Science.gov

Sample records for 11-22 semipolar gan

  1. Crystallographic Wet Chemical Etching of Semipolar GaN (11-22) Grown on m-Plane Sapphire Substrates.

    PubMed

    Kim, Jae-Kwan; Lee, Sung Nam; Song, Keun-Man; Yoon, Jae-Sik; Lee, Ji-Myon

    2015-07-01

    This paper reports the etch rates and etched surface morphology of semipolar GaN using a potassium hydroxide (KOH) solution. Semipolar (11-22) GaN could be etched easily using a KOH solution and the etch rate was higher than that of Ga-polar c-plane GaN (0001). The etch rate was anisotropic and the highest etch rate was measured to be approximately 116 nm/min for the (1011) plane and 62 nm/min for the (11-20) plane GaN using a 4 M KOH solution at 100 °C, resulting in specific surface features, such as inclined trigonal cells.

  2. Crystallographic Wet Chemical Etching of Semipolar GaN (11-22) Grown on m-Plane Sapphire Substrates.

    PubMed

    Kim, Jae-Kwan; Lee, Sung Nam; Song, Keun-Man; Yoon, Jae-Sik; Lee, Ji-Myon

    2015-07-01

    This paper reports the etch rates and etched surface morphology of semipolar GaN using a potassium hydroxide (KOH) solution. Semipolar (11-22) GaN could be etched easily using a KOH solution and the etch rate was higher than that of Ga-polar c-plane GaN (0001). The etch rate was anisotropic and the highest etch rate was measured to be approximately 116 nm/min for the (1011) plane and 62 nm/min for the (11-20) plane GaN using a 4 M KOH solution at 100 °C, resulting in specific surface features, such as inclined trigonal cells. PMID:26373117

  3. Study of defect management in the growth of semipolar (11-22) GaN on patterned sapphire

    NASA Astrophysics Data System (ADS)

    Vennéguès, P.; Tendille, F.; De Mierry, P.

    2015-08-01

    This work describes, using mainly transmission electron microscopy as an investigation tool, the nature and behaviour of the crystalline defects which are present in (11-22) semipolar GaN films grown epitaxially on patterned r-sapphire substrates using a 3 step growth process. The microstructure at these different growth stages is described. The independent 3D-crystallites nucleated on the substrate surface contain threading dislocations resulting from the epitaxy on c-sapphire facets and basal stacking faults (BSFs), mainly in the  -c-wings. These defects are concentrated in a few hundred nanometre wide stripe-like regions emerging on the top facet of the islands. By a careful choice of the growth conditions, these defective regions may be overgrown by defect-free material, blocking their propagation towards the coalesced surface. However, when the 3D crystals coalesce, new dislocations together with very few BSFs are created at the coalescence boundaries. These coalescence defects propagate to the surface of the films in (0001) planes. In summary, the control of the nucleation and propagation of the crystalline defects allows obtaining large area semipolar films with very low defect densities: 7   ×   107 cm-2 for TDs and 70 cm-1 for BSFs.

  4. Anisotropic structural and optical properties of semi-polar (11-22) GaN grown on m-plane sapphire using double AlN buffer layers.

    PubMed

    Zhao, Guijuan; Wang, Lianshan; Yang, Shaoyan; Li, Huijie; Wei, Hongyuan; Han, Dongyue; Wang, Zhanguo

    2016-02-10

    We report the anisotropic structural and optical properties of semi-polar (11-22) GaN grown on m-plane sapphire using a three-step growth method which consisted of a low temperature AlN buffer layer, followed by a high temperature AlN buffer layer and GaN growth. By introducing double AlN buffer layers, we substantially improve the crystal and optical qualities of semi-polar (11-22) GaN, and significantly reduce the density of stacking faults and dislocations. The high resolution x-ray diffraction measurement revealed that the in-plane anisotropic structural characteristics of GaN layer are azimuthal dependent. Transmission electron microscopy analysis showed that the majority of dislocations in the GaN epitaxial layer grown on m-sapphire are the mixed-type and the orientation of GaN layer was rotated 58.4° against the substrate. The room temperature photoluminescence (PL) spectra showed the PL intensity and wavelength have polarization dependence along parallel and perpendicular to the [1-100] axis (polarization degrees ~ 0.63). The realization of a high polarization semi-polar GaN would be useful to achieve III-nitride based lighting emission device for displays and backlighting.

  5. (11-22) semipolar InGaN emitters from green to amber on overgrown GaN on micro-rod templates

    NASA Astrophysics Data System (ADS)

    Bai, J.; Xu, B.; Guzman, F. G.; Xing, K.; Gong, Y.; Hou, Y.; Wang, T.

    2015-12-01

    We demonstrate semipolar InGaN single-quantum-well light emitting diodes (LEDs) in the green, yellow-green, yellow and amber spectral region. The LEDs are grown on our overgrown semipolar (11-22) GaN on micro-rod array templates, which are fabricated on (11-22) GaN grown on m-plane sapphire. Electroluminescence measurements on the (11-22) green LED show a reduced blue-shift in the emission wavelength with increasing driving current, compared to a reference commercial c-plane LED. The blue-shifts for the yellow-green and yellow LEDs are also significantly reduced. All these suggest an effective suppression in quantum confined Stark effect in our (11-22) LEDs. On-wafer measurements yield a linear increase in the light output with the current, and external quantum efficiency demonstrates a significant improvement in the efficiency-droop compared to a commercial c-plane LED. Electro-luminescence polarization measurements show a polarization ratio of about 25% in our semipolar LEDs.

  6. (11-22) semipolar InGaN emitters from green to amber on overgrown GaN on micro-rod templates

    SciTech Connect

    Bai, J. Xu, B.; Guzman, F. G.; Xing, K.; Gong, Y.; Hou, Y.; Wang, T.

    2015-12-28

    We demonstrate semipolar InGaN single-quantum-well light emitting diodes (LEDs) in the green, yellow-green, yellow and amber spectral region. The LEDs are grown on our overgrown semipolar (11-22) GaN on micro-rod array templates, which are fabricated on (11-22) GaN grown on m-plane sapphire. Electroluminescence measurements on the (11-22) green LED show a reduced blue-shift in the emission wavelength with increasing driving current, compared to a reference commercial c-plane LED. The blue-shifts for the yellow-green and yellow LEDs are also significantly reduced. All these suggest an effective suppression in quantum confined Stark effect in our (11-22) LEDs. On-wafer measurements yield a linear increase in the light output with the current, and external quantum efficiency demonstrates a significant improvement in the efficiency-droop compared to a commercial c-plane LED. Electro-luminescence polarization measurements show a polarization ratio of about 25% in our semipolar LEDs.

  7. Defect reduction in overgrown semi-polar (11-22) GaN on a regularly arrayed micro-rod array template

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Bai, J.; Hou, Y.; Smith, R. M.; Yu, X.; Gong, Y.; Wang, T.

    2016-02-01

    We demonstrate a great improvement in the crystal quality of our semi-polar (11-22) GaN overgrown on regularly arrayed micro-rod templates fabricated using a combination of industry-matched photolithography and dry-etching techniques. As a result of our micro-rod configuration specially designed, an intrinsic issue on the anisotropic growth rate which is a great challenge in conventional overgrowth technique for semi-polar GaN has been resolved. Transmission electron microscopy measurements show a different mechanism of defect reduction from conventional overgrowth techniques and also demonstrate major advantages of our approach. The dislocations existing in the GaN micro-rods are effectively blocked by both a SiO2 mask on the top of each GaN micro-rod and lateral growth along the c-direction, where the growth rate along the c-direction is faster than that along any other direction. Basal stacking faults (BSFs) are also effectively impeded, leading to a distribution of BSF-free regions periodically spaced by BSF regions along the [-1-123] direction, in which high and low BSF density areas further show a periodic distribution along the [1-100] direction. Furthermore, a defect reduction model is proposed for further improvement in the crystalline quality of overgrown (11-22) GaN on sapphire.

  8. Investigation of Fermi level pinning at semipolar (11-22) p-type GaN surfaces

    NASA Astrophysics Data System (ADS)

    Choi, Young-Yun; Kim, Seongjun; Oh, Munsik; Kim, Hyunsoo; Seong, Tae-Yeon

    2015-01-01

    Schottky barrier height (SBH; ΦB) and their dependence on the work function of metals (ΦM) at semipolar (11-22) p-GaN surfaces were investigated using Schottky diodes fabricated with different metals. The SBH increased with temperature, whereas the ideality factor decreased. This behavior was explained by means of the barrier inhomogeneity model, giving the mean barrier heights of 1.93-2.05 eV for different metals. The S-parameter (dΦB/dΦM) was obtained to be 0.04. This small S-parameter implies that the surface Fermi level is nearly perfectly pinned at deep-level states (caused by vacancy-related and/or Mg-induced defects) located at 1.98 eV above the valence band. This finding indicates that the surface modification is essentially required for the formation of high-quality ohmic and/or Schottky contacts.

  9. Improved luminescence and thermal stability of semipolar (11-22) InGaN quantum dots

    SciTech Connect

    Das, A.; Kotsar, Y.; Monroy, E.

    2011-05-16

    Semipolar (11-22)-oriented InGaN/GaN quantum dots (QDs) emitting in the 380-620 nm spectral range were synthesized by plasma-assisted molecular-beam epitaxy. The influence of the growth temperature on the properties of InGaN QDs has been investigated by photoluminescence and transmission electron microscopy. Growth temperatures low enough to prevent indium desorption provide a favorable environment to semipolar plane (11-22) to enhance the internal quantum efficiency of InGaN/GaN nanostructures.

  10. Study of green light-emitting diodes grown on semipolar (11-22) GaN/m-sapphire with different crystal qualities

    NASA Astrophysics Data System (ADS)

    Oh, Dong-Sub; Jang, Jong-Jin; Nam, Okhyun; Song, Keun-Man; Lee, Sung-Nam

    2011-07-01

    We investigated the anisotropic optical and structural properties of semipolar (11-22) InGaN-based green light emitting diodes (LEDs) grown on GaN templates with the different crystallographic properties. By introducing the N 2-GaN as a seed layer grown at a N 2 atmosphere, the full width at half maximum (FWHMs) of X-ray rocking curves (XRCs) for semipolar GaN templates were decreased from 1331 to 727 arcsec and from 1955 to 1076 arcsec with the incident beam directions of [11-2-3] and [1-100], respectively. It was found that the interfacial qualities of InGaN/GaN quantum wells (QWs) would be improved by reducing the FWHMs of XRCs with regardless of crystallographic directions. However, the thickness uniformity of InGaN QWs was significantly deteriorated for the direction of [11-2-3] rather than [1-100]. In addition, the EL intensity of semipolar green LEDs would be increased by enhancing the crystal quality of semipolar GaN template, which could also be resulted in the formation of abrupt interface and the enhancement of homogeneity at InGaN/GaN QWs.

  11. Improved performance of semi-polar (11-22) GaN-based light-emitting diodes grown on SiNx interlayer

    NASA Astrophysics Data System (ADS)

    Jeong, Joocheol; Jang, Jongjin; Hwang, Jungwhan; Jung, Chilsung; Kim, Jinwan; Lee, Kyungjae; Lim, Hyoungjin; Nam, Okhyun

    2013-05-01

    We report on the effectiveness of the in-situ SiNx nanomask in reducing defects in semipolar (11-22) GaN films grown on m-plane sapphire. The properties of the semipolar InGaN/GaN double quantum well (DQW) LEDs were improved with a high-quality (11-22) GaN epilayer grown on the SiNx interlayer. High resolution X-ray diffraction analysis revealed that there was a great reduction in the full width at half maximum of both on-axis and off-axis planes on SiNx interlayer. The room temperature cathodoluminescence (CL) band-edge emission intensity of (11-22) GaN grown on the SiNx interlayer was approximately 4 times higher than that of GaN without the SiNx interlayer, which suggests reduction in the nonradiative recombination centers. The optical power of LEDs with the SiNx interlayer was 200% and 270% higher at injection currents of 20 mA and 100 mA, respectively, compared to the reference LEDs.

  12. Controlling optical polarization of {11-22} semipolar multiple quantum wells using relaxed underlying InGaN buffer layers

    NASA Astrophysics Data System (ADS)

    Okada, Narihito; Okamura, Yasuhiro; Uchida, Katsumi; Tadatomo, Kazuyuki

    2016-08-01

    We successfully fabricated {11-22} multiple quantum wells (MQWs) having different emission peak wavelengths on partially or completely relaxed thick InGaN buffer layers with different In contents formed on a semipolar {11-22} GaN layer, which was grown on a patterned r-plane sapphire substrate. The polarization properties changed significantly with changing in In content and thickness for InGaN buffer layer. For the same In content of the InGaN buffer layer, the optical polarization changed with an increase in the thickness of the underlying InGaN buffer layer, indicating a change in the relaxation ratio of the InGaN buffer layer. Similarly, for the same thickness of the InGaN buffer layer, the optical polarization changed by changing In content of the InGaN buffer layer. Thus, the degree of optical polarization could be controlled by varying the In content of the underlying InGaN buffer layer.

  13. Semipolar and nonpolar GaN epi-films grown on m-sapphire by plasma assisted molecular beam epitaxy

    SciTech Connect

    Mukundan, Shruti; Mohan, Lokesh; Chandan, Greeshma; Krupanidhi, S. B.; Roul, Basanta

    2014-11-28

    We hereby report the development of non-polar epi-GaN films of usable quality, on an m-plane sapphire. Generally, it is difficult to obtain high-quality nonpolar material due to the planar anisotropic nature of the growth mode. However, we could achieve good quality epi-GaN films by involving controlled steps of nitridation. GaN epilayers were grown on m-plane (10-10) sapphire substrates using plasma assisted molecular beam epitaxy. The films grown on the nitridated surface resulted in a nonpolar (10-10) orientation while without nitridation caused a semipolar (11-22) orientation. Room temperature photoluminescence study showed that nonpolar GaN films have higher value of compressive strain as compared to semipolar GaN films, which was further confirmed by room temperature Raman spectroscopy. The room temperature UV photodetection of both films was investigated by measuring the I-V characteristics under UV light illumination. UV photodetectors fabricated on nonpolar GaN showed better characteristics, including higher external quantum efficiency, compared to photodetectors fabricated on semipolar GaN. X-ray rocking curves confirmed better crystallinity of semipolar as compared to nonpolar GaN which resulted in faster transit response of the device.

  14. Stability of Carbon Incorpoated Semipolar GaN(1101) Surface

    NASA Astrophysics Data System (ADS)

    Akiyama, Toru; Nakamura, Kohji; Ito, Tomonori

    2011-08-01

    The structural stability of carbon incorporated GaN(1101) surfaces is theoretically investigated by performing first-principles pseudopotential calculations. The calculated surface formation energies taking account of the metal organic vapor phase epitaxy conditions demonstrate that several carbon incorporated surfaces are stabilized depending on the growth conditions. Using surface phase diagrams, which are obtained by comparing the calculated adsorption energy with vapor-phase chemical potentials, we find that the semipolar surface forms NH2 and CH2 below ˜1660 K while the polar GaN(0001) surface with CH3 is stabilized below ˜1550 K. This difference could be one of possible explanations for p-type doping on the semipolar GaN(1101) surface.

  15. Mg doping and its effect on the semipolar GaN(1122) growth kinetics

    SciTech Connect

    Lahourcade, L.; Wirthmueller, A.; Monroy, E.; Chauvat, M. P.; Ruterana, P.; Laufer, A.; Eickhoff, M.

    2009-10-26

    We report the effect of Mg doping on the growth kinetics of semipolar GaN(1122) synthesized by plasma-assisted molecular-beam epitaxy. Mg tends to segregate on the surface, inhibiting the formation of the self-regulated Ga film which is used as a surfactant for the growth of undoped and Si-doped GaN(1122). We observe an enhancement of Mg incorporation in GaN(1122) compared to GaN(0001). Typical structural defects or polarity inversion domains found in Mg-doped GaN(0001) were not observed for the semipolar films investigated in the present study.

  16. Using the kinetic Wulff plot to design and control nonpolar and semipolar GaN heteroepitaxy

    NASA Astrophysics Data System (ADS)

    Leung, Benjamin; Sun, Qian; Yerino, Christopher D.; Han, Jung; Coltrin, Michael E.

    2012-02-01

    For nonpolar and semipolar orientations of GaN heteroepitaxially grown on sapphire substrates, the development of growth procedures to improve surface morphology and microstructure has been driven in a largely empirical way. This work attempts to comprehensively link the intrinsic properties of GaN faceted growth, across orientations, in order to understand, design and control growth methods for nonpolar (1 1 2 0) GaN and semipolar (1 1 2 2) GaN on foreign substrates. This is done by constructing a comprehensive series of kinetic Wulff plots (or v-plots) by monitoring the advances of convex and concave facets in selective area growth. A methodology is developed to apply the experimentally determined v-plots to the interpretation and design of evolution dynamics in nucleation and island coalescence. This methodology offers a cohesive and rational model for GaN heteroepitaxy along polar, nonpolar and semipolar orientations, and is broadly extensible to the heteroepitaxy of other materials. We demonstrate furthermore that the control of morphological evolution, based on invoking a detailed knowledge of the v-plots, holds a key to the reduction of microstructural defects through effective bending of dislocations and blocking of stacking faults. The status and outlook of semipolar and nonpolar GaN growth on sapphire substrates will be presented.

  17. Ultraviolet light-emitting diodes grown by plasma-assisted molecular beam epitaxy on semipolar GaN (2021) substrates

    SciTech Connect

    Sawicka, M.; Grzanka, S.; Skierbiszewski, C.; Turski, H.; Muziol, G.; Krysko, M.; Grzanka, E.; Sochacki, T.; Siekacz, M.; Kucharski, R.

    2013-03-18

    Multi-quantum well (MQW) structures and light emitting diodes (LEDs) were grown on semipolar (2021) and polar (0001) GaN substrates by plasma-assisted molecular beam epitaxy. The In incorporation efficiency was found to be significantly lower for the semipolar plane as compared to the polar one. The semipolar MQWs exhibit a smooth surface morphology, abrupt interfaces, and a high photoluminescence intensity. The electroluminescence of semipolar (2021) and polar (0001) LEDs fabricated in the same growth run peaks at 387 and 462 nm, respectively. Semipolar LEDs with additional (Al,Ga)N cladding layers exhibit a higher optical output power but simultaneously a higher turn-on voltage.

  18. Semi-polar GaN materials technology for high IQE green LEDs.

    SciTech Connect

    Koleske, Daniel; Lee, Stephen Roger; Crawford, Mary H; Coltrin, Michael Elliott; Fini, Paul

    2013-06-01

    The goal of this NETL funded program was to improve the IQE in green (and longer wavelength) nitride- based LEDs structures by using semi-polar GaN planar orientations for InGaN multiple quantum well (MQW) growth. These semi-polar orientations have the advantage of significantly reducing the piezoelectric fields that distort the QW band structure and decrease electron-hole overlap. In addition, semipolar surfaces potentially provide a more open surface bonding environment for indium incorporation, thus enabling higher indium concentrations in the InGaN MQW. The goal of the proposed work was to select the optimal semi-polar orientation and explore wafer miscuts around this orientation that produced the highest quantum efficiency LEDs. At the end of this program we had hoped to have MQWs active regions at 540 nm with an IQE of 50% and an EQE of 40%, which would be approximately twice the estimated current state-of-the-art.

  19. Eliminating stacking faults in semi-polar GaN by AlN interlayers

    SciTech Connect

    Dadgar, A.; Ravash, R.; Veit, P.; Schmidt, G.; Mueller, M.; Dempewolf, A.; Bertram, F.; Wieneke, M.; Christen, J.; Krost, A.

    2011-07-11

    We report on the elimination of stacking faults by the insertion of low-temperature AlN interlayers in nearly (1016) and (1104) oriented semi-polar GaN grown by metalorganic vapor phase epitaxy on Si(112) and Si(113), respectively. The elimination of these defects is visualized by cathodoluminescence (CL) as well as scanning transmission electron microscopy (STEM) and STEM-CL. A possible annihilation mechanism is discussed which leads to the conclusion that the elimination mechanism is most likely valid for all layers with (1101) surfaces, enabling heteroepitaxial semi- and non-polar GaN free from stacking faults.

  20. Optical investigation of microscopic defect distribution in semi-polar (1-101 and 11-22) InGaN light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Hafiz, Shopan; Andrade, Nicolas; Monavarian, Morteza; Izyumskaya, Natalia; Das, Saikat; Zhang, Fan; Avrutin, Vitaliy; Morkoç, Hadis; Özgür, Ümit

    2016-02-01

    Near-field scanning optical microscopy was applied to investigate the spatial variations of extended defects and their effects on the optical quality for semi-polar (1-101) and (11-22) InGaN light emitting diodes (LEDs). (1-101) and (11-22) oriented InGaN LEDs emitting at 450-470 nm were grown on patterned Si (001) 7° offcut substrates and m-sapphire substrates by means of nano-epitaxial lateral overgrowth (ELO), respectively. For (1-101) structures, the photoluminescence (PL) at 85 K from the near surface c+ wings was found to be relatively uniform and strong across the sample. However, emission from the c- wings was substantially weaker due to the presence of high density of threading dislocations (TDs) and basal plane stacking faults (BSFs) as revealed from the local PL spectra. In case of (11-22) LED structures, near-field PL intensity correlated with the surface features and the striations along the direction parallel to the c-axis projection exposed facets where the Indium content was higher as deduced from shift in the PL peak energy.

  1. Selective heteroepitaxy on deeply grooved substrate: A route to low cost semipolar GaN platforms of bulk quality

    NASA Astrophysics Data System (ADS)

    Tendille, Florian; Martin, Denis; Vennéguès, Philippe; Grandjean, Nicolas; De Mierry, Philippe

    2016-08-01

    Semipolar GaN crystal stripes larger than 100 μm with dislocation densities below 5 × 106 cm-2 are achieved using a low cost fabrication process. An original sapphire patterning procedure is proposed, enabling selective growth of semipolar oriented GaN stripes while confining the defects to specific areas. Radiative and non-radiative crystalline defects are investigated by cathodoluminescence and can be correlated to the development of crystal microstructure during the growth process. A dislocation reduction mechanism, supported by transmission electron microscopy, is proposed. This method represents a step forward toward low-cost quasi-bulk semipolar GaN epitaxial platforms with an excellent structural quality which will allow for even more efficient III-nitride based devices.

  2. Topical Review: Development of overgrown semi-polar GaN for high efficiency green/yellow emission

    NASA Astrophysics Data System (ADS)

    Wang, T.

    2016-09-01

    The most successful example of large lattice-mismatched epitaxial growth of semiconductors is the growth of III-nitrides on sapphire, leading to the award of the Nobel Prize in 2014 and great success in developing InGaN-based blue emitters. However, the majority of achievements in the field of III-nitride optoelectronics are mainly limited to polar GaN grown on c-plane (0001) sapphire. This polar orientation poses a number of fundamental issues, such as reduced quantum efficiency, efficiency droop, green and yellow gap in wavelength coverage, etc. To date, it is still a great challenge to develop longer wavelength devices such as green and yellow emitters. One clear way forward would be to grow III-nitride device structures along a semi-/non-polar direction, in particular, a semi-polar orientation, which potentially leads to both enhanced indium incorporation into GaN and reduced quantum confined Stark effects. This review presents recent progress on developing semi-polar GaN overgrowth technologies on sapphire or Si substrates, the two kinds of major substrates which are cost-effective and thus industry-compatible, and also demonstrates the latest achievements on electrically injected InGaN emitters with long emission wavelengths up to and including amber on overgrown semi-polar GaN. Finally, this review presents a summary and outlook on further developments for semi-polar GaN based optoelectronics.

  3. Time- and locally resolved photoluminescence of semipolar GaInN /GaN facet light emitting diodes

    NASA Astrophysics Data System (ADS)

    Wunderer, Thomas; Brückner, Peter; Hertkorn, Joachim; Scholz, Ferdinand; Beirne, Gareth J.; Jetter, Michael; Michler, Peter; Feneberg, Martin; Thonke, Klaus

    2007-04-01

    The authors investigate the carrier lifetime and photoluminescence (PL) intensity of a semipolar GaInN /GaN sample which was realized by growing five GaInN /GaN quantum wells on the {11¯01} side facets of selectively grown n-GaN stripes that have a triangular shape running along the ⟨112¯0⟩ direction. Time- and locally resolved PL measurements show drastically reduced lifetimes for the semipolar sample of only 650ps at 4K whereas lifetimes exceeding 50ns were found for a polar reference sample. Furthermore, more than a doubling of the luminescence intensity and a significantly reduced blueshift of the PL peak wavelength with increasing excitation power density provide further evidence for the presence of reduced piezoelectric fields in the semipolar sample.

  4. Semipolar (202{sup ¯}1) GaN and InGaN quantum wells on sapphire substrates

    SciTech Connect

    Leung, Benjamin; Wang, Dili; Kuo, Yu-Sheng; Xiong, Kanglin; Song, Jie; Chen, Danti; Park, Sung Hyun; Han, Jung; Hong, Su Yeon; Choi, Joo Won

    2014-06-30

    Here, we demonstrate a process to produce planar semipolar (202{sup ¯}1) GaN templates on sapphire substrates. We obtain (202{sup ¯}1) oriented GaN by inclined c-plane sidewall growth from etched sapphire, resulting in single crystal material with on-axis x-ray diffraction linewidth below 200 arc sec. The surface, composed of (101{sup ¯}1) and (101{sup ¯}0) facets, is planarized by the chemical-mechanical polishing of full 2 in. wafers, with a final surface root mean square roughness of <0.5 nm. We then analyze facet formation and roughening mechanisms on the (202{sup ¯}1) surface and establish a growth condition in N{sub 2} carrier gas to maintain a planar surface for further device layer growth. Finally, the capability of these semipolar (202{sup ¯}1) GaN templates to produce high quality device structures is verified by the growth and characterization of InGaN/GaN multiple quantum well structures. It is expected that the methods shown here can enable the benefits of using semipolar orientations in a scalable and practical process and can be readily extended to achieve devices on surfaces using any orientation of semipolar GaN on sapphire.

  5. Polarity of semipolar wurtzite crystals: X-ray photoelectron diffraction from GaN(101⁻1) and GaN(202⁻1) surfaces

    SciTech Connect

    Romanyuk, O. Jiříček, P.; Bartoš, I.; Paskova, T.

    2014-09-14

    Polarity of semipolar GaN(101⁻1) (101⁻1⁻) and GaN(202⁻1) (202⁻1⁻) surfaces was determined with X-ray photoelectron diffraction (XPD) using a standard MgKα source. The photoelectron emission from N 1s core level measured in the a-plane of the crystals shows significant differences for the two crystal orientations within the polar angle range of 80–100° from the (0001) normal. It was demonstrated that XPD polar plots recorded in the a-plane are similar for each polarity of the GaN(101⁻1) and GaN(202⁻1) crystals if referred to (0001) crystal axes. For polarity determinations of all important GaN(h0h⁻l) semipolar surfaces, the above given polar angle range is suitable.

  6. Low defect large area semi-polar (112) GaN grown on patterned (113) silicon

    PubMed Central

    Pristovsek, Markus; Han, Yisong; Zhu, Tongtong; Frentrup, Martin; Kappers, Menno J; Humphreys, Colin J; Kozlowski, Grzegorz; Maaskant, Pleun; Corbett, Brian

    2015-01-01

    We report on the growth of semi-polar GaN (112) templates on patterned Si (113) substrates. Trenches were etched in Si (113) using KOH to expose Si {111} sidewalls. Subsequently an AlN layer to prevent meltback etching, an AlGaN layer for stress management, and finally two GaN layers were deposited. Total thicknesses up to 5 m were realised without cracks in the layer. Transmission electron microscopy showed that most dislocations propagate along [0001] direction and hence can be covered by overgrowth from the next trench. The defect densities were below and stacking fault densities less than 100 cm . These numbers are similar to reports on patterned r-plane sapphire. Typical X-ray full width at half maximum (FHWM) were 500” for the asymmetric (00.6) and 450” for the (11.2) reflection. These FHWMs were 50 % broader than reported for patterned r-plane sapphire which is attributed to different defect structures and total thicknesses. The surface roughness shows strong variation on templates. For the final surface roughness the roughness of the sidewalls of the GaN ridges at the time of coalescence are critical. PMID:26212392

  7. Development of patterned sapphire substrate and the application to the growth of non-polar and semi-polar GaN for light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Tadatomo, Kazuyuki; Okada, Narihito

    2011-03-01

    The light-emitting diodes (LEDs) with high external quantum efficiency (EQE) are usually fabricated on the patterned sapphire substrate (PSS). The PSS reduces the dislocation density in the GaN layer and enhances the light extraction efficiency (LEE) from the LED chip by scattering the light confined in GaN layer attributed to the critical angle between GaN (n=2.4) and sapphire substrate (n=1.7) (or air (n=1.0)). On the other hand, non-polar GaN and semipolar GaN are attracted much attention to eliminate the quantum confined Stark effect (QCSE). Recently, we have developed novel technology to grow non-polar or semi-polar GaN on the PSS with high quality and large diameter by metal-organic vapor phase epitaxy (MOVPE). For example, m-plane GaN grown on a-plane PSS and {112 (see manuscript)} plane GaN grown on r-plane PSS. The growth of c-plane GaN from the c-plane-like sidewall of the r-plane PSS results in {112 (see manuscript)} GaN on the r-plane PSS. The full widths at half maximum of X-ray rocking curves (FWHM-XRC) of the {112(see manuscript)} GaN along the azimuths parallel and perpendicular to the c-direction were 533 and 260 arcsec, respectively. Dislocation density of the GaN was approximately 2×108 cm-2. These non-polar and semi-polar GaN are expected to be suitable for novel GaN substrate or GaN template for LEDs.

  8. Improvement of optical quality of semipolar (11 2 ¯ 2 ) GaN on m-plane sapphire by in-situ epitaxial lateral overgrowth

    NASA Astrophysics Data System (ADS)

    Monavarian, Morteza; Izyumskaya, Natalia; Müller, Marcus; Metzner, Sebastian; Veit, Peter; Can, Nuri; Das, Saikat; Özgür, Ümit; Bertram, Frank; Christen, Jürgen; Morkoç, Hadis; Avrutin, Vitaliy

    2016-04-01

    Among the major obstacles for development of non-polar and semipolar GaN structures on foreign substrates are stacking faults which deteriorate the structural and optical quality of the material. In this work, an in-situ SiNx nano-network has been employed to achieve high quality heteroepitaxial semipolar (11 2 ¯ 2 ) GaN on m-plane sapphire with reduced stacking fault density. This approach involves in-situ deposition of a porous SiNx interlayer on GaN that serves as a nano-mask for the subsequent growth, which starts in the nanometer-sized pores (window regions) and then progresses laterally as well, as in the case of conventional epitaxial lateral overgrowth (ELO). The inserted SiNx nano-mask effectively prevents the propagation of defects, such as dislocations and stacking faults, in the growth direction and thus reduces their density in the overgrown layers. The resulting semipolar (11 2 ¯ 2 ) GaN layers exhibit relatively smooth surface morphology and improved optical properties (PL intensity enhanced by a factor of 5 and carrier lifetimes by 35% to 85% compared to the reference semipolar (11 2 ¯ 2 ) GaN layer) which approach to those of the c-plane in-situ nano-ELO GaN reference and, therefore, holds promise for light emitting and detecting devices.

  9. Morphology and strain of self-assembled semipolar GaN quantum dots in (1122) AlN

    SciTech Connect

    Dimitrakopulos, G. P.; Kalesaki, E.; Kioseoglou, J.; Kehagias, Th.; Lotsari, A.; Komninou, Ph.; Karakostas, Th.; Lahourcade, L.; Monroy, E.; Jurczak, G.; Young, T. D.; Dluzewski, P.

    2010-11-15

    GaN quantum dots (QDs) grown in semipolar (1122) AlN by plasma-assisted molecular-beam epitaxy were studied by transmission electron microscopy (TEM) and scanning transmission electron microscopy techniques. The embedded (1122)-grown QDs exhibited pyramidal or truncated-pyramidal morphology consistent with the symmetry of the nucleating plane, and were delimited by nonpolar and semipolar nanofacets. It was also found that, in addition to the (1122) surface, QDs nucleated at depressions comprising (1011) facets. This was justified by ab initio density functional theory calculations showing that such GaN/AlN facets are of lower energy compared to (1122). Based on quantitative high-resolution TEM strain measurements, the three-dimensional QD strain state was analyzed using finite-element simulations. The internal electrostatic field was then estimated, showing small potential drop along the growth direction, and limited localization at most QD interfaces.

  10. Anisotropic structural and optical properties of semi-polar (11–22) GaN grown on m-plane sapphire using double AlN buffer layers

    PubMed Central

    Zhao, Guijuan; Wang, Lianshan; Yang, Shaoyan; Li, Huijie; Wei, Hongyuan; Han, Dongyue; Wang, Zhanguo

    2016-01-01

    We report the anisotropic structural and optical properties of semi-polar (11–22) GaN grown on m-plane sapphire using a three-step growth method which consisted of a low temperature AlN buffer layer, followed by a high temperature AlN buffer layer and GaN growth. By introducing double AlN buffer layers, we substantially improve the crystal and optical qualities of semi-polar (11–22) GaN, and significantly reduce the density of stacking faults and dislocations. The high resolution x-ray diffraction measurement revealed that the in-plane anisotropic structural characteristics of GaN layer are azimuthal dependent. Transmission electron microscopy analysis showed that the majority of dislocations in the GaN epitaxial layer grown on m-sapphire are the mixed-type and the orientation of GaN layer was rotated 58.4° against the substrate. The room temperature photoluminescence (PL) spectra showed the PL intensity and wavelength have polarization dependence along parallel and perpendicular to the [1–100] axis (polarization degrees ~ 0.63). The realization of a high polarization semi-polar GaN would be useful to achieve III-nitride based lighting emission device for displays and backlighting. PMID:26861595

  11. Improved crystal quality of semipolar (10 1 bar 3) GaN on Si(001) substrates using AlN/GaN superlattice interlayer

    NASA Astrophysics Data System (ADS)

    Lee, Ho-Jun; Bae, Si-Young; Lekhal, Kaddour; Mitsunari, Tadashi; Tamura, Akira; Honda, Yoshio; Amano, Hiroshi

    2016-11-01

    The planar epitaxial growth of semipolar (10 1 bar 3) GaN on a Si(001) substrate was performed on a directionally sputtered AlN buffer layer. Three types of interlayers, i.e., single AlN, double AlN, and a stack of AlN/GaN layers were grown by metalorganic chemical vapor deposition (MOCVD) to achieve high quality GaN films. The results for the stack of AlN/GaN layers provide highest crystal quality and optical properties for GaN. Comparing the top (Ga face) and bottom (N face) surfaces of grown semipolar (10 1 bar 3) GaN confirms the defect density reduction that is due to the application of interlayers. Moreover, reduced inversion domain density on the bottom surface is attributed with the insertion of interlayers. Improving the quality of semipolar GaN on Si(001) substrates is expected to be useful for GaN/Si(001) integrated optoelectronics.

  12. Compositionally graded relaxed AlGaN buffers on semipolar GaN for mid-ultraviolet emission

    SciTech Connect

    Young, Erin C.; Wu Feng; Haeger, Daniel A.; Nakamura, Shuji; Denbaars, Steven P.; Cohen, Daniel A.; Speck, James S.; Romanov, Alexey E.

    2012-10-01

    In this Letter, we report on the growth and properties of relaxed, compositionally graded Al{sub x}Ga{sub 1-x}N buffer layers on freestanding semipolar (2021) GaN substrates. Continuous and step compositional grades with Al concentrations up to x = 0.61 have been achieved, with emission wavelengths in the mid-ultraviolet region as low as 265 nm. Coherency stresses were relaxed progressively throughout the grades by misfit dislocation generation via primary (basal) slip and secondary (non-basal) slip systems. Threading dislocation densities in the final layers of the grades were less than 10{sup 6}/cm{sup 2} as confirmed by plan-view transmission electron microscopy and cathodoluminescence studies.

  13. Tri-halide vapor-phase epitaxy of GaN using GaCl3 on polar, semipolar, and nonpolar substrates

    NASA Astrophysics Data System (ADS)

    Iso, Kenji; Takekawa, Nao; Matsuda, Karen; Hikida, Kazuhiro; Hayashida, Naoto; Murakami, Hisashi; Koukitu, Akinori

    2016-10-01

    Homoepitaxial tri-halide vapor-phase epitaxy (THVPE) growth on polar, semipolar, and nonpolar bulk GaN substrates was demonstrated using GaCl3 as the precursor. The influence of the surface orientation of the substrate on GaN growth by THVPE was compared with that observed for GaN grown by hydride vapor-phase epitaxy. The dependence of the GaN growth on the surface orientation of the substrate was confirmed; GaN could be grown on (10\\bar{1}0), (30\\bar{3}\\bar{1}), (20\\bar{2}\\bar{1}), (10\\bar{1}\\bar{1}), and (000\\bar{1}) but not on (0001), (10\\bar{1}1), (20\\bar{2}1), or (30\\bar{3}1). This behavior was explained to be due to the changes in adsorption energy, the magnitudes of which were estimated by theoretical calculations.

  14. Electron tomography of (In,Ga)N insertions in GaN nanocolumns grown on semi-polar (112{sup -}2) GaN templates

    SciTech Connect

    Niehle, M. Trampert, A.; Albert, S.; Bengoechea-Encabo, A.; Calleja, E.

    2015-03-01

    We present results of scanning transmission electron tomography on GaN/(In,Ga)N/GaN nanocolumns (NCs) that grew uniformly inclined towards the patterned, semi-polar GaN(112{sup -}2) substrate surface by molecular beam epitaxy. For the practical realization of the tomographic experiment, the nanocolumn axis has been aligned parallel to the rotation axis of the electron microscope goniometer. The tomographic reconstruction allows for the determination of the three-dimensional indium distribution inside the nanocolumns. This distribution is strongly interrelated with the nanocolumn morphology and faceting. The (In,Ga)N layer thickness and the indium concentration differ between crystallographically equivalent and non-equivalent facets. The largest thickness and the highest indium concentration are found at the nanocolumn apex parallel to the basal planes.

  15. Semipolar Single-Crystal ZnO Films Deposited by Low-Temperature Aqueous Solution Phase Epitaxy on GaN Light-Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Richardson, Jacob J.; Koslow, Ingrid; Pan, Chih-Chien; Zhao, Yuji; Ha, Jun-Seok; DenBaars, Steven P.

    2011-12-01

    Low-temperature aqueous solution deposition has been used for the first time to produce epitaxial ZnO layers on the semipolar (1011) surface of bulk GaN substrates and LEDs. Although the ZnO films have single in-plane and out-of-plane orientations, which are nominally the same as those of the (1011) GaN substrate, the ZnO lattice is observed to be slightly tilted with respect to that of the substrate. A (1011) light-emitting diode using an epitaxial ZnO film as a transparent current-spreading layer achieved a high external quantum efficiency of 48%.

  16. Efficient reduction of defects in (1120) non-polar and (1122) semi-polar GaN grown on nanorod templates

    SciTech Connect

    Bai, J.; Gong, Y.; Xing, K.; Yu, X.; Wang, T.

    2013-03-11

    (1120) non-polar and (1122) semi-polar GaNs with a low defect density have been achieved by means of an overgrowth on nanorod templates, where a quick coalescence with a thickness even below 1 {mu}m occurs. On-axis and off-axis X-ray rocking curve measurements have shown a massive reduction in the linewidth for our overgrown GaN in comparison with standard GaN films grown on sapphire substrates. Transmission electron microscope observation demonstrates that the overgrowth on the nanorod templates takes advantage of an omni-directional growth around the sidewalls of the nanostructures. The dislocations redirect in basal planes during the overgrowth, leading to their annihilation and termination at voids formed due to a large lateral growth rate. In the non-polar GaN, the priority <0001> lateral growth from vertical sidewalls of nanorods allows basal plane stacking faults (BSFs) to be blocked in the nanorod gaps; while for semi-polar GaN, the propagation of BSFs starts to be impeded when the growth front is changed to be along inclined <0001> direction above the nanorods.

  17. Optical studies of strain and defect distribution in semipolar (11xAF01) GaN on patterned Si substrates

    NASA Astrophysics Data System (ADS)

    Izyumskaya, N.; Zhang, F.; Okur, S.; Selden, T.; Avrutin, V.; Özgür, Ü.; Metzner, S.; Karbaum, C.; Bertram, F.; Christen, J.; Morkoç, H.

    2013-09-01

    Formation of defects in semipolar (11¯01)-oriented GaN layers grown by metal-organic chemical vapor deposition on patterned Si (001) substrates and their effects on optical properties were investigated by steady-state and time-resolved photoluminescence (PL) and spectrally and spatially resolved cathodoluminescence (CL). Near-band edge emission is found to be dominant in the c+-wings of semipolar (11¯01)GaN, which are mainly free from defect-related emission lines, while the c- wings contain a large number of basal stacking faults. When the advancing c+ and c— fronts meet to coalesce into a continuous film, the existing stacking faults contained in c— wings continue to propagate in the direction perpendicular to the c-axis and, as a result, the region dominated by stacking fault emission is extended to the film surface. Additional stacking faults are observed within the c+ wings, where the growing c+ wings of GaN are in contact with the SiO2 masking layer. Out-diffusion of oxygen/silicon species and concentration of strain near the contact region are considered as possible causes of the stacking fault formation. CL linescans performed along the surface and across the thickness of the non-coalesced and coalesced layers revealed that, while most of the material in the near-surface region of the non-coalesced layers is relaxed, coalescence results in nonuniform strain distribution over the layer surface. Red-shifted near-band-edge emission from the near-surface region indicates tensile stress near the surface of a coalesced layer, reaching a value of 0.3 GPa. The regions near the GaN/AlN/Si(111) interface show slightly blue shifted, broadened near-band-edge emission, which is indicative of a high concentration of free carriers possibly due to incorporation of shallow-donor impurities (Si and/or O) from the substrate or SiO2 mask. Steady-state and time-resolved PL results indicate that semipolar (11¯01)GaN on patterned Si exhibits optical properties (PL

  18. Facet analysis of truncated pyramid semi-polar GaN grown on Si(100) with rare-earth oxide interlayer

    NASA Astrophysics Data System (ADS)

    Grinys, Tomas; Dargis, Rytis; Frentrup, Martin; JucevičienÄ--, AgnÄ--KalpakovaitÄ--; Badokas, Kazimieras; StanionytÄ--, Sandra; Clark, Andrew; Malinauskas, Tadas

    2016-09-01

    After epitaxial growth of GaN on Si(100) substrates using an Er2O3 interlayer, two dominant growth orientations can be observed: semi-polar (10 1 ¯ 3 ) as well as non-polar (11 2 ¯ 0 ) . Epilayers with the (10 1 ¯ 3 ) orientation lead to the formation of truncated pyramids, which were studied in detail by high-resolution X-ray diffraction, photoluminescence, and scanning electron microscopy (SEM). Depending on the GaN growth orientation and in-plane relation to the Er2O3 interlayer, lattice mismatches in the growth plane were calculated. In order to understand the formation of truncated pyramids, a method for facet identification from SEM images under different tilt angles was developed. This method was used to reconstruct truncated pyramids from our experiments. These were then compared with calculations of the corresponding kinetic Wulff construction, to explain the preferential growth of (10 1 ¯ 3 ) GaN.

  19. High-power blue laser diodes with indium tin oxide cladding on semipolar (202{sup ¯}1{sup ¯}) GaN substrates

    SciTech Connect

    Pourhashemi, A. Farrell, R. M.; Cohen, D. A.; Speck, J. S.; DenBaars, S. P.; Nakamura, S.

    2015-03-16

    We demonstrate a high power blue laser diode (LD) using indium tin oxide as a cladding layer on semipolar oriented GaN. These devices show peak output powers and external quantum efficiencies comparable to state-of-the-art commercial c-plane devices. Ridge waveguide LDs were fabricated on (202{sup ¯}1{sup ¯}) oriented GaN substrates using InGaN waveguiding layers and GaN cladding layers. At a lasing wavelength of 451 nm at room temperature, an output power of 2.52 W and an external quantum efficiency of 39% were measured from a single facet under a pulsed injection current of 2.34 A. The measured differential quantum efficiency was 50%.

  20. Selective area growth and characterization of GaN nanocolumns, with and without an InGaN insertion, on semi-polar (11–22) GaN templates

    SciTech Connect

    Bengoechea-Encabo, A.; Albert, S.; Barbagini, F.; Sanchez-Garcia, M. A.; Calleja, E.; Trampert, A.

    2013-12-09

    The aim of this work is the selective area growth (SAG) of GaN nanocolumns, with and without an InGaN insertion, by molecular beam epitaxyon semi-polar (11–22) GaN templates. The high density of stacking faults present in the template is strongly reduced after SAG. A dominant sharp photoluminescence emission at 3.473 eV points to high quality strain-free material. When embedding an InGaN insertion into the ordered GaN nanostructures, very homogeneous optical properties are observed, with two emissions originating from different regions of each nanostructure, most likely related to different In contents on different crystallographic planes.

  1. Spectroscopic study of semipolar ( 11 2 ¯ 2 ) -HVPE GaN exhibiting high oxygen incorporation

    NASA Astrophysics Data System (ADS)

    Schustek, Philipp; Hocker, Matthias; Klein, Martin; Simon, Ulrich; Scholz, Ferdinand; Thonke, Klaus

    2014-10-01

    Spatially resolved luminescence and Raman spectroscopy investigations are applied to a series of ( 11 2 ¯ 2 ) -GaN samples grown by hydride vapor phase epitaxy (HVPE) grown over an initial layer deposited by metal organic vapor phase epitaxy on patterned sapphire substrates. Whereas these two differently grown GaN layers are crystallographically homogeneous, they differ largely in their doping level due to high unintentional oxygen uptake in the HVPE layer. This high doping shows up in luminescence spectra, which can be explained by a free-electron recombination band for which an analytical model considering the Burstein-Moss shift, conduction band tailing, and the bandgap renormalization is included. Secondary ion mass spectrometry, Raman spectroscopy, and Hall measurements concordantly determine the electron density to be above 1019 cm-3. In addition, the strain state is assessed by Raman spectroscopy and compared to a finite element analysis.

  2. Spectroscopic study of semipolar (112{sup ¯}2)-HVPE GaN exhibiting high oxygen incorporation

    SciTech Connect

    Schustek, Philipp; Hocker, Matthias; Thonke, Klaus; Klein, Martin; Scholz, Ferdinand; Simon, Ulrich

    2014-10-28

    Spatially resolved luminescence and Raman spectroscopy investigations are applied to a series of (112{sup ¯}2)-GaN samples grown by hydride vapor phase epitaxy (HVPE) grown over an initial layer deposited by metal organic vapor phase epitaxy on patterned sapphire substrates. Whereas these two differently grown GaN layers are crystallographically homogeneous, they differ largely in their doping level due to high unintentional oxygen uptake in the HVPE layer. This high doping shows up in luminescence spectra, which can be explained by a free-electron recombination band for which an analytical model considering the Burstein-Moss shift, conduction band tailing, and the bandgap renormalization is included. Secondary ion mass spectrometry, Raman spectroscopy, and Hall measurements concordantly determine the electron density to be above 10{sup 19 }cm{sup −3}. In addition, the strain state is assessed by Raman spectroscopy and compared to a finite element analysis.

  3. Ab initio density functional theory study of non-polar (101{sup ¯}0), (112{sup ¯}0) and semipolar (202{sup ¯}1) GaN surfaces

    SciTech Connect

    Mutombo, P.; Romanyuk, O.

    2014-05-28

    The atomic structures of non-polar GaN(101{sup ¯}0), (112{sup ¯}0) and semipolar GaN(202{sup ¯}1), (202{sup ¯}1{sup ¯}) surfaces were studied using ab initio calculations within density functional theory. The bulk-like truncated (1 × 1) structure with buckled Ga-N or Ga-Ga dimers was found stable on the non-polar GaN(101{sup ¯}0) surface in agreement with previous works. Ga-N heterodimers were found energetically stable on the GaN(112{sup ¯}0)-(1 × 1) surface. The formation of vacancies and substitution site defects was found unfavorable for non-polar GaN surfaces. Semipolar GaN(202{sup ¯}1)-(1 × 1) surface unit cells consist of non-polar (101{sup ¯}0) and semipolar (101{sup ¯}1) nano-facets. The (101{sup ¯}1) nano-facets consist of two-fold coordinated atoms, which form N-N dimers within a (2 × 1) surface unit cell on a GaN(202{sup ¯}1) surface. Dimers are not formed on the GaN(202{sup ¯}1{sup ¯}) surface. The stability of the surfaces with single (101{sup ¯}0) or (101{sup ¯}1) nano-facets was analyzed. A single non-polar (101{sup ¯}0)-(1 × 1) nano-facet was found stable on the GaN(202{sup ¯}1) surface, but unstable on the GaN(202{sup ¯}1{sup ¯}) surface. A single (101{sup ¯}1) nano-facet was found unstable. Semipolar GaN surfaces with (202{sup ¯}1) and (202{sup ¯}1{sup ¯}) polarity can be stabilized with a Ga overlayer at Ga-rich experimental conditions.

  4. Improvements in Optical Properties of Semipolar r-Plane GaN Films Grown Using Atomically Flat ZnO Substrates and Room-Temperature Epitaxial Buffer Layers

    NASA Astrophysics Data System (ADS)

    Kobayashi, Atsushi; Kawano, Satoshi; Ueno, Kohei; Ohta, Jitsuo; Fujioka, Hiroshi

    2010-10-01

    We have investigated the structural and optical properties of semipolar r-plane GaN{1102} films grown on nearly-lattice-matched ZnO substrates with room-temperature (RT) epitaxial GaN buffer layers, putting special emphasis on the effect of surface treatment of the ZnO substrates. The full-width at half-maximum values of X-ray rocking curves for 1-µm-thick r-plane GaN layers grown at 700 °C on these RT-buffer layers, as measured using various X-ray incidence geometries, are in a range from 313 to 598 arcsec. Photoluminescence peaks attributable to structural defects in the r-plane GaN films have been shown to be reduced, and the near-band-edge emission has been enhanced by approximately 5 times by the use of atomically-flat r-plane ZnO substrates prepared by high-temperature annealing in air inside a box made of ZnO.

  5. Chemically assisted ion beam etching of laser diode facets on nonpolar and semipolar orientations of GaN

    NASA Astrophysics Data System (ADS)

    Kuritzky, L. Y.; Becerra, D. L.; Saud Abbas, A.; Nedy, J.; Nakamura, S.; DenBaars, S. P.; Cohen, D. A.

    2016-07-01

    We demonstrate a vertical (<1° departure) and smooth (2.0 nm root mean square line-edge roughness (LER)) etch by chemically assisted Ar ion beam etching (CAIBE) in Cl2 chemistry that is suitable for forming laser diode (LD) facets on nonpolar and semipolar oriented III-nitride devices. The etch profiles were achieved with photoresist masks and optimized CAIBE chamber conditions including the platen tilt angle and Cl2 flow rate. Co-loaded studies showed similar etch rates of ˜60 nm min-1 for (20\\bar{2}\\bar{1}),(20\\bar{2}1), and m-plane orientations. The etched surfaces of LD facets on these orientations are chemically dissimilar (Ga-rich versus N-rich), but were visually indistinguishable, thus confirming the negligible orientation dependence of the etch. Continuous-wave blue LDs were fabricated on the semipolar (20\\bar{2}\\bar{1}) plane to compare CAIBE and reactive ion etch (RIE) facet processes. The CAIBE process resulted in LDs with lower threshold current densities due to reduced parasitic mirror loss compared with the RIE process. The LER, degree of verticality, and model of the 1D vertical laser mode were used to calculate a maximum uncoated facet reflection of 17% (94% of the nominal) for the CAIBE facet. The results demonstrate the suitability of CAIBE for forming high quality facets for high performance nonpolar and semipolar III-N LDs.

  6. Chemically assisted ion beam etching of laser diode facets on nonpolar and semipolar orientations of GaN

    NASA Astrophysics Data System (ADS)

    Kuritzky, L. Y.; Becerra, D. L.; Saud Abbas, A.; Nedy, J.; Nakamura, S.; DenBaars, S. P.; Cohen, D. A.

    2016-07-01

    We demonstrate a vertical (<1° departure) and smooth (2.0 nm root mean square line-edge roughness (LER)) etch by chemically assisted Ar ion beam etching (CAIBE) in Cl2 chemistry that is suitable for forming laser diode (LD) facets on nonpolar and semipolar oriented III-nitride devices. The etch profiles were achieved with photoresist masks and optimized CAIBE chamber conditions including the platen tilt angle and Cl2 flow rate. Co-loaded studies showed similar etch rates of ∼60 nm min‑1 for (20\\bar{2}\\bar{1}),(20\\bar{2}1), and m-plane orientations. The etched surfaces of LD facets on these orientations are chemically dissimilar (Ga-rich versus N-rich), but were visually indistinguishable, thus confirming the negligible orientation dependence of the etch. Continuous-wave blue LDs were fabricated on the semipolar (20\\bar{2}\\bar{1}) plane to compare CAIBE and reactive ion etch (RIE) facet processes. The CAIBE process resulted in LDs with lower threshold current densities due to reduced parasitic mirror loss compared with the RIE process. The LER, degree of verticality, and model of the 1D vertical laser mode were used to calculate a maximum uncoated facet reflection of 17% (94% of the nominal) for the CAIBE facet. The results demonstrate the suitability of CAIBE for forming high quality facets for high performance nonpolar and semipolar III-N LDs.

  7. Impact of inhomogeneous broadening on optical polarization of high-inclination semipolar and nonpolar InxGa1 -xN /GaN quantum wells

    NASA Astrophysics Data System (ADS)

    Mounir, Christian; Schwarz, Ulrich T.; Koslow, Ingrid L.; Kneissl, Michael; Wernicke, Tim; Schimpke, Tilman; Strassburg, Martin

    2016-06-01

    We investigate the influence of inhomogeneous broadening on the optical polarization properties of high-inclination semipolar and nonpolar InxGa1 -xN /GaN quantum wells. Different planar m-plane and (20 2 ¯1 ¯) samples were grown (including core-shell microrods) and have been characterized by excitation-dependent polarization-resolved confocal micro-photoluminescence. The measured degree of linear polarization (DLP) is compared to theoretical predictions obtained by Fermi-Dirac statistical filling of the electronic band structure calculated by the k .p envelope function method. We show that our measured DLP at room temperature, as well as values reported by other groups, are systematically higher than the theoretical predictions. We propose to solve this discrepancy between theory and experiment by introducing inhomogeneous broadening in our calculations. Considering indium content fluctuations and the localization lengths of electrons and holes, different effective broadenings are applied to different subsets of subbands. We thereby show that inhomogeneous broadening leads to an increase of the DLP at room temperature. Furthermore, the dependence of the optical properties on the excitation density is better reproduced. Looking at the DLP as a function of the temperature gives us insight into the thermalization dynamics of charge carriers.

  8. Optical properties and structural investigations of (11-22)-oriented GaN/Al{sub 0.5}Ga{sub 0.5}N quantum wells grown by molecular beam epitaxy

    SciTech Connect

    Rosales, Daniel; Gil, Bernard; Bretagnon, Thierry; Brault, Julien; Vennéguès, Philippe; Nemoz, Maud; Mierry, Philippe de; Damilano, Benjamin; Massies, Jean; Bigenwald, Pierre

    2015-07-14

    We have grown (11-22)-oriented GaN/Al{sub 0.5}Ga{sub 0.5}N quantum wells (QWs) using molecular beam epitaxy on GaN (11-22)-oriented templates grown by metal-organic vapor phase epitaxy on m-plane oriented sapphire substrates. The performance of epitaxial growth of GaN/Al{sub 0.5}Ga{sub 0.5}N heterostructures on the semi-polar orientation (11-22) in terms of surface roughness and structural properties, i.e., strain relaxation mechanisms is discussed. In addition, high resolution transmission electron microscopy reveals very smooth QW interfaces. The photoluminescence of such samples are strictly originating from radiative recombination of free excitons for temperatures above 100 K. At high temperature, the population of localized excitons, moderately trapped (5 meV) at low temperature, is negligible.

  9. U.S. Department of Energy, National Energy Technology Laboratory Solid-State Lighting Core Technologies Light Emitting Diodes on Semipolar Bulk GaN Substrate with IQE > 80% at 150 A/cm2 and 100 0C

    SciTech Connect

    Chakraborty, Arpan; David, Aurelien; Grundmann, Michael; Tyagi, Anurag; Craven, Michael; Hurni, Christophe; Cich, Michael

    2015-03-31

    GaN is a crucial material for light-emitting diodes (LEDs) emitting in the violet-to-green range. Despite its good performance, it still suffers from significant technical limitations. In particular, the efficiency of GaN-based LEDs decreases at high current (“current droop”) and high temperature (“temperature droop”). This is problematic in some lighting applications, where a high-power operation is required. This program studied the use of particular substrates to improve the efficiency of GaN-based LEDs: bulk semipolar (SP) GaN substrates. These substrates possess a very high material quality, and physical properties which are distinctly different from legacy substrates currently used in the LED industry. The program focused on the development of accurate metrology to quantify the performance of GaN-based LEDs, and on improvement to LED quality and design on SP substrates. Through a thorough optimization process, we demonstrated violet LEDs with very high internal quantum efficiency, exceeding 85% at high temperature and high current. We also investigated longer-wavelength blue emitters, but found that the limited strain budget was a key limitation.

  10. EDITORIAL: Non-polar and semipolar nitride semiconductors Non-polar and semipolar nitride semiconductors

    NASA Astrophysics Data System (ADS)

    Han, Jung; Kneissl, Michael

    2012-02-01

    Throughout the history of group-III-nitride materials and devices, scientific breakthroughs and technological advances have gone hand-in-hand. In the late 1980s and early 1990s, the discovery of the nucleation of smooth (0001) GaN films on c-plane sapphire and the activation of p-dopants in GaN led very quickly to the realization of high-brightness blue and green LEDs, followed by the first demonstration of GaN-based violet laser diodes in the mid 1990s. Today, blue InGaN LEDs boast record external quantum efficiencies exceeding 80% and the emission wavelength of the InGaN-based laser diode has been pushed into the green spectral range. Although these tremenduous advances have already spurred multi-billion dollar industries, there are still a number of scientific questions and technological issues that are unanswered. One key challenge is related to the polar nature of the III-nitride wurtzite crystal. Until a decade ago all research activities had almost exclusively concentrated on (0001)-oriented polar GaN layers and heterostructures. Although the device characteristics seem excellent, the strong polarization fields at GaN heterointerfaces can lead to a significant deterioration of the device performance. Triggered by the first demonstration non-polar GaN quantum wells grown on LiAlO2 by Waltereit and colleagues in 2000, impressive advances in the area of non-polar and semipolar nitride semiconductors and devices have been achieved. Today, a large variety of heterostructures free of polarization fields and exhibiting exceptional electronic and optical properties have been demonstrated, and the fundamental understanding of polar, semipolar and non-polar nitrides has made significant leaps forward. The contributions in this Semiconductor Science and Technology special issue on non-polar and semipolar nitride semiconductors provide an impressive and up-to-date cross-section of all areas of research and device physics in this field. The articles cover a wide range of

  11. Strain relaxation of thick (11–22) semipolar InGaN layer for long wavelength nitride-based device

    SciTech Connect

    Kim, Jaehwan; Min, Daehong; Jang, Jongjin; Lee, Kyuseung; Chae, Sooryong; Nam, Okhyun

    2014-10-28

    In this study, the properties of thick stress-relaxed (11–22) semipolar InGaN layers were investigated. Owing to the inclination of growth orientation, misfit dislocations (MDs) occurred at the heterointerface when the strain state of the (11–22) semipolar InGaN layers reached the critical point. We found that unlike InGaN layers based on polar and nonpolar growth orientations, the surface morphologies of the stress-relaxed (11–22) semipolar InGaN layers did not differ from each other and were similar to the morphology of the underlying GaN layer. In addition, misfit strain across the whole InGaN layer was gradually relaxed by MD formation at the heterointerface. To minimize the effect of surface roughness and defects in GaN layers on the InGaN layer, we conducted further investigation on a thick (11–22) semipolar InGaN layer grown on an epitaxial lateral overgrown GaN template. We found that the lateral indium composition across the whole stress-relaxed InGaN layer was almost uniform. Therefore, thick stress-relaxed (11–22) semipolar InGaN layers are suitable candidates for use as underlying layers in long-wavelength devices, as they can be used to control strain accumulation in the heterostructure active region without additional influence of surface roughness.

  12. 27 CFR 11.22 - Consignment sales.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Consignment sales. 11.22... OF THE TREASURY LIQUORS CONSIGNMENT SALES Unlawful Sales Arrangements § 11.22 Consignment sales. Consignment sales are arrangements wherein the trade buyer is under no obligation to pay for distilled...

  13. 27 CFR 11.22 - Consignment sales.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Consignment sales. 11.22... OF THE TREASURY ALCOHOL CONSIGNMENT SALES Unlawful Sales Arrangements § 11.22 Consignment sales. Consignment sales are arrangements wherein the trade buyer is under no obligation to pay for distilled...

  14. 27 CFR 11.22 - Consignment sales.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Consignment sales. 11.22... OF THE TREASURY LIQUORS CONSIGNMENT SALES Unlawful Sales Arrangements § 11.22 Consignment sales. Consignment sales are arrangements wherein the trade buyer is under no obligation to pay for distilled...

  15. 27 CFR 11.22 - Consignment sales.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Consignment sales. 11.22... OF THE TREASURY ALCOHOL CONSIGNMENT SALES Unlawful Sales Arrangements § 11.22 Consignment sales. Consignment sales are arrangements wherein the trade buyer is under no obligation to pay for distilled...

  16. 27 CFR 11.22 - Consignment sales.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Consignment sales. 11.22... OF THE TREASURY LIQUORS CONSIGNMENT SALES Unlawful Sales Arrangements § 11.22 Consignment sales. Consignment sales are arrangements wherein the trade buyer is under no obligation to pay for distilled...

  17. Characterization of GaN microstructures grown by plasma-assisted molecular beam epitaxy

    SciTech Connect

    Lo, Ikai; Pang, Wen-Yuan; Hsu, Yu-Chi; Hsieh, Chia-Ho; Shih, Cheng-Hung; Chou, Mitch M. C.; Chen, Wen-Yen; Hsu, Tzu-Min; Hsu, Gary Z. L.

    2013-06-15

    The characterization of GaN microstructures grown by plasma-assisted molecular beam epitaxy on LiAlO{sub 2} substrate was studied by cathodoluminescence and photoluminescence measurements. We demonstrated that the cathodoluminescence from oblique semi-polar surfaces of mushroom-shaped GaN was much brighter than that from top polar surface due to the reduction of polarization field on the oblique semi-polar surfaces. It implies that the oblique semi-polar surface is superior for the light-emitting surface of wurtzite nano-devices.

  18. Growth and characterization of nonpolar and semipolar group-III nitrides-based heterostructures and devices

    NASA Astrophysics Data System (ADS)

    Chakraborty, Arpan

    Conventional state-of-the-art wurtzite nitrides based light-emitters, grown along the polar c-direction, are characterized by the presence of polarization-induced electrostatic fields in the quantum wells. These built-in fields are detrimental to the performance of optoelectronic devices. Growth of light-emitters along nonpolar and semipolar directions is an effective means to circumvent the adverse effects of polarization. This dissertation focuses on the growth and characterization of nonpolar and semipolar (Al, Ga, In)N based heterostructures and devices. Two nonpolar planes, a- and m-, and two semipolar planes, (10 11) and (1013), have been investigated in this thesis. Initially, the growth of n-type and p-type nonpolar a-plane GaN was optimized to yield cladding layers of the highest possible conductivity in the devices. Various interesting observations, e.g. low acceptor activation energy, anisotropic conductivity, etc, were made during the course of this study. In order to achieve defect reduction in planar a-plane GaN films, in-situ SiNx interlayers were used as nano-mask. The effect of SiNx interlayer on the structural and optical properties of the overgrown GaN layer was investigated. Growth of InGaN/GaN multiple-quantum wells (MQWs) along nonpolar and semipolar planes was investigated and their structural and optical properties were studied. The effect of defects on the emission properties of the MQWs has been addressed. Optical measurements revealed the absence of polarization in the MQWs. Based on the MQW optimization, light-emitting diodes were grown on nonpolar and semipolar templates and their electrical and optical properties were studied. Electroluminescence measurement confirmed the absence of built-in electric fields in the quantum well. We demonstrated the first nonpolar and semipolar light-emitting diodes with milliwatt-range output power. DC output power as high as 0.6 mW at 20 mA and pulsed output power as high as 23.5 mW at 1 A were

  19. Self-assembled Multilayers of Silica Nanospheres for Defect Reduction in Non- and Semipolar Gallium Nitride Epitaxial Layers

    PubMed Central

    2015-01-01

    Non- and semipolar GaN have great potential to improve the efficiency of light emitting devices due to much reduced internal electric fields. However, heteroepitaxial GaN growth in these crystal orientations suffers from very high dislocation and stacking faults densities. Here, we report a facile method to obtain low defect density non- and semipolar heteroepitaxial GaN via selective area epitaxy using self-assembled multilayers of silica nanospheres (MSN). Nonpolar (11–20) and semipolar (11–22) GaN layers with high crystal quality have been achieved by epitaxial integration of the MSN and a simple one-step overgrowth process, by which both dislocation and basal plane stacking fault densities can be significantly reduced. The underlying defect reduction mechanisms include epitaxial growth through the MSN covered template, island nucleation via nanogaps in the MSN, and lateral overgrowth and coalescence above the MSN. InGaN/GaN multiple quantum wells structures grown on a nonpolar GaN/MSN template show more than 30-fold increase in the luminescence intensity compared to a control sample without the MSN. This self-assembled MSN technique provides a new platform for epitaxial growth of nitride semiconductors and offers unique opportunities for improving the material quality of GaN grown on other orientations and foreign substrates or heteroepitaxial growth of other lattice-mismatched materials. PMID:27065755

  20. Enhanced polarization of (11–22) semi-polar InGaN nanorod array structure

    SciTech Connect

    Athanasiou, M.; Smith, R. M.; Hou, Y.; Zhang, Y.; Gong, Y.; Wang, T.

    2015-10-05

    By means of a cost effective nanosphere lithography technique, an InGaN/GaN multiple quantum well structure grown on (11–22) semipolar GaN has been fabricated into two dimensional nanorod arrays which form a photonic crystal (PhC) structure. Such a PhC structure demonstrates not only significantly increased emission intensity, but also an enhanced polarization ratio of the emission. This is due to an effective inhibition of the emission in slab modes and then redistribution to the vertical direction, thus minimizing the light scattering processes that lead to randomizing of the optical polarization. The PhC structure is designed based on a standard finite-difference-time-domain simulation, and then optically confirmed by detailed time-resolved photoluminescence measurements. The results presented pave the way for the fabrication of semipolar InGaN/GaN based emitters with both high efficiency and highly polarized emission.

  1. 9 CFR 11.22 - Records required and disposition thereof.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Records required and disposition thereof. 11.22 Section 11.22 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE ANIMAL WELFARE HORSE PROTECTION REGULATIONS § 11.22 Records required...

  2. 9 CFR 11.22 - Records required and disposition thereof.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Records required and disposition thereof. 11.22 Section 11.22 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE ANIMAL WELFARE HORSE PROTECTION REGULATIONS § 11.22 Records required...

  3. 9 CFR 11.22 - Records required and disposition thereof.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Records required and disposition thereof. 11.22 Section 11.22 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE ANIMAL WELFARE HORSE PROTECTION REGULATIONS § 11.22 Records required...

  4. 9 CFR 11.22 - Records required and disposition thereof.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Records required and disposition thereof. 11.22 Section 11.22 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE ANIMAL WELFARE HORSE PROTECTION REGULATIONS § 11.22 Records required...

  5. Defect Reduction in Semi-Polar (11bar 22) Gallium Nitride Grown Using Epitaxial Lateral Overgrowth

    NASA Astrophysics Data System (ADS)

    Zhu, Tongtong; Sutherland, Danny; Badcock, Tom J.; Hao, Rui; Moram, Michelle A.; Dawson, Philip; Kappers, Menno J.; Oliver, Rachel A.

    2013-08-01

    We report on the characterization of semi-polar (11bar 22) gallium nitride (GaN) films grown on m-plane (1bar 100) sapphire by an asymmetric epitaxial lateral overgrowth (ELOG) process first reported by de Mierry et al. [Appl. Phys. Lett. 94 (2009) 191903]. The overgrowth conditions were engineered to greatly enhance the growth rate along the [0001] direction, which combined with the inclination of the [0001] axis from the film surface at ˜32°, allowing a low defect density wing to overgrow the highly defective window region and thus eliminating basal plane stacking faults (BSFs). By correlating cross-sectional transmission electron microscopy and cathodoluminescence data, we confirm that BSFs and dislocations are terminated by the coalescence boundary formed as a result of the overgrowth anisotropy. Low temperature photoluminescence spectra reveal a strong GaN emission at 3.485 eV associated with donor-bound exciton recombination and very small BSF-related emission at 3.425 eV. The intensity ratio between the GaN bound exciton and the BSF emission is ˜220, which is four orders of magnitude greater than that of the semi-polar seed layer. Scanning capacitance microscopy data showed that almost the entire film is unintentionally n-type. The impurity incorporation rate is strongly dependent on which crystallographic planes are present during different stages of the ELOG process.

  6. Nonpolar and semipolar GaN, optical gain and efficiency

    NASA Astrophysics Data System (ADS)

    Park, Seoung-Hwan; Ahn, Doyeol

    2013-03-01

    Crystal orientation effects on electronic and optical properties of wurtzite (WZ) InGaN/GaN quantum wells (QWs) with piezoelectric (PZ) and spontaneous (SP) polarizations are investigated using the multiband effective-mass theory and non-Markovian optical model. Also, the electron overflow in non-polar InGaN/GaN QW structures with a superlattice (SL)-like electron injector (EI) layer is investigated using a simple model. The effective mass along k'y of the topmost valence band greatly decreases with increasing crystal angle while the y'-polarized optical matrix element significantly increases with increasing crystal angle. In particular, matrix elements of non-polar (1120)-oriented a-plane QW structure with a relatively higher In composition of 0.4 are about three and half times bigger than those of the (0001)-oriented c-plane QW structure. On the other hand, in the case of the QW structure with a relatively smaller In composition, the difference of matrix elements between the (0001)- and (1120)-oriented QW structures is smaller than that of the QW structure with a relatively higher In composition. With increasing crystal angle, the optical gain peak for the x'-polarization gradually decreases while that for the y'-polarization significantly increases. As a result, the in-plane optical anisotropy increases with increasing crystal angle. The in-plan optical anisotropy of non-polar a-plane QW structure gradually increases with increasing transition wavelength or In composition. The optical anisotropy is ranging from 0.50 at 400nm to 0.80 at 530 nm for the QW structure with Lw = 30 Å. It is found that the electron overflow is found to be greatly reduced by using the SL-like EI laye and rapidly decreases with increasing the number of EI layer. Hence, we expect that the droop phenomenon can be reduced by using the EI layers.

  7. 50 CFR 11.22 - Appearance and practice.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... PROCEDURES Hearing and Appeal Procedures § 11.22 Appearance and practice. (a) Subject to the provisions of 43 CFR 1.3, the respondent may appear in person, by representative, or by counsel, and may participate... 50 Wildlife and Fisheries 1 2010-10-01 2010-10-01 false Appearance and practice. 11.22 Section...

  8. Semipolar InGaN/GaN nanostructure light-emitting diodes on c-plane sapphire

    NASA Astrophysics Data System (ADS)

    Rishinaramangalam, Ashwin K.; Nami, Mohsen; Fairchild, Michael N.; Shima, Darryl M.; Balakrishnan, Ganesh; Brueck, S. R. J.; Feezell, Daniel F.

    2016-03-01

    The fabrication of electrically injected triangular-nanostripe core-shell semipolar III-nitride LEDs (TLEDs) is demonstrated using interferometric lithography and catalyst-free bottom-up selective-area metal-organic chemical vapor deposition (MOCVD). This alternative approach enables semipolar orientations on inexpensive, c-plane sapphire substrates, in comparison with planar growth on free-standing GaN substrates. Transmission electron microscopy and energy dispersive X-ray spectroscopy reveal nonuniform quantum well thickness and composition, respectively, as a function of location on the triangular stripes. The broad electroluminescence spectra, wavelength shift with increasing current density, and nonlinear light vs current characteristics are well correlated with the observed quantum-well nonuniformities.

  9. Progress toward achieving high power and high efficiency semipolar LEDs and their characterization

    NASA Astrophysics Data System (ADS)

    Zhong, Hong

    Performance of current commercially available wurtzite nitride based light-emitting diodes (LEDs), grown along the polar (0001) c-plane orientation, is limited by the presence of polarization-related electric fields inside multi-quantum wells (MQWs). The discontinuities in both spontaneous and piezoelectric polarization at the heterointerfaces result in internal electric fields in the quantum wells. These electric fields cause carrier separation [quantum confined Stark effect (QCSE)] and reduce the radiative recombination rate within the quantum wells. One approach to reduce and possibly eliminate the polarization-related effects is to grow III-nitride devices on crystal planes that are inclined with respect to the c-axis, i.e., on semipolar planes. In this dissertation, metalorganic chemical vapor deposition (MOCVD) has been employed for the homoepitaxial growth of GaN based LEDs on semipolar orientations. As a consequence of growing on high-quality bulk GaN substrates, the LEDs have significantly reduced threading dislocation and stacking fault densities, resulting in remarkable improvements in EQE and output power. High efficiency semipolar (1011) violet-blue and blue LEDs have been demonstrated without any intentional effort to enhance the light extraction from those devices. Optimizations of epitaxial structures have led to increased output power and external quantum efficiency. A silicone encapsulated single quantum well blue LED with peak wavelength of 444 nm with output power of 24.3 mW, external quantum efficiency of 43% and luminous efficacy of 75 lm/W (with phosphorescent coating) at 20 mA has been demonstrated. Polarization fields in strained (1011) and (112¯2) InGaN quantum wells have been experimentally determined through bias-dependent optical studies. Our results show that the polarization field flips its direction in semipolar InGaN quantum wells with large inclination angles (i.e. around 60°). This suggests that there exists a polarization

  10. Heteroepitaxial growth of GaN on vertical Si{110} sidewalls formed on trench-etched Si(001) substrates

    NASA Astrophysics Data System (ADS)

    Gagnon, Jarod C.; Shen, Haoting; Yuwen, Yu; Wang, Ke; Mayer, Theresa S.; Redwing, Joan M.

    2016-07-01

    A maskless Si trench structure was developed to integrate crystallographically non-polar GaN microstructures with semi-polar facets on Si(001). GaN "fins" were preferentially grown by MOCVD on Si{110} trench sidewalls formed by deep reactive ion etching (DRIE) of Si(001) such that GaN(0001)//Si{110} and GaN(10-10)//Si(001), resulting in a non-polar crystal structure with respect to the Si(001) substrate surface. No masking layer was required to prevent GaN growth on the Si(001) top surface of the trenches, instead, it was found that GaN nucleated preferentially on the Si{110} trench sidewalls. GaN was also observed to nucleate at the top corner of the trenches due to Si etching and exposure of high-index Si facets during the pre-growth H2 anneal. This undesired GaN nucleation was successfully suppressed by reducing the H2 anneal time and/or increasing the growth temperature and decreasing the precursor V/III to enhance Ga-adatom diffusion. Cross-sectional TEM studies confirmed that the GaN fins were crystallographically non-polar with respect to the Si(001) substrate surface and were bounded by semi-polar and non-polar facets. The reported Si fabrication and GaN growth process shows promise for the integration of non-polar and semi-polar GaN microstructures on industry standard Si(001) substrates.

  11. White light-emitting diodes based on nonpolar and semipolar gallium nitride orientations

    NASA Astrophysics Data System (ADS)

    Demille, Natalie Fellows

    Gallium nitride has become one of the key components when fabricating white light-emitting diodes. Its use as the blue source in conjunction with a wavelength converter such as the yellow emitting phosphor YAG:Ce 3+ is a technology that is commercially available and usable for solid state lighting applications. Currently available white phosphor-based LEDs (pcLEDs) use the basal plane of wurtzite GaN as their source. Although research over the past couple decades has developed this technology into devices with good photometric performance and high reliability, the introduction of nonbasal plane wurtzite GaN orientations have benefits over basal plane GaN that can be incorporated into the white LED. The focus of this research deals with exploring white illumination on nonpolar and semipolar planes of GaN. Light extraction techniques will be described that allowed for high output powers and efficiencies on the c-plane as well as the (1100), (10 11), and (1122) planes of GaN. With higher performing devices, white pcLEDs were fabricated on c-plane, m-plane, and the (1011) semipolar plane. The novelty in the present research is producing white LEDs with nonbasal plane diodes which exhibit optical polarization anisotropy. This feature, absent on the basal plane, allows for tuning photometric quantities both electrically and optically. This is demonstrated on pcLEDs as well as dichromatic LEDs comprised solely of InGaN diodes. As a consequence of these measurements, an apparent optical polarization was seen to be occurring in the luminescence of the YAG:Ce3+ when the system absorbed linearly polarized light. Polarized emission in YAG:Ce3+ was explored by obtaining single crystals of YAG:Ce3+ with different planar orientations. The experiments led to the conclusion that crystal orientation plays no part in the optical polarization. It is suggested that the cause is a result of electric dipole transitions given by various selection rules between the Ce 3+ ion's 4f and 5d

  12. Semi-polar {1 \\mathbf{\\bar{1}}   0 1} blue and green InGaN/GaN light-emitting diodes on micro-stripe patterned Si (1 0 0)

    NASA Astrophysics Data System (ADS)

    Reuters, B.; Strate, J.; Wille, A.; Marx, M.; Lükens, G.; Heuken, L.; Heuken, M.; Kalisch, H.; Vescan, A.

    2015-12-01

    A novel III-nitride-based light emitting diode (LED) fabrication process which is based on selective-area epitaxial growth on Si {1 1 1} facets etched into Si (1 0 0) substrates is presented. A micro-stripe pattern is formed with semi-polar {1 \\bar{1}  0 1} crystallographic planes of GaN evolving from an epitaxial lateral overgrowth (ELOG)-like process. The {1 \\bar{1}  0 1} planes of GaN serve as a template for the growth of semi-polar blue and green LED structures with InGaN/GaN multiple quantum wells (MQW). A complete fabrication chain encompassing substrate etching, metalorganic vapor phase epitaxy (MOVPE), characterization, LED processing and device manufacture has been developed. The semi-polar LED stacks are of high crystalline quality, which is manifested by homogeneous InGaN layers in the {1 \\bar{1}  0 1} MQW structure and smooth {1 \\bar{1}  0 1} LED surface planes. Although threading dislocations intersect with the semi-polar {1 \\bar{1}  0 1} MQW, V-shaped defects typically observed in polar c-plane MQW structures are not detected. The blue and green semi-polar LED show only a weak polarization-related wavelength shift at large current densities consistent with the lower built-in electric fields in the semi-polar MQW. At low current densities, the green LED exhibit a strong wavelength shift due to In clustering effects. The blue LED reveal a stable emission color, which indicates a homogeneous In distribution in the wells.

  13. High-power low-droop violet semipolar (303{sup ¯}1{sup ¯}) InGaN/GaN light-emitting diodes with thick active layer design

    SciTech Connect

    Becerra, Daniel L. Zhao, Yuji; Pynn, Christopher D.; Oh, Sang Ho; Fujito, Kenji; DenBaars, Steven P.; Nakamura, Shuji

    2014-10-27

    Devices grown on nonpolar and semipolar planes of GaN offer key performance advantages over devices grown on the conventional c-plane, including reduced polarization fields. This allows for a wider design space on semipolar planes for light emitting diodes (LEDs) to address the problem of efficiency droop at high current densities. LED structures with very thick (10–100 nm) InGaN single-quantum-well/double heterostructure active regions were grown using conventional metal organic chemical vapor deposition on semipolar (303{sup ¯}1{sup ¯}) free-standing GaN substrates and processed and packaged using conventional techniques. Simulated band diagrams showed reduced polarization fields on the (303{sup ¯}1{sup ¯}) plane. The calculated critical thickness for misfit dislocation formation is higher on the (303{sup ¯}1{sup ¯}) plane than on other semipolar planes, such as (202{sup ¯}1{sup ¯}), allowing for thicker active regions than our previous work to further reduce droop. The higher critical thickness was confirmed with defect characterization via cathodoluminescence. A trend is demonstrated in lower efficiency droop for devices with thicker active regions. Thermal droop characteristics of these devices are also presented. These observed results were utilized to demonstrate over 1 W of output power at a current density of 1 kA/cm{sup 2} from a single 0.1 mm{sup 2} LED device.

  14. 9 CFR 11.22 - Records required and disposition thereof.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., DEPARTMENT OF AGRICULTURE ANIMAL WELFARE HORSE PROTECTION REGULATIONS § 11.22 Records required and disposition thereof. (a) The management of any horse show, horse exhibition, or horse sale or auction, that contains Tennessee Walking Horses or racking horses, shall maintain for a period of at least 90...

  15. Beyond conventional c-plane GaN-based light emitting diodes: A systematic exploration of LEDs on semi-polar orientations

    NASA Astrophysics Data System (ADS)

    Monavarian, Morteza

    Despite enormous efforts and investments, the efficiency of InGaN-based green and yellow-green light emitters remains relatively low, and that limits progress in developing full color display, laser diodes, and bright light sources for general lighting. The low efficiency of light emitting devices in the green-to-yellow spectral range, also known as the "Green Gap", is considered a global concern in the LED industry. The polar c-plane orientation of GaN, which is the mainstay in the LED industry, suffers from polarization-induced separation of electrons and hole wavefunctions (also known as the "quantum confined Stark effect") and low indium incorporation efficiency that are the two main factors that contribute to the Green Gap phenomenon. One possible approach that holds promise for a new generation of green and yellow light emitting devices with higher efficiency is the deployment of nonpolar and semi-polar crystallographic orientations of GaN to eliminate or mitigate polarization fields. In theory, the use of other GaN planes for light emitters could also enhance the efficiency of indium incorporation compared to c-plane. In this thesis, I present a systematic exploration of the suitable GaN orientation for future lighting technologies. First, in order to lay the groundwork for further studies, it is important to discuss the analysis of processes limiting LED efficiency and some novel designs of active regions to overcome these limitations. Afterwards, the choice of nonpolar orientations as an alternative is discussed. For nonpolar orientation, the (1100)-oriented (mo-plane) structures on patterned Si (112) and freestanding m-GaN are studied. The semi-polar orientations having substantially reduced polarization field are found to be more promising for light-emitting diodes (LEDs) owing to high indium incorporation efficiency predicted by theoretical studies. Thus, the semi-polar orientations are given close attention as alternatives for future LED technology

  16. Step-induced misorientation of GaN grown on r-plane sapphire

    SciTech Connect

    Smalc-Koziorowska, J.; Dimitrakopulos, G. P.; Sahonta, S.-L.; Komninou, Ph.; Tsiakatouras, G.; Georgakilas, A.

    2008-07-14

    In the growth of nonpolar (1120) a-plane GaN on r-plane (1102) sapphire by plasma-assisted molecular beam epitaxy, misoriented crystallites are observed close to the substrate. They have average diameter {approx}10 nm and are oriented with the (0001){sub GaN} plane approximately parallel to the (2113){sub sapph.} plane and [0110]{sub GaN} parallel [1101]{sub sapph.}. This semipolar orientation is promoted by a low misfit (2.4%) between (1011){sub GaN} and (1210){sub sapph.} planes. Its introduction, after nitridation treatment, is due to GaN nucleation on (2113){sub sapph.} step facets inclined at 26 deg. relative to the r-plane. Two variants are observed, leading to twinning when they abut inside the epilayer.

  17. InGaN/GaN Multiple Quantum Well Light-Emitting Diodes grown on Polar, Semi-polar and Non-Polar Orientations

    NASA Astrophysics Data System (ADS)

    Mukund, Aadhithya Hosalli

    Cost effective solid-state lighting (SSL) is gaining much attention in recent years. As a result, there has been a great demand for high efficiency light emitting diodes (LEDs). InGaN/GaN multiple quantum well (MQW) based light-emitting diodes (LEDs) emitting in the blue/green region have emerged as promising candidates in realizing the next-generation SSL technology. InGaN/GaN quantum well structures for optoelectronic devices are conventionally grown on the c-plane (polar plane) which has a large polarization field. This large field within the quantum well structures results in a low rate of radiative recombination. This polarization issue is also partly responsible for the "green gap" or the poor external quantum efficiency observed for LEDs emitting in the green region of the visible spectrum and beyond. The alternative to this polarization issue is to grow on semi-polar orientations with a reduced field relative to the c-plane or on non-polar orientations which has zero polarization field. In this dissertation, alternative approaches to grow on semi-polar and nonpolar orientations are explored. The first of these approaches explores the possibility of growing on the facets of GaN nanowires that are oriented along desirable orientations from the perspective of polarization. A "proof of concept" LED structure, that has embedded voids, is overgrown on GaN nanowires. Three times improvement in the light-output power is observed for the LED overgrown on GaN nanowires relative to the conventional c-plane LED. The higher light-output power is attributed primarily to reduced piezo-electric fields and improved light extraction as a result of wave-guiding by the embedded voids. The second of these approaches explores the growth of MQW LEDs on semi-polar and non-polar bulk GaN substrates. A modified growth approach is used for incorporating higher amounts of indium to enable green-emitting MQWs. The challenges with these bulk GaN substrates and the effect of varying

  18. Fabrication of high-quality \\{11\\bar{2}2\\} GaN substrates using the Na flux method

    NASA Astrophysics Data System (ADS)

    Maruyama, Mihoko; Nakamura, Koshi; Che, Songbek; Murakami, Kosuke; Takazawa, Hideo; Imanishi, Masayuki; Imade, Mamoru; Morita, Yukihiro; Mori, Yusuke

    2016-05-01

    Gallium nitride (GaN) substrates fabricated along the nonpolar and semipolar directions are the most promising materials for realizing optical and electronic devices with low power consumption. In this study, we carry out the Na flux growth on \\{ 11\\bar{2}2\\} -plane GaN templates grown heteroepitaxially on sapphires. The GaN crystals are grown at low supersaturation using the Na flux method with the dipping technique. The crystallinity of the grown GaN crystals is improved compared to that of the seed substrates. Then it improves further by lowering the supersaturation. Finally, we succeed in fabricating a 2-in. \\{ 11\\bar{2}2\\} -plane GaN single crystal with high transparency and crystallinity.

  19. Strain relaxation in semipolar (20 2 ¯ 1 ) InGaN grown by plasma assisted molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Sawicka, M.; Kryśko, M.; Muziol, G.; Turski, H.; Siekacz, M.; Wolny, P.; Smalc-Koziorowska, J.; Skierbiszewski, C.

    2016-05-01

    Strain relaxation in semipolar (20 2 ¯ 1 ) InGaN layers grown by plasma assisted molecular beam epitaxy (PAMBE) was investigated with high-resolution X-ray diffraction (XRD) reciprocal space mapping, cathodoluminescence (CL), fluorescent light microscopy (FLM), and atomic force microscopy. We find that XRD detects lattice relaxation much later than its actual onset occurs. Other techniques used in this study allowed to detect local footprints of plastic relaxation before it was evidenced by XRD: at the initial stages of strain relaxation, we observed changes in layer morphology, i.e., formation of short trench line segments on the surface along the ⟨ 11 2 ¯ 0 ⟩ direction as well as dark lines in CL and FLM. The misfit dislocations formation and glide were observed in two slip systems: initially in basal slip system ⟨ 11 2 ¯ 0 ⟩{0001 } and for larger amount of strain in non-basal, prismatic slip system ⟨11 2 ¯ 0 ⟩{1 1 ¯ 00 } . Experimentally determined critical thickness for InGaN layers grown by PAMBE on semipolar (20 2 ¯ 1 ) bulk GaN substrates agrees well with literature data obtained with metalorganic vapor phase epitaxy and follows the Matthews-Blakeslee model prediction. We discuss the impact of substrate structural properties on the strain relaxation onset and mechanisms. We also describe the layer morphology and surface roughness evolution related to the increasing In content and strain relaxation of the semipolar (20 2 ¯ 1 ) InGaN layers.

  20. Strain Relaxation in Semipolar III-Nitrides for Light Emitting Diode Applications

    NASA Astrophysics Data System (ADS)

    Koslow, Ingrid Larson

    Light emitting diodes (LEDs) based on the III-nitride material system (Al,In,Ga)N have been utilized in a number of commercial applications, from small Christmas tree lights to high power lightbulbs and streetlamps. Until now, all commercially available GaN-based devices have been based on the conventional c-plane (polar) orientation of the Wurtzite crystal structure, and grown heteroepitaxially on foreign substrates such as sapphire. However, the recent availability of low defect density HVPE-grown GaN substrates have opened up new possibilities to study novel crystal orientations, known as nonpolar and semipolar. The (Al,In,Ga)N material system has bandgaps ranging from 0.7 eV in the infrared out to 6.3 eV in the deep UV---and LEDs with wavelengths from roughly 365 nm (near-UV) to 550 nm (green) are commercially available. However, although blue LEDs typically have an external quantum efficiency (EQE) > 60%, at emission wavelengths beyond 500 nm the EQE drops to ≤ 30%. Similarly, although red-emitting LEDs based on AlInGaP have high efficiency, their EQE is also reduced for yellow wavelengths. This phenomenon is known as the 'Green Gap'. Although there are likely to be numerous factors responsible for this reduction in efficiency with emission wavelength in III-nitrides, a leading candidate is mismatch strain between the active region of the LED---consisting of thin layers of InGaN with at least 30% indium---and the GaN substrate, which have a significant lattice constant mismatch of > 3%. In order to improve the efficiency of green-emitting LEDs, strain relaxation mechanisms on semipolar orientations have been studied. By growing relaxed InGaN buffer layers, it is possible to change the lattice constant from that of the GaN substrates, reducing the mismatch strain in the active region itself. Multiple slip systems have been observed and studied in semipolar nitrides, leading to several sets of misfit dislocations (MDs) that result in relaxation of InGaN layers

  1. 43 CFR 11.22 - Sampling of potentially injured natural resources.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... resources. 11.22 Section 11.22 Public Lands: Interior Office of the Secretary of the Interior NATURAL RESOURCE DAMAGE ASSESSMENTS Preassessment Phase § 11.22 Sampling of potentially injured natural resources... of this part to proceed with an assessment, field sampling of natural resources should be limited...

  2. 43 CFR 11.22 - Sampling of potentially injured natural resources.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... resources. 11.22 Section 11.22 Public Lands: Interior Office of the Secretary of the Interior NATURAL RESOURCE DAMAGE ASSESSMENTS Preassessment Phase § 11.22 Sampling of potentially injured natural resources... of this part to proceed with an assessment, field sampling of natural resources should be limited...

  3. 43 CFR 11.22 - Sampling of potentially injured natural resources.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... resources. 11.22 Section 11.22 Public Lands: Interior Office of the Secretary of the Interior NATURAL RESOURCE DAMAGE ASSESSMENTS Preassessment Phase § 11.22 Sampling of potentially injured natural resources... of this part to proceed with an assessment, field sampling of natural resources should be limited...

  4. 43 CFR 11.22 - Sampling of potentially injured natural resources.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... resources. 11.22 Section 11.22 Public Lands: Interior Office of the Secretary of the Interior NATURAL RESOURCE DAMAGE ASSESSMENTS Preassessment Phase § 11.22 Sampling of potentially injured natural resources... of this part to proceed with an assessment, field sampling of natural resources should be limited...

  5. 43 CFR 11.22 - Sampling of potentially injured natural resources.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... resources. 11.22 Section 11.22 Public Lands: Interior Office of the Secretary of the Interior NATURAL RESOURCE DAMAGE ASSESSMENTS Preassessment Phase § 11.22 Sampling of potentially injured natural resources... of this part to proceed with an assessment, field sampling of natural resources should be limited...

  6. Semipolar III-nitride light-emitting diodes with negligible efficiency droop up to ˜1 W

    NASA Astrophysics Data System (ADS)

    Oh, Sang Ho; Yonkee, Benjamin P.; Cantore, Michael; Farrell, Robert M.; Speck, James S.; Nakamura, Shuji; DenBaars, Steven P.

    2016-10-01

    We demonstrate 1 mm2 blue light-emitting diodes with a negligible efficiency droop up to ˜1 W. LEDs with 12- to 14-nm-thick single quantum wells were grown by metalorganic chemical vapor deposition on a free-standing semipolar (20\\bar{2}\\bar{1}) GaN substrate. Packaged devices showed an external quantum efficiency of 42.3% at 20 A/cm2 with a negligible efficiency droop up to 991 mW at 900 mA. At 900 mA, the thermal droop and hot/cold factor were 8.2% and 0.92, respectively. The adoption of a thick active region resulted in excellent optical and thermal performance characteristics that are suitable for high-power lighting applications.

  7. Morphology evolution and emission properties of InGaN/GaN multiple quantum wells grown on GaN microfacets using crossover stripe patterns by selective area epitaxy

    NASA Astrophysics Data System (ADS)

    Wu, Zhenlong; Chen, Peng; Yang, Guofeng; Xu, Zhou; Xu, Feng; Jiang, Fulong; Zhang, Rong; Zheng, Youdou

    2015-03-01

    We investigate the morphological evolution of selective area epitaxy (SAE) GaN microfacets structures on crossover stripe patterns as a function of temperature, and the emission properties of semipolar InGaN/GaN multiple quantum wells (MQWs) grown on these microstructures with semipolar facets are also studied. The shapes of inner rings gradually change from nearly rectangular to hexagonal when the GaN growth temperature elevates, as a result of growth rates and surface stability varies with elevated temperatures. Three types of semipolar facets ({1 1 -2 2}, {2 1 -3 3} and {1 -1 0 1} facets) can be identified on the inner rings of these structures, which are verified by the emission properties of semipolar InGaN/GaN MQWs. The emission wavelengths of MQWs on these semipolar facets are ordered as {1 -1 0 1} > {2 1 -3 3} > {1 1 -2 2}, which is attributed to variations of growth rate and indium incorporation on different planes during InGaN growth. Furthermore, the indium composition of MQWs changes with the morphological evolution.

  8. Comparative study of field-dependent carrier dynamics and emission kinetics of InGaN/GaN light-emitting diodes grown on (112{sup ¯}2) semipolar versus (0001) polar planes

    SciTech Connect

    Ji, Yun; Liu, Wei; Chen, Rui; Tiam Tan, Swee; Zhang, Zi-Hui; Ju, Zhengang; Zhang, Xueliang; Sun, Handong; Wei Sun, Xiao; Erdem, Talha; Zhao, Yuji; DenBaars, Steven P. E-mail: volkan@stanfordalumni.org; Nakamura, Shuji; Volkan Demir, Hilmi E-mail: volkan@stanfordalumni.org

    2014-04-07

    The characteristics of electroluminescence (EL) and photoluminescence (PL) emission from GaN light-emitting diodes (LEDs) grown on (112{sup ¯}2) semipolar plane and (0001) polar plane have been comparatively investigated. Through different bias-dependent shifting trends observed from the PL and time-resolved PL spectra (TRPL) for the two types of LEDs, the carrier dynamics within the multiple quantum wells (MQWs) region is systematically analyzed and the distinct field-dependent emission kinetics are revealed. Moreover, the polarization induced internal electric field has been deduced for each of the LEDs. The relatively stable emission behavior observed in the semipolar LED is attributed to the smaller polarization induced internal electric field. The study provides meaningful insight for the design of quantum well (QW) structures with high radiative recombination rates.

  9. Growth and characterization of horizontal GaN wires on silicon

    SciTech Connect

    Zou, Xinbo; May Lau, Kei; Lu, Xing; Lucas, Ryan; Kuech, Thomas F.; Choi, Jonathan W.; Gopalan, Padma

    2014-06-30

    We report the growth of in-plane GaN wires on silicon by metalorganic chemical vapor deposition. Triangular-shaped GaN microwires with semi-polar sidewalls are observed to grow on top of a GaN/Si template patterned with nano-porous SiO{sub 2}. With a length-to-thickness ratio ∼200, the GaN wires are well aligned along the three equivalent 〈 112{sup ¯}0 〉 directions. Micro-Raman measurements indicate negligible stress and a low defect density inside the wires. Stacking faults were found to be the only defect type in the GaN wire by cross-sectional transmission electron microscopy. The GaN wires exhibited high conductivity, and the resistivity was 20–30 mΩ cm, regardless of the wire thickness. With proper heterostructure and doping design, these highly aligned GaN wires are promising for photonic and electronic applications monolithically integrated on silicon.

  10. Repulsive interactions between dislocations and overgrown v-shaped defects in epitaxial GaN layers

    NASA Astrophysics Data System (ADS)

    Weidlich, P. H.; Schnedler, M.; Eisele, H.; Dunin-Borkowski, R. E.; Ebert, Ph.

    2013-09-01

    The spatial distribution and the projected line directions of dislocations intersecting a cross-sectional (101¯0) cleavage plane of a GaN(0001) epitaxial layer is mapped using scanning tunneling microscopy. The data is correlated with the spatial positions of v-shaped defects. The dislocations are found to be bent away from the inclined semipolar facets of v-shaped defects, due to a strain-induced repulsive interaction. The dislocation distribution is characterized by agglomerations and intersecting bundles of dislocations with parallel projected line directions, stabilized by many body effects in the repulsive strain interactions.

  11. High-brightness semipolar (2021¯) blue InGaN/GaN superluminescent diodes for droop-free solid-state lighting and visible-light communications.

    PubMed

    Shen, Chao; Ng, Tien Khee; Leonard, John T; Pourhashemi, Arash; Nakamura, Shuji; DenBaars, Steven P; Speck, James S; Alyamani, Ahmed Y; El-Desouki, Munir M; Ooi, Boon S

    2016-06-01

    A high-brightness, droop-free, and speckle-free InGaN/GaN quantum well blue superluminescent diode (SLD) was demonstrated on a semipolar (2021¯) GaN substrate. The 447-nm emitting SLD has a broad spectral linewidth of 6.3 nm at an optical power of 123 mW. A peak optical power of 256 mW was achieved at 700 mA CW injection current. By combining YAG:Ce phosphor, SLD-generated white light shows a color-rendering index (CRI) of 68.9 and a correlated color temperature (CCT) of 4340 K. The measured frequency response of the SLD revealed a -3  dB bandwidth of 560 MHz, thus demonstrating the feasibility of the device for both solid-state lighting (SSL) and visible-light communication (VLC) applications.

  12. Dynamic characteristics of 410 nm semipolar (20 2 ¯ 1 ¯) III-nitride laser diodes with a modulation bandwidth of over 5 GHz

    NASA Astrophysics Data System (ADS)

    Lee, Changmin; Zhang, Chong; Becerra, Daniel L.; Lee, Seunggeun; Forman, Charles A.; Oh, Sang Ho; Farrell, Robert M.; Speck, James S.; Nakamura, Shuji; Bowers, John E.; DenBaars, Steven P.

    2016-09-01

    The dynamic characteristics of III-nitride multi-quantum well laser diodes (LDs) emitting at 410 nm were investigated. LDs were grown on semipolar (20 2 ¯ 1 ¯) bulk GaN substrates and fabricated into devices with cavity lengths ranging from 900 nm to 1800 nm. A 3-dB bandwidth of 5 GHz and 5 Gbit/s direct modulation with on-off keying were demonstrated, which were limited by the bandwidth of the photodetector used for the measurements. The differential gain of the LDs was determined to be 2.5 ± 0.5 × 10-16 cm2 by comparing the slope efficiency for different cavity lengths. Analysis of the frequency response showed that the K-factor, the gain compression factor, and the intrinsic maximum bandwidth were 0.33 ns, 7.4 × 10-17 cm3, and 27 GHz, respectively.

  13. Temporally and spatially resolved photoluminescence investigation of (112{sup ¯}2) semi-polar InGaN/GaN multiple quantum wells grown on nanorod templates

    SciTech Connect

    Liu, B.; Smith, R.; Athanasiou, M.; Yu, X.; Bai, J.; Wang, T.

    2014-12-29

    By means of time-resolved photoluminescence (PL) and confocal PL measurements, temporally and spatially resolved optical properties have been investigated on a number of In{sub x}Ga{sub 1−x}N/GaN multiple-quantum-well (MQW) structures with a wide range of indium content alloys from 13% to 35% on (112{sup ¯}2) semi-polar GaN with high crystal quality, obtained through overgrowth on nanorod templates. With increasing indium content, the radiative recombination lifetime initially increases as expected, but decreases if the indium content further increases to 35%, corresponding to emission in the green spectral region. The reduced radiative recombination lifetime leads to enhanced optical performance for the high indium content MQWs as a result of strong exciton localization, which is different from the behaviour of c-plane InGaN/GaN MQWs, where quantum confined Stark effect plays a dominating role in emission process.

  14. Stacking faults and interface roughening in semipolar (202{sup ¯}1{sup ¯}) single InGaN quantum wells for long wavelength emission

    SciTech Connect

    Wu, Feng; Zhao, Yuji; DenBaars, Steven P.; Nakamura, Shuji; Speck, James S.; Romanov, Alexey

    2014-04-14

    The microstructure of InGaN single quantum wells (QWs) grown in semipolar (202{sup ¯}1{sup ¯}) orientation on GaN substrates was studied by transmission electron microscopy. Stress relaxation in the lattice mismatch In{sub x}Ga{sub 1−x}N layer was realized by forming partial misfit dislocations associated with basal plane stacking faults (BPSFs). For given composition x = 0.24, BPSFs formation was observed when the QW thickness exceeded 4 nm. The high density of partial threading dislocations that bound the BPSFs is detrimental to light-emitting device performance. Interface roughening (faceting) was observed for both upper and lower QW interfaces (more pronounced for upper interface) and was found to increase with the thickness of the QW. BPSFs had a tendency to nucleate at roughened interface valleys.

  15. Comparative mapping of the constitutional and tumor-associated 11;22 translocations.

    PubMed Central

    Budarf, M; Sellinger, B; Griffin, C; Emanuel, B S

    1989-01-01

    The reciprocal t(11;22)(q23;q11) is the most common non-Robertsonian constitutional translocation in humans. The tumor-associated 11;22 rearrangement of Ewing sarcoma (ES) and peripheral neuroepithelioma (NE) is cytologically very similar to the 11;22 constitutional rearrangement. Using immunoglobulin light-chain constant region, ETS1 probes, and the technique of in situ hybridization, we previously were able to show that the constitutional and ES/NE breakpoints are different. As a first step toward isolating these translocation junctions and to further distinguish between them, we have made somatic cell hybrids. Cells from a constitutional 46,XX,inv(9),t(11;22) carrier and from an ES cell line with a t(11;22) were separately fused to a hypoxanthine-guanine phosphoribosyltransferase-deficient Chinese hamster cell line (RJK88). Resulting clones were screened with G-banding and Southern hybridization. Hybrid clones derived from the constitutional t(11;22) were established which contained the der(22) and both the der(22) and the der(11). Hybrid clones derived from the ES cell line containing the der(11) were isolated. Using the technique of Southern hybridization we have sublocalized the loci; ApoA1/C3, CD3D, ETS1, PBGD, THY1, D11S29, D11S34, and D11S147 to the region between the two breakpoints on chromosome 11 and V lambda I, V lambda VI, V lambda VII, and D22S10 to the region between the breakpoints on chromosome 22. Using anonymous DNA probes, we found that D22S9 and D22S24 map proximal to the constitutional breakpoint and that D22S15 and D22S32 map distal to the ES breakpoint on chromosome 22. Images Figure 1 Figure 2 Figure 5 PMID:2741943

  16. High Quality, Low Cost Ammonothermal Bulk GaN Substrates

    SciTech Connect

    Ehrentraut, D; Pakalapati, RT; Kamber, DS; Jiang, WK; Pocius, DW; Downey, BC; McLaurin, M; D'Evelyn, MP

    2013-12-18

    Ammonothermal GaN growth using a novel apparatus has been performed on c-plane, m-plane, and semipolar seed crystals with diameters between 5 mm and 2 in. to thicknesses of 0.5-3 mm. The highest growth rates are greater than 40 mu m/h and rates in the 10-30 mu m/h range are routinely observed for all orientations. These values are 5-100x larger than those achieved by conventional ammonothermal GaN growth. The crystals have been characterized by X-ray diffraction rocking-curve (XRC) analysis, optical and scanning electron microscopy (SEM), cathodoluminescence (CL), optical spectroscopy, and capacitance-voltage measurements. The crystallinity of the grown crystals is similar to or better than that of the seed crystals, with FWHM values of about 20-100 arcsec and dislocation densities of 1 x 10(5)-5 x 10(6) cm(-2). Dislocation densities below 10(4) cm(-2) are observed in laterally-grown crystals. Epitaxial InGaN quantum well structures have been successfully grown on ammonothermal wafers. (C) 2013 The Japan Society of Applied Physics

  17. 11. 22'X34' original blueprint, VariableAngle Launcher, 'CONTROL STATION STRUCTURAL DETAILS' ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. 22'X34' original blueprint, Variable-Angle Launcher, 'CONTROL STATION STRUCTURAL DETAILS' drawn at 1 1/2'=1'-0'. (BUORD Sketch # 208401). - Variable Angle Launcher Complex, Control Station, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  18. Role of substrate quality on the performance of semipolar ( 11 2 ¯ 2 ) InGaN light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Dinh, Duc V.; Corbett, Brian; Parbrook, Peter J.; Koslow, Ingrid. L.; Rychetsky, Monir; Guttmann, Martin; Wernicke, Tim; Kneissl, Michael; Mounir, Christian; Schwarz, Ulrich; Glaab, Johannes; Netzel, Carsten; Brunner, Frank; Weyers, Markus

    2016-10-01

    We compare the optical properties and device performance of unpackaged InGaN/GaN multiple-quantum-well light-emitting diodes (LEDs) emitting at ˜430 nm grown simultaneously on a high-cost small-size bulk semipolar ( 11 2 ¯ 2 ) GaN substrate (Bulk-GaN) and a low-cost large-size ( 11 2 ¯ 2 ) GaN template created on patterned ( 10 1 ¯ 2 ) r-plane sapphire substrate (PSS-GaN). The Bulk-GaN substrate has the threading dislocation density (TDD) of ˜105 cm-2-106 cm-2 and basal-plane stacking fault (BSF) density of 0 cm-1, while the PSS-GaN substrate has the TDD of ˜2 × 108 cm-2 and BSF density of ˜1 × 103 cm-1. Despite an enhanced light extraction efficiency, the LED grown on PSS-GaN has two-times lower internal quantum efficiency than the LED grown on Bulk-GaN as determined by photoluminescence measurements. The LED grown on PSS-GaN substrate also has about two-times lower output power compared to the LED grown on Bulk-GaN substrate. This lower output power was attributed to the higher TDD and BSF density.

  19. Stark effect in ensembles of polar (0001) Al{sub 0.5}Ga{sub 0.5}N/GaN quantum dots and comparison with semipolar (11−22) ones

    SciTech Connect

    Leroux, M.; Brault, J.; Kahouli, A.; Damilano, B.; Mierry, P. de; Korytov, M.; Maghraoui, D.; Kim, Je-Hyung; Cho, Yong-Hoon

    2014-07-21

    This work presents a continuous-wave photoluminescence study of Al{sub 0.5}Ga{sub 0.5}N/GaN quantum dots grown by ammonia-assisted molecular beam epitaxy on sapphire, either on the wurtzite polar (0001) or the semipolar (11−22) plane. Due to interface polarization discontinuities, the polar dots are strongly red-shifted by the Stark effect and emit in the visible range. Carrier injection screening of the polarization charges has been studied. A model relying on average dot heights and dot height variances, as measured by transmission electron microscopy, is proposed. It can account for the injection dependent luminescence energies and efficiencies. The electric field discontinuity deduced from the fittings is in good agreement with theoretical expectations for our barrier composition. On the contrary, semipolar quantum dot ensembles always emit above the gap of GaN strained to Al{sub 0.5}Ga{sub 0.5}N. Their luminescence linewidth is significantly lower than that of polar ones, and their energy does not shift with injection. Our study then confirms the expected strong decrease of the Stark effect for (11−22) grown (Al,Ga)N/GaN heterostructures.

  20. Inclined angle-controlled growth of GaN nanorods on m-sapphire by metal organic chemical vapor deposition without a catalyst.

    PubMed

    Lee, Kyuseung; Chae, Sooryong; Jang, Jongjin; Min, Daehong; Kim, Jaehwan; Eom, Daeyong; Yoo, Yang-Seok; Cho, Yong-Hoon; Nam, Okhyun

    2015-08-21

    In this study, we have intentionally grown novel types of (11-22)- and (1-10-3)-oriented(3) and self-assembled inclined GaN nanorods (NRs) on (10-10) m-sapphire substrates using metal organic chemical vapor deposition without catalysts and ex situ patterning. Nitridation of the m-sapphire surface was observed to be crucial to the inclined angle as well as the growth direction of the GaN NRs. Polarity-selective KOH etching confirmed that both (11-22) and (1-10-3) GaN NRs are nitrogen-polar. Using pole figure measurements and selective area electron diffraction patterns, the epitaxial relationship between the inclined (11-22) and (1-10-3) GaN NRs and m-sapphire substrates was systematically demonstrated. Furthermore, it was verified that the GaN NRs were single-crystalline wurtzite structures. We observed that stacking fault-related defects were generated during the initial growth stage using high-resolution transmission electron microscopy. The blue-shift of the near band edge (NBE) peak in the inclined angle-controlled GaN NRs can be explained by a band filling effect through carrier saturation of the conduction band, resulting from a high Si-doping concentration; in addition, the decay time of NBE emission in (11-22)- and (1-10-3)-oriented NRs was much shorter than that of stacking fault-related emission. These results suggest that defect-free inclined GaN NRs can be grown on m-sapphire without ex situ treatment.

  1. Understanding and controlling heteroepitaxy with the kinetic Wulff plot: A case study with GaN

    SciTech Connect

    Sun, Qian; Yerino, Christopher D.; Leung, Benjamin; Han, Jung; Coltrin, Michael E.

    2011-01-01

    This work represents a comprehensive attempt to correlate the heteroepitaxial dynamics in experiments with fundamental principles in crystal growth using the kinetic Wulff plot (or v-plot). Selective area growth is employed to monitor the advances of convex and concave facets toward the construction of a comprehensive v-plot as a guidepost for GaN-heteroepitaxy. A procedure is developed to apply the experimentally determined kinetic Wulff plots to the interpretation and the design of evolution dynamics in nucleation and island coalescence. This procedure offers a cohesive and rational model for GaN-heteroepitaxy on polar, nonpolar, and semipolar orientations and is broadly extensible to other heteroepitaxial material systems. We demonstrate furthermore that the control of morphological evolution, based on invoking a detailed knowledge of the v-plots, holds a key to the reduction of microstructural defects through effective bending of dislocations and geometrical blocking of stacking faults, paving a way to device-quality heteroepitaxial nonpolar and semipolar GaN materials.

  2. Direct spontaneous growth and interfacial structural properties of inclined GaN nanopillars on r-plane sapphire

    SciTech Connect

    Adikimenakis, A.; Aretouli, K. E.; Tsagaraki, K.; Androulidaki, M.; Georgakilas, A.; Lotsari, A.; Dimitrakopulos, G. P. Kehagias, Th.; Komninou, Ph.

    2015-06-28

    The spontaneous growth of GaN nanopillars (NPs) by direct plasma-assisted molecular beam epitaxy on nitridated r-plane sapphire substrates has been studied. The emanation of metal-polarity NPs from inside an a-plane nonpolar GaN film was found to depend on both the substrate nitridation and the growth conditions. The density of NPs increased with increasing the duration of the nitridation process and the power applied on the radio-frequency plasma source, as well as the III/V flux ratio, while variation of the first two parameters enhanced the roughness of the substrate's surface. Transmission electron microscopy (TEM) techniques were employed to reveal the structural characteristics of the NPs and their nucleation mechanism from steps on the sapphire surface and/or interfacial semipolar GaN nanocrystals. Lattice strain measurements showed a possible Al enrichment of the first 5–6 monolayers of the NPs. By combining cross-sectional and plan-view TEM observations, the three-dimensional model of the NPs was constructed. The orientation relationship and interfacial accommodation between the NPs and the nonpolar a-plane GaN film were also elucidated. The NPs exhibited strong and narrow excitonic emission, suggesting an excellent structural quality.

  3. Effect of defects in oxide templates on Non-catalytic growth of GaN nanowires for high-efficiency light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Hwang, Sung Won; Choi, Suk-Ho

    2016-04-01

    Two kinds of oxide templates, one with and one without undercuts, are employed to study the effect of defects in oxide templates on non-catalytic growth of GaN nanowires (NWs). GaN NWs abnormally grown from the templates containing undercuts exhibit two types of patterns: earlystage growth of premature NWs and abnormally-overgrown (~2 μm) NWs. GaN NWs grown on perfectly-symmetric template patterns are highly crystalline and have high aspect ratios (2 ~ 5), and their tops are shaped as pyramids with semipolar facets, clearly indicating hexagonal symmetry. The internal quantum efficiency of the well-grown NWs is 10% larger than that of the deformed NWs, as estimated by using photoluminescence. These results suggest that our technique is an effective approach for growing large-area-patterned, vertically-aligned, hexagonal GaN NWs without catalysts, in strong contrast to catalytic vapor-liquid-solid growth, and that good formation of the oxide templates is crucial for the growth of high-quality GaN NWs.

  4. Genotype-phenotype characterization in 13 individuals with chromosome Xp11.22 duplications.

    PubMed

    Grams, Sarah E; Argiropoulos, Bob; Lines, Matthew; Chakraborty, Pranesh; Mcgowan-Jordan, Jean; Geraghty, Michael T; Tsang, Marilyn; Eswara, Marthand; Tezcan, Kamer; Adams, Kelly L; Linck, Leesa; Himes, Patricia; Kostiner, Dana; Zand, Dina J; Stalker, Heather; Driscoll, Daniel J; Huang, Taosheng; Rosenfeld, Jill A; Li, Xu; Chen, Emily

    2016-04-01

    We report 13 new individuals with duplications in Xp11.22-p11.23. The index family has one male and two female members in three generations with mild-severe intellectual disability (ID), speech delay, dysmorphic features, early puberty, constipation, and/or hand and foot abnormalities. Affected individuals were found to have two small duplications in Xp11.22 at nucleotide position (hg19) 50,112,063-50,456,458 bp (distal) and 53,160,114-53,713,154 bp (proximal). Collectively, these two regions include 14 RefSeq genes, prompting collection of a larger cohort of patients, in an attempt to delineate critical genes associated with the observed phenotype. In total, we have collected data on nine individuals with duplications overlapping the distal duplication region containing SHROOM4 and DGKK and eight individuals overlapping the proximal region including HUWE1. Duplications of HUWE1 have been previously associated with non-syndromic ID. Our data, with previously published reports, suggest that duplications involving SHROOM4 and DGKK may represent a new syndromic X-linked ID critical region associated with mild to severe ID, speech delay +/- dysarthria, attention deficit disorder, precocious puberty, constipation, and motor delay. We frequently observed foot abnormalities, 5th finger clinodactyly, tapering fingers, constipation, and exercise intolerance in patients with duplications of these two genes. Regarding duplications including the proximal region, our observations agree with previous studies, which have found associations with intellectual disability. In addition, expressive language delay, failure to thrive, motor delay, and 5th finger clinodactyly were also frequently observed in patients with the proximal duplication. PMID:26692240

  5. Atomic scattering spectroscopy for determination of the polarity of semipolar AlN grown on ZnO

    SciTech Connect

    Kobayashi, Atsushi; Ohta, Jitsuo; Ueno, Kohei; Oshima, Masaharu; Fujioka, Hiroshi

    2013-11-04

    Determination of the polarity of insulating semipolar AlN layers was achieved via atomic scattering spectroscopy. The back scattering of neutralized He atoms on AlN surfaces revealed the atomic alignment of the topmost layers of semipolar AlN and the ZnO substrate. Pole figures of the scattering intensity were used to readily determine the polarity of these wurtzite-type semipolar materials. In addition, we found that +R-plane AlN epitaxially grows on −R-plane ZnO, indicating that the polarity flips at the semipolar AlN/ZnO interface. This polarity flipping is possibly explained by the appearance of −c and m-faces on the −R ZnO surfaces, which was also revealed by atomic scattering spectroscopy.

  6. Design, Growth and Fabrication of Nitride-based Semipolar (2021) Laser Diodes

    NASA Astrophysics Data System (ADS)

    Huang, Chia-Yen

    Nonpolar and semipolar planes on wurtzite nitride have attracted much attention due to their eliminated and reduced polarization-related electric field in the quantum wells (QWs). Violet and blue nonpolar m-plane laser diodes (LDs) have been demonstrated under continuous wave operation. However, the operation in green spectral region has been limited due to low In incorporation and the formation of basal plane stacking faults on m-plane. With decent In incorporation on semipolar planes, high performance green light-emitting diodes (LEDs) and LDs have been demonstrated on (202¯1) plane. On the other hand, low efficiency droop and high optical polarization ratio were also observed on semipolar (202¯1¯) LEDs. The polarity has strong impacts on the growth characteristics and device performance on semipolar planes. With a 15 degree inclination angle of m-plane toward the N-polar surface, (202¯1¯) plane possesses a N-polar-like surface chemistry. The morphology of epitaxial growth on (202¯1¯) surface is sensitive to growth conditions such as the growth temperature and the growth rate. Striation morphologies along the a-axis were observed on InGaN QWs grown on (202¯1¯) substrates, indicating a high adatom diffusion anisotropy. However, the piezoelectric polarizations of InGaN QWs on the (202¯1¯) plane are parallel to those on the Ga-polar plane with a quarter magnitude. Polarization-related electric fields in the (202¯1¯) QWs cancel the built-in electric fields in the p-n junction, resulting in a nearly-flat QW potential profile under zero bias. By band diagram simulations, the potential profile of (202¯1¯) QWs is insensitive to the applied bias and current injection. Along with high compositional homogeneity in the QWs, the semipolar (202¯1¯) LEDs and LDs showed minimal wavelength blueshift over three orders of injection current levels. Index-guided ridge lasers with cleaved facets were fabricated. Polishing and dry-etching were applied on the backside

  7. Molecular sublocalization and characterization of the 11; 22 translocation breakpoint in a malignant rhabdoid tumor

    SciTech Connect

    Newsham, I.; Daub, D.; Besnard-Guerin, C.; Cavenee, W. )

    1994-02-01

    Malignant rhabdoid tumors are extremely aggressive soft-tissue sarcomas that tend to be widely metastatic at diagnosis. These tumors were first described as variants of the kidney neoplasm Wilms' tumor, although tumors of similar clinicopathologic features have been cited in a variety of extrarenal sites. Here, the authors have characterized the chromosomal translocation t(11;22)(p15.5;q11.23) from a retroperitoneal rhabdoid tumor. Somatic cell hybrids with segregated copies of the derivative 11 and derivative 22 chromosomes allowed sublocalization of the chromosome 11 breakpoint to a 1- to 2-Mb region between the proximal marker D11S12 and the distal locus tyrosine hydroxylase (TH). Translocation-associated aberrant fragments were identified by pulsed-field gel electrophoresis, with the smallest resulting from BssHII digestion as detected with a probe for TH. These data indicate that the locus or loci disrupted by this genetic abnormality might lie less than 60 kb proximal to this marker and place it in the chromosomal vicinity of genes involved in the etiologies of rhabdomyosarcoma, Wilms' tumor, and the congenital overgrowth disorder, Beckwith-Wiedemann syndrome. Analysis of two other tumor-associated loci, EWS1 and NF2, that have been mapped to the general region of 22q11.2 indicated that they were not involved in this translocation breakpoint. Isolation of the genes present at this translocation junction on both chromosomes 11 and 22 may yield important clinicopathologic and genetic markers for this enigmatic tumor as well as other pediatric diseases. 45 refs., 3 figs.

  8. Formation and characteristics of AlGaN-based three-dimensional hexagonal nanopyramid semi-polar multiple quantum wells

    NASA Astrophysics Data System (ADS)

    Tian, Yingdong; Yan, Jianchang; Zhang, Yun; Zhang, Yonghui; Chen, Xiang; Guo, Yanan; Wang, Junxi; Li, Jinmin

    2016-05-01

    We demonstrated for the first time the formation and study of semi-polar AlGaN multiple-quantum-wells (MQWs) grown on highly regular hexagonal AlN nanopyramids. The AlN nanopyramids were obtained by a metal-organic chemical vapor phase deposition regrowth method on a well-ordered AlN nanorod array prepared by a top-down etching process. The growth mechanism of the AlN nanopyramids was ascribed to the slow growth of the (101&cmb.macr;1) semi-polar plane, which resulted from hydrogen passivation. Beneath the semi-polar facets, air voids were formed. This was attributed to the insufficient delivery of gas reactants to the bottom of the nanorods during the growth process. The polarization effect in semi-polar AlGaN MQWs was numerically calculated. The results showed that the internal electric field (IEF) in the semi-polar MQWs was remarkably reduced by 80% in comparison with c-plane MQWs. Power dependent photoluminescence indicated that the semi-polar AlGaN MQWs had negligible wavelength shifts that resulted from the reduced IEF, which was in accordance with theoretical predictions. In addition, epitaxial strain was greatly relieved in the AlN regrowth layer, which was revealed from the peak shift of the E2(high) phonon using micro-Raman spectroscopy. The advantages of AlGaN-based hexagonal nanopyramid semi-polar three dimensional nanostructures would lead to a large improvement of output power in UV-LEDs.

  9. Formation and characteristics of AlGaN-based three-dimensional hexagonal nanopyramid semi-polar multiple quantum wells.

    PubMed

    Tian, Yingdong; Yan, Jianchang; Zhang, Yun; Zhang, Yonghui; Chen, Xiang; Guo, Yanan; Wang, Junxi; Li, Jinmin

    2016-06-01

    We demonstrated for the first time the formation and study of semi-polar AlGaN multiple-quantum-wells (MQWs) grown on highly regular hexagonal AlN nanopyramids. The AlN nanopyramids were obtained by a metal-organic chemical vapor phase deposition regrowth method on a well-ordered AlN nanorod array prepared by a top-down etching process. The growth mechanism of the AlN nanopyramids was ascribed to the slow growth of the (101[combining macron]1) semi-polar plane, which resulted from hydrogen passivation. Beneath the semi-polar facets, air voids were formed. This was attributed to the insufficient delivery of gas reactants to the bottom of the nanorods during the growth process. The polarization effect in semi-polar AlGaN MQWs was numerically calculated. The results showed that the internal electric field (IEF) in the semi-polar MQWs was remarkably reduced by 80% in comparison with c-plane MQWs. Power dependent photoluminescence indicated that the semi-polar AlGaN MQWs had negligible wavelength shifts that resulted from the reduced IEF, which was in accordance with theoretical predictions. In addition, epitaxial strain was greatly relieved in the AlN regrowth layer, which was revealed from the peak shift of the E2(high) phonon using micro-Raman spectroscopy. The advantages of AlGaN-based hexagonal nanopyramid semi-polar three dimensional nanostructures would lead to a large improvement of output power in UV-LEDs. PMID:27174102

  10. Band gaps and internal electric fields in semipolar short period InN/GaN superlattices

    SciTech Connect

    Gorczyca, I.; Skrobas, K.; Suski, T.; Christensen, N. E.; Svane, A.

    2014-06-09

    The electronic structures and internal electric fields of semipolar short-period mInN/nGaN superlattices (SLs) have been calculated for several compositions (m, n). Two types of SL are considered, (112{sup ¯}2) and (202{sup ¯}1), corresponding to growth along the wurtzite s2 and s6 directions, respectively. The results are compared to similar calculations for polar SLs (grown in the c-direction) and nonpolar SLs (grown in the a- and m-directions). The calculated band gaps for the semipolar SLs lie between those calculated for the nonpolar and polar SLs: For s2-SLs they fall slightly below the band gaps of a-plane SLs, whereas for s6-SLs they are considerably smaller.

  11. 41 CFR 302-11.22 - May the 2-year time limitation be extended by my agency?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 4 2010-07-01 2010-07-01 false May the 2-year time... Federal Travel Regulation System RELOCATION ALLOWANCES RESIDENCE TRANSACTION ALLOWANCES 11-ALLOWANCES FOR EXPENSES INCURRED IN CONNECTION WITH RESIDENCE TRANSACTIONS General Rules Time Limitations § 302-11.22...

  12. 41 CFR 302-11.22 - May the 2-year time limitation be extended by my agency?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 41 Public Contracts and Property Management 4 2011-07-01 2011-07-01 false May the 2-year time... Federal Travel Regulation System RELOCATION ALLOWANCES RESIDENCE TRANSACTION ALLOWANCES 11-ALLOWANCES FOR EXPENSES INCURRED IN CONNECTION WITH RESIDENCE TRANSACTIONS General Rules Time Limitations § 302-11.22...

  13. 41 CFR 302-11.22 - May the 1-year time limitation be extended by my agency?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 41 Public Contracts and Property Management 4 2012-07-01 2012-07-01 false May the 1-year time... Federal Travel Regulation System RELOCATION ALLOWANCES RESIDENCE TRANSACTION ALLOWANCES 11-ALLOWANCES FOR EXPENSES INCURRED IN CONNECTION WITH RESIDENCE TRANSACTIONS General Rules Time Limitations § 302-11.22...

  14. 41 CFR 302-11.22 - May the 1-year time limitation be extended by my agency?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 41 Public Contracts and Property Management 4 2014-07-01 2014-07-01 false May the 1-year time... Federal Travel Regulation System RELOCATION ALLOWANCES RESIDENCE TRANSACTION ALLOWANCES 11-ALLOWANCES FOR EXPENSES INCURRED IN CONNECTION WITH RESIDENCE TRANSACTIONS General Rules Time Limitations § 302-11.22...

  15. 41 CFR 302-11.22 - May the 1-year time limitation be extended by my agency?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 41 Public Contracts and Property Management 4 2013-07-01 2012-07-01 true May the 1-year time... Federal Travel Regulation System RELOCATION ALLOWANCES RESIDENCE TRANSACTION ALLOWANCES 11-ALLOWANCES FOR EXPENSES INCURRED IN CONNECTION WITH RESIDENCE TRANSACTIONS General Rules Time Limitations § 302-11.22...

  16. Solubility and crystallographic facet tailoring of (GaN)(1-x)(ZnO)(x) pseudobinary solid-solution nanostructures as promising photocatalysts.

    PubMed

    Li, Jing; Liu, Baodan; Yang, Wenjin; Cho, Yujin; Zhang, Xinglai; Dierre, Benjamin; Sekiguchi, Takashi; Wu, Aimin; Jiang, Xin

    2016-02-14

    (GaN)1-x(ZnO)x solid-solution nanostructures with superior crystallinity, large surface areas and visible light absorption have been regarded as promising photocatalysts for overall water splitting to produce H2. In this work, we report the preparation of (GaN)1-x(ZnO)x solid-solution nanorods with a high ZnO solubility up to 95% via a two-step synthetic route, which starts from a sol-gel reaction and follows with a nitridation process. Moreover, we clearly demonstrated that the crystallographic facets of (GaN)1-x(ZnO)x solid-solution nanorods can be finely tailored from non-polar {10̄10} to semipolar {10̄11} and then finally to mixed {10̄1} and polar {000̄1} by carefully controlling the growth temperature and nitridation time. Correspondingly, the ZnO content in the GaN lattice can be achieved in the range of ∼25%-95%. Room-temperature cathodoluminescence (CL) measurements on the three types of (GaN)1-x(ZnO)x solid-solution nanorods indicate that the minimum band-gap of 2.46 eV of the solid-solution nanorods is achieved under a ZnO solubility of 25%. The efficiency and versatility of our strategy in the band-gap and facet engineering of (GaN)1-x(ZnO)x solid-solution nanorods will enhance their promising photocatalytic utilizations like an overall water splitting for H2 production under visible-light irradiation.

  17. Impact of extended defects on optical properties of (1-101)GaN grown on patterned Si

    NASA Astrophysics Data System (ADS)

    Okur, S.; Izyumskaya, N.; Zhang, F.; Avrutin, V.; Metzner, S.; Karbaum, C.; Bertram, F.; Christen, J.; Morkoç, H.; Özgür, Ü.

    2014-03-01

    The optical quality of semipolar (1 101)GaN layers was explored by time- and polarization-resolved photoluminescence spectroscopy. High intensity bandedge emission was observed in +c-wing regions of the stripes as a result of better structural quality, while -c-wing regions were found to be of poorer optical quality due to basal plane and prismatic stacking faults (BSFs and PSFs) in addition to a high density of TDs. The high optical quality region formed on the +cwings was evidenced also from the much slower biexponential PL decays (0.22 ns and 1.70 ns) and an order of magnitude smaller amplitude ratio of the fast decay (nonradiative origin) to the slow decay component (radiative origin) compared to the -c-wing regions. In regard to defect-related emission, decay times for the BSF and PSF emission lines at 25 K (~ 0.80 ns and ~ 3.5 ns, respectively) were independent of the excitation density within the range employed (5 - 420 W/cm2), and much longer than that for the donor bound excitons (0.13 ns at 5 W/cm2 and 0.22 ns at 420 W/cm2). It was also found that the emission from BSFs had lower polarization degree (0.22) than that from donor bound excitons (0.35). The diminution of the polarization degree when photogenerated carriers recombine within the BSFs is another indication of the negative effects of stacking faults on the optical quality of the semipolar (1101)GaN. In addition, spatial distribution of defects in semipolar (1101)-oriented InGaN active region layers grown on stripe patterned Si substrates was investigated using near-field scanning optical microscopy. The optical quality of -c- wing regions was found to be worse compared to +c-wing regions due to the presence of higher density of stacking faults and threading dislocations. The emission from the +c-wings was very bright and relatively uniform across the sample, which is indicative of a homogeneous In distribution.

  18. Differential outcomes in an extended family with constitutional t(11;22)(q23.3;q11.2).

    PubMed

    Kee, Su Keyau; See, Valene Hsu-Lin; Chia, Patrick; Tan, Wei Ching; Tien, Sim Leng; Lim, Soon Tiong Alvin

    2013-03-01

    The t(11;22) rearrangement is the most common recurrent familial reciprocal translocation in man. Heterozygote carriers are phenotypically normal but are at risk of subfertility in the male, miscarriages, and producing chromosomally unbalanced offspring. The unbalanced progeny usually results from an extra der(22) chromosome resulting from a 3:1 malsegregation. We present here a family with t(11;22). Of six siblings, three were found to be carriers following prenatal diagnosis of the proband fetus. Neither of the two married carrier siblings have a live born child. In keeping with the prevailing knowledge of the pregnancy outcomes of heterozygote carriers, between the siblings they had recurrent miscarriages, a fetus with a +der(22) chromosome, and other subfertility issues resulting in multiple failed in vitro fertilization cycles with preimplantation genetic diagnosis. However, unlike the siblings, their extended family comprising their heterozygote translocation mother, married aunts and an uncle had normal fertility and a lack of a history of miscarriages or an abnormal child. The differing outcomes may be related to the male partners having additional semen anomalies which may further exacerbate problems associated with the t(11;22). Because the t(11;22) rearrangement tends to run in families, it is recommended that chromosome studies are offered to family members of an affected relative as an option, and provide them with appropriate genetic counseling so that they will have the necessary information with regard to their risk for subfertility, miscarriages, and production of viable unbalanced offspring. Follow-up prenatal diagnosis should also be offered to affected expectant family members, especially after preimplantation genetic diagnosis. PMID:27625838

  19. Differential outcomes in an extended family with constitutional t(11;22)(q23.3;q11.2)

    PubMed Central

    Kee, Su Keyau; See, Valene Hsu-Lin; Chia, Patrick; Tan, Wei Ching; Tien, Sim Leng; Lim, Soon Tiong Alvin

    2013-01-01

    The t(11;22) rearrangement is the most common recurrent familial reciprocal translocation in man. Heterozygote carriers are phenotypically normal but are at risk of subfertility in the male, miscarriages, and producing chromosomally unbalanced offspring. The unbalanced progeny usually results from an extra der(22) chromosome resulting from a 3:1 malsegregation. We present here a family with t(11;22). Of six siblings, three were found to be carriers following prenatal diagnosis of the proband fetus. Neither of the two married carrier siblings have a live born child. In keeping with the prevailing knowledge of the pregnancy outcomes of heterozygote carriers, between the siblings they had recurrent miscarriages, a fetus with a +der(22) chromosome, and other subfertility issues resulting in multiple failed in vitro fertilization cycles with preimplantation genetic diagnosis. However, unlike the siblings, their extended family comprising their heterozygote translocation mother, married aunts and an uncle had normal fertility and a lack of a history of miscarriages or an abnormal child. The differing outcomes may be related to the male partners having additional semen anomalies which may further exacerbate problems associated with the t(11;22). Because the t(11;22) rearrangement tends to run in families, it is recommended that chromosome studies are offered to family members of an affected relative as an option, and provide them with appropriate genetic counseling so that they will have the necessary information with regard to their risk for subfertility, miscarriages, and production of viable unbalanced offspring. Follow-up prenatal diagnosis should also be offered to affected expectant family members, especially after preimplantation genetic diagnosis. PMID:27625838

  20. Dislocation Reduction and Stress Relaxation of GaN and InGaN Multiple Quantum Wells with Improved Performance via Serpentine Channel Patterned Mask.

    PubMed

    Ji, Qingbin; Li, Lei; Zhang, Wei; Wang, Jia; Liu, Peichi; Xie, Yahong; Yan, Tongxing; Yang, Wei; Chen, Weihua; Hu, Xiaodong

    2016-08-24

    The existence of high threading dislocation density (TDD) in GaN-based epilayers is a long unsolved problem, which hinders further applications of defect-sensitive GaN-based devices. Multiple-modulation of epitaxial lateral overgrowth (ELOG) is used to achieve high-quality GaN template on a novel serpentine channel patterned sapphire substrate (SCPSS). The dislocation blocking brought by the serpentine channel patterned mask, coupled with repeated dislocation bending, can reduce the dislocation density to a yet-to-be-optimized level of ∼2 × 10(5) to 2 × 10(6) cm(-2). About 80% area utilization rate of GaN with low TDD and stress relaxation is obtained. The periodical variations of dislocation density, optical properties and residual stress in GaN-based epilayers on SCPSS are analyzed. The quantum efficiency of InGaN/GaN multiple quantum wells (MQWs) on it can be increased by 52% compared with the conventional sapphire substrate. The reduced nonradiative recombination centers, the enhanced carrier localization, and the suppressed quantum confined Stark effect, are the main determinants of improved luminous performance in MQWs on SCPSS. This developed ELOG on serpentine shaped mask needs no interruption and regrowth, which can be a promising candidate for the heteroepitaxy of semipolar/nonpolar GaN and GaAs with high quality.

  1. Dislocation Reduction and Stress Relaxation of GaN and InGaN Multiple Quantum Wells with Improved Performance via Serpentine Channel Patterned Mask.

    PubMed

    Ji, Qingbin; Li, Lei; Zhang, Wei; Wang, Jia; Liu, Peichi; Xie, Yahong; Yan, Tongxing; Yang, Wei; Chen, Weihua; Hu, Xiaodong

    2016-08-24

    The existence of high threading dislocation density (TDD) in GaN-based epilayers is a long unsolved problem, which hinders further applications of defect-sensitive GaN-based devices. Multiple-modulation of epitaxial lateral overgrowth (ELOG) is used to achieve high-quality GaN template on a novel serpentine channel patterned sapphire substrate (SCPSS). The dislocation blocking brought by the serpentine channel patterned mask, coupled with repeated dislocation bending, can reduce the dislocation density to a yet-to-be-optimized level of ∼2 × 10(5) to 2 × 10(6) cm(-2). About 80% area utilization rate of GaN with low TDD and stress relaxation is obtained. The periodical variations of dislocation density, optical properties and residual stress in GaN-based epilayers on SCPSS are analyzed. The quantum efficiency of InGaN/GaN multiple quantum wells (MQWs) on it can be increased by 52% compared with the conventional sapphire substrate. The reduced nonradiative recombination centers, the enhanced carrier localization, and the suppressed quantum confined Stark effect, are the main determinants of improved luminous performance in MQWs on SCPSS. This developed ELOG on serpentine shaped mask needs no interruption and regrowth, which can be a promising candidate for the heteroepitaxy of semipolar/nonpolar GaN and GaAs with high quality. PMID:27484167

  2. Roma Gans: Still Writing at 95.

    ERIC Educational Resources Information Center

    Sullivan, Joanna

    1991-01-01

    Recounts discussions with reading educator Roma Gans over a 25-year period. Presents Gans' views about reading, teachers, her family, and her years at Teachers College, Columbia. Notes that Gans has seen the teaching of reading come full circle since her first teaching assignment in 1919. (RS)

  3. Identification of Multiple DNA Copy Number Alterations Including Frequent 8p11.22 Amplification in Conjunctival Squamous Cell Carcinoma

    PubMed Central

    Asnaghi, Laura; Alkatan, Hind; Mahale, Alka; Othman, Maha; Alwadani, Saeed; Al-Hussain, Hailah; Jastaneiah, Sabah; Yu, Wayne; Maktabi, Azza; Edward, Deepak P.; Eberhart, Charles G.

    2014-01-01

    Purpose. Little is known about the molecular alterations that drive formation and growth of conjunctival squamous cell carcinoma (cSCC). We therefore sought to identify genetic changes that could be used as diagnostic markers or therapeutic targets. Methods. The DNA extracted from 10 snap-frozen cSCC tumor specimens and 2 in situ carcinomas was analyzed using array-based comparative genomic hybridization (aCGH), and further examined with NanoString and quantitative PCR. Results. The number of regions of DNA loss ranged from 1 to 23 per tumor, whereas gains and amplifications ranged from 1 to 15 per tumor. Most large regions of chromosomal gain and loss were confirmed by NanoString karyotype analysis. The commonest alteration was amplification of 8p11.22 in 9 tumors (75%), and quantitative PCR analysis revealed 100-fold or greater overexpression of ADAM3A mRNA from 8p11.22 locus. In addition, recurring losses were observed at 14q13.2 and 22q11.23, both lost in 5 (42%) of the 12 tumors, and at 12p13.31, lost in 4 (33%) of the 12 samples. Of the eight loci associated with the DNA damage repair syndrome xeroderma pigmentosum, three showed loss of at least one allele in our aCGH analysis, including XPA (9q22.33, one tumor), XPE/DDB2 (11p11.2, one tumor) and XPG/ERCC5 (13q33.1, three tumors). Conclusions. Conjunctival SCC contains a range of chromosomal alterations potentially important in tumor formation and growth. Amplification of 8p11.22 and overexpression of ADAM3A suggests a potential role for this protease. Our findings also suggest that defects in DNA repair loci are important in sporadic cSCC. PMID:25491297

  4. Definition of the neurological phenotype associated with dup (X)(p11.22-p11.23).

    PubMed

    Broli, Marcella; Bisulli, Francesca; Mastrangelo, Massimo; Fontana, Elena; Fiocchi, Isabella; Zucca, Claudio; Bonaglia, Maria Clara; Buono, Serafino; Musumeci, Sebastiano Antonino; Romano, Corrado; Reitano, Santina; Savio, Maria; Vitello, Girolamo Aurelio; Bernardi, Bruno; Cevolani, Daniela; Agati, Raffaele; Poda, Roberto; Gallassi, Roberto; Giorda, Roberto; Zuffardi, Orsetta; Bernardina, Bernardo Dalla; Seri, Marco; Tinuper, Paolo

    2011-09-01

    The aim of this study was to describe in detail the neurological features of nine patients carrying the recently reported microduplication at Xp11.22-11.23. Clinical and neurological examination, brain magnetic resonance imaging (except for two patients), electroencephalography and a neuropsychological assessment specific for language disturbances were performed in nine patients with microduplication at Xp11.22-11.23, disclosed by comparative genomic hybridisation array. Six patients were familial cases belonging to three unrelated pedigrees and three were sporadic cases. The patients had the following characteristics: mild dysmorphic facial features (except for two patients), mental retardation with moderate to severe global language deterioration, electroencephalographic epileptiform discharges during wakefulness and especially during sleep or electrical status epilepticus during slow sleep in younger cases, and negative brain magnetic resonance imaging. The main clinical features of this new microduplication syndrome were mild facial dysmorphisms, from increased electroencephalogram abnormalities during sleep to electrical status epilepticus during slow sleep, and mental retardation mainly involving language function in the absence of detectable brain lesions. In the absence of detectable brain lesions, speech delay may be associated with electrical status epilepticus during slow sleep or, alternatively, related to abnormal brain expression of a dosage-sensitive gene contained within the duplication region.

  5. Reduction of Efficiency Droop in Semipolar (1101) InGaN/GaN Light Emitting Diodes Grown on Patterned Silicon Substrates

    NASA Astrophysics Data System (ADS)

    Chiu, Ching-Hsueh; Lin, Da-Wei; Lin, Chien-Chung; Li, Zhen-Yu; Chang, Wei-Ting; Hsu, Hung-Wen; Kuo, Hao-Chung; Lu, Tien-Chang; Wang, Shing-Chung; Liao, Wei-Tsai; Tanikawa, Tomoyuki; Honda, Yoshio; Yamaguchi, Masahito; Sawaki, Nobuhiko

    2011-01-01

    We present a study of semi-polar (1101) InGaN-based light emitting diodes (LEDs) grown on patterned (001) Si substrates by atmospheric-pressure metal organic chemical vapor deposition. A transmission electron microscopy image of the semi-polar template shows that the threading dislocation density was decreased significantly. From electroluminescence measurement, semi-polar LEDs exhibit little blue-shift and low efficiency droop at a high injection current because the reduction of the polarization field not only made the band diagram smoother but also restricted electron overflow to the p-GaN layer as shown in simulations. These results indicate that semi-polar InGaN-based LEDs can possess a high radiative recombination rate and low efficiency droop at a high injection current.

  6. Analysis of low efficiency droop of semipolar InGaN quantum well light-emitting diodes by modified rate equation with weak phase-space filling effect

    NASA Astrophysics Data System (ADS)

    Fu, Houqiang; Lu, Zhijian; Zhao, Yuji

    2016-06-01

    We study the low efficiency droop characteristics of semipolar InGaN light-emitting diodes (LEDs) using modified rate equation incoporating the phase-space filling (PSF) effect where the results on c-plane LEDs are also obtained and compared. Internal quantum efficiency (IQE) of LEDs was simulated using a modified ABC model with different PSF filling (n0), Shockley-Read-Hall (A), radiative (B), Auger (C) coefficients and different active layer thickness (d), where the PSF effect showed a strong impact on the simulated LED efficiency results. A weaker PSF effect was found for low-droop semipolar LEDs possibly due to small quantum confined Stark effect, short carrier lifetime, and small average carrier density. A very good agreement between experimental data and the theoretical modeling was obtained for low-droop semipolar LEDs with weak PSF effect. These results suggest the low droop performance may be explained by different mechanisms for semipolar LEDs.

  7. Oxygen in GaN.

    NASA Astrophysics Data System (ADS)

    van de Walle, Chris G.; Neugebauer, Jörg

    1997-03-01

    Oxygen is commonly present during epitaxial growth of GaN. We have proposed that unintentional incorporation of O, as well as Si, is responsible for the frequently observed n-type conductivity in as-grown GaN. Here we present results from comprehensive density-functional-pseudopotential studies of GaN:O under pressure, and of O interactions with native defects and dopant impurities. We find that the O donor undergoes a DX-like transition under pressure: a large outward relaxation introduces a deep level in the band gap. This behavior explains the carrier freezeout in GaN under pressure.^1 Si donors do not exhibit the transition, consistent with experiment. Results for these impurities in AlGaN will also be discussed. We have also investigated the interaction between O and native defects. Most notably we find a large binding energy between O and the gallium vacancy (V_Ga), which we have proposed to be the source of the yellow luminescence. Finally, we have studied the interaction between O and Mg acceptors. The incorporation of the O donor is significantly enhanced in Mg-doped material. In addition, we calculate a binding energy of 0.6 eV for Mg-O complexes. The presence of O during growth can thus be detrimental to p-type GaN. ^1 C. Wetzel et al., Proc. ICPS-23 (World Scientific, Singapore, 1996), p. 2929.

  8. Duplication Xp11.22-p14 in females: does X-inactivation help in assessing their significance?

    PubMed

    Evers, Christina; Mitter, Diana; Strobl-Wildemann, Gertrud; Haug, Ulrich; Hackmann, Karl; Maas, Bianca; Janssen, Johannes W G; Jauch, Anna; Hinderhofer, Katrin; Moog, Ute

    2015-03-01

    In females, large duplications in Xp often lead to preferential inactivation of the aberrant X chromosome and a normal phenotype. Recently, a recurrent ∼4.5 Mb microduplication of Xp11.22-p11.23 was found in females with developmental delay/intellectual disability and other neurodevelopmental disorders (speech development disorder, epilepsy or EEG anomalies, autism spectrum disorder, or behavioral disorder). Unexpectedly, most of them showed preferential inactivation of the normal X chromosome. We describe five female patients carrying de novo Xp duplications encompassing p11.23. Patient 1 carried the recurrent microduplication Xp11.22-p11.23, her phenotype and X-chromosome inactivation (XI) pattern was consistent with previous reports. The other four patients had novel Xp duplications. Two were monozygotic twins with a similar phenotype to Patient 1 and unfavorable XI skewing carrying an overlapping ∼5 Mb duplication of Xp11.23-p11.3. Patient 4 showed a duplication of ∼5.5 Mb comparable to the twins but had a more severe phenotype and unskewed XI. Patient 5 had a ∼8.5 Mb duplication Xp11.23-p11.4 and presented with mild ID, epilepsy, behavioral problems, and inconsistent results of XI analysis. A comparison of phenotype, size and location of the duplications and XI patterns in Patients 1-5 and previously reported females with overlapping duplications provides further evidence that microduplications encompassing Xp11.23 are associated with ID and other neurodevelopmental disorders in females. To further assess the implication of XI for female carriers, we recommend systematic analysis of XI pattern in any female with X imbalances that are known or suspected to be pathogenic. PMID:25691408

  9. Green semipolar III-nitride light-emitting diodes grown by limited area epitaxy

    NASA Astrophysics Data System (ADS)

    Pynn, C. D.; Kowsz, S. J.; Oh, S. H.; Gardner, H.; Farrell, R. M.; Nakamura, S.; Speck, J. S.; DenBaars, S. P.

    2016-07-01

    The performance of multiple quantum well green and yellow semipolar light-emitting diodes (LEDs) is limited by relaxation of highly strained InGaN-based active regions and the subsequent formation of nonradiative defects. Limited area epitaxy was used to block glide of substrate threading dislocations and to reduce the density of misfit dislocations (MDs) directly beneath the active region of (20 2 ¯ 1 ) LEDs. Devices were grown and fabricated on a 1D array of narrow substrate mesas to limit the MD run length. Reducing the mesa width from 20 μm to 5 μm lowered the density of basal plane and non-basal plane MDs on the mesas and limited the number of defect-generating dislocation intersections. This improvement in material quality yielded a 73% enhancement in peak external quantum efficiency for the devices with the narrowest mesas compared to the devices with the widest mesas.

  10. Semipolar (202̅3) nitrides grown on 3C-SiC/(001) Si substrates

    NASA Astrophysics Data System (ADS)

    Dinh, Duc V.; Presa, S.; Akhter, M.; Maaskant, P. P.; Corbett, B.; Parbrook, P. J.

    2015-12-01

    Heteroepitaxial growth of GaN buffer layers on 3C-SiC/(001) Si templates (4°-offcut towards [110]) by metalorganic vapour phase epitaxy has been investigated. High-temperature grown Al0.5Ga0.5N/AlN interlayers were employed to produce a single (202̅3) GaN surface orientation. Specular crack-free GaN layers showed undulations along [11̅0]{}3{{C}-{SiC}/{Si}} with a root mean square roughness of about 13.5 nm (50 × 50 μm2). The orientation relationship determined by x-ray diffraction (XRD) was found to be [1̅21̅0]GaN ∥[11̅0]{}3{{C}-{SiC}/{Si}} and [3̅034]GaN ∥[110]3C - SiC/Si . Low-temperature photoluminescence (PL) and XRD measurements showed the presence of basal-plane stacking faults in the layers. PL measurements of (202̅3) multiple-quantum-well and light-emitting diode structures showed uniform luminescence at about 500 nm emission wavelength. A small peak shift of about 3 nm was observed in the electroluminescence when the current was increased from 5 to 50 mA (25-250 A cm-2).

  11. Built-in electric field in ZnO based semipolar quantum wells grown on (1012) ZnO substrates

    SciTech Connect

    Chauveau, J.-M.; Xia, Y.; Roland, B.; Vinter, B.; Ben Taazaet-Belgacem, I.; Teisseire, M.; Nemoz, M.; Brault, J.; Damilano, B.; Leroux, M.

    2013-12-23

    We report on the properties of semipolar (Zn,Mg)O/ZnO quantum wells homoepitaxially grown by molecular beam epitaxy on (1012) R-plane ZnO substrates. We demonstrate that atomically flat interfaces can be achieved with fully relaxed quantum wells because the mismatch between (Zn,Mg)O and ZnO is minimal for this growth orientation. The photoluminescence properties evidence a quantum confined Stark effect with an internal electric field estimated to 430 kV/cm for a 17% Mg content in the barriers. The quantum well emission is strongly polarized along the 1210 direction and a comparison with the semipolar bulk ZnO luminescence polarization points to the effect of the confinement.

  12. Rational growth of semi-polar ZnO texture on a glass substrate for optoelectronic applications

    NASA Astrophysics Data System (ADS)

    Lu, B.; Ma, M. J.; Ye, Y. H.; Lu, J. G.; He, H. P.; Ye, Z. Z.

    2013-02-01

    Semi-polar ZnO films with surface texture were grown on glass substrates via pulsed-laser deposition (PLD) through Co-Ga co-doping. Oxygen pressure (PO2) was found to have significant effects on the structural and optical properties of the Zn(Co, Ga)O (ZCGO) films. A self-textured film with (1\\,0\\,\\bar {1}\\,1) preferred orientation (PO) was achieved by varying the growth conditions including a crucial narrow PO2 window and growth time. A possible mechanism underlying the PO evolution and the final texture of the films was proposed, which can be attributed to the collaboration of the doping effect and the PO2-dependent evolutionary selection process, in which certain grains can have increased vertical growth rate with respect to the substrate surface through interplane diffusion. Moreover, the growth of undoped pure ZnO films proceeded by using the (1\\,0\\,\\bar {1}\\,1) ZCGO film as a buffer layer. The ZnO layers retained a semi-polar characteristic with improved crystallinity and better optical quality. The epitaxy-like orientation of ZnO layers grown on (1\\,0\\,\\bar {1}\\,1) ZCGO films has applications in the development of semi-polar ZnO-based light-emitting diodes.

  13. Anelasticity of GaN Epitaxial Layer in GaN LED

    NASA Astrophysics Data System (ADS)

    Chung, C. C.; Yang, C. T.; Liu, C. Y.

    2016-10-01

    In this work, the anelasticity of the GaN layer in the GaN light-emitting-diode device was studied. The present results show that the forward-voltage of GaN LED increases with time, as the GaN light-emitting-diode was maintained at a constant temperature of 100 °C. We found that the increase of the forward-voltage with time attributes to the delay-response of the piezoelectric fields (internal electrical fields in GaN LED device). And, the delay-response of the internal electrical fields with time is caused by the anelasticity (time-dependent strain) of the GaN layer. Therefore, using the correlation of strain-piezoelectric-forward voltage, a plot of thermal strain of the GaN layer against time can be obtained by measuring the forward-voltage of the studied GaN LED against time. With the curves of the thermal strain of GaN epi-layers versus time, the anelasticity of the GaN compound can be studied. The key anelasticity parameter, characteristic relaxation time, of the GaN is defined to be 2623.76 min in this work.

  14. GaN High Power Devices

    SciTech Connect

    PEARTON,S.J.; REN,F.; ZHANG,A.P.; DANG,G.; CAO,X.A.; LEE,K.P.; CHO,H.; GILA,B.P.; JOHNSON,J.W.; MONIER,C.; ABERNATHY,C.R.; HAN,JUNG; BACA,ALBERT G.; CHYI,J.-I.; LEE,C.-M.; NEE,T.-E.; CHUO,C.-C.; CHI,G.C.; CHU,S.N.G.

    2000-07-17

    A brief review is given of recent progress in fabrication of high voltage GaN and AlGaN rectifiers, GaN/AlGaN heterojunction bipolar transistors, GaN heterostructure and metal-oxide semiconductor field effect transistors. Improvements in epitaxial layer quality and in fabrication techniques have led to significant advances in device performance.

  15. Transparent conducting oxide clad limited area epitaxy semipolar III-nitride laser diodes

    NASA Astrophysics Data System (ADS)

    Myzaferi, A.; Reading, A. H.; Cohen, D. A.; Farrell, R. M.; Nakamura, S.; Speck, J. S.; DenBaars, S. P.

    2016-08-01

    The bottom cladding design of semipolar III-nitride laser diodes is limited by stress relaxation via misfit dislocations that form via the glide of pre-existing threading dislocations (TDs), whereas the top cladding is limited by the growth time and temperature of the p-type layers. These design limitations have individually been addressed by using limited area epitaxy (LAE) to block TD glide in n-type AlGaN bottom cladding layers and by using transparent conducting oxide (TCO) top cladding layers to reduce the growth time and temperature of the p-type layers. In addition, a TCO-based top cladding should have significantly lower resistivity than a conventional p-type (Al)GaN top cladding. In this work, LAE and indium-tin-oxide cladding layers are used simultaneously in a ( 20 2 ¯ 1 ) III-nitride laser structure. Lasing was achieved at 446 nm with a threshold current density of 8.5 kA/cm2 and a threshold voltage of 8.4 V.

  16. Mechanical properties of nanoporous GaN and its application for separation and transfer of GaN thin films.

    PubMed

    Huang, Shanjin; Zhang, Yu; Leung, Benjamin; Yuan, Ge; Wang, Gang; Jiang, Hao; Fan, Yingmin; Sun, Qian; Wang, Jianfeng; Xu, Ke; Han, Jung

    2013-11-13

    Nanoporous (NP) gallium nitride (GaN) as a new class of GaN material has many interesting properties that the conventional GaN material does not have. In this paper, we focus on the mechanical properties of NP GaN, and the detailed physical mechanism of porous GaN in the application of liftoff. A decrease in elastic modulus and hardness was identified in NP GaN compared to the conventional GaN film. The promising application of NP GaN as release layers in the mechanical liftoff of GaN thin films and devices was systematically studied. A phase diagram was generated to correlate the initial NP GaN profiles with the as-overgrown morphologies of the NP structures. The fracture toughness of the NP GaN release layer was studied in terms of the voided-space-ratio. It is shown that the transformed morphologies and fracture toughness of the NP GaN layer after overgrowth strongly depends on the initial porosity of NP GaN templates. The mechanical separation and transfer of a GaN film over a 2 in. wafer was demonstrated, which proves that this technique is useful in practical applications.

  17. Novel microduplications at Xp11.22 including HUWE1: clinical and molecular insights into these genomic rearrangements associated with intellectual disability.

    PubMed

    Santos-Rebouças, Cíntia Barros; de Almeida, Luciana Guedes; Belet, Stefanie; Dos Santos, Suely Rodrigues; Ribeiro, Márcia Gonçalves; da Silva, Antônio Francisco Alves; Medina-Acosta, Enrique; Dos Santos, Jussara Mendonça; Gonçalves, Andressa Pereira; Bahia, Paulo Roberto Valle; Pimentel, Márcia Mattos Gonçalves; Froyen, Guy

    2015-04-01

    Recently, we defined a minimal overlapping region for causal Xp11.22 copy number gains in males with intellectual disability (ID), and identified HECT, UBA and WWE domain-containing protein-1 (HUWE1) as the primary dosage-sensitive gene, whose overexpression leads to ID. In the present study, we used this minimal interval to search for HUWE1 copy number variations by quantitative polymerase chain reaction in a large cohort of Brazilian males with idiopathic ID. We detected two unrelated sporadic individuals with syndromic ID carrying unique overlapping duplications encompassing HUWE1. Breakpoint junction analysis showed a simple tandem duplication in the first patient, which has probably arisen by microhomology-mediated break-induced repair mechanism. In the second patient, the rearrangement is complex having an insertion of an intrachromosomal sequence at its junction. This kind of rearrangement has not been reported in Xp11.22 duplications and might have emerged by a replication- or recombination-based mechanism. Furthermore, the presence of infantile seizures in the second family suggests a potential role of increased KDM5C expression on epilepsy. Our findings highlight the importance of microduplications at Xp11.22 to ID, even in sporadic cases, and reveal new clinical and molecular insight into HUWE1 copy number gains.

  18. Ultrafast carrier dynamics in GaN nanorods

    SciTech Connect

    Yang, Chi-Yuan; Chia, Chih-Ta; Chen, Hung-Ying; Gwo, Shangjr; Lin, Kung-Hsuan

    2014-11-24

    We present ultrafast time-resolved optical spectroscopy on GaN nanorods at room temperature. The studied GaN nanorods, with diameters of ∼50 nm and lengths of ∼400 nm, were grown on the silicon substrate. After femtosecond optical pulses excited carriers in the GaN nanorods, the carriers thermalized within a few picoseconds. Subsequently, the electrons are trapped by the surface states on the order of 20 ps. After the surface electric field was reformed in the GaN nanorods, we found the lifetime of the residue carriers in GaN nanorods is longer than 1.7 ns at room temperature, while the lifetime of carriers in GaN thin film is typically a few hundred picoseconds. Our findings indicate that GaN nanorods have higher electrical quality compared with GaN thin film.

  19. Nanostructure and strain in InGaN/GaN superlattices grown in GaN nanowires.

    PubMed

    Kehagias, Th; Dimitrakopulos, G P; Becker, P; Kioseoglou, J; Furtmayr, F; Koukoula, T; Häusler, I; Chernikov, A; Chatterjee, S; Karakostas, Th; Solowan, H-M; Schwarz, U T; Eickhoff, M; Komninou, Ph

    2013-11-01

    The structural properties and the strain state of InGaN/GaN superlattices embedded in GaN nanowires were analyzed as a function of superlattice growth temperature, using complementary transmission electron microscopy techniques supplemented by optical analysis using photoluminescence and spatially resolved microphotoluminescence spectroscopy. A truncated pyramidal shape was observed for the 4 nm thick InGaN inclusions, where their (0001¯) central facet was delimited by six-fold {101¯l} facets towards the m-plane sidewalls of the nanowires. The defect content of the nanowires comprised multiple basal stacking faults localized at the GaN base/superlattice interface, causing the formation of zinc-blende cubic regions, and often single stacking faults at the GaN/InGaN bilayer interfaces. No misfit dislocations or cracks were detected in the heterostructure, implying a fully strained configuration. Geometrical phase analysis showed a rather uniform radial distribution of elastic strain in the (0001¯) facet of the InGaN inclusions. Depending on the superlattice growth temperature, the elastic strain energy is partitioned among the successive InGaN/GaN layers in the case of low-temperature growth, while at higher superlattice growth temperature the in-plane tensile misfit strain of the GaN barriers is accommodated through restrained diffusion of indium from the preceding InGaN layers. The corresponding In contents of the central facet were estimated at 0.42 and 0.25, respectively. However, in the latter case, successful reproduction of the experimental electron microscopy images by image simulations was only feasible, allowing for a much higher occupancy of indium adatoms at lattice sites of the semipolar facets, compared to the invariable 25% assigned to the polar facet. Thus, a high complexity in indium incorporation and strain allocation between the different crystallographic facets of the InGaN inclusions is anticipated and supported by the results of

  20. Piezotronic Effect in Polarity-Controlled GaN Nanowires.

    PubMed

    Zhao, Zhenfu; Pu, Xiong; Han, Changbao; Du, Chunhua; Li, Linxuan; Jiang, Chunyan; Hu, Weiguo; Wang, Zhong Lin

    2015-08-25

    Using high-quality and polarity-controlled GaN nanowires (NWs), we studied the piezotronic effect in crystal orientation defined wurtzite structures. By applying a normal compressive force on c-plane GaN NWs with an atomic force microscopy tip, the Schottky barrier between the Pt tip and GaN can be effectively tuned by the piezotronic effect. In contrast, the normal compressive force cannot change the electron transport characteristics in m-plane GaN NWs whose piezoelectric polarization axis is turned in the transverse direction. This observation provided solid evidence for clarifying the difference between the piezotronic effect and the piezoresistive effect. We further demonstrated a high sensitivity of the m-plane GaN piezotronic transistor to collect the transverse force. The integration of c-plane GaN and m-plane GaN indicates an overall response to an external force in any direction.

  1. A chromosome 10 variant with a 12 Mb inversion [inv(10)(q11.22q21.1)] identical by descent and frequent in the Swedish population.

    PubMed

    Entesarian, Miriam; Carlsson, Birgit; Mansouri, Mahmoud Reza; Stattin, Eva-Lena; Holmberg, Eva; Golovleva, Irina; Stefansson, Hreinn; Klar, Joakim; Dahl, Niklas

    2009-03-01

    We identified a paracentric inversion of chromosome 10 [inv(10)(q11.22q21.1)] in 0.20% of Swedish individuals (15/7,439) referred for cytogenetic analysis. A retrospective analysis of 8,896 karyotypes from amniocenteses in Sweden revealed a carrier frequency of 0.079% (7/8,896) for the inversion. Cloning and detailed analysis of the inversion breakpoint regions show enrichment for interspersed repeat elements and AT-stretches. The centromeric breakpoint coincides with that of a predicted inversion from HapMap data, which suggests that this region is involved in several chromosome 10 variants. No known gene or predicted transcript are disrupted by the inversion which spans approximately 12 Mb. Carriers from four non-related Swedish families have identical inversion breakpoints and haplotype analysis confirmed that the rearrangement is identical by descent. Diagnosis was retrieved in 6 out of the 15 carriers referred for cytogenetic analysis. No consistent phenotype was found to be associated with the inversion. Our study demonstrates that the inv(10)(q11.22q21.1) is a rare and inherited chromosome variant with a broad geographical distribution in Sweden.

  2. Influence of dislocations on indium diffusion in semi-polar InGaN/GaN heterostructures

    SciTech Connect

    Yin, Yao; Sun, Huabin; Chen, Peng; Sang, Liwen; Dierre, Benjamin; Sumiya, Masatomo; Sekiguchi, Takashi; Zheng, Youdou; Shi, Yi

    2015-05-15

    The spatial distribution of indium composition in InGaN/GaN heterostructure is a critical topic for modulating the wavelength of light emitting diodes. In this letter, semi-polar InGaN/GaN heterostructure stripes were fabricated on patterned GaN/Sapphire substrates by epitaxial lateral overgrowth (ELO), and the spatial distribution of indium composition in the InGaN layer was characterized by using cathodoluminescence. It is found that the indium composition is mainly controlled by the diffusion behaviors of metal atoms (In and Ga) on the surface. The diffusivity of metal atoms decreases sharply as migrating to the region with a high density of dislocations and other defects, which influences the distribution of indium composition evidently. Our work is beneficial for the understanding of ELO process and the further development of InGaN/GaN heterostructure based devices.

  3. Optical absorption of polar and semipolar InGaN/GaN quantum wells for blue to green converter structures

    SciTech Connect

    Neuschl, B. Helbing, J.; Thonke, K.

    2014-11-14

    The optical absorption of indium gallium nitride (InGaN)/GaN multi quantum wells (QWs) is analyzed theoretically and experimentally. For different sample structures, either planar or three-dimensional, including QWs with different tilts relative to the (0001) plane of the wurtzite crystal, the room temperature absorption spectra were measured. We observe increasing absorption for larger indium content in the active zone and for increasing QW thickness. The semipolar structures with their reduced internal electric field are favorable with respect to the spectral absorption when compared with polar samples. Numerical k ⋅ p based simulations for quantum wells with variable thickness, indium content, and orientation are in accordance with the experimental results. By taking all QW energy eigenstates in all bands as well as the orientation dependent transition probabilities into account, the spectral absorption for arbitrary sample structures can be calculated.

  4. Epitaxial relationship of semipolar s-plane (1101) InN grown on r-plane sapphire

    SciTech Connect

    Dimitrakopulos, G. P.

    2012-07-02

    The heteroepitaxy of semipolar s-plane (1101) InN grown directly on r-plane sapphire by plasma-assisted molecular beam epitaxy is studied using transmission electron microscopy techniques. The epitaxial relationship is determined to be (1101){sub InN} Parallel-To (1102){sub Al{sub 2O{sub 3}}}, [1120]{sub InN} Parallel-To [2021]{sub Al{sub 2O{sub 3}}}, [1102]{sub InN}{approx} Parallel-To [0221]{sub Al{sub 2O{sub 3}}}, which ensures a 0.7% misfit along [1120]{sub InN}. Two orientation variants are identified. Proposed geometrical factors contributing to the high density of basal stacking faults, partial dislocations, and sphalerite cubic pockets include the misfit accommodation and reduction, as well as the accommodation of lattice twist.

  5. Microstructural dependency of optical properties of m-plane InGaN multiple quantum wells grown on 2° misoriented bulk GaN substrates

    SciTech Connect

    Tang, Fengzai; Barnard, Jonathan S.; Zhu, Tongtong; Oehler, Fabrice; Kappers, Menno J.; Oliver, Rachel A.

    2015-08-24

    A non-polar m-plane structure consisting of five InGaN/GaN quantum wells (QWs) was grown on ammonothermal bulk GaN by metal-organic vapor phase epitaxy. Surface step bunches propagating through the QW stack were found to accommodate the 2° substrate miscut towards the -c direction. Both large steps with heights of a few tens of nanometres and small steps between one and a few atomic layers in height are observed, the former of which exhibit cathodoluminescence at longer wavelengths than the adjacent m-plane terraces. This is attributed to the formation of semi-polar facets at the steps on which the QWs are shown to be thicker and have higher Indium contents than those in the adjacent m-plane regions. Discrete basal-plane stacking faults (BSFs) were occasionally initiated from the QWs on the main m-plane terraces, but groups of BSFs were frequently observed to initiate from those on the large steps, probably related to the increased strain associated with the locally higher indium content and thickness.

  6. Determination of lattice parameters, strain state and composition in semipolar III-nitrides using high resolution X-ray diffraction

    SciTech Connect

    Frentrup, Martin Wernicke, Tim; Stellmach, Joachim; Kneissl, Michael; Hatui, Nirupam; Bhattacharya, Arnab

    2013-12-07

    In group-III-nitride heterostructures with semipolar or nonpolar crystal orientation, anisotropic lattice and thermal mismatch with the buffer or substrate lead to a complex distortion of the unit cells, e.g., by shearing of the lattice. This makes an accurate determination of lattice parameters, composition, and strain state under assumption of the hexagonal symmetry impossible. In this work, we present a procedure to accurately determine the lattice constants, strain state, and composition of semipolar heterostructures using high resolution X-ray diffraction. An analysis of the unit cell distortion shows that four independent lattice parameters are sufficient to describe this distortion. Assuming only small deviations from an ideal hexagonal structure, a linear expression for the interplanar distances d{sub hkl} is derived. It is used to determine the lattice parameters from high resolution X-ray diffraction 2ϑ-ω-scans of multiple on- and off-axis reflections via a weighted least-square fit. The strain and composition of ternary alloys are then evaluated by transforming the elastic parameters (using Hooke's law) from the natural crystal-fixed coordinate system to a layer-based system, given by the in-plane directions and the growth direction. We illustrate our procedure taking an example of (112{sup ¯}2) Al{sub κ}Ga{sub 1−κ}N epilayers with Al-contents over the entire composition range. We separately identify the in-plane and out-of-plane strains and discuss origins for the observed anisotropy.

  7. GaN based nanorods for solid state lighting

    SciTech Connect

    Li Shunfeng; Waag, Andreas

    2012-04-01

    In recent years, GaN nanorods are emerging as a very promising novel route toward devices for nano-optoelectronics and nano-photonics. In particular, core-shell light emitting devices are thought to be a breakthrough development in solid state lighting, nanorod based LEDs have many potential advantages as compared to their 2 D thin film counterparts. In this paper, we review the recent developments of GaN nanorod growth, characterization, and related device applications based on GaN nanorods. The initial work on GaN nanorod growth focused on catalyst-assisted and catalyst-free statistical growth. The growth condition and growth mechanisms were extensively investigated and discussed. Doping of GaN nanorods, especially p-doping, was found to significantly influence the morphology of GaN nanorods. The large surface of 3 D GaN nanorods induces new optical and electrical properties, which normally can be neglected in layered structures. Recently, more controlled selective area growth of GaN nanorods was realized using patterned substrates both by metalorganic chemical vapor deposition (MOCVD) and by molecular beam epitaxy (MBE). Advanced structures, for example, photonic crystals and DBRs are meanwhile integrated in GaN nanorod structures. Based on the work of growth and characterization of GaN nanorods, GaN nanoLEDs were reported by several groups with different growth and processing methods. Core/shell nanoLED structures were also demonstrated, which could be potentially useful for future high efficient LED structures. In this paper, we will discuss recent developments in GaN nanorod technology, focusing on the potential advantages, but also discussing problems and open questions, which may impose obstacles during the future development of a GaN nanorod based LED technology.

  8. Recombination dynamics of excitons with low non-radiative component in semi-polar (10-11)-oriented GaN/AlGaN multiple quantum wells

    SciTech Connect

    Rosales, D.; Gil, B.; Bretagnon, T.; Guizal, B.; Izyumskaya, N.; Monavarian, M.; Zhang, F.; Okur, S.; Avrutin, V.; Özgür, Ü.; Morkoç, H.

    2014-09-07

    Optical properties of GaN/Al{sub 0.2}Ga{sub 0.8}N multiple quantum wells grown with semi-polar (10-11) orientation on patterned 7°-off Si (001) substrates have been investigated. Studies performed at 8 K reveal the in-plane anisotropic behavior of the QW photoluminescence (PL) intensity for this semi-polar orientation. The time resolved PL measurements were carried out in the temperature range from 8 to 295 K to deduce the effective recombination decay times, with respective radiative and non-radiative contributions. The non-radiative component remains relatively weak with increasing temperature, indicative of high crystalline quality. The radiative decay time is a consequence of contribution from both localized and free excitons. We report an effective density of interfacial defects of 2.3 × 10{sup 12} cm{sup −2} and a radiative recombination time of τ{sub loc} = 355 ps for the localized excitons. This latter value is significantly larger than those reported for the non-polar structures, which we attribute to the presence of a weak residual electric field in the semi-polar QW layers.

  9. X-linked mental retardation with neonatal hypotonia in a French family (MRX15): Gene assignment to Xp11.22-Xp21.1

    SciTech Connect

    Raynaud, M.; Dessay, B.; Ayrault, A.D.

    1996-07-12

    Linkage analysis was performed in a family with non-specific X-linked mental retardation (MRX 15). Hypotonia in infancy was the most remarkable physical manifestation. The severity of mental deficiency was variable among the patients, but all of them had poor or absent speech. Significant lod scores at a recombination fraction of zero were detected with the marker loci DXS1126, DXS255, and DXS573 (Zmax = 2.01) and recombination was observed with the two flanking loci DXS164 (Xp21.1) and DXS988 (Xp11.22), identifying a 17 cM interval. This result suggests a new gene localization in the proximal Xp region. In numerous families with non-specific X-linked mental retardation (MRX), the corresponding gene has been localized to the paracentromeric region in which a low recombination rate impairs the precision of mapping. 58 refs., 3 figs., 5 tabs.

  10. Nanoscale anisotropic plastic deformation in single crystal GaN.

    PubMed

    Huang, Jun; Xu, Ke; Fan, Ying Min; Niu, Mu Tong; Zeng, Xiong Hui; Wang, Jian Feng; Yang, Hui

    2012-01-01

    Elasto-plastic mechanical deformation behaviors of c-plane (0001) and nonpolar GaN single crystals are studied using nanoindentation, cathodoluminescence, and transmission electron microscopy. Nanoindentation tests show that c-plane GaN is less susceptible to plastic deformation and has higher hardness and Young's modulus than the nonpolar GaN. Cathodoluminescence and transmission electron microscopy characterizations of indent-induced plastic deformation reveal that there are two primary slip systems for the c-plane GaN, while there is only one most favorable slip system for the nonplane GaN. We suggest that the anisotropic elasto-plastic mechanical properties of GaN are relative to its anisotropic plastic deformation behavior.PACS: 62.20.fq; 81.05.Ea; 61.72.Lk.

  11. Self-catalyzed anisotropic growth of GaN spirals

    NASA Astrophysics Data System (ADS)

    Patsha, Avinash; Sahoo, Prasana; Dhara, S.; Tyagi, A. K.

    2012-06-01

    GaN spirals with homogeneous size are grown using chemical-vapor-deposition technique in a self catalytic process. Raman and photoluminescence (PL) studies reveal wurtzite GaN phase. Nucleation of GaN sphere takes place with the agglomeration Ga clusters and simultaneous reaction with NH3. A growth mechanism involving diffusion limited aggregation process initiating supersaturation and subsequent neck formation along with possible role of thermodynamic fluctuation in different crystalline facets of GaN, is described for the anisotropic spiral structures. Temperature dependent PL spectra show strong excitonic emissions along with the presence of free-to-bound transition.

  12. Later Leaders in Education: Roma Gans--Teacher of Teachers.

    ERIC Educational Resources Information Center

    Almy, Millie

    1990-01-01

    Retired teacher Roma Gans is described in terms of her early life and education, early teaching experience, teaching experience at Teachers College, publishing experience, citizenship, and retirement. (DG)

  13. Dislocation filtering in GaN nanostructures.

    PubMed

    Colby, Robert; Liang, Zhiwen; Wildeson, Isaac H; Ewoldt, David A; Sands, Timothy D; García, R Edwin; Stach, Eric A

    2010-05-12

    Dislocation filtering in GaN by selective area growth through a nanoporous template is examined both by transmission electron microscopy and numerical modeling. These nanorods grow epitaxially from the (0001)-oriented GaN underlayer through the approximately 100 nm thick template and naturally terminate with hexagonal pyramid-shaped caps. It is demonstrated that for a certain window of geometric parameters a threading dislocation growing within a GaN nanorod is likely to be excluded by the strong image forces of the nearby free surfaces. Approximately 3000 nanorods were examined in cross-section, including growth through 50 and 80 nm diameter pores. The very few threading dislocations not filtered by the template turn toward a free surface within the nanorod, exiting less than 50 nm past the base of the template. The potential active region for light-emitting diode devices based on these nanorods would have been entirely free of threading dislocations for all samples examined. A greater than 2 orders of magnitude reduction in threading dislocation density can be surmised from a data set of this size. A finite element-based implementation of the eigenstrain model was employed to corroborate the experimentally observed data and examine a larger range of potential nanorod geometries, providing a simple map of the different regimes of dislocation filtering for this class of GaN nanorods. These results indicate that nanostructured semiconductor materials are effective at eliminating deleterious extended defects, as necessary to enhance the optoelectronic performance and device lifetimes compared to conventional planar heterostructures. PMID:20397703

  14. Testing models of thorium and particle cycling in the ocean using data from station GT11-22 of the U.S. GEOTRACES North Atlantic section

    NASA Astrophysics Data System (ADS)

    Lerner, Paul; Marchal, Olivier; Lam, Phoebe J.; Anderson, Robert F.; Buesseler, Ken; Charette, Matthew A.; Edwards, R. Lawrence; Hayes, Christopher T.; Huang, Kuo-Fang; Lu, Yanbin; Robinson, Laura F.; Solow, Andrew

    2016-07-01

    Thorium is a highly particle-reactive element that possesses different measurable radio-isotopes in seawater, with well-constrained production rates and very distinct half-lives. As a result, Th has emerged as a key tracer for the cycling of marine particles and of their chemical constituents, including particulate organic carbon. Here two different versions of a model of Th and particle cycling in the ocean are tested using an unprecedented data set from station GT11-22 of the U.S. GEOTRACES North Atlantic Section: (i) 228,230,234Th activities of dissolved and particulate fractions, (ii) 228Ra activities, (iii) 234,238U activities estimated from salinity data and an assumed 234U/238U ratio, and (iv) particle concentrations, below a depth of 125 m. The two model versions assume a single class of particles but rely on different assumptions about the rate parameters for sorption reactions and particle processes: a first version (V1) assumes vertically uniform parameters (a popular description), whereas the second (V2) does not. Both versions are tested by fitting to the GT11-22 data using generalized nonlinear least squares and by analyzing residuals normalized to the data errors. We find that model V2 displays a significantly better fit to the data than model V1. Thus, the mere allowance of vertical variations in the rate parameters can lead to a significantly better fit to the data, without the need to modify the structure or add any new processes to the model. To understand how the better fit is achieved we consider two parameters, K =k1 /(k-1 +β-1) and K/P, where k1 is the adsorption rate constant, k-1 the desorption rate constant, β-1 the remineralization rate constant, and P the particle concentration. We find that the rate constant ratio K is large (⩾ 0.2) in the upper 1000 m and decreases to a nearly uniform value of ca. 0.12 below 2000 m, implying that the specific rate at which Th attaches to particles relative to that at which it is released from

  15. P-type doping of GaN

    SciTech Connect

    Wong, R.K.

    2000-04-10

    After implantation of As, As + Be, and As + Ga into GaN and annealing for short durations at temperatures as high as 1500 C, the GaN films remained highly resistive. It was apparent from c-RBS studies that although implantation damage did not create an amorphous layer in the GaN film, annealing at 1500 C did not provide enough energy to completely recover the radiation damage. Disorder recovered significantly after annealing at temperatures up to 1500 C, but not completely. From SIMS analysis, oxygen contamination in the AIN capping layer causes oxygen diffusion into the GaN film above 1400 C. The sapphire substrate (A1203) also decomposed and oxygen penetrated into the backside of the GaN layer above 1400 C. To prevent donor-like oxygen impurities from the capping layer and the substrate from contaminating the GaN film and compensating acceptors, post-implantation annealing should be done at temperatures below 1500 C. Oxygen in the cap could be reduced by growing the AIN cap on the GaN layer after the GaN growth run or by depositing the AIN layer in a ultra high vacuum (UHV) system post-growth to minimize residual oxygen and water contamination. With longer annealing times at 1400 C or at higher temperatures with a higher quality AIN, the implantation drainage may fully recover.

  16. GaN Electronics For High Power, High Temperature Applications

    SciTech Connect

    PEARTON,S.J.; REN,F.; ZHANG,A.P.; DANG,G.; CAO,X.A.; LEE,K.P.; CHO,H.; GILA,B.P.; JOHNSON,J.W.; MONIER,C.; ABERNATHY,C.R.; HAN,JUNG; BACA,ALBERT G.; CHYI,J.-I.; LEE,C.-M.; NEE,T.-E.; CHUO,C.-C.; CHU,S.N.G.

    2000-06-12

    A brief review is given of recent progress in fabrication of high voltage GaN and AlGaN rectifiers. GaN/AlGaN heterojunction bipolar transistors and GaN metal-oxide semiconductor field effect transistors. Improvements in epitaxial layer quality and in fabrication techniques have led to significant advances in device performance.

  17. Lambert-Eaton myasthenic syndrome in a 13-year-old girl with Xp11.22-p11.23 duplication.

    PubMed

    Verbeek, Sabine; Vanakker, Olivier; Mercelis, Rudy; Lipka, A F; Haerynck, Filomeen; Dullaers, Melissa; Verloo, Patrick; Van Coster, Rudy; Verhelst, Helene

    2014-05-01

    Lambert-Eaton myasthenic syndrome (LEMS) is an autoimmune disease of the presynaptic neuromuscular junction, typically occurring in adults as a paraneoplastic syndrome. Only rare cases have been reported in childhood. In most childhood cases, malignancies have not been detected but a propensity to autoimmune disease was noticed. Nevertheless, little is known about genetic factors that may contribute to the susceptibility of an individual to develop LEMS. We report on a 13-year-old girl, known with the Xp11.22-p11.23 duplication syndrome, who presented with severe non-paraneoplastic LEMS. The potential role of this microduplication syndrome in the development of LEMS is explored. Previous literature review of twelve Xp11.2 duplication syndrome patients showed that three of them suffered from various autoimmune diseases. The common duplicated region in those three patients and the presented case comprises 12 disease-associated genes including the FOXP3 (Forkhead Box P3) and WAS (Wiskott-Aldrich syndrome) gene, both implicated in immune function. However, it is unclear whether increased gene dosage of one or both of these genes can cause susceptibility to autoimmune diseases. In conclusion, the presented case emphasizes that autoimmune disease is a recurrent feature of the Xp11.2 duplication syndrome, which should be considered in the follow-up of these patients. The exact mechanism underlying this autoimmune propensity remains to be elucidated.

  18. Molecular localization of the t(11; 22)(q24; q12) translocation of Ewing sarcoma by chromosomal in situ suppression hybridization

    SciTech Connect

    Selleri, L.; Hermanson, G.G.; Eubanks, J.H.; Lewis, K.A.; Evans, G.A. )

    1991-02-01

    Chromosome translocations are associated with a variety of human leukemias, lymphomas, and solid tumors. To localize molecular markers flanking the t(11;22)(q24;q12) breakpoint that occurs in virtually all cases of Ewing sarcoma and peripheral neuroepithelioma, high-resolution chromosomal in situ suppression hybridization was carried out using a panel of cosmid clones localized and ordered on chromosome 11q. The location of the Ewing sarcoma translocation breakpoint was determined relative to the nearest two cosmid markers on 11q, clones 23.2 and 5.8, through the analysis of metaphase chromosome hybridization. By in situ hybridization to interphase nuclei, the approximate physical separation of these two markers was determined. In both Ewing sarcoma and peripheral neuroepithelioma, cosmid clone 5.8 is translocated from chromosome 11q24 to the derivative chromosome 22 and a portion of chromosome 22q12 carrying the leukemia inhibitory factor gene is translocated to the derivative chromosome 11. The physical distance between the flanking cosmid markers on chromosome 11 was determined to be in the range of 1,000 kilobases, and genomic analysis using pulsed-field gel electrophoresis showed no abnormalities over a region of 650 kilobases in the vicinity of the leukemia inhibitory factor gene on chromosome 22. This approach localizes the Ewing sarcoma breakpoint to a small region on chromosome 11q24 and provides a rapid and precise technique for the molecular characterization of chromosomal aberrations.

  19. Atomic force microscopy studies of homoepitaxial GaN layers grown on GaN template by laser MBE

    NASA Astrophysics Data System (ADS)

    Choudhary, B. S.; Singh, A.; Tanwar, S.; Tyagi, P. K.; Kumar, M. Senthil; Kushvaha, S. S.

    2016-04-01

    We have grown homoepitaxial GaN films on metal organic chemical vapor deposition (MOCVD) grown 3.5 µm thick GaN on sapphire (0001) substrate (GaN template) using an ultra-high vacuum (UHV) laser assisted molecular beam epitaxy (LMBE) system. The GaN films were grown by laser ablating a polycrystalline solid GaN target in the presence of active r.f. nitrogen plasma. The influence of laser repetition rates (10-30 Hz) on the surface morphology of homoepitaxial GaN layers have been studied using atomic force microscopy. It was found that GaN layer grown at 10 Hz shows a smooth surface with uniform grain size compared to the rough surface with irregular shape grains obtained at 30 Hz. The variation of surface roughness of the homoepitaxial GaN layer with and without wet chemical etching has been also studied and it was observed that the roughness of the film decreased after wet etching due to the curved structure/rough surface.

  20. GaN: Defect and Device Issues

    SciTech Connect

    Pearton, S.J.; Ren, F.; Shul, R.J.; Zolper, J.C.

    1998-11-09

    The role of extended and point defects, and key impurities such as C, O and H, on the electrical and optical properties of GaN is reviewed. Recent progress in the development of high reliability contacts, thermal processing, dry and wet etching techniques, implantation doping and isolation and gate insulator technology is detailed. Finally, the performance of GaN-based electronic and photonic devices such as field effect transistors, UV detectors, laser diodes and light-emitting diodes is covered, along with the influence of process-induced or grown-in defects and impurities on the device physics.

  1. Carrier redistribution between different potential sites in semipolar (202{sup ¯}1) InGaN quantum wells studied by near-field photoluminescence

    SciTech Connect

    Marcinkevičius, S.; Gelžinytė, K.; Zhao, Y.; Nakamura, S.; DenBaars, S. P.; Speck, J. S.

    2014-09-15

    Scanning near-field photoluminescence (PL) spectroscopy at different excitation powers was applied to study nanoscale properties of carrier localization and recombination in semipolar (202{sup ¯}1) InGaN quantum wells (QWs) emitting in violet, blue, and green-yellow spectral regions. With increased excitation power, an untypical PL peak energy shift to lower energies was observed. The shift was attributed to carrier density dependent carrier redistribution between nm-scale sites of different potentials. Near-field PL scans showed that in (202{sup ¯}1) QWs the in-plane carrier diffusion is modest, and the recombination properties are uniform, which is advantageous for photonic applications.

  2. DNA-binding and transcriptional activation properties of the EWS-FLI-1 fusion protein resulting from the t(11;22) translocation in Ewing sarcoma.

    PubMed Central

    Bailly, R A; Bosselut, R; Zucman, J; Cormier, F; Delattre, O; Roussel, M; Thomas, G; Ghysdael, J

    1994-01-01

    The 5' half of the EWS gene has recently been described to be fused to the 3' regions of genes encoding the DNA-binding domain of several transcriptional regulators, including ATF1, FLI-1, and ERG, in several human tumors. The most frequent occurrence of this situation results from the t(11;22)(q24;q12) chromosome translocation specific for Ewing sarcoma (ES) and related tumors which joins EWS sequences to the 3' half of FLI-1, which encodes a member of the Ets family of transcriptional regulators. We show here that this chimeric gene encodes an EWS-FLI-1 nuclear protein which binds DNA with the same sequence specificity as the wild-type parental FLI-1 protein. We further show that EWS-FLI-1 is an efficient sequence-specific transcriptional activator of model promoters containing FLI-1 (Ets)-binding sites, a property which is strictly dependent on the presence of its EWS domain. Comparison of the properties of the N-terminal activation domain of FLI-1 to those of the EWS domain of the fusion protein indicates that EWS-FLI-1 has altered transcriptional activation properties compared with FLI-1. These results suggest that EWS-FLI-1 contributes to the transformed phenotype of ES tumor cells by inducing the deregulated and/or unscheduled activation of genes normally responsive to FLI-1 or to other close members of the Ets family. ES and related tumors are characterized by an elevated level of c-myc expression. We show that EWS-FLI-1 is a transactivator of the c-myc promoter, suggesting that upregulation of c-myc expression is under control of EWS-FLI-1. Images PMID:8164678

  3. GaN for LED applications

    NASA Technical Reports Server (NTRS)

    Pankove, J. I.

    1973-01-01

    In order to improve the synthesis of GaN the effect of various growth and doping parameters has been studied. Although Be, Li, Mg, and Dy can be used to overcompensate native donors, the most interesting acceptor element is Zn. The emission spectrum and the luminescence efficiency depend on the growth temperature (below 800 C), on the partial pressure of the doping impurity, and on the duration of growth. Blue-green electroluminescence with a power efficiency of 0.1 percent and a brightness of 850 fL (at 0.6 mA and 22.5 V) was obtained. Some diodes allow the color of the emitted light to change by reversing the polarity of the bias. Continuous operation of a diode over a period of 5 months showed no evidence of degradation. The luminescence properties of ion-implanted GaN were studied. Delay effects were found in the electroluminescence of diodes, although, with a dc bias, a 70-MHz modulation was possible.

  4. Semipolar polycyclic aromatic compounds: identification of 15 priority substances and the need for regulatory steps under REACH regulation.

    PubMed

    Schwarz, Markus A; Behnke, Andreas; Brandt, Marc; Eisenträger, Adolf; Hassauer, Martin; Kalberlah, Fritz; Seidel, Albrecht

    2014-07-01

    Semipolar polycyclic aromatic compounds (sPACs) are frequently found in association with homocyclic polycyclic aromatic hydrocarbons (PAHs) in substances of unknown or variable composition, complex reaction products, or biological materials (UVCBs) from coal or crude oil and products derived thereof. However, major information deficiencies exist with regard to their prevalence and their toxicological and ecotoxicological potential, persistency, and bioaccumulation characteristics. Therefore, in this work, the environmental concern and relevance of sPACs was addressed in a general, stepwise approach. First, a large list of sPACs was collected and subsequently refined by assessing their persistence, bioaccumulation, and toxicity (PBT) properties by quantitative structure-activity relationship (QSAR) methods and their relevance by determining their respective frequency of occurrence. In this way, 15 priority sPACs were identified. These 15 priority sPACs were further characterized in detail with respect to their ecotoxicological properties, environmental behavior, carcinogenicity, and genotoxicity attributes. All of these 15 substances were quantified in distillate or product samples. In the next step, some principles for nomination of indicator substances, indicative for the overall content of sPACs, are derived. Data gaps on ecotoxicological endpoints preclude final conclusions, but the respective necessary supplemental tests were identified. Five of the 15 sPACs were tentatively characterized as potential substances of very high concern (SVHC) for the environment. The overall results of this study also clearly show that regulatory risk management of homocyclic PAHs within the European Regulation on Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) does not address the environmental concern created by sPACs within UVCBs from coal or crude oil. The study proves the need for additional regulatory steps under REACH and suggests indicator

  5. Semipolar polycyclic aromatic compounds: identification of 15 priority substances and the need for regulatory steps under REACH regulation.

    PubMed

    Schwarz, Markus A; Behnke, Andreas; Brandt, Marc; Eisenträger, Adolf; Hassauer, Martin; Kalberlah, Fritz; Seidel, Albrecht

    2014-07-01

    Semipolar polycyclic aromatic compounds (sPACs) are frequently found in association with homocyclic polycyclic aromatic hydrocarbons (PAHs) in substances of unknown or variable composition, complex reaction products, or biological materials (UVCBs) from coal or crude oil and products derived thereof. However, major information deficiencies exist with regard to their prevalence and their toxicological and ecotoxicological potential, persistency, and bioaccumulation characteristics. Therefore, in this work, the environmental concern and relevance of sPACs was addressed in a general, stepwise approach. First, a large list of sPACs was collected and subsequently refined by assessing their persistence, bioaccumulation, and toxicity (PBT) properties by quantitative structure-activity relationship (QSAR) methods and their relevance by determining their respective frequency of occurrence. In this way, 15 priority sPACs were identified. These 15 priority sPACs were further characterized in detail with respect to their ecotoxicological properties, environmental behavior, carcinogenicity, and genotoxicity attributes. All of these 15 substances were quantified in distillate or product samples. In the next step, some principles for nomination of indicator substances, indicative for the overall content of sPACs, are derived. Data gaps on ecotoxicological endpoints preclude final conclusions, but the respective necessary supplemental tests were identified. Five of the 15 sPACs were tentatively characterized as potential substances of very high concern (SVHC) for the environment. The overall results of this study also clearly show that regulatory risk management of homocyclic PAHs within the European Regulation on Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) does not address the environmental concern created by sPACs within UVCBs from coal or crude oil. The study proves the need for additional regulatory steps under REACH and suggests indicator

  6. GaN hexagonal pyramids formed by a photo-assisted chemical etching method

    NASA Astrophysics Data System (ADS)

    Zhang, Shi-Ying; Xiu, Xiang-Qian; Hua, Xue-Mei; Xie, Zi-Li; Liu, Bin; Chen, Peng; Han, Ping; Lu, Hai; Zhang, Rong; Zheng, You-Dou

    2014-05-01

    A series of experiments were conducted to systematically study the effects of etching conditions on GaN by a convenient photo-assisted chemical (PAC) etching method. The solution concentration has an evident influence on the surface morphology of GaN and the optimal solution concentrations for GaN hexagonal pyramids have been identified. GaN with hexagonal pyramids have higher crystal quality and tensile strain relaxation compared with as-grown GaN. A detailed analysis about evolution of the size, density and optical property of GaN hexagonal pyramids is described as a function of light intensity. The intensity of photoluminescence spectra of GaN etched with hexagonal pyramids significantly increases compared to that of as-grown GaN due to multiple scattering events, high quality GaN with pyramids and the Bragg effect.

  7. Nucleation and growth of (10͞11) semi-polar AlN on (0001) AlN by Hydride Vapor Phase Epitaxy

    NASA Astrophysics Data System (ADS)

    Liu, Ting; Zhang, Jicai; Su, Xujun; Huang, Jun; Wang, Jianfeng; Xu, Ke

    2016-05-01

    Wurtzite AlN is widely used for deep ultraviolet optoelectronic devices (DUV), which are generally grown along the [0001]-direction of the wurtzite structure on currently available substrates. However, huge internal electrostatic fields are presented within the material along [0001] axis induced by piezoelectric and spontaneous polarization, which has limited the internal quantum efficiency of AlN based DUV LEDs dramatically. The internal fields can be strongly reduced by changing the epitaxial growth direction from the conventional polar c-direction into less polar crystal directions. Twinned crystal is a crystal consisting of two or more domains with the same crystal lattice and composition but different crystal orientations. In other words, twins can be induced to change crystal directions. In this work we demonstrated that the epitaxial growth of () semi-polar AlN on (0001) AlN by constructing () and () twin structures. This new method is relative feasible than conventional methods and it has huge prospect to develop high-quality semi-polar AlN.

  8. Nucleation and growth of (10¯11) semi-polar AlN on (0001) AlN by Hydride Vapor Phase Epitaxy

    PubMed Central

    Liu, Ting; Zhang, Jicai; Su, Xujun; Huang, Jun; Wang, Jianfeng; Xu, Ke

    2016-01-01

    Wurtzite AlN is widely used for deep ultraviolet optoelectronic devices (DUV), which are generally grown along the [0001]-direction of the wurtzite structure on currently available substrates. However, huge internal electrostatic fields are presented within the material along [0001] axis induced by piezoelectric and spontaneous polarization, which has limited the internal quantum efficiency of AlN based DUV LEDs dramatically. The internal fields can be strongly reduced by changing the epitaxial growth direction from the conventional polar c-direction into less polar crystal directions. Twinned crystal is a crystal consisting of two or more domains with the same crystal lattice and composition but different crystal orientations. In other words, twins can be induced to change crystal directions. In this work we demonstrated that the epitaxial growth of () semi-polar AlN on (0001) AlN by constructing () and () twin structures. This new method is relative feasible than conventional methods and it has huge prospect to develop high-quality semi-polar AlN. PMID:27185345

  9. Nucleation and growth of (10͞11) semi-polar AlN on (0001) AlN by Hydride Vapor Phase Epitaxy.

    PubMed

    Liu, Ting; Zhang, Jicai; Su, Xujun; Huang, Jun; Wang, Jianfeng; Xu, Ke

    2016-01-01

    Wurtzite AlN is widely used for deep ultraviolet optoelectronic devices (DUV), which are generally grown along the [0001]-direction of the wurtzite structure on currently available substrates. However, huge internal electrostatic fields are presented within the material along [0001] axis induced by piezoelectric and spontaneous polarization, which has limited the internal quantum efficiency of AlN based DUV LEDs dramatically. The internal fields can be strongly reduced by changing the epitaxial growth direction from the conventional polar c-direction into less polar crystal directions. Twinned crystal is a crystal consisting of two or more domains with the same crystal lattice and composition but different crystal orientations. In other words, twins can be induced to change crystal directions. In this work we demonstrated that the epitaxial growth of () semi-polar AlN on (0001) AlN by constructing () and () twin structures. This new method is relative feasible than conventional methods and it has huge prospect to develop high-quality semi-polar AlN. PMID:27185345

  10. GaN quantum dots by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Daudin, B.; Adelmann, C.; Gogneau, N.; Sarigiannidou, E.; Monroy, E.; Fossard, F.; Rouvière, J. L.

    2004-03-01

    The conditions to grow GaN quantum dots (QDs) by plasma-assisted molecular beam epitaxy will be examined. It will be shown that, depending on the Ga/N ratio value, the growth mode of GaN deposited on AlN can be either of the Stranski-Krastanow (SK) or of the Frank-Van der Merwe type. Accordingly, quantum wells or QDs can be grown, depending on the desired application. In the particular case of modified SK growth mode, it will be shown that both plastic and elastic strain relaxation can coexist. Growth of GaN QDs with N-polarity will also be discussed and compared to their counterpart with Ga polarity.

  11. Epitaxy of GaN Nanowires on Graphene.

    PubMed

    Kumaresan, Vishnuvarthan; Largeau, Ludovic; Madouri, Ali; Glas, Frank; Zhang, Hezhi; Oehler, Fabrice; Cavanna, Antonella; Babichev, Andrey; Travers, Laurent; Gogneau, Noelle; Tchernycheva, Maria; Harmand, Jean-Christophe

    2016-08-10

    Epitaxial growth of GaN nanowires on graphene is demonstrated using molecular beam epitaxy without any catalyst or intermediate layer. Growth is highly selective with respect to silica on which the graphene flakes, grown by chemical vapor deposition, are transferred. The nanowires grow vertically along their c-axis and we observe a unique epitaxial relationship with the ⟨21̅1̅0⟩ directions of the wurtzite GaN lattice parallel to the directions of the carbon zigzag chains. Remarkably, the nanowire density and height decrease with increasing number of graphene layers underneath. We attribute this effect to strain and we propose a model for the nanowire density variation. The GaN nanowires are defect-free and they present good optical properties. This demonstrates that graphene layers transferred on amorphous carrier substrates is a promising alternative to bulk crystalline substrates for the epitaxial growth of high quality GaN nanostructures.

  12. Epitaxy of GaN Nanowires on Graphene.

    PubMed

    Kumaresan, Vishnuvarthan; Largeau, Ludovic; Madouri, Ali; Glas, Frank; Zhang, Hezhi; Oehler, Fabrice; Cavanna, Antonella; Babichev, Andrey; Travers, Laurent; Gogneau, Noelle; Tchernycheva, Maria; Harmand, Jean-Christophe

    2016-08-10

    Epitaxial growth of GaN nanowires on graphene is demonstrated using molecular beam epitaxy without any catalyst or intermediate layer. Growth is highly selective with respect to silica on which the graphene flakes, grown by chemical vapor deposition, are transferred. The nanowires grow vertically along their c-axis and we observe a unique epitaxial relationship with the ⟨21̅1̅0⟩ directions of the wurtzite GaN lattice parallel to the directions of the carbon zigzag chains. Remarkably, the nanowire density and height decrease with increasing number of graphene layers underneath. We attribute this effect to strain and we propose a model for the nanowire density variation. The GaN nanowires are defect-free and they present good optical properties. This demonstrates that graphene layers transferred on amorphous carrier substrates is a promising alternative to bulk crystalline substrates for the epitaxial growth of high quality GaN nanostructures. PMID:27414518

  13. GaN grown on nano-patterned sapphire substrates

    NASA Astrophysics Data System (ADS)

    Jing, Kong; Meixin, Feng; Jin, Cai; Hui, Wang; Huaibing, Wang; Hui, Yang

    2015-04-01

    High-quality gallium nitride (GaN) film was grown on nano-patterned sapphire substrates (NPSS) and investigated using XRD and SEM. It was found that the optimum thickness of the GaN buffer layer on the NPSS is 15 nm, which is thinner than that on micro-patterned sapphire substrates (MPSS). An interesting phenomenon was observed for GaN film grown on NPSS:GaN mainly grows on the trench regions and little grows on the sidewalls of the patterns at the initial growth stage, which is dramatically different from GaN grown on MPSS. In addition, the electrical and optical properties of LEDs grown on NPSS were characterized. Project supported by the Suzhou Nanojoin Photonics Co., Ltd and the High-Tech Achievements Transformation of Jiangsu Province, China (No.BA2012010).

  14. Nanoheteroepitaxial growth of GaN on Si nanopillar arrays

    NASA Astrophysics Data System (ADS)

    Hersee, S. D.; Sun, X. Y.; Wang, X.; Fairchild, M. N.; Liang, J.; Xu, J.

    2005-06-01

    Nanoheteroepitaxial growth of GaN by metal-organic chemical-vapor deposition on dense arrays of (111) Si nanopillars has been investigated. Scanning electron microscopy, cross-sectional transmission electron microscopy, and electron-diffraction analysis of 0.15-μm-thick GaN layers indicate single-crystal films. Most of the mismatch defects were in-plane stacking faults and the threading dislocation concentration was <108cm-2 at the interface and decreased away from the interface. High-resolution transmission electron microscopy indicated that grain-boundary defects could heal and were followed by high quality, single-crystal GaN. Facetted voids were also present at the GaN /Si interface and are believed to be an additional strain-energy reduction mechanism. The unusual defect behavior in these samples appears to be related to the high compliance of the nanopillar silicon substrate.

  15. Epitaxy growth kinetics of GaN films

    NASA Astrophysics Data System (ADS)

    Wu, Bei; Ma, Ronghui; Zhang, Hui

    2003-03-01

    Group III nitrides, such as GaN, AlN and InGaN, have attracted a lot of attention due to the development of blue-green and ultraviolet light emitting diodes and lasers. A GaN crystal can be grown from the vapor phase by either evaporation of Gallium (Ga) metal or sublimation of GaN powder in ammonia (NH 3) atmosphere at a temperature-controlled growth furnace. In this paper, an integrated GaN growth model using a sublimation growth model has been developed based on the conservation of momentum, mass, chemical species and energy together with necessary boundary conditions that account for heterogeneous chemical reactions both at the source and seed surfaces. For the growth rate, the effects of the gas-flow rate, source temperature, temperature difference, and the gap width of the growth cell on the growth process have been studied.

  16. Novel high frequency devices with graphene and GaN

    NASA Astrophysics Data System (ADS)

    Zhao, Pei

    This work focuses on exploring new materials and new device structures to develop novel devices that can operate at very high speed. In chapter 2, the high frequency performance limitations of graphene transistor with channel length less than 100 nm are explored. The simulated results predict that intrinsic cutoff frequency fT of graphene transistor can be close to 2 THz at 15 nm channel length. In chapter 3, we explored the possibility of developing a 2D materials based vertical tunneling device. An analytical model to calculate the channel potentials and current-voltage characteristics in a Symmetric tunneling Field-Effect-Transistor (SymFET) is presented. The symmetric resonant peak in SymFET is a good candidate for high-speed analog applications. Rest of the work focuses on Gallium Nitride (GaN), several novel device concepts based on GaN heterostructure have been proposed for high frequency and high power applications. In chapter 4, we compared the performance of GaN Schottky diodes on bulk GaN substrates and GaN-on-sapphire substrates. In addition, we also discussed the lateral GaN Schottky diode between metal/2DEGs. The advantage of lateral GaN Schottky diodes is the intrinsic cutoff frequency is in the THz range. In chapter 5, a GaN Heterostructure barrier diode (HBD) is designed using the polarization charge and band offset at the AlGaN/GaN heterojunction. The polarization charge at AlGaN/GaN interface behaves as a delta-doping which induces a barrier without any chemical doping. The IV characteristics can be explained by the barrier controlled thermionic emission current. GaN HBDs can be directly integrated with GaN HEMTs, and serve as frequency multipliers or mixers for RF applications. In chapter 6, a GaN based negative effective mass oscillator (NEMO) is proposed. The current in NEMO is estimated under the ballistic limits. Negative differential resistances (NDRs) can be observed with more than 50% of the injected electrons occupied the negative

  17. ARM MJO Investigation Experiment on Gan Island (AMIE-Gan) Science Plan

    SciTech Connect

    Long, CL; Del Genio, A; Deng, M; Fu, X; Gustafson, W; Houze, R; Jakob, C; Jensen, M; Johnson, R; Liu, X; Luke, E; May, P; McFarlane, S; Minnis, P; Schumacher, C; Vogelmann, A; Wang, Y; Webster, P; Xie, S; Zhang, C

    2011-04-11

    The overarching campaign, which includes the ARM Mobile Facility 2 (AMF2) deployment in conjunction with the Dynamics of the Madden-Julian Oscillation (DYNAMO) and the Cooperative Indian Ocean experiment on intraseasonal variability in the Year 2011 (CINDY2011) campaigns, is designed to test several current hypotheses regarding the mechanisms responsible for Madden-Julian Oscillation (MJO) initiation and propagation in the Indian Ocean area. The synergy between the proposed AMF2 deployment with DYNAMO/CINDY2011, and the corresponding funded experiment on Manus, combine for an overarching ARM MJO Investigation Experiment (AMIE) with two components: AMF2 on Gan Island in the Indian Ocean (AMIE-Gan), where the MJO initiates and starts its eastward propagation; and the ARM Manus site (AMIE-Manus), which is in the general area where the MJO usually starts to weaken in climate models. AMIE-Gan will provide measurements of particular interest to Atmospheric System Research (ASR) researchers relevant to improving the representation of MJO initiation in climate models. The framework of DYNAMO/CINDY2011 includes two proposed island-based sites and two ship-based locations forming a square pattern with sonde profiles and scanning precipitation and cloud radars at both island and ship sites. These data will be used to produce a Variational Analysis data set coinciding with the one produced for AMIE-Manus. The synergy between AMIE-Manus and AMIE-Gan will allow studies of the initiation, propagation, and evolution of the convective cloud population within the framework of the MJO. As with AMIE-Manus, AMIE-Gan/DYNAMO also includes a significant modeling component geared toward improving the representation of MJO initiation and propagation in climate and forecast models. This campaign involves the deployment of the second, marine-capable, AMF; all of the included measurement systems; and especially the scanning and vertically pointing radars. The campaign will include sonde

  18. GaN Technology for Power Electronic Applications: A Review

    NASA Astrophysics Data System (ADS)

    Flack, Tyler J.; Pushpakaran, Bejoy N.; Bayne, Stephen B.

    2016-06-01

    Power semiconductor devices based on silicon (Si) are quickly approaching their limits, set by fundamental material properties. In order to address these limitations, new materials for use in devices must be investigated. Wide bandgap materials, such as silicon carbide (SiC) and gallium nitride (GaN) have suitable properties for power electronic applications; however, fabrication of practical devices from these materials may be challenging. SiC technology has matured to point of commercialized devices, whereas GaN requires further research to realize full material potential. This review covers fundamental material properties of GaN as they relate to Si and SiC. This is followed by a discussion of the contemporary issues involved with bulk GaN substrates and their fabrication and a brief overview of how devices are fabricated, both on native GaN substrate material and non-native substrate material. An overview of current device structures, which are being analyzed for use in power switching applications, is then provided; both vertical and lateral device structures are considered. Finally, a brief discussion of prototypes currently employing GaN devices is given.

  19. High nitrogen pressure solution growth of GaN

    NASA Astrophysics Data System (ADS)

    Bockowski, Michal

    2014-10-01

    Results of GaN growth from gallium solution under high nitrogen pressure are presented. Basic of the high nitrogen pressure solution (HNPS) growth method is described. A new approach of seeded growth, multi-feed seed (MFS) configuration, is demonstrated. The use of two kinds of seeds: free-standing hydride vapor phase epitaxy GaN (HVPE-GaN) obtained from metal organic chemical vapor deposition (MOCVD)-GaN/sapphire templates and free-standing HVPE-GaN obtained from the ammonothermally grown GaN crystals, is shown. Depending on the seeds’ structural quality, the differences in the structural properties of pressure grown material are demonstrated and analyzed. The role and influence of impurities, like oxygen and magnesium, on GaN crystals grown from gallium solution in the MFS configuration is presented. The properties of differently doped GaN crystals are discussed. An application of the pressure grown GaN crystals as substrates for electronic and optoelectronic devices is reported.

  20. Synthesis of p-type GaN nanowires.

    PubMed

    Kim, Sung Wook; Park, Youn Ho; Kim, Ilsoo; Park, Tae-Eon; Kwon, Byoung Wook; Choi, Won Kook; Choi, Heon-Jin

    2013-09-21

    GaN has been utilized in optoelectronics for two decades. However, p-type doping still remains crucial for realization of high performance GaN optoelectronics. Though Mg has been used as a p-dopant, its efficiency is low due to the formation of Mg-H complexes and/or structural defects in the course of doping. As a potential alternative p-type dopant, Cu has been recognized as an acceptor impurity for GaN. Herein, we report the fabrication of Cu-doped GaN nanowires (Cu:GaN NWs) and their p-type characteristics. The NWs were grown vertically via a vapor-liquid-solid (VLS) mechanism using a Au/Ni catalyst. Electrical characterization using a nanowire-field effect transistor (NW-FET) showed that the NWs exhibited n-type characteristics. However, with further annealing, the NWs showed p-type characteristics. A homo-junction structure (consisting of annealed Cu:GaN NW/n-type GaN thin film) exhibited p-n junction characteristics. A hybrid organic light emitting diode (OLED) employing the annealed Cu:GaN NWs as a hole injection layer (HIL) also demonstrated current injected luminescence. These results suggest that Cu can be used as a p-type dopant for GaN NWs.

  1. Effect of photocatalytic oxidation technology on GaN CMP

    NASA Astrophysics Data System (ADS)

    Wang, Jie; Wang, Tongqing; Pan, Guoshun; Lu, Xinchun

    2016-01-01

    GaN is so hard and so chemically inert that it is difficult to obtain a high material removal rate (MRR) in the chemical mechanical polishing (CMP) process. This paper discusses the application of photocatalytic oxidation technology in GaN planarization. Three N-type semiconductor particles (TiO2, SnO2, and Fe2O3) are used as catalysts and added to the H2O2-SiO2-based slurry. By optical excitation, highly reactive photoinduced holes are produced on the surface of the particles, which can oxidize OH- and H2O absorbed on the surface of the catalysts; therefore, more OH* will be generated. As a result, GaN MRRs in an H2O2-SiO2-based polishing system combined with catalysts are improved significantly, especially when using TiO2, the MRR of which is 122 nm/h. The X-ray photoelectron spectroscopy (XPS) analysis shows the variation trend of chemical composition on the GaN surface after polishing, revealing the planarization process. Besides, the effect of pH on photocatalytic oxidation combined with TiO2 is analyzed deeply. Furthermore, the physical model of GaN CMP combined with photocatalytic oxidation technology is proposed to describe the removal mechanism of GaN.

  2. GaN resistive hydrogen gas sensors

    NASA Astrophysics Data System (ADS)

    Yun, Feng; Chevtchenko, Serguei; Moon, Yong-Tae; Morkoç, Hadis; Fawcett, Timothy J.; Wolan, John T.

    2005-08-01

    GaN epilayers grown by organometallic vapor phase epitaxy have been used to fabricate resistive gas sensors with a pair of planar ohmic contacts. Detectible sensitivity to H2 gas for a wide range of gas mixtures in an Ar ambient has been realized; the lowest concentration tested is ˜0.1% H2 (in Ar), well below the lower combustion limit in air. No saturation of the signal is observed up to 100% H2 flow. Real-time response to H2 shows a clear and sharp response with no memory effects during the ramping cycles of H2 concentration. The change in current at a fixed voltage to hydrogen was found to change with sensor geometry. This appears to be consistent with a surface-adsorption-induced change of conductivity; a detailed picture of the gas sensing mechanism requires further systematic studies.

  3. Role of the ganSPQAB Operon in Degradation of Galactan by Bacillus subtilis.

    PubMed

    Watzlawick, Hildegard; Morabbi Heravi, Kambiz; Altenbuchner, Josef

    2016-10-15

    Bacillus subtilis possesses different enzymes for the utilization of plant cell wall polysaccharides. This includes a gene cluster containing galactan degradation genes (ganA and ganB), two transporter component genes (ganQ and ganP), and the sugar-binding lipoprotein-encoding gene ganS (previously known as cycB). These genes form an operon that is regulated by GanR. The degradation of galactan by B. subtilis begins with the activity of extracellular GanB. GanB is an endo-β-1,4-galactanase and is a member of glycoside hydrolase (GH) family 53. This enzyme was active on high-molecular-weight arabinose-free galactan and mainly produced galactotetraose as well as galactotriose and galactobiose. These galacto-oligosaccharides may enter the cell via the GanQP transmembrane proteins of the galactan ABC transporter. The specificity of the galactan ABC transporter depends on the sugar-binding lipoprotein, GanS. Purified GanS was shown to bind galactotetraose and galactotriose using thermal shift assay. The energy for this transport is provided by MsmX, an ATP-binding protein. The transported galacto-oligosaccharides are further degraded by GanA. GanA is a β-galactosidase that belongs to GH family 42. The GanA enzyme was able to hydrolyze short-chain β-1,4-galacto-oligosaccharides as well as synthetic β-galactopyranosides into galactose. Thermal shift assay as well as electrophoretic mobility shift assay demonstrated that galactobiose is the inducer of the galactan operon regulated by GanR. DNase I footprinting revealed that the GanR protein binds to an operator overlapping the -35 box of the σ(A)-type promoter of Pgan, which is located upstream of ganS IMPORTANCE: Bacillus subtilis is a Gram-positive soil bacterium that utilizes different types of carbohydrates, such as pectin, as carbon sources. So far, most of the pectin degradation systems and enzymes have been thoroughly studied in B. subtilis Nevertheless, the B. subtilis utilization system of galactan, which is

  4. Comparative study of polar and semipolar (112⁻2) InGaN layers grown by metalorganic vapour phase epitaxy

    SciTech Connect

    Dinh, Duc V. E-mail: peter.parbrook@tyndall.ie; Zubialevich, V. Z.; Oehler, F.; Kappers, M. J.; Humphreys, C. J.; Alam, S. N.; Parbrook, P. J. E-mail: peter.parbrook@tyndall.ie; Caliebe, M.; Scholtz, F.

    2014-10-21

    InGaN layers were grown simultaneously on (112⁻2) GaN and (0001) GaN templates by metalorganic vapour phase epitaxy. At higher growth temperature (≥750°C), the indium content (<15%) of the (112⁻2) and (0001) InGaN layers was similar. However, for temperatures less than 750°C, the indium content of the (112⁻2) InGaN layers (15%–26%) were generally lower than those with (0001) orientation (15%–32%). The compositional deviation was attributed to the different strain relaxations between the (112⁻2) and (0001) InGaN layers. Room temperature photoluminescence measurements of the (112⁻2) InGaN layers showed an emission wavelength that shifts gradually from 380 nm to 580 nm with decreasing growth temperature (or increasing indium composition). The peak emission wavelength of the (112⁻2) InGaN layers with an indium content of more than 10% blue-shifted a constant value of ≈(50–60) nm when using higher excitation power densities. This blue-shift was attributed to band filling effects in the layers.

  5. Exciton localization in polar and semipolar (112̅2) In0.2Ga0.8N/GaN multiple quantum wells

    NASA Astrophysics Data System (ADS)

    Dinh, Duc V.; Presa, Silvino; Maaskant, Pleun P.; Corbett, Brian; Parbrook, Peter J.

    2016-08-01

    The exciton localization (ELZ) in polar (0001) and semipolar (112̅2) In{}0.2Ga{}0.8{{N}} multiple-quantum-well (MQW) structures has been studied by excitation power density and temperature dependent photoluminescence. The ELZ in the (112̅2) MQW was found to be much stronger (ELZ degree σ E ∼ 40 –70 meV) compared to the (0001) MQW (σ E ∼ 5‑11 meV) that was attributed to the anisotropic growth on the (112̅2) surface. This strong ELZ was found to cause a blue-shift of the (112̅2) MQW exciton emission with rising temperature from 200 to 340 K, irrespective of excitation source used. A lower luminescence efficiency of the (112̅2) MQW was attributed to their anisotropic growth, and higher concentrations of unintentional impurities and point defects than the (0001) MQW.

  6. Improvement in the Crystalline Quality of Semipolar AlN(1102) Films by Using ZnO Substrates with Self-Organized Nanostripes

    NASA Astrophysics Data System (ADS)

    Ueno, Kohei; Kobayashi, Atsushi; Ohta, Jitsuo; Fujioka, Hiroshi

    2010-04-01

    We have found that self-organized nanostripes structures can be formed on the surface of ZnO(1102) substrates by annealing in the air, and high quality semipolar AlN can be grown on such substrates by growing a room temperature epitaxial AlN buffer layer. The full width at half maximum value of the X-ray rocking curve for AlN 1102 was as low as 500 arcsec. The observed tilt of the AlN(1102) layer grown on ZnO(1102) with self-organized nanostripes is smaller than that on as-received ZnO(1102), indicating that the nanostripes structure suppresses the introduction of misfit dislocations at the heterointerface probably due to the reduced stress field around the nanostripes. This reduction in the density of the misfit dislocations is probably responsible for the improvement in crystalline quality.

  7. Effects of active region design on gain and carrier injection and transport of CW (20\\bar{2}\\bar{1}) semipolar InGaN laser diodes

    NASA Astrophysics Data System (ADS)

    Becerra, Daniel L.; Cohen, Daniel A.; Farrell, Robert M.; DenBaars, Steven P.; Nakamura, Shuji

    2016-09-01

    High-power CW semipolar (20\\bar{2}\\bar{1}) laser diodes (LDs) were studied. Improved efficiencies (threshold, differential, and wall plug) were observed when the number of quantum wells (QWs) in the active region was reduced from 4 to 2. Threshold current densities as low as 2.6 kA/cm2 were obtained. The differential efficiency of a 5 µm wide by 1200 µm long LD with a 2-QW active region was 54% and the wall plug efficiency was 11%. Experimental and analytical analyses of the devices suggested carrier leakage from an ineffective electron-blocking layer, providing an explanation for the high voltage observed in all the devices.

  8. Pulsed laser annealing of Be-implanted GaN

    SciTech Connect

    Wang, H.T.; Tan, L.S.; Chor, E.F.

    2005-11-01

    Postimplantation thermal processing of Be in molecular-beam-epitaxy-grown GaN by rapid thermal annealing (RTA) and pulsed laser annealing (PLA) was investigated. It has been found that the activation of Be dopants and the repair of implantation-induced defects in GaN films cannot be achieved efficiently by conventional RTA alone. On the other hand, good dopant activation and surface morphology and quality were obtained when the Be-implanted GaN film was annealed by PLA with a 248 nm KrF excimer laser. However, observations of off-resonant micro-Raman and high-resolution x-ray-diffraction spectra indicated that crystal defects and strain resulting from Be implantation were still existent after PLA, which probably degraded the carrier mobility and limited the activation efficiency to some extent. This can be attributed to the shallow penetration depth of the 248 nm laser in GaN, which only repaired the crystal defects in a thin near-surface layer, while the deeper defects were not annealed out well. This situation was significantly improved when the Be-implanted GaN was subjected to a combined process of PLA followed by RTA, which produced good activation of the dopants, good surface morphology, and repaired bulk and surface defects well.

  9. Structural defects in bulk GaN

    NASA Astrophysics Data System (ADS)

    Liliental-Weber, Z.; dos Reis, R.; Mancuso, M.; Song, C. Y.; Grzegory, I.; Porowski, S.; Bockowski, M.

    2014-10-01

    Transmission Electron Microscopy (TEM) studies of undoped and Mg doped GaN layers grown on the HVPE substrates by High Nitrogen Pressure Solution (HNPS) with the multi-feed-seed (MFS) configuration are shown. The propagation of dislocations from the HVPE substrate to the layer is observed. Due to the interaction between these dislocations in the thick layers much lower density of these defects is observed in the upper part of the HNPS layers. Amorphous Ga precipitates with attached voids pointing toward the growth direction are observed in the undoped layer. This is similar to the presence of Ga precipitates in high-pressure platelets, however the shape of these precipitates is different. The Mg doped layers do not show Ga precipitates, but MgO rectangular precipitates are formed, decorating the dislocations. Results of TEM studies of HVPE layers grown on Ammonothermal substrates are also presented. These layers have superior crystal quality in comparison to the HNPS layers, as far as density of dislocation is concern. Occasionally some small inclusions can be found, but their chemical composition was not yet determined. It is expected that growth of the HNPS layers on these substrate will lead to large layer thickness obtained in a short time and with high crystal perfection needed in devices.

  10. High Voltage GaN Schottky Rectifiers

    SciTech Connect

    CAO,X.A.; CHO,H.; CHU,S.N.G.; CHUO,C.-C.; CHYI,J.-I.; DANG,G.T.; HAN,JUNG; LEE,C.-M.; PEARTON,S.J.; REN,F.; WILSON,R.G.; ZHANG,A.P.

    1999-10-25

    Mesa and planar GaN Schottky diode rectifiers with reverse breakdown voltages (V{sub RB}) up to 550V and >2000V, respectively, have been fabricated. The on-state resistance, R{sub ON}, was 6m{Omega}{center_dot} cm{sup 2} and 0.8{Omega}cm{sup 2}, respectively, producing figure-of-merit values for (V{sub RB}){sup 2}/R{sub ON} in the range 5-48 MW{center_dot}cm{sup -2}. At low biases the reverse leakage current was proportional to the size of the rectifying contact perimeter, while at high biases the current was proportional to the area of this contact. These results suggest that at low reverse biases, the leakage is dominated by the surface component, while at higher biases the bulk component dominates. On-state voltages were 3.5V for the 550V diodes and {ge}15 for the 2kV diodes. Reverse recovery times were <0.2{micro}sec for devices switched from a forward current density of {approx}500A{center_dot}cm{sup -2} to a reverse bias of 100V.

  11. Evaluating the well-to-well distribution of radiative recombination rates in semi-polar (11\\bar{2}2) InGaN multiple-quantum-well light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Funato, Mitsuru; Matsufuji, Kohei; Kawakami, Yoichi

    2016-07-01

    The distribution of well-to-well radiative recombination rates (RRRs) in an electrically driven semi-polar (11\\bar{2}2) InGaN multiple-quantum-well light-emitting diode (LED) is investigated within an electron–hole recombination picture. Compared to the reference (0001) LED, the (11\\bar{2}2) LED exhibits uniform well-to-well RRR distributions, which are less dependent on the injection current, because of the weaker polarization field. The smaller dependence of the RRR distribution on the injection current suggests that (11\\bar{2}2) LEDs can be applied to polychromatic LEDs consisting of quantum wells with different emission colors in electrical series because a current-insensitive apparent emission color is expected. A proof-of-concept polychromatic LED is demonstrated on the semi-polar (11\\bar{2}2) plane.

  12. Biosensors based on GaN nanoring optical cavities

    NASA Astrophysics Data System (ADS)

    Kouno, Tetsuya; Takeshima, Hoshi; Kishino, Katsumi; Sakai, Masaru; Hara, Kazuhiko

    2016-05-01

    Biosensors based on GaN nanoring optical cavities were demonstrated using room-temperature photoluminescence measurements. The outer diameter, height, and thickness of the GaN nanorings were approximately 750-800, 900, and 130-180 nm, respectively. The nanorings functioned as whispering-gallery-mode (WGM)-type optical cavities and exhibited sharp resonant peaks like lasing actions. The evanescent component of the WGM was strongly affected by the refractive index of the ambient environment, the type of liquid, and the sucrose concentration of the analyzed solution, resulting in shifts of the resonant wavelengths. The results indicate that the GaN nanorings can potentially be used in sugar sensors of the biosensors.

  13. Curvature and bow of bulk GaN substrates

    NASA Astrophysics Data System (ADS)

    Foronda, Humberto M.; Romanov, Alexey E.; Young, Erin C.; Roberston, Christian A.; Beltz, Glenn E.; Speck, James S.

    2016-07-01

    We investigate the bow of free standing (0001) oriented hydride vapor phase epitaxy grown GaN substrates and demonstrate that their curvature is consistent with a compressive to tensile stress gradient (bottom to top) present in the substrates. The origin of the stress gradient and the curvature is attributed to the correlated inclination of edge threading dislocation (TD) lines away from the [0001] direction. A model is proposed and a relation is derived for bulk GaN substrate curvature dependence on the inclination angle and the density of TDs. The model is used to analyze the curvature for commercially available GaN substrates as determined by high resolution x-ray diffraction. The results show a close correlation between the experimentally determined parameters and those predicted from theoretical model.

  14. High-Sensitivity GaN Microchemical Sensors

    NASA Technical Reports Server (NTRS)

    Son, Kyung-ah; Yang, Baohua; Liao, Anna; Moon, Jeongsun; Prokopuk, Nicholas

    2009-01-01

    Systematic studies have been performed on the sensitivity of GaN HEMT (high electron mobility transistor) sensors using various gate electrode designs and operational parameters. The results here show that a higher sensitivity can be achieved with a larger W/L ratio (W = gate width, L = gate length) at a given D (D = source-drain distance), and multi-finger gate electrodes offer a higher sensitivity than a one-finger gate electrode. In terms of operating conditions, sensor sensitivity is strongly dependent on transconductance of the sensor. The highest sensitivity can be achieved at the gate voltage where the slope of the transconductance curve is the largest. This work provides critical information about how the gate electrode of a GaN HEMT, which has been identified as the most sensitive among GaN microsensors, needs to be designed, and what operation parameters should be used for high sensitivity detection.

  15. ECR, ICP, and RIE plasma etching of GaN

    SciTech Connect

    Shul, R.J.; McClellan, G.B.; Rieger, D.J.; Hafich, M.J.

    1996-06-01

    The group III-nitrides continue to generate interest due to their wide band gaps and high dielectric constants. These materials have made significant impact on the compound semiconductor community as blue and ultraviolet light emitting diodes (LEDs). Realization of more advanced devices; including lasers and high temperature electronics, requires dry etch processes which are well controlled, smooth, highly anisotropic and have etch rates exceeding 0.5 {mu}m/min. In this paper, we compare electron cyclotron resonance (ECR), inductively coupled plasma (ICP), and reactive ion etch (RIE) etch results for GaN. These are the first ICP etch results reported for GaN. We also report ECR etch rates for GaN as a function of growth technique.

  16. Desorption Induced Formation of Negative Nanowires in GaN

    SciTech Connect

    Stach, E.A.; Kim, B.-J.

    2011-06-01

    We report in-situ transmission electron microscopy studies of the formation of negative nanowires created by thermal decomposition of single crystal GaN. During annealing, vertical negative nanowires are formed in [0 0 0 1] by preferential dissociation of GaN along the 1 0 {bar 1} 0 prism planes, while lateral negative nanowires grow in close-packed 1 0 {bar 1} 0 by the self-catalytic solid-liquid-vapor (SLV) mechanism. Our quantitative measurements show that the growth rates of the laterally grown negative nanowires are independent of the wire diameter, indicating that the rate-limiting step is the decomposition of GaN on the surface of the Ga droplets that catalyze their creation. These nanoscale features offer controllable templates for the creation and integration of a broad range of nanoscale materials systems, with potential applications in nanoscale fluidics.

  17. Biosensors based on GaN nanoring optical cavities

    NASA Astrophysics Data System (ADS)

    Kouno, Tetsuya; Takeshima, Hoshi; Kishino, Katsumi; Sakai, Masaru; Hara, Kazuhiko

    2016-05-01

    Biosensors based on GaN nanoring optical cavities were demonstrated using room-temperature photoluminescence measurements. The outer diameter, height, and thickness of the GaN nanorings were approximately 750–800, 900, and 130–180 nm, respectively. The nanorings functioned as whispering-gallery-mode (WGM)-type optical cavities and exhibited sharp resonant peaks like lasing actions. The evanescent component of the WGM was strongly affected by the refractive index of the ambient environment, the type of liquid, and the sucrose concentration of the analyzed solution, resulting in shifts of the resonant wavelengths. The results indicate that the GaN nanorings can potentially be used in sugar sensors of the biosensors.

  18. Strong atomic ordering in Gd-doped GaN

    SciTech Connect

    Ishimaru, Manabu; Higashi, Kotaro; Hasegawa, Shigehiko; Asahi, Hajime; Sato, Kazuhisa; Konno, Toyohiko J.

    2012-09-03

    Gd-doped GaN (Ga{sub 1-x}Gd{sub x}N) thin films were grown on a GaN(001) template by radio frequency plasma-assisted molecular beam epitaxy and characterized by means of x-ray diffraction (XRD) and transmission electron microscopy (TEM). Three samples with a different Gd composition were prepared in this study: x = 0.02, 0.05, and 0.08. XRD and TEM results revealed that the low Gd concentration GaN possesses the wurtzite structure. On the other hand, it was found that an ordered phase with a quadruple-periodicity along the [001] direction in the wurtzite structure is formed throughout the film with x = 0.08. We proposed the atomistic model for the superlattice structure observed here.

  19. Surface morphology of GaN: Flat versus vicinal surfaces

    SciTech Connect

    Xie, M.H.; Seutter, S.M.; Zheng, L.X.; Cheung, S.H.; Ng, Y.F.; Wu, H.; Tong, S.Y.

    2000-07-01

    The surface morphology of GaN films grown by molecular beam epitaxy (MBE) is investigated by scanning tunneling microscopy (STM). A comparison is made between flat and vicinal surfaces. The wurtzite structure of GaN leads to special morphological features such as step pairing and triangularly shaped islands. Spiral mounds due to growth at screw threading dislocations are dominant on flat surfaces, whereas for vicinal GaN, the surfaces show no spiral mound but evenly spaced steps. This observation suggests an effective suppression of screw threading dislocations in the vicinal films. This finding is confirmed by transmission electron microscopy (TEM) studies. Continued growth of the vicinal surface leads to step bunching that is attributed to the effect of electromigration.

  20. Conductivity based on selective etch for GaN devices and applications thereof

    DOEpatents

    Zhang, Yu; Sun, Qian; Han, Jung

    2015-12-08

    This invention relates to methods of generating NP gallium nitride (GaN) across large areas (>1 cm.sup.2) with controlled pore diameters, pore density, and porosity. Also disclosed are methods of generating novel optoelectronic devices based on porous GaN. Additionally a layer transfer scheme to separate and create free-standing crystalline GaN thin layers is disclosed that enables a new device manufacturing paradigm involving substrate recycling. Other disclosed embodiments of this invention relate to fabrication of GaN based nanocrystals and the use of NP GaN electrodes for electrolysis, water splitting, or photosynthetic process applications.

  1. Temperature dependent growth of GaN nanowires using CVD technique

    NASA Astrophysics Data System (ADS)

    Kumar, Mukesh; Kumar, Vikram; Singh, R.

    2016-05-01

    Growth of GaN nanowires have been carried out on sapphire substrates with Au as a catalyst using chemical vapour deposition technique. GaN nanowires growth have been studied with the experimental parameter as growth temperature. Diameter of grown GaN nanowires are in the range of 50 nm to 100 nm while the nanowire length depends on growth temperature. Morphology of the GaN nanowires have been studied by scanning electron microscopy. Crystalline nature has been observed by XRD patterns. Optical properties of grown GaN nanowires have been investigated by photoluminescence spectra.

  2. Dislocation luminescence in GaN single crystals under nanoindentation.

    PubMed

    Huang, Jun; Xu, Ke; Fan, Ying Min; Wang, Jian Feng; Zhang, Ji Cai; Ren, Guo Qiang

    2014-01-01

    This work presents an experimental study on the dislocation luminescence in GaN by nanoindentation, cathodoluminescence, and Raman. The dislocation luminescence peaking at 3.12 eV exhibits a series of special properties in the cathodoluminescence measurements, and it completely disappears after annealing at 500°C. Raman spectroscopy shows evidence for existence of vacancies in the indented region. A comprehensive investigation encompassing cathodoluminescence, Raman, and annealing experiments allow the assignment of dislocation luminescence to conduction-band-acceptor transition involving Ga vacancies. The nanoscale plasticity of GaN can be better understood by considering the dislocation luminescence mechanism.

  3. Highly transparent ammonothermal bulk GaN substrates

    SciTech Connect

    Jiang, WK; Ehrentraut, D; Downey, BC; Kamber, DS; Pakalapati, RT; Do Yoo, H; D'Evelyn, MP

    2014-10-01

    A novel apparatus has been employed to grow ammonothermal (0001) gallium nitride (GaN) with diameters up to 2 in The crystals have been characterized by x-ray diffraction rocking-curve (XRC) analysis, optical and scanning electron microscopy (SEM), cathodoluminescence (CL), and optical spectroscopy. High crystallinity GaN with FWHM values about 20-50 arcsec and dislocation densities below 1 x 10(5) cm(-2) have been obtained. High optical transmission was achieved with an optical absorption coefficient below 1 cm(-1) at a wavelength of 450 nm. (C) 2014 Elsevier B.V. All rights reserved.

  4. Ferromagnetism in undoped One-dimensional GaN Nanowires

    SciTech Connect

    Jeganathan, K. E-mail: jagan@physics.bdu.ac.in; Purushothaman, V.; Debnath, R.; Arumugam, S.

    2014-05-15

    We report an intrinsic ferromagnetism in vertical aligned GaN nanowires (NW) fabricated by molecular beam epitaxy without any external catalyst. The magnetization saturates at ∼0.75 × emu/gm with the applied field of 3000 Oe for the NWs grown under the low-Gallium flux of 2.4 × 10{sup −8} mbar. Despite a drop in saturation magnetization, narrow hysteresis loop remains intact regardless of Gallium flux. Magnetization in vertical standing GaN NWs is consistent with the spectral analysis of low-temperature photoluminescence pertaining to Ga-vacancies associated structural defects at the nanoscale.

  5. First-principles study of d0 ferromagnetism in alkali-metal doped GaN

    NASA Astrophysics Data System (ADS)

    Zhang, Yong

    2016-08-01

    The d0 ferromagnetism in GaN has been studied based on density functional theory. Our results show that GaN with sufficient hole become spin-polarized. Alkali-metal doping can introduce holes in GaN. Among them, both of Li- and Na-doping induce ferromagnetism in GaN and Na-doped GaN behaves as half-metallic ferromagnet. Moreover, at a growth temperature of 2000 K under N-rich condition, both concentrations can exceed 18%, which is sufficient to produce detectable macroscopic magnetism in GaN. The Curie temperature of Li- and Na-doped GaN is estimated to be 304 and 740 K, respectively, which are well above room temperature.

  6. GaN nanowire arrays by a patterned metal-assisted chemical etching

    NASA Astrophysics Data System (ADS)

    Wang, K. C.; Yuan, G. D.; Wu, R. W.; Lu, H. X.; Liu, Z. Q.; Wei, T. B.; Wang, J. X.; Li, J. M.; Zhang, W. J.

    2016-04-01

    We developed an one-step and two-step metal-assisted chemical etching method to produce self-organized GaN nanowire arrays. In one-step approach, GaN nanowire arrays are synthesized uniformly on GaN thin film surface. However, in a two-step etching processes, GaN nanowires are formed only in metal uncovered regions, and GaN regions with metal-covering show nano-porous sidewalls. We propose that nanowires and porous nanostructures are tuned by sufficient and limited etch rate, respectively. PL spectra shows a red-shift of band edge emission in GaN nanostructures. The formation mechanism of nanowires was illustrated by two separated electrochemical reactions occur simultaneously. The function of metals and UV light was illustrated by the scheme of potential relationship between energy bands in Si, GaN and standard hydrogen electrode potential of solution and metals.

  7. Synthesis of p-type GaN nanowires

    NASA Astrophysics Data System (ADS)

    Kim, Sung Wook; Park, Youn Ho; Kim, Ilsoo; Park, Tae-Eon; Kwon, Byoung Wook; Choi, Won Kook; Choi, Heon-Jin

    2013-08-01

    GaN has been utilized in optoelectronics for two decades. However, p-type doping still remains crucial for realization of high performance GaN optoelectronics. Though Mg has been used as a p-dopant, its efficiency is low due to the formation of Mg-H complexes and/or structural defects in the course of doping. As a potential alternative p-type dopant, Cu has been recognized as an acceptor impurity for GaN. Herein, we report the fabrication of Cu-doped GaN nanowires (Cu:GaN NWs) and their p-type characteristics. The NWs were grown vertically via a vapor-liquid-solid (VLS) mechanism using a Au/Ni catalyst. Electrical characterization using a nanowire-field effect transistor (NW-FET) showed that the NWs exhibited n-type characteristics. However, with further annealing, the NWs showed p-type characteristics. A homo-junction structure (consisting of annealed Cu:GaN NW/n-type GaN thin film) exhibited p-n junction characteristics. A hybrid organic light emitting diode (OLED) employing the annealed Cu:GaN NWs as a hole injection layer (HIL) also demonstrated current injected luminescence. These results suggest that Cu can be used as a p-type dopant for GaN NWs.GaN has been utilized in optoelectronics for two decades. However, p-type doping still remains crucial for realization of high performance GaN optoelectronics. Though Mg has been used as a p-dopant, its efficiency is low due to the formation of Mg-H complexes and/or structural defects in the course of doping. As a potential alternative p-type dopant, Cu has been recognized as an acceptor impurity for GaN. Herein, we report the fabrication of Cu-doped GaN nanowires (Cu:GaN NWs) and their p-type characteristics. The NWs were grown vertically via a vapor-liquid-solid (VLS) mechanism using a Au/Ni catalyst. Electrical characterization using a nanowire-field effect transistor (NW-FET) showed that the NWs exhibited n-type characteristics. However, with further annealing, the NWs showed p-type characteristics. A homo

  8. Refractive index of erbium doped GaN thin films

    SciTech Connect

    Alajlouni, S.; Sun, Z. Y.; Li, J.; Lin, J. Y.; Jiang, H. X.; Zavada, J. M.

    2014-08-25

    GaN is an excellent host for erbium (Er) to provide optical emission in the technologically important as well as eye-safe 1540 nm wavelength window. Er doped GaN (GaN:Er) epilayers were synthesized on c-plane sapphire substrates using metal organic chemical vapor deposition. By employing a pulsed growth scheme, the crystalline quality of GaN:Er epilayers was significantly improved over those obtained by conventional growth method of continuous flow of reaction precursors. X-ray diffraction rocking curve linewidths of less than 300 arc sec were achieved for the GaN (0002) diffraction peak, which is comparable to the typical results of undoped high quality GaN epilayers and represents a major improvement over previously reported results for GaN:Er. Spectroscopic ellipsometry was used to determine the refractive index of the GaN:Er epilayers in the 1540 nm wavelength window and a linear dependence on Er concentration was found. The observed refractive index increase with Er incorporation and the improved crystalline quality of the GaN:Er epilayers indicate that low loss GaN:Er optical waveguiding structures are feasible.

  9. Plasma chemistry dependent ECR etching of GaN

    SciTech Connect

    Shul, R.J.; Ashby, C.I.H.; Rieger, D.J.

    1995-12-31

    Electron cyclotron resonance (ECR) etching of GaN in Cl{sub 2}/H{sub 2}/Ar, C1{sub 2}/SF{sub 6}/Ar, BCl{sub 3}/H{sub 2}/Ar and BCl{sub 3}/SF{sub 6}/Ar plasmas is reported as a function of percent H{sub 2} and SF{sub 6}. GaN etch rates were found to be 2 to 3 times greater in Cl{sub 2}/H{sub 2}/Ar discharges than in BCl{sub 3}/H{sub 2}/Ar discharges independent of the H{sub 2} concentration. In both discharges, the etch rates decreased as the H{sub 2} concentration increased above 10%. When SF{sub 6} was substituted for H{sub 2}, the GaN etch rates in BCl{sub 3}-based plasmas were greater than those for the Cl{sub 2}-based discharges as the SF{sub 6} concentration increased. GaN etch rates were greater in Cl{sub 2}/H{sub 2}/Ar discharges as compared to Cl{sub 2}SF{sub 6}/Ar discharges whereas the opposite trend was observed for BCl{sub 3}-based discharges. Variations in surface morphology and near-surface stoichiometry due to plasma chemistries were also investigated using atomic force microscopy and Auger spectroscopy, respectively.

  10. Photoluminescence of Zn-implanted GaN

    NASA Technical Reports Server (NTRS)

    Pankove, J. I.; Hutchby, J. A.

    1974-01-01

    The photoluminescence spectrum of Zn-implanted GaN peaks at 2.87 eV at room temperature. The emission efficiency decreases linearly with the logarithm of the Zn concentration in the range from 1 x 10 to the 18th to 20 x 10 to the 18th Zn/cu cm.

  11. Properties of H, O and C in GaN

    SciTech Connect

    Pearton, S.J.; Abernathy, C.R.; Lee, J.W.

    1996-04-01

    The electrical properties of the light ion impurities H, O and C in GaN have been examined in both as-grown and implanted material. H is found to efficiently passivate acceptors such as Mg, Ca and C. Reactivation occurs at {ge} 450 C and is enhanced by minority carrier injection. The hydrogen does not leave the GaN crystal until > 800 C, and its diffusivity is relatively high ({approximately} 10{sup {minus}11} cm{sup 2}/s) even at low temperatures (< 200 C) during injection by wet etching, boiling in water or plasma exposure. Oxygen shows a low donor activation efficiency when implanted into GaN, with an ionization level of 30--40 meV. It is essentially immobile up to 1,100 C. Carbon can produce low p-type levels (3 {times} 10{sup 17} cm{sup {minus}3}) in GaN during MOMBE, although there is some evidence it may also create n-type conduction in other nitrides.

  12. Improved Semipolar (112¯2) GaN Quality Grown on m-Plane Sapphire Substrates by Metal Organic Chemical Vapor Deposition Using Self-Organized SiN x Interlayer

    NASA Astrophysics Data System (ADS)

    Sheng-Rui, Xu; Ying, Zhao; Teng, Jiang; Jin-Cheng, Zhang; Pei-Xian, Li; Yue, Hao

    2016-06-01

    Not Available Supported by the National Natural Science Foundation of China under Grant Nos 61204006 and 61574108, the Fundamental Research Funds for the Central Universities under Grant No JB141101, and the Foundation of Key Laboratory of Nanodevices and Applications of Suzhou Institute of Nano-Tech and Nano-Bionics of Chinese Academy of Sciences under Grant No 15CS01.

  13. 47,XY,+der(X)t(X;18)(p11.4;p11.22): A Unique Aneuploidy Associated with Klinefelter Syndrome due to an Extra Derivative X Chromosome Inherited Maternally.

    PubMed

    Liang, Ji; Zhang, Yongsheng; Wang, Ruixue; Liang, Zuowen; Yue, Jiaming; Liu, Ruizhi

    2015-01-01

    A derivative X chromosome formed by translocation involving an X chromosome and a chromosome 18 in a Klinefelter syndrome (KS) patient with a 47,XXY karyotype has not been reported before. In this study, we present the clinical and molecular cytogenetic characteristics. The patient presented with small testes and azoospermia. G-banding analysis identified the karyotype as 47,XY,del(X)(p?11.4). Array CGH detected a 10.36-Mb duplication of chromosome region 18p11.22p11.32 (14,316-10,377,516) and a 111.18-Mb duplication of chromosome region Xp11.4q28 (61,931, 689-155,111,583), in addition to the normal chromosome 18 and an X chromosome. FISH results further revealed the extra 18p located at the end of the short arm of a deleted X chromosome, forming a derivative X chromosome. Finally, we identified the karyotype of the patient as 47,XY,+der(X)t(X;18)(p11.4;p11.22). The derivative X chromosome was maternally inherited. To our knowledge, this rare karyotype has not yet been reported in the literature. The present study may suggest a novel karyotype associated with KS. PMID:26430900

  14. Complex Segmental Duplications Mediate a Recurrent dup(X)(p11.22-p11.23) Associated with Mental Retardation, Speech Delay, and EEG Anomalies in Males and Females

    PubMed Central

    Giorda, Roberto; Bonaglia, M. Clara; Beri, Silvana; Fichera, Marco; Novara, Francesca; Magini, Pamela; Urquhart, Jill; Sharkey, Freddie H.; Zucca, Claudio; Grasso, Rita; Marelli, Susan; Castiglia, Lucia; Di Benedetto, Daniela; Musumeci, Sebastiano A.; Vitello, Girolamo A.; Failla, Pinella; Reitano, Santina; Avola, Emanuela; Bisulli, Francesca; Tinuper, Paolo; Mastrangelo, Massimo; Fiocchi, Isabella; Spaccini, Luigina; Torniero, Claudia; Fontana, Elena; Lynch, Sally Ann; Clayton-Smith, Jill; Black, Graeme; Jonveaux, Philippe; Leheup, Bruno; Seri, Marco; Romano, Corrado; Bernardina, Bernardo dalla; Zuffardi, Orsetta

    2009-01-01

    Submicroscopic copy-number variations make a considerable contribution to the genetic etiology of human disease. We have analyzed subjects with idiopathic mental retardation (MR) by using whole-genome oligonucleotide-based array comparative genomic hybridization (aCGH) and identified familial and de novo recurrent Xp11.22-p11.23 duplications in males and females with MR, speech delay, and a peculiar electroencephalographic (EEG) pattern in childhood. The size of the duplications ranges from 0.8–9.2 Mb. Most affected females show preferential activation of the duplicated X chromosome. Carriers of the smallest duplication show X-linked recessive inheritance. All other affected individuals present dominant expression and comparable clinical phenotypes irrespective of sex, duplication size, and X-inactivation pattern. The majority of the rearrangements are mediated by recombination between flanking complex segmental duplications. The identification of common clinical features, including the typical EEG pattern, predisposing genomic structure, and peculiar X-inactivation pattern, suggests that duplication of Xp11.22-p11.23 constitutes a previously undescribed syndrome. PMID:19716111

  15. GaN as a radiation hard particle detector

    NASA Astrophysics Data System (ADS)

    Grant, J.; Bates, R.; Cunningham, W.; Blue, A.; Melone, J.; McEwan, F.; Vaitkus, J.; Gaubas, E.; O'Shea, V.

    2007-06-01

    Semiconductor tracking detectors at experiments such as ATLAS and LHCb at the CERN Large Hadron Collider (LHC) will be subjected to intense levels of radiation. The proposed machine upgrade, the Super-LHC (SLHC), to 10 times the initial luminosity of the LHC will require detectors that are ultra-radiation hard. Much of the current research into finding a detector that will meet the requirements of the SLHC has focused on using silicon substrates with enhanced levels of oxygen, for example Czochralski silicon and diffusion oxygenated float zone silicon, and into novel detector structures such as 3D devices. Another avenue currently being investigated is the use of wide band gap semiconductors such as silicon carbide (SiC) and gallium nitride (GaN). Both SiC and GaN should be intrinsically more radiation hard than silicon. Pad and guard ring structures were fabricated on three epitaxial GaN wafers. The epitaxial GaN thickness was either 2.5 or 12 μm and the fabricated detectors were irradiated to various fluences with 24 GeV/c protons and 1 MeV neutrons. Detectors were characterised pre- and post-irradiation by performing current-voltage ( I- V) and charge collection efficiency (CCE) measurements. Devices fabricated on 12 μm epitaxial GaN irradiated to fluences of 1016 protons cm-2 and 1016 neutrons cm-2 show maximum CCE values of 26% and 20%, respectively, compared to a maximum CCE of 53% of the unirradiated device.

  16. Substitutional and interstitial carbon in wurtzite GaN

    NASA Astrophysics Data System (ADS)

    Wright, A. F.

    2002-09-01

    First-principles theoretical results are presented for substitutional and interstitial carbon in wurtzite GaN. Carbon is found to be a shallow acceptor when substituted for nitrogen (CN) and a shallow donor when substituted for gallium (CGa). Interstitial carbon (CI) is found to assume different configurations depending on the Fermi level: A site at the center of the c-axis channel is favored when the Fermi level is below 0.9 eV (relative to the valence band maximum) and a split-interstitial configuration is favored otherwise. Both configurations produce partly filled energy levels near the middle of the gap, and CI should therefore exhibit deep donor behavior in p-type GaN and deep acceptor behavior in n-type GaN. Formation energies for CN, CGa, and CI are similar, making it likely that CN acceptors will be compensated by other carbon species. CGa is predicted to be the primary compensating species when growth occurs under N-rich conditions while channel CI is predicted to be the primary compensating species under Ga-rich growth conditions. Self-compensation is predicted to be more significant under Ga-rich growth conditions than under N-rich conditions. Experimental evidence for self-compensation is discussed. Four carbon complexes are discussed. CN-VGa is found to be unstable when the Fermi level is above the middle of the gap due to the high stability of gallium vacancies (VGa). The CN-VGa complex was previously suggested as a source of the broad 2.2 eV luminescence peak often observed in n-type GaN. The present results indicate that this is unlikely. The CI-CN complex is capable of forming in carbon doped GaN grown under Ga-rich conditions if the mobility of the constituents is high enough. Experimental evidence for its existence is discussed.

  17. Wafer-scale epitaxial lift-off of optoelectronic grade GaN from a GaN substrate using a sacrificial ZnO interlayer

    NASA Astrophysics Data System (ADS)

    Rajan, Akhil; Rogers, David J.; Ton-That, Cuong; Zhu, Liangchen; Phillips, Matthew R.; Sundaram, Suresh; Gautier, Simon; Moudakir, Tarik; El-Gmili, Youssef; Ougazzaden, Abdallah; Sandana, Vinod E.; Teherani, Ferechteh H.; Bove, Philippe; Prior, Kevin A.; Djebbour, Zakaria; McClintock, Ryan; Razeghi, Manijeh

    2016-08-01

    Full 2 inch GaN epilayers were lifted off GaN and c-sapphire substrates by preferential chemical dissolution of sacrificial ZnO underlayers. Modification of the standard epitaxial lift-off (ELO) process by supporting the wax host with a glass substrate proved key in enabling full wafer scale-up. Scanning electron microscopy and x-ray diffraction confirmed that intact epitaxial GaN had been transferred to the glass host. Depth-resolved cathodoluminescence (CL) analysis of the bottom surface of the lifted-off GaN layer revealed strong near-band-edge (3.33 eV) emission indicating a superior optical quality for the GaN which was lifted off the GaN substrate. This modified ELO approach demonstrates that previous theories proposing that wax host curling was necessary to keep the ELO etch channel open do not apply to the GaN/ZnO system. The unprecedented full wafer transfer of epitaxial GaN to an alternative support by ELO offers the perspective of accelerating industrial adoption of the expensive GaN substrate through cost-reducing recycling.

  18. Surface-normal emission from subwavelength GaN membrane grating.

    PubMed

    Wang, Yongjin; Shi, Zheng; Li, Xin; He, Shumin; Zhang, Miao; Zhu, Hongbo

    2014-01-13

    We present here the fabrication of subwavelength GaN membrane grating with a double-side process. Controllable GaN membrane thickness is achieved by backside thinning technique, which is essential to realize guided-mode resonant GaN grating in the visible range. Subwavelength GaN grating can serve as an optical resonator and accommodate surface-normal emission coupling. The measured photoluminescence (PL) spectra are sensitive to the parameters and shapes of GaN gratings. Both numerical simulation and reflectivity measurement are in consistent with the PL experimental results. This work opens a promising way to embed GaN-based photon emitter inside subwavelength grating to further produce a surface emitting device with a single layer GaN grating.

  19. Growth of GaN micro/nanolaser arrays by chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Liu, Haitao; Zhang, Hanlu; Dong, Lin; Zhang, Yingjiu; Pan, Caofeng

    2016-09-01

    Optically pumped ultraviolet lasing at room temperature based on GaN microwire arrays with Fabry–Perot cavities is demonstrated. GaN microwires have been grown perpendicularly on c-GaN/sapphire substrates through simple catalyst-free chemical vapor deposition. The GaN microwires are [0001] oriented single-crystal structures with hexagonal cross sections, each with a diameter of ∼1 μm and a length of ∼15 μm. A possible growth mechanism of the vertical GaN microwire arrays is proposed. Furthermore, we report room-temperature lasing in optically pumped GaN microwire arrays based on the Fabry–Perot cavity. Photoluminescence spectra exhibit lasing typically at 372 nm with an excitation threshold of 410 kW cm‑2. The result indicates that these aligned GaN microwire arrays may offer promising prospects for ultraviolet-emitting micro/nanodevices.

  20. Photo-induced Doping in GaN Epilayers with Graphene Quantum Dots.

    PubMed

    Lin, T N; Inciong, M R; Santiago, S R M S; Yeh, T W; Yang, W Y; Yuan, C T; Shen, J L; Kuo, H C; Chiu, C H

    2016-03-18

    We demonstrate a new doping scheme where photo-induced carriers from graphene quantum dots (GQDs) can be injected into GaN and greatly enhance photoluminescence (PL) in GaN epilayers. An 8.3-fold enhancement of PL in GaN is observed after the doping. On the basis of time-resolved PL studies, the PL enhancement is attributed to the carrier transfer from GQDs to GaN. Such a carrier transfer process is caused by the work function difference between GQDs and GaN, which is verified by Kelvin probe measurements. We have also observed that photocurrent in GaN can be enhanced by 23-fold due to photo-induced doping with GQDs. The improved optical and transport properties from photo-induced doping are promising for applications in GaN-based optoelectronic devices.

  1. Enhancing the field emission properties of Se-doped GaN nanowires.

    PubMed

    Li, Enling; Wu, Guishuang; Cui, Zhen; Ma, Deming; Shi, Wei; Wang, Xiaolin

    2016-07-01

    Pure and Se-doped GaN nanowires (NWs) are synthesized on Pt-coated Si(111) substrates via chemical vapor deposition. The GaN NWs exhibit a uniform density with an average diameter of 20-120 nm. The structure of the NWs is wurtzite hexagonal, and the growth direction is along [0001]. Field emission measurements show that the Se-doped GaN NWs possess a low turn-on field (2.9 V μm(-1)) compared with the pure GaN NWs (7.0 V μm(-1)). In addition, density functional theory calculations indicate that the donor states near the Fermi level are mainly formed through the hybridization between Se 4p and N 2p orbitals and that the Fermi level move towards the vacuum level. Consequently, the work functions of Se-doped GaN NWs are lower than those of pure GaN NWs.

  2. Growth of GaN micro/nanolaser arrays by chemical vapor deposition.

    PubMed

    Liu, Haitao; Zhang, Hanlu; Dong, Lin; Zhang, Yingjiu; Pan, Caofeng

    2016-09-01

    Optically pumped ultraviolet lasing at room temperature based on GaN microwire arrays with Fabry-Perot cavities is demonstrated. GaN microwires have been grown perpendicularly on c-GaN/sapphire substrates through simple catalyst-free chemical vapor deposition. The GaN microwires are [0001] oriented single-crystal structures with hexagonal cross sections, each with a diameter of ∼1 μm and a length of ∼15 μm. A possible growth mechanism of the vertical GaN microwire arrays is proposed. Furthermore, we report room-temperature lasing in optically pumped GaN microwire arrays based on the Fabry-Perot cavity. Photoluminescence spectra exhibit lasing typically at 372 nm with an excitation threshold of 410 kW cm(-2). The result indicates that these aligned GaN microwire arrays may offer promising prospects for ultraviolet-emitting micro/nanodevices.

  3. Computational synthesis of single-layer GaN on refractory materials

    SciTech Connect

    Singh, Arunima K.; Hennig, Richard G.

    2014-08-04

    The synthesis of single-layer materials relies on suitable substrates. In this paper, we identify suitable substrates for the stabilization and growth of single-layer GaN and characterize the effect of the substrate on the electronic structure of single-layer GaN. We identify two classes of epitaxial substrates, refractory metal diborides and transition-metal dichalcogenides. We find that the refractory diborides provide epitaxial stabilization for the growth and functionalization of single layer GaN. We show that chemical interactions of single layer GaN with the diboride substrates result in n-type doping of the single-layer GaN. Transition-metal dichalcogenides, on the other hand, although epitaxially matched, cannot provide sufficient thermodynamic stabilization for the growth of single layer GaN. Nonetheless, energy band alignments of GaN/metal chalcogenides show that they make good candidates for heterostructures.

  4. Fabrication and characterization of GaN nanowire doubly clamped resonators

    SciTech Connect

    Maliakkal, Carina B. Mathew, John P.; Hatui, Nirupam; Rahman, A. Azizur; Deshmukh, Mandar M.; Bhattacharya, Arnab

    2015-09-21

    Gallium nitride (GaN) nanowires (NWs) have been intensely researched as building blocks for nanoscale electronic and photonic device applications; however, the mechanical properties of GaN nanostructures have not been explored in detail. The rigidity, thermal stability, and piezoelectric properties of GaN make it an interesting candidate for nano-electromechanical systems. We have fabricated doubly clamped GaN NW electromechanical resonators on sapphire using electron beam lithography and estimated the Young's modulus of GaN from resonance frequency measurements. For wires of triangular cross section with side ∼90 nm, we obtained values for the Young's modulus to be about 218 and 691 GPa, which are of the same order of magnitude as the values reported for bulk GaN. We also discuss the role of residual strain in the nanowire on the resonant frequency and the orientation dependence of the Young's modulus in wurtzite crystals.

  5. Enhancing the field emission properties of Se-doped GaN nanowires

    NASA Astrophysics Data System (ADS)

    Li, Enling; Wu, Guishuang; Cui, Zhen; Ma, Deming; Shi, Wei; Wang, Xiaolin

    2016-07-01

    Pure and Se-doped GaN nanowires (NWs) are synthesized on Pt-coated Si(111) substrates via chemical vapor deposition. The GaN NWs exhibit a uniform density with an average diameter of 20–120 nm. The structure of the NWs is wurtzite hexagonal, and the growth direction is along [0001]. Field emission measurements show that the Se-doped GaN NWs possess a low turn-on field (2.9 V μm‑1) compared with the pure GaN NWs (7.0 V μm‑1). In addition, density functional theory calculations indicate that the donor states near the Fermi level are mainly formed through the hybridization between Se 4p and N 2p orbitals and that the Fermi level move towards the vacuum level. Consequently, the work functions of Se-doped GaN NWs are lower than those of pure GaN NWs.

  6. Growth of GaN micro/nanolaser arrays by chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Liu, Haitao; Zhang, Hanlu; Dong, Lin; Zhang, Yingjiu; Pan, Caofeng

    2016-09-01

    Optically pumped ultraviolet lasing at room temperature based on GaN microwire arrays with Fabry-Perot cavities is demonstrated. GaN microwires have been grown perpendicularly on c-GaN/sapphire substrates through simple catalyst-free chemical vapor deposition. The GaN microwires are [0001] oriented single-crystal structures with hexagonal cross sections, each with a diameter of ˜1 μm and a length of ˜15 μm. A possible growth mechanism of the vertical GaN microwire arrays is proposed. Furthermore, we report room-temperature lasing in optically pumped GaN microwire arrays based on the Fabry-Perot cavity. Photoluminescence spectra exhibit lasing typically at 372 nm with an excitation threshold of 410 kW cm-2. The result indicates that these aligned GaN microwire arrays may offer promising prospects for ultraviolet-emitting micro/nanodevices.

  7. Fabrication and characterization of GaN nanowire doubly clamped resonators

    NASA Astrophysics Data System (ADS)

    Maliakkal, Carina B.; Mathew, John P.; Hatui, Nirupam; Rahman, A. Azizur; Deshmukh, Mandar M.; Bhattacharya, Arnab

    2015-09-01

    Gallium nitride (GaN) nanowires (NWs) have been intensely researched as building blocks for nanoscale electronic and photonic device applications; however, the mechanical properties of GaN nanostructures have not been explored in detail. The rigidity, thermal stability, and piezoelectric properties of GaN make it an interesting candidate for nano-electromechanical systems. We have fabricated doubly clamped GaN NW electromechanical resonators on sapphire using electron beam lithography and estimated the Young's modulus of GaN from resonance frequency measurements. For wires of triangular cross section with side ˜90 nm, we obtained values for the Young's modulus to be about 218 and 691 GPa, which are of the same order of magnitude as the values reported for bulk GaN. We also discuss the role of residual strain in the nanowire on the resonant frequency and the orientation dependence of the Young's modulus in wurtzite crystals.

  8. Study of radiation detection properties of GaN pn diode

    NASA Astrophysics Data System (ADS)

    Sugiura, Mutsuhito; Kushimoto, Maki; Mitsunari, Tadashi; Yamashita, Kohei; Honda, Yoshio; Amano, Hiroshi; Inoue, Yoku; Mimura, Hidenori; Aoki, Toru; Nakano, Takayuki

    2016-05-01

    Recently, GaN, which has remarkable properties as a material for optical devices and high-power electron devices, has also attracted attention as a material for radiation detectors. We previously suggested the use of BGaN as a neutron detector material. However, the radiation detection characteristics of GaN itself are not yet adequately understood. For realizing a BGaN neutron detector, the understanding of the radiation detection characteristics of GaN, which is a base material of the neutron detector, is important. In this study, we evaluated the radiation detection characteristics of GaN. We performed I-V and energy spectrum measurements under alpha ray, gamma ray, and thermal neutron irradiations to characterize the radiation detection characteristics of a GaN diode. The obtained results indicate that GaN is an effective material for our proposed new BGaN-based neutron detector.

  9. Photo-induced Doping in GaN Epilayers with Graphene Quantum Dots

    PubMed Central

    Lin, T. N.; Inciong, M. R.; Santiago, S. R. M. S.; Yeh, T. W.; Yang, W. Y.; Yuan, C. T.; Shen, J. L.; Kuo, H. C.; Chiu, C. H.

    2016-01-01

    We demonstrate a new doping scheme where photo-induced carriers from graphene quantum dots (GQDs) can be injected into GaN and greatly enhance photoluminescence (PL) in GaN epilayers. An 8.3-fold enhancement of PL in GaN is observed after the doping. On the basis of time-resolved PL studies, the PL enhancement is attributed to the carrier transfer from GQDs to GaN. Such a carrier transfer process is caused by the work function difference between GQDs and GaN, which is verified by Kelvin probe measurements. We have also observed that photocurrent in GaN can be enhanced by 23-fold due to photo-induced doping with GQDs. The improved optical and transport properties from photo-induced doping are promising for applications in GaN-based optoelectronic devices. PMID:26987403

  10. Direct growth of freestanding GaN on C-face SiC by HVPE

    PubMed Central

    Tian, Yuan; Shao, Yongliang; Wu, Yongzhong; Hao, Xiaopeng; Zhang, Lei; Dai, Yuanbin; Huo, Qin

    2015-01-01

    In this work, high quality GaN crystal was successfully grown on C-face 6H-SiC by HVPE using a two steps growth process. Due to the small interaction stress between the GaN and the SiC substrate, the GaN was self-separated from the SiC substrate even with a small thickness of about 100 μm. Moreover, the SiC substrate was excellent without damage after the whole process so that it can be repeatedly used in the GaN growth. Hot phosphoric acid etching (at 240 °C for 30 min) was employed to identify the polarity of the GaN layer. According to the etching results, the obtained layer was Ga-polar GaN. High-resolution X-ray diffraction (HRXRD) and electron backscatter diffraction (EBSD) were done to characterize the quality of the freestanding GaN. The Raman measurements showed that the freestanding GaN film grown on the C-face 6H-SiC was stress-free. The optical properties of the freestanding GaN layer were determined by photoluminescence (PL) spectra. PMID:26034939

  11. Si in GaN -- On the nature of the background donor

    SciTech Connect

    Wetzel, C.; Chen, A.L.; Suski, T.; Ager, J.W. III; Walukiewicz, W.

    1996-08-01

    A characterization of the Si impurity in GaN is performed by Raman spectroscopy. Applying hydrostatic pressure up to 25 GPa the authors study the behavior of the LO phonon-plasmon mode in a series of high mobility Si doped GaN films. In contrast to earlier results on unintentionally doped bulk GaN crystals no freeze out of the free carriers could be observed in Si doped samples. The authors find that Si is a shallow hydrogenic donor throughout the pressure range studied. This result positively excludes Si incorporation as a dominant source of free electrons in previously studied bulk GaN samples.

  12. Direct growth of freestanding GaN on C-face SiC by HVPE.

    PubMed

    Tian, Yuan; Shao, Yongliang; Wu, Yongzhong; Hao, Xiaopeng; Zhang, Lei; Dai, Yuanbin; Huo, Qin

    2015-06-02

    In this work, high quality GaN crystal was successfully grown on C-face 6H-SiC by HVPE using a two steps growth process. Due to the small interaction stress between the GaN and the SiC substrate, the GaN was self-separated from the SiC substrate even with a small thickness of about 100 μm. Moreover, the SiC substrate was excellent without damage after the whole process so that it can be repeatedly used in the GaN growth. Hot phosphoric acid etching (at 240 °C for 30 min) was employed to identify the polarity of the GaN layer. According to the etching results, the obtained layer was Ga-polar GaN. High-resolution X-ray diffraction (HRXRD) and electron backscatter diffraction (EBSD) were done to characterize the quality of the freestanding GaN. The Raman measurements showed that the freestanding GaN film grown on the C-face 6H-SiC was stress-free. The optical properties of the freestanding GaN layer were determined by photoluminescence (PL) spectra.

  13. Optical and field emission properties of layer-structure GaN nanowires

    SciTech Connect

    Cui, Zhen; Li, Enling; Shi, Wei; Ma, Deming

    2014-08-15

    Highlights: • The layer-structure GaN nanowires with hexagonal-shaped cross-sections are produced via a process based on the CVD method. • The diameter of the layer-structure GaN nanowire gradually decreases from ∼500 nm to ∼200 nm along the wire axis. • The layer-structure GaN nanowire film possesses good field emission property. - Abstract: A layer-structure gallium nitride (GaN) nanowires, grown on Pt-coated n-type Si (1 1 1) substrate, have been synthesized using chemical vapor deposition (CVD). The results show: (1) SEM indicates that the geometry structure is layer-structure. HRTEM indicates that GaN nanowire’s preferential growth direction is along [0 0 1] direction. (2) The room temperature PL emission spectrum of the layer-structure GaN nanowires has a peak at 375 nm, which proves that GaN nanowires have potential application in light-emitting nano-devices. (3) Field-emission measurements show that the layer-structure GaN nanowires film has a low turn-on field of 4.39 V/μm (at room temperature), which is sufficient for electron emission devices, field emission displays and vacuum nano-electronic devices. The growth mechanism for GaN nanowires has also been discussed briefly.

  14. Dislocation-induced nanoparticle decoration on a GaN nanowire.

    PubMed

    Yang, Bing; Yuan, Fang; Liu, Qingyun; Huang, Nan; Qiu, Jianhang; Staedler, Thorsten; Liu, Baodan; Jiang, Xin

    2015-02-01

    GaN nanowires with homoepitaxial decorated GaN nanoparticles on their surface along the radial direction have been synthesized by means of a chemical vapor deposition method. The growth of GaN nanowires is catalyzed by Au particles via the vapor-liquid-solid (VLS) mechanism. Screw dislocations are generated along the radial direction of the nanowires under slight Zn doping. In contrast to the metal-catalyst-assisted VLS growth, GaN nanoparticles are found to prefer to nucleate and grow at these dislocation sites. High-resolution transmission electron microscopy (HRTEM) analysis demonstrates that the GaN nanoparticles possess two types of epitaxial orientation with respect to the corresponding GaN nanowire: (I) [1̅21̅0]np//[1̅21̅0]nw, (0001)np//(0001)nw; (II) [1̅21̅3]np//[12̅10]nw, (101̅0)np//(101̅0)nw. An increased Ga signal in the energy-dispersive spectroscopy (EDS) profile lines of the nanowires suggests GaN nanoparticle growth at the edge surface of the wires. All the crystallographic results confirm the importance of the dislocations with respect to the homoepitaxial growth of the GaN nanoparticles. Here, screw dislocations situated on the (0001) plane provide the self-step source to enable nucleation of the GaN nanoparticles.

  15. Structural defects in GaN revealed by Transmission Electron Microscopy

    SciTech Connect

    Liliental-Weber, Zuzanna

    2014-09-08

    This paper reviews the various types of structural defects observed by Transmission Electron Microscopy in GaN heteroepitaxial layers grown on foreign substrates and homoepitaxial layers grown on bulk GaN substrates. The structural perfection of these layers is compared to the platelet self-standing crystals grown by High Nitrogen Pressure Solution. Defects in undoped and Mg doped GaN are discussed. Lastly, some models explaining the formation of inversion domains in heavily Mg doped layers that are possible defects responsible for the difficulties of p-doping in GaN are also reviewed.

  16. Spontaneous nucleation and growth of GaN nanowires: the fundamental role of crystal polarity.

    PubMed

    Fernández-Garrido, Sergio; Kong, Xiang; Gotschke, Tobias; Calarco, Raffaella; Geelhaar, Lutz; Trampert, Achim; Brandt, Oliver

    2012-12-12

    We experimentally investigate whether crystal polarity affects the growth of GaN nanowires in plasma-assisted molecular beam epitaxy and whether their formation has to be induced by defects. For this purpose, we prepare smooth and coherently strained AlN layers on 6H-SiC(0001) and SiC(0001̅) substrates to ensure a well-defined polarity and an absence of structural and morphological defects. On N-polar AlN, a homogeneous and dense N-polar GaN nanowire array forms, evidencing that GaN nanowires form spontaneously in the absence of defects. On Al-polar AlN, we do not observe the formation of Ga-polar GaN NWs. Instead, sparse N-polar GaN nanowires grow embedded in a Ga-polar GaN layer. These N-polar GaN nanowires are shown to be accidental in that the necessary polarity inversion is induced by the formation of Si(x)N. The present findings thus demonstrate that spontaneously formed GaN nanowires are irrevocably N-polar. Due to the strong impact of the polarity on the properties of GaN-based devices, these results are not only essential to understand the spontaneous formation of GaN nanowires but also of high technological relevance.

  17. Self-induced GaN nanowire growth: surface density determination

    NASA Astrophysics Data System (ADS)

    Koryakin, A. A.; Repetun, L.; Sibirev, N. V.; Dubrovskii, V. G.

    2016-08-01

    A new numerical approach for the determination of the GaN nanowire surface density on an AlN/Si substrate as a function of the growth time and gallium flux is presented. Within this approach, the GaN island solid-like coalescence and island-nanowire transition are modeled by the Monte-Carlo method. We show the importance of taking into consideration the island coalescence for explaining that the maximum of GaN island surface density is several times larger than the maximum of GaN nanowire surface density. Also, we find that the nanowire surface density decreases with an increase of the gallium flux.

  18. Partial strain relaxation effects on polarization anisotropy of semipolar (112{sup ¯}2) InGaN/GaN quantum well structures

    SciTech Connect

    Park, Seoung-Hwan; Mishra, Dhaneshwar; Eugene Pak, Y.; Young Park, Chang; Yoo, Seung-Hyun; Cho, Yong-Hee; Shim, Mun-Bo; Hwang, Sangheum; Kim, Sungjin

    2013-11-25

    Partial strain relaxation effects on polarization anisotropy of semipolar (112{sup ¯}2) InGaN/GaN quantum well (QW) structures were investigated using the multiband effective-mass theory. In the case of strain relaxation of ϵ{sub x′x′} along x′-axis, the polarization ratio gradually decreases with increasing strain relaxation. Also, with the strain relaxation by the same amount, the variation of the polarization ratio along x′-axis is shown to be much larger than that along y′-axis. However, the polarization switching is not observed even at a high In composition of 0.4 due to a small strain component (ϵ{sub x′x′}{sup 0}) with no strain relaxation. On the other hand, in the case of strain relaxation of ϵ{sub y′y′} along y′-axis, the polarization switching is observed, and the optical anisotropy is found to change from positive to negative with increasing strain relaxation. Also, the absolute value of the polarization ratio gradually decreases with increasing carrier density. However, the polarization switching due to the carrier density is not observed. Thus, the polarization switching observed at high carrier density may be attributed to inhomogeneous strain distribution in the InGaN layer.

  19. Silicon doping of semipolar (11 2 bar 2)Alx Ga1-x N (0.50 ≤ x ≤ 0.55)

    NASA Astrophysics Data System (ADS)

    Dinh, Duc V.; Pampili, Pietro; Parbrook, Peter J.

    2016-10-01

    The effect of silicon doping on the growth and properties of ∼ 1.0 μm-thick Alx Ga1-x N(0.50 ≤ x ≤ 0.55) layers grown on semipolar (11 2 bar 2) AlN templates by metalorganic vapour phase epitaxy was studied. The layers were grown with different disilane/group-III precursors ratios that varied from 2.8×10-5 to 3.4×10-4. The surface morphology of the Si-doped (11 2 bar 2) AlGaN layers showed undulations along [ 1 1 bar 00 ] AlGaN , AlN with a root-mean square roughness of about 4.0 nm within a scan range of 20 × 20 μm2 . Different photoluminescence peaks have been linked to negatively charged cation vacancies (VIII3-) and their complexes with impurities such as VIII3- - 3ON1+, (VIII complex)1-, and (VIII complex)2-. The optimised AlGaN:Si layer exhibited a carrier concentration of ∼1.2×1019 cm-3, a carrier mobility of 30.7 cm2/V s, and a resistivity of 0.018 Ω cm , as determined by Hall-effect measurements at room temperature. A correlation between the resistivity and luminescence emission intensities of AlGaN near-band-edge and impurity-related complexes was found.

  20. High spatial uniformity of photoluminescence spectra in semipolar (202{sup ¯}1) plane InGaN/GaN quantum wells

    SciTech Connect

    Gelžinytė, K.; Ivanov, R.; Marcinkevičius, S.; Zhao, Y.; Becerra, D. L.; Nakamura, S.; DenBaars, S. P.; Speck, J. S.

    2015-01-14

    Scanning near-field optical spectroscopy was applied to study spatial variations of emission spectra at room temperature in semipolar (202{sup ¯}1) In{sub x}Ga{sub 1−x}N/GaN single quantum wells (QWs) for 0.11≤x≤0.36. Photoluminescence (PL) was found to be highly uniform, with peak wavelength deviations and peak intensity deviations divided by average values in the range of 6–12 meV and 0.03–0.07, respectively. Near-field maps of PL parameters showed large, ∼5 to 10 μm size areas of similar values, as opposed to 100 nm scale variations, often reported for InGaN QWs. The near-field PL spectra were found to broaden with increasing InN molar fraction. In the low In content QWs, the broadening is primarily determined by the random cation distribution, while for larger InN molar fractions 10 nm scale localization sites with increasingly deeper band potentials are suggested as the linewidth broadening cause.

  1. UV-photoassisted etching of GaN in KOH

    SciTech Connect

    Cho, H.; Donovan, S.M.; Abernathy, C.R.; Lambers, E.S.; Pearton, S.J.; Auh, K.H.; Han, J.; Shul, R.J.

    1999-03-01

    The etch rate of GaN under ultraviolet-assisted photoelectrochemical conditions in KOH solutions is found to be a strong function of illumination intensity, solution molarity, sample bias, and material doping level. At low e-h pair generation rates, grain boundaries are selectively etched, while at higher illumination intensities etch rates for unintentionally doped (n {approximately} 3 {times} 10{sup 16} cm{sup {minus}3}) GaN are {ge} 1,000 {angstrom} {center_dot} min{sup {minus}1}. The etching is diffusion-limited under the conditions with an activation energy of {approximately} 0.8 kCal{center_dot}mol{sup {minus}1}. The etched surfaces are rough, but retain their stoichiometry.

  2. Status of GaN HEMT performance and reliability

    NASA Astrophysics Data System (ADS)

    Green, Daniel S.; Brown, J. D.; Vetury, R.; Lee, S.; Gibb, S. R.; Krishnamurthy, K.; Poulton, M. J.; Martin, J.; Shealy, J. B.

    2008-02-01

    This report will focus on the status of GaN HEMT based amplifier technology development at RFMD. This technology is based around GaN on semi-insulating SiC substrates for optimal thermal performance. RFMD's 0.5μm gate technology features high performance advanced field plate structures, including a unit power cell producing high gain (21dB), high power density (3-5W/mm at 28V) and high efficiency (65-70 percent) at cellular frequencies. We will report on transistor and module performance relevant to applications ranging from high power, high bandwidth amplifiers, to switches and ICs for radar, electronic warfare, cellular infrastructure and homeland security. Additionally, we will report on reliability results that demonstrate capability for dependable, high voltage operation.

  3. GaN UV detectors for protein studies

    NASA Astrophysics Data System (ADS)

    Grant, J.; Bates, R.; Cunningham, W.; Blue, A.; Melone, J.; McEwan, F.; Manolopoulos, S.; O'Shea, V.

    2006-07-01

    GaN and its ternary alloy AlGaN have been investigated as UV detector materials for applications in protein structure studies. Interdigitated metal-semiconductor-metal (MSM) finger photodiodes, with finger spacings/widths of 5 and 10 μm, were successfully fabricated on six different GaN/AlGaN materials. Current-Voltage ( I- V) characteristics and spectral response measurements were made on completed devices. The results showed negligible difference in performance between the 5 μm finger spacing/width diode design and the 10 μm finger spacing/width diode design. Using these results, a 46 channel diode array, with a finger spacing/width of 10 μm, was successfully fabricated on 2.5 μm thick epitaxial GaN. This 46 channel diode array will be used in a protein structure experiment at the Daresbury SRS.

  4. ITON Schottky contacts for GaN based UV photodetectors

    NASA Astrophysics Data System (ADS)

    Vanhove, N.; John, J.; Lorenz, A.; Cheng, K.; Borghs, G.; Haverkort, J. E. M.

    2006-12-01

    Lateral Schottky ultraviolet detectors were fabricated in GaN using indium-tin-oxynitride (ITON) as a contact metal. The GaN semiconductor material was grown on 2 in. sapphire substrate by metal-organic chemical vapor deposition (MOCVD). The Schottky contact has been realized using ITON that has been deposited using sputter techniques. I- V characteristics have been measured with and without UV illumination. The device shows photo-to-dark current ratios of 10 3 at -1 V bias. The spectral responsivity of the UV detectors has been determined. The high spectral responsivity of more than 30 A/W at 240 nm is explained by a high internal gain caused by generation-recombination centers at the ITON/GaN interface. Persistent photocurrent effect has been observed in UV light (on-off) switching operation, time constant and electron capture coefficient of the transition has been determined.

  5. Thermal functionalization of GaN surfaces with 1-alkenes.

    PubMed

    Schwarz, Stefan U; Cimalla, Volker; Eichapfel, Georg; Himmerlich, Marcel; Krischok, Stefan; Ambacher, Oliver

    2013-05-28

    A thermally induced functionalization process for gallium nitride surfaces with 1-alkenes is introduced. The resulting functionalization layers are characterized with atomic force microscopy and X-ray photoelectron spectroscopy and compared to reference samples without and with a photochemically generated functionalization layer. The resulting layers show very promising characteristics as functionalization for GaN based biosensors. On the basis of the experimental results, important characteristics of the functionalization layers are estimated and a possible chemical reaction scheme is proposed. PMID:23617559

  6. Photoluminescence of ion-implanted GaN

    NASA Technical Reports Server (NTRS)

    Pankove, J. I.; Hutchby, J. A.

    1976-01-01

    Thirty-five elements were implanted in GaN. Their photoluminescence spectra were measured and compared to those of an unimplanted control sample. Most impurities emit a peak at about 2.15 eV. Mg, Zn, Cd, Ca, As, Hg, and Ag have more characteristic emissions. Zn provides the most efficient recombination center. A set of midgap states is generated during the damage-annealing treatment.

  7. Optical properties of Yb ions in GaN epilayer

    NASA Astrophysics Data System (ADS)

    Jadwisienczak, W. M.; Lozykowski, H. J.

    2003-07-01

    In recent years, an important effort in semiconductor materials research has been devoted to III-nitrides semiconductors doped with rare earth ions due to the high potential of these materials in light-emitting device applications. Ytterbium (Yb 3+) is one of a few lanthanide ions which have not been investigated as an optically active center in these materials yet. In this paper we report the observation of luminescence from GaN films grown on sapphire (0 0 0 1) substrate by metal organic chemical vapor deposition and doped by implantation with Yb 3+ ions. The high resolution photo- and cathodoluminescence spectra of GaN:Yb 3+ were studied at different excitation conditions in temperatures ranging from 8 to 330 K and revealed weak thermal quenching. The luminescence emission lines are assigned to transitions between the spin-orbit levels 2F 5/2 → 2F 7/2 of Yb 3+ (4f 13). The analysis of the Yb luminescence spectra allowed us to suggest the energy level diagram of the crystal-field-split 4f 13 levels for the Yb ion center. The most probable lattice location of Yb in GaN is the substitutional Ga site. Furthermore, the luminescence kinetics of internal transitions of Yb 3+ incorporated in GaN was investigated by means of decay and time-resolved luminescence measurements. It was found that the ytterbium decay is non-exponential with dominant exponential term of ˜100 μs with little dependence on the ambient temperature. The results indicate that Yb-doped GaN epilayer may be suitable as a material for near infrared optoelectronic devices.

  8. TOPICAL REVIEW: Polar and nonpolar GaN quantum dots

    NASA Astrophysics Data System (ADS)

    Daudin, Bruno

    2008-11-01

    Growth, structural and optical properties of GaN quantum dots are reviewed, with a special emphasis on plasma-assisted molecular beam epitaxy. The versatility of this technique makes it particularly adapted to growth of quantum dots, either polar (c-plane) or nonpolar (a-plane and m-plane). After describing in detail the growth process and analyzing the morphology of the dots, we review the optical properties of these nanostructures and discuss the properties of single dots.

  9. UV-Photoassisted Etching of GaN in KOH

    SciTech Connect

    Abernathy, C.R.; Auh, K.H.; Cho, H.; Donovan, S.M.; Han, J.; Lambers, E.S.; Pearton, S.J.; Ren F.; Shul, R.J.

    1998-11-12

    The etch rate of GaN under W-assisted photoelectrochemical conditions in KOH solutions is found to be a strong function of illumination intensity, solution molarity, sample bias and material doping level. At low e-h pair generation rates, grain boundaries are selectively etched, while at higher illumination intensities etch rates for unintentionally doped (n - 3x 10^12Gcm-3) GaN are 2 1000 .min-l. The etching is diffusion limited under our conditions with an activation energy of - 0.8kCal.mol-1. The etched surfaces are rough, but retain their stoichiometry. PEC etching is found to selectively reveal grain boundaries in GaN under low light illumination conditions. At high lamp powers the rates increase with sample temperature and the application of bias to the PEC cell, while they go through a maximum with KOH solution molarity. The etching is diffusion-limited, producing rough surface morphologies that are suitable in a limited number of device fabrication steps. The surfaces however appear to remain relatively close to their stoichiometric composition.

  10. Magnesium diffusion profile in GaN grown by MOVPE

    NASA Astrophysics Data System (ADS)

    Benzarti, Z.; Halidou, I.; Bougrioua, Z.; Boufaden, T.; El Jani, B.

    2008-07-01

    The diffusion of magnesium has been studied in GaN layers grown on sapphire substrate by atmospheric pressure metalorganic vapor-phase-epitaxy (MOVPE) in a "home-made" reactor. Secondary Ion Mass Spectroscopy (SIMS) was used to visualise the Mg profiles in two kinds of multi-sublayer GaN structures. One structure was grown with a variable flow of Ga precursor (TMG) and the second one with a variable growth temperature. In both cases, the Mg dopant precursor (Cp 2Mg) flow was kept constant. Using the second Fick's law to fit the experimental SIMS data, we have deduced an increasing then a saturating Mg diffusion coefficient versus the Mg concentration. Mg incorporation was found to get higher for lower growth rate, i.e. when TMG flow is reduced. Furthermore, based on the temperature-related behaviour we have found that the activation energy for Mg diffusion coefficient in GaN was 1.9 eV. It is suggested that Mg diffuses via substitutional sites.

  11. Metal contacts on ZnSe and GaN

    SciTech Connect

    Duxstad, K J

    1997-05-01

    Recently, considerable interest has been focused on the development of blue light emitting materials and devices. The focus has been on GaN and ZnSe, direct band gap semiconductors with bands gaps of 3.4 and 2.6 eV, respectively. To have efficient, reliable devices it is necessary to have thermally and electrically stable Ohmic contacts. This requires knowledge of the metal-semiconductor reaction behavior. To date few studies have investigated this behavior. Much information has accumulated over the years on the behavior of metals on Si and GaAs. This thesis provides new knowledge for the more ionic wide band gap semiconductors. The initial reaction temperatures, first phases formed, and phase stability of Pt, Pd, and Ni on both semiconductors were investigated. The reactions of these metals on ZnSe and GaN are discussed in detail and correlated with predicted behavior. In addition, comparisons are made between these highly ionic semiconductors and Si and GaAs. The trends observed here should also be applicable to other II-VI and III-Nitride semiconductor systems, while the information on phase formation and stability should be useful in the development of contacts for ZnSe and GaN devices.

  12. Dislocation core structures in Si-doped GaN

    SciTech Connect

    Rhode, S. L. Fu, W. Y.; Sahonta, S.-L.; Kappers, M. J.; Humphreys, C. J.; Horton, M. K.; Pennycook, T. J.; Dusane, R. O.; Moram, M. A.

    2015-12-14

    Aberration-corrected scanning transmission electron microscopy was used to investigate the core structures of threading dislocations in plan-view geometry of GaN films with a range of Si-doping levels and dislocation densities ranging between (5 ± 1) × 10{sup 8} and (10 ± 1) × 10{sup 9} cm{sup −2}. All a-type (edge) dislocation core structures in all samples formed 5/7-atom ring core structures, whereas all (a + c)-type (mixed) dislocations formed either double 5/6-atom, dissociated 7/4/8/4/9-atom, or dissociated 7/4/8/4/8/4/9-atom core structures. This shows that Si-doping does not affect threading dislocation core structures in GaN. However, electron beam damage at 300 keV produces 4-atom ring structures for (a + c)-type cores in Si-doped GaN.

  13. Epitaxially-Grown GaN Junction Field Effect Transistors

    SciTech Connect

    Baca, A.G.; Chang, P.C.; Denbaars, S.P.; Lester, L.F.; Mishra, U.K.; Shul, R.J.; Willison, C.G.; Zhang, L.; Zolper, J.C.

    1999-05-19

    Junction field effect transistors (JFET) are fabricated on a GaN epitaxial structure grown by metal organic chemical vapor deposition (MOCVD). The DC and microwave characteristics of the device are presented. A junction breakdown voltage of 56 V is obtained corresponding to the theoretical limit of the breakdown field in GaN for the doping levels used. A maximum extrinsic transconductance (gm) of 48 mS/mm and a maximum source-drain current of 270 mA/mm are achieved on a 0.8 µ m gate JFET device at VGS= 1 V and VDS=15 V. The intrinsic transconductance, calculated from the measured gm and the source series resistance, is 81 mS/mm. The fT and fmax for these devices are 6 GHz and 12 GHz, respectively. These JFETs exhibit a significant current reduction after a high drain bias is applied, which is attributed to a partially depleted channel caused by trapped hot-electrons in the semi-insulating GaN buffer layer. A theoretical model describing the current collapse is described, and an estimate for the length of the trapped electron region is given.

  14. 7 CFR 11.22 - Functions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Director for Planning, Training, and Quality Control. Responsible for NAD strategic planning, including the.... (a) Director. Provides executive direction for NAD. The Director is responsible for developing and... appeals filed by individuals or entities in accordance with subpart A of this part. The Director...

  15. 37 CFR 11.22 - Disciplinary investigations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Disciplinary investigations. (a) The OED Director is authorized to investigate possible grounds for discipline... from any source suggesting possible grounds for discipline. Neither unwillingness nor neglect by a... concerning possible grounds for discipline of a practitioner may report the information or evidence to...

  16. 37 CFR 11.22 - Investigations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) The OED Director is authorized to investigate possible grounds for discipline. An investigation may be... possible grounds for discipline. Neither unwillingness nor neglect by a grievant to prosecute a charge, nor... investigation. (b) Any person possessing information or evidence concerning possible grounds for discipline of...

  17. Structure and electronic properties of GaN tubelike clusters and single-walled GaN nanotubes

    NASA Astrophysics Data System (ADS)

    Liu, Liren; Zou, Yanbo; Zhu, Hengjiang

    2015-06-01

    Extensive studies of the geometric structures, stabilities and electronic properties of gallium nitride (GaN)n tubelike clusters and single-walled GaN nanotubes (GaNNTs) were carried out using density-functional theory (DFT) calculations. A family of stable tubelike structures with Ga-N alternating arrangement was observed when n≥8 and their structural units (four-membered rings (4MRs) and six-membered rings (6MRs)) obey the general developing formula. The size-dependent properties of the frontier molecular orbital surfaces explain why the long and stable tubelike clusters can be obtained successfully. They also illustrate the reason why GaNNTs can be synthesized experimentally. Our results also reveal that the single-walled GaNNTs, which as semiconductors with a large bandgap, can be prepared by using the proper assembly of tubelike clusters.

  18. Flexible GaN Light-Emitting Diodes Using GaN Microdisks Epitaxial Laterally Overgrown on Graphene Dots.

    PubMed

    Chung, Kunook; Yoo, Hyobin; Hyun, Jerome K; Oh, Hongseok; Tchoe, Youngbin; Lee, Keundong; Baek, Hyeonjun; Kim, Miyoung; Yi, Gyu-Chul

    2016-09-01

    The epitaxial lateral overgrowth (ELOG) of GaN microdisks on graphene microdots and the fabrication of flexible light-emitting diodes (LEDs) using these microdisks is reported. An ELOG technique with only patterned graphene microdots is used, without any growth mask. The discrete micro-LED arrays are transferred onto Cu foil by a simple lift-off technique, which works reliably under various bending conditions. PMID:27346527

  19. Multi-wavelength emitting InGan/GaN quantum well grown on V-shaped gan(1101) microfacet.

    PubMed

    Kang, Eun-Sil; Ju, Jin-Woo; Kim, Jin Soo; Ahn, Haeng-Keun; Lee, June Key; Kim, Jin Hyeok; Shin, Dong-Chan; Lee, In-Hwan

    2007-11-01

    InGaN/GaN multiple quantum wells (MQWs) were successfully grown on the inclined GaN(1101) microfacets. Conventional photolithography and subsequent growth of GaN were employed to generate the V-shaped microfacets along (1120) direction. The well-developed microfacets observed by scanning electron microscopy and the clear transmission electron microscope interfacial images indicated that the MQW was successfully grown on the GaN microfacets. Interestingly, cathodoluminescence (CL) spectra measured on the microfacets showed a continuous change in the luminescence peak positions. The CL peaks were shifted to a longer wavelength from 420 nm to 440 nm as the probing points were changed along upward direction. This could be attributed to the nonuniform distribution of the In composition and/or the wavefunction overlapping between adjacent wells. Present works thus propose a novel route to fabricate a monolithic white light emitting diode without phosphors by growing the InGaN/GaN MQWs on (1101) facet.

  20. Nanoheteroepitaxy of GaN on AlN/Si(111) nanorods fabricated by nanosphere lithography

    NASA Astrophysics Data System (ADS)

    Lee, Donghyun; Shin, In-Su; Jin, Lu; Kim, Donghyun; Park, Yongjo; Yoon, Euijoon

    2016-06-01

    Nanoheteroepitaxy (NHE) of GaN on an AlN/Si(111) nanorod structure was investigated by metal-organic chemical vapor deposition. Silica nanosphere lithography was employed to fabricate a periodic hexagonal nanorod array with a narrow gap of 30 nm between the nanorods. We were successful in obtaining a fully coalesced GaN film on the AlN/Si(111) nanorod structure. Transmission electron microscopy revealed that threading dislocation (TD) bending and termination by stacking faults occurred near the interface between GaN and the AlN/Si(111) nanorods, resulting in the reduction of TD density for the NHE GaN layer. The full width at half-maximum of the X-ray rocking curve for (102) plane of the NHE GaN was found to decrease down to 728 arcsec from 1005 arcsec for the GaN layer on a planar AlN/Si(111) substrate, indicating that the crystalline quality of the NHE GaN was improved. Also, micro-Raman measurement showed that tensile stress in the NHE GaN layer was reduced significantly as much as 70% by introducing air voids between the nanorods.

  1. Structural effects of field emission from GaN nanofilms on SiC substrates

    SciTech Connect

    Chen, Cheng-Cheng; Wang, Ru-Zhi Zhu, Man-Kang; Yan, Hui; Liu, Peng; Wang, Bi-Ben

    2014-04-21

    GaN nanofilms (NFs) with different structures are grown on SiC substrates by pulsed laser deposition under different conditions. The synthesized GaN NFs are studied by X-ray diffraction, field-emission (FE) scanning electron microscopy, X-ray photoelectron spectroscopy, and atomic force microscopy. The GaN NFs are composed of diversified GaN nanoparticles with a diameter of 9–38 nm, thickness of 10–50 nm, and roughness of 0.22–13.03 nm. FE from the GaN NFs is structure dependent, which is explained by stress changing the band gap of the NFs. By structure modulation, the turn-on field of GaN NFs can be as low as 0.66 V/μm at a current density of 1 μA/cm{sup 2}, with a current density of up to 1.1 mA/cm{sup 2} at a field of 4.18 V/μm. Fowler-Nordheim curves of some samples contain multiple straight lines, which originate from the structural change and diversification of GaN nanoparticles under an applied field. Overall, our results suggest that GaN NFs with excellent FE properties can be prepared on SiC substrates, which provides a new route to fabricate high-efficiency FE nanodevices.

  2. Opportunities and challenges in GaN metal organic chemical vapor deposition for electron devices

    NASA Astrophysics Data System (ADS)

    Matsumoto, Koh; Yamaoka, Yuya; Ubukata, Akinori; Arimura, Tadanobu; Piao, Guanxi; Yano, Yoshiki; Tokunaga, Hiroki; Tabuchi, Toshiya

    2016-05-01

    The current situation and next challenge in GaN metal organic chemical vapor deposition (MOCVD) for electron devices of both GaN on Si and GaN on GaN are presented. We have examined the possibility of increasing the growth rate of GaN on 200-mm-diameter Si by using a multiwafer production MOCVD machine, in which the vapor phase parasitic reaction is well controlled. The impact of a high-growth-rate strained-layer-superlattice (SLS) buffer layer is presented in terms of material properties. An SLS growth rate of as high as 3.46 µm/h, which was 73% higher than the current optimum, was demonstrated. As a result, comparable material properties were obtained. Next, a typical result of GaN doped with Si of 1 × 1016 cm-3 grown at the growth rate of 3.7 µm/h is shown. For high-voltage application, we need a thick high-purity GaN drift layer with a low carbon concentration, of less than 1016 cm-3. It is shown that achieving a high growth rate by precise control of the vapor phase reaction is still challenge in GaN MOCVD.

  3. Prospects for the application of GaN power devices in hybrid electric vehicle drive systems

    NASA Astrophysics Data System (ADS)

    Su, Ming; Chen, Chingchi; Rajan, Siddharth

    2013-07-01

    GaN, a wide bandgap semiconductor successfully implemented in optical and high-speed electronic devices, has gained momentum in recent years for power electronics applications. Along with rapid progress in material and device processing technologies, high-voltage transistors over 600 V have been reported by a number of teams worldwide. These advances make GaN highly attractive for the growing market of electrified vehicles, which currently employ bipolar silicon devices in the 600-1200 V class for the traction inverter. However, to capture this billion-dollar power market, GaN has to compete with existing IGBT products and deliver higher performance at comparable or lower cost. This paper reviews key achievements made by the GaN semiconductor industry, requirements of the automotive electric drive system and remaining challenges for GaN power devices to fit in the inverter application of hybrid vehicles.

  4. GaN: From three- to two-dimensional single-layer crystal and its multilayer van der Waals solids

    NASA Astrophysics Data System (ADS)

    Onen, A.; Kecik, D.; Durgun, E.; Ciraci, S.

    2016-02-01

    Three-dimensional (3D) GaN is a III-V compound semiconductor with potential optoelectronic applications. In this paper, starting from 3D GaN in wurtzite and zinc-blende structures, we investigated the mechanical, electronic, and optical properties of the 2D single-layer honeycomb structure of GaN (g -GaN ) and its bilayer, trilayer, and multilayer van der Waals solids using density-functional theory. Based on high-temperature ab initio molecular-dynamics calculations, we first showed that g -GaN can remain stable at high temperature. Then we performed a comparative study to reveal how the physical properties vary with dimensionality. While 3D GaN is a direct-band-gap semiconductor, g -GaN in two dimensions has a relatively wider indirect band gap. Moreover, 2D g -GaN displays a higher Poisson ratio and slightly less charge transfer from cation to anion. In two dimensions, the optical-absorption spectra of 3D crystalline phases are modified dramatically, and their absorption onset energy is blueshifted. We also showed that the physical properties predicted for freestanding g -GaN are preserved when g -GaN is grown on metallic as well as semiconducting substrates. In particular, 3D layered blue phosphorus, being nearly lattice-matched to g -GaN , is found to be an excellent substrate for growing g -GaN . Bilayer, trilayer, and van der Waals crystals can be constructed by a special stacking sequence of g -GaN , and they can display electronic and optical properties that can be controlled by the number of g -GaN layers. In particular, their fundamental band gap decreases and changes from indirect to direct with an increasing number of g -GaN layers.

  5. Fabrication of low-density GaN/AlN quantum dots via GaN thermal decomposition in MOCVD.

    PubMed

    Zhang, Jin; Li, Senlin; Xiong, Hui; Tian, Wu; Li, Yang; Fang, Yanyan; Wu, Zhihao; Dai, Jiangnan; Xu, Jintong; Li, Xiangyang; Chen, Changqing

    2014-01-01

    With an appropriate high anneal temperature under H2 atmosphere, GaN quantum dots (QDs) have been fabricated via GaN thermal decomposition in metal organic chemical vapor deposition (MOCVD). Based on the characterization of atomic force microscopy (AFM), the obtained GaN QDs show good size distribution and have a low density of 2.4 × 10(8) cm(-2). X-ray photoelectron spectroscopy (XPS) analysis demonstrates that the GaN QDs were formed without Ga droplets by thermal decomposition of GaN.

  6. Fabrication of GaN Microporous Structure at a GaN/Sapphire Interface as the Template for Thick-Film GaN Separation Grown by HVPE

    NASA Astrophysics Data System (ADS)

    Chen, Jianli; Cheng, Hongjuan; Zhang, Song; Lan, Feifei; Qi, Chengjun; Xu, Yongkuan; Wang, Zaien; Li, Jing; Lai, Zhanping

    2016-10-01

    In this paper, a microporous structure at the GaN/sapphire interface has been obtained by an electrochemical etching method via a selective etching progress using an as-grown GaN/sapphire wafer grown by metal organic chemical vapor deposition. The as-prepared GaN interfacial microporous structure has been used as a template for the following growth of thick-film GaN crystal by hydride vapor phase epitaxy (HVPE), facilitating the fabrication of a free-standing GaN substrate detached from a sapphire substrate. The evolution of the interfacial microporous structure has been investigated by varying the etching voltages and time, and the formation mechanism of interfacial microporous structure has been discussed in detail as well. Appropriate interfacial microporous structure is beneficial for separating the thick GaN crystal grown by HVPE from sapphire during the cooling down process. The separation that occurred at the place of interfacial microporous can be attributed to the large thermal strain between GaN and sapphire. This work realized the fabrication of a free-standing GaN substrate with high crystal quality and nearly no residual strain.

  7. Features of molecular beam epitaxy of the GaN (0001) and GaN (0001-bar) layers with the use of different methods of activation of nitrogen

    SciTech Connect

    Mizerov, A. M. Jmerik, V. N.; Kaibyshev, V. K.; Komissarova, T. A.; Masalov, S. A.; Ivanov, S. V.

    2009-08-15

    The results of comparative studies of the growth kinetics of the GaN layers of different polarity during ammonia molecular beam epitaxy and plasma-assisted molecular beam epitaxy (PA MBE) of nitrogen with the use of sapphire substrates and GaN(0001-bar)/c-Al{sub 2}O{sub 3} templates grown by gas-phase epitaxy from metalorganic compounds are presented. The possibility is shown of obtaining the GaN layers with an atomically smooth surface during molecular beam epitaxy with plasma activation of nitrogen. For this purpose, it is suggested to carry out the growth in conditions enriched with metal near the mode of formation of the Ga drops at a temperature close to the decomposition temperature of GaN (TS {approx} 760 deg. C). The conclusion is made that an increase in the growth temperature positively affects the structural, optical, and electrical properties of the GaN (0001-bar) layers. A high quality of the GaN (0001) films grown by the PA MBE method at a low temperature of {approx}700 deg. C on the GaN/c-Al{sub 2}O{sub 3} templates is shown.

  8. Wavelength limits for InGaN quantum wells on GaN

    SciTech Connect

    Pristovsek, Markus

    2013-06-17

    The emission wavelength of coherently strained InGaN quantum wells (QW) is limited by the maximum thickness before relaxation starts. For high indium contents x>40% the resulting wavelength decreases because quantum confinement dominates. For low indium content x<40% the electron hole wave function overlap (and hence radiative emission) is strongly reduced with increasing QW thickness due to the quantum confined Stark effect and imposes another limit. This results in a maximum usable emission wavelength at around 600 nm for QWs with 40%-50% indium content. Relaxed InGaN buffer layers could help to push this further, especially on non- and semi-polar orientations.

  9. Visible fiber lasers excited by GaN laser diodes

    NASA Astrophysics Data System (ADS)

    Fujimoto, Yasushi; Nakanishi, Jun; Yamada, Tsuyoshi; Ishii, Osamu; Yamazaki, Masaaki

    2013-07-01

    This paper describes and discusses visible fiber lasers that are excited by GaN laser diodes. One of the attractive points of visible light is that the human eye is sensitive to it between 400 and 700 nm, and therefore we can see applications in display technology. Of course, many other applications exist. First, we briefly review previously developed visible lasers in the gas, liquid, and solid-state phases and describe the history of primary solid-state visible laser research by focusing on rare-earth doped fluoride media, including glasses and crystals, to clarify the differences and the merits of primary solid-state visible lasers. We also demonstrate over 1 W operation of a Pr:WPFG fiber laser due to high-power GaN laser diodes and low-loss optical fibers (0.1 dB/m) made by waterproof fluoride glasses. This new optical fiber glass is based on an AlF3 system fluoride glass, and its waterproof property is much better than the well known fluoride glass of ZBLAN. The configuration of primary visible fiber lasers promises highly efficient, cost-effective, and simple laser systems and will realize visible lasers with photon beam quality and quantity, such as high-power CW or tunable laser systems, compact ultraviolet lasers, and low-cost ultra-short pulse laser systems. We believe that primary visible fiber lasers, especially those excited by GaN laser diodes, will be effective tools for creating the next generation of research and light sources.

  10. GaN Nanowire Devices: Fabrication and Characterization

    NASA Astrophysics Data System (ADS)

    Scott, Reum

    The development of microelectronics in the last 25 years has been characterized by an exponential increase of the bit density in integrated circuits (ICs) with time. Scaling solid-state devices improves cost, performance, and power; as such, it is of particular interest for companies, who gain a market advantage with the latest technology. As a result, the microelectronics industry has driven transistor feature size scaling from 10 μm to ~30 nm during the past 40 years. This trend has persisted for 40 years due to optimization, new processing techniques, device structures, and materials. But when noting processor speeds from the 1970's to 2009 and then again in 2010, the implication would be that the trend has ceased. To address the challenge of shrinking the integrated circuit (IC), current research is centered on identifying new materials and devices that can supplement and/or potentially supplant it. Bottom-up methods tailor nanoscale building blocks---atoms, molecules, quantum dots, and nanowires (NWs)---to be used to overcome these limitations. The Group IIIA nitrides (InN, AlN, and GaN) possess appealing properties such as a direct band gap spanning the whole solar spectrum, high saturation velocity, and high breakdown electric field. As a result nanostructures and nanodevices made from GaN and related nitrides are suitable candidates for efficient nanoscale UV/ visible light emitters, detectors, and gas sensors. To produce devices with such small structures new fabrication methods must be implemented. Devices composed of GaN nanowires were fabricated using photolithography and electron beam lithography. The IV characteristics of these devices were noted under different illuminations and the current tripled from 4.8*10-7 A to 1.59*10 -6 A under UV light which persisted for at least 5hrs.

  11. Devices for medical diagnosis with GaN lasers

    NASA Astrophysics Data System (ADS)

    Kwasny, Miroslaw; Mierczyk, Zygmunt

    2003-10-01

    This paper presents laser-induced fluroescence method (LIF) employing endogenous ("autofluroescence") and exogenous fluorophores. LIF is applied for clinical diagnosis in dermatology, gynaecology, urology, lung tumors as well as for early dentin caries. We describe the analysers with He-Ne, He-Cd, and SHG Nd:YAG lasers and new generation systems based on blue semiconductor GaN lasers that have been implemented into clinical practice till now. The LIF method, fundamental one for many medical applications, with excitation radiation of wavelength 400 nm could be appl,ied only using tunable dye lasers or titanium lasers adequte for laboratory investigations. Development of GaN laser shows possibility to design portable, compact diagnostic devices as multi-channel analysers of fluorescence spectra and surface imaging devoted to clinical application. The designed systems used for spectra measurement and registration of fluorescence images include lasers of power 5-30 mW and generate wavelengths of 405-407 nm. They are widely used in PDT method for investigation of superficial distribution of accumulation kinetics of all known photosensitizers, their elimination, and degradation as well as for treatment of superficial lesions of mucosa and skin. Excitation of exogenous porphrins in Soret band makes possible to estimate their concentration and a period of healthy skin photosensitivity that occurs after photosensitiser injections. Due to high sensitivity of spectrum analysers, properties of photosensitisers can be investigated in vitro (e.g. their aggregation, purity, chromatographic distributions) when their concentrations are 2-3 times lower in comparison to concentrations investigated with typical spectrofluorescence methods. Dentistry diagnosis is a new field in which GaN laser devices can be applied. After induction with blue light, decreased autofluorescence intensity can be observed when dentin caries occur and strong characteristic bands of endogenous porphyrines

  12. Radiation enhanced basal plane dislocation glide in GaN

    NASA Astrophysics Data System (ADS)

    Yakimov, Eugene B.; Vergeles, Pavel S.; Polyakov, Alexander Y.; Lee, In-Hwan; Pearton, Stephen J.

    2016-05-01

    A movement of basal plane segments of dislocations in GaN films grown by epitaxial lateral overgrowth under low energy electron beam irradiation (LEEBI) was studied by the electron beam induced current (EBIC) method. Only a small fraction of the basal plane dislocation segments were susceptible to irradiation and the movement was limited to relatively short distances. The effect is explained by the radiation enhanced dislocation glide (REDG) in the structure with strong pinning. A dislocation velocity under LEEBI with a beam current lower than 1 nA was estimated as about 10 nm/s. The results assuming the REDG for prismatic plane dislocations were presented.

  13. Chlorine-based plasma etching of GaN

    SciTech Connect

    Shul, R.J.; Briggs, R.D.; Pearton, S.J.; Vartuli, C.B.; Abernathy, C.R.; Lee, J.W.; Constantine, C.; Baratt, C.

    1997-02-01

    The wide band gap group-III nitride materials continue to generate interest in the semiconductor community with the fabrication of green, blue, and ultraviolet light emitting diodes (LEDs), blue lasers, and high temperature transistors. Realization of more advanced devices requires pattern transfer processes which are well controlled, smooth, highly anisotropic and have etch rates exceeding 0.5 {micro}m/min. The utilization of high-density chlorine-based plasmas including electron cyclotron resonance (ECR) and inductively coupled plasma (ICP) systems has resulted in improved GaN etch quality over more conventional reactive ion etch (RIE) systems.

  14. High field effects of GaN HEMTs.

    SciTech Connect

    Barker, Joy; Shul, Randy John

    2004-09-01

    This report represents the completion of a Laboratory-Directed Research and Development (LDRD) program to develop and fabricate geometric test structures for the measurement of transport properties in bulk GaN and AlGaN/GaN heterostructures. A large part of this study was spent examining fabrication issues related to the test structures used in these measurements, due to the fact that GaN processing is still in its infancy. One such issue had to do with surface passivation. Test samples without a surface passivation, often failed at electric fields below 50 kV/cm, due to surface breakdown. A silicon nitride passivation layer of approximately 200 nm was used to reduce the effects of surface states and premature surface breakdown. Another issue was finding quality contacts for the material, especially in the case of the AlGaN/GaN heterostructure samples. Poor contact performance in the heterostructures plagued the test structures with lower than expected velocities due to carrier injection from the contacts themselves. Using a titanium-rich ohmic contact reduced the contact resistance and stopped the carrier injection. The final test structures had an etch constriction with varying lengths and widths (8x2, 10x3, 12x3, 12x4, 15x5, and 16x4 {micro}m) and massive contacts. A pulsed voltage input and a four-point measurement in a 50 {Omega} environment was used to determine the current through and the voltage dropped across the constriction. From these measurements, the drift velocity as a function of the applied electric field was calculated and thus, the velocity-field characteristics in n-type bulk GaN and AlGaN/GaN test structures were determined. These measurements show an apparent saturation velocity near to 2.5x10{sup 7} cm/s at 180 kV/cm and 3.1x10{sup 7} cm/s, at a field of 140 kV/cm, for the bulk GaN and AlGaN heterostructure samples, respectively. These experimental drift velocities mark the highest velocities measured in these materials to date and confirm

  15. Role of oxygen at screw dislocations in GaN.

    PubMed

    Arslan, I; Browning, N D

    2003-10-17

    Here we report the first direct atomic scale experimental observations of oxygen segregation to screw dislocations in GaN using correlated techniques in the scanning transmission electron microscope. The amount of oxygen present in each of the three distinct types of screw dislocation core is found to depend on the evolution and structure of the core, and thus gives rise to a varying concentration of localized states in the band gap. Contrary to previous theoretical predictions, the substitution of oxygen for nitrogen is observed to extend over many monolayers for the open core dislocation. PMID:14611410

  16. H enhancement of N vacancy migration in GaN.

    SciTech Connect

    Wixom, Ryan R.; Wright, Alan Francis

    2005-06-01

    We have used density functional theory to investigate diffusion of V{sub N}{sup +} in the presence of H{sup +}. Optimal migration pathways were determined using the climbing image nudged elastic band and directed dimer methods. Our calculations indicate that the rate-limiting barrier for VN{sub N}{sup +} migration will be reduced by 0.58 eV by interplay with H{sup +}, which will enhance migration by more than an order of magnitude at typical GaN growth temperatures.

  17. Stress related aspects of GaN technology physics

    NASA Astrophysics Data System (ADS)

    Suhir, Ephraim

    2015-03-01

    Simple, easy-to-use and physically meaningful analytical models have been developed for the assessment of the combined effect of the lattice and thermal mismatch on the induced stresses in an elongated bi-material assembly, as well as on the thermal mismatch on the thermal stresses in a tri-material assembly, in which the lattice mismatched stresses are eliminated in one way or another. This could be done, e.g., by using a polished or an etched substrate. The analysis is carried out in application to Gallium Nitride (GaN)-Silicon Carbide (SiC) and GaN-diamond (C) filmsubstrate assemblies. The calculated data are obtained, assuming that no annealing or other stress reduction means is applied. The data agree reasonably well with the reported (available) in-situ measurements. The most important conclusion from the computed data is that even if a reasonably good lattice match takes place (as, e.g., in the case of a GaN film fabricated on a SiC substrate, when the mismatch strain is only about 3%) and, in addition, the temperature change (from the fabrication/growth temperature to the operation temperature) is significant (as high as 1000 °C), the thermal stresses are still considerably lower than the lattice-mismatch stresses. Although there are structural and technological means for further reduction of the lattice-mismatch stresses (e.g., by high temperature annealing or by providing one or more buffering layers, or by using patterned or porous substrates), there is still a strong incentive to eliminate completely the lattice mismatch stresses. This seems to be indeed possible, if polished or otherwise flattened (e.g., chemically etched) substrates and sputter deposited GaN film is employed. In such a case only thermal stresses remain, but even these could be reduced, if necessary, by using compliant buffering layers, including layers of variable compliance, or by introducing variable compliance into the properly engineered substrate. In any event, it is expected

  18. Photoluminescence enhancement from GaN by beryllium doping

    NASA Astrophysics Data System (ADS)

    García-Gutiérrez, R.; Ramos-Carrazco, A.; Berman-Mendoza, D.; Hirata, G. A.; Contreras, O. E.; Barboza-Flores, M.

    2016-10-01

    High quality Be-doped (Be = 0.19 at.%) GaN powder has been grown by reacting high purity Ga diluted alloys (Be-Ga) with ultra high purity ammonia in a horizontal quartz tube reactor at 1200 °C. An initial low-temperature treatment to dissolve ammonia into the Ga melt produced GaN powders with 100% reaction efficiency. Doping was achieved by dissolving beryllium into the gallium metal. The powders synthesized by this method regularly consist of two particle size distributions: large hollow columns with lengths between 5 and 10 μm and small platelets in a range of diameters among 1 and 3 μm. The GaN:Be powders present a high quality polycrystalline profile with preferential growth on the [10 1 bar 1] plane, observed by means of X-ray diffraction. The three characteristics growth planes of the GaN crystalline phase were found by using high resolution TEM microscopy. The optical enhancing of the emission in the GaN powder is attributed to defects created with the beryllium doping. The room temperature photoluminescence emission spectra of GaN:Be powders, revealed the presence of beryllium on a shoulder peak at 3.39 eV and an unusual Y6 emission at 3.32eV related to surface donor-acceptor pairs. Also, a donor-acceptor-pair transition at 3.17 eV and a phonon replica transition at 3.1 eV were observed at low temperature (10 K). The well-known yellow luminescence band coming from defects was observed in both spectra at room and low temperature. Cathodoluminescence emission from GaN:Be powders presents two main peaks associated with an ultraviolet band emission and the yellow emission known from defects. To study the trapping levels related with the defects formed in the GaN:Be, thermoluminescence glow curves were obtained using UV and β radiation in the range of 50 and 150 °C.

  19. The influence of Fe doping on the surface topography of GaN epitaxial material

    NASA Astrophysics Data System (ADS)

    Lei, Cui; Haibo, Yin; Lijuan, Jiang; Quan, Wang; Chun, Feng; Hongling, Xiao; Cuimei, Wang; Jiamin, Gong; Bo, Zhang; Baiquan, Li; Xiaoliang, Wang; Zhanguo, Wang

    2015-10-01

    Fe doping is an effective method to obtain high resistivity GaN epitaxial material. But in some cases, Fe doping could result in serious deterioration of the GaN material surface topography, which will affect the electrical properties of two dimensional electron gas (2DEG) in HEMT device. In this paper, the influence of Fe doping on the surface topography of GaN epitaxial material is studied. The results of experiments indicate that the surface topography of Fe-doped GaN epitaxial material can be effectively improved and the resistivity could be increased after increasing the growth rate of GaN materials. The GaN material with good surface topography can be manufactured when the Fe doping concentration is 9 × 1019 cm-3. High resistivity GaN epitaxial material which is 1 × 109 Ω·cm is achieved. Project supported by the Knowledge Innovation Engineering of the Chinese Academy of Sciences (No. YYY-0701-02), the National Natural Science Foundation of China (Nos. 61204017, 61334002), the State Key Development Program for Basic Research of China, and the National Science and Technology Major Project.

  20. Influence of surface scattering on the thermal properties of spatially confined GaN nanofilm

    NASA Astrophysics Data System (ADS)

    Hou, Yang; Zhu, Lin-Li

    2016-08-01

    Gallium nitride (GaN), the notable representative of third generation semiconductors, has been widely applied to optoelectronic and microelectronic devices due to its excellent physical and chemical properties. In this paper, we investigate the surface scattering effect on the thermal properties of GaN nanofilms. The contribution of surface scattering to phonon transport is involved in solving a Boltzmann transport equation (BTE). The confined phonon properties of GaN nanofilms are calculated based on the elastic model. The theoretical results show that the surface scattering effect can modify the cross-plane phonon thermal conductivity of GaN nanostructures completely, resulting in the significant change of size effect on the conductivity in GaN nanofilm. Compared with the quantum confinement effect, the surface scattering leads to the order-of-magnitude reduction of the cross-plane thermal conductivity in GaN nanofilm. This work could be helpful for controlling the thermal properties of GaN nanostructures in nanoelectronic devices through surface engineering. Project supported by the National Natural Science Foundation of China (Grant Nos. 11302189 and 11321202) and the Doctoral Fund of Ministry of Education of China (Grant No. 20130101120175).

  1. Influence of surface scattering on the thermal properties of spatially confined GaN nanofilm

    NASA Astrophysics Data System (ADS)

    Hou, Yang; Zhu, Lin-Li

    2016-08-01

    Gallium nitride (GaN), the notable representative of third generation semiconductors, has been widely applied to optoelectronic and microelectronic devices due to its excellent physical and chemical properties. In this paper, we investigate the surface scattering effect on the thermal properties of GaN nanofilms. The contribution of surface scattering to phonon transport is involved in solving a Boltzmann transport equation (BTE). The confined phonon properties of GaN nanofilms are calculated based on the elastic model. The theoretical results show that the surface scattering effect can modify the cross-plane phonon thermal conductivity of GaN nanostructures completely, resulting in the significant change of size effect on the conductivity in GaN nanofilm. Compared with the quantum confinement effect, the surface scattering leads to the order-of-magnitude reduction of the cross-plane thermal conductivity in GaN nanofilm. This work could be helpful for controlling the thermal properties of GaN nanostructures in nanoelectronic devices through surface engineering. Project supported by the National Natural Science Foundation of China (Grant Nos. 11302189 and 11321202) and the Doctoral Fund of Ministry of Education of China (Grant No. 20130101120175).

  2. One-step graphene coating of heteroepitaxial GaN films.

    PubMed

    Choi, Jae-Kyung; Huh, Jae-Hoon; Kim, Sung-Dae; Moon, Daeyoung; Yoon, Duhee; Joo, Kisu; Kwak, Jinsung; Chu, Jae Hwan; Kim, Sung Youb; Park, Kibog; Kim, Young-Woon; Yoon, Euijoon; Cheong, Hyeonsik; Kwon, Soon-Yong

    2012-11-01

    Today, state-of-the-art III-Ns technology has been focused on the growth of c-plane nitrides by metal-organic chemical vapor deposition (MOCVD) using a conventional two-step growth process. Here we show that the use of graphene as a coating layer allows the one-step growth of heteroepitaxial GaN films on sapphire in a MOCVD reactor, simplifying the GaN growth process. It is found that the graphene coating improves the wetting between GaN and sapphire, and, with as little as ~0.6 nm of graphene coating, the overgrown GaN layer on sapphire becomes continuous and flat. With increasing thickness of the graphene coating, the structural and optical properties of one-step grown GaN films gradually transition towards those of GaN films grown by a conventional two-step growth method. The InGaN/GaN multiple quantum well structure grown on a GaN/graphene/sapphire heterosystem shows a high internal quantum efficiency, allowing the use of one-step grown GaN films as 'pseudo-substrates' in optoelectronic devices. The introduction of graphene as a coating layer provides an atomic playground for metal adatoms and simplifies the III-Ns growth process, making it potentially very useful as a means to grow other heteroepitaxial films on arbitrary substrates with lattice and thermal mismatch.

  3. Growth of GaN nanowall network on Si (111) substrate by molecular beam epitaxy

    PubMed Central

    2012-01-01

    GaN nanowall network was epitaxially grown on Si (111) substrate by molecular beam epitaxy. GaN nanowalls overlap and interlace with one another, together with large numbers of holes, forming a continuous porous GaN nanowall network. The width of the GaN nanowall can be controlled, ranging from 30 to 200 nm by adjusting the N/Ga ratio. Characterization results of a transmission electron microscope and X-ray diffraction show that the GaN nanowall is well oriented along the C axis. Strong band edge emission centered at 363 nm is observed in the spectrum of room temperature photoluminescence, indicating that the GaN nanowall network is of high quality. The sheet resistance of the Si-doped GaN nanowall network along the lateral direction was 58 Ω/. The conductive porous nanowall network can be useful for integrated gas sensors due to the large surface area-to-volume ratio and electrical conductivity along the lateral direction by combining with Si micromachining. PMID:23270331

  4. Growth of GaN nanowall network on Si (111) substrate by molecular beam epitaxy.

    PubMed

    Zhong, Aihua; Hane, Kazuhiro

    2012-01-01

    GaN nanowall network was epitaxially grown on Si (111) substrate by molecular beam epitaxy. GaN nanowalls overlap and interlace with one another, together with large numbers of holes, forming a continuous porous GaN nanowall network. The width of the GaN nanowall can be controlled, ranging from 30 to 200 nm by adjusting the N/Ga ratio. Characterization results of a transmission electron microscope and X-ray diffraction show that the GaN nanowall is well oriented along the C axis. Strong band edge emission centered at 363 nm is observed in the spectrum of room temperature photoluminescence, indicating that the GaN nanowall network is of high quality. The sheet resistance of the Si-doped GaN nanowall network along the lateral direction was 58 Ω/. The conductive porous nanowall network can be useful for integrated gas sensors due to the large surface area-to-volume ratio and electrical conductivity along the lateral direction by combining with Si micromachining. PMID:23270331

  5. Theoretical study for heterojunction surface of NEA GaN photocathode dispensed with Cs activation

    NASA Astrophysics Data System (ADS)

    Xia, Sihao; Liu, Lei; Wang, Honggang; Wang, Meishan; Kong, Yike

    2016-09-01

    For the disadvantages of conventional negative electron affinity (NEA) GaN photocathodes activated by Cs or Cs/O, new-type NEA GaN photocathodes with heterojunction surface dispensed with Cs activation are investigated based on first-principle study with density functional theory. Through the growth of an ultrathin n-type GaN cap layer on p-type GaN emission layer, a p-n heterojunction is formed on the surface. According to the calculation results, it is found that Si atoms tend to replace Ga atoms to result in an n-type doped cap layer which contributes to the decreasing of work function. After the growth of n-type GaN cap layer, the atom structure near the p-type emission layer is changed while that away from the surface has no obvious variations. By analyzing the E-Mulliken charge distribution of emission surface with and without cap layer, it is found that the positive charge of Ga and Mg atoms in the emission layer decrease caused by the cap layer, while the negative charge of N atom increases. The conduction band moves downwards after the growth of cap layer. Si atom produces donor levels around the valence band maximum. The absorption coefficient of GaN emission layer decreases and the reflectivity increases caused by n-type GaN cap layer.

  6. Design, fabrication and characterising of 100 W GaN HEMT for Ku-band application

    NASA Astrophysics Data System (ADS)

    Chunjiang, Ren; Shichang, Zhong; Yuchao, Li; Zhonghui, Li; Yuechan, Kong; Tangsheng, Chen

    2016-08-01

    Ku-band GaN power transistor with output power over 100 W under the pulsed operation mode is presented. A high temperature A1N nucleation together with an Fe doped GaN buffer was introduced for the developed GaN HEMT. The AlGaN/GaN hetero-structure deposited on 3 inch SiC substrate exhibited a 2DEG hall mobility and density of ˜2100 cm2/(V·s) and 1.0 × 1013 cm-2, respectively, at room temperature. Dual field plates were introduced to the designed 0.25 μm GaN HEMT and the source connected field plate was optimized for minimizing the peak field plate near the drain side of the gate, while maintaining excellent power gain performance for Ku-band application. The load-pull measurement at 14 GHz showed a power density of 5.2 W/mm for the fabricated 400 μm gate periphery GaN HEMT operated at a drain bias of 28 V. A Ku-band internally matched GaN power transistor was developed with two 10.8 mm gate periphery GaN HEMT chips combined. The GaN power transistor exhibited an output power of 102 W at 13.3 GHz and 32 V operating voltage under pulsed operation mode with a pulse width of 100 μs and duty cycle of 10%. The associated power gain and power added efficiency were 9.2 dB and 48%, respectively. To the best of the authors' knowledge, the PAE is the highest for Ku-band GaN power transistor with over 100 W output power.

  7. Annealing effects on polycrystalline GaN using nitrogen and ammonia ambients

    NASA Astrophysics Data System (ADS)

    Ariff, A.; Zainal, N.; Hassan, Z.

    2016-09-01

    This paper describes effects of using post-annealing treatment in different conditions on the properties of polycrystalline GaN layer grown on m-plane sapphire substrate by electron beam (e-beam) evaporator. Without annealing, GaN surface was found to have a low RMS roughness with agglomeration of GaN grains in a specific direction and the sample consisted of gallium oxide (Ga2O3) material. When the post-annealing treatment was carried out in N2 ambient at 650 °C, initial re-crystallization of the GaN grains was observed while the evidence of Ga2O3 almost disappeared. As the NH3 annealing was conducted at 950 °C, more effect of re-crystallization occurred but with less grains coalescence. Three dominant XRD peaks of GaN in (10 1 bar 0) , (0002) and (10 1 bar 1) orientations were evident. Near band edge (NBE) related emission in GaN was also observed. The significant improvement was attributed to simultaneous recrystallization and effective reduction of N deficiency density. The post-annealing in a mixture of N2 and NH3 ambient at 950 °C was also conducted, but has limited the effectiveness of the N atoms to incorporate on the GaN layer due to 'clouding' effect by the inert N2 gas. Further increase in the annealing temperature at 980 °C and 1100 °C, respectively caused severe deteriorations of the structural and optical properties of the GaN layer. Overall, this work demonstrated initial potential in improving polycrystalline GaN material in simple and inexpensive manner.

  8. Orthodox etching of HVPE-grown GaN

    SciTech Connect

    Weyher, J.L.; Lazar, S.; Macht, L.; Liliental-Weber, Z.; Molnar,R.J.; Muller, S.; Nowak, G.; Grzegory, I.

    2006-08-10

    Orthodox etching of HVPE-grown GaN in molten eutectic of KOH + NaOH (E etch) and in hot sulfuric and phosphoric acids (HH etch) is discussed in detail. Three size grades of pits are formed by the preferential E etching at the outcrops of threading dislocations on the Ga-polar surface of GaN. Using transmission electron microscopy (TEM) as the calibration tool it is shown that the largest pits are formed on screw, intermediate on mixed and the smallest on edge dislocations. This sequence of size does not follow the sequence of the Burgers values (and thus the magnitude of the elastic energy) of corresponding dislocations. This discrepancy is explained taking into account the effect of decoration of dislocations, the degree of which is expected to be different depending on the lattice deformation around the dislocations, i.e. on the edge component of the Burgers vector. It is argued that the large scatter of optimal etching temperatures required for revealing all three types of dislocations in HVPE-grown samples from different sources also depends upon the energetic status of dislocations. The role of kinetics for reliability of etching in both etches is discussed and the way of optimization of the etching parameters is shown.

  9. Size dictated thermal conductivity of GaN

    NASA Astrophysics Data System (ADS)

    Beechem, Thomas E.; McDonald, Anthony E.; Fuller, Elliot J.; Talin, A. Alec; Rost, Christina M.; Maria, Jon-Paul; Gaskins, John T.; Hopkins, Patrick E.; Allerman, Andrew A.

    2016-09-01

    The thermal conductivity of n- and p-type doped gallium nitride (GaN) epilayers having thicknesses of 3-4 μm was investigated using time domain thermoreflectance. Despite possessing carrier concentrations ranging across 3 decades (1015-1018 cm-3), n-type layers exhibit a nearly constant thermal conductivity of 180 W/mK. The thermal conductivity of p-type epilayers, in contrast, reduces from 160 to 110 W/mK with increased doping. These trends—and their overall reduction relative to bulk—are explained leveraging established scattering models where it is shown that, while the decrease in p-type layers is partly due to the increased impurity levels evolving from its doping, size effects play a primary role in limiting the thermal conductivity of GaN layers tens of microns thick. Device layers, even of pristine quality, will therefore exhibit thermal conductivities less than the bulk value of 240 W/mK owing to their finite thickness.

  10. DX-like behavior of oxygen in GaN

    SciTech Connect

    Wetzel, Christian; Amano, Hiroshi; Akasaki, Isamu; Ager III, Joel W.; Grzegory, Izabella; Meyer, Bruno K.

    2001-02-01

    The role of oxygen as a shallow donor and a DX-state in GaN is elucidated by recent Raman experiments under hydrostatic pressure and the findings of first principles OK calculations. A pressure induced transfer of electrons from a shallow donor state to a deep DX-like state of the same donor can be correlated with vibrational gap modes by monitoring the freeze-out dynamics. Both features are unique to oxygen doped GaN and cannot be observed in Si-doped material. The gap modes can be well explained by a linear chain model of impurity vibrations of substitutional O on the N site. A mode variation, and switching steps in its pressure behavior, which occurs in parallel to the carrier freeze-out are proposed to reflect three different charge states of the strongly localized states of O. This DX-type behavior as well as the experimental threshold pressure values are in excellent agreement with the theory results.

  11. Properties of GaN grown on sapphire substrates

    NASA Technical Reports Server (NTRS)

    Crouch, R. K.; Debnam, W. J.; Fripp, A. L.

    1978-01-01

    Epitaxial growth of GaN on sapphire substrates using an open-tube growth furnace has been carried out to study the effects of substrate orientation and transfer gas upon the properties of the layers. It has been found that for the (0001) substrates, surface appearance was virtually independent of carrier gas and of doping levels. For the (1(-1)02) substrates surface faceting was greatly reduced when He was used as a transfer gas as opposed to H2. Faceting was also reduced when the GaN was doped with Zn, and the best surfaces for the (1(-1)02) substrates were obtained in a Zn-doped run using He as the transfer gas. The best sample in terms of electrical properties for the (1(-1)02) substrate had a mobility greater than 400 sq cm/V per sec and a carrier concentration of about 10 to the 17th per cu cm. This sample was undoped and used He as the transfer gas. The best (0001) sample was also grown undoped with He as the transfer gas and had a mobility of 300 sq cm/V per sec and a carrier concentration of 1 x 10 to the 18th per cu cm.

  12. Si Donor Incorporation in GaN Nanowires.

    PubMed

    Fang, Zhihua; Robin, Eric; Rozas-Jiménez, Elena; Cros, Ana; Donatini, Fabrice; Mollard, Nicolas; Pernot, Julien; Daudin, Bruno

    2015-10-14

    With increasing interest in GaN based devices, the control and evaluation of doping are becoming more and more important. We have studied the structural and electrical properties of a series of Si-doped GaN nanowires (NWs) grown by molecular beam epitaxy (MBE) with a typical dimension of 2-3 μm in length and 20-200 nm in radius. In particular, high resolution energy dispersive X-ray spectroscopy (EDX) has illustrated a higher Si incorporation in NWs than that in two-dimensional (2D) layers and Si segregation at the edge of the NW with the highest doping. Moreover, direct transport measurements on single NWs have shown a controlled doping with resistivity from 10(2) to 10(-3) Ω·cm, and a carrier concentration from 10(17) to 10(20) cm(-3). Field effect transistor (FET) measurements combined with finite element simulation by NextNano(3) software have put in evidence the high mobility of carriers in the nonintentionally doped (NID) NWs. PMID:26426262

  13. Magneto-ballistic transport in GaN nanowires

    NASA Astrophysics Data System (ADS)

    Santoruvo, Giovanni; Allain, Adrien; Ovchinnikov, Dmitry; Matioli, Elison

    2016-09-01

    The ballistic filtering property of nanoscale crosses was used to investigate the effect of perpendicular magnetic fields on the ballistic transport of electrons on wide band-gap GaN heterostructures. The straight scattering-less trajectory of electrons was modified by a perpendicular magnetic field which produced a strong non-linear behavior in the measured output voltage of the ballistic filters and allowed the observation of semi-classical and quantum effects, such as quenching of the Hall resistance and manifestation of the last plateau, in excellent agreement with the theoretical predictions. A large measured phase coherence length of 190 nm allowed the observation of universal quantum fluctuations and weak localization of electrons due to quantum interference up to ˜25 K. This work also reveals the prospect of wide band-gap GaN semiconductors as a platform for basic transport and quantum studies, whose properties allow the investigation of ballistic transport and quantum phenomena at much larger voltages and temperatures than in other semiconductors.

  14. Highly c-axis oriented growth of GaN film on sapphire (0001) by laser molecular beam epitaxy using HVPE grown GaN bulk target

    SciTech Connect

    Kushvaha, S. S.; Kumar, M. Senthil; Maurya, K. K.; Dalai, M. K.; Sharma, Nita D.

    2013-09-15

    Growth temperature dependant surface morphology and crystalline properties of the epitaxial GaN layers grown on pre-nitridated sapphire (0001) substrates by laser molecular beam epitaxy (LMBE) were investigated in the range of 500–750 °C. The grown GaN films were characterized using high resolution x-ray diffraction, atomic force microscopy (AFM), micro-Raman spectroscopy, and secondary ion mass spectroscopy (SIMS). The x-ray rocking curve full width at a half maximum (FWHM) value for (0002) reflection dramatically decreased from 1582 arc sec to 153 arc sec when the growth temperature was increased from 500 °C to 600 °C and the value further decreased with increase of growth temperature up to 720 °C. A highly c-axis oriented GaN epitaxial film was obtained at 720 °C with a (0002) plane rocking curve FWHM value as low as 102 arc sec. From AFM studies, it is observed that the GaN grain size also increased with increasing growth temperature and flat, large lateral grains of size 200-300 nm was obtained for the film grown at 720 °C. The micro-Raman spectroscopy studies also exhibited the high-quality wurtzite nature of GaN film grown on sapphire at 720 °C. The SIMS measurements revealed a non-traceable amount of background oxygen impurity in the grown GaN films. The results show that the growth temperature strongly influences the surface morphology and crystalline quality of the epitaxial GaN films on sapphire grown by LMBE.

  15. Characterization of bulk grown GaN and AlN single crystal materials

    NASA Astrophysics Data System (ADS)

    Raghothamachar, Balaji; Bai, Jie; Dudley, Michael; Dalmau, Rafael; Zhuang, Dejin; Herro, Ziad; Schlesser, Raoul; Sitar, Zlatko; Wang, Buguo; Callahan, Michael; Rakes, Kelly; Konkapaka, Phanikumar; Spencer, Michael

    2006-01-01

    Sublimation method, spontaneously nucleated as well as seeded on SiC substrates, has been employed for growing AlN bulk crystals. For GaN growth, in addition to the sublimation method using sapphire substrates, ammonothermal growth (analogous to the hydrothermal method) on HVPE GaN seeds is also being used. Thick plates/films of AlN and GaN grown by these methods have been characterized by synchrotron white beam X-ray topography (SWBXT) and high resolution X-ray diffraction (HRXRD). Results from a recent set of growth experiments are discussed.

  16. Characterization of Bulk Grown GaN and AlN Single Crystal Materials

    SciTech Connect

    Raghothamachar,B.; Bai, J.; Dudley, M.; Dalmau, R.; Zhuang, D.; Herro, Z.; Schlesser, R.; Sitar, Z.; Wang, B.; Callahan, M.

    2006-01-01

    Sublimation method, spontaneously nucleated as well as seeded on SiC substrates, has been employed for growing AlN bulk crystals. For GaN growth, in addition to the sublimation method using sapphire substrates, ammonothermal growth (analogous to the hydrothermal method) on HVPE GaN seeds is also being used. Thick plates/films of AlN and GaN grown by these methods have been characterized by synchrotron white beam X-ray topography (SWBXT) and high resolution X-ray diffraction (HRXRD). Results from a recent set of growth experiments are discussed.

  17. Density Functional Theory for Green Chemical Catalyst Supported on S-Terminated GaN(0001)

    NASA Astrophysics Data System (ADS)

    Yokoyama, Mami; Tsukamoto, Shiro; Ishii, Akira

    2011-12-01

    A novel function of nitried-based semiconductor is successfully developed for organic synthesis, in which palladium supported on the surface of S-terminated GaN(0001) serves as a unique green chemical catalyst. In this study we determined the structure of Pd-catalyst supported on S-terminated GaN(0001) surface by means of the density functional theory (DFT) within a Local Density Approximation (LDA). The important role of S on the case of GaN substrate is to make the number of the valence electron to be close to 0, it happened same way for GaAs substrate.

  18. A rare case of a three way complex variant positive Philadelphia translocation involving chromosome (9;11;22)(q34;p15;q11) in chronic myeloid leukemia: A case report

    PubMed Central

    Asif, Muhammad; Hussain, Abrar; Rasool, Mahmood

    2016-01-01

    The t(9;22)(q34;q11) translocation is present in 90–95% of patients with chronic myeloid leukemia (CML). Variant complex translocations have been observed in 5–8% of CML patients, in which a third chromosome other than (9;22) is involved. Imatinib mesylate is the first line breakpoint cluster region-Abelson gene (BCR/ABL)-targeted oral therapy for CML, and may produce a complete response in 70–80% of CML patients in the chronic phase. In the present study, a bone marrow sample was used for conventional cytogenetic analysis, and the fluorescence in situ hybridization (FISH) test was used for BCR/ABL gene detection. A hematological analysis was also performed to determine the white blood cell (WBC) count, red blood cell count, hemoglobin levels, packed and mean cell volumes, mean corpuscular hemoglobin, mean corpuscular hemoglobin concentration and platelet values of the patient. The hematological analysis of the patient indicated the increased WBC of 186.5×103 cells/µl, and decreased hemoglobin levels of 11.1 g/dl. The FISH test revealed that 67% cells demonstrated BCR/ABL gene translocation. The patient was treated with 400 mg imatinib mesylate daily, and was monitored at various intervals over a 6-month period. The present study reports the rare case of a patient that demonstrates a three-way Philadelphia chromosome-positive translocation involving 46XY,t(9;11;22)(q34;p15;q11)[10], alongside CML in the chronic phase. The translocation was analyzed using cytogenetic and FISH tests.

  19. A rare case of a three way complex variant positive Philadelphia translocation involving chromosome (9;11;22)(q34;p15;q11) in chronic myeloid leukemia: A case report

    PubMed Central

    Asif, Muhammad; Hussain, Abrar; Rasool, Mahmood

    2016-01-01

    The t(9;22)(q34;q11) translocation is present in 90–95% of patients with chronic myeloid leukemia (CML). Variant complex translocations have been observed in 5–8% of CML patients, in which a third chromosome other than (9;22) is involved. Imatinib mesylate is the first line breakpoint cluster region-Abelson gene (BCR/ABL)-targeted oral therapy for CML, and may produce a complete response in 70–80% of CML patients in the chronic phase. In the present study, a bone marrow sample was used for conventional cytogenetic analysis, and the fluorescence in situ hybridization (FISH) test was used for BCR/ABL gene detection. A hematological analysis was also performed to determine the white blood cell (WBC) count, red blood cell count, hemoglobin levels, packed and mean cell volumes, mean corpuscular hemoglobin, mean corpuscular hemoglobin concentration and platelet values of the patient. The hematological analysis of the patient indicated the increased WBC of 186.5×103 cells/µl, and decreased hemoglobin levels of 11.1 g/dl. The FISH test revealed that 67% cells demonstrated BCR/ABL gene translocation. The patient was treated with 400 mg imatinib mesylate daily, and was monitored at various intervals over a 6-month period. The present study reports the rare case of a patient that demonstrates a three-way Philadelphia chromosome-positive translocation involving 46XY,t(9;11;22)(q34;p15;q11)[10], alongside CML in the chronic phase. The translocation was analyzed using cytogenetic and FISH tests. PMID:27602125

  20. Microstructural properties and dislocation evolution on a GaN grown on patterned sapphire substrate: A transmission electron microscopy study

    NASA Astrophysics Data System (ADS)

    Kim, Y. H.; Ruh, H.; Noh, Y. K.; Kim, M. D.; Oh, J. E.

    2010-03-01

    The microstructural properties of a GaN layer grown on a patterned sapphire substrate (PSS) were studied in detail using transmission electron microscope techniques to determine dislocation and growth behaviors. Regular and uniform recrystallized GaN islands were observed on the protruding pattern. On a flat sapphire surface, the crystallographic orientation relationship of ⟨1¯21¯0⟩GaN on FS//⟨11¯00⟩sapphire and {11¯01}GaN on FS//{12¯13}sapphire existed between the GaN and the substrate. On the other hand, the orientation relationship of ⟨1¯21¯0⟩GaN layer//⟨1¯21¯0⟩GaN island on IS//⟨11¯00⟩sapphire and {11¯01}GaN layer//{0002}GaN island on IS//{12¯13}sapphire was confirmed among the GaN layer, the recrystallized GaN islands on an inclined sapphire surface and the PSS. The flat surface among the protruding patterns began to fill rapidly with GaN. Then, the GaN gradually overgrew the protruding pattern and coalesced near the summit as the growth time increased. The generation of threading dislocations was observed in the vicinity of the coalescence points near the top of the protruding patterns.

  1. X-ray photoelectron spectroscopy analysis of GaN/(0001)AlN and AlN/(0001)GaN growth mechanisms

    NASA Astrophysics Data System (ADS)

    King, S. W.; Carlson, E. P.; Therrien, R. J.; Christman, J. A.; Nemanich, R. J.; Davis, R. F.

    1999-11-01

    The mechanisms of growth of GaN on AlN and AlN on GaN via gas source-molecular beam epitaxy with NH3 as the nitrogen source have been investigated using x-ray photoelectron spectroscopy, low energy electron diffraction, and Auger electron spectroscopy. The growth of GaN on AlN at low temperatures (650-750 °C) occurs via a Stranski-Krastanov 2D→3D type mechanism with the transition to 3D growth occurring at ≈10-15 Å. The mechanism changes to Frank van der Merwe (FM)/layer-by-layer growth above 800 °C. The growth of AlN on GaN occurred via a FM layer-by-layer mechanism within the 750-900 °C temperature range investigated. We propose a model based on the interaction of ammonia and atomic hydrogen with the GaN/AlN surfaces which indicates that the surface kinetics of hydrogen desorption and ammonia decomposition are the factors that determine the GaN growth mechanism.

  2. Ultralow threading dislocation density in GaN epilayer on near-strain-free GaN compliant buffer layer and its applications in hetero-epitaxial LEDs.

    PubMed

    Shih, Huan-Yu; Shiojiri, Makoto; Chen, Ching-Hsiang; Yu, Sheng-Fu; Ko, Chung-Ting; Yang, Jer-Ren; Lin, Ray-Ming; Chen, Miin-Jang

    2015-09-02

    High threading dislocation (TD) density in GaN-based devices is a long unresolved problem because of the large lattice mismatch between GaN and the substrate, which causes a major obstacle for the further improvement of next-generation high-efficiency solid-state lighting and high-power electronics. Here, we report InGaN/GaN LEDs with ultralow TD density and improved efficiency on a sapphire substrate, on which a near strain-free GaN compliant buffer layer was grown by remote plasma atomic layer deposition. This "compliant" buffer layer is capable of relaxing strain due to the absorption of misfit dislocations in a region within ~10 nm from the interface, leading to a high-quality overlying GaN epilayer with an unusual TD density as low as 2.2 × 10(5) cm(-2). In addition, this GaN compliant buffer layer exhibits excellent uniformity up to a 6" wafer, revealing a promising means to realize large-area GaN hetero-epitaxy for efficient LEDs and high-power transistors.

  3. Ultralow threading dislocation density in GaN epilayer on near-strain-free GaN compliant buffer layer and its applications in hetero-epitaxial LEDs

    PubMed Central

    Shih, Huan-Yu; Shiojiri, Makoto; Chen, Ching-Hsiang; Yu, Sheng-Fu; Ko, Chung-Ting; Yang, Jer-Ren; Lin, Ray-Ming; Chen, Miin-Jang

    2015-01-01

    High threading dislocation (TD) density in GaN-based devices is a long unresolved problem because of the large lattice mismatch between GaN and the substrate, which causes a major obstacle for the further improvement of next-generation high-efficiency solid-state lighting and high-power electronics. Here, we report InGaN/GaN LEDs with ultralow TD density and improved efficiency on a sapphire substrate, on which a near strain-free GaN compliant buffer layer was grown by remote plasma atomic layer deposition. This “compliant” buffer layer is capable of relaxing strain due to the absorption of misfit dislocations in a region within ~10 nm from the interface, leading to a high-quality overlying GaN epilayer with an unusual TD density as low as 2.2 × 105 cm−2. In addition, this GaN compliant buffer layer exhibits excellent uniformity up to a 6” wafer, revealing a promising means to realize large-area GaN hetero-epitaxy for efficient LEDs and high-power transistors. PMID:26329829

  4. Controlled morphology of regular GaN microrod arrays by selective area growth with HVPE

    NASA Astrophysics Data System (ADS)

    Lekhal, Kaddour; Bae, Si-Young; Lee, Ho-Jun; Mitsunari, Tadashi; Tamura, Akira; Deki, Manato; Honda, Yoshio; Amano, Hiroshi

    2016-08-01

    The selective area growth (SAG) of GaN was implemented on patterned GaN/sapphire templates by hydride vapor phase epitaxy (HVPE) to fabricate regular arrays of Ga-polar GaN microrods. The control of growth parameters such as H2/N2 carrier gas ratio, growth temperature, and absolute NH3/HCl gas flow resulted in changes in the growth morphology. In particular, for an optimized mixed-carrier gas ratio of H2 to N2, we achieved vertically well-aligned microrods. The topmost regions of the GaN microrods were terminated with pyramidal facets, indicating typical Ga polarity. The optical properties of the grown microrods were characterized by cathodoluminescence (CL) at a low temperature. This revealed that the GaN microrods had high crystal quality since they exhibited suppressed yellow luminescence as well as strong band edge emission.

  5. Synthesis and excellent field emission properties of three-dimensional branched GaN nanowire homostructures

    NASA Astrophysics Data System (ADS)

    Li, Enling; Sun, Lihe; Cui, Zhen; Ma, Deming; Shi, Wei; Wang, Xiaolin

    2016-10-01

    Three-dimensional branched GaN nanowire homostructures have been synthesized on the Si substrate via a two-step approach by chemical vapor deposition. Structural characterization reveals that the single crystal GaN nanowire trunks have hexagonal wurtzite characteristics and grow along the [0001] direction, while the homoepitaxial single crystal branches grow in a radial direction from the six-sided surfaces of the trunks. The field emission measurements demonstrate that the branched GaN nanowire homostructures have excellent field emission properties, with low turn-on field at 2.35 V/μm, a high field enhancement factor of 2938, and long emission current stability. This indicates that the present branched GaN nanowire homostructures will become valuable for practical field emission applications.

  6. Step-Free GaN Hexagons Grown by Selective-Area Metalorganic Vapor Phase Epitaxy

    NASA Astrophysics Data System (ADS)

    Akasaka, Tetsuya; Kobayashi, Yasuyuki; Kasu, Makoto

    2009-09-01

    Selective-area metalorganic vapor phase epitaxy of GaN has been investigated using the optimized growth conditions for the layer (Frank-van der Merwe) growth and GaN-template substrates with low dislocation density. The surface of a GaN hexagon with 16-µm diameter has a single wide terrace over almost the whole area (step-free surface), when there are no screw-type dislocations in the finite area. Step-free GaN hexagons grew in the two-dimensional nucleus growth mode and had approximately an eight times lower growth rate than that of a GaN film grown in the step-flow mode under the growth conditions used in this study.

  7. Radiative defects in GaN nanocolumns: Correlation with growth conditions and sample morphology

    SciTech Connect

    Lefebvre, P.; Fernandez-Garrido, S.; Grandal, J.; Ristic, J.; Sanchez-Garcia, M.-A.; Calleja, E.

    2011-02-21

    Low-temperature photoluminescence is studied in detail in GaN nanocolumns (NCs) grown by plasma-assisted molecular beam epitaxy under various conditions (substrate temperature and impinging Ga/N flux ratio). The relative intensities of the different emission lines, in particular those related to structural defects, appear to be correlated with the growth conditions, and clearly linked to the NC sample morphology. We demonstrate, in particular, that all lines comprised between 3.10 and 3.42 eV rapidly lose intensity when the growth conditions are such that the NC coalescence is reduced. The well-known line around 3.45 eV, characteristic of GaN NC samples, shows, however, a behavior that is exactly the opposite of the other lines, namely, for growth conditions leading to reduced NC coalescence, this line tends to become more prominent, thus proving to be intrinsic to individual GaN NCs.

  8. Depth dependence of defect density and stress in GaN grown on SiC

    SciTech Connect

    Faleev, N.; Temkin, H.; Ahmad, I.; Holtz, M.; Melnik, Yu.

    2005-12-15

    We report high resolution x-ray diffraction studies of the relaxation of elastic strain in GaN grown on SiC(0001). The GaN layers were grown with thickness ranging from 0.29 to 30 {mu}m. High level of residual elastic strain was found in thin (0.29 to 0.73 {mu}m thick) GaN layers. This correlates with low density of threading screw dislocations of 1-2x10{sup 7} cm{sup -2}, observed in a surface layer formed over a defective nucleation layer. Stress was found to be very close to what is expected from thermal expansion mismatch between the GaN and SiC. A model based on generation and diffusion of point defects accounts for these observations.

  9. Tuning electronic and magnetic properties of GaN nanosheets by surface modifications and nanosheet thickness.

    PubMed

    Xiao, Meixia; Yao, Tingzhen; Ao, Zhimin; Wei, Peng; Wang, Danghui; Song, Haiyang

    2015-04-14

    Density-functional theory calculations are performed to investigate the effects of surface modifications and nanosheet thickness on the electronic and magnetic properties of gallium nitride (GaN) nanosheets (NSs). Unlike the bare GaN NSs terminating with polar surfaces, the systems with hydrogenated Ga (H-GaN), fluorinated Ga (F-GaN), and chlorinated Ga (Cl-GaN) preserve their initial wurtzite structures and exhibit ferromagnetic states. The abovementioned three different decorations on Ga atoms are energetically more favorable for thicker GaN NSs. Moreover, as the thickness increases, H-GaN and F-GaN NSs undergo semiconductor to metal and half-metal to metal transition, respectively, while Cl-GaN NSs remain completely metallic. The predicted diverse and tunable electronic and magnetic properties highlight the potential of GaN NSs for novel electronic and spintronic nanodevices.

  10. Surface potential barrier in m-plane GaN studied by contactless electroreflectance

    NASA Astrophysics Data System (ADS)

    Janicki, Lukasz; Misiewicz, Jan; Cywiński, Grzegorz; Sawicka, Marta; Skierbiszewski, Czeslaw; Kudrawiec, Robert

    2016-02-01

    Contactless electroreflectance (CER) is used to study the surface potential barrier in m-plane GaN UN+ [GaN (d = 20,30,50,70 nm)/GaN:Si] structures grown by using molecular beam epitaxy. Clear bandgap-related transitions followed by Franz-Keldysh oscillations (FKO) have been observed in the CER spectra of all samples at room temperature. The built-in electric fields in the undoped cap layers have been determined from the FKO period. From the built-in electric field and the undoped GaN layer thickness, the Fermi level location at the air-exposed m-plane GaN surface has been estimated as 0.42 ± 0.05 eV below the conduction band.

  11. Electrical characterization of Schottky contacts to N-polar GaN

    NASA Astrophysics Data System (ADS)

    Downey, B. P.; Meyer, D. J.; Katzer, D. S.; Storm, D. F.; Binari, S. C.

    2013-08-01

    The Schottky barrier heights of several metals (Cu, Au, Pd, Ni, and Pt) to N-polar GaN were extracted using current-voltage and capacitance-voltage measurements. The dependence of barrier height on metal was found to vary linearly with the electronegativity of the metal as predicted by the metal-induced gap states (MIGS)-and-electronegativity model. However, the magnitude of the barrier heights are lower than those predicted by the MIGS model for GaN and lower than the experimentally measured barrier heights for Ga-polar GaN. It is likely that the polarization-induced charge at the N-polar GaN surface is responsible for the reduced barrier height.

  12. High breakdown single-crystal GaN p-n diodes by molecular beam epitaxy

    SciTech Connect

    Qi, Meng; Zhao, Yuning; Yan, Xiaodong; Li, Guowang; Verma, Jai; Fay, Patrick; Nomoto, Kazuki; Zhu, Mingda; Hu, Zongyang; Protasenko, Vladimir; Song, Bo; Xing, Huili Grace; Jena, Debdeep; Bader, Samuel

    2015-12-07

    Molecular beam epitaxy grown GaN p-n vertical diodes are demonstrated on single-crystal GaN substrates. A low leakage current <3 nA/cm{sup 2} is obtained with reverse bias voltage up to −20 V. With a 400 nm thick n-drift region, an on-resistance of 0.23 mΩ cm{sup 2} is achieved, with a breakdown voltage corresponding to a peak electric field of ∼3.1 MV/cm in GaN. Single-crystal GaN substrates with very low dislocation densities enable the low leakage current and the high breakdown field in the diodes, showing significant potential for MBE growth to attain near-intrinsic performance when the density of dislocations is low.

  13. High breakdown single-crystal GaN p-n diodes by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Qi, Meng; Nomoto, Kazuki; Zhu, Mingda; Hu, Zongyang; Zhao, Yuning; Protasenko, Vladimir; Song, Bo; Yan, Xiaodong; Li, Guowang; Verma, Jai; Bader, Samuel; Fay, Patrick; Xing, Huili Grace; Jena, Debdeep

    2015-12-01

    Molecular beam epitaxy grown GaN p-n vertical diodes are demonstrated on single-crystal GaN substrates. A low leakage current <3 nA/cm2 is obtained with reverse bias voltage up to -20 V. With a 400 nm thick n-drift region, an on-resistance of 0.23 mΩ cm2 is achieved, with a breakdown voltage corresponding to a peak electric field of ˜3.1 MV/cm in GaN. Single-crystal GaN substrates with very low dislocation densities enable the low leakage current and the high breakdown field in the diodes, showing significant potential for MBE growth to attain near-intrinsic performance when the density of dislocations is low.

  14. Microstructure of GaN Grown on (111) Si by MOCVD

    SciTech Connect

    Fleming, J.G.; Follstaedt, D.M.; Han, J.; Provencio, P.

    1998-12-17

    Gallium nitride was grown on (111) Si by MOCVD by depositing an AIN buffer at 108O"C and then GaN at 1060 {degrees}C. The 2.2pm layer cracked along {1-100} planes upon cooling to room temperature, but remained adherent. We were able to examine the microstructure of material between cracks with TEM. The character and arrangement of dislocation are much like those of GaN grown on Al{sub 2}O{sub 3}: -2/3 pure edge and - 1/3 mixed (edge + screw), arranged in boundaries around domains of GaN that are slightly disoriented with respect to neighboring material. The 30 nm AIN buffer is continuous, indicating that AIN wets the Si, in contrast to GaN on Al{sub 2}O{sub 3}.

  15. Formation of helical dislocations in ammonothermal GaN substrate by heat treatment

    NASA Astrophysics Data System (ADS)

    Horibuchi, Kayo; Yamaguchi, Satoshi; Kimoto, Yasuji; Nishikawa, Koichi; Kachi, Tetsu

    2016-03-01

    GaN substrate produced by the basic ammonothermal method and an epitaxial layer on the substrate was evaluated using synchrotron radiation x-ray topography and transmission electron microscopy. We revealed that the threading dislocations present in the GaN substrate are deformed into helical dislocations and the generation of the voids by heat treatment in the substrate for the first observation in the GaN crystal. These phenomena are formed by the interactions between the dislocations and vacancies. The helical dislocation was formed in the substrate region, and not in the epitaxial layer region. Furthermore, the evaluation of the influence of the dislocations on the leakage current of Schottky barrier diodes fabricated on the epitaxial layer is discussed. The dislocations did not affect the leakage current characteristics of the epitaxial layer. Our results suggest that the deformation of dislocations in the GaN substrate does not adversely affect the epitaxial layer.

  16. Thermal Conductivity and Large Isotope Effect in GaN from First Principles

    SciTech Connect

    Lindsay, L.; Broido, D. A.; Reinecke, T. L.

    2012-08-28

    We present atomistic first principles results for the lattice thermal conductivity of GaN and compare them to those for GaP, GaAs, and GaSb. In GaN we find a large increase to the thermal conductivity with isotopic enrichment, ~65% at room temperature. We show that both the high thermal conductivity and its enhancement with isotopic enrichment in GaN arise from the weak coupling of heat-carrying acoustic phonons with optic phonons. This weak scattering results from stiff atomic bonds and the large Ga to N mass ratio, which give phonons high frequencies and also a pronounced energy gap between acoustic and optic phonons compared to other materials. Rigorous understanding of these features in GaN gives important insights into the interplay between intrinsic phonon-phonon scattering and isotopic scattering in a range of materials.

  17. Enhanced cell growth on nanotextured GaN surface treated by UV illumination and fibronectin adsorption.

    PubMed

    Li, Jingying; Han, Qiusen; Wang, Xinhuan; Yang, Rong; Wang, Chen

    2014-11-01

    Semiconductors are important materials used for the development of high-performance biomedical devices. Gallium nitride (GaN) is a well-known III-nitride semiconductor with excellent optoelectronic properties as well as high chemical stability and biocompatibility. The formation of tight interfaces between GaN substrates and cells would be crucial for GaN-based devices used for probing and manipulating biological processes of cells. Here we report a strategy to greatly enhance cell adhesion and survival on nanotextured GaN surface which was treated by UV illumination and fibronectin (FN) adsorption. Cell studies showed that the UV/FN treatment greatly enhanced cell adhesion and growth on nanotextured GaN surfaces. These observations suggest new opportunities for novel nanotextured GaN-based biomedical devices.

  18. High-resistance GaN epilayers with low dislocation density via growth mode modification

    NASA Astrophysics Data System (ADS)

    Xu, Z. Y.; Xu, F. J.; Wang, J. M.; Lu, L.; Yang, Z. J.; Wang, X. Q.; Shen, B.

    2016-09-01

    High-resistance GaN with low dislocation density adopting growth mode modification has been investigated by metalorganic chemical vapor deposition. The sheet resistance of the order of 1016 Ω/sq has been achieved at room temperature by diminishing the oxygen impurity level close to the substrate with an AlN blocking layer. Attributed to this method which offers more freedom to tailor the growth mode, a three-dimensional (3D) growth process is introduced by adjusting the growth pressure and temperature at the initial stage of the GaN epitaxy to improve the crystalline quality. The large 3D GaN grains formed during this period roughen the surface, and the following coalescence of the GaN grains causes threading dislocations bending, which finally remarkably reduces the dislocation density.

  19. Swelling or erosion on the surface of patterned GaN damaged by heavy ion implantation

    SciTech Connect

    Gao, Yuan; Lan, Chune; Xue, Jianming; Yan, Sha; Wang, Yugang; Xu, Fujun; Shen, Bo; Zhang, Yanwen

    2010-06-08

    Wurtzite undoped GaN epilayers (0 0 0 1) was implanted with 500 keV Au+ ions at room temperature under different doses, respectively. Ion implantation was performed through photoresist masks on GaN to produce alternating strips. The experimental results showed that the step height of swelling and decomposition in implanted GaN depended on ion dose and annealing temperature, i.e., damage level and its evolution. This damage evolution is contributed to implantation-induced defect production, and defect migration/accumulation occurred at different levels of displacement per atom. The results suggest that the swelling is due to the formation of porous structures in the amorphous region of implanted GaN. The decomposition of implanted area can be attributed to the disorder saturation and the diffusion of surface amorphous layer.

  20. Above room-temperature ferromagnetism of Mn delta-doped GaN nanorods

    SciTech Connect

    Lin, Y. T.; Wadekar, P. V.; Kao, H. S.; Chen, T. H.; Chen, Q. Y.; Tu, L. W.; Huang, H. C.; Ho, N. J.

    2014-02-10

    One-dimensional nitride based diluted magnetic semiconductors were grown by plasma-assisted molecular beam epitaxy. Delta-doping technique was adopted to dope GaN nanorods with Mn. The structural and magnetic properties were investigated. The GaMnN nanorods with a single crystalline structure and with Ga sites substituted by Mn atoms were verified by high-resolution x-ray diffraction and Raman scattering, respectively. Secondary phases were not observed by high-resolution x-ray diffraction and high-resolution transmission electron microscopy. In addition, the magnetic hysteresis curves show that the Mn delta-doped GaN nanorods are ferromagnetic above room temperature. The magnetization with magnetic field perpendicular to GaN c-axis saturates easier than the one with field parallel to GaN c-axis.

  1. Femtosecond dynamics of exciton bleaching in bulk GaN at room temperature

    NASA Astrophysics Data System (ADS)

    Huang, Yin-Chieh; Chern, Gia-Wei; Lin, Kung-Hsuan; Liang, Jian-Chin; Sun, Chi-Kuang; Hsu, Chia-Chen; Keller, Stacia; DenBaars, Steven P.

    2002-07-01

    Femtosecond transient transmission pump-probe technique was used to investigate exciton dynamics in a nominally undoped GaN thin film at room temperature. An exciton ionization time of 100-250 femtoseconds was observed by the time-resolved pump-probe measurement. A comparison experiment with pre-excited free carriers also confirmed the observation of the exciton ionization process in bulk GaN.

  2. Mass transport, faceting and behavior of dislocations in GaN

    SciTech Connect

    Nitta, S.; Kashima, T.; Kariya, M.; Yukawa, Y.; Yamaguchi, S.; Amano, H.; Akasaki, I.

    2000-07-01

    The behavior of threading dislocations during mass transport of GaN was investigated in detail by transmission electron microscopy. Mass transport occurred at the surface. Therefore, growing species are supplied from the in-plane direction. The behavior of threading dislocations was found to be strongly affected by the mass transport process as well as the high crystallographic anisotropy of the surface energy of the facets particular to GaN.

  3. Strain dependent electron spin dynamics in bulk cubic GaN

    SciTech Connect

    Schaefer, A.; Buß, J. H.; Hägele, D.; Rudolph, J.; Schupp, T.; Zado, A.; As, D. J.

    2015-03-07

    The electron spin dynamics under variable uniaxial strain is investigated in bulk cubic GaN by time-resolved magneto-optical Kerr-rotation spectroscopy. Spin relaxation is found to be approximately independent of the applied strain, in complete agreement with estimates for Dyakonov-Perel spin relaxation. Our findings clearly exclude strain-induced relaxation as an effective mechanism for spin relaxation in cubic GaN.

  4. High efficiency DC-DC converter using GaN transistors

    NASA Astrophysics Data System (ADS)

    Tómaş, Cosmin-Andrei; Grecu, Cristian; Pantazicǎ, Mihaela; Marghescu, Ion

    2015-02-01

    The paper presents a new high-efficiency power switching supply using the Gallium Nitride (GaN) technology. There are compared two solutions, the first using standard MOS transistors and the second using the new GaN transistor. The actual green technologies for obtaining the maximum energy and minimum losses have pushed the semiconductor industry into a continuous research regarding high power and high frequency devices, having uses in both digital communications and switching power supplies.

  5. The dispersion of BED ° in unintentional doped GaN crystals

    NASA Astrophysics Data System (ADS)

    Qingcheng, Bao; Fungleng, Zhang; Ke, Shi; Rensong, Dai; Xurong, Xu

    1986-09-01

    The polarization and the wavelength of the photoluminescence of BED ° in not intentionaly doped GaN crystal wafers are observed to be dependent on the excitation intensity (I-exc). When I-exc increases from 1 KW/CM 2 to 1000 KW/CM 2, they vary at first quadratically, and then, appear saturated. This phenomenon is resulted from dispersion effect of BED ° in GaN crystal wafers, which is proposed earlier (1).

  6. GaN Stress Evolution During Metal-Organic Chemical Vapor Deposition

    SciTech Connect

    Amano, H.; Chason, E.; Figiel, J.; Floro, J.A.; Han, J.; Hearne, S.; Hunter, J.; Tsong, I.

    1998-10-14

    The evolution of stress in gallium nitride films on sapphire has been measured in real- time during metal organic chemical vapor deposition. In spite of the 161%0 compressive lattice mismatch of GaN to sapphire, we find that GaN consistently grows in tension at 1050"C. Furthermore, in-situ stress monitoring indicates that there is no measurable relaxation of the tensile growth stress during annealing or thermal cycling.

  7. Strain dependent electron spin dynamics in bulk cubic GaN

    NASA Astrophysics Data System (ADS)

    Schaefer, A.; Buß, J. H.; Schupp, T.; Zado, A.; As, D. J.; Hägele, D.; Rudolph, J.

    2015-03-01

    The electron spin dynamics under variable uniaxial strain is investigated in bulk cubic GaN by time-resolved magneto-optical Kerr-rotation spectroscopy. Spin relaxation is found to be approximately independent of the applied strain, in complete agreement with estimates for Dyakonov-Perel spin relaxation. Our findings clearly exclude strain-induced relaxation as an effective mechanism for spin relaxation in cubic GaN.

  8. Temperature Dependence of the Piezotronic and Piezophototronic Effects in a-axis GaN Nanobelts.

    PubMed

    Wang, Xingfu; Yu, Ruomeng; Peng, Wenbo; Wu, Wenzhuo; Li, Shuti; Wang, Zhong Lin

    2015-12-22

    The temperature dependence of the piezotronic and piezophototronic effects in a-axis GaN nanobelts from 77 to 300 K is investigated. The piezotronic effect is enhanced by over 440% under lower temp-eratures. Two independent processes are discovered to form a competing mechanism through the investigation of the temperature dependence of the piezophototronic effect in a-axis GaN nanobelts.

  9. Defect Formation in GaN Epitaxial Layers due to SHI Irradiation

    SciTech Connect

    Kumar, Ashish; Kumar, V.; Singh, R.; Kanjilal, D.

    2011-07-15

    GaN epitaxial layers were irradiated with 200 MeV swift heavy Ag ions at various fluences. These samples were then characterized by XRD and TEM. Increase in peak width (FWHM) with incident ion dose showed reduction in crystallinity of epitaxial layers. Cross sectional TEM images confirmed that at highest fluence (5x10{sup 12} ions/cm{sup 2}) electronic energy loss process caused structural defect formation in GaN layer.

  10. Comparison of Electronic and Optical Properties of GaN Monolayer and Bulk Structure: a First Principle Study

    NASA Astrophysics Data System (ADS)

    Imran, Muhammad; Hussain, Fayyaz; Rashid, Muhammad; Ullah, Hafeez; Sattar, Atif; Iqbal, Faisal; Ahmad, Ejaz

    2016-03-01

    The semiconducting two-dimensional (2D) architectures materials have potential applications in electronics and optics. The design and search of new 2D materials have attracted extensive attention recently. In this study, first principle calculation has been done on 2D gallium nitride (GaN) monolayer with respect to its formation and binding energies. The electronic and optical properties are also investigated. It is found that the single isolated GaN sheet is forming mainly ionic GaN bonds despite a slightly weaker GaN interaction as compared with its bulk counterpart. The dielectric constant value of 2D GaN is smaller as compared to 3D GaN due to less effective electronic screening effect in the layer, which is accompanied by lesser optical adsorption range and suggested to be a promising candidate in electronic and optoelectronic devices.

  11. First-principle study on electronic structure and optical properties of GaN nanowires with different cross-sections

    NASA Astrophysics Data System (ADS)

    Kong, Yike; Liu, Lei; Xia, Sihao; Wang, Honggang; Wang, Meishan

    2016-08-01

    This paper explores the properties of intrinsic gallium nitride (GaN) nanowires (NWs) in terms of formation energy, band structure, density of state (DOS) and optical properties with plane-wave ultrasoft pseudopotential method based on first-principles. Results show that after relaxation, N atoms of the outer layers move outwards, while Ga atoms move inwards, and the relaxation of surface atomic structure appears less obvious with the increasing cross-sectional area. Comparing different cross-sections of GaN NWs, it is found that the formation energy decreases and the stability goes stronger with the increasing size. With the increasing cross-section, the bandgap is decreased. Moreover, through comparative investigation in optical properties between GaN NWs and bulk GaN, a valuable phenomenom is found that the static dielectric constants of GaN NWs are notably lower, which contributes remarkably to the excellent absorbing performance of GaN NWs.

  12. Scanning reflection electron microscopy study of surface defects in GaN films formed by epitaxial lateral overgrowth

    NASA Astrophysics Data System (ADS)

    Watanabe, Heiji; Kuroda, Naotaka; Sunakawa, Haruo; Usui, Akira

    2000-09-01

    We have used scanning reflection electron microscopy (SREM) to detect surface defects in GaN films formed by facet-initiated epitaxial lateral overgrowth. SREM revealed individual threading dislocations and single atomic steps on the GaN surface, and provided images of crystallographic tilting near the surfaces. We found that one of the two tilted GaN crystals in the overgrown areas became dominant and that the surface changed to a single domain after 50-μm-thick GaN deposition. Our SREM results also showed that the deposition of thick (over 100 μm) GaN films significantly improves the crystallographic structures of the overgrown regions, and reduces the threading dislocations in the GaN films.

  13. Improved performance of GaN metal-semiconductor-metal ultraviolet detectors by depositing SiO2 nanoparticles on a GaN surface

    NASA Astrophysics Data System (ADS)

    Sun, Xiaojuan; Li, Dabing; Jiang, Hong; Li, Zhiming; Song, Hang; Chen, Yiren; Miao, Guoqing

    2011-03-01

    GaN metal-semiconductor-metal (MSM) ultraviolet detectors were investigated by depositing different density of SiO2 nanoparticles (SNPs) on the GaN. It was shown that the dark current of the detectors with SNPs was more than one order of magnitude lower than that without SNPs and the peak responsivity was enhanced after deposition of the SNPs. Atomic force microscopy observations indicated that the SNPs usually formed at the termination of screw and mixed dislocations, and further current-voltage measurements showed that the leakage of the Schottky contact for the GaN MSM detector decreased with deposited the SNPs. Moreover, the leakage obeyed the Frenkel-Poole emission model, which meant that the mechanism for improving the performance is the SNPs passivation of the dislocations followed by the reduction in the dark current.

  14. Layered transition metal dichalcogenides: promising near-lattice-matched substrates for GaN growth

    NASA Astrophysics Data System (ADS)

    Gupta, Priti; Rahman, A. A.; Subramanian, Shruti; Gupta, Shalini; Thamizhavel, Arumugam; Orlova, Tatyana; Rouvimov, Sergei; Vishwanath, Suresh; Protasenko, Vladimir; Laskar, Masihhur R.; Xing, Huili Grace; Jena, Debdeep; Bhattacharya, Arnab

    2016-03-01

    Most III-nitride semiconductors are grown on non-lattice-matched substrates like sapphire or silicon due to the extreme difficulty of obtaining a native GaN substrate. We show that several layered transition-metal dichalcogenides are closely lattice-matched to GaN and report the growth of GaN on a range of such layered materials. We report detailed studies of the growth of GaN on mechanically-exfoliated flakes WS2 and MoS2 by metalorganic vapour phase epitaxy. Structural and optical characterization show that strain-free, single-crystal islands of GaN are obtained on the underlying chalcogenide flakes. We obtain strong near-band-edge emission from these layers, and analyse their temperature-dependent photoluminescence properties. We also report a proof-of-concept demonstration of large-area growth of GaN on CVD MoS2. Our results show that the transition-metal dichalcogenides can serve as novel near-lattice-matched substrates for nitride growth.

  15. Behavior of aluminum adsorption and incorporation at GaN(0001) surface: First-principles study

    SciTech Connect

    Qin, Zhenzhen; Xiong, Zhihua Wan, Qixin; Qin, Guangzhao

    2013-11-21

    First-principles calculations are performed to study the energetics and atomic structures of aluminum adsorption and incorporation at clean and Ga-bilayer GaN(0001) surfaces. We find the favorable adsorption site changes from T4 to T1 as Al coverage increased to 1 monolayer on the clean GaN(0001) surface, and a two-dimensional hexagonal structure of Al overlayer appears. It is interesting the Al atoms both prefer to concentrate in one deeper Ga layer of clean and Ga-bilayer GaN(0001) surface, respectively, while different structures could be achieved in above surfaces. For the case of clean GaN(0001) surface, corresponding to N-rich and moderately Ga-rich conditions, a highly regular superlattice structure composed of wurtzite GaN and AlN becomes favorable. For the case of Ga-bilayer GaN(0001) surface, corresponding to extremely Ga-rich conditions, the Ga bilayer is found to be sustained stable in Al incorporating process, leading to an incommensurate structure directly. Furthermore, our calculations provide an explanation for the spontaneous formation of ordered structure and incommensurate structure observed in growing AlGaN films. The calculated results are attractive for further development of growth techniques and excellent AlGaN/GaN heterostructure electronic devices.

  16. Layered transition metal dichalcogenides: promising near-lattice-matched substrates for GaN growth.

    PubMed

    Gupta, Priti; Rahman, A A; Subramanian, Shruti; Gupta, Shalini; Thamizhavel, Arumugam; Orlova, Tatyana; Rouvimov, Sergei; Vishwanath, Suresh; Protasenko, Vladimir; Laskar, Masihhur R; Xing, Huili Grace; Jena, Debdeep; Bhattacharya, Arnab

    2016-03-30

    Most III-nitride semiconductors are grown on non-lattice-matched substrates like sapphire or silicon due to the extreme difficulty of obtaining a native GaN substrate. We show that several layered transition-metal dichalcogenides are closely lattice-matched to GaN and report the growth of GaN on a range of such layered materials. We report detailed studies of the growth of GaN on mechanically-exfoliated flakes WS2 and MoS2 by metalorganic vapour phase epitaxy. Structural and optical characterization show that strain-free, single-crystal islands of GaN are obtained on the underlying chalcogenide flakes. We obtain strong near-band-edge emission from these layers, and analyse their temperature-dependent photoluminescence properties. We also report a proof-of-concept demonstration of large-area growth of GaN on CVD MoS2. Our results show that the transition-metal dichalcogenides can serve as novel near-lattice-matched substrates for nitride growth.

  17. Uniform GaN thin films grown on (100) silicon by remote plasma atomic layer deposition.

    PubMed

    Shih, Huan-Yu; Lin, Ming-Chih; Chen, Liang-Yih; Chen, Miin-Jang

    2015-01-01

    The growth of uniform gallium nitride (GaN) thin films was reported on (100) Si substrate by remote plasma atomic layer deposition (RP-ALD) using triethylgallium (TEG) and NH3 as the precursors. The self-limiting growth of GaN was manifested by the saturation of the deposition rate with the doses of TEG and NH3. The increase in the growth temperature leads to the rise of nitrogen content and improved crystallinity of GaN thin films, from amorphous at a low deposition temperature of 200 °C to polycrystalline hexagonal structures at a high growth temperature of 500 °C. No melting-back etching was observed at the GaN/Si interface. The excellent uniformity and almost atomic flat surface of the GaN thin films also infer the surface control mode of the GaN thin films grown by the RP-ALD technique. The GaN thin films grown by RP-ALD will be further applied in the light-emitting diodes and high electron mobility transistors on (100) Si substrate.

  18. Layered transition metal dichalcogenides: promising near-lattice-matched substrates for GaN growth

    PubMed Central

    Gupta, Priti; Rahman, A. A.; Subramanian, Shruti; Gupta, Shalini; Thamizhavel, Arumugam; Orlova, Tatyana; Rouvimov, Sergei; Vishwanath, Suresh; Protasenko, Vladimir; Laskar, Masihhur R.; Xing, Huili Grace; Jena, Debdeep; Bhattacharya, Arnab

    2016-01-01

    Most III-nitride semiconductors are grown on non-lattice-matched substrates like sapphire or silicon due to the extreme difficulty of obtaining a native GaN substrate. We show that several layered transition-metal dichalcogenides are closely lattice-matched to GaN and report the growth of GaN on a range of such layered materials. We report detailed studies of the growth of GaN on mechanically-exfoliated flakes WS2 and MoS2 by metalorganic vapour phase epitaxy. Structural and optical characterization show that strain-free, single-crystal islands of GaN are obtained on the underlying chalcogenide flakes. We obtain strong near-band-edge emission from these layers, and analyse their temperature-dependent photoluminescence properties. We also report a proof-of-concept demonstration of large-area growth of GaN on CVD MoS2. Our results show that the transition-metal dichalcogenides can serve as novel near-lattice-matched substrates for nitride growth. PMID:27025461

  19. Enhancing the field emission properties of Se-doped GaN nanowires.

    PubMed

    Li, Enling; Wu, Guishuang; Cui, Zhen; Ma, Deming; Shi, Wei; Wang, Xiaolin

    2016-07-01

    Pure and Se-doped GaN nanowires (NWs) are synthesized on Pt-coated Si(111) substrates via chemical vapor deposition. The GaN NWs exhibit a uniform density with an average diameter of 20-120 nm. The structure of the NWs is wurtzite hexagonal, and the growth direction is along [0001]. Field emission measurements show that the Se-doped GaN NWs possess a low turn-on field (2.9 V μm(-1)) compared with the pure GaN NWs (7.0 V μm(-1)). In addition, density functional theory calculations indicate that the donor states near the Fermi level are mainly formed through the hybridization between Se 4p and N 2p orbitals and that the Fermi level move towards the vacuum level. Consequently, the work functions of Se-doped GaN NWs are lower than those of pure GaN NWs. PMID:27197556

  20. Hybrid device based on GaN nanoneedles and MEH-PPV/PEDOT:PSS polymer

    SciTech Connect

    Shin, Min Jeong; Gwon, Dong-Oh; Lee, Chan-Mi; Lee, Gang Seok; Jeon, In-Jun; Ahn, Hyung Soo; Yi, Sam Nyung; Ha, Dong Han

    2015-08-15

    Highlights: • A hybrid device was demonstrated by using MEH-PPV, PEDOT:PSS, and GaN nanoneedles. • I–V curve of the hybrid device showed its rectification behaviour, similar to a diode. • EL peak originated by the different potential barriers at MEH-PPV and GaN interface. - Abstract: A hybrid device that combines the properties of organic and inorganic semiconductors was fabricated and studied. It incorporated poly[2-methoxy-5-(2-ethylhexyloxy)- 1,4-phenylenevinylene] (MEH-PPV) and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) as organic polymers and GaN nanoneedles as an inorganic semiconductor. Layers of the two polymers were spin coated on to the GaN nanoneedles. The one peak in the electroluminescence spectrum originated from the MEH-PPV layer owing to the different potential barriers of electrons and holes at its interface with the GaN nanoneedles. However, the photoluminescence spectrum showed peaks due to both GaN nanoneedles and MEH-PPV. Such hybrid structures, suitably developed, might be able to improve the efficiency of optoelectronic devices.

  1. GaN etching in BCl{sub 3}Cl{sub 2} plasmas

    SciTech Connect

    Shul, R.J.; Ashby, C.I.H.; Willison, C.G.; Zhang, L.; Han, J.; Bridges, M.M.; Pearton, S.J.; Lee, J.W.; Lester, L.F.

    1998-04-01

    GaN etching can be affected by a wide variety of parameters including plasma chemistry and plasma density. Chlorine-based plasmas have been the most widely used plasma chemistries to etch GaN due to the high volatility of the GaCl{sub 3} and NCl etch products. The source of Cl and the addition of secondary gases can dramatically influence the etch characteristics primarily due to their effect on the concentration of reactive Cl generated in the plasma. In addition, high-density plasma etch systems have yielded high quality etching of GaN due to plasma densities which are 2 to 4 orders of magnitude higher than reactive ion etch (RIE) plasma systems. The high plasma densities enhance the bond breaking efficiency of the GaN, the formation of volatile etch products, and the sputter desorption of the etch products from the surface. In this study, the authors report GaN etch results for a high-density inductively coupled plasma (ICP) as a function of BCl{sub 3}:Cl{sub 2} flow ratio, dc-bias, chamber-pressure, and ICP source power. GaN etch rates ranging from {approximately}100 {angstrom}/min to > 8,000 {angstrom}/min were obtained with smooth etch morphology and anisotropic profiles.

  2. Size dictated thermal conductivity of GaN

    DOE PAGES

    Thomas Edwin Beechem; McDonald, Anthony E.; Fuller, Elliot James; Talin, Albert Alec; Rost, Christina M.; Maria, Jon -Paul; Gaskins, John T.; Hopkins, Patrick E.; Allerman, Andrew A.

    2016-04-01

    The thermal conductivity on n- and p-type doped gallium nitride (GaN) epilayers having thickness of 3-4 μm was investigated using time domain thermoreflectance (TDTR). Despite possessing carrier concentrations ranging across 3 decades (1015 – 1018 cm–3), n-type layers exhibit a nearly constant thermal conductivity of 180 W/mK. The thermal conductivity of p-type epilayers, in contrast, reduces from 160 to 110 W/mK with increased doping. These trends–and their overall reduction relative to bulk–are explained leveraging established scattering models where it is shown that size effects play a primary role in limiting thermal conductivity for layers even tens of microns thick. GaNmore » device layers, even of pristine quality, will therefore exhibit thermal conductivities less than the bulk value of 240 W/mK owing to their finite thickness.« less

  3. Inversion domains in GaN grown on sapphire

    SciTech Connect

    Romano, L.T.; Northrup, J.E.; OKeefe, M.A.

    1996-10-01

    Planar defects observed in GaN films grown on (0001) sapphire have been identified as inversion domain boundaries (IDBs) by a combination of high resolution transmission electron microscopy, multiple dark field imaging, and convergent beam electron diffraction techniques. Films grown by molecular beam epitaxy (MBE), metalorganic vapor deposition (MOCVD), and hydride vapor phase epitaxy (HVPE) were investigated and all were found to contain IDBs. The IDBs in the MBE and HVPE films extended from the interface to the film surface and formed columnar domains that ranged in width from 3 to 20 nm in the MBE films and up to 100 nm in the HVPE films. For the films investigated, the MBE films had the highest density, and the MOCVD films had the lowest density of IDBs. The nucleation of inversion domains (IDs) may result from step-related inhomogeneities of the GaN/sapphire interface. {copyright} {ital 1996 American Institute of Physics.}

  4. Intrinsic polarization control in rectangular GaN nanowire lasers

    DOE PAGES

    Li, Changyi; Liu, Sheng; Luk, Ting S.; Figiel, Jeffrey J.; Brener, Igal; Brueck, S. R. J.; Wang, George T.

    2016-02-01

    In this study, we demonstrate intrinsic, linearly polarized lasing from single GaN nanowires using cross-sectional shape control. A two-step top-down fabrication approach was employed to create straight nanowires with controllable rectangular cross-sections. A clear lasing threshold of 444kW/cm2 and a narrow spectral line width of 0.16 nm were observed under optical pumping at room temperature, indicating the onset of lasing. The polarization was along the short dimension (y-direction) of the nanowire due to the higher transverse confinement factors for y-polarized transverse modes resulting from the rectangular nanowire cross-section. The results show that cross-sectioned shape control can enable inherent control overmore » the polarization of nanowire lasers without additional environment requirements, such as placement onto lossy substrates.« less

  5. Ge doping of GaN beyond the Mott transition

    NASA Astrophysics Data System (ADS)

    Ajay, A.; Schörmann, J.; Jiménez-Rodriguez, M.; Lim, C. B.; Walther, F.; Rohnke, M.; Mouton, I.; Amichi, L.; Bougerol, C.; Den Hertog, M. I.; Eickhoff, M.; Monroy, E.

    2016-11-01

    We present a study of germanium as n-type dopant in wurtzite GaN films grown by plasma-assisted molecular-beam epitaxy, reaching carrier concentrations of up to 6.7  ×  1020 cm‑3 at 300 K, well beyond the Mott density. The Ge concentration and free carrier density were found to scale linearly with the Ge flux in the studied range. All the GaN:Ge layers present smooth surface morphology with atomic terraces, without trace of pits or cracks, and the mosaicity of the samples has no noticeable dependence on the Ge concentration. The variation of the GaN:Ge band gap with the carrier concentration is consistent with theoretical calculations of the band gap renormalization due to electron–electron and electron–ion interaction, and Burstein–Moss effect.

  6. Enhanced water splitting with silver decorated GaN photoelectrode

    NASA Astrophysics Data System (ADS)

    Hou, Y.; Syed, Z. A.; Smith, R.; Athanasiou, M.; Gong, Y.; Yu, X.; Bai, J.; Wang, T.

    2016-07-01

    By means of a cost-effective approach, we demonstrate a GaN-based photoelectrode decorated with self-organized silver nano-islands employed for solar powered hydrogen generation, demonstrating 4 times increase in photocurrent compared with a reference sample without using any silver. Our photoelectrode exhibits a 60% incident photon-to-electron conversion efficiency. The enhanced hydrogen generation is attributed to a significantly increased carrier generation rate as a result of strongly localized electric fields induced by surface plasmon coupling effect. The silver coating also contributes to the good chemical stability of our photoelectrode in a strong alkali electrolyte. This work paves the way for the development of GaN and also InGaN based photoelectrodes with ultra-high solar hydrogen conversion efficiency.

  7. Intrinsic polarization control in rectangular GaN nanowire lasers.

    PubMed

    Li, Changyi; Liu, Sheng; Luk, Ting S; Figiel, Jeffrey J; Brener, Igal; Brueck, S R J; Wang, George T

    2016-03-14

    We demonstrate intrinsic, linearly polarized lasing from single GaN nanowires using cross-sectional shape control. A two-step top-down fabrication approach was employed to create straight nanowires with controllable rectangular cross-sections. A clear lasing threshold of 444 kW cm(-2) and a narrow spectral line width of 0.16 nm were observed under optical pumping at room temperature, indicating the onset of lasing. The polarization was along the short dimension (y-direction) of the nanowire due to the higher transverse confinement factors for y-polarized transverse modes resulting from the rectangular nanowire cross-section. The results show that cross-sectioned shape control can enable inherent control over the polarization of nanowire lasers without additional environment requirements, such as placement onto lossy substrates. PMID:26899502

  8. GaN Based Electronics And Their Applications

    NASA Astrophysics Data System (ADS)

    Ren, Fan

    2002-03-01

    The Group III-nitrides were initially researched for their promise to fill the void for a blue solid state light emitter. Electronic devices from III-nitrides have been a more recent phenomenon. The thermal conductivity of GaN is three times that of GaAs. For high power or high temperature applications, good thermal conductivity is imperative for heat removal or sustained operation at elevated temperatures. The development of III-N and other wide bandgap technologies for high temperature applications will likely take place at the expense of competing technologies, such as silicon-on-insulator (SOI), at moderate temperatures. At higher temperatures (>300°C), novel devices and components will become possible. The automotive industry will likely be one of the largest markets for such high temperature electronics. One of the most noteworthy advantages for III-N materials over other wide bandgap semiconductors is the availability of AlGaN/GaN and InGaN/GaN heterostructures. A 2-dimensional electron gas (2DEG) has been shown to exist at the AlGaN/GaN interface, and heterostructure field effect transistors (HFETs) from these materials can exhibit 2DEG mobilities approaching 2000 cm2 / V?s at 300K. Power handling capabilities of 12 W/mm appear feasible, and extraordinary large signal performance has already been demonstrated, with a current state-of-the-art of >10W/mm at X-band. In this talk, high speed and high temperature AlGaN/GaN HEMTs as well as MOSHEMTs, high breakdown voltage GaN (>6KV) and AlGaN (9.7 KV) Schottky diodes, and their applications will be presented.

  9. Ultrathin GaN nanowires: Electronic, thermal, and thermoelectric properties

    NASA Astrophysics Data System (ADS)

    Davoody, A. H.; Ramayya, E. B.; Maurer, L. N.; Knezevic, I.

    2014-03-01

    We present a comprehensive computational study of the electronic, thermal, and thermoelectric (TE) properties of gallium nitride nanowires (NWs) over a wide range of thicknesses (3-9 nm), doping densities (1018-1020 cm-3), and temperatures (300-1000 K). We calculate the low-field electron mobility based on ensemble Monte Carlo transport simulation coupled with a self-consistent solution of the Poisson and Schrödinger equations. We use the relaxation-time approximation and a Poisson-Schrödinger solver to calculate the electron Seebeck coefficient and thermal conductivity. Lattice thermal conductivity is calculated using a phonon ensemble Monte Carlo simulation, with a real-space rough surface described by a Gaussian autocorrelation function. Throughout the temperature range, the Seebeck coefficient increases while the lattice thermal conductivity decreases with decreasing wire cross section, both boding well for TE applications of thin GaN NWs. However, at room temperature these benefits are eventually overcome by the detrimental effect of surface roughness scattering on the electron mobility in very thin NWs. The highest room-temperature ZT of 0.2 is achieved for 4-nm-thick NWs, while further downscaling degrades it. In contrast, at 1000 K, the electron mobility varies weakly with the NW thickness owing to the dominance of polar optical phonon scattering and multiple subbands contributing to transport, so ZT increases with increasing confinement, and reaches 0.8 for optimally doped 3-nm-thick NWs. The ZT of GaN NWs increases with increasing temperature beyond 1000 K, which further emphasizes their suitability for high-temperature TE applications.

  10. Growth of high quality GaN layer on carbon nanotube-graphene network structure as intermediate layer

    NASA Astrophysics Data System (ADS)

    Seo, Taeo Hoon; Park, Ah Hyun; Park, Sungchan; Kim, Myung Jong; Suh, Eun-Kyung

    2015-03-01

    In general, high-quality GaN layers are synthesized on low-temperature (LT) GaN buffer layer on a single crystal sapphire substrate. However, large differences in fundamental properties such as lattice constants and thermal expansion coefficients between GaN layer and sapphire substrate generate high density of threading dislocation (TD) that leads to deterioration of optical and structural properties. Graphene has been attracting much attention due to its excellent physical properties However, direct epitaxial growth of GaN film onto graphene layer on substrates is not easily accessible due to the lack of chemical reactivity on graphene which consisted of C-C bond of sp2 hexagonally arranged carbon atoms with no dangling bonds. In this work, an intermediate layer for the GaN growth on sapphire substrate was constructed by inserting carbon nanotubes and graphene hybrid structure (CGH) Optical and structural properties of GaN layer grown on CGH were compared with those of GaN layer directly grown on sapphire CNTs act as nucleation sites and play a crucial role in the growth of single crystal high-quality GaN on graphene layer. Also, graphene film acts as a mask for epitaxial lateral overgrowth of GaN layer, which can effectively reduce TD density. A grant from the Korea Institute of Science and Technology (KIST) institutional program.

  11. High electron mobility GaN grown under N-rich conditions by plasma-assisted molecular beam epitaxy

    SciTech Connect

    Koblmueller, G.; Wu, F.; Mates, T.; Speck, J. S.; Fernandez-Garrido, S.; Calleja, E.

    2007-11-26

    An alternative approach is presented for the plasma-assisted molecular beam epitaxy of high-quality GaN. Under N-rich growth conditions, an unexpected layer-by-layer growth mode was found for a wide range of growth temperatures in the GaN thermal decomposition regime (>750 deg. C). Consequently, superior surface morphologies with roughness of less than 1 nm (rms) have been achieved. For lightly Si-doped GaN films, room-temperature electron mobilities exceeding 1100 cm{sup 2}/V s were measured, surpassing the commonly insulating nature of GaN grown under N-rich conditions at low temperature.

  12. A growth diagram for plasma-assisted molecular beam epitaxy of GaN nanocolumns on Si(111)

    SciTech Connect

    Fernandez-Garrido, S.; Grandal, J.; Calleja, E.; Sanchez-Garcia, M. A.; Lopez-Romero, D.

    2009-12-15

    The morphology of GaN samples grown by plasma-assisted molecular beam epitaxy on Si(111) was systematically studied as a function of impinging Ga/N flux ratio and growth temperature (730-850 deg. C). Two different growth regimes were identified: compact and nanocolumnar. A growth diagram was established as a function of growth parameters, exhibiting the transition between growth regimes, and showing under which growth conditions GaN cannot be grown due to thermal decomposition and Ga desorption. Present results indicate that adatoms diffusion length and the actual Ga/N ratio on the growing surface are key factors to achieve nanocolumnar growth.

  13. High active nitrogen flux growth of GaN by plasma assisted molecular beam epitaxy

    SciTech Connect

    McSkimming, Brian M. Speck, James S.; Chaix, Catherine

    2015-09-15

    In the present study, the authors report on a modified Riber radio frequency (RF) nitrogen plasma source that provides active nitrogen fluxes more than 30 times higher than those commonly used for plasma assisted molecular beam epitaxy (PAMBE) growth of gallium nitride (GaN) and thus a significantly higher growth rate than has been previously reported. GaN films were grown using N{sub 2} gas flow rates between 5 and 25 sccm while varying the plasma source's RF forward power from 200 to 600 W. The highest growth rate, and therefore the highest active nitrogen flux, achieved was ∼7.6 μm/h. For optimized growth conditions, the surfaces displayed a clear step-terrace structure with an average RMS roughness (3 × 3 μm) on the order of 1 nm. Secondary ion mass spectroscopy impurity analysis demonstrates oxygen and hydrogen incorporation of 1 × 10{sup 16} and ∼5 × 10{sup 17}, respectively. In addition, the authors have achieved PAMBE growth of GaN at a substrate temperature more than 150 °C greater than our standard Ga rich GaN growth regime and ∼100 °C greater than any previously reported PAMBE growth of GaN. This growth temperature corresponds to GaN decomposition in vacuum of more than 20 nm/min; a regime previously unattainable with conventional nitrogen plasma sources. Arrhenius analysis of the decomposition rate shows that samples with a flux ratio below stoichiometry have an activation energy greater than decomposition of GaN in vacuum while samples grown at or above stoichiometry have decreased activation energy. The activation energy of decomposition for GaN in vacuum was previously determined to be ∼3.1 eV. For a Ga/N flux ratio of ∼1.5, this activation energy was found to be ∼2.8 eV, while for a Ga/N flux ratio of ∼0.5, it was found to be ∼7.9 eV.

  14. Metalorganic chemical vapor deposition growth of high-mobility AlGaN/AlN/GaN heterostructures on GaN templates and native GaN substrates

    SciTech Connect

    Chen, Jr-Tai Hsu, Chih-Wei; Forsberg, Urban; Janzén, Erik

    2015-02-28

    Severe surface decomposition of semi-insulating (SI) GaN templates occurred in high-temperature H{sub 2} atmosphere prior to epitaxial growth in a metalorganic chemical vapor deposition system. A two-step heating process with a surface stabilization technique was developed to preserve the GaN template surface. Utilizing the optimized heating process, a high two-dimensional electron gas mobility ∼2000 cm{sup 2}/V·s was obtained in a thin AlGaN/AlN/GaN heterostructure with an only 100-nm-thick GaN spacer layer homoepitaxially grown on the GaN template. This technique was also demonstrated viable for native GaN substrates to stabilize the surface facilitating two-dimensional growth of GaN layers. Very high residual silicon and oxygen concentrations were found up to ∼1 × 10{sup 20 }cm{sup −3} at the interface between the GaN epilayer and the native GaN substrate. Capacitance-voltage measurements confirmed that the residual carbon doping controlled by growth conditions of the GaN epilayer can be used to successfully compensate the donor-like impurities. State-of-the-art structural properties of a high-mobility AlGaN/AlN/GaN heterostructure was then realized on a 1 × 1 cm{sup 2} SI native GaN substrate; the full width at half maximum of the X-ray rocking curves of the GaN (002) and (102) peaks are only 21 and 14 arc sec, respectively. The surface morphology of the heterostructure shows uniform parallel bilayer steps, and no morphological defects were noticeable over the entire epi-wafer.

  15. Metalorganic chemical vapor deposition growth of high-mobility AlGaN/AlN/GaN heterostructures on GaN templates and native GaN substrates

    NASA Astrophysics Data System (ADS)

    Chen-Tai, Jr.; Hsu, Chih-Wei; Forsberg, Urban; Janzén, Erik

    2015-02-01

    Severe surface decomposition of semi-insulating (SI) GaN templates occurred in high-temperature H2 atmosphere prior to epitaxial growth in a metalorganic chemical vapor deposition system. A two-step heating process with a surface stabilization technique was developed to preserve the GaN template surface. Utilizing the optimized heating process, a high two-dimensional electron gas mobility ˜2000 cm2/V.s was obtained in a thin AlGaN/AlN/GaN heterostructure with an only 100-nm-thick GaN spacer layer homoepitaxially grown on the GaN template. This technique was also demonstrated viable for native GaN substrates to stabilize the surface facilitating two-dimensional growth of GaN layers. Very high residual silicon and oxygen concentrations were found up to ˜1 × 1020 cm-3 at the interface between the GaN epilayer and the native GaN substrate. Capacitance-voltage measurements confirmed that the residual carbon doping controlled by growth conditions of the GaN epilayer can be used to successfully compensate the donor-like impurities. State-of-the-art structural properties of a high-mobility AlGaN/AlN/GaN heterostructure was then realized on a 1 × 1 cm2 SI native GaN substrate; the full width at half maximum of the X-ray rocking curves of the GaN (002) and (102) peaks are only 21 and 14 arc sec, respectively. The surface morphology of the heterostructure shows uniform parallel bilayer steps, and no morphological defects were noticeable over the entire epi-wafer.

  16. Piezo-generator integrating a vertical array of GaN nanowires

    NASA Astrophysics Data System (ADS)

    Jamond, N.; Chrétien, P.; Houzé, F.; Lu, L.; Largeau, L.; Maugain, O.; Travers, L.; Harmand, J. C.; Glas, F.; Lefeuvre, E.; Tchernycheva, M.; Gogneau, N.

    2016-08-01

    We demonstrate the first piezo-generator integrating a vertical array of GaN nanowires (NWs). We perform a systematic multi-scale analysis, going from single wire properties to macroscopic device fabrication and characterization, which allows us to establish for GaN NWs the relationship between the material properties and the piezo-generation, and to propose an efficient piezo-generator design. The piezo-conversion of individual MBE-grown p-doped GaN NWs in a dense array is assessed by atomic force microscopy (AFM) equipped with a Resiscope module yielding an average output voltage of 228 ± 120 mV and a maximum value of 350 mV generated per NW. In the case of p-doped GaN NWs, the piezo-generation is achieved when a positive piezo-potential is created inside the nanostructures, i.e. when the NWs are submitted to compressive deformation. The understanding of the piezo-generation mechanism in our GaN NWs, gained from AFM analyses, is applied to design a piezo-generator operated under compressive strain. The device consists of NW arrays of several square millimeters in size embedded into spin-on glass with a Schottky contact for rectification and collection of piezo-generated carriers. The generator delivers a maximum power density of ˜12.7 mW cm-3. This value sets the new state of the art for piezo-generators based on GaN NWs and more generally on nitride NWs, and offers promising prospects for the use of GaN NWs as high-efficiency ultra-compact energy harvesters.

  17. Zn-dopant dependent defect evolution in GaN nanowires.

    PubMed

    Yang, Bing; Liu, Baodan; Wang, Yujia; Zhuang, Hao; Liu, Qingyun; Yuan, Fang; Jiang, Xin

    2015-10-21

    Zn doped GaN nanowires with different doping levels (0, <1 at%, and 3-5 at%) have been synthesized through a chemical vapor deposition (CVD) process. The effect of Zn doping on the defect evolution, including stacking fault, dislocation, twin boundary and phase boundary, has been systematically investigated by transmission electron microscopy and first-principles calculations. Undoped GaN nanowires show a hexagonal wurtzite (WZ) structure with good crystallinity. Several kinds of twin boundaries, including (101¯3), (101¯1) and (202¯1), as well as Type I stacking faults (…ABABCBCB…), are observed in the nanowires. The increasing Zn doping level (<1 at%) induces the formation of screw dislocations featuring a predominant screw component along the radial direction of the GaN nanowires. At high Zn doping level (3-5 at%), meta-stable cubic zinc blende (ZB) domains are generated in the WZ GaN nanowires. The WZ/ZB phase boundary (…ABABACBA…) can be identified as Type II stacking faults. The density of stacking faults (both Type I and Type II) increases with increasing the Zn doping levels, which in turn leads to a rough-surface morphology in the GaN nanowires. First-principles calculations reveal that Zn doping will reduce the formation energy of both Type I and Type II stacking faults, favoring their nucleation in GaN nanowires. An understanding of the effect of Zn doping on the defect evolution provides an important method to control the microstructure and the electrical properties of p-type GaN nanowires.

  18. Piezo-generator integrating a vertical array of GaN nanowires.

    PubMed

    Jamond, N; Chrétien, P; Houzé, F; Lu, L; Largeau, L; Maugain, O; Travers, L; Harmand, J C; Glas, F; Lefeuvre, E; Tchernycheva, M; Gogneau, N

    2016-08-12

    We demonstrate the first piezo-generator integrating a vertical array of GaN nanowires (NWs). We perform a systematic multi-scale analysis, going from single wire properties to macroscopic device fabrication and characterization, which allows us to establish for GaN NWs the relationship between the material properties and the piezo-generation, and to propose an efficient piezo-generator design. The piezo-conversion of individual MBE-grown p-doped GaN NWs in a dense array is assessed by atomic force microscopy (AFM) equipped with a Resiscope module yielding an average output voltage of 228 ± 120 mV and a maximum value of 350 mV generated per NW. In the case of p-doped GaN NWs, the piezo-generation is achieved when a positive piezo-potential is created inside the nanostructures, i.e. when the NWs are submitted to compressive deformation. The understanding of the piezo-generation mechanism in our GaN NWs, gained from AFM analyses, is applied to design a piezo-generator operated under compressive strain. The device consists of NW arrays of several square millimeters in size embedded into spin-on glass with a Schottky contact for rectification and collection of piezo-generated carriers. The generator delivers a maximum power density of ∼12.7 mW cm(-3). This value sets the new state of the art for piezo-generators based on GaN NWs and more generally on nitride NWs, and offers promising prospects for the use of GaN NWs as high-efficiency ultra-compact energy harvesters. PMID:27363777

  19. Piezo-generator integrating a vertical array of GaN nanowires

    NASA Astrophysics Data System (ADS)

    Jamond, N.; Chrétien, P.; Houzé, F.; Lu, L.; Largeau, L.; Maugain, O.; Travers, L.; Harmand, J. C.; Glas, F.; Lefeuvre, E.; Tchernycheva, M.; Gogneau, N.

    2016-08-01

    We demonstrate the first piezo-generator integrating a vertical array of GaN nanowires (NWs). We perform a systematic multi-scale analysis, going from single wire properties to macroscopic device fabrication and characterization, which allows us to establish for GaN NWs the relationship between the material properties and the piezo-generation, and to propose an efficient piezo-generator design. The piezo-conversion of individual MBE-grown p-doped GaN NWs in a dense array is assessed by atomic force microscopy (AFM) equipped with a Resiscope module yielding an average output voltage of 228 ± 120 mV and a maximum value of 350 mV generated per NW. In the case of p-doped GaN NWs, the piezo-generation is achieved when a positive piezo-potential is created inside the nanostructures, i.e. when the NWs are submitted to compressive deformation. The understanding of the piezo-generation mechanism in our GaN NWs, gained from AFM analyses, is applied to design a piezo-generator operated under compressive strain. The device consists of NW arrays of several square millimeters in size embedded into spin-on glass with a Schottky contact for rectification and collection of piezo-generated carriers. The generator delivers a maximum power density of ∼12.7 mW cm‑3. This value sets the new state of the art for piezo-generators based on GaN NWs and more generally on nitride NWs, and offers promising prospects for the use of GaN NWs as high-efficiency ultra-compact energy harvesters.

  20. Piezo-generator integrating a vertical array of GaN nanowires.

    PubMed

    Jamond, N; Chrétien, P; Houzé, F; Lu, L; Largeau, L; Maugain, O; Travers, L; Harmand, J C; Glas, F; Lefeuvre, E; Tchernycheva, M; Gogneau, N

    2016-08-12

    We demonstrate the first piezo-generator integrating a vertical array of GaN nanowires (NWs). We perform a systematic multi-scale analysis, going from single wire properties to macroscopic device fabrication and characterization, which allows us to establish for GaN NWs the relationship between the material properties and the piezo-generation, and to propose an efficient piezo-generator design. The piezo-conversion of individual MBE-grown p-doped GaN NWs in a dense array is assessed by atomic force microscopy (AFM) equipped with a Resiscope module yielding an average output voltage of 228 ± 120 mV and a maximum value of 350 mV generated per NW. In the case of p-doped GaN NWs, the piezo-generation is achieved when a positive piezo-potential is created inside the nanostructures, i.e. when the NWs are submitted to compressive deformation. The understanding of the piezo-generation mechanism in our GaN NWs, gained from AFM analyses, is applied to design a piezo-generator operated under compressive strain. The device consists of NW arrays of several square millimeters in size embedded into spin-on glass with a Schottky contact for rectification and collection of piezo-generated carriers. The generator delivers a maximum power density of ∼12.7 mW cm(-3). This value sets the new state of the art for piezo-generators based on GaN NWs and more generally on nitride NWs, and offers promising prospects for the use of GaN NWs as high-efficiency ultra-compact energy harvesters.

  1. Crystallographically tilted and partially strain relaxed GaN grown on inclined {111} facets etched on Si(100) substrate

    NASA Astrophysics Data System (ADS)

    Ansah Antwi, K. K.; Soh, C. B.; Wee, Q.; Tan, Rayson J. N.; Yang, P.; Tan, H. R.; Sun, L. F.; Shen, Z. X.; Chua, S. J.

    2013-12-01

    High resolution X-ray diffractometry (HR-XRD), Photoluminescence, Raman spectroscopy, and Transmission electron microscope measurements are reported for GaN deposited on a conventional Si(111) substrate and on the {111} facets etched on a Si(100) substrate. HR-XRD reciprocal space mappings showed that the GaN(0002) plane is tilted by about 0.63° ± 0.02° away from the exposed Si{111} growth surface for GaN deposited on the patterned Si(100) substrate, while no observable tilt existed between the GaN(0002) and Si(111) planes for GaN deposited on the conventional Si(111) substrate. The ratio of integrated intensities of the yellow to near band edge (NBE) luminescence (IYL/INBE) was determined to be about one order of magnitude lower in the case of GaN deposited on the patterned Si(100) substrate compared with GaN deposited on the conventional Si(111) substrate. The Raman E2(high) optical phonon mode at 565.224 ± 0.001 cm-1 with a narrow full width at half maximum of 1.526 ± 0.002 cm-1 was measured, for GaN deposited on the patterned Si(100) indicating high material quality. GaN deposition within the trench etched on the Si(100) substrate occurred via diffusion and mass-transport limited mechanism. This resulted in a differential GaN layer thickness from the top (i.e., 1.8 μm) of the trench to the bottom (i.e., 0.3 μm) of the trench. Mixed-type dislocation constituted about 80% of the total dislocations in the GaN grown on the inclined Si{111} surface etched on Si(100).

  2. Crystallographically tilted and partially strain relaxed GaN grown on inclined (111) facets etched on Si(100) substrate

    SciTech Connect

    Ansah Antwi, K. K.; Soh, C. B.; Wee, Q.; Tan, Rayson J. N.; Tan, H. R.; Yang, P.; Sun, L. F.; Shen, Z. X.; Chua, S. J.

    2013-12-28

    High resolution X-ray diffractometry (HR-XRD), Photoluminescence, Raman spectroscopy, and Transmission electron microscope measurements are reported for GaN deposited on a conventional Si(111) substrate and on the (111) facets etched on a Si(100) substrate. HR-XRD reciprocal space mappings showed that the GaN(0002) plane is tilted by about 0.63° ± 0.02° away from the exposed Si(111) growth surface for GaN deposited on the patterned Si(100) substrate, while no observable tilt existed between the GaN(0002) and Si(111) planes for GaN deposited on the conventional Si(111) substrate. The ratio of integrated intensities of the yellow to near band edge (NBE) luminescence (I{sub YL}/I{sub NBE}) was determined to be about one order of magnitude lower in the case of GaN deposited on the patterned Si(100) substrate compared with GaN deposited on the conventional Si(111) substrate. The Raman E{sub 2}(high) optical phonon mode at 565.224 ± 0.001 cm{sup −1} with a narrow full width at half maximum of 1.526 ± 0.002 cm{sup −1} was measured, for GaN deposited on the patterned Si(100) indicating high material quality. GaN deposition within the trench etched on the Si(100) substrate occurred via diffusion and mass-transport limited mechanism. This resulted in a differential GaN layer thickness from the top (i.e., 1.8 μm) of the trench to the bottom (i.e., 0.3 μm) of the trench. Mixed-type dislocation constituted about 80% of the total dislocations in the GaN grown on the inclined Si(111) surface etched on Si(100)

  3. GaN Initiative for Grid Applications (GIGA)

    SciTech Connect

    Turner, George

    2015-07-03

    For nearly 4 ½ years, MIT Lincoln Laboratory (MIT/LL) led a very successful, DoE-funded team effort to develop GaN-on-Si materials and devices, targeting high-voltage (>1 kV), high-power, cost-effective electronics for grid applications. This effort, called the GaN Initiative for Grid Applications (GIGA) program, was initially made up of MIT/LL, the MIT campus group of Prof. Tomas Palacios (MIT), and the industrial partner M/A Com Technology Solutions (MTS). Later in the program a 4th team member was added (IQE MA) to provide commercial-scale GaN-on-Si epitaxial materials. A basic premise of the GIGA program was that power electronics, for ubiquitous utilization -even for grid applications - should be closer in cost structure to more conventional Si-based power electronics. For a number of reasons, more established GaN-on-SiC or even SiC-based power electronics are not likely to reach theses cost structures, even in higher manufacturing volumes. An additional premise of the GIGA program was that the technical focus would be on materials and devices suitable for operating at voltages > 1 kV, even though there is also significant commercial interest in developing lower voltage (< 1 kV), cost effective GaN-on-Si devices for higher volume applications, like consumer products. Remarkable technical progress was made during the course of this program. Advances in materials included the growth of high-quality, crack-free epitaxial GaN layers on large-diameter Si substrates with thicknesses up to ~5 μm, overcoming significant challenges in lattice mismatch and thermal expansion differences between Si and GaN in the actual epitaxial growth process. Such thick epilayers are crucial for high voltage operation of lateral geometry devices such as Schottky barrier (SB) diodes and high electron mobility transistors (HEMTs). New “Normally-Off” device architectures were demonstrated – for safe operation of power electronics circuits. The trade-offs between lateral and

  4. Nanostructural engineering of nitride nucleation layers for GaN substrate dislocation reduction.

    SciTech Connect

    Koleske, Daniel David; Lee, Stephen Roger; Lemp, Thomas Kerr; Coltrin, Michael Elliott; Cross, Karen Charlene; Thaler, Gerald

    2009-07-01

    With no lattice matched substrate available, sapphire continues as the substrate of choice for GaN growth, because of its reasonable cost and the extensive prior experience using it as a substrate for GaN. Surprisingly, the high dislocation density does not appear to limit UV and blue LED light intensity. However, dislocations may limit green LED light intensity and LED lifetime, especially as LEDs are pushed to higher current density for high end solid state lighting sources. To improve the performance for these higher current density LEDs, simple growth-enabled reductions in dislocation density would be highly prized. GaN nucleation layers (NLs) are not commonly thought of as an application of nano-structural engineering; yet, these layers evolve during the growth process to produce self-assembled, nanometer-scale structures. Continued growth on these nuclei ultimately leads to a fully coalesced film, and we show in this research program that their initial density is correlated to the GaN dislocation density. In this 18 month program, we developed MOCVD growth methods to reduce GaN dislocation densities on sapphire from 5 x 10{sup 8} cm{sup -2} using our standard delay recovery growth technique to 1 x 10{sup 8} cm{sup -2} using an ultra-low nucleation density technique. For this research, we firmly established a correlation between the GaN nucleation thickness, the resulting nucleation density after annealing, and dislocation density of full GaN films grown on these nucleation layers. We developed methods to reduce the nuclei density while still maintaining the ability to fully coalesce the GaN films. Ways were sought to improve the GaN nuclei orientation by improving the sapphire surface smoothness by annealing prior to the NL growth. Methods to eliminate the formation of additional nuclei once the majority of GaN nuclei were developed using a silicon nitride treatment prior to the deposition of the nucleation layer. Nucleation layer thickness was determined

  5. Synthesis and field emission studies of tower-like GaN nanowires

    PubMed Central

    2014-01-01

    Tower-like GaN nanowires were successfully fabricated on Au-coated Si substrates by chemical vapor deposition. The tower-like nanowire consisted of a nanowire at the center and microcrystal layers stacked one by one around the nanowire. The tower-like nanowires grew along the [0001] direction, and the exposed surfaces of the microcrystal layers are 101¯1 and 101¯1¯ facets. The growth mechanism of the tower-like GaN nanowires was proposed. The field emission property of tower-like GaN nanowires was tested. Due to the sharp tips, nearly vertical alignment and rough surfaces caused by the microcrystal layers, the tower-like GaN nanowires show excellent performance in field emission with a turn-on field of 2.44 V/μm which is lower than those of other GaN one-dimensional (1D) nanomaterials. PACS 81.15.Gh; 68.37.Lp; 68.37.Vj PMID:25404876

  6. Nanoscale lateral epitaxial overgrowth of GaN on Si (111)

    SciTech Connect

    Zang, K.Y.; Wang, Y.D.; Chua, S.J.; Wang, L.S.

    2005-11-07

    We demonstrate that GaN can selectively grow by metalorganic chemical vapor deposition into the pores and laterally over the nanoscale patterned SiO{sub 2} mask on a template of GaN/AlN/Si. The nanoporous SiO{sub 2} on GaN surface with pore diameter of approximately 65 nm and pore spacing of 110 nm was created by inductively coupled plasma etching using anodic aluminum oxide template as a mask. Cross-section transmission electron microscopy shows that the threading-dislocation density was largely reduced in this nanoepitaxial lateral overgrowth region. Dislocations parallel to the interface are the dominant type of dislocations in the overgrown layer of GaN. A large number of the threading dislocations were filtered by the nanoscale mask, which leads to the dramatic reduction of the threading dislocations during the growth within the nano-openings. More importantly, due to the nanoscale size of the mask area, the very fast coalescence and subsequent lateral overgrowth of GaN force the threading dislocations to bend to the basal plane within the first 50 nm of the film thickness. The structure of overgrown GaN is a truncated hexagonal pyramid which is covered with six {l_brace}1101{r_brace} side facets and (0001) top surface depending on the growth conditions.

  7. Individual GaN nanowires exhibit strong piezoelectricity in 3D.

    PubMed

    Minary-Jolandan, Majid; Bernal, Rodrigo A; Kuljanishvili, Irma; Parpoil, Victor; Espinosa, Horacio D

    2012-02-01

    Semiconductor GaN NWs are promising components in next generation nano- and optoelectronic systems. In addition to their direct band gap, they exhibit piezoelectricity, which renders them particularly attractive in energy harvesting applications for self-powered devices. Nanowires are often considered as one-dimensional nanostructures; however, the electromechanical coupling leads to a third rank tensor that for wurtzite crystals (GaN NWs) possesses three independent coefficients, d(33), d(13), and d(15). Therefore, the full piezoelectric characterization of individual GaN NWs requires application of electric fields in different directions and measurements of associated displacements on the order of several picometers. In this Letter, we present an experimental approach based on scanning probe microscopy to directly quantify the three-dimensional piezoelectric response of individual GaN NWs. Experimental results reveal that GaN NWs exhibit strong piezoelectricity in three dimensions, with up to six times the effect in bulk. Based on finite element modeling, this finding has major implication on the design of energy harvesting systems exhibiting unprecedented levels of power density production. The presented method is applicable to other piezoelectric NW materials as well as wires manufactured along different crystallographic orientations.

  8. Characterization of the Erwinia chrysanthemi Gan locus, involved in galactan catabolism.

    PubMed

    Delangle, Aurélie; Prouvost, Anne-France; Cogez, Virginie; Bohin, Jean-Pierre; Lacroix, Jean-Marie; Cotte-Pattat, Nicole Hugouvieux

    2007-10-01

    beta-1,4-Galactan is a major component of the ramified regions of pectin. Analysis of the genome of the plant pathogenic bacteria Erwinia chrysanthemi revealed the presence of a cluster of eight genes encoding proteins potentially involved in galactan utilization. The predicted transport system would comprise a specific porin GanL and an ABC transporter made of four proteins, GanFGK(2). Degradation of galactans would be catalyzed by the periplasmic 1,4-beta-endogalactanase GanA, which released oligogalactans from trimer to hexamer. After their transport through the inner membrane, oligogalactans would be degraded into galactose by the cytoplasmic 1,4-beta-exogalactanase GanB. Mutants affected for the porin or endogalactanase were unable to grow on galactans, but they grew on galactose and on a mixture of galactotriose, galactotetraose, galactopentaose, and galactohexaose. Mutants affected for the periplasmic galactan binding protein, the transporter ATPase, or the exogalactanase were only able to grow on galactose. Thus, the phenotypes of these mutants confirmed the functionality of the gan locus in transport and catabolism of galactans. These mutations did not affect the virulence of E. chrysanthemi on chicory leaves, potato tubers, or Saintpaulia ionantha, suggesting an accessory role of galactan utilization in the bacterial pathogeny.

  9. Ultrathin GaN quantum disk nanowire LEDs with sub-250 nm electroluminescence.

    PubMed

    Sarwar, A T M Golam; May, Brelon J; Chisholm, Matthew F; Duscher, Gerd J; Myers, Roberto C

    2016-04-21

    By quantum confining GaN at monolayer thickness with AlN barriers inside of a nanowire, deep ultraviolet LEDs are demonstrated. Full three-dimensional strain dependent energy band simulations are carried out within multiple quantum disk (MQD) GaN/AlN nanowire superlattice heterostructures. It is found that, even within the same nanowire MQD, the emission energy of the ultrathin GaN QDs varies from disk to disk due to the changing strain distribution and polarization charge induced energy band bending along the axial nanowire direction. MQD heterostructures are grown by plasma-assisted molecular beam epitaxy to form self-assembled catalyst-free nanowires with 1 to 2 monolayer thick GaN insertions within an AlN matrix. Photoluminescence peaks are observed at 295 nm and 283 nm from the 2 ML and 1 ML thick MQD samples, respectively. Polarization-doped nanowire LEDs are grown incorporating 1 ML thick GaN MQD active regions from which we observe deep ultraviolet electroluminescence. The shortest LED wavelength peak observed is 240 nm and attributed to electron hole recombination within 1 ML thick GaN QDs.

  10. Characterization of the Erwinia chrysanthemi Gan locus, involved in galactan catabolism.

    PubMed

    Delangle, Aurélie; Prouvost, Anne-France; Cogez, Virginie; Bohin, Jean-Pierre; Lacroix, Jean-Marie; Cotte-Pattat, Nicole Hugouvieux

    2007-10-01

    beta-1,4-Galactan is a major component of the ramified regions of pectin. Analysis of the genome of the plant pathogenic bacteria Erwinia chrysanthemi revealed the presence of a cluster of eight genes encoding proteins potentially involved in galactan utilization. The predicted transport system would comprise a specific porin GanL and an ABC transporter made of four proteins, GanFGK(2). Degradation of galactans would be catalyzed by the periplasmic 1,4-beta-endogalactanase GanA, which released oligogalactans from trimer to hexamer. After their transport through the inner membrane, oligogalactans would be degraded into galactose by the cytoplasmic 1,4-beta-exogalactanase GanB. Mutants affected for the porin or endogalactanase were unable to grow on galactans, but they grew on galactose and on a mixture of galactotriose, galactotetraose, galactopentaose, and galactohexaose. Mutants affected for the periplasmic galactan binding protein, the transporter ATPase, or the exogalactanase were only able to grow on galactose. Thus, the phenotypes of these mutants confirmed the functionality of the gan locus in transport and catabolism of galactans. These mutations did not affect the virulence of E. chrysanthemi on chicory leaves, potato tubers, or Saintpaulia ionantha, suggesting an accessory role of galactan utilization in the bacterial pathogeny. PMID:17644603

  11. Characterization of the Erwinia chrysanthemi gan Locus, Involved in Galactan Catabolism▿ †

    PubMed Central

    Delangle, Aurélie; Prouvost, Anne-France; Cogez, Virginie; Bohin, Jean-Pierre; Lacroix, Jean-Marie; Cotte-Pattat, Nicole Hugouvieux

    2007-01-01

    β-1,4-Galactan is a major component of the ramified regions of pectin. Analysis of the genome of the plant pathogenic bacteria Erwinia chrysanthemi revealed the presence of a cluster of eight genes encoding proteins potentially involved in galactan utilization. The predicted transport system would comprise a specific porin GanL and an ABC transporter made of four proteins, GanFGK2. Degradation of galactans would be catalyzed by the periplasmic 1,4-β-endogalactanase GanA, which released oligogalactans from trimer to hexamer. After their transport through the inner membrane, oligogalactans would be degraded into galactose by the cytoplasmic 1,4-β-exogalactanase GanB. Mutants affected for the porin or endogalactanase were unable to grow on galactans, but they grew on galactose and on a mixture of galactotriose, galactotetraose, galactopentaose, and galactohexaose. Mutants affected for the periplasmic galactan binding protein, the transporter ATPase, or the exogalactanase were only able to grow on galactose. Thus, the phenotypes of these mutants confirmed the functionality of the gan locus in transport and catabolism of galactans. These mutations did not affect the virulence of E. chrysanthemi on chicory leaves, potato tubers, or Saintpaulia ionantha, suggesting an accessory role of galactan utilization in the bacterial pathogeny. PMID:17644603

  12. Effects of catalyst concentration and ultraviolet intensity on chemical mechanical polishing of GaN

    NASA Astrophysics Data System (ADS)

    Wang, Jie; Wang, Tongqing; Pan, Guoshun; Lu, Xinchun

    2016-08-01

    Effects of catalyst concentration and ultraviolet intensity on chemical mechanical polishing (CMP) of GaN were deeply investigated in this paper. Working as an ideal homogeneous substrate material in LED industry, GaN ought to be equipped with a smooth and flat surface. Taking the strong chemical stability of GaN into account, photocatalytic oxidation technology was adopted in GaN CMP process to realize efficient removal. It was found that, because of the improved reaction rate of photocatalytic oxidation, GaN material removal rate (MRR) increases by a certain extent with catalyst concentration increasing. Cross single line analysis on the surface after polishing by Phase Shift MicroXAM-3D was carried out to prove the better removal effect with higher catalyst concentration. Ultraviolet intensity field in H2O2-SiO2-based polishing system was established and simulated, revealing the variation trend of ultraviolet intensity around the outlet of the slurry. It could be concluded that, owing to the higher planarization efficiency and lower energy damage, the UV lamp of 125 W is the most appropriate lamp in this system. Based on the analysis, defects removal model of this work was proposed to describe the effects of higher catalyst concentration and higher power of UV lamp.

  13. Temperature-dependent photoluminescence spectra of GaN epitaxial layer grown on Si (111) substrate

    NASA Astrophysics Data System (ADS)

    Zhao, Dan-Mei; Zhao, De-Gang; Jiang, De-Sheng; Liu, Zong-Shun; Zhu, Jian-Jun; Chen, Ping; Liu, Wei; Li, Xiang; Shi, Ming

    2015-10-01

    In this paper, the temperature-dependent photoluminescence (PL) properties of GaN grown on Si (111) substrate are studied. The main emission peaks of GaN films grown on Si (111) are investigated and compared with those grown on sapphire substrates. The positions of free and bound exciton luminescence peaks, i.e., FXA and D0X peaks, of GaN films grown on Si (111) substrates undergo red shifts compared with those grown on sapphire. This is attributed to the fact that the GaN films grown on sapphire are under the action of compressive stress, while those grown on Si (111) substrate are subjected to tensile stress. Furthermore, the positions of these peaks may be additionally shifted due to different stress conditions in the real sample growth. The emission peaks due to stacking faults are found in GaN films grown on Si (111) and an S-shaped temperature dependence of PL spectra can be observed, owing to the influence of the quantum well (QW) emission by the localized states near the conduction band gap edge and the temperature-dependent distribution of the photo-generated carriers. Project supported by the National Natural Science Foundation of China (Grant Nos. 61474110, 61377020, 61376089, 61223005, and 61176126) and the National Science Fund for Distinguished Young Scholars of China (Grant No. 60925017).

  14. Properties of Gallium Disorder and Gold Implants in GaN

    SciTech Connect

    Jiang, Weilin; Weber, William J.; Thevuthasan, Suntharampillai; Shutthanandan, V; DB Poker, SC Moss, K-H Heinig

    2001-04-25

    Epitaxial single-crystal GaN films on sapphire were implanted 60? off the <0001> surface normal with 1 MeV Auor 3 MeV Au over a fluence range from 0.88 to 86.2 ions/nm2 at 180 and 300 K. The implantation damage was studied in-situ using 2 MeV He Rutherford backscattering spectrometry in channeling geometry (RBS/C). The disordering rate in the near-surface region is faster than at the damage peak. In all cases, results show an intermediate stage of Ga disorder saturation at the damage peak. Migration of Au implants in GaN is observed during ion implantation at 300 K. As a result of thermal annealing at 870 K for 20 min, some Au implants in GaN diffuse into the amorphized surface region, while the remaining Au atoms distribute around the mean ion-projected-range. These results suggest a high mobility of both Ga defects and Au implants in GaN. Deeper damage implantation by 3 MeV Au indicates that GaN cannot be completely amorphized up to the highest ion fluence (86.2 ions/nm) applied at 300 K.

  15. Synthesis, microstructure, and cathodoluminescence of [0001]-oriented GaN nanorods grown on conductive graphite substrate.

    PubMed

    Yuan, Fang; Liu, Baodan; Wang, Zaien; Yang, Bing; Yin, Yao; Dierre, Benjamin; Sekiguchi, Takashi; Zhang, Guifeng; Jiang, Xin

    2013-11-27

    One-dimensional GaN nanorods with corrugated morphology have been synthesized on graphite substrate without the assistance of any metal catalyst through a feasible thermal evaporation process. The morphologies and microstructures of GaN nanorods were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM). The results from HRTEM analysis indicate that the GaN nanorods are well-crystallized and exhibit a preferential orientation along the [0001] direction with Ga(3+)-terminated (101̅1) and N(3-)-terminated (101̅1̅) as side facets, finally leading to the corrugated morphology surface. The stabilization of the electrostatic surface energy of {101̅1} polar surface in a wurtzite-type hexagonal structure plays a key role in the formation of GaN nanorods with corrugated morphology. Room-temperature cathodoluminescence (CL) measurements show a near-band-edge emission (NBE) in the ultraviolet range and a broad deep level emission (DLE) in the visible range. The crystallography and the optical emissions of GaN nanorods are discussed. PMID:24164686

  16. GaN detector development for particle and X-ray detection

    NASA Astrophysics Data System (ADS)

    Owens, Alan; Barnes, A.; Farley, R. A.; Germain, M.; Sellin, P. J.

    2012-12-01

    We report on preliminary alpha particle and X-ray measurements on a number of prototype GaN PIN diodes. The aim of the study was to investigate the potential use of GAN based radiation detectors for radiation hard, high temperature, solar blind space applications. The devices have a planar structure consisting of a 2 μm epitaxial GaN layer grown on a highly doped n-type AlxGa1-xN nucleation layer, which in turn is deposited on a p-type 4H-SiC substrate. Au ohmic contacts were applied to the top of the GaN layer and the bottom of the substrate. A number of different sized devices were tested with contact diameters ranging from 0.4 mm to 0.7 mm. All devices showed good diode behaviour with reverse leakage currents in the tens to hundreds of micro-amp range. C-V measurements showed that the GaN layers were fully depleted for biases >20 V. When exposed to a 5.5 MeV alpha particle source, the devices showed a spectroscopic response with energy resolutions of ∼25% FWHM at room temperature (RT) and 10 V bias and 20% FWHM at -50 °C. These values are consistent with the previous measurements. No response to 60 keV photons could be measured.

  17. Transport properties, specific heat and thermal conductivity of GaN nanocrystalline ceramic

    SciTech Connect

    Sulkowski, Czeslaw; ChuchmaLa, Andrzej; Zaleski, Andrzej J.; Matusiak, Marcin; Mucha, Jan; GLuchowski, PaweL; Strek, WiesLaw

    2010-10-15

    The structural and transport properties (resistivity, thermopower and Hall effect), specific heat and thermal conductivity have been measured for GaN nanocrystalline ceramic prepared by hot pressing. It was found that the temperature dependence of resistivity in temperature range 10-300 K shows the very low activation energy, which is ascribed to the shallow donor doping originating in amorphous phase of sample. The major charge carriers are electrons, what is indicated by negative sign of Hall constant and Seebeck coefficient. The thermopower attains large values (-58 {mu}V/K at 300 K) and was characterized by linear temperature dependence which suggests the diffusion as a major contribution to Seebeck effect. The high electron concentration of 1.3x10{sup 19} cm{sup -3} and high electronic specific heat coefficient determined to be 2.4 mJ/molK{sup 2} allow to conclude that GaN ceramic demonstrates the semimetallic-like behavior accompanied by very small mobility of electrons ({approx}0.1 cm{sup 2}/V s) which is responsible for its high resistivity. A low heat conductivity of GaN ceramics is associated with partial amorphous phase of GaN grains due to high pressure sintering. - Graphical Abstract: Thermal resistivity and thermopower measurements indicates the high phonon scattering and lack of phonon-drag contribution to thermopower in GaN nanoceramics pressed under 4 GPa at 800 {sup o}C.

  18. Barrier heights of GaN Schottky contacts

    NASA Astrophysics Data System (ADS)

    Kampen, Thorsten U.; Mönch, Winfried

    1997-06-01

    Silver and lead contacts prepared by evaporation onto clean n-GaN(0001) surfaces are rectifying. Their zero-bias barrier heights and ideality factors were determined from the current-voltage characteristics. The observed linear correlation between the barrier heights and the ideality factors is attributed to nonuniform distributions of barrier heights along the interfaces. The barrier heights of ideal Schottky contacts depend on the applied voltage due to the image-force lowering only and their ideally factors nif are approximately 1.01. By extrapolation of our experimental data to n = 1.01, we obtain barrier heights of 0.82 eV and 0.73 eV for uniform Ag- and Pb/n-GaN(0001) contacts, respectively. By applying the idea of metal-induced gap states (MIGS), the barrier heights of ideal Schottky contacts have been predicted to vary linearly as a function of the difference of the metal and the semiconductor electronegativities. The zero-charge-transfer barrier height and slope parameter are characteristic of the respective semiconductor. The zero-charge-transfer barrier heights have been calculated using an empirical tight-binding approach and the slope parameters are given by the optical dielectric constants. The experimental barrier heights of GaN Schottky contacts confirm the predictions of the MIGS-and-electronegativity model.

  19. Radiation Characterization of Commercial GaN Devices

    NASA Technical Reports Server (NTRS)

    Harris, Richard D.; Scheick, Leif Z.; Hoffman, James P.; Thrivikraman, Tushar; Jenabi, Masud; Gim, Yonggyu; Miyahira, Tetsuo

    2011-01-01

    Radiative feedback from primordial protostars and final mass of the first star Commercially available devices fabricated from GaN are beginning to appear from a number of different suppliers. Based on previous materials and prototype device studies, it is expected that these commercial devices will be quite tolerant to the types of radiation encountered in space. This expectation needs to be verified and the study described herein was undertaken for that purpose. All of the parts discussed in this report are readily available commercially. The parts chosen for study are all targeted for RF applications. Three different studies were performed: 1) a preliminary DDD/TID test of a variety of part types was performed by irradiating with 50 MeV protons, 2) a detailed DDD/TID study of one particular part type was performed by irradiating with 50 MeV protons, and 3) a SEB/SEGR test was performed on a variety of part types by irradiating with heavy ions. No significant degradation was observed in the tests performed in this study.

  20. Intermediate Nucleation State of GaN Growth

    NASA Astrophysics Data System (ADS)

    Zheng, L. X.; Xie, M. H.; Tong, S. Y.

    2001-03-01

    Homoexpitaxial nucleation of GaN during molecular-beam epitaxy is followed by scanning tunneling microcopy (STM). We observe a metastable nucleation state, which manifests as “ghost” islands in STM images. These “ghost” islands can be irreversibly driven into normal islands by continuous STM imaging. It is further established that the “ghost” island formation is related to the presence of excess Ga atoms on the surface: Normal islands are only seen under the N-rich or stoichiometric flux condition, whereas “ghost” islands are observed under Ga-rich conditions. For intermediate excess-Ga coverages, both normal and “ghost” islands are present, however, they show distinctly different sizes, suggesting different nucleation states for the two. A growth model is proposed to account for the formation of metastable, “ghost” islands. Kinetic Monte Carlo simulation is carried out and main features of the surface are reproduced. We acknowledge financial support from HK RGC under grant Nos. 7396/00P, 7142/99P, and 7121/00P.

  1. Enhanced water splitting stability with controlled NiO co-catalyst on GaN photoanode.

    PubMed

    Kim, Soo Hee; Kang, Jin-Ho; Ryu, Sang-Wan

    2014-10-01

    Arrayed NiO co-catalyst on GaN is proposed to improve water splitting efficiency and to obtain stable photoelectrolysis without dissolution of photoanode. The characteristics of photoanodes were investigated by changing the height of NiO on n-GaN. The photoanode stability and performance of GaN with NiO was significantly improved compared to the reference GaN at zero bias. SEM measurements showed negligible etching of NiO and GaN surfaces, which confirmed considerably improved stability compared to the reference n-GaN. In summary, enhanced water splitting efficiency and photoanode stability were achieved by combining GaN with NiO co-catalyst which are advantageous for water splitting applications.

  2. Growth of semipolar (1\\bar{1}01) high-indium-content InGaN quantum wells using InGaN tilting layer on Si(001)

    NASA Astrophysics Data System (ADS)

    Kushimoto, Maki; Honda, Yoshio; Amano, Hiroshi

    2016-05-01

    Low-toxity high-In-content InGaN is an attractive option for short-distance communications through plastic optical fibers because its performance is only slightly affected by temperature. However, its fabrication on the c-plane is impaired by In droplets and V pits, which form at low-growth temperature. On the other hand, unlike the c-plane, (1\\bar{1}01) InGaN relaxes with tilting. Therefore, in this study, we first grew a high-In-content InGaN single layer, and then we fabricated an InGaN tilting layer between (1\\bar{1}01) InGaN-based multiple quantum wells (MQWs) and GaN stripes/(001)Si. The emission wavelength increased with the InGaN tilting layer’s growth time because the strain was relaxed by misfit dislocations at the heterointerface. This layer also extended the emission peak of InGaN/GaN MQWs and increased the photoluminescence intensity with respect to that of a single-layered InGaN. Therefore, the InGaN tilting layer is effective for growing high-In-content (1\\bar{1}01) InGaN MQWs.

  3. Characterization of vertical GaN p-n diodes and junction field-effect transistors on bulk GaN down to cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Kizilyalli, I. C.; Aktas, O.

    2015-12-01

    There is great interest in wide-bandgap semiconductor devices and most recently in vertical GaN structures for power electronic applications such as power supplies, solar inverters and motor drives. In this paper the temperature-dependent electrical behavior of vertical GaN p-n diodes and vertical junction field-effect transistors fabricated on bulk GaN substrates of low defect density (104 to 106 cm-2) is described. Homoepitaxial MOCVD growth of GaN on its native substrate and the ability to control the doping in the drift layers in GaN have allowed the realization of vertical device architectures with drift layer thicknesses of 6 to 40 μm and net carrier electron concentrations as low as 1 × 1015 cm-3. This parameter range is suitable for applications requiring breakdown voltages of 1.2 kV to 5 kV. Mg, which is used as a p-type dopant in GaN, is a relatively deep acceptor (E A ≈ 0.18 eV) and susceptible to freeze-out at temperatures below 200 K. The loss of holes in p-GaN has a deleterious effect on p-n junction behavior, p-GaN contacts and channel control in junction field-effect transistors at temperatures below 200 K. Impact ionization-based avalanche breakdown (BV > 1200 V) in GaN p-n junctions is characterized between 77 K and 423 K for the first time. At higher temperatures the p-n junction breakdown voltage improves due to increased phonon scattering. A positive temperature coefficient in the breakdown voltage is demonstrated down to 77 K; however, the device breakdown characteristics are not as abrupt at temperatures below 200 K. On the other hand, contact resistance to p-GaN is reduced dramatically above room temperature, improving the overall device performance in GaN p-n diodes in all cases except where the n-type drift region resistance dominates the total forward resistance. In this case, the electron mobility can be deconvolved and is found to decrease with T -3/2, consistent with a phonon scattering model. Also, normally-on vertical junction

  4. Migration mechanisms and diffusion barriers of carbon and native point defects in GaN

    NASA Astrophysics Data System (ADS)

    Kyrtsos, Alexandros; Matsubara, Masahiko; Bellotti, Enrico

    2016-06-01

    Carbon related defects are readily incorporated in GaN due to its abundance during growth both with MBE and MOCVD techniques. Employing first-principles calculations, we compute the migration barriers of carbon interstitials and we discuss possible relevant mechanisms of diffusion in the wurtzite GaN crystal. In addition, we calculate the migration barriers for the diffusion of the native defects of the crystal, i.e., gallium and nitrogen interstitials and vacancies. The minimum energy path and the migration barriers of these defects are obtained using the nudged elastic band method with the climbing image modification. In addition, the dimer method is used to independently determine the results. The results yield a quantitative description of carbon diffusion in GaN allowing for the determination of the most preferable migration paths.

  5. Large area, freestanding GaN nanocolumn membrane with bottom subwavelength nanostructure.

    PubMed

    Wang, Yongjin; Hu, Fangren; Kanamori, Yoshiaki; Wu, Tong; Hane, Kazuhiro

    2010-03-15

    We propose, fabricate and characterize the freestanding GaN nanocolumn membrane with bottom subwavelength nanostructures. The GaN nanocolumns are epitaxially grown on freestanding nanostructured silicon substrate that is achieved by a combination of self-assemble technique and silicon-on-insulator (SOI) technology. Optical reflection is greatly suppressed in the visible range due to the graded refractive index effect of subwavelength nanostructures. The freestanding GaN nanocolumn membrane is realized by removing silicon substrate from the backside, eliminating the silicon absorption of the emitted light and leading to a strong blue emission from the bottom side. The obtained structures also demonstrate the potential application for anti-reflective (AR) coating and GaN-Si hybrid microelectromechanical system (MEMS).

  6. A low cost, green method to synthesize GaN nanowires

    PubMed Central

    Zhao, Jun-Wei; Zhang, Yue-Fei; Li, Yong-He; Su, Chao-hua; Song, Xue-Mei; Yan, Hui; Wang, Ru-Zhi

    2015-01-01

    The synthesis of gallium nitride nanowires (GaN NWs) by plasma enhanced chemical vapor deposition (PECVD) are successfully demonstrated in this work. The simple and green synthesis route is to introduce gallium oxide (Ga2O3) and nitrogen (N2) for the growth of nanowires. The prepared GaN nanowires have a single crystalline wurtzite structure, which the length of some nanowires is up to 20 μm, with a maximum diameter about 140 nm. The morphology and quantity of the nanowires can be modulated by the growth substrate and process parameters. In addition, the photoluminescence and field emission properties of the prepared GaN nanowires have been investigated, which were found to be largely affected by their structures. This work renders an environmentally benign strategy and a facile approach for controllable structures on nanodevice. PMID:26643613

  7. Hole mediated magnetism in Mn-doped GaN nanowires

    NASA Astrophysics Data System (ADS)

    Zhang, Xiu-Wen; Li, Jingbo; Chang, Kai; Li, Shu-Shen; Xia, Jian-Bai

    2011-04-01

    The hole-mediated magnetism in Mn-doped GaN nanowires is investigated using the k .p method and the mean-field model. The Curie temperature (TC) as a function of the hole density p can be explained based on the calculated band structure of the nanowires. For low Mn concentration, TC vs. p shows many peaks stem from the peaks of the one-dimensional density of states. When the Mn concentration is increased, TC is enhanced, and the peaks of TC versus p are fully merged by the thermal distribution of the holes in the valence band. It is found that the Curie temperature in Mn-doped GaN wire can be higher than room temperature, in agreement with experiment [Song et al., J. Phys.: Condens. Matter 17, 5073 (2005)]. The ferromagnetism in Mn-doped GaN wire is slightly anisotropic due to the small spin-orbit coupling.

  8. A high efficiency C-band internally-matched harmonic tuning GaN power amplifier

    NASA Astrophysics Data System (ADS)

    Lu, Y.; Zhao, B. C.; Zheng, J. X.; Zhang, H. S.; Zheng, X. F.; Ma, X. H.; Hao, Y.; Ma, P. J.

    2016-09-01

    In this paper, a high efficiency C-band gallium nitride (GaN) internally-matched power amplifier (PA) is presented. This amplifier consists of 2-chips of self-developed GaN high-electron mobility transistors (HEMTs) with 16 mm total gate width on SiC substrate. New harmonic manipulation circuits are induced both in the input and output matching networks for high efficiency matching at fundamental and 2nd-harmonic frequency, respectively. The developed amplifier has achieved 72.1% power added efficiency (PAE) with 107.4 W output power at 5 GHz. To the best of our knowledge, this amplifier exhibits the highest PAE in C-band GaN HEMT amplifiers with over 100 W output power. Additionally, 1000 hours' aging test reveals high reliability for practical applications.

  9. Enhance ferromagnetism by stabilizing the cation vacancies in GaN

    NASA Astrophysics Data System (ADS)

    Tang, Zhen-kun; Zhang, Deng-Yu; Tang, Li-Ming; Wang, Ling-Ling; Chen, Ke-Qiu

    2013-06-01

    The magnetic properties related to cation vacancies in GaN are investigated by first-principles calculations. The results show that a neutral Ga-vacancy induces 3 μ B magnetic moment in GaN, but is difficult to form due to the high formation energy. It is found that the Ga-vacancy formation energy can be reduced by adding electrons with uniform compensating positive background charge, by nano-structure engineering, or by co-doping donor-like defects. The Ga-vacancy induced colossal magnetic moment in Gd-doped GaN can be modulated by co-doping the donor like defects. It is suggested that ferromagnetism enhanced by stabilizing the cation vacancies may be applied to other wide band-gap semiconductors as well.

  10. Cubic and hexagonal GaN nanoparticles synthesized at low temperature

    NASA Astrophysics Data System (ADS)

    Qaeed, M. A.; Ibrahim, K.; Saron, K. M. A.; Salhin, A.

    2013-12-01

    This study involves a simple and low cost chemical method for the synthesis of Gallium Nitride (GaN) nanoparticles at low temperature. Structural and optical characterizations were carried out using various techniques in order to investigate the properties of the nanoparticles. The Field-Emission Scanning Electron Microscope (FESEM) images showed that the nanoparticles consist of cubic and hexagonal shapes, indicating crystallized structural quality of the GaN nanoparticles. The average size of the nanoparticles was found to be 51 nm. The X-ray Diffraction (XRD) and Raman analysis further confirmed the hexagonal and cubic phases of GaN nanoparticles. The room temperature photoluminescence deduced h-GaN energy gaps of 2.95, 3.12 and 3.13 eV.

  11. Analysis and modelling of GaN Schottky-based circuits at millimeter wavelengths

    NASA Astrophysics Data System (ADS)

    Pardo, D.; Grajal, J.

    2015-11-01

    This work presents an analysis of the capabilities of GaN Schottky diodes for frequency multipliers and mixers at millimeter wavelengths. By using a Monte Carlo (MC) model of the diode coupled to a harmonic balance technique, the electrical and noise performances of these circuits are investigated. Despite the lower electron mobility of GaN compared to GaAs, multipliers based on GaN Schottky diodes can be competitive in the first stages of multiplier chains, due to the excellent power handling capabilities of this material. The performance of these circuits can be improved by taking advantage of the lateral Schottky diode structures based on AlGaN/GaN HEMT technology.

  12. Effect of Capping on Electrical and Optical Properties of GaN Layers Grown by HVPE

    NASA Astrophysics Data System (ADS)

    Reshchikov, M. A.; Usikov, A.; Helava, H.; Makarov, Yu.; Puzyk, M. V.; Papchenko, B. P.

    2016-04-01

    Gallium nitride, grown by hydride vapor phase epitaxy and capped with a thin AlGaN layer, was studied by photoluminescence (PL) methods. The concentration of free electrons in GaN was found from the time-resolved PL data, and the concentrations of point defects were estimated from the steady-state PL measurements. The intensity of PL from GaN decreases moderately after capping it with Si-doped AlGaN, and it decreases dramatically after capping with Mg-doped AlGaN. At the same time, the concentration of free electrons and the concentrations of main radiative defects in GaN are not affected by the AlGaN capping. We demonstrate that PL is a powerful tool for nondestructive characterization of semiconductor layers buried under overlying device structures.

  13. On the phenomenon of large photoluminescence red shift in GaN nanoparticles.

    PubMed

    Slimane, Ahmed Ben; Najar, Adel; Elafandy, Rami; San-Román-Alerigi, Damián P; Anjum, Dalaver; Ng, Tien Khee; Ooi, Boon S

    2013-07-31

    We report on the observation of broad photoluminescence wavelength tunability from n-type gallium nitride nanoparticles (GaN NPs) fabricated using the ultraviolet metal-assisted electroless etching method. Transmission and scanning electron microscopy measurements performed on the nanoparticles revealed large size dispersion ranging from 10 to 100 nm. Nanoparticles with broad tunable emission wavelength from 362 to 440 nm have been achieved by exciting the samples using the excitation power-dependent method. We attribute this large wavelength tunability to the localized potential fluctuations present within the GaN matrix and to vacancy-related surface states. Our results show that GaN NPs fabricated using this technique are promising for tunable-color-temperature white light-emitting diode applications.

  14. Measurement of the electrostatic edge effect in wurtzite GaN nanowires

    SciTech Connect

    Henning, Alex; Rosenwaks, Yossi; Klein, Benjamin; Bertness, Kris A.; Blanchard, Paul T.; Sanford, Norman A.

    2014-11-24

    The electrostatic effect of the hexagonal corner on the electronic structure in wurtzite GaN nanowires (NWs) was directly measured using Kelvin probe force microscopy (KPFM). By correlating electrostatic simulations with the measured potential difference between the nanowire face and the hexagonal vertices, the surface state concentration and band bending of GaN NWs were estimated. The surface band bending is important for an efficient design of high electron mobility transistors and for opto-electronic devices based on GaN NWs. This methodology provides a way to extract NW parameters without making assumptions concerning the electron affinity. We are taking advantage of electrostatic modeling and the high precision that KPFM offers to circumvent a major source of uncertainty in determining the surface band bending.

  15. Prostate specific antigen detection using AlGaN /GaN high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Kang, B. S.; Wang, H. T.; Lele, T. P.; Tseng, Y.; Ren, F.; Pearton, S. J.; Johnson, J. W.; Rajagopal, P.; Roberts, J. C.; Piner, E. L.; Linthicum, K. J.

    2007-09-01

    Antibody-functionalized Au-gated AlGaN /GaN high electron mobility transistors (HEMTs) were used to detect prostate specific antigen (PSA). The PSA antibody was anchored to the gate area through the formation of carboxylate succinimdyl ester bonds with immobilized thioglycolic acid. The AlGaN /GaN HEMT drain-source current showed a rapid response of less than 5s when target PSA in a buffer at clinical concentrations was added to the antibody-immobilized surface. The authors could detect a wide range of concentrations from 10pg/mlto1μg/ml. The lowest detectable concentration was two orders of magnitude lower than the cutoff value of PSA measurements for clinical detection of prostate cancer. These results clearly demonstrate the promise of portable electronic biological sensors based on AlGaN /GaN HEMTs for PSA screening.

  16. Microstructure of GaN epitaxy on SiC using AlN buffer layers

    SciTech Connect

    Ponce, F.A.; Krusor, B.S.; Major, J.S. Jr.; Plano, W.E.; Welch, D.F.

    1995-07-17

    The crystalline structure of GaN epilayers on (0001) SiC substrates has been studied using x-ray diffraction and transmission microscopy. The films were grown by metalorganic chemical vapor deposition, using AlN buffer layers. X-ray diffraction measurements show negligible strain in the epilayer, and a long-range variation in orientation. Transmission electron lattice images show that the AlN buffer layer consists of small crystallites. The nature of the buffer layer and its interfaces with the substrate and the GaN film is discussed. The defect structure of the GaN film away from the substrate consists mostly of threading dislocations with a density of {similar_to}10{sup 9} cm{sup {minus}2}. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  17. Molecular beam epitaxy of single crystalline GaN nanowires on a flexible Ti foil

    NASA Astrophysics Data System (ADS)

    Calabrese, Gabriele; Corfdir, Pierre; Gao, Guanhui; Pfüller, Carsten; Trampert, Achim; Brandt, Oliver; Geelhaar, Lutz; Fernández-Garrido, Sergio

    2016-05-01

    We demonstrate the self-assembled growth of vertically aligned GaN nanowire ensembles on a flexible Ti foil by plasma-assisted molecular beam epitaxy. The analysis of single nanowires by transmission electron microscopy reveals that they are single crystalline. Low-temperature photoluminescence spectroscopy demonstrates that in comparison to standard GaN nanowires grown on Si, the nanowires prepared on the Ti foil exhibit an equivalent crystalline perfection, a higher density of basal-plane stacking faults, but a reduced density of inversion domain boundaries. The room-temperature photoluminescence spectrum of the nanowire ensemble is not influenced or degraded by the bending of the substrate. The present results pave the way for the fabrication of flexible optoelectronic devices based on GaN nanowires on metal foils.

  18. Lattice-matched HfN buffer layers for epitaxy of GaN on Si

    SciTech Connect

    Armitage, Robert; Yang, Qing; Feick, Henning; Gebauer, Joerg; Weber, Eicke R.; Shinkai, Satoko; Sasaki, Katsutaka

    2002-05-08

    Gallium nitride is grown by plasma-assisted molecular-beam epitaxy on (111) and (001) silicon substrates using sputter-deposited hafnium nitride buffer layers. Wurtzite GaN epitaxial layers are obtained on both the (111) and (001) HfN/Si surfaces, with crack-free thickness up to 1.2 (mu)m. Initial results for GaN grown on the (111) surface show a photoluminescence peak width of 17 meV at 11 K, and an asymmetric x-ray rocking curve width of 20 arcmin. Wurtzite GaN on HfN/Si(001) shows reduced structural quality and peculiar low-temperature luminescence features. However, growth on the (001) surface results in nearly stress-free films, suggesting that much thicker crack-free layers could be obtained.

  19. A low cost, green method to synthesize GaN nanowires.

    PubMed

    Zhao, Jun-Wei; Zhang, Yue-Fei; Li, Yong-He; Su, Chao-hua; Song, Xue-Mei; Yan, Hui; Wang, Ru-Zhi

    2015-01-01

    The synthesis of gallium nitride nanowires (GaN NWs) by plasma enhanced chemical vapor deposition (PECVD) are successfully demonstrated in this work. The simple and green synthesis route is to introduce gallium oxide (Ga2O3) and nitrogen (N2) for the growth of nanowires. The prepared GaN nanowires have a single crystalline wurtzite structure, which the length of some nanowires is up to 20 μm, with a maximum diameter about 140 nm. The morphology and quantity of the nanowires can be modulated by the growth substrate and process parameters. In addition, the photoluminescence and field emission properties of the prepared GaN nanowires have been investigated, which were found to be largely affected by their structures. This work renders an environmentally benign strategy and a facile approach for controllable structures on nanodevice. PMID:26643613

  20. Self-induced growth of vertical GaN nanowires on silica

    NASA Astrophysics Data System (ADS)

    Kumaresan, V.; Largeau, L.; Oehler, F.; Zhang, H.; Mauguin, O.; Glas, F.; Gogneau, N.; Tchernycheva, M.; Harmand, J.-C.

    2016-04-01

    We study the self-induced growth of GaN nanowires on silica. Although the amorphous structure of this substrate offers no possibility of an epitaxial relationship, the nanowires are remarkably aligned with the substrate normal whereas, as expected, their in-plane orientation is random. Their structural and optical characteristics are compared to those of GaN nanowires grown on standard crystalline Si (111) substrates. The polarity inversion domains are much less frequent, if not totally absent, in the nanowires grown on silica, which we find to be N-polar. This work demonstrates that high-quality vertical GaN nanowires can be elaborated without resorting to bulk crystalline substrates.

  1. Effect of buffer layer growth temperature on epitaxial GaN films deposited by magnetron sputtering

    SciTech Connect

    Mohanta, P.; Singh, D.; Kumar, R.; Ganguli, T.; Srinivasa, R. S.; Major, S. S.

    2012-06-05

    Epitaxial GaN films were deposited by reactive sputtering of a GaAs target in 100 % nitrogen at 700 deg. C on ZnO buffer layers grown at different substrate temperatures over sapphire substrates. High resolution X-ray diffraction measurements and the corresponding analysis show that the growth temperature of buffer layers significantly affects the micro-structural parameters of GaN epilayer, such as lateral coherence length, tilt and twist, while the vertical coherence length remains unaffected. The optimum substrate temperature for buffer layer growth has been found to be 300 deg. C. High epitaxial quality GaN film grown on such a buffer layer exhibited micro strain of 1.8x10{sup -4} along with screw and edge type dislocation densities of 7.87x10{sup 9} and 1.16x10{sup 11}, respectively.

  2. Surface antireflection properties of GaN nanostructures with various effective refractive index profiles.

    PubMed

    Han, Lu; Zhao, Hongping

    2014-12-29

    GaN nanostructures with various effective refractive index profiles (Linear, Cubic, and Quintic functions) were numerically studied as broadband omnidirectional antireflection structures for concentrator photovoltaics by using three-dimensional finite difference time domain (3D-FDTD) method. Effective medium theory was used to design the surface structures corresponding to different refractive index profiles. Surface antireflection properties were calculated and analyzed for incident light with wavelength, polarization and angle dependences. The surface antireflection properties of GaN nanostructures based on six-sided pyramid with both uniform and non-uniform patterns were also investigated. Results indicate a significant dependence of the surface antireflection on the refractive index profiles of surface nanostructures as well as their pattern uniformity. The GaN nanostructures with linear refractive index profile show the best performance to be used as broadband omnidirectional antireflection structures.

  3. Synthesis, morphology and optical properties of GaN and AlGaN semiconductor nanostructures

    SciTech Connect

    Kuppulingam, B. Singh, Shubra Baskar, K.

    2014-04-24

    Hexagonal Gallium Nitride (GaN) and Aluminum Gallium Nitride (AlGaN) nanoparticles were synthesized by sol-gel method using Ethylene Diamine Tetra Acetic acid (EDTA) complex route. Powder X-ray diffraction (PXRD) analysis confirms the hexagonal wurtzite structure of GaN and Al{sub 0.25}Ga{sub 0.75}N nanoparticles. Surface morphology and elemental analysis were carried out by Scanning Electron Microscope (SEM) and Energy Dispersive X-ray spectroscopy (EDX). The room temperature Photoluminescence (PL) study shows the near band edge emission for GaN at 3.35 eV and at 3.59 eV for AlGaN nanoparticles. The Aluminum (Al) composition of 20% has been obtained from PL emission around 345 nm.

  4. Room-Temperature Transport of Indirect Excitons in (Al ,Ga )N /GaN Quantum Wells

    NASA Astrophysics Data System (ADS)

    Fedichkin, F.; Guillet, T.; Valvin, P.; Jouault, B.; Brimont, C.; Bretagnon, T.; Lahourcade, L.; Grandjean, N.; Lefebvre, P.; Vladimirova, M.

    2016-07-01

    We report on the exciton propagation in polar (Al ,Ga )N /GaN quantum wells over several micrometers and up to room temperature. The key ingredient to achieve this result is the crystalline quality of GaN quantum wells grown on GaN substrate that limits nonradiative recombination. From the comparison of the spatial and temporal dynamics of photoluminescence, we conclude that the propagation of excitons under continuous-wave excitation is assisted by efficient screening of the in-plane disorder. Modeling within drift-diffusion formalism corroborates this conclusion and suggests that exciton propagation is still limited by the exciton scattering on defects rather than by exciton-exciton scattering so that improving interface quality can boost exciton transport further. Our results pave the way towards room-temperature excitonic devices based on gate-controlled exciton transport in wide-band-gap polar heterostructures.

  5. Lithographically defined carbon growth templates for ELOG of GaN

    NASA Astrophysics Data System (ADS)

    Burckel, D. B.; Fan, Hongyou; Thaler, G.; Koleske, D. D.

    2008-06-01

    We report the initial use of lithographically defined carbon growth templates for use as an epitaxial lateral overgrowth (ELOG) mask for metalorganic chemical vapor deposition (MOCVD) heteroepitaxial GaN on sapphire. Interferometric lithography is used to define high aspect ratio structures in SU-8, which are then pyrolyzed in a reducing atmosphere up to 1200 °C. The resist structures convert to amorphous carbon, shrinking 80% in the vertical direction and 53% in the horizontal direction, but maintain their pattern geometry and adhesion to the substrate. These templates are capable of surviving GaN nucleation layer growth temperatures (˜530 °C), GaN crystal growth and high-temperature annealing up to 1050 °C. This new approach to ELOG offers several advantages, requiring fewer processing steps, and favorable selectivity tendencies as well as the capability to create growth masks which are difficult or impossible to fabricate using a top-down etching approach.

  6. Atomic layer deposition of epitaxial ZnO on GaN and YSZ

    NASA Astrophysics Data System (ADS)

    Lin, Chih-Wei; Ke, Dong-Jie; Chao, Yen-Cheng; Chang, Li; Liang, Mei-Hui; Ho, Yen-Teng

    2007-01-01

    ZnO thin films were epitaxially grown by atomic layer deposition on both of GaN/c-sapphire and yttria-stabilized zirconia (YSZ) substrates for comparison. X-ray diffraction, cross-sectional transmission electron microscopy (TEM) and photoluminescence (PL) measurements show that epitaxial ZnO films have better structural qualities and optical properties on GaN than on YSZ, whereas atomic force microscopy (AFM) shows that the surface of ZnO films on YSZ is smoother than on GaN. From the ZnO thickness measured by TEM, the growth rate of ZnO on GaN is about one (0 0 0 2) monolayer per cycle, which is roughly four times of that on YSZ.

  7. Global analysis of GaN growth using a solution technique

    NASA Astrophysics Data System (ADS)

    Kashiwagi, D.; Gejo, R.; Kangawa, Y.; Liu, L.; Kawamura, F.; Mori, Y.; Sasaki, T.; Kakimoto, K.

    2008-04-01

    The solution growth technique is one of the key methods for fabricating gallium nitride (GaN) wafers with small dislocation density. Since the growth rate of GaN using the solution technique is small, the key issue of the technique is to enhance the growth rate of the crystal. We studied how nitrogen is transferred from the surface of the flux to the interface between the top of the flux and the crystal in a muffle furnace using a global model that includes radiative, convective and conductive heat and mass transfer, including nitrogen transfer. The average growth rate of GaN increased when the temperature difference between the furnace wall and a crucible wall became large. This phenomenon is based on mixing of the flux due to natural convection.

  8. Supersaturation in nucleus and spiral growth of GaN in metal organic vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Akasaka, Tetsuya; Kobayashi, Yasuyuki; Kasu, Makoto

    2010-10-01

    Nucleus and spiral growth mechanisms of GaN were experimentally studied by varying the degree of supersaturation, σ, in selective-area metal organic vapor phase epitaxy. The spiral growth rate of GaN increased proportionally to σ2 in the σ range from 0.0632 to 0.230. The nucleus growth rate of GaN was much smaller than the spiral one in the σ range. The nucleation rate was almost zero at σ lower than 0.130, suddenly increased at higher σ values, and reached ˜107 cm-2 s-1 at σ of 0.230. These results are consistent with a theoretical analysis [W. K. Burton, N. Cabrera, and F. C. Frank, Philos. Trans. R. Soc. London, Ser. A 243, 299 (1951)].

  9. Valence band offset of β-Ga2O3/wurtzite GaN heterostructure measured by X-ray photoelectron spectroscopy

    PubMed Central

    2012-01-01

    A sample of the β-Ga2O3/wurtzite GaN heterostructure has been grown by dry thermal oxidation of GaN on a sapphire substrate. X-ray diffraction measurements show that the β-Ga2O3 layer was formed epitaxially on GaN. The valence band offset of the β-Ga2O3/wurtzite GaN heterostructure is measured by X-ray photoelectron spectroscopy. It is demonstrated that the valence band of the β-Ga2O3/GaN structure is 1.40 ± 0.08 eV. PMID:23046910

  10. Simulation of optimum parameters for GaN MSM UV photodetector

    NASA Astrophysics Data System (ADS)

    Alhelfi, Mohanad A.; Ahmed, Naser M.; Hashim, M. R.; Al-Rawi, Ali Amer; Hassan, Z.

    2016-07-01

    In this study the optimum parameters of GaN M-S-M photodetector are discussed. The evaluation of the photodetector depends on many parameters, the most of the important parameters the quality of the GaN film and others depend on the geometry of the interdigited electrode. In this simulation work using MATLAB software with consideration of the reflection and absorption on the metal contacts, a detailed study involving various electrode spacings (S) and widths (W) reveals conclusive results in device design. The optimum interelectrode design for interdigitated MSM-PD has been specified and evaluated by effect on quantum efficiency and responsivity.

  11. Lattice location of deuterium in plasma and gas charged Mg doped GaN

    SciTech Connect

    Wampler, W.R.; Barbour, J.C.; Seager, C.H.; Myers, S.M. Jr.; Wright, A.F.; Han, J.

    1999-12-02

    The authors have used ion channeling to examine the lattice configuration of deuterium in Mg doped GaN grown by MOCVD. The deuterium is introduced both by exposure to deuterium gas and to ECR plasmas. A density functional approach including lattice relaxation, was used to calculate total energies for various locations and charge states of hydrogen in the wurtzite Mg doped GaN lattice. Computer simulations of channeling yields were used to compare results of channeling measurements with calculated yields for various predicted deuterium lattice configurations.

  12. Surface-Effect-Induced Optical Bandgap Shrinkage in GaN Nanotubes.

    PubMed

    Park, Young S; Lee, Geunsik; Holmes, Mark J; Chan, Christopher C S; Reid, Benjamin P L; Alexander-Webber, Jack A; Nicholas, Robin J; Taylor, Robert A; Kim, Kwang S; Han, Sang W; Yang, Woochul; Jo, Y; Kim, J; Im, Hyunsik

    2015-07-01

    We investigate nontrivial surface effects on the optical properties of self-assembled crystalline GaN nanotubes grown on Si substrates. The excitonic emission is observed to redshift by ∼100 meV with respect to that of bulk GaN. We find that the conduction band edge is mainly dominated by surface atoms, and that a larger number of surface atoms for the tube is likely to increase the bandwidth, thus reducing the optical bandgap. The experimental findings can have important impacts in the understanding of the role of surfaces in nanostructured semiconductors with an enhanced surface/volume ratio.

  13. Simulations of Operation Dynamics of Different Type GaN Particle Sensors

    PubMed Central

    Gaubas, Eugenijus; Ceponis, Tomas; Kalesinskas, Vidas; Pavlov, Jevgenij; Vysniauskas, Juozas

    2015-01-01

    The operation dynamics of the capacitor-type and PIN diode type detectors based on GaN have been simulated using the dynamic and drift-diffusion models. The drift-diffusion current simulations have been implemented by employing the software package Synopsys TCAD Sentaurus. The monopolar and bipolar drift regimes have been analyzed by using dynamic models based on the Shockley-Ramo theorem. The carrier multiplication processes determined by impact ionization have been considered in order to compensate carrier lifetime reduction due to introduction of radiation defects into GaN detector material. PMID:25751080

  14. Germanium-catalyzed growth of single-crystal GaN nanowires

    NASA Astrophysics Data System (ADS)

    Saleem, Umar; Wang, Hong; Peyrot, David; Olivier, Aurélien; Zhang, Jun; Coquet, Philippe; Ng, Serene Lay Geok

    2016-04-01

    We report the use of Germanium (Ge) as catalyst for Gallium Nitride (GaN) nanowires growth. High-yield growth has been achieved with Ge nanoparticles obtained by dewetting a thin layer of Ge on a Si (100) substrate. The nanowires are long and grow straight with very little curvature. The GaN nanowires are single-crystalline and show a Wurtzite structure growing along the [0001] axis. The growth follows a metal-free Vapor-Liquid-Solid (VLS) mechanism, further allowing a CMOS technology compatibility. The synthesis of nanowires has been done using an industrial Low Pressure Chemical Vapor Deposition (LPCVD) system.

  15. X-ray detectors based on GaN Schottky diodes

    SciTech Connect

    Duboz, Jean-Yves; Frayssinet, Eric; Chenot, Sebastien; Reverchon, Jean-Luc; Idir, Mourad

    2010-10-18

    GaN Schottky diodes have been fabricated and tested as x-ray detectors in the range from 6 to 21 keV. The spectral response has been measured and is compared to its theoretical value. The study of the response and its temporal dynamics as a function of the bias allows to identify a photovoltaic behavior at low bias and a photoconductive one at larger reverse biases. The GaN diode turned out to be linear as a function of the incident power. The noise and detectivity are given and discussed.

  16. Microstructural evolution in H ion induced splitting of freestanding GaN

    SciTech Connect

    Moutanabbir, O.; Scholz, R.; Senz, S.; Goesele, U.; Chicoine, M.; Schiettekatte, F.; Suesskraut, F.; Krause-Rehberg, R.

    2008-07-21

    We investigated the microstructural transformations during hydrogen ion-induced splitting of GaN thin layers. Cross-sectional transmission electron microscopy and positron annihilation spectroscopy data show that the implanted region is decorated with a high density of 1-2 nm bubbles resulting from vacancy clustering during implantation. These nanobubbles persist up to 450 deg. C. Ion channeling data show a strong dechanneling enhancement in this temperature range tentatively attributed to strain-induced lattice distortion. The dechanneling level decreases following the formation of plateletlike structures at 475 deg. C. Extended internal surfaces develop around 550 deg. C leading to the exfoliation of GaN thin layer.

  17. Nucleation and Growth of GaN on GaAs (001) Substrates

    SciTech Connect

    Drummond, Timothy J.; Hafich, Michael J.; Heller, Edwin J.; Lee, Stephen R.; Liliental-Weber, Zuzanna; Ruvimov, Sergei; Sullivan, John P.

    1999-05-03

    The nucleation of GaN thin films on GaAs is investigated for growth at 620 "C. An rf plasma cell is used to generate chemically active nitrogen from N2. An arsenic flux is used in the first eight monolayer of nitride growth to enhance nucleation of the cubic phase. Subsequent growth does not require an As flux to preserve the cubic phase. The nucleation of smooth interfaces and GaN films with low stacking fault densities is dependent upon relative concentrations of active nitrogen species in the plasma and on the nitrogen to gallium flux ratio.

  18. Temperature dependence of the electron Landé g-factor in cubic GaN

    NASA Astrophysics Data System (ADS)

    Buß, J. H.; Schupp, T.; As, D. J.; Hägele, D.; Rudolph, J.

    2015-12-01

    The temperature dependence of the electron Landé g-factor in bulk cubic GaN is investigated over an extremely broad temperature range from 15 K up to 500 K by time-resolved Kerr-rotation spectroscopy. The g-factor is found to be approximately constant over the full investigated temperature range. Calculations by k .p -theory predict a negligible temperature dependence g(T) in complete agreement with the experiment as a consequence of the large band-gap and small spin orbit splitting in cubic GaN.

  19. Investigation of structural and optical properties of GaN on flat and porous silicon

    NASA Astrophysics Data System (ADS)

    Abud, Saleh H.; Selman, Abbas M.; Hassan, Z.

    2016-09-01

    In this work, gallium nitride (GaN) layers were successfully grown on Flat-Si and porous silicon (PSi) using a radio frequency-magnetron sputtering system. Field emission scanning electron microscopy and atomic force microscopy images showed that the grown film on Flat-Si had smoother surface, even though there were some cracks on it. Furthermore, the X-ray diffraction measurements showed that the peak intensity of all the grown layers on PSi was higher than that of the grown layer on Flat-Si. Our detailed observation showed that PSi is a promising substrate to obtain GaN films.

  20. Determination of satellite valley position in GaN emitter from photoexcited field emission investigations

    NASA Astrophysics Data System (ADS)

    Semenenko, M.; Yilmazoglu, O.; Hartnagel, H. L.; Pavlidis, D.

    2011-01-01

    Argon plasma etched GaN field-emitter rods with nanometer-scale diameter were fabricated on GaN grown on an n+-GaN substrate. Their electron field emission properties were investigated both without and under illumination by using light sources with various wavelengths. The Fowler-Nordheim current-voltage characteristics of the cathodes show a change in slope for illuminated cathodes. The electron affinity difference ΔE between the different valleys in the conduction band has been ascertained and is in the range from 1.18 up to 1.21 eV.

  1. Modeling of radiation damage recovery in particle detectors based on GaN

    NASA Astrophysics Data System (ADS)

    Gaubas, E.; Ceponis, T.; Pavlov, J.

    2015-12-01

    The pulsed characteristics of the capacitor-type and PIN diode type detectors based on GaN have been simulated using the dynamic and drift-diffusion models. The drift-diffusion current simulations have been implemented by employing the commercial software package Synopsys TCAD Sentaurus. The bipolar drift regime has been analyzed. The possible internal gain in charge collection through carrier multiplication processes determined by impact ionization has been considered in order to compensate carrier lifetime reduction due to radiation defects introduced into GaN material of detector.

  2. Simulations of operation dynamics of different type GaN particle sensors.

    PubMed

    Gaubas, Eugenijus; Ceponis, Tomas; Kalesinskas, Vidas; Pavlov, Jevgenij; Vysniauskas, Juozas

    2015-01-01

    The operation dynamics of the capacitor-type and PIN diode type detectors based on GaN have been simulated using the dynamic and drift-diffusion models. The drift-diffusion current simulations have been implemented by employing the software package Synopsys TCAD Sentaurus. The monopolar and bipolar drift regimes have been analyzed by using dynamic models based on the Shockley-Ramo theorem. The carrier multiplication processes determined by impact ionization have been considered in order to compensate carrier lifetime reduction due to introduction of radiation defects into GaN detector material. PMID:25751080

  3. Polar properties of a hexagonally bonded GaN sheet under biaxial compression

    NASA Astrophysics Data System (ADS)

    Gao, Yanlin; Yayama, Tomoe; Okada, Susumu

    2016-09-01

    Using the density functional theory, we study the geometric and electronic structures of a GaN sheet possessing a honeycomb network. The sheet preserves the planar conformation under an equilibrium lattice constant of 3.2 Å, and has a semiconducting electronic structure with an indirect band gap of 2.28 eV. The biaxial compressive strain causes structural buckling, leading to polarization normal to the atomic layer. An external electric field normal to the layer also induces structural buckling with a height proportional to the field strength. The polarity of the buckled GaN sheet is tunable by attaching H atoms on Ga and N atoms.

  4. Growth optimization and characterization of GaN epilayers on multifaceted (111) surfaces etched on Si(100) substrates

    SciTech Connect

    Ansah-Antwi, KwaDwo Konadu Chua, Soo Jin; Soh, Chew Beng; Liu, Hongfei

    2015-11-15

    The four nearest Si(111) multifaceted sidewalls were exposed inside an array of 3 μm-wide square holes patterned on an Si(100) substrate, and this patterned Si(100) substrate was used as a substrate for the deposition of a gallium nitride (GaN) epilayer. Subsequently the effect that the growth pressure, the etched-hole profiles, and the etched-hole arrangement had upon the quality of the as-grown GaN was investigated. The coalescence of the as-grown GaN epilayer on the exposed Si(111) facets was observed to be enhanced with reduced growth pressure from 120 to 90 Torr. A larger Si(001) plane area at the bottom of the etched holes resulted in bidirectional GaN domains, which resulted in poor material quality. The bidirectional GaN domains were observed as two sets of six peaks via a high-resolution x-ray diffraction phi scan of the GaN(10-11) reflection. It was also shown that a triangular array of etched holes was more desirable than square arrays of etched holes for the growth high-quality and continuous GaN films.

  5. Kinetics of optically excited charge carriers at the GaN surface: Influence of catalytic Pt nanostructures

    SciTech Connect

    Winnerl, Andrea Pereira, Rui N.; Stutzmann, Martin

    2015-10-21

    In this work, we use GaN with different deposited Pt nanostructures as a controllable model system to investigate the kinetics of photo-generated charge carriers in hybrid photocatalysts. We combine conductance and contact potential difference measurements to investigate the influence of Pt on the processes involved in the capture and decay of photo-generated charge carriers at and close to the GaN surface. We found that in the presence of Pt nanostructures the photo-excitation processes are similar to those found in Pt free GaN. However, in GaN with Pt nanostructures, photo-generated holes are preferentially trapped in surface states of the GaN covered with Pt and/or in electronic states of the Pt and lead to an accumulation of positive charge there, whereas negative charge is accumulated in localized states in a shallow defect band of the GaN covered with Pt. This preferential accumulation of photo-generated electrons close to the surface is responsible for a dramatic acceleration of the turn-off charge transfer kinetics and a stronger dependence of the surface photovoltage on light intensity when compared to a Pt free GaN surface. Our study shows that in hybrid photocatalysts, the metal nanostructures induce a spatially inhomogeneous surface band bending of the semiconductor that promotes a lateral drift of photogenerated charges towards the catalytic nanostructures.

  6. Using band engineering to tailor the emission spectra of trichromatic semipolar InGaN light-emitting diodes for phosphor-free polarized white light emission

    NASA Astrophysics Data System (ADS)

    Kowsz, S. J.; Pynn, C. D.; Oh, S. H.; Farrell, R. M.; DenBaars, S. P.; Nakamura, S.

    2016-07-01

    We report a polarized white light-emitting device that monolithically integrates an electrically injected blue light-emitting diode grown on the (20 2 ¯ 1 ¯ ) face of a bulk GaN substrate and optically pumped InGaN quantum wells (QWs) with green and red light emission grown on the (20 2 ¯ 1 ) face. To overcome the challenges associated with growing high indium content InGaN QWs for long wavelength emission, a p-i-n doping profile was used to red-shift the emission wavelength of one of the optically pumped QWs by creating a built-in electric field in the same direction as the polarization-induced electric field. Emission peaks were observed at 450 nm from the electrically injected QW and at 520 nm and 590 nm from the optically pumped QWs, which were situated in n-i-n and p-i-n structures, respectively. The optically pumped QW in the p-i-n structure was grown at a growth temperature that was 10 °C colder compared to the QW in the n-i-n structure, so the emission from the QW in the p-i-n structure was red-shifted due to increased indium content as well as the built-in electric field. Modeling work confirmed that the built-in electric field made a greater contribution than the change in alloy composition to the red-shift in emission from the QW in the p-i-n structure. The combined emission from the red, green, and blue QWs resulted in white-light emission with Commission Internationale de l'Eclairage x- and y-chromaticity coordinates of (0.33, 0.35) and an optical polarization ratio of 0.30.

  7. Nobel Lecture: Growth of GaN on sapphire via low-temperature deposited buffer layer and realization of p -type GaN by Mg doping followed by low-energy electron beam irradiation*

    NASA Astrophysics Data System (ADS)

    Amano, Hiroshi

    2015-10-01

    This is a personal history of one of the Japanese researchers engaged in developing a method for growing GaN on a sapphire substrate, paving the way for the realization of smart television and display systems using blue LEDs. The most important work was done in the mid to late 1980s. The background to the author's work and the process by which the technology enabling the growth of GaN and the realization of p -type GaN was established are reviewed.

  8. Growth of GaN on Sapphire via Low-Temperature Deposited Buffer Layer and Realization of p-Type GaN by Mg Doping Followed by Low-Energy Electron Beam Irradiation

    NASA Astrophysics Data System (ADS)

    Amano, Hiroshi

    2015-12-01

    This is a personal history of one of the Japanese researchers engaged in developing a method for growing GaN on a sapphire substrate, paving the way for the realization of smart television and display systems using blue LEDs. The most important work was done in the mid- to late 80s. The background to the author's work and the process by which the technology enabling the growth of GaN and the realization of p-type GaN was established are reviewed.

  9. Effect of residual stress on the microstructure of GaN epitaxial films grown by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Wang, Haiyan; Wang, Wenliang; Yang, Weijia; Zhu, Yunnong; Lin, Zhiting; Li, Guoqiang

    2016-04-01

    The stress-free GaN epitaxial films have been directly grown by pulsed laser deposition (PLD) at 850 °C, and the effect of different stress on the microstructure of as-grown GaN epitaxial films has been explored in detail. The as-grown stress-free GaN epitaxial films exhibit very smooth surface without any particles and grains, which is confirmed by the smallest surface root-mean-square roughness of 2.3 nm measured by atomic force microscopy. In addition, they also have relatively high crystalline quality, which is proved by the small full-width at half maximum values of GaN(0002) and GaN (10 1 bar 2) X-ray rocking curves as 0.27° and 0.68°, respectively. However, when the growth temperature is lower or higher than 850 °C, internal or thermal stress would be increased in as-grown GaN epitaxial films. To release the larger stress, a great number of dislocations are generated. Many irregular particulates, hexagonal GaN gains and pits are therefore produced on the films surface, and the crystalline quality is greatly reduced consequently. This work has demonstrated the direct growth of stress-free GaN epitaxial films with excellent surface morphology and high crystalline quality by PLD, and presented a comprehensive study on the origins and the effect of stress in GaN layer. It is instructional to achieve high-quality nitride films by PLD, and shows great potential and broad prospect for the further development of high-performance GaN-based devices.

  10. High-electron-mobility GaN grown on free-standing GaN templates by ammonia-based molecular beam epitaxy

    SciTech Connect

    Kyle, Erin C. H. Kaun, Stephen W.; Burke, Peter G.; Wu, Feng; Speck, James S.; Wu, Yuh-Renn

    2014-05-21

    The dependence of electron mobility on growth conditions and threading dislocation density (TDD) was studied for n{sup −}-GaN layers grown by ammonia-based molecular beam epitaxy. Electron mobility was found to strongly depend on TDD, growth temperature, and Si-doping concentration. Temperature-dependent Hall data were fit to established transport and charge-balance equations. Dislocation scattering was analyzed over a wide range of TDDs (∼2 × 10{sup 6} cm{sup −2} to ∼2 × 10{sup 10} cm{sup −2}) on GaN films grown under similar conditions. A correlation between TDD and fitted acceptor states was observed, corresponding to an acceptor state for almost every c lattice translation along each threading dislocation. Optimized GaN growth on free-standing GaN templates with a low TDD (∼2 × 10{sup 6} cm{sup −2}) resulted in electron mobilities of 1265 cm{sup 2}/Vs at 296 K and 3327 cm{sup 2}/Vs at 113 K.

  11. Hierarchical growth of GaN nanowires for light emitting diode applications

    NASA Astrophysics Data System (ADS)

    Raj, Rishabh; Ra, Yong-Ho; Lee, Cheul-Ro; Obheroi, Sonika; Navamathavan, R.

    2016-02-01

    Gallium nitride nanostructures have been receiving considerable attention as building blocks for nanophotonic technologies due to their unique high aspect ratios, promising the realization of photonic and biological nanodevices such as blue light emitting diodes (LEDs), short-wavelength ultraviolet nanolasers and nanofluidic biochemical sensors. In this study, we report on the hierarchical growth of GaN nanowires (NWs) by dynamically adjusting the growth parameters using pulsed flow metalorganic chemical vapor deposition (MOCVD) technique. We carried out two step growth processes to grow hierarchical GaN NWs. At the first step the GaN NWs were grown at 950°C and in the second stage, we suitably decreased the growth temperature to 710°C to grow the hierarchical structures. The surface morphology, structural and optical characterization of the grown hierarchical GaN NWs were studied by field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD) and photoluminescence (PL) measurements, respectively. These kind of hierarchical NWs are promising to allow flat band quantum structures that are shown to improve the efficiency of light-emitting diodes.

  12. Structural and luminescence properties of GaN nanowires grown using cobalt phthalocyanine as catalyst

    NASA Astrophysics Data System (ADS)

    Yadav, Shivesh; Rodríguez-Fernández, Carlos; de Lima, Mauricio M.; Cantarero, Andres; Dhar, Subhabrata

    2015-12-01

    Catalyst free methods have usually been employed to avoid any catalyst induced contamination for the synthesis of GaN nanowires with better transport and optical properties. Here, we have used a catalytic route to grow GaN nanowires, which show good optical quality. Structural and luminescence properties of GaN nanowires grown by vapor-liquid-solid technique using cobalt phthalocyanine as catalyst are systematically investigated as a function of various growth parameters such as the growth temperature and III/V ratio. The study reveals that most of the nanowires, which are several tens of microns long, grow along [ 10 1 ¯ 0 ] direction. Interestingly, the average wire diameter has been found to decrease with the increase in III/V ratio. It has also been observed that in these samples, defect related broad luminescence features, which are often present in GaN, are completely suppressed. At all temperatures, photoluminescence spectrum is found to be dominated only by a band edge feature, which comprises of free and bound excitonic transitions. Our study furthermore reveals that the bound excitonic feature is associated with excitons trapped in certain deep level defects, which result from the deficiency of nitrogen during growth. This transition has a strong coupling with the localized vibrational modes of the defects.

  13. CFD and reaction computational analysis of the growth of GaN by HVPE method

    NASA Astrophysics Data System (ADS)

    Kempisty, P.; Łucznik, B.; Pastuszka, B.; Grzegory, I.; Boćkowski, M.; Krukowski, S.; Porowski, S.

    2006-10-01

    GaCl synthesis reaction during hydride vapor phase epitaxy (HVPE) growth of GaN in horizontal flow reactor has been analyzed using computerized fluid dynamics (CFD) and molecular estimates of the reaction rates. Finite element code FIDAP (commercially available from Fluent Inc.) [Fidap User Manual, Fluent Inc. [1

  14. Diffusion mechanism and the thermal stability of fluorine ions in GaN after ion implantation

    SciTech Connect

    Wang, M. J.; Yuan, L.; Chen, K. J.; Xu, F. J.; Shen, B.

    2009-04-15

    The diffusion mechanisms of fluorine ions in GaN are investigated by means of time-of-flight secondary ion mass spectrometry. Instead of incorporating fluorine ions close to the sample surface by fluorine plasma treatment, fluorine ion implantation with an energy of 180 keV is utilized to implant fluorine ions deep into the GaN bulk, preventing the surface effects from affecting the data analysis. It is found that the diffusion of fluorine ions in GaN is a dynamic process featuring an initial out-diffusion followed by in- diffusion and the final stabilization. A vacancy-assisted diffusion model is proposed to account for the experimental observations, which is also consistent with results on molecular dynamic simulation. Fluorine ions tend to occupy Ga vacancies induced by ion implantation and diffuse to vacancy rich regions. The number of continuous vacancy chains can be significantly reduced by a dynamic thermal annealing process. As a result, strong local confinement and stabilization of fluorine ions can be obtained in GaN crystal, suggesting excellent thermal stability of fluorine ions for device applications.

  15. High-breakdown-voltage pn-junction diodes on GaN substrates

    NASA Astrophysics Data System (ADS)

    Yoshizumi, Yusuke; Hashimoto, Shin; Tanabe, Tatsuya; Kiyama, Makoto

    2007-01-01

    GaN pn-junction diodes have been grown on GaN and sapphire substrates by metalorganic vapor phase epitaxy and their electrical characteristics have been studied. For the diode on the GaN substrate, the reverse leakage current is lower and the breakdown voltage VB is higher than those on the sapphire substrate owing to the lower dislocation density. The breakdown voltage is further improved with decreasing Mg concentration in p-GaN layers. Analysis of the depletion-layer capacitance of pn diodes has revealed that the Mg acceptors are fully ionized in the depletion layer. By optimizing the growth conditions, the diodes on GaN substrates show extremely low leakage current and the ideal hard breakdown at -925 V. The breakdown field is estimated to be 3.27 MV/cm. The specific on-resistance RON of 6.3 mΩ cm 2 is obtained, leading to the figure of merit, VB2/R, of 136 MW/cm 2.

  16. Fine structure of the red luminescence band in undoped GaN

    SciTech Connect

    Reshchikov, M. A.; Usikov, A.; Helava, H.; Makarov, Yu.

    2014-01-20

    Many point defects in GaN responsible for broad photoluminescence (PL) bands remain unidentified. Their presence in thick GaN layers grown by hydride vapor phase epitaxy (HVPE) detrimentally affects the material quality and may hinder the use of GaN in high-power electronic devices. One of the main PL bands in HVPE-grown GaN is the red luminescence (RL) band with a maximum at 1.8 eV. We observed the fine structure of this band with a zero-phonon line (ZPL) at 2.36 eV, which may help to identify the related defect. The shift of the ZPL with excitation intensity and the temperature-related transformation of the RL band fine structure indicate that the RL band is caused by transitions from a shallow donor (at low temperature) or from the conduction band (above 50 K) to an unknown deep acceptor having an energy level 1.130 eV above the valence band.

  17. Piezotronic Effect in Strain-Gated Transistor of a-Axis GaN Nanobelt.

    PubMed

    Yu, Ruomeng; Wang, Xingfu; Peng, Wenbo; Wu, Wenzhuo; Ding, Yong; Li, Shuti; Wang, Zhong Lin

    2015-10-27

    Due to the non-centrosymmetric crystal structures, wurtzite family semiconducting materials possess piezoelectric properties and exhibit polarizations along certain directions upon straining. Utilizing strain-induced piezoelectric polarization charges to modulate the energy band structures and thus to tune/control the transport processes of charge carriers is referred to as the piezotronic effect. Distinct from the previous studies of c-axis GaN nanowires, here we systematically study the piezotronic-effect-induced modifications of energy band structures and the corresponding influence on electronic transport properties of a-axis GaN nanobelts. The physical mechanism is carefully illustrated and further confirmed by theoretical simulations via finite element analysis. The spatial distributions of local carrier concentration and the energy band diagrams of a-axis GaN under various straining conditions are calculated. This work provides a thorough understanding of strain-gated transport properties of a-axis GaN piezotronic transistors and its future applications in semiconductor devices.

  18. Instability and Spontaneous Reconstruction of Few-Monolayer Thick GaN Graphitic Structures.

    PubMed

    Kolobov, A V; Fons, P; Tominaga, J; Hyot, B; André, B

    2016-08-10

    Two-dimensional (2D) semiconductors are a very hot topic in solid state science and technology. In addition to van der Waals solids that can be easily formed into 2D layers, it was argued that single layers of nominally 3D tetrahedrally bonded semiconductors, such as GaN or ZnO, also become flat in the monolayer limit; the planar structure was also proposed for few-layers of such materials. In this work, using first-principles calculations, we demonstrate that contrary to the existing consensus the graphitic structure of few-layer GaN is unstable and spontaneously reconstructs into a structure that remains hexagonal in plane but with covalent interlayer bonds that form alternating octagonal and square (8|4 Haeckelite) rings with pronounced in-plane anisotropy. Of special interest is the transformation of the band gap from indirect in planar GaN toward direct in the Haeckelite phase, making Haeckelite few-layer GaN an appealing material for flexible nano-optoelectronics.

  19. Evaluation of the influence mode on the CVC GaN HEMT using numerical modeling

    NASA Astrophysics Data System (ADS)

    Parnes, Ya M.; Tikhomirov, V. G.; Petrov, V. A.; Gudkov, A. G.; Marzhanovskiy, I. N.; Kukhareva, E. S.; Vyuginov, V. N.; Volkov, V. V.; Zybin, A. A.

    2016-08-01

    Done numerically simulated the effects of certain modes of operation on the CVC of field microwave transistors on the basis of heterostructures AlGaN / GaN (HEMT). The results of these studies suggest the possibility of quite efficient use of numerical simulation for the development of HEMT microwave transistors allowing for the real instrument designs.

  20. Tunnel-injection GaN quantum dot ultraviolet light-emitting diodes

    SciTech Connect

    Verma, Jai; Kandaswamy, Prem Kumar; Protasenko, Vladimir; Verma, Amit; Grace Xing, Huili; Jena, Debdeep

    2013-01-28

    We demonstrate a GaN quantum dot ultraviolet light-emitting diode that uses tunnel injection of carriers through AlN barriers into the active region. The quantum dot heterostructure is grown by molecular beam epitaxy on AlN templates. The large lattice mismatch between GaN and AlN favors the formation of GaN quantum dots in the Stranski-Krastanov growth mode. Carrier injection by tunneling can mitigate losses incurred in hot-carrier injection in light emitting heterostructures. To achieve tunnel injection, relatively low composition AlGaN is used for n- and p-type layers to simultaneously take advantage of effective band alignment and efficient doping. The small height of the quantum dots results in short-wavelength emission and are simultaneously an effective tool to fight the reduction of oscillator strength from quantum-confined Stark effect due to polarization fields. The strong quantum confinement results in room-temperature electroluminescence peaks at 261 and 340 nm, well above the 365 nm bandgap of bulk GaN. The demonstration opens the doorway to exploit many varied features of quantum dot physics to realize high-efficiency short-wavelength light sources.

  1. Uniaxial strain effects on the optoelectronic properties of GaN nanowires

    NASA Astrophysics Data System (ADS)

    Xia, Sihao; Liu, Lei; Kong, Yike; Wang, Meishan

    2016-09-01

    Considering the importance of strain engineering on semiconductors, GaN nanowires under uniaxial compression deformation and stretch deformation are researched using first principle calculations with density functional theory. It is found that the deformation will destroy the stability of the nanowires except a weak stretch. The compression deformation is more difficult than the stretch deformation. Besides, the work function of the nanowires is reduced under increasing compression while that under increasing stretch is reversed. With increasing diameter, the band gaps of the nanowires gradually exhibit a linear decreasing relation as the elongation of uniaxial length of GaN nanowires. With increasing compression, the band gaps change from direct to indirect. The optical calculations exhibit a redshift for the imaginary part of dielectric function. This study demonstrates strain engineering can effectively adjust the optoelectronic characteristics of GaN nanowire. Moderate compression, which induces a lower work function with a direct band gap, can improve the photoemission performance of GaN nanowires.

  2. Thermal boundary conductance between Al films and GaN nanowires investigated with molecular dynamics.

    PubMed

    Zhou, Xiao-Wang; Jones, Reese E; Hopkins, Patrick E; Beechem, Thomas E

    2014-05-28

    GaN nanowires are being pursued for optoelectronic and high-power applications. In either use, increases in operating temperature reduce both performance and reliability making it imperative to minimize thermal resistances. Since interfaces significantly influence the thermal response of nanosystems, the thermal boundary resistance between GaN nanowires and metal contacts has major significance. In response, we have performed systematic molecular dynamics simulations to study the thermal boundary conductance between GaN nanowires and Al films as a function of nanowire dimensions, packing density, and the depth the nanowire is embedded into the metal contact. At low packing densities, the apparent Kapitza conductance between GaN nanowires and an aluminum film is shown to be larger than when contact is made between films of these same materials. This enhancement decreases toward the film-film limit, however, as the packing density increases. For densely packed nanowires, maximizing the Kapitza conductance can be achieved by embedding the nanowires into the films, as the conductance is found to be proportional to the total contact area.

  3. Diffusion of oxygen in bulk GaN crystals at high temperature and at high pressure

    NASA Astrophysics Data System (ADS)

    Sadovyi, B.; Nikolenko, A.; Weyher, J. L.; Grzegory, I.; Dziecielewski, I.; Sarzynski, M.; Strelchuk, V.; Tsykaniuk, B.; Belyaev, O.; Petrusha, I.; Turkevich, V.; Kapustianyk, V.; Albrecht, M.; Porowski, S.

    2016-09-01

    Experimental studies of diffusion of oxygen in bulk wurtzite-type GaN crystals grown by Halide Vapor Phase Epitaxy (HVPE) are reported. Oxygen concentration profiles were studied in as-grown GaN crystals and also after annealing of crystals at temperatures up to 3400 K and pressures up to 9 GPa. Investigated crystals contained large conical defects i.e. pinholes of significantly higher oxygen concentration (NO=(2-4)×1019 cm-3) than that in the bulk matrix (NO<1×1017 cm-3). The pinholes were revealed by a photo-etching method in as-grown and annealed GaN samples. Confocal micro-Raman spectroscopy was applied to measure the profiles of free electron concentration, which directly corresponds to the concentration of oxygen impurity. Lateral scanning across the interfaces between pinholes and matrix in the as-grown HVPE GaN crystals showed sharp step-like carrier concentration profiles. Annealing at high temperature and high pressure resulted in the diffusion blurring of the profiles. Analysis of obtained data allowed for the first time for estimation of oxygen diffusion coefficients DO(T, P). The obtained values of DO(T, P) are anomalously small similarly to the values obtained by Harafuji et al. by molecular dynamic calculations for self-diffusion of nitrogen. Whereas oxygen and nitrogen are on the same sublattice it could explain the similarity of their diffusion coefficients.

  4. GaN m -plane: Atomic structure, surface bands, and optical response

    NASA Astrophysics Data System (ADS)

    Landmann, M.; Rauls, E.; Schmidt, W. Â. G.; Neumann, M. Â. D.; Speiser, E.; Esser, N.

    2015-01-01

    Density-functional-theory calculations are combined with many-body perturbation theory in order to elucidate the geometry, electronic, and optical properties of the w z -GaN (1 1 ¯00 ) surface, i.e., the so-called m -plane. The optical absorption and reflection anisotropy related to electronic transitions between surface states are identified by comparison with measured data covering transition energies from 2.4 up to 5.4 eV. Our results show a surface relaxation mechanism consistent with the electron counting rule that causes a moderate buckling of the GaN surface dimers and gives rise to two distinct surface states: The doubly occupied N dangling bonds form a surface band that is resonant with the GaN valence-band edge at the center of the Brillouin zone, whereas the empty Ga dangling bonds occur within the GaN band gap closely following the dispersion of the conduction-band edge. These two states contribute strongly to the formation of surface excitons that redshift the optical absorption with respect to the bulk optical response. The surface optical absorption i.e., the excitonic onset below the bulk band gap followed by a broad absorption band at higher energies related to the dispersion of the surface band structure, is calculated in agreement with the experimental data.

  5. GaN CVD Reactions: Hydrogen and Ammonia Decomposition and the Desorption of Gallium

    SciTech Connect

    Bartram, Michael E.; Creighton, J. Randall

    1999-05-26

    Isotopic labeling experiments have revealed correlations between hydrogen reactions, Ga desorption, and ammonia decomposition in GaN CVD. Low energy electron diffraction (LEED) and temperature programmed desorption (TPD) were used to demonstrate that hydrogen atoms are available on the surface for reaction after exposing GaN(0001) to deuterium at elevated temperatures. Hydrogen reactions also lowered the temperature for Ga desorption significantly. Ammonia did not decompose on the surface before hydrogen exposure. However, after hydrogen reactions altered the surface, N15H3 did undergo both reversible and irreversible decomposition. This also resulted in the desorption of N2 of mixed isotopes below the onset of GaN sublimation, This suggests that the driving force of the high nitrogen-nitrogen bond strength (226 kcal/mol) can lead to the removal of nitrogen from the substrate when the surface is nitrogen rich. Overall, these findings indicate that hydrogen can influence G-aN CVD significantly, being a common factor in the reactivity of the surface, the desorption of Ga, and the decomposition of ammonia.

  6. Photoluminescence Observation of GaN Thin Films Treated by Inductively-Coupled Plasmas

    NASA Astrophysics Data System (ADS)

    Nakamura, Keiji; Itoh, Noriyoshi; Nakano, Yoshitaka; Sugai, Hideo

    2011-10-01

    This paper reports observations of photoluminescence from plasma-treated GaN thin films. A 10 mTorr Ar ICP was used, and irradiation of 313 nm ultraviolet (UV) light from Hg-Xe light source induced the photoluminescence of the GaN film. In both in-situ and ex-situ observations, significant yellow luminescence was observed visually, and the ex-situ observed luminescence ranges in a wavelength of 500-800 nm corresponding to defect-states-related transition. The measurements also revealed that the luminescence also contains UV emission at a wavelength of ~365 nm attributed to transition related to near band edges. In order to examine effects of the plasma on the luminescence, the ex-situ observation was made as a function of the plasma treatment time. As the treatment time increased, both the UV and the luminescence intensity decreased, and the decrease in the emission became significant when the 313 nm UV light was irradiated onto the plasma-exposed GaN surface. These results suggested that plasma-induced defect formation leads to the luminescence degradation, and that the photoluminescence observation will be useful for damage monitoring of the GaN surface. This work is partly supported by the 2nd stage Knowledge Cluster Initiative and Grant-in-Aid for Scientific Research (C) from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

  7. Density-dependent electron transport and precise modeling of GaN high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Bajaj, Sanyam; Shoron, Omor F.; Park, Pil Sung; Krishnamoorthy, Sriram; Akyol, Fatih; Hung, Ting-Hsiang; Reza, Shahed; Chumbes, Eduardo M.; Khurgin, Jacob; Rajan, Siddharth

    2015-10-01

    We report on the direct measurement of two-dimensional sheet charge density dependence of electron transport in AlGaN/GaN high electron mobility transistors (HEMTs). Pulsed IV measurements established increasing electron velocities with decreasing sheet charge densities, resulting in saturation velocity of 1.9 × 107 cm/s at a low sheet charge density of 7.8 × 1011 cm-2. An optical phonon emission-based electron velocity model for GaN is also presented. It accommodates stimulated longitudinal optical (LO) phonon emission which clamps the electron velocity with strong electron-phonon interaction and long LO phonon lifetime in GaN. A comparison with the measured density-dependent saturation velocity shows that it captures the dependence rather well. Finally, the experimental result is applied in TCAD-based device simulator to predict DC and small signal characteristics of a reported GaN HEMT. Good agreement between the simulated and reported experimental results validated the measurement presented in this report and established accurate modeling of GaN HEMTs.

  8. Density-dependent electron transport and precise modeling of GaN high electron mobility transistors

    SciTech Connect

    Bajaj, Sanyam Shoron, Omor F.; Park, Pil Sung; Krishnamoorthy, Sriram; Akyol, Fatih; Hung, Ting-Hsiang; Reza, Shahed; Chumbes, Eduardo M.; Khurgin, Jacob; Rajan, Siddharth

    2015-10-12

    We report on the direct measurement of two-dimensional sheet charge density dependence of electron transport in AlGaN/GaN high electron mobility transistors (HEMTs). Pulsed IV measurements established increasing electron velocities with decreasing sheet charge densities, resulting in saturation velocity of 1.9 × 10{sup 7 }cm/s at a low sheet charge density of 7.8 × 10{sup 11 }cm{sup −2}. An optical phonon emission-based electron velocity model for GaN is also presented. It accommodates stimulated longitudinal optical (LO) phonon emission which clamps the electron velocity with strong electron-phonon interaction and long LO phonon lifetime in GaN. A comparison with the measured density-dependent saturation velocity shows that it captures the dependence rather well. Finally, the experimental result is applied in TCAD-based device simulator to predict DC and small signal characteristics of a reported GaN HEMT. Good agreement between the simulated and reported experimental results validated the measurement presented in this report and established accurate modeling of GaN HEMTs.

  9. Epitaxial GaN films by hyperthermal ion-beam nitridation of Ga droplets

    SciTech Connect

    Gerlach, J. W.; Ivanov, T.; Neumann, L.; Hoeche, Th.; Hirsch, D.; Rauschenbach, B.

    2012-06-01

    Epitaxial GaN film formation on bare 6H-SiC(0001) substrates via the process of transformation of Ga droplets into a thin GaN film by applying hyperthermal nitrogen ions is investigated. Pre-deposited Ga atoms in well defined amounts form large droplets on the substrate surface which are subsequently nitridated at a substrate temperature of 630 Degree-Sign C by a low-energy nitrogen ion beam from a constricted glow-discharge ion source. The Ga deposition and ion-beam nitridation process steps are monitored in situ by reflection high-energy electron diffraction. Ex situ characterization by x-ray diffraction and reflectivity techniques, Rutherford backscattering spectrometry, and electron microscopy shows that the thickness of the resulting GaN films depends on the various amounts of pre-deposited gallium. The films are epitaxial to the substrate, exhibit a mosaic like, smooth surface topography and consist of coalesced large domains of low defect density. Possible transport mechanisms of reactive nitrogen species during hyperthermal nitridation are discussed and the formation of GaN films by an ion-beam assisted process is explained.

  10. Ultrathin GaN quantum disk nanowire LEDs with sub-250 nm electroluminescence

    DOE PAGES

    Chisholm, Matthew F.; Golam Sarwar, A. T. M.; Myers, Roberto C.; Mays, Brelon J.; Duscher, Gerd J.

    2016-03-18

    By quantum confining GaN at monolayer thickness with AlN barriers inside of a nanowire, deep ultraviolet LEDs are demonstrated. Full three-dimensional strain dependent energy band simulations are carried out within multiple quantum disk (MQD) GaN/AlN nanowire superlattice heterostructures. It is found that, even within the same nanowire MQD, the emission energy of the ultrathin GaN QDs varies from disk to disk due to the changing strain distribution and polarization charge induced energy band bending along the axial nanowire direction. MQD heterostructures are grown by plasma-assisted molecular beam epitaxy to form self-assembled catalyst-free nanowires with 1 to 2 monolayer thick GaNmore » insertions within an AlN matrix. Photoluminescence peaks are observed at 295 nm and 283 nm from the 2 ML and 1 ML thick MQD samples, respectively. Polarization-doped nanowire LEDs are grown incorporating 1 ML thick GaN MQD active regions from which we observe deep ultraviolet electroluminescence. As a result, the shortest LED wavelength peak observed is 240 nm and attributed to electron hole recombination within 1 ML thick GaN QDs.« less

  11. Fabrications and application of single crystalline GaN for high-performance deep UV photodetectors

    NASA Astrophysics Data System (ADS)

    Velazquez, R.; Aldalbahi, A.; Rivera, M.; Feng, P.

    2016-08-01

    High-quality single crystalline Gallium Nitride (GaN) semiconductor has been synthesized using molecule beam epitaxy (MBE) technique for development of high-performance deep ultraviolet (UV) photodetectors. Thickness of the films was estimated by using surface profile meter and scanning electron microscope. Electronic states and elemental composition of the films were obtained using Raman scattering spectroscopy. The orientation, crystal structure and phase purity of the films were examined using a Siemens x-ray diffractometer radiation. The surface microstructure was studied using high resolution scanning electron microscopy (SEM). Two types of metal pairs: Al-Al, Al-Cu or Cu-Cu were used for interdigital electrodes on GaN film in order to examine the Schottky properties of the GaN based photodetector. The characterizations of the fabricated prototype include the stability, responsivity, response and recovery times. Typical time dependent photoresponsivity by switching different UV light source on and off five times for each 240 seconds at a bias of 2V, respectively, have been obtained. The detector appears to be highly sensitive to various UV wavelengths of light with very stable baseline and repeatability. The obtained photoresponsivity was up to 354 mA/W at the bias 2V. Higher photoresponsivity could be obtained if higher bias was applied but it would unavoidably result in a higher dark current. Thermal effect on the fabricated GaN based prototype was discussed.

  12. Regional density functional theory for crystal growth in GaN

    NASA Astrophysics Data System (ADS)

    Nakamura, Koichi; Hayashi, Tensei; Tachibana, Akitomo; Matsumoto, Koh

    2000-12-01

    We have applied the regional density functional theory to the study of the electronic characteristics in the Ga and N adsorption process of crystal growth in gallium nitride (GaN) with the surface orientations of (0 0 0 1) and (0 0 0 1¯) . Potential energy curves along the Ga and N adsorption process were obtained for some adsorption sites by the first-principle density functional calculation using the periodic boundary model. The Ga-chemical potentials for the GaN(0 0 0 1) and GaN (0 0 0 1¯) surfaces have been derived, and we have observed the clear dependency of crystal growth in GaN on the surface orientation. Furthermore, we have calculated the regional electronic numbers and energies for the regions partitioned by the interface. The regional electronic energies are stabilized in consequence of the electron transfer as the adatom approaches the surface. It is concluded that an electron accumulation in the vicinity of the stable position of the adatom plays an important role in crystal growth.

  13. GaN Haeckelite Single-Layered Nanostructures: Monolayer and Nanotubes

    PubMed Central

    Camacho-Mojica, Dulce C.; López-Urías, Florentino

    2015-01-01

    Nowadays, III-V semiconductors are interesting candidate materials for the tailoring of two dimensional (2D) graphene-like structures. These new 2D materials have attracted profound interest opening the possibility to find semiconductor materials with unexplored properties. First-principles density functional theory calculations are performed in order to investigate the electronic properties of GaN planar and nanotube morphologies based on Haeckelite structures (containing octagonal and square membered rings). Optimized geometries, band-structures, phonon dispersion, binding energies, transmission electron microscopy images simulations, x-ray diffraction patterns, charge densities, and electronic band gaps are calculated. We demonstrated that GaN Haeckelite structures are stable exhibiting a semiconducting behavior with an indirect band gap. Furthermore, it was found that GaN Haeckelite nanotubes are semiconductor with a band gap nature (direct or indirect) that depends of the nanotube´s chirality and diameter. In addition, it was demonstrated that surface passivation and the interaction with hydrazine, water, ammonia, and carbon monoxide molecules can change the band-gap nature. Our results are compared with the corresponding GaN hexagonal honeycomb structures. PMID:26658148

  14. GaN nano-pyramid arrays as an efficient photoelectrode for solar water splitting

    NASA Astrophysics Data System (ADS)

    Hou, Y.; Yu, X.; Syed, Z. Ahmed; Shen, S.; Bai, J.; Wang, T.

    2016-11-01

    A prototype photoelectrode has been fabricated using a GaN nano-pyramid array structure grown on a cost-effective Si (111) substrate, demonstrating a significant improvement in performance of solar-powered water splitting compared with any planar GaN photoelectrode. Such a nano-pyramid structure leads to enhanced optical absorption as a result of a multi-scattering process which can effectively produce a reduction in reflectance. A simulation based on a finite-difference time-domain approach indicates that the nano-pyramid architecture enables incident light to be concentrated within the nano-pyramids as a result of micro-cavity effects, further enhancing optical absorption. Furthermore, the shape of the nano-pyramid further facilitates the photo-generated carrier transportation by enhancing a hole-transfer efficiency. All these features as a result of the nano-pyramid configuration lead to a large photocurrent of 1 mA cm‑2 under an illumination density of 200 mW cm‑2, with a peak incident photon-to-current conversion efficiency of 46.5% at ∼365 nm, around the band edge emission wavelength of GaN. The results presented are expected to pave the way for the fabrication of GaN based photoelectrodes with a high energy conversion efficiency of solar powered water splitting.

  15. GaN nanostructure-based light emitting diodes and semiconductor lasers.

    PubMed

    Viswanath, Annamraju Kasi

    2014-02-01

    GaN and related materials have received a lot of attention because of their applications in a number of semiconductor devices such as LEDs, laser diodes, field effect transistors, photodetectors etc. An introduction to optical phenomena in semiconductors, light emission in p-n junctions, evolution of LED technology, bandgaps of various semiconductors that are suitable for the development of LEDs are discussed first. The detailed discussion on photoluminescence of GaN nanostructures is made, since this is crucial to develop optical devices. Fabrication technology of many nanostructures of GaN such as nanowires, nanorods, nanodots, nanoparticles, nanofilms and their luminescence properties are given. Then the optical processes including ultrafast phenomena, radiative, non-radiative recombination, quantum efficiency, lifetimes of excitons in InGaN quantum well are described. The LED structures based on InGaN that give various important colors of red, blue, green, and their design considerations to optimize the output were highlighted. The recent efforts in GaN technology are updated. Finally the present challenges and future directions in this field are also pointed out.

  16. Cathodoluminescence of GaN nanorods and nanowires grown by thermal evaporation

    NASA Astrophysics Data System (ADS)

    Guzmán, G.; Herrera, M.

    2014-02-01

    GaN nanorods and nanowires have been grown by thermal evaporation of GaN on Au/Si (1 0 0) substrates. The nanorods recorded a surface decorated with numerous grains with an average size of about 100 nm. The nanowires grew onto the surface of the nanorods exhibiting multiple bends along them. TEM measurements revealed the formation of irregular porous and a polycrystalline structure in the nanowires with diameter higher than 100 nm, while the nanowires with lower diameter showed a tubular structure with wall thickness of 10 nm. The luminescence of the samples recorded three bands centered at about 2.1, 2.74, and 3.2 eV, attributed to the GaN yellow emission and to the blue and UV emissions of the β-Ga2O3, respectively. Ga-ion irradiation in samples revealed a decrease in the intensity of the β-Ga2O3 blue emission attributed to the elimination of gallium vacancies. A thermal annealing treatment at 800 °C in N2 atmosphere generated a quenching of the GaN yellow emission, due to the elimination of nitrogen vacancies.

  17. Utilisation of GaN and InGaN/GaN with nanoporous structures for water splitting

    SciTech Connect

    Benton, J.; Bai, J.; Wang, T.

    2014-12-01

    We report a cost-effective approach to the fabrication of GaN based nanoporous structure for applications in renewable hydrogen production. Photoelectrochemical etching in a KOH solution has been employed to fabricate both GaN and InGaN/GaN nanoporous structures with pore sizes ranging from 25 to 60 nm, obtained by controlling both etchant concentration and applied voltage. Compared to as-grown planar devices the nanoporous structures have exhibited a significant increase of photocurrent with a factor of up to four times. An incident photon conversion efficiency of up to 46% around the band edge of GaN has been achieved.

  18. Defect Reduction via Selective Lateral Epitaxy of GaN on an Innovative Masked Structure with Serpentine Channels

    NASA Astrophysics Data System (ADS)

    Li, Lei; Liu, Justin P. C.; Liu, Lei; Li, Ding; Wang, Lei; Wan, Chenghao; Chen, Weihua; Yang, Zhijian; Xie, Yahong; Hu, Xiaodong; Zhang, Guoyi

    2012-05-01

    We demonstrated an innovative lateral epitaxy method to grow c-plane GaN film using serpentine masked structures, which simplified the entire fabrication process with only one single epitaxial growth step and could efficiently block the threading dislocations. The microstructural and optical properties of GaN indicated that the crystalline quality was effectively improved. Unlike the conventional epitaxial lateral overgrowth (ELOG) or the double ELOG method, the presented serpentine masked structure needs no regrowth process for obtaining low-defect-density GaN materials, and is promising for growing high-performance III-nitride-based devices including laser diodes (LDs), power transistors, and light-emitting diodes (LEDs).

  19. Mg 2+-doped GaN nanoparticles as blue-light emitters: a method to avoid sintering at high temperatures.

    PubMed

    Mahalingam, Venkataramanan; Sudarsan, Vasanthakumaran; Munusamy, Prabhakaran; van Veggel, Frank C J M; Wang, Rui; Steckl, Andrew J; Raudsepp, Mati

    2008-01-01

    Bright blue-light emission at 410 nm is observed from Mg(2+)-doped GaN nanoparticles prepared by the nitridation of Ga(2)MgO(4) nanoparticles at 950 degrees C. The sintering of these nanoparticles during high-temperature nitridation was prevented by mixing the Ga(2)MgO(4) precursor nanoparticles with La(2)O(3) as an inert matrix before the nitridation process. The Mg(2+)-doped GaN nanoparticles were isolated from the matrix by etching with 10 % nitric acid. The Mg(2+)-doped GaN nanoparticles were characterized by photoluminescence, atomic force microscopy, X-ray diffraction, and IR analyses.

  20. Quasi-transverse optical phonon mode in self-generated semipolar AlN grains embedded in c-oriented AlN matrix grown on sapphire using hydride vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Hu, Y. Y.; Zhou, T. F.; Zheng, S. N.; Liu, X. H.; Zhao, J. J.; Su, X. J.; Huang, J.; Qiu, Y. X.; Zhang, J. C.; Xu, K.

    2016-05-01

    In this study, we present a microspectroscopic investigation on the quasi-transverse optical phonon modes Q(TO) in some self-generated aluminum nitride (AlN) grains grown on sapphire using hydride vapor phase epitaxy. Using X-ray diffraction and transmission electron microscope, these grains were confirmed to be embedded in (0001)-AlN (c-AlN) epitaxial matrix with an appearance plane of (10 1 ¯ 1 ) (s-plane). Two beam bright field images further showed that the AlN grains were free of dislocation. In-plane phonon anisotropy of the AlN grains was discussed in detail using angular-dependent polarized Raman spectroscopy. The dependence of pure Raman phonons intensity on rotation angle agrees well with the calculation. The Q(TO) phonon intensity exhibited similar behavior to that of A1(TO) phonon, which can be explained by Loudon's formula. However, the observed frequency fluctuation for the Q(TO) phonon differs from that of the pure phonon modes, which cannot be directly understood from the classic Loudon's formula. A modified Loudon's formula appropriate to non-normal incidence was presented to explain the observed Q(TO) phonon frequency fluctuation. Combining with the angular-dependent Raman spectra, we proposed that a small inclination of s-plane along with the various in-plane orientations in c-AlN matrix lead to the frequency fluctuation of Q(TO) in these embedded semipolar AlN grains.

  1. High Efficiency m-plane LEDs on Low Defect Density Bulk GaN Substrates

    SciTech Connect

    David, Aurelien

    2012-10-15

    Solid-state lighting is a key technology for reduction of energy consumption in the US and worldwide. In principle, by replacing standard incandescent bulbs and other light sources with sources based on light-emitting diodes (LEDs), ultimate energy efficiency can be achieved. The efficiency of LEDs has improved tremendously over the past two decades, however further progress is required for solid- state lighting to reach its full potential. The ability of an LED at converting electricity to light is quantified by its internal quantum efficiency (IQE). The material of choice for visible LEDs is Gallium Nitride (GaN), which is at the basis of blue-emitting LEDs. A key factor limiting the performance of GaN LEDs is the so-called efficiency droop, whereby the IQE of the LED decreases significantly at high current density. Despite decades of research, efficiency droop remains a major issue. Since high-current operation is necessary for practical lighting applications, reducing droop is a major challenge for the scientific community and the LED industry. Our approach to solving the droop issue is the use of newly available low-defect-density bulk GaN non-polar substrates. In contrast to the standard foreign substrates (sapphire, silicon carbide, silicon) used in the industry, we have employed native bulk GaN substrates with very low defect density, thus ensuring exquisite material quality and high IQE. Whereas all commercial LEDs are grown along the c-plane crystal direction of GaN, we have used m-plane non-polar substrates; these drastically modify the physical properties of the LED and enable a reduction of droop. With this approach, we have demonstrated very high IQE performance and low droop. Our results focused on violet and blue LEDs. For these, we have demonstrated very high peak IQEs and current droops of 6% and 10% respectively (up to a high current density of 200A.cm-2). All these results were obtained under electrical operation. These high IQE and low droop

  2. Microwave annealing of Mg-implanted and in situ Be-doped GaN

    NASA Astrophysics Data System (ADS)

    Aluri, Geetha S.; Gowda, Madhu; Mahadik, Nadeemullah A.; Sundaresan, Siddarth G.; Rao, Mulpuri V.; Schreifels, John A.; Freitas, J. A.; Qadri, S. B.; Tian, Y.-L.

    2010-10-01

    An ultrafast microwave annealing method, different from conventional thermal annealing, is used to activate Mg-implants in GaN layer. The x-ray diffraction measurements indicated complete disappearance of the defect sublattice peak, introduced by the implantation process for single-energy Mg-implantation, when the annealing was performed at ≥1400 °C for 15 s. An increase in the intensity of Mg-acceptor related luminescence peak (at 3.26 eV) in the photoluminescence spectra confirms the Mg-acceptor activation in single-energy Mg-implanted GaN. In case of multiple-energy implantation, the implant generated defects persisted even after 1500 °C/15 s annealing, resulting in no net Mg-acceptor activation of the Mg-implant. The Mg-implant is relatively thermally stable and the sample surface roughness is 6 nm after 1500 °C/15 s annealing, using a 600 nm thick AlN cap. In situ Be-doped GaN films, after 1300 °C/5 s annealing have shown Be out-diffusion into the AlN layer and also in-diffusion toward the GaN/SiC interface. The in-diffusion and out-diffusion of the Be increased with increasing annealing temperature. In fact, after 1500 °C/5 s annealing, only a small fraction of in situ doped Be remained in the GaN layer, revealing the inadequateness of using Be-implantation for forming p-type doped layers in the GaN.

  3. Enhanced functionality in GaN and SiC devices by using novel processing

    NASA Astrophysics Data System (ADS)

    Pearton, S. J.; Abernathy, C. R.; Gila, B. P.; Ren, F.; Zavada, J. M.; Park, Y. D.

    2004-11-01

    Some examples of recent advances in enhancing or adding functionality to GaN and SiC devices through the use of novel processing techniques are discussed. The first example is the use of ion implantation to incorporate transition metals such as Mn, Cr and Co at atomic percent levels in the wide bandgap semiconductors to produce room temperature ferromagnetism. A discussion is given of the phase space within which single-phase material can be obtained and the requirements for demonstrating the presence of a true dilute magnetic semiconductor. The ability to make GaN and SiC ferromagnetic leads to the possibility of magnetic devices with gain, spin FETs operating at low voltages and spin polarized light emitters. The second example is the use of novel oxides such as Sc 2O 3 and MgO as gate dielectrics or surface passivants on GaN. True inversion behavior has been demonstrated in gated MOS-GaN diodes with implanted n-regions supplying the minority carriers need for inversion. These oxide layers also effectively mitigate current collapse in AlGaN/GaN HEMTs through their passivation of surface states in the gate-drain region. The third example is the use of laser drilling to make through-wafer via holes in SiC, sapphire and GaN. The ablation rate is sufficiently high that this maskless, serial process appears capable of achieving similar throughput to the more conventional approach of plasma etching of vias. The fourth example is the use of either ungated AlGaN/GaN HEMTs or simple GaN and SiC Schottky diodes as sensors for chemicals, biogens, radiation, combustion gases or strain. The sensitivity of either the channel carrier density or the barrier height to changes in surface condition make these materials systems ideal for compact robust sensors capable of operating at elevated temperatures.

  4. A review of gigaxonin mutations in giant axonal neuropathy (GAN) and cancer.

    PubMed

    Kang, James J; Liu, Isabelle Y; Wang, Marilene B; Srivatsan, Eri S

    2016-07-01

    Gigaxonin, the product of GAN gene localized to chromosome 16, is associated with the early onset neuronal degeneration disease giant axonal neuropathy (GAN). Gigaxonin is an E3 ubiquitin ligase adaptor protein involved in intermediate filament processing in neural cells, and vimentin filaments in fibroblasts. Mutations of the gene cause pre-neural filaments to accumulate and form giant axons resulting in the inhibition of neural cell signaling. Analysis of the catalog of somatic mutations in cancer, driver DB and IDGC data portal databases containing 21,000 tumor genomic sequences has identified GAN patient mutations in cancer cell lines and primary tumors. The database search has also shown the presence of identical missense and nonsense gigaxonin mutations in GAN and colon cancer. These mutations frequently occur in the domains associated with protein homodimerization and substrate interaction such as Broad-Complex, Tramtrack and Bric a brac (BTB), BTB associated C-terminal KELCH (BACK), and KELCH repeats. Analysis of the International HapMap Project database containing 1200 normal genomic sequences has identified a single nucleotide polymorphism (SNP), rs2608555, in exon 8 of the gigaxonin sequence. While this SNP is present in >40 % of Caucasian population, it is present in less than 10 % of Japanese and Chinese populations. Although the role of gigaxonin polymorphism is not yet known, CFTR and MDR1 gene studies have shown that silent mutations play a role in the instability and aberrant splicing and folding of mRNAs. We believe that molecular and functional investigation of gigaxonin mutations including the exon 8 polymorphism could lead to an improved understanding of the relationship between GAN and cancer.

  5. Study of GaP single crystal layers grown on GaN by MOCVD

    SciTech Connect

    Li, Shuti; Liu, Chao; Ye, Guoguang; Xiao, Guowei; Zhou, Yugang; Su, Jun; Fan, Guanghan; Zhang, Yong; Liang, Fubo; Zheng, Shuwen

    2011-11-15

    Highlights: {yields} We investigated the growth of GaP layers on GaN by MOCVD. {yields} A single crystal GaP layer could be grown on GaN. {yields} The V/III ratio played an important role to improve GaP layer quality. {yields} The GaP:Mg layer with hole concentration of 4.2 x 10{sup 18} cm{sup -3} was obtained. -- Abstract: The performance of GaN based devices could possibly be improved by utilizing the good p-type properties of GaP layer and it provides the possibility of the integration of InAlGaN and AlGaInP materials to produce new devices, if high quality GaP compounds can be grown on III-nitride compounds. In this paper, the growth of GaP layers on GaN by metalorganic chemical vapor deposition (MOCVD) has been investigated. The results show that the GaP low temperature buffer layer can provide a high density of nucleation sites for high temperature GaP growth. Using a 40 nm thick GaP buffer layer, a single crystal GaP layer, whose full-width at half-maximum of the (1 1 1) plane measured by double crystal X-ray diffraction is 580'', can be grown on GaN. The V/III ratio plays an important role in the GaP layer growth and an appropriate V/III ratio can improve the quality of GaP layer. The GaP:Mg layer with hole carrier concentration of 4.2 x 10{sup 18} cm{sup -3} has been obtained.

  6. Growth behavior of GaN nanowires on c-plane sapphire substrate by applying various catalysts

    NASA Astrophysics Data System (ADS)

    Kuppulingam, B.; Bhalerao, G. M.; Singh, Shubra; Baskar, K.

    2016-07-01

    Systematic reaction has been used to control the vapor-liquid-solid growth of gallium nitride nanowires (NWs) using different catalysts. GaN NWs were grown using Cu, Au, Pd/Au alloy catalysts on c-plane sapphire substrate. XRD and Raman analysis revealed the crystalline wurtzite phase of GaN synthesized at 900 °C. High density GaN NWs were studied using SEM and HRTEM. Elemental composition and impurities were analyzed by EDX. Diameter of individual NW, grown using Au catalyst is found to be ~50 nm. The diameter of NWs grown with the help of Cu catalyst was found to be ˜65 nm, whereas with Pd/Au catalyst, the diameter was about 100-200 nm. NBE emission observed from PL spectra for Cu catalyst (377 nm), Au catalyst (372 nm) as well as Pd/Au catalyst (385 nm) growth of GaN NWs respectively has been presented and discussed.

  7. Improved control over spontaneously formed GaN nanowires in molecular beam epitaxy using a two-step growth process.

    PubMed

    Zettler, J K; Corfdir, P; Geelhaar, L; Riechert, H; Brandt, O; Fernández-Garrido, S

    2015-11-01

    We investigate the influence of modified growth conditions during the spontaneous formation of GaN nanowires (NWs) on Si(111) in plasma-assisted molecular beam epitaxy. We find that a two-step growth approach, where the substrate temperature is increased during the nucleation stage, is an efficient method to gain control over the area coverage, average diameter, and coalescence degree of GaN NW ensembles. Furthermore, we also demonstrate that the growth conditions employed during the incubation time that precedes nanowire nucleation do not influence the properties of the final nanowire ensemble. Therefore, when growing GaN NWs at elevated temperatures or with low Ga/N ratios, the total growth time can be reduced significantly by using more favorable growth conditions for nanowire nucleation during the incubation time.

  8. GaN High-Electron-Mobility Transistor with WN x /Cu Gate for High-Power Applications

    NASA Astrophysics Data System (ADS)

    Hsieh, Ting-En; Lin, Yueh-Chin; Li, Fang-Ming; Shi, Wang-Cheng; Huang, Yu-Xiang; Lan, Wei-Cheng; Chin, Ping-Chieh; Chang, Edward Yi

    2015-12-01

    A GaN high-electron-mobility transistor (HEMT) with WN x /Cu gate for high-power applications has been investigated. The direct-current (DC) characteristics of the device are comparable to those of conventional Ni/Au-gated GaN HEMTs. The results of high-voltage stress testing indicate that the device is stable after application of 200 V stress for 42 h. The WN x /Cu-gated GaN HEMT exhibited no obvious changes in the DC characteristics or Schottky barrier height before and after annealing at 250°C for 1 h. These results demonstrate that the WN x /Cu gate structure can be used in a GaN HEMT for high-power applications with good thermal stability.

  9. The origin of yellow band emission and cathodoluminescence of Au-catalyzed wurtzite GaN nanowires

    NASA Astrophysics Data System (ADS)

    Zhang, R. S.; Jiao, J. F.; Wu, X.

    2016-06-01

    GaN nanowires with large yield are directly synthesized by simply ammoniating the gallium oxide powders in the presence of ammonia gas at 1000 °C, under the assistance of Au nanocatalysts. The microstructure and crystallinity of as-synthesized GaN nanowires are well studied by using high-resolution transmission electron microscope (HRTEM) and some structural defects such as stacking faults are found in the GaN nano-crystal. Cathodoluminescence measurement shows that a strong near-band-edge (NBE) emission band centered at 384 nm and a broad yellow band in the range of 500-800 nm are observed. Finally, the growth mechanism and possible optical emission process of GaN nanowires are discussed.

  10. Band alignment between GaN and ZrO{sub 2} formed by atomic layer deposition

    SciTech Connect

    Ye, Gang; Wang, Hong Arulkumaran, Subramaniam; Ng, Geok Ing; Li, Yang; Ang, Kian Siong; Liu, Zhi Hong

    2014-07-14

    The band alignment between Ga-face GaN and atomic-layer-deposited ZrO{sub 2} was investigated using X-ray photoelectron spectroscopy (XPS). The dependence of Ga 3d and Zr 3d core-level positions on the take-off angles indicated upward band bending at GaN surface and potential gradient in ZrO{sub 2} layer. Based on angle-resolved XPS measurements combined with numerical calculations, valence band discontinuity ΔE{sub V} of 1 ± 0.2 eV and conduction band discontinuity ΔE{sub C} of 1.2 ± 0.2 eV at ZrO{sub 2}/GaN interface were determined by taking GaN surface band bending and potential gradient in ZrO{sub 2} layer into account.

  11. InGaN light emitting diodes with a nanopipe layer formed from the GaN epitaxial layer.

    PubMed

    Hsu, Wei-Ju; Chen, Kuei-Ting; Huang, Wan-Chun; Wu, Chia-Jung; Dai, Jing-Jie; Chen, Sy-Hann; Lin, Chia-Feng

    2016-05-30

    A Si-heavy doped GaN:Si epitaxial layer is transformed into a directional nanopipe GaN layer through a laser-scribing process and a selectively electrochemical (EC) etching process. InGaN light-emitting diodes (LEDs) with an EC-treated nanopipe GaN layer have a high light extraction efficiency. The direction of the nanopipe structure was directed perpendicular to the laser scribing line and was guided by an external bias electric field. An InGaN LED structure with an embedded nanopipe GaN layer can enhance external quantum efficiency through a one-step epitaxial growth process and a selective EC etching process. A birefringence optical property and a low effective refractive index were observed in the directional-nanopipe GaN layer.

  12. InGaN light-emitting diodes with embedded nanoporous GaN distributed Bragg reflectors

    NASA Astrophysics Data System (ADS)

    Shieh, Bing-Cheng; Jhang, Yuan-Chang; Huang, Kun-Pin; Huang, Wan-Chun; Dai, Jing-Jie; Lai, Chun-Feng; Lin, Chia-Feng

    2015-08-01

    InGaN-based light-emitting diodes (LEDs) with embedded conductive nanoporous GaN/undoped GaN (NP-GaN/u-GaN) distributed Bragg reflectors (DBRs) were demonstrated. Nanoporous GaN DBR structures were fabricated by pulsed 355 nm laser scribing and electrochemical etching processes. Heavily Si-doped n-type GaN:Si layers (n+-GaN) in an eight-period n+-GaN/u-GaN stack structure were transformed into a low-refractive-index, conductive nanoporous GaN structure. The measured center wavelength, peak reflectivity, and bandwidth of the nanoporous GaN DBR structure were 417 nm, 96.7%, and 34 nm, respectively. Resonance cavity modes of the photoluminescence spectra were observed in the treated LED structure with the nanoporous DBR structure.

  13. Design and simulation of a novel GaN based resonant tunneling high electron mobility transistor on a silicon substrate

    NASA Astrophysics Data System (ADS)

    Chowdhury, Subhra; Chattaraj, Swarnabha; Biswas, Dhrubes

    2015-04-01

    For the first time, we have introduced a novel GaN based resonant tunneling high electron mobility transistor (RTHEMT) on a silicon substrate. A monolithically integrated GaN based inverted high electron mobility transistor (HEMT) and a resonant tunneling diode (RTD) are designed and simulated using the ATLAS simulator and MATLAB in this study. The 10% Al composition in the barrier layer of the GaN based RTD structure provides a peak-to-valley current ratio of 2.66 which controls the GaN based HEMT performance. Thus the results indicate an improvement in the current-voltage characteristics of the RTHEMT by controlling the gate voltage in this structure. The introduction of silicon as a substrate is a unique step taken by us for this type of RTHEMT structure.

  14. In situ GaN decomposition analysis by quadrupole mass spectrometry and reflection high-energy electron diffraction

    SciTech Connect

    Fernandez-Garrido, S.; Calleja, E.; Koblmueller, G.; Speck, J. S.

    2008-08-01

    Thermal decomposition of wurtzite (0001)-oriented GaN was analyzed: in vacuum, under active N exposure, and during growth by rf plasma-assisted molecular beam epitaxy. The GaN decomposition rate was determined by measurements of the Ga desorption using in situ quadrupole mass spectrometry, which showed Arrhenius behavior with an apparent activation energy of 3.1 eV. Clear signatures of intensity oscillations during reflection high-energy electron diffraction measurements facilitated complementary evaluation of the decomposition rate and highlighted a layer-by-layer decomposition mode in vacuum. Exposure to active nitrogen, either under vacuum or during growth under N-rich growth conditions, strongly reduced the GaN losses due to GaN decomposition.

  15. Synchrotron radiation x-ray topography and defect selective etching analysis of threading dislocations in GaN

    SciTech Connect

    Sintonen, Sakari Suihkonen, Sami; Jussila, Henri; Tuomi, Turkka O.; Lipsanen, Harri; Rudziński, Mariusz; Knetzger, Michael; Meissner, Elke; Danilewsky, Andreas

    2014-08-28

    The crystal quality of bulk GaN crystals is continuously improving due to advances in GaN growth techniques. Defect characterization of the GaN substrates by conventional methods is impeded by the very low dislocation density and a large scale defect analysis method is needed. White beam synchrotron radiation x-ray topography (SR-XRT) is a rapid and non-destructive technique for dislocation analysis on a large scale. In this study, the defect structure of an ammonothermal c-plane GaN substrate was recorded using SR-XRT and the image contrast caused by the dislocation induced microstrain was simulated. The simulations and experimental observations agree excellently and the SR-XRT image contrasts of mixed and screw dislocations were determined. Apart from a few exceptions, defect selective etching measurements were shown to correspond one to one with the SR-XRT results.

  16. InGaN light emitting diodes with a nanopipe layer formed from the GaN epitaxial layer.

    PubMed

    Hsu, Wei-Ju; Chen, Kuei-Ting; Huang, Wan-Chun; Wu, Chia-Jung; Dai, Jing-Jie; Chen, Sy-Hann; Lin, Chia-Feng

    2016-05-30

    A Si-heavy doped GaN:Si epitaxial layer is transformed into a directional nanopipe GaN layer through a laser-scribing process and a selectively electrochemical (EC) etching process. InGaN light-emitting diodes (LEDs) with an EC-treated nanopipe GaN layer have a high light extraction efficiency. The direction of the nanopipe structure was directed perpendicular to the laser scribing line and was guided by an external bias electric field. An InGaN LED structure with an embedded nanopipe GaN layer can enhance external quantum efficiency through a one-step epitaxial growth process and a selective EC etching process. A birefringence optical property and a low effective refractive index were observed in the directional-nanopipe GaN layer. PMID:27410087

  17. Effect of oxygen incorporation in a-plane GaN on p-type ohmic contact property

    NASA Astrophysics Data System (ADS)

    Jung, Ki-Chang; Lee, Inwoo; Park, Jaehyoung; Bae, Hyojung; Kim, Chung Yi; Shin, Hui-Youn; Kim, Hyung-Gu; Jeon, Jina; Jung, S.; Choi, Yoon-Ho; Lee, Jung-Soo; Ha, Jun-Seok

    2014-09-01

    We report on the origin of the non-ohmic behavior of Ni/Au-based p-type contacts on a nonpolar a-plane GaN layer. The contact properties of Ga-polar c-plane GaN and nonpolar a-plane GaN are compared. While the Ga-polar c-plane shows ohmic-contact properties in the Ni/Au contact after heat treatment, the nonpolar a-plane shows rectifying characteristics both before and after heat treatment. We determined the reasons why the two planes show substantial differences in contact properties using various tools. We conclude that the differences originated from the oxygen incorporation preference resulting in gallium oxide formation at the interface of nonpolar a-plane GaN.

  18. Deep traps responsible for hysteresis in capacitance-voltage characteristics of AlGaN /GaN heterostructure transistors

    NASA Astrophysics Data System (ADS)

    Polyakov, A. Y.; Smirnov, N. B.; Govorkov, A. V.; Markov, A. V.; Dabiran, A. M.; Wowchak, A. M.; Osinsky, A. V.; Cui, B.; Chow, P. P.; Pearton, S. J.

    2007-12-01

    The origin of hysteresis in capacitance-voltage (C-V) characteristics was studied for Schottky diodes prepared on AlGaN /GaN transistor structures with GaN (Fe) buffers. The application of reverse bias leads to a shift of C-V curves toward higher positive voltages. The magnitude of the effect is shown to increase for lower temperatures. The phenomenon is attributed to tunneling of electrons from the Schottky gate to localized states in the structure. A technique labeled "reverse" deep level transient spectroscopy was used to show that the deep traps responsible for the hysteresis have activation energies of 0.25, 0.6, and 0.9eV. Comparison with deep trap spectra of GaN buffers and Si doped n-GaN films prepared on GaN buffers suggests that the traps in question are located in the buffer layer.

  19. Photochemical Modification of Single Crystalline GaN Film Using n-Alkene with Different Carbon Chain Lengths as Biolinker.

    PubMed

    Wang, Chun; Zhuang, Hao; Huang, Nan; Heuser, Steffen; Schlemper, Christoph; Zhai, Zhaofeng; Liu, Baodan; Staedler, Thorsten; Jiang, Xin

    2016-06-14

    As a potential material for biosensing applications, gallium nitride (GaN) films have attracted remarkable attention. In order to construct GaN biosensors, a corresponding immobilization of biolinkers is of great importance in order to render a surface bioactive. In this work, two kinds of n-alkenes with different carbon chain lengths, namely allylamine protected with trifluoroacetamide (TFAAA) and 10-aminodec-1-ene protected with trifluoroacetamide (TFAAD), were used to photochemically functionalize single crystalline GaN films. The successful linkage of both TFAAA and TFAAD to the GaN films is confirmed by time-of-flight secondary ion mass spectrometry (ToF-SIMS) measurement. With increased UV illumination time, the intensity of the secondary ions corresponding to the linker molecules initially increases and subsequently decreases in both cases. Based on the SIMS measurements, the maximum coverage of TFAAA is achieved after 14 h of UV illumination, while only 2 h is required in the case of TFAAD to reach the situation of a fully covered GaN surface. This finding leads to the conclusion that the reaction rate of TFAAD is significantly higher compared to TFAAA. Measurements by atomic force microscopy (AFM) indicate that the coverage of GaN films by a TFAAA layer leads to an increased surface roughness. The atomic terraces, which are clearly observable for the pristine GaN films, disappear once the surface is fully covered by a TFAAA layer. Such TFAAA layers will feature a homogeneous surface topography even for reaction times of 24 h. In contrast to this, TFAAD shows strong cross-polymerization on the surface, this is confirmed by optical microscopy. These results demonstrate that TFAAA is a more suitable candidate as biolinker in context of the GaN surfaces due to its improved controllability.

  20. Growth and characterizations of GaN micro-rods on graphene films for flexible light emitting diodes

    SciTech Connect

    Chung, Kunook; Beak, Hyeonjun; Tchoe, Youngbin; Oh, Hongseok; Yi, Gyu-Chul; Yoo, Hyobin; Kim, Miyoung

    2014-09-01

    We report the growth of GaN micro-rods and coaxial quantum-well heterostructures on graphene films, together with structural and optical characterization, for applications in flexible optical devices. Graphene films were grown on Cu foil by means of chemical vapor deposition, and used as the substrates for the growth of the GaN micro-rods, which were subsequently transferred onto SiO{sub 2}/Si substrates. Highly Si-doped, n-type GaN micro-rods were grown on the graphene films using metal–organic chemical vapor deposition. The growth and vertical alignment of the GaN micro-rods, which is a critical factor for the fabrication of high-performance light-emitting diodes (LEDs), were characterized using electron microscopy and X-ray diffraction. The GaN micro-rods exhibited promising photoluminescence characteristics for optoelectronic device applications, including room-temperature stimulated emission. To fabricate flexible LEDs, In{sub x}Ga{sub 1–x}N/GaN multiple quantum wells and a p-type GaN layer were deposited coaxially on the GaN micro-rods, and transferred onto Ag-coated polymer substrates using lift-off. Ti/Au and Ni/Au metal layers were formed to provide electrical contacts to the n-type and p-type GaN regions, respectively. The micro-rod LEDs exhibited intense emission of visible light, even after transfer onto the flexible polymer substrate, and reliable operation was achieved following numerous cycles of mechanical deformation.

  1. Dislocation confinement in the growth of Na flux GaN on metalorganic chemical vapor deposition-GaN

    SciTech Connect

    Takeuchi, S. Asazu, H.; Nakamura, Y.; Sakai, A.; Imanishi, M.; Imade, M.; Mori, Y.

    2015-12-28

    We have demonstrated a GaN growth technique in the Na flux method to confine c-, (a+c)-, and a-type dislocations around the interface between a Na flux GaN crystal and a GaN layer grown by metalorganic chemical vapor deposition (MOCVD) on a (0001) sapphire substrate. Transmission electron microscopy (TEM) clearly revealed detailed interface structures and dislocation behaviors that reduced the density of vertically aligned dislocations threading to the Na flux GaN surface. Submicron-scale voids were formed at the interface above the dislocations with a c component in MOCVD-GaN, while no such voids were formed above the a-type dislocations. The penetration of the dislocations with a c component into Na flux GaN was, in most cases, effectively blocked by the presence of the voids. Although some dislocations with a c component in the MOCVD-GaN penetrated into the Na flux GaN, their propagation direction changed laterally through the voids. On the other hand, the a-type dislocations propagated laterally and collectively near the interface, when these dislocations in the MOCVD-GaN penetrated into the Na flux GaN. These results indicated that the dislocation propagation behavior was highly sensitive to the type of dislocation, but all types of dislocations were confined to within several micrometers region of the Na flux GaN from the interface. The cause of void formation, the role of voids in controlling the dislocation behavior, and the mechanism of lateral and collective dislocation propagation are discussed on the basis of TEM results.

  2. Photochemical Modification of Single Crystalline GaN Film Using n-Alkene with Different Carbon Chain Lengths as Biolinker.

    PubMed

    Wang, Chun; Zhuang, Hao; Huang, Nan; Heuser, Steffen; Schlemper, Christoph; Zhai, Zhaofeng; Liu, Baodan; Staedler, Thorsten; Jiang, Xin

    2016-06-14

    As a potential material for biosensing applications, gallium nitride (GaN) films have attracted remarkable attention. In order to construct GaN biosensors, a corresponding immobilization of biolinkers is of great importance in order to render a surface bioactive. In this work, two kinds of n-alkenes with different carbon chain lengths, namely allylamine protected with trifluoroacetamide (TFAAA) and 10-aminodec-1-ene protected with trifluoroacetamide (TFAAD), were used to photochemically functionalize single crystalline GaN films. The successful linkage of both TFAAA and TFAAD to the GaN films is confirmed by time-of-flight secondary ion mass spectrometry (ToF-SIMS) measurement. With increased UV illumination time, the intensity of the secondary ions corresponding to the linker molecules initially increases and subsequently decreases in both cases. Based on the SIMS measurements, the maximum coverage of TFAAA is achieved after 14 h of UV illumination, while only 2 h is required in the case of TFAAD to reach the situation of a fully covered GaN surface. This finding leads to the conclusion that the reaction rate of TFAAD is significantly higher compared to TFAAA. Measurements by atomic force microscopy (AFM) indicate that the coverage of GaN films by a TFAAA layer leads to an increased surface roughness. The atomic terraces, which are clearly observable for the pristine GaN films, disappear once the surface is fully covered by a TFAAA layer. Such TFAAA layers will feature a homogeneous surface topography even for reaction times of 24 h. In contrast to this, TFAAD shows strong cross-polymerization on the surface, this is confirmed by optical microscopy. These results demonstrate that TFAAA is a more suitable candidate as biolinker in context of the GaN surfaces due to its improved controllability. PMID:27217218

  3. Growth of a-plane GaN on lattice-matched ZnO substrates using a room-temperature buffer layer

    NASA Astrophysics Data System (ADS)

    Kobayashi, Atsushi; Kawano, Satoshi; Ueno, Kohei; Ohta, Jitsuo; Fujioka, Hiroshi; Amanai, Hidetaka; Nagao, Satoru; Horie, Hideyoshi

    2007-11-01

    Nonpolar a-plane GaN films were grown on nearly lattice-matched a-plane ZnO substrates by pulsed laser deposition. Growth of GaN on a-plane ZnO at conventional growth temperatures (around 700°C) resulted in the formation of polycrystalline materials, probably due to the interface reactions between GaN and ZnO. However, single crystalline a-plane GaN with an atomically flat surface can be grown on ZnO at room temperature in the layer-by-layer mode. X-ray diffraction and photoluminescence measurements revealed that high-quality a-plane GaN films can also be grown at elevated substrate temperatures (up to 700°C) by using a RT a-plane GaN film as a buffer layer.

  4. Non-destructive assessment of the polarity of GaN nanowire ensembles using low-energy electron diffraction and x-ray photoelectron diffraction

    SciTech Connect

    Romanyuk, O. Jiříček, P.; Bartoš, I.; Fernández-Garrido, S.; Geelhaar, L.; Brandt, O.; Paskova, T.

    2015-01-12

    We investigate GaN nanowire ensembles spontaneously formed in plasma-assisted molecular beam epitaxy by non-destructive low-energy electron diffraction (LEED) and x-ray photoelectron diffraction (XPD). We show that GaN nanowire ensembles prepared on AlN-buffered 6H-SiC(0001{sup ¯}) substrates with well-defined N polarity exhibit similar LEED intensity-voltage curves and angular distribution of photo-emitted electrons as N-polar free-standing GaN layers. Therefore, as in the case of GaN layers, LEED and XPD are found to be suitable techniques to assess the polarity of GaN nanowire ensembles on a macroscopic scale. The analysis of GaN nanowire ensembles prepared on bare Si(111) allows us to conclude that, on this non-polar substrate, the majority of nanowires is also N-polar.

  5. Low temperature thin film transistors with hollow cathode plasma-assisted atomic layer deposition based GaN channels

    SciTech Connect

    Bolat, S. E-mail: aokyay@ee.bilkent.edu.tr; Tekcan, B.; Ozgit-Akgun, C.; Biyikli, N.; Okyay, A. K. E-mail: aokyay@ee.bilkent.edu.tr

    2014-06-16

    We report GaN thin film transistors (TFT) with a thermal budget below 250 °C. GaN thin films are grown at 200 °C by hollow cathode plasma-assisted atomic layer deposition (HCPA-ALD). HCPA-ALD-based GaN thin films are found to have a polycrystalline wurtzite structure with an average crystallite size of 9.3 nm. TFTs with bottom gate configuration are fabricated with HCPA-ALD grown GaN channel layers. Fabricated TFTs exhibit n-type field effect characteristics. N-channel GaN TFTs demonstrated on-to-off ratios (I{sub ON}/I{sub OFF}) of 10{sup 3} and sub-threshold swing of 3.3 V/decade. The entire TFT device fabrication process temperature is below 250 °C, which is the lowest process temperature reported for GaN based transistors, so far.

  6. Effect of growth temperature on defects in epitaxial GaN film grown by plasma assisted molecular beam epitaxy

    SciTech Connect

    Kushvaha, S. S. Pal, P.; Shukla, A. K.; Joshi, Amish G.; Gupta, Govind; Kumar, M.; Singh, S.; Gupta, Bipin K.; Haranath, D.

    2014-02-15

    We report the effect of growth temperature on defect states of GaN epitaxial layers grown on 3.5 μm thick GaN epi-layer on sapphire (0001) substrates using plasma assisted molecular beam epitaxy. The GaN samples grown at three different substrate temperatures at 730, 740 and 750 °C were characterized using atomic force microscopy and photoluminescence spectroscopy. The atomic force microscopy images of these samples show the presence of small surface and large hexagonal pits on the GaN film surfaces. The surface defect density of high temperature grown sample is smaller (4.0 × 10{sup 8} cm{sup −2} at 750 °C) than that of the low temperature grown sample (1.1 × 10{sup 9} cm{sup −2} at 730 °C). A correlation between growth temperature and concentration of deep centre defect states from photoluminescence spectra is also presented. The GaN film grown at 750 °C exhibits the lowest defect concentration which confirms that the growth temperature strongly influences the surface morphology and affects the optical properties of the GaN epitaxial films.

  7. Localized tip enhanced Raman spectroscopic study of impurity incorporated single GaN nanowire in the sub-diffraction limit

    SciTech Connect

    Patsha, Avinash E-mail: dhara@igcar.gov.in; Dhara, Sandip; Tyagi, A. K.

    2015-09-21

    The localized effect of impurities in single GaN nanowires in the sub-diffraction limit is reported using the study of lattice vibrational modes in the evanescent field of Au nanoparticle assisted tip enhanced Raman spectroscopy (TERS). GaN nanowires with the O impurity and the Mg dopants were grown by the chemical vapor deposition technique in the catalyst assisted vapor-liquid-solid process. Symmetry allowed Raman modes of wurtzite GaN are observed for undoped and doped nanowires. Unusually very strong intensity of the non-zone center zone boundary mode is observed for the TERS studies of both the undoped and the Mg doped GaN single nanowires. Surface optical mode of A{sub 1} symmetry is also observed for both the undoped and the Mg doped GaN samples. A strong coupling of longitudinal optical (LO) phonons with free electrons, however, is reported only in the O rich single nanowires with the asymmetric A{sub 1}(LO) mode. Study of the local vibration mode shows the presence of Mg as dopant in the single GaN nanowires.

  8. HVPE homoepitaxial growth of high quality bulk GaN using acid wet etching method and its mechanism analysis

    NASA Astrophysics Data System (ADS)

    Liu, Nanliu; Cheng, Yutian; Wu, Jiejun; Li, Xingbin; Yu, Tongjun; Xiong, Huan; Li, Wenhui; Chen, Jiao; Zhang, Guoyi

    2016-11-01

    In this paper, crack-free 2-inch bulk GaN wafer with the thickness up to 3 mm was obtained by HVPE homoepitaxy. A new method of acid wet etching was used to pre-treat GaN substrate before re-growth. The formation of the mesh-like subsurface crack and interface layer were found to be suppressed between the re-growth layer and as-grown GaN substrate. EDS and time varied contact angle measurement proved that chemical etching would decrease the oxygen related surface adsorption and increase atoms diffusion length during HVPE homoepitaxial growth. Moreover, Morphology, Low temperature photoluminescence measurements indicated a reduction in stress of wet etching treated as-grown GaN substrate due to etching effect on its N face. High quality bulk GaN with the dislocation density of 1×106 cm-2 was achieved by using wet etching and HVPE multiple re-growth. It would offer a simple method to obtain bulk GaN with thicker layer and high quality.

  9. On compensation and impurities in state-of-the-art GaN epilayers grown on sapphire

    SciTech Connect

    Wickenden, A.E.; Gaskill, D.K.; Koleske, D.D.; Doverspike, K.; Simons, D.S.; Chi, P.H.

    1996-11-01

    A comparison between 300 K electron transport data for state-of-the-art wurtzite GaN grown on sapphire substrates and corresponding theoretical calculations shows a large difference, with experimental mobility less than the predicted mobility for a given carrier concentration. The comparison seems to imply that GaN films are greatly compensated, but the discrepancy may also be due to the poorly known values of the materials parameters used in the calculations. In this work, recent analysis of transport and SIMS measurements on silicon-doped GaN films are shown to imply that the compensation, N{sub A}/N{sub D}, is less than 0.3. In addition, the determination of an activation energy of 34 meV in a GaN film doped to a level of 6 {times} 10{sup 16} cm{sup {minus}3} suggests either that a second, native donor exists in the doped films at a level of between 6 {times} 10{sup 16} cm{sup {minus}3} and 1 {times} 10{sup 17} cm{sup {minus}3}, or that the activation energy of Si in GaN is dependent on the concentration, being influenced by impurity banding or some other physical effect. GaN films grown without silicon doping are highly resistive.

  10. Effect of GaAs substrate orientation on the growth kinetic of GaN layer grown by MOVPE

    NASA Astrophysics Data System (ADS)

    Laifi, J.; Chaaben, N.; Bouazizi, H.; Fourati, N.; Zerrouki, C.; El Gmili, Y.; Bchetnia, A.; Salvestrini, J. P.; El Jani, B.

    2016-06-01

    We have investigated the kinetic growth of low temperature GaN nucleation layers (LT-GaN) grown on GaAs substrates with different crystalline orientations. GaN nucleation layers were grown by metal organic vapor phase epitaxy (MOVPE) in a temperature range of 500-600 °C on oriented (001), (113), (112) and (111) GaAs substrates. The growth was in-situ monitored by laser reflectometry (LR). Using an optical model, including time-dependent surface roughness and growth rate profiles, simulations were performed to best approach the experimental reflectivity curves. Results are discussed and correlated with ex-situ analyses, such as atomic force microscopy (AFM) and UV-visible reflectance (SR). We show that the GaN nucleation layers growth results the formation of GaN islands whose density and size vary greatly with both growth temperature and substrate orientation. Arrhenius plots of the growth rate for each substrate give values of activation energy varying from 0.20 eV for the (001) orientation to 0.35 eV for the (113) orientation. Using cathodoluminescence (CL), we also show that high temperature (800-900 °C) GaN layers grown on top of the low temperature (550 °C) GaN nucleation layers, grown themselves on the GaAs substrates with different orientations, exhibit cubic or hexagonal phase depending on both growth temperature and substrate orientation.

  11. Ground Albedo Neutron Sensing (GANS) method for measurements of soil moisture in cropped fields

    NASA Astrophysics Data System (ADS)

    Andres Rivera Villarreyes, Carlos; Baroni, Gabriele; Oswald, Sascha E.

    2013-04-01

    Measurement of soil moisture at the plot or hill-slope scale is an important link between local vadose zone hydrology and catchment hydrology. However, so far only few methods are on the way to close this gap between point measurements and remote sensing. This study evaluates the applicability of the Ground Albedo Neutron Sensing (GANS) for integral quantification of seasonal soil moisture in the root zone at the scale of a field or small watershed, making use of the crucial role of hydrogen as neutron moderator relative to other landscape materials. GANS measurements were performed at two locations in Germany under different vegetative situations and seasonal conditions. Ground albedo neutrons were measured at (i) a lowland Bornim farmland (Brandenburg) cropped with sunflower in 2011 and winter rye in 2012, and (ii) a mountainous farmland catchment (Schaefertal, Harz Mountains) since middle 2011. At both sites depth profiles of soil moisture were measured at several locations in parallel by frequency domain reflectometry (FDR) for comparison and calibration. Initially, calibration parameters derived from a previous study with corn cover were tested under sunflower and winter rye periods at the same farmland. GANS soil moisture based on these parameters showed a large discrepancy compared to classical soil moisture measurements. Therefore, two new calibration approaches and four different ways of integration the soil moisture profile to an integral value for GANS were evaluated in this study. This included different sets of calibration parameters based on different growing periods of sunflower. New calibration parameters showed a good agreement with FDR network during sunflower period (RMSE = 0.023 m3 m-3), but they underestimated soil moisture in the winter rye period. The GANS approach resulted to be highly affected by temporal changes of biomass and crop types which suggest the need of neutron corrections for long-term observations with crop rotation. Finally

  12. Materials physics and device development for improved efficiency of GaN HEMT high power amplifiers.

    SciTech Connect

    Kurtz, Steven Ross; Follstaedt, David Martin; Wright, Alan Francis; Baca, Albert G.; Briggs, Ronald D.; Provencio, Paula Polyak; Missert, Nancy A.; Allerman, Andrew Alan; Marsh, Phil F.; Koleske, Daniel David; Lee, Stephen Roger; Shul, Randy John; Seager, Carleton Hoover; Tigges, Christopher P.

    2005-12-01

    GaN-based microwave power amplifiers have been identified as critical components in Sandia's next generation micro-Synthetic-Aperture-Radar (SAR) operating at X-band and Ku-band (10-18 GHz). To miniaturize SAR, GaN-based amplifiers are necessary to replace bulky traveling wave tubes. Specifically, for micro-SAR development, highly reliable GaN high electron mobility transistors (HEMTs), which have delivered a factor of 10 times improvement in power performance compared to GaAs, need to be developed. Despite the great promise of GaN HEMTs, problems associated with nitride materials growth currently limit gain, linearity, power-added-efficiency, reproducibility, and reliability. These material quality issues are primarily due to heteroepitaxial growth of GaN on lattice mismatched substrates. Because SiC provides the best lattice match and thermal conductivity, SiC is currently the substrate of choice for GaN-based microwave amplifiers. Obviously for GaN-based HEMTs to fully realize their tremendous promise, several challenges related to GaN heteroepitaxy on SiC must be solved. For this LDRD, we conducted a concerted effort to resolve materials issues through in-depth research on GaN/AlGaN growth on SiC. Repeatable growth processes were developed which enabled basic studies of these device layers as well as full fabrication of microwave amplifiers. Detailed studies of the GaN and AlGaN growth of SiC were conducted and techniques to measure the structural and electrical properties of the layers were developed. Problems that limit device performance were investigated, including electron traps, dislocations, the quality of semi-insulating GaN, the GaN/AlGaN interface roughness, and surface pinning of the AlGaN gate. Surface charge was reduced by developing silicon nitride passivation. Constant feedback between material properties, physical understanding, and device performance enabled rapid progress which eventually led to the successful fabrication of state of the art

  13. Coating MCPs with AlN and GaN

    NASA Technical Reports Server (NTRS)

    Bensaoula, Abdelhakim; Starikov, David; Boney, Chris

    2006-01-01

    A development effort underway at the time of reporting the information for this article is devoted to increasing the sensitivity of microchannel plates (MCPs) as detectors of photons and ions by coating the MCPs with nitrides of elements in period III of the periodic table. Conventional MCPs are relatively insensitive to slowly moving, large-mass ions for example, ions of biomolecules under analysis in mass spectrometers. The idea underlying this development is to coat an MCP to reduce its work function (decrease its electron affinity) in order to increase both (1) the emission of electrons in response to impingement of low-energy, large-mass ions and (2) the multiplying effect of secondary electron emission. Of particular interest as coating materials having appropriately low or even negative electron affinities are gallium nitride, aluminum nitride, and ternary alloys of general composition Al(x)Ga(1-x)N (where 0GaN both undoped and doped with Si were deposited on commercial MCPs by radio-frequency molecular-beam epitaxy (also known as plasma-assisted molecular-beam epitaxy) at temperatures <200 C. This deposition technique is particularly suitable because (1) MCPs cannot withstand the higher deposition-substrate temperatures used to decompose constituent compounds in some other deposition techniques and (2) in this technique, the constituent Al, Ga, and N

  14. A new approach to epitaxially grow high-quality GaN films on Si substrates: the combination of MBE and PLD

    PubMed Central

    Wang, Wenliang; Wang, Haiyan; Yang, Weijia; Zhu, Yunnong; Li, Guoqiang

    2016-01-01

    High-quality GaN epitaxial films have been grown on Si substrates with Al buffer layer by the combination of molecular beam epitaxy (MBE) and pulsed laser deposition (PLD) technologies. MBE is used to grow Al buffer layer at first, and then PLD is deployed to grow GaN epitaxial films on the Al buffer layer. The surface morphology, crystalline quality, and interfacial property of as-grown GaN epitaxial films on Si substrates are studied systematically. The as-grown ~300 nm-thick GaN epitaxial films grown at 850 °C with ~30 nm-thick Al buffer layer on Si substrates show high crystalline quality with the full-width at half-maximum (FWHM) for GaN(0002) and GaN(102) X-ray rocking curves of 0.45° and 0.61°, respectively; very flat GaN surface with the root-mean-square surface roughness of 2.5 nm; as well as the sharp and abrupt GaN/AlGaN/Al/Si hetero-interfaces. Furthermore, the corresponding growth mechanism of GaN epitaxial films grown on Si substrates with Al buffer layer by the combination of MBE and PLD is hence studied in depth. This work provides a novel and simple approach for the epitaxial growth of high-quality GaN epitaxial films on Si substrates. PMID:27101930

  15. Effect of double superlattice interlayers on growth of thick GaN epilayers on Si(110) substrates by metalorganic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Shen, Xu-Qiang; Takahashi, Tokio; Ide, Toshihide; Shimizu, Mitsuaki

    2016-05-01

    The effect of double thin AlN/GaN superlattice interlayers (SL ILs) on the growth of thick GaN epilayers by metalorganic chemical vapor deposition (MOCVD) on Si(110) substrates is investigated. It is found that the GaN middle layer (GaN layer between the two SL ILs) can affect the strain state of the GaN epilayer. By comparison with the case of a single SL IL, it is shown that the double SL ILs can have a stronger compressive effect on the GaN epilayer grown on it, which results in lower residual tensile strain in the GaN film after the growth. By optimizing the GaN middle layer thickness, a 4-µm-thick crack-free GaN epilayer is successfully achieved. By this simple technique, it is expected that high-quality crack-free thick GaN can be grown on Si substrates for optical and electronic device applications.

  16. Characterization and density control of GaN nanodots on Si (111) by droplet epitaxy using plasma-assisted molecular beam epitaxy

    PubMed Central

    2014-01-01

    In this report, self-organized GaN nanodots have been grown on Si (111) by droplet epitaxy method, and their density can be controlled from 1.1 × 1010 to 1.1 × 1011 cm-2 by various growth parameters, such as substrate temperatures for Ga droplet formation, the pre-nitridation treatment of Si substrate, the nitridation duration for GaN crystallization, and in situ annealing after GaN formation. Based on the characterization of in situ RHEED, we can observe the surface condition of Si and the formation of GaN nanodots on Si. The surface nitridaiton treatment at 600°C provides a-SiNx layer which makes higher density of GaN nanodots. Crystal GaN nanodots can be observed by the HRTEM. The surface composition of GaN nanodots can be analyzed by SPEM and μ-XPS with a synchrotron x-ray source. We can find GaN nanodots form by droplet epitaxy and then in situ annealing make higher-degree nitridation of GaN nanodots. PMID:25593560

  17. Nitridation- and Buffer-Layer-Free Growth of [1100]-Oriented GaN Domains on m-Plane Sapphire Substrates by Using Hydride Vapor Phase Epitaxy

    NASA Astrophysics Data System (ADS)

    Seo, Yeonwoo; Lee, Sanghwa; Jue, Miyeon; Yoon, Hansub; Kim, Chinkyo

    2012-12-01

    Over a wide range of growth conditions, GaN domains were grown on bare m-plane sapphire substrates by using hydride vapor phase epitaxy (HVPE), and the relation between these growth conditions and three possible preferred crystallographic orientations ([1100], [1103], [1122]) of GaN domains was investigated. In contrast with the previous reports by other groups, our results revealed that preferentially [1100]-oriented GaN domains were grown without low-temperature nitridation or a buffer layer, and that the growth condition of preferentially [1100]-oriented GaN was insensitive to V/III ratio.

  18. A new approach to epitaxially grow high-quality GaN films on Si substrates: the combination of MBE and PLD.

    PubMed

    Wang, Wenliang; Wang, Haiyan; Yang, Weijia; Zhu, Yunnong; Li, Guoqiang

    2016-04-22

    High-quality GaN epitaxial films have been grown on Si substrates with Al buffer layer by the combination of molecular beam epitaxy (MBE) and pulsed laser deposition (PLD) technologies. MBE is used to grow Al buffer layer at first, and then PLD is deployed to grow GaN epitaxial films on the Al buffer layer. The surface morphology, crystalline quality, and interfacial property of as-grown GaN epitaxial films on Si substrates are studied systematically. The as-grown ~300 nm-thick GaN epitaxial films grown at 850 °C with ~30 nm-thick Al buffer layer on Si substrates show high crystalline quality with the full-width at half-maximum (FWHM) for GaN(0002) and GaN(102) X-ray rocking curves of 0.45° and 0.61°, respectively; very flat GaN surface with the root-mean-square surface roughness of 2.5 nm; as well as the sharp and abrupt GaN/AlGaN/Al/Si hetero-interfaces. Furthermore, the corresponding growth mechanism of GaN epitaxial films grown on Si substrates with Al buffer layer by the combination of MBE and PLD is hence studied in depth. This work provides a novel and simple approach for the epitaxial growth of high-quality GaN epitaxial films on Si substrates.

  19. Characterization and density control of GaN nanodots on Si (111) by droplet epitaxy using plasma-assisted molecular beam epitaxy.

    PubMed

    Yu, Ing-Song; Chang, Chun-Pu; Yang, Chung-Pei; Lin, Chun-Ting; Ma, Yuan-Ron; Chen, Chun-Chi

    2014-01-01

    In this report, self-organized GaN nanodots have been grown on Si (111) by droplet epitaxy method, and their density can be controlled from 1.1 × 10(10) to 1.1 × 10(11) cm(-2) by various growth parameters, such as substrate temperatures for Ga droplet formation, the pre-nitridation treatment of Si substrate, the nitridation duration for GaN crystallization, and in situ annealing after GaN formation. Based on the characterization of in situ RHEED, we can observe the surface condition of Si and the formation of GaN nanodots on Si. The surface nitridaiton treatment at 600°C provides a-SiNx layer which makes higher density of GaN nanodots. Crystal GaN nanodots can be observed by the HRTEM. The surface composition of GaN nanodots can be analyzed by SPEM and μ-XPS with a synchrotron x-ray source. We can find GaN nanodots form by droplet epitaxy and then in situ annealing make higher-degree nitridation of GaN nanodots.

  20. Influence of vicinal sapphire substrate on the properties of N-polar GaN films grown by metal-organic chemical vapor deposition

    SciTech Connect

    Lin, Zhiyu; Zhang, Jincheng Xu, Shengrui; Chen, Zhibin; Yang, Shuangyong; Tian, Kun; Hao, Yue; Su, Xujun; Shi, Xuefang

    2014-08-25

    The influence of vicinal sapphire substrates on the growth of N-polar GaN films by metal-organic chemical vapor deposition is investigated. Smooth GaN films without hexagonal surface feature are obtained on vicinal substrate. Transmission electron microscope results reveal that basal-plane stacking faults are formed in GaN on vicinal substrate, leading to a reduction in threading dislocation density. Furthermore, it has been found that there is a weaker yellow luminescence in GaN on vicinal substrate than that on (0001) substrate, which might be explained by the different trends of the carbon impurity incorporation.