequent off-line analyses recovered GW151226 with a network signal-to-noise ratio of 13 and a significance greater than 5σ. The signal persisted in the LIGO frequency band for approximately 1 s, increasing in frequency and amplitude over about 55 cycles from 35 to 450 Hz, and reached a peak gravitational strain of 3.4_{-0.9}^{+0.7}×10^{-22}. The inferred source-frame initial black hole masses are 14.2_{-3.7}^{+8.3}M_{⊙} and 7.5_{-2.3}^{+2.3}M_{⊙}, and the final black hole mass is 20.8_{-1.7}^{+6.1}M_{⊙}. We find that at least one of the component black holes has spin greater than 0.2. This source is located at a luminosity distance of 440_{-190}^{+180}  Mpc corresponding to a redshift of 0.09_{-0.04}^{+0.03}. All uncertainties define a 90% credible interval. This second gravitational-wave observation provides improved constraints on stellar populations and on deviations from general relativity.

  16. Exploring the Largest Mass Fraction of the Solar System: the Case for Planetary Interiors

    NASA Technical Reports Server (NTRS)

    Danielson, L. R.; Draper, D.; Righter, K.; McCubbin, F.; Boyce, J.

    2017-01-01

    Why explore planetary interiors: The typical image that comes to mind for planetary science is that of a planet surface. And while surface data drive our exploration of evolved geologic processes, it is the interiors of planets that hold the key to planetary origins via accretionary and early differentiation processes. It is that initial setting of the bulk planet composition that sets the stage for all geologic processes that follow. But nearly all of the mass of planets is inaccessible to direct examination, making experimentation an absolute necessity for full planetary exploration.

  17. A comparison of solar helium-3-rich events with type II bursts and coronal mass ejections

    NASA Technical Reports Server (NTRS)

    Kahler, S.; Reames, D. V.; Sheeley, N. R., Jr.; Howard, R. A.; Michels, D. J.; Koomen, M. J.

    1985-01-01

    The acceleration process for energetic particles in He-3-rich events and for particles in normal-abundance events are compared. A list of 66 He-3-rich events observed with the Goddard Space Flight Center particle detector on ISEE 3 is presented, and it is shown that these events are not statistically associated with either of the two common signatures of normal-abundance events, metric type II and coronal mass ejections. This result indicates that enhanced abundance events may be produced only in the impulsive phases of flares, while normal abundance events are produced in subsequent flare shock waves.

  18. A study of mass production and installation of small solar thermal electric power systems

    NASA Technical Reports Server (NTRS)

    Butterfield, J. F.

    1980-01-01

    Technological constraints, materials availability, production capacity, and manufacturing and installations plans and costs at different production levels are included in a study of concentrating collector industrialization. As cobalt for the engine and receiver is supply limited, alternative lower temperature alloys and higher temperature materials such as ceramics are discussed. Economics and production efficiency favor co-location of cellular and thin glass production for reflectors. Assembly and installation are expensive for small sites and few alternatives exist to apply mass production techniques to lower these costs for the selected design. Stepping motors in the size and quantities required are not commercially available today but could be in the future.

  19. Persistent evidence of a jovian mass solar companion in the Oort cloud

    NASA Astrophysics Data System (ADS)

    Matese, John J.; Whitmire, Daniel P.

    2011-02-01

    We present updated dynamical and statistical analyses of outer Oort cloud cometary evidence suggesting that the Sun has a wide-binary jovian mass companion. The results support a conjecture that there exists a companion of mass ≈ 1-4MJupiter orbiting in the innermost region of the outer Oort cloud. Our most restrictive prediction is that the orientation angles of the orbit plane in galactic coordinates are centered on Ω, the galactic longitude of the ascending node = 319° and i, the galactic inclination = 103° (or the opposite direction) with an uncertainty in the orbit normal direction subtending <2% of the sky. Such a companion could also have produced the detached Kuiper Belt object Sedna. If the object exists, the absence of similar evidence in the inner Oort cloud implies that common beliefs about the origin of observed inner Oort cloud comets must be reconsidered. Evidence of the putative companion would have been recorded by the Wide-field Infrared Survey Explorer (WISE) which has completed its primary mission and is continuing on secondary objectives.

  20. The Width of a Solar Coronal Mass Ejection and the Source of the Driving Magnetic Explosion

    NASA Technical Reports Server (NTRS)

    Moore, Ronald L.; Sterling, Alphonse C.; Suess, Steven T.

    2007-01-01

    We show that the strength of the magnetic field in the area covered by the flare arcade following a CME-producing ejective solar eruption can be estimated from the final angular width of the CME in the outer corona and the final angular width of the flare arcade. We assume (1) the flux-rope plasmoid ejected from the flare site becomes the interior of the CME plasmoid, (2) in the outer corona (R greater than 2R(sub Sun)) the CME is roughly a spherical plasmoid with legs shaped like a light bulb, and (3) beyond some height in or below the outer corona the CME plasmoid is in lateral pressure balance with the surrounding magnetic field. The strength of the nearly radial magnetic field in the outer corona is estimated from the radial component of the interplanetary magnetic field measured by Ulysses. We apply this model to three well-observed CMEs that exploded from flare regions of extremely different size and magnetic setting. One of these CMEs is an over-and-out CME that exploded from a laterally far offset compact ejective flare. In each event, the estimated source-region field strength is appropriate for the magnetic setting of the flare. This agreement (1) indicates that CMEs are propelled by the magnetic field of the CME plasmoid pushing against the surrounding magnetic field, (2) supports the magnetic-arch-blowout scenario for over-and-out CMEs, and (3) shows that a CME s final angular width in the outer corona can be estimated from the amount of magnetic flux covered by the source-region flare arcade.

  1. COMBINED MULTIPOINT REMOTE AND IN SITU OBSERVATIONS OF THE ASYMMETRIC EVOLUTION OF A FAST SOLAR CORONAL MASS EJECTION

    SciTech Connect

    Rollett, T.; Möstl, C.; Temmer, M.; Veronig, A. M.; Amerstorfer, U. V.; Frahm, R. A.; Davies, J. A.; Vršnak, B.; Žic, T.; Farrugia, C. J.; Zhang, T. L.

    2014-07-20

    We present an analysis of the fast coronal mass ejection (CME) of 2012  March 7, which was imaged by both STEREO spacecraft and observed in situ by MESSENGER, Venus Express, Wind, and Mars Express. Based on detected arrivals at four different positions in interplanetary space, it was possible to strongly constrain the kinematics and the shape of the ejection. Using the white-light heliospheric imagery from STEREO-A and B, we derived two different kinematical profiles for the CME by applying the novel constrained self-similar expansion method. In addition, we used a drag-based model to investigate the influence of the ambient solar wind on the CME's propagation. We found that two preceding CMEs heading in different directions disturbed the overall shape of the CME and influenced its propagation behavior. While the Venus-directed segment underwent a gradual deceleration (from ∼2700 km s{sup –1} at 15 R {sub ☉} to ∼1500 km s{sup –1} at 154 R {sub ☉}), the Earth-directed part showed an abrupt retardation below 35 R {sub ☉} (from ∼1700 to ∼900 km s{sup –1}). After that, it was propagating with a quasi-constant speed in the wake of a preceding event. Our results highlight the importance of studies concerning the unequal evolution of CMEs. Forecasting can only be improved if conditions in the solar wind are properly taken into account and if attention is also paid to large events preceding the one being studied.

  2. Titius-Bode law in the Solar System. Dependence of the regularity parameter on the central body mass

    NASA Astrophysics Data System (ADS)

    Georgiev, Tsvetan B.

    2016-07-01

    Near-commensurability of the orbital sizes or periods exists in the Solar system for the massive planets and the massive satellites of Jupiter, Saturn and Uranus. It is well revealed by the Titius-Bode law (TBL) long ago by Dermott (1968), but is not been explained convincingly yet. Independently on this fact, the question about the dependence of the scale constant of the TBL on the mass of the central body is open. In this paper we show such a dependence. Due to the dynamic evolution the orbits of the massive planets and satellites may be in a transient stage when a primary TBL is well pronounced. Simultaneously a secondary TBL, a trail from the past as a hint for the future, may be less pronounced. The TBL is fitted after the numeration of the objects. For this reason we derive a special "curve" and we use 2 its minimums to introduce a primary and a secondary numeration for the objects. Thus we derive constants of 2 TBLs and build the searched dependence by twice as many points. In this paper we show and use pairs of TBLs for the satellite systems of Jupiter, Saturn, Uranus, Neptune and Pluto, as well as for the solar system in two cases - with 4 massive planets and with 8 massive planets. In fig. 10 we show the statistically significant dependences where the coefficient of the near-commensurability for the orbital sizes varies from about 1.3 for the satellites of Pluto to about 1.7 for the planets of the Sun.

  3. Solar gamma-ray-line flares, type II radio bursts, and coronal mass ejections

    NASA Technical Reports Server (NTRS)

    Cliver, E. W.; Cane, H. V.; Forrest, D. J.; Koomen, M. J.; Howard, R. A.; Wright, C. S.

    1991-01-01

    A Big Flare Syndrome (BFS) test is used to substantiate earlier reports of a statistically significant association between nuclear gamma-ray-line (GRL) flares and metric type II bursts from coronal shocks. The type II onset characteristically follows the onset of gamma-ray emission with a median delay of two minutes. It is found that 70-90 percent of GRL flares for which coronagraph data were available were associated with coronal mass ejections (CMEs). Gradual and impulsive GRL flares were equally well associated with CMEs. The CMEs were typically fast, with a median speed greater than 800 km/s. possible `non-BFS' explanations for the GRL-type II association are discussed.

  4. Self-similar expansion of solar coronal mass ejections: Implications for Lorentz self-force driving

    SciTech Connect

    Subramanian, Prasad; Arunbabu, K. P.; Mauriya, Adwiteey; Vourlidas, Angelos

    2014-08-01

    We examine the propagation of several coronal mass ejections (CMEs) with well-observed flux rope signatures in the field of view of the SECCHI coronagraphs on board the STEREO satellites using the graduated cylindrical shell fitting method of Thernisien et al. We find that the manner in which they propagate is approximately self-similar; i.e., the ratio (κ) of the flux rope minor radius to its major radius remains approximately constant with time. We use this observation of self-similarity to draw conclusions regarding the local pitch angle (γ) of the flux rope magnetic field and the misalignment angle (χ) between the current density J and the magnetic field B. Our results suggest that the magnetic field and current configurations inside flux ropes deviate substantially from a force-free state in typical coronagraph fields of view, validating the idea of CMEs being driven by Lorentz self-forces.

  5. Results from the AFRL Solar Mass Ejection Imager Mission - Four Years of Operation

    NASA Astrophysics Data System (ADS)

    Johnston, J. C.; Radick, R. R.

    2006-12-01

    This January marks the fourth anniversary of the launch of the Coriolis spacecraft that carries SMEI. Since 2003, SMEI has been recording nearly-full sky images every orbit (103 minutes) to at least 9th magnitude with 1o resolution and transmitting them to Earth. SMEI's main mission was to demonstrate that coronal mass ejections (CMEs) could be detected and tracked through the inner heliosphere en route to Earth to improve space weather forecasts. Besides mission applications, this unique dataset has provided insight into CME morphology and driving forces, interactions between comet tails and the heliosphere, zodiacal light, stellar variability and high altitude auroral phenomena. SMEI also observes asteroids and debris. This talk will briefly highlight accomplishments of the SMEI team and discuss future directions for the SMEI research program, such as tracking CMEs to other planets, searching for streamers and co-rotating interactive regions, and what might be the next step in operational heliospheric imaging of CMEs.

  6. The first gravitational-wave source from the isolated evolution of two stars in the 40-100 solar mass range

    NASA Astrophysics Data System (ADS)

    Belczynski, Krzysztof; Holz, Daniel E.; Bulik, Tomasz; O'Shaughnessy, Richard

    2016-06-01

    The merger of two massive (about 30 solar masses) black holes has been detected in gravitational waves. This discovery validates recent predictions that massive binary black holes would constitute the first detection. Previous calculations, however, have not sampled the relevant binary-black-hole progenitors—massive, low-metallicity binary stars—with sufficient accuracy nor included sufficiently realistic physics to enable robust predictions to better than several orders of magnitude. Here we report high-precision numerical simulations of the formation of binary black holes via the evolution of isolated binary stars, providing a framework within which to interpret the first gravitational-wave source, GW150914, and to predict the properties of subsequent binary-black-hole gravitational-wave events. Our models imply that these events form in an environment in which the metallicity is less than ten per cent of solar metallicity, and involve stars with initial masses of 40-100 solar masses that interact through mass transfer and a common-envelope phase. These progenitor stars probably formed either about 2 billion years or, with a smaller probability, 11 billion years after the Big Bang. Most binary black holes form without supernova explosions, and their spins are nearly unchanged since birth, but do not have to be parallel. The classical field formation of binary black holes we propose, with low natal kicks (the velocity of the black hole at birth) and restricted common-envelope evolution, produces approximately 40 times more binary-black-holes mergers than do dynamical formation channels involving globular clusters; our predicted detection rate of these mergers is comparable to that from homogeneous evolution channels. Our calculations predict detections of about 1,000 black-hole mergers per year with total masses of 20-80 solar masses once second-generation ground-based gravitational-wave observatories reach full sensitivity.

  7. The first gravitational-wave source from the isolated evolution of two stars in the 40-100 solar mass range.

    PubMed

    Belczynski, Krzysztof; Holz, Daniel E; Bulik, Tomasz; O'Shaughnessy, Richard

    2016-06-23

    The merger of two massive (about 30 solar masses) black holes has been detected in gravitational waves. This discovery validates recent predictions that massive binary black holes would constitute the first detection. Previous calculations, however, have not sampled the relevant binary-black-hole progenitors--massive, low-metallicity binary stars--with sufficient accuracy nor included sufficiently realistic physics to enable robust predictions to better than several orders of magnitude. Here we report high-precision numerical simulations of the formation of binary black holes via the evolution of isolated binary stars, providing a framework within which to interpret the first gravitational-wave source, GW150914, and to predict the properties of subsequent binary-black-hole gravitational-wave events. Our models imply that these events form in an environment in which the metallicity is less than ten per cent of solar metallicity, and involve stars with initial masses of 40-100 solar masses that interact through mass transfer and a common-envelope phase. These progenitor stars probably formed either about 2 billion years or, with a smaller probability, 11 billion years after the Big Bang. Most binary black holes form without supernova explosions, and their spins are nearly unchanged since birth, but do not have to be parallel. The classical field formation of binary black holes we propose, with low natal kicks (the velocity of the black hole at birth) and restricted common-envelope evolution, produces approximately 40 times more binary-black-holes mergers than do dynamical formation channels involving globular clusters; our predicted detection rate of these mergers is comparable to that from homogeneous evolution channels. Our calculations predict detections of about 1,000 black-hole mergers per year with total masses of 20-80 solar masses once second-generation ground-based gravitational-wave observatories reach full sensitivity.

  8. Frequency Drift Rate Investigation of Solar Radio Burst Type II Due to Coronal Mass Ejections Occurrence on 4th November 2015 Captured by CALLISTO at Sumedang-Indonesia

    NASA Astrophysics Data System (ADS)

    Batubara, M.; Manik, T.; Suryana, R.; Lathif, M.; Sitompul, P.; Zamzam, M.; Mumtahana, F.

    2017-03-01

    The formations type of solar radio bursts can be known base on the frequency range that is detected. The CALLISTO system works with a wide band of the frequency making it possible to detect several types of solar burst. Indonesia exactly at Sumedang, CALLISTO system detected the formation of solar radio bursts forms of type II for the first time on 5 November 2014. On the other side, CALLISTO spectrometer detects and traces the phenomenon of CME (Coronal Mass Ejections) which causes the solar radio burst type II occurrence. In this paper will be calculated frequency drift rate during the occurrence of solar radio bursts of type II phenomenon on 4th November 2015 at 03:30 UT. The results of these calculations will be discussed as a related study of drift rate during the phenomenon of burst type II radio bursts associated with CME. The obtained drift rate during the solar radio bursts events above 2.8 MHz / s with low drift rate so that the speed of the CME that occurred only about 790 km / s as shown from LASCO.

  9. European Regional Astronomy Meeting of the IAU, 10th, Prague, Czechoslovakia, Aug. 24-29, 1987, Proceedings. Volume 5 - Astrophysics

    NASA Astrophysics Data System (ADS)

    Harmanec, Petr

    Astrophysics papers are presented, covering topics such as UV stellar spectra, far-UV spectra from Voyager 1 and 2, stellar winds in A-type supergiants, calibrated IUE low-resolution spectra of G-type stars, searches for linear polarization and optical flashes in gamma-ray sources, binary evolution, a spectral investigation of eclipsing binaries, the statistical properties of visual and eclipsing binaries, luminous accretion disk and high ionization emission lines in interacting binaries, and the electromagnetic radiation in the atmospheres of close binary stars. Papers are presented on the rapid variability of early-type stars, O stars, Be stars, O-B runaways, HD 184279, rapidly rotating Delta Scuti stars, KY And, Alpha And, 53 Arietis, chromospherically active stars, SV Camelopardalis, HK Lac, Ru Lupi, Lambda And, low-mass X-ray binaries, Omicron And, massive X-ray binaries, and 59 Cyg. Other topics include flare activity on HD 12211, nonradial pulsations, irregularities in pulsating stars, vibrational instability of massive stars, the smoothing cubic spline functions, and the possible causes of rapid variability in stars.

  10. Gradual Solar Coronal Dimming and Evolution of Coronal Mass Ejection in the Early Phase

    NASA Astrophysics Data System (ADS)

    Qiu, Jiong; Cheng, Jianxia

    2017-03-01

    We report observations of a two-stage coronal dimming in an eruptive event of a two-ribbon flare and a fast coronal mass ejection (CME). Weak gradual dimming persists for more than half an hour before the onset of the two-ribbon flare and the fast rise of the CME. It is followed by abrupt rapid dimming. The two-stage dimming occurs in a pair of conjugate dimming regions adjacent to the two flare ribbons, and the flare onset marks the transition between the two stages of dimming. At the onset of the two-ribbon flare, transient brightenings are also observed inside the dimming regions, before rapid dimming occurs at the same places. These observations suggest that the CME structure, most probably anchored at the twin dimming regions, undergoes a slow rise before the flare onset, and its kinematic evolution has significantly changed at the onset of flare reconnection. We explore diagnostics of the CME evolution in the early phase with analysis of the gradual dimming signatures prior to the CME eruption.

  11. PSEUDOSTREAMERS AS THE SOURCE OF A SEPARATE CLASS OF SOLAR CORONAL MASS EJECTIONS

    SciTech Connect

    Wang, Y.-M.

    2015-04-10

    Using white-light and extreme-ultraviolet imaging observations, we confirm that pseudostreamers (streamers that separate coronal holes of the same polarity) give rise to a different type of coronal mass ejection (CME) from that associated with helmet streamers (defined as separating coronal holes of opposite polarity). Whereas helmet streamers are the source of the familiar bubble-shaped CMEs characterized by gradual acceleration and a three-part structure, pseudostreamers produce narrower, fanlike ejections with roughly constant speeds. These ejections, which are typically triggered by underlying filament eruptions or small, flaring active regions, are confined laterally and channeled outward by the like-polarity open flux that converges onto the pseudostreamer plasma sheet from both sides. In contrast, helmet streamer CMEs are centered on the relatively weak field around the heliospheric current sheet and thus undergo greater lateral expansion. Pseudostreamer ejections have a morphological resemblance to white-light jets from coronal holes; however, unlike the latter, they are not primarily driven by interchange reconnection, and tend to have larger widths (∼20°–30°), lower speeds (∼250–700 km s{sup −1}), and more complex internal structure.

  12. Coronal Mass Ejections Associated With Impulsive Solar Flares - Observations With SECCHI EUVI On STEREO

    NASA Astrophysics Data System (ADS)

    Nitta, N. V.; Lemen, J. R.; Wuelser, J.; Aschwanden, M. J.; Freeland, S. L.; Zarro, D. M.

    2008-12-01

    Long-duration flares, sometimes referred to as Long Decay Events (LDEs), are known to be unmistakable signatures of coronal mass ejections (CMEs), and often of fast and large ones. Short-duration or impulsive flares, on the other hand, do not as frequently accompany CMEs, even though X-ray plasmoid ejections seen in some of these flares may suggest that all flares are eruptive irrespective of durations. Some of these ejections in X-ray or EUV images could be failed ejections, however, meaning that they do not move into interplanetary medium. A complementary, and perhaps more reliable signature of a CME in the low corona may be large-scale dimming typically observed at 1-2 MK. We report on high cadence observations of SECCHI EUVI on STEREO that show this phenomenon in weak impulsive flares more frequently than expected. We systematically study flare periods with good data coverage. In order to avoid false dimming, we use both base and running difference images after carefully co-aligning the image pairs. Some of the dimming events were observed in more than one channel and at two widely separated view angles, letting us better understand the nature of dimming especially in terms of the associated CME. We discuss how the properties of dimming are reflected in CME parameters, how to distinguish the impulsive flares with large- scale effects from those that are confined, and whether similar events could account for orphan ICMEs without a clearly associated CME near the Sun.

  13. The Peculiar Behavior of Halo Coronal Mass Ejections in Solar Cycle 24

    NASA Technical Reports Server (NTRS)

    Gopalswamy, N.; Xie, H.; Akiyama, S.; Makela, P.; Yashiro, S.; Michalek, G.

    2015-01-01

    We report on the remarkable finding that the halo coronal mass ejections (CMEs) in cycle 24 are more abundant than in cycle 23, although the sunspot number in cycle 24 has dropped by approx. 40%. We also find that the distribution of halo-CME source locations is different in cycle 24: the longitude distribution of halos is much flatter with the number of halos originating at a central meridian distance greater than or equal to 60deg twice as large as that in cycle 23. On the other hand, the average speed and associated soft X-ray flare size are the same in both cycles, suggesting that the ambient medium into which the CMEs are ejected is significantly different. We suggest that both the higher abundance and larger central meridian longitudes of halo CMEs can be explained as a consequence of the diminished total pressure in the heliosphere in cycle 24. The reduced total pressure allows CMEs to expand more than usual making them appear as halos.

  14. A miniaturized laser-ablation mass spectrometer for in-situ measurements of isotope composition on solar body surfaces

    NASA Astrophysics Data System (ADS)

    Riedo, A.; Meyer, S.; Tulej, M.; Neuland, M.; Bieler, A.; Iakovleva, M.; Wurz, P.

    2012-04-01

    The in-situ analysis of extraterrestrial material onboard planetary rovers and landers is of considerable interest for future planetary space missions. Due to the low detection sensitivity of spectroscopic instruments, e.g. α-particle X-ray, γ-ray or neutron spectrometers, it is frequently possible to measure only major/minor elements in extraterrestrial materials. Nevertheless, the knowledge of minor/trace elements is of considerable interest to cosmochemistry. Chemistry puts constraints on the origin of solar system and its evolution enabling also a deeper inside to planetary transformation processes (e.g. volcanic surface alteration, space weathering). The isotopes play special role in analysis of the origin and transformation of planetary matter. They are robust tracers of the early events because their abundances are less disturbed as the elemental once. Nevertheless, if the isotope abundance ratios are fractionated, the underlying chemical and physical processes can be then encoded from the variations of abundance ratios. A detailed analysis of isotopic patterns of radiogenic elements can allow age dating of minerals and temporal evolution of planetary matter. High accuracy and sensitive measurements of isotopic pattern of bio-relevant elements, i.e., sulfur, found on planetary surfaces can be helpful for the identification of possible past and present extraterrestrial life in terms of biomarker identification. Our group has designed a self-optimizing miniaturized laser ablation time-of-flight mass spectrometer (LMS) for in situ planetary measurements (Wurz et al., 2012; Rohner et al., 2003). Initial studies utilizing IR laser radiation for ablation, atomization and ionization of solid materials indicated a high instrumental performance in terms of sensitivity and mass resolution (Tulej et al., 2011). Current studies are conducted with a UV radiation and a high spatial resolution is achieved by focussing the laser beam to 20µm spots onto the sample. The

  15. Core and Wing Densities of Asymmetric Coronal Spectral Profiles: Implications for the Mass Supply of the Solar Corona

    NASA Technical Reports Server (NTRS)

    Patsourakos, S.; Klimchuk, J. A.; Young, P. R.

    2014-01-01

    Recent solar spectroscopic observations have shown that coronal spectral lines can exhibit asymmetric profiles, with enhanced emissions at their blue wings. These asymmetries correspond to rapidly upflowing plasmas at speeds exceeding approximately equal to 50 km per sec. Here, we perform a study of the density of the rapidly upflowing material and compare it with that of the line core that corresponds to the bulk of the plasma. For this task, we use spectroscopic observations of several active regions taken by the Extreme Ultraviolet Imaging Spectrometer of the Hinode mission. The density sensitive ratio of the Fe(sub XIV) lines at 264.78 and 274.20 Angstroms is used to determine wing and core densities.We compute the ratio of the blue wing density to the core density and find that most values are of order unity. This is consistent with the predictions for coronal nanoflares if most of the observed coronal mass is supplied by chromospheric evaporation driven by the nanoflares. However, much larger blue wing-to-core density ratios are predicted if most of the coronal mass is supplied by heated material ejected with type II spicules. Our measurements do not rule out a spicule origin for the blue wing emission, but they argue against spicules being a primary source of the hot plasma in the corona. We note that only about 40% of the pixels where line blends could be safely ignored have blue wing asymmetries in both Fe(sub XIV) lines. Anticipated sub-arcsecond spatial resolution spectroscopic observations in future missions could shed more light on the origin of blue, red, and mixed asymmetries.

  16. Core and wing densities of asymmetric coronal spectral profiles: Implications for the mass supply of the solar corona

    SciTech Connect

    Patsourakos, S.; Klimchuk, J. A.; Young, P. R. E-mail: james.a.klimchuk@nasa.gov

    2014-02-01

    Recent solar spectroscopic observations have shown that coronal spectral lines can exhibit asymmetric profiles, with enhanced emissions at their blue wings. These asymmetries correspond to rapidly upflowing plasmas at speeds exceeding ≈50 km s{sup –1}. Here, we perform a study of the density of the rapidly upflowing material and compare it with that of the line core that corresponds to the bulk of the plasma. For this task, we use spectroscopic observations of several active regions taken by the Extreme Ultraviolet Imaging Spectrometer of the Hinode mission. The density sensitive ratio of the Fe XIV lines at 264.78 and 274.20 Å is used to determine wing and core densities. We compute the ratio of the blue wing density to the core density and find that most values are of order unity. This is consistent with the predictions for coronal nanoflares if most of the observed coronal mass is supplied by chromospheric evaporation driven by the nanoflares. However, much larger blue wing-to-core density ratios are predicted if most of the coronal mass is supplied by heated material ejected with type II spicules. Our measurements do not rule out a spicule origin for the blue wing emission, but they argue against spicules being a primary source of the hot plasma in the corona. We note that only about 40% of the pixels where line blends could be safely ignored have blue wing asymmetries in both Fe XIV lines. Anticipated sub-arcsecond spatial resolution spectroscopic observations in future missions could shed more light on the origin of blue, red, and mixed asymmetries.

  17. [Congresses of the Croatian Medical Association regarding unpublished proceedings of the 10th congress in Zadar on September 25-28, 1996].

    PubMed

    Drazancić, Ante

    2011-01-01

    The first annual meeting of Croatian physicians, with characteristics of a congress, was held in 1899 at the 25th anniversary of the Croatian Medical Association. From 1954 to 1996, during almost 60 years of existence of the Croatian Medical Association, ten congresses of the Association were held. The congresses were during the development of modern medicine devoted to different medical questions, including some problems of national pathology, of the structure and restructuring of health care. The work and the content of congresses were published in the proceedings except for the 8th Congress in 1987 and the 10th in 1996. By reading main lectures, invited lectures and free papers the knowledge of that period can be gained. Many papers are even today actual, even today it could be learned from them. With more details, using published proceedings the 9th congress and the 10th congress are described on the basis preserved program, of a brief report in home journal and ample preserved correspondence. The national medical congres dedicated to technology advancement and to numerous problems of national pathology may be actual even today. They could help to solve many problems of health care, contribute to its improvement and convey consensus on its further development.

  18. ARE HALO-LIKE SOLAR CORONAL MASS EJECTIONS MERELY A MATTER OF GEOMETRIC PROJECTION EFFECTS?

    SciTech Connect

    Kwon, Ryun-Young; Zhang, Jie; Vourlidas, Angelos

    2015-02-01

    We investigated the physical nature of halo coronal mass ejections (CMEs) based on the stereoscopic observations from the two STEREO spacecraft, Ahead and Behind (hereafter A and B), and the SOHO spacecraft. Sixty-two halo CMEs occurred as observed by SOHO LASCO C2 for the three-year period from 2010 to 2012 during which the separation angles between SOHO and STEREO were nearly 90°. In such quadrature configuration, the coronagraphs of STEREO, COR2-A and -B, showed the side view of those halo CMEs seen by C2. It has been widely believed that the halo appearance of a CME is caused by the geometric projection effect, i.e., a CME moves along the Sun-observer line. In other words, it would appear as a non-halo CME if viewed from the side. However, to our surprise, we found that 41 out of 62 events (66%) were observed as halo CMEs by all coronagraphs. This result suggests that a halo CME is not just a matter of the propagating direction. In addition, we show that a CME propagating normal to the line of sight can be observed as a halo CME due to the associated fast magnetosonic wave or shock front. We conclude that the apparent width of CMEs, especially halos or partial halos is driven by the existence and the extent of the associated waves or shocks and does not represent an accurate measure of the CME ejecta size. This effect needs to be taken into careful consideration in space weather predictions and modeling efforts.

  19. A hot Jupiter orbiting a 2-million-year-old solar-mass T Tauri star.

    PubMed

    Donati, J F; Moutou, C; Malo, L; Baruteau, C; Yu, L; Hébrard, E; Hussain, G; Alencar, S; Ménard, F; Bouvier, J; Petit, P; Takami, M; Doyon, R; Collier Cameron, A

    2016-06-30

    Hot Jupiters are giant Jupiter-like exoplanets that orbit their host stars 100 times more closely than Jupiter orbits the Sun. These planets presumably form in the outer part of the primordial disk from which both the central star and surrounding planets are born, then migrate inwards and yet avoid falling into their host star. It is, however, unclear whether this occurs early in the lives of hot Jupiters, when they are still embedded within protoplanetary disks, or later, once multiple planets are formed and interact. Although numerous hot Jupiters have been detected around mature Sun-like stars, their existence has not yet been firmly demonstrated for young stars, whose magnetic activity is so intense that it overshadows the radial velocity signal that close-in giant planets can induce. Here we report that the radial velocities of the young star V830 Tau exhibit a sine wave of period 4.93 days and semi-amplitude 75 metres per second, detected with a false-alarm probability of less than 0.03 per cent, after filtering out the magnetic activity plaguing the spectra. We find that this signal is unrelated to the 2.741-day rotation period of V830 Tau and we attribute it to the presence of a planet of mass 0.77 times that of Jupiter, orbiting at a distance of 0.057 astronomical units from the host star. Our result demonstrates that hot Jupiters can migrate inwards in less than two million years, probably as a result of planet–disk interactions.

  20. A hot Jupiter orbiting a 2-million-year-old solar-mass T Tauri star

    NASA Astrophysics Data System (ADS)

    Donati, J. F.; Moutou, C.; Malo, L.; Baruteau, C.; Yu, L.; Hébrard, E.; Hussain, G.; Alencar, S.; Ménard, F.; Bouvier, J.; Petit, P.; Takami, M.; Doyon, R.; Cameron, A. Collier

    2016-06-01

    Hot Jupiters are giant Jupiter-like exoplanets that orbit their host stars 100 times more closely than Jupiter orbits the Sun. These planets presumably form in the outer part of the primordial disk from which both the central star and surrounding planets are born, then migrate inwards and yet avoid falling into their host star. It is, however, unclear whether this occurs early in the lives of hot Jupiters, when they are still embedded within protoplanetary disks, or later, once multiple planets are formed and interact. Although numerous hot Jupiters have been detected around mature Sun-like stars, their existence has not yet been firmly demonstrated for young stars, whose magnetic activity is so intense that it overshadows the radial velocity signal that close-in giant planets can induce. Here we report that the radial velocities of the young star V830 Tau exhibit a sine wave of period 4.93 days and semi-amplitude 75 metres per second, detected with a false-alarm probability of less than 0.03 per cent, after filtering out the magnetic activity plaguing the spectra. We find that this signal is unrelated to the 2.741-day rotation period of V830 Tau and we attribute it to the presence of a planet of mass 0.77 times that of Jupiter, orbiting at a distance of 0.057 astronomical units from the host star. Our result demonstrates that hot Jupiters can migrate inwards in less than two million years, probably as a result of planet-disk interactions.

  1. Understanding Coronal Mass Ejections and Associated Shocks in the Solar Corona by Merging Multiwavelength Observations

    NASA Astrophysics Data System (ADS)

    Zucca, P.; Pick, M.; Démoulin, P.; Kerdraon, A.; Lecacheux, A.; Gallagher, P. T.

    2014-11-01

    Using multiwavelength imaging observations, in EUV, white light and radio, and radio spectral data over a large frequency range, we analyzed the triggering and development of a complex eruptive event. This one includes two components, an eruptive jet and a coronal mass ejection (CME), which interact during more than 30 minutes, and can be considered as physically linked. This was an unusual event. The jet is generated above a typical complex magnetic configuration that has been investigated in many former studies related to the build-up of eruptive jets; this configuration includes fan-field lines originating from a corona null point above a parasitic polarity, which is embedded in one polarity region of a large active region. The initiation and development of the CME, observed first in EUV, does not show usual signatures. In this case, the eruptive jet is the main actor of this event. The CME appears first as a simple loop system that becomes destabilized by magnetic reconnection between the outer part of the jet and the ambient medium. The progression of the CME is closely associated with the occurrence of two successive type II bursts from a distinct origin. An important part of this study is the first radio type II burst for which the joint spectral and imaging observations were allowed: (1) to follow, step by step, the evolution of the spectrum and of the trajectory of the radio burst, in relationship with the CME evolution and (2) to obtain, without introducing an electronic density model, the B field and the Alfvén speed.

  2. Understanding coronal mass ejections and associated shocks in the solar corona by merging multiwavelength observations

    SciTech Connect

    Zucca, P.; Gallagher, P. T.; Pick, M.; Démoulin, P.; Kerdraon, A.; Lecacheux, A.

    2014-11-01

    Using multiwavelength imaging observations, in EUV, white light and radio, and radio spectral data over a large frequency range, we analyzed the triggering and development of a complex eruptive event. This one includes two components, an eruptive jet and a coronal mass ejection (CME), which interact during more than 30 minutes, and can be considered as physically linked. This was an unusual event. The jet is generated above a typical complex magnetic configuration that has been investigated in many former studies related to the build-up of eruptive jets; this configuration includes fan-field lines originating from a corona null point above a parasitic polarity, which is embedded in one polarity region of a large active region. The initiation and development of the CME, observed first in EUV, does not show usual signatures. In this case, the eruptive jet is the main actor of this event. The CME appears first as a simple loop system that becomes destabilized by magnetic reconnection between the outer part of the jet and the ambient medium. The progression of the CME is closely associated with the occurrence of two successive type II bursts from a distinct origin. An important part of this study is the first radio type II burst for which the joint spectral and imaging observations were allowed: (1) to follow, step by step, the evolution of the spectrum and of the trajectory of the radio burst, in relationship with the CME evolution and (2) to obtain, without introducing an electronic density model, the B field and the Alfvén speed.

  3. The structure of mass-loading shocks. [interaction of solar wind with cometary coma or local interstellar medium using two-fluid model

    NASA Technical Reports Server (NTRS)

    Zank, G. P.; Khabibrakhmanov, I. KH.; Story, T.

    1993-01-01

    A new two-fluid model which describes mass loading in the solar wind (e.g., the interaction of the solar wind with a cometary coma or the local interstellar medium) is presented. The self-consistent back-reaction of the mass-loaded ions is included through their effective scattering in low-frequency MHD turbulence and the invocation of a diffusive approximation. Such an approximation has the advantage of introducing self-consistent dissipation coefficients into the governing equations, thereby facilitating the investigation of the internal structure of shocks in mass-loading environments. To illustrate the utility of the new model, we consider the structure of cometary shocks in the hypersonic one-dimensional limit, finding that the incoming solar wind is slowed by both mass loading and the development of a large cometary ion pressure gradient. The shock is broadened and smoothed by the cometary ions with a thickness of the order of the cometary ion diffusion scale.

  4. Evidence of a Plasmoid-Looptop Interaction and Magnetic Inflows During a Solar Flare/Coronal Mass Ejection Eruptive Event

    NASA Technical Reports Server (NTRS)

    Milligan, Ryan O.; McAteer, R. T. James; Dennis, Brian R.; Young, C. Alex

    2010-01-01

    Observational evidence is presented for the merging of a downward-propagating plasmoid with a looptop kernel during an occulted limb event on 2007 January 25. RHESSI light curves in the 9-18 keV energy range, as well as that of the 245 MHz channel of the Learmonth Solar Observatory, show enhanced nonthermal emission in the corona at the time of the merging suggesting that additional particle acceleration took place. This was attributed to a secondary episode of reconnection in the current sheet that formed between the two merging sources. RHESSI images were used to establish a mean downward velocity of the plasmoid of 12 km/s. Complementary observations from the SECCHI suite of instruments on board STEREO-B showed that this process occurred during the acceleration phase of the associated coronal mass ejection (CME). From wavelet-enhanced EUV Imager, image evidence of inflowing magnetic field lines prior to the CME eruption is also presented. The derived inflow velocity was found to be 1.5 km/s. This combination of observations supports a recent numerical simulation of plasmoid formation, propagation, and subsequent particle acceleration due to the tearing mode instability during current sheet formation.

  5. Measurements and an empirical model of the Zodiacal brightness as observed by the Solar Mass Ejection Imager (SMEI)

    NASA Astrophysics Data System (ADS)

    Buffington, Andrew; Bisi, Mario M.; Clover, John M.; Hick, P. Paul; Jackson, Bernard V.; Kuchar, Thomas A.; Price, Stephan D.

    2016-07-01

    The Solar Mass Ejection Imager (SMEI) provided near-full-sky broadband visible-light photometric maps for 8.5 years from 2003 to 2011. At a cadence of typically 14 maps per day, these each have an angular resolution of about 0.5º and differential photometric stability of about 1% throughout this time. When individual bright stars are removed from the maps and an empirical sidereal background subtracted, the residue is dominated by the zodiacal light. This sky coverage enables the formation of an empirical zodiacal-light model for observations at 1 AU which summarizes the SMEI data. When this is subtracted, analysis of the ensemble of residual sky maps sets upper limits of typically 1% for potential secular change of the zodiacal light for each of nine chosen ecliptic sky locations. An overall long-term photometric stability of 0.25% is certified by analysis of three stable sidereal objects. Averaging the nine ecliptic results together yields a 1-σ upper limit of 0.3% for zodiacal light change over this 8.5 year period.

  6. Measurements and an Empirical Model of the Zodiacal Brightness as Observed by the Solar Mass Ejection Imager (SMEI)

    NASA Astrophysics Data System (ADS)

    Buffington, A.; Bisi, M. M.; Clover, J. M.; Hick, P. P.; Jackson, B. V.; Kuchar, T. A.; Price, S. D.

    2015-12-01

    The Solar Mass Ejection Imager (SMEI) has provided near-full-sky broadband visible-light photometric maps for 8.5 years from 2003 to 2011. These have an angular resolution of about 0.5º and differential photometric stability of about 1% per map throughout this time. When individual bright stars are removed from the maps and an empirical sidereal background subtracted, the residue is dominated by the zodiacal light. This sky coverage enables the formation of an empirical zodiacal-light model for observations at 1 AU which summarizes the SMEI data. When this is subtracted, analysis of the ensemble of residual sky maps sets upper limits of typically 1% for potential secular change of the zodiacal light for each of nine chosen ecliptic sky locations. An overall long-term photometric stability of 0.25% is certified by analysis of three stable sidereal objects. Averaging the nine ecliptic results together yields a 1-σ upper limit of 0.3% for zodiacal light change over this 8.5 year period.

  7. Measuring the level of public understanding of total solar eclipse from the mass media: Palembang as sample

    NASA Astrophysics Data System (ADS)

    Purwati, F. G.; Ekawanti, N.; Luthfiandari; Premadi, P. W.

    2016-11-01

    The Total Solar Eclipse (TSE) on the 9th March 2016 received a huge attention from the mass media. Some of them intensively write articles about it even months before the TSE day. As we know media plays strategic role not only in raising public awareness but also interest. The aim of this project is to study the relation between the number of accesses to the media information and how well public learned the information delivered by the media. We prepared questionnaire consisting of seven semi-multiple choices on how public got information about TSE. We gave them choices of what they had heard to measure their basic understanding of TSE. Furthermore we add two “wrong” choices in the last questions to identify less serious respondents. We analyze 60 respondents of Palembang who visited Ampera bridge area. Our result shows no correlation between the number of information access and the level of understanding about TSE. We also found that local media did not provide the scientific content of TSE as well as the national media.

  8. Mass independent sulfur isotope signatures in CMs: Implications for sulfur chemistry in the early solar system

    NASA Astrophysics Data System (ADS)

    Labidi, J.; Farquhar, J.; Alexander, C. M. O.'D.; Eldridge, D. L.; Oduro, H.

    2017-01-01

    We have investigated the quadruple sulfur isotopic composition of inorganic sulfur-bearing phases from 13 carbonaceous chondrites of CM type. Our samples include 4 falls and 9 Antarctic finds. We extracted sulfur from sulfides, sulfates, and elemental sulfur (S0) from all samples. On average, we recover a bulk sulfur (S) content of 2.11 ± 0.39 wt.% S (1σ). The recovered sulfate, S0 and sulfide contents represent 25 ± 12%, 10 ± 7% and 65 ± 15% of the bulk S, respectively (all 1σ). There is no evidence for differences in the bulk S content between falls and finds, and there is no correlation between the S speciation and the extent of aqueous alteration. We report ranges of Δ33S and Δ36S values in CMs that are significantly larger than previously observed. The largest variations are exhibited by S0, with Δ33S values ranging between -0.104 ± 0.012‰ and +0.256 ± 0.018‰ (2σ). The Δ36S/33S ratios of S0 are on average -3.1 ± 1.0 (2σ). Two CMs show distinct Δ36S/33S ratios, of +1.3 ± 0.1 and +0.9 ± 0.1. We suggest that these mass independent S isotopic compositions record H2S photodissociation in the nebula. The varying Δ36S/Δ33S ratios are interpreted to reflect photodissociation that occurred at different UV wavelengths. The preservation of these isotopic features requires that the S-bearing phases were heterogeneously accreted to the CM parent body. Non-zero Δ33S values are also preserved in sulfide and sulfate, and are positively correlated with S0 values. This indicates a genetic relationship between the S-bearing phases: We argue that sulfates were produced by the direct oxidation of S0 (not sulfide) in the parent body. We describe two types of models that, although imperfect, can explain the major features of the CM S isotope compositions, and can be tested in future studies. Sulfide and S0 could both be condensates from the nebula, as the residue and product, respectively, of incomplete H2S photodissociation by UV light (wavelength <150 nm

  9. Solar and interplanetary dynamics; Proceedings of the Symposium, Harvard University, Cambridge, Mass., August 27-31, 1979

    NASA Technical Reports Server (NTRS)

    Dryer, M. (Editor); Tandberg-Hanssen, E.

    1980-01-01

    The symposium focuses on solar phenomena as the source of transient events propagating through the solar system, and theoretical and observational assessments of the dynamic processes involved in these events. The topics discussed include the life history of coronal structures and fields, coronal and interplanetary responses to long time scale phenomena, solar transient phenomena affecting the corona and interplanetary medium, coronal and interplanetary responses to short time scale phenomena, and future directions.

  10. Characteristic Times of Gradual Solar Energetic Particle Events and Their Dependence on Associated Coronal Mass Ejection Properties

    DTIC Science & Technology

    2005-08-01

    2. REPORT TYPE 3. DATES COVERED (From - To) 01-08-2005 REPRINT 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Characteristic Times of Gradual Solar ...coronagraph on SOHO observed during 1998-2002 to statistically determine three characteristic times of gradual solar energetic particle (SEP) events as...functions of solar source longitude: (1) To, the time from associated CME launch to SEP onset at I AU, (2) TR, the rise time from SEO onset to the time when

  11. Tellurium isotopic composition of the early solar system—A search for effects resulting from stellar nucleosynthesis, 126Sn decay, and mass-independent fractionation

    NASA Astrophysics Data System (ADS)

    Fehr, Manuela A.; Rehkämper, Mark; Halliday, Alex N.; Wiechert, Uwe; Hattendorf, Bodo; Günther, Detlef; Ono, Shuhei; Eigenbrode, Jennifer L.; Rumble, Douglas

    2005-11-01

    New precise Te isotope data acquired by multiple collector inductively coupled plasma mass spectrometry (MC-ICPMS) are presented for selected extraterrestrial and terrestrial materials. Bulk samples of carbonaceous, ordinary and enstatite chondrites as well as the metal and sulfide phases of iron meteorites were analyzed to search for nucleosynthetic isotope anomalies and to find evidence of formerly live 126Sn, which decays to 126Te with a half-life of 234,500 yr. None of the meteorites show evidence of mass dependent Te isotope fractionations larger than 2‰ for δ 126/128Te. Following internal normalization of the data to 125Te/ 128Te, the Te isotope ratios of all analyzed meteorites were found to be identical to a terrestrial standard, within uncertainties. This provides evidence that the regions of the solar disk that were sampled during accretion of the meteorite parent bodies were well mixed and homogeneous on a large scale, with respect to Te isotopes. The data acquired for bulk carbonaceous chondrites indicate that the initial 126Sn/ 118Sn ratio of the solar system was <4 × 10 -5, but this is dependent on the assumption that no redistribution of Sn and Te occurred since the start of the solar system. Five Archean sedimentary sulfides that display both mass dependent and mass-independent isotope effects for S yield internally normalized Te isotope data, which indicate that mass-independent Te isotope effects are absent. The mass dependent fractionations in these samples are constrained to be less than ˜1‰ for δ 126/128Te.

  12. Results from an International Measurement Round Robin of III-V Triple Junction Solar Cells under Air Mass Zero

    NASA Technical Reports Server (NTRS)

    Jenkins, Phillip; Scheiman, Chris; Goodbody, Chris; Baur, Carsten; Sharps, Paul; Imaizumi, Mitsuru; Yoo, Henry; Sahlstrom, Ted; Walters, Robert; Lorentzen, Justin; Nocerino, John; Khan, Osman; Cravens, Robert; Valles, Juan; Toporow, Chantal; Gomez, Trinidad,; Bazan, Loreto Pazos; Bailey, Sheila

    2006-01-01

    This paper reports the results of an international measurement round robin of monolithic, triple-junction, GaInP/GaAs/Ge space solar cells. Eight laboratories representing national labs, solar cell vendors and space solar cell consumers, measured cells using in-house reference cells and compared those results to measurements made where each lab used the same set of reference cells. The results show that most of the discrepancy between laboratories is likely due to the quality of the standard cells rather than the measurement system or solar simulator used.

  13. The influence of physique on dose conversion coefficients for idealised external photon exposures: a comparison of doses for Chinese male phantoms with 10th, 50th and 90th percentile anthropometric parameters.

    PubMed

    Lv, Wei; He, Hengda; Liu, Qian

    2017-03-22

    For evaluating radiation risk, the construction of anthropomorphic computational phantoms with a variety of physiques can help reduce the uncertainty that is due to anatomical variation. In our previous work, three deformable Chinese reference male phantoms with 10th, 50th and 90th percentile body mass indexes and body circumference physiques (DCRM-10, DCRM-50 and DCRM-90) were constructed to represent underweight, normal weight and overweight Chinese adult males, respectively. In the present study, the phantoms were updated by correcting the fat percentage to improve the precision of radiological dosimetry evaluations. The organ dose conversion coefficients for each phantom were calculated and compared for four idealized external photon exposures from 15 keV to 10 MeV, using the Monte Carlo method. The dosimetric results for the three deformable Chinese reference male phantom (DCRM) phantoms indicated that variations in physique can cause as much as a 20% difference in the organ dose conversion coefficients. When the photon energy was <50 keV, the discrepancy was greater. The irradiation geometry and organ position can also affect the difference in radiological dosimetry between individuals with different physiques. Hence, it is difficult to predict the conversion coefficients of the phantoms from the anthropometric parameters alone. Nevertheless, the complex organ conversion coefficients presented in this report will be helpful for evaluating the radiation risk for large groups of people with various physiques.

  14. Perceptions of High Achieving African American/Black 10th Graders from a Low Socioeconomic Community Regarding Health Scientists and Desired Careers

    PubMed Central

    Boekeloo, Bradley; Randolph, Suzanne; Timmons-Brown, Stephanie; Wang, Min Qi

    2014-01-01

    Measures are needed to assess youth perceptions about health science careers to facilitate research aimed at facilitating youth pursuit of health science. Although the Indiana Instrument provides an established measure of perceptions regarding nursing and ideal careers, we were interested in learning how high achieving 10th graders from relatively low socioeconomic areas who identify as Black/African American (Black) perceive health science and ideal careers. The Indiana Instrument was modified, administered to 90 youth of interest, and psychometrically analyzed. Reliable subscales were identified that may facilitate parsimonious, theoretical, and reliable study of youth decision-making regarding health science careers. Such research may help to develop and evaluate strategies for increasing the number of minority health scientists. PMID:25194058

  15. Potential use of biomarkers in acute kidney injury: report and summary of recommendations from the 10th Acute Dialysis Quality Initiative consensus conference.

    PubMed

    Murray, Patrick T; Mehta, Ravindra L; Shaw, Andrew; Ronco, Claudio; Endre, Zoltan; Kellum, John A; Chawla, Lakhmir S; Cruz, Dinna; Ince, Can; Okusa, Mark D

    2014-03-01

    Over the last decade there has been considerable progress in the discovery and development of biomarkers of kidney disease, and several have now been evaluated in different clinical settings. Although there is a growing literature on the performance of various biomarkers in clinical studies, there is limited information on how these biomarkers would be utilized by clinicians to manage patients with acute kidney injury (AKI). Recognizing this gap in knowledge, we convened the 10th Acute Dialysis Quality Initiative meeting to review the literature on biomarkers in AKI and their application in clinical practice. We asked an international group of experts to assess four broad areas for biomarker utilization for AKI: risk assessment, diagnosis, and staging; differential diagnosis; prognosis and management; and novel physiological techniques including imaging. This article provides a summary of the key findings and recommendations of the group, to equip clinicians to effectively use biomarkers in AKI.

  16. Langerhans cell histiocytosis or tuberculosis on a medieval child (Oppidum de la Granède, Millau, France - 10th-11th centuries AD).

    PubMed

    Colombo, Antony; Saint-Pierre, Christophe; Naji, Stephan; Panuel, Michel; Coqueugniot, Hélène; Dutour, Olivier

    2015-06-01

    In 2008, a skeleton of a 1 - 2.5-year-old child radiocarbon dated from the 10th - 11th century AD was discovered on the oppidum of La Granède (Millau, France). It presents multiple cranial osteolytic lesions having punched-out or geographical map-like aspects associated with sequestrum and costal osteitis. A multi 3D digital approach (CT, μCT and virtual reconstruction) enabled us to refine the description and identify the diploic origin of the lytic process. Furthermore, precise observation of the extent of the lesions and associated reorganization of the skeletal micro-structure were possible. From these convergent pieces of evidence, the differential diagnosis led to three possibilities: Langerhans cell histiocytosis, tuberculosis, or Langerhans cell histiocytosis and tuberculosis.

  17. The Properties of Solar Energetic Particle Event-Associated Coronal Mass Ejections Reported in Different CME Catalogs

    NASA Astrophysics Data System (ADS)

    Richardson, I. G.; von Rosenvinge, T. T.; Cane, H. V.

    2015-06-01

    We compare estimates of the speed and width of coronal mass ejections (CMEs) in several catalogs for the CMEs associated with ˜ 200 solar energetic particle (SEP) events in 2006 - 2013 that included 25 MeV protons. The catalogs used are: CDAW, CACTUS, SEEDS, and CORIMP, all derived from observations by the LASCO coronagraphs on the SOHO spacecraft, the CACTUS catalog derived from the COR2 coronagraphs on the STEREO-A and -B spacecraft, and the DONKI catalog, which uses observations from SOHO and the STEREO spacecraft. We illustrate how, for this set of events, CME parameters can differ considerably in each catalog. The well-known correlation between CME speed and proton event intensity is shown to be similar for most catalogs, but this is largely because it is determined by a few large particle events associated with fast CMEs, and small events associated with slow CMEs. Intermediate particle events "shuffle" in position when speeds from different catalogs are used. Quadrature spacecraft CME speeds do not improve the correlation. CME widths also vary widely between catalogs, and they are influenced by plane-of-the-sky projection and how the width is inferred from the coronagraph images. The high degree of association (˜ 50 %) between the 25 MeV proton events and "full halo" (360∘-width) CMEs as defined in the CDAW catalog is removed when other catalogs are considered. Using CME parameters from the quadrature spacecraft, the SEP intensity is correlated with CME width, which is also correlated with CME speed.

  18. Revisiting the Microlensing Event OGLE 2012-BLG-0026: A Solar Mass Star with Two Cold Giant Planets

    NASA Technical Reports Server (NTRS)

    Beaulieu, J.-P.; Bennett, D. P.; Batista, V.; Fukui, A.; Marquette, J.-B.; Brillant, S.; Cole, A. A.; Rogers, L. A.; Sumi, T.; Abe, F.

    2016-01-01

    Two cold gas giant planets orbiting a G-type main-sequence star in the galactic disk were previously discovered in the high-magnification microlensing event OGLE-2012-BLG-0026. Here, we present revised host star flux measurements and a refined model for the two-planet system using additional light curve data. We performed high angular resolution adaptive optics imaging with the Keck and Subaru telescopes at two epochs while the source star was still amplified. We detected the lens flux, H = 16.39 +/- 0.08. The lens, a disk star, is brighter than predicted from the modeling in the original study. We revisited the light curve modeling using additional photometric data from the B and C telescope in New Zealand and CTIO 1.3 m H-band light curve. We then include the Keck and Subaru adaptive optic observation constraints. The system is composed of an approximately 4-9 Gyr lens star of M(sub lens) = 1.06 +/- 0.05 solar mass at a distance of D(sub lens) = 4.0 +/- 0.3 kpc, orbited by two giant planets of 0.145 +/- 0.008 M(sub Jup) and 0.86 +/- 0.06 M(sub Jup), with projected separations of 4.0 +/- 0.5 au and 4.8 +/- 0.7 au, respectively. Because the lens is brighter than the source star by 16 +/- 8% in H, with no other blend within one arcsec, it will be possible to estimate its metallicity using subsequent IR spectroscopy with 8-10 m class telescopes. By adding a constraint on the metallicity it will be possible to refine the age of the system.

  19. Correlation Analyses Between the Characteristic Times of Gradual Solar Energetic Particle Events and the Properties of Associated Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Pan, Z. H.; Wang, C. B.; Wang, Yuming; Xue, X. H.

    2011-06-01

    It is generally believed that gradual solar energetic particles (SEPs) are accelerated by shocks associated with coronal mass ejections (CMEs). Using an ice-cream cone model, the radial speed and angular width of 95 CMEs associated with SEP events during 1998 - 2002 are calculated from SOHO/LASCO observations. Then, we investigate the relationships between the kinematic properties of these CMEs and the characteristic times of the intensity-time profile of their accompanied SEP events observed at 1 AU. These characteristic times of SEP are i) the onset time from the accompanying CME eruption at the Sun to the SEP arrival at 1 AU, ii) the rise time from the SEP onset to the time when the SEP intensity is one-half of peak intensity, and iii) the duration over which the SEP intensity is within a factor of two of the peak intensity. It is found that the onset time has neither significant correlation with the radial speed nor with the angular width of the accompanying CME. For events that are poorly connected to the Earth, the SEP rise time and duration have no significant correlation with the radial speed and angular width of the associated CMEs. However, for events that are magnetically well connected to the Earth, the SEP rise time and duration have significantly positive correlations with the radial speed and angular width of the associated CMEs. This indicates that a CME event with wider angular width and higher speed may more easily drive a strong and wide shock near to the Earth-connected interplanetary magnetic field lines, may trap and accelerate particles for a longer time, and may lead to longer rise time and duration of the ensuing SEP event.

  20. The observation of large semi-major axis Centaurs: Testing for the signature of a planetary-mass solar companion

    NASA Astrophysics Data System (ADS)

    Gomes, Rodney S.; Soares, Jean S.; Brasser, Ramon

    2015-09-01

    Several objects whose perihelion lies between Jupiter and Neptune have large semi-major axes a > 100 au, two of them having semi-major axis above 1000 au. Since these objects' perihelia share the same region as the classical Centaurs, a coherent nomenclature for them could be large semi-major axis Centaurs (Laces). It has been argued that the classical Centaurs, with semi-major axes below 50 au, originate from the Scattered Disk. However, the Laces most likely originate from the Oort Cloud. We determine the brightest object in the Laces, classical Centaurs (with semi-major axis >20 au) and Scattered Disk populations using a procedure that introduces observational bias to a set of objects in orbits obtained from numerical simulations of the evolution of the Oort cloud and Scattered Disk in the framework of the Nice model. The application of the procedure consistently determines that the brightest distant Lace (semi-major axis above 500 au) is fainter than the brightest classical Centaur by about one magnitude, no matter what parameters were used for the procedure. However, reality shows a reversed situation: there is an excess of Laces with lower visual magnitudes. It is not clear why this is the case. We test whether a planetary-mass solar companion could produce an excess of bright Laces in comparison with classical Centaurs. We find that with the companion there is an excess of luminous Laces compared to when there is no companion. However, the companion model also produces many classical Centaurs with lower visual magnitudes than the observed ones. Thus we conclude that the companion does not solve this visual magnitude inconsistency, although the results are in general more coherent under the model with the companion than without.

  1. Numerical simulations of the breakout model for the initiation of solar coronal mass ejections and in-situ observations of their interplanetary structure

    NASA Astrophysics Data System (ADS)

    Lynch, Benjamin James

    Coronal mass ejections (CMEs) are the one of the most exciting manifestations of dynamic solar activity and one of the most important solar inputs into the Sun-Earth system. Utilizing both large-scale numerical magnetohydrodynamics (MHD) simulations of solar eruptions and in-situ magnetic field and plasma measurements by satellites, substantial progress is made on a number of outstanding scientific questions about the origin, structure, and long-term heliospheric effects of CMEs. We present results of the first successful demonstration of the breakout model for CME initiation in 3-dimensions. The 3D topology allows for the gradual accumulation of free magnetic energy and magnetic reconnection external to the highly-sheared filament channel, which triggers catastrophic, runaway expansion and leads to the eruption of the low-lying sheared flux. Previous 2.5D breakout simulations are examined in an observational context. There is excellent agreement between the simulation results and CME morphology and dynamics through the corona, the properties of eruptive flare loop systems, and in the ejecta magnetic structure and in-situ measurements of the most coherent interplanetary CMEs. The magnetic and plasma structure of the most ordered interplanetary CMES (ICMEs, also called magnetic clouds) is examined using field and plasma data from the WIND and ACE spacecraft. We find anomalously high charge states of heavy ion species present, on average, throughout the entire magnetic cloud which suggests enhanced heating close to the sun, most-likely associated with eruptive flare magnetic reconnection. A long-term study of magnetic clouds events from 1995--2003 is also presented and the magnetic flux and helicity content is analyzed for solar-cycle trends. Magnetic clouds show a solar-cycle evolution of the preference for right-handed fields during the cycle 23 solar minimum that changes to a left-handed preference during solar maximum. A time varying dynamo-type source is present

  2. Advanced Solar Power Systems

    NASA Technical Reports Server (NTRS)

    Atkinson, J. H.; Hobgood, J. M.

    1984-01-01

    The Advanced Solar Power System (ASPS) concentrator uses a technically sophisticated design and extensive tooling to produce very efficient (80 to 90%) and versatile energy supply equipment which is inexpensive to manufacture and requires little maintenance. The advanced optical design has two 10th order, generalized aspheric surfaces in a Cassegrainian configuration which gives outstanding performance and is relatively insensitive to temperature changes and wind loading. Manufacturing tolerances also have been achieved. The key to the ASPS is the direct absorption of concentrated sunlight in the working fluid by radiative transfers in a black body cavity. The basic ASPS design concepts, efficiency, optical system, and tracking and focusing controls are described.

  3. The deuterium fractionation of water on solar-system scales in deeply-embedded low-mass protostars

    NASA Astrophysics Data System (ADS)

    Persson, M. V.; Jørgensen, J. K.; van Dishoeck, E. F.; Harsono, D.

    2014-03-01

    Context. The chemical evolution of water through the star formation process directly affects the initial conditions of planet formation. The water deuterium fractionation (HDO/H2O abundance ratio) has traditionally been used to infer the amount of water brought to Earth by comets. Measuring this ratio in deeply-embedded low-mass protostars makes it possible to probe the critical stage when water is transported from clouds to disks in which icy bodies are formed. Aims: We aim to determine the HDO/H2O abundance ratio in the warm gas in the inner 150 AU for three deeply-embedded low-mass protostars NGC 1333-IRAS 2A, IRAS 4A-NW, and IRAS 4B through high-resolution interferometric observations of isotopologues of water. Methods: We present sub-arcsecond resolution observations of the 31,2-22,1 transition of HDO at 225.89672 GHz in combination with previous observations of the 31,3-22,0 transition of H218O at 203.40752 GHz from the Plateau de Bure Interferometer toward three low-mass protostars. The observations have similar angular resolution (0.̋7-1.̋3), probing scales R ≲ 150 AU. In addition, observations of the 21,1-21,2 transition of HDO at 241.561 GHz toward IRAS 2A are presented to constrain the excitation temperature. A direct and model independent HDO/H2O abundance ratio is determined for each source and compared with HDO/H2O ratios derived from spherically symmetric full radiative transfer models for two sources. Results: From the two HDO lines observed toward IRAS 2A, the excitation temperature is found to be Tex = 124 ± 60 K. Assuming a similar excitation temperature for H218O and all sources, the HDO/H2O ratio is 7.4 ± 2.1 × 10-4 for IRAS 2A, 19.1 ± 5.4 × 10-4 for IRAS 4A-NW, and 5.9 ± 1.7 × 10-4 for IRAS 4B. The abundance ratios show only a weak dependence on the adopted excitation temperature. The abundances derived from the radiative transfer models agree with the direct determination of the HDO/H2O abundance ratio for IRAS 16293-2422 within a

  4. 3D numerical study of the propagation characteristics of a consequence of coronal mass ejections in a structured ambient solar wind

    NASA Astrophysics Data System (ADS)

    Zhou, Y.; Feng, X. S.

    2015-12-01

    CMEs have been identified as a prime causal link between solar activity and large, nonrecurrent geomagnetic storm. In order to improve geomagnetic storm predictions, a careful study of CME's propagation characteristics is important. Here, we analyze and quantitatively study the evolution and propagation characteristics of coronal mass ejections (CMEs) launched at several positions into a structured real ambient solar wind by using a three-dimensional (3D) numerical magnetohydrodynamics (MHD) simulation. The ambient solar wind structure during Carrington rotation 2095 is selected, which is an appropriate around activity minimum and declining phase. The CME is initiated by a simple spherical plasmoid model: a spheromak magnetic structure with high speed, high pressure and high plasma density plasmoid. We present a detailed analysis of the plasma, magnetic field, geoeffectiveness, and composition signatures of these CMEs. Results show that the motion and local appearance of a CME in interplanetary space is strongly affected by its interaction with the background solar wind structure, including its velocity, density, and magnetic structures. The simulations show that the initial launched position substantially affects the IP evolution of the CMEs influencing the propagation velocity, the shape, the trajectory and even the geo-effectiveness

  5. Intermediate-mass Asymptotic Giant Branch Stars and Sources of 26Al, 60Fe, 107Pd, and 182Hf in the Solar System

    NASA Astrophysics Data System (ADS)

    Wasserburg, G. J.; Karakas, Amanda I.; Lugaro, Maria

    2017-02-01

    We explore the possibility that the short-lived radionuclides {}26{{A}}l, {}60{{F}}e, {}107{{P}}d, and {}182{{H}}f inferred to be present in the proto-solar cloud originated from 3–8 {M}ȯ asymptotic giant branch (AGB) stars. Models of AGB stars with initial mass above 5 {M}ȯ are prolific producers of {}26{{A}}l owing to hot bottom burning (HBB). In contrast, {}60{{F}}e, {}107{{P}}d, and {}182{{H}}f are produced by neutron captures: {}107{{P}}d and {}182{{H}}f in models ≲ 5 {M}ȯ , and {}60{{F}}e in models with higher mass. We mix stellar yields from solar-metallicity AGB models into a cloud of solar mass and composition to investigate whether it is possible to explain the abundances of the four radioactive nuclides at the Sun’s birth using one single value of the mixing ratio between the AGB yields and the initial cloud material. We find that AGB stars that experience efficient HBB (≥slant 6 {M}ȯ ) cannot provide a solution because they produce too little {}182{{H}}f and {}107{{P}}d relative to {}26{{A}}l and {}60{{F}}e. Lower-mass AGB stars cannot provide a solution because they produce too little {}26{{A}}l relative to {}107{{P}}d and {}182{{H}}f. A self-consistent solution may be found for AGB stars with masses in between (4–5.5 {M}ȯ ), provided that HBB is stronger than in our models and the {}13{{C}}(α, n){}16{{O}} neutron source is mildly activated. If stars of {{M}}< 5.5 {M}ȯ are the source of the radioactive nuclides, then some basis for their existence in proto-solar clouds needs to be explored, given that the stellar lifetimes are longer than the molecular cloud lifetimes.

  6. The Interaction between Coronal Mass Ejections (CMEs) and Coronal Holes (CHs) during the Solar Cycle 23 and its Geomagnetic Consequences

    NASA Astrophysics Data System (ADS)

    Mohamed, Amaal; Gopalswamy, Nat

    2016-07-01

    The interactions between the two large scale phenomena, coronal holes (CHs) and coronal mass ejections (CMEs) maybe considered as one of the most important relations that having a direct impact not only on space weather but also on the relevant plasma physics. Many observations have shown that throughout their propagation from the Sun to interplanetary space, CMEs interact with the heliospheric structures (e.g., other CMEs, Corotating interaction regions (CIRs), helmet streamers, and CHs). Such interactions could enhance the southward magnetic field component, which has important implications for geomagnetic storm generation. These interactions imply also a significant energy and momentum transfer between the interacting systems where magnetic reconnection is taking place. When CHs deflect CMEs away from or towards the Sun-Earth line, the geomagnetic response of the CME is highly affected. Gopalswamy et al. [2009] have addressed the deflection of CMEs due to the existence of CHs that are in close proximity to the eruption regions. They have shown that CHs can act as magnetic barriers that constrain CMEs propagation and can significantly affect their trajectories. Here, we study the interaction between coronal holes (CHs) and coronal mass ejections (CMEs) using a resultant force exerted by all coronal holes present on the disk and is defined as the coronal hole influence parameter (CHIP). The CHIP magnitude for each CH depends on the CH area, the distance between the CH centroid and the eruption region, and the average magnetic field within the CH at the photospheric level. The CHIP direction for each CH points from the CH centroid to the eruption region. We focus on Solar Cycle 23 CMEs originating from the disk center of the Sun (central meridian distance < 15 °). We present an extensive statistical study via compiling data sets of observations of CMEs and their interplanetary counterparts; known as interplanetary CMEs (ICMEs). There are 2 subsets of ICMEs

  7. Kepler-423b: a half-Jupiter mass planet transiting a very old solar-like star

    NASA Astrophysics Data System (ADS)

    Gandolfi, D.; Parviainen, H.; Deeg, H. J.; Lanza, A. F.; Fridlund, M.; Prada Moroni, P. G.; Alonso, R.; Augusteijn, T.; Cabrera, J.; Evans, T.; Geier, S.; Hatzes, A. P.; Holczer, T.; Hoyer, S.; Kangas, T.; Mazeh, T.; Pagano, I.; Tal-Or, L.; Tingley, B.

    2015-04-01

    We report the spectroscopic confirmation of the Kepler object of interest KOI-183.01 (Kepler-423b), a half-Jupiter mass planet transiting an old solar-like star every 2.7 days. Our analysis is the first to combine the full Kepler photometry (quarters 1-17) with high-precision radial velocity measurements taken with the FIES spectrograph at the Nordic Optical Telescope. We simultaneously modelled the photometric and spectroscopic data-sets using Bayesian approach coupled with Markov chain Monte Carlo sampling. We found that the Kepler pre-search data conditioned light curve of Kepler-423 exhibits quarter-to-quarter systematic variations of the transit depth, with a peak-to-peak amplitude of ~4.3% and seasonal trends reoccurring every four quarters. We attributed these systematics to an incorrect assessment of the quarterly variation of the crowding metric. The host star Kepler-423 is a G4 dwarf with M⋆ = 0.85 ± 0.04 M⊙, R⋆ = 0.95 ± 0.04 R⊙, Teff= 5560 ± 80 K, [M/H] = - 0.10 ± 0.05 dex, and with an age of 11 ± 2 Gyr. The planet Kepler-423b has a mass of Mp= 0.595 ± 0.081MJup and a radius of Rp= 1.192 ± 0.052RJup, yielding a planetary bulk density of ρp = 0.459 ± 0.083 g cm-3. The radius of Kepler-423b is consistent with both theoretical models for irradiated coreless giant planets and expectations based on empirical laws. The inclination of the stellar spin axis suggests that the system is aligned along the line of sight. We detected a tentative secondary eclipse of the planet at a 2σ confidence level (ΔFec = 14.2 ± 6.6 ppm) and found that the orbit might have asmall non-zero eccentricity of 0.019+0.028-0.014. With a Bond albedo of AB = 0.037 ± 0.019, Kepler-423b is one of the gas-giant planets with the lowest albedo known so far. Based on observations obtained with the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden, in the Spanish Observatorio del Roque de los Muchachos of

  8. UBVR{sub c} I{sub c} ANALYSIS OF THE RECENTLY DISCOVERED TOTALLY ECLIPSING EXTREME MASS RATIO BINARY V1853 ORIONIS, AND A STATISTICAL LOOK AT 25 OTHER EXTREME MASS RATIO SOLAR-TYPE CONTACT BINARIES

    SciTech Connect

    Samec, R. G.; Labadorf, C. M.; Hawkins, N. C.; Faulkner, D. R.; Van Hamme, W.

    2011-10-15

    We present precision CCD light curves, a period study, photometrically derived standard magnitudes, and a five-color simultaneous Wilson code solution of the totally eclipsing, yet shallow amplitude (A{sub v} {approx} 0.4 mag) eclipsing, binary V1853 Orionis. It is determined to be an extreme mass ratio, q = 0.20, W-type W UMa overcontact binary. From our standard star observations, we find that the variable is a late-type F spectral-type dwarf, with a secondary component of about 0.24 solar masses (stellar type M5V). Its long eclipse duration (41 minutes) as compared to its period, 0.383 days, attests to the small relative size of the secondary. Furthermore, it has reached a Roche lobe fill-out of {approx}50% of its outer critical lobe as it approaches its final stages of binary star evolution, that of a fast spinning single star. Finally, a summary of about 25 extreme mass ratio solar-type binaries is given.

  9. Imaging in the Age of Precision Medicine: Summary of the Proceedings of the 10th Biannual Symposium of the International Society for Strategic Studies in Radiology.

    PubMed

    Herold, Christian J; Lewin, Jonathan S; Wibmer, Andreas G; Thrall, James H; Krestin, Gabriel P; Dixon, Adrian K; Schoenberg, Stefan O; Geckle, Rena J; Muellner, Ada; Hricak, Hedvig

    2016-04-01

    During the past decade, with its breakthroughs in systems biology, precision medicine (PM) has emerged as a novel health-care paradigm. Challenging reductionism and broad-based approaches in medicine, PM is an approach for disease treatment and prevention that takes into account individual variability in genes, environment, and lifestyle. It involves integrating information from multiple sources in a holistic manner to achieve a definitive diagnosis, focused treatment, and adequate response assessment. Biomedical imaging and imaging-guided interventions, which provide multiparametric morphologic and functional information and enable focused, minimally invasive treatments, are key elements in the infrastructure needed for PM. The emerging discipline of radiogenomics, which links genotypic information to phenotypic disease manifestations at imaging, should also greatly contribute to patient-tailored care. Because of the growing volume and complexity of imaging data, decision-support algorithms will be required to help physicians apply the most essential patient data for optimal management. These innovations will challenge traditional concepts of health care and business models. Reimbursement policies and quality assurance measures will have to be reconsidered and adapted. In their 10th biannual symposium, which was held in August 2013, the members of the International Society for Strategic Studies in Radiology discussed the opportunities and challenges arising for the imaging community with the transition to PM. This article summarizes the discussions and central messages of the symposium.

  10. Evaluation of elemental status of ancient human bone samples from Northeastern Hungary dated to the 10th century AD by XRF

    NASA Astrophysics Data System (ADS)

    János, I.; Szathmáry, L.; Nádas, E.; Béni, A.; Dinya, Z.; Máthé, E.

    2011-11-01

    The present study is a multielemental analysis of bone samples belonging to skeletal individuals originating from two contemporaneous (10th century AD) cemeteries (Tiszavasvári Nagy-Gyepáros and Nagycserkesz-Nádasibokor sites) in Northeastern Hungary, using the XRF analytical technique. Emitted X-rays were detected in order to determine the elemental composition of bones and to appreciate the possible influence of the burial environment on the elemental content of the human skeletal remains. Lumbar vertebral bodies were used for analysis. Applying the ED(P)XRF technique concentration of the following elements were determined: P, Ca, K, Na, Mg, Al, Cl, Mn, Fe, Zn, Br and Sr. The results indicated post mortem mineral exchange between the burial environment (soil) and bones (e.g. the enhanced levels of Fe and Mn) and referred to diagenetic alteration processes during burials. However, other elements such as Zn, Sr and Br seemed to be accumulated during the past life. On the basis of statistical analysis, clear separation could not be observed between the two excavation sites in their bone elemental concentrations which denoted similar diagenetic influences, environmental conditions. The enhanced levels of Sr might be connected with the past dietary habits, especially consumption of plant food.

  11. The 10th GCC Closed Forum: rejected data, GCP in bioanalysis, extract stability, BAV, processed batch acceptance, matrix stability, critical reagents, ELN and data integrity and counteracting fraud.

    PubMed

    Cape, Stephanie; Islam, Rafiq; Nehls, Corey; Allinson, John; Safavi, Afshin; Bennett, Patrick; Hulse, James; Beaver, Chris; Khan, Masood; Karnik, Shane; Caturla, Maria Cruz; Lowes, Steve; Iordachescu, Adriana; Silvestro, Luigi; Tayyem, Rabab; Shoup, Ron; Mowery, Stephanie; Keyhani, Anahita; Wakefield, Andrea; Li, Yinghe; Zimmer, Jennifer; Torres, Javier; Couerbe, Philippe; Khadang, Ardeshir; Bourdage, James; Hughes, Nicola; Awaiye, Kayode; Matthews, Brent; Fatmi, Saadya; Johnson, Rhonda; Satterwhite, Christina; Yu, Mathilde; Lin, Jenny; Cojocaru, Laura; Fiscella, Michele; Thomas, Eric; Kurylak, Kai; Kamerud, John; Lin, Zhongping John; Garofolo, Wei; Savoie, Natasha; Buonarati, Mike; Boudreau, Nadine; Williard, Clark; Liu, Yansheng; Warrino, Dominic; Kale, Prashant; Adcock, Neil; Shekar, Radha; O'Connor, Edward; Ritzen, Hanna; Sanchez, Christina; Hayes, Roger; Bouhajib, Mohammed; Savu, Simona Rizea; Stouffer, Bruce; Tabler, Edward; Tu, Jing; Briscoe, Chad; der Strate, Barry van; Rhyne, Paul; Conliffe, Phyllis; DuBey, Ira; Yamashita, Jim; Tang, Daniel; Groeber, Elizabeth; Vija, Jenifer; Malone, Michele; Osman, Mohamed

    2017-03-24

    The 10th Global CRO Council (GCC) Closed Forum was held in Orlando, FL, USA on 18 April 2016. In attendance were decision makers from international CRO member companies offering bioanalytical services. The objective of this meeting was for GCC members to meet and discuss scientific and regulatory issues specific to bioanalysis. The issues discussed at this closed forum included reporting data from failed method validation runs, GCP for clinical sample bioanalysis, extracted sample stability, biomarker assay validation, processed batch acceptance criteria, electronic laboratory notebooks and data integrity, Health Canada's Notice regarding replicates in matrix stability evaluations, critical reagents and regulatory approaches to counteract fraud. In order to obtain the pharma perspectives on some of these topics, the first joint CRO-Pharma Scientific Interchange Meeting was held on 12 November 2016, in Denver, Colorado, USA. The five topics discussed at this Interchange meeting were reporting data from failed method validation runs, GCP for clinical sample bioanalysis, extracted sample stability, processed batch acceptance criteria and electronic laboratory notebooks and data integrity. The conclusions from the discussions of these topics at both meetings are included in this report.

  12. Urban and rural infant-feeding practices and health in early medieval Central Europe (9th-10th Century, Czech Republic).

    PubMed

    Kaupová, Sylva; Herrscher, Estelle; Velemínský, Petr; Cabut, Sandrine; Poláček, Lumír; Brůžek, Jaroslav

    2014-12-01

    In the Central European context, the 9th and 10th centuries are well known for rapid cultural and societal changes concerning the development of the economic and political structures of states as well as the adoption of Christianity. A bioarchaeological study based on a subadult skeletal series was conducted to tackle the impact of these changes on infant and young child feeding practices and, consequently, their health in both urban and rural populations. Data on growth and frequency of nonspecific stress indicators of a subadult group aged 0-6 years were analyzed. A subsample of 41 individuals was selected for nitrogen and carbon isotope analyses, applying an intra-individual sampling strategy (bone vs. tooth). The isotopic results attest to a mosaic of food behaviors. In the urban sample, some children may have been weaned during their second year of life, while some others may have still been consuming breast milk substantially up to 4-5 years of age. By contrast, data from the rural sample show more homogeneity, with a gradual cessation of breastfeeding starting after the age of 2 years. Several factors are suggested which may have been responsible for applied weaning strategies. There is no evidence that observed weaning strategies affected the level of biological stress which the urban subadult population had to face compared with the rural subadult population.

  13. Climate Change, Risks and Natural Resources didactic issues of educational content geography of Bulgaria and the world in 9th and 10th grade

    NASA Astrophysics Data System (ADS)

    Dermendzhieva, Stela; Nejdet, Semra

    2017-03-01

    The purpose of this paper is to follow "Climate change, risks and Natural Resources" in the curriculum of Geography of Bulgaria and the world in 9th and 10th grade and to interpret some didactic aspects. Analysis of key themes, concepts and categories related to the environment, events and approaches to environmental protection and the environmentally sound development of sectors of the economy is didikticheski targeted. Considering the emergence and development of geo-ecological issues, their scope and their importance to the environment, systematize some species and some approaches to solving them. Geography education in grade 9 and 10 involves acquiring knowledge, developing skills and composing behaviors of objective perception and assessment of the reality of globed, regional and local aspect. The emerging consumer and individualistic culture snowballing globalization, are increasingly occurring global warming, declining biodiversity form new realities which education must respond appropriately. The objective, consistency, accessibility and relevance in real terms are meaningful, logical accents. Whether and how reproduced in the study of Geography of Bulgaria and the world is the subject of research study in this report. Geoecological structuring of topics, concepts and categories can be done in different signs. In terms of their scope are local, national or regional, and global. Matter and interdisciplinary approach, which is to reveal the unity of the "man-society-nature" to clarify the complexity of their character with a view to forming a harmonious personality with high Geoecological consciousness and culture, and the activities carried out in their study.

  14. The Royal Book by Haly Abbas from the 10th century: one of the earliest illustrations of the surgical approach to skull fractures.

    PubMed

    Aciduman, Ahmet; Arda, Berna; Kahya, Esin; Belen, Deniz

    2010-12-01

    Haly Abbas was one of the pioneering physicians and surgeons of the Eastern world in the 10th century who influenced the Western world by his monumental work, The Royal Book. The book was first partly translated into Latin by Constantinus Africanus in the 11th century without citing the author's name. Haly Abbas was recognized in Europe after full translation of The Royal Book by Stephen of Antioch in 1127. The Royal Book has been accepted as an early source of jerrah-names (surgical books) in the Eastern world. The chapters regarding cranial fractures in Haly Abbas' work include unique management strategies for his period with essential quotations from Paul of Aegina's work Epitome. Both authors preferred free bone flap craniotomy in cranial fractures. Although Paul of Aegina, a Byzantine physician and surgeon, was a connection between ancient traditions and Islamic interpretation, Haly Abbas seemed to play a bridging role between the Roman-Byzantine and the School of Salerno in Europe.

  15. Comparison of Dawn and Dusk Precipitating Electron Energy Populations Shortly After the Initial Shock for the January 10th, 1997 Magnetic Cloud

    NASA Technical Reports Server (NTRS)

    Spann, J.; Germany, G.; Swift, W.; Parks, G.; Brittnacher, M.; Elsen, R.

    1997-01-01

    The observed precipitating electron energy between 0130 UT and 0400 UT of January 10 th, 1997, indicates that there is a more energetic precipitating electron population that appears in the auroral oval at 1800-2200 UT at 030) UT. This increase in energy occurs after the initial shock of the magnetic cloud reaches the Earth (0114 UT) and after faint but dynamic polar cap precipitation has been cleared out. The more energetic population is observed to remain rather constant in MLT through the onset of auroral activity (0330 UT) and to the end of the Polar spacecraft apogee pass. Data from the Ultraviolet Imager LBH long and LBH short images are used to quantify the average energy of the precipitating auroral electrons. The Wind spacecraft located about 100 RE upstream monitored the IMF and plasma parameters during the passing of the cloud. The affects of oblique angle viewing are included in the analysis. Suggestions as to the source of this hot electron population will be presented.

  16. Relating near-Earth observations of an interplanetary coronal mass ejection to the conditions at its site of origin in the solar corona

    NASA Astrophysics Data System (ADS)

    Fazakerley, A. N.; Harra, L. K.; Culhane, J. L.; van Driel-Gesztelyi, L.; Lucek, E.; Matthews, S. A.; Owen, C. J.; Mazelle, C.; Balogh, A.; Rème, H.

    2005-07-01

    A halo coronal mass ejection (CME) was detected on January 20, 2004. We use solar remote sensing data (SOHO, Culgoora) and near-Earth in situ data (Cluster) to identify the CME source event and show that it was a long duration flare in which a magnetic flux rope was ejected, carrying overlying coronal arcade material along with it. We demonstrate that signatures of both the arcade material and the flux rope material are clearly identifiable in the Cluster and ACE data, indicating that the magnetic field orientations changed little as the material traveled to the Earth, and that the methods we used to infer coronal magnetic field configurations are effective.

  17. Solar Physics

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    2000-01-01

    The areas of emphasis are: (1) develop theoretical models of the transient release of magnetic energy in the solar atmosphere, e.g., in solar flares, eruptive prominences, coronal mass ejections, etc.; (2) investigate the role of the Sun's magnetic field in the structuring of solar corona by the development of three-dimensional numerical models that describe the field configuration at various heights in the solar atmosphere by extrapolating the field at the photospheric level; (3) develop numerical models to investigate the physical parameters obtained by the ULYSSES mission; (4) develop numerical and theoretical models to investigate solar activity effects on the solar wind characteristics for the establishment of the solar-interplanetary transmission line; and (5) develop new instruments to measure solar magnetic fields and other features in the photosphere, chromosphere transition region and corona. We focused our investigation on the fundamental physical processes in solar atmosphere which directly effect our Planet Earth. The overall goal is to establish the physical process for the Sun-Earth connections.

  18. The accretion of solar material onto white dwarfs: No mixing with core material implies that the mass of the white dwarf is increasing

    SciTech Connect

    Starrfield, Sumner

    2014-04-15

    Cataclysmic Variables (CVs) are close binary star systems with one component a white dwarf (WD) and the other a larger cooler star that fills its Roche Lobe. The cooler star is losing mass through the inner Lagrangian point of the binary and some unknown fraction of this material is accreted by the WD. One consequence of the WDs accreting material, is the possibility that they are growing in mass and will eventually reach the Chandrasekhar Limit. This evolution could result in a Supernova Ia (SN Ia) explosion and is designated the Single Degenerate Progenitor (SD) scenario. This paper is concerned with the SD scenario for SN Ia progenitors. One problem with the single degenerate scenario is that it is generally assumed that the accreting material mixes with WD core material at some time during the accretion phase of evolution and, since the typical WD has a carbon-oxygen CO core, the mixing results in large amounts of carbon and oxygen being brought up into the accreted layers. The presence of enriched carbon causes enhanced nuclear fusion and a Classical Nova explosion. Both observations and theoretical studies of these explosions imply that more mass is ejected than is accreted. Thus, the WD in a Classical Nova system is losing mass and cannot be a SN Ia progenitor. However, the composition in the nuclear burning region is important and, in new calculations reported here, the consequences to the WD of no mixing of accreted material with core material have been investigated so that the material involved in the explosion has only a Solar composition. WDs with a large range in initial masses and mass accretion rates have been evolved. I find that once sufficient material has been accreted, nuclear burning occurs in all evolutionary sequences and continues until a thermonuclear runaway (TNR) occurs and the WD either ejects a small amount of material or its radius grows to about 10{sup 12} cm and the evolution is ended. In all cases where mass ejection occurs, the

  19. The age-mass-metallicity-activity relation for solar-type stars: comparisons with asteroseismology and the NGC 188 open cluster

    NASA Astrophysics Data System (ADS)

    Lorenzo-Oliveira, D.; Porto de Mello, G. F.; Schiavon, R. P.

    2016-10-01

    Context. The Mount Wilson Ca ii index log(R'_HK) is the accepted standard metric of calibration for the chromospheric activity versus age relation for FGK stars. Recent results claim its inability to discern activity levels, and thus ages, for stars older than ~2 Gyr, which would severely hamper its application to date disk stars older than the Sun. Aims: We present a new activity-age calibration of the Mt. Wilson index that explicitly takes mass and [Fe/H] biases into account; these biases are implicit in samples of stars selected to have precise ages, which have so far not been appreciated. Methods: We show that these selection biases tend to blur the activity-age relation for large age ranges. We calibrate the Mt. Wilson index for a sample of field FGK stars with precise ages, covering a wide range of mass and [Fe/H] , augmented with data from the Pleiades, Hyades, M 67 clusters, and the Ursa Major moving group. Results: We further test the calibration with extensive new Gemini/GMOS log ()R'HK) data of the old, solar [Fe/H] clusters, M 67 and NGC 188. The observed NGC 188 activity level is clearly lower than M 67. We correctly recover the isochronal age of both clusters and establish the viability of deriving usable chromospheric ages for solar-type stars up to at least ~6 Gyr, where average errors are ~0.14 dex provided that we explicitly account for the mass and [Fe/H] dimensions. We test our calibration against asteroseismological ages, finding excellent correlation (ρ = + 0.89). We show that our calibration improves the chromospheric age determination for a wide range of ages, masses, and metallicities in comparison to previous age-activity relations.

  20. The impact of high-stakes, state-mandated student performance assessment on 10th grade English, mathematics, and science teachers' instructional practices

    NASA Astrophysics Data System (ADS)

    Vogler, Kenneth E.

    The purpose of this study was to determine if the public release of student results on high-stakes, state-mandated performance assessments influence instructional practices, and if so in what manner. The research focused on changes in teachers' instructional practices and factors that may have influenced such changes since the public release of high-stakes, state-mandated student performance assessment scores. The data for this study were obtained from a 54-question survey instrument given to a stratified random sample of teachers teaching at least one section of 10th grade English, mathematics, or science in an academic public high school within Massachusetts. Two hundred and fifty-seven (257) teachers, or 62% of the total sample, completed the survey instrument. An analysis of the data found that teachers are making changes in their instructional practices. The data show notable increases in the use of open-response questions, creative/critical thinking questions, problem-solving activities, use of rubrics or scoring guides, writing assignments, and inquiry/investigation. Teachers also have decreased the use of multiple-choice and true-false questions, textbook-based assignments, and lecturing. Also, the data show that teachers felt that changes made in their instructional practices were most influenced by an "interest in helping my students attain MCAS assessment scores that will allow them to graduate high school" and by an "interest in helping my school improve student (MCAS) assessment scores," Finally, mathematics teachers and teachers with 13--19 years of experience report making significantly more changes than did others. It may be interpreted from the data that the use of state-mandated student performance assessments and the high-stakes attached to this type of testing program contributed to changes in teachers' instructional practices. The changes in teachers' instructional practices have included increases in the use of instructional practices deemed

  1. Comparison of problematic behaviours of 10th and 11th year Southern English adolescents. Part 2: Current drink, drug and sexual activity of children with smoking parents.

    PubMed

    Cox, Malcolm; Pritchard, Colin

    2007-01-01

    To determine parental and school influences upon the behaviour and attitudes of adolescents of smoking versus non-smoking parents and of those "liking and disliking" school. Utilising a self-administered confidential standardised questionnaire, a representative sample of Southern English 10th and 11th year secondary school pupils was obtained. Current drink, drug and sexual behaviour were explored and data on adolescents whose parents smoked was extrapolated and compared against adolescents of non-smoking parents. Pupils reporting "liking school" were compared against those "not liking school" and all results statistically analysed. There were 17% smoking mothers [SM] and 23% smoking fathers [SF]. The focus is upon students of SF whose adolescents are significantly more often engaged in substance misuse (38-18%), drinking in pubs (31%-15%), binge drinking (32%-18%), and under-age sexual activity (27%-14%) plus smoking (51%-32%), truanting (43%-23%), vandalism (32%-22%) and stealing (19%-11%). SM students had higher incidence of sexual behaviour (33%-13%) and unprotected sex (21%-6%). Students of smoking parents were less well informed and had significantly more negative attitudes about social behaviour and responsibility. "Liking school" was associated to significantly lower rates of problematic behaviour, which predominately was not related to the social background of the pupils. The smoking father criteria carries a social class bias, nonetheless these parents need to be aware of the particular behaviour of their children and their increased risk. SF do not "cause" the behaviour rather it reflects something of the nature of the adolescent's relationship to parents, school and society.

  2. Early fetal gender determination using real-time PCR analysis of cell-free fetal DNA during 6th-10th weeks of gestation.

    PubMed

    Khorram Khorshid, Hamid Reza; Zargari, Maryam; Sadeghi, Mohammad Reza; Edallatkhah, Haleh; Shahhosseiny, Mohammad Hassan; Kamali, Koorosh

    2013-05-07

    Nowadays, new advances in the use of cell free fetal DNA (cffDNA) in maternal plasma of pregnant women has provided the possibility of applying cffDNA in prenatal diagnosis as a non-invasive method. In contrary to the risks of invasive methods that affect both mother and fetus, applying cffDNA is proven to be highly effective with lower risk. One of the applications of prenatal diagnosis is fetal gender determination, which is important in fetuses at risk of sex-linked genetic diseases. In such cases by obtaining the basic information of the gender, necessary time management can be taken in therapeutic to significantly reduce the necessity of applying the invasive methods. Therefore in this study, the probability of detecting sequences on the human Y-chromosome in pregnant women has been evaluated to identify the gender of fetuses. Peripheral blood samples were obtained from 80 pregnant women with gestational age between 6th to 10th weeks and the fetal DNA was extracted from the plasma. Identification of SRY, DYS14 & DAZ sequences, which are not presentin the maternal genome, was performed using Real-Time PCR. All the obtained results were compared with the actual gender of the newborns to calculate the test accuracy. Considerable 97.3% sensitivity and 97.3% specificity were obtained in fetal gender determination which is significant in the first trimester of pregnancy. Only in one case, false positive result was obtained. Using non-invasive method of cffDNAs in the shortest time possible, as well as avoiding invasive tests for early determination of fetal gender, provides the opportunity of deciding and employing early treatment for fetuses at risk of genetic diseases.

  3. Using Self-Assembled Monolayers to Model Cell Adhesion to the 9th and 10th Type III Domains of Fibronectin†

    PubMed Central

    2009-01-01

    Most mammalian cells must adhere to the extracellular matrix (ECM) to maintain proper growth and development. Fibronectin is a predominant ECM protein that engages integrin cell receptors through its Arg-Gly-Asp (RGD) and Pro-His-Ser-Arg-Asn (PHSRN) peptide binding sites. To study the roles these motifs play in cell adhesion, proteins derived from the 9th (containing PHSRN) and 10th (containing RGD) type III fibronectin domains were engineered to be in frame with cutinase, a serine esterase that forms a site-specific, covalent adduct with phosphonate ligands. Self-assembled monolayers (SAMs) that present phosphonate ligands against an inert background of tri(ethylene glycol) groups were used as model substrates to immobilize the cutinase-fibronectin fusion proteins. Baby hamster kidney cells attached efficiently to all protein surfaces, but only spread efficiently on protein monolayers containing the RGD peptide. Cells on RGD-containing protein surfaces also displayed defined focal adhesions and organized cytoskeletal structures compared to cells on PHSRN-presenting surfaces. Cell attachment and spreading were shown to be unaffected by the presence of PHSRN when compared to RGD alone on SAMs presenting higher densities of protein, but PHSRN supported an increased efficiency in cell attachment when presented at low protein densities with RGD. Treatment of suspended cells with soluble RGD or PHSRN peptides revealed that both peptides were able to inhibit the attachment of FN10 surfaces. These results support a model wherein PHSRN and RGD bind competitively to integrins―rather than a two-point synergistic interaction―and the presence of PHSRN serves to increase the density of ligand on the substrate and therefore enhance the sticking probability of cells during attachment. PMID:20560553

  4. Affective decision-making deficits, linked to a dysfunctional ventromedial prefrontal cortex, revealed in 10th grade Chinese adolescent binge drinkers.

    PubMed

    Johnson, C Anderson; Xiao, Lin; Palmer, Paula; Sun, Ping; Wang, Qiong; Wei, Yonglan; Jia, Yong; Grenard, Jerry L; Stacy, Alan W; Bechara, Antoine

    2008-01-31

    The primary aim of this study was to test the hypothesis that adolescent binge drinkers, but not lighter drinkers, would show signs of impairment on tasks of affective decision-making as measured by the Iowa Gambling Test (IGT), when compared to adolescents who never drank. We tested 207 10th grade adolescents in Chengdu City, China, using two versions of the IGT, the original and a variant, in which the reward/punishment contingencies were reversed. This enables one to distinguish among different possibilities of impaired decision-making, such as insensitivity to long-term consequences, or hypersensitivity to reward. Furthermore, we tested working memory capacity using the Self-ordered Pointing Test (SOPT). Paper and pencil questionnaires were used to assess drinking behaviors and school academic performance. Results indicated that relative to never-drinkers, adolescent binge drinkers, but not other (ever, past 30-day) drinkers, showed significantly lower net scores on the original version of the IGT especially in the latter trials. Furthermore, the profiles of behavioral performance from the original and variant versions of the IGT were consistent with a decision-making impairment attributed to hypersensitivity to reward. In addition, working memory and school academic performance revealed no differences between drinkers (at all levels) and never-drinkers. Logistic regression analysis showed that after controlling for demographic variables, working memory, and school academic performance, the IGT significantly predicted binge-drinking. These findings suggest that a "myopia" for future consequences linked to hypersensitivity to reward is a key characteristic of adolescents with binge-drinking behavior, and that underlying neural mechanisms for this "myopia" for future consequences may serve as a predisposing factor that renders some adolescents more susceptible to future addictive behaviors.

  5. IBC’s 23rd Annual Antibody Engineering, 10th Annual Antibody Therapeutics International Conferences and the 2012 Annual Meeting of The Antibody Society

    PubMed Central

    Klöhn, Peter-Christian; Wuellner, Ulrich; Zizlsperger, Nora; Zhou, Yu; Tavares, Daniel; Berger, Sven; Zettlitz, Kirstin A.; Proetzel, Gabriele; Yong, May; Begent, Richard H.J.; Reichert, Janice M

    2013-01-01

    The 23rd Annual Antibody Engineering, 10th Annual Antibody Therapeutics international conferences, and the 2012 Annual Meeting of The Antibody Society, organized by IBC Life Sciences with contributions from The Antibody Society and two Scientific Advisory Boards, were held December 3–6, 2012 in San Diego, CA. The meeting drew over 800 participants who attended sessions on a wide variety of topics relevant to antibody research and development. As a prelude to the main events, a pre-conference workshop held on December 2, 2012 focused on intellectual property issues that impact antibody engineering. The Antibody Engineering Conference was composed of six sessions held December 3–5, 2012: (1) From Receptor Biology to Therapy; (2) Antibodies in a Complex Environment; (3) Antibody Targeted CNS Therapy: Beyond the Blood Brain Barrier; (4) Deep Sequencing in B Cell Biology and Antibody Libraries; (5) Systems Medicine in the Development of Antibody Therapies/Systematic Validation of Novel Antibody Targets; and (6) Antibody Activity and Animal Models. The Antibody Therapeutics conference comprised four sessions held December 4–5, 2012: (1) Clinical and Preclinical Updates of Antibody-Drug Conjugates; (2) Multifunctional Antibodies and Antibody Combinations: Clinical Focus; (3) Development Status of Immunomodulatory Therapeutic Antibodies; and (4) Modulating the Half-Life of Antibody Therapeutics. The Antibody Society’s special session on applications for recording and sharing data based on GIATE was held on December 5, 2012, and the conferences concluded with two combined sessions on December 5–6, 2012: (1) Development Status of Early Stage Therapeutic Antibodies; and (2) Immunomodulatory Antibodies for Cancer Therapy. PMID:23575266

  6. Effect of cooperative learning strategies on student verbal interactions and achievement during conceptual change instruction in 10th grade general science

    NASA Astrophysics Data System (ADS)

    Lonning, Robert A.

    This study evaluated the effects of cooperative learning on students' verbal interaction patterns and achievement in a conceptual change instructional model in secondary science. Current conceptual change instructional models recognize the importance of student-student verbal interactions, but lack specific strategies to encourage these interactions. Cooperative learning may provide the necessary strategies. Two sections of low-ability 10th-grade students were designated the experimental and control groups. Students in both sections received identical content instruction on the particle model of matter using conceptual change teaching strategies. Students worked in teacher-assigned small groups on in-class assignments. The experimental section used cooperative learning strategies involving instruction in collaborative skills and group evaluation of assignments. The control section received no collaborative skills training and students were evaluated individually on group work. Gains on achievement were assessed using pre- and posttreatment administrations of an investigator-designed short-answer essay test. The assessment strategies used in this study represent an attempt to measure conceptual change. Achievement was related to students' ability to correctly use appropriate scientific explanations of events and phenomena and to discard use of naive conceptions. Verbal interaction patterns of students working in groups were recorded on videotape and analyzed using an investigator-designed verbal interaction scheme. The targeted verbalizations used in the interaction scheme were derived from the social learning theories of Piaget and Vygotsky. It was found that students using cooperative learning strategies showed greater achievement gains as defined above and made greater use of specific verbal patterns believed to be related to increased learning. The results of the study demonstrated that cooperative learning strategies enhance conceptual change instruction. More

  7. Heliocentric Distance of Coronal Mass Ejections at the Time of Energetic Particle Release: Revisiting the Ground Level Enhancement Events of Solar Cycle 23

    NASA Technical Reports Server (NTRS)

    Gopalswamy, Natchimuthuk

    2011-01-01

    Using the kinematics of coronal mass ejections (CMEs), onset time of soft X-ray flares, and the finite size of the pre-eruption CME structure, we derive the heliocentric distane at which the energetic particles during the ground level enhancement (GLE) events of Solar Cycle 23. We find that the GLE particles are released when the CMEs reach an average heliocentric distance of approx.3.25 solar radii (Rs). From this we infer that the shocks accelerating the particles are located at similar heights. Type II radio burst observations indicate that the CMEs are at much lower distances (average approx.1.4 Rs) when the CME-driven shock first forms. The shock seems to travel approx.1.8 Rs over a period of approox.30 min on the average before releasing the GLE particles. In deriving these results, we made three assumptions that have observational support: (i) the CME lift off occurs from an initial distance of about 1.25 Rs; (ii) the flare onset and CME onset are one and the same because these are two different manifestations of the same eruption; and (iii) the CME has positive acceleration from the onset to the first appearance in the coronagraphic field of view (2.5 to 6 Rs). Observations of coronal cavities in eclipse pictures and in coronagraphic images justify the assumption (i). The close relationship between the flare reconnection magnetic flux and the azimuthal flux of interplanetary magnetic clouds justify assumption (ii) consistent with the standard model (CSHKP) of solar eruption. Coronagraphic observations made close to the solar surface indicate a large positive acceleration of CMEs to a heliocentric distance of approx.3 Rs before they start slowing down due to the drag force. The inferred acceleration (approx.1.5 km/s/s) is consistent with reported values in the literature.

  8. On the statistical characteristics of radio-loud and radio-quiet halo coronal mass ejections and their associated flares during solar cycles 23 and 24

    NASA Astrophysics Data System (ADS)

    Mittal, Nishant; Sharma, Joginder; Verma, Virendar Kumar; Garg, Vijay

    2016-08-01

    We have studied the characteristics of radio-loud (RL) and radio-quiet (RQ) front side halo coronal mass ejections (HCMEs) (angular width 360°) observed between the time period years 1996-2014. RL-HCMEs are associated with type II radio bursts, while RQ-HCMEs are not associated with type II radio bursts. CMEs near the Sun in the interplanetary medium associated with radio bursts also affect the magnetosphere. The type II radio burst data was observed by WIND/WAVES instrument and HCMEs were observed by LASCO/ SOHO instruments. In our study, we have examined the properties of RL-HCMEs and RQ-HCMEs and found that RL-HCMEs follow the solar cycle variation. Our study also shows that the 26% of slow speed HCMEs and 82% of fast speed HCMEs are RL. The average speed of RL-HCMEs and RQ-HCMEs are 1370 km/s and 727 km/s, respectively. Most of the RQ-HCMEs occur around the solar disc center while most of RL-HCMEs are uniformly distributed across the solar disc. The mean value of acceleration of RL-HCMEs is more than twice that of RQ-HCMEs and mean value of deceleration of RL- HCMEs is very small compare to RQ-HCMEs events. It is also found that RQ-HCMEs events are associated with C- and M-class of SXR flares, while RL-HCMEs events are associated with M and X-class of SXR flares, which indicates that the RQ-HCMEs are less energetic than the RL-HCMEs. We have also discussed the various results obtained in present investigation in view of recent scenario of solar physics.

  9. A new view of solar coronal mass ejections with the Heliophysics System Observatory (Arne Richter Award for Outstanding Young Scientists Lecture)

    NASA Astrophysics Data System (ADS)

    Moestl, Christian

    2016-04-01

    Solar coronal mass ejections (CMEs) play a pivotal role in solar, heliospheric and planetary physics because they lead to connections of plasma phenomena from the Sun to the planets throughout the solar system. CMEs drive the strongest geomagnetic storms, fill the heliosphere with energetic particles, illuminate planetary skies with aurorae, modulate cosmic rays on planetary surfaces, and lead to erosion of planetary atmospheres over long time scales. Thus, even for studying the detection of life on exoplanets, the role of possible stellar CMEs should not be neglected. However, besides the simple fascination of studying the biggest explosions in the solar system, they are of increasingly high practical significance concerning risk mitigation of natural desasters and the protection of our common wealth. As the impact of a "super-CME", a rare but possible event, may affect the entire planet Earth, coordinated international efforts for their fundamental understanding, as well as building dedicated space weather missions for daily forecasts is necessary. There is a chance of a CME on the order of a Carrington event, with a minimum Dst of about -1000 nT, impacting Earth once every 100 years - or a 10% chance in a given solar cycle. An impact of such a super-CME is expected to cause e.g. wide-spread electricity blackouts and satellite failures. In the last 10 years, the field has made major advantages in understanding how CMEs evolve from the Sun to the planets. Because of the extension of CMEs on the order of 60-100 degree heliospheric longitude and radial sizes around 0.1-0.2 AU, multipoint imaging and in situ observations are inevitably necessary to understand basic CME physics. To this end, I will show data, as provided by the Heliophysics System Observatory (HSO), and their interpretation with various modeling effors. The HSO can be understood as a web of sensors placed throughout the heliosphere, consisting of spacecraft such as STEREO, Wind, ACE, Venus Express and

  10. A COMPARISON OF THE INTENSITIES AND ENERGIES OF GRADUAL SOLAR ENERGETIC PARTICLE EVENTS WITH THE DYNAMICAL PROPERTIES OF ASSOCIATED CORONAL MASS EJECTIONS

    SciTech Connect

    Kahler, S. W.; Vourlidas, A.

    2013-06-01

    Gradual solar energetic particle (SEP) events observed at 1 AU are produced by shocks driven by coronal mass ejections (CMEs). Characterizations of the remotely imaged CMEs and of their associated SEP events observed in situ can be used to increase our ability to forecast SEP events and to understand better the physical connections between the two phenomena. We carry out a statistical comparison of the peak intensities Ip20, of 120 western-hemisphere 20 MeV SEP events with those of their associated CMEs observed by the Solar and Heliospheric Observatory/Large Angle and Spectrometric Coronagraph over the past solar cycle. For a subset of 96 events observed with the EPACT instrument on the Wind spacecraft we also compare the SEP 2 MeV peak intensities Ip2, power-law energy spectral exponents {gamma}, total SEP energies Esep, and 2 MeV nuc{sup -1} H/He ratios with CME properties. New analyses of white-light CME images enable us to improve calculations of the CME masses and potential energies and then to determine two values of their kinetic energies based on frontal V (fr) and center-of-mass V (cm) speeds. Despite considerable scatter in the SEP and CME data, the large dynamical ranges of both the SEP and CME parameters allow us to determine statistical trends in the comparisons of the logs of the parameters. Ip2, Ip20, and Esep are significantly correlated with CME kinetic energies, masses, and speeds, while {gamma} trends lower (harder). Those correlations are higher with V (fr) than with V (cm) parameters, indicating a less significant role for the body of the CME than for the CME front in SEP production. The high ratios ({>=}10%) of Esep to CME energies found by Mewaldt et al. are confirmed, and the fits are consistent with a linear relationship between the two energies. The 2 MeV nuc{sup -1} H/He ratios decrease with increasing CME speeds, which may be an effect of shock geometry. We discuss several factors that limit the estimates of both the SEP and CME

  11. The Federal Forecasters Conference--1999. Papers and Proceedings (10th, Washington, DC, June 24, 1999) and Selected Papers from the International Symposium on Forecasting (19th, Washington, DC, June 27-30, 1999).

    ERIC Educational Resources Information Center

    Gerald, Debra E., Ed.

    The 10th Federal Forecasters Conference provided a forum where 127 forecasters from different federal agencies and other organizations met to discuss various aspects of the conference's theme, "Forecasting in the New Millennium," that could be applied in the United States. A keynote address, "Procedures for Auditing Federal Forecasts" by J. Scott…

  12. Mountain Dew[R] or Mountain Don't?: A Pilot Investigation of Caffeine Use Parameters and Relations to Depression and Anxiety Symptoms in 5th- and 10th-Grade Students

    ERIC Educational Resources Information Center

    Luebbe, Aaron M.; Bell, Debora J.

    2009-01-01

    Background: Caffeine, the only licit psychoactive drug available to minors, may have a harmful impact on students' health and adjustment, yet little is known about its use or effects on students, especially from a developmental perspective. Caffeine use in 5th- and 10th-grade students was examined in a cross-sectional design, and relations and…

  13. Material Analysis and Processing Systems: A 9th and/or 10th Grade Industrial Education Curriculum Designed To Fulfill the Kansas State Department of Vocational Education's Level 2 Course Requirements.

    ERIC Educational Resources Information Center

    Dean, Harvey R., Ed.

    The teacher developed curriculum guide provides the industrial education teacher with the objectives, equipment lists, material, supplies, references, and activities necessary to teach students of the 9th and/or 10th grade the concepts of interrelationships between material analysis and processing systems. Career information and sociological…

  14. The Internet Time Lag: Anticipating the Long-Term Consequences of the Information Revolution. A Report of the Annual Aspen Institute Roundtable on Information Technology (10th, Aspen, Colorado, August 2-5, 2001).

    ERIC Educational Resources Information Center

    Schwartz, Evan I.

    This is a report of the 10th annual Aspen Institute Roundtable on Information Technology (Aspen, Colorado, August 2-5, 2001). Participants were also polled after the events of September 11, and these comments have been integrated into the report. The mission of this report is to take a wide-ranging look at the trends that are defining the next new…

  15. Power Conversion and Transmission Systems: A 9th and/or 10th Grade Industrial Education Curriculum Designed To Fulfill the Kansas State Department of Vocational Education's Level 2 Course Requirements.

    ERIC Educational Resources Information Center

    Dean, Harvey R., Ed.

    The document is a guide to a 9th and 10th grade industrial education course investigating the total system of power--how man controls, converts, transmits, and uses energy; the rationale is that if one is to learn of the total system of industry, the subsystem of power must be investigated. The guide provides a "body of knowledge" chart…

  16. A 15.65-solar-mass black hole in an eclipsing binary in the nearby spiral galaxy M 33.

    PubMed

    Orosz, Jerome A; McClintock, Jeffrey E; Narayan, Ramesh; Bailyn, Charles D; Hartman, Joel D; Macri, Lucas; Liu, Jiefeng; Pietsch, Wolfgang; Remillard, Ronald A; Shporer, Avi; Mazeh, Tsevi

    2007-10-18

    Stellar-mass black holes are found in X-ray-emitting binary systems, where their mass can be determined from the dynamics of their companion stars. Models of stellar evolution have difficulty producing black holes in close binaries with masses more than ten times that of the Sun (>10; ref. 4), which is consistent with the fact that the most massive stellar black holes known so far all have masses within one standard deviation of 10. Here we report a mass of (15.65 +/- 1.45) for the black hole in the recently discovered system M 33 X-7, which is located in the nearby galaxy Messier 33 (M 33) and is the only known black hole that is in an eclipsing binary. To produce such a massive black hole, the progenitor star must have retained much of its outer envelope until after helium fusion in the core was completed. On the other hand, in order for the black hole to be in its present 3.45-day orbit about its (70.0 +/- 6.9) companion, there must have been a 'common envelope' phase of evolution in which a significant amount of mass was lost from the system. We find that the common envelope phase could not have occurred in M 33 X-7 unless the amount of mass lost from the progenitor during its evolution was an order of magnitude less than what is usually assumed in evolutionary models of massive stars.

  17. Relationship of decametric-hectometric type II radio burst, coronal mass ejections and solar flare observed during 1997-2014

    NASA Astrophysics Data System (ADS)

    Mittal, Nishant; Verma, V. K.

    2017-01-01

    In the present study we have investigated 426 DH Type II radio burst and associated CMEs events observed during the time period of 1997-2014. The starting frequency of most of associated DH type-II bursts (85%) lies in the range of 1-14 MHz (364 out of 426) with mean value of starting frequency is ∼11 MHz. The study of starting frequency (1-16 MHz) of DH type II bursts and heliocentric distance in solar radii indicate that DH type II radio bursts originate from 2.2-4.5 (RS) heliocentric distance in solar radii. We also found that the ∼ 48% DH Type II radio bursts associated CMEs are located between ± 40° of solar central disc and we also found that duration of DH type II radio bursts located at solar disc center are more than the duration of DH type II radio bursts located at solar limb. It is found that mean value for linear and initial speed of DH Type II associated CMEs are 1157 km/s and 1200 km/s, respectively. The CMEs speed are not correlated with duration of DH Type II radio bursts indicate that the durations of DH Type II radio bursts does not depend on speed of CMEs. The study also show that 426 DH type II radio bursts associated CMEs/flares occurred when there is coronal holes(CH) in nearby area and the mean distance between DH type II burst associated CMEs/ flares and boundary of coronal hole (CH) is 26°. The study also shows that there is no relation between drift velocity of DH type II radio bursts and speed of CMEs. The study also indicate that about 45% flares those associated DH Type II radio bursts have duration about 60 minutes and long duration DH Type II radio bursts are associated with X-class flares. We have also discussed that the results obtained in the present investigation in view of latest heliophysics interpretations.

  18. IBC's 23rd Antibody Engineering and 10th Antibody Therapeutics Conferences and the Annual Meeting of The Antibody Society: December 2-6, 2012, San Diego, CA.

    PubMed

    Marquardt, John; Begent, Richard H J; Chester, Kerry; Huston, James S; Bradbury, Andrew; Scott, Jamie K; Thorpe, Philip E; Veldman, Trudi; Reichert, Janice M; Weiner, Louis M

    2012-01-01

    Now in its 23rd and 10th years, respectively, the Antibody Engineering and Antibody Therapeutics conferences are the Annual Meeting of The Antibody Society. The scientific program covers the full spectrum of challenges in antibody research and development from basic science through clinical development. In this preview of the conferences, the chairs provide their thoughts on sessions that will allow participants to track emerging trends in (1) the development of next-generation immunomodulatory antibodies; (2) the complexity of the environment in which antibodies must function; (3) antibody-targeted central nervous system (CNS) therapies that cross the blood brain barrier; (4) the extension of antibody half-life for improved efficacy and pharmacokinetics (PK)/pharmacodynamics (PD); and (5) the application of next generation DNA sequencing to accelerate antibody research. A pre-conference workshop on Sunday, December 2, 2012 will update participants on recent intellectual property (IP) law changes that affect antibody research, including biosimilar legislation, the America Invents Act and recent court cases. Keynote presentations will be given by Andreas Plückthun (University of Zürich), who will speak on engineering receptor ligands with powerful cellular responses; Gregory Friberg (Amgen Inc.), who will provide clinical updates of bispecific antibodies; James D. Marks (University of California, San Francisco), who will discuss a systems approach to generating tumor targeting antibodies; Dario Neri (Swiss Federal Institute of Technology Zürich), who will speak about delivering immune modulators at the sites of disease; William M. Pardridge (University of California, Los Angeles), who will discuss delivery across the blood-brain barrier; and Peter Senter (Seattle Genetics, Inc.), who will present his vision for the future of antibody-drug conjugates. For more information on these meetings or to register to attend, please visit www

  19. New archeointensity data from French Early Medieval pottery production (6th-10th century AD). Tracing 1500 years of geomagnetic field intensity variations in Western Europe

    NASA Astrophysics Data System (ADS)

    Genevey, Agnès; Gallet, Yves; Jesset, Sébastien; Thébault, Erwan; Bouillon, Jérôme; Lefèvre, Annie; Le Goff, Maxime

    2016-08-01

    Nineteen new archeointensity results were obtained from the analysis of groups of French pottery fragments dated to the Early Middle Ages (6th to 10th centuries AD). They are from several medieval ceramic production sites, excavated mainly in Saran (Central France), and their precise dating was established based on typo-chronological characteristics. Intensity measurements were performed using the Triaxe protocol, which takes into account the effects on the intensity determinations of both thermoremanent magnetization anisotropy and cooling rate. Intensity analyses were also carried out on modern pottery produced at Saran during an experimental firing. The results show very good agreement with the geomagnetic field intensity directly measured inside and around the kiln, thus reasserting the reliability of the Triaxe protocol and the relevance of the quality criteria used. They further demonstrate the potential of the Saran pottery production for archeomagnetism. The new archeointensity results allow a precise and coherent description of the geomagnetic field intensity variations in Western Europe during the Early Medieval period, which was until now poorly documented. They show a significant increase in intensity during the 6th century AD, high intensity values from the 7th to the 9th century, with a minimum of small amplitude at the transition between the 7th and the 8th centuries and finally an important decrease until the beginning of the 11th century. Together with published intensity results available within a radius of 700 km around Paris, the new data were used to compute a master curve of the Western European geomagnetic intensity variations over the past 1500 years. This curve clearly exhibits five intensity maxima: at the transition between the 6th and 7th century AD, at the middle of the 9th century, during the 12th century, in the second part of the 14th century and at the very beginning of the 17th century AD. Some of these peaks are smoothed, or

  20. REDSHIFT 6.4 HOST GALAXIES OF 10{sup 8} SOLAR MASS BLACK HOLES: LOW STAR FORMATION RATE AND DYNAMICAL MASS

    SciTech Connect

    Willott, Chris J.; Omont, Alain; Bergeron, Jacqueline

    2013-06-10

    We present Atacama Large Millimeter Array observations of rest-frame far-infrared continuum and [C II] line emission in two z = 6.4 quasars with black hole masses of Almost-Equal-To 10{sup 8} M{sub Sun }. CFHQS J0210-0456 is detected in the continuum with a 1.2 mm flux of 120 {+-} 35 {mu}Jy, whereas CFHQS J2329-0301 is undetected at a similar noise level. J2329-0301 has a star formation rate limit of <40 M{sub Sun} yr{sup -1}, considerably below the typical value at all redshifts for this bolometric luminosity. Through comparison with hydro simulations, we speculate that this quasar is observed at a relatively rare phase where quasar feedback has effectively shut down star formation in the host galaxy. [C II] emission is also detected only in J0210-0456. The ratio of [C II] to far-infrared luminosity is similar to that of low-redshift galaxies of comparable luminosity, suggesting that the previous finding of an offset in the relationships between this ratio and far-infrared luminosity at low and high redshifts may be partially due to a selection effect due to the limited sensitivity of previous continuum data. The [C II] line of J0210-0456 is relatively narrow (FWHM = 189 {+-} 18 km s{sup -1}), indicating a dynamical mass substantially lower than expected from the local black hole-velocity dispersion correlation. The [C II] line is marginally resolved at 0.''7 resolution with the blue and red wings spatially offset by 0.''5 (3 kpc) and a smooth velocity gradient of 100 km s{sup -1} across a scale of 6 kpc, possibly due to the rotation of a galaxy-wide disk. These observations are consistent with the idea that stellar mass growth lags black hole accretion for quasars at this epoch with respect to more recent times.

  1. Supernova progenitor stars in the initial range of 23 to 33 solar masses and their relation with the SNR Cassiopeia A

    NASA Astrophysics Data System (ADS)

    Pérez-Rendón, B.; García-Segura, G.; Langer, N.

    2009-11-01

    Context: Multi wavelength observations of Cassiopeia A (Cas A) have provided us with strong evidence of circumstellar material surrounding the progenitor star. It has been suggested that its progenitor was a massive star with strong mass loss. But, despite the large amount of observational data from optical, IR, radio, and x-ray observations, the identity of Cas A progenitor is still elusive. Aims: In this work, we computed stellar and circumstellar numerical models to look for the progenitor of Cas A. The models are compared with the observational constraints that come from chemical observed abundances and dynamical information. Methods: We first computed stellar evolution models to get time-dependent wind parameters and surface abundances using the code STERN. To explore the range of masses proposed by several previous works, we chose a set of probable progenitor stars with initial masses of 23, 28, 29, 30, and 33 M⊙, with initial solar composition (Y=0.28, Z=0.02) and mass loss. The derived mass loss rates and wind terminal velocities are used as inner boundary conditions in the explicit, hydrodynamical code ZEUS-3D to simulate the evolution of the circumstellar medium. We simplified the calculations by using one-dimensional grids in the main sequence and red super-giant (RSG) stages, and two-dimensional grids for the post-RSG evolution and supernova (SN) blast wave. Results: Our stellar set gives distinct SN progenitors: RSG, luminous blue super giants (LBSGs), and Wolf-Rayet (WR) stars. We named these type of stars “luminous blue super giant” (LBSGs) to distinguish them from normal blue super giants (BSGs) of much lower initial masses. The 23 M⊙ star explodes as an RSG in a ρ ˜ r-2 dense, free-streaming wind surrounded by a thin, compressed, RSG shell. The 28 M⊙ star explodes as an LBSG, and the SN blast wave interacts with a low density, free streaming wind surrounded by an unstable and massive “RSG+LBSG” shell. Finally, the 30 and 33 M

  2. Magnetic Causes of Solar Coronal Mass Ejections: Dominance of the Free Magnetic Energy over Either the Magnetic Twist or Size Alone

    NASA Technical Reports Server (NTRS)

    Falconer, D. A.; Moore, R. L.; Gary, G. A.

    2006-01-01

    We report further results from our ongoing assessment of magnetogram-based measures of active-region nonpotentiality and size as predictors of coronal mass ejections (CMEs). We have devised improved generalized measures of active-region nonpotentiality that apply to active regions of any degree of magnetic complexity, rather than being limited to bipolar active regions as our initial measures were. From a set of approx.50 active-regions, we have found that measures of total nonpotentiality have a 75-80% success rate n predicting whether an active region will produce a CME in 2 days after the magnetogram. This makes measures of total nonpotentiality a better predictor than either active-region size, or active region twist (size-normalized nonpotentiality), which have a approx.65% success rates. We have also found that we can measure from the line-of-sight magnetograms an active region's total nonpotentiality and the size, which allows use to use MDI to evaluate these quantities for 4-5 consecutive days for each active region, and to investigate if there is some combination of size and total nonpotentiality that have a stronger predictive power than does total nonpotentiality. This work was funded by NASA through its LWS TR&T Program and its Solar and Heliospheric Physics SR&T Program, and by NSF through its Solar Terrestrial Research and SHINE programs.

  3. On the Relationship between Solar Wind Speed, Earthward-Directed Coronal Mass Ejections, Geomagnetic Activity, and the Sunspot Cycle Using 12-Month Moving Averages

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.; Hathaway, David H.

    2008-01-01

    For 1996 .2006 (cycle 23), 12-month moving averages of the aa geomagnetic index strongly correlate (r = 0.92) with 12-month moving averages of solar wind speed, and 12-month moving averages of the number of coronal mass ejections (CMEs) (halo and partial halo events) strongly correlate (r = 0.87) with 12-month moving averages of sunspot number. In particular, the minimum (15.8, September/October 1997) and maximum (38.0, August 2003) values of the aa geomagnetic index occur simultaneously with the minimum (376 km/s) and maximum (547 km/s) solar wind speeds, both being strongly correlated with the following recurrent component (due to high-speed streams). The large peak of aa geomagnetic activity in cycle 23, the largest on record, spans the interval late 2002 to mid 2004 and is associated with a decreased number of halo and partial halo CMEs, whereas the smaller secondary peak of early 2005 seems to be associated with a slight rebound in the number of halo and partial halo CMEs. Based on the observed aaM during the declining portion of cycle 23, RM for cycle 24 is predicted to be larger than average, being about 168+/-60 (the 90% prediction interval), whereas based on the expected aam for cycle 24 (greater than or equal to 14.6), RM for cycle 24 should measure greater than or equal to 118+/-30, yielding an overlap of about 128+/-20.

  4. Investigation of heat and mass transfer process in metal hydride hydrogen storage reactors, suitable for a solar powered water pump system

    NASA Astrophysics Data System (ADS)

    Coldea, I.; Popeneciu, G.; Lupu, D.; Misan, I.; Blanita, G.; Ardelean, O.

    2012-02-01

    The paper analyzes heat and mass transfer process in metal hydride hydrogen storage systems as key element in the development of a solar powered pump system. Hydrogen storage and compression performance of the developed reactors are investigated according to the type of metal alloys, the metal hydride bed parameters and system operating conditions. To reach the desired goal, some metal hydride from groups AB5 and AB2 were synthesized and characterized using elements substitution for tailoring their properties: reversible hydrogen absorption capacity between the hydrogen absorption and desorption pressures at equilibrium at small temperature differences. For the designed hydrogen storage reactors, a new technical solution which combines the effective increase of the thermal conductivity of MH bed and good permeability to hydrogen gas circulation, was implemented and tested. The results permitted us to develop a heat engine with metal hydride, the main element of the functional model of a heat operated metal hydride based water pumping system using solar energy. This is a free energy system able to deliver water, at a convenience flow and pressure, in remote places without conventional energy access.

  5. Discovery of a 12 billion solar mass black hole at redshift 6.3 and its challenge to the black hole/galaxy co-evolution at cosmic dawn

    NASA Astrophysics Data System (ADS)

    Wu, Xue-Bing; Wang, Feige; Fan, Xiaohui; Yi, Weimin; Zuo, Wenwen; Bian, Fuyan; Jiang, Linhua; McGreer, Ian; Wang, Ran; Yang, Jinyi; Yang, Qian; Thompson, David; Beletsky, Yuri

    2015-08-01

    To date about 40 quasars with redshifts z>6 have been discovered. Each quasar harbors a black hole with a mass of about one billion solar masses. The existence of such black holes when the Universe was less than one billion years after the Big Bang presents significant challenges to theories of the formation and growth of black holes and the black hole/galaxy co-evolution. I will report a recent discovery of an ultra-luminous quasar at redshift z=6.30, which has an observed optical and near-infrared luminosity a few times greater than those of previously known z>6 quasars. With near-infrared spectroscopy, we obtain a black hole mass of about 12 billion solar masses, which is well consistent with the mass derived by assuming an Eddington-limited accretion. This ultra-luminous quasar with a 12 billion solar mass black hole at z>6 provides a unique laboratory to the study of the mass assembly and galaxy formation around the most massive black holes in the early Universe. It raises further challenges to the black hole/galaxy co-evolution in the epoch of cosmic reionization because the black hole needs to grow much faster than the host galaxy.

  6. A Tool for Empirical Forecasting of Major Flares, Coronal Mass Ejections, and Solar Particle Events from a Proxy of Active-Region Free Magnetic Energy

    NASA Technical Reports Server (NTRS)

    Barghouty, A. F.; Falconer, D. A.; Adams, J. H., Jr.

    2010-01-01

    This presentation describes a new forecasting tool developed for and is currently being tested by NASA s Space Radiation Analysis Group (SRAG) at JSC, which is responsible for the monitoring and forecasting of radiation exposure levels of astronauts. The new software tool is designed for the empirical forecasting of M and X-class flares, coronal mass ejections, as well as solar energetic particle events. Its algorithm is based on an empirical relationship between the various types of events rates and a proxy of the active region s free magnetic energy, determined from a data set of approx.40,000 active-region magnetograms from approx.1,300 active regions observed by SOHO/MDI that have known histories of flare, coronal mass ejection, and solar energetic particle event production. The new tool automatically extracts each strong-field magnetic areas from an MDI full-disk magnetogram, identifies each as an NOAA active region, and measures