Science.gov

Sample records for 11-cis 4-oh retinal

  1. Barrierless Photoisomerization of 11-cis Retinal Protonated Schiff Base in Solution.

    PubMed

    Bassolino, Giovanni; Sovdat, Tina; Soares Duarte, Alex; Lim, Jong Min; Schnedermann, Christoph; Liebel, Matz; Odell, Barbara; Claridge, Timothy D W; Fletcher, Stephen P; Kukura, Philipp

    2015-10-01

    A hallmark of the primary visual event is the barrierless, ultrafast, and efficient 11-cis to all-trans photoisomerization of the retinal protonated Schiff base (RPSB) chromophore. The remarkable reactivity of RPSB in the visual pigment rhodopsin has been attributed to potential energy surface modifications enabled by evolution-optimized chromophore-protein interactions. Here, we use a combined synthetic and ultrafast spectroscopic approach to show that barrierless photoisomerization is an intrinsic property of 11-cis RPSB, suggesting that the protein may merely adjust the ratio between fast reactive and slow unreactive decay channels. These results call for a re-evaluation of our understanding and theoretical description of RPSB photochemistry. PMID:26376448

  2. 11-cis retinal torsion: A QTAIM and stress tensor analysis of the S1 excited state

    NASA Astrophysics Data System (ADS)

    Maza, Julio R.; Jenkins, Samantha; Kirk, Steven R.

    2016-05-01

    We investigate torsion about the C11-C12 bond mid-point for the S1 state of 11-cis retinal, using a QTAIM and stress tensor analysis. The QTAIM and stress tensor responses to a torsion ±α increase at a faster rate for the preferred direction of torsion though the CI seam. A QTAIM and stress tensor vector-based analysis provides an alternative way of characterising the asymmetry of the S1 potential energy surface. In the vicinity of the CI seam the ellipticity ε attained minimum values. The application of this analysis to molecular rotary motors is briefly discussed.

  3. Effects of Infrared Laser Radiation on the In Vitro Isomerization of All-Trans Retinal to 11-Cis Retinal

    PubMed Central

    Liegner, J.; Taboada, J.; Tsin, A. T. C.

    2015-01-01

    The in vitro effect of infrared laser light on the isomerization of all-trans retinal dissolved in an ether/hexane and also an ethanol solvent was studied. Pulsed laser energy at 1064 nm was used to drive the molecular reconfiguration of all-trans retinal to 11-cis retinal. High pressure liquid chromatography (HPLC) was used to quantify the conversion. Overall isomerization was minimal (0.2 percent to 1.0 percent), yet, a significant difference in isomerization due to pulsed infrared laser energy over non-modulated monochromatic laser light was detected (up to 168 percent difference). Potentially, pulsed laser radiation tuned to the ethylenic stretch frequency of the C11=C12 bond of retinal may induce rotational changes to the chromophore. PMID:26321787

  4. 11-cis-retinal reduces constitutive opsin phosphorylation and improves quantum catch in retinoid-deficient mouse rod photoreceptors.

    PubMed

    Ablonczy, Zsolt; Crouch, Rosalie K; Goletz, Patrice W; Redmond, T Michael; Knapp, Daniel R; Ma, Jian-Xing; Rohrer, Barbel

    2002-10-25

    Rpe65(-/-) mice produce minimal amounts of 11-cis-retinal, the ligand necessary for the formation of photosensitive visual pigments. Therefore, the apoprotein opsin in these animals has not been exposed to its normal ligand. The Rpe65(-/-) mice contain less than 0.1% of wild type levels of rhodopsin. Mass spectrometric analysis of opsin from Rpe65(-/-) mice revealed unusually high levels of phosphorylation in dark-adapted mice but no other structural alterations. Single flash and flicker electroretinograms (ERGs) from 1-month-old animals showed trace rod function but no cone response. B-wave kinetics of the single-flash ERG are comparable with those of dark-adapted wild type mice containing a full compliment of rhodopsin. Application (intraperitoneal injection) of 11-cis-retinal to Rpe65(-/-) mice increased the rod ERG signal, increased levels of rhodopsin, and decreased opsin phosphorylation. Therefore, exogenous 11-cis-retinal improves photoreceptor function by regenerating rhodopsin and removes constitutive opsin phosphorylation. Our results indicate that opsin, which has not been exposed to 11-cis-retinal, does not generate the activity generally associated with the bleached apoprotein. PMID:12176991

  5. Photoisomerization mechanism of the rhodopsin chromophore: picosecond photolysis of pigment containing 11-cis-locked eight-membered ring retinal.

    PubMed Central

    Mizukami, T; Kandori, H; Shichida, Y; Chen, A H; Derguini, F; Caldwell, C G; Biffe, C F; Nakanishi, K; Yoshizawa, T

    1993-01-01

    The primary photochemical event in rhodopsin is an 11-cis to 11-trans photoisomerization of its retinylidene chromophore to form the primary intermediate photorhodopsin. Earlier picosecond studies have shown that no intermediate is formed when the retinal 11-ene is fixed through a bridging five-membered ring, whereas a photorhodopsin-like intermediate is formed when it is fixed through a flexible seven-membered ring. Results from a rhodopsin analog formed from a retinal with locked 11-ene structure through the more flexible eight-membered ring (Ret8) are described. Incubation of bovine opsin with Ret8 formed two pigments absorbing at 425 nm (P425) and 500 nm (P500). P425, however, is an artifact because it formed from thermally denatured opsin or other proteins and Ret8. Excitation of P500 with a picosecond green pulse led to formation of two intermediates corresponding to photo- and bathorhodopsins. These results demonstrate that an appearance of early intermediates is dependent on the flexibility of the 11-ene and that the photoisomerization of P500 proceeds by stepwise changes of chromophore-protein interaction, which in turn leads to a relaxation of the highly twisted all-trans-retinylidene chromophore in photorhodopsin. PMID:8483923

  6. Investigation of the chromophore binding cavity in the 11-cis acceptable microbial rhodopsin MR

    NASA Astrophysics Data System (ADS)

    Mori, Arisa; Yagasaki, Jin; Homma, Michio; Reissig, Louisa; Sudo, Yuki

    2013-06-01

    Rhodopsins are photoactive molecules functioning as photo-energy or photo-signal converters with the chromophore retinal. Recently we characterized a unique microbial rhodopsin (middle rhodopsin, MR) which can also bind 11-cis retinal besides all-trans and 13-cis retinal at a particular ratio. In this study, we investigated the structural characteristics around the retinal binding cavity in MR. The results suggest that the space of the retinal binding site of MR is less restricted to the retinal chromophore and the presence of the 11-cis conformer is regulated by the residues located around the retinal. Furthermore, although the triple mutant of MR has identical residues with the well-studied microbial rhodopsin bacteriorhodopsin (BR) within 5 Å from the retinal, the absorption maximum and retinal composition of MR did not reach those of BR, indicating that some long-range effect(s) (>5 Å) is also important for the maintenance of the chemical properties of MR.

  7. Effect of 11-Cis 13-Demethylretinal on Phototransduction in Bleach-Adapted Rod and Cone Photoreceptors

    PubMed Central

    Corson, D.Wesley; Kefalov, Vladimir J.; Cornwall, M. Carter; Crouch, Rosalie K.

    2000-01-01

    We used 11-cis 13-demethylretinal to examine the physiological consequences of retinal's noncovalent interaction with opsin in intact rod and cone photoreceptors during visual pigment regeneration. 11-Cis 13-demethylretinal is an analog of 11-cis retinal in which the 13 position methyl group has been removed. Biochemical experiments have shown that it is capable of binding in the chromophore pocket of opsin, forming a Schiff-base linkage with the protein to produce a pigment, but at a much slower rate than the native 11-cis retinal (Nelson, R., J. Kim deReil, and A. Kropf. 1970. Proc. Nat. Acad. Sci. USA. 66:531–538). Experimentally, this slow rate of pigment formation should allow separate physiological examination of the effects of the initial binding of retinal in the pocket and the subsequent formation of the protonated Schiff-base linkage. Currents from solitary rods and cones from the tiger salamander were recorded in darkness before and after bleaching and then after exposure to 11-cis 13-demethylretinal. In bleach-adapted rods, 11-cis 13-demethylretinal caused transient activation of phototransduction, as evidenced by a decrease of the dark current and sensitivity, acceleration of the dim flash responses, and activation of cGMP phosphodiesterase and guanylyl cyclase. The steady state of phototransduction activity was still higher than that of the bleach-adapted rod. In contrast, exposure of bleach-adapted cones to 11-cis 13-demethylretinal resulted in an immediate deactivation of transduction as measured by the same parameters. These results extend the validity of a model for the effects of the noncovalent binding of a retinoid in the chromophore pockets of rod and cone opsins to analogs capable of forming a Schiff-base and imply that the noncovalent binding by itself may play a role for the dark adaptation of photoreceptors. PMID:10919871

  8. Delayed Dark Adaptation in 11-cis-Retinol Dehydrogenase-deficient Mice

    PubMed Central

    Kim, Tom S.; Maeda, Akiko; Maeda, Tadao; Heinlein, Cynthia; Kedishvili, Natalia; Palczewski, Krzysztof; Nelson, Peter S.

    2005-01-01

    The oxidation of 11-cis-retinol to 11-cis-retinal in the retinal pigment epithelium (RPE) represents the final step in a metabolic cycle that culminates in visual pigment regeneration. Retinol dehydrogenase 5 (RDH5) is responsible for a majority of the 11-cis-RDH activity in the RPE, but the formation of 11-cis-retinal in rdh5−/− mice suggests another enzyme(s) is present. We have previously shown that RDH11 is also highly expressed in RPE cells and has dual specificity for both cis- and trans-retinoid substrates. To investigate the role of RDH11 in the retinoid cycle, we generated rdh11−/− and rdh5−/− rdh11−/− mice and examined their electrophysiological responses to various intensities of illumination and during dark adaptation. Retinoid profiles of dark-adapted rdh11−/− mice did not show significant differences compared with wild-type mice, whereas an accumulation of cis-esters was detected in rdh5−/− and rdh5−/− rdh11−/− mice. Following light stimulation, 73% more cis-retinyl esters were stored in rdh5−/− rdh11−/− mice compared with rdh5−/− mice. Single-flash ERGs of rdh11−/− showed normal responses under dark- and light-adapted conditions, but exhibited delayed dark adaptation following high bleaching levels. Double knockout mice also had normal ERG responses in dark- and light-adapted conditions, but had a further delay in dark adaptation relative to either rdh11−/− or rdh5−/− mice. Taken together, these results suggest that RDH11 has a measurable role in regenerating the visual pigment by complementing RDH5 as an 11-cis-RDH in RPE cells, and indicate that an additional unidentified enzyme(s) oxidizes 11-cis-retinol or that an alternative pathway contributes to the retinoid cycle. PMID:15634683

  9. The role of 11-cis-retinyl esters in vertebrate cone vision

    PubMed Central

    Babino, Darwin; Perkins, Brian D.; Kindermann, Aljoscha; Oberhauser, Vitus; von Lintig, Johannes

    2015-01-01

    A cycle of cis-to-trans isomerization of the chromophore is intrinsic to vertebrate vision where rod and cone photoreceptors mediate dim- and bright-light vision, respectively. Daylight illumination can greatly exceed the rate at which the photoproduct can be recycled back to the chromophore by the canonical visual cycle. Thus, an additional supply pathway(s) must exist to sustain cone-dependent vision. Two-photon microscopy revealed that the eyes of the zebrafish (Danio rerio) contain high levels of 11-cis-retinyl esters (11-REs) within the retinal pigment epithelium. HPLC analyses demonstrate that 11-REs are bleached by bright light and regenerated in the dark. Pharmacologic treatment with all-trans-retinylamine (Ret-NH2), a potent and specific inhibitor of the trans-to-cis reisomerization reaction of the canonical visual cycle, impeded the regeneration of 11-REs. Intervention with 11-cis-retinol restored the regeneration of 11-REs in the presence of all-trans-Ret-NH2. We used the XOPS:mCFP transgenic zebrafish line with a functional cone-only retina to directly demonstrate that this 11-RE cycle is critical to maintain vision under bright-light conditions. Thus, our analyses reveal that a dark-generated pool of 11-REs helps to supply photoreceptors with the chromophore under the varying light conditions present in natural environments.—Babino, D., Perkins, B. D., Kindermann, A., Oberhauser, V., von Lintig, J. The role of 11-cis-retinyl esters in vertebrate cone vision. PMID:25326538

  10. Crystal Structure of the 11-cis Isomer of Pharaonis Halorhodopsin: Structural Constraints on Interconversions among Different Isomeric States.

    PubMed

    Chan, Siu Kit; Kawaguchi, Haruki; Kubo, Hiroki; Murakami, Midori; Ihara, Kunio; Maki, Kosuke; Kouyama, Tsutomu

    2016-07-26

    Like other microbial rhodopsins, the light driven chloride pump halorhodopsin from Natronomonas pharaonis (pHR) contains a mixture of all-trans/15-anti and 13-cis/15-syn isomers in the dark adapted state. A recent crystallographic study of the reaction states of pHR has shown that reaction states with 13-cis/15-syn retinal occur in the anion pumping cycle that is initiated by excitation of the all-trans isomer. In this study, we investigated interconversions among different isomeric states of pHR in the absence of chloride ions. The illumination of chloride free pHR with red light caused a large blue shift in the absorption maximum of the retinal visible band. During this "red adaptation", the content of the 11-cis isomer increased significantly, while the molar ratio of the 13-cis isomer to the all-trans isomer remained unchanged. The results suggest that the thermally activated interconversion between the 13-cis and the all-trans isomers is very rapid. Diffraction data from red adapted crystals showed that accommodation of the retinal chromophore with the 11-cis/15-syn configuration was achieved without a large change in the retinal binding pocket. The measurement of absorption kinetics under illumination showed that the 11-cis isomer, with a λmax at 565 nm, was generated upon excitation of a red-shifted species (λmax = 625 nm) that was present as a minor component in the dark adapted state. It is possible that this red-shifted species mimics an O-like reaction state with 13-cis/15-syn retinal, which was hypothesized to occur at a late stage of the anion pumping cycle. PMID:27352034

  11. FATP1 Inhibits 11-cis Retinol Formation via Interaction with the Visual Cycle Retinoid Isomerase RPE65 and Lecithin:Retinol Acyltransferase*

    PubMed Central

    Guignard, Thomas J. P.; Jin, Minghao; Pequignot, Marie O.; Li, Songhua; Chassigneux, Yolaine; Chekroud, Karim; Guillou, Laurent; Richard, Eric; Hamel, Christian P.; Brabet, Philippe

    2010-01-01

    The isomerization of all-trans retinol (vitamin A) to 11-cis retinol in the retinal pigment epithelium (RPE) is a key step in the visual process for the regeneration of the visual pigment chromophore, 11-cis retinal. LRAT and RPE65 are recognized as the minimal isomerase catalytic components. However, regulators of this rate-limiting step are not fully identified and could account for the phenotypic variability associated with inherited retinal degeneration (RD) caused by mutations in the RPE65 gene. To identify new RPE65 partners, we screened a porcine RPE mRNA library using a yeast two-hybrid assay with full-length human RPE65. One identified clone (here named FATP1c), containing the cytosolic C-terminal sequence from the fatty acid transport protein 1 (FATP1 or SLC27A1, solute carrier family 27 member 1), was demonstrated to interact dose-dependently with the native RPE65 and with LRAT. Furthermore, these interacting proteins colocalize in the RPE. Cellular reconstitution of human interacting proteins shows that FATP1 markedly inhibits 11-cis retinol production by acting on the production of all-trans retinyl esters and the isomerase activity of RPE65. The identification of this new visual cycle inhibitory component in RPE may contribute to further understanding of retinal pathogenesis. PMID:20356843

  12. Isomerization of 11-cis-retinol to all-trans-retinol in bovine rod outer segments.

    PubMed

    Shimizu, T; Ishiguro, S; Tamai, M

    1998-05-01

    It is known that exogenous 11-cis-retinol inhibits the recovery of photosensitivity of bleached rod outer segments (ROS) and 11-cis-retinol exists in the interphotorecepter matrix. We examined the conversion of 11-cis-retinol with bovine ROS. ROS was incubated with 11-cis-retinol under dim red light. Retinoids were extracted from the reaction mixture with hexane and analyzed by HPLC coupled with a fluorescence spectrophotometer. Isomerization of 11-cis-retinol to all-trans-retinol was observed in the presence of ROS. This isomerization was not suppressed by heat treatment and did not have stereospecificity. In addition, we incubated purified rhodopsin and phospholipids extracted from ROS with 11-cis-retinol. Rhodopsin was found to isomerize 11-cis-retinol to all-trans-retinol as well as ROS, but phospholipids did not. In contrast, the phospholipids inhibited the isomerization of 11-cis-retinol to all-trans-retinol by the purified rhodopsin. Commercially available phospholipids, especially phosphatidylserine, also inhibited the isomerization. Our results suggest that rhodopsin has activity for the isomerization of 11-cis-retinol to all-trans-retinol and may play an important role in the detoxification of 11-cis-retinol in the ROS. PMID:9562631

  13. Conditional Ablation of Retinol Dehydrogenase 10 in the Retinal Pigmented Epithelium Causes Delayed Dark Adaption in Mice.

    PubMed

    Sahu, Bhubanananda; Sun, Wenyu; Perusek, Lindsay; Parmar, Vipulkumar; Le, Yun-Zheng; Griswold, Michael D; Palczewski, Krzysztof; Maeda, Akiko

    2015-11-01

    Regeneration of the visual chromophore, 11-cis-retinal, is a crucial step in the visual cycle required to sustain vision. This cycle consists of sequential biochemical reactions that occur in photoreceptor cells and the retinal pigmented epithelium (RPE). Oxidation of 11-cis-retinol to 11-cis-retinal is accomplished by a family of enzymes termed 11-cis-retinol dehydrogenases, including RDH5 and RDH11. Double deletion of Rdh5 and Rdh11 does not limit the production of 11-cis-retinal in mice. Here we describe a third retinol dehydrogenase in the RPE, RDH10, which can produce 11-cis-retinal. Mice with a conditional knock-out of Rdh10 in RPE cells (Rdh10 cKO) displayed delayed 11-cis-retinal regeneration and dark adaption after bright light illumination. Retinal function measured by electroretinogram after light exposure was also delayed in Rdh10 cKO mice as compared with controls. Double deletion of Rdh5 and Rdh10 (cDKO) in mice caused elevated 11/13-cis-retinyl ester content also seen in Rdh5(-/-)Rdh11(-/-) mice as compared with Rdh5(-/-) mice. Normal retinal morphology was observed in 6-month-old Rdh10 cKO and cDKO mice, suggesting that loss of Rdh10 in the RPE does not negatively affect the health of the retina. Compensatory expression of other retinol dehydrogenases was observed in both Rdh5(-/-) and Rdh10 cKO mice. These results indicate that RDH10 acts in cooperation with other RDH isoforms to produce the 11-cis-retinal chromophore needed for vision. PMID:26391396

  14. Vitamin A Derivatives as Treatment Options for Retinal Degenerative Diseases

    PubMed Central

    Perusek, Lindsay; Maeda, Tadao

    2013-01-01

    The visual cycle is a sequential enzymatic reaction for vitamin A, all-trans-retinol, occurring in the outer layer of the human retina and is essential for the maintenance of vision. The central source of retinol is derived from dietary intake of both retinol and pro-vitamin A carotenoids. A series of enzymatic reactions, located in both the photoreceptor outer segment and the retinal pigment epithelium, transform retinol into the visual chromophore 11-cis-retinal, regenerating visual pigments. Retina specific proteins carry out the majority of the visual cycle, and any significant interruption in this sequence of reactions is capable of causing varying degrees of blindness. Among these important proteins are Lecithin:retinol acyltransferase (LRAT) and retinal pigment epithelium-specific 65-kDa protein (RPE65) known to be responsible for esterification of retinol to all-trans-retinyl esters and isomerization of these esters to 11-cis-retinal, respectively. Deleterious mutations in these genes are identified in human retinal diseases that cause blindness, such as Leber congenital amaurosis (LCA) and retinitis pigmentosa (RP). Herein, we discuss the pathology of 11-cis-retinal deficiency caused by these mutations in both animal disease models and human patients. We also review novel therapeutic strategies employing artificial visual chromophore 9-cis-retinoids which have been employed in clinical trials involving LCA patients. PMID:23857173

  15. Pharmacological Chaperone-mediated in Vivo Folding and Stabilization of the P23H-opsin Mutant Associated with Autosomal Dominant Retinitis Pigmentosa*

    PubMed Central

    Imanishi, Yoshikazu; Zhu, Li; Filipek, Sławomir; Palczewski, Krzysztof; Kaushal, Shalesh

    2006-01-01

    Protein conformational disorders, which include certain types of retinitis pigmentosa, are a set of inherited human diseases in which mutant proteins are misfolded and often aggregated. Many opsin mutants associated with retinitis pigmentosa, the most common being P23H, are misfolded and retained within the cell. Here, we describe a pharmacological chaperone, 11-cis-7-ring retinal, that quantitatively induces the in vivo folding of P23H-opsin. The rescued protein forms pigment, acquires mature glycosylation, and is transported to the cell surface. Additionally, we determined the temperature stability of the rescued protein as well as the reactivity of the retinal-opsin Schiff base to hydroxylamine. Our study unveils novel properties of P23H-opsin and its interaction with the chromophore. These properties suggest that 11-cis-7-ring retinal may be a useful therapeutic agent for the rescue of P23H-opsin and the prevention of retinal degeneration. PMID:12566452

  16. Retinitis Pigmentosa

    MedlinePlus

    ... Action You are here Home › Retinal Diseases Listen Retinitis Pigmentosa What is retinitis pigmentosa? What are the symptoms? ... available? Are there any related diseases? What is retinitis pigmentosa? Retinitis pigmentosa (RP) refers to a group of ...

  17. Localization of the retinal protonated Schiff base counterion in rhodopsin.

    PubMed Central

    Han, M.; DeDecker, B. S.; Smith, S. O.

    1993-01-01

    Semiempirical molecular orbital calculations are combined with 13C NMR chemical shifts to localize the counterion in the retinal binding site of vertebrate rhodopsin. Charge densities along the polyene chain are calculated for an 11-cis-retinylidene protonated Schiff base (11-cis-RPSB) chromophore with 1) a chloride counterion at various distances from the Schiff base nitrogen, 2) one or two chloride counterions at different positions along the retinal chain from C10 to C15 and at the Schiff base nitrogen, and 3) a carboxylate counterion out of the retinal plane near C12. Increasing the distance of the negative counterion from the Schiff base results in an enhancement of alternating negative and positive partial charge on the even- and odd-numbered carbons, respectively, when compared to the 11-cis-RPSB chloride model compound. In contrast, the observed 13C NMR data of rhodopsin exhibit downfield chemical shifts from C8 to C13 relative to the 11-cis-RPSB.Cl corresponding to a net increase of partial positive or decrease of partial negative charge at these positions (Smith, S. O., I. Palings, M. E. Miley, J. Courtin, H. de Groot, J. Lugtenburg, R. A. Mathies, and R. G. Griffin. 1990. Biochemistry. 29:8158-8164). The anomalous changes in charge density reflected in the rhodopsin NMR chemical shifts can be qualitatively modeled by placing a single negative charge above C12. The calculated fit improves when a carboxylate counterion is used to model the retinal binding site. Inclusion of water in the model does not alter the fit to the NMR data, although it is consistent with observations based on other methods. These data constrain the location and the orientation of the Glu113 side chain, which is known to be the counterion in rhodopsin, and argue for a strong interaction centered at C12 of the retinylidene chain. PMID:8105993

  18. Ionothermal synthesis, crystal structure, and magnetic study of Co2PO4OH isostructural with caminite.

    PubMed

    Wang, Guangmei; Valldor, Martin; Spielberg, Eike T; Mudring, Anja-Verena

    2014-03-17

    A new framework cobalt(II) hydroxyl phosphate, Co2PO4OH, was prepared by ionothermal synthesis using 1-butyl-4-methyl-pyridinium hexafluorophosphate as the ionic liquid. As the formation of Co2PO4F competes in the synthesis, the synthesis conditions have to be judiciously chosen to obtain well-crystallized, single phase Co2PO4OH. Single-crystal X-ray diffraction analyses reveal Co2PO4OH crystallizes with space group I41/amd (a = b = 5.2713(7) Å, c = 12.907(3) Å, V = 358.63(10) Å(3), and Z = 4). Astonishingly, it does not crystallize isotypically with Co2PO4F but rather isotypically with the hydroxyl minerals caminite Mg1.33[SO4(OH)0.66(H2O)0.33] and lipscombite Fe(2–y)PO4(OH) (0 ≤ y ≤ 2/3). Phosphate tetrahedra groups interconnect four rod-packed face-sharing ∞(1){CoO(6/2)} octahedra chains to form a three-dimensional framework structure. The compound Co2PO4OH was further characterized by powder X-ray diffraction, Fourier transform–infrared, and ultraviolet–visible spectroscopy, confirming the discussed structure. The magnetic measurement reveals that Co2PO4OH undergoes a magnetic transition and presents at low temperatures a canted antiferromagnetic spin order in the ground state. PMID:24597964

  19. Photosensitivity of 10-substituted visual pigment analogues: detection of a specific secondary opsin-retinal interaction.

    PubMed

    Liu, R S; Crescitelli, F; Denny, M; Matsumoto, H; Asato, A E

    1986-11-01

    The photosensitivities of the bovine rhodopsin and gecko pigment 521 analogues regenerated from C-10-substituted analogues of 11-cis- and 9-cis-retinals were determined by two different methods. A similar reactivity trend was noted for both pigment systems as revealed in the photosensitivity of the gecko pigments and relative quantum yields of the bovine analogues. The 10-fluoro-11-cis photopigments had a photosensitivity less than, but approaching, that of the native (11-cis) visual pigment while the 10-fluoro-9-cis photopigments had a much lower photosensitivity than the parent 9-cis regenerated pigment. The results are interpreted in terms of recently described models of rhodopsin architecture and of the primary molecular reaction of visual pigments to light. The unusually low photoreactivity of the 10-fluoro-9-cis pigment molecule is viewed as the result of a regiospecific hydrogen-bonding interaction of the electronegative fluorine atom to the opsin. PMID:2948555

  20. Systemic Retinaldehyde Treatment Corrects Retinal Oxidative Stress, Rod Dysfunction, and Impaired Visual Performance in Diabetic Mice

    PubMed Central

    Berkowitz, Bruce A.; Kern, Timothy S.; Bissig, David; Patel, Priya; Bhatia, Ankit; Kefalov, Vladimir J.; Roberts, Robin

    2015-01-01

    Purpose Diabetes appears to induce a visual cycle defect because rod dysfunction is correctable with systemic treatment of the visual cycle chromophore 11-cis-retinaldehyde. However, later studies have found no evidence for visual cycle impairment. Here, we further examined whether photoreceptor dysfunction is corrected with 11-cis-retinaldehyde. Because antioxidants correct photoreceptor dysfunction in diabetes, the hypothesis that exogenous visual chromophores have antioxidant activity in the retina of diabetic mice in vivo was tested. Methods Rod function in 2-month-old diabetic mice was evaluated using transretinal electrophysiology in excised retinas and apparent diffusion coefficient (ADC) MRI to measure light-evoked expansion of subretinal space (SRS) in vivo. Optokinetic tracking was used to evaluate cone-based visual performance. Retinal production of superoxide free radicals, generated mostly in rod cells, was biochemically measured with lucigenin. Diabetic mice were systemically treated with a single injection of either 11-cis-retinaldehyde, 9-cis-retinaldehyde (a chromophore surrogate), or all-trans-retinaldehyde (the photoisomerization product of 11-cis-retinaldehyde). Results Consistent with previous reports, diabetes significantly reduced (1) dark-adapted rod photo responses (transretinal recording) by ∼18%, (2) rod-dominated light-stimulated SRS expansion (ADC MRI) by ∼21%, and (3) cone-dominated contrast sensitivity (using optokinetic tracking [OKT]) by ∼30%. Both 11-cis-retinaldehyde and 9-cis-retinaldehyde largely corrected these metrics of photoreceptor dysfunction. Higher-than-normal retinal superoxide production in diabetes by ∼55% was also significantly corrected following treatment with 11-cis-retinaldehyde, 9-cis-retinaldehyde, or all-trans-retinaldehyde. Conclusions Collectively, data suggest that retinaldehydes improve photoreceptor dysfunction in diabetic mice, independent of the visual cycle, via an antioxidant mechanism. PMID

  1. Lipofuscin and N-Retinylidene-N-Retinylethanolamine (A2E) Accumulate in Retinal Pigment Epithelium in Absence of Light Exposure

    PubMed Central

    Boyer, Nicholas P.; Higbee, Daniel; Currin, Mark B.; Blakeley, Lorie R.; Chen, Chunhe; Ablonczy, Zsolt; Crouch, Rosalie K.; Koutalos, Yiannis

    2012-01-01

    The age-dependent accumulation of lipofuscin in the retinal pigment epithelium (RPE) has been associated with the development of retinal diseases, particularly age-related macular degeneration and Stargardt disease. A major component of lipofuscin is the bis-retinoid N-retinylidene-N-retinylethanolamine (A2E). The current model for the formation of A2E requires photoactivation of rhodopsin and subsequent release of all-trans-retinal. To understand the role of light exposure in the accumulation of lipofuscin and A2E, we analyzed RPEs and isolated rod photoreceptors from mice of different ages and strains, reared either in darkness or cyclic light. Lipofuscin levels were determined by fluorescence imaging, whereas A2E levels were quantified by HPLC and UV-visible absorption spectroscopy. The identity of A2E was confirmed by tandem mass spectrometry. Lipofuscin and A2E levels in the RPE increased with age and more so in the Stargardt model Abca4−/− than in the wild type strains 129/sv and C57Bl/6. For each strain, the levels of lipofuscin precursor fluorophores in dark-adapted rods and the levels and rates of increase of RPE lipofuscin and A2E were not different between dark-reared and cyclic light-reared animals. Both 11-cis- and all-trans-retinal generated lipofuscin-like fluorophores when added to metabolically compromised rod outer segments; however, it was only 11-cis-retinal that generated such fluorophores when added to metabolically intact rods. The results suggest that lipofuscin originates from the free 11-cis-retinal that is continuously supplied to the rod for rhodopsin regeneration and outer segment renewal. The physiological role of Abca4 may include the translocation of 11-cis-retinal complexes across the disk membrane. PMID:22570475

  2. Explaining the mobility of retinal in activated rhodopsin and opsin.

    PubMed

    Mertz, Blake; Feng, Jun; Corcoran, Conor; Neeley, Brandon

    2015-11-01

    Rhodopsin, the mammalian dim light photoreceptor, is the canonical model for G protein-coupled receptors. Activation of rhodopsin occurs when the covalently bound inverse agonist, retinal, absorbs a photon and undergoes an 11-cis to all-trans isomerization. Two critical components of the visual cycle occur with the (1) hydrolytic release of all-trans retinaldehyde and subsequent (2) uptake of 11-cis retinaldehyde to reform the Schiff base linkage in the apoprotein opsin. Two pores on the surface of opsin are connected via the retinal channel, as discovered upon solution of the X-ray crystal structure (Park et al., Nature, 2008), and could serve as potential entryways for uptake and release. Using molecular dynamics simulations, we examined the behavior of rhodopsin in the Meta-II conformation (active) under Meta-I conditions (inactive), and discovered that the retinal binding pocket is flexible enough to allow a 180° rotation along the long axis of the retinal polyene chain. This result reconciles a discrepancy between the known polyene chain orientation from crystallographic and spectroscopic studies and opens the door for further investigation into the intermolecular interactions between the retinal ligand and the apoprotein opsin. Subsequent docking studies of both isomers of retinal into the opsin channel were then conducted to identify the mechanism for uptake and release. Our results suggest that retinal undergoes unidirectional uptake through Pore A and release through Pore B, and that aromatic sidechain interactions play a key role in stabilizing retinal within the opsin channel. These findings are significant in developing our understanding of the retinoid cycle and how ligand-receptor interactions in rhodopsin relate to G protein-coupled receptor activation. PMID:26248892

  3. Potent inhibition of rhabdoid tumor cells by combination of flavopiridol and 4OH-tamoxifen

    PubMed Central

    2010-01-01

    Background Rhabdoid Tumors (RTs) are highly aggressive pediatric malignancies with poor prognosis. There are currently no standard or effective treatments for RTs in part because treatments are not designed to specifically target these tumors. Our previous studies indicated that targeting the cyclin/cdk pathway is a novel therapeutic strategy for RTs and that a pan-cdk inhibitor, flavopiridol, inhibits RT growth. Since the toxicities and narrow window of activity associated with flavopiridol may limit its clinical use, we tested the effect of combining flavopiridol with 4-hydroxy-Tamoxifen (4OH-Tam) in order to reduce the concentration of flavopiridol needed for inhibition of RTs. Methods The effects of flavopiridol, 4OH-Tam, and their combination on RT cell cycle regulation and apoptosis were assessed by: i) cell survival assays, ii) FACS analysis, iii) caspase activity assays, and iv) immunoblot analysis. Furthermore, the role of p53 in flavopiridol- and 4OH-Tam-mediated induction of cell cycle arrest and apoptosis was characterized using RNA interference (siRNA) analysis. The effect of p53 on flavopiridol-mediated induction of caspases 2, 3, 8 and 9 was also determined. Results We found that the combination of flavopiridol and 4OH-Tam potently inhibited the growth of RT cells. Low nanomolar concentrations of flavopiridol induced G2 arrest, which was correlated to down-modulation of cyclin B1 and up-regulation of p53. Addition of 4OH-Tam did not affect flavopiridol-mediated G2 arrest, but enhanced caspase 3,7-mediated apoptosis induced by the drug. Abrogation of p53 by siRNA abolished flavopiridol-induced G2 arrest, but enhanced flavopiridol- (but not 4OH-Tam-) mediated apoptosis, by enhancing caspase 2 and 3 activities. Conclusions Combining flavopiridol with 4OH-Tam potently inhibited the growth of RT cells by increasing the ability of either drug alone to induce caspases 2 and 3 thereby causing apoptosis. The potency of flavopiridol was enhanced by abrogation

  4. Human cellular retinaldehyde-binding protein has secondary thermal 9-cis-retinal isomerase activity.

    PubMed

    Bolze, Christin S; Helbling, Rachel E; Owen, Robin L; Pearson, Arwen R; Pompidor, Guillaume; Dworkowski, Florian; Fuchs, Martin R; Furrer, Julien; Golczak, Marcin; Palczewski, Krzysztof; Cascella, Michele; Stocker, Achim

    2014-01-01

    Cellular retinaldehyde-binding protein (CRALBP) chaperones 11-cis-retinal to convert opsin receptor molecules into photosensitive retinoid pigments of the eye. We report a thermal secondary isomerase activity of CRALBP when bound to 9-cis-retinal. UV/vis and (1)H NMR spectroscopy were used to characterize the product as 9,13-dicis-retinal. The X-ray structure of the CRALBP mutant R234W:9-cis-retinal complex at 1.9 Å resolution revealed a niche in the binding pocket for 9-cis-aldehyde different from that reported for 11-cis-retinal. Combined computational, kinetic, and structural data lead us to propose an isomerization mechanism catalyzed by a network of buried waters. Our findings highlight a specific role of water molecules in both CRALBP-assisted specificity toward 9-cis-retinal and its thermal isomerase activity yielding 9,13-dicis-retinal. Kinetic data from two point mutants of CRALBP support an essential role of Glu202 as the initial proton donor in this isomerization reaction. PMID:24328211

  5. The endogenous chromophore of retinal G protein-coupled receptor opsin from the pigment epithelium.

    PubMed

    Hao, W; Fong, H K

    1999-03-01

    The recent identification of nonvisual opsins has revealed an expanding family of vertebrate opsin genes. The retinal pigment epithelium (RPE) and Müller cells contain a blue and UV light-absorbing opsin, the RPE retinal G protein-coupled receptor (RGR, or RGR opsin). The spectral properties of RGR purified from bovine RPE suggest that RGR is conjugated in vivo to a retinal chromophore through a covalent Schiff base bond. In this study, the isomeric structure of the endogenous chromophore of RGR was identified by the hydroxylamine derivatization method. The retinaloximes derived from RGR in the dark consisted predominantly of the all-trans isomer. Irradiation of RGR with 470-nm monochromatic or near-UV light resulted in stereospecific isomerization of the bound all-trans-retinal to an 11-cis configuration. The stereospecificity of photoisomerization of the all-trans-retinal chromophore of RGR was lost by denaturation of the protein in SDS. Under the in vitro conditions, the photosensitivity of RGR is at least 34% that of bovine rhodopsin. These results provide evidence that RGR is bound in vivo primarily to all-trans-retinal and is capable of operating as a stereospecific photoisomerase that generates 11-cis-retinal in the pigment epithelium. PMID:10037690

  6. Cytomegalovirus retinitis

    MedlinePlus

    ... to prevent its return. Alternative Names Cytomegalovirus retinitis Images Eye CMV retinitis CMV (cytomegalovirus) References Crumpacker CS. ... 5. Read More Antibody HIV/AIDS Immune response Retinal detachment Systemic WBC count Update Date 12/10/ ...

  7. Expansion of first-in-class drug candidates that sequester toxic all-trans-retinal and prevent light-induced retinal degeneration.

    PubMed

    Zhang, Jianye; Dong, Zhiqian; Mundla, Sreenivasa Reddy; Hu, X Eric; Seibel, William; Papoian, Ruben; Palczewski, Krzysztof; Golczak, Marcin

    2015-01-01

    All-trans-retinal, a retinoid metabolite naturally produced upon photoreceptor light activation, is cytotoxic when present at elevated levels in the retina. To lower its toxicity, two experimentally validated methods have been developed involving inhibition of the retinoid cycle and sequestration of excess of all-trans-retinal by drugs containing a primary amine group. We identified the first-in-class drug candidates that transiently sequester this metabolite or slow down its production by inhibiting regeneration of the visual chromophore, 11-cis-retinal. Two enzymes are critical for retinoid recycling in the eye. Lecithin:retinol acyltransferase (LRAT) is the enzyme that traps vitamin A (all-trans-retinol) from the circulation and photoreceptor cells to produce the esterified substrate for retinoid isomerase (RPE65), which converts all-trans-retinyl ester into 11-cis-retinol. Here we investigated retinylamine and its derivatives to assess their inhibitor/substrate specificities for RPE65 and LRAT, mechanisms of action, potency, retention in the eye, and protection against acute light-induced retinal degeneration in mice. We correlated levels of visual cycle inhibition with retinal protective effects and outlined chemical boundaries for LRAT substrates and RPE65 inhibitors to obtain critical insights into therapeutic properties needed for retinal preservation. PMID:25538117

  8. Expansion of First-in-Class Drug Candidates That Sequester Toxic All-Trans-Retinal and Prevent Light-Induced Retinal Degeneration

    PubMed Central

    Zhang, Jianye; Dong, Zhiqian; Mundla, Sreenivasa Reddy; Hu, X. Eric; Seibel, William; Papoian, Ruben

    2015-01-01

    All-trans-retinal, a retinoid metabolite naturally produced upon photoreceptor light activation, is cytotoxic when present at elevated levels in the retina. To lower its toxicity, two experimentally validated methods have been developed involving inhibition of the retinoid cycle and sequestration of excess of all-trans-retinal by drugs containing a primary amine group. We identified the first-in-class drug candidates that transiently sequester this metabolite or slow down its production by inhibiting regeneration of the visual chromophore, 11-cis-retinal. Two enzymes are critical for retinoid recycling in the eye. Lecithin:retinol acyltransferase (LRAT) is the enzyme that traps vitamin A (all-trans-retinol) from the circulation and photoreceptor cells to produce the esterified substrate for retinoid isomerase (RPE65), which converts all-trans-retinyl ester into 11-cis-retinol. Here we investigated retinylamine and its derivatives to assess their inhibitor/substrate specificities for RPE65 and LRAT, mechanisms of action, potency, retention in the eye, and protection against acute light-induced retinal degeneration in mice. We correlated levels of visual cycle inhibition with retinal protective effects and outlined chemical boundaries for LRAT substrates and RPE65 inhibitors to obtain critical insights into therapeutic properties needed for retinal preservation. PMID:25538117

  9. Photon Echoes from Retinal Proteins

    NASA Astrophysics Data System (ADS)

    Johnson, Philip James Maddigan

    This thesis focuses on the ultrafast isomerization reaction of retinal in both rhodopsin and bacteriorhodopsin, examples of sensory and energy transduction proteins that exploit the same photoactive chromophore for two very different functions. In bacteriorhodopsin, retinal isomerizes from an all-trans to 13-cis conformation as the primary event in light- driven proton pumping. In the visual pigment rhodopsin, the retinal chromophore isomerizes from an 11-cis to all-trans geometry as the primary step leading to our sense of vision. This diversity of function for nominally identical systems raises the question as to just how optimized are these proteins to arrive at such drastically different functions? Previous work has employed transient absorption spectroscopy to probe retinal protein photochemistry, but many of the relevant electronic and nuclear dynamics of isomerization are masked by inhomogeneous broadening effects and strong spectral overlap between reactant and photoproduct states. This work exploits the unique properties of two-dimensional photon echo spectroscopy to deconvolve inhomogeneous broadening and spectral overlap effects and fully reveal the dynamics that direct retinal isomerization in proteins. In bacteriorhodopsin, vibrational coupling to the reaction coordinate results in a surface crossing event prior to the conventional conical intersection associated with isomerization to the J intermediate. In rhodopsin, however, a similarly early vibrationally-mediated barrier crossing event is observed, resulting in spectral signals consistent with the known photoproduct state appearing an order of magnitude faster than determined from conventional transient absorption measurements. The competing overlapping spectral signals that obscured the initial dynamics when probed with transient absorption spectroscopy are now clearly resolved with two-dimensional photon echo spectroscopy. These experiments illustrate the critical role of the protein in directing

  10. Structure and dynamics of retinal in rhodopsin elucidated by deuterium solid state NMR

    NASA Astrophysics Data System (ADS)

    Salgado, Gilmar Fernandes De Jesus

    Rhodopsin is a seven transmembrane helix GPCR found which mediates dim light vision, in which the binding pocket is occupied by the ligand 11- cis-retinal. A site-directed 2H-labeling approach utilizing solid-state 2H NMR spectroscopy was used to investigate the structure and dynamics of retinal within its binding pocket in the dark state of rhodopsin, and as well the MetaI and MetaII. 11-cis-[5-C 2H3]-, 11-cis-[9-C 2H3]-, and 11-cis-[13-C2H 3]-retinal were used to regenerate bleached rhodopsin. Recombinant membranes comprising purified rhodopsin and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) were prepared (1:50 molar ratio). Solid-state 2H NMR spectra were obtained for the aligned rhodopsin/POPC recombinant membranes at temperatures below the order-disorder phase transition temperature of POPC. The solid-state NMR studies of aligned samples, give the orientations of the 2H nuclear coupling tensor relative to the membrane frame, which involve both the conformation and orientation of the bound retinal chromophore. Theoretical simulations of the experimental 2H NMR spectra employed a new lineshape treatment for a semi-random distribution due to static uniaxial disorder. The analysis gives the orientation of the 2H-labeled C-C2H3 methyl bond axes relative to the membrane plane as well as the extent of three-dimensional alignment disorder (mosaic spread). These results clearly demonstrate the applicability of site-directed 2H NMR methods for investigating conformational changes and dynamics of ligands bound to rhodopsin and other GPCRs in relation to their characteristic mechanisms of action.

  11. Mechanism of Rhodopsin Activation as Examined with Ring-constrained Retinal Analogs and the Crystal Structure of the Ground State Protein*

    PubMed Central

    Jang, Geeng-Fu; Kuksa, Vladimir; Filipek, Stawomir; Bartl||, Franz; Ritter, Eglof; Gelb, Michael H.; Hofmann, Klaus Peter; Palczewski, Krzysztof

    2006-01-01

    The guanine nucleotide-binding protein (G-protein)-coupled receptor superfamily (GPCR) is comprised of a large group of membrane proteins involved in a wide range of physiological signaling processes. The functional switch from a quiescent to an active conformation is at the heart of GPCR action. The GPCR rhodopsin has been studied extensively because of its key role in scotopic vision. The ground state chromophore, 11-cis-retinal, holds the transmembrane region of the protein in the inactive conformation. Light induces cis-trans isomerization and rhodopsin activation. Here we show that rhodopsin regenerated with a ring-constrained 11-cis-retinal analog undergoes photoisomerization; however, it remains marginally active because isomerization occurs without the chromophore-induced conformational change of the opsin moiety. Modeling the locked chromophore analogs in the active site of rhodopsin suggests that the β-ionone ring rotates but is largely confined within the binding site of the natural 11-cis-retinal chromophore. This constraint is a result of the geometry of the stable 11-cis-locked configuration of the chromophore analogs. These results suggest that the native chromophore cis-trans isomerization is merely a mechanism for repositioning of the β-ionone ring which ultimately leads to helix movements and determines receptor activation. PMID:11316815

  12. Crystal structure of Pb3(IO4(OH)2)2

    PubMed Central

    Weil, Matthias

    2014-01-01

    The structure of the title compound, trilead(II) bis­[di­hydroxido­tetra­oxido­iodate(VII)], was determined from a crystal twinned by non-merohedry with two twin domains present [twin fraction 0.73 (1):0.27 (1)]. It contains three Pb2+ cations and two IO4(OH)2 3− anions in the asymmetric unit. Each of the Pb2+ cations is surrounded by eight O atoms (cut-off value = 3.1 Å) in the form of a distorted polyhedron. The octa­hedral IO4(OH)2 3− anions are arranged in rows extending parallel to [021], forming a distorted hexa­gonal rod packing. The cations and anions are linked into a framework structure. Although H-atom positions could not be located, O⋯O distances suggest medium-strength hydrogen-bonding inter­actions between the IO4(OH)2 octa­hedra, further consolidating the crystal packing. PMID:25161496

  13. Protein Induced Torsion of the Retinal Chromophore and How it Affects the Photochemistry of Rhopdopsin

    SciTech Connect

    Weingart, Oliver; Buss, Volker

    2007-12-26

    The influence of protein induced chromophore deformations on reaction timescale and quantum yield is investigated using ab initio molecular dynamics in vacuo on four and five double bond models of the retinal chromophore. The opposite twist of the C11 = C12 and the C12-C13 bonds appears to be the prerequisite for the highly stereoselective and efficient cis-trans photodynamics of the retinal chromophore in the binding pocket of rhodopsin. The formation of the photoproduct is determined by the phase of the hydrogen out-of-plane mode of the 11-cis double bond.

  14. Retinitis Pigmentosa.

    ERIC Educational Resources Information Center

    Carr, Ronald E.

    1979-01-01

    The author describes the etiology of retinitis pigmentosa, a visual dysfunction which results from progressive loss of the retinal photoreceptors. Sections address signs and symptoms, ancillary findings, heredity, clinical diagnosis, therapy, and research. (SBH)

  15. Crystal structure of tetra­wickmanite, Mn2+Sn4+(OH)6

    PubMed Central

    Lafuente, Barbara; Yang, Hexiong; Downs, Robert T.

    2015-01-01

    The crystal structure of tetra­wickmanite, ideally Mn2+Sn4+(OH)6 [mangan­ese(II) tin(IV) hexa­hydroxide], has been determined based on single-crystal X-ray diffraction data collected from a natural sample from Långban, Sweden. Tetra­wickmanite belongs to the octa­hedral-framework group of hydroxide-perovskite minerals, described by the general formula BB’(OH)6 with a perovskite derivative structure. The structure differs from that of an ABO3 perovskite in that the A site is empty while each O atom is bonded to an H atom. The perovskite B-type cations split into ordered B and B′ sites, which are occupied by Mn2+ and Sn4+, respectively. Tetra­wickmanite exhibits tetra­gonal symmetry and is topologically similar to its cubic polymorph, wickmanite. The tetra­wickmanite structure is characterized by a framework of alternating corner-linked [Mn2+(OH)6] and [Sn4+(OH)6] octa­hedra, both with point-group symmetry -1. Four of the five distinct H atoms in the structure are statistically disordered. The vacant A site is in a cavity in the centre of a distorted cube formed by eight octa­hedra at the corners. However, the hydrogen-atom positions and their hydrogen bonds are not equivalent in every cavity, resulting in two distinct environments. One of the cavities contains a ring of four hydrogen bonds, similar to that found in wickmanite, while the other cavity is more distorted and forms crankshaft-type chains of hydrogen bonds, as previously proposed for tetra­gonal stottite, Fe2+Ge4+(OH)6. PMID:25878828

  16. Crystal structure of tetra-wickmanite, Mn(2+)Sn(4+)(OH)6.

    PubMed

    Lafuente, Barbara; Yang, Hexiong; Downs, Robert T

    2015-02-01

    The crystal structure of tetra-wickmanite, ideally Mn(2+)Sn(4+)(OH)6 [mangan-ese(II) tin(IV) hexa-hydroxide], has been determined based on single-crystal X-ray diffraction data collected from a natural sample from Långban, Sweden. Tetra-wickmanite belongs to the octa-hedral-framework group of hydroxide-perovskite minerals, described by the general formula BB'(OH)6 with a perovskite derivative structure. The structure differs from that of an ABO3 perovskite in that the A site is empty while each O atom is bonded to an H atom. The perovskite B-type cations split into ordered B and B' sites, which are occupied by Mn(2+) and Sn(4+), respectively. Tetra-wickmanite exhibits tetra-gonal symmetry and is topologically similar to its cubic polymorph, wickmanite. The tetra-wickmanite structure is characterized by a framework of alternating corner-linked [Mn(2+)(OH)6] and [Sn(4+)(OH)6] octa-hedra, both with point-group symmetry -1. Four of the five distinct H atoms in the structure are statistically disordered. The vacant A site is in a cavity in the centre of a distorted cube formed by eight octa-hedra at the corners. However, the hydrogen-atom positions and their hydrogen bonds are not equivalent in every cavity, resulting in two distinct environments. One of the cavities contains a ring of four hydrogen bonds, similar to that found in wickmanite, while the other cavity is more distorted and forms crankshaft-type chains of hydrogen bonds, as previously proposed for tetra-gonal stottite, Fe(2+)Ge(4+)(OH)6. PMID:25878828

  17. Magnetic excitations from an S = 1/2 antiferromagnetic tetramer system Cu2 PO 4OH

    NASA Astrophysics Data System (ADS)

    Matsuda, M.; Abernathy, D. L.; Totsuka, K.; Belik, A. A.

    2011-03-01

    Cu 2 PO4 OH is a candidate material for the S = 1/2 diamond-shaped antiferromagnetic tetramer system. The magnetic susceptibility shows a spin-gap behavior and the exchange interaction J was estimated to be 138 K. Since there have not been so many experimental studies in the spin tetramer systems, it is important to clarify the magnetism in this compound. We have performed inelastic neutron scattering experiments on a powder sample of Cu 2 PO4 OH on a chopper neutron spectrometer ARCS installed at SNS at ORNL in order to study the magnetic excitations from the tetramer spin system. We have clearly observed two magnetic excitations at ~ 12 and ~ 20 meV, whose widths in energy are broader than the instrumental resolution. It was found that the energy levels cannot be explained with the simple antiferromagnetic tetramer model with only nearest-neighbor interaction. We will discuss the results including further-neighbor interactions. A. A. Belik et al., Inorg. Chem. 46, 8684 (2007).

  18. Theoretical prediction of nuclear magnetic shieldings and indirect spin-spin coupling constants in 1,1-, cis-, and trans-1,2-difluoroethylenes

    SciTech Connect

    Nozirov, Farhod E-mail: farhod.nozirov@gmail.com; Stachów, Michał; Kupka, Teobald E-mail: farhod.nozirov@gmail.com

    2014-04-14

    A theoretical prediction of nuclear magnetic shieldings and indirect spin-spin coupling constants in 1,1-, cis- and trans-1,2-difluoroethylenes is reported. The results obtained using density functional theory (DFT) combined with large basis sets and gauge-independent atomic orbital calculations were critically compared with experiment and conventional, higher level correlated electronic structure methods. Accurate structural, vibrational, and NMR parameters of difluoroethylenes were obtained using several density functionals combined with dedicated basis sets. B3LYP/6-311++G(3df,2pd) optimized structures of difluoroethylenes closely reproduced experimental geometries and earlier reported benchmark coupled cluster results, while BLYP/6-311++G(3df,2pd) produced accurate harmonic vibrational frequencies. The most accurate vibrations were obtained using B3LYP/6-311++G(3df,2pd) with correction for anharmonicity. Becke half and half (BHandH) density functional predicted more accurate {sup 19}F isotropic shieldings and van Voorhis and Scuseria's τ-dependent gradient-corrected correlation functional yielded better carbon shieldings than B3LYP. A surprisingly good performance of Hartree-Fock (HF) method in predicting nuclear shieldings in these molecules was observed. Inclusion of zero-point vibrational correction markedly improved agreement with experiment for nuclear shieldings calculated by HF, MP2, CCSD, and CCSD(T) methods but worsened the DFT results. The threefold improvement in accuracy when predicting {sup 2}J(FF) in 1,1-difluoroethylene for BHandH density functional compared to B3LYP was observed (the deviations from experiment were −46 vs. −115 Hz)

  19. Molecular pharmacodynamics of emixustat in protection against retinal degeneration.

    PubMed

    Zhang, Jianye; Kiser, Philip D; Badiee, Mohsen; Palczewska, Grazyna; Dong, Zhiqian; Golczak, Marcin; Tochtrop, Gregory P; Palczewski, Krzysztof

    2015-07-01

    Emixustat is a visual cycle modulator that has entered clinical trials as a treatment for age-related macular degeneration (AMD). This molecule has been proposed to inhibit the visual cycle isomerase RPE65, thereby slowing regeneration of 11-cis-retinal and reducing production of retinaldehyde condensation byproducts that may be involved in AMD pathology. Previously, we reported that all-trans-retinal (atRAL) is directly cytotoxic and that certain primary amine compounds that transiently sequester atRAL via Schiff base formation ameliorate retinal degeneration. Here, we have shown that emixustat stereoselectively inhibits RPE65 by direct active site binding. However, we detected the presence of emixustat-atRAL Schiff base conjugates, indicating that emixustat also acts as a retinal scavenger, which may contribute to its therapeutic effects. Using agents that lack either RPE65 inhibitory activity or the capacity to sequester atRAL, we assessed the relative importance of these 2 modes of action in protection against retinal phototoxicity in mice. The atRAL sequestrant QEA-B-001-NH2 conferred protection against phototoxicity without inhibiting RPE65, whereas an emixustat derivative incapable of atRAL sequestration was minimally protective, despite direct inhibition of RPE65. These data indicate that atRAL sequestration is an essential mechanism underlying the protective effects of emixustat and related compounds against retinal phototoxicity. Moreover, atRAL sequestration should be considered in the design of next-generation visual cycle modulators. PMID:26075817

  20. Molecular pharmacodynamics of emixustat in protection against retinal degeneration

    PubMed Central

    Zhang, Jianye; Kiser, Philip D.; Badiee, Mohsen; Palczewska, Grazyna; Dong, Zhiqian; Golczak, Marcin; Tochtrop, Gregory P.; Palczewski, Krzysztof

    2015-01-01

    Emixustat is a visual cycle modulator that has entered clinical trials as a treatment for age-related macular degeneration (AMD). This molecule has been proposed to inhibit the visual cycle isomerase RPE65, thereby slowing regeneration of 11-cis-retinal and reducing production of retinaldehyde condensation byproducts that may be involved in AMD pathology. Previously, we reported that all-trans-retinal (atRAL) is directly cytotoxic and that certain primary amine compounds that transiently sequester atRAL via Schiff base formation ameliorate retinal degeneration. Here, we have shown that emixustat stereoselectively inhibits RPE65 by direct active site binding. However, we detected the presence of emixustat-atRAL Schiff base conjugates, indicating that emixustat also acts as a retinal scavenger, which may contribute to its therapeutic effects. Using agents that lack either RPE65 inhibitory activity or the capacity to sequester atRAL, we assessed the relative importance of these 2 modes of action in protection against retinal phototoxicity in mice. The atRAL sequestrant QEA-B-001-NH2 conferred protection against phototoxicity without inhibiting RPE65, whereas an emixustat derivative incapable of atRAL sequestration was minimally protective, despite direct inhibition of RPE65. These data indicate that atRAL sequestration is an essential mechanism underlying the protective effects of emixustat and related compounds against retinal phototoxicity. Moreover, atRAL sequestration should be considered in the design of next-generation visual cycle modulators. PMID:26075817

  1. Study of the orientation of retinal in bovine rhodopsin: the use of a photoactivatable retinal analog

    SciTech Connect

    Nakayama, T.

    1987-05-01

    Rhodopsin is the major transmembrane protein in the photoreceptor cells of vertebrate and invertebrate retina. Bovine rhodopsin consists of a polypeptide chain of 348 amino acids of known sequence in which the chromophore, 11-cis-retinal, is linked to Lys-296 as a Schiff base. To investigate the orientation of retinal in the protein and to study the interactions between retinal and the protein, the authors have developed a crosslinking approach using a /sup 3/H-labeled photoactivatable analog of retinal. Bleached rhodopsin in rod outer segments was reconstituted with the analog to give a pigment with lambda/sub max/ at 460nm. Reduction of the Schiff base with borane dimenthylamine, followed by degradation with CNBr and sequencing of the radioactive fragment showed that the analog is attached to Lys-296, as in the native rhodopsin. Further, the reconstitute protein after photolysis was phosphorylated by rhodopsin kinase. Photolysis of the reconstituted pigment at -15/sup 0/C resulted in crosslinking of the analog to the opsin to the extent of 30% as analyzed by SDS electrophoresis. The site(s) of crosslinking in the protein are under investigation.

  2. Primary amines protect against retinal degeneration in mouse models of retinopathies

    PubMed Central

    Maeda, Akiko; Golczak, Marcin; Chen, Yu; Okano, Kiichiro; Kohno, Hideo; Shiose, Satomi; Ishikawa, Kaede; Harte, William; Palczewska, Grazyna; Maeda, Tadao; Palczewski, Krzysztof

    2011-01-01

    Vertebrate vision is initiated by photoisomerization of the visual pigment chromophore, 11-cis-retinal, and is maintained by continuous regeneration of this retinoid through a series of reactions termed the retinoid cycle. However, toxic side reaction products, especially those involving reactive aldehyde groups of the photoisomered product, all-trans-retinal, can cause severe retinal pathology. Here we lowered peak concentrations of free all-trans-retinal with primary amine-containing FDA-approved drugs that did not inhibit chromophore regeneration in mouse models of retinal degeneration. Schiff base adducts between all-trans-retinal and these amines were identified by mass spectrometry. Adducts were observed in mouse eyes only when an experimental drug protected the retina from degeneration in both short-term and long-term treatment experiments. This study demonstrates a molecular basis of all-trans-retinal-induced retinal pathology and identifies an assemblage of FDA-approved compounds with protective effects against this pathology in a mouse model that displays features of Stargardt’s and age-related retinal degeneration. PMID:22198730

  3. Synthesis, crystal structure, and electrode characteristics of LiMnPO{sub 4}(OH) cathode for lithium batteries

    SciTech Connect

    Yang, Yang; Hirayama, Masaaki; Yonemura, Masao; Kanno, Ryoji

    2012-03-15

    The electrochemical properties of lithium manganese hydroxyphosphate, LiMnPO{sub 4}(OH), with the tavorite structure have been investigated to assess its suitability as a cathode material for lithium batteries. Stoichiometric LiMnPO{sub 4}(OH) was synthesized by an ion-exchange reaction with MnPO{sub 4}{center_dot}H{sub 2}O and LiNO{sub 3}. Lithium (de)intercalation reaction was observed for the first time in the trivalent LiMnPO{sub 4}(OH), and it exhibited a reversible capacity of 110 mA h g{sup -1} with an average cell voltage of 3.4 V (vs. Li) after an irreversible phase change during the first charge process. The crystal structure has been refined at room temperature by neutron and synchrotron X-ray diffraction data using Rietveld method with a space group of P-1. The hydroxy group at a bottleneck may reduce the attraction force between lithium and the bottleneck oxygen ions that thus increase the ion mobility along the lithium diffusion tunnel. - Graphical abstract: Tavorite-type material LiMnPO{sub 4}(OH) shows lithium intercalation at an average voltage of 3.4 V (vs. Li) after a phase transition during the first charge-discharge. Highlights: Black-Right-Pointing-Pointer Tavorite-type LiMnPO{sub 4}(OH) nanoparticles as a cathode material for lithium battery. Black-Right-Pointing-Pointer Synchrotron XRD and neutron diffraction refinement of LiMnPO{sub 4}(OH). Black-Right-Pointing-Pointer Lithium intercalation reaction occurs in LiMnPO{sub 4}(OH) during charge-discharge. Black-Right-Pointing-Pointer A phase transition in the first charge, followed by a reversible reaction.

  4. K3B3O4(OH)4·2H2O: A UV Nonlinear Optical Crystal with Isolated [B3O4(OH)4](3-) Anion Groups.

    PubMed

    Liu, Qiong; Zhang, Xiangyu; Yang, Zhihua; Zhang, Fangfang; Liu, Lili; Han, Jian; Li, Zhi; Pan, Shilie

    2016-09-01

    A potential ultraviolet (UV) nonlinear optical (NLO) material, K3B3O4(OH)4·2H2O, was successfully synthesized by hydrothermal methods. The compound crystallizes into the Cmc21 space group and exhibits isolated [B3O4(OH)4](3-) anion groups connected by O-H···O hydrogen bonds. The UV-vis diffuse reflectance spectrum shows that K3B3O4(OH)4·2H2O has a wide transparency range with an absorption edge below 190 nm. Powder second harmonic generation (SHG) measurements using 1064 nm radiation revealed a moderate efficiency, 0.8 × KDP. Additional particle size vs SHG efficiency measurements indicate that K3B3O4(OH)4·2H2O is type I phase-matchable. Our calculated results show that the borate groups as well as the waters of hydration determine the NLO properties of K3B3O4(OH)4·2H2O. PMID:27504674

  5. Novel sodium/lithium-ion anode material based on ultrathin Na2Ti2O4(OH)2 nanosheet.

    PubMed

    Zhang, Yuping; Guo, Lin; Yang, Shihe

    2015-09-21

    Ultrathin Na2Ti2O4(OH)2 nanosheets of ∼8 nm thickness were prepared by a facile method for the first time. The resulting material was also used as a conducting agent and binder-free anode, both for sodium-ion batteries and lithium-ion batteries, for the first time. The Na2Ti2O4(OH)2 nanosheets exhibited excellent Na/Li-ion storage performance. A long-term cycling performance of the ultrathin Na2Ti2O4(OH)2 nanosheets of 120 mA h g(-1) at ∼10C was retained after 500 cycles for sodium-ion batteries, and 150 mA h g(-1) at ∼1C was kept after 500 cycles for lithium-ion batteries. By comparison, the Na-ion storage performance is much better than the Li-ion storage performance of the Na2Ti2O4(OH)2 nanosheets anode, because of the existence of Na in the Na2Ti2O4(OH)2 host. PMID:26136228

  6. CB1 and CB2 receptors are novel molecular targets for Tamoxifen and 4OH-Tamoxifen

    SciTech Connect

    Prather, Paul L.; FrancisDevaraj, FeAna; Dates, Centdrika R.; Greer, Aleksandra K.; Bratton, Stacie M.; Ford, Benjamin M.; Franks, Lirit N.; Radominska-Pandya, Anna

    2013-11-15

    Highlights: •Tamoxifen produces cytotoxicity via estrogen-receptor (ER) independent mechanisms. •Tamoxifen binds to CB1 and CB2 cannabinoid receptors and acts as an inverse agonist. •CB1 and CB2 receptors are novel molecular targets for Tamoxifen. •ER-independent effects for Tamoxifen may be mediated via CB1 and/or CB2 receptors. -- Abstract: Tamoxifen (Tam) is classified as a selective estrogen receptor modulator (SERM) and is used for treatment of patients with ER-positive breast cancer. However, it has been shown that Tam and its cytochrome P450-generated metabolite 4-hydroxy-Tam (4OH-Tam) also exhibit cytotoxic effects in ER-negative breast cancer cells. These observations suggest that Tam and 4OH-Tam can produce cytotoxicity via estrogen receptor (ER)-independent mechanism(s) of action. The molecular targets responsible for the ER-independent effects of Tam and its derivatives are poorly understood. Interestingly, similar to Tam and 4OH-Tam, cannabinoids have also been shown to exhibit anti-proliferative and apoptotic effects in ER-negative breast cancer cells, and estrogen can regulate expression levels of cannabinoid receptors (CBRs). Therefore, this study investigated whether CBRs might serve as novel molecular targets for Tam and 4OH-Tam. We report that both compounds bind to CB1 and CB2Rs with moderate affinity (0.9–3 μM). Furthermore, Tam and 4OH-Tam exhibit inverse activity at CB1 and CB2Rs in membrane preparations, reducing basal G-protein activity. Tam and 4OH-Tam also act as CB1/CB2R-inverse agonists to regulate the downstream intracellular effector adenylyl cyclase in intact cells, producing concentration-dependent increases in intracellular cAMP. These results suggest that CBRs are molecular targets for Tam and 4OH-Tam and may contribute to the ER-independent cytotoxic effects reported for these drugs. Importantly, these findings also indicate that Tam and 4OH-Tam might be used as structural scaffolds for development of novel

  7. Redetermination of kovdorskite, Mg2PO4(OH)·3H2O

    PubMed Central

    Morrison, Shaunna M.; Downs, Robert T.; Yang, Hexiong

    2012-01-01

    The crystal structure of kovdorskite, ideally Mg2PO4(OH)·3H2O (dimagnesium phosphate hydroxide trihydrate), was reported previously with isotropic displacement paramaters only and without H-atom positions [Ovchinnikov et al. (1980 ▶). Dokl. Akad. Nauk SSSR. 255, 351–354]. In this study, the kovdorskite structure is redetermined based on single-crystal X-ray diffraction data from a sample from the type locality, the Kovdor massif, Kola Peninsula, Russia, with anisotropic displacement parameters for all non-H atoms, with all H-atom located and with higher precision. Moreover, inconsistencies of the previously published structural data with respect to reported and calculated X-ray powder patterns are also discussed. The structure of kovdorskite contains a set of four edge-sharing MgO6 octa­hedra inter­connected by PO4 tetra­hedra and O—H⋯O hydrogen bonds, forming columns and channels parallel to [001]. The hydrogen-bonding system in kovdorskite is formed through the water mol­ecules, with the OH− ions contributing little, if any, to the system, as indicated by the long H⋯A distances (>2.50 Å) to the nearest O atoms. The hydrogen-bond lengths determined from the structure refinement agree well with Raman spectroscopic data. PMID:22346789

  8. Anisotropy: Spin order and magnetization of single-crystalline Cu4(OH) 6FBr barlowite

    NASA Astrophysics Data System (ADS)

    Han, Tian-Heng; Isaacs, Eric D.; Schlueter, John A.; Singleton, John

    2016-06-01

    Despite decades-long fascination, the difficulty of maintaining high lattice symmetry in frustrated nonbipartite S =1/2 materials that can also be made into high-quality single crystals has been a persistent challenge. Here we report magnetization studies of a single-crystal sample of barlowite, Cu4(OH) 6 FBr , which has a geometrically perfect kagome motif. At T ≤4.2 K and 35 ≤μ0H ≤65 T, the interlayer spins are fully polarized, and the kagome-intrinsic magnetization is consistent with a Heisenberg model having J /kB=-180 K. Several field-driven anomalies are observed, having varied scalings with temperature. At an applied field, kagome disorder caused by the interlayer spins is smaller than that in herbertsmithite. At T ≤ 15 K, the bulk magnetic moment comes from the interlayer spins. An almost coplanar spin order suggests that the magnitude of in-plane Dzyaloshinskii-Moriya interaction is smaller than 0.006(6) J . On the other hand, the possibility of a spin-liquid state in the kagome lattice coexisting with ordered interlayer spins is left open.

  9. Retinal Prosthesis

    PubMed Central

    Weiland, James D.; Humayun, Mark S.

    2015-01-01

    Retinal prosthesis have been translated from the laboratory to the clinical over the past two decades. Currently, two devices have regulatory approval for the treatment of retinitis pigmentosa. These devices provide partial sight restoration and patients use this improved vision in their everyday lives. Improved mobility and object detection are some of the more notable findings from the clinical trials. However, significant vision restoration will require both better technology and improved understanding of the interaction between electrical stimulation and the retina. This paper reviews the recent clinical trials, highlights technology breakthroughs that will contribute to next generation of retinal prostheses. PMID:24710817

  10. Foveomacular retinitis.

    PubMed Central

    Kuming, B S

    1986-01-01

    A group of patients is described who developed the clinical features of foveomacular retinitis. No causative factors were isolated, and all patients strongly denied any type of sun gazing. It is possible that there is a group of patients who have the features of foveomacular retinitis but have not had any direct exposure to the sun. These patients would then constitute a primary type of foveomacular retinitis, as opposed to a secondary type which has a known cause and is synonymous with solar retinopathy. Images PMID:3790482

  11. Thermal Stability of Rhodopsin and Progression of Retinitis Pigmentosa

    PubMed Central

    Liu, Monica Yun; Liu, Jian; Mehrotra, Devi; Liu, Yuting; Guo, Ying; Baldera-Aguayo, Pedro A.; Mooney, Victoria L.; Nour, Adel M.; Yan, Elsa C. Y.

    2013-01-01

    Over 100 point mutations in the rhodopsin gene have been associated with retinitis pigmentosa (RP), a family of inherited visual disorders. Among these, we focused on characterizing the S186W mutation. We compared the thermal properties of the S186W mutant with another RP-causing mutant, D190N, and with WT rhodopsin. To assess thermal stability, we measured the rate of two thermal reactions contributing to the thermal decay of rhodopsin as follows: thermal isomerization of 11-cis-retinal and hydrolysis of the protonated Schiff base linkage between the 11-cis-retinal chromophore and opsin protein. We used UV-visible spectroscopy and HPLC to examine the kinetics of these reactions at 37 and 55 °C for WT and mutant rhodopsin purified from HEK293 cells. Compared with WT rhodopsin and the D190N mutant, the S186W mutation dramatically increases the rates of both thermal isomerization and dark state hydrolysis of the Schiff base by 1–2 orders of magnitude. The results suggest that the S186W mutant thermally destabilizes rhodopsin by disrupting a hydrogen bond network at the receptor's active site. The decrease in the thermal stability of dark state rhodopsin is likely to be associated with higher levels of dark noise that undermine the sensitivity of rhodopsin, potentially accounting for night blindness in the early stages of RP. Further studies of the thermal stability of additional pathogenic rhodopsin mutations in conjunction with clinical studies are expected to provide insight into the molecular mechanism of RP and test the correlation between rhodopsin's thermal stability and RP progression in patients. PMID:23625926

  12. Retinal orientation and interactions in rhodopsin reveal a two-stage trigger mechanism for activation.

    PubMed

    Kimata, Naoki; Pope, Andreyah; Eilers, Markus; Opefi, Chikwado A; Ziliox, Martine; Hirshfeld, Amiram; Zaitseva, Ekaterina; Vogel, Reiner; Sheves, Mordechai; Reeves, Philip J; Smith, Steven O

    2016-01-01

    The 11-cis retinal chromophore is tightly packed within the interior of the visual receptor rhodopsin and isomerizes to the all-trans configuration following absorption of light. The mechanism by which this isomerization event drives the outward rotation of transmembrane helix H6, a hallmark of activated G protein-coupled receptors, is not well established. To address this question, we use solid-state NMR and FTIR spectroscopy to define the orientation and interactions of the retinal chromophore in the active metarhodopsin II intermediate. Here we show that isomerization of the 11-cis retinal chromophore generates strong steric interactions between its β-ionone ring and transmembrane helices H5 and H6, while deprotonation of its protonated Schiff's base triggers the rearrangement of the hydrogen-bonding network involving residues on H6 and within the second extracellular loop. We integrate these observations with previous structural and functional studies to propose a two-stage mechanism for rhodopsin activation. PMID:27585742

  13. Retinal Disorders

    MedlinePlus

    ... be serious enough to cause blindness. Examples are Macular degeneration - a disease that destroys your sharp, central vision Diabetic eye disease Retinal detachment - a medical emergency, when the retina is ... children. Macular pucker - scar tissue on the macula Macular hole - ...

  14. Retinal Detachment

    MedlinePlus

    ... immediately. Treatment How is retinal detachment treated? Small holes and tears are treated with laser surgery or ... laser surgery tiny burns are made around the hole to “weld” the retina back into place. Cryopexy ...

  15. a Search for Interstellar Carbon-Chain Alcohol HC4OH in the Star Forming Region L1527

    NASA Astrophysics Data System (ADS)

    Araki, Mitsunori; Takano, Shuro; Koshikawa, Hiromichi Yamabe Naohiro; Tsukiyama, Koichi; Nakane, Aya; Okabatyashi, Toshiaki; Kunimatsu, Arisa; Kuze, Nobuhiko

    2011-06-01

    We have made a sensitive search for the rotational transitions of carbon-chain alcohol HC_4OH with the frequency ragne from 21.2 to 46.7 GHz in the star forming region L1527 in Taurus with rich carbon-chain chemistry. The incentive of this observation was a laboratory detection of HC_4OH by the microwave spectroscopy. Despite achieving an rms of several mK in antenna temperature by the 45m telescope at Nobeyama Radio Observatory, the searche for HC_4OH was negative, leading to a 5 sigma upper limit corresponding to the column density of 4 × 1012 Cm-2 based on the excitation temperature of 12.3 K. The upper limit indicates that the [HC_4-OH]/[HC_4-CN] ratio is less than 1.0. The ratio suggests that the cyanide species with carbon-chain structure is dominant in comparison with the hydroxyl one in L1527, which can be the opposite case of saturated compounds, e.g. CH_3OH and CH_3CN, in hot cores and dark clouds.

  16. Magnetic excitations from an S=1/2 diamond-shaped tetramer compound Cu2PO4OH

    DOE PAGESBeta

    Matsuda, Masaaki; Dissanayake, Sachith E.; Abernathy, Douglas L.; Totsuka, K.; Belik, A. A.

    2015-11-30

    Inelastic neutron scattering experiments have been carried out on a powder sample of Cu2PO4OH, which consists of diamond-shaped tetramer spin units with S=1/2. We have observed two nearly dispersionless magnetic excitations at E1 ~2 and E2 ~0 meV, whose energy width are broader than the instrumental resolution. The simplest square tetramer model with one dominant interaction, which predicts two sharp excitation peaks at E1 and E2(=2E1), does not explain the experimental result. We found that two diagonal intratetramer interactions compete with the main interaction and weak intertetramer interactions connect the tetramers. The main intratetramer interaction is found to split intomore » two inequivalent ones due to a structural distortion below 160 K. Cu2PO4OH is considered to be a good material to study the S=1/2 Heisenberg tetramer system.« less

  17. Ab initio simulation of ammonia monohydrate (NH3ṡH2O) and ammonium hydroxide (NH4OH)

    NASA Astrophysics Data System (ADS)

    Fortes, A. D.; Brodholt, J. P.; Wood, I. G.; Vočadlo, L.; Jenkins, H. D. B.

    2001-10-01

    We report the results of the first pseudopotential plane-wave simulations of the static properties of ammonia monohydrate phase I (AMH I) and ammonium hydroxide. Our calculated fourth-order logarithmic equation of state, at zero pressure and temperature, has molar volume, V0=36.38(3) cm3 mol-1, bulk modulus, K0=9.59(9) GPa, and the first derivative of the bulk modulus with respect to pressure, K0'=5.73(21). Both this and the lattice parameters are in very good agreement with experimental values. The monohydrate transforms, via a solid-state proton transfer reaction, to ammonium hydroxide (NH4OH) at 5.0(4) GPa. The equation of state of ammonium hydroxide is, V0=31.82(5) cm3 mol-1, K0=14.78(62) GPa, K0'=2.69(48). We calculate the reaction enthalpy, ΔH(NH4OH,s→NH3ṡH2O,s)=-14.8(5) kJ mol-1 at absolute zero, and thus estimate the enthalpy of formation, ΔfH⊖(NH4OH,s)=-356 kJ mol-1 at 298 K. This result places an upper limit of 84 kJ mol-1 on the barrier to rotation of the ammonium cation, and yields an average hydrogen bond enthalpy of ˜23 kJ mol-1.

  18. Redetermination of eveite, Mn2AsO4(OH), based on single-crystal X-ray diffraction data

    PubMed Central

    Yang, Yongbo W.; Stevenson, Ryan A.; Siegel, Alesha M.; Downs, Gordon W.

    2011-01-01

    The crystal structure of eveite, ideally Mn2(AsO4)(OH) [dimanganese(II) arsenate(V) hydroxide], was refined from a single crystal selected from a co-type sample from Långban, Filipstad, Varmland, Sweden. Eveite, dimorphic with sarkinite, is structurally analogous with the important rock-forming mineral andalusite, Al2OSiO4, and belongs to the libethenite group. Its structure consists of chains of edge-sharing distorted [MnO4(OH)2] octa­hedra (..2 symmetry) extending parallel to [001]. These chains are cross-linked by isolated AsO4 tetra­hedra (..m symmetry) through corner-sharing, forming channels in which dimers of edge-sharing [MnO4(OH)] trigonal bipyramids (..m symmetry) are located. In contrast to the previous refinement from Weissenberg photographic data [Moore & Smyth (1968 ▶). Am. Mineral. 53, 1841–1845], all non-H atoms were refined with anisotropic displacement param­eters and the H atom was located. The distance of the donor and acceptor O atoms involved in hydrogen bonding is in agreement with Raman spectroscopic data. Examination of the Raman spectra for arsenate minerals in the libethenite group reveals that the position of the peak originating from the O—H stretching vibration shifts to lower wavenumbers from eveite, to adamite, zincolivenite, and olivenite. PMID:22199466

  19. High-pressure synthesis and crystal structure of silicon phosphate hydroxide, SiPO{sub 4}(OH)

    SciTech Connect

    Stearns, Linda A. . E-mail: linda.stearns@asu.edu; Groy, Thomas L.; Leinenweber, Kurt

    2005-09-15

    A new high-pressure phase, silicon phosphate hydroxide, was prepared at 8.3+/-0.5GPa and 1000 deg. C in >98% purity. From X-ray diffraction on a pseudo-merohedrally twinned crystal, it was found that SiPO{sub 4}(OH) crystallizes in a monoclinic cell with space group P2{sub 1}/n (No. 14), a=6.8446(11)A,b=6.8683(13)A,c=6.8446(11)A,{beta}=119.77(1){sup o}, and Z=4. The refinement gave a conventional R{sub obs} of 0.0320 and wR{sub obs} of 0.0864 for the overlapped data from both twin components. In the structure, SiO{sub 6} octahedra form chains along [101], with PO{sub 4} tetrahedra alternating along the chain in the b-direction. The parallel chains link up with tetrahedral corners from other chains to form a 3-dimensional network. SiPO{sub 4}(OH) belongs to a structural family that includes HgSeO{sub 4}.H{sub 2}O. It is also related to the SbOPO{sub 4} structure by a small distortion that lowers the symmetry from C2/c in SbOPO{sub 4} to P2{sub 1}/c(P2{sub 1}/n) in SiPO{sub 4}(OH)

  20. One-dimensional inorganic arrangement in the bismuth oxalate hydroxide Bi(C{sub 2}O{sub 4})OH

    SciTech Connect

    Rivenet, Murielle Roussel, Pascal; Abraham, Francis

    2008-10-15

    Single crystals of Bi(C{sub 2}O{sub 4})OH were obtained by the slow diffusion of Bi{sup 3+} cations through silica gel impregnated with oxalic acid. The structure was solved in the Pnma space group with a=6.0853(2) A, b=11.4479(3) A, c=5.9722(2) A, leading to R=0.0188 and wR=0.0190 from 513 unique reflections. The bismuth coordination polyhedron is a BiO{sub 6}E pentagonal bipyramid with the lone pair E sitting at an axial vertex. The opposite axial vertex is occupied by a hydroxyl oxygen atom, which is also an equatorial corner of a neighboring BiO{sub 6}E bipyramid. The sharing of the hydroxyl oxygen atoms build {sub {infinity}}{sup 1}[BiO{sub 5}E] zig-zag chains running down the [100] direction. These chains are aligned in a sheet parallel to the (010) plane and are further connected through oxalate ions to form a three-dimensional arrangement. On heating, Bi(C{sub 2}O{sub 4})OH decomposes to the meta-stable quadratic {beta}-Bi{sub 2}O{sub 3} phase. - Graphical abstract: {sub {infinity}}{sup 1}[BiO{sub 5}E] zig-zag chains running down [100] in Bi(C{sub 2}O{sub 4})OH.

  1. Retinal detachment

    MedlinePlus

    ... of the first symptoms of new flashes of light and floaters. ... diabetes. See your eye care specialist once a year. You may need more frequent visits if you have risk factors for retinal detachment. Be alert to symptoms of new flashes of light and floaters.

  2. S1 and S2 Excited States of Gas-Phase Schiff-Base Retinal Chromophores

    NASA Astrophysics Data System (ADS)

    Nielsen, I. B.; Lammich, L.; Andersen, L. H.

    2006-01-01

    Photoabsorption studies of 11-cis and all-trans Schiff-base retinal chromophore cations in the gas phase have been performed at the electrostatic ion storage ring in Aarhus. A broad absorption band due to the optically allowed excitation to the first electronically excited singlet state (S1) is observed at around 600 nm. A second “dark” excited state (S2) just below 400 nm is reported for the first time. It is located ˜1.2eV above S1 for both chromophores. The S2 state was not visible in a solution measurement where only one highly blueshifted absorption band corresponding to the first excited state was visible. Knowledge of the position of the excited states in retinal is essential for the understanding of the fast photoisomerization in, for example, visual pigments.

  3. Probing Mechanisms of Photoreceptor Degeneration in a New Mouse Model of the Common Form of Autosomal Dominant Retinitis Pigmentosa due to P23H Opsin Mutations*♦

    PubMed Central

    Sakami, Sanae; Maeda, Tadao; Bereta, Grzegorz; Okano, Kiichiro; Golczak, Marcin; Sumaroka, Alexander; Roman, Alejandro J.; Cideciyan, Artur V.; Jacobson, Samuel G.; Palczewski, Krzysztof

    2011-01-01

    Rhodopsin, the visual pigment mediating vision under dim light, is composed of the apoprotein opsin and the chromophore ligand 11-cis-retinal. A P23H mutation in the opsin gene is one of the most prevalent causes of the human blinding disease, autosomal dominant retinitis pigmentosa. Although P23H cultured cell and transgenic animal models have been developed, there remains controversy over whether they fully mimic the human phenotype; and the exact mechanism by which this mutation leads to photoreceptor cell degeneration remains unknown. By generating P23H opsin knock-in mice, we found that the P23H protein was inadequately glycosylated with levels 1–10% that of wild type opsin. Moreover, the P23H protein failed to accumulate in rod photoreceptor cell endoplasmic reticulum but instead disrupted rod photoreceptor disks. Genetically engineered P23H mice lacking the chromophore showed accelerated photoreceptor cell degeneration. These results indicate that most synthesized P23H protein is degraded, and its retinal cytotoxicity is enhanced by lack of the 11-cis-retinal chromophore during rod outer segment development. PMID:21224384

  4. Retinal Detachment Vision Simulator

    MedlinePlus

    ... Retina Treatment Retinal Detachment Vision Simulator Retinal Detachment Vision Simulator Mar. 01, 2016 How does a detached or torn retina affect your vision? If a retinal tear is occurring, you may ...

  5. Involvement of All-trans-retinal in Acute Light-induced Retinopathy of Mice*S⃞

    PubMed Central

    Maeda, Akiko; Maeda, Tadao; Golczak, Marcin; Chou, Steven; Desai, Amar; Hoppel, Charles L.; Matsuyama, Shigemi; Palczewski, Krzysztof

    2009-01-01

    Exposure to bright light can cause visual dysfunction and retinal photoreceptor damage in humans and experimental animals, but the mechanism(s) remain unclear. We investigated whether the retinoid cycle (i.e. the series of biochemical reactions required for vision through continuous generation of 11-cis-retinal and clearance of all-trans-retinal, respectively) might be involved. Previously, we reported that mice lacking two enzymes responsible for clearing all-trans-retinal, namely photoreceptor-specific ABCA4 (ATP-binding cassette transporter 4) and RDH8 (retinol dehydrogenase 8), manifested retinal abnormalities exacerbated by light and associated with accumulation of diretinoid-pyridinium-ethanolamine (A2E), a condensation product of all-trans-retinal and a surrogate marker for toxic retinoids. Now we show that these mice develop an acute, light-induced retinopathy. However, cross-breeding these animals with lecithin:retinol acyltransferase knock-out mice lacking retinoids within the eye produced progeny that did not exhibit such light-induced retinopathy until gavaged with the artificial chromophore, 9-cis-retinal. No significant ocular accumulation of A2E occurred under these conditions. These results indicate that this acute light-induced retinopathy requires the presence of free all-trans-retinal and not, as generally believed, A2E or other retinoid condensation products. Evidence is presented that the mechanism of toxicity may include plasma membrane permeability and mitochondrial poisoning that lead to caspase activation and mitochondria-associated cell death. These findings further understanding of the mechanisms involved in light-induced retinal degeneration. PMID:19304658

  6. Modeling the rovibrationally excited C2H4OH radicals from the photodissociation of 2-bromoethanol at 193 nm.

    PubMed

    Ratliff, B J; Womack, C C; Tang, X N; Landau, W M; Butler, L J; Szpunar, D E

    2010-04-15

    This study photolytically generates, from 2-bromoethanol photodissociation, the 2-hydroxyethyl radical intermediate of the OH + ethene reaction and measures the velocity distribution of the stable radicals. We introduce an impulsive model to characterize the partitioning of internal energy in the C(2)H(4)OH fragment. It accounts for zero-point and thermal vibrational motion to determine the vibrational energy distribution of the nascent C(2)H(4)OH radicals and the distribution of total angular momentum, J, as a function of the total recoil kinetic energy imparted in the photodissociation. We render this system useful for the study of the subsequent dissociation of the 2-hydroxyethyl radical to the possible asymptotic channels of the OH + ethene reaction. The competition between these channels depends on the internal energy and the J distribution of the radicals. First, we use velocity map imaging to separately resolve the C(2)H(4)OH + Br((2)P(3/2)) and C(2)H(4)OH + Br((2)P(1/2)) photodissociation channels, allowing us to account for the 10.54 kcal/mol partitioned to the Br((2)P(1/2)) cofragment. We determine an improved resonance enhanced multiphoton ionization (REMPI) line strength for the Br transitions at 233.681 nm (5p (4)P(1/2) <-- 4p (2)P(3/2)) and 234.021 nm (5p (2)S(1/2) <-- 4p (2)P(1/2)) and obtain a spin-orbit branching ratio for Br((2)P(1/2)):Br((2)P(3/2)) of 0.26 +/- 0.03:1. Energy and momentum conservation give the distribution of total internal energy, rotational and vibrational, in the C(2)H(4)OH radicals. Then, using 10.5 eV photoionization, we measure the velocity distribution of the radicals that are stable to subsequent dissociation. The onset of dissociation occurs at internal energies much higher than those predicted by theoretical methods and reflects the significant amount of rotational energy imparted to the C(2)H(4)OH photofragment. Instead of estimating the mean rotational energy with an impulsive model from the equilibrium geometry of 2

  7. Vibrational spectroscopy of the phosphate mineral kovdorskite-Mg2PO4(OH)·3H2O.

    PubMed

    Frost, Ray L; López, Andrés; Xi, Yunfei; Granja, Amanda; Scholz, Ricardo; Lima, Rosa Malena Fernandes

    2013-10-01

    The mineral kovdorskite Mg2PO4(OH)·3H2O was studied by electron microscopy, thermal analysis and vibrational spectroscopy. A comparison of the vibrational spectroscopy of kovdorskite is made with other magnesium bearing phosphate minerals and compounds. Electron probe analysis proves the mineral is very pure. The Raman spectrum is characterized by a band at 965 cm(-1) attributed to the PO4(3-) ν1 symmetric stretching mode. Raman bands at 1057 and 1089 cm(-1) are attributed to the PO4(3-) ν3 antisymmetric stretching modes. Raman bands at 412, 454 and 485 cm(-1) are assigned to the PO4(3-) ν2 bending modes. Raman bands at 536, 546 and 574 cm(-1) are assigned to the PO4(3-) ν4 bending modes. The Raman spectrum in the OH stretching region is dominated by a very sharp intense band at 3681 cm(-1) assigned to the stretching vibration of OH units. Infrared bands observed at 2762, 2977, 3204, 3275 and 3394 cm(-1) are attributed to water stretching bands. Vibrational spectroscopy shows that no carbonate bands are observed in the spectra; thus confirming the formula of the mineral as Mg2PO4(OH)·3H2O. PMID:23778171

  8. Implication of protein tyrosine phosphatase 1B in MCF-7 cell proliferation and resistance to 4-OH tamoxifen

    SciTech Connect

    Blanquart, Christophe; Karouri, Salah-Eddine; Issad, Tarik

    2009-10-02

    The protein tyrosine phosphatase 1B (PTP1B) and the T-cell protein tyrosine phosphatase (TC-PTP) were initially thought to be mainly anti-oncogenic. However, overexpression of PTP1B and TC-PTP has been observed in human tumors, and recent studies have demonstrated that PTP1B contributes to the appearance of breast tumors by modulating ERK pathway. In the present work, we observed that decreasing the expression of TC-PTP or PTP1B in MCF-7 cells using siRNA reduced cell proliferation without affecting cell death. This reduction in proliferation was associated with decreased ERK phosphorylation. Moreover, selection of tamoxifen-resistant MCF-7 cells, by long-term culture in presence of 4-OH tamoxifen, resulted in cells that display overexpression of PTP1B and TC-PTP, and concomitant increase in ERK and STAT3 phosphorylation. siRNA experiments showed that PTP1B, but not TC-PTP, is necessary for resistance to 4-OH tamoxifen. Therefore, our work indicates that PTP1B could be a relevant therapeutic target for treatment of tamoxifen-resistant breast cancers.

  9. Vibrational spectroscopy of the phosphate mineral kovdorskite - Mg2PO4(OH)ṡ3H2O

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; López, Andrés; Xi, Yunfei; Granja, Amanda; Scholz, Ricardo; Lima, Rosa Malena Fernandes

    2013-10-01

    The mineral kovdorskite Mg2PO4(OH)ṡ3H2O was studied by electron microscopy, thermal analysis and vibrational spectroscopy. A comparison of the vibrational spectroscopy of kovdorskite is made with other magnesium bearing phosphate minerals and compounds. Electron probe analysis proves the mineral is very pure. The Raman spectrum is characterized by a band at 965 cm-1 attributed to the PO43- ν1 symmetric stretching mode. Raman bands at 1057 and 1089 cm-1 are attributed to the PO43- ν3 antisymmetric stretching modes. Raman bands at 412, 454 and 485 cm-1 are assigned to the PO43- ν2 bending modes. Raman bands at 536, 546 and 574 cm-1 are assigned to the PO43- ν4 bending modes. The Raman spectrum in the OH stretching region is dominated by a very sharp intense band at 3681 cm-1 assigned to the stretching vibration of OH units. Infrared bands observed at 2762, 2977, 3204, 3275 and 3394 cm-1 are attributed to water stretching bands. Vibrational spectroscopy shows that no carbonate bands are observed in the spectra; thus confirming the formula of the mineral as Mg2PO4(OH)ṡ3H2O.

  10. Simultaneous analysis of PhIP, 4'-OH-PhIP, and their precursors using UHPLC-MS/MS.

    PubMed

    Yan, Yan; Zeng, Mao-Mao; Zheng, Zong-Ping; He, Zhi-Yong; Tao, Guan-Jun; Zhang, Shuang; Gao, Ya-Hui; Chen, Jie

    2014-12-01

    A novel method allowing simultaneous analysis of PhIP, 4'-OH-PhIP, and their precursors (phenylalanine, tyrosine, creatine, creatinine, glucose) has been developed as a robust kinetic study tool by using ultra high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). A direct hydrochloric acid (HCl) extraction was applied to achieve the simultaneous extraction of all seven analytes, with the mean recoveries ranging from 60% to 120% at two concentration levels. Then, an Atlantis dC18 column selected from four different chromatographic columns was ultimately used to separate these compounds within 15 min. The limits of detection range of allseven analytes were calculated as 0.14-325.00 μg L(-1). The intra- and interday precision of the proposed method were less than 15.4 and 19.9%, respectively. The proposed method was successfully applied to depict the kinetic profiles of PhIP, 4'-OH-PhIP, and their precursors in pork model, reducing the analysis time and cost in the kinetic study. PMID:25407701

  11. Retinal isomer composition in some bacteriorhodopsin mutants under light and dark adaptation conditions

    SciTech Connect

    Song, L.; Yang, D.; El-Sayed, M.A.; Lanyi, J.K.

    1995-06-15

    The isomeric composition of retinal was measured in a number of bacteriorhodopsin (bR) mutants (D85N, D212N, R82A, Y185F, and D115N) under various conditions, using a rapid retinal extraction technique followed by HPLC analysis. Besides the 13-cis and the all-trans retinal isomers observed in wild type (wt) bR under physiological conditions, the 11-cis and 9-cis retinal isomers were observed in variable but minor amounts in the bR mutants. In addition, the values of the equilibrium constant at two temperatures and the enthalpy change for the all-trans to 13-cis isomerization process in the dark-adapted state of D212N, D85N, deionized blue bR, and wt bR were determined. We find that perturbation of the retinal cavity (pocket) by residue replacement changes the relative thermal stability of the different retinal isomers, allowing for thermal-and/or photoisomerization of the retinal chromophore along C{sub 9}-C{sub 10} and C{sub 11}-C{sub 12} bonds to moderately compete with the isomerization around the C{sub 13}-C{sub 14} bond. The bR mutants expressed in Halobacterium salinarium studied in the present work showed normal 13-cis to all-trans light adaptation, in contrast with abnormal all-trans to 13-cis light adaptation observed for D212E, D212A, and D212N expressed in Escherichia coli, suggesting an influence of the purple membrane lattice and/or the lipids on the stability of the different retinal isomers within the protein. 38 refs., 2 tabs.

  12. XPS and UPS Investigation of NH4OH-Exposed Cu(In,Ga)Se2 Thin Films

    SciTech Connect

    Perkins, C. L.; Hasoon, F. S.; Al-Thani, H. A.; Asher, S. E.; Sheldon, P.

    2005-02-01

    Photoelectron spectroscopy was used to determine the compositional and electronic changes occurring in Cu(In,Ga)Se2 thin films as a result of immersion in aqueous ammonia solution. We find that NH4OH-treated CIGS surfaces are preferentially etched of indium and gallium, resulting in the formation of a thin layer of a degenerate Cu-Se compound that we tentatively identify as Cu2Se. The work function of ammonia-treated samples is found to increase by 0.6 eV relative to as-grown CIGS thin films. The uniformity of chemical bath effects (etching & deposition) was found to be improved by the addition to the bath of a non-ionic surfactant. Initial device results show that the new surfactant-based chemical bath deposition (CBD) method may lead to better and thinner CdS buffer layers.

  13. Molecular mechanism of spontaneous pigment activation in retinal cones.

    PubMed

    Sampath, Alapakkam P; Baylor, Denis A

    2002-07-01

    Spontaneous current and voltage fluctuations (dark noise) in the photoreceptor cells of the retina limit the ability of the visual system to detect dim light. We recorded the dark current noise of individual salamander L cones. Previous work showed that the dark noise in these cells arises from thermal activation of the visual pigment. From the temperature dependence of the rate of occurrence of elementary noise events, we found an Arrhenius activation energy E(a) of 25 +/- 7 kcal/mol (mean +/- SD). This E(a) is similar to that reported for the thermal isomerization of 11-cis retinal in solution, suggesting that the cone pigment noise results from isomerization of the retinal chromophore. E(a) for the cone noise is similar to that previously reported for the "photon-like" noise of rods, but the preexponential factor is five orders of magnitude higher. To test the hypothesis that thermal isomerization can only occur in molecules whose Schiff base linkage is unprotonated, we changed the pH of the solution bathing the cone outer segment. This had little effect on the rate of occurrence of elementary noise events. The rate was also unchanged when the cone was exposed to Ringer solution made up from heavy water, whose solvent isotope effect should reduce the probability, that the Schiff base nitrogen is naked. PMID:12080111

  14. Branch retinal vein occlusion.

    PubMed

    Hamid, Sadaf; Mirza, Sajid Ali; Shokh, Ishrat

    2008-01-01

    Retinal vein occlusions (RVO) are the second commonest sight threatening vascular disorder. Branch retinal vein occlusion (BRVO) and central retinal vein occlusion (CRVO) are the two basic types of vein occlusion. Branch retinal vein occlusion is three times more common than central retinal vein occlusion and- second only to diabetic retinopathy as the most common retinal vascular cause of visual loss. The origin of branch retinal vein occlusion undoubtedly includes both systemic factors such as hypertension and local anatomic factors such as arteriovenous crossings. Branch retinal vein occlusion causes a painless decrease in vision, resulting in misty or distorted vision. Current treatment options don't address the underlying aetiology of branch retinal vein occlusion. Instead they focus on treating sequelae of the occluded venous branch, such as macular oedema, vitreous haemorrhage and traction retinal detachment from neovascularization. Evidences suggest that the pathogenesis of various types of retinal vein occlusion, like many other ocular vascular occlusive disorders, is a multifactorial process and there is no single magic bullet that causes retinal vein occlusion. A comprehensive management of patients with retinal vascular occlusions is necessary to correct associated diseases or predisposing abnormalities that could lead to local recurrences or systemic event. Along with a review of the literature, a practical approach for the management of retinal vascular occlusions is required, which requires collaboration between the ophthalmologist and other physicians: general practitioner, cardiologist, internist etc. as appropriate according to each case. PMID:19385476

  15. Elasticity of Hydrous Aluminosilicate Mineral, Topaz-OH (Al2SiO4(OH)2) at High Pressures

    NASA Astrophysics Data System (ADS)

    Hariharan, A.; Mookherjee, M.; Tsuchiya, J.

    2015-12-01

    We examined the equation of state and high-pressure elasticity of the hydrous aluminosilicate mineral topaz-OH (Al2SiO4(OH)2) using first principles simulation. Topaz-OH is a hydrous phase in the Al2O3-SiO2-H2O (ASH) ternary system, which is relevant for the mineral phase relations in the hydrated sedimentary layer of subducting slabs. Based on recent experiments, it is known that the protons in the topaz-OH exhibit positional disorder with half occupancy over two distinct crystallographic sites. In order to adequately depict the proton environment in the topaz-OH, we examined five crystal structure models with distinct configuration for the protons. Upon full geometry optimization, we find that there are two distinct crystal structures for the topaz-OH. The first crystal structure has an orthorhombic Pbnm space group symmetry, and the second crystal structure has a monoclinic P21/c space group symmetry. At static conditions, the monoclinic (P21/c) topaz-OH has lower energy compared to the orthorhombic (Pbnm) topaz-OH. The energy of the monoclinic (P21/c) topaz-OH remains stable at least up to 40 GPa, i.e., pressures beyond the thermodynamic stability of the topaz-OH. Based on the results from first principles simulation, the equation of state for the monoclinic topaz-OH is well represented by a third-order Birch-Murnaghan formulation, with V0 = 348.63 (±0.04) Å3, K0 = 164.7 (±0.04) GPa, and K'0 = 4.24 (±0.05). The equation of state for the orthorhombic topaz-OH is well represented by a third-order Birch-Murnaghan formulation, with V0 = 352.47 (±0.04) Å3, K0 = 166.4 (±0.06) GPa, and K'0 = 4.03 (±0.04). While the bulk modulus is very similar for both the monoclinic and orthorhombic topaz-OH, the shear elastic moduli are very sensitive to the position of the proton and the orientation of the hydroxyl (O-H) groups. In the hydrated sedimentary layer of a subducting slab, transformation of a mineral assemblage consisting of coesite (SiO2) and diaspore (AlOOH) to

  16. Interplay of magnetic sublattices in langite Cu4(OH)6SO4 · 2H2O

    NASA Astrophysics Data System (ADS)

    Lebernegg, S.; Tsirlin, A. A.; Janson, O.; Redhammer, G. J.; Rosner, H.

    2016-03-01

    Magnetic and crystallographic properties of the mineral langite Cu4(OH)6SO{}4\\cdot 2H2O are reported. Thermodynamic measurements combined with a microscopic analysis, based on density-functional bandstructure calculations, identify a quasi-two-dimensional (2D), partially frustrated spin-1/2 lattice resulting in the low Néel temperature of {T}{{N}}≃ 5.7 K. This spin lattice splits into two parts with predominant ferro- and antiferromagnetic (AFM) exchange couplings, respectively. The former, ferromagnetic (FM) part is prone to the long-range magnetic order and saturates around 12 T, where the magnetization reaches 0.5 {μ }{{B}}/Cu. The latter, AFM part features a spin-ladder geometry and should evade long-range magnetic order. This representation is corroborated by the peculiar temperature dependence of the specific heat in the magnetically ordered state. We argue that this separation into ferro- and antiferromagnetic sublattices is generic for quantum magnets in Cu2+ oxides that combine different flavors of structural chains built of CuO4 units. To start from reliable structural data, the crystal structure of langite in the 100-280 K temperature range has been determined by single-crystal x-ray diffraction, and the hydrogen positions were refined computationally.

  17. Thermal analysis and vibrational spectroscopic characterization of the boro silicate mineral datolite - CaBSiO4(OH)

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; Xi, Yunfei; Scholz, Ricardo; Lima, Rosa Malena Fernandes; Horta, Laura Frota Campos; Lopez, Andres

    2013-11-01

    The objective of this work is to determine the thermal stability and vibrational spectra of datolite CaBSiO4(OH) and relate these properties to the structure of the mineral. The thermal analysis of datolite shows a mass loss of 5.83% over a 700-775 °C temperature range. This mass loss corresponds to 1 water (H2O) molecules pfu. A quantitative chemical analysis using electron probe was undertaken. The Raman spectrum of datolite is characterized by bands at 917 and 1077 cm-1 assigned to the symmetric stretching modes of BO and SiO tetrahedra. A very intense Raman band is observed at 3498 cm-1 assigned to the stretching vibration of the OH units in the structure of datolite. BOH out-of-plane vibrations are characterized by the infrared band at 782 cm-1. The vibrational spectra are based upon the structure of datolite based on sheets of four- and eight-membered rings of alternating SiO4 and BO3(OH) tetrahedra with the sheets bonded together by calcium atoms.

  18. Genetic pediatric retinal diseases

    PubMed Central

    Say, Emil Anthony T.

    2014-01-01

    Hereditary pediatric retinal diseases are a diverse group of disorders with pathologies affecting different cellular structures or retinal development. Many can mimic typical pediatric retinal disease such as retinopathy of prematurity, vitreous hemorrhage, retinal detachment and cystoid macular edema. Multisystem involvement is frequently seen in hereditary pediatric retinal disease. A thorough history coupled with a good physical examination can oftentimes lead the ophthalmologist or pediatrician to the correct genetic test and correct diagnosis. In some instances, evaluation of parents or siblings may be required to determine familial involvement when the history is inconclusive or insufficient and clinical suspicion is high.

  19. Intrinsically photosensitive retinal ganglion cells detect light with a vitamin A-based photopigment, melanopsin

    PubMed Central

    Fu, Yingbin; Zhong, Haining; Wang, Min-Hua H.; Luo, Dong-Gen; Liao, Hsi-Wen; Maeda, Hidetaka; Hattar, Samer; Frishman, Laura J.; Yau, King-Wai

    2005-01-01

    In mammals, intrinsically photosensitive retinal ganglion cells (ipRGCs) mediate non-image-forming visual functions such as pupillary light reflex (PLR) and circadian photoentrainment. This photosensitivity requires melanopsin, an invertebrate opsin-like protein expressed by the ipRGCs. The precise role of melanopsin remains uncertain. One suggestion has been that melanopsin may be a photoisomerase, serving to regenerate an unidentified pigment in ipRGCs. This possibility was echoed by a recent report that melanopsin is expressed also in the mouse retinal pigment epithelium (RPE), a key center for regeneration of rod and cone pigments. To address this question, we studied mice lacking RPE65, a protein essential for the regeneration of rod and cone pigments. Rpe65-/- ipRGCs were ≈20- to 40-fold less photosensitive than normal at both single-cell and behavioral (PLR) levels but were rescued by exogenous 9-cis-retinal (an 11-cis-retinal analog), indicating the requirement of a vitamin A-based chromophore for ipRGC photosensitivity. In contrast, 9-cis-retinal was unable to restore intrinsic photosensitivity to melanopsin-ablated ipRGCs, arguing against melanopsin functioning merely in photopigment regeneration. Interestingly, exogenous all-trans-retinal was also able to rescue the low sensitivity of rpe65-/- ipRGCs, suggesting that melanopsin could be a bistable pigment. Finally, we detected no melanopsin in the RPE and no changes in rod and cone sensitivities due to melanopsin ablation. Together, these results strongly suggest that melanopsin is the photopigment in the ipRGCs. PMID:16014418

  20. Conformational Selection and Equilibrium Governs the Ability of Retinals to Bind Opsin*

    PubMed Central

    Schafer, Christopher T.; Farrens, David L.

    2015-01-01

    Despite extensive study, how retinal enters and exits the visual G protein-coupled receptor rhodopsin remains unclear. One clue may lie in two openings between transmembrane helix 1 (TM1) and TM7 and between TM5 and TM6 in the active receptor structure. Recently, retinal has been proposed to enter the inactive apoprotein opsin (ops) through these holes when the receptor transiently adopts the active opsin conformation (ops*). Here, we directly test this “transient activation” hypothesis using a fluorescence-based approach to measure rates of retinal binding to samples containing differing relative fractions of ops and ops*. In contrast to what the transient activation hypothesis model would predict, we found that binding for the inverse agonist, 11-cis-retinal (11CR), slowed when the sample contained more ops* (produced using M257Y, a constitutively activating mutation). Interestingly, the increased presence of ops* allowed for binding of the agonist, all-trans-retinal (ATR), whereas WT opsin showed no binding. Shifting the conformational equilibrium toward even more ops* using a G protein peptide mimic (either free in solution or fused to the receptor) accelerated the rate of ATR binding and slowed 11CR binding. An arrestin peptide mimic showed little effect on 11CR binding; however, it stabilized opsin·ATR complexes. The TM5/TM6 hole is apparently not involved in this conformational selection. Increasing its size by mutagenesis did not enable ATR binding but instead slowed 11CR binding, suggesting that it may play a role in trapping 11CR. In summary, our results indicate that conformational selection dictates stable retinal binding, which we propose involves ATR and 11CR binding to different states, the latter a previously unidentified, open-but-inactive conformation. PMID:25451936

  1. A Search for Interstellar Carbon-chain Alcohol HC4OH in Star-forming Region l1527 and Dark Cloud TMC-1

    NASA Astrophysics Data System (ADS)

    Araki, Mitsunori; Takano, Shuro; Yamabe, Hiromichi; Koshikawa, Naohiro; Tsukiyama, Koichi; Nakane, Aya; Okabayashi, Toshiaki; Kunimatsu, Arisa; Kuze, Nobuhiko

    2012-01-01

    We report a sensitive search for the rotational transitions of the carbon-chain alcohol HC4OH in the frequency range 21.2-46.7 GHz in the star-forming region L1527 and the dark cloud TMC-1. The motivation was laboratory detection of HC4OH by microwave spectroscopy. Despite achieving rms noise levels of several millikelvin in the antenna temperature using the 45 m telescope at Nobeyama Radio Observatory, the detection was not successful, leading to 3σ upper limits corresponding to the column densities of 2.0 × 1012 and 5.6 × 1012 cm-2 in L1527 and TMC-1, respectively. These upper limits indicate that [HC4OH]/[HC5N] ratios are less than 0.3 and 0.1 in L1527 and TMC-1, respectively, where HC5N is an HC4-chain cyanide and HC4OH is a hydroxide. These ratios suggest that the cyano carbon-chain molecule dominates the hydroxyl carbon-chain molecule in L1527 and TMC-1. This is contrary to the case of saturated compounds in hot cores, e.g., CH3OH and CH3CN, and can be a chemical feature of carbon-chain molecules in L1527 and TMC-1. In addition, the column densities of the "unsubstituted" carbon-chain molecule C4H and the sulfur-bearing molecules SO and HCS+ were determined from detected lines in L1527.

  2. The Origin of Bond Selectivity and Excited-State Reactivity in Retinal Analogues.

    PubMed

    Schapiro, Igor

    2016-05-19

    The effect of different conformations and substitutions on the photoisomerization of a retinal protonated Schiff base model is investigated by nonadiabatic molecular dynamics simulations. Three groups of retinal analogues are studied: (i) conformational isomers, (ii) methyl-substituted retinals, and (iii) C11-C12 bond locked retinals. In total 259 trajectories are calculated in the gas phase starting from different initial conditions. The effect on bond selectivity, the directionality of the isomerization, excited-state lifetime, and product distribution is derived from the ensemble of trajectories. Among the group of four isomers (9-, 11-, 13-cis, and all-trans) the 11-cis analogue is the most selective in terms of isomerizing double bond, while the other three produce a mixture of isomers. However, there is no preference for isomerization directionality and the product formation for the 11-cis isomer. In the group of analogues with different methylation patterns, it is found that a methyl group at position C10 can introduce unidirectionality. This methyl group also speeds the photoisomerization. In case of the analogue that is demethylated at the positions C10 and C13, all trajectories isomerize successfully from cis to trans conformation. The three C11-C12 bond locked retinals are found to have very different properties, which depend on the number of methylene units bridging this bond. The five-membered ring imposes a too-large restriction; hence, all trajectories remain on the excited state in the simulation time of 300 fs. The seven-membered ring is more flexible with preference for isomerization of the C9-C10 bond. Interestingly, the eight-membered ring leads to the fastest isomerization time and full directionality of C11-C12 bond isomerization. The trends observed in these simulations can help to understand whether the effects are intrinsic to the chromophore or are induced by the protein environment, by comparing to the trends from experiment. Furthermore

  3. Lahnsteinite, Zn4(SO4)(OH)6 · 3H2O, a new mineral from the Friedrichssegen Mine, Germany

    NASA Astrophysics Data System (ADS)

    Chukanov, N. V.; Rastsvetaeva, R. K.; Aksenov, S. M.; Pekov, I. V.; Belakovskiy, D. I.; Blass, G.; Möhn, G.

    2013-12-01

    A new mineral, lahnsteinite, has been found in the dump of the Friedrichssegen Mine, Bad Ems district, Rhineland-Palatinate (Rheinland-Pfalz), Germany. Lahnsteinite, occurring as colorless tabular crystals in the cavities of goethite, is associated with pyromorphite, hydrozincite, quartz, and native copper. The Mohs' hardness is 1.5; the cleavage is perfect parallel to (001). D calc = 2.995 g/cm3, D meas = 2.98(2) g/cm3. The IR spectrum is given. The new mineral is optically biaxial, negative, α = 1.568(2), β = 1.612(2), γ = 1.613(2), 2 V meas = 18(3)°, 2 V calc = 17°. The chemical composition (wt %, electron microprobe data; H2O was determined by gas chromatography of ignition products) is as follows: 3.87 FeO, 1.68 CuO, 57.85 ZnO, 15.83 SO3, 22.3 H2O, total is 101.53. The empirical formula is (Zn3.3Fe0.27Cu0.11)Σ3.91(S0.98O4)(OH)5 · 3H2.10O. The crystal structure has been studied on a single crystal. Lahnsteinite is triclinic, space group P1, a = 8.3125(6), b = 14.545(1), c = 18.504(2) Å, α = 89.71(1), β = 90.05(1), γ = 90.13(1)°, V = 2237.2(3) Å3, Z = 8. The strong reflections in the X-ray powder diffraction pattern [ d, Å ( I, %)] are: 9.30 (100), 4.175 (18), 3.476 (19), 3.290 (19), 2.723 (57), 2.624 (36), 2.503 (35), 1.574 (23). The mineral has been named after its type locality near the town of Lahnstein. The type specimen of lahnsteinite is deposited in the Fersman Mineralogical Museum of the Russian Academy of Sciences, Moscow, registration number 4252/1.

  4. Genetics Home Reference: retinitis pigmentosa

    MedlinePlus

    ... Me Understand Genetics Home Health Conditions retinitis pigmentosa retinitis pigmentosa Enable Javascript to view the expand/collapse boxes. Download PDF Open All Close All Description Retinitis pigmentosa is a group of related eye disorders that ...

  5. The retinal ciliopathies.

    PubMed

    Adams, N A; Awadein, Ahmed; Toma, Hassanain S

    2007-09-01

    While the functions of many of the proteins located in or associated with the photoreceptor cilia are poorly understood, disruption of the function of these proteins may result in a wide variety of phenotypes ranging from isolated retinal degeneration to more pleiotropic phenotypes. Systemic findings include neurosensory hearing loss, developmental delay, situs-inversus, infertility, disorders of limb and digit development, obesity, kidney disease, liver disease, and respiratory disease. The concept of "retinal ciliopathies" brings to attention the importance of further molecular analysis of this organelle as well as provides a potential common target for therapies for these disorders. The retinal ciliopathies include retinitis pigmentosa, macular degeneration, cone-dystrophy, cone-rod dystrophy, Leber congenital amaurosis, as well as retinal degenerations associated with Usher syndrome, primary ciliary dyskinesia, Senior-Loken syndrome, Joubert syndrome, Bardet-Biedl syndrome, Laurence-Moon syndrome, McKusick-Kaufman syndrome, and Biemond syndrome. Mutations for these disorders have been found in retinitis pigmentosa-1 (RP1), retinitis pigmentosa GTPase regulator (RPGR), retinitis pigmentosa GTPase regulator interacting protein (RPGR-IP), as well as the Usher, Bardet-Biedl, and nephronophthisis genes. Other systemic disorders associated with retinal degenerations that may also involve ciliary abnormalities include: Alstrom, Edwards-Sethi, Ellis-van Creveld, Jeune, Meckel-Gruber, Orofaciodigital Type 9, and Gurrieri syndromes. Understanding these conditions as ciliopathies may help the ophthalmologist to recognize associations between seemingly unrelated diseases and have a high degree of suspicion that a systemic finding may be present. PMID:17896309

  6. Impacts of retinal polyene (de)methylation on the photoisomerization mechanism and photon energy storage of rhodopsin.

    PubMed

    Walczak, Elżbieta; Andruniów, Tadeusz

    2015-07-14

    Ab initio multiconfigurational quantum chemical methodology combined with molecular mechanics (CASPT2//CASSCF/AMBER) was applied to probe impacts of retinal protonated Schiff base (RPSB) polyene methylation and/or demethylation on the mechanism of photochemical isomerization in bovine rhodopsin. We have examined structural and spectroscopic properties of wild-type rhodopsin (with 11-cis-9,13-dimethyl-RPSB) and artificial rhodopsins, hosting four 11-cis-RPSB derivatives, 13-demethyl-, 9-demethyl-, 10-methyl-13-demethyl-, and 10-methyl-RPSB, evolving along the photoisomerization coordinate. It is found that the addition of 10-methyl or/and deletion of 9-/13-methyl groups do not appear to interfere structurally with the photoisomerization pathway in the S1 excited state. Remarkably, the two-mode space-saving mechanism initiated by bond order inversion and followed by asynchronous bicycle-pedal distortion in the RPSB backbone drives the photoreaction in all rhodopsin analogues studied here. However, methylation and/or demethylation is responsible for perturbation of excess energy deposited in the conical intersection structures. The analysis of photon energy stored by bathorhodopsin in synthetic pigments reveals that it is affected by steric crowding of methyl substituents in the RPSB backbone. PMID:26074351

  7. A SEARCH FOR INTERSTELLAR CARBON-CHAIN ALCOHOL HC{sub 4}OH IN STAR-FORMING REGION L1527 AND DARK CLOUD TMC-1

    SciTech Connect

    Araki, Mitsunori; Yamabe, Hiromichi; Koshikawa, Naohiro; Tsukiyama, Koichi; Takano, Shuro; Nakane, Aya; Okabayashi, Toshiaki; Kunimatsu, Arisa; Kuze, Nobuhiko

    2012-01-10

    We report a sensitive search for the rotational transitions of the carbon-chain alcohol HC{sub 4}OH in the frequency range 21.2-46.7 GHz in the star-forming region L1527 and the dark cloud TMC-1. The motivation was laboratory detection of HC{sub 4}OH by microwave spectroscopy. Despite achieving rms noise levels of several millikelvin in the antenna temperature using the 45 m telescope at Nobeyama Radio Observatory, the detection was not successful, leading to 3{sigma} upper limits corresponding to the column densities of 2.0 Multiplication-Sign 10{sup 12} and 5.6 Multiplication-Sign 10{sup 12} cm{sup -2} in L1527 and TMC-1, respectively. These upper limits indicate that [HC{sub 4}OH]/[HC{sub 5}N] ratios are less than 0.3 and 0.1 in L1527 and TMC-1, respectively, where HC{sub 5}N is an HC{sub 4}-chain cyanide and HC{sub 4}OH is a hydroxide. These ratios suggest that the cyano carbon-chain molecule dominates the hydroxyl carbon-chain molecule in L1527 and TMC-1. This is contrary to the case of saturated compounds in hot cores, e.g., CH{sub 3}OH and CH{sub 3}CN, and can be a chemical feature of carbon-chain molecules in L1527 and TMC-1. In addition, the column densities of the 'unsubstituted' carbon-chain molecule C{sub 4}H and the sulfur-bearing molecules SO and HCS{sup +} were determined from detected lines in L1527.

  8. Highly stable sub-5 nm Sn6O4(OH)4 nanocrystals with ultrahigh activity as advanced photocatalytic materials for photodegradation of methyl orange

    NASA Astrophysics Data System (ADS)

    Xiao, J.; Wu, Q. L.; Liu, P.; Liang, Y.; Li, H. B.; Wu, M. M.; Yang, G. W.

    2014-04-01

    Among numerous active photocatalytic materials, Sn-based oxide nanomaterials are promising photocatalytic materials in environmental protection measures such as water remediation due to their excellent physicochemical property. Research on photocatalytic nanomaterials for photodegradation of methyl orange (MO) so far has focused on TiO2-based nanostructures; e.g., TiO2-P25 is recognized to be the best commercial photocatalyst to date, rather than Sn-based oxide nanomaterials, in spite of their impressive acid- and alkali-resistant properties and high stability. Here, we demonstrate very high photocatalytic activity of highly stable sub-5 nm hydromarchite (Sn6O4(OH)4) nanocrystals synthesized by a simple and environmentally friendly laser-based technique. These Sn6O4(OH)4 nanocrystals exhibit ultrahigh photocatalytic performance for photodegradation of MO and their degradation efficiency is far superior to that of TiO2-P25. The detailed investigations demonstrated that the great photocatalytic activity results from the ultrafine size and unique surface activity induced by the laser-based technique. Mass production of reactive species of hydroxyl radicals was detected in the experiments due to the appropriate bandgap of Sn6O4(OH)4 nanocrystals. These findings actually open a door to applications of Sn-based oxide nanomaterials as advanced photocatalytic materials.

  9. VANISHING RETINAL DETACHMENT

    PubMed Central

    2015-01-01

    Purpose: The purpose of this report is to describe a case of rhegmatogenous retinal detachment in the setting of chronic kidney disease that exhibited complete retinal reattachment after serial hemodialysis. Methods: Retrospective case report. Results: A 58-year-old woman with acute vision loss was found to have a macula-involving rhegmatogenous retinal detachment. Due to chronic kidney disease, she continued with routinely scheduled hemodialysis for 1 week until surgical clearance was obtained. Preoperative examination revealed complete reattachment of the retina with a persistent retinal tear. Barrier laser was applied to the tear and the retina remained attached until the most recent follow-up 8 months later. The workup of alternate etiologies was unrevealing. Conclusion: This case describes a temporal association between hemodialysis and resolution of subretinal fluid due to rhegmatogenous retinal detachment. A potential causal linkage is suggested based on shifting fluid dynamics associated with hemodialysis. A shift in treatment paradigm is not advised. PMID:26352323

  10. Communication: Analytical optimal pulse shapes obtained with the aid of genetic algorithms: Controlling the photoisomerization yield of retinal

    NASA Astrophysics Data System (ADS)

    Guerrero, R. D.; Arango, C. A.; Reyes, A.

    2016-07-01

    We recently proposed a Quantum Optimal Control (QOC) method constrained to build pulses from analytical pulse shapes [R. D. Guerrero et al., J. Chem. Phys. 143(12), 124108 (2015)]. This approach was applied to control the dissociation channel yields of the diatomic molecule KH, considering three potential energy curves and one degree of freedom. In this work, we utilized this methodology to study the strong field control of the cis-trans photoisomerization of 11-cis retinal. This more complex system was modeled with a Hamiltonian comprising two potential energy surfaces and two degrees of freedom. The resulting optimal pulse, made of 6 linearly chirped pulses, was capable of controlling the population of the trans isomer on the ground electronic surface for nearly 200 fs. The simplicity of the pulse generated with our QOC approach offers two clear advantages: a direct analysis of the sequence of events occurring during the driven dynamics, and its reproducibility in the laboratory with current laser technologies.

  11. Differential Diagnosis of Retinal Vasculitis

    PubMed Central

    Abu El-Asrar, Ahmed M.; Herbort, Carl P.; Tabbara, Khalid F.

    2009-01-01

    Retinal vaculitis is a sight-threatening inflammatory eye condition that involves the retinal vessels. Detection of retinal vasculitis is made clinically, and confirmed with the help of fundus fluorescein angiography. Active vascular disease is characterized by exudates around retinal vessels resulting in white sheathing or cuffing of the affected vessels. In this review, a practical approach to the diagnosis of retinal vasculitis is discussed based on ophthalmoscopic and fundus fluorescein angiographic findings. PMID:20404987

  12. Retinal vascular regeneration.

    PubMed

    Otani, Atsushi; Friedlander, Martin

    2005-01-01

    We discuss the potential use of stem cells for therapeutic angiogenesis in the treatment of retinal diseases. We demonstrate that the clinical utility of these EPC may be not limited in the treatment of ischemic retinal diseases but may also have application for the treatment of retinal degenerative disorders and for a form of cell-based gene therapy. One of the greatest potential benefits of bone marrow derived EPC therapy is the possible use of autologous grafts. Nonetheless, potential toxicities and unregulated cell growth will need to be carefully evaluated before this approach is brought to the clinics. PMID:15804843

  13. The molecular basis for UV vision in birds: spectral characteristics, cDNA sequence and retinal localization of the UV-sensitive visual pigment of the budgerigar (Melopsittacus undulatus).

    PubMed Central

    Wilkie, S E; Vissers, P M; Das, D; Degrip, W J; Bowmaker, J K; Hunt, D M

    1998-01-01

    Microspectrophotometric (msp) studies have shown that the colour-vision system of many bird species is based on four pigments with absorption peaks in the red, green, blue and UV regions of the spectrum. The existence of a fourth pigment (UV) is the major difference between the trichromacy of humans and the tetrachromacy of such birds, and recent studies have shown that it may play a determining role in such diverse aspects of behaviour as mate selection and detection of food. Avian visual pigments are composed of an opsin protein covalently bound via a Schiff-base linkage to the chromophore 11-cis-retinal. Here we report the cDNA sequence of a UV opsin isolated from an avian species, Melopsittacus undulatus (budgerigar or small parakeet). This sequence has been expressed using the recombinant baculovirus system; the pigment generated from the expressed protein on addition of 11-cis-retinal yielded an absorption spectrum typical of a UV photopigment, with lambdamax 365+/-3 nm. This is the first UV opsin from an avian species to be sequenced and expressed in a heterologous system. In situ hybridization of this sequence to budgerigar retinas selectively labelled a sub-set of UV cones, representing approx. 9% of the total cone population, that are distributed in a semi-regular pattern across the entire retina. PMID:9461554

  14. Paramagnetic molecular centers in the gamma-irradiated novel compound of aluminum and leucine, Al 6O 4(OH) 10(leucine) 2·5H 2O

    NASA Astrophysics Data System (ADS)

    Nothig-Laslo, Vesna; Himdan, Takialdin A.; Bilinski, Halka

    A new microcrystalline compound Al 6O 4(OH) 10(leucine) 2·5H 2O of possible biological and biochemical interest has been prepared and characterized by chemical analysis, i.r. spectrum, X-ray diffraction and thermogravimetric analysis. It was exposed to γ-irradiation at 77 K and at room temperature. Paramagnetic species formed were studied by ESR spectroscopy. The leucine radical ? has been identified which seems to be stabilized in the aluminium leucine compound by crystalline water. Coordinated leucine molecule in aluminium hydroxide acts as a trap for γ-irradiation energy.

  15. Metal-organic frameworks assembled from lanthanide and 2,5-pyridinedicaboxylate with cubane-like [Ln4(OH)4] building units

    NASA Astrophysics Data System (ADS)

    Abdelbaky, Mohammed S. M.; Amghouz, Zakariae; Fernández-Zapico, Eva; García-Granda, Santiago; García, José R.

    2015-09-01

    Lanthanide-organic frameworks based on 2,5-pyridinedicaboxylate (25p) ligand, formulated as [Yb4(OH)4(25p)4(H2O)3]·H2O (25pYb), [Y4(OH)4(25p)4(H2O)3]·H2O (25pY-1) and [Y6(OH)8(25p)5(H2O)2] (25pY-2), have been obtained as single phases under hydrothermal conditions. 25pYb and 25pY-1 are isostructural, and crystallize in the triclinic space group, P-1, with a=8.6075(5) Å, b=14.8478(7) Å, c=15.9164(9) Å, α=86.277(4)°, β=80.196(5)°, γ=81.785(4)°, and a=8.7166(6) Å, b=14.966(1) Å, c=15.966(1) Å, α=86.260(6)°, β=80.036(6)°, γ=81.599(6)°, respectively. 25pY-2 crystallizes in the monoclinic space group, P21/c, with a=24.9117(17) Å, b=13.7340(8) Å, c=14.3385(10) Å, β=100.551(7)°. 25pYb and 25pY-2 have been structurally characterized by single-crystal X-ray diffraction. The 25pYb structure is based on tetranuclear cubane-like [Yb4(OH)4]8+ clusters, which are interconnected to eight neighbouring clusters through teen surrounding 25p ligands leading to neutral 3D framework, while the structure of 25pY-2 is based on two independent cuban-like [Y4(OH)4]8+ clusters, which are joined together through Y1 cation leading to the formation of hexanuclear [Y6(OH)8]10+ clusters, which in turn are joined via Y2 cation resulting in infinite inorganic chain extending along c-axis, and each chain is interconnected to six adjacent chains through 25p ligands leading finally to 3D framework. The luminescence properties of Eu3+ and Tb3+ doped 25pY-1 and 25pY-2 compounds have also been investigated. All materials has been characterized by powder X-ray diffraction, thermal analyses (TG-SDTA-MS), FTIR spectroscopy, C-H-N elemental analysis, scanning electron microscopy (SEM-EDX), and powder X-ray thermodiffraction.

  16. Retinal vein occlusion

    MedlinePlus

    ... Berrocal MH, Rodriguez FJ, et al. Pan-American Collaborative Retina Study Group (PACORES). Comparison of two doses ... retinal vein occlusion: results from the Pan-American Collaborative Retina Study Group at 6 months of follow- ...

  17. [Acute retinal necrosis].

    PubMed

    Lucke, K; Reinking, U; el-Hifnawi, E; Dennin, R H; Laqua, H

    1988-12-01

    The authors report on three patients with acute retinal necrosis who were treated with the virostatic agent Acyclovir and who underwent vitreoretinal surgery with silicone oil filling for total retinal detachment. In two eyes the retina was reattached, but useful vision was only preserved in one patient. Titers from blood and the vitreous, as well as microscopic findings in retinal biopsies, support the view that the necrosis is caused by a herpes simplex virus infection. After therapy with Acyclovir was instituted no further progression on the necrosis was observed. However, the development of retinal detachment could not be prevented. Early diagnosis and antiviral therapy are essential to improve the otherwise poor prognosis in this rare syndrome. PMID:3221657

  18. Retinal detachment in pseudophakia.

    PubMed

    Galin, M A; Poole, T A; Obstbaum, S A

    1979-07-01

    In a series of cataract patients excluding myopic individuals, under age 60 years, and cases in which vitreous loss occurred, retinal detachment was no less frequent after intracapsular cataract extraction and Sputnik iris supported lenses than in controls. Both groups were followed up for a minimum of two years. The detachments predominantly occurred from retinal breaks in areas of the retina that looked normal preoperatively. PMID:464014

  19. Giant retinal tears.

    PubMed

    Shunmugam, Manoharan; Ang, Ghee Soon; Lois, Noemi

    2014-01-01

    A giant retinal tear (GRT) is a full-thickness neurosensory retinal break that extends circumferentially around the retina for three or more clock hours in the presence of a posteriorly detached vitreous. Its incidence in large population-based studies has been estimated as 1.5% of rhegmatogenous retinal detachments, with a significant male preponderance, and bilaterality in 12.8%. Most GRTs are idiopathic, with trauma, hereditary vitreoretinopathies and high myopia each being causative in decreasing frequency. The vast majority of GRTs are currently managed with a pars plana vitrectomy; the use of adjunctive circumferential scleral buckling is debated, but no studies have shown a clear anatomical or visual advantage with its use. Similarly, silicone oil tamponade does not influence long-term outcomes when compared with gas. Primary and final retinal reattachment rates are achieved in 88% and 95% of patients, respectively. Even when the retina remains attached, however, visual recovery may be limited. Furthermore, fellow eyes of patients with a GRT are at higher risk of developing retinal tears and retinal detachment. Prophylactic treatment under these circumstances may be considered but there is no firm evidence of its efficacy at the present time. PMID:24138895

  20. Retinal analog restoration of photophobic responses in a blind Chlamydomonas reinhardtii mutant. Evidence for an archaebacterial like chromophore in a eukaryotic rhodopsin.

    PubMed Central

    Lawson, M A; Zacks, D N; Derguini, F; Nakanishi, K; Spudich, J L

    1991-01-01

    The strain CC-2359 of the unicellular eukaryotic alga Chlamydomonas reinhardtii originally described as a low pigmentation mutant is found to be devoid of photophobic stop responses to photostimuli over a wide range of light intensities. Photophobic responses of the mutant are restored by exogenous addition of all-trans retinal. We have combined computer-based cell-tracking and motion analysis with retinal isomer and retinal analog reconstitution of CC-2359 to investigate properties of the photophobic response receptor. Most rapid and most complete reconstitution is obtained with all-trans retinal compared to 13-cis, 11-cis, and 9-cis retinal. An analog locked by a carbon bridge in a 6-s-trans conformation reconstitutes whereas the corresponding 6-s-cis locked analog does not. Retinal analogs prevented from isomerization around the 13-14 double bond by a five-membered ring in the polyene chain (locked in either the 13-trans or 13-cis configuration) do not restore the response, but enter the chromophore binding pocket as evidenced by their inhibition of all-trans retinal regeneration of the response. Results of competition experiments between all-trans and each of the 13-locked analogs fit a model in which each chromophore exhibits reversible binding to the photoreceptor apoprotein. A competitive inhibition scheme closely fits the data and permits calculation of apparent dissociation constants for the in vivo reconstitution process of 2.5 x 10(-11) M, 5.2 x 10(-10) M, and 5.4 x 10(-9) M, for all-trans, 13-trans-locked and 13-cis-locked analogs, respectively. The chromophore requirement for the trans configuration and 6-s-trans conformation, and the lack of signaling function from analogs locked at the 13 position, are characteristic of archaebacterial rhodopsins, rather than the previously studied eukaryotic rhodopsins (i.e., visual pigments). PMID:1777569

  1. Metal–organic frameworks assembled from lanthanide and 2,5-pyridinedicaboxylate with cubane-like [Ln{sub 4}(OH){sub 4}] building units

    SciTech Connect

    Abdelbaky, Mohammed S.M.; Amghouz, Zakariae; Fernández-Zapico, Eva; García-Granda, Santiago; García, José R.

    2015-09-15

    Lanthanide–organic frameworks based on 2,5-pyridinedicaboxylate (25p) ligand, formulated as [Yb{sub 4}(OH){sub 4}(25p){sub 4}(H{sub 2}O){sub 3}]·H{sub 2}O (25pYb), [Y{sub 4}(OH){sub 4}(25p){sub 4}(H{sub 2}O){sub 3}]·H{sub 2}O (25pY-1) and [Y{sub 6}(OH){sub 8}(25p){sub 5}(H{sub 2}O){sub 2}] (25pY-2), have been obtained as single phases under hydrothermal conditions. 25pYb and 25pY-1 are isostructural, and crystallize in the triclinic space group, P-1, with a=8.6075(5) Å, b=14.8478(7) Å, c=15.9164(9) Å, α=86.277(4)°, β=80.196(5)°, γ=81.785(4)°, and a=8.7166(6) Å, b=14.966(1) Å, c=15.966(1) Å, α=86.260(6)°, β=80.036(6)°, γ=81.599(6)°, respectively. 25pY-2 crystallizes in the monoclinic space group, P2{sub 1}/c, with a=24.9117(17) Å, b=13.7340(8) Å, c=14.3385(10) Å, β=100.551(7)°. 25pYb and 25pY-2 have been structurally characterized by single-crystal X-ray diffraction. The 25pYb structure is based on tetranuclear cubane-like [Yb{sub 4}(OH){sub 4}]{sup 8+} clusters, which are interconnected to eight neighbouring clusters through teen surrounding 25p ligands leading to neutral 3D framework, while the structure of 25pY-2 is based on two independent cuban-like [Y{sub 4}(OH){sub 4}]{sup 8+} clusters, which are joined together through Y1 cation leading to the formation of hexanuclear [Y{sub 6}(OH){sub 8}]{sup 10+} clusters, which in turn are joined via Y2 cation resulting in infinite inorganic chain extending along c-axis, and each chain is interconnected to six adjacent chains through 25p ligands leading finally to 3D framework. The luminescence properties of Eu{sup 3+} and Tb{sup 3+} doped 25pY-1 and 25pY-2 compounds have also been investigated. All materials has been characterized by powder X-ray diffraction, thermal analyses (TG–SDTA–MS), FTIR spectroscopy, C–H–N elemental analysis, scanning electron microscopy (SEM-EDX), and powder X-ray thermodiffraction. - Graphical abstract: Nowadays, lanthanide–organic frameworks (LOFs) attract

  2. Ablation of Chop Transiently Enhances Photoreceptor Survival but Does Not Prevent Retinal Degeneration in Transgenic Mice Expressing Human P23H Rhodopsin

    PubMed Central

    Chiang, Wei-Chieh; Joseph, Victory; Matthes, Michael T.; Lewin, Alfred S.; Gorbatyuk, Marina S.; Ahern, Kelly; LaVail, Matthew M.

    2016-01-01

    RHO (Rod opsin) encodes a G-protein coupled receptor that is expressed exclusively by rod photoreceptors of the retina and forms the essential photopigment, rhodopsin, when coupled with 11-cis-retinal. Many rod opsin disease mutations cause rod opsin protein misfolding and trigger endoplasmic reticulum (ER) stress, leading to activation of the Unfolded Protein Response (UPR) signal transduction network. Chop is a transcriptional activator that is induced by ER stress and promotes cell death in response to chronic ER stress. Here, we examined the role of Chop in transgenic mice expressing human P23H rhodopsin (hP23H Rho Tg) that undergo retinal degeneration. With the exception of one time point, we found no significant induction of Chop in these animals and no significant change in retinal degeneration by histology and electrophysiology when hP23H Rho Tg animals were bred into a Chop−/− background. Our results indicate that Chop does not play a significant causal role during retinal degeneration in these animals. We suggest that other modules of the ER stress-induced UPR signaling network may be involved photoreceptor disease induced by P23H rhodopsin. PMID:26427410

  3. Progressive outer retinal necrosis-like retinitis in immunocompetent hosts.

    PubMed

    Chawla, Rohan; Tripathy, Koushik; Gogia, Varun; Venkatesh, Pradeep

    2016-01-01

    We describe two young immunocompetent women presenting with bilateral retinitis with outer retinal necrosis involving posterior pole with centrifugal spread and multifocal lesions simulating progressive outer retinal necrosis (PORN) like retinitis. Serology was negative for HIV and CD4 counts were normal; however, both women were on oral steroids at presentation for suspected autoimmune chorioretinitis. The retinitis in both eyes responded well to oral valaciclovir therapy. However, the eye with the more fulminant involvement developed retinal detachment with a loss of vision. Retinal atrophy was seen in the less involved eye with preservation of vision. Through these cases, we aim to describe a unique evolution of PORN-like retinitis in immunocompetent women, which was probably aggravated by a short-term immunosuppression secondary to oral steroids. PMID:27511757

  4. Photovoltaic retinal prosthesis

    NASA Astrophysics Data System (ADS)

    Loudin, James; Mathieson, Keith; Kamins, Ted; Wang, Lele; Galambos, Ludwig; Huie, Philip; Sher, Alexander; Harris, James; Palanker, Daniel

    2011-03-01

    Electronic retinal prostheses seek to restore sight to patients suffering from retinal degenerative disorders. Implanted electrode arrays apply patterned electrical stimulation to surviving retinal neurons, producing visual sensations. All current designs employ inductively coupled coils to transmit power and/or data to the implant. We present here the design and initial testing of a photovoltaic retinal prosthesis fabricated with a pixel density of up to 177 pixels/mm2. Photodiodes within each pixel of the subretinal array directly convert light to stimulation current, avoiding the use of bulky coil implants, decoding electronics, and wiring, and thereby reducing surgical complexity. A goggles-mounted camera captures the visual scene and transmits the data stream to a pocket processor. The resulting images are projected into the eyes by video goggles using pulsed, near infrared (~900 nm) light. Prostheses with three pixel densities (15, 55, and 177 pix/mm2) are being fabricated, and tests indicate a charge injection limit of 1.62 mC/cm2 at 25Hz. In vitro tests of the photovoltaic retinal stimulation using a 512-element microelectrode array have recorded stimulated spikes from the ganglion cells, with latencies in the 1-100ms range, and with peak irradiance stimulation thresholds varying from 0.1 to 1 mW/mm2. With 1ms pulses at 25Hz the average irradiance is more than 100 times below the IR retinal safety limit. Elicited retinal response disappeared upon the addition of synaptic blockers, indicating that the inner retina is stimulated rather than the ganglion cells directly, and raising hopes that the prosthesis will preserve some of the retina's natural signal processing.

  5. Probabilistic retinal vessel segmentation

    NASA Astrophysics Data System (ADS)

    Wu, Chang-Hua; Agam, Gady

    2007-03-01

    Optic fundus assessment is widely used for diagnosing vascular and non-vascular pathology. Inspection of the retinal vasculature may reveal hypertension, diabetes, arteriosclerosis, cardiovascular disease and stroke. Due to various imaging conditions retinal images may be degraded. Consequently, the enhancement of such images and vessels in them is an important task with direct clinical applications. We propose a novel technique for vessel enhancement in retinal images that is capable of enhancing vessel junctions in addition to linear vessel segments. This is an extension of vessel filters we have previously developed for vessel enhancement in thoracic CT scans. The proposed approach is based on probabilistic models which can discern vessels and junctions. Evaluation shows the proposed filter is better than several known techniques and is comparable to the state of the art when evaluated on a standard dataset. A ridge-based vessel tracking process is applied on the enhanced image to demonstrate the effectiveness of the enhancement filter.

  6. Employing linear tetranuclear [Zn4(COO)4(OH)2] clusters as building subunits to construct a new Zn(II) coordination polymer with tunable luminescent properties

    NASA Astrophysics Data System (ADS)

    Li, Wu-Wu; Zhang, Zun-Ting

    2016-02-01

    A new Zn(II) coordination polymer, [Zn2(btc) (biimpy) (OH)]n (1 H3btc = 1,3,5-benzenetricarboxylic acid, biimpy = 2,6-bis(1-imdazoly)pyridine) has been successfully synthesized and characterized by elemental analysis, powder single crystal X-ray diffraction analyses. Compound 1 features a 3D framework employing linear tetranuclear [Zn4(COO)4(OH)2] cluster as building subunits. Topological analysis reveals it represents a (3,10)-connected structural topology by viewing btc3-, linear tetranuclear clusters and biimpy as 3-connected nodes, 10-connected nodes, linear linkers, respectively. Moreover, the thermal stability and luminescent property of compound 1 have been well investigated.

  7. The molecular structure of the multianion mineral hidalgoite PbAl 3(AsO 4)(SO 4)(OH) 6 - Implications for arsenic removal from soils

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; Palmer, Sara J.; Xi, Yunfei

    2011-11-01

    The objective of this research is to determine the molecular structure of the mineral hidalgoite PbAl 3(AsO 4)(SO 4)(OH) 6 using vibrational spectroscopy. The mineral is found in old mine sites. Observed bands are assigned to the stretching and bending vibrations of (SO 4) 2- and (AsO 4) 3- units, stretching and bending vibrations of hydrogen bonded (OH) - ions and Al 3+-(O,OH) units. The approximate range of O-H⋯O hydrogen bond lengths is inferred from the Raman and infrared spectra. Values of 2.6989 Å, 2.7682 Å, 2.8659 Å were obtained. The formation of hidalgoite may offer a mechanism for the removal of arsenic from the environment.

  8. The molecular structure of the phosphate mineral senegalite Al2(PO4)(OH)3ṡ3H2O - A vibrational spectroscopic study

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; López, Andrés; Xi, Yunfei; Murta, Natália; Scholz, Ricardo

    2013-09-01

    We have studied the mineral senagalite, a hydrated hydroxy phosphate of aluminium with formula Al2(PO4)(OH)3ṡ3H2O using a combination of electron microscopy and vibrational spectroscopy. Senegalite crystal aggregates shows tabular to prismatic habitus and orthorhombic form. The Raman spectrum is dominated by an intense band at 1029 cm-1 assigned to the PO43- ν1 symmetric stretching mode. Intense Raman bands are found at 1071 and 1154 cm-1 with bands of lesser intensity at 1110, 1179 and 1206 cm-1 and are attributed to the PO43- ν3 antisymmetric stretching vibrations. The infrared spectrum shows complexity with a series overlapping bands. A comparison is made with spectra of other aluminium containing phosphate minerals such as augelite and turquoise. Multiple bands are observed for the phosphate bending modes giving support for the reduction of symmetry of the phosphate anion. Vibrational spectroscopy offers a means for the assessment of the structure of senagalite.

  9. Single-Crystalline Hyperbranched Nanostructure of Iron Hydroxyl Phosphate Fe5(PO4)4(OH)3·2H2O for Highly Selective Capture of Phosphopeptides

    PubMed Central

    Chen, Qun; Wei, Chengzhen; Zhang, Yizhou; Pang, Huan; Lu, Qingyi; Gao, Feng

    2014-01-01

    Single-crystalline hyperbranched nanostructures of iron hydroxyl phosphate Fe5(PO4)4(OH)3·2H2O (giniite) with orthorhombic phase were synthesized through a simple route. They have a well-defined dendrite fractal structure with a pronounced trunk and highly ordered branches. The toxicity test shows that the hyperbranched nanostructures have good biocompatibility and low toxicity level, which makes them have application potentials in life science. The study herein demonstrated that the obtained hyperbranched giniite nanostructures show highly selective capture of phosphopeptides and could be used as a kind of promising nanomaterial for the specific capture of phosphopeptides from complex tryptic digests with the detection of MALDI-TOF mass spectrometry. PMID:24435094

  10. Retinal lesions in septicemia.

    PubMed

    Neudorfer, M; Barnea, Y; Geyer, O; Siegman-Igra, Y

    1993-12-15

    We explored the association between septicemia and specific retinal lesions in a prospective controlled study. Hemorrhages, cotton-wool spots, or Roth's spots were found in 24 of 101 septicemic patients (24%), compared to four of 99 age- and gender-matched control patients (4%) (P = .0002). There was no significant association between types of organisms or focus of infection and the presence of specific lesions. Histologic examination of affected eyes disclosed cytoid bodies in the nerve fiber layer without inflammation. A definite association between septicemia and retinal lesions was found and indicates the need for routine ophthalmoscopy in septicemic patients. PMID:8250076

  11. Pathway to Retinal Oximetry

    PubMed Central

    Beach, James

    2014-01-01

    Events and discoveries in oxygen monitoring over the past two centuries are presented as the background from which oximetry of the human retina evolved. Achievements and the people behind them are discussed, showing parallels between the work in tissue measurements and later in the eye. Developments in the two-wavelength technique for oxygen saturation measurements in retinal vessels are shown to exploit the forms of imaging technology available over time. The last section provides a short summary of the recent research in retinal diseases using vessel oximetry. PMID:25237591

  12. Joint Experimental and Computational 17O and 1H Solid State NMR Study of Ba2In2O4(OH)2 Structure and Dynamics

    PubMed Central

    2015-01-01

    A structural characterization of the hydrated form of the brownmillerite-type phase Ba2In2O5, Ba2In2O4(OH)2, is reported using experimental multinuclear NMR spectroscopy and density functional theory (DFT) energy and GIPAW NMR calculations. When the oxygen ions from H2O fill the inherent O vacancies of the brownmillerite structure, one of the water protons remains in the same layer (O3) while the second proton is located in the neighboring layer (O2) in sites with partial occupancies, as previously demonstrated by Jayaraman et al. (Solid State Ionics2004, 170, 25−32) using X-ray and neutron studies. Calculations of possible proton arrangements within the partially occupied layer of Ba2In2O4(OH)2 yield a set of low energy structures; GIPAW NMR calculations on these configurations yield 1H and 17O chemical shifts and peak intensity ratios, which are then used to help assign the experimental MAS NMR spectra. Three distinct 1H resonances in a 2:1:1 ratio are obtained experimentally, the most intense resonance being assigned to the proton in the O3 layer. The two weaker signals are due to O2 layer protons, one set hydrogen bonding to the O3 layer and the other hydrogen bonding alternately toward the O3 and O1 layers. 1H magnetization exchange experiments reveal that all three resonances originate from protons in the same crystallographic phase, the protons exchanging with each other above approximately 150 °C. Three distinct types of oxygen atoms are evident from the DFT GIPAW calculations bare oxygens (O), oxygens directly bonded to a proton (H-donor O), and oxygen ions that are hydrogen bonded to a proton (H-acceptor O). The 17O calculated shifts and quadrupolar parameters are used to assign the experimental spectra, the assignments being confirmed by 1H–17O double resonance experiments. PMID:26321789

  13. Nonadiabatic ab initio dynamics of a model protonated Schiff base of 9-cis retinal.

    PubMed

    Chung, Wilfredo Credo; Nanbu, Shinkoh; Ishida, Toshimasa

    2010-08-19

    The dynamics of the photoisomerization of a model protonated Schiff base of 9-cis retinal in isorhodopsin is investigated using nonadiabatic molecular dynamics simulation combined with ab initio quantum chemical calculations on-the-fly. The quantum chemical part is treated at the complete-active space self-consistent field level for six electrons in six active pi orbitals with the 6-31G basis set (CASSCF(6,6)/6-31G). The probabilities of nonadiabatic transitions between the S(1) ((1)pipi*) and S(0) states are estimated in light of the Zhu-Nakamura theory. The photoinduced cis-trans isomerization of 9-cis retinal proceeds slower than that of its 11-cis analogue and at a lower quantum yield, confirming experimental observations. An energetic barrier in the excited state impedes the elongation and twist of the C(9)=C(10) stretch and torsion coordinates, respectively, resulting in the trapping of trajectories before transition. Consequently, the isomerization takes longer time and the transition more often occurs at smaller twist angle of =C(8)-C(9)=C(10)-C(11)=, which leads to regeneration of the 9-cis reactant. Thus, neither the smaller twist observed in the X-ray crystal nor the slower movement of nuclei in the transition region would be the main reason for the longer reaction time and lower yield. A well-known space-saving asynchronous bicycle pedal or crankshaft photoisomerization mechanism is found to be operational in 9-cis retinal. The simulation in vacuo suggests that the excited-state barrier and the photoisomerization itself are intrinsic properties of the visual chromophore and not triggered mainly by the protein environment that surrounds the chromophore. PMID:20666503

  14. A semiempirical study of the optimized ground and excited state potential energy surfaces of retinal and its protonated Schiff base

    NASA Technical Reports Server (NTRS)

    Parusel, A. B.; Pohorille, A.

    2001-01-01

    The electronic ground and first excited states of retinal and its Schiff base are optimized for the first time using the semiempirical AM1 Hamiltonian. The barrier for rotation about the C(11)-C(12) double bond is characterized by variation of both the twist angle delta(C(10)-C(11)-C(12)-C(13)) and the bond length d(C(11)-C(12)). The potential energy surface is obtained by varying these two parameters. The calculated ground state rotational barrier is equal to 15.6 kcal/mol for retinal and 20.5 kcal/mol for its Schiff base. The all-trans conformation is more stable by 3.7 kcal/mol than the 11-cis geometry. For the first excited state, S(1,) the 90 degrees twisted geometry represents a saddle point for retinal with the rotational barrier of 14.6 kcal/mol. In contrast, this conformation is an energy minimum for the Schiff base. It can be easily reached at room temperature from the planar minima since it is separated from them by a barrier of only 0.6 kcal/mol. The 90 degrees minimum conformation is more stable than the all-trans by 8.6 kcal/mol. We are thus able to present a reaction path on the S(1) surface of the retinal Schiff base with an almost barrier-less geometrical relaxation into a twisted minimum geometry, as observed experimentally. The character of the ground and first excited singlet states underscores the need for the inclusion of double excitations in the calculations.

  15. Raman spectroscopic study of the mineral arsenogorceixite BaAl3AsO3(OH)(AsO4,PO4)(OH,F)6

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; Xi, Yunfei; Pogson, Ross E.

    2012-06-01

    Arsenogorceixite BaAl3AsO3(OH)(AsO4,PO4)(OH,F)6 belongs to the crandallite mineral subgroup of the alunite supergroup. Arsenogorceixite forms a continuous series of solid solutions with related minerals including gorceixite, goyazite, arsenogoyazite, plumbogummite and philipsbornite. Two minerals from (a) Germany and (b) from Ashburton Downs, Australia were analysed by Raman spectroscopy. The spectra show some commonality but the intensities of the peaks vary. Sharp intense Raman bands for the German sample, are observed at 972 and 814 cm-1 attributed to the ν1 PO43- and AsO43- symmetric stretching modes. Raman bands at 1014, 1057, 1148 and 1160 cm-1 are attributed to the ν1 PO2 symmetric stretching mode and ν3 PO43- antisymmetric stretching vibrations. Raman bands at 764 and 776 cm-1 and 758 and 756 cm-1 are assigned to the ν3 AsO43- antisymmetric stretching vibrations. For the Australian mineral, the ν1 PO43- band is found at 973 cm-1. The intensity of the arsenate bands observed at 814, 838 and 870 cm-1 is greatly enhanced. Two low intensity Raman bands at 1307 and 1332 cm-1 are assigned to hydroxyl deformation modes. The intense Raman band at 441 cm-1 with a shoulder at 462 cm-1 is assigned to the ν2 PO43- bending mode. Raman bands at 318 and 340 cm-1 are attributed to the (AsO4)3-ν2 bending. The broad band centred at 3301 cm-1 is assigned to water stretching vibrations and the sharper peak at 3473 cm-1 is assigned to the OH stretching vibrations. The observation of strong water stretching vibrations brings into question the actual formula of arsenogorceixite. It is proposed the formula is better written as BaAl3AsO3(OH)(AsO4,PO4)(OH,F)6·xH2O. The observation of both phosphate and arsenate bands provides a clear example of solid solution formation.

  16. Crystal structure, equation of state, and elasticity of hydrous aluminosilicate phase, topaz-OH (Al2SiO4(OH)2) at high pressures

    NASA Astrophysics Data System (ADS)

    Mookherjee, Mainak; Tsuchiya, Jun; Hariharan, Anant

    2016-02-01

    We examined the equation of state and high-pressure elasticity of the hydrous aluminosilicate mineral topaz-OH (Al2SiO4(OH)2) using first principles simulation. Topaz-OH is a hydrous phase in the Al2O3-SiO2-H2O (ASH) ternary system, which is relevant for the mineral phase relations in the hydrated sedimentary layer of subducting slabs. Based on recent neutron diffraction experiments, it is known that the protons in the topaz-OH exhibit positional disorder with half occupancy over two distinct crystallographic sites. In order to adequately depict the proton environment in the topaz-OH, we examined five crystal structure models with distinct configuration for the protons in topaz-OH. Upon full geometry optimization we find two distinct space group, an orthorhombic Pbnm and a monoclinic P21/c for topaz-OH. The topaz-OH with the monoclinic P21/c space group has a lower energy compared to the orthorhombic Pbmn space group symmetry. The pressure-volume results for the monoclinic topaz-OH is well represented by a third order Birch-Murnaghan formulation, with V0mon = 348.63 (±0.04) Å3, K0mon = 164.7 (±0.04) GPa, and K0mon = 4.24 (±0.05). The pressure-volume results for the orthorhombic topaz-OH is well represented by a third order Birch-Murnaghan formulation, with V0orth = 352.47 (±0.04) Å3, K0orth = 166.4 (±0.06) GPa, and K0orth = 4.03 (±0.04). While the bulk moduli are very similar for both the monoclinic and orthorhombic topaz-OH, the shear elastic constants and the shear moduli are very sensitive to the position of the proton, orientation of the O-H dipole, and the space group symmetry. The S-wave anisotropy for the orthorhombic and monoclinic topaz-OH are also quite distinct. In the hydrated sedimentary layer of subducting slabs, transformation of a mineral assemblage consisting of coesite (SiO2) and diaspore (AlOOH) to topaz-OH (Al2SiO4(OH)2) is likely to be accompanied by an increase in density, compressional velocity, and shear wave velocity. However

  17. Visual Cycle Modulation as an Approach toward Preservation of Retinal Integrity

    PubMed Central

    Bavik, Claes; Henry, Susan Hayes; Zhang, Yan; Mitts, Kyoko; McGinn, Tim; Budzynski, Ewa; Pashko, Andriy; Lieu, Kuo Lee; Zhong, Sheng; Blumberg, Bruce; Kuksa, Vladimir; Orme, Mark; Scott, Ian; Fawzi, Ahmad; Kubota, Ryo

    2015-01-01

    Increased exposure to blue or visible light, fluctuations in oxygen tension, and the excessive accumulation of toxic retinoid byproducts places a tremendous amount of stress on the retina. Reduction of visual chromophore biosynthesis may be an effective method to reduce the impact of these stressors and preserve retinal integrity. A class of non-retinoid, small molecule compounds that target key proteins of the visual cycle have been developed. The first candidate in this class of compounds, referred to as visual cycle modulators, is emixustat hydrochloride (emixustat). Here, we describe the effects of emixustat, an inhibitor of the visual cycle isomerase (RPE65), on visual cycle function and preservation of retinal integrity in animal models. Emixustat potently inhibited isomerase activity in vitro (IC50 = 4.4 nM) and was found to reduce the production of visual chromophore (11-cis retinal) in wild-type mice following a single oral dose (ED50 = 0.18 mg/kg). Measure of drug effect on the retina by electroretinography revealed a dose-dependent slowing of rod photoreceptor recovery (ED50 = 0.21 mg/kg) that was consistent with the pattern of visual chromophore reduction. In albino mice, emixustat was shown to be effective in preventing photoreceptor cell death caused by intense light exposure. Pre-treatment with a single dose of emixustat (0.3 mg/kg) provided a ~50% protective effect against light-induced photoreceptor cell loss, while higher doses (1–3 mg/kg) were nearly 100% effective. In Abca4-/- mice, an animal model of excessive lipofuscin and retinoid toxin (A2E) accumulation, chronic (3 month) emixustat treatment markedly reduced lipofuscin autofluorescence and reduced A2E levels by ~60% (ED50 = 0.47 mg/kg). Finally, in the retinopathy of prematurity rodent model, treatment with emixustat during the period of ischemia and reperfusion injury produced a ~30% reduction in retinal neovascularization (ED50 = 0.46mg/kg). These data demonstrate the ability of

  18. Retinal Detachment: Torn or Detached Retina Diagnosis

    MedlinePlus

    ... Eye Health / Eye Health A-Z Detached or Torn Retina Sections Retinal Detachment: What Is a Torn ... Retina Treatment Retinal Detachment Vision Simulator Retinal Detachment: Torn or Detached Retina Diagnosis Written by: Kierstan Boyd ...

  19. Retinal Detachment: Torn or Detached Retina Symptoms

    MedlinePlus

    ... Eye Health / Eye Health A-Z Detached or Torn Retina Sections Retinal Detachment: What Is a Torn ... Retina Treatment Retinal Detachment Vision Simulator Retinal Detachment: Torn or Detached Retina Symptoms Written by: Kierstan Boyd ...

  20. Small Animal Retinal Imaging

    NASA Astrophysics Data System (ADS)

    Choi, WooJhon; Drexler, Wolfgang; Fujimoto, James G.

    Developing and validating new techniques and methods for small animal imaging is an important research area because there are many small animal models of retinal diseases such as diabetic retinopathy, age-related macular degeneration, and glaucoma [1-6]. Because the retina is a multilayered structure with distinct abnormalities occurring in different intraretinal layers at different stages of disease progression, there is a need for imaging techniques that enable visualization of these layers individually at different time points. Although postmortem histology and ultrastructural analysis can be performed for investigating microscopic changes in the retina in small animal models, this requires sacrificing animals, which makes repeated assessment of the same animal at different time points impossible and increases the number of animals required. Furthermore, some retinal processes such as neurovascular coupling cannot be fully characterized postmortem.

  1. Inherited Retinal Degenerative Disease Registry

    ClinicalTrials.gov

    2016-03-21

    Eye Diseases Hereditary; Retinal Disease; Achromatopsia; Bardet-Biedl Syndrome; Bassen-Kornzweig Syndrome; Batten Disease; Best Disease; Choroidal Dystrophy; Choroideremia; Cone Dystrophy; Cone-Rod Dystrophy; Congenital Stationary Night Blindness; Enhanced S-Cone Syndrome; Fundus Albipunctatus; Goldmann-Favre Syndrome; Gyrate Atrophy; Juvenile Macular Degeneration; Kearns-Sayre Syndrome; Leber Congenital Amaurosis; Refsum Syndrome; Retinitis Pigmentosa; Retinitis Punctata Albescens; Retinoschisis; Rod-Cone Dystrophy; Rod Dystrophy; Rod Monochromacy; Stargardt Disease; Usher Syndrome

  2. [News in Retinal Imaging].

    PubMed

    Werkmeister, R; Schmidl, D; Garhöfer, G; Schmetterer, L

    2015-09-01

    New developments in retinal imaging have revolutionised ophthalmology in recent years. In particular, optical coherence tomography (OCT) provides highly resolved and well reproducible images and has rung in a new era in ophthalmological imaging. The technology was introduced in the early 1990 s, and has rapidly developed. There have been improvements in resolution, sensitivity and processing speed. There have also been developments in functional processing. OCT angiography is the first application in routine clinical work. PMID:26372783

  3. Vibrational spectroscopic characterization of the phosphate mineral althausite Mg2(PO4)(OH,F,O)--implications for the molecular structure.

    PubMed

    Frost, Ray L; López, Andrés; Xi, Yunfei; Scholz, Ricardo

    2014-01-01

    Natural single-crystal specimens of althausite from Brazil, with general formula Mg2(PO4)(OH,F,O) were investigated by Raman and infrared spectroscopy. The mineral occurs as a secondary product in granitic pegmatites. The Raman spectrum of althausite is characterized by bands at 1020, 1033 and 1044 cm(-1), assigned to ν1 symmetric stretching modes of the HOPO3(3-) and PO4(3-) units. Raman bands at around 1067, 1083 and 1138 cm(-1) are attributed to both the HOP and PO antisymmetric stretching vibrations. The set of Raman bands observed at 575, 589 and 606 cm(-1) are assigned to the ν4 out of plane bending modes of the PO4 and H2PO4 units. Raman bands at 439, 461, 475 and 503 cm(-1) are attributed to the ν2 PO4 and H2PO4 bending modes. Strong Raman bands observed at 312, 346 cm(-1) with shoulder bands at 361, 381 and 398 cm(-1) are assigned to MgO stretching vibrations. No bands which are attributable to water were found. Vibrational spectroscopy enables aspects of the molecular structure of althausite to be assessed. PMID:24184627

  4. Structural and magnetic characterization of the one-dimensional S = 5/2 antiferromagnetic chain system SrMn(VO4)(OH)

    DOE PAGESBeta

    Sanjeewa, Liurukara D.; Garlea, Vasile O.; McGuire, Michael A.; McMillen, Colin D.; Cao, Huibo; Kolis, Joseph W.

    2016-06-06

    The descloizite-type compound, SrMn(VO4)(OH), was synthesized as large single crystals (1-2mm) using a high-temperature high-pressure hydrothermal technique. X-ray single crystal structure analysis reveals that the material crystallizes in the acentric orthorhombic space group of P212121 (no. 19), Z = 4. The structure exhibits a one-dimensional feature, with [MnO4] chains propagating along the a-axis which are interconnected by VO4 tetrahedra. Raman and infrared spectra were obtained to identify the fundamental vanadate and hydroxide vibrational modes. Magnetization data reveal a broad maximum at approximately 80 K, arising from one-dimensional magnetic correlations with intrachain exchange constant of J/kB = 9.97(3) K between nearestmore » Mn neighbors and a canted antiferromagnetic behavior below TN = 30 K. Single crystal neutron diffraction at 4 K yielded a magnetic structure solution in the lower symmetry of the magnetic space group P21 with two unique chains displaying antiferromagnetically ordered Mn moments oriented nearly perpendicular to the chain axis. Lastly, the presence of the Dzyaloshinskii Moriya antisymmetric exchange interaction leads to a slight canting of the spins and gives rise to a weak ferromagnetic component along the chain direction.« less

  5. The molecular structure of the vanadate mineral mottramite [PbCu(VO4)(OH)] from Tsumeb, Namibia--a vibrational spectroscopic study.

    PubMed

    Frost, Ray L; Xi, Yunfei; López, Andrés; Corrêa, Lívia; Scholz, Ricardo

    2014-03-25

    We have studied a mineral sample of mottramite PbCu(VO4)(OH) from Tsumeb, Namibia using a combination of scanning electron microscopy with EDX, Raman and infrared spectroscopy. Chemical analysis shows principally the elements V, Pb and Cu. Ca occurs as partial substitution of Pb as well as P and As in substitution to V. Minor amounts of Si and Cr were also observed. The Raman band of mottramite at 829 cm(-1), is assigned to the ν1 symmetric (VO4(-)) stretching mode. The complexity of the spectra is attributed to the chemical composition of the Tsumeb mottramite. The ν3 antisymmetric vibrational mode of mottramite is observed as very low intensity bands at 716 and 747 cm(-1). The series of Raman bands at 411, 439, 451 cm(-1) and probably also the band at 500 cm(-1) are assigned to the (VO4(-)) ν2 bending mode. The series of Raman bands at 293, 333 and 366 cm(-1) are attributed to the (VO4(-)) ν4 bending modes. The ν3, ν3 and ν4 regions are complex for both minerals and this is attributed to symmetry reduction of the vanadate unit from Td to Cs. PMID:24316538

  6. A Raman spectroscopic study of the antimonite mineral peretaite Ca(SbO) 4(OH) 2(SO 4) 2·2H 2O

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; Keeffe, Eloise C.; Bahfenne, Silmarilly

    2010-05-01

    Raman spectra of mineral peretaite Ca(SbO) 4(OH) 2(SO 4) 2·2H 2O were studied, and related to the structure of the mineral. Raman bands observed at 978 and 980 cm -1 and a series of overlapping bands observed at 1060, 1092, 1115, 1142 and 1152 cm -1 are assigned to the SO 42-ν1 symmetric and ν3 antisymmetric stretching modes. Raman bands at 589 and 595 cm -1 are attributed to the SbO symmetric stretching vibrations. The low intensity Raman bands at 650 and 710 cm -1 may be attributed to SbO antisymmetric stretching modes. Raman bands at 610 cm -1 and at 417, 434 and 482 cm -1 are assigned to the SO 42-ν4 and ν2 bending modes, respectively. Raman bands at 337 and 373 cm -1 are assigned to O-Sb-O bending modes. Multiple Raman bands for both SO 42- and SbO stretching vibrations support the concept of the non-equivalence of these units in the peretaite structure.

  7. Structural and magnetic characterization of the one-dimensional S = 5 /2 antiferromagnetic chain system SrMn (V O4) (OH )

    NASA Astrophysics Data System (ADS)

    Sanjeewa, Liurukara D.; Garlea, Vasile O.; McGuire, Michael A.; McMillen, Colin D.; Cao, Huibo; Kolis, Joseph W.

    2016-06-01

    The descloizite-type compound, SrMn (V O4) (OH ) , was synthesized as large single crystals (1-2 mm) using a high-temperature high-pressure hydrothermal technique. X-ray single crystal structure analysis reveals that the material crystallizes in the acentric orthorhombic space group of P 212121 (no. 19), Z = 4 . The structure exhibits a one-dimensional feature, with [MnO4]∞ chains propagating along the a axis, which are interconnected by V O4 tetrahedra. Raman and infrared spectra were obtained to identify the fundamental vanadate and hydroxide vibrational modes. Magnetization data reveal a broad maximum at approximately 80 K, arising from one-dimensional magnetic correlations with intrachain exchange constant of J /kB= 9.97 (3 ) K between nearest Mn neighbors and a canted antiferromagnetic behavior below TN= 30 K . Single crystal neutron diffraction at 4 K yielded a magnetic structure solution in the lower symmetry of the magnetic space group P 21 with two unique chains displaying antiferromagnetically ordered Mn moments oriented nearly perpendicular to the chain axis. The presence of the Dzyaloshinskii-Moriya antisymmetric exchange interaction leads to a slight canting of the spins and gives rise to a weak ferromagnetic component along the chain direction.

  8. Formation pathway, structural characterization and optimum processing parameters of synthetic topaz - Al2SiO4(OH,F)2 - by CVD

    NASA Astrophysics Data System (ADS)

    Trujillo-Vázquez, E.; Pech-Canul, M. I.

    2015-10-01

    A novel synthesis route for topaz (Al2SiO4(OH,F)2) by chemical vapor deposition (CVD) using Na2SiF6 as solid precursor was developed. Synthesis tests were conducted with and without a flow of nitrogen, positioning the Al(OH)3 substrate at 0° and 90° with respect to the gas flow direction, at 700 and 750 °C, for 60 and 90 min, respectively. It was found that topaz is synthesized through two pathways, directly and indirectly, involving a series of endothermic and exothermic, heterogeneous and homogeneous reactions between Al(OH)3 and SiF4(g). Analytical structural determination confirmed existence of orthorhombic polycrystals with lattice parameters of a =4.6558 Å, b=8.8451 Å and c=8.4069 Å. According to ANOVA, while temperature, time and interaction of substrate angular position with atmosphere (P×A) are the parameters that most significantly influence the variability in the amount of topaz formed - equivalent contributions of 31% - topaz lattice parameters are mostly impacted by the same factors (T, t, P, A), but without the interaction factor. The projected amount of topaz is in good agreement with that obtained in confirmation tests under optimal conditions: Al(OH)3 substrate compact placed at 0°, treated at 750 °C for 90 min in the absence of N2.

  9. Crystal Chemistry of Lead Oxide Hydroxide Nitrates I. The Crystal Structure of [Pb 6O 4](OH)(NO 3)(CO 3)

    NASA Astrophysics Data System (ADS)

    Li, Yaping; Krivovichev, Sergey V.; Burns, Peter C.

    2000-09-01

    The new lead oxide hydroxide nitrate carbonate, [Pb6O4](OH)(NO3)(CO3), has been synthesized by hydrothermal methods. The crystal structure has been determined by single-crystal X-ray diffraction and refined to R1=0.030. The compound is orthorhombic, space group Pnma, a=30.557(6), b=5.809(1), and c=7.183(2) Å, V=1274.9(5) Å3, Z=4. The structure consists of (OPb4) oxocentered tetrahedra linked via edges into double [O2Pb3] chains running along the b axis. These chains are linked via (OH)Pb2 dimers into layers parallel to the (100) plane. (NO3) and (CO3) groups are parallel to the (010) plane and are located between the Pb-(O,OH) layers. Pb coordination polyhedra are strongly distorted due to the influence of lone-pair electrons. The presence of the nitrate, carbonate, and (OH)- groups has been confirmed by Fourier transform infrared spectroscopy.

  10. Infrared and Raman spectroscopic characterization of the borate mineral colemanite - CaB3O4(OH)3·H2O - implications for the molecular structure

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; Xi, Yunfei; Scholz, Ricardo; Belotti, Fernanda Maria; Cândido Filho, Mauro

    2013-04-01

    Colemanite CaB3O4(OH)3·H2O is a secondary borate mineral formed from borax and ulexite in evaporate deposits of alkaline lacustrine sediments. The basic structure of colemanite contains endless chains of interlocking BO2(OH) triangles and BO3(OH) tetrahedrons with the calcium, water and extra hydroxide units interspersed between these chains. The Raman spectra of colemanite is characterized by an intense band at 3605 cm-1 assigned to the stretching vibration of OH units and a series of bands at 3182, 3300, 3389 and 3534 cm-1 assigned to water stretching vibrations. Infrared bands are observed in similar positions. The BO stretching vibrations of the trigonal and tetrahedral boron are characterized by Raman bands at 876, 1065 and 1084 cm-1. The OBO bending mode is defined by the Raman band at 611 cm-1. It is important to characterize the very wide range of borate minerals including colemanite because of the very wide range of applications of boron containing minerals.

  11. [{Ni4 (OH)3 AsO4 }4 (B-α-PW9 O34 )4 ](28-) : A New Polyoxometalate Structural Family with Catalytic Hydrogen Evolution Activity.

    PubMed

    Lv, Hongjin; Chi, Yingnan; van Leusen, Jan; Kögerler, Paul; Chen, Zheyuan; Bacsa, John; Geletii, Yurii V; Guo, Weiwei; Lian, Tianquan; Hill, Craig L

    2015-11-23

    A new structural polyoxometalate motif, [{Ni4 (OH)3 AsO4 }4 (B-α-PW9 O34 )4 ](28-) , which contains the highest nuclearity structurally characterized multi-nickel-containing polyanion to date, has been synthesized and characterized by single-crystal X-ray diffraction, temperature-dependent magnetism and several other techniques. The unique central {Ni16 (OH)12 O4 (AsO4 )4 } core shows dominant ferromagnetic exchange interactions, with maximum χm T of 69.21 cm(3)  K mol(-1) at 3.4 K. Significantly, this structurally unprecedented complex is an efficient, water-compatible, noble-metal-free catalyst for H2 production upon visible light irradiation (photosensitizer=[Ir(ppy)2 (dtbbpy)][PF6 ]; sacrificial electron donor=triethylamine or triethanolamine). The highest turnover number of approximately 580, corresponding to a best quantum yield of approximately 4.07 %, is achieved when using triethylamine as electron donor in the presence of water. The mechanism of this photodriven process has been probed by time-solved luminescence and by static emission quenching. PMID:26448510

  12. Glutamatergic Retinal Waves

    PubMed Central

    Kerschensteiner, Daniel

    2016-01-01

    Spontaneous activity patterns propagate through many parts of the developing nervous system and shape the wiring of emerging circuits. Prior to vision, waves of activity originating in the retina propagate through the lateral geniculate nucleus (LGN) of the thalamus to primary visual cortex (V1). Retinal waves have been shown to instruct the wiring of ganglion cell axons in LGN and of thalamocortical axons in V1 via correlation-based plasticity rules. Across species, retinal waves mature in three stereotypic stages (I–III), in which distinct circuit mechanisms give rise to unique activity patterns that serve specific functions in visual system refinement. Here, I review insights into the patterns, mechanisms, and functions of stage III retinal waves, which rely on glutamatergic signaling. As glutamatergic waves spread across the retina, neighboring ganglion cells with opposite light responses (ON vs. OFF) are activated sequentially. Recent studies identified lateral excitatory networks in the inner retina that generate and propagate glutamatergic waves, and vertical inhibitory networks that desynchronize the activity of ON and OFF cells in the wavefront. Stage III wave activity patterns may help segregate axons of ON and OFF ganglion cells in the LGN, and could contribute to the emergence of orientation selectivity in V1. PMID:27242446

  13. Retinal Thickening and Photoreceptor Loss in HIV Eyes without Retinitis

    PubMed Central

    Arcinue, Cheryl A.; Bartsch, Dirk-Uwe; El-Emam, Sharif Y.; Ma, Feiyan; Doede, Aubrey; Sharpsten, Lucie; Gomez, Maria Laura; Freeman, William R.

    2015-01-01

    Purpose To determine the presence of structural changes in HIV retinae (i.e., photoreceptor density and retinal thickness in the macula) compared with age-matched HIV-negative controls. Methods Cohort of patients with known HIV under CART (combination Antiretroviral Therapy) treatment were examined with a flood-illuminated retinal AO camera to assess the cone photoreceptor mosaic and spectral-domain optical coherence tomography (SD-OCT) to assess retinal layers and retinal thickness. Results Twenty-four eyes of 12 patients (n = 6 HIV-positive and 6 HIV-negative) were imaged with the adaptive optics camera. In each of the regions of interest studied (nasal, temporal, superior, inferior), the HIV group had significantly less mean cone photoreceptor density compared with age-matched controls (difference range, 4,308–6,872 cones/mm2). A different subset of forty eyes of 20 patients (n = 10 HIV-positive and 10 HIV-negative) was included in the retinal thickness measurements and retinal layer segmentation with the SD-OCT. We observed significant thickening in HIV positive eyes in the total retinal thickness at the foveal center, and in each of the three horizontal B-scans (through the macular center, superior, and inferior to the fovea). We also noted that the inner retina (combined thickness from ILM through RNFL to GCL layer) was also significantly thickened in all the different locations scanned compared with HIV-negative controls. Conclusion Our present study shows that the cone photoreceptor density is significantly reduced in HIV retinae compared with age-matched controls. HIV retinae also have increased macular retinal thickness that may be caused by inner retinal edema secondary to retinovascular disease in HIV. The interaction of photoreceptors with the aging RPE, as well as possible low-grade ocular inflammation causing diffuse inner retinal edema, may be the key to the progressive vision changes in HIV-positive patients without overt retinitis. PMID:26244973

  14. [Application of retinal oximeter in ophthalmology].

    PubMed

    Li, Jing; Ma, Jianmin; Wang, Ningli

    2015-11-01

    Retinal oximeter is a new machine which has been used in the diagnose, treatment and research of several ophthalmic diseases for recent years. It allows ophthalmologists to gain retinal oxygen saturation directly. Therefore, retinal oximeter might be useful for ophthalmologists to understand ophthalmic diseases more deeper and clarify the impact of ischemia on retinal function. It has been reported in the literatures that retinal oximeter has potentially useful diagnostic and therapeutic indications in various eye diseases such as diabetic retinopathy, central retinal vein and artery occlusion, retinitis pigmentosa, glaucomatous optic neuropathy, et al. In this thesis, the application of retinal oximeter in ophthalmology is reviewed. PMID:26850588

  15. Retinal Failure in Diabetes: a Feature of Retinal Sensory Neuropathy.

    PubMed

    Gray, Ellyn J; Gardner, Thomas W

    2015-12-01

    Physiologic adaptations mediate normal responses to short-term and long-term stresses to ensure organ function. Organ failure results if adaptive responses fail to resolve persistent stresses or maladaptive reactions develop. The retinal neurovascular unit likewise undergoes adaptive responses to diabetes resulting in a retinal sensory neuropathy analogous to other sensory neuropathies. Vision-threatening diabetic retinal neuropathy results from unremitting metabolic and inflammatory stresses, leading to macular edema and proliferative diabetic retinopathy, states of "retinal failure." Current regulatory strategies focus primarily on the retinal failure stages, but new diagnostic modalities and understanding of the pathophysiology of diabetic retinopathy may facilitate earlier treatment to maintain vision in persons with diabetes. PMID:26458378

  16. Effect of Molar Concentration of NH4OH on Photocatalytic Activity in Preparation of Nanosized TiO2 Powder from Spent Titanium Chip by Sol-Gel Method.

    PubMed

    Lee, Hwan-Gyu; Lee, Young-Ho; Yun, Hyeon-Jun; Jo, Jang-Ho; Kim, Seong-Kyung; Yu, Hyeon-Jin; Kim, Ki-Joong; Kang, Byeong-Mo; Jeong, Woon-Jo; Chung, Min-Chul; Jung, Sang-Chul; Lee, Do-Jin; Ahn, Ho-Geun

    2016-05-01

    The TiO2 powder was prepared from the spent titanium chips by applying the sol-gel method. The spent titanium chip was dissolved in HCl solution, and then NH4OH solution was added. The molar concentration of NH4OH solution was 2 M, 4 M, 8 M, and 10 M. Obtained TiO2 powders were calcined at 200 degrees C, 400 degrees C, and 600 degrees C. The prepared TiO2 powder was characterized using a particle size analysis, BET surface area, and XRD analysis. The crystal structure of the TiO2 powder was rutile type and anatase. The highest BET surface area of TiO2 powder was 432.8 m2/g. The photocatalytic property of the TiO2 powder was evaluated as decomposition rate of methylene blue(MB) by using a liquid phase stirred reactor. UV source was a UV-A, and concentration of MB in most experiments was 8 ppm. The concentration of MB was measured by absorbance at 664 nm using UV spectroscopy. Photocatalytic efficiency of prepared TiO2 powder depended highly on concentration of NH4OH solution. The TiO2 powder prepared with 8 M-NH4OH solution showed the highest efficiency, the decomposition efficiency at decomposition time of 2 hr and MB concentration of pH 8 was 98%. PMID:27483804

  17. Perceptual Fading without Retinal Adaptation

    ERIC Educational Resources Information Center

    Hsieh, Po-Jang; Colas, Jaron T.

    2012-01-01

    A retinally stabilized object readily undergoes perceptual fading and disappears from consciousness. This startling phenomenon is commonly believed to arise from local bottom-up sensory adaptation to edge information that occurs early in the visual pathway, such as in the lateral geniculate nucleus of the thalamus or retinal ganglion cells. Here…

  18. High resolution optoelectronic retinal prosthesis

    NASA Astrophysics Data System (ADS)

    Loudin, Jim; Dinyari, Rostam; Huie, Phil; Butterwick, Alex; Peumans, Peter; Palanker, Daniel

    2009-02-01

    Electronic retinal prostheses seek to restore sight in patients with retinal degeneration by delivering pulsed electric currents to retinal neurons via an array of microelectrodes. Most implants use inductive or optical transmission of information and power to an intraocular receiver, with decoded signals subsequently distributed to retinal electrodes through an intraocular cable. Surgical complexity could be minimized by an "integrated" prosthesis, in which both power and data are delivered directly to the stimulating array without any discrete components or cables. We present here an integrated retinal prosthesis system based on a photodiode array implant. Video frames are processed and imaged onto the retinal implant by a video goggle projection system operating at near-infrared wavelengths (~ 900 nm). Photodiodes convert light into pulsed electric current, with charge injection maximized by specially optimized series photodiode circuits. Prostheses of three different pixel densities (16 pix/mm2, 64 pix/mm2, and 256 pix/mm2) have been designed, simulated, and prototyped. Retinal tissue response to subretinal implants made of various materials has been investigated in RCS rats. The resulting prosthesis can provide sufficient charge injection for high resolution retinal stimulation without the need for implantation of any bulky discrete elements such as coils or tethers. In addition, since every pixel functions independently, pixel arrays may be placed separately in the subretinal space, providing visual stimulation to a larger field of view.

  19. Retinal Imaging and Image Analysis

    PubMed Central

    Abràmoff, Michael D.; Garvin, Mona K.; Sonka, Milan

    2011-01-01

    Many important eye diseases as well as systemic diseases manifest themselves in the retina. While a number of other anatomical structures contribute to the process of vision, this review focuses on retinal imaging and image analysis. Following a brief overview of the most prevalent causes of blindness in the industrialized world that includes age-related macular degeneration, diabetic retinopathy, and glaucoma, the review is devoted to retinal imaging and image analysis methods and their clinical implications. Methods for 2-D fundus imaging and techniques for 3-D optical coherence tomography (OCT) imaging are reviewed. Special attention is given to quantitative techniques for analysis of fundus photographs with a focus on clinically relevant assessment of retinal vasculature, identification of retinal lesions, assessment of optic nerve head (ONH) shape, building retinal atlases, and to automated methods for population screening for retinal diseases. A separate section is devoted to 3-D analysis of OCT images, describing methods for segmentation and analysis of retinal layers, retinal vasculature, and 2-D/3-D detection of symptomatic exudate-associated derangements, as well as to OCT-based analysis of ONH morphology and shape. Throughout the paper, aspects of image acquisition, image analysis, and clinical relevance are treated together considering their mutually interlinked relationships. PMID:21743764

  20. Quantitative analysis of retinal OCT.

    PubMed

    Sonka, Milan; Abràmoff, Michael D

    2016-10-01

    Clinical acceptance of 3-D OCT retinal imaging brought rapid development of quantitative 3-D analysis of retinal layers, vasculature, retinal lesions as well as facilitated new research in retinal diseases. One of the cornerstones of many such analyses is segmentation and thickness quantification of retinal layers and the choroid, with an inherently 3-D simultaneous multi-layer LOGISMOS (Layered Optimal Graph Image Segmentation for Multiple Objects and Surfaces) segmentation approach being extremely well suited for the task. Once retinal layers are segmented, regional thickness, brightness, or texture-based indices of individual layers can be easily determined and thus contribute to our understanding of retinal or optic nerve head (ONH) disease processes and can be employed for determination of disease status, treatment responses, visual function, etc. Out of many applications, examples provided in this paper focus on image-guided therapy and outcome prediction in age-related macular degeneration and on assessing visual function from retinal layer structure in glaucoma. PMID:27503080

  1. The molecular structure of the phosphate mineral beraunite Fe2+Fe53+(PO4)4(OH)5ṡ4H2O - A vibrational spectroscopic study

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; López, Andrés; Scholz, Ricardo; Xi, Yunfei; Lana, Cristiano

    2014-07-01

    The mineral beraunite from Boca Rica pegmatite in Minas Gerais with theoretical formula Fe2+Fe53+(PO4)4(OH)5ṡ4H2O has been studied using a combination of electron microscopy with EDX and vibrational spectroscopic techniques. Raman spectroscopy identifies an intense band at 990 cm-1 and 1011 cm-1. These bands are attributed to the PO43- ν1 symmetric stretching mode. The ν3 antisymmetric stretching modes are observed by a large number of Raman bands. The Raman bands at 1034, 1051, 1058, 1069 and 1084 together with the Raman bands at 1098, 1116, 1133, 1155 and 1174 cm-1 are assigned to the ν3 antisymmetric stretching vibrations of PO43- and the HOPO32- units. The observation of these multiple Raman bands in the symmetric and antisymmetric stretching region gives credence to the concept that both phosphate and hydrogen phosphate units exist in the structure of beraunite. The series of Raman bands at 567, 582, 601, 644, 661, 673, and 687 cm-1 are assigned to the PO43- ν2 bending modes. The series of Raman bands at 437, 468, 478, 491, 503 cm-1 are attributed to the PO43- and HOPO32- ν4 bending modes. No Raman bands of beraunite which could be attributed to the hydroxyl stretching unit were observed. Infrared bands at 3511 and 3359 cm-1 are ascribed to the OH stretching vibration of the OH units. Very broad bands at 3022 and 3299 cm-1 are attributed to the OH stretching vibrations of water. Vibrational spectroscopy offers insights into the molecular structure of the phosphate mineral beraunite.

  2. A vibrational spectroscopic study of the phosphate mineral lulzacite Sr2Fe2+(Fe2+,Mg)2Al4(PO4)4(OH)10

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; López, Andrés; Belotti, Fernanda M.; Xi, Yunfei; Scholz, Ricardo

    2014-06-01

    The mineral lulzacite from Saint-Aubin des Chateaux mine, France, with theoretical formula Sr2Fe2+(Fe2+,Mg)2Al4(PO4)4(OH)10 has been studied using a combination of electron microscopy with EDX and vibrational spectroscopic techniques. Chemical analysis shows a Sr, Fe, Al phosphate with minor amounts of Ga, Ba and Mg. Raman spectroscopy identifies an intense band at 990 cm-1 with an additional band at 1011 cm-1. These bands are attributed to the PO43-ν1 symmetric stretching mode. The ν3 antisymmetric stretching modes are observed by a large number of Raman bands. The Raman bands at 1034, 1051, 1058, 1069 and 1084 together with the Raman bands at 1098, 1116, 1133, 1155 and 1174 cm-1 are assigned to the ν3 antisymmetric stretching vibrations of PO43- and the HOPO32- units. The observation of these multiple Raman bands in the symmetric and antisymmetric stretching region gives credence to the concept that both phosphate and hydrogen phosphate units exist in the structure of lulzacite. The series of Raman bands at 567, 582, 601, 644, 661, 673 and 687 cm-1 are assigned to the PO43-ν2 bending modes. The series of Raman bands at 437, 468, 478, 491, 503 cm-1 are attributed to the PO43- and HOPO32-ν4 bending modes. No Raman bands of lulzacite which could be attributed to the hydroxyl stretching unit were observed. Infrared bands at 3511 and 3359 cm-1 are ascribed to the OH stretching vibration of the OH units. Very broad bands at 3022 and 3299 cm-1 are attributed to the OH stretching vibrations of water. Vibrational spectroscopy offers insights into the molecular structure of the phosphate mineral lulzacite.

  3. Replacement of Oxygen by Sulfur in Small Organic Molecules. 3. Theoretical Studies on the Tautomeric Equilibria of the 2OH and 4OH-Substituted Oxazole and Thiazole and the 3OH and 4OH-Substituted Isoxazole and Isothiazole in the Isolated State and in Solution

    PubMed Central

    Nagy, Peter I.

    2016-01-01

    This follow-up paper completes the author’s investigations to explore the in-solution structural preferences and relative free energies of all OH-substituted oxazole, thiazole, isoxazole, and isothiazole systems. The polarizable continuum dielectric solvent method calculations in the integral-equation formalism (IEF-PCM) were performed at the DFT/B97D/aug-cc-pv(q+(d))z level for the stable neutral tautomers with geometries optimized in dichloromethane and aqueous solution. With the exception of the predictions for the predominant tautomers of the 3OH isoxazole and isothiazole, the results of the IEF-PCM calculations for identifying the most stable tautomer of the given species in the two selected solvents agreed with those from experimental investigations. The calculations predict that the hydroxy proton, with the exception for the 4OH isoxazole and 4OH isothiazole, moves preferentially to the ring nitrogen or to a ring carbon atom in parallel with the development of a C=O group. The remaining, low-fraction OH tautomers will not be observable in the equilibrium compositions. Relative solvation free energies obtained by the free energy perturbation method implemented in Monte Carlo simulations are in moderate accord with the IEF-PCM results, but consideration of the ΔGsolv/MC values in calculating ΔGstot maintains the tautomeric preferences. It was revealed from the Monte Carlo solution structure analyses that the S atom is not a hydrogen-bond acceptor in any OH-substituted thiazole or isothiazole, and the OH-substituted isoxazole and oxazole ring oxygens may act as a weak hydrogen-bond acceptor at most. The molecules form 1.0−3.4 solute−water hydrogen bonds in generally unexplored numbers at some specific solute sites. Nonetheless, hydrogen-bond formation is favorable with the NH, C=O and OH groups. PMID:27409605

  4. Replacement of Oxygen by Sulfur in Small Organic Molecules. 3. Theoretical Studies on the Tautomeric Equilibria of the 2OH and 4OH-Substituted Oxazole and Thiazole and the 3OH and 4OH-Substituted Isoxazole and Isothiazole in the Isolated State and in Solution.

    PubMed

    Nagy, Peter I

    2016-01-01

    This follow-up paper completes the author's investigations to explore the in-solution structural preferences and relative free energies of all OH-substituted oxazole, thiazole, isoxazole, and isothiazole systems. The polarizable continuum dielectric solvent method calculations in the integral-equation formalism (IEF-PCM) were performed at the DFT/B97D/aug-cc-pv(q+(d))z level for the stable neutral tautomers with geometries optimized in dichloromethane and aqueous solution. With the exception of the predictions for the predominant tautomers of the 3OH isoxazole and isothiazole, the results of the IEF-PCM calculations for identifying the most stable tautomer of the given species in the two selected solvents agreed with those from experimental investigations. The calculations predict that the hydroxy proton, with the exception for the 4OH isoxazole and 4OH isothiazole, moves preferentially to the ring nitrogen or to a ring carbon atom in parallel with the development of a C=O group. The remaining, low-fraction OH tautomers will not be observable in the equilibrium compositions. Relative solvation free energies obtained by the free energy perturbation method implemented in Monte Carlo simulations are in moderate accord with the IEF-PCM results, but consideration of the ΔGsolv/MC values in calculating ΔG(s)tot maintains the tautomeric preferences. It was revealed from the Monte Carlo solution structure analyses that the S atom is not a hydrogen-bond acceptor in any OH-substituted thiazole or isothiazole, and the OH-substituted isoxazole and oxazole ring oxygens may act as a weak hydrogen-bond acceptor at most. The molecules form 1.0-3.4 solute-water hydrogen bonds in generally unexplored numbers at some specific solute sites. Nonetheless, hydrogen-bond formation is favorable with the NH, C=O and OH groups. PMID:27409605

  5. [Intrinsically Photosensitive Retinal Ganglion Cells].

    PubMed

    Skorkovská, K; Skorkovská, Š

    2015-06-01

    Recently discovered intrinsically photosensitive melanopsin-containing retinal ganglion cells contribute to circadian photoentrainment and pupillary constriction; recent works have also brought new evidence for their accessory role in the visual system in humans. Pupil light reaction driven by individual photoreceptors can be isolated by means of the so called chromatic pupillography. The use of chromatic stimuli to elicit different pupillary responses may become an objective clinical pupil test in the detection of retinal diseases and in assessing new therapeutic approaches particularly in hereditary retinal degenerations like retinitis pigmentosa. In advanced stages of disease, the pupil light reaction is even more sensitive than standard electroretinography for detecting residual levels of photoreceptor activity. This review summarizes current knowledge on intrinsically photosensitive retinal cells and highlights its possible implications for clinical practice. PMID:26201360

  6. Retinal connectivity and primate vision

    PubMed Central

    Lee, Barry B.; Martin, Paul R.; Grünert, Ulrike

    2012-01-01

    The general principles of retinal organization are now well known. It may seem surprising that retinal organization in the primate, which has a complex visual behavioral repertoire, appears relatively simple. In this review, we primarily consider retinal structure and function in primate species. Photoreceptor distribution and connectivity are considered as are connectivity in the outer and inner retina. One key issue is the specificity of retinal connections; we suggest that the retina shows connectional specificity but this is seldom complete, and we consider here the functional consequences of imprecise wiring. Finally, we consider how retinal systems can be linked to psychophysical descriptions of different channels, chromatic and luminance, which are proposed to exist in the primate visual system. PMID:20826226

  7. Retinal connectivity and primate vision.

    PubMed

    Lee, Barry B; Martin, Paul R; Grünert, Ulrike

    2010-11-01

    The general principles of retinal organization are now well known. It may seem surprising that retinal organization in the primate, which has a complex visual behavioral repertoire, appears relatively simple. In this review, we primarily consider retinal structure and function in primate species. Photoreceptor distribution and connectivity are considered as are connectivity in the outer and inner retina. One key issue is the specificity of retinal connections; we suggest that the retina shows connectional specificity but this is seldom complete, and we consider here the functional consequences of imprecise wiring. Finally, we consider how retinal systems can be linked to psychophysical descriptions of different channels, chromatic and luminance, which are proposed to exist in the primate visual system. PMID:20826226

  8. [Multifocal Vitelliform Retinal Lesion].

    PubMed

    Streicher, T; Špirková, J; Ilavská, M

    2015-06-01

    The authors present retrospective follow up of patient with bilateral multifocal vitelliform retinal lesion during the 18 years period. At this time, spontaneous improvement of objective picture on retina and subjective visual troubles was observed. It is probable, that this case is a part of the same symptom complex as a variant of Best´s hereditary disease. This conclusion was based on initial stadium of phenotypical expressivity and additional evaluations. The course and outcomes of visual functions were different. The hereditary transmission was not confirmed. PMID:26201364

  9. PIMASERTIB AND SEROUS RETINAL DETACHMENTS

    PubMed Central

    AlAli, Alaa; Bushehri, Ahmad; Park, Jonathan C.; Krema, Hatem

    2016-01-01

    Purpose: To report a case of multifocal serous retinal detachments associated with pimasertib. Methods: The authors report a 26-year-old patient who developed bilateral multifocal serous retinal detachments appearing 2 days after starting pimasertib (as part of a clinical trial investigating its use in low-grade metastatic ovarian cancer) and rapidly resolving 3 days after stopping it. Conclusion: The mechanism of MEK inhibitor induced visual toxicity remains unclear. The pathophysiology of multifocal serous retinal detachments as a complication of pimasertib is still poorly understood. PMID:26444523

  10. Pharmacokinetic Study of Praziquantel Enantiomers and Its Main Metabolite R-trans-4-OH-PZQ in Plasma, Blood and Dried Blood Spots in Opisthorchis viverrini-Infected Patients

    PubMed Central

    Meister, Isabel; Kovac, Jana; Duthaler, Urs; Odermatt, Peter; Huwyler, Jörg; Vanobberghen, Fiona; Sayasone, Somphou; Keiser, Jennifer

    2016-01-01

    Background Praziquantel (PZQ) is the treatment of choice for infections with the liver fluke Opisthorchis viverrini, a major health problem in Southeast Asia. However, pharmacokinetic (PK) studies investigating the disposition of PZQ enantiomers (R- and S-PZQ) and its main metabolite, R-trans-4-OH-PZQ, in diseased patients are lacking. The implementation of a dried blood spot (DBS) sampling technique would ease the performance of PK studies in remote areas without clinical facilities. The aim of the present study is to provide data on the disposition of PZQ enantiomers and R-trans-4-OH-PZQ in opisthorchiasis patients and to validate the use of DBS compared to plasma and blood sampling. Methodology/Principal Findings PZQ was administered to nine O. viverrini-infected patients at 3 oral doses of 25 mg/kg in 4 h intervals. Plasma, blood and DBS were simultaneously collected at selected time points from 0 to 24 h post-treatment. PK parameters were determined using non-compartmental analysis. Drug concentrations and areas under the curve (AUC0–24h) measured in the 3 matrices were compared using Bland-Altman analysis. We observed plasma AUC0–24hs of 1.1, 9.0 and 188.7 μg/ml*h and half-lives of 1.1, 3.3 and 6.4 h for R-PZQ, S-PZQ and R-trans-4-OH, respectively. Maximal plasma concentrations (Cmax) of 0.2, 0.9 and 13.9 μg/ml for R-PZQ, S-PQZ and R-trans-4-OH peaked at 7 h for PZQ enantiomers and at 8.7 h for the metabolite. Individual drug concentration measurements and patient AUC0–24hs displayed ratios of blood or DBS versus plasma between 79–94% for R- and S-PZQ, and between 108–122% for R-trans-4-OH. Conclusions/Significance Pharmacodynamic (PD) in vitro studies on PZQ enantiomers and R-trans-4-OH-PZQ are necessary to be able to correlate PK parameters with efficacy. DBS appears to be a valid alternative to conventional venous sampling for PK studies in PZQ-treated patients. PMID:27152952

  11. Di-retinoid-pyridinium-ethanolamine (A2E) Accumulation and the Maintenance of the Visual Cycle Are Independent of Atg7-mediated Autophagy in the Retinal Pigmented Epithelium.

    PubMed

    Perusek, Lindsay; Sahu, Bhubanananda; Parmar, Tanu; Maeno, Hiroshi; Arai, Eisuke; Le, Yun-Zheng; Subauste, Carlos S; Chen, Yu; Palczewski, Krzysztof; Maeda, Akiko

    2015-11-27

    Autophagy is an evolutionarily conserved catabolic mechanism that relieves cellular stress by removing/recycling damaged organelles and debris through the action of lysosomes. Compromised autophagy has been implicated in many neurodegenerative diseases, including retinal degeneration. Here we examined retinal phenotypes resulting from RPE-specific deletion of the autophagy regulatory gene Atg7 by generating Atg7(flox/flox);VMD2-rtTA-cre+ mice to determine whether autophagy is essential for RPE functions including retinoid recycling. Atg7-deficient RPE displayed abnormal morphology with increased RPE thickness, cellular debris and vacuole formation indicating that autophagy is important in maintaining RPE homeostasis. In contrast, 11-cis-retinal content, ERGs and retinal histology were normal in mice with Atg7-deficient RPE in both fasted and fed states. Because A2E accumulation in the RPE is associated with pathogenesis of both Stargardt disease and age-related macular degeneration (AMD) in humans, deletion of Abca4 was introduced into Atg7(flox/flox);VMD2-rtTA-cre+ mice to investigate the role of autophagy during A2E accumulation. Comparable A2E concentrations were detected in the eyes of 6-month-old mice with and without Atg7 from both Abca4(-/-) and Abca4(+/+) backgrounds. To identify other autophagy-related molecules involved in A2E accumulation, we performed gene expression array analysis on A2E-treated human RPE cells and found up-regulation of four autophagy related genes; DRAM1, NPC1, CASP3, and EIF2AK3/PERK. These observations indicate that Atg7-mediated autophagy is dispensable for retinoid recycling and A2E deposition; however, autophagy plays a role in coping with stress caused by A2E accumulation. PMID:26468292

  12. Flexible retinal electrode array

    DOEpatents

    Okandan, Murat; Wessendorf, Kurt O.; Christenson, Todd R.

    2006-10-24

    An electrode array which has applications for neural stimulation and sensing. The electrode array can include a large number of electrodes each of which is flexibly attached to a common substrate using a plurality of springs to allow the electrodes to move independently. The electrode array can be formed from a combination of bulk and surface micromachining, with electrode tips that can include an electroplated metal (e.g. platinum, iridium, gold or titanium) or a metal oxide (e.g. iridium oxide) for biocompatibility. The electrode array can be used to form a part of a neural prosthesis, and is particularly well adapted for use in an implantable retinal prosthesis where the electrodes can be tailored to provide a uniform gentle contact pressure with optional sensing of this contact pressure at one or more of the electrodes.

  13. Building retinal connectomes.

    PubMed

    Marc, Robert E; Jones, Bryan W; Lauritzen, J Scott; Watt, Carl B; Anderson, James R

    2012-08-01

    Understanding vertebrate vision depends on knowing, in part, the complete network graph of at least one representative retina. Acquiring such graphs is the business of synaptic connectomics, emerging as a practical technology due to improvements in electron imaging platform control, management software for large-scale datasets, and availability of data storage. The optimal strategy for building complete connectomes uses transmission electron imaging with 2 nm or better resolution, molecular tags for cell identification, open-access data volumes for navigation, and annotation with open-source tools to build 3D cell libraries, complete network diagrams and connectivity databases. The first forays into retinal connectomics have shown that even nominally well-studied cells have much richer connection graphs than expected. PMID:22498714

  14. Nutrition and retinal degenerations.

    PubMed

    Berson, E L

    2000-01-01

    Considerable progress has been made in the understanding and management of degenerative diseases of the retina involving photoreceptors. Nutritional approaches to treatment have proved successful in the case of the common forms of retinitis pigmentosa (supplementation with vitamin A), Bassen-Kornzweig disease (supplementation with vitamins A, E, and K), gyrate atrophy (low-protein, low-arginine diet and/or supplementation with vitamin B6), and Refsum disease (low-phytol, low-phytanic acid diet). The night blindness associated with Sorsby fundus dystrophy can be reversed over the short term with vitamin A. A significant trend for decreased risk for advanced or exudative ARMD has been reported among those whose diets contain a higher content of carotenoids, such as spinach and collard greens. A randomized trial is in progress to determine whether beta-carotene, vitamin C, and vitamin E as well as trace minerals, particularly zinc, will modify the course of ARMD. The difficulties that patients with retinal degenerations face as a result of their diminishing vision, sometimes over decades, cannot be underestimated. Nutritional therapy has proved effective in modifying the course of a number of these conditions; the therapeutic benefit of nutritional modification in diseases that have a genetic basis is of particular interest. Further research is warranted to determine the mechanisms by which these treatments provide their benefit as well as to identify other conditions that may yield to nutritional intervention. Risk-factor analyses of well-defined populations followed over time with food-frequency questionnaires in conjunction with careful assessments of visual function may reveal other dietary constituents that can modify the course of degenerative diseases of the retina. PMID:11064860

  15. Molecular genetics of retinitis pigmentosa.

    PubMed Central

    Farber, D. B.; Heckenlively, J. R.; Sparkes, R. S.; Bateman, J. B.

    1991-01-01

    Retinitis pigmentosa is a model for the study of genetic diseases. Its genetic heterogeneity is reflected in the different forms of inheritance (autosomal dominant, autosomal recessive, or X-linked) and, in a few families, in the presence of mutations in the visual pigment rhodopsin. Clinical and molecular genetic studies of these disorders are discussed. Animal models of retinal degeneration have been investigated for many years with the hope of gaining insight into the cause of photoreceptor cell death. Recently, the genes responsible for two of these animal disorders, the rds and rd mouse genes, have been isolated and characterized. The retinal degeneration of the rd mouse is presented in detail. The possible involvement of human analogues of these mouse genes in human retinal diseases is being investigated. Images PMID:1771877

  16. Microsystems Technology for Retinal Implants

    NASA Astrophysics Data System (ADS)

    Weiland, James

    2005-03-01

    The retinal prosthesis is targeted to treat age-related macular degeneration, retinitis pigmentosa, and other outer retinal degenerations. Simulations of artificial vision have predicted that 600-1000 individual pixels will be needed if a retinal prosthesis is to restore function such as reading large print and face recognition. An implantable device with this many electrode contacts will require microsystems technology as part of its design. An implantable retinal prosthesis will consist of several subsystems including an electrode array and hermetic packaging. Microsystems and microtechnology approaches are being investigated as possible solutions for these design problems. Flexible polydimethylsiloxane (PDMS) substrate electrode arrays and silicon micromachined electrode arrays are under development. Inactive PDMS electrodes have been implanted in 3 dogs to assess mechanical biocompatibility. 3 dogs were followed for 6 months. The implanted was securely fastened to the retina with a single retinal tack. No post-operative complications were evident. The array remained within 100 microns of the retinal surface. Histological evaluation showed a well preserved retina underneath the electrode array. A silicon device with electrodes suspended on micromachined springs has been implanted in 4 dogs (2 acute implants, 2 chronic implants). The device, though large, could be inserted into the eye and positioned on the retina. Histological analysis of the retina from the spring electrode implants showed that spring mounted posts penetrated the retina, thus the device will be redesigned to reduce the strength of the springs. These initial implants will provide information for the designers to make the next generation silicon device. We conclude that microsystems technology has the potential to make possible a retinal prosthesis with 1000 individual contacts in close proximity to the retina.

  17. Oxidation of CO on a carbon-based material composed of nickel hydroxide and hydroxyl graphene oxide, (Ni4(OH)3-hGO)--a first-principles calculation.

    PubMed

    Yeh, Chen-Hao; Ho, Jia-Jen

    2015-03-21

    Nickel or nickel hydroxide clusters and graphene oxide (GO) composites are novel nanomaterials in the application of electrochemical catalysts. In this work, we calculated the energy of Ni4 adsorbed onto saturated hydroxyl graphene oxide (hGO), which forms a Ni4(OH)3 cluster on the hydroxyl graphene oxide (Ni4(OH)3-hGO) and releases 4.47 eV (5.22 eV with DFT-D3 correction). We subsequently studied the oxidation of CO on the Ni4(OH)3-hGO system via three mechanisms - LH, ER and carbonated mechanisms. Our results show that the activation energy for oxidation of the first CO molecule according to the ER mechanism is 0.14 eV (0.12 eV with DFT-D3 correction), much smaller than that with LH (Ea = 0.65 eV, 0.61 eV with DFT-D3 correction) and with carbonated (Ea = 1.28 eV, 1.20 eV with DFT-D3 correction) mechanisms. The barrier to oxidation of the second CO molecule to CO2 with the ER mechanism increases to 0.43 eV (0.37 eV with DFT-D3 correction), but still less than that via LH (Ea = 1.09 eV, 1.07 eV with DFT-D3 correction), indicating that CO could be effectively oxidized through the ER mechanism on the Ni4(OH)3/hGO catalyst. PMID:25707988

  18. Retinal oxygen extraction in humans

    NASA Astrophysics Data System (ADS)

    Werkmeister, René M.; Schmidl, Doreen; Aschinger, Gerold; Doblhoff-Dier, Veronika; Palkovits, Stefan; Wirth, Magdalena; Garhöfer, Gerhard; Linsenmeier, Robert A.; Leitgeb, Rainer A.; Schmetterer, Leopold

    2015-10-01

    Adequate function of the retina is dependent on proper oxygen supply. In humans, the inner retina is oxygenated via the retinal circulation. We present a method to calculate total retinal oxygen extraction based on measurement of total retinal blood flow using dual-beam bidirectional Doppler optical coherence tomography and measurement of oxygen saturation by spectrophotometry. These measurements were done on 8 healthy subjects while breathing ambient room air and 100% oxygen. Total retinal blood flow was 44.3 ± 9.0 μl/min during baseline and decreased to 18.7 ± 4.2 μl/min during 100% oxygen breathing (P < 0.001) resulting in a pronounced decrease in retinal oxygen extraction from 2.33 ± 0.51 μl(O2)/min to 0.88 ± 0.14 μl(O2)/min during breathing of 100% oxygen. The method presented in this paper may have significant potential to study oxygen metabolism in hypoxic retinal diseases such as diabetic retinopathy.

  19. General pathophysiology in retinal degeneration.

    PubMed

    Wert, Katherine J; Lin, Jonathan H; Tsang, Stephen H

    2014-01-01

    Retinal degeneration, including that seen in age-related macular degeneration and retinitis pigmentosa (RP), is the most common form of neural degenerative disease in the world. There is great genetic and allelic heterogeneity of the various retinal dystrophies. Classifications of these diseases can be ambiguous, as there are similar clinical presentations in retinal degenerations arising from different genetic mechanisms. As would be expected, alterations in the activity of the phototransduction cascade, such as changes affecting the renewal and shedding of the photoreceptor OS, visual transduction, and/or retinol metabolism have a great impact on the health of the retina. Mutations within any of the molecules responsible for these visual processes cause several types of retinal and retinal pigment epithelium degenerative diseases. Apoptosis has been implicated in the rod cell loss seen in a mouse model of RP, but the precise mechanisms that connect the activation of these pathways to the loss of phosphodiesterase (PDE6β) function has yet to be defined. Additionally, the activation of apoptosis by CCAAT/-enhancer-binding protein homologous protein (CHOP), after activation of the unfolded protein response pathway, may be responsible for cell death, although the mechanism remains unknown. However, the mechanisms of cell death after loss of function of PDE6, which is a commonly studied mammalian model in research, may be generalizable to loss of function of different key proteins involved in the phototransduction cascade. PMID:24732759

  20. General Pathophysiology in Retinal Degeneration

    PubMed Central

    Wert, Katherine J.; Lin, Jonathan H.; Tsang, Stephen H.

    2015-01-01

    Retinal degeneration, including that seen in age-related macular degeneration and retinitis pigmentosa (RP), is the most common form of neural degenerative disease in the world. There is great genetic and allelic heterogeneity of the various retinal dystrophies. Classifications of these diseases can be ambiguous, as there are similar clinical presentations in retinal degenerations arising from different genetic mechanisms. As would be expected, alterations in the activity of the phototransduction cascade, such as changes affecting the renewal and shedding of the photoreceptor OS, visual transduction, and/ or retinol metabolism have a great impact on the health of the retina. Mutations within any of the molecules responsible for these visual processes cause several types of retinal and retinal pigment epithelium degenerative diseases. Apoptosis has been implicated in the rod cell loss seen in a mouse model of RP, but the precise mechanisms that connect the activation of these pathways to the loss of phosphodiesterase (PDE6β) function has yet to be defined. Additionally, the activation of apoptosis by CCAAT/-enhancer-binding protein homologous protein (CHOP), after activation of the unfolded protein response pathway, may be responsible for cell death, although the mechanism remains unknown. However, the mechanisms of cell death after loss of function of PDE6, which is a commonly studied mammalian model in research, may be generalizable to loss of function of different key proteins involved in the phototransduction cascade. PMID:24732759

  1. The mechanics of retinal detachment

    NASA Astrophysics Data System (ADS)

    Chou, Tom; Siegel, Michael

    2013-03-01

    We present a model of the mechanical and fluid forces associated with exudative retinal detachments where the retinal photoreceptor cells separate typically from the underlying retinal pigment epithelium (RPE). By computing the total fluid volume flow arising from transretinal, vascular, and retinal pigment epithelium (RPE) pump currents, we determine the conditions under which the subretinal fluid pressure exceeds the maximum yield stress holding the retina and RPE together, giving rise to an irreversible, extended retinal delamination. We also investigate localized, blister-like retinal detachments by balancing mechanical tension in the retina with both the retina-RPE adhesion energy and the hydraulic pressure jump across the retina. For detachments induced by traction forces, we find a critical radius beyond which the blister is unstable to growth. Growth of a detached blister can also be driven by inflamed tissue within which e.g., the hydraulic conductivities of the retina or choroid increase, the RPE pumps fail, or the adhesion properties change. We determine the parameter regimes in which the blister either becomes unstable to growth, remains stable and finite-sized, or shrinks, allowing possible healing. This work supported by the Army Research Office through grant 58386MA

  2. Cytomegalovirus retinitis mimicking intraocular lymphoma.

    PubMed

    Gooi, Patrick; Farmer, James; Hurley, Bernard; Brodbaker, Elliott

    2008-12-01

    We present a case of an unusual retinal infiltrate requiring retinal biopsy for definitive diagnosis. A 62-year-old man with treated lymphoma presented with decreased vision in the right eye associated with a white retinal lesion, which extended inferonasally from an edematous disc. Intraocular lymphoma was considered as a diagnosis; thus, the patient was managed with vitrectomy and retinal biopsy. Cytological analysis of the vitreous aspirate could not rule out a lymphoproliferative disorder. The microbial analysis was negative. Histology of the lesion showed extensive necrosis and large cells with prominent nucleoli. To rule out lymphoma, a battery of immunostains was performed and all were negative. However the limited amount of tissue was exhausted in the process. Subsequently, a hematoxylin and eosin (H/E) slide was destained, on which a CMV immunostain was performed. This revealed positivity in the nuclei and intranuclear inclusions within the large atypical cells. A diagnosis of CMV retinitis was made. Retinal biopsy may provide a definitive diagnosis and direct patient care toward intravenous gancyclovir in the case of CMV or toward radiation and chemotherapy for intraocular lymphoma. When faced with a limited amount of tissue, destaining regular H/E slides is a possible avenue to performing additional immunohistochemical studies. PMID:19668455

  3. Retinal oxygen extraction in humans.

    PubMed

    Werkmeister, René M; Schmidl, Doreen; Aschinger, Gerold; Doblhoff-Dier, Veronika; Palkovits, Stefan; Wirth, Magdalena; Garhöfer, Gerhard; Linsenmeier, Robert A; Leitgeb, Rainer A; Schmetterer, Leopold

    2015-01-01

    Adequate function of the retina is dependent on proper oxygen supply. In humans, the inner retina is oxygenated via the retinal circulation. We present a method to calculate total retinal oxygen extraction based on measurement of total retinal blood flow using dual-beam bidirectional Doppler optical coherence tomography and measurement of oxygen saturation by spectrophotometry. These measurements were done on 8 healthy subjects while breathing ambient room air and 100% oxygen. Total retinal blood flow was 44.3 ± 9.0 μl/min during baseline and decreased to 18.7 ± 4.2 μl/min during 100% oxygen breathing (P < 0.001) resulting in a pronounced decrease in retinal oxygen extraction from 2.33 ± 0.51 μl(O2)/min to 0.88 ± 0.14 μl(O2)/min during breathing of 100% oxygen. The method presented in this paper may have significant potential to study oxygen metabolism in hypoxic retinal diseases such as diabetic retinopathy. PMID:26503332

  4. Retinal oxygen extraction in humans

    PubMed Central

    Werkmeister, René M.; Schmidl, Doreen; Aschinger, Gerold; Doblhoff-Dier, Veronika; Palkovits, Stefan; Wirth, Magdalena; Garhöfer, Gerhard; Linsenmeier, Robert A.; Leitgeb, Rainer A.; Schmetterer, Leopold

    2015-01-01

    Adequate function of the retina is dependent on proper oxygen supply. In humans, the inner retina is oxygenated via the retinal circulation. We present a method to calculate total retinal oxygen extraction based on measurement of total retinal blood flow using dual-beam bidirectional Doppler optical coherence tomography and measurement of oxygen saturation by spectrophotometry. These measurements were done on 8 healthy subjects while breathing ambient room air and 100% oxygen. Total retinal blood flow was 44.3 ± 9.0 μl/min during baseline and decreased to 18.7 ± 4.2 μl/min during 100% oxygen breathing (P < 0.001) resulting in a pronounced decrease in retinal oxygen extraction from 2.33 ± 0.51 μl(O2)/min to 0.88 ± 0.14 μl(O2)/min during breathing of 100% oxygen. The method presented in this paper may have significant potential to study oxygen metabolism in hypoxic retinal diseases such as diabetic retinopathy. PMID:26503332

  5. Attikaite, Ca3Cu2Al2(AsO4)4(OH)4 · 2H2O, a new mineral species

    NASA Astrophysics Data System (ADS)

    Chukanov, N. V.; Pekov, I. V.; Zadov, A. E.

    2007-12-01

    Attikaite, a new mineral species, has been found together with arsenocrandalite, arsenogoyazite, conichalcite, olivenite, philipsbornite, azurite, malachite, carminite, beudantite, goethite, quartz, and allophane at the Christina Mine No. 132, Kamareza, Lavrion District, Attiki Prefecture (Attika), Greece. The mineral is named after the type locality. It forms spheroidal segregations (up to 0.3 mm in diameter) consisting of thin flexible crystals up to 3 × 20 × 80 μm in size. Its color is light blue to greenish blue, with a pale blue streak. The Mohs’ hardness is 2 to 2.5. The cleavage is eminent mica-like parallel to {001}. The density is 3.2(2) g/cm3 (measured in heavy liquids) and 3.356 g/cm3 (calculated). The wave numbers of the absorption bands in the infrared spectrum of attikaite are (cm-1; sh is shoulder; w is a weak band): 3525 sh, 3425, 3180, 1642, 1120 w, 1070 w, 1035 w, 900 sh, 874, 833, 820, 690 w, 645 w, 600 sh, 555, 486, 458, and 397. Attikaite is optically biaxial, negative, α = 1.642(2), β = γ = 1.644(2) ( X = c) 2 V means = 10(8)°, and 2 V calc = 0°. The new mineral is microscopically colorless and nonpleochroic. The chemical composition (electron microprobe, average over 4 point analyses, wt %) is: 0.17 MgO, 17.48 CaO, 0.12 FeO, 16.28 CuO, 10.61 Al2O3, 0.89 P2O5, 45.45 As2O5, 1.39 SO3, and H2O (by difference) 7.61, where the total is 100.00. The empirical formula calculated on the basis of (O,OH,H2O)22 is: Ca2.94Cu{1.93/2+} Al1.97Mg0.04Fe{0.02/2+} [(As3.74S0.16P0.12)Σ4.02O16.08](OH)3.87 · 2.05H2 O. The simplified formula is Ca3Cu2Al2(AsO4)4(OH)4 · 2H2O. Attikaite is orthorhombic, space group Pban, Pbam or Pba2; the unit-cell dimensions are a = 10.01(1), b = 8.199(5), c = 22.78(1) Å, V = 1870(3) Å3, and Z = 4. In the result of the ignition of attikaite for 30 to 35 min at 128 140°, the H2O bands in the IR spectrum disappear, while the OH-group band is not modified; the weight loss is 4.3%, which approximately corresponds to two H2O

  6. Hilarionite, Fe{2/3+}(SO4)(AsO4)(OH) · 6H2O, a new supergene mineral from Lavrion, Greece

    NASA Astrophysics Data System (ADS)

    Pekov, I. V.; Chukanov, N. V.; Yapaskurt, V. O.; Rusakov, V. S.; Belakovsky, D. I.; Turchkova, A. G.; Voudouris, P.; Magganas, A.; Katerinopoulos, A.

    2014-12-01

    A new mineral, hilarionite, ideally Fe{2/3+} (SO4)(AsO4)(OH) · 6H2O, has been found in the Hilarion Mine, Agios Konstantinos, Kamariza, Lavrion district, Attiki Prefecture, Greece. It was formed in the oxidation zone of a sulfide-rich orebody in association with goethite, gypsum, bukovskyite, jarosite, melanterite, chalcanthite, allophane, and azurite. Hilarionite occurs as light green (typically with an olive or grayish tint) to light yellowish green spherulites (up to 1 mm in size) and bunches of prismatic to acicular "individuals" up to 0.5 mm long that are in fact near-parallel or divergent aggregates of very thin, curved fibers up to 0.3 mm long and usually lesser than 2 μm thick. The luster is silky to vitreous. The Mohs' hardness is ca. 2. Hilarionite is ductile, its "individuals" are flexible and inelastic; fracture is uneven or splintery. D(meas) = 2.40(5), D(calc) = 2.486 g/cm3. IR spectrum shows the presence of arsenate and sulfate groups and H2O molecules in significant amounts. The Mössbauer spectrum indicates the presence of Fe3+ at two six-fold coordinated sites and the absence of Fe2+. Hilarionite is optically biaxial (+), α = 1.575(2), γ = 1.64(2), 2 V is large. The chemical composition (electron microprobe, average of 7 point analyses; H2O determined by modified Penfield method) is as follows, wt %: 0.03 MnO, 0.18 CuO, 0.17 ZnO, 33.83 Fe2O3, 0.22 P2O5, 18.92 As2O5, 22.19 SO3, 26.3 H2O, total is 101.82%. The empirical formula calculated on the basis of 15 O is: (Fe{1.90/3+}Cu0.01Zn0.01)Σ1.92[(SO4)1.24(AsO4)0.74(PO4)0.01]Σ1.99(OH)1.01 · 6.03H2O. The X-ray powder diffraction data show close structural relationship of hilarionite and kaňkite, Fe{2/3+}(AsO4)2 · 7H2O. Hilarionite is monoclinic, space group C2/ m, Cm or C2, a = 18.53(4), b = 17.43(3), c = 7.56(1) Å, β = 94.06(15)°, V = 2436(3) Å3, Z = 8. The strongest reflections in the X-ray powder diffraction pattern ( d, Å- I[ hkl]) are: 12.66-100[110], , 5.00-10[22l], , 4

  7. Influence of rare earth cation size on the crystal structure in rare earth silicates, Na2RESiO4(OH) (RE = Sc, Yb) and NaRESiO4 (RE = La, Yb)

    NASA Astrophysics Data System (ADS)

    Latshaw, Allison M.; Wilkins, Branford O.; Chance, W. Michael; Smith, Mark D.; zur Loye, Hans-Conrad

    2016-01-01

    Crystals of Na2ScSiO4(OH) and Na2YbSiO4(OH) were synthesized at low temperatures using a sodium hydroxide based hydroflux, while crystals of NaLaSiO4 and NaYbSiO4 were grown at high temperatures using a sodium fluoride/sodium chloride eutectic flux. Both structure types were crystallized under reaction conditions that, when used for medium sized rare earths (RE = Pr, Nd, Sm - Tm) yield the Na5RE4X[SiO4]4 structure type, where X is OH in the hydroflux conditions and F in the eutectic flux conditions. Herein, we report the synthesis, structure, size effect, and magnetic properties of these compositions and introduce the new structure type of Na2RESiO4(OH), which crystallizes in the orthorhombic space group Pca21, of NaLaSiO4, which crystallizes in the orthorhombic space group Pna21, and of NaYbSiO4, which crystallizes in the orthorhombic space group Pnma, where both NaRESiO4 compounds have one silicon structural analog.

  8. Communication: Analytical optimal pulse shapes obtained with the aid of genetic algorithms: Controlling the photoisomerization yield of retinal.

    PubMed

    Guerrero, R D; Arango, C A; Reyes, A

    2016-07-21

    We recently proposed a Quantum Optimal Control (QOC) method constrained to build pulses from analytical pulse shapes [R. D. Guerrero et al., J. Chem. Phys. 143(12), 124108 (2015)]. This approach was applied to control the dissociation channel yields of the diatomic molecule KH, considering three potential energy curves and one degree of freedom. In this work, we utilized this methodology to study the strong field control of the cis-trans photoisomerization of 11-cis retinal. This more complex system was modeled with a Hamiltonian comprising two potential energy surfaces and two degrees of freedom. The resulting optimal pulse, made of 6 linearly chirped pulses, was capable of controlling the population of the trans isomer on the ground electronic surface for nearly 200 fs. The simplicity of the pulse generated with our QOC approach offers two clear advantages: a direct analysis of the sequence of events occurring during the driven dynamics, and its reproducibility in the laboratory with current laser technologies. PMID:27448862

  9. Excited-state structure and isomerization dynamics of the retinal chromophore in rhodopsin from resonance Raman intensities.

    PubMed Central

    Loppnow, G R; Mathies, R A

    1988-01-01

    Resonance Raman excitation profiles have been measured for the bovine visual pigment rhodopsin using excitation wavelengths ranging from 457.9 to 647.1 nm. A complete Franck-Condon analysis of the absorption spectrum and resonance Raman excitation profiles has been performed using an excited-state, time-dependent wavepacket propagation technique. This has enabled us to determine the change in geometry upon electronic excitation of rhodopsin's 11-cis-retinal protonated Schiff base chromophore along 25 normal coordinates. Intense low-frequency Raman lines are observed at 98, 135, 249, 336, and 461 cm-1 whose intensities provide quantitative, mode-specific information about the excited-state torsional deformations that lead to isomerization. The dominant contribution to the width of the absorption band in rhodopsin results from Franck-Condon progressions in the 1,549 cm-1 ethylenic normal mode. The lack of vibronic structure in the absorption spectrum is shown to be caused by extensive progressions in low-frequency torsional modes and a large homogeneous linewidth (170 cm-1 half-width) together with thermal population of low-frequency modes and inhomogeneous site distribution effects. The resonance Raman cross-sections of rhodopsin are unusually weak because the excited-state wavepacket moves rapidly (approximately 35 fs) and permanently away from the Franck-Condon geometry along skeletal stretching and torsional coordinates. PMID:3416032

  10. Retinal AO OCT

    NASA Astrophysics Data System (ADS)

    Zawadzki, Robert J.; Miller, Donald T.

    The last two decades have witnessed extraordinary advances in optical technology to image noninvasively and at high resolution the posterior segment of the eye. Two of the most impactful technological advancements over this period have arguably been optical coherence tomography (OCT) and adaptive optics (AO). The strengths of these technologies complement each other and when combined have been shown to provide unprecedented, micron-scale resolution (<3 μm) in all three dimensions and sensitivity to image the cellular retina in the living eye. This powerful extension of OCT, that is AO-OCT, is the focus of this chapter. It presents key aspects of designing and implementing AO-OCT systems. Particular attention is devoted to the relevant optical properties of the eye that ultimately define these systems, AO componentry and operation tailored for ophthalmic use, and of course use of the latest technologies and methods in OCT for ocular imaging. It surveys the wide range of AO-OCT designs that have been developed for retinal imaging, with AO integrated into every major OCT design configuration. Finally, it reviews the scientific and clinical studies reported to date that show the exciting potential of AO-OCT to image the microscopic retina and fundus in ways not previously possible with other noninvasive methods and a look to future developments in this rapidly growing field.

  11. Temperature controlled retinal photocoagulation

    NASA Astrophysics Data System (ADS)

    Schlott, Kerstin; Koinzer, Stefan; Baade, Alexander; Birngruber, Reginald; Roider, Johann; Brinkmann, Ralf

    2013-06-01

    Retinal photocoagulation lacks objective dosage in clinical use, thus the commonly applied lesions are too deep and strong, associated with pain reception and the risk of visual field defects and induction of choroidal neovascularisations. Optoacoustics allows real-time non-invasive temperature measurement in the fundus during photocoagulation by applying short probe laser pulses additionally to the treatment radiation, which excite the emission of ultrasonic waves. Due to the temperature dependence of the Grüneisen parameter, the amplitudes of the ultrasonic waves can be used to derive the temperature of the absorbing tissue. By measuring the temperatures in real-time and automatically controlling the irradiation by feedback to the treatment laser, the strength of the lesions can be defined. Different characteristic functions for the time and temperature dependent lesion sizes were used as rating curves for the treatment laser, stopping the irradiation automatically after a desired lesion size is achieved. The automatically produced lesion sizes are widely independent of the adjusted treatment laser power and individual absorption. This study was performed on anaesthetized rabbits and is a step towards a clinical trial with automatically controlled photocoagulation.

  12. Color Doppler imaging of retinal diseases.

    PubMed

    Dimitrova, Galina; Kato, Satoshi

    2010-01-01

    Color Doppler imaging (CDI) is a widely used method for evaluating ocular circulation that has been used in a number of studies on retinal diseases. CDI assesses blood velocity parameters by using ultrasound waves. In ophthalmology, these assessments are mainly performed on the retrobulbar blood vessels: the ophthalmic, the central retinal, and the short posterior ciliary arteries. In this review, we discuss CDI use for the assessment of retinal diseases classified into the following: vascular diseases, degenerations, dystrophies, and detachment. The retinal vascular diseases that have been investigated by CDI include diabetic retinopathy, retinal vein occlusions, retinal artery occlusions, ocular ischemic conditions, and retinopathy of prematurity. Degenerations and dystrophies included in this review are age-related macular degeneration, myopia, and retinitis pigmentosa. CDI has been used for the differential diagnosis of retinal detachment, as well as the evaluation of retrobulbar circulation in this condition. CDI is valuable for research and is a potentially useful diagnostic tool in the clinical setting. PMID:20385332

  13. Automated retinal robotic laser system.

    PubMed

    Barrett, S F; Wright, C H; Jerath, M R; Lewis, R S; Dillard, B C; Rylander, H G; Welch, A J

    1995-01-01

    Researchers at the University of Texas and the USAF Academy have worked toward the development of a retinal robotic laser system. The overall goal of this ongoing project is to precisely place and control the depth of laser lesions for the treatment of various retinal diseases such as diabetic retinopathy and retinal tears. Separate low speed prototype subsystems have been developed to control lesion depth using lesion reflectance feedback parameters and lesion placement using retinal vessels as tracking landmarks. Both subsystems have been successfully demonstrated in vivo on pigmented rabbits using an argon continuous wave laser. Recent efforts have concentrated on combining the two subsystems into a single prototype capable of simultaneously controlling both lesion depth and placement. We have designated this combined system CALOSOS for Computer Aided Laser Optics System for Ophthalmic Surgery. Following the dual-use concept, this system is being adapted for clinical use as a retinal treatment system as well as a research tool for military laser-tissue interaction studies. PMID:7654990

  14. Neuroglobin Protection in Retinal Ischemia

    PubMed Central

    Chan, Anita S.Y.; Saraswathy, Sindhu; Rehak, Matus; Ueki, Mari

    2012-01-01

    Purpose. Neuroglobin (Ngb) is a vertebrate globin that is predominantly expressed in the retina and brain. To explore the role of Ngb in retinal neuroprotection during ischemia reperfusion (IR), the authors examined the effect of Ngb overexpression in the retina in vivo by using Ngb-transgenic (Ngb-Tg) mice. Methods. Retinal IR was induced in Ngb overexpressing Ngb-Tg mice and wild type (WT) mice by cannulating the anterior chamber and transiently elevating the IOP for 60 minutes. After Day 7 of reperfusion, the authors evaluated Ngb mRNA and protein expression in nonischemic control as well as ischemic mice and its effect on retinal histology, mitochondrial oxidative stress, and apoptosis, using morphometry and immunohistochemistry, quantitative PCR analysis and Western blot techniques. Results. Ngb-Tg mice without ischemia overexpress Ngb mRNA 11.3-fold (SE ± 0.457, P < 0.05) higher than WT control mice, and this overexpression of Ngb protein was localized to the mitochondria of the ganglion cells, outer and inner plexiform layers, and photoreceptor inner segments. This overexpression of Ngb is associated with decreased mitochondrial DNA damage in Ngb-Tg mice with IR in comparison with WT. Ngb-Tg mice with IR also revealed significant preservation of retinal thickness, significantly less activated caspase 3 protein expression, and apoptosis in comparison with WT mice. Conclusions. Neuroglobin overexpression plays a neuroprotective role against retinal ischemia reperfusion injury due to decreasing of mitochondrial oxidative stress-mediated apoptosis. PMID:22167093

  15. [Unusual retinal abnormality: retinal hemorrhages related to scurvy].

    PubMed

    Errera, M-H; Dupas, B; Man, H; Gualino, V; Gaudric, A; Massin, P

    2011-03-01

    A diet restricted to rice and boiled fruit and vegetables leads to vitamin C deficiency. We describe the third case, to our knowledge, of retinal hemorrhages related to scurvy. Reduced bilateral visual acuity in a 50-year-old patient was associated with macrocytic anemia, denutrition, and cutaneous ecchymoses. Oral vitamin C treatment provided subjective clinical improvement and regression of the retinal hemorrhages on fundus examination, with no side effects. Vitamin C plays an important role in collagen stability in vascular and bone walls. PMID:21392843

  16. Transcorneal Electrical Stimulation Therapy for Retinal Disease

    ClinicalTrials.gov

    2012-05-03

    Retinitis Pigmentosa; Macula Off; Primary Open Angle Glaucoma; Hereditary Macular Degeneration; Treated Retina Detachment; Retinal Artery Occlusion; Retinal Vein Occlusion; Non-Arthritic-Anterior-Ischemic Optic-Neuropathy; Hereditary Autosomal Dominant Optic Atrophy; Dry Age Related Macular Degeneration; Ischemic Macula Edema

  17. Clinical Trials in Retinal Dystrophies

    PubMed Central

    Grob, Seanna R.; Finn, Avni; Papakostas, Thanos D.; Eliott, Dean

    2016-01-01

    Research development is burgeoning for genetic and cellular therapy for retinal dystrophies. These dystrophies are the focus of many research efforts due to the unique biology and accessibility of the eye, the transformative advances in ocular imaging technology that allows for in vivo monitoring, and the potential benefit people would gain from success in the field – the gift of renewed sight. Progress in the field has revealed the immense complexity of retinal dystrophies and the challenges faced by researchers in the development of this technology. This study reviews the current trials and advancements in genetic and cellular therapy in the treatment of retinal dystrophies and also discusses the current and potential future challenges. PMID:26957839

  18. Retinal spot size with wavelength

    NASA Astrophysics Data System (ADS)

    Rockwell, Benjamin A.; Hammer, Daniel X.; Kennedy, Paul K.; Amnotte, Rodney E.; Eilert, Brent; Druessel, Jeffrey J.; Payne, Dale J.; Phillips, Shana L.; Stolarski, David J.; Noojin, Gary D.; Thomas, Robert J.; Cain, Clarence P.

    1997-06-01

    We have made an indirect in-vivo determination of spot size focusing in the rhesus monkey model. Measurement of the laser induced breakdown threshold both in-vitro and in-vivo allow correlation and assignment of a spot size after focusing through the living eye. We discuss and analyze the results and show how trends in minimum visible lesion data should be assessed in light of chromatic aberration. National laser safety standards are based on minimal visual lesion (MVL) threshold studies in different animal models. The energy required for a retinal lesion depends upon may parameters including wavelength and retinal spot size. We attempt to explain trends in reported MVL threshold studies using a model of the eye which allows calculation of changes in retinal spot size due to chromatic aberration.

  19. Diabetes and Retinal Vascular Dysfunction

    PubMed Central

    Shin, Eui Seok; Sorenson, Christine M.; Sheibani, Nader

    2014-01-01

    Diabetes predominantly affects the microvascular circulation of the retina resulting in a range of structural changes unique to this tissue. These changes ultimately lead to altered permeability, hyperproliferation of endothelial cells and edema, and abnormal vascularization of the retina with resulting loss of vision. Enhanced production of inflammatory mediators and oxidative stress are primary insults with significant contribution to the pathogenesis of diabetic retinopathy (DR). We have determined the identity of the retinal vascular cells affected by hyperglycemia, and have delineated the cell autonomous impact of high glucose on function of these cells. We discuss some of the high glucose specific changes in retinal vascular cells and their contribution to retinal vascular dysfunction. This knowledge provides novel insight into the molecular and cellular defects contributing to the development and progression of diabetic retinopathy, and will aid in the development of innovative, as well as target specific therapeutic approaches for prevention and treatment of DR. PMID:25667739

  20. Exploring the retinal connectome

    PubMed Central

    Anderson, James R.; Jones, Bryan W.; Watt, Carl B.; Shaw, Margaret V.; Yang, Jia-Hui; DeMill, David; Lauritzen, James S.; Lin, Yanhua; Rapp, Kevin D.; Mastronarde, David; Koshevoy, Pavel; Grimm, Bradley; Tasdizen, Tolga; Whitaker, Ross

    2011-01-01

    Purpose A connectome is a comprehensive description of synaptic connectivity for a neural domain. Our goal was to produce a connectome data set for the inner plexiform layer of the mammalian retina. This paper describes our first retinal connectome, validates the method, and provides key initial findings. Methods We acquired and assembled a 16.5 terabyte connectome data set RC1 for the rabbit retina at ≈2 nm resolution using automated transmission electron microscope imaging, automated mosaicking, and automated volume registration. RC1 represents a column of tissue 0.25 mm in diameter, spanning the inner nuclear, inner plexiform, and ganglion cell layers. To enhance ultrastructural tracing, we included molecular markers for 4-aminobutyrate (GABA), glutamate, glycine, taurine, glutamine, and the in vivo activity marker, 1-amino-4-guanidobutane. This enabled us to distinguish GABAergic and glycinergic amacrine cells; to identify ON bipolar cells coupled to glycinergic cells; and to discriminate different kinds of bipolar, amacrine, and ganglion cells based on their molecular signatures and activity. The data set was explored and annotated with Viking, our multiuser navigation tool. Annotations were exported to additional applications to render cells, visualize network graphs, and query the database. Results Exploration of RC1 showed that the 2 nm resolution readily recapitulated well known connections and revealed several new features of retinal organization: (1) The well known AII amacrine cell pathway displayed more complexity than previously reported, with no less than 17 distinct signaling modes, including ribbon synapse inputs from OFF bipolar cells, wide-field ON cone bipolar cells and rod bipolar cells, and extensive input from cone-pathway amacrine cells. (2) The axons of most cone bipolar cells formed a distinct signal integration compartment, with ON cone bipolar cell axonal synapses targeting diverse cell types. Both ON and OFF bipolar cells receive

  1. Retinal Image Quality During Accommodation

    PubMed Central

    López-Gil, N.; Martin, J.; Liu, T.; Bradley, A.; Díaz-Muñoz, D.; Thibos, L.

    2013-01-01

    Purpose We asked if retinal image quality is maximum during accommodation, or sub-optimal due to accommodative error, when subjects perform an acuity task. Methods Subjects viewed a monochromatic (552nm), high-contrast letter target placed at various viewing distances. Wavefront aberrations of the accommodating eye were measured near the endpoint of an acuity staircase paradigm. Refractive state, defined as the optimum target vergence for maximising retinal image quality, was computed by through-focus wavefront analysis to find the power of the virtual correcting lens that maximizes visual Strehl ratio. Results Despite changes in ocular aberrations and pupil size during binocular viewing, retinal image quality and visual acuity typically remain high for all target vergences. When accommodative errors lead to sub-optimal retinal image quality, acuity and measured image quality both decline. However, the effect of accommodation errors of on visual acuity are mitigated by pupillary constriction associated with accommodation and binocular convergence and also to binocular summation of dissimilar retinal image blur. Under monocular viewing conditions some subjects displayed significant accommodative lag that reduced visual performance, an effect that was exacerbated by pharmacological dilation of the pupil. Conclusions Spurious measurement of accommodative error can be avoided when the image quality metric used to determine refractive state is compatible with the focusing criteria used by the visual system to control accommodation. Real focusing errors of the accommodating eye do not necessarily produce a reliably measurable loss of image quality or clinically significant loss of visual performance, probably because of increased depth-of-focus due to pupil constriction. When retinal image quality is close to maximum achievable (given the eye’s higher-order aberrations), acuity is also near maximum. A combination of accommodative lag, reduced image quality, and reduced

  2. Retinal Optical Coherence Tomography Imaging

    NASA Astrophysics Data System (ADS)

    Drexler, Wolfgang; Fujimoto, James G.

    The eye is essentially transparent, transmitting light with only minimal optical attenuation and scattering providing easy optical access to the anterior segment as well as the retina. For this reason, ophthalmic and especially retinal imaging has been not only the first but also most successful clinical application for optical coherence tomography (OCT). This chapter focuses on the development of OCT technology for retinal imaging. OCT has significantly improved the potential for early diagnosis, understanding of retinal disease pathogenesis, as well as monitoring disease progression and response to therapy. Development of ultrabroad bandwidth light sources and high-speed detection techniques has enabled significant improvements in ophthalmic OCT imaging performance, demonstrating the potential of three-dimensional, ultrahigh-resolution OCT (UHR OCT) to perform noninvasive optical biopsy of the living human retina, i.e., the in vivo visualization of microstructural, intraretinal morphology in situ approaching the resolution of conventional histopathology. Significant improvements in axial resolution and speed not only enable three-dimensional rendering of retinal volumes but also high-definition, two-dimensional tomograms, topographic thickness maps of all major intraretinal layers, as well as volumetric quantification of pathologic intraretinal changes. These advances in OCT technology have also been successfully applied in several animal models of retinal pathologies. The development of light sources emitting at alternative wavelengths, e.g., around #1,060 nm, not only enabled three-dimensional OCT imaging with enhanced choroidal visualization but also improved OCT performance in cataract patients due to reduced scattering losses in this wavelength region. Adaptive optics using deformable mirror technology, with unique high stroke to correct higher-order ocular aberrations, with specially designed optics to compensate chromatic aberration of the human eye, in

  3. New Wrinkles in Retinal Densitometry

    PubMed Central

    Masella, Benjamin D.; Hunter, Jennifer J.; Williams, David R.

    2014-01-01

    Purpose. Retinal densitometry provides objective information about retinal function. But, a number of factors, including retinal reflectance changes that are not directly related to photopigment depletion, complicate its interpretation. We explore these factors and suggest a method to minimize their impact. Methods. An adaptive optics scanning light ophthalmoscope (AOSLO) was used to measure changes in photoreceptor reflectance in monkeys before and after photopigment bleaching with 514-nm light. Reflectance measurements at 514 nm and 794 nm were recorded simultaneously. Several methods of normalization to extract the apparent optical density of the photopigment were compared. Results. We identified stimulus-related fluctuations in 794-nm reflectance that are not associated with photopigment absorptance and occur in both rods and cones. These changes had a magnitude approaching those associated directly with pigment depletion, precluding the use of infrared reflectance for normalization. We used a spatial normalization method instead, which avoided the fluctuations in the near infrared, as well as a confocal AOSLO designed to minimize light from layers other than the receptors. However, these methods produced a surprisingly low estimate of the apparent rhodopsin density (animal 1: 0.073 ± 0.006, animal 2: 0.032 ± 0.003). Conclusions. These results confirm earlier observations that changes in photopigment absorption are not the only source of retinal reflectance change during dark adaptation. It appears that the stray light that has historically reduced the apparent density of cone photopigment in retinal densitometry arises predominantly from layers near the photoreceptors themselves. Despite these complications, this method provides a valuable, objective measure of retinal function. PMID:25316726

  4. ACUTE RETINAL ARTERIAL OCCLUSIVE DISORDERS

    PubMed Central

    Hayreh, Sohan Singh

    2011-01-01

    The initial section deals with basic sciences; among the various topics briefly discussed are the anatomical features of ophthalmic, central retinal and cilioretinal arteries which may play a role in acute retinal arterial ischemic disorders. Crucial information required in the management of central retinal artery occlusion (CRAO) is the length of time the retina can survive following that. An experimental study shows that CRAO for 97 minutes produces no detectable permanent retinal damage but there is a progressive ischemic damage thereafter, and by 4 hours the retina has suffered irreversible damage. In the clinical section, I discuss at length various controversies on acute retinal arterial ischemic disorders. Classification of acute retinal arterial ischemic disorders These are of 4 types: CRAO, branch retinal artery occlusion (BRAO), cotton wools spots and amaurosis fugax. Both CRAO and BRAO further comprise multiple clinical entities. Contrary to the universal belief, pathogenetically, clinically and for management, CRAO is not one clinical entity but 4 distinct clinical entities – non-arteritic CRAO, non-arteritic CRAO with cilioretinal artery sparing, arteritic CRAO associated with giant cell arteritis (GCA) and transient non-arteritic CRAO. Similarly, BRAO comprises permanent BRAO, transient BRAO and cilioretinal artery occlusion (CLRAO), and the latter further consists of 3 distinct clinical entities - non-arteritic CLRAO alone, non-arteritic CLRAO associated with central retinal vein occlusion and arteritic CLRAO associated with GCA. Understanding these classifications is essential to comprehend fully various aspects of these disorders. Central retinal artery occlusion The pathogeneses, clinical features and management of the various types of CRAO are discussed in detail. Contrary to the prevalent belief, spontaneous improvement in both visual acuity and visual fields does occur, mainly during the first 7 days. The incidence of spontaneous visual

  5. Suppression and retinal correspondence in intermittent exotropia.

    PubMed Central

    Cooper, J; Record, C D

    1986-01-01

    Suppression scotomas and retinal projection (retinal correspondence) were measured in six intermittent exotropes during deviation. Measurements used red-green anaglyph stimuli presented on a black background which could be varied from 3.4 minutes of arc to 3 degrees 24'. Results showed non-suppression of all points between the fovea and the diplopia point. Harmonious anomalous retinal correspondence was usually observed. Two subjects had spontaneous changes from anomalous retinal correspondence to normal retinal correspondence without a concurrent change in ocular position. Conventional testing resulted in more variable results in regard to retinal correspondence and suppression, suggesting that non-suppression and anomalous retinal correspondence occur when black backgrounds are used for testing. PMID:3756124

  6. Retinitis Pigmentosa and Education Issues

    ERIC Educational Resources Information Center

    Brown, Thomas J.

    2005-01-01

    Retinitis Pigmentosa includes a number of inherited diseases which usually result in blindness. The disease is progressive in nature and begins with the deterioration of cells in the eye responsible for peripheral vision. As the condition worsens there is a gradual loss of peripheral vision and night blindness. Proper educational planning requires…

  7. Rate constant calculations of the GeH4 + OH/OD → GeH3 + H2O/HOD reactions using an ab initio based full-dimensional potential energy surface.

    PubMed

    Espinosa-Garcia, J; Rangel, C; Corchado, J C

    2016-06-22

    We report an analytical full-dimensional potential energy surface for the GeH4 + OH → GeH3 + H2O reaction based on ab initio calculations. It is a practically barrierless reaction with very high exothermicity and the presence of intermediate complexes in the entrance and exit channels, reproducing the experimental evidence. Using this surface, thermal rate constants for the GeH4 + OH/OD isotopic reactions were calculated using two approaches: variational transition state theory (VTST) and quasi-classical trajectory (QCT) calculations, in the temperature range 200-1000 K, and results were compared with the only experimental data at 298 K. Both methods showed similar values over the whole temperature range, with differences less than 30%; and the experimental data was reproduced at 298 K, with negative temperature dependence below 300 K, which is associated with the presence of an intermediate complex in the entrance channel. However, while the QCT approach reproduced the experimental kinetic isotope effect, the VTST approach underestimated it. We suggest that this difference is associated with the harmonic approximation used in the treatment of vibrational frequencies. PMID:27292879

  8. Retinal vasculature classification using novel multifractal features

    NASA Astrophysics Data System (ADS)

    Ding, Y.; Ward, W. O. C.; Duan, Jinming; Auer, D. P.; Gowland, Penny; Bai, L.

    2015-11-01

    Retinal blood vessels have been implicated in a large number of diseases including diabetic retinopathy and cardiovascular diseases, which cause damages to retinal blood vessels. The availability of retinal vessel imaging provides an excellent opportunity for monitoring and diagnosis of retinal diseases, and automatic analysis of retinal vessels will help with the processes. However, state of the art vascular analysis methods such as counting the number of branches or measuring the curvature and diameter of individual vessels are unsuitable for the microvasculature. There has been published research using fractal analysis to calculate fractal dimensions of retinal blood vessels, but so far there has been no systematic research extracting discriminant features from retinal vessels for classifications. This paper introduces new methods for feature extraction from multifractal spectra of retinal vessels for classification. Two publicly available retinal vascular image databases are used for the experiments, and the proposed methods have produced accuracies of 85.5% and 77% for classification of healthy and diabetic retinal vasculatures. Experiments show that classification with multiple fractal features produces better rates compared with methods using a single fractal dimension value. In addition to this, experiments also show that classification accuracy can be affected by the accuracy of vessel segmentation algorithms.

  9. Role of retinal metabolism in methanol-induced retinal toxicity

    SciTech Connect

    Garner, C.D. |; Lee, E.W.; Terzo, T.S.; Louis-Ferdinand, R.T.

    1995-08-01

    Methanol is a toxicant that causes systemic and ocular toxicity after acute exposure. The folate-reduced (FR) rat is an excellent animal model that mimics characteristic human methanol toxic responses. The present study examines the role of the methanol metabolites formaldehyde and formate in the initiation of methanol-induced retinal toxicity. After a single oral dose of 3.0 g/kg methanol, blood methanol concentrations were not significantly different in FR rats compared with folate-sufficient (FS) (control) rats. However, FR rats treated with 3.0 g/kg methanol displayed elevated blood (14.6 mM) and vitreous humor (19.5 mM) formate levels and abnormal electroretinograms (loss of b-wave) 48 h postdose. FR rats pretreated with disulfiram (DSF) prior to 3.0 g/kg methanol treatment failed to display these symptoms. Formaldehyde was not detected in blood or vitreous humor with or without DSF treatment, suggesting that formate is the toxic metabolite in methanol-induced retinal toxicity. Additionally, creating a blood formate profile (14.2 mM at 48 h) similar to that observed in methanol-treated rats by iv infusion of pH-buffered formate does not alter the electroretinogram as is observed with methanol treatment. These data suggest that intraretinal metabolism of methanol is necessary for the formate-mediated initiation of methanol-induced retinal toxicity. 31 refs., 5 figs., 2 tabs.

  10. Role of retinal vascular endothelial cells in development of CMV retinitis.

    PubMed Central

    Rao, N A; Zhang, J; Ishimoto, S

    1998-01-01

    PURPOSE: Although cytomegalovirus (CMV) retinitis is known to occur in association with retinal microangiopathy in individuals with marked immunodeficiency, glial cells are believed to be the initial target cells in the development of retinitis. Moreover, it has been hypothesized that CMV gains access to the retinal glia because of altered vascular permeability. In an attempt to address the hypothesis, we studied 30 autopsy eyes of AIDS patients with systemic CMV infection, with or without clinically apparent CMV retinitis. METHODS: The autopsy eyes were processed in three ways. First, dual immunohistochemical studies were done by using anti-CMV antibodies for immediate early, early, and late antigens. The retinal cell types infected with the virus were then determined by using anti-GFAP, anti-VonWillebrand's factor, neuronal specific enolase, and leukocyte marker CD68. Second, selected eyes were processed for in situ hybridization with DNA probe specific to CMV. Third, an eye with clinically apparent CMV retinitis was submitted for electron microscopic examination. RESULTS: At the site of retinal necrosis in those eyes with a clinical diagnosis of CMV retinitis, the immunohistochemical, in situ hybridization, and ultrastructural examinations revealed that CMV was present primarily in the Müller cells and in perivascular glial cells. Adjacent to these infected cells, focal areas of positive staining for CMV antigen were seen in the glial cells, neuronal cells, and retinal pigment epithelial cells. At these sites most of the retinal capillaries were devoid of endothelial cells. Few vessels located at the advancing margin of retinal necrosis showed the presence of viral proteins in the endothelial cells. CONCLUSIONS: The present results indicate that retinal vascular endothelial cells could be the initial target in the development of viral retinitis, with subsequent spread of the infection to perivascular glia, Müller cells, and other retinal cells, including the

  11. Current perspectives of herpesviral retinitis and choroiditis.

    PubMed

    Madhavan, H N; Priya, K; Biswas, J

    2004-10-01

    Vision-threatening viral retinitis are primarily caused by members of the herpesvirus family. The biology and molecular characterization of herpesviruses, clinical presentations of retinopathies, pathology and pathogenesis including the host responses, epidemiology and the laboratory methods of aetiological diagnosis of these diseases are described. Clinical syndromes are acute retinal necrosis (ARN), progressive outer retinal necrosis (PORN), cytomegalovirus (CMV) retinitis, multifocal choroiditis and serpiginous choroiditis besides other viral retinopathies. Herpes simplex virus (HSV) retinitis is more common in immunocompetent persons while varicella zoster virus (VZV) affects both immunocompetent and immunosuppressed patients equally. CMV retinitis is most common among patients with AIDS. The currently employed laboratory methods of antigen detection, virus isolation and antibody detection by enzyme linked immuno-sorbent assay (ELISA) have low sensitivity. Polymerase chain reaction (PCR) has increased the value of diagnosis due to its high clinical sensitivity and absolute specificity in detection of herpesviruses in intraocular specimens. PMID:16295367

  12. Retinal abnormalities in β-thalassemia major.

    PubMed

    Bhoiwala, Devang L; Dunaief, Joshua L

    2016-01-01

    Patients with beta (β)-thalassemia (β-TM: β-thalassemia major, β-TI: β-thalassemia intermedia) have a variety of complications that may affect all organs, including the eye. Ocular abnormalities include retinal pigment epithelial degeneration, angioid streaks, venous tortuosity, night blindness, visual field defects, decreased visual acuity, color vision abnormalities, and acute visual loss. Patients with β-thalassemia major are transfusion dependent and require iron chelation therapy to survive. Retinal degeneration may result from either retinal iron accumulation from transfusion-induced iron overload or retinal toxicity induced by iron chelation therapy. Some who were never treated with iron chelation therapy exhibited retinopathy, and others receiving iron chelation therapy had chelator-induced retinopathy. We will focus on retinal abnormalities present in individuals with β-thalassemia major viewed in light of new findings on the mechanisms and manifestations of retinal iron toxicity. PMID:26325202

  13. Gene Therapy for Retinal Diseases

    PubMed Central

    Samiy, Nasrollah

    2014-01-01

    Gene therapy has a growing research potential particularly in the field of ophthalmic and retinal diseases owing to three main characteristics of the eye; accessibility in terms of injections and surgical interventions, its immune-privileged status facilitating the accommodation to the antigenicity of a viral vector, and tight blood-ocular barriers which save other organs from unwanted contamination. Gene therapy has tremendous potential for different ocular diseases. In fact, the perspective of gene therapy in the field of eye research does not confine to exclusive monogenic ophthalmic problems and it has the potential to include gene based pharmacotherapies for non-monogenic problems such as age related macular disease and diabetic retinopathy. The present article has focused on how gene transfer into the eye has been developed and used to treat retinal disorders with no available therapy at present. PMID:25709778

  14. Retinitis pigmentosa in southern Africa.

    PubMed

    Greenberg, J; Bartmann, L; Ramesar, R; Beighton, P

    1993-11-01

    Retinitis pigmentosa (RP) is a heterogeneous group of inherited retinal disorders which are a common cause of genetic blindness. The relative frequencies of the different forms of RP in South Africa, as determined from the register at the DNA banking centre for RP at the Department of Human Genetics, University of Cape Town, are presented and discussed. Of the 125 families analysed, 29 (23%) showed autosomal dominant, 33 (27%) autosomal recessive and 3 (3%) X-linked inheritance. In 10 families the pedigree data were insufficient to allow accurate genetic subtyping and a further 50 patients were sporadic without a family history of RP or other syndromic features which would allow categorization. PMID:8313621

  15. Retinal vein occlusion: current treatment.

    PubMed

    Lattanzio, Rosangela; Torres Gimeno, Ana; Battaglia Parodi, Maurizio; Bandello, Francesco

    2011-01-01

    Retinal vein occlusion (RVO) is a pathology noted for more than 150 years. Although a lot has been written on the matter, it is still a frequent condition with multifactorial etiopathogenesis with many unclear aspects. The RVO pathogenesis has varied systemic and local implications that make it difficult to elaborate treatment guidelines. The management of the patient with RVO is very complex and a multidisciplinary approach is required in order to identify and correct the associated risk factors. Laser therapy remains the gold standard in RVO, but only modest functional improvement has been shown in branch retinal occlusion forms. Multicenter studies of intravitreal drugs present them as an option to combine with laser. Anti-vascular endothelial growth factor, corticosteroids and sustained-release implants are the future weapons to stop disease progression and get a better visual outcome. Consequently, it is useful to clarify some aspects of the pathology that allow a better patient management. PMID:20938213

  16. Operational challenges of retinal prostheses.

    PubMed

    Schmid, Erich W; Fink, Wolfgang; Wilke, Robert

    2014-12-01

    Two computational models for research on retinal implants are presented. In the first model, the electric field produced by a multi-electrode array in a uniform retina is calculated. It is shown how cross talk of activated electrodes and the resulting bunching of field lines in monopole and dipole activation prevent high resolution imaging with retinal implants. Furthermore, it is demonstrated how sequential stimulation and multipolar stimulation may overcome this limitation. In the second model a target volume, i.e., a probe cylinder approximating a bipolar cell, in the retina is chosen, and the passive Heaviside cable equation is solved inside this target volume to calculate the depolarization of the cell membrane. The depolarization as a function of time indicates that shorter signals stimulate better as long as the current does not change sign during stimulation of the retina, i.e., mono-phasic stimulation. Both computational models are equally applicable to epiretinal, subretinal, and suprachoroidal vision implants. PMID:25443535

  17. Acquired retinal folds in the cat.

    PubMed

    MacMillan, A D

    1976-06-01

    Retinal folds were found in 5 cats. The apparent cause of the folding was varied: in 1 cat the folds appeared after a localized retinal detachment; in 2 cats the condition accompanied other intraocular abnormalities associated with feline infectious peritonitis; 1 cat had active keratitis, and the retinal changes were thought to have been injury related; and 1 cat, bilaterally affected, had chronic glomerulonephritis. PMID:945253

  18. Angiographic results of retinal-retinal anastomosis and retinal-choroidal anastomosis after treatments in eyes with retinal angiomatous proliferation

    PubMed Central

    Saito, Masaaki; Iida, Tomohiro; Kano, Mariko; Itagaki, Kanako

    2012-01-01

    Background The purpose of this study was to evaluate the angiographic results of retinal-retinal anastomosis (RRA) and retinal-choroidal anastomosis (RCA) for eyes with retinal angiomatous proliferation (RAP) after treatment with intravitreal bevacizumab injections as monotherapy or intravitreal bevacizumab combined with photodynamic therapy. Methods In this interventional, consecutive case series, we retrospectively reviewed five naïve eyes from four patients (mean age 80 years) treated with three consecutive monthly intravitreal bevacizumab (1.25 mg/0.05 mL) injections as initial treatment, and followed up for at least 3 months. In cases with over 3 months of follow-up and having recurrence of RAP or leakage by fluorescein angiography, retreatment was performed with a single intravitreal bevacizumab injection and photodynamic therapy. Results Indocyanine green angiography showed RRA in three eyes with subretinal neovascularization and RCA in two eyes with choroidal neovascularization at baseline. At 3 months after baseline (month 3), neither the RRA nor RCA was occluded in any eye on indocyanine green angiography. Retreatment with intravitreal bevacizumab plus photodynamic therapy was performed in three eyes at months 3 (persistent leakage on fluorescein angiography), 6, and 7 (recurrence of RAP lesion), which achieved obvious occlusion of the RRA and RCA. Mean best-corrected visual acuity improved from 0.13 to 0.21 at month 3 (P = 0.066). No complications or systemic adverse events were noted. Conclusion Although intravitreal bevacizumab for RAP was effective in improving visual acuity during short-term follow-up, intravitreal bevacizumab could not achieve complete occlusion of RRA and RCA, which could lead to recurrence of a RAP lesion and exudation. Retreatment with intravitreal bevacizumab plus photodynamic therapy ultimately achieved complete occlusion of the RRA and RCA. PMID:22969283

  19. Retinal pathways influence temporal niche

    PubMed Central

    Doyle, Susan E.; Yoshikawa, Tomoko; Hillson, Holly; Menaker, Michael

    2008-01-01

    In mammals, light input from the retina entrains central circadian oscillators located in the suprachiasmatic nuclei (SCN). The phase of circadian activity rhythms with respect to the external light:dark cycle is reversed in diurnal and nocturnal species, although the phase of SCN rhythms relative to the light cycle remains unchanged. Neural mechanisms downstream from the SCN are therefore believed to determine diurnality or nocturnality. Here, we report a switch from nocturnal to diurnal entrainment of circadian activity rhythms in double-knockout mice lacking the inner-retinal photopigment melanopsin (OPN4) and RPE65, a key protein used in retinal chromophore recycling. These mice retained only a small amount of rod function. The change in entrainment phase of Rpe65−/−;Opn4−/− mice was accompanied by a reversal of the rhythm of clock gene expression in the SCN and a reversal in acute masking effects of both light and darkness on activity, suggesting that the nocturnal to diurnal switch is due to a change in the neural response to light upstream from the SCN. A switch from nocturnal to diurnal activity rhythms was also found in wild-type mice transferred from standard intensity light:dark cycles to light:dark cycles in which the intensity of the light phase was reduced to scotopic levels. These results reveal a novel mechanism by which changes in retinal input can mediate acute temporal-niche switching. PMID:18695249

  20. Retinal Cell Degeneration in Animal Models

    PubMed Central

    Niwa, Masayuki; Aoki, Hitomi; Hirata, Akihiro; Tomita, Hiroyuki; Green, Paul G.; Hara, Akira

    2016-01-01

    The aim of this review is to provide an overview of various retinal cell degeneration models in animal induced by chemicals (N-methyl-d-aspartate- and CoCl2-induced), autoimmune (experimental autoimmune encephalomyelitis), mechanical stress (optic nerve crush-induced, light-induced) and ischemia (transient retinal ischemia-induced). The target regions, pathology and proposed mechanism of each model are described in a comparative fashion. Animal models of retinal cell degeneration provide insight into the underlying mechanisms of the disease, and will facilitate the development of novel effective therapeutic drugs to treat retinal cell damage. PMID:26784179

  1. Retinal Effects Of Blue Light Exposure

    NASA Astrophysics Data System (ADS)

    Ham, William T.; Mueller, Harold A.; Ruffolo, J. J.

    1980-10-01

    Recent research has shown that blue light exposure is an important factor in certain types of retinal injury. The mammalian ocular media transmits the spectral band 400-1400 nm to the retina. The short wavelengths (400-550 nm) produce a photochemical or actinic type of damage, while the longer wavelengths (550-1400 nm) produce thermal damage. Distinction between the two types of retinal damage are discussed briefly and the importance of the blue light effect for solar retinitis and eclipse blindness is emphasized. The significance of blue light retinal injury is summarized for various environmental and occupational exposures.

  2. Retinal Macroglial Responses in Health and Disease

    PubMed Central

    de Hoz, Rosa; Rojas, Blanca; Ramírez, Ana I.; Salazar, Juan J.; Gallego, Beatriz I.; Triviño, Alberto; Ramírez, José M.

    2016-01-01

    Due to their permanent and close proximity to neurons, glial cells perform essential tasks for the normal physiology of the retina. Astrocytes and Müller cells (retinal macroglia) provide physical support to neurons and supplement them with several metabolites and growth factors. Macroglia are involved in maintaining the homeostasis of extracellular ions and neurotransmitters, are essential for information processing in neural circuits, participate in retinal glucose metabolism and in removing metabolic waste products, regulate local blood flow, induce the blood-retinal barrier (BRB), play fundamental roles in local immune response, and protect neurons from oxidative damage. In response to polyetiological insults, glia cells react with a process called reactive gliosis, seeking to maintain retinal homeostasis. When malfunctioning, macroglial cells can become primary pathogenic elements. A reactive gliosis has been described in different retinal pathologies, including age-related macular degeneration (AMD), diabetes, glaucoma, retinal detachment, or retinitis pigmentosa. A better understanding of the dual, neuroprotective, or cytotoxic effect of macroglial involvement in retinal pathologies would help in treating the physiopathology of these diseases. The extensive participation of the macroglia in retinal diseases points to these cells as innovative targets for new drug therapies. PMID:27294114

  3. [Novel mechanism for retinal vascular diseases].

    PubMed

    Suzuma, Kiyoshi

    2015-03-01

    I. A new therapeutic target for diabetic retinopathy. Recent reports state that succinate may be an independent retinal angiogenic factor. We evaluated concentrations in vitreous from proliferative diabetic retinopathy (PDR), and found that succinate increased significantly in PDR. Interestingly, levels of succinate from bevacizumab-pre-injected PDR were normal, suggesting that vascular endothelial growth factor (VEGF) had a positive feedback mechanism for succinate since succinate was previously reported to induce VEGF. II. A new understanding of central retinal vein occlusion (CRVO). We evaluated retinal blood flow velocity with laser speckle flowgraphy (LSFG) made in Japan, and found that cases in which both macular edema and retinal blood flow velocity improved after anti-VEGF therapy had better prognosis. In ischemic CRVO at final visit, mean retinal blood velocity was less than 50% of fellow eyes after 1st anti-VEGF therapy, suggesting that those cases might have poor prognosis. LSFG is useful for evaluation and decision in CRVO treatment. III. From exploration for mechanism in retinal vascular diseases to re-vascularization therapy. The standard treatment for retinal non-perfusion area is scatter laser photocoagulation, which is both invasive of the peripheral retina and may prove destructive. Re-vascularization is an ideal strategy for treatment of retinal non-perfusion area. To develop a new methods for re-vascularization in retinal non-perfusion area, we have designed experiments using a retina without vasculature differentiated from induced pluripotent stem(iPS) cells. PMID:25854111

  4. Retinal detachment associated with atopic dermatitis.

    PubMed Central

    Takahashi, M; Suzuma, K; Inaba, I; Ogura, Y; Yoneda, K; Okamoto, H

    1996-01-01

    BACKGROUND: Retinal detachment associated with atopic dermatitis, one of the most common forms of dermatitis in Japan, has markedly increased in Japan in the past 10 years. To clarify pathogenic mechanisms of retinal detachment in such cases, we retrospectively studied clinical characteristics of retinal detachment associated with atopic dermatitis. METHODS: We examined the records of 80 patients (89 eyes) who had retinal detachment associated with atopic dermatitis. The patients were classified into three groups according to lens status: group A, eyes with clear lenses (40 eyes); group B, eyes with cataract (38 eyes), and group C, aphakic or pseudophakic eyes (11 eyes). RESULTS: No significant differences were noted in the ratio of males to females, age distribution, refractive error, or characteristic of retinal detachment among the three groups. The types of retinal breaks, however, were different in eyes with and without lens changes. While atrophic holes were dominant in group A, retinal dialysis was mainly seen in groups B and C. CONCLUSION: These findings suggested that anterior vitreoretinal traction may play an important role in the pathogenesis of retinal breaks in eyes with atopic cataract and that the same pathological process may affect the formation of cataract and tractional retinal breaks in patients with atopic dermatitis. PMID:8664234

  5. Interplay between the structural and magnetic probes in the elucidation of the structure of a novel 2D layered [V4O4(OH)2(O2CC6H4CO2)4]·DMF.

    PubMed

    Djerdj, Igor; Škapin, Srečo D; Ceh, Miran; Jagličić, Zvonko; Pajić, Damir; Kozlevčar, Bojan; Orel, Bojan; Orel, Zorica Crnjak

    2012-01-14

    The title compound has been synthesized under solvothermal conditions by reacting vanadium(V) oxytriisopropoxide with terephthalic acid in N,N-dimethylformamide. A combination of synchrotron powder diffraction, infrared spectroscopy, scanning and transmission electron microscopy, and thermal and chemical analysis elucidated the chemical, structural and microstructural features of a new 2D layered inorganic-organic framework. Due to the low-crystallinity of the final material, its crystal structure has been solved from synchrotron X-ray powder diffraction data using a direct space global optimization technique and subsequent constraint Rietveld refinement. [V(4)O(4)(OH)(2)(O(2)CC(6)H(4)CO(2))(4)]·DMF crystallizes in the monoclinic system (space group P2/m (No. 10)); cell parameters: a = 20.923(4) Å, b = 5.963(4) Å, c = 20.425(1) Å, β = 123.70(6)°, V = 2120.1(9) Å(3), Z = 2. The overall structure can be described as an array of parallel 2D layers running along [-101] direction, consisting of two types of vanadium oxidation states and coordination polyhedra: face-shared trigonal prisms (V(4+)) and distorted corner-shared square pyramids (V(5+)). Both configurations form independent parallel chains oriented along the 2-fold symmetry crystallographic b-axis mutually interlinked with terephthalate ligands in a monodentate mode perpendicular to it. The morphology of the compound exhibits long nanofibers, with the growth direction along the layered [-101] axis. The magnetic susceptibility measurements show that the magnetic properties of [V(4)O(4)(OH)(2)(O(2)CC(6)H(4)CO(2))(4)]·DMF can be described by a linear antiferromagnetic chain model, with the isotropic exchange interaction of J = -75 K between the nearest V(4+) neighbours of S = 1/2. PMID:22042096

  6. Retinal nerve fiber layer thickness and retinal vessel calibers in children with thalassemia minor

    PubMed Central

    Acer, Semra; Balcı, Yasemin I; Pekel, Gökhan; Ongun, Tuğba T; Polat, Aziz; Çetin, Ebru N; Yağcı, Ramazan

    2016-01-01

    Objectives: Evaluation of the peripapillary retinal nerve fiber layer thickness, subfoveal choroidal thickness, and retinal vessel caliber measurements in children with thalassemia minor. Methods: In this cross-sectional and comparative study, 30 thalassemia minor patients and 36 controls were included. Heidelberg spectral domain optical coherence tomography was used for peripapillary retinal nerve fiber layer thickness, subfoveal choroidal thickness, and retinal vessel caliber measurements. Results: There was no statistically significant difference in retinal nerve fiber layer thickness and subfoveal choroidal thickness between the two groups (p > 0.05). There was no correlation between retinal nerve fiber layer thickness and hemoglobin values. Both the arterioral and venular calibers were higher in thalassemia minor group (p < 0.05). Conclusion: There is increased retinal arterioral and venular calibers in children with thalassemia minor compared with controls. PMID:27540484

  7. Retinal fundus imaging in mouse models of retinal diseases.

    PubMed

    Alex, Anne F; Heiduschka, Peter; Eter, Nicole

    2013-01-01

    The development of in vivo retinal fundus imaging in mice has opened a new research horizon, not only in ophthalmic research. The ability to monitor the dynamics of vascular and cellular changes in pathological conditions, such as neovascularization or degeneration, longitudinally without the need to sacrifice the mouse, permits longer observation periods in the same animal. With the application of the high-resolution confocal scanning laser ophthalmoscopy in experimental mouse models, access to a large spectrum of imaging modalities in vivo is provided. PMID:23150359

  8. Argus II retinal prosthesis system: An update.

    PubMed

    Rachitskaya, Aleksandra V; Yuan, Alex

    2016-09-01

    This review focuses on a description of the Argus II retinal prosthesis system (Argus II; Second Sight Medical Products, Sylmar, CA) that was approved for humanitarian use by the FDA in 2013 in patients with retinitis pigmentosa with bare or no light perception vision. The article describes the components of Argus II, the studies on the implant, and future directions. PMID:26855177

  9. Fundus autofluorescence applications in retinal imaging.

    PubMed

    Gabai, Andrea; Veritti, Daniele; Lanzetta, Paolo

    2015-05-01

    Fundus autofluorescence (FAF) is a relatively new imaging technique that can be used to study retinal diseases. It provides information on retinal metabolism and health. Several different pathologies can be detected. Peculiar AF alterations can help the clinician to monitor disease progression and to better understand its pathogenesis. In the present article, we review FAF principles and clinical applications. PMID:26139802

  10. Fundus autofluorescence applications in retinal imaging

    PubMed Central

    Gabai, Andrea; Veritti, Daniele; Lanzetta, Paolo

    2015-01-01

    Fundus autofluorescence (FAF) is a relatively new imaging technique that can be used to study retinal diseases. It provides information on retinal metabolism and health. Several different pathologies can be detected. Peculiar AF alterations can help the clinician to monitor disease progression and to better understand its pathogenesis. In the present article, we review FAF principles and clinical applications. PMID:26139802

  11. Retinal cholesterol emboli during diagnostic cardiac catheterization.

    PubMed

    Blanco, V R; Morís, C; Barriales, V; González, C

    2000-11-01

    Retinal embolism is a highly infrequent complication of cardiac catheterization of thrombotic, lipidic, and calcific etiology. We provide the first reported clinical case of retinal embolism caused by cholesterol crystal without systemic adverse effects as a severe complication of diagnostic cardiac catheterization. Cathet. Cardiovasc. Intervent. 51:323-325, 2000. PMID:11066118

  12. New mouse primary retinal degeneration (rd-3)

    SciTech Connect

    Chang, B.; Hawes, N.L.; Roderick, T.H. ); Heckenlively, J.R. )

    1993-04-01

    A new mouse retinal degeneration that appears to be an excellent candidate for modeling human retinitis pigmentosa is reported. In this degeneration, called rd-3, differentiation proceeds postnatally through 2 weeks, and photoreceptor degeneration starts by 3 weeks. The rod photoreceptor loss is essentially complete by 5 weeks, whereas remnant cone cells are seen through 7 weeks. This is the only mouse homozygous retinal degeneration reported to date in which photoreceptors are initially normal. Crosses with known mouse retinal degenerations rd, Rds, nr, and pcd are negative for retinal degeneration in offspring, and linkage analysis places rd-3 on mouse chromosome 1 at 10 [+-]2.5 cM distal to Akp-1. Homology mapping suggests that the homologous human locus should be on chromosome 1q. 32 refs., 3 figs., 3 tabs.

  13. Retinal pigment epithelium in incontinentia pigmenti.

    PubMed

    Mensheha-Manhart, O; Rodrigues, M M; Shields, J A; Shannon, G M; Mirabelli, R P

    1975-04-01

    An 18-month-old white girl with incontinentia pigmenti presented clinically with leukokoria of the right eye. B-scan ultrasound demonstrated a retrolental mass consistent with a detached retina. Histologic examination of the skin revealed changes compatible with the intermediate verrucous phase of the disease. Microscopic examination of the right eye showed retinal detachment and nodular proliferation of the retinal pigment epithelium. The nodules contained macrophages laden with melanin and lipofuscin. An unusually large amount of lipofuscin was present for a child of this age. The basic pigmentary abnormality may affect the retinal pigment epithelium, resulting in changes in the overlying neurosensory retina that may lead to the retinal dysplasia or retinal detachemnt often associated with this condition. PMID:1119517

  14. The cell stress machinery and retinal degeneration.

    PubMed

    Athanasiou, Dimitra; Aguilà, Monica; Bevilacqua, Dalila; Novoselov, Sergey S; Parfitt, David A; Cheetham, Michael E

    2013-06-27

    Retinal degenerations are a group of clinically and genetically heterogeneous disorders characterised by progressive loss of vision due to neurodegeneration. The retina is a highly specialised tissue with a unique architecture and maintaining homeostasis in all the different retinal cell types is crucial for healthy vision. The retina can be exposed to a variety of environmental insults and stress, including light-induced damage, oxidative stress and inherited mutations that can lead to protein misfolding. Within retinal cells there are different mechanisms to cope with disturbances in proteostasis, such as the heat shock response, the unfolded protein response and autophagy. In this review, we discuss the multiple responses of the retina to different types of stress involved in retinal degenerations, such as retinitis pigmentosa, age-related macular degeneration and glaucoma. Understanding the mechanisms that maintain and re-establish proteostasis in the retina is important for developing new therapeutic approaches to fight blindness. PMID:23684651

  15. Texton-based segmentation of retinal vessels.

    PubMed

    Adjeroh, Donald A; Kandaswamy, Umasankar; Odom, J Vernon

    2007-05-01

    With improvements in fundus imaging technology and the increasing use of digital images in screening and diagnosis, the issue of automated analysis of retinal images is gaining more serious attention. We consider the problem of retinal vessel segmentation, a key issue in automated analysis of digital fundus images. We propose a texture-based vessel segmentation algorithm based on the notion of textons. Using a weak statistical learning approach, we construct textons for retinal vasculature by designing filters that are specifically tuned to the structural and photometric properties of retinal vessels. We evaluate the performance of the proposed approach using a standard database of retinal images. On the DRIVE data set, the proposed method produced an average performance of 0.9568 specificity at 0.7346 sensitivity. This compares well with the best-published results on the data set 0.9773 specificity at 0.7194 sensitivity [Proc. SPIE5370, 648 (2004)]. PMID:17429484

  16. Texton-based segmentation of retinal vessels

    NASA Astrophysics Data System (ADS)

    Adjeroh, Donald A.; Kandaswamy, Umasankar; Odom, J. Vernon

    2007-05-01

    With improvements in fundus imaging technology and the increasing use of digital images in screening and diagnosis, the issue of automated analysis of retinal images is gaining more serious attention. We consider the problem of retinal vessel segmentation, a key issue in automated analysis of digital fundus images. We propose a texture-based vessel segmentation algorithm based on the notion of textons. Using a weak statistical learning approach, we construct textons for retinal vasculature by designing filters that are specifically tuned to the structural and photometric properties of retinal vessels. We evaluate the performance of the proposed approach using a standard database of retinal images. On the DRIVE data set, the proposed method produced an average performance of 0.9568 specificity at 0.7346 sensitivity. This compares well with the best-published results on the data set 0.9773 specificity at 0.7194 sensitivity [Proc. SPIE5370, 648 (2004)].

  17. Sildenafil alters retinal function in mouse carriers of retinitis pigmentosa.

    PubMed

    Nivison-Smith, Lisa; Zhu, Yuan; Whatham, Andrew; Bui, Bang V; Fletcher, Erica L; Acosta, Monica L; Kalloniatis, Michael

    2014-11-01

    Sildenafil, the active ingredient in Viagra, has been reported to cause transient visual disturbance from inhibition of phosphodiesterase 6 (PDE6), a key enzyme in the visual phototransduction pathway. This study investigated the effects of sildenafil on the rd1(+/-) mouse, a model for carriers of Retinitis Pigmentosa which exhibit normal vision but may have a lower threshold for cellular stress caused by sildenafil due to a heterozygous mutation in PDE6. Sildenafil caused a dose-dependent decrease in electroretinogram (ERG) responses of normal mice which mostly recovered two days post administration. In contrast, rd1(+/-) mice exhibited a significantly reduced photoreceptor and a supernormal bipolar cell response to sildenafil within 1 h of treatment. Carrier mice retinae took two weeks to return to baseline levels suggesting sildenafil has direct effects on both the inner and outer retina and these effects differ significantly between normal and carrier mice. Anatomically, an increase in expression of the early apoptotic marker, cytochrome C in rd1(+/-) mice indicated that the effects of sildenafil on visual function may lead to degeneration. The results of this study are significant considering approximately 1 in 50 people are likely to be carriers of recessive traits leading to retinal degeneration. PMID:25239397

  18. Primary Reactions in Retinal Proteins

    NASA Astrophysics Data System (ADS)

    Diller, R.

    Conversion of sunlight into energy or information and their storage on a chemical level is essential for life on earth. An important family of chromoproteins performing these tasks is that of retinal binding proteins. Prominent examples are rhodopsin (Rh) [1,2] as the visual pigment in vertebrate and invertebrate animals, the archaeal rhodopsins bacteriorhodopsin (BR) [3] as a light driven proton pump, halorhodopsin (HR) [4,5] as a light driven chloride pump, sensory rhodopsin I and II (SRI, SRII) [6] as photoreceptors, and proteorhodopsin (PR) [7] as another bacterial proton pump.

  19. Demarcation laser photocoagulation induced retinal necrosis and rupture resulting in large retinal tear formation.

    PubMed

    Quezada, Carlos; Pieramici, Dante J; Matsui, Rodrigo; Rabena, Melvin; Graue, Federico

    2015-06-01

    Retinal tears after laser photocoagulation are a rare complication that occurs after intense laser. It is talked about among retina specialist occurring particularly at the end of a surgical case while applying endophotocoagulation; to the best our knowledge, there are no reports in the literature of a large retinal tear induced after attempted in-office demarcation laser photocoagulation (DLP) that simulated a giant retinal tear. DLP has been employed in the management of selected cases of macula sparring rhegmatogenous retinal detachment (RRD). Even though extension of the retinal detachment through the "laser barrier" is considered a failure of treatment, few complications have been described with the use of this less invasive retinal detachment repair technique. We describe a case of a high myopic woman who initially was treated with demarcation laser photocoagulation for an asymptomatic retinal detachment associated with a single horseshoe tear and a full thickness large retinal tear was created where the laser was placed. Intense laser photocoagulation resulted in abrupt laser induced retinal necrosis and rupture creating this large retinal break. Proper laser technique should reduce the risks associated with this procedure. PMID:25770055

  20. Measurement of retinal blood velocity

    NASA Astrophysics Data System (ADS)

    Winchester, Leonard W., Jr.; Chou, Nee-Yin

    2006-02-01

    A fundus camera was modified to illuminate the retina of a rabbit model with low power laser light in order to obtain laser speckle images. A fast-exposure charge-coupled device (CCD) camera was used to capture laser speckle images of the retina. Image acquisition was synchronized with the arterial pulses of the rabbit to ensure that all images are obtained at the same point in the cardiac cycle. The rabbits were sedated and a speculum was inserted to prevent the eyelid from closing. Both albino (New Zealand; pigmented (Dutch belted) rabbits were used in the study. The rabbit retina is almost avascular. The measurements are obtained for choroidal tissue as well as retinal tissue. Because the retina is in a region of high metabolism, blood velocity is strongly affected by blood oxygen saturation. Measurements of blood velocity obtained over a wide range of O II saturations (58%-100%) showed that blood velocity increases with decreasing O II saturation. For most experiments, the left eye of the rabbit was used for laser measurements whereas the right eye served as a control. No observable difference between pre- and post-experimented eye was noted. Histological examinations of retinal tissue subjected to repeated laser measurements showed no indication of tissue damage.

  1. Fixation strategies for retinal immunohistochemistry.

    PubMed

    Stradleigh, Tyler W; Ishida, Andrew T

    2015-09-01

    Immunohistochemical and ex vivo anatomical studies have provided many glimpses of the variety, distribution, and signaling components of vertebrate retinal neurons. The beauty of numerous images published to date, and the qualitative and quantitative information they provide, indicate that these approaches are fundamentally useful. However, obtaining these images entailed tissue handling and exposure to chemical solutions that differ from normal extracellular fluid in composition, temperature, and osmolarity. Because the differences are large enough to alter intercellular and intracellular signaling in neurons, and because retinae are susceptible to crush, shear, and fray, it is natural to wonder if immunohistochemical and anatomical methods disturb or damage the cells they are designed to examine. Tissue fixation is typically incorporated to guard against this damage and is therefore critically important to the quality and significance of the harvested data. Here, we describe mechanisms of fixation; advantages and disadvantages of using formaldehyde and glutaraldehyde as fixatives during immunohistochemistry; and modifications of widely used protocols that have recently been found to improve cell shape preservation and immunostaining patterns, especially in proximal retinal neurons. PMID:25892361

  2. Fixation Strategies For Retinal Immunohistochemistry

    PubMed Central

    Stradleigh, Tyler W.; Ishida, Andrew T.

    2015-01-01

    Immunohistochemical and ex vivo anatomical studies have provided many glimpses of the variety, distribution, and signaling components of vertebrate retinal neurons. The beauty of numerous images published to date, and the qualitative and quantitative information they provide, indicate that these approaches are fundamentally useful. However, obtaining these images entailed tissue handling and exposure to chemical solutions that differ from normal extracellular fluid in composition, temperature, and osmolarity. Because the differences are large enough to alter intercellular and intracellular signaling in neurons, and because retinae are susceptible to crush, shear, and fray, it is natural to wonder if immunohistochemical and anatomical methods disturb or damage the cells they are designed to examine. Tissue fixation is typically incorporated to guard against this damage and is therefore critically important to the quality and significance of the harvested data. Here, we describe mechanisms of fixation; advantages and disadvantages of using formaldehyde and glutaraldehyde as fixatives during immunohistochemistry; and modifications of widely used protocols that have recently been found to improve cell shape preservation and immunostaining patterns, especially in proximal retinal neurons. PMID:25892361

  3. Well-defined crystallites autoclaved from the nitrate/NH{sub 4}OH reaction system as the precursor for (Y,Eu){sub 2}O{sub 3} red phosphor: Crystallization mechanism, phase and morphology control, and luminescent property

    SciTech Connect

    Zhu Qi; Li Jiguang; Ma, Renzhi; Sasaki, Takayoshi; Yang, Xiaojing; Li Xiaodong; Sun Xudong; Sakka, Yoshio

    2012-08-15

    Autoclaving the rare-earth nitrate/NH{sub 4}OH reaction system under the mild conditions of 120-200 Degree-Sign C and pH 6-13 have yielded four types of well-crystallized compounds with their distinctive crystal shapes, including Ln{sub 2}(OH){sub 5}NO{sub 3}{center_dot}nH{sub 2}O (Ln=Y and Eu) layered rare-earth hydroxide (hexagonal platelets), Ln{sub 4}O(OH){sub 9}NO{sub 3} oxy-hydroxyl nitrate (hexagonal prisms and microwires), Ln(OH){sub 2.94}(NO{sub 3}){sub 0.06}{center_dot}nH{sub 2}O hydroxyl nitrate (square nanoplates), and Ln(OH){sub 3} hydroxide (spindle-shaped microrods). The occurrence domains of the compounds are defined. Ammonium nitrate (NH{sub 4}NO{sub 3}) as a mineralizer effectively widens the formation domains of the NO{sub 3}{sup -} containing compounds while leads to larger crystals at the same time (up to 0.3 mm). Crystallization mechanisms of the compounds and the effects of NH{sub 4}NO{sub 3} were discussed. Optical properties (PLE/PL) of the four phases were characterized in detail and were interpreted from the different site symmetries of Eu{sup 3+}. The compounds convert to cubic-structured (Y{sub 0.95}Eu{sub 0.05}){sub 2}O{sub 3} by annealing at 600 Degree-Sign C while retaining their original crystal morphologies. The resultant phosphor oxides of diverse particle shapes exhibit differing optical properties, in terms of luminescent intensity, asymmetry factor of luminescence and fluorescence lifetime, and the underlying mechanism was discussed. - Graphical abstract: Well-defined crystallites of the various phases have been autoclaved from the nitrate/NH{sub 4}OH reaction system. Crystallization mechanisms of the compounds and the effects of NH{sub 4}NO{sub 3} were discussed. Highlights: Black-Right-Pointing-Pointer Well-defined crystallites of four phases have been hydrothermally synthesized. Black-Right-Pointing-Pointer The occurrence domains of the compounds are defined. Black-Right-Pointing-Pointer Crystallization mechanisms and the

  4. A mechanical model of retinal detachment

    NASA Astrophysics Data System (ADS)

    Chou, Tom; Siegel, Michael

    2012-08-01

    We present a model of the mechanical and fluid forces associated with exudative retinal detachments where the retinal photoreceptor cells separate, typically from the underlying retinal pigment epithelium (RPE). By computing the total fluid volume flow arising from transretinal, vascular and RPE pump currents, we determine the conditions under which the subretinal fluid pressure exceeds the maximum yield stress holding the retina and RPE together, giving rise to an irreversible, extended retinal delamination. We also investigate localized, blister-like retinal detachments by balancing mechanical tension in the retina with both the retina-RPE adhesion energy and the hydraulic pressure jump across the retina. For detachments induced by traction forces, we find a critical radius beyond which the blister is unstable to growth. Growth of a detached blister can also be driven by inflamed lesions in which the tissue has a higher choroidal hydraulic conductivity, has insufficient RPE pump activity, or has defective adhesion bonds. We determine the parameter regimes in which the blister either becomes unstable to growth, remains stable and finite-sized, or shrinks, allowing possible healing. The corresponding stable blister radius and shape are calculated. Our analysis provides a quantitative description of the physical mechanisms involved in exudative retinal detachments and can help guide the development of retinal reattachment protocols or preventative procedures.

  5. Retinal microvascular network attenuation in Alzheimer's disease

    PubMed Central

    Williams, Michael A.; McGowan, Amy J.; Cardwell, Chris R.; Cheung, Carol Y.; Craig, David; Passmore, Peter; Silvestri, Giuliana; Maxwell, Alexander P.; McKay, Gareth J.

    2015-01-01

    Introduction Cerebral small-vessel disease has been implicated in the development of Alzheimer's disease (AD). The retinal microvasculature enables the noninvasive visualization and evaluation of the systemic microcirculation. We evaluated retinal microvascular parameters in a case-control study of AD patients and cognitively normal controls. Methods Retinal images were computationally analyzed and quantitative retinal parameters (caliber, fractal dimension, tortuosity, and bifurcation) measured. Regression models were used to compute odds ratios (OR) and confidence intervals (CI) for AD with adjustment for confounders. Results Retinal images were available in 213 AD participants and 294 cognitively normal controls. Persons with lower venular fractal dimension (OR per standard deviation [SD] increase, 0.77 [CI: 0.62–0.97]) and lower arteriolar tortuosity (OR per SD increase, 0.78 [CI: 0.63–0.97]) were more likely to have AD after appropriate adjustment. Discussion Patients with AD have a sparser retinal microvascular network and retinal microvascular variation may represent similar pathophysiological events within the cerebral microvasculature of patients with AD. PMID:26634224

  6. Optical Coherence Tomography Angiography in Retinal Diseases

    PubMed Central

    Chalam, K. V.; Sambhav, Kumar

    2016-01-01

    Optical coherence tomography angiography (OCTA) is a new, non-invasive imaging system that generates volumetric data of retinal and choroidal layers. It has the ability to show both structural and blood flow information. Split-spectrum amplitude-decorrelation angiography (SSADA) algorithm (a vital component of OCTA software) helps to decrease the signal to noise ratio of flow detection thus enhancing visualization of retinal vasculature using motion contrast. Published studies describe potential efficacy for OCTA in the evaluation of common ophthalmologic diseases such as diabetic retinopathy, age related macular degeneration (AMD), retinal vascular occlusions and sickle cell disease. OCTA provides a detailed view of the retinal vasculature, which allows accurate delineation of microvascular abnormalities in diabetic eyes and vascular occlusions. It helps quantify vascular compromise depending upon the severity of diabetic retinopathy. OCTA can also elucidate the presence of choroidal neovascularization (CNV) in wet AMD. In this paper, we review the knowledge, available in English language publications regarding OCTA, and compare it with the conventional angiographic standard, fluorescein angiography (FA). Finally, we summarize its potential applications to retinal vascular diseases. Its current limitations include a relatively small field of view, inability to show leakage, and tendency for image artifacts. Further larger studies will define OCTA's utility in clinical settings and establish if the technology may offer a non-invasive option of visualizing the retinal vasculature, enabling us to decrease morbidity through early detection and intervention in retinal diseases. PMID:27195091

  7. Optical Coherence Tomography Angiography in Retinal Diseases.

    PubMed

    Chalam, K V; Sambhav, Kumar

    2016-01-01

    Optical coherence tomography angiography (OCTA) is a new, non-invasive imaging system that generates volumetric data of retinal and choroidal layers. It has the ability to show both structural and blood flow information. Split-spectrum amplitude-decorrelation angiography (SSADA) algorithm (a vital component of OCTA software) helps to decrease the signal to noise ratio of flow detection thus enhancing visualization of retinal vasculature using motion contrast. Published studies describe potential efficacy for OCTA in the evaluation of common ophthalmologic diseases such as diabetic retinopathy, age related macular degeneration (AMD), retinal vascular occlusions and sickle cell disease. OCTA provides a detailed view of the retinal vasculature, which allows accurate delineation of microvascular abnormalities in diabetic eyes and vascular occlusions. It helps quantify vascular compromise depending upon the severity of diabetic retinopathy. OCTA can also elucidate the presence of choroidal neovascularization (CNV) in wet AMD. In this paper, we review the knowledge, available in English language publications regarding OCTA, and compare it with the conventional angiographic standard, fluorescein angiography (FA). Finally, we summarize its potential applications to retinal vascular diseases. Its current limitations include a relatively small field of view, inability to show leakage, and tendency for image artifacts. Further larger studies will define OCTA's utility in clinical settings and establish if the technology may offer a non-invasive option of visualizing the retinal vasculature, enabling us to decrease morbidity through early detection and intervention in retinal diseases. PMID:27195091

  8. Purinergic signaling in retinal degeneration and regeneration.

    PubMed

    Reichenbach, Andreas; Bringmann, Andreas

    2016-05-01

    Purinergic signaling is centrally involved in mediating the degeneration of the injured and diseased retina, the induction of retinal gliosis, and the protection of the retinal tissue from degeneration. Dysregulated calcium signaling triggered by overactivation of P2X7 receptors is a crucial step in the induction of neuronal and microvascular cell death under pathogenic conditions like ischemia-hypoxia, elevated intraocular pressure, and diabetes, respectively. Overactivation of P2X7 plays also a pathogenic role in inherited and age-related photoreceptor cell death and in the age-related dysfunction and degeneration of the retinal pigment epithelium. Gliosis of micro- and macroglial cells, which is induced and/or modulated by purinergic signaling and associated with an impaired homeostatic support to neurons, and the ATP-mediated propagation of retinal gliosis from a focal injury into the surrounding noninjured tissue are involved in inducing secondary cell death in the retina. On the other hand, alterations in the glial metabolism of extracellular nucleotides, resulting in a decreased level of ATP and an increased level of adenosine, may be neuroprotective in the diseased retina. Purinergic signals stimulate the proliferation of retinal glial cells which contributes to glial scarring which has protective effects on retinal degeneration and adverse effects on retinal regeneration. Pharmacological modulation of purinergic receptors, e.g., inhibition of P2X and activation of adenosine receptors, may have clinical importance for the prevention of photoreceptor, neuronal, and microvascular cell death in diabetic retinopathy, retinitis pigmentosa, age-related macular degeneration, and glaucoma, respectively, for the clearance of retinal edema, and the inhibition of dysregulated cell proliferation in proliferative retinopathies. This article is part of a Special Issue entitled 'Purines in Neurodegeneration and Neuroregeneration'. PMID:25998275

  9. Retinal venous pressure: the role of endothelin.

    PubMed

    Flammer, Josef; Konieczka, Katarzyna

    2015-01-01

    The retinal venous pressure (RVP) can be measured non-invasively. While RVP is equal to or slightly above intraocular pressure (IOP) in healthy people, it is often markedly increased in patients with eye or systemic diseases. Beside a mechanical obstruction, the main cause of such an elevation is a local dysregulation of a retinal vein, particularly a constriction induced by endothelin-1 (ET-1). A local increase of ET-1 can result from a high plasma level, as ET-1 can diffuse from the fenestrated capillaries of the choroid into the optic nerve head (ONH), bypassing the blood retinal barrier. A local increase can also result from increased local production either by a sick neighboring artery or retinal tissue. Generally, the main factors increasing ET-1 are inflammations and hypoxia, either locally or in a remote organ. RVP is known to be increased in patients with glaucoma, retinal vein occlusion (RVO), diabetic retinopathy, high mountain disease, and primary vascular dysregulation (PVD). PVD is the major vascular component of Flammer syndrome (FS). An increase of RVP decreases perfusion pressure, which heightens the risk for hypoxia. An increase of RVP also elevates transmural pressure, which in turn heightens the risk for retinal edema. In patients with RVO, a high level of RVP may not only be a consequence but also a potential cause of the occlusion; therefore, it risks causing a vicious circle. Narrow retinal arteries and particularly dilated retinal veins are known risk indicators for future cardiovascular events. As the major cause for such a retinal venous dilatation is an increased RVP, RVP may likely turn out to be an even stronger predictor. PMID:26504500

  10. Cancer-associated retinopathy with retinal phlebitis.

    PubMed

    Ohnishi, Y; Ohara, S; Sakamoto, T; Kohno, T; Nakao, F

    1993-12-01

    A 50-year-old man with cancer-associated retinopathy was investigated using light and electron microscopy, immunofluorescence studies, and western blotting. He had visual disturbance, ring-like scotoma, and night blindness bilaterally. There were narrowed retinal arterioles and dilated retinal venules. Oral corticosteroid therapy had positive effects. Immunostaining using the patient's serum revealed a positive reaction in the ganglion cell layer of normal retina. Western blotting showed that the patient's serum antibody reacted with normal retinal proteins of 24 and 48 kDa. Multiple metastases were evident at autopsy. PMID:8110675

  11. Retinal isomerization dynamics in dry bacteriorhodopsin films

    NASA Astrophysics Data System (ADS)

    Colonna, Anne; Groma, Géza I.; Vos, Marten H.

    2005-10-01

    The primary photoprocesses in neutral and acid forms of oriented dried bacteriorhodopsin films were investigated by femtosecond absorption spectroscopy. The excitation energy dependence of the signals was used to distinguish photochemistry from processes involving photophysics of photocycle intermediates. Both the kinetics and the quantum yield of all- trans excited state decay by retinal photoisomerization and subsequent J → K transition were found to be very similar as in hydrated environments. Therefore, unlike slower photocycle phases, communication of the retinal with the environment does not play a role in retinal isomerization. Our results are important for understanding recent nonlinear optical applications of such films.

  12. Retinal Stimulation on Rabbit Using Complementary Metal Oxide Semiconductor Based Multichip Flexible Stimulator toward Retinal Prosthesis

    NASA Astrophysics Data System (ADS)

    Tokuda, Takashi; Asano, Ryosuke; Sugitani, Sachie; Taniyama, Mari; Terasawa, Yasuo; Nunoshita, Masahiro; Nakauchi, Kazuaki; Fujikado, Takashi; Tano, Yasuo; Ohta, Jun

    2008-04-01

    The Functionality of a complementary metal oxide semiconductor (CMOS) LSI-based, multichip flexible retinal stimulator was demonstrated in retinal stimulation experiments on rabbits. A 1×4-configured multichip stimulator was fabricated for application to experiments on animals. An experimental procedure including surgical operations was developed, and retinal stimulation was performed with the fabricated multichip stimulator. Neural responses on the visual cortex were successfully evoked by the fabricated stimulator. The stimulator is confirmed to be applicable to acute animal experiments.

  13. Infrared and Raman spectroscopic characterization of the silicate-carbonate mineral carletonite - KNa4Ca4Si8O18(CO3)4(OH,F)·H2O

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; Xi, Yunfei; Scholz, Ricardo; López, Andrés; Belotti, Fernanda Maria

    2013-06-01

    An assessment of the molecular structure of carletonite a rare phyllosilicate mineral with general chemical formula given as KNa4Ca4Si8O18(CO3)4(OH,F)·H2O has been undertaken using vibrational spectroscopy. Carletonite has a complex layered structure. Within one period of c, it contains a silicate layer of composition NaKSi8O18·H2O, a carbonate layer of composition NaCO3·0.5H2O and two carbonate layers of composition NaCa2CO3(F,OH)0.5. Raman bands are observed at 1066, 1075 and 1086 cm-1. Whether these bands are due to the CO32- ν1 symmetric stretching mode or to an SiO stretching vibration is open to question. Multiple bands are observed in the 300-800 cm-1 spectral region, making the attribution of these bands difficult. Multiple water stretching and bending modes are observed showing that there is much variation in hydrogen bonding between water and the silicate and carbonate surfaces.

  14. Infrared and Raman spectroscopic characterizations on new Fe sulphoarsenate hilarionite (Fe2((III))(SO4)(AsO4)(OH)·6H2O): Implications for arsenic mineralogy in supergene environment of mine area.

    PubMed

    Liu, Jing; He, LiLe; Dong, Faqin; Frost, Ray L

    2017-01-01

    Hilarionite (Fe2 (SO4)(AsO4)(OH)·6H2O) is a new Fe sulphoarsenates mineral, which recently is found in the famous Lavrion ore district, Atliki Prefecture, Greece. The spectroscopic study of hilarionite enriches the data of arsenic mineralogy in supergene environment of a mine area. The infrared and Raman means are used to characterize the molecular structure of this mineral. The IR bands at 875 and 905cm(-1) are assigned to the antisymmetric stretching vibrations of AsO4(3-). The IR bands at 1021, 1086 and 1136cm(-1) correspond to the possible antisymmetric and symmetric stretching vibrations of SO4(2-). The Raman bands at 807, 843 and 875cm(-1) clearly show that arsenate components in the mineral structure, which are assigned to the symmetric stretching vibrations (ν1) of AsO4(3-) (807 and 843cm(-1)) and the antisymmetric vibration (ν3) (875cm(-1)). IR bands provide more sulfate information than Raman, which can be used as the basis to distinguish hilarionite from kaňkite. The powder XRD data shows that hilarionite has obvious differences with the mineral structure of kaňkite. The thermoanalysis and SEM-EDX results show that hilarionite has more sulfate than arsenate. PMID:27391313

  15. Thermodynamics of concentrated electrolyte mixtures and the prediction of mineral solubilities to high temperatures for mixtures in the system Na-K-Mg-Cl-SO/sub 4/-OH-H/sub 2/O

    SciTech Connect

    Pabalan, R.T.; Pitzer, K.S.

    1987-09-01

    Mineral solubilities in binary and ternary electrolyte mixtures in the system Na-K-Mg-Cl-SO/sub 4/-OH-H/sub 2/O are calculated to high temperatures using available thermodynamic data for solids and for aqueous electrolyte solutions. Activity and osmotic coefficients are derived from the ion-interaction model of Pitzer (1973, 1979) and co-workers, the parameters of which are evaluated from experimentally determined solution properties or from solubility data in binary and ternary mixtures. Excellent to good agreement with experimental solubilities for binary and ternary mixtures indicate that the model can be successfully used to predict mineral-solution equilibria to high temperatures. Although there are currently no theoretical forms for the temperature dependencies of the various model parameters, the solubility data in ternary mixtures can be adequately represented by constant values of the mixing term Phi/sub ij/ and values of Phi/sub ijk/ which are either constant or have a simple temperature dependence. Since no additional parameters are needed to describe the thermodynamic properties of more complex electrolyte mixtures, the calculations can be extended to equilibrium studies relevant to natural systems. Examples of predicted solubilities are given for the quaternary system NaCl-KCl-MgCl/sub 2/-H/sub 2/-O.

  16. The mineral tooeleite Fe6(AsO3)4SO4(OH)4ṡ4H2O - An infrared and Raman spectroscopic study-environmental implications for arsenic remediation

    NASA Astrophysics Data System (ADS)

    Liu, Jing; Cheng, Hongfei; Frost, Ray L.; Dong, Faqing

    2013-02-01

    The mineral tooeleite Fe6(AsO3)4SO4(OH)4ṡ4H2O is secondary ferric arsenite sulphate mineral which has environmental significance for arsenic remediation because of its high stability in the regolith. The mineral has been studied by X-ray diffraction (XRD), infrared (IR) and Raman spectroscopy. The XRD result indicates tooeleite can form more crystalline solids in an acid environment than in an alkaline environment. Infrared spectroscopy identifies moderately intense band at 773 cm-1 assigned to AsO33- symmetric stretching vibration. Raman spectroscopy identifies three bands at 803, 758 and 661 cm-1 assigned to the symmetric and antisymmetric stretching vibrations of AsO33- and As-OH stretching vibration respectively. In addition, the infrared bands observed at 1116, 1040, 1090, 981 and 616 cm-1, are assigned to the ν3, ν1 and ν4 modes of SO42-. The same bands are observed at 1287, 1085, 983 and 604 cm-1 in the Raman spectrum. As3d band at binding energy of 44.05 eV in XPS confirms arsenic valence of tooeleite is +3. These characteristic bands in the IR and Raman spectra provide useful basis for identifying the mineral tooeleite.

  17. Nuclear Migration During Retinal Development

    PubMed Central

    Baye, Lisa M.; Link, Brian A.

    2009-01-01

    In this review we focus on the mechanisms, regulation, and cellular consequences of nuclear migration in the developing retina. In the nervous system, nuclear migration is prominent during both proliferative and post-mitotic phases of development. Interkinetic nuclear migration is the process where the nucleus oscillates from the apical to basal surfaces in proliferative neuroepithelia. Proliferative nuclear movement occurs in step with the cell cycle, with M-phase being confined to the apical surface and G1-, S-, and G2-phases occurring at more basal locations. Later, following cell cycle exit, some neuron precursors migrate by nuclear translocation. In this mode of cellular migration, nuclear movement is the driving force for motility. Following discussion of the key components and important regulators for each of these processes, we present an emerging model where interkinetic nuclear migration functions to distinguish cell fates among retinal neuroepithelia. PMID:17560964

  18. Retinal Adaptation to Object Motion

    PubMed Central

    Ölveczky, Bence P.; Baccus, Stephen A.; Meister, Markus

    2007-01-01

    Summary Due to fixational eye movements, the image on the retina is always in motion, even when one views a stationary scene. When an object moves within the scene, the corresponding patch of retina experiences a different motion trajectory than the surrounding region. Certain retinal ganglion cells respond selectively to this condition, when the motion in the cell’s receptive field center is different from that in the surround. Here we show that this response is strongest at the very onset of differential motion, followed by gradual adaptation with a time course of several seconds. Different subregions of a ganglion cell’s receptive field can adapt independently. The circuitry responsible for differential motion adaptation lies in the inner retina. Several candidate mechanisms were tested, and the adaptation most likely results from synaptic depression at the synapse from bipolar to ganglion cell. Similar circuit mechanisms may act more generally to emphasize novel features of a visual stimulus. PMID:18031685

  19. Regulatory and Economic Considerations of Retinal Drugs.

    PubMed

    Shah, Ankoor R; Williams, George A

    2016-01-01

    The advent of anti-VEGF therapy for neovascular age-related macular degeneration and macular edema secondary to retinal vein occlusion and diabetes mellitus has prevented blindness in tens of thousands of people. However, the costs of these drugs are without precedent in ophthalmic drug therapeutics. An analysis of the financial implications of retinal drugs and the impact of the Food and Drug Administration on treatment of retinal disease must include not only an evaluation of the direct costs of the drugs and the costs associated with their administration, but also the cost savings which accrue from their clinical benefit. This chapter will discuss the financial and regulatory issues associated with retinal drugs. PMID:26502165

  20. Retinal vein occlusion: pathophysiology and treatment options

    PubMed Central

    Karia, Niral

    2010-01-01

    This paper reviews the current thinking about retinal vein occlusion. It gives an overview of its pathophysiology and discusses the evidence behind the various established and emerging treatment paradigms. PMID:20689798

  1. Expression Profiling of Developing Zebrafish Retinal Cells.

    PubMed

    Mullally, Madelyn; Albrecht, Caitlin; Horton, Mary; Laboissonniere, Lauren A; Goetz, Jillian J; Chowdhury, Rebecca; Manning, Alicia; Wester, Andrea K; Bose, Quinton; Trimarchi, Jeffrey M

    2016-08-01

    During retinal development, a variety of different types of neurons are produced. Understanding how each of these types of retinal nerve cells is generated is important from a developmental biology perspective. It is equally important if one is interested in how to regenerate cells after an injury or a disease. To gain more insight into how retinal neurons develop in the zebrafish, we performed single-cell mRNA profiling and in situ hybridizations (ISHs) on retinal sections and whole-mount zebrafish. Through the series of ISHs, designed and performed solely by undergraduate students in the laboratory, we were able to retrospectively identify our single-cell mRNA profiles as most likely coming from developing amacrine cells. Further analysis of these profiles will reveal genes that can be mutated using genome editing techniques. Together these studies increase our knowledge of the genes driving development of different cell types in the zebrafish retina. PMID:26982811

  2. Retinal Detachment: Torn or Detached Retina Treatment

    MedlinePlus

    ... of these procedures create a scar that helps seal the retina to the back of the eye. ... around the retinal tear. The scarring that results seals the retina to the underlying tissue, helping to ...

  3. What Is Next for Retinal Gene Therapy?

    PubMed Central

    Vandenberghe, Luk H.

    2015-01-01

    The field of gene therapy for retinal blinding disorders is experiencing incredible momentum, justified by hopeful results in early stage clinical trials for inherited retinal degenerations. The premise of the use of the gene as a drug has come a long way, and may have found its niche in the treatment of retinal disease. Indeed, with only limited treatment options available for retinal indications, gene therapy has been proven feasible, safe, and effective and may lead to durable effects following a single injection. Here, we aim at putting into context the promise and potential, the technical, clinical, and economic boundaries limiting its application and development, and speculate on a future in which gene therapy is an integral component of ophthalmic clinical care. PMID:25877395

  4. Doppler optical coherence tomography of retinal circulation.

    PubMed

    Tan, Ou; Wang, Yimin; Konduru, Ranjith K; Zhang, Xinbo; Sadda, SriniVas R; Huang, David

    2012-01-01

    Noncontact retinal blood flow measurements are performed with a Fourier domain optical coherence tomography (OCT) system using a circumpapillary double circular scan (CDCS) that scans around the optic nerve head at 3.40 mm and 3.75 mm diameters. The double concentric circles are performed 6 times consecutively over 2 sec. The CDCS scan is saved with Doppler shift information from which flow can be calculated. The standard clinical protocol calls for 3 CDCS scans made with the OCT beam passing through the superonasal edge of the pupil and 3 CDCS scan through the inferonal pupil. This double-angle protocol ensures that acceptable Doppler angle is obtained on each retinal branch vessel in at least 1 scan. The CDCS scan data, a 3-dimensional volumetric OCT scan of the optic disc scan, and a color photograph of the optic disc are used together to obtain retinal blood flow measurement on an eye. We have developed a blood flow measurement software called "Doppler optical coherence tomography of retinal circulation" (DOCTORC). This semi-automated software is used to measure total retinal blood flow, vessel cross section area, and average blood velocity. The flow of each vessel is calculated from the Doppler shift in the vessel cross-sectional area and the Doppler angle between the vessel and the OCT beam. Total retinal blood flow measurement is summed from the veins around the optic disc. The results obtained at our Doppler OCT reading center showed good reproducibility between graders and methods (<10%). Total retinal blood flow could be useful in the management of glaucoma, other retinal diseases, and retinal diseases. In glaucoma patients, OCT retinal blood flow measurement was highly correlated with visual field loss (R(2)>0.57 with visual field pattern deviation). Doppler OCT is a new method to perform rapid, noncontact, and repeatable measurement of total retinal blood flow using widely available Fourier-domain OCT instrumentation. This new technology may improve the

  5. Diode laser contact transscleral retinal photocoagulation: a clinical study.

    PubMed Central

    McHugh, D A; Schwartz, S; Dowler, J G; Ulbig, M; Blach, R K; Hamilton, P A

    1995-01-01

    AIM--To examine the clinical efficacy of contact transscleral retinal photocoagulation with a diode laser. METHODS--Transscleral retinal photocoagulation was performed on 36 eyes. The conditions treated included peripheral retinal breaks associated with retinal detachments (30 eyes) and giant retinal tears (six eyes). Of the 30 eyes with retinal detachments, 28 underwent transscleral photocoagulation to the site of drainage of subretinal fluid in an attempt to reduce the risk of hemorrhage. RESULTS--Threshold lesions were obtained with irradiances of between 95.4 W/cm2 and 191 W/cm2. Satisfactory chorioretinal adhesion was achieved in all eyes with retinal breaks and giant retinal tears. The only significant complications of treatment encountered were punctate choroidal haemorrhages (three eyes). Drainage related choroidal haemorrhage following earlier photocoagulation occurred in two of 28 eyes. CONCLUSIONS--This study confirms the clinical potential of transscleral diode laser photocoagulation in the therapy of surgical retinal conditions. Images PMID:8562540

  6. Photoreceptor Cells Influence Retinal Vascular Degeneration in Mouse Models of Retinal Degeneration and Diabetes

    PubMed Central

    Liu, Haitao; Tang, Jie; Du, Yunpeng; Saadane, Aicha; Tonade, Deoye; Samuels, Ivy; Veenstra, Alex; Palczewski, Krzysztof; Kern, Timothy S.

    2016-01-01

    Purpose Loss of photoreceptor cells is associated with retinal vascular degeneration in retinitis pigmentosa, whereas the presence of photoreceptor cells is implicated in vascular degeneration in diabetic retinopathy. To investigate how both the absence and presence of photoreceptors could damage the retinal vasculature, we compared two mouse models of photoreceptor degeneration (opsin−/− and RhoP23H/P23H ) and control C57Bl/5J mice, each with and without diabetes. Methods Retinal thickness, superoxide, expression of inflammatory proteins, ERG and optokinetic responses, leukocyte cytotoxicity, and capillary degeneration were evaluated at 1 to 10 months of age using published methods. Results Retinal photoreceptor cells degenerated completely in the opsin mutants by 2 to 4 months of age, and visual function subsided correspondingly. Retinal capillary degeneration was substantial while photoreceptors were still present, but slowed after the photoreceptors degenerated. Diabetes did not further exacerbate capillary degeneration in these models of photoreceptor degeneration, but did cause capillary degeneration in wild-type animals. Photoreceptor cells, however, did not degenerate in wild-type diabetic mice, presumably because the stress responses in these cells were less than in the opsin mutants. Retinal superoxide and leukocyte damage to retinal endothelium contributed to the degeneration of retinal capillaries in diabetes, and leukocyte-mediated damage was increased in both opsin mutants during photoreceptor cell degeneration. Conclusions Photoreceptor cells affect the integrity of the retinal microvasculature. Deterioration of retinal capillaries in opsin mutants was appreciable while photoreceptor cells were present and stressed, but was less after photoreceptors degenerated. This finding proves relevant to diabetes, where persistent stress in photoreceptors likewise contributes to capillary degeneration. PMID:27548901

  7. Retinal synaptic regeneration via microfluidic guiding channels.

    PubMed

    Su, Ping-Jung; Liu, Zongbin; Zhang, Kai; Han, Xin; Saito, Yuki; Xia, Xiaojun; Yokoi, Kenji; Shen, Haifa; Qin, Lidong

    2015-01-01

    In vitro culture of dissociated retinal neurons is an important model for investigating retinal synaptic regeneration (RSR) and exploring potentials in artificial retina. Here, retinal precursor cells were cultured in a microfluidic chip with multiple arrays of microchannels in order to reconstruct the retinal neuronal synapse. The cultured retinal cells were physically connected through microchannels. Activation of electric signal transduction by the cells through the microchannels was demonstrated by administration of glycinergic factors. In addition, an image-based analytical method was used to quantify the synaptic connections and to assess the kinetics of synaptic regeneration. The rate of RSR decreased significantly below 100 μM of inhibitor glycine and then approached to a relatively constant level at higher concentrations. Furthermore, RSR was enhanced by chemical stimulation with potassium chloride. Collectively, the microfluidic synaptic regeneration chip provides a novel tool for high-throughput investigation of RSR at the cellular level and may be useful in quality control of retinal precursor cell transplantation. PMID:26314276

  8. Retinal Light Damage: Mechanisms and Protection

    PubMed Central

    Organisciak, Daniel T.; Vaughan, Dana K.

    2009-01-01

    By its action on rhodopsin, light triggers the well-known visual transduction cascade, but can also induce cell damage and death through phototoxic mechanisms -- a comprehensive understanding of which is still elusive despite more than 40 years of research. Herein, we integrate recent experimental findings to address several hypotheses of retinal light damage, premised in part on the close anatomical and metabolic relationships between the photoreceptors and the retinal pigment epithelium. We begin by reviewing the salient features of light damage, recently joined by evidence for retinal remodeling which has implications for the prognosis of recovery of function in retinal degenerations. We then consider select factors that influence the progression of the damage process and the extent of visual cell loss. Traditional, genetically-modified, and emerging animal models are discussed, with particular emphasis on cone visual cells. Exogenous and endogenous retinal protective factors are explored, with implications for light damage mechanisms and some suggested avenues for future research. Synergies are known to exist between our long term light environment and photoreceptor cell death in retinal disease. Understanding the molecular mechanisms of light damage in a variety of animal models can provide valuable insights into the effects of light in clinical disorders and may form the basis of future therapies to prevent or delay visual cell loss. PMID:19951742

  9. Retinal oxygenation via the choroidal circulation.

    PubMed Central

    Landers, M B

    1978-01-01

    The possibility of supplying normal amounts of oxygen to the inner layers of the retina by diffusion from the choroid in the presence of retinal arterial obstruction was studied in cats and rhesus monkeys. While the animals were under general anesthesia, an oxygen electrode was placed in the vitreous cavity immediately adjacent to the retina, and a retinal artery blocker probe was used to occlude various segments of the retina blood supply. The inspired oxygen concentration was alternated between 20% and 100%. The choroidal circulation was intermittently occluded by elevating the intraocular pressure. In all animals it was possible to return the oxygen tension of the innermost retina to normal concentrations or above while the retinal arterial circulation alone was occluded, by having the animal breathe 100% oxygen at one atmosphere pressure. This could not be done when the intraocular pressure was elevated to 85 mm Hg, occluding the choroidal as well as the retinal circulation. The electroretinogram and the visually evoked response were recorded in cats while the retinal circulation was occluded and the inspired oxygen concentration changed from 20% to 100% at one atmosphere pressure. The electroretinogram and the visually evoked response were extinguished by occluding the retinal circulation while the animal was breathing 20% oxygen, and these responses were returned to normal by changing to a 100% inspired oxygen concentration. Images FIGURE 6 PMID:112752

  10. [Gene therapy for inherited retinal dystrophies].

    PubMed

    Côco, Monique; Han, Sang Won; Sallum, Juliana Maria Ferraz

    2009-01-01

    The inherited retinal dystrophies comprise a large number of disorders characterized by a slow and progressive retinal degeneration. They are the result of mutations in genes that express in either the photoreceptor cells or the retinal pigment epithelium. The mode of inheritance can be autosomal dominant, autosomal recessive, X linked recessive, digenic or mitochondrial DNA inherited. At the moment, there is no treatment for these conditions and the patients can expect a progressive loss of vision. Accurate genetic counseling and support for rehabilitation are indicated. Research into the molecular and genetic basis of disease is continually expanding and improving the prospects for rational treatments. In this way, gene therapy, defined as the introduction of exogenous genetic material into human cells for therapeutic purposes, may ultimately offer the greatest treatment for the inherited retinal dystrophies. The eye is an attractive target for gene therapy because of its accessibility, immune privilege and translucent media. A number of retinal diseases affecting the eye have known gene defects. Besides, there is a well characterized animal model for many of these conditions. Proposals for clinical trials of gene therapy for inherited retinal degenerations owing to defects in the gene RPE65, have recently received ethical approval and the obtained preliminary results brought large prospects in the improvement on patient's quality of life. PMID:19820803

  11. Long-term outcomes in patients undergoing vitrectomy for retinal detachment due to viral retinitis

    PubMed Central

    Almeida, David RP; Chin, Eric K; Tarantola, Ryan M; Tegins, Elizabeth O; Lopez, Christopher A; Boldt, Herbert Culver; Gehrs, Karen M; Sohn, Elliott H; Russell, Stephen R; Folk, James C; Mahajan, Vinit B

    2015-01-01

    Purpose To determine the outcomes in patients with rhegmatogenous retinal detachment (RRD) secondary to viral retinitis. Patients and methods This was a retrospective, consecutive, noncomparative, interventional case series of 12 eyes in ten patients with RRD secondary to viral retinitis. Results of vitreous or aqueous biopsy, effect of antiviral therapeutics, time to retinal detachment, course of visual acuity, and anatomic and surgical outcomes were investigated. Results There were 1,259 cases of RRD during the study period, with 12 cases of RRD secondary to viral retinitis (prevalence of 0.95%). Follow-up was available for a mean period of 4.4 years. Varicella zoster virus was detected in six eyes, herpes simplex virus in two eyes, and cytomegalovirus in two eyes. Eight patients were treated with oral valacyclovir and two patients with intravenous acyclovir. Lack of optic nerve involvement correlated with improved final visual acuity of 20/100 or greater. Pars plana vitrectomy (n=12), silicone-oil tamponade (n=11), and scleral buckling (n=10) provided successful anatomic retinal reattachment in all cases, with no recurrent retinal detachment and no cases of hypotony during the follow-up period. Conclusion Varicella zoster virus was the most frequent cause of viral retinitis, and lack of optic nerve involvement was predictive of a favorable visual acuity prognosis. Vitrectomy with silicone-oil tamponade and scleral buckle placement provided stable anatomical outcomes. PMID:26229423

  12. Electroretinographic effects of retinal dragging and retinal folds in eyes with familial exudative vitreoretinopathy

    PubMed Central

    Yaguchi, Yukari; Katagiri, Satoshi; Fukushima, Yoko; Yokoi, Tadashi; Nishina, Sachiko; Kondo, Mineo; Azuma, Noriyuki

    2016-01-01

    We evaluated the retinal function of retinal dragging (Rdrag) and radial retinal folds (Rfolds) in eyes with familial exudative vitreoretinopathy (FEVR) using full-field electroretinography (ERG). Seventeen eyes of nine patients with FEVR who had Rdrag or Rfolds were retrospectively studied. Eyes were classified into four groups according to the severity of the retinal alterations: Group 1, without Rdrag or Rfolds (5 eyes); Group 2, with Rdrag (4 eyes); Group 3, with Rfolds (6 eyes); and Group 4, with Rfolds in which all major retinal vessels were involved (2 eyes). The amplitudes of all ERG components and the implicit times of the photopic a- and b-waves and 30-Hz flicker responses were decreased or prolonged as the severity of the retinal alterations increased (P < 0.01). The photopic negative response was most severely affected and nearly undetectable in all eyes in Groups 3 and 4, although the other ERG components were detectable in all eyes in Group 3 and one eye in Group 4. These results suggest the decrease of retinal functions was correlated with the degree of severity of Rdrag and Rfolds in eyes with FEVR. In addition, the function of the retinal ganglion cells appears to be more severely affected compared with the others. PMID:27456314

  13. Electrooxidation of Ethanol and Methanol Using the Molecular Catalyst [{Ru4O4(OH)2(H2O)4}(γ-SiW10O36)2](10.).

    PubMed

    Liu, YuPing; Zhao, Shu-Feng; Guo, Si-Xuan; Bond, Alan M; Zhang, Jie; Zhu, Guibo; Hill, Craig L; Geletii, Yurii V

    2016-03-01

    Highly efficient electrocatalytic oxidation of ethanol and methanol has been achieved using the ruthenium-containing polyoxometalate molecular catalyst, [{Ru4O4(OH)2(H2O)4}(γ-SiW10O36)2](10-) ([1(γ-SiW10O36)2](10-)). Voltammetric studies with dissolved and surface-confined forms of [1(γ-SiW10O36)2](10-) suggest that the oxidized forms of 1 can act as active catalysts for alcohol oxidation in both aqueous (over a wide pH range covering acidic, neutral, and alkaline) and alcohol media. Under these conditions, the initial form of 1 also exhibits considerable reactivity, especially in neutral solution containing 1.0 M NaNO3. To identify the oxidation products, preparative scale bulk electrolysis experiments were undertaken. The products detected by NMR, gas chromatography (GC), and GC-mass spectrometry from oxidation of ethanol are 1,1-diethoxyethane and ethyl acetate formed from condensation of acetaldehyde or acetic acid with excess ethanol. Similarly, the oxidation of methanol generates formaldehyde and formic acid which then condense with methanol to form dimethoxymethane and methyl formate, respectively. These results demonstrate that electrocatalytic oxidation of ethanol and methanol occurs via two- and four-electron oxidation processes to yield aldehydes and acids. The total faradaic efficiencies of electrocatalytic oxidation of both alcohols exceed 94%. The numbers of aldehyde and acid products per catalyst were also calculated and compared with the literature reported values. The results suggest that 1 is one of the most active molecular electrocatalysts for methanol and ethanol oxidation. PMID:26848832

  14. The molecular structure of the phosphate mineral beraunite Fe(2+)Fe5(3+)(PO4)4(OH)5⋅4H2O--a vibrational spectroscopic study.

    PubMed

    Frost, Ray L; López, Andrés; Scholz, Ricardo; Xi, Yunfei; Lana, Cristiano

    2014-07-15

    The mineral beraunite from Boca Rica pegmatite in Minas Gerais with theoretical formula Fe(2+)Fe5(3+)(PO4)4(OH)5⋅4H2O has been studied using a combination of electron microscopy with EDX and vibrational spectroscopic techniques. Raman spectroscopy identifies an intense band at 990 cm(-1) and 1011 cm(-1). These bands are attributed to the PO4(3)(-) ν1 symmetric stretching mode. The ν3 antisymmetric stretching modes are observed by a large number of Raman bands. The Raman bands at 1034, 1051, 1058, 1069 and 1084 together with the Raman bands at 1098, 1116, 1133, 1155 and 1174 cm(-1) are assigned to the ν3 antisymmetric stretching vibrations of PO4(3-) and the HOPO3(2-) units. The observation of these multiple Raman bands in the symmetric and antisymmetric stretching region gives credence to the concept that both phosphate and hydrogen phosphate units exist in the structure of beraunite. The series of Raman bands at 567, 582, 601, 644, 661, 673, and 687 cm(-1) are assigned to the PO4(3-) ν2 bending modes. The series of Raman bands at 437, 468, 478, 491, 503 cm(-1) are attributed to the PO4(3-) and HOPO3(2-) ν4 bending modes. No Raman bands of beraunite which could be attributed to the hydroxyl stretching unit were observed. Infrared bands at 3511 and 3359 cm(-1) are ascribed to the OH stretching vibration of the OH units. Very broad bands at 3022 and 3299 cm(-1) are attributed to the OH stretching vibrations of water. Vibrational spectroscopy offers insights into the molecular structure of the phosphate mineral beraunite. PMID:24682056

  15. Esperanzaite, NaCa2Al2(As5+O4)2F4(OH)*2H2O, a new mineral species from the La Esperanza mine, Mexico: descriptive mineralogy and atomic arrangement

    USGS Publications Warehouse

    Foord, E.E.; Hughes, J.M.; Cureton, F.; Maxwell, C.H.; Falster, A.U.; Sommer, A.J.; Hlava, P.F.

    1999-01-01

    Esperanzaite, ideally NaCa2Al2(As5+O4)2F4(OH)??2H2O, Z = 2, is a new mineral species from the La Esperanza mine, Durango State, Mexico. The mineral occurs as blue-green botryoidal crystalline masses on rhyolite, with separate spheres up to 1.5 mm in diameter. The Mohs hardness is 4 1/2 , and the specific gravity, 3.24 (obs.) and 3.36(3) (calc.). Optical properties were measured in 589 nm light. Esperanzaite is biaxial (-), X = Y = Z = colorless, ?? 1.580(1), ?? 1.588(1), and ?? 1.593(1); 2V(obs) is 74(1)??and 2V(calc) is 76.3??. The dispersion is medium, r < v, and the optic axes are oriented according to a ?? Z = +50.5??, b = Y, c ?? X = +35??. The strongest five X-ray-diffraction maxima in the powder pattern [d in A??(I)(hkl)] are: 2.966(100)(131, 311, 031), 3.527(90)(220), 2.700(90)(221,002,040), 5.364(80)(001,020) and 4.796(80)(011). Esperanzaite is monoclinic, a 9.687(5), b 10.7379(6), c 5.5523(7) A??, ?? 105.32(1)??, space group P21/m. The atomic arrangement of esperanzaite was solved by direct methods and Fourier analysis (R = 0.032). The Fundamental Building Block (FBB) is formed of [001] stacks of heteropolyhedral tetramers; the tetramers are formed of two arsenate tetrahedra and two Al octahedra, corner-linked in four-member rings. The FBBs are linked by irregular Na??5 and Ca??8 polyhedra.

  16. AAV Mediated GDNF Secretion From Retinal Glia Slows Down Retinal Degeneration in a Rat Model of Retinitis Pigmentosa

    PubMed Central

    Dalkara, Deniz; Kolstad, Kathleen D; Guerin, Karen I; Hoffmann, Natalie V; Visel, Meike; Klimczak, Ryan R; Schaffer, David V; Flannery, John G

    2011-01-01

    Mutations in over 80 identified genes can induce apoptosis in photoreceptors, resulting in blindness with a prevalence of 1 in 3,000 individuals. This broad genetic heterogeneity of disease impacting a wide range of photoreceptor functions renders the design of gene-specific therapies for photoreceptor degeneration impractical and necessitates the development of mutation-independent treatments to slow photoreceptor cell death. One promising strategy for photoreceptor neuroprotection is neurotrophin secretion from Müller cells, the primary retinal glia. Müller glia are excellent targets for secreting neurotrophins as they span the entire tissue, ensheath all neuronal populations, are numerous, and persist through retinal degeneration. We previously engineered an adeno-associated virus (AAV) variant (ShH10) capable of efficient and selective glial cell transduction through intravitreal injection. ShH10-mediated glial-derived neurotrophic factor (GDNF) secretion from glia, generates high GDNF levels in treated retinas, leading to sustained functional rescue for over 5 months. This GDNF secretion from glia following intravitreal vector administration is a safe and effective means to slow the progression of retinal degeneration in a rat model of retinitis pigmentosa (RP) and shows significant promise as a gene therapy to treat human retinal degenerations. These findings also demonstrate for the first time that glia-mediated secretion of neurotrophins is a promising treatment that may be applicable to other neurodegenerative conditions. PMID:21522134

  17. Toward high-resolution optoelectronic retinal prosthesis

    NASA Astrophysics Data System (ADS)

    Palanker, Daniel; Huie, Philip; Vankov, Alexander; Asher, Alon; Baccus, Steven

    2005-04-01

    It has been already demonstrated that electrical stimulation of retina can produce visual percepts in blind patients suffering from macular degeneration and retinitis pigmentosa. Current retinal implants provide very low resolution (just a few electrodes), while several thousand pixels are required for functional restoration of sight. We present a design of the optoelectronic retinal prosthetic system that can activate a retinal stimulating array with pixel density up to 2,500 pix/mm2 (geometrically corresponding to a visual acuity of 20/80), and allows for natural eye scanning rather than scanning with a head-mounted camera. The system operates similarly to "virtual reality" imaging devices used in military and medical applications. An image from a video camera is projected by a goggle-mounted infrared LED-LCD display onto the retina, activating an array of powered photodiodes in the retinal implant. Such a system provides a broad field of vision by allowing for natural eye scanning. The goggles are transparent to visible light, thus allowing for simultaneous utilization of remaining natural vision along with prosthetic stimulation. Optical control of the implant allows for simple adjustment of image processing algorithms and for learning. A major prerequisite for high resolution stimulation is the proximity of neural cells to the stimulation sites. This can be achieved with sub-retinal implants constructed in a manner that directs migration of retinal cells to target areas. Two basic implant geometries are described: perforated membranes and protruding electrode arrays. Possibility of the tactile neural stimulation is also examined.

  18. Interventions for asymptomatic retinal breaks and lattice degeneration for preventing retinal detachment

    PubMed Central

    Wilkinson, Charles P

    2015-01-01

    Background Asymptomatic retinal breaks and lattice degeneration are visible lesions that are risk factors for later retinal detachment. Retinal detachments occur when fluid in the vitreous cavity passes through tears or holes in the retina and separates the retina from the underlying retinal pigment epithelium. Creation of an adhesion surrounding retinal breaks and lattice degeneration, with laser photocoagulation or cryotherapy, has been recommended as an effective means of preventing retinal detachment. This therapy is of value in the management of retinal tears associated with the symptoms of flashes and floaters and persistent vitreous traction upon the retina in the region of the retinal break, because such symptomatic retinal tears are associated with a high rate of progression to retinal detachment. Retinal tears and holes unassociated with acute symptoms and lattice degeneration are significantly less likely to be the sites of retinal breaks that are responsible for later retinal detachment. Nevertheless, treatment of these lesions frequently is recommended, in spite of the fact that the effectiveness of this therapy is unproven. Objectives The objective of this review was to assess the effectiveness and safety of techniques used to treat asymptomatic retinal breaks and lattice degeneration for the prevention of retinal detachment. Search methods We searched CENTRAL (which contains the Cochrane Eyes and Vision Group Trials Register) (2014, Issue 2), Ovid MEDLINE, Ovid MEDLINE In-Process and Other Non-Indexed Citations, Ovid MEDLINE Daily, Ovid OLDMEDLINE (January 1946 to February 2014), EMBASE (January 1980 to February 2014), PubMed (January 1948 to February 2014), the metaRegister of Controlled Trials (mRCT) (www.controlled-trials.com), ClinicalTrials.gov (www.clinicaltrials.gov) and the World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP) (www.who.int/ictrp/search/en). We did not use any date or language restrictions in

  19. Amyloidosis in Retinal Neurodegenerative Diseases.

    PubMed

    Masuzzo, Ambra; Dinet, Virginie; Cavanagh, Chelsea; Mascarelli, Frederic; Krantic, Slavica

    2016-01-01

    As a part of the central nervous system, the retina may reflect both physiological processes and abnormalities related to pathologies that affect the brain. Amyloidosis due to the accumulation of amyloid-beta (Aβ) was initially regarded as a specific and exclusive characteristic of neurodegenerative alterations seen in the brain of Alzheimer's disease (AD) patients. More recently, it was discovered that amyloidosis-related alterations, similar to those seen in the brain of Alzheimer's patients, also occur in the retina. Remarkably, these alterations were identified not only in primary retinal pathologies, such as age-related macular degeneration (AMD) and glaucoma, but also in the retinas of Alzheimer's patients. In this review, we first briefly discuss the biogenesis of Aβ, a peptide involved in amyloidosis. We then discuss some pathological aspects (synaptic dysfunction, mitochondrial failure, glial activation, and vascular abnormalities) related to the neurotoxic effects of Aβ. We finally highlight common features shared by AD, AMD, and glaucoma in the context of Aβ amyloidosis and further discuss why the retina, due to the transparency of the eye, can be considered as a "window" to the brain. PMID:27551275

  20. Evolution of vertebrate retinal photoreception

    PubMed Central

    Lamb, Trevor D.

    2009-01-01

    Recent findings shed light on the steps underlying the evolution of vertebrate photoreceptors and retina. Vertebrate ciliary photoreceptors are not as wholly distinct from invertebrate rhabdomeric photoreceptors as is sometimes thought. Recent information on the phylogenies of ciliary and rhabdomeric opsins has helped in constructing the likely routes followed during evolution. Clues to the factors that led the early vertebrate retina to become invaginated can be obtained by combining recent knowledge about the origin of the pathway for dark re-isomerization of retinoids with knowledge of the inability of ciliary opsins to undergo photoreversal, along with consideration of the constraints imposed under the very low light levels in the deep ocean. Investigation of the origin of cell classes in the vertebrate retina provides support for the notion that cones, rods and bipolar cells all originated from a primordial ciliary photoreceptor, whereas ganglion cells, amacrine cells and horizontal cells all originated from rhabdomeric photoreceptors. Knowledge of the molecular differences between cones and rods, together with knowledge of the scotopic signalling pathway, provides an understanding of the evolution of rods and of the rods' retinal circuitry. Accordingly, it has been possible to propose a plausible scenario for the sequence of evolutionary steps that led to the emergence of vertebrate photoreceptors and retina. PMID:19720653

  1. Multi-MHz retinal OCT

    PubMed Central

    Klein, Thomas; Wieser, Wolfgang; Reznicek, Lukas; Neubauer, Aljoscha; Kampik, Anselm; Huber, Robert

    2013-01-01

    We analyze the benefits and problems of in vivo optical coherence tomography (OCT) imaging of the human retina at A-scan rates in excess of 1 MHz, using a 1050 nm Fourier-domain mode-locked (FDML) laser. Different scanning strategies enabled by MHz OCT line rates are investigated, and a simple multi-volume data processing approach is presented. In-vivo OCT of the human ocular fundus is performed at different axial scan rates of up to 6.7 MHz. High quality non-mydriatic retinal imaging over an ultra-wide field is achieved by a combination of several key improvements compared to previous setups. For the FDML laser, long coherence lengths and 72 nm wavelength tuning range are achieved using a chirped fiber Bragg grating in a laser cavity at 419.1 kHz fundamental tuning rate. Very large data sets can be acquired with sustained data transfer from the data acquisition card to host computer memory, enabling high-quality averaging of many frames and of multiple aligned data sets. Three imaging modes are investigated: Alignment and averaging of 24 data sets at 1.68 MHz axial line rate, ultra-dense transverse sampling at 3.35 MHz line rate, and dual-beam imaging with two laser spots on the retina at an effective line rate of 6.7 MHz. PMID:24156052

  2. Amyloidosis in Retinal Neurodegenerative Diseases

    PubMed Central

    Masuzzo, Ambra; Dinet, Virginie; Cavanagh, Chelsea; Mascarelli, Frederic; Krantic, Slavica

    2016-01-01

    As a part of the central nervous system, the retina may reflect both physiological processes and abnormalities related to pathologies that affect the brain. Amyloidosis due to the accumulation of amyloid-beta (Aβ) was initially regarded as a specific and exclusive characteristic of neurodegenerative alterations seen in the brain of Alzheimer’s disease (AD) patients. More recently, it was discovered that amyloidosis-related alterations, similar to those seen in the brain of Alzheimer’s patients, also occur in the retina. Remarkably, these alterations were identified not only in primary retinal pathologies, such as age-related macular degeneration (AMD) and glaucoma, but also in the retinas of Alzheimer’s patients. In this review, we first briefly discuss the biogenesis of Aβ, a peptide involved in amyloidosis. We then discuss some pathological aspects (synaptic dysfunction, mitochondrial failure, glial activation, and vascular abnormalities) related to the neurotoxic effects of Aβ. We finally highlight common features shared by AD, AMD, and glaucoma in the context of Aβ amyloidosis and further discuss why the retina, due to the transparency of the eye, can be considered as a “window” to the brain. PMID:27551275

  3. Intrinsically photosensitive retinal ganglion cells.

    PubMed

    Do, Michael Tri Hoang; Yau, King-Wai

    2010-10-01

    Life on earth is subject to alternating cycles of day and night imposed by the rotation of the earth. Consequently, living things have evolved photodetective systems to synchronize their physiology and behavior with the external light-dark cycle. This form of photodetection is unlike the familiar "image vision," in that the basic information is light or darkness over time, independent of spatial patterns. "Nonimage" vision is probably far more ancient than image vision and is widespread in living species. For mammals, it has long been assumed that the photoreceptors for nonimage vision are also the textbook rods and cones. However, recent years have witnessed the discovery of a small population of retinal ganglion cells in the mammalian eye that express a unique visual pigment called melanopsin. These ganglion cells are intrinsically photosensitive and drive a variety of nonimage visual functions. In addition to being photoreceptors themselves, they also constitute the major conduit for rod and cone signals to the brain for nonimage visual functions such as circadian photoentrainment and the pupillary light reflex. Here we review what is known about these novel mammalian photoreceptors. PMID:20959623

  4. Evaluation and management of pediatric rhegmatogenous retinal detachment

    PubMed Central

    Wenick, Adam S.; Barañano, David E.

    2012-01-01

    Pediatric rhegmatogenous retinal detachments are rare, accounting for less than ten percent of all rhegmatogenous retinal detachments. While most retinal detachments in the adult population are related to posterior vitreous detachment, pediatric retinal detachment are often related to trauma or an underlying congenital abnormalities or genetic syndrome. The anatomy of pediatric eyes, the often late presentation of the disease, and the high incidence of bilateral pathology in children all pose significant challenges in the management of these patients. We discuss the epidemiology of pediatric rhegmatogenous retinal detachment, review the genetic syndromes associated with a high incidence of retinal detachment, and examine other common causes of retinal detachment in this age group. We then outline an approach to evaluation and management and describe the expected outcomes of repair of retinal detachment in the pediatric population. PMID:23961003

  5. Retinal imaging with virtual reality stimulus for studying Salticidae retinas

    NASA Astrophysics Data System (ADS)

    Schiesser, Eric; Canavesi, Cristina; Long, Skye; Jakob, Elizabeth; Rolland, Jannick P.

    2014-12-01

    We present a 3-path optical system for studying the retinal movement of jumping spiders: a visible OLED virtual reality system presents stimulus, while NIR illumination and imaging systems observe retinal movement.

  6. Four-wavelength retinal vessel oximetry

    NASA Astrophysics Data System (ADS)

    Drewes, Jonathan Jensen

    1999-11-01

    This dissertation documents the design and construction of a four-wavelength retinal vessel oximeter, the Eye Oximeter (EOX). The EOX scans low-powered laser beams (at 629, 678, 821 and 899 nm) into the eye and across a targeted retinal vessel to measure the transmittance of the blood within the vessel. From the transmittance measurements, the oxygen saturation of the blood within the vessel is computed. Retinal vessel oxygen saturation has been suggested as a useful parameter for monitoring a wide range of conditions including occult blood loss and a variety of ophthalmic diseases. An artificial eye that simulates the geometry of a human retinal vessel was constructed and used to calibrate the EOX saturation measurement. A number of different oximetry equations were developed and tested. From measurements made on whole human blood in the artificial eye, an oximetry equation that places a linear wavelength dependance on the scattering losses (3% decrease from 629 to 899 nm) is found to best calibrate the EOX oxygen saturation measurement. This calibration also requires that an adjustment be made to the absorption coefficient of hemoglobin at 629 nm that has been reported in the literature. More than 4,000 measurements were made in the eyes of three human subjects during the development of the EOX. Applying the oximetry equation developed through the in vitro experiments to human data, the average human retinal venous oxygen saturation is estimated to be 0.63 +/- 0.07 and the average human retinal arterial oxygen saturation is 0.99 +/- 0.03. Furthermore, measurements made away from the optic disk resulted in a larger variance in the calculated saturation when compared to measurements made on the optic disk. A series of EOX experiments using anesthetized swine helped to verify the sensitivity of the EOX measurement of oxygen saturation. It is found that the calibration in swine differed from the calibration in the artificial eye. An empirical calibration from the

  7. Jules Gonin. Pioneer of retinal detachment surgery.

    PubMed

    Wolfensberger, Thomas J

    2003-12-01

    Before the turn of the 20th century, eyes with a retinal detachment were considered doomed. Contrary to other branches of ophthalmology, such as cataract extraction, the surgical treatment of retinal detachment was still in its infancy, and the surgical success rates were less than five percent. From 1902 to 1921 Jules Gonin almost single handedly changed the landscape of retinal detachment surgery forever. He recognised that the retinal break was the cause--and not the consequence as it was largely believed at the time--of the retinal detachment, and that the treatment had at all costs to comprise the closure of the break by cauterisation. He named the procedure ignipuncture, as he cauterised the retina through the sclera with a very hot pointed instrument. Despite rigorously detailed clinical observations and increasing success rates, his discovery was not readily accepted and sometimes openly opposed by a large part of the ophthalmic establishment. It was not until 1929 that he received worldwide acclaim at the International Ophthalmological Congress in Amsterdam for his surgical technique. His legacy lives on in the eye hospital in Lausanne that bears his name, in the Gonin Medal awarded by the International Council of Ophthalmology every four years for the highest achievement in ophthalmology, and in a street named after him, the very street that he used to walk from his home to the hospital every day. PMID:14750617

  8. Low Vision Rehabilitation of Retinitis Pigmentosa. Practice Report

    ERIC Educational Resources Information Center

    Rundquist, John

    2004-01-01

    Retinitis pigmentosa is a rod-cone dystrophy, commonly genetic in nature. Approximately 60-80% of those with retinitis pigmentosa inherit it by an autosomal recessive transmission (Brilliant, 1999). There have been some reported cases with no known family history. The symptoms of retinitis pigmentosa are decreased acuity, photophobia, night…

  9. Retinas in a Dish Peek into Inherited Retinal Degeneration.

    PubMed

    Duong, Thu T; Vasireddy, Vidyullatha; Mills, Jason A; Bennett, Jean

    2016-06-01

    Human retinal degeneration can cause blindness, and the lack of relevant model systems has made identifying underlying mechanisms challenging. Parfitt et al. (2016) generate three-dimensional retinal tissue from patient-derived induced pluripotent stem cells to identify how CEP290 mutations cause retinal degeneration, and show an antisense approach can correct disease-associated phenotypes. PMID:27257755

  10. Acute Variations in Retinal Vascular Oxygen Content in a Rabbit Model of Retinal Venous Occlusion

    PubMed Central

    Saati, Saloomeh; Martin, Gabriel; Chader, Gerald; Humayun, Mark S.

    2012-01-01

    Purpose To study the variation in intravascular oxygen saturation (oximetry) during an acute retinal vein occlusion (RVO) using hyperspectral computed tomographic spectroscopy based oximetry measurements. Methods Thirty rabbits were dilated and anesthetized for experiments. Baseline oximetry measurements were made using a custom-made hyperspectral computed tomographic imaging spectrometer coupled to a fundus camera. RVO were induced using argon green laser following an intravenous injection of Rose Bengal. RVO induction was confirmed by fluorescein angiography. Retinal oximetry measurements were repeated in arterial and venous branches one hour after RVO induction and up to 4 weeks afterwards. Comparison of retinal oximetry before and after vein occlusion was made using the Student T-test. Results One hour after RVO induction, we observed statistically significant reductions in the intravascular oxygen saturation in temporal retinal arteries (85.1±6.1% vs. 80.6±6.6%; p<0.0001) and veins (71.4±5.5% vs. 64.0±4.7%; p<0.0001). This decrease was reversible in animals that spontaneously recannulated the vein occlusion. There were no statistically significant differences in oxygen saturation in the nasal control arteries and veins before and after temporal vein RVO induction. Conclusions We demonstrate, for the first time, acute changes in the intravascular oxygen content of retinal vessels 1 hour after RVO. These changes are reversible upon spontaneous recannulation of retinal vessels. This study demonstrates that hyperspectral computer tomographic spectroscopy based oximetry can detect physiological variations in intravascular retinal oxygen saturation. The study also provides the first qualitative and quantitative evidence of the variation in retinal vascular oxygen content directly attributable to an acute retinal vein occlusion. PMID:23185567

  11. Repetitive magnetic stimulation improves retinal function in a rat model of retinal dystrophy

    NASA Astrophysics Data System (ADS)

    Rotenstreich, Ygal; Tzameret, Adi; Levi, Nir; Kalish, Sapir; Sher, Ifat; Zangen, Avraham; Belkin, Michael

    2014-02-01

    Vision incapacitation and blindness associated with retinal dystrophies affect millions of people worldwide. Retinal degeneration is characterized by photoreceptor cell death and concomitant remodeling of remaining retinal cells. Repetitive Magnetic Stimulation (RMS) is a non-invasive technique that creates alternating magnetic fields by brief electric currents transmitted through an insulated coil. These magnetic field generate action potentials in neurons, and modulate the expression of neurotransmitter receptors, growth factors and transcription factors which mediate plasticity. This technology has been proven effective and safe in various psychiatric disorders. Here we determined the effect of RMS on retinal function in Royal College of Surgeons (RCS) rats, a model for retinal dystrophy. Four week-old RCS and control Spargue Dawley (SD) rats received sham or RMS treatment over the right eye (12 sessions on 4 weeks). RMS treatment at intensity of at 40% of the maximal output of a Rapid2 stimulator significantly increased the electroretinogram (ERG) b-wave responses by up to 6- or 10-fold in the left and right eye respectively, 3-5 weeks following end of treatment. RMS treatment at intensity of 25% of the maximal output did not significant effect b-wave responses following end of treatment with no adverse effect on ERG response or retinal structure of SD rats. Our findings suggest that RMS treatment induces delayed improvement of retinal functions and may induce plasticity in the retinal tissue. Furthermore, this non-invasive treatment may possibly be used in the future as a primary or adjuvant treatment for retinal dystrophy.

  12. Inferior retinal light exposure is more effective than superior retinal exposure in suppressing melatonin in humans

    NASA Technical Reports Server (NTRS)

    Glickman, Gena; Hanifin, John P.; Rollag, Mark D.; Wang, Jenny; Cooper, Howard; Brainard, George C.

    2003-01-01

    Illumination of different areas of the human retina elicits differences in acute light-induced suppression of melatonin. The aim of this study was to compare changes in plasma melatonin levels when light exposures of equal illuminance and equal photon dose were administered to superior, inferior, and full retinal fields. Nine healthy subjects participated in the study. Plexiglass eye shields were modified to permit selective exposure of the superior and inferior halves of the retinas of each subject. The Humphrey Visual Field Analyzer was used both to confirm intact full visual fields and to quantify exposure of upper and lower visual fields. On study nights, eyes were dilated, and subjects were exposed to patternless white light for 90 min between 0200 and 0330 under five conditions: (1) full retinal exposure at 200 lux, (2) full retinal exposure at 100 lux, (3) inferior retinal exposure at 200 lux, (4) superior retinal exposure at 200 lux, and (5) a dark-exposed control. Plasma melatonin levels were determined by radioimmunoassay. ANOVA demonstrated a significant effect of exposure condition (F = 5.91, p < 0.005). Post hoc Fisher PLSD tests showed significant (p < 0.05) melatonin suppression of both full retinal exposures as well as the inferior retinal exposure; however, superior retinal exposure was significantly less effective in suppressing melatonin. Furthermore, suppression with superior retinal exposure was not significantly different from that of the dark control condition. The results indicate that the inferior retina contributes more to the light-induced suppression of melatonin than the superior retina at the photon dosages tested in this study. Findings suggest a greater sensitivity or denser distribution of photoreceptors in the inferior retina are involved in light detection for the retinohypothalamic tract of humans.

  13. Formation pathway, structural characterization and optimum processing parameters of synthetic topaz – Al{sub 2}SiO{sub 4}(OH,F){sub 2} – by CVD

    SciTech Connect

    Trujillo-Vázquez, E. Pech-Canul, M.I.

    2015-10-15

    A novel synthesis route for topaz (Al{sub 2}SiO{sub 4}(OH,F){sub 2}) by chemical vapor deposition (CVD) using Na{sub 2}SiF{sub 6} as solid precursor was developed. Synthesis tests were conducted with and without a flow of nitrogen, positioning the Al(OH){sub 3} substrate at 0° and 90° with respect to the gas flow direction, at 700 and 750 °C, for 60 and 90 min, respectively. It was found that topaz is synthesized through two pathways, directly and indirectly, involving a series of endothermic and exothermic, heterogeneous and homogeneous reactions between Al(OH){sub 3} and SiF{sub 4}(g). Analytical structural determination confirmed existence of orthorhombic polycrystals with lattice parameters of a =4.6558 Å, b=8.8451 Å and c=8.4069 Å. According to ANOVA, while temperature, time and interaction of substrate angular position with atmosphere (P×A) are the parameters that most significantly influence the variability in the amount of topaz formed – equivalent contributions of 31% – topaz lattice parameters are mostly impacted by the same factors (T, t, P, A), but without the interaction factor. The projected amount of topaz is in good agreement with that obtained in confirmation tests under optimal conditions: Al(OH){sub 3} substrate compact placed at 0°, treated at 750 °C for 90 min in the absence of N{sub 2}. - Highlights: • Topaz synthesis as a unique phase by CVD, using solid precursor Na{sub 2}SiF{sub 6} is feasible. • Two pathways, a series of endothermic/exothermic, heterogeneous/homogeneous reactions. • Crystal structure, orthorhombic polycrystals: a =4.6558 Å, b=8.8451 Å, c=8.4069 Å. • Anova: amount of topaz formed and lattice parameters are impacted by same factors. • Projection of topaz quantity in good agreement with those from confirmation tests.

  14. Carbonate mineral solubility at low temperatures in the Na-K-Mg-Ca-H-Cl-SO 4-OH-HCO 3-CO 3-CO 2-H 2O system

    NASA Astrophysics Data System (ADS)

    Marion, Giles M.

    2001-06-01

    Carbonate minerals have played an important role in the geochemical evolution of Earth, and may have also played an important role in the geochemical evolution of Mars and Europa. Several models have been published in recent years that describe chloride and sulfate mineral solubilities in concentrated brines using the Pitzer equations. Few of these models are parameterized for subzero temperatures, and those that are do not include carbonate chemistry. The objectives of this work are to estimate Pitzer-equation bicarbonate-carbonate parameters and carbonate mineral solubility products and to incorporate them into the FREZCHEM model to predict carbonate mineral solubilities in the Na-K-Mg-Ca-H-Cl-SO 4-OH-HCO 3-CO 3-CO 2-H 2O system at low temperatures (≤25°C) with a special focus on subzero temperatures. Most of the Pitzer-equation parameters and equilibrium constants are taken from the literature and extrapolated into the subzero temperature range. Solubility products for 14 sodium, potassium, magnesium, and calcium bicarbonate and carbonate minerals are included in the model. Most of the experimental data are at temperatures ≥ -8°C; only for the NaHCO 3-NaCl-H 2O and Na 2CO 3-NaCl-H 2O systems are there bicarbonate and carbonate data to temperatures as low as -21.6°C. In general, the fit of the model to the experimental data is good. For example, calculated eutectic temperatures and compositions for NaHCO 3, Na 2CO 3, and their mixtures with NaCl and Na 2SO 4 salts are in good agreement with experimental data to temperatures as low as -21.6°C. Application of the model to eight saline, alkaline carbonate waters give predicted pHs ranging from 9.2 to 10.2, in comparison with measured pHs that range from 8.7 to 10.2. The model suggests that the CaCO 3 mineral that precipitates during seawater freezing is probably calcite and not ikaite. The model demonstrates that a proposed salt assemblage for the icy surface of Europa consisting of highly hydrated MgSO 4

  15. Automated retinal layer segmentation and characterization

    NASA Astrophysics Data System (ADS)

    Luisi, Jonathan; Briley, David; Boretsky, Adam; Motamedi, Massoud

    2014-05-01

    Spectral Domain Optical Coherence Tomography (SD-OCT) is a valuable diagnostic tool in both clinical and research settings. The depth-resolved intensity profiles generated by light backscattered from discrete layers of the retina provide a non-invasive method of investigating progressive diseases and injury within the eye. This study demonstrates the application of steerable convolution filters capable of automatically separating gradient orientations to identify edges and delineate tissue boundaries. The edge maps were recombined to measure thickness of individual retinal layers. This technique was successfully applied to longitudinally monitor changes in retinal morphology in a mouse model of laser-induced choroidal neovascularization (CNV) and human data from age-related macular degeneration patients. The steerable filters allow for direct segmentation of noisy images, while novel recombination of weaker segmentations allow for denoising post-segmentation. The segmentation before denoising strategy allows the rapid detection of thin retinal layers even under suboptimal imaging conditions.

  16. Computer-aided retinal photocoagulation system

    NASA Astrophysics Data System (ADS)

    Barrett, Steven F.; Wright, Cameron H.; Jerath, Maya R.; Lewis, R. Stephen; Dillard, Bryan C.; Rylander, Henry G.; Welch, Ashley J.

    1996-01-01

    Researchers at the University of Texas at Austin's Biomedical Engineering Laser Laboratory and the U.S. Air Force Academy's Department of Electrical Engineering are developing a computer-assisted prototype retinal photocoagulation system. The project goal is to rapidly and precisely automatically place laser lesions in the retina for the treatment of disorders such as diabetic retinopathy and retinal tears while dynamically controlling the extent of the lesion. Separate prototype subsystems have been developed to control lesion parameters (diameter or depth) using lesion reflectance feedback and lesion placement using retinal vessels as tracking landmarks. Successful subsystem testing results in vivo on pigmented rabbits using an argon continuous wave laser are presented. A prototype integrated system design to simultaneously control lesion parameters and placement at clinically significant speeds is provided.

  17. Primary Vitreoretinal Lymphoma Masquerading as Refractory Retinitis

    PubMed Central

    Zloto, Ofira; Elkader, Amir E. Abd; Fabian, Ido Didi; Vishnevskia-Dai, Vicktoria

    2015-01-01

    Purpose To report a case of a patient with primary vitreoretinal lymphoma masquerading as retinitis. Methods Retrospective review of the patient's clinical, histopathological and imaging records. Results Cytopathology was negative for malignancy, and preliminary polymerase chain reaction results supported the diagnosis of varicella zoster virus retinitis. Therefore, the patient was treated with antiviral therapy. However, under this treatment, the retinitis progressed. As a result, primary vitreoretinal lymphoma was suspected, and empirical treatment with intravitreal methotrexate injections was started. Under this treatment, the ocular features improved. Five months after initial ocular presentation and ocular resolution, the patient presented with central nervous system lymphoma. Conclusion This case should raise the awareness of the variable clinical presentations, the challenging diagnosis and treatment of primary vitreoretinal lymphoma. All cases should be continuously systemically evaluated. PMID:26557084

  18. Autophagy in light-induced retinal damage.

    PubMed

    Chen, Yu; Perusek, Lindsay; Maeda, Akiko

    2016-03-01

    Vision is reliant upon converting photon signals to electrical information which is interpreted by the brain and therefore allowing us to receive information about our surroundings. However, when exposed to excessive light, photoreceptors and other types of cells in the retina can undergo light-induced cell death, termed light-induced retinal damage. In this review, we summarize our current knowledge regarding molecular events in the retina after excessive light exposure and mechanisms of light-induced retinal damage. We also introduce works which investigate potential roles of autophagy, an essential cellular mechanism required for maintaining homeostasis under stress conditions, in the illuminated retina and animal models of light-induced retinal damage. PMID:26325327

  19. Shedding New Light on Retinal Protein Photochemistry

    NASA Astrophysics Data System (ADS)

    Wand, Amir; Gdor, Itay; Zhu, Jingyi; Sheves, Mordechai; Ruhman, Sanford

    2013-04-01

    The ultrafast spectroscopic investigation of novel retinal proteins challenges existing notions concerning the course of primary events in these natural photoreceptors. We review two illustrations here. The first demonstrates that changes in the initial retinal configuration can alter the duration of photochemistry by nearly an order of magnitude in Anabaena sensory rhodopsin, making it as rapid as the ballistic photoisomerization in visual pigments. This prompted a reinvestigation of the much studied bacteriorhodopsin, leading to a similar trend as well, contrary to earlier reports. The second involves the study of xanthorhodopsin, an archaeal proton pump that includes an attached light-harvesting carotenoid. Pump-probe experiments demonstrate the efficient transfer of energy from carotenoid to retinal, providing a first glimpse at a cooperative multichromophore function, which is probably characteristic of many other proteins as well. Finally, we discuss measures required to advance our knowledge from kinetics to mode-specific dynamics concerning this expanding family of biological photoreceptors.

  20. Molecular biology of retinal ganglion cells.

    PubMed Central

    Xiang, M; Zhou, H; Nathans, J

    1996-01-01

    Retinal ganglion cells are the output neurons that encode and transmit information from the eye to the brain. Their diverse physiologic and anatomic properties have been intensively studied and appear to account well for a number of psychophysical phenomena such as lateral inhibition and chromatic opponency. In this paper, we summarize our current view of retinal ganglion cell properties and pose a number of questions regarding underlying molecular mechanisms. As an example of one approach to understanding molecular mechanisms, we describe recent work on several POU domain transcription factors that are expressed in subsets of retinal ganglion cells and that appear to be involved in ganglion cell development. Images Fig. 1 Fig. 2 Fig. 4 Fig. 5 Fig. 6 PMID:8570601

  1. Retinoschisis transposition following a retinal detachment repair

    PubMed Central

    McVeigh, Katherine; Keller, Johannes; Haynes, Richard J.

    2015-01-01

    Objective: The authors have observed this phenomenon of translocation of the schisis cavity in a few previous cases and aim to report this unusual finding. Method: A patient with known superotemporal retinoschisis developed a distinctly separate inferotemporal retinal detachment in his left eye. This was repaired with a vitrectomy, cryotherapy and C2F6 tamponade under local anaesthetic. Following surgery, the retinoschisis was found in the inferonasal quadrant of the eye and remained stable as the gas dispersed. Result: We hypothesise that the tamponading agent compressed the viscous fluid within the area of schisis, displacing the area of schisis circumferentially. Conclusion: This case emphasises that as long as the retinal breaks are properly sealed, no intervention is required with the schisis during rhegmatogenous retinal detachment surgery.

  2. [Muscular Dystrophies Involving the Retinal Function].

    PubMed

    Jägle, H

    2016-03-01

    Muscular dystrophies are rare disorders, with an incidence of approx. 20 in 100 000. Some dystrophies also affect retinal or optic nerve function. In such cases, the ophthalmological findings may be critical for differential diagnosis or patient counseling. For example in Duchenne muscular dystrophy, where the alteration in retinal function seems to reflect cerebral involvement. Other important forms are mitochondrial and metabolic disorders, such as the Kearns-Sayre syndrome and the Refsum syndrome. Molecular genetic analysis has become a major tool for differential diagnosis, but may be complex and demanding. This article gives an overview of major muscular dystrophies involving retinal function and their genetic origin, in order to guide differential diagnosis. PMID:27011029

  3. Prospects for retinal gene replacement therapy.

    PubMed

    Smith, Alexander J; Bainbridge, James W; Ali, Robin R

    2009-04-01

    Inherited retinal degeneration, which includes conditions such as retinitis pigmentosa and Leber congenital amaurosis (LCA), affects approximately 1/3000 of the population in the Western world. It is characterized by loss of vision and results from mutations in any one of >100 different genes. There are currently no effective treatments, but many of the genes have now been identified and their functions elucidated, providing a major impetus to develop gene-based treatments. Preliminary results from three clinical trials indicate that the treatment of a form of LCA by gene therapy can be safe and effective. Here, we discuss the potential for treating other forms of retinal degeneration by gene therapy, focusing on the gene defects that are likely to be the most amenable to treatment. PMID:19303164

  4. Dystroglycan is required for proper retinal layering.

    PubMed

    Lunardi, Andrea; Cremisi, Federico; Dente, Luciana

    2006-02-15

    Dystroglycan (DG) is a transmembrane receptor linking the extracellular matrix to the internal cytoskeleton. Its structural function has been mainly characterized in muscle fibers, but DG plays signaling and developmental roles also in different tissues and cell types. We have investigated the effects of dystroglycan depletion during eye development of Xenopus laevis. We have injected a specific morpholino (Mo) antisense oligonucleotide in the animal pole of one dorsal blastomere of embryos at four cells stage. Mo-mediated loss of DG function caused disruption of the basal lamina layers, increased apoptosis and reduction of the expression domains of specific retinal markers, at early stages. Later in development, morphants displayed unilateral ocular malformations, such as microphtalmia and retinal delayering with photoreceptors and ganglion cells scattered throughout the retina or aggregated in rosette-like structures. These results recall the phenotypes observed in specific human diseases and suggest that DG presence is crucial at early stages for the organization of retinal architecture. PMID:16406325

  5. Integrated computer-aided retinal photocoagulation system

    NASA Astrophysics Data System (ADS)

    Barrett, Steven F.; Wright, Cameron H. G.; Oberg, Erik D.; Rockwell, Benjamin A.; Cain, Clarence P.; Jerath, Maya R.; Rylander, Henry G., III; Welch, Ashley J.

    1996-05-01

    Successful retinal tracking subsystem testing results in vivo on rhesus monkeys using an argon continuous wave laser and an ultra-short pulse laser are presented. Progress on developing an integrated robotic retinal laser surgery system is also presented. Several interesting areas of study have developed: (1) 'doughnut' shaped lesions that occur under certain combinations of laser power, spot size, and irradiation time complicating measurements of central lesion reflectance, (2) the optimal retinal field of view to achieve simultaneous tracking and lesion parameter control, and (3) a fully digital versus a hybrid analog/digital tracker using confocal reflectometry integrated system implementation. These areas are investigated in detail in this paper. The hybrid system warrants a separate presentation and appears in another paper at this conference.

  6. Retinal Oximetry in a Healthy Japanese Population

    PubMed Central

    Nakano, Yuki; Shimazaki, Takeru; Kobayashi, Nobuko; Miyoshi, Yukiko; Ono, Aoi; Kobayashi, Mamoru; Shiragami, Chieko; Hirooka, Kazuyuki; Tsujikawa, Akitaka

    2016-01-01

    Purpose To establish the normative database of retinal oximetry using Oxymap T1 in a healthy Japanese population, and study the reproducibility of the measurements in Japanese. Methods We measured oxygen saturation in the major retinal vessels with Oxymap T1 in 252 eyes of 252 healthy Japanese subjects. Fundus images acquired using Oxymap T1 were processed using built-in Oxymap Analyzer software. Reproducibility of retinal oximetry was investigated using 20 eyes of 20 healthy subjects. Results The mean retinal oxygen saturation of 4 quadrants in healthy Japanese was 97.0 ± 6.9% in arteries and 52.8 ± 8.3% in veins. The mean arteriovenous difference in oxygen saturation was 44.2 ± 9.2%. Both arterial and venous oxygen saturation were significantly lower in the temporal side of the retina, especially in the temporal-inferior vessels. However, the arteriovenous difference in oxygen saturation was limited in the 4 quadrants. Interphotograph, intervisit, and interevaluator intraclass correlation coefficients were 0.936–0.979, 0.809–0.837, and 0.732–0.947, respectively. In the major retinal arteries, oxygen saturation increased with age (r = 0.18, p<0.01), at a rate of 0.67% per 10 years. However, venous oxygen saturation showed no correlation with age. Conclusions This study provides the normative database for the Japanese population. The arterial saturation value appears to be higher than other previous studies. Mean retinal oximetry in 4 quadrants with Oxymap T1 has high reproducibility. PMID:27434373

  7. Protease nexin-1 regulates retinal vascular development.

    PubMed

    Selbonne, Sonia; Francois, Deborah; Raoul, William; Boulaftali, Yacine; Sennlaub, Florian; Jandrot-Perrus, Martine; Bouton, Marie-Christine; Arocas, Véronique

    2015-10-01

    We recently identified protease nexin-1 (PN-1) or serpinE2, as a possibly underestimated player in maintaining angiogenic balance. Here, we used the well-characterized postnatal vascular development of newborn mouse retina to further investigate the role and the mechanism of action of PN-1 in physiological angiogenesis. The development of retinal vasculature was analysed by endothelial cell staining with isolectin B4. PN-1-deficient (PN-1(-/-)) retina displayed increased vascularization in the postnatal period, with elevated capillary thickness and density, compared to their wild-type littermate (WT). Moreover, PN-1(-/-) retina presented more veins/arteries than WT retina. The kinetics of retinal vasculature development, retinal VEGF expression and overall retinal structure were similar in WT and PN-1(-/-) mice, but we observed a hyperproliferation of vascular cells in PN-1(-/-) retina. Expression of PN-1 was analysed by immunoblotting and X-Gal staining of retinas from mice expressing beta-galactosidase under a PN-1 promoter. PN-1 was highly expressed in the first week following birth and then progressively decreased to a low level in adult retina where it localized on the retinal arteries. PCR arrays performed on mouse retinal RNA identified two angiogenesis-related factors, midkine and Smad5, that were overexpressed in PN-1(-/-) newborn mice and this was confirmed by RT-PCR. Both the higher vascularization and the overexpression of midkine and Smad5 mRNA were also observed in gastrocnemius muscle of PN-1(-/-) mice, suggesting that PN-1 interferes with these pathways. Together, our results demonstrate that PN-1 strongly limits physiological angiogenesis and suggest that modulation of PN-1 expression could represent a new way to regulate angiogenesis. PMID:26109427

  8. Reading Visual Braille with a Retinal Prosthesis

    PubMed Central

    Lauritzen, Thomas Z.; Harris, Jordan; Mohand-Said, Saddek; Sahel, Jose A.; Dorn, Jessy D.; McClure, Kelly; Greenberg, Robert J.

    2012-01-01

    Retinal prostheses, which restore partial vision to patients blinded by outer retinal degeneration, are currently in clinical trial. The Argus II retinal prosthesis system was recently awarded CE approval for commercial use in Europe. While retinal prosthesis users have achieved remarkable visual improvement to the point of reading letters and short sentences, the reading process is still fairly cumbersome. This study investigates the possibility of using an epiretinal prosthesis to stimulate visual braille as a sensory substitution for reading written letters and words. The Argus II retinal prosthesis system, used in this study, includes a 10 × 6 electrode array implanted epiretinally, a tiny video camera mounted on a pair of glasses, and a wearable computer that processes the video and determines the stimulation current of each electrode in real time. In the braille reading system, individual letters are created by a subset of dots from a 3 by 2 array of six dots. For the visual braille experiment, a grid of six electrodes was chosen out of the 10 × 6 Argus II array. Groups of these electrodes were then directly stimulated (bypassing the camera) to create visual percepts of individual braille letters. Experiments were performed in a single subject. Single letters were stimulated in an alternative forced choice (AFC) paradigm, and short 2–4-letter words were stimulated (one letter at a time) in an open-choice reading paradigm. The subject correctly identified 89% of single letters, 80% of 2-letter, 60% of 3-letter, and 70% of 4-letter words. This work suggests that text can successfully be stimulated and read as visual braille in retinal prosthesis patients. PMID:23189036

  9. Preservation of retinotopic map in retinal degeneration.

    PubMed

    Xie, John; Wang, Gene-Jack; Yow, Lindy; Humayun, Mark S; Weiland, James D; Cela, Carlos J; Jadvar, Hossein; Lazzi, Gianluca; Dhrami-Gavazi, Elona; Tsang, Stephen H

    2012-05-01

    Retinal degenerations trigger the loss of photoreceptors and cause the remaining de-afferented neural retina to undergo remodeling. Concerns over this potential retinal synaptic reorganization following visual loss have raised questions regarding the usefulness of visual restoration via retinal electrical stimulation. We have used quantitative positron emission tomography (PET) and 2-deoxy-2-[18F]fluoro-d-glucose (FDG) to objectively evaluate the connection between the retina and the primary visual cortex under both light and transcorneal electrical stimulation (TcES) in five subjects with retinal degeneration (RD) who have had more than ten years of light-perception-only best visual acuity and five age-matched normal-sighted controls. All subjects underwent quantitative PET with FDG as the metabolic tracer during stimulation of the right eye under both light stimulation condition and transcorneal electrical stimulation (TcES) using ERG-Jet contact lens electrode. Cortical activation maps from each stimulation condition were obtained using statistical parametric mapping. TcES phosphene threshold current and qualitative visual cortex activation from both stimulation conditions were compared between the two subject groups. Average phosphene threshold current was 0.72 ± 0.18 mA for the five normal-sighted controls and 3.08 ± 2.01 mA for the retinal degenerative subjects. Phosphene threshold current was significantly higher in retinal degenerative subjects compared to normal-sighted controls (p < 0.05). We found both light stimulation and TcES resulted in retinotopically mapped primary visual cortex activation in both groups. In addition, the patterns of early visual area activation between the two subject groups are more similar during TcES than light stimulation. Our findings suggest primary visual cortex continues to maintain its retinotopy in RD subjects despite prolonged visual loss. PMID:22685713

  10. Metamorphopsia Associated with Branch Retinal Vein Occlusion

    PubMed Central

    Manabe, Koichiro; Tsujikawa, Akitaka; Osaka, Rie; Nakano, Yuki; Fujita, Tomoyoshi; Shiragami, Chieko; Hirooka, Kazuyuki; Uji, Akihito; Muraoka, Yuki

    2016-01-01

    Purpose To apply M-CHARTS for quantitative measurements of metamorphopsia in eyes with acute branch retinal vein occlusion (BRVO) and to elucidate the pathomorphology that causes metamorphopsia. Methods This prospective study consisted of 42 consecutive patients (42 eyes) with acute BRVO. Both at baseline and one month after treatment with ranibizumab, metamorphopsia was measured with M-CHARTS, and the retinal morphological changes were examined with optical coherence tomography. Results At baseline, metamorphopsia was detected in the vertical and/or horizontal directions in 29 (69.0%) eyes; the mean vertical and horizontal scores were 0.59 ± 0.57 and 0.52 ± 0.67, respectively. The maximum inner retinal thickness showed no association with the M-CHARTS score, but the M-CHARTS score was correlated with the total foveal thickness (r = 0.43, p = 0.004), the height of serous retinal detachment (r = 0.31, p = 0.047), and the maximum outer retinal thickness (r = 0.36, p = 0.020). One month after treatment, both the inner and outer retinal thickness substantially decreased. However, metamorphopsia persisted in 26 (89.7%) of 29 eyes. The posttreatment M-CHARTS score was not correlated with any posttreatment morphological parameters. However, the posttreatment M-CHARTS score was weakly correlated with the baseline total foveal thickness (r = 0.35. p = 0.024) and closely correlated with the baseline M-CHARTS score (r = 0.78, p < 0.001). Conclusions Metamorphopsia associated with acute BRVO was quantified using M-CHARTS. Initial microstructural changes in the outer retina from acute BRVO may primarily account for the metamorphopsia. PMID:27123642

  11. [Retinal vein occlusion: an interdisciplinary approach].

    PubMed

    Hatz, Katja; Martinez, Maria

    2016-01-01

    Retinal vein occlusion provide a common cause of significant visual reduction but also late ocular complications. The medical care of these patients pursue two goals: On the one hand vision threatening complications need to be identified and treated, and on the other hand treatable risk factors are need to be identified and treated. This paper summarizes the common ophthalmological therapeutic approaches as well as recommended medical evaluations carried out by the general practitioner. This supports the interdisciplinary approach in evaluating and treating retinal vein occlusions by ophthalmologists and the general practitioners/specialist in internal medicine. PMID:26982647

  12. Laser speckle analysis of retinal vascular dynamics

    PubMed Central

    Neganova, Anastasiia Y; Postnov, Dmitry D; Jacobsen, Jens Christian B.; Sosnovtseva, Olga

    2016-01-01

    Studies of vascular responses are usually performed on isolated vessels or on single vessels in vivo. This allows for precise measurements of diameter or blood flow. However, dynamical responses of the whole microvascular network are difficult to access experimentally. We suggest to use full-field laser speckle imaging to evaluate vascular responses of the retinal network. Image segmentation and vessel recognition algorithms together with response mapping allow us to analyze diameter changes and blood flow responses in the intact retinal network upon systemic administration of the vasoconstrictor angiotensin II, the vasodilator acetylcholine or on the changing level of anesthesia in in vivo rat preparations.

  13. Review: R28 retinal precursor cells: The first 20 years

    PubMed Central

    2014-01-01

    The R28 retinal precursor cell line was established 20 years ago, originating from a postnatal day 6 rat retinal culture immortalized with the 12S E1A (NP-040507) gene of the adenovirus in a replication-incompetent viral vector. Since that time, R28 cells have been characterized and used for a variety of in vitro and in vivo studies of retinal cell behavior, including differentiation, neuroprotection, cytotoxicity, and light stimulation, as well as retinal gene expression and neuronal function. While no cell culture is equivalent to the intact eye, R28 cells continue to provide an important experimental system for the study of many retinal processes. PMID:24644404

  14. Retinal arterial occlusive disease in systemic lupus erythematosus.

    PubMed

    Gold, D; Feiner, L; Henkind, P

    1977-09-01

    Four patients with systemic lupus erythematosus (SLE) developed an unusual form of occlusive retinal arterial disease. The most prominent clinical features of this disorder were deposition of yellow-white material in retinal arterial walls and evidence of multifocal retinal arterial occlusion. Fluorescein angiographic findings included nonperfusion of the obstructed arteries and the retinal capillary beds fed by them, and fluorescein leakage at the sites of involvement of the retinal arteries. This ocular complication of SLE is presumably a manifestation of the widespread systemic vascular problems seen in this disorder. It may be more common in patients with lupus involving the CNS. PMID:901267

  15. Chronic Myeloid Leukaemia Presenting as Bilateral Retinal Haemorrhages with Multiple Retinal Infiltrates

    PubMed Central

    Barot, Rakesh K.; Gohel, Devadatta Jayantilal; Bhagat, Nupur

    2016-01-01

    Chronic Myeloid Leukaemia (CML) causes retinopathy manifesting as venous dilation and tortuosity, perivascular sheathing, retinal haemorrhages, microaneurysms, cotton-wool spots and optic nerve infiltration. Retina is the most commonly involved intraocular structure in CML. However, retinal involvement is a rare form of presentation of CML and few cases have been reported. We report a case of CML presenting as unilateral sudden visual loss. Fundus showed multiple white centered retinal haemorrhages in both eyes with unilateral macular oedema. Blood work-up showed raised WBC count, high platelet count and low Haemoglobin. Cytological analysis of bone marrow biopsy confirmed Philadelphia chromosome. After a course of Imatinib, visual acuity improved and haemorrhages resolved with normalization of macular thickness. In our case, patient presented early, leading to early detection producing better visual prognosis. This highlights the importance of detailed hematological work up in patients with retinal involvement to rule out leukaemic retinopathy.

  16. Probing how initial retinal configuration controls photochemical dynamics in retinal proteins

    NASA Astrophysics Data System (ADS)

    Wand, A.; Rozin, R.; Eliash, T.; Friedman, N.; Jung, K. H.; Sheves, M.; Ruhman, S.

    2013-03-01

    The effects of the initial retinal configuration and the active isomerization coordinate on the photochemistry of retinal proteins (RPs) are assessed by comparing photochemical dynamics of two stable retinal ground state configurations (all-trans,15-anti vs. 13-cis,15-syn), within two RPs: Bacteriorhodopsin (BR) and Anabaena Sensory Rhodopsin (ASR). Hyperspectral pump-probe spectroscopy shows that photochemistry starting from 13-cis retinal in both proteins is 3-10 times faster than when started in the all-trans state, suggesting that the hastening is ubiquitous to microbial RPs, regardless of their different biological functions and origin. This may also relate to the known disparity of photochemical rates between microbial RPs and visual pigments. Importance and possible underlying mechanisms are discussed as well.

  17. Retinal Detachment Associated with AIDS-Related Cytomegalovirus Retinitis: Risk Factors in a Resource-Limited Setting

    PubMed Central

    Yen, Michael; Chen, Jenny; Ausayakhun, Somsanguan; Kunavisarut, Paradee; Vichitvejpaisal, Pornpattana; Ausayakhun, Sakarin; Jirawison, Choeng; Shantha, Jessica; Holland, Gary N; Heiden, David; Margolis, Todd P; Keenan, Jeremy D

    2014-01-01

    Purpose To determine risk factors predictive of retinal detachment in patients with cytomegalovirus (CMV) retinitis in a setting with limited access to ophthalmic care. Design Case-control study. Methods Sixty-four patients with CMV retinitis and retinal detachment were identified from the Ocular Infectious Diseases and Retina Clinics at Chiang Mai University. Three control patients with CMV retinitis but no retinal detachment were selected for each case, matched by calendar date. The medical records of each patient were reviewed, with patient-level and eye-level features recorded for the clinic visit used to match cases and controls, and also for the initial clinic visit at which CMV retinitis was diagnosed. Risk factors for retinal detachment were assessed separately for each of these time points using multivariate conditional logistic regression models that included 1 eye from each patient. Results Patients with a retinal detachment were more likely than controls to have low visual acuity (OR, 1.24 per line of worse vision on the logMAR scale; 95%CI, 1.16-1.33) and bilateral disease (OR, 2.12; 95%CI, 0.92-4.90). Features present at the time of the initial diagnosis of CMV retinitis that predicted subsequent retinal detachment included bilateral disease (OR, 2.68; 95%CI, 1.18-6.08) and lesion size (OR, 2.64 per 10% increase in lesion size; 95%CI, 1.41-4.94). Conclusion Bilateral CMV retinitis and larger lesion sizes, each of which is a marker of advanced disease, were associated with subsequent retinal detachment. Earlier detection and treatment may reduce the likelihood that patients with CMV retinitis develop a retinal detachment. PMID:25448999

  18. PKC/MAPK signaling suppression by retinal pericyte conditioned medium prevents retinal endothelial cell proliferation.

    PubMed

    Kondo, Tetsu; Hosoya, Ken-Ichi; Hori, Satoko; Tomi, Masatoshi; Ohtsuki, Sumio; Terasaki, Tetsuya

    2005-05-01

    Little is known about the regulation mechanism of endothelial cell proliferation by retinal pericytes. The purpose of this study was to elucidate the suppression mechanism of retinal capillary endothelial cell growth by soluble factors derived from retinal pericytes. Conditioned medium of retinal pericytes (rPCT1-CM) suppressed ischemia-induced retinal neovascularization. The growth and DNA synthesis of TR-iBRB2 cells, a conditionally immortalized rat retinal capillary endothelial cell line, were suppressed in a concentration-dependent manner by concentrated rPCT1-CM. The number of human cultured endothelial cells was also reduced by rPCT1-CM. These results provide the first evidence that CM from the cultivation of pericytes alone can inhibit retinal neovascularization in vivo and in vitro. Although the growth reduction of TR-iBRB2 cells was only partly reversed by treatment of rPCT1-CM with antibodies to transforming growth factor-beta1, it was completely lost by heat-treatment of rPCT1-CM, suggesting that anti-angiogenic factors are soluble proteins. The levels of expression of G1/S-phase-related proteins, such as cyclin D1, cyclin-dependent kinase (cdk)4, cdk6, and proliferating cell nuclear antigen, were reduced and a cdk inhibitor, p21(Cip1), was induced in rPCT1-CM-treated TR-iBRB2 cells. Moreover, phosphorylated p44/42 mitogen-activated protein kinase (p44/42 MAPK) in TR-iBRB2 cells was reduced by rPCT1-CM treatment and phosphorylated protein kinase C (PKC)alpha/betaII, which is upstream of p44/42 MAPK, was also suppressed. In conclusion, CM from retinal pericytes suppresses PKC-p44/42 MAPK signaling, inhibits endothelial cell growth, and prevents retinal neovascularization. Anti-angiogenic factors derived from retinal pericytes are likely to play a critical role in the regulation of retinal endothelial cell growth. PMID:15499572

  19. Peripheral Retinal Vascular Patterns in Patients with Rhegmatogenous Retinal Detachment in Taiwan

    PubMed Central

    Chen, San-Ni; Hwang, Jiunn-Feng; Wu, Wen-Chuan

    2016-01-01

    This is an observational study of fluorescein angiography (FA) in consecutive patients with rhegmatogenous retinal detachment (RRD) in Changhua Christian Hospital to investigate the peripheral retinal vascular patterns in those patients. All patients had their age, sex, axial length (AXL), and refraction status (RF) recorded. According to the findings in FA of the peripheral retina, the eyes were divided into 4 groups: in group 1, there was a ramified pattern of peripheral retinal vasculature with gradual tapering; in group 2, there was an abrupt ending of peripheral vasculature with peripheral non-perfusion; in group 3, there was a curving route of peripheral vasculature forming vascular arcades or anastomosis; and in group 4, the same as in group 3, but with one or more wedge-shaped avascular notches. Comparisons of age, sex, AXL, and RF, association of breaks with lattice degeneration and retinal non-perfusion, surgical procedures utilized, and mean numbers of operations were made among the four groups. Of the 73 eyes studied, there were 13 eyes (17.8%) in group 1, 3 eyes (4.1%) in group 2, 40 eyes (54.8%) in group 3 and 17 eyes (23.3%) in group 4. Significant differences in age, AXL and RF, and association of retinal breaks to non-perfusion were noted among the four groups. Patients in group 1 had older ages, while younger ages were noted in groups 3 and 4. Eyes in group 1 had the shortest average AXL and were least myopic in contrast to the eyes in groups 3 and 4. Association of retinal breaks and retinal non-perfusion was significantly higher in groups 2, 3 and 4 than in group 1. In conclusion, peripheral vascular anomalies are common in cases with RRD. Patients with peripheral non-perfusion tend to be younger, with longer axial length and have the breaks associated with retinal non-perfusion. PMID:26909812

  20. Retinal arteriolar occlusions due to cytomegalovirus retinitis in elderly patients without HIV

    PubMed Central

    2013-01-01

    Background Five of 7 (71%) elderly immunocompetent patients with cytomegalovirus retinitis had retinal arteriolar occlusions versus 2 of 8 (25%) elderly immunocompromised patients and 1 of 19 (5%) younger HIV-infected patients. Compared to HIV-infected patients, elderly patients were more likely to have occlusive events, neovascularization or hemorrhage, and underlying vasculopathy. The purpose of this study is to report the novel finding of extensive retinal arteriolar occlusions and neovascularization in immunocompetent patients with cytomegalovirus retinitis. This is a retrospective observational cohort study of cytomegalovirus retinitis (CMVR) in a university setting. Seven patients were elderly but not immunocompromised, 8 were elderly and iatrogenically immunocompromised, and 16 were HIV-infected. All patients underwent polymerase chain reaction testing of intraocular fluid. Primary outcome measure was visual acuity. Secondary outcome measures were vascular occlusions, ischemic complications, and response to treatment. Results Mean age was 73, 70, and 41 years for immunocompetent, immunocompromised, and HIV-infected patients, respectively. Diabetes and vascular disease were common in the elderly. Vision loss to less than 5/200 occurred in 50% of the immunocompetent elderly patients, and 17% of CMV eyes in immunocompromised and HIV patients. Occlusion of the entire retinal vasculature occurred in 4/7 (57%) of immunocompetent patients despite lack of Zone I involvement, and rubeosis occurred in three, disc neovascularization in one, and vitreous hemorrhage in two patients. Vascular occlusive events were less common in immunocompromised patients and rare in the HIV-infected. Conclusions CMVR in non-HIV-infected elderly patients is associated with retinal arteriolar occlusions. An intact host immune response may increase damage to retinal vessels. Prompt diagnosis may avert catastrophic vision loss. PMID:23514532

  1. Plasma Kallikrein Mediates Retinal Vascular Dysfunction and Induces Retinal Thickening in Diabetic Rats

    PubMed Central

    Clermont, Allen; Chilcote, Tamie J.; Kita, Takeshi; Liu, Jia; Riva, Priscilla; Sinha, Sukanto; Feener, Edward P.

    2011-01-01

    OBJECTIVE Plasma kallikrein (PK) has been identified in vitreous fluid obtained from individuals with diabetic retinopathy and has been implicated in contributing to retinal vascular dysfunction. In this report, we examined the effects of PK on retinal vascular functions and thickness in diabetic rats. RESEARCH DESIGN AND METHODS We investigated the effects of a selective PK inhibitor, ASP-440, and C1 inhibitor (C1-INH), the primary physiological inhibitor of PK, on retinal vascular permeability (RVP) and hemodynamics in rats with streptozotocin-induced diabetes. The effect of intravitreal PK injection on retinal thickness was examined by spectral domain optical coherence tomography. RESULTS Systemic continuous administration of ASP-440 for 4 weeks initiated at the time of diabetes onset inhibited RVP by 42% (P = 0.013) and 83% (P < 0.001) at doses of 0.25 and 0.6 mg/kg per day, respectively. Administration of ASP-440 initiated 2 weeks after the onset of diabetes ameliorated both RVP and retinal blood flow abnormalities in diabetic rats measured at 4 weeks’ diabetes duration. Intravitreal injection of C1-INH similarly decreased impaired RVP in rats with 2 weeks’ diabetes duration. Intravitreal injection of PK increased both acute RVP and sustained focal RVP (24 h postinjection) to a greater extent in diabetic rats compared with nondiabetic control rats. Intravitreal injection of PK increased retinal thickness compared with baseline to a greater extent (P = 0.017) in diabetic rats (from 193 ± 10 μm to 223 ± 13 μm) compared with nondiabetic rats (from 182 ± 8 μm to 193 ± 9 μm). CONCLUSIONS These results show that PK contributes to retinal vascular dysfunctions in diabetic rats and that the combination of diabetes and intravitreal injection of PK in rats induces retinal thickening. PMID:21444925

  2. Retinal Changes in an ATP-Induced Model of Retinal Degeneration

    PubMed Central

    Aplin, Felix P.; Vessey, Kirstan A.; Luu, Chi D.; Guymer, Robyn H.; Shepherd, Robert K.; Fletcher, Erica L.

    2016-01-01

    In rodents and felines, intravitreal administration of adenosine triphosphate (ATP) has been shown to induce photoreceptor death providing a tractable model of retinal degeneration in these species. This study investigated the long term effects of photoreceptor loss in an ATP induced feline model of retinal degeneration. Six normal sighted felines were unilaterally blinded using intravitreal ATP injections and assessed using electroretinography (ERG) and optical coherence tomography (OCT). At 30 h (n = 3) or 12 weeks (n = 3) post-injection, the animals were euthanized and the eyes enucleated. Retinae were sectioned and labeled using immunohistochemistry for markers of cell death, neural remodeling and gliosis. Ongoing cell death and retinal degeneration was observed in the outer retina at both 30 h and 12 weeks following unilateral ATP injection. Markers of mid to late-stage retinal remodeling such as cell displacement and aberrant neurite growth were observed in the inner retina at 12 weeks post-injection. Ganglion cells appeared to remain intact in ATP injected eyes. Müller cell gliosis was observed throughout the inner and outer retina, in some parts completely enveloping and/or displacing the surviving neural tissue. Our data suggests that the ATP injected feline retina continues to undergo progressive retinal degeneration and exhibits abnormalities consistent with a description of retinal remodeling commonly seen in other models of retinal degeneration. These findings validate the use of intravitreal ATP injection in feline as a large animal model of retinal degeneration which may aid in development of therapies aiming to restore visual function after photoreceptor degeneration. PMID:27199678

  3. Potential for Autoimmune Pathogenesis of Rift Valley Fever Virus Retinitis

    PubMed Central

    Newman-Gerhardt, Shoshana; Muiruri, Samuel; Muchiri, Eric; Peters, Clarence J.; Morrill, John; Lucas, Alexander H.; King, Charles H.; Kazura, James; LaBeaud, Angelle Desiree

    2013-01-01

    Rift Valley Fever (RVF) is a significant threat to human health because it can progress to retinitis, encephalitis, and hemorrhagic fever. The timing of onset of Rift Valley Fever virus (RVFV) retinitis suggests an autoimmune origin. To determine whether RVFV retinitis is associated with increased levels of IgG against retinal tissue, we measured and compared levels of IgG against healthy human eye tissue by immunohistochemical analysis. We found that serum samples from RVFV-exposed Kenyans with retinitis (n = 8) were slightly more likely to have antibodies against retinal tissue than control populations, but the correlation was not statistically significant. Further investigation into the possible immune pathogenesis of RVFV retinitis could lead to improved therapies to prevent or treat this severe complication. PMID:23918215

  4. An Unusual Case of Extensive Lattice Degeneration and Retinal Detachment

    PubMed Central

    Sarma, Saurabh Kumar; Basaiawmoit, Jennifer V.

    2016-01-01

    Lattice degeneration of the retina is not infrequently encountered on a dilated retinal examination and many of them do not need any intervention. We report a case of atypical lattice degeneration variant with peripheral retinal detachment. An asymptomatic 35-year-old lady with minimal refractive error was found to have extensive lattice degeneration, peripheral retinal detachment and fibrotic changes peripherally with elevation of retinal vessels on dilated retinal examination. There were also areas of white without pressure, chorioretinal scarring and retinal breaks. All the changes were limited to beyond the equator but were found to span 360 degrees. She was treated with barrage laser all around to prevent extension of the retinal detachment posteriorly. She remained stable till her latest follow-up two years after the barrage laser. This case is reported for its rarity with a discussion of the probable differential diagnoses. To the best of our knowledge, this is the first report of such findings in lattice degeneration.

  5. Retinal vascular changes are a marker for cerebral vascular diseases

    PubMed Central

    Moss, Heather E.

    2016-01-01

    The retinal circulation is a potential marker of cerebral vascular disease because it shares origin and drainage with the intracranial circulation and because it can be directly visualized using ophthalmoscopy. Cross sectional and cohort studies have demonstrated associations between chronic retinal and cerebral vascular disease, acute retinal and cerebral vascular disease and chronic retinal vascular disease and acute cerebral vascular disease. In particular, certain qualitative features of retinopathy, retinal artery occlusion and increased retinal vein caliber are associated with concurrent and future cerebrovascular events. These associations persist after accounting for confounding variables known to be disease-causing in both circulations, which supports the potential use of retinal vasculature findings to stratify individuals with regards to cerebral vascular disease risk. PMID:26008809

  6. Retinal topography maps in R: New tools for the analysis and visualization of spatial retinal data

    PubMed Central

    Cohn, Brian A.; Collin, Shaun P.; Wainwright, Peter C.; Schmitz, Lars

    2015-01-01

    Retinal topography maps are a widely used tool in vision science, neuroscience, and visual ecology, providing an informative visualization of the spatial distribution of cell densities across the retinal hemisphere. Here, we introduce Retina, an R package for computational mapping, inspection of topographic model fits, and generation of average maps. Functions in Retina take cell count data obtained from retinal wholemounts using stereology software. Accurate visualizations and comparisons between different eyes have been difficult in the past, because of deformation and incisions of retinal wholemounts. We account for these issues by incorporation of the R package Retistruct, which results in a retrodeformation of the wholemount into a hemispherical shape, similar to the original eyecup. The maps are generated by thin plate splines, after the data were transformed into a two-dimensional space with an azimuthal equidistant plot projection. Retina users can compute retinal topography maps independent of stereology software choice and assess model fits with a variety of diagnostic plots. Functionality of Retina also includes species average maps, an essential feature for interspecific analyses. The Retina package will facilitate rigorous comparative studies in visual ecology by providing a robust quantitative approach to generate retinal topography maps. PMID:26230981

  7. Reactive retinal microglia, neuronal survival and the formation of retinal folds and detachments

    PubMed Central

    Fischer, Andy J.; Zelinka, Christopher; Milani-Nejad, Nima

    2014-01-01

    Reactive microglia and macrophages are prevalent in damaged retinas. Accordingly, we investigate how the activation or ablation of microglia/macrophages influences the survival of neurons in the chick retina in vivo. We applied intraocular injections of interleukin 6 (IL6) to stimulate the reactivity of microglia/macrophages and clodronate-liposomes to ablate microglia/macrophages. Activation of the microglia/macrophages with IL6 delays the death of retinal neurons from N-methyl-D-aspartate (NMDA) -induced excitotoxicity. In addition, activation of microglia/macrophages combined with colchicine-mediated retinal damage diminished the survival of ganglion cells. Application of IL6 after an excitotoxic insult greatly exacerbates the damage, and causes widespread retinal detachments and folds, accompanied by accumulation of microglia/macrophages in the subretinal space. Damage-induced retinal folds and detachments were significantly reduced by the ablation of microglia/macrophages. We conclude that microglial reactivity is detrimental to the survival of ganglion cells in colchicine-damaged retinas and detrimental to the survival of photoreceptors in retinal folds. In addition, we conclude that IL6-treatment transiently protects amacrine and bipolar cells against an excitotoxic insult. We propose that suppressing reactivity of microglia/macrophages may be an effective means to lessen the damage and vision loss resulting from damage, in particular during retinal detachment injuries. PMID:25231952

  8. Relation of retinal blood flow and retinal oxygen extraction during stimulation with diffuse luminance flicker

    PubMed Central

    Palkovits, Stefan; Lasta, Michael; Told, Reinhard; Schmidl, Doreen; Werkmeister, René; Cherecheanu, Alina Popa; Garhöfer, Gerhard; Schmetterer, Leopold

    2015-01-01

    Cerebral and retinal blood flow are dependent on local neuronal activity. Several studies quantified the increase in cerebral blood flow and oxygen consumption during activity. In the present study we investigated the relation between changes in retinal blood flow and oxygen extraction during stimulation with diffuse luminance flicker and the influence of breathing gas mixtures with different fractions of O2 (FiO2; 100% 15% and 12%). Twenty-four healthy subjects were included. Retinal blood flow was studied by combining measurement of vessel diameters using the Dynamic Vessel Analyser with measurements of blood velocity using laser Doppler velocimetry. Oxygen saturation was measured using spectroscopic reflectometry and oxygen extraction was calculated. Flicker stimulation increased retinal blood flow (57.7 ± 17.8%) and oxygen extraction (34.6 ± 24.1%; p < 0.001 each). During 100% oxygen breathing the response of retinal blood flow and oxygen extraction was increased (p < 0.01 each). By contrast, breathing gas mixtures with 12% and 15% FiO2 did not alter flicker–induced retinal haemodynamic changes. The present study indicates that at a comparable increase in blood flow the increase in oxygen extraction in the retina is larger than in the brain. During systemic hyperoxia the blood flow and oxygen extraction responses to neural stimulation are augmented. The underlying mechanism is unknown. PMID:26672758

  9. Relation of retinal blood flow and retinal oxygen extraction during stimulation with diffuse luminance flicker.

    PubMed

    Palkovits, Stefan; Lasta, Michael; Told, Reinhard; Schmidl, Doreen; Werkmeister, René; Cherecheanu, Alina Popa; Garhöfer, Gerhard; Schmetterer, Leopold

    2015-01-01

    Cerebral and retinal blood flow are dependent on local neuronal activity. Several studies quantified the increase in cerebral blood flow and oxygen consumption during activity. In the present study we investigated the relation between changes in retinal blood flow and oxygen extraction during stimulation with diffuse luminance flicker and the influence of breathing gas mixtures with different fractions of O2 (FiO2; 100% 15% and 12%). Twenty-four healthy subjects were included. Retinal blood flow was studied by combining measurement of vessel diameters using the Dynamic Vessel Analyser with measurements of blood velocity using laser Doppler velocimetry. Oxygen saturation was measured using spectroscopic reflectometry and oxygen extraction was calculated. Flicker stimulation increased retinal blood flow (57.7 ± 17.8%) and oxygen extraction (34.6 ± 24.1%; p < 0.001 each). During 100% oxygen breathing the response of retinal blood flow and oxygen extraction was increased (p < 0.01 each). By contrast, breathing gas mixtures with 12% and 15% FiO2 did not alter flicker-induced retinal haemodynamic changes. The present study indicates that at a comparable increase in blood flow the increase in oxygen extraction in the retina is larger than in the brain. During systemic hyperoxia the blood flow and oxygen extraction responses to neural stimulation are augmented. The underlying mechanism is unknown. PMID:26672758

  10. Laser-induced retinal damage thresholds for annular retinal beam profiles

    NASA Astrophysics Data System (ADS)

    Kennedy, Paul K.; Zuclich, Joseph A.; Lund, David J.; Edsall, Peter R.; Till, Stephen; Stuck, Bruce E.; Hollins, Richard C.

    2004-07-01

    The dependence of retinal damage thresholds on laser spot size, for annular retinal beam profiles, was measured in vivo for 3 μs, 590 nm pulses from a flashlamp-pumped dye laser. Minimum Visible Lesion (MVL)ED50 thresholds in rhesus were measured for annular retinal beam profiles covering 5, 10, and 20 mrad of visual field; which correspond to outer beam diameters of roughly 70, 160, and 300 μm, respectively, on the primate retina. Annular beam profiles at the retinal plane were achieved using a telescopic imaging system, with the focal properties of the eye represented as an equivalent thin lens, and all annular beam profiles had a 37% central obscuration. As a check on experimental data, theoretical MVL-ED50 thresholds for annular beam exposures were calculated using the Thompson-Gerstman granular model of laser-induced thermal damage to the retina. Threshold calculations were performed for the three experimental beam diameters and for an intermediate case with an outer beam diameter of 230 μm. Results indicate that the threshold vs. spot size trends, for annular beams, are similar to the trends for top hat beams determined in a previous study; i.e., the threshold dose varies with the retinal image area for larger image sizes. The model correctly predicts the threshold vs. spot size trends seen in the biological data, for both annular and top hat retinal beam profiles.

  11. Aerobic exercise protects retinal function and structure from light-induced retinal degeneration.

    PubMed

    Lawson, Eric C; Han, Moon K; Sellers, Jana T; Chrenek, Micah A; Hanif, Adam; Gogniat, Marissa A; Boatright, Jeffrey H; Pardue, Machelle T

    2014-02-12

    Aerobic exercise is a common intervention for rehabilitation of motor, and more recently, cognitive function (Intlekofer and Cotman, 2013; Wood et al., 2012). While the underlying mechanisms are complex, BDNF may mediate much of the beneficial effects of exercise to these neurons (Ploughman et al., 2007; Griffin et al., 2011; Real et al., 2013). We studied the effects of aerobic exercise on retinal neurons undergoing degeneration. We exercised wild-type BALB/c mice on a treadmill (10 m/min for 1 h) for 5 d/week or placed control mice on static treadmills. After 2 weeks of exercise, mice were exposed to either toxic bright light (10,000 lux) for 4 h to induce photoreceptor degeneration or maintenance dim light (25 lux). Bright light caused 75% loss of both retinal function and photoreceptor numbers. However, exercised mice exposed to bright light had 2 times greater retinal function and photoreceptor nuclei than inactive mice exposed to bright light. In addition, exercise increased retinal BDNF protein levels by 20% compared with inactive mice. Systemic injections of a BDNF tropomyosin-receptor-kinase (TrkB) receptor antagonist reduced retinal function and photoreceptor nuclei counts in exercised mice to inactive levels, effectively blocking the protective effects seen with aerobic exercise. The data suggest that aerobic exercise is neuroprotective for retinal degeneration and that this effect is mediated by BDNF signaling. PMID:24523530

  12. The genomic response of the retinal pigment epithelium to light damage and retinal detachment

    PubMed Central

    Rattner, Amir; Toulabi, Leila; Williams, John; Yu, Huimin; Nathans, Jeremy

    2008-01-01

    The retinal pigment epithelium (RPE) plays an essential role in maintaining the health of the retina. The RPE is also the site of pathologic processes in a wide variety of retinal disorders including monogenic retinal dystrophies, age-related macular degeneration, and retinal detachment. Despite intense interest in the RPE, little is known about its molecular response to ocular damage or disease. We have conducted a comprehensive analysis of changes in transcript abundance (the “genomic response”) in the murine RPE following light damage. Several dozen transcripts, many related to cell-cell signaling, show significant increases in abundance in response to bright light; transcripts encoding visual cycle proteins show a decrease in abundance. Similar changes are induced by retinal detachment. Environmental and genetic perturbations that modulate the RPE response to bright light suggest that this response is controlled by the retina. In contrast to the response to bright light, the RPE response to retinal detachment over-rides these modulatory affects. PMID:18815272

  13. A Psychophysical Test for Retinitis Pigmentosa.

    ERIC Educational Resources Information Center

    Corwin, Thomas R; Mancini, Michael

    A new test designed to detect an hereditary eye disease called retinitis pigmentosa (RP) is described. This condition is revealed by pigmentation in the retina, but early diagnosis is difficult because the symptoms are subtle, and since it is genetically recessive it frequently occurs in families with no history of early blindness. In many cases…

  14. The Retinitis Pigmentosa Student: Selected Aspects.

    ERIC Educational Resources Information Center

    Sullivan, Franklin N.

    1984-01-01

    The characteristic features of RP (retinitis pigmentosa-an untreatable conditions usually resulting in night blindness) are discussed and functioning considerations in the classroom (including the use of protective devices and mobility aids) are noted. Classroom modifications such as darklined paper and black pens are suggested. (CL)

  15. Unsupervised Retinal Vessel Segmentation Using Combined Filters

    PubMed Central

    Oliveira, Wendeson S.; Teixeira, Joyce Vitor; Ren, Tsang Ing; Cavalcanti, George D. C.; Sijbers, Jan

    2016-01-01

    Image segmentation of retinal blood vessels is a process that can help to predict and diagnose cardiovascular related diseases, such as hypertension and diabetes, which are known to affect the retinal blood vessels’ appearance. This work proposes an unsupervised method for the segmentation of retinal vessels images using a combined matched filter, Frangi’s filter and Gabor Wavelet filter to enhance the images. The combination of these three filters in order to improve the segmentation is the main motivation of this work. We investigate two approaches to perform the filter combination: weighted mean and median ranking. Segmentation methods are tested after the vessel enhancement. Enhanced images with median ranking are segmented using a simple threshold criterion. Two segmentation procedures are applied when considering enhanced retinal images using the weighted mean approach. The first method is based on deformable models and the second uses fuzzy C-means for the image segmentation. The procedure is evaluated using two public image databases, Drive and Stare. The experimental results demonstrate that the proposed methods perform well for vessel segmentation in comparison with state-of-the-art methods. PMID:26919587

  16. Unsupervised Retinal Vessel Segmentation Using Combined Filters.

    PubMed

    Oliveira, Wendeson S; Teixeira, Joyce Vitor; Ren, Tsang Ing; Cavalcanti, George D C; Sijbers, Jan

    2016-01-01

    Image segmentation of retinal blood vessels is a process that can help to predict and diagnose cardiovascular related diseases, such as hypertension and diabetes, which are known to affect the retinal blood vessels' appearance. This work proposes an unsupervised method for the segmentation of retinal vessels images using a combined matched filter, Frangi's filter and Gabor Wavelet filter to enhance the images. The combination of these three filters in order to improve the segmentation is the main motivation of this work. We investigate two approaches to perform the filter combination: weighted mean and median ranking. Segmentation methods are tested after the vessel enhancement. Enhanced images with median ranking are segmented using a simple threshold criterion. Two segmentation procedures are applied when considering enhanced retinal images using the weighted mean approach. The first method is based on deformable models and the second uses fuzzy C-means for the image segmentation. The procedure is evaluated using two public image databases, Drive and Stare. The experimental results demonstrate that the proposed methods perform well for vessel segmentation in comparison with state-of-the-art methods. PMID:26919587

  17. CERKL Knockdown Causes Retinal Degeneration in Zebrafish

    PubMed Central

    Riera, Marina; Burguera, Demian; Garcia-Fernàndez, Jordi; Gonzàlez-Duarte, Roser

    2013-01-01

    The human CERKL gene is responsible for common and severe forms of retinal dystrophies. Despite intense in vitro studies at the molecular and cellular level and in vivo analyses of the retina of murine knockout models, CERKL function remains unknown. In this study, we aimed to approach the developmental and functional features of cerkl in Danio rerio within an Evo-Devo framework. We show that gene expression increases from early developmental stages until the formation of the retina in the optic cup. Unlike the high mRNA-CERKL isoform multiplicity shown in mammals, the moderate transcriptional complexity in fish facilitates phenotypic studies derived from gene silencing. Moreover, of relevance to pathogenicity, teleost CERKL shares the two main human protein isoforms. Morpholino injection has been used to generate a cerkl knockdown zebrafish model. The morphant phenotype results in abnormal eye development with lamination defects, failure to develop photoreceptor outer segments, increased apoptosis of retinal cells and small eyes. Our data support that zebrafish Cerkl does not interfere with proliferation and neural differentiation during early developmental stages but is relevant for survival and protection of the retinal tissue. Overall, we propose that this zebrafish model is a powerful tool to unveil CERKL contribution to human retinal degeneration. PMID:23671706

  18. Changes in ganglion cells during retinal degeneration.

    PubMed

    Saha, Susmita; Greferath, Ursula; Vessey, Kirstan A; Grayden, David B; Burkitt, Anthony N; Fletcher, Erica L

    2016-08-01

    Inherited retinal degeneration such as retinitis pigmentosa (RP) is associated with photoreceptor loss and concomitant morphological and functional changes in the inner retina. It is not known whether these changes are associated with changes in the density and distribution of synaptic inputs to retinal ganglion cells (RGCs). We quantified changes in ganglion cell density in rd1 and age-matched C57BL/6J-(wildtype, WT) mice using the immunocytochemical marker, RBPMS. Our data revealed that following complete loss of photoreceptors, (∼3months of age), there was a reduction in ganglion cell density in the peripheral retina. We next examined changes in synaptic inputs to A type ganglion cells by performing double labeling experiments in mice with the ganglion cell reporter lines, rd1-Thy1 and age-matched wildtype-Thy1. Ribbon synapses were identified by co-labelling with CtBP2 (RIBEYE) and conventional synapses with the clustering molecule, gephyrin. ON RGCs showed a significant reduction in RIBEYE-immunoreactive synapse density while OFF RGCs showed a significant reduction in the gephyrin-immmunoreactive synapse density. Distribution patterns of both synaptic markers across the dendritic trees of RGCs were unchanged. The change in synaptic inputs to RGCs was associated with a reduction in the number of immunolabeled rod bipolar and ON cone bipolar cells. These results suggest that functional changes reported in ganglion cells during retinal degeneration could be attributed to loss of synaptic inputs. PMID:27132232

  19. Connexin43 in retinal injury and disease.

    PubMed

    Danesh-Meyer, Helen V; Zhang, Jie; Acosta, Monica L; Rupenthal, Ilva D; Green, Colin R

    2016-03-01

    Gap junctions are specialized cell-to-cell contacts that allow the direct transfer of small molecules between cells. A single gap junction channel consists of two hemichannels, or connexons, each of which is composed of six connexin protein subunits. Connexin43 is the most ubiquitously expressed isoform of the connexin family and in the retina it is prevalent in astrocytes, Müller cells, microglia, retinal pigment epithelium and endothelial cells. Prior to docking with a neighboring cell, Connexin43 hemichannels have a low open probability as open channels constitute a large, relatively non-specific membrane pore. However, with injury and disease Connexin43 upregulation and hemichannel opening has been implicated in all aspects of secondary damage, especially glial cell activation, edema and loss of vascular integrity, leading to neuronal death. We here review gap junctions and their roles in the retina, and then focus in on Connexin43 gap junction channels in injury and disease. In particular, the effect of pathological opening of gap junction hemichannels is described, and hemichannel mediated loss of vascular integrity explained. This latter phenomenon underlies retinal pigment epithelium loss and is a common feature in several retinal diseases. Finally, Connexin43 channel roles in a number of retinal diseases including macular degeneration, glaucoma and diabetic retinopathy are considered, along with results from related animal models. A final section describes gap junction channel modulation and the ocular delivery of potential therapeutic molecules. PMID:26432657

  20. a Review of Retinal Prosthesis Approaches

    NASA Astrophysics Data System (ADS)

    Kien, Tran Trung; Maul, Tomas; Bargiela, Andrzej

    Age-related macular degeneration and retinitis pigmentosa are two of the most common diseases that cause degeneration in the outer retina, which can lead to several visual impairments up to blindness. Vision restoration is an important goal for which several different research approaches are currently being pursued. We are concerned with restoration via retinal prosthetic devices. Prostheses can be implemented intraocularly and extraocularly, which leads to different categories of devices. Cortical Prostheses and Optic Nerve Prostheses are examples of extraocular solutions while Epiretinal Prostheses and Subretinal Prostheses are examples of intraocular solutions. Some of the prostheses that are successfully implanted and tested in animals as well as humans can restore basic visual functions but still have limitations. This paper will give an overview of the current state of art of Retinal Prostheses and compare the advantages and limitations of each type. The purpose of this review is thus to summarize the current technologies and approaches used in developing Retinal Prostheses and therefore to lay a foundation for future designs and research directions.

  1. Nanoengineering of therapeutics for retinal vascular disease.

    PubMed

    Gahlaut, Nivriti; Suarez, Sandra; Uddin, Md Imam; Gordon, Andrew Y; Evans, Stephanie M; Jayagopal, Ashwath

    2015-09-01

    Retinal vascular diseases, including diabetic retinopathy, neovascular age related macular degeneration, and retinal vein occlusion, are leading causes of blindness in the Western world. These diseases share several common disease mechanisms, including vascular endothelial growth factor (VEGF) signaling, hypoxia, and inflammation, which provide opportunities for common therapeutic strategies. Treatment of these diseases using laser therapy, anti-VEGF injections, and/or steroids has significantly improved clinical outcomes. However, these strategies do not address the underlying root causes of pathology, and may have deleterious side effects. Furthermore, many patients continue to progress toward legal blindness despite receiving regular therapy. Nanomedicine, the engineering of therapeutics at the 1-100 nm scale, is a promising approach for improving clinical management of retinal vascular diseases. Nanomedicine-based technologies have the potential to revolutionize the treatment of ophthalmology, through enabling sustained release of drugs over several months, reducing side effects due to specific targeting of dysfunctional cells, and interfacing with currently "undruggable" targets. We will discuss emerging nanomedicine-based applications for the treatment of complications associated with retinal vascular diseases, including angiogenesis and inflammation. PMID:26022642

  2. Retinal Oscillations Carry Visual Information to Cortex

    PubMed Central

    Koepsell, Kilian; Wang, Xin; Vaingankar, Vishal; Wei, Yichun; Wang, Qingbo; Rathbun, Daniel L.; Usrey, W. Martin; Hirsch, Judith A.; Sommer, Friedrich T.

    2009-01-01

    Thalamic relay cells fire action potentials that transmit information from retina to cortex. The amount of information that spike trains encode is usually estimated from the precision of spike timing with respect to the stimulus. Sensory input, however, is only one factor that influences neural activity. For example, intrinsic dynamics, such as oscillations of networks of neurons, also modulate firing pattern. Here, we asked if retinal oscillations might help to convey information to neurons downstream. Specifically, we made whole-cell recordings from relay cells to reveal retinal inputs (EPSPs) and thalamic outputs (spikes) and then analyzed these events with information theory. Our results show that thalamic spike trains operate as two multiplexed channels. One channel, which occupies a low frequency band (<30 Hz), is encoded by average firing rate with respect to the stimulus and carries information about local changes in the visual field over time. The other operates in the gamma frequency band (40–80 Hz) and is encoded by spike timing relative to retinal oscillations. At times, the second channel conveyed even more information than the first. Because retinal oscillations involve extensive networks of ganglion cells, it is likely that the second channel transmits information about global features of the visual scene. PMID:19404487

  3. Retinal pigment epithelial hamartoma--unusual manifestations.

    PubMed Central

    Rosenberg, P. R.; Walsh, J. B.

    1984-01-01

    Hamartoma of the retinal pigment epithelium is an uncommon tumour of young adults. We have seen 2 patients with this clinical diagnosis, both with unusual manifestations. In one patient growth of the tumour was observed over a 5-year period. In the second patient arterial-arterial anastomoses were detected at a site distal to the tumour. Images PMID:6722077

  4. Retinal Imaging Techniques for Diabetic Retinopathy Screening.

    PubMed

    Goh, James Kang Hao; Cheung, Carol Y; Sim, Shaun Sebastian; Tan, Pok Chien; Tan, Gavin Siew Wei; Wong, Tien Yin

    2016-03-01

    Due to the increasing prevalence of diabetes mellitus, demand for diabetic retinopathy (DR) screening platforms is steeply increasing. Early detection and treatment of DR are key public health interventions that can greatly reduce the likelihood of vision loss. Current DR screening programs typically employ retinal fundus photography, which relies on skilled readers for manual DR assessment. However, this is labor-intensive and suffers from inconsistency across sites. Hence, there has been a recent proliferation of automated retinal image analysis software that may potentially alleviate this burden cost-effectively. Furthermore, current screening programs based on 2-dimensional fundus photography do not effectively screen for diabetic macular edema (DME). Optical coherence tomography is becoming increasingly recognized as the reference standard for DME assessment and can potentially provide a cost-effective solution for improving DME detection in large-scale DR screening programs. Current screening techniques are also unable to image the peripheral retina and require pharmacological pupil dilation; ultra-widefield imaging and confocal scanning laser ophthalmoscopy, which address these drawbacks, possess great potential. In this review, we summarize the current DR screening methods using various retinal imaging techniques, and also outline future possibilities. Advances in retinal imaging techniques can potentially transform the management of patients with diabetes, providing savings in health care costs and resources. PMID:26830491

  5. Prospectives for Gene Therapy of Retinal Degenerations

    PubMed Central

    Thumann, Gabriele

    2012-01-01

    Retinal degenerations encompass a large number of diseases in which the retina and associated retinal pigment epithelial (RPE) cells progressively degenerate leading to severe visual disorders or blindness. Retinal degenerations can be divided into two groups, a group in which the defect has been linked to a specific gene and a second group that has a complex etiology that includes environmental and genetic influences. The first group encompasses a number of relatively rare diseases with the most prevalent being Retinitis pigmentosa that affects approximately 1 million individuals worldwide. Attempts have been made to correct the defective gene by transfecting the appropriate cells with the wild-type gene and while these attempts have been successful in animal models, human gene therapy for these inherited retinal degenerations has only begun recently and the results are promising. To the second group belong glaucoma, age-related macular degeneration (AMD) and diabetic retinopathy (DR). These retinal degenerations have a genetic component since they occur more often in families with affected probands but they are also linked to environmental factors, specifically elevated intraocular pressure, age and high blood sugar levels respectively. The economic and medical impact of these three diseases can be assessed by the number of individuals affected; AMD affects over 30 million, DR over 40 million and glaucoma over 65 million individuals worldwide. The basic defect in these diseases appears to be the relative lack of a neurogenic environment; the neovascularization that often accompanies these diseases has suggested that a decrease in pigment epithelium-derived factor (PEDF), at least in part, may be responsible for the neurodegeneration since PEDF is not only an effective neurogenic and neuroprotective agent but also a potent inhibitor of neovascularization. In the last few years inhibitors of vascularization, especially antibodies against vascular endothelial cell

  6. Cytomegalovirus retinitis after central retinal vein occlusion in a patient on systemic immunosuppression: does venooclusive disease predispose to cytomegalovirus retinitis in patients already at risk?

    PubMed Central

    Welling, John D; Tarabishy, Ahmad B; Christoforidis, John B

    2012-01-01

    Cytomegalovirus (CMV) retinitis remains the most common opportunistic ocular infection in immunocompromised patients. Patients with immunocompromising diseases, such as acquired immunodeficiency syndrome, inherited immunodeficiency states, malignancies, and those on systemic immunosuppressive therapy, are known to be at risk. Recently, it has been suggested that patients undergoing intravitreal injection of immunosuppressive agents may also be predisposed. One previous case report speculated that there may be an additional risk for CMV retinitis in acquired immunodeficiency syndrome patients with venoocclusive disease. This case study presents a case of CMV retinitis following central retinal vein occlusion in a patient on systemic immunosuppressants. PMID:22570539

  7. Dye-Free Porcine Model of Experimental Branch Retinal Vein Occlusion: A Suitable Approach for Retinal Proteomics

    PubMed Central

    Jørgensen Cehofski, Lasse; Kruse, Anders; Kjærgaard, Benedict; Stensballe, Allan; Honoré, Bent; Vorum, Henrik

    2015-01-01

    Branch retinal vein occlusion induces complex biological processes in the retina that are generated by a multitude of interacting proteins. These proteins and their posttranslational modifications can effectively be studied using modern proteomic techniques. However, no method for studying large-scale protein changes following branch retinal vein occlusion has been available until now. Obtainment of retinal tissue exposed to branch retinal vein occlusion is only available through experimental animal models. Traditional models of experimental branch retinal vein occlusion require the use of Rose Bengal dye combined with argon laser photocoagulation. The use of Rose Bengal dye is problematic in proteomic studies as the dye can induce multiple protein modifications when irradiated. This paper presents a novel technique for proteomic analysis of porcine retinal tissue with branch retinal vein occlusion combining a dye-free experimental model with label-free liquid chromatography mass spectrometry based proteomics. PMID:26064675

  8. Photovoltaic retinal prosthesis: implant fabrication and performance

    NASA Astrophysics Data System (ADS)

    Wang, Lele; Mathieson, K.; Kamins, T. I.; Loudin, J. D.; Galambos, L.; Goetz, G.; Sher, A.; Mandel, Y.; Huie, P.; Lavinsky, D.; Harris, J. S.; Palanker, D. V.

    2012-08-01

    The objective of this work is to develop and test a photovoltaic retinal prosthesis for restoring sight to patients blinded by degenerative retinal diseases. A silicon photodiode array for subretinal stimulation has been fabricated by a silicon-integrated-circuit/MEMS process. Each pixel in the two-dimensional array contains three series-connected photodiodes, which photovoltaically convert pulsed near-infrared light into bi-phasic current to stimulate nearby retinal neurons without wired power connections. The device thickness is chosen to be 30 µm to absorb a significant portion of light while still being thin enough for subretinal implantation. Active and return electrodes confine current near each pixel and are sputter coated with iridium oxide to enhance charge injection levels and provide a stable neural interface. Pixels are separated by 5 µm wide trenches to electrically isolate them and to allow nutrient diffusion through the device. Three sizes of pixels (280, 140 and 70 µm) with active electrodes of 80, 40 and 20 µm diameter were fabricated. The turn-on voltages of the one-diode, two-series-connected diode and three-series-connected diode structures are approximately 0.6, 1.2 and 1.8 V, respectively. The measured photo-responsivity per diode at 880 nm wavelength is ˜0.36 A W-1, at zero voltage bias and scales with the exposed silicon area. For all three pixel sizes, the reverse-bias dark current is sufficiently low (<100 pA) for our application. Pixels of all three sizes reliably elicit retinal responses at safe near-infrared light irradiances, with good acceptance of the photodiode array in the subretinal space. The fabricated device delivers efficient retinal stimulation at safe near-infrared light irradiances without any wired power connections, which greatly simplifies the implantation procedure. Presence of the return electrodes in each pixel helps to localize the current, and thereby improves resolution.

  9. Retinal and Choroidal Folds in Papilledema

    PubMed Central

    Sibony, Patrick A.; Kupersmith, Mark J.; Feldon, Steven E.; Wang, Jui-Kai; Garvin, Mona

    2015-01-01

    Purpose To determine the frequency, patterns, associations, and biomechanical implications of retinal and choroidal folds in papilledema due to idiopathic intracranial hypertension (IIH). Methods Retinal and choroidal folds were studied in patients enrolled in the IIH Treatment Trial using fundus photography (n = 165 study eyes) and spectral-domain optical coherence tomography (SD-OCT; n = 125). We examined the association between folds and peripapillary shape, retinal nerve fiber layer (RNFL) thickness, disc volume, Frisén grade, acuity, perimetric mean deviation, intraocular pressure, intracranial pressure, and refractive error. Results We identified three types of folds in IIH patients with papilledema: peripapillary wrinkles (PPW), retinal folds (RF), and choroidal folds (CF). Frequency, with photos, was 26%, 19%, and 1%, respectively; SD-OCT frequency was 46%, 47%, and 10%. At least one type of fold was present in 41% of patients with photos and 73% with SD-OCT. Spectral-domain OCT was more sensitive. Structural parameters related to the severity of papilledema were associated with PPW and RF, whereas anterior deformation of the peripapillary RPE/basement membrane layer was associated with CF and RF. Folds were not associated with vision loss at baseline. Conclusions Folds in papilledema are biomechanical signs of stress/strain on the optic nerve head and load-bearing structures induced by intracranial hypertension. Folds are best imaged with SD-OCT. The patterns of retinal and choroidal folds are the products of a complex interplay between the degree of papilledema and anterior deformation of the load-bearing structures (sclera and possibly the lamina cribrosa), both modulated by structural geometry and material properties of the optic nerve head. (ClinicalTrials.gov number, NCT01003639.) PMID:26335066

  10. Retinal image quality, reading and myopia.

    PubMed

    Collins, Michael J; Buehren, Tobias; Iskander, D Robert

    2006-01-01

    Analysis was undertaken of the retinal image characteristics of the best-spectacle corrected eyes of progressing myopes (n = 20, mean age = 22 years; mean spherical equivalent = -3.84 D) and a control group of emmetropes (n = 20, mean age = 23 years; mean spherical equivalent = 0.00 D) before and after a 2h reading task. Retinal image quality was calculated based upon wavefront measurements taken with a Hartmann-Shack sensor with fixation on both a far (5.5 m) and near (individual reading distance) target. The visual Strehl ratio based on the optical transfer function (VSOTF) was significantly worse for the myopes prior to reading for both the far (p = 0.01) and near (p = 0.03) conditions. The myopic group showed significant reductions in various aspects of retinal image quality compared with the emmetropes, involving components of the modulation transfer function, phase transfer function and point spread function, often along the vertical meridian of the eye. The depth of focus of the myopes (0.54 D) was larger (p = 0.02) than the emmetropes (0.42 D) and the distribution of refractive power (away from optimal sphero-cylinder) was greater in the myopic eyes (variance of distributions p < 0.05). We found evidence that the lead and lag of accommodation are influenced by the higher order aberrations of the eye (e.g. significant correlations between lead/lag and the peak of the visual Strehl ratio based on the MTF). This could indicate that the higher accommodation lags seen in myopes are providing optimized retinal image characteristics. The interaction between low and high order aberrations of the eye play a significant role in reducing the retinal image quality of myopic eyes compared with emmetropes. PMID:15913701

  11. Retinal Prosthesis System for Advanced Retinitis Pigmentosa: A Health Technology Assessment

    PubMed Central

    2016-01-01

    Background Retinitis pigmentosa is a group of genetic disorders that involves the breakdown and loss of photoreceptors in the retina, resulting in progressive retinal degeneration and eventual blindness. The Argus II Retinal Prosthesis System is the only currently available surgical implantable device approved by Health Canada. It has been shown to improve visual function in patients with severe visual loss from advanced retinitis pigmentosa. The objective of this analysis was to examine the clinical effectiveness, cost-effectiveness, budget impact, and safety of the Argus II system in improving visual function, as well as exploring patient experiences with the system. Methods We performed a systematic search of the literature for studies examining the effects of the Argus II retinal prosthesis system in patients with advanced retinitis pigmentosa, and appraised the evidence according to the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) Working Group criteria, focusing on visual function, functional outcomes, quality of life, and adverse events. We developed a Markov decision-analytic model to assess the cost-effectiveness of the Argus II system compared with standard care over a 10-year time horizon. We also conducted a 5-year budget impact analysis. We used a qualitative design and an interview methodology to examine patients’ lived experience, and we used a modified grounded theory methodology to analyze information from interviews. Transcripts were coded, and themes were compared against one another. Results One multicentre international study and one single-centre study were included in the clinical review. In both studies, patients showed improved visual function with the Argus II system. However, the sight-threatening surgical complication rate was substantial. In the base-case analysis, the Argus II system was cost-effective compared with standard care only if willingness-to-pay was more than $207,616 per quality-adjusted life

  12. Hydrothermal synthesis, crystal structure, and characterization of a new pseudo-two-dimensional uranyl oxyfluoride, [N(C{sub 2}H{sub 5}){sub 4}]{sub 2}[(UO{sub 2}){sub 4}(OH{sub 2}){sub 3}F{sub 10}

    SciTech Connect

    Ok, Kang Min; O'Hare, Dermot

    2007-02-15

    A new uranyl oxyfluoride, [N(C{sub 2}H{sub 5}){sub 4}]{sub 2}[(UO{sub 2}){sub 4}(OH{sub 2}){sub 3}F{sub 10}] has been synthesized by a hydrothermal reaction technique using (C{sub 2}H{sub 5}){sub 4}NBr, UO{sub 2}(OCOCH{sub 3}){sub 2}.2H{sub 2}O, and HF as reagents. The structure of [N(C{sub 2}H{sub 5}){sub 4}]{sub 2}[(UO{sub 2}){sub 4}(OH{sub 2}){sub 3}F{sub 10}] has been determined by a single-crystal X-ray diffraction technique. [N(C{sub 2}H{sub 5}){sub 4}]{sub 2}[(UO{sub 2}){sub 4}(OH{sub 2}){sub 3}F{sub 10}] crystallizes in the monoclinic space group P2{sub 1}/n (No. 14), with a=13.852(3)A, b=15.532(3)A, c=16.481(3)A, {beta}=98.88(3){sup o}, V=3503.4(12)A{sup 3}, and Z=4. [N(C{sub 2}H{sub 5}){sub 4}]{sub 2}[(UO{sub 2}){sub 4}(OH{sub 2}){sub 3}F{sub 10}] reveals a novel pseudo-two-dimensional crystal structure that is composed of UO{sub 2}F{sub 5}, UO{sub 3}F{sub 4}, and UO{sub 4}F{sub 3} pentagonal bipyramids. Each uranyl pentagonal bipyramid shares edges and corners through F atoms to form a six-membered ring. The rings are further interconnected to generate infinite strips running along the b-axis. [N(C{sub 2}H{sub 5}){sub 4}]{sub 2}[(UO{sub 2}){sub 4}(OH{sub 2}){sub 3}F{sub 10}] has been further characterized by elemental analysis, bond valence calculations, Infrared and Raman spectroscopy, and thermogravimetric analysis.

  13. Examination of postmortem retinal folds: A non-invasive study.

    PubMed

    Oshima, Toru; Yoshikawa, Hiroshi; Ohtani, Maki; Mimasaka, Sohtaro

    2015-02-01

    The postmortem retinal fold has been previously documented, but its mechanism of formation is not known. All previous studies of the fold involved invasive techniques and the postmortem ocular fundus has yet to be non-invasively examined. Our study used the non-invasive techniques of monocular indirect ophthalmoscopy and ocular echography to examine 79 postmortem eyes of 42 bodies. We examined whether the postmortem retinal fold was associated with postmortem time, position, and/or age. Age was significantly associated with postmortem retinal fold formation (Mann-Whitney U test, P = 0.013), which led us to examine the effect of posterior vitreous detachment (PVD) on retinal folds. The absence of a PVD was statistically associated with the presence of a retinal fold (Fisher's exact test, P < 0.0001). Interestingly, the presence of a PVD was also significantly correlated with retinal fold height (Mann-Whitney U test, P < 0.0001). Therefore, we hypothesized that retinal folds result from postmortem vitreoretinal traction caused by eyeball flaccidity. We also believe that the loss of retinochoroidal hydrostatic pressure plays a role. It is important that forensic pathologists not confuse a postmortem retinal fold with traumatic retinal detachment or perimacular retinal folds caused by child abuse. When child abuse is suspected, forensic pathologists should perform enucleation and a subsequent histological examination for confirmation. PMID:25623189

  14. N -methyl- N -nitrosourea-induced retinal degeneration in mice.

    PubMed

    Chen, Yuan-Yuan; Liu, Shi-Liang; Hu, Dan-Ping; Xing, Yi-Qiao; Shen, Yin

    2014-04-01

    Mouse retinal degeneration models have been investigated for many years in the hope of understanding the mechanism of photoreceptor cell death. N -methyl- N -nitrosourea (MNU) has been previously shown to induce outer retinal degeneration in mice. After MNU was intraperitoneally injected in C57/BL mice, we observed a gradual decrease in the outer nuclear layer (ONL) thickness associated with photoreceptor outer segment loss, bipolar cell dendritic retraction and reactive gliosis. Reactive gliosis was confirmed by increased GFAP protein levels. More serious damage to the central retina as opposed to the peripheral retina was found in the MNU-induced retinal degeneration model. Retinal ganglion cells (RGC) appear to be spared for at least two months after MNU treatment. Following retinal vessel labelling, we observed vascular complexes in the distal vessels, indicating retinal vessel damage. In the remnant retinal photoreceptor of the MNU-treated mouse, concentrated colouring nuclei were detected by electron microscopy, together with the loss of mitochondria and displaced remnant synaptic ribbons in the photoreceptor. We also observed decreased mitochondrial protein levels and increased amounts of nitrosylation/nitration in the photoreceptors. The mechanism of MNU-induced apoptosis may result from oxidative stress or the loss of retinal blood supply. MNU-induced mouse retinal degeneration in the outer retina is a useful animal model for photoreceptor degeneration diseases, such as age-related macular degeneration (AMD) and retinitis pigmentosa (RP). PMID:24509257

  15. Clinical Features of Newly Diagnosed Cytomegalovirus Retinitis in Northern Thailand

    PubMed Central

    Ausayakhun, Somsanguan; Keenan, Jeremy D; Ausayakhun, Sakarin; Jirawison, Choeng; Khouri, Claire M; Skalet, Alison H; Heiden, David; Holland, Gary N; Margolis, Todd P

    2011-01-01

    Purpose To characterize the clinical manifestations of cytomegalovirus (CMV) retinitis in northern Thailand. Design Prospective, observational cross-sectional study. Methods We recorded characteristics of 52 consecutive patients newly diagnosed with CMV retinitis at a tertiary university-based medical center in northern Thailand. Indirect ophthalmoscopy by experienced ophthalmologists was supplemented with fundus photography to determine the proportion of eyes with various clinical features of CMV retinitis. Results Of the 52 patients with CMV retinitis, 55.8% were female. All were HIV-positive. The vast majority (90.4%) had started antiretroviral therapy. CMV retinitis was bilateral in 46.2% of patients. Bilateral visual acuity worse than 20/60 was observed in 23.1% of patients. Of 76 eyes with CMV retinitis, 61.8% had zone I disease and 21.6% had lesions involving the fovea. Lesions larger than 25% of the retinal area were observed in 57.5% of affected eyes. CMV retinitis lesions commonly had marked or severe border opacity (47.4% of eyes). Vitreous haze was often present (46.1% of eyes). Visual impairment was more common in eyes with larger retinitis lesions. Retinitis lesion size, used as a proxy for duration of disease, was associated with fulminant appearance (OR 1.24 [1.01 – 1.51]), and marked or severe border opacity (OR 1.36 [1.11 – 1.67]). Based on lesion size, retinitis preceded antiretroviral treatment in each patient. Conclusions Patients presenting to a tertiary medical center in northern Thailand have advanced CMV retinitis, possibly due to delayed diagnosis. Earlier screening and treatment of CMV retinitis may limit progression of disease and prevent visual impairment in this population. PMID:22265148

  16. Melanopsin-expressing intrinsically photosensitive retinal ganglion cells in retinal disease.

    PubMed

    Feigl, Beatrix; Zele, Andrew J

    2014-08-01

    Melanopsin-containing intrinsically photosensitive retinal ganglion cells (ipRGCs) are a class of photoreceptors with established roles in non-image-forming processes. Their contributions to image-forming vision may include the estimation of brightness. Animal models have been central for understanding the physiological mechanisms of ipRGC function and there is evidence of conservation of function across species. Intrinsically photosensitive retinal ganglion cells can be divided into five ganglion cell subtypes that show morphological and functional diversity. Research in humans has established that ipRGCs signal environmental irradiance to entrain the central body clock to the solar day for regulating circadian processes and sleep. In addition, ipRGCs mediate the pupil light reflex (PLR), making the PLR a readily accessible behavioral marker of ipRGC activity. Less is known about ipRGC function in retinal and optic nerve disease, with emerging research providing insight into their function in diabetes, retinitis pigmentosa, glaucoma, and hereditary optic neuropathy. We briefly review the anatomical distributions, projections, and basic physiological mechanisms of ipRGCs and their proposed and known functions in animals and humans with and without eye disease. We introduce a paradigm for differentiating inner and outer retinal inputs to the pupillary control pathway in retinal disease and apply this paradigm to patients with age-related macular degeneration (AMD). In these cases of patients with AMD, we provide the initial evidence that ipRGC function is altered and that the dysfunction is more pronounced in advanced disease. Our perspective is that with refined pupillometry paradigms, the PLR can be extended to AMD assessment as a tool for the measurement of inner and outer retinal dysfunction. PMID:24879087

  17. The role of retinal and extra-retinal photostimulation in reproductive activity in broiler breeder hens.

    PubMed

    Mobarkey, N; Avital, N; Heiblum, R; Rozenboim, I

    2010-05-01

    Photostimulation of retinal photoreceptors, which are sensitive to green light, appears to inhibit reproductive activity in birds, whereas photostimulation of extra-retinal photoreceptors, which are sensitive to red light, accelerates it. The objective of this study was to determine the effect of either retinal or extra-retinal photostimulation on reproductive activities of broiler breeder hens. At 23 wk of age, Cobb hens (N=135) were divided into 9 rooms with individual cages (n=15). At 24 wk of age, 3 rooms were photostimulated (14L:10D) with white light (Control, n=45). Six rooms had 2 parallel lighting systems, red (660 nm) and green (560 nm), which were both on during 6 out of 14 h of the light period. Then, in 3 of these rooms, the green light was turned off and hens were exposed to a total of 14 h of red light (Red, n=45), and in the other 3, the red light was turned off and green lighting continued for a total of 14 h (Green, n=45). The Green group had reduced egg production; reduced plasma concentrations of ovarian steroids; reduced luteinizing hormone (LH)-beta, vasoactive intestinal peptide (VIP), and prolactin mRNA expression; and greater retinal green opsin mRNA expression (P < or = 0.05). The Red group had greater egg production; greater gonadotropin-releasing hormone-I (GnRH-I) and red opsin gene expression in the hypothalamus; and lesser green opsin gene expression in the retina (P < or = 0.05). We suggest that selective photostimulation of extra-retinal photostimulation as opposed to retinal photostimulation is a key factor in the determination of successful reproduction of broiler breeder hens. PMID:20022445

  18. Inner retinal change in a novel rd1-FTL mouse model of retinal degeneration

    PubMed Central

    Greferath, Ursula; Anderson, Emily E.; Jobling, Andrew I.; Vessey, Kirstan A.; Martinez, Gemma; de Iongh, Robb U.; Kalloniatis, Michael; Fletcher, Erica L.

    2015-01-01

    While photoreceptor loss is the most devastating result of inherited retinal degenerations such as retinitis pigmentosa, inner retinal neurons also undergo significant alteration. Detailing these changes has become important as many vision restorative therapies target the remaining neurons. In this study, the rd1-Fos-Tau-LacZ (rd1-FTL) mouse model was used to explore inner retinal change at a late stage of retinal degeneration, after the loss of photoreceptor nuclei. The rd1-FTL model carries a mutation in the phosphodiesterase gene, Pde6b, and an axonally targeted transgenic beta galactosidase reporter system under the control of the c-fos promoter. Retinae of transgenic rd1-FTL mice and control FTL animals aged 2–12 months were processed for indirect fluorescence immunocytochemistry. At 2 months of age, a time when the majority of photoreceptor nuclei are lost, there was negligible c-fos reporter (FTL) expression, however, from 4 months, reporter expression was observed to increase within subpopulations of amacrine and ganglion cells within the central retina. These areas of inner retinal FTL expression coincided with regions that contained aberrant Müller cells. Specifically, these cells exhibited reduced glutamine synthetase and Kir4.1 immunolabelling, whilst showing evidence of proliferative gliosis (increased cyclinD1 and glial fibrillary acidic protein expression). These changes were limited to distinct regions where cone photoreceptor terminals were absent. Overall, these results highlight that distinct areas of the rd1-FTL central retina undergo significant glial alterations after cone photoreceptor loss. These areas coincide with up-regulation of the c-fos reporter in the inner retina, which may represent a change in neuronal function/plasticity. The rd1-FTL mouse is a useful model system to probe changes that occur in the inner retina at later stages of retinal degeneration. PMID:26283925

  19. Breakdown of blood. Retinal barrier in RCS rats with inherited retinal degeneration.

    PubMed

    Essner, E; Pino, R M; Griewski, R A

    1980-11-01

    A breakdown in the blood-retinal barrier to certain proteins is described in mutant RCS rats with inherited retinal degeneration. Intravenously injected microperoxidase and horseradish peroxidase are extravasated from the outer (but not inner) retinal capillaries of these rats, at approximately 11 weeks of age and older. The number of affected capillaries increases with the age of the animals and progression of the retinal dystrophy until virtually all capillaries in the outer retina become permeable to these tracers. In such capillaries, enzyme reaction product is demonstrable in a greater proportion of luminal vesicles and in the majority of abluminal vesicles. Reaction product is also localized in cytoplasmic vacuoles, the basal laminae of endothelial cells and pericytes, and the perivascular spaces. The increased permeability of outer retinal capillaries in RCS rats appears to be due to an increase in transendothelial vesicular transport of the probe molecules. There was no evidence that either tracer permeated the interendothelial junctions or entered the basal laminae by reflux from the perivascular spaces. It is suggested that factors originating from the degenerated photoreceptor cells may play a role in stimulating the vesicular transport observed in permeable capillaries. In contrast to these findings, the outer retinal capillaries of RCS rats were not permeable to hemoglobin, catalase, or ferritin, regardless of the age of the animal or the degree of retinal degeneration. Since the vesicles that form at the luminal front are covered by a diaphragm, it is possible that this structure prevents entry of these larger proteins into the endothelial vesicle, even in capillaries that are demonstrably permeable to the smaller tracers. PMID:7421123

  20. Alterations to retinal architecture prior to photoreceptor loss in a mouse model of retinitis pigmentosa.

    PubMed

    Roche, Sarah L; Wyse-Jackson, Alice C; Byrne, Ashleigh M; Ruiz-Lopez, Ana M; Cotter, Thomas G

    2016-01-01

    Mouse models of retinitis pigmentosa (RP) are essential tools in the pursuit to understand fully what cell types and processes underlie the degeneration observed in RP. Knowledge of these processes is required if we are to develop successful therapies to treat this currently incurable disease. We have used the rd10 mouse model of RP to study retinal morphology prior to photoreceptor loss, using immunohistochemistry and confocal microscopy on cryosections, since little is known about how the mutation affects the retina during this period. We report novel findings that the mutation in the rd10 mouse results in retinal abnormalities earlier than was previously thought. Defects in rod and cone outer segments, bipolar cells, amacrine cells and photoreceptor synapses were apparent in the retina during early stages of postnatal retinal development and prior to the loss of photoreceptors. Additionally, we observed a dramatic response of glial cells during this period. Microglia responded as early as postnatal day (P) 5; ?13 days before any photoreceptor loss is detected with Müller glia and astrocytes exhibiting changes from P10 and P15 respectively. Overall, these findings present pathological aspects to the postnatal development of the rd10 retina, contributing significantly to our understanding of disease onset and progression in the rd10 mouse and provide a valuable resource for the study of retinal dystrophies. PMID:27160072

  1. Multispectral retinal image analysis: a novel non-invasive tool for retinal imaging

    PubMed Central

    Calcagni, A; Gibson, J M; Styles, I B; Claridge, E; Orihuela-Espina, F

    2011-01-01

    Purpose To develop a non-invasive method for quantification of blood and pigment distributions across the posterior pole of the fundus from multispectral images using a computer-generated reflectance model of the fundus. Methods A computer model was developed to simulate light interaction with the fundus at different wavelengths. The distribution of macular pigment (MP) and retinal haemoglobins in the fundus was obtained by comparing the model predictions with multispectral image data at each pixel. Fundus images were acquired from 16 healthy subjects from various ethnic backgrounds and parametric maps showing the distribution of MP and of retinal haemoglobins throughout the posterior pole were computed. Results The relative distributions of MP and retinal haemoglobins in the subjects were successfully derived from multispectral images acquired at wavelengths 507, 525, 552, 585, 596, and 611 nm, providing certain conditions were met and eye movement between exposures was minimal. Recovery of other fundus pigments was not feasible and further development of the imaging technique and refinement of the software are necessary to understand the full potential of multispectral retinal image analysis. Conclusion The distributions of MP and retinal haemoglobins obtained in this preliminary investigation are in good agreement with published data on normal subjects. The ongoing development of the imaging system should allow for absolute parameter values to be computed. A further study will investigate subjects with known pathologies to determine the effectiveness of the method as a screening and diagnostic tool. PMID:21904394

  2. Retinal tears and rhegmatogenous retinal detachment after intravitreal injections: its prevalence and case reports

    PubMed Central

    Karabag, Revan Yildirim; Parlak, Melih; Cetin, Gölgem; Yaman, Aylin; Osman Saatci, A.

    2015-01-01

    Purpose To report the prevalence of postoperative retinal tear or rhegmatogenous retinal detachment secondary to intravitreal injections. Methods Surgical and medical records of patients who received intravitreal injections at the practice of a single retina specialist from January 2004 to May 2013 and who were followed for at least 6 months were investigated retrospectively. Results During the study period, a total of 3,907 intravitreal injections were performed in 1,049 eyes of 784 patients (416 males [47%]). The mean number of injections per eye was 3.72 ± 3.43 (range, 1–22). The mean age of the participants was 67.03 ± 13.56 (range, 5–94 years). The mean follow-up time was 31.98 ± 22.86 months (range, 6–144 months). Retinal break or rhegmatogenous retinal detachment occurred in 3 injections of 3 eyes, yielding an overall prevalence of 0.077% per injection and 0.29% per eye. Conclusions Retinal tear and rhegmatogenous detachment are rare complications of intravitreal injection. Precautions should be taken especially in patients having predisposing conditions, such as high myopia, or any other vitreoretinal disorders. PMID:27330458

  3. Transition of differential histone H3 methylation in photoreceptors and other retinal cells during retinal differentiation

    PubMed Central

    Ueno, Kazuko; Iwagawa, Toshiro; Kuribayashi, Hiroshi; Baba, Yukihiro; Nakauchi, Hiromitsu; Murakami, Akira; Nagasaki, Masao; Suzuki, Yutaka; Watanabe, Sumiko

    2016-01-01

    To analyze cell lineage-specific transitions in global transcriptional and epigenetic changes during retinogenesis, we purified retinal cells from normal mice during postnatal development into two fractions, namely, photoreceptors and other retinal cells, based on Cd73 expression, and performed RNA sequencing and ChIP sequencing of H3K27me3 and H3K4me3. Genes expressed in the photoreceptor lineage were marked with H3K4me3 in the Cd73-positive cell fraction; however, the level of H3K27me3 was very low in both Cd73-positive and -negative populations. H3K27me3 may be involved in spatio-temporal onset of a subset of bipolar-related genes. Subsets of genes expressed in amacrine and retinal ganglion cells, which are early-born retinal cell types, were suggested to be maintained in a silent state by H3K27me3 during late-stage retinogenesis. In the outer nuclear layer, upregulation of Rho and rod-related genes were observed in Ezh2-ablated retina, suggesting a role for H3K27me3 in the maintenance of proper expression levels. Taken together, our data on the transition of lineage-specific molecular signatures during development suggest that histone methylation is involved in retinal differentiation and maintenance through cell lineage-specific mechanisms. PMID:27377164

  4. Changes in morphology of retinal ganglion cells with eccentricity in retinal degeneration.

    PubMed

    Anderson, E E; Greferath, U; Fletcher, E L

    2016-05-01

    Ganglion cells are the output neurons of the retina and are known to remodel during the subtle plasticity changes that occur following the death of photoreceptors in inherited retinal degeneration. We examine the influence of retinal eccentricity on anatomical remodelling and ganglion cell morphology well after photoreceptor loss. Rd1 mice that have a mutation in the β subunit of phosphodiesterase 6 were used as a model of retinal degeneration and gross remodelling events were examined by processing serial sections for immunocytochemistry. Retinal wholemounts from rd1-Thy1 and control Thy1 mice that contained a fluorescent protein labelling a subset of ganglion cells were processed for immunohistochemistry at 11 months of age. Ganglion cells were classified based on their soma size, dendritic field size and dendritic branching pattern and their dendritic fields were analysed for their length, area and quantity of branching points. Overall, more remodelling was found in the central compared with the peripheral retina. In addition, the size and complexity of A2, B1, C1 and D type ganglion cells located in the central region of the retina decreased. We propose that the changes in ganglion cell morphology are correlated with remodelling events in these regions and impact the function of retinal circuitry in the degenerated retina. PMID:26670589

  5. Retinal area detector from scanning laser ophthalmoscope (SLO) images for diagnosing retinal diseases.

    PubMed

    Haleem, Muhammad Salman; Han, Liangxiu; van Hemert, Jano; Li, Baihua; Fleming, Alan

    2015-07-01

    Scanning laser ophthalmoscopes (SLOs) can be used for early detection of retinal diseases. With the advent of latest screening technology, the advantage of using SLO is its wide field of view, which can image a large part of the retina for better diagnosis of the retinal diseases. On the other hand, during the imaging process, artefacts such as eyelashes and eyelids are also imaged along with the retinal area. This brings a big challenge on how to exclude these artefacts. In this paper, we propose a novel approach to automatically extract out true retinal area from an SLO image based on image processing and machine learning approaches. To reduce the complexity of image processing tasks and provide a convenient primitive image pattern, we have grouped pixels into different regions based on the regional size and compactness, called superpixels. The framework then calculates image based features reflecting textural and structural information and classifies between retinal area and artefacts. The experimental evaluation results have shown good performance with an overall accuracy of 92%. PMID:25167560

  6. Transition of differential histone H3 methylation in photoreceptors and other retinal cells during retinal differentiation.

    PubMed

    Ueno, Kazuko; Iwagawa, Toshiro; Kuribayashi, Hiroshi; Baba, Yukihiro; Nakauchi, Hiromitsu; Murakami, Akira; Nagasaki, Masao; Suzuki, Yutaka; Watanabe, Sumiko

    2016-01-01

    To analyze cell lineage-specific transitions in global transcriptional and epigenetic changes during retinogenesis, we purified retinal cells from normal mice during postnatal development into two fractions, namely, photoreceptors and other retinal cells, based on Cd73 expression, and performed RNA sequencing and ChIP sequencing of H3K27me3 and H3K4me3. Genes expressed in the photoreceptor lineage were marked with H3K4me3 in the Cd73-positive cell fraction; however, the level of H3K27me3 was very low in both Cd73-positive and -negative populations. H3K27me3 may be involved in spatio-temporal onset of a subset of bipolar-related genes. Subsets of genes expressed in amacrine and retinal ganglion cells, which are early-born retinal cell types, were suggested to be maintained in a silent state by H3K27me3 during late-stage retinogenesis. In the outer nuclear layer, upregulation of Rho and rod-related genes were observed in Ezh2-ablated retina, suggesting a role for H3K27me3 in the maintenance of proper expression levels. Taken together, our data on the transition of lineage-specific molecular signatures during development suggest that histone methylation is involved in retinal differentiation and maintenance through cell lineage-specific mechanisms. PMID:27377164

  7. Peripheral retinal non-perfusion and treatment response in branch retinal vein occlusion

    PubMed Central

    Abri Aghdam, Kaveh; Reznicek, Lukas; Soltan Sanjari, Mostafa; Framme, Carsten; Bajor, Anna; Klingenstein, Annemarie; Kernt, Marcus; Seidensticker, Florian

    2016-01-01

    AIM To evaluate the association between the size of peripheral retinal non-perfusion and the number of intravitreal ranibizumab injections in patients with treatment-naive branch retinal vein occlusion (BRVO) and macular edema. METHODS A total of 53 patients with treatment-naive BRVO and macular edema were included. Each patient underwent a full ophthalmologic examination including optical coherence tomography (OCT) imaging and ultra wide-field fluorescein angiography (UWFA). Monthly intravitreal ranibizumab injections were applied according to the recommendations of the German Ophthalmological Society. Two independent, masked graders quantified the areas of peripheral retinal non-perfusion. RESULTS Intravitreal injections improved best-corrected visual acuity (BCVA) significantly from 22.23±16.33 Early Treatment of Diabetic Retinopathy Study (ETDRS) letters to 36.23±15.19 letters (P<0.001), and mean central subfield thickness significantly reduced from 387±115 µm to 321±115 µm (P=0.01). Mean number of intravitreal ranibizumab injections was 3.61±1.56. The size of retinal non-perfusion correlated significantly with the number of intravitreal ranibizumab injections (R=0.724, P<0.001). CONCLUSION Peripheral retinal non-perfusion in patients with BRVO associates significantly with intravitreal ranibizumab injections in patients with BRVO and macular edema. PMID:27366688

  8. The effect of dendritic cells on the retinal cell transplantation

    SciTech Connect

    Oishi, Akio; Nagai, Takayuki; Mandai, Michiko Takahashi, Masayo; Yoshimura, Nagahisa

    2007-11-16

    The potential of bone marrow cell-derived immature dendritic cells (myeloid iDCs) in modulating the efficacy of retinal cell transplantation therapy was investigated. (1) In vitro, myeloid iDCs but not BMCs enhanced the survival and proliferation of embryonic retinal cells, and the expression of various neurotrophic factors by myeloid iDCs was confirmed with RT-PCR. (2) In subretinal transplantation, neonatal retinal cells co-transplanted with myeloid iDCs showed higher survival rate compared to those transplanted without myeloid iDCs. (3) CD8 T-cells reactive against donor retinal cells were significantly increased in the mice with transplantation of retinal cells alone. These results suggested the beneficial effects of the use of myeloid iDCs in retinal cell transplantation therapy.

  9. Contribution of Microglia-Mediated Neuroinflammation to Retinal Degenerative Diseases

    PubMed Central

    Madeira, Maria H.; Boia, Raquel; Santos, Paulo F.; Ambrósio, António F.; Santiago, Ana R.

    2015-01-01

    Retinal degenerative diseases are major causes of vision loss and blindness worldwide and are characterized by chronic and progressive neuronal loss. One common feature of retinal degenerative diseases and brain neurodegenerative diseases is chronic neuroinflammation. There is growing evidence that retinal microglia, as in the brain, become activated in the course of retinal degenerative diseases, having a pivotal role in the initiation and propagation of the neurodegenerative process. A better understanding of the events elicited and mediated by retinal microglia will contribute to the clarification of disease etiology and might open new avenues for potential therapeutic interventions. This review aims at giving an overview of the roles of microglia-mediated neuroinflammation in major retinal degenerative diseases like glaucoma, age-related macular degeneration, and diabetic retinopathy. PMID:25873768

  10. Adaptive Optics Technology for High-Resolution Retinal Imaging

    PubMed Central

    Lombardo, Marco; Serrao, Sebastiano; Devaney, Nicholas; Parravano, Mariacristina; Lombardo, Giuseppe

    2013-01-01

    Adaptive optics (AO) is a technology used to improve the performance of optical systems by reducing the effects of optical aberrations. The direct visualization of the photoreceptor cells, capillaries and nerve fiber bundles represents the major benefit of adding AO to retinal imaging. Adaptive optics is opening a new frontier for clinical research in ophthalmology, providing new information on the early pathological changes of the retinal microstructures in various retinal diseases. We have reviewed AO technology for retinal imaging, providing information on the core components of an AO retinal camera. The most commonly used wavefront sensing and correcting elements are discussed. Furthermore, we discuss current applications of AO imaging to a population of healthy adults and to the most frequent causes of blindness, including diabetic retinopathy, age-related macular degeneration and glaucoma. We conclude our work with a discussion on future clinical prospects for AO retinal imaging. PMID:23271600

  11. Combined branch retinal vein and artery occlusion in toxoplasmosis.

    PubMed

    Aggio, Fabio Bom; Novelli, Fernando José de; Rosa, Evandro Luis; Nobrega, Mário Junqueira

    2016-01-01

    A 22-year-old man complained of low visual acuity and pain in his left eye for five days. His ophthalmological examination revealed 2+ anterior chamber reaction and a white, poorly defined retinal lesion at the proximal portion of the inferotemporal vascular arcade. There were retinal hemorrhages in the inferotemporal region extending to the retinal periphery. In addition, venous dilation, increased tortuosity, and ischemic retinal whitening along the inferotemporal vascular arcade were also observed. A proper systemic work-up was performed, and the patient was diagnosed with ocular toxoplasmosis. He was treated with an anti-toxoplasma medication, and his condition slowly improved. Inferior macular inner and middle retinal atrophy could be observed on optical coherence tomography as a sequela of ischemic injury. To our knowledge, this is the first report of combined retinal branch vein and artery occlusion in toxoplasmosis resulting in a striking and unusual macular appearance. PMID:27463632

  12. Cytomegalovirus Retinitis after Intravitreal Bevacizumab Injection in an Immunocompetent Patient

    PubMed Central

    Bae, So Hyun; Kim, Tae Wan; Chung, Hum

    2013-01-01

    We report a case of cytomegalovirus (CMV) retinitis after intravitreal bevacizumab injection. A 61-year-old woman with diabetic macular edema developed dense vitritis and necrotizing retinitis 3 weeks after intravitreal bevacizumab injection. A diagnostic vitrectomy was performed. The undiluted vitreous sample acquired by vitrectomy was analyzed by polymerase chain reaction and culture. Polymerase chain reaction of the vitreous was positive for CMV DNA. Other laboratory results did not show evidence of other infectious retinitis and systemic immune dysfunction. Human immunodeficiency virus antibodies were also negative. After systemic administration of ganciclovir, retinitis has resolved and there has been no recurrence of retinitis during the follow-up period of 12 months. Ophthalmologists should be aware of potential risk for CMV retinitis after intravitreal bevacizumab injection. PMID:23372384

  13. Nanocarriers of nanotechnology in retinal diseases.

    PubMed

    Al-Halafi, Ali M

    2014-10-01

    We are approaching a new era of retinal pharmacotherapy where new drugs are rapidly being worked out for the treatment of posterior-segment disease. Recent development in ocular drug delivery systems research has provided new insights into drug development, and the use of nanoparticles for drug delivery is thus a promising excellent approach for advanced therapy of ocular diseases. The primary goal is to develop a variety of drug delivery systems to complement and further enhance the efficacy of the available new medications. The ideal sustained release technology will provide a high level of safety with continuous release over an extended period of time while maintaining almost total drug bioactivity. The use of nanocarriers, such as cyclodextrin nanoparticle suspension, liposomes, nanospheres and, nanoemulsions for gene therapy of retinal diseases has been highlighted in this review. PMID:25473348

  14. Retinal Image Simulation of Subjective Refraction Techniques.

    PubMed

    Perches, Sara; Collados, M Victoria; Ares, Jorge

    2016-01-01

    Refraction techniques make it possible to determine the most appropriate sphero-cylindrical lens prescription to achieve the best possible visual quality. Among these techniques, subjective refraction (i.e., patient's response-guided refraction) is the most commonly used approach. In this context, this paper's main goal is to present a simulation software that implements in a virtual manner various subjective-refraction techniques--including Jackson's Cross-Cylinder test (JCC)--relying all on the observation of computer-generated retinal images. This software has also been used to evaluate visual quality when the JCC test is performed in multifocal-contact-lens wearers. The results reveal this software's usefulness to simulate the retinal image quality that a particular visual compensation provides. Moreover, it can help to gain a deeper insight and to improve existing refraction techniques and it can be used for simulated training. PMID:26938648

  15. Biophotons Contribute to Retinal Dark Noise.

    PubMed

    Li, Zehua; Dai, Jiapei

    2016-06-01

    The discovery of dark noise in retinal photoreceptors resulted in a long-lasting controversy over its origin and the underlying mechanisms. Here, we used a novel ultra-weak biophoton imaging system (UBIS) to detect biophotonic activity (emission) under dark conditions in rat and bullfrog (Rana catesbeiana) retinas in vitro. We found a significant temperature-dependent increase in biophotonic activity that was completely blocked either by removing intracellular and extracellular Ca(2+) together or inhibiting phosphodiesterase 6. These findings suggest that the photon-like component of discrete dark noise may not be caused by a direct contribution of the thermal activation of rhodopsin, but rather by an indirect thermal induction of biophotonic activity, which then activates the retinal chromophore of rhodopsin. Therefore, this study suggests a possible solution regarding the thermal activation energy barrier for discrete dark noise, which has been debated for almost half a century. PMID:27059222

  16. Retinal Light Processing Using Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Loftus, David J. (Inventor); Leng, Theodore (Inventor); Fishman, Harvey (Inventor)

    2004-01-01

    Method and system for processing light signals received by the eye of a human or other animal, where the eye may be compromised or non-functioning. Incident light is received at first and second pixels in a photodetector array and provides a pixel electrical signal representing the received light. Each of an array of carbon nanotube (CNT) towers is connected to a pixel, has a first tower end penetrating a retinal active layer of the animal and has a second tower end positioned to receive to receive and transport the pixel electrical signal to the retinal active layer. The CNT tower may be coated with a biologically active substance or chemically modified to promote neurite connections with the tower. The photoreceptor array can be provide with a signal altering mechanism that alters at least one of light intensity and wavelength intensity sensed by a first pixel relative to a second pixel, to correct for one or more selected eye problems.

  17. Unified detection and tracking in retinal microsurgery.

    PubMed

    Sznitman, Raphael; Basu, Anasuya; Richa, Rogerio; Handa, Jim; Gehlbach, Peter; Taylor, Russell H; Jedynak, Bruno; Hager, Gregory D

    2011-01-01

    Traditionally, tool tracking involves two subtasks: (i) detecting the tool in the initial image in which it appears, and (ii) predicting and refining the configuration of the detected tool in subsequent images. With retinal microsurgery in mind, we propose a unified tool detection and tracking framework, removing the need for two separate systems. The basis of our approach is to treat both detection and tracking as a sequential entropy minimization problem, where the goal is to determine the parameters describing a surgical tool in each frame. The resulting framework is capable of both detecting and tracking in situations where the tool enters and leaves the field of view regularly. We demonstrate the benefits of this method in the context of retinal tool tracking. Through extensive experimentation on a phantom eye, we show that this method provides efficient and robust tool tracking and detection. PMID:22003593

  18. Retinal Image Simulation of Subjective Refraction Techniques

    PubMed Central

    Perches, Sara; Collados, M. Victoria; Ares, Jorge

    2016-01-01

    Refraction techniques make it possible to determine the most appropriate sphero-cylindrical lens prescription to achieve the best possible visual quality. Among these techniques, subjective refraction (i.e., patient’s response-guided refraction) is the most commonly used approach. In this context, this paper’s main goal is to present a simulation software that implements in a virtual manner various subjective-refraction techniques—including Jackson’s Cross-Cylinder test (JCC)—relying all on the observation of computer-generated retinal images. This software has also been used to evaluate visual quality when the JCC test is performed in multifocal-contact-lens wearers. The results reveal this software’s usefulness to simulate the retinal image quality that a particular visual compensation provides. Moreover, it can help to gain a deeper insight and to improve existing refraction techniques and it can be used for simulated training. PMID:26938648

  19. Retinal pigment epithelial change and partial lipodystrophy.

    PubMed Central

    Davis, T. M.; Holdright, D. R.; Schulenberg, W. E.; Turner, R. C.; Joplin, G. F.

    1988-01-01

    Cuticular drusen and retinal pigment epithelial changes were found incidentally in a 27 year old Lebanese woman during assessment of partial lipodystrophy. Her vision was normal despite involvement of both maculae. The patient had hypocomplementaemia, but serum C3 nephritic factor was absent and renal function was normal. She had impaired glucose tolerance and a continuous infusion of glucose with model assessment (CIGMA) test revealed low normal tissue insulin sensitivity and high normal pancreatic beta cell function. Mild fasting hypertriglyceridaemia (2.0 mmol/l) may have been secondary to impaired insulin sensitivity. Endocrine function was otherwise normal apart from a completely absent growth hormone response to adequate hypoglycaemia. The simultaneous occurrence of partial lipodystrophy and retinal pigmentary epithelial and basement membrane changes appears to be a newly recognized syndrome. Images Figure 1 Figure 2 PMID:3255937

  20. Progressive Outer Retinal Necrosis and Immunosuppressive Therapy in Myasthenia Gravis

    PubMed Central

    Coisy, Solène; Ebran, Jean-Marc; Milea, Dan

    2014-01-01

    Introduction Progressive outer retinal necrosis (PORN) is a rare but devastating infectious retinitis associated with varicella zoster virus (VZV) and responsible for severe visual loss. Case Report A 59-year-old man treated for generalized myasthenia with oral azathioprine and prednisone presented with severe unilateral necrotizing retinitis. Polymerase chain reaction of the aqueous and vitreous humors was diagnostic for VZV PORN. Conclusion VZV PORN is a severe potential ocular complication of immunosuppression, prompting urgent diagnosis and appropriate treatment. PMID:24926266

  1. Interrelationships between the Retinal Neuroglia and Vasculature in Diabetes

    PubMed Central

    2014-01-01

    For years, diabetic retinopathy has been defined based on vascular lesions, and neural abnormalities were not regarded as important. This review summarizes evidence that the neural retina has important effects on the retinal vasculature under normal conditions, and the interaction between the retinal neuroglial cells and vascular function is altered in diabetes. Importantly, new evidence raises a possibility that abnormalities within retinal neuroglial cells (notably photoreceptors) might actually be causing or initiating the vascular disease in diabetic retinopathy. PMID:25003068

  2. Spontaneous resorption of sub-retinal cortical lens material

    PubMed Central

    Gadkari, Salil S; Kulkarni, Sucheta R; Dole, Kuldeep

    2014-01-01

    We report a rare case of retained sub-retinal cortical material, which underwent spontaneous resorption. Patient presented with a left eye traumatic retinal detachment with a large retinal tear and posteriorly dislocated cataractous lens. Vitrectomy, lensectomy, silicone oil injection, and endolaser were performed. A good visual result was achieved. The report draws attention to this condition and highlights possible technique for minimizing risk of this complication in similar cases. PMID:25116782

  3. Scleral buckling for retinal detachment in patients with retinoblastoma

    SciTech Connect

    Buzney, S.M.; Pruett, R.C.; Regan, C.D.; Walton, D.S.; Smith, T.R.

    1984-10-15

    Three children (two girls and one boy) with bilateral retinoblastoma each developed a presumed rhegmatogenous retinal detachment in one eye. All three eyes had previously received radiation and cryotherapy. In each case the retinal detachment responded promptly to conventional surgical methods via scleral buckling in the area of treated retinoblastoma and presumed retinal break. All three eyes have retained useful vision for follow-up periods of 3.5 to 12 years.

  4. Retinal detachment in the Morning Glory syndrome. Pathogenesis and management.

    PubMed

    von Fricken, M A; Dhungel, R

    1984-01-01

    A case of bilateral Morning Glory syndrome is presented, unusual because of a rhegmatogenous posterior pole retinal detachment in the left eye. Posterior pole retinal detachments have been described in association with this syndrome. This case report is the first presentation of a retinal tear located within the excavation surrounding the optic nerve. A surgical management approach is presented wherein vitrectomy and internal gas tamponade are utilized to reattach the retina. PMID:6463401

  5. Retinal Detachment due to CrossFit Training Injury.

    PubMed

    Joondeph, Stephanie A; Joondeph, Brian C

    2013-01-01

    The purpose of this paper is to describe a traumatic retinal detachment occurring as a result of CrossFit training using an elastic exercise band. The patient sustained an ocular injury from an elastic band during CrossFit training, resulting in a giant retinal dialysis and retinal detachment, which were successfully repaired. Trainers and athletes need to be aware of the potential for ocular injury from elastic exercise bands and take appropriate precautions. PMID:24106626

  6. Retinal Detachment due to CrossFit Training Injury

    PubMed Central

    Joondeph, Stephanie A.; Joondeph, Brian C.

    2013-01-01

    The purpose of this paper is to describe a traumatic retinal detachment occurring as a result of CrossFit training using an elastic exercise band. The patient sustained an ocular injury from an elastic band during CrossFit training, resulting in a giant retinal dialysis and retinal detachment, which were successfully repaired. Trainers and athletes need to be aware of the potential for ocular injury from elastic exercise bands and take appropriate precautions. PMID:24106626

  7. Dog models for blinding inherited retinal dystrophies.

    PubMed

    Petersen-Jones, Simon M; Komáromy, András M

    2015-03-01

    Spontaneous canine models exist for several inherited retinal dystrophies. This review will summarize the models and indicate where they have been used in translational gene therapy trials. The RPE65 gene therapy trials to treat childhood blindness are a good example of how studies in dogs have contributed to therapy development. Outcomes in human clinical trials are compared and contrasted with the result of the preclinical dog trials. PMID:25671556

  8. Progesterone receptor signalling in retinal photoreceptor neuroprotection.

    PubMed

    Jackson, Alice C Wyse; Roche, Sarah L; Byrne, Ashleigh M; Ruiz-Lopez, Ana M; Cotter, Thomas G

    2016-01-01

    'Norgestrel', a synthetic form of the female hormone progesterone has been identified as potential drug candidate for the treatment of the degenerative eye disease retinitis pigmentosa. However, to date, no work has looked at the compound's specific cellular target. Therefore, this study aimed to identify the receptor target of Norgestrel and begin to examine its potential mechanism of action in the retina. In this work, we identify and characterize the expression of progesterone receptors present in the C57 wild type and rd10 mouse model of retinitis pigmentosa. Classical progesterone receptors A and B (PR A/B), progesterone receptor membrane components 1 and 2 (PGRMC1, PGRMC2) and membrane progesterone receptors α, β and γ were found to be expressed. All receptors excluding PR A/B were also found in the 661W photoreceptor cell line. PGRMC1 is a key regulator of apoptosis and its expression is up-regulated in the degenerating rd10 mouse retina. Activated by Norgestrel through nuclear trafficking, siRNA knock down of PGRMC1 abrogated the protective properties of Norgestrel on damaged photoreceptors. Furthermore, specific inhibition of PGRMC1 by AG205 blocked Norgestrel-induced protection in stressed retinal explants. Therefore, we conclude that PGRMC1 is crucial to the neuroprotective effects of Norgestrel on stressed photoreceptors. The synthetic progestin 'Norgestrel' has been identified as a potential therapeutic for the treatment of Retinitis Pigmentosa, a degenerative eye disease. However, the mechanism behind this neuroprotection is currently unknown. In this work, we identify 'Progesterone Receptor Membrane Component 1' as the major progesterone receptor eliciting the protective effects of Norgestrel, both in vitro and ex vivo. This furthers our understanding of Norgestrel's molecular mechanism, which we hope will help bring Norgestrel one step closer to the clinic. PMID:26447367

  9. Retinal image quality in the rodent eye.

    PubMed

    Artal, P; Herreros de Tejada, P; Muñoz Tedó, C; Green, D G

    1998-01-01

    Many rodents do not see well. For a target to be resolved by a rat or a mouse, it must subtend a visual angle of a degree or more. It is commonly assumed that this poor spatial resolving capacity is due to neural rather than optical limitations, but the quality of the retinal image has not been well characterized in these animals. We have modified a double-pass apparatus, initially designed for the human eye, so it could be used with rodents to measure the modulation transfer function (MTF) of the eye's optics. That is, the double-pass retinal image of a monochromatic (lambda = 632.8 nm) point source was digitized with a CCD camera. From these double-pass measurements, the single-pass MTF was computed under a variety of conditions of focus and with different pupil sizes. Even with the eye in best focus, the image quality in both rats and mice is exceedingly poor. With a 1-mm pupil, for example, the MTF in the rat had an upper limit of about 2.5 cycles/deg, rather than the 28 cycles/deg one would obtain if the eye were a diffraction-limited system. These images are about 10 times worse than the comparable retinal images in the human eye. Using our measurements of the optics and the published behavioral and electrophysiological contrast sensitivity functions (CSFs) of rats, we have calculated the CSF that the rat would have if it had perfect rather than poor optics. We find, interestingly, that diffraction-limited optics would produce only slight improvement overall. That is, in spite of retinal images which are of very low quality, the upper limit of visual resolution in rodents is neurally determined. Rats and mice seem to have eyes in which the optics and retina/brain are well matched. PMID:9682864

  10. Dog Models for Blinding Inherited Retinal Dystrophies

    PubMed Central

    Komáromy, András M.

    2015-01-01

    Abstract Spontaneous canine models exist for several inherited retinal dystrophies. This review will summarize the models and indicate where they have been used in translational gene therapy trials. The RPE65 gene therapy trials to treat childhood blindness are a good example of how studies in dogs have contributed to therapy development. Outcomes in human clinical trials are compared and contrasted with the result of the preclinical dog trials. PMID:25671556

  11. Interconnection between brain and retinal neurodegenerations.

    PubMed

    Jindal, Vishal

    2015-01-01

    The eye is a special sensory organ, which is basically an extension of the brain. Both are derived from neural tube and consist of neurons. Therefore, diseases of both the brain and eye should have some similarity. Neurodegenerative disorders like Alzheimer's disease (AD) is the major cause of dementia in the world. Amyloid deposition in the cerebral cortex and hippocampal region is the basic pathology in AD. But along with it, there are various changes that take place in the eye, i.e., abnormal pupillary reaction, decreased vision, decreased contrast sensitivity, visual field changes, loss of retinal ganglionic cells and retinal fiber layer, peripapillary atrophy, increased cup-disk ratio, retinal thinning, tortuosity of blood vessels, and deposition of Aβ-like substance in the retina. And these changes are present in the early part of the disease when only mild cognitive impairment is there. As the brain is covered by a hard bony skull which makes it difficult to directly visualize the changes occurring in the brain at molecular levels, finer details of disease progression are not available with us. But the eye is the window of the brain; with advanced modern techniques, we can directly visualize the changes in the retina at a very fine level. Therefore, by depicting neurodegenerative changes in the eye, we can diagnose and manage AD at very early stages. Along with it, retinal neurodegenerations like glaucoma and age-related macular degeneration (ARMD) are the major cause of loss of vision, and still, there are no effective treatment modalities for these blinding conditions. So if we can understand its pathogenesis and progression by correlating with brain neurodegenerations, we can come up with a better therapy for glaucoma and ARMD. PMID:24826919

  12. Retinal prosthetics, optogenetics, and chemical photoswitches.

    PubMed

    Marc, Robert; Pfeiffer, Rebecca; Jones, Bryan

    2014-10-15

    Three technologies have emerged as therapies to restore light sensing to profoundly blind patients suffering from late-stage retinal degenerations: (1) retinal prosthetics, (2) optogenetics, and (3) chemical photoswitches. Prosthetics are the most mature and the only approach in clinical practice. Prosthetic implants require complex surgical intervention and provide only limited visual resolution but can potentially restore navigational ability to many blind patients. Optogenetics uses viral delivery of type 1 opsin genes from prokaryotes or eukaryote algae to restore light responses in survivor neurons. Targeting and expression remain major problems, but are potentially soluble. Importantly, optogenetics could provide the ultimate in high-resolution vision due to the long persistence of gene expression achieved in animal models. Nevertheless, optogenetics remains challenging to implement in human eyes with large volumes, complex disease progression, and physical barriers to viral penetration. Now, a new generation of photochromic ligands or chemical photoswitches (azobenzene-quaternary ammonium derivatives) can be injected into a degenerated mouse eye and, in minutes to hours, activate light responses in neurons. These photoswitches offer the potential for rapidly and reversibly screening the vision restoration expected in an individual patient. Chemical photoswitch variants that persist in the cell membrane could make them a simple therapy of choice, with resolution and sensitivity equivalent to optogenetics approaches. A major complexity in treating retinal degenerations is retinal remodeling: pathologic network rewiring, molecular reprogramming, and cell death that compromise signaling in the surviving retina. Remodeling forces a choice between upstream and downstream targeting, each engaging different benefits and defects. Prosthetics and optogenetics can be implemented in either mode, but the use of chemical photoswitches is currently limited to downstream

  13. Retinal Prosthetics, Optogenetics, and Chemical Photoswitches

    PubMed Central

    2015-01-01

    Three technologies have emerged as therapies to restore light sensing to profoundly blind patients suffering from late-stage retinal degenerations: (1) retinal prosthetics, (2) optogenetics, and (3) chemical photoswitches. Prosthetics are the most mature and the only approach in clinical practice. Prosthetic implants require complex surgical intervention and provide only limited visual resolution but can potentially restore navigational ability to many blind patients. Optogenetics uses viral delivery of type 1 opsin genes from prokaryotes or eukaryote algae to restore light responses in survivor neurons. Targeting and expression remain major problems, but are potentially soluble. Importantly, optogenetics could provide the ultimate in high-resolution vision due to the long persistence of gene expression achieved in animal models. Nevertheless, optogenetics remains challenging to implement in human eyes with large volumes, complex disease progression, and physical barriers to viral penetration. Now, a new generation of photochromic ligands or chemical photoswitches (azobenzene-quaternary ammonium derivatives) can be injected into a degenerated mouse eye and, in minutes to hours, activate light responses in neurons. These photoswitches offer the potential for rapidly and reversibly screening the vision restoration expected in an individual patient. Chemical photoswitch variants that persist in the cell membrane could make them a simple therapy of choice, with resolution and sensitivity equivalent to optogenetics approaches. A major complexity in treating retinal degenerations is retinal remodeling: pathologic network rewiring, molecular reprogramming, and cell death that compromise signaling in the surviving retina. Remodeling forces a choice between upstream and downstream targeting, each engaging different benefits and defects. Prosthetics and optogenetics can be implemented in either mode, but the use of chemical photoswitches is currently limited to downstream

  14. Neural differentiation and synaptogenesis in retinal development.

    PubMed

    Fan, Wen-Juan; Li, Xue; Yao, Huan-Ling; Deng, Jie-Xin; Liu, Hong-Liang; Cui, Zhan-Jun; Wang, Qiang; Wu, Ping; Deng, Jin-Bo

    2016-02-01

    To investigate the pattern of neural differentiation and synaptogenesis in the mouse retina, immunolabeling, BrdU assay and transmission electron microscopy were used. We show that the neuroblastic cell layer is the germinal zone for neural differentiation and retinal lamination. Ganglion cells differentiated initially at embryonic day 13 (E13), and at E18 horizontal cells appeared in the neuroblastic cell layer. Neural stem cells in the outer neuroblastic cell layer differentiated into photoreceptor cells as early as postnatal day 0 (P0), and neural stem cells in the inner neuroblastic cell layer differentiated into bipolar cells at P7. Synapses in the retina were mainly located in the outer and inner plexiform layers. At P7, synaptophysin immunostaining appeared in presynaptic terminals in the outer and inner plexiform layers with button-like structures. After P14, presynaptic buttons were concentrated in outer and inner plexiform layers with strong staining. These data indicate that neural differentiation and synaptogenesis in the retina play important roles in the formation of retinal neural circuitry. Our study showed that the period before P14, especially between P0 and P14, represents a critical period during retinal development. Mouse eye opening occurs during that period, suggesting that cell differentiation and synaptic formation lead to the attainment of visual function. PMID:27073386

  15. Retinal Implants: Emergence of a multidisciplinary field

    PubMed Central

    2012-01-01

    Purpose of review To summarize the current status of retinal prostheses, recent accomplishments, and major remaining research, engineering, and rehabilitation challenges. Recent findings Retinal research, materials and biocompatibility studies, and clinical trials in patients blind from RP are representative of an emerging field with considerable promise and sobering challenges. A summary of progress in dozens of labs, companies, and clinics around the world is presented through a synopsis of relevant papers, not only to summarize the progress, but also to convey the remarkable increase in interest, effort, and outside funding this field has enjoyed. Summary At the present time, clinical applications of retinal implant technology are dominated by one or two groups/companies, but the field is wide open for others to take the lead through novel approaches in technology, tissue interfacing, information transfer paradigms, and rehabilitation. Where the field will go in the next few years is almost anybody’s guess, but that it will move forward is a certainty. PMID:22185902

  16. [Retinal venous obliteration and general pathology].

    PubMed

    Aconiu, M; Mihălaş, G; Nemoianu, C

    1992-01-01

    The study of 148 retinal venous obliterations have shown 81 occlusions of central vein and 67 of I and II venous branch. A number of 90 was for the feminine gender (sex) and 59 for the masculine sex. The average age for the appearance of the venous occlusions was 62 years old, having extreme limits between 36-84 years old. Bilaterality has been for 3 cases. Concerning the associated medical affections, hypertension was for 67 patients, myocardiosclerosis have been mentioned for 67 patients, atherosclerosis for 21 patients, pulmonary scleroemphisis for 12 patients. Arterial hypertension with its aspersion that is arteriosclerosis are the main factors that have generated retinal circulation modifyings and have led to a degree of arterial insufficiency. Comparing the ophthalmological aspect to the pressure in the ophthalmic artery, most of the patients had a concordance of TACR and the retinal and choroidal angiosclerosis. The oscillometric examination to the inferior members has been effectuated for 21 patients and it has shown diminished values only for 3 cases. The forecast of the disease is still reserved. Following a group of 40 patients having OVR between 5 and 15 years old it has been established an average survival of 6.2 years. It is mentioned that 26% between these have dyed during the first six years. PMID:1520668

  17. Retinal image quality assessment using generic features

    NASA Astrophysics Data System (ADS)

    Fasih, Mahnaz; Langlois, J. M. Pierre; Ben Tahar, Houssem; Cheriet, Farida

    2014-03-01

    Retinal image quality assessment is an important step in automated eye disease diagnosis. Diagnosis accuracy is highly dependent on the quality of retinal images, because poor image quality might prevent the observation of significant eye features and disease manifestations. A robust algorithm is therefore required in order to evaluate the quality of images in a large database. We developed an algorithm for retinal image quality assessment based on generic features that is independent from segmentation methods. It exploits the local sharpness and texture features by applying the cumulative probability of blur detection metric and run-length encoding algorithm, respectively. The quality features are combined to evaluate the image's suitability for diagnosis purposes. Based on the recommendations of medical experts and our experience, we compared a global and a local approach. A support vector machine with radial basis functions was used as a nonlinear classifier in order to classify images to gradable and ungradable groups. We applied our methodology to 65 images of size 2592×1944 pixels that had been graded by a medical expert. The expert evaluated 38 images as gradable and 27 as ungradable. The results indicate very good agreement between the proposed algorithm's predictions and the medical expert's judgment: the sensitivity and specificity for the local approach are respectively 92% and 94%. The algorithm demonstrates sufficient robustness to identify relevant images for automated diagnosis.

  18. Optimal retinal cyst segmentation from OCT images

    NASA Astrophysics Data System (ADS)

    Oguz, Ipek; Zhang, Li; Abramoff, Michael D.; Sonka, Milan

    2016-03-01

    Accurate and reproducible segmentation of cysts and fluid-filled regions from retinal OCT images is an important step allowing quantification of the disease status, longitudinal disease progression, and response to therapy in wet-pathology retinal diseases. However, segmentation of fluid-filled regions from OCT images is a challenging task due to their inhomogeneous appearance, the unpredictability of their number, size and location, as well as the intensity profile similarity between such regions and certain healthy tissue types. While machine learning techniques can be beneficial for this task, they require large training datasets and are often over-fitted to the appearance models of specific scanner vendors. We propose a knowledge-based approach that leverages a carefully designed cost function and graph-based segmentation techniques to provide a vendor-independent solution to this problem. We illustrate the results of this approach on two publicly available datasets with a variety of scanner vendors and retinal disease status. Compared to a previous machine-learning based approach, the volume similarity error was dramatically reduced from 81:3+/-56:4% to 22:2+/-21:3% (paired t-test, p << 0:001).

  19. Antisense Oligonucleotide Therapy for Inherited Retinal Dystrophies.

    PubMed

    Gerard, Xavier; Garanto, Alejandro; Rozet, Jean-Michel; Collin, Rob W J

    2016-01-01

    Inherited retinal dystrophies (IRDs) are an extremely heterogeneous group of genetic diseases for which currently no effective treatment strategies exist. Over the last decade, significant progress has been made utilizing gene augmentation therapy for a few genetic subtypes of IRD, although several technical challenges so far prevent a broad clinical application of this approach for other forms of IRD. Many of the mutations leading to these retinal diseases affect pre-mRNA splicing of the mutated genes . Antisense oligonucleotide (AON)-mediated splice modulation appears to be a powerful approach to correct the consequences of such mutations at the pre-mRNA level , as demonstrated by promising results in clinical trials for several inherited disorders like Duchenne muscular dystrophy, hypercholesterolemia and various types of cancer. In this mini-review, we summarize ongoing pre-clinical research on AON-based therapy for a few genetic subtypes of IRD , speculate on other potential therapeutic targets, and discuss the opportunities and challenges that lie ahead to translate splice modulation therapy for retinal disorders to the clinic. PMID:26427454

  20. Neural differentiation and synaptogenesis in retinal development

    PubMed Central

    Fan, Wen-juan; Li, Xue; Yao, Huan-ling; Deng, Jie-xin; Liu, Hong-liang; Cui, Zhan-jun; Wang, Qiang; Wu, Ping; Deng, Jin-bo

    2016-01-01

    To investigate the pattern of neural differentiation and synaptogenesis in the mouse retina, immunolabeling, BrdU assay and transmission electron microscopy were used. We show that the neuroblastic cell layer is the germinal zone for neural differentiation and retinal lamination. Ganglion cells differentiated initially at embryonic day 13 (E13), and at E18 horizontal cells appeared in the neuroblastic cell layer. Neural stem cells in the outer neuroblastic cell layer differentiated into photoreceptor cells as early as postnatal day 0 (P0), and neural stem cells in the inner neuroblastic cell layer differentiated into bipolar cells at P7. Synapses in the retina were mainly located in the outer and inner plexiform layers. At P7, synaptophysin immunostaining appeared in presynaptic terminals in the outer and inner plexiform layers with button-like structures. After P14, presynaptic buttons were concentrated in outer and inner plexiform layers with strong staining. These data indicate that neural differentiation and synaptogenesis in the retina play important roles in the formation of retinal neural circuitry. Our study showed that the period before P14, especially between P0 and P14, represents a critical period during retinal development. Mouse eye opening occurs during that period, suggesting that cell differentiation and synaptic formation lead to the attainment of visual function. PMID:27073386

  1. Finite element modeling of retinal prosthesis mechanics

    NASA Astrophysics Data System (ADS)

    Basinger, B. C.; Rowley, A. P.; Chen, K.; Humayun, M. S.; Weiland, J. D.

    2009-10-01

    Epiretinal prostheses used to treat degenerative retina diseases apply stimulus via an electrode array fixed to the ganglion cell side of the retina. Mechanical pressure applied by these arrays to the retina, both during initial insertion and throughout chronic use, could cause sufficient retinal damage to reduce the device's effectiveness. In order to understand and minimize potential mechanical damage, we have used finite element analysis to model mechanical interactions between an electrode array and the retina in both acute and chronic loading configurations. Modeling indicates that an acute tacking force distributes stress primarily underneath the tack site and heel edge of the array, while more moderate chronic stresses are distributed more evenly underneath the array. Retinal damage in a canine model chronically implanted with a similar array occurred in correlating locations, and model predictions correlate well with benchtop eyewall compression tests. This model provides retinal prosthesis researchers with a tool to optimize the mechanical electrode array design, but the techniques used here represent a unique effort to combine a modifiable device and soft biological tissues in the same model and those techniques could be extended to other devices that come into mechanical contact with soft neural tissues.

  2. Enhancing retinal images by nonlinear registration

    NASA Astrophysics Data System (ADS)

    Molodij, G.; Ribak, E. N.; Glanc, M.; Chenegros, G.

    2015-05-01

    Being able to image the human retina in high resolution opens a new era in many important fields, such as pharmacological research for retinal diseases, researches in human cognition, nervous system, metabolism and blood stream, to name a few. In this paper, we propose to share the knowledge acquired in the fields of optics and imaging in solar astrophysics in order to improve the retinal imaging in the perspective to perform a medical diagnosis. The main purpose would be to assist health care practitioners by enhancing the spatial resolution of the retinal images and increase the level of confidence of the abnormal feature detection. We apply a nonlinear registration method using local correlation tracking to increase the field of view and follow structure evolutions using correlation techniques borrowed from solar astronomy technique expertise. Another purpose is to define the tracer of movements after analyzing local correlations to follow the proper motions of an image from one moment to another, such as changes in optical flows that would be of high interest in a medical diagnosis.

  3. Halting progressive neurodegeneration in advanced retinitis pigmentosa

    PubMed Central

    Koch, Susanne F.; Tsai, Yi-Ting; Duong, Jimmy K.; Wu, Wen-Hsuan; Hsu, Chun-Wei; Wu, Wei-Pu; Bonet-Ponce, Luis; Lin, Chyuan-Sheng; Tsang, Stephen H.

    2015-01-01

    Hereditary retinal degenerative diseases, such as retinitis pigmentosa (RP), are characterized by the progressive loss of rod photoreceptors followed by loss of cones. While retinal gene therapy clinical trials demonstrated temporary improvement in visual function, this approach has yet to achieve sustained functional and anatomical rescue after disease onset in patients. The lack of sustained benefit could be due to insufficient transduction efficiency of viral vectors (“too little”) and/or because the disease is too advanced (“too late”) at the time therapy is initiated. Here, we tested the latter hypothesis and developed a mouse RP model that permits restoration of the mutant gene in all diseased photoreceptor cells, thereby ensuring sufficient transduction efficiency. We then treated mice at early, mid, or late disease stages. At all 3 time points, degeneration was halted and function was rescued for at least 1 year. Not only do our results demonstrate that gene therapy effectively preserves function after the onset of degeneration, our study also demonstrates that there is a broad therapeutic time window. Moreover, these results suggest that RP patients are treatable, despite most being diagnosed after substantial photoreceptor loss, and that gene therapy research must focus on improving transduction efficiency to maximize clinical impact. PMID:26301813

  4. Central Retinal Vein Occlusion in a Patient with Retinal Vasculitis and Crohn's Disease

    PubMed Central

    Figueiredo, Lígia; Rothwell, Renata; Brandão, Arnaldo

    2014-01-01

    The authors report a rare case of a 47-year-old woman with Crohn's disease (CD) who presented with retinal vasculitis and central retinal vein occlusion (CRVO) during remission. The patient complained of sudden painless visual loss in her left eye (OS). Ophthalmologic evaluation revealed a best corrected visual acuity (BCVA) of 20/20 in the right eye and hand movements in OS. Ophthalmoscopy and fluorescein angiography of OS showed signs of nonischemic CRVO and extensive vasculitis. She was treated with oral prednisolone, mercaptopurine, and intravitreal bevacizumab in OS. After 1 month of treatment, VA of OS improved to 5/10 and after 1 year it was 10/10 with complete resolution of retinal vasculitis and nonischemic CRVO. PMID:25506451

  5. Monte Carlo simulation of retinal light absorption by infants.

    PubMed

    Guo, Ya; Tan, Jinglu

    2015-02-01

    Retinal damage can occur in normal ambient lighting conditions. Infants are particularly vulnerable to retinal damage, and thousands of preterm infants sustain vision damage each year. The size of the ocular fundus affects retinal light absorption, but there is a lack of understanding of this effect for infants. In this work, retinal light absorption is simulated for different ocular fundus sizes, wavelengths, and pigment concentrations by using the Monte Carlo method. The results indicate that the neural retina light absorption per volume for infants can be two or more times that for adults. PMID:26366599

  6. Antineurofilament and antiretinal antibodies in AIDS patients with cytomegalovirus retinitis.

    PubMed Central

    Rosberger, D F; Tshering, S L; Polsky, B; Heinemann, M H; Klein, R F; Cunningham-Rundles, S

    1994-01-01

    Sera obtained from AIDS patients with cytomegalovirus (CMV) retinitis before and after treatment with foscarnet, AIDS patients with human immunodeficiency virus (HIV) retinopathy, AIDS patients without retinal disease, and normal healthy controls with and without positive CMV serologies were assayed for the presence of antibodies against the 200-kDa outer, 160-kDa middle, and 68-kDa core subunits of the neurofilament triplet. Additional studies were performed to determine the presence of antibodies reactive with proteins extracted from crude human retinal antigen preparations. Antibodies against the 200-, 260-, and 68-kDa proteins of the neurofilament triplet were detected in 15 of 15 AIDS patients with CMV retinitis. The expression of these antibodies was unaffected, qualitatively, by successful treatment with foscarnet. In contrast, only 30% of patients with HIV retinopathy unrelated to CMV, fewer than 35% of AIDS patients with positive CMV titers but without evident retinitis, and fewer than 25% of healthy controls with positive or negative CMV titers possessed antibodies against any of the triplet proteins (P < 0.001). Antibodies against several clusters of retinal antigens were also identified in the sera of patients with CMV retinitis. In summary, the data indicate that retinal elements damaged by CMV infection induce an antibody response against the 200-, 160-, and 68kDa components of the neurofilament triplet as well as other, as yet undefined retinal antigens. Images PMID:8556483

  7. Microvascular Abnormality in Schizophrenia as Shown by Retinal Imaging

    PubMed Central

    Meier, Madeline H.; Shalev, Idan; Moffitt, Terrie E.; Kapur, Shitij; Keefe, Richard S.E.; Wong, Tien; Belsky, Daniel W.; Harrington, HonaLee; Hogan, Sean; Houts, Renate; Caspi, Avshalom; Poulton, Richie

    2013-01-01

    Objective Retinal and cerebral microvessels are structurally and functionally homologous, but, unlike cerebral microvessels, retinal microvessels can be noninvasively measured in vivo via retinal imaging. Here we test the hypothesis that individuals with schizophrenia show microvascular abnormality and evaluate the utility of retinal imaging as a tool for future schizophrenia research. Methods Participants were members of the Dunedin Study, a population-representative cohort followed from birth with 95% retention. Study members underwent retinal imaging at age 38 years. We assessed retinal arteriolar and venular caliber for all members of the cohort, including individuals who developed schizophrenia. Results Study members who developed schizophrenia were distinguished by wider retinal venules, suggesting microvascular abnormality reflective of insufficient brain oxygen supply. Analyses that controlled for confounding health conditions suggested that wider retinal venules are not simply an artifact of co-occurring health problems in schizophrenia patients. Wider venules were also associated with a dimensional measure of adult psychosis symptoms and with psychosis symptoms reported in childhood. Conclusions Findings provide initial support for the hypothesis that individuals with schizophrenia show microvascular abnormality. Moreover, results suggest that the same vascular mechanisms underlie subthreshold symptoms and clinical disorder and that these associations may begin early in life. These findings highlight the promise of retinal imaging as a tool for understanding the pathogenesis of schizophrenia. PMID:24030514

  8. Retinal Gene Therapy: Current Progress and Future Prospects

    PubMed Central

    Ku, Cristy A.; Pennesi, Mark E.

    2015-01-01

    Clinical trials treating inherited retinal dystrophy caused by RPE65 mutations had put retinal gene therapy at the forefront of gene therapy. Both successes and limitations in these clinical trials have fueled developments in gene vectors, which continue to further advance the field. These novel gene vectors aim to more safely and efficiently transduce retinal cells, expand the gene packaging capacity of AAV, and utilize new strategies to correct the varying mechanisms of dysfunction found with inherited retinal dystrophies. With recent clinical trials and numerous pre-clinical studies utilizing these novel vectors, the future of ocular gene therapy continues to hold vast potential. PMID:26609316

  9. Implantable multilayer microstrip antenna for retinal prosthesis: antenna testing.

    PubMed

    Permana, Hans; Fang, Qiang; Rowe, Wayne S T

    2012-01-01

    Retinal prosthesis has come to a more mature stage and become a very strategic answer to Retinitis Pigmentosa (RP) and Age-related Macular Degeneration (AMD) diseases. In a retinal prosthesis system, wireless link holds a great importance for the continuity of the system. In this paper, an implantable multilayer microstrip antenna was proposed for the retinal prosthesis system. Simulations were performed in High Frequency Structure Simulator (HFSS) with the surrounding material of air and Vitreous Humor fluid. The fabricated antenna was measured for characteristic validation in free space. The results showed that the real antenna possessed similar return loss and radiation pattern, while there was discrepancy with the gain values. PMID:23366231

  10. Genetic determinants of hyaloid and retinal vasculature in zebrafish

    PubMed Central

    Alvarez, Yolanda; Cederlund, Maria L; Cottell, David C; Bill, Brent R; Ekker, Stephen C; Torres-Vazquez, Jesus; Weinstein, Brant M; Hyde, David R; Vihtelic, Thomas S; Kennedy, Breandan N

    2007-01-01

    Background The retinal vasculature is a capillary network of blood vessels that nourishes the inner retina of most mammals. Developmental abnormalities or microvascular complications in the retinal vasculature result in severe human eye diseases that lead to blindness. To exploit the advantages of zebrafish for genetic, developmental and pharmacological studies of retinal vasculature, we characterised the intraocular vasculature in zebrafish. Results We show a detailed morphological and developmental analysis of the retinal blood supply in zebrafish. Similar to the transient hyaloid vasculature in mammalian embryos, vessels are first found attached to the zebrafish lens at 2.5 days post fertilisation. These vessels progressively lose contact with the lens and by 30 days post fertilisation adhere to the inner limiting membrane of the juvenile retina. Ultrastructure analysis shows these vessels to exhibit distinctive hallmarks of mammalian retinal vasculature. For example, smooth muscle actin-expressing pericytes are ensheathed by the basal lamina of the blood vessel, and vesicle vacuolar organelles (VVO), subcellular mediators of vessel-retinal nourishment, are present. Finally, we identify 9 genes with cell membrane, extracellular matrix and unknown identity that are necessary for zebrafish hyaloid and retinal vasculature development. Conclusion Zebrafish have a retinal blood supply with a characteristic developmental and adult morphology. Abnormalities of these intraocular vessels are easily observed, enabling application of genetic and chemical approaches in zebrafish to identify molecular regulators of hyaloid and retinal vasculature in development and disease. PMID:17937808

  11. Time-Lapse Retinal Ganglion Cell Dendritic Field Degeneration Imaged in Organotypic Retinal Explant Culture

    PubMed Central

    Johnson, Thomas V.; Oglesby, Ericka N.; Steinhart, Matthew R.; Cone-Kimball, Elizabeth; Jefferys, Joan; Quigley, Harry A.

    2016-01-01

    Purpose To develop an ex vivo organotypic retinal explant culture system suitable for multiple time-point imaging of retinal ganglion cell (RGC) dendritic arbors over a period of 1 week, and capable of detecting dendrite neuroprotection conferred by experimental treatments. Methods Thy1-YFP mouse retinas were explanted and maintained in organotypic culture. Retinal ganglion cell dendritic arbors were imaged repeatedly using confocal laser scanning microscopy. Maximal projection z-stacks were traced by two masked investigators and dendritic fields were analyzed for characteristics including branch number, size, and complexity. One group of explants was treated with brain derived neurotrophic factor (BDNF) and ciliary neurotrophic factor (CNTF) added to the culture media. Changes in individual dendritic fields over time were detected using pair-wise comparison testing. Results Retinal ganglion cells in mouse retinal explant culture began to degenerate after 3 days with 52.4% surviving at 7 days. Dendritic field parameters showed minimal change over 8 hours in culture. Intra- and interobserver measurements of dendrite characteristics were strongly correlated (Spearman rank correlations consistently > 0.80). Statistically significant (P < 0.001) dendritic tree degeneration was detected following 7 days in culture including: 40% to 50% decreases in number of branch segments, number of junctions, number of terminal branches, and total branch length. Scholl analyses similarly demonstrated a significant decrease in dendritic field complexity. Treatment of explants with BDNF+CNTF significantly attenuated dendritic field degeneration. Conclusions Retinal explant culture of Thy1-YFP tissue provides a useful model for time-lapse imaging of RGC dendritic field degeneration over a course of several days, and is capable of detecting neuroprotective amelioration of dendritic pruning within individual RGCs. PMID:26811145

  12. Retinal ganglion cell (RGC) programmed necrosis contributes to ischemia-reperfusion-induced retinal damage

    PubMed Central

    Dvoriantchikova, Galina; Degterev, Alexei; Ivanov, Dmitry

    2014-01-01

    Retinal ischemia–reperfusion (IR) injury remains a common cause of blindness and has a final pathway of retinal ganglion cell (RGC) death by apoptosis and necrosis. RGC apoptosis was intensively studied in IR injury, while RGC necrosis did not receive nearly enough consideration since it was viewed as an accidental and unregulated cellular event. However, there is evidence that necrosis, like apoptosis, can be implemented by a programmed mechanism. In this study, we tested the role of RGC programmed necrosis (necroptosis) in IR-induced retinal injury. We employed the mouse model of retinal IR injury for in vivo experiments. The oxygen and glucose deprivation (OGD) model was used as an IR model in vitro. Primary RGCs were isolated by an immunopanning technique. Necrostatin 1 (Nec1) was used to inhibit necroptosis in in vitro and in vivo experiments. The changes in gene expression were assessed by quantitative RT-PCR. The distribution of proteins in the retina and in RGC cultures was evaluated by immunohistochemistry and immunocytochemistry, respectively. Our data suggest that proteins (Ripk1 and Ripk3), which initiate necroptosis, were present in normal and ischemic RGCs. Treatment with Nec1 significantly reduced retinal damage after IR. Increased RGC survival and reduced RGC necrosis following OGD were observed in Nec1-treated cultures. We found significantly reduced expression of genes coding pro-inflammatory markers Il1b, Ccl5, Cxcl10, Nos2 and Cybb in Nec1-treated ischemic retinas. Thus, our findings suggest that RGC necroptosis contributes to retinal damage after IR through direct loss of cells and induction of associated inflammatory responses. PMID:24751757

  13. PARP1 Gene Knock-Out Increases Resistance to Retinal Degeneration without Affecting Retinal Function

    PubMed Central

    Sahaboglu, Ayse; Tanimoto, Naoyuki; Kaur, Jasvir; Sancho-Pelluz, Javier; Huber, Gesine; Fahl, Edda; Arango-Gonzalez, Blanca; Zrenner, Eberhart; Ekström, Per; Löwenheim, Hubert; Seeliger, Mathias; Paquet-Durand, François

    2010-01-01

    Retinitis pigmentosa (RP) is a group of inherited neurodegenerative diseases affecting photoreceptors and causing blindness in humans. Previously, excessive activation of enzymes belonging to the poly-ADP-ribose polymerase (PARP) group was shown to be involved in photoreceptor degeneration in the human homologous rd1 mouse model for RP. Since there are at least 16 different PARP isoforms, we investigated the exact relevance of the predominant isoform - PARP1 - for photoreceptor cell death using PARP1 knock-out (KO) mice. In vivo and ex vivo morphological analysis using optic coherence tomography (OCT) and conventional histology revealed no major alterations of retinal phenotype when compared to wild-type (wt). Likewise, retinal function as assessed by electroretinography (ERG) was normal in PARP1 KO animals. We then used retinal explant cultures derived from wt, rd1, and PARP1 KO animals to test their susceptibility to chemically induced photoreceptor degeneration. Since photoreceptor degeneration in the rd1 retina is triggered by a loss-of-function in phosphodiesterase-6 (PDE6), we used selective PDE6 inhibition to emulate the rd1 situation on non-rd1 genotypes. While wt retina subjected to PDE6 inhibition showed massive photoreceptor degeneration comparable to rd1 retina, in the PARP1 KO situation, cell death was robustly reduced. Together, these findings demonstrate that PARP1 activity is in principle dispensable for normal retinal function, but is of major importance for photoreceptor degeneration under pathological conditions. Moreover, our results suggest that PARP dependent cell death or PARthanatos may play a major role in retinal degeneration and highlight the possibility to use specific PARP inhibitors for the treatment of RP. PMID:21124852

  14. Rapid regression of exudative maculopathy in idiopathic retinitis, vasculitis, aneurysms and neuroretinitis syndrome after intravitreal ranibizumab.

    PubMed

    Marín-Lambíes, Cristina; Gallego-Pinazo, Roberto; Salom, David; Navarrete, Javier; Díaz-Llopis, Manuel

    2012-05-01

    The idiopathic retinitis, vasculitis, aneurysms and neuroretinitis syndrome is a rare retinal vascular disorder characterized by multiple leaking aneurysmal dilations, retinal vasculitis, neuroretinitis and peripheral vascular ischemia. Visual loss mainly occurs due to the development of retinal neovascularization and/or exudative maculopathy. Although the treatment of choice has not yet been established, retinal photocoagulation seems to be the best option to control the disease and to prevent its progression. Herein, we report a case of idiopathic retinitis, vasculitis, aneurysms and neuroretinitis syndrome with both retinal neovascularization and macular exudation successfully managed with intravitreal ranibizumab (Lucentis(®)) as adjunctive therapy to retinal photocoagulation. PMID:22949913

  15. Retinal Thickness Measured by Spectral Domain Optical Coherence Tomography in Eyes without Retinal Abnormalities: the Beaver Dam Eye Study

    PubMed Central

    Myers, Chelsea E.; Klein, Barbara E. K.; Meuer, Stacy M.; Swift, Maria K.; Chandler, Charles S.; Huang, Yijun; Gangaputra, Sapna; Pak, Jeong W.; Danis, Ronald P.; Klein, Ronald

    2014-01-01

    Purpose To examine relationships of age, sex, and systemic and ocular conditions with retinal thickness measured by spectral-domain ocular coherence tomography (SD-OCT) in participants without retinal disease. Design Longitudinal study. Methods Setting Population-based cohort. Study Population Persons aged 43-86 years living in Beaver Dam, Wisconsin in 1988-1990. Observation Procedures Retinal thickness was measured via SD-OCT at the Beaver Dam Eye Study examination in 2008-2010. Retinal disease was determined by ophthalmoscopy, fundus photography, or SD-OCT. Main Outcome Measures Retinal thickness from the inner limiting membrane to Bruch's membrane. Results The retina was thickest in the inner circle (mean 334.5 μm) and thinnest in the center subfield (285.4 μm). Mean retinal thickness decreased with age in the inner circle (P<0.0001) and outer circle (P<0.0001). Adjusting for age, eyes in men had thicker retinas than eyes in women in the center subfield (P<0.001) and inner circle (P<0.001). Sex, axial length/corneal curvature ratio, and peak expiratory flow rate were associated with center subfield thickness. Sex and peak expiratory flow rate were associated with retinal thickness in the inner circle. Alcohol consumption, age, axial length/corneal curvature ratio, cataract surgery, ocular perfusion pressure, and peak expiratory flow rate were associated with retinal thickness in the outer circle. Conclusions This study provides data for retinal thickness measures in eyes of individuals aged 63 years and older without retinal disease. This information may be useful for clinical trials involving the effects of interventions on retinal thickness and for comparisons with specific retinal diseases affecting the macula. PMID:25461295

  16. Vitritis in Pediatric Genetic Retinal Disorders

    PubMed Central

    Stunkel, Maria; Bhattarai, Sajag; Kemerley, Andrew; Stone, Edwin M.; Wang, Kai; Mullins, Robert F.; Drack, Arlene V.

    2014-01-01

    Structured Abstract Purpose To determine which types of pediatric retinal degeneration are associated with inflammatory cells in the anterior vitreous (AV). Design Retrospective, observational study in humans. Methods Retrospective chart review was performed for pediatric patients with suspected retinal degeneration presenting to a single examiner from 2008–2013. Age, visual acuity (VA), slit lamp examination of AV (SLAV), clinical and molecular genetic diagnoses were documented. Anterior vitreous cells were graded clinically with SLAV from rare cells (1–4) to 1+ (5–9), 2+ (10–30), or 3+ (more than 30). Cells were also counted in magnified slit beam photographs masked to molecular diagnosis when obtainable. Main outcome measures Cell counts in SLAV, best corrected VA, molecular and clinical diagnoses. Results One hundred and five charts were evaluated, 68 of which (64.8%) included SLAV data. Numerous (1+ or greater) cells were present in 22/68 (32.4%) patients, whereas 4/68 (5.9%) had rare cells and 42/68 (61.8%) had no cells. The average age between patients with cells, no-cells, and rare cells did not differ significantly (p=0.25). VA averaged 20/124 in patients with cells, 20/143 in patients with no-cells, and 20/68 in patients with rare cells (p= 0.70). The most frequent diagnoses with cells included Bardet Biedl syndrome, Leber congenital amaurosis (LCA), and retinitis pigmentosa. The most frequent diagnoses without cells included congenital stationary night blindness, LCA, Stargardt disease, and blue cone monochromacy. Discussion A non-random subset of pediatric retinal degenerations exhibit vitritis. Cells were present in 5/5 BBS patients (a progressive degeneration) whereas cells were not detected in any of the 12 patients with CSNB (a stable dysfunction). Conclusion Studying vitritis in pediatric retinal degenerations may reveal whether inflammation accompanies progressive vision loss in certain sub-types. Potentially, inflammation could be treated

  17. The kinetics of regeneration of rhodopsin under enzyme-limited availability of 11-cis retinoid.

    PubMed

    Lamb, Trevor D; Corless, Robert M; Pananos, A Demetri

    2015-05-01

    In order to describe the regeneration of rhodopsin and the recovery of visual sensitivity following exposure of the eye to intense bleaching illumination, two models have been proposed, in which there is either a "resistive" or an "enzymatic" limit to the supply of retinoid. A solution has previously been derived for the resistive model, and here we derive an analytical solution for the enzymatic model and we investigate the form of this solution as a function of parameter values. We demonstrate that this enzymatic model provides a good fit to human post-bleach recovery, for four cases: for rhodopsin regeneration in normal subjects; for psychophysical scotopic dark adaptation in normal subjects; for rhodopsin regeneration and scotopic dark adaptation in fundus albipunctatus patients; and for cone pigment regeneration in normal subjects. Finally, we present arguments favouring the enzymatic model as the cellular basis for normal human rod and cone pigment regeneration. PMID:25769401

  18. Mouse Slc9a8 Mutants Exhibit Retinal Defects Due to Retinal Pigmented Epithelium Dysfunction

    PubMed Central

    Jadeja, Shalini; Barnard, Alun R.; McKie, Lisa; Cross, Sally H.; White, Jacqueline K.; Robertson, Morag; Budd, Peter S.; MacLaren, Robert E.; Jackson, Ian J.

    2015-01-01

    Purpose. As part of a large scale systematic screen to determine the effects of gene knockout mutations in mice, a retinal phenotype was found in mice lacking the Slc9a8 gene, encoding the sodium/hydrogen ion exchange protein NHE8. We aimed to characterize the mutant phenotype and the role of sodium/hydrogen ion exchange in retinal function. Methods. Detailed histology characterized the pathological consequences of Slc9a8 mutation, and retinal function was assessed by electroretinography (ERG). A conditional allele was used to identify the cells in which NHE8 function is critical for retinal function, and mutant cells analyzed for the effect of the mutation on endosomes. Results. Histology of mutant retinas reveals a separation of photoreceptors from the RPE and infiltration by macrophages. There is a small reduction in photoreceptor length and a mislocalization of visual pigments. The ERG testing reveals a deficit in rod and cone pathway function. The RPE shows abnormal morphology, and mutation of Slc9a8 in only RPE cells recapitulates the mutant phenotype. The NHE8 protein localizes to endosomes, and mutant cells have much smaller recycling endosomes. Conclusions. The NHE8 protein is required in the RPE to maintain correct regulation of endosomal volume and/or pH which is essential for the cellular integrity and subsequent function of RPE. PMID:25736793

  19. Drug Delivery Nanoparticles: Toxicity Comparison in Retinal Pigment Epithelium and Retinal Vascular Endothelial Cells.

    PubMed

    Lin, Haijiang; Yue, Yueran; Maidana, Daniel E; Bouzika, Peggy; Atik, Alp; Matsumoto, Hidetaka; Miller, Joan W; Vavvas, Demetrios G

    2016-01-01

    Multiple synthetic polymer nanoparticles (NPs) have been widely used as drug delivery systems. However, their toxicity to the retinal pigment epithelium and retinal endothelium remains unclear. In this study, we analyze the cytotoxic effects of three different kinds of NPs, made of poly lactic-co-glycolic acid (PLGA), polycaprolactone (PCL), and PEGylated PLGA (PEG-PLGA), in a retinal pigment epithelium cell line (ARPE-19) and in primary human retinal vascular endothelial cells (RVEC). PEG-PLGA NPs presented the lowest cytotoxicity on ARPE-19 cells and RVEC as assessed by MTT viability assay. While PLGA and PCL exhibited variable amounts of toxicity, no significant toxicity was observed when incubating cells with high PEG-PLGA concentrations (100 µg/ml), for up to 6 days. On both transmission electron microscopy and confocal microscopy, Rhodamine 6G-loaded PEG-PLGA NPs were observed intracellularly in multiple subcellular organelles. PEG-PLGA NPs are a potentially viable option for the treatment of eye diseases. PMID:26959123

  20. Retinal oximeter for the blue-green oximetry technique

    NASA Astrophysics Data System (ADS)

    Denninghoff, Kurt R.; Sieluzycka, Katarzyna B.; Hendryx, Jennifer K.; Ririe, Tyson J.; Deluca, Lawrence; Chipman, Russell A.

    2011-10-01

    Retinal oximetry offers potential for noninvasive assessment of central venous oxyhemoglobin saturation (SO2) via the retinal vessels but requires a calibrated accuracy of +/-3% saturation in order to be clinically useful. Prior oximeter designs have been hampered by poor saturation calibration accuracy. We demonstrate that the blue-green oximetry (BGO) technique can provide accuracy within +/-3% in swine when multiply scattered light from blood within a retinal vessel is isolated. A noninvasive on-axis scanning retinal oximeter (ROx-3) is constructed that generates a multiwavelength image in the range required for BGO. A field stop in the detection pathway is used in conjunction with an anticonfocal bisecting wire to remove specular vessel reflections and isolate multiply backscattered light from the blood column within a retinal vessel. This design is tested on an enucleated swine eye vessel and a retinal vein in a human volunteer with retinal SO2 measurements of ~1 and ~65%, respectively. These saturations, calculated using the calibration line from earlier work, are internally consistent with a standard error of the mean of +/-2% SO2. The absolute measures are well within the expected saturation range for the site (-1 and 63%). This is the first demonstration of noninvasive on-axis BGO retinal oximetry.

  1. Accuracy of retinal oximetry: a Monte Carlo investigation

    PubMed Central

    Liu, Wenzhong; Jiao, Shuliang

    2013-01-01

    Abstract. Retinal hemoglobin oxygen saturation (sO2) level is believed to be associated with the pathophysiology of several leading blinding diseases. Methods to properly measure retinal sO2 have been investigated for decades; however, the accuracy of retinal oximetry is still considered to be limited. The Monte Carlo simulation of photon transport in retina to examine how the accuracy of retinal oximetry is affected by local parameters is discussed. Fundus photography was simulated in a multilayer retinal model, in which a single vessel segment with 0.7  sO2 was embedded, at six optical wavelengths. Then, 200 million photons were traced in each simulation to ensure statistically stable results. The optical reflectance and energy deposit were recorded to measure sO2 using both the reflection method (existing retinal oximetry) and a new absorption method, photoacoustic ophthalmoscopy (PAOM). By varying the vessel diameter and melanin concentration in the retinal pigment epithelium, the relative error of sO2 measurement in the reflection method increased with increasing vessel diameter and melanin concentration; in comparison, the sO2 measurement was insensitive to these two parameters in PAOM. The results suggest that PAOM potentially can be a more accurate tool in quantifying retinal sO2. PMID:23733019

  2. A Qualitative Self-Study of Retinitis Pigmentosa

    ERIC Educational Resources Information Center

    Fourie, Robert James

    2007-01-01

    Retinitis Pigmentosa (RP) is a retinal degenerative disease causing progressive blindness. Most research on RP is biomedical, and mostly from an observer perspective, therefore poorly reflecting the lived experience of having RP. Accordingly, the researcher conducted a retrospective qualitative self-study, to analyze reflections on his own…

  3. Subclinical primary retinal pathology in neuromyelitis optica spectrum disorder.

    PubMed

    Jeong, In Hye; Kim, Ho Jin; Kim, Nam-Hee; Jeong, Kyoung Sook; Park, Choul Yong

    2016-07-01

    Foveal thickness may be a more sensitive indicator of primary retinal pathology than retinal nerve fiber layer thickness since the fovea contains no or sparse retinal nerve fiber layer, which coalesces into axons of the optic nerve. To our knowledge, few quantitative in vivo studies have investigated foveal thickness. By using optical coherence tomography, we measured foveal thickness to evaluate intrinsic retinal pathology. Seventy-two neuromyelitis optica spectrum disorder patients (99 eyes with optic neuritis and 45 eyes without optic neuritis) and 34 age-matched controls were included. Foveal thinning was observed both in eyes with non-optic neuritis (185.1 µm, p < 0.001) and optic neuritis (185.0 µm, p < 0.001) relative to controls (205.0 µm). Compared to controls, eyes with non-optic neuritis did not have peripapillary retinal nerve fiber layer thinning, but showed foveal thinning (p < 0.001). In neuromyelitis optica spectrum disorder, foveal thickness correlated with 2.5 % low contrast visual acuity, while retinal nerve fiber layer thickness correlated with high or low contrast visual acuity, extended disability status scale, and disease duration. In this study, we observed foveal thinning irrespective of optic neuritis; thus, we believe that subclinical primary retinal pathology, prior to retinal nerve fiber layer thinning, may exist in neuromyelitis optica spectrum disorder. PMID:27142716

  4. Restoration of retinal layers after epiretinal membrane peeling

    PubMed Central

    Hartmann, K. I.; Schuster, A. K.; Bartsch, D.-U.; Kim, J. S.; Chhablani, J.; Freeman, W. R.

    2014-01-01

    Purpose To evaluate the morphological restoration of retinal anatomy after surgery for epiretinal membrane (ERM) peeling using spectral domain optical coherence tomography (SD-OCT). Correlation of retinal structure with visual outcome. Design Retrospective consecutive case series Methods 34 consecutive eyes with epiretinal membrane underwent surgery with one year follow up examination. Spectral domain optical coherence tomography (SD-OCT) scans were analyzed pre-operatively and 1 3, 6, 9 and 12 months post-operative. Best-corrected visual acuity (BCVA) using ETDRS charts was measured at each visit. Results All eyes showed a significant improvement of BCVA after ERM-peeling (p=0.002). The timepoint of BCVA and retinal restoration seen on SD-OCT occurred simultaneously and varied between individuals (occurrence of BCVA: mean 4.82 months; retinal restoration: mean 4.24 months). At 3-months, the retinal anatomic restoration rate was 70% and 88% at 6-months. Conclusion Restoration of the retinal anatomic structure predominantly occurs within the first three months post ERM peeling. An improvement of BCVA and anatomic retinal restoration after ERM-removal varies in individuals. If retinal layers fully restore in their anatomic structure, BCVA improves at the same time-point. PMID:24077089

  5. Accuracy of retinal oximetry: a Monte Carlo investigation

    NASA Astrophysics Data System (ADS)

    Liu, Wenzhong; Jiao, Shuliang; Zhang, Hao F.

    2013-06-01

    Retinal hemoglobin oxygen saturation (sO2) level is believed to be associated with the pathophysiology of several leading blinding diseases. Methods to properly measure retinal sO have been investigated for decades; however, the accuracy of retinal oximetry is still considered to be limited. The Monte Carlo simulation of photon transport in retina to examine how the accuracy of retinal oximetry is affected by local parameters is discussed. Fundus photography was simulated in a multilayer retinal model, in which a single vessel segment with 0.7 sO2 was embedded, at six optical wavelengths. Then, 200 million photons were traced in each simulation to ensure statistically stable results. The optical reflectance and energy deposit were recorded to measure sO using both the reflection method (existing retinal oximetry) and a new absorption method, photoacoustic ophthalmoscopy (PAOM). By varying the vessel diameter and melanin concentration in the retinal pigment epithelium, the relative error of sO measurement in the reflection method increased with increasing vessel diameter and melanin concentration; in comparison, the sO measurement was insensitive to these two parameters in PAOM. The results suggest that PAOM potentially can be a more accurate tool in quantifying retinal sO.

  6. Intravital video microscopy measurements of retinal blood flow in mice.

    PubMed

    Harris, Norman R; Watts, Megan N; Leskova, Wendy

    2013-01-01

    Alterations in retinal blood flow can contribute to, or be a consequence of, ocular disease and visual dysfunction. Therefore, quantitation of altered perfusion can aid research into the mechanisms of retinal pathologies. Intravital video microscopy of fluorescent tracers can be used to measure vascular diameters and bloodstream velocities of the retinal vasculature, specifically the arterioles branching from the central retinal artery and of the venules leading into the central retinal vein. Blood flow rates can be calculated from the diameters and velocities, with the summation of arteriolar flow, and separately venular flow, providing values of total retinal blood flow. This paper and associated video describe the methods for applying this technique to mice, which includes 1) the preparation of the eye for intravital microscopy of the anesthetized animal, 2) the intravenous infusion of fluorescent microspheres to measure bloodstream velocity, 3) the intravenous infusion of a high molecular weight fluorescent dextran, to aid the microscopic visualization of the retinal microvasculature, 4) the use of a digital microscope camera to obtain videos of the perfused retina, and 5) the use of image processing software to analyze the video. The same techniques can be used for measuring retinal blood flow rates in rats. PMID:24429840

  7. Relationship between retinal vascular occlusions and incident cerebrovascular diseases

    PubMed Central

    Zhou, Yue; Zhu, Wengen; Wang, Changyun

    2016-01-01

    Abstract Several studies investigating the role of retinal vascular occlusions, on cerebrovascular diseases (CVD) have been reported, but the results are still inconsistent. We therefore sought to evaluate the relationship between retinal vascular occlusions and CVD. We systematically searched the Cochrane Library, PubMed, and ScienceDirect databases through January 31, 2016 for studies evaluating the effect of retinal vascular occlusions on the risk of CVD. Data were abstracted using predefined criteria, and then pooled by RevMan 5.3 software. A total of 9 retrospective studies were included in this meta-analysis. When compared with individuals without retinal vascular occlusions, both individuals with retinal artery occlusion (RAO) (odds ratio [OR] = 2.01, 95% confidence interval [CI]: 1.21–3.34; P = 0.005) and individuals with retinal vein occlusion (RVO) (OR = 1.37, 95% CI: 1.24–1.50; P < 0.00001) had higher risks of developing CVD. Additionally, both individuals with central retinal artery occlusion (CRAO) (OR = 2.00, 95% CI: 1.12–3.56; P = 0.02) and branch retinal artery occlusion (BRAO) (OR = 1.60, 95% CI: 1.03–1.48; P = 0.04) were significantly associated with increased risk of CVD. Published literatures support both RVO and RAO are associated with increased risks of CVD. Further prospective studies are needed to confirm these findings. PMID:27368050

  8. Retinal Remodeling: Concerns, Emerging Remedies and Future Prospects

    PubMed Central

    Krishnamoorthy, Vidhyasankar; Cherukuri, Pitchaiah; Poria, Deepak; Goel, Manvi; Dagar, Sushma; Dhingra, Narender K.

    2016-01-01

    Deafferentation results not only in sensory loss, but also in a variety of alterations in the postsynaptic circuitry. These alterations may have detrimental impact on potential treatment strategies. Progressive loss of photoreceptors in retinal degenerative diseases, such as retinitis pigmentosa and age-related macular degeneration, leads to several changes in the remnant retinal circuitry. Müller glial cells undergo hypertrophy and form a glial seal. The second- and third-order retinal neurons undergo morphological, biochemical and physiological alterations. A result of these alterations is that retinal ganglion cells (RGCs), the output neurons of the retina, become hyperactive and exhibit spontaneous, oscillatory bursts of spikes. This aberrant electrical activity degrades the signal-to-noise ratio in RGC responses, and thus the quality of information they transmit to the brain. These changes in the remnant retina, collectively termed “retinal remodeling”, pose challenges for genetic, cellular and bionic approaches to restore vision. It is therefore crucial to understand the nature of retinal remodeling, how it affects the ability of remnant retina to respond to novel therapeutic strategies, and how to ameliorate its effects. In this article, we discuss these topics, and suggest that the pathological state of the retinal output following photoreceptor loss is reversible, and therefore, amenable to restorative strategies. PMID:26924962

  9. Bilateral Cytomegalovirus Retinitis in a Patient with Systemic Lupus Erythematosus

    PubMed Central

    Haze, Masaya; Kobayashi, Takatoshi; Kakurai, Keigo; Shoda, Hiromi; Takai, Nanae; Takeda, Sayako; Tada, Rei; Maruyama, Kouichi; Kida, Teruyo; Ikeda, Tsunehiko

    2016-01-01

    Purpose The purpose of this study was to report the case of a patient who underwent vitrectomy for bilateral rhegmatogenous retinal detachment caused by cytomegalovirus (CMV) retinitis while undergoing steroid and immunosuppressant therapy for systemic lupus erythematosus (SLE). Case Report We report on a 29-year-old female who was undergoing steroids and immunosuppressants treatment for SLE at Osaka Medical College Hospital, Takatsuki City, Japan. Examination of the patient due to prolonged and worsening diarrhea revealed positive test results for C7-HRP, and she was diagnosed with CMV colitis. She was subsequently admitted to the hospital and started on intravenous ganciclovir for treatment. Approximately 1.5 months later, her primary complaint was deterioration of the upper visual field in her left eye, and she was then referred to the Department of Ophthalmology. Numerous granular exudative spots were found around the lower retinal area of her left eye with retinal breaks that had developed in an area of retinal necrosis that resulted in retinal detachment. After time was allowed for the patient's general condition to improve, a vitrectomy was performed on that eye. The patient subsequently developed a similar retinal detachment in her right eye, for which she underwent a vitrectomy. Although the patient required multiple surgeries on both eyes, her retinas currently remain reattached and the inflammation has subsided. Conclusion The findings of this study show that strict attention must be paid to SLE patients on immunosuppressive therapy due to the possible association of CMV retinitis. PMID:27462259

  10. Automated retinal fovea type distinction in spectral-domain optical coherence tomography of retinal vein occlusion

    NASA Astrophysics Data System (ADS)

    Wu, Jing; Waldstein, Sebastian M.; Gerendas, Bianca S.; Langs, Georg; Simader, Christian; Schmidt-Erfurth, Ursula

    2015-03-01

    Spectral-domain Optical Coherence Tomography (SD-OCT) is a non-invasive modality for acquiring high- resolution, three-dimensional (3D) cross-sectional volumetric images of the retina and the subretinal layers. SD-OCT also allows the detailed imaging of retinal pathology, aiding clinicians in the diagnosis of sight degrading diseases such as age-related macular degeneration (AMD), glaucoma and retinal vein occlusion (RVO). Disease diagnosis, assessment, and treatment will require a patient to undergo multiple OCT scans, possibly using multiple scanners, to accurately and precisely gauge disease activity, progression and treatment success. However, cross-vendor imaging and patient movement may result in poor scan spatial correlation potentially leading to incorrect diagnosis or treatment analysis. The retinal fovea is the location of the highest visual acuity and is present in all patients, thus it is critical to vision and highly suitable for use as a primary landmark for cross-vendor/cross-patient registration for precise comparison of disease states. However, the location of the fovea in diseased eyes is extremely challenging to locate due to varying appearance and the presence of retinal layer destroying pathology. Thus categorising and detecting the fovea type is an important prior stage to automatically computing the fovea position. Presented here is an automated cross-vendor method for fovea distinction in 3D SD-OCT scans of patients suffering from RVO, categorising scans into three distinct types. OCT scans are preprocessed by motion correction and noise filing followed by segmentation using a kernel graph-cut approach. A statistically derived mask is applied to the resulting scan creating an ROI around the probable fovea location from which the uppermost retinal surface is delineated. For a normal appearance retina, minimisation to zero thickness is computed using the top two retinal surfaces. 3D local minima detection and layer thickness analysis are used

  11. Optical Coherence Tomography of Retinal and Choroidal Tumors

    PubMed Central

    Say, Emil Anthony T.; Shah, Sanket U.; Ferenczy, Sandor; Shields, Carol L.

    2011-01-01

    Optical coherence tomography (OCT) has revolutionized the field of ophthalmology since its introduction 20 years ago. Originally intended primarily for retina specialists to image the macula, it has found its role in other subspecialties that include glaucoma, cornea, and ocular oncology. In ocular oncology, OCT provides axial resolution to approximately 7 microns with cross-sectional images of the retina, delivering valuable information on the effects of intraocular tumors on the retinal architecture. Some effects include retinal edema, subretinal fluid, retinal atrophy, photoreceptor loss, outer retinal thinning, and retinal pigment epithelial detachment. With more advanced technology, OCT now provides imaging deeper into the choroid using a technique called enhanced depth imaging. This allows characterization of the thickness and reflective quality of small (<3 mm thick) choroidal lesions including choroidal nevus and melanoma. Future improvements in image resolution and depth will allow better understanding of the mechanisms of visual loss, tumor growth, and tumor management. PMID:21811667

  12. Optical Coherence Tomography of Retinal and Choroidal Tumors

    PubMed Central

    Say, Emil Anthony T.; Shah, Sanket U.; Ferenczy, Sandor; Shields, Carol L.

    2012-01-01

    Optical coherence tomography (OCT) has revolutionized the field of ophthalmology since its introduction 20 years ago. Originally intended primarily for retina specialists to image the macula, it has found its role in other subspecialties that include glaucoma, cornea, and ocular oncology. In ocular oncology, OCT provides axial resolution to approximately 7 microns with cross-sectional images of the retina, delivering valuable information on the effects of intraocular tumors on the retinal architecture. Some effects include retinal edema, subretinal fluid, retinal atrophy, photoreceptor loss, outer retinal thinning, and retinal pigment epithelial detachment. With more advanced technology, OCT now provides imaging deeper into the choroid using a technique called enhanced depth imaging. This allows characterization of the thickness and reflective quality of small (<3 mm thick) choroidal lesions including choroidal nevus and melanoma. Future improvements in image resolution and depth will allow better understanding of the mechanisms of visual loss, tumor growth, and tumor management. PMID:23008756

  13. Intrinsic optical signal imaging of retinal physiology: a review

    NASA Astrophysics Data System (ADS)

    Yao, Xincheng; Wang, Benquan

    2015-09-01

    Intrinsic optical signal (IOS) imaging promises to be a noninvasive method for high-resolution examination of retinal physiology, which can advance the study and diagnosis of eye diseases. While specialized optical instruments are desirable for functional IOS imaging of retinal physiology, in depth understanding of multiple IOS sources in the complex retinal neural network is essential for optimizing instrument designs. We provide a brief overview of IOS studies and relationships in rod outer segment suspensions, isolated retinas, and intact eyes. Recent developments of line-scan confocal and functional optical coherence tomography (OCT) instruments have allowed in vivo IOS mapping of photoreceptor physiology. Further improvements of the line-scan confocal and functional OCT systems may provide a feasible solution to pursue functional IOS mapping of human photoreceptors. Some interesting IOSs have already been detected in inner retinal layers, but better development of the IOS instruments and software algorithms is required to achieve optimal physiological assessment of inner retinal neurons.

  14. Retinal metastasis from unknown primary: diagnosis, management, and clinicopathologic correlation

    PubMed Central

    Taubenslag, Kenneth J.; Kim, Stephen J.; Attia, Albert; Abel, Ty W.; Nickols, Hilary Highfield; Ancell, Kristin K.; Daniels, Anthony B.

    2015-01-01

    Summary A 75-year-old man was incidentally found to have a yellow-white retinal lesion with scattered hemorrhages. He was empirically treated elsewhere for viral retinitis without resolution and later transferred to the Vanderbilt Eye Institute, where retinal biopsy with silicone oil tamponade showed retinal metastasis. He had no prior history of cancer, and multiple systemic imaging evaluations failed to identify a primary site. Histopathology and immunohistochemistry of the biopsy were consistent with non-small-cell lung carcinoma. Due to the radiation-attenuating properties of silicone oil, the patient underwent silicone oil removal prior to receiving external beam radiotherapy (EBRT). The retinal metastasis responded completely to EBRT, and at final follow-up, 18 months after initial presentation, no primary tumor has been identified. PMID:27330472

  15. Rickettsia retinitis cases in India: a few comments.

    PubMed

    Tripathy, Koushik; Chawla, Rohan; Sharma, Yog Raj; Vohra, Rajpal

    2016-12-01

    An important cause of infectious retinitis, not well-described in Indian literature, has been analyzed in detail systematically by Kawali A. and colleagues. However, Rickettsia retinitis (RR) was diagnosed at titres of 1:160 by the Weil-Felix test (WFT). The sensitivity and specificity of WFT at this level are poor compared to the gold standard immunofluorescent antibody assay. However, we understand that financial constraints of the Indian patients limit the availability of more definite tests. In our opinion, the optical coherence tomography features of RR described by the authors may be mimicked by other causes of retinitis, such as toxoplasma retinitis or even cotton wool spots. Infectious retinitis including RR should be treated by an antimicrobial agent with or without oral steroids until larger series or randomized controlled trials prove otherwise. PMID:26920002

  16. Intrinsic optical signal imaging of retinal physiology: a review.

    PubMed

    Yao, Xincheng; Wang, Benquan

    2015-09-01

    Intrinsic optical signal (IOS) imaging promises to be a noninvasive method for high-resolution examination of retinal physiology, which can advance the study and diagnosis of eye diseases. While specialized optical instruments are desirable for functional IOS imaging of retinal physiology, in depth understanding of multiple IOS sources in the complex retinal neural network is essential for optimizing instrument designs. We provide a brief overview of IOS studies and relationships in rod outer segment suspensions, isolated retinas, and intact eyes. Recent developments of line-scan confocal and functional optical coherence tomography (OCT) instruments have allowed in vivo IOS mapping of photoreceptor physiology. Further improvements of the line-scan confocal and functional OCT systems may provide a feasible solution to pursue functional IOS mapping of human photoreceptors. Some interesting IOSs have already been detected in inner retinal layers, but better development of the IOS instruments and software algorithms is required to achieve optimal physiological assessment of inner retinal neurons. PMID:26405819

  17. Morphometrical analysis of retinal hemorrhages in the shaken baby syndrome.

    PubMed

    Betz, P; Puschel, K; Miltner, E; Lignitz, E; Eisenmenger, W

    1996-03-01

    A morphometrical analysis of retinal hemorrhages was performed in cases of physical child abuse including the shaken baby syndrome and in controls (severe head injury, intravital brain death, non-traumatic intracranial hemorrhage, SIDS including cardiopulmonary resuscitation). The extent of the retinal hemorrhages was significantly different between both groups. In all cases of physical child abuse, massive retinal hemorrhages in at least one eye could be found ranging between a maximum value of 19.2 and 73.2% of the entire retinal area. In contrast, only two cases of the control group (severe head injury with skull fractures and intracranial bleeding following traffic accident or fall) showed slight hemorrhages of 3.33 or 1.18% of the retinal area but only in one eye. Therefore, the results provide evidence that massive intraretinal hemorrhages indicate violent shaking -- in particular in association with other signs of physical child abuse. PMID:8855047

  18. Signaling Networks of Retinal Ganglion Cell Formation and the Potential Application of Stem Cell-Based Therapy in Retinal Degenerative Diseases.

    PubMed

    Wu, Nan; Wang, Yi; Yang, Lanbo; Cho, Kin-Sang

    2016-08-01

    Retinal degenerative diseases such as age-related macular degeneration, retinitis pigmentosa, and glaucoma result in permanent loss of retinal neurons and vision. Stem cell therapy could be a novel treatment strategy to restore visual function. In an ideal situation, a homogenous population of stem cell-derived retinal neurons with high purity is used for replacement therapy. Thus, it is crucial to elucidate the molecular mechanisms that regulate the development of retinal progenitor cells and subsequent generation of specific retinal neurons. Here, recent findings concerning the intrinsic and extrinsic factors that regulate retinal progenitor cell maintenance and differentiation are summarized, especially transcriptional factors and extrinsic signals. Understanding these mechanisms is indispensable because they have potential clinical applications, chiefly the generation of specific retinal cells such as retinal ganglion cells to treat glaucoma and other optic neuropathy diseases. PMID:27466076

  19. Statistical Modeling of Retinal Optical Coherence Tomography.

    PubMed

    Amini, Zahra; Rabbani, Hossein

    2016-06-01

    In this paper, a new model for retinal Optical Coherence Tomography (OCT) images is proposed. This statistical model is based on introducing a nonlinear Gaussianization transform to convert the probability distribution function (pdf) of each OCT intra-retinal layer to a Gaussian distribution. The retina is a layered structure and in OCT each of these layers has a specific pdf which is corrupted by speckle noise, therefore a mixture model for statistical modeling of OCT images is proposed. A Normal-Laplace distribution, which is a convolution of a Laplace pdf and Gaussian noise, is proposed as the distribution of each component of this model. The reason for choosing Laplace pdf is the monotonically decaying behavior of OCT intensities in each layer for healthy cases. After fitting a mixture model to the data, each component is gaussianized and all of them are combined by Averaged Maximum A Posterior (AMAP) method. To demonstrate the ability of this method, a new contrast enhancement method based on this statistical model is proposed and tested on thirteen healthy 3D OCTs taken by the Topcon 3D OCT and five 3D OCTs from Age-related Macular Degeneration (AMD) patients, taken by Zeiss Cirrus HD-OCT. Comparing the results with two contending techniques, the prominence of the proposed method is demonstrated both visually and numerically. Furthermore, to prove the efficacy of the proposed method for a more direct and specific purpose, an improvement in the segmentation of intra-retinal layers using the proposed contrast enhancement method as a preprocessing step, is demonstrated. PMID:26800532

  20. Towards real time speckle controlled retinal photocoagulation

    NASA Astrophysics Data System (ADS)

    Bliedtner, Katharina; Seifert, Eric; Stockmann, Leoni; Effe, Lisa; Brinkmann, Ralf

    2016-03-01

    Photocoagulation is a laser treatment widely used for the therapy of several retinal diseases. Intra- and inter-individual variations of the ocular transmission, light scattering and the retinal absorption makes it impossible to achieve a uniform effective exposure and hence a uniform damage throughout the therapy. A real-time monitoring and control of the induced damage is highly requested. Here, an approach to realize a real time optical feedback using dynamic speckle analysis is presented. A 532 nm continuous wave Nd:YAG laser is used for coagulation. During coagulation, speckle dynamics are monitored by a coherent object illumination using a 633nm HeNe laser and analyzed by a CMOS camera with a frame rate up to 1 kHz. It is obvious that a control system needs to determine whether the desired damage is achieved to shut down the system in a fraction of the exposure time. Here we use a fast and simple adaption of the generalized difference algorithm to analyze the speckle movements. This algorithm runs on a FPGA and is able to calculate a feedback value which is correlated to the thermal and coagulation induced tissue motion and thus the achieved damage. For different spot sizes (50-200 μm) and different exposure times (50-500 ms) the algorithm shows the ability to discriminate between different categories of retinal pigment epithelial damage ex-vivo in enucleated porcine eyes. Furthermore in-vivo experiments in rabbits show the ability of the system to determine tissue changes in living tissue during coagulation.

  1. Developing Cellular Therapies for Retinal Degenerative Diseases

    PubMed Central

    Bharti, Kapil; Rao, Mahendra; Hull, Sara Chandros; Stroncek, David; Brooks, Brian P.; Feigal, Ellen; van Meurs, Jan C.; Huang, Christene A.; Miller, Sheldon S.

    2014-01-01

    Biomedical advances in vision research have been greatly facilitated by the clinical accessibility of the visual system, its ease of experimental manipulation, and its ability to be functionally monitored in real time with noninvasive imaging techniques at the level of single cells and with quantitative end-point measures. A recent example is the development of stem cell–based therapies for degenerative eye diseases including AMD. Two phase I clinical trials using embryonic stem cell–derived RPE are already underway and several others using both pluripotent and multipotent adult stem cells are in earlier stages of development. These clinical trials will use a variety of cell types, including embryonic or induced pluripotent stem cell–derived RPE, bone marrow– or umbilical cord–derived mesenchymal stem cells, fetal neural or retinal progenitor cells, and adult RPE stem cells–derived RPE. Although quite distinct, these approaches, share common principles, concerns and issues across the clinical development pipeline. These considerations were a central part of the discussions at a recent National Eye Institute meeting on the development of cellular therapies for retinal degenerative disease. At this meeting, emphasis was placed on the general value of identifying and sharing information in the so-called “precompetitive space.” The utility of this behavior was described in terms of how it could allow us to remove road blocks in the clinical development pipeline, and more efficiently and economically move stem cell–based therapies for retinal degenerative diseases toward the clinic. Many of the ocular stem cell approaches we discuss are also being used more broadly, for nonocular conditions and therefore the model we develop here, using the precompetitive space, should benefit the entire scientific community. PMID:24573369

  2. Automated measurement of retinal blood vessel tortuosity

    NASA Astrophysics Data System (ADS)

    Joshi, Vinayak; Reinhardt, Joseph M.; Abramoff, Michael D.

    2010-03-01

    Abnormalities in the vascular pattern of the retina are associated with retinal diseases and are also risk factors for systemic diseases, especially cardiovascular diseases. The three-dimensional retinal vascular pattern is mostly formed congenitally, but is then modified over life, in response to aging, vessel wall dystrophies and long term changes in blood flow and pressure. A characteristic of the vascular pattern that is appreciated by clinicians is vascular tortuosity, i.e. how curved or kinked a blood vessel, either vein or artery, appears along its course. We developed a new quantitative metric for vascular tortuosity, based on the vessel's angle of curvature, length of the curved vessel over its chord length (arc to chord ratio), number of curvature sign changes, and combined these into a unidimensional metric, Tortuosity Index (TI). In comparison to other published methods this method can estimate appropriate TI for vessels with constant curvature sign and vessels with equal arc to chord ratios, as well. We applied this method to a dataset of 15 digital fundus images of 8 patients with Facioscapulohumeral muscular dystrophy (FSHD), and to the other publically available dataset of 60 fundus images of normal cases and patients with hypertensive retinopathy, of which the arterial and venous tortuosities have also been graded by masked experts (ophthalmologists). The method produced exactly the same rank-ordered list of vessel tortuosity (TI) values as obtained by averaging the tortuosity grading given by 3 ophthalmologists for FSHD dataset and a list of TI values with high ranking correlation with the ophthalmologist's grading for the other dataset. Our results show that TI has potential to detect and evaluate abnormal retinal vascular structure in early diagnosis and prognosis of retinopathies.

  3. Frequency Responses of Rat Retinal Ganglion Cells

    PubMed Central

    Cloherty, Shaun L.; Hung, Yu-Shan; Kameneva, Tatiana; Ibbotson, Michael R.

    2016-01-01

    There are 15–20 different types of retinal ganglion cells (RGC) in the mammalian retina, each encoding different aspects of the visual scene. The mechanism by which post-synaptic signals from the retinal network generate spikes is determined by each cell’s intrinsic electrical properties. Here we investigate the frequency responses of morphologically identified rat RGCs using intracellular injection of sinusoidal current waveforms, to assess their intrinsic capabilities with minimal contributions from the retinal network. Recorded cells were classified according to their morphological characteristics (A, B, C or D-type) and their stratification (inner (i), outer (o) or bistratified) in the inner plexiform layer (IPL). Most cell types had low- or band-pass frequency responses. A2, C1 and C4o cells were band-pass with peaks of 15–30 Hz and low-pass cutoffs above 56 Hz (A2 cells) and ~42 Hz (C1 and C4o cells). A1 and C2i/o cells were low-pass with peaks of 10–15 Hz (cutoffs 19–25 Hz). Bistratified D1 and D2 cells were also low-pass with peaks of 5–10 Hz (cutoffs ~16 Hz). The least responsive cells were the B2 and C3 types (peaks: 2–5 Hz, cutoffs: 8–11 Hz). We found no difference between cells stratifying in the inner and outer IPL (i.e., ON and OFF cells) or between cells with large and small somas or dendritic fields. Intrinsic physiological properties (input resistance, spike width and sag) had little impact on frequency response at low frequencies, but account for 30–40% of response variability at frequencies >30 Hz. PMID:27341669

  4. Automated lesion detectors in retinal fundus images.

    PubMed

    Figueiredo, I N; Kumar, S; Oliveira, C M; Ramos, J D; Engquist, B

    2015-11-01

    Diabetic retinopathy (DR) is a sight-threatening condition occurring in persons with diabetes, which causes progressive damage to the retina. The early detection and diagnosis of DR is vital for saving the vision of diabetic persons. The early signs of DR which appear on the surface of the retina are the dark lesions such as microaneurysms (MAs) and hemorrhages (HEMs), and bright lesions (BLs) such as exudates. In this paper, we propose a novel automated system for the detection and diagnosis of these retinal lesions by processing retinal fundus images. We devise appropriate binary classifiers for these three different types of lesions. Some novel contextual/numerical features are derived, for each lesion type, depending on its inherent properties. This is performed by analysing several wavelet bands (resulting from the isotropic undecimated wavelet transform decomposition of the retinal image green channel) and by using an appropriate combination of Hessian multiscale analysis, variational segmentation and cartoon+texture decomposition. The proposed methodology has been validated on several medical datasets, with a total of 45,770 images, using standard performance measures such as sensitivity and specificity. The individual performance, per frame, of the MA detector is 93% sensitivity and 89% specificity, of the HEM detector is 86% sensitivity and 90% specificity, and of the BL detector is 90% sensitivity and 97% specificity. Regarding the collective performance of these binary detectors, as an automated screening system for DR (meaning that a patient is considered to have DR if it is a positive patient for at least one of the detectors) it achieves an average 95-100% of sensitivity and 70% of specificity at a per patient basis. Furthermore, evaluation conducted on publicly available datasets, for comparison with other existing techniques, shows the promising potential of the proposed detectors. PMID:26378502

  5. Permanent retinal injury from recreational laser pointer.

    PubMed

    Noble, Carl; Blice, Jeffrey

    2015-03-01

    This case report was performed to display the visually significant damage to the retina that can occur with brief exposure to a handheld laser pointer. Laser use in the military is ever increasing in form of target designators, rangefinders, or radar warning systems with powers far greater than used in this case. There is great potential for future cases of retinal damage among active duty members, and the importance of prevention through laser safety programs and recognition through trained medical personnel is paramount. PMID:25735035

  6. Isotope Labeling Study of Retinal Chromophore Fragmentation.

    PubMed

    Musbat, Lihi; Nihamkin, Maria; Ytzhak, Shany; Hirshfeld, Amiram; Friedman, Noga; Dilger, Jonathan M; Sheves, Mordechai; Toker, Yoni

    2016-04-28

    Previous studies have shown that the gas-phase fragmentation of the retinal chromophore after S0-S1 photoexcitation results in a prominent fragment of mass 248 which cannot be explained by the cleavage of any single bond along the polyene chain. It was therefore theorized that the fragmentation mechanism involves a series of isomerizations and cyclization processes, and two mechanisms for these processes were suggested. Here we used isotope labeling MS-MS to provide conclusive support for the fragmentation mechanism suggested by Coughlan et al. (J. Phys. Chem. Lett. 2014, 5, 3195). PMID:27046667

  7. Concerted Signaling by Retinal Ganglion Cells

    NASA Astrophysics Data System (ADS)

    Meister, Markus; Lagnado, Leon; Baylor, Denis A.

    1995-11-01

    To analyze the rules that govern communication between eye and brain, visual responses were recorded from an intact salamander retina. Parallel observation of many retinal ganglion cells with a microelectrode array showed that nearby neurons often fired synchronously, with spike delays of less than 10 milliseconds. The frequency of such synchronous spikes exceeded the correlation expected from a shared visual stimulus up to 20-fold. Synchronous firing persisted under a variety of visual stimuli and accounted for the majority of action potentials recorded. Analysis of receptive fields showed that concerted spikes encoded information not carried by individual cells; they may represent symbols in a multineuronal code for vision.

  8. Detection of Retinitis Pigmentosa by Differential Interference Contrast Microscopy

    PubMed Central

    Kim, Yu Jeong; Lee, Hyunho; Cho, Joon Hyong; Cho, Young Ho; Kim, Chul-Ki; Lee, Taik Jin; Lee, Seok; Park, Ki Ho; Yu, Hyeong Gon; Lee, Hyuk-jae; Jun, Seong Chan; Kim, Jae Hun

    2014-01-01

    Differential interference contrast microscopy is designed to image unstained and transparent specimens by enhancing the contrast resulting from the Nomarski prism-effected optical path difference. Retinitis pigmentosa, one of the most common inherited retinal diseases, is characterized by progressive loss of photoreceptors. In this study, Differential interference contrast microscopy was evaluated as a new and simple application for observation of the retinal photoreceptor layer and retinitis pigmentosa diagnostics and monitoring. Retinal tissues of Royal College of Surgeons rats and retinal-degeneration mice, both well-established animal models for the disease, were prepared as flatmounts and histological sections representing different elapsed times since the occurrence of the disease. Under the microscopy, the retinal flatmounts showed that the mosaic pattern of the photoreceptor layer was irregular and partly collapsed at the early stage of retinitis pigmentosa, and, by the advanced stage, amorphous. The histological sections, similarly, showed thinning of the photoreceptor layer at the early stage and loss of the outer nuclear layer by the advanced stage. To count and compare the number of photoreceptors in the normal and early-retinitis pigmentosa-stage tissues, an automated cell-counting program designed with MATLAB, a numerical computing language, using a morphological reconstruction method, was applied to the differential interference contrast microscopic images. The number of cells significantly decreased, on average, from 282 to 143 cells for the Royal College of Surgeons rats and from 255 to 170 for the retinal-degeneration mouse. We successfully demonstrated the potential of the differential interference contrast microscopy technique’s application to the diagnosis and monitoring of RP. PMID:24810005

  9. Classification of left and right eye retinal images

    NASA Astrophysics Data System (ADS)

    Tan, Ngan Meng; Liu, Jiang; Wong, Damon W. K.; Zhang, Zhuo; Lu, Shijian; Lim, Joo Hwee; Li, Huiqi; Wong, Tien Yin

    2010-03-01

    Retinal image analysis is used by clinicians to diagnose and identify, if any, pathologies present in a patient's eye. The developments and applications of computer-aided diagnosis (CAD) systems in medical imaging have been rapidly increasing over the years. In this paper, we propose a system to classify left and right eye retinal images automatically. This paper describes our two-pronged approach to classify left and right retinal images by using the position of the central retinal vessel within the optic disc, and by the location of the macula with respect to the optic nerve head. We present a framework to automatically identify the locations of the key anatomical structures of the eye- macula, optic disc, central retinal vessels within the optic disc and the ISNT regions. A SVM model for left and right eye retinal image classification is trained based on the features from the detection and segmentation. An advantage of this is that other image processing algorithms can be focused on regions where diseases or pathologies and more likely to occur, thereby increasing the efficiency and accuracy of the retinal CAD system/pathology detection. We have tested our system on 102 retinal images, consisting of 51 left and right images each and achieved and accuracy of 94.1176%. The high experimental accuracy and robustness of this system demonstrates that there is potential for this system to be integrated and applied with other retinal CAD system, such as ARGALI, for a priori information in automatic mass screening and diagnosis of retinal diseases.

  10. Evaluation of patient suitability for a retinal prosthesis using structural and functional tests of inner retinal integrity

    NASA Astrophysics Data System (ADS)

    Huang, Qiuhen; Chowdhury, Vivek; Coroneo, Minas Theodore

    2009-06-01

    The purpose of this study was to assess inner retinal structure and function in patients with retinitis pigmentosa (RP) using optical coherence tomography (OCT) imaging of the retina, and electrical stimulation of the retina with a contact lens electrode. OCT images of 17 RP patients were acquired at the macula and at four quadrants of the peripheral retina in both eyes. Analysis was made of the residual inner retinal thickness and nerve fibre layer thickness in RP patients, and this was compared to normal controls. Eight of these patients further underwent contact lens electrical stimulation of one eye and thresholds for phosphene perception were obtained. OCT imaging showed a significant amount of inner retinal preservation in the peripheral retina and the macula of RP patients despite severe visual acuity and visual field loss. Phosphene thresholds were obtained across the range of pulse durations tested but were much higher than those obtained in normal controls. Phosphene thresholds in RP patients moderately correlated with inner retinal thicknesses as measured by OCT. Preservation of inner retinal structure in patients with RP and the responsiveness of these eyes to electrical stimulation suggest adequate inner retinal preservation for a retinal prosthesis to be successful.

  11. Oral fluoroquinolones and the incidence of rhegmatogenous retinal detachment and symptomatic retinal breaks: a population-based study

    PubMed Central

    Kapoor, Kapil G.; Hodge, David O.; St Sauver, Jennifer L.; Barkmeier, Andrew J.

    2016-01-01

    Objective To examine whether oral fluoroquinolone antibiotics are associated with an increase in subsequent rhegmatogenous retinal detachment and symptomatic retinal breaks in a large, population-based cohort. Design Population-based cohort study Participants and Controls Adult residents of Olmsted County, Minnesota who were prescribed oral fluoroquinolone medications from 1/01/03 – 6/30/11. Comparison cohorts consisted of patients prescribed oral macrolide and β-lactam antibiotics during the study period. Methods Procedure codes were used to identify retinal detachment repair and prophylaxis procedures occurring within 1 year of prescription dates. Travel clinic, pro re nata, and self-treatment prescriptions were excluded. Patients with tractional retinal detachment, previous retinal detachment repair, endophthalmitis, and necrotizing retinitis were excluded, as were those with intraocular surgery or severe head/eye trauma ≤ 90 days prior to the procedure. Main Outcome Measures Rates of retinal detachment repair and prophylaxis procedures within 7, 30, 90, and 365 days of the first prescription were calculated and compared between antibiotic prescription cohorts using Chi-square tests. Retinal detachment repair rates were also compared to the expected Olmsted County, Minnesota rates using the one-sample log rank test. Results Oral fluoroquinolones were prescribed for 38,046 patients (macrolide n=48,074, β-lactam n=69,079) during the study period. Retinal detachment repair procedures were performed within 365 days of the first prescription in 0.03% (95% confidence interval [CI] 0.01–0.06%) of the fluoroquinolone, 0.02% (95% CI 0.01–0.03%) of the macrolide, and 0.03% (95% CI 0.02–0.05%) of the β-lactam cohorts (p>0.05). Retinal detachment prophylaxis procedures for symptomatic retinal breaks were performed within 365 days of the first prescription in 0.01% (95% CI 0.00–0.03%) of the fluoroquinolone, 0.02% (95% CI 0.01–0.04%) of the macrolide, and 0

  12. A framework for retinal layer intensity analysis for retinal artery occlusion patient based on 3D OCT

    NASA Astrophysics Data System (ADS)

    Liao, Jianping; Chen, Haoyu; Zhou, Chunlei; Chen, Xinjian

    2014-03-01

    Occlusion of retinal artery leads to severe ischemia and dysfunction of retina. Quantitative analysis of the reflectivity in the retina is very needed to quantitative assessment of the severity of retinal ischemia. In this paper, we proposed a framework for retinal layer intensity analysis for retinal artery occlusion patient based on 3D OCT images. The proposed framework consists of five main steps. First, a pre-processing step is applied to the input OCT images. Second, the graph search method was applied to segment multiple surfaces in OCT images. Third, the RAO region was detected based on texture classification method. Fourth, the layer segmentation was refined using the detected RAO regions. Finally, the retinal layer intensity analysis was performed. The proposed method was tested on tested on 27 clinical Spectral domain OCT images. The preliminary results show the feasibility and efficacy of the proposed method.

  13. Spectral domain optical coherence tomography imaging of subretinal bands associated with chronic retinal detachments

    PubMed Central

    Kothari, Nikisha; Kuriyan, Ajay E; Flynn, Harry W

    2016-01-01

    We report three patients with subretinal bands associated with retinal detachment in chronic retinal detachments who underwent successful retinal reattachment. Subretinal bands before and after surgery can be identified on clinical examination and spectral domain optical coherence tomography. Removal of subretinal bands is not mandatory to achieve retinal reattachment. PMID:27099457

  14. Prevalent misconceptions about acute retinal vascular occlusive disorders.

    PubMed

    Hayreh, Sohan Singh

    2005-07-01

    Acute retinal vascular occlusive disorders collectively constitute one of the major causes of blindness or seriously impaired vision, and yet there is marked controversy on their pathogeneses, clinical features and particularly their management. This is because the subject is plagued by multiple misconceptions. These include that: (i) various acute retinal vascular occlusions represent a single disease; (ii) estimation of visual acuity alone provides all the information necessary to evaluate visual function; (iii) retinal venous occlusions are a single clinical entity; (iv) retinal vein occlusion is essentially a disease of the elderly and is not seen in the young; (v) central retinal vein occlusion (CRVO) is one disease; (vi) fluorescein fundus angiography is the best test to differentiate ischemic from nonischemic CRVO; (vii) the site of occlusion in CRVO is invariably at the lamina cribrosa; (viii) clinical picture of CRVO is often due to compression or strangulation of the central retinal vein (CRV) in the lamina cribrosa and not its occlusion; (ix) an eye can develop both CRVO and central retinal artery occlusion (CRAO) simultaneously; (x) every eye with CRVO is at risk of developing neovascular glaucoma; (xi) lowering intraocular pressure (IOP) helps to improve retinal circulation in an eye with CRVO; (xii) every patient with retinal vein occlusion should have complete hematologic and coagulation evaluation; (xiii) the natural history of CRVO does not usually involve spontaneous visual improvement; (xiv) management of CRVO is similar to that of venous thrombosis anywhere else in the body, i.e. with aspirin and/or anti-coagulants; (xv) fibrinolytic agents can dissolve an organized thrombus in the CRV; (xvi) it is beneficial to lower blood pressure in patients with CRVO; (xvii) panretinal photocoagulation used in ischemic retinal venous occlusive disorders has no deleterious side-effects; (xviii) glaucoma or ocular hypertension can cause branch retinal vein

  15. Facilitating facial retinization through barrier improvement.

    PubMed

    Draelos, Zoe Diana; Ertel, Keith D; Berge, Cynthia A

    2006-10-01

    The utility of topical tretinoin as a treatment for improving the appearance of photodamaged skin is limited by irritation that occurs during the early phases of facial retinization. The observed side effects are consistent with stratum corneum barrier compromise. This paired double-blinded study was conducted to determine if preconditioning the skin with a barrier-enhancing cosmetic facial moisturizer before beginning tretinoin therapy and continuing moisturizer application during therapy would mitigate these side effects. Women with facial photodamage were recruited and randomly assigned to apply one cosmetic moisturizer to one side of the face and the other cosmetic moisturizer to the other side of the face twice daily for 10 weeks. One moisturizer contained a mixture of vitamins (niacinamide, panthenol, and tocopheryl acetate) to enhance stratum corneum barrier function, and the other moisturizer contained similar moisturizing ingredients but no vitamins. Daily full-face treatment with tretinoin cream 0.025% commenced 2 weeks into the study. Subjects' facial skin condition was monitored via investigator assessments, instrumental measurements, and subject self-assessments. The results show that improving stratum corneum barrier function before beginning topical tretinoin therapy and continuing use of a barrier-enhancing cosmetic moisturizer during therapy facilitates the early phase of facial retinization and augments the treatment response. PMID:17121065

  16. Optoelectronic retinal prosthesis: system design and performance

    NASA Astrophysics Data System (ADS)

    Loudin, J. D.; Simanovskii, D. M.; Vijayraghavan, K.; Sramek, C. K.; Butterwick, A. F.; Huie, P.; McLean, G. Y.; Palanker, D. V.

    2007-03-01

    The design of high-resolution retinal prostheses presents many unique engineering and biological challenges. Ever smaller electrodes must inject enough charge to stimulate nerve cells, within electrochemically safe voltage limits. Stimulation sites should be placed within an electrode diameter from the target cells to prevent 'blurring' and minimize current. Signals must be delivered wirelessly from an external source to a large number of electrodes, and visual information should, ideally, maintain its natural link to eye movements. Finally, a good system must have a wide range of stimulation currents, external control of image processing and the option of either anodic-first or cathodic-first pulses. This paper discusses these challenges and presents solutions to them for a system based on a photodiode array implant. Video frames are processed and imaged onto the retinal implant by a head-mounted near-to-eye projection system operating at near-infrared wavelengths. Photodiodes convert light into pulsed electric current, with charge injection maximized by applying a common biphasic bias waveform. The resulting prosthesis will provide stimulation with a frame rate of up to 50 Hz in a central 10° visual field, with a full 30° field accessible via eye movements. Pixel sizes are scalable from 100 to 25 µm, corresponding to 640-10 000 pixels on an implant 3 mm in diameter.

  17. Retinal connectomics: towards complete, accurate networks.

    PubMed

    Marc, Robert E; Jones, Bryan W; Watt, Carl B; Anderson, James R; Sigulinsky, Crystal; Lauritzen, Scott

    2013-11-01

    Connectomics is a strategy for mapping complex neural networks based on high-speed automated electron optical imaging, computational assembly of neural data volumes, web-based navigational tools to explore 10(12)-10(15) byte (terabyte to petabyte) image volumes, and annotation and markup tools to convert images into rich networks with cellular metadata. These collections of network data and associated metadata, analyzed using tools from graph theory and classification theory, can be merged with classical systems theory, giving a more completely parameterized view of how biologic information processing systems are implemented in retina and brain. Networks have two separable features: topology and connection attributes. The first findings from connectomics strongly validate the idea that the topologies of complete retinal networks are far more complex than the simple schematics that emerged from classical anatomy. In particular, connectomics has permitted an aggressive refactoring of the retinal inner plexiform layer, demonstrating that network function cannot be simply inferred from stratification; exposing the complex geometric rules for inserting different cells into a shared network; revealing unexpected bidirectional signaling pathways between mammalian rod and cone systems; documenting selective feedforward systems, novel candidate signaling architectures, new coupling motifs, and the highly complex architecture of the mammalian AII amacrine cell. This is but the beginning, as the underlying principles of connectomics are readily transferrable to non-neural cell complexes and provide new contexts for assessing intercellular communication. PMID:24016532

  18. Polymodal Sensory Integration in Retinal Ganglion Cells.

    PubMed

    Križaj, David

    2016-01-01

    An animal's ability to perceive the external world is conditioned by its capacity to extract and encode specific features of the visual image. The output of the vertebrate retina is not a simple representation of the 2D visual map generated by photon absorptions in the photoreceptor layer. Rather, spatial, temporal, direction selectivity and color "dimensions" of the original image are distributed in the form of parallel output channels mediated by distinct retinal ganglion cell (RGC) populations. We propose that visual information transmitted to the brain includes additional, light-independent, inputs that reflect the functional states of the retina, anterior eye and the body. These may include the local ion microenvironment, glial metabolism and systemic parameters such as intraocular pressure, temperature and immune activation which act on ion channels that are intrinsic to RGCs. We particularly focus on light-independent mechanical inputs that are associated with physical impact, cell swelling and intraocular pressure as excessive mechanical stimuli lead to the counterintuitive experience of "pressure phosphenes" and/or debilitating blinding disease such as glaucoma and diabetic retinopathy. We point at recently discovered retinal mechanosensitive ion channels as examples through which molecular physiology brings together Greek phenomenology, modern neuroscience and medicine. Thus, RGC output represents a unified picture of the embodied context within which vision takes place. PMID:26427477

  19. Retinal Connectomics: Towards Complete, Accurate Networks

    PubMed Central

    Marc, Robert E.; Jones, Bryan W.; Watt, Carl B.; Anderson, James R.; Sigulinsky, Crystal; Lauritzen, Scott

    2013-01-01

    Connectomics is a strategy for mapping complex neural networks based on high-speed automated electron optical imaging, computational assembly of neural data volumes, web-based navigational tools to explore 1012–1015 byte (terabyte to petabyte) image volumes, and annotation and markup tools to convert images into rich networks with cellular metadata. These collections of network data and associated metadata, analyzed using tools from graph theory and classification theory, can be merged with classical systems theory, giving a more completely parameterized view of how biologic information processing systems are implemented in retina and brain. Networks have two separable features: topology and connection attributes. The first findings from connectomics strongly validate the idea that the topologies complete retinal networks are far more complex than the simple schematics that emerged from classical anatomy. In particular, connectomics has permitted an aggressive refactoring of the retinal inner plexiform layer, demonstrating that network function cannot be simply inferred from stratification; exposing the complex geometric rules for inserting different cells into a shared network; revealing unexpected bidirectional signaling pathways between mammalian rod and cone systems; documenting selective feedforward systems, novel candidate signaling architectures, new coupling motifs, and the highly complex architecture of the mammalian AII amacrine cell. This is but the beginning, as the underlying principles of connectomics are readily transferrable to non-neural cell complexes and provide new contexts for assessing intercellular communication. PMID:24016532

  20. Progressive retinal degeneration in ranch mink.

    PubMed

    Hadlow, W J

    1984-01-01

    Retinal degeneration was prevalent in a large group of sapphire and pastel mink (Mustela vison) kept for studies on slow viral diseases. Nearly 78% of those two to eight years old were affected. The retinopathy was equally common in both sexes but more frequent in sapphires (85%) than in pastels (63%), and it was severe more often in sapphires than in pastels. By light microscopy, the primary change appeared to be progressive degeneration of fully developed photoreceptors, beginning in their outer segments. In many mink, including some younger ones, the rods and cones and outer nuclear layer had disappeared from all but the far periphery of the fundus. The inner retinal layers were spared until late in the disease, and the pigment epithelium remained essentially unchanged. The cause of the retinopathy was not established. It may represent an abiotrophy in which the structural integrity of the photoreceptors began to wane in many mink after they reached two years of age. Apart from reducing visual acuity, the retinopathy has implications for the photoperiodic control of fur growth and reproduction in this highly light-sensitive carnivore. PMID:6710807

  1. Adaptive Optics Retinal Imaging: Emerging Clinical Applications

    PubMed Central

    Godara, Pooja; Dubis, Adam M.; Roorda, Austin; Duncan, Jacque L.; Carroll, Joseph

    2010-01-01

    The human retina is a uniquely accessible tissue. Tools like scanning laser ophthalmoscopy (SLO) and spectral domain optical coherence tomography (SD-OCT) provide clinicians with remarkably clear pictures of the living retina. While the anterior optics of the eye permit such non-invasive visualization of the retina and associated pathology, these same optics induce significant aberrations that in most cases obviate cellular-resolution imaging. Adaptive optics (AO) imaging systems use active optical elements to compensate for aberrations in the optical path between the object and the camera. Applied to the human eye, AO allows direct visualization of individual rod and cone photoreceptor cells, RPE cells, and white blood cells. AO imaging has changed the way vision scientists and ophthalmologists see the retina, helping to clarify our understanding of retinal structure, function, and the etiology of various retinal pathologies. Here we review some of the advances made possible with AO imaging of the human retina, and discuss applications and future prospects for clinical imaging. PMID:21057346

  2. Encoding visual information in retinal ganglion cells with prosthetic stimulation.

    PubMed

    Freeman, Daniel K; Rizzo, Joseph F; Fried, Shelley I

    2011-06-01

    Retinal prostheses aim to restore functional vision to those blinded by outer retinal diseases using electric stimulation of surviving retinal neurons. The ability to replicate the spatiotemporal pattern of ganglion cell spike trains present under normal viewing conditions is presumably an important factor for restoring high-quality vision. In order to replicate such activity with a retinal prosthesis, it is important to consider both how visual information is encoded in ganglion cell spike trains, and how retinal neurons respond to electric stimulation. The goal of the current review is to bring together these two concepts in order to guide the development of more effective stimulation strategies. We review the experiments to date that have studied how retinal neurons respond to electric stimulation and discuss these findings in the context of known retinal signaling strategies. The results from such in vitro studies reveal the advantages and disadvantages of activating the ganglion cell directly with the electric stimulus (direct activation) as compared to activation of neurons that are presynaptic to the ganglion cell (indirect activation). While direct activation allows high temporal but low spatial resolution, indirect activation yields improved spatial resolution but poor temporal resolution. Finally, we use knowledge gained from in vitro experiments to infer the patterns of elicited activity in ongoing human trials, providing insights into some of the factors limiting the quality of prosthetic vision. PMID:21593546

  3. Vasodilator effect of nicorandil on retinal blood vessels in rats.

    PubMed

    Ogawa, Naoto; Saito, Maki; Mori, Asami; Sakamoto, Kenji; Kametaka, Sokichi; Nakahara, Tsutomu; Ishii, Kunio

    2007-07-01

    We examined the effect of nicorandil on retinal blood vessels in rats in vivo. Male Wistar rats (8 to 10 weeks old) were anaesthetised with thiobutabarbital (120 mg/kg, intraperitoneal). Fundus images were captured with a digital camera that was equipped with a special objective lens. Diameters of retinal blood vessels were measured with a personal computer. Nicorandil (1-300 microg kg(-1) min(-1), intravenous [i.v.]) increased diameters of retinal blood vessels and decreased systemic blood pressure in a dose-dependent manner. Both responses to nicorandil were attenuated by glibenclamide (20 mg/kg, i.v.), an adenosine triphosphate (ATP)-dependent K(+) (K(ATP)) channel blocker. On the other hand, indomethacin (5 mg/kg, i.v.), a cyclooxygenase inhibitor, attenuated the vasodilation of retinal blood vessels, but not depressor response, to nicorandil and sodium nitroprusside. Pinacidil (1-300 microg kg(-1) min(-1), i.v.), a K(ATP) channel opener, also dilated retinal blood vessels and decreased systemic blood pressure. The responses to pinacidil were prevented by glibenclamide, but not by indomethacin. The vasodilation of retinal arteriole, but not depressor response, to sodium nitroprusside (1-30 microg kg(-1) min(-1), i.v.), a nitric oxide donor, was attenuated by indomethacin. These results suggest that nicorandil dilates retinal blood vessels through opening of K(ATP) channels and production of prostaglandins that are probably generated by nitric oxide. PMID:17525845

  4. Retinal artery-vein caliber grading using color fundus imaging.

    PubMed

    Bhuiyan, Alauddin; Kawasaki, Ryo; Lamoureux, Ecosse; Ramamohanarao, Kotagiri; Wong, Tien Yin

    2013-07-01

    Recent research suggests that retinal vessel caliber (or cross-sectional width) measured from retinal photographs is an important feature for predicting cardiovascular diseases (CVDs). One of the most utilized measures is to quantify retinal arteriolar and venular caliber as the Central Retinal Artery Equivalent (CRAE) and Central Retinal Vein Equivalent (CRVE). However, current computer tools utilize manual or semi-automatic grading methods to estimate CRAE and CRVE. These methods involve a significant amount of grader's time and can add a significant level of inaccuracy due to repetitive nature of grading and intragrader distances. An automatic and time efficient grading of the vessel caliber with highly repeatable measurement is essential, but is technically challenging due to a substantial variation of the retinal blood vessels' properties. In this paper, we propose a new technique to measure the retinal vessel caliber, which is an "edge-based" vessel tracking method. We measured CRAE and CRVE from each of the vessel types. We achieve very high accuracy (average 96.23%) for each of the cross-sectional width measurement compared to manually graded width. For overall vessel caliber measurement accuracy of CRAE and CRVE, we compared the results with an existing semi-automatic method which showed high correlation of 0.85 and 0.92, respectively. The intra-grader reproducibility of our method was high, with the correlation coefficient of 0.881 for CRAE and 0.875 for CRVE. PMID:23535181

  5. Encoding visual information in retinal ganglion cells with prosthetic stimulation

    NASA Astrophysics Data System (ADS)

    Freeman, Daniel K.; Rizzo, Joseph F., III; Fried, Shelley I.

    2011-06-01

    Retinal prostheses aim to restore functional vision to those blinded by outer retinal diseases using electric stimulation of surviving retinal neurons. The ability to replicate the spatiotemporal pattern of ganglion cell spike trains present under normal viewing conditions is presumably an important factor for restoring high-quality vision. In order to replicate such activity with a retinal prosthesis, it is important to consider both how visual information is encoded in ganglion cell spike trains, and how retinal neurons respond to electric stimulation. The goal of the current review is to bring together these two concepts in order to guide the development of more effective stimulation strategies. We review the experiments to date that have studied how retinal neurons respond to electric stimulation and discuss these findings in the context of known retinal signaling strategies. The results from such in vitro studies reveal the advantages and disadvantages of activating the ganglion cell directly with the electric stimulus (direct activation) as compared to activation of neurons that are presynaptic to the ganglion cell (indirect activation). While direct activation allows high temporal but low spatial resolution, indirect activation yields improved spatial resolution but poor temporal resolution. Finally, we use knowledge gained from in vitro experiments to infer the patterns of elicited activity in ongoing human trials, providing insights into some of the factors limiting the quality of prosthetic vision.

  6. Basement membrane stiffening promotes retinal endothelial activation associated with diabetes.

    PubMed

    Yang, Xiao; Scott, Harry A; Monickaraj, Finny; Xu, Jun; Ardekani, Soroush; Nitta, Carolina F; Cabrera, Andrea; McGuire, Paul G; Mohideen, Umar; Das, Arup; Ghosh, Kaustabh

    2016-02-01

    Endothelial activation is a hallmark of the high-glucose (HG)-induced retinal inflammation associated with diabetic retinopathy (DR). However, precisely how HG induces retinal endothelial activation is not fully understood. We hypothesized that HG-induced up-regulation of lysyl oxidase (LOX), a collagen-cross-linking enzyme, in retinal capillary endothelial cells (ECs) enhances subendothelial basement membrane (BM) stiffness, which, in turn, promotes retinal EC activation. Diabetic C57BL/6 mice exhibiting a 70 and 50% increase in retinal intercellular adhesion molecule (ICAM)-1 expression and leukocyte accumulation, respectively, demonstrated a 2-fold increase in the levels of BM collagen IV and LOX, key determinants of capillary BM stiffness. Using atomic force microscopy, we confirmed that HG significantly enhances LOX-dependent subendothelial matrix stiffness in vitro, which correlated with an ∼2.5-fold increase in endothelial ICAM-1 expression, a 4-fold greater monocyte-EC adhesion, and an ∼2-fold alteration in endothelial NO (decrease) and NF-κB activation (increase). Inhibition of LOX-dependent subendothelial matrix stiffening alone suppressed HG-induced retinal EC activation. Finally, using synthetic matrices of tunable stiffness, we demonstrated that subendothelial matrix stiffening is necessary and sufficient to promote EC activation. These findings implicate BM stiffening as a critical determinant of HG-induced retinal EC activation and provide a rationale for examining BM stiffness and underlying mechanotransduction pathways as therapeutic targets for diabetic retinopathy. PMID:26443820

  7. Critical Endothelial Regulation by LRP5 during Retinal Vascular Development

    PubMed Central

    Huang, Wei; Li, Qing; Amiry-Moghaddam, Mahmood; Hokama, Madoka; Sardi, Sylvia H.; Nagao, Masashi; Warman, Matthew L.; Olsen, Bjorn R.

    2016-01-01

    Vascular abnormalities in the eye are the leading cause of many forms of inherited and acquired human blindness. Loss-of-function mutations in the Wnt-binding co-receptor LRP5 leads to aberrant ocular vascularization and loss of vision in genetic disorders such as osteoporosis-pseudoglioma syndrome. The canonical Wnt-β-catenin pathway is known to regulate retinal vascular development. However, it is unclear what precise role LPR5 plays in this process. Here, we show that loss of LRP5 function in mice causes retinal hypovascularization during development as well as retinal neovascularization in adulthood with disorganized and leaky vessels. Using a highly specific Flk1-CreBreier line for vascular endothelial cells, together with several genetic models, we demonstrate that loss of endothelium-derived LRP5 recapitulates the retinal vascular defects in Lrp5-/- mice. In addition, restoring LRP5 function only in endothelial cells in Lrp5-/- mice rescues their retinal vascular abnormalities. Furthermore, we show that retinal vascularization is regulated by LRP5 in a dosage dependent manner and does not depend on LRP6. Our study provides the first direct evidence that endothelium-derived LRP5 is both necessary and sufficient to mediate its critical role in the development and maintenance of retinal vasculature. PMID:27031698

  8. Critical Endothelial Regulation by LRP5 during Retinal Vascular Development.

    PubMed

    Huang, Wei; Li, Qing; Amiry-Moghaddam, Mahmood; Hokama, Madoka; Sardi, Sylvia H; Nagao, Masashi; Warman, Matthew L; Olsen, Bjorn R

    2016-01-01

    Vascular abnormalities in the eye are the leading cause of many forms of inherited and acquired human blindness. Loss-of-function mutations in the Wnt-binding co-receptor LRP5 leads to aberrant ocular vascularization and loss of vision in genetic disorders such as osteoporosis-pseudoglioma syndrome. The canonical Wnt-β-catenin pathway is known to regulate retinal vascular development. However, it is unclear what precise role LPR5 plays in this process. Here, we show that loss of LRP5 function in mice causes retinal hypovascularization during development as well as retinal neovascularization in adulthood with disorganized and leaky vessels. Using a highly specific Flk1-CreBreier line for vascular endothelial cells, together with several genetic models, we demonstrate that loss of endothelium-derived LRP5 recapitulates the retinal vascular defects in Lrp5-/- mice. In addition, restoring LRP5 function only in endothelial cells in Lrp5-/- mice rescues their retinal vascular abnormalities. Furthermore, we show that retinal vascularization is regulated by LRP5 in a dosage dependent manner and does not depend on LRP6. Our study provides the first direct evidence that endothelium-derived LRP5 is both necessary and sufficient to mediate its critical role in the development and maintenance of retinal vasculature. PMID:27031698

  9. Tissue engineering the retinal ganglion cell nerve fiber layer.

    PubMed

    Kador, Karl E; Montero, Ramon B; Venugopalan, Praseeda; Hertz, Jonathan; Zindell, Allison N; Valenzuela, Daniel A; Uddin, Mohammed S; Lavik, Erin B; Muller, Kenneth J; Andreopoulos, Fotios M; Goldberg, Jeffrey L

    2013-06-01

    Retinal degenerative diseases, such as glaucoma and macular degeneration, affect millions of people worldwide and ultimately lead to retinal cell death and blindness. Cell transplantation therapies for photoreceptors demonstrate integration and restoration of function, but transplantation into the ganglion cell layer is more complex, requiring guidance of axons from transplanted cells to the optic nerve head in order to reach targets in the brain. Here we create a biodegradable electrospun (ES) scaffold designed to direct the growth of retinal ganglion cell (RGC) axons radially, mimicking axon orientation in the retina. Using this scaffold we observed an increase in RGC survival and no significant change in their electrophysiological properties. When analyzed for alignment, 81% of RGCs were observed to project axons radially along the scaffold fibers, with no difference in alignment compared to the nerve fiber layer of retinal explants. When transplanted onto retinal explants, RGCs on ES scaffolds followed the radial pattern of the host retinal nerve fibers, whereas RGCs transplanted directly grew axons in a random pattern. Thus, the use of this scaffold as a cell delivery device represents a significant step towards the use of cell transplant therapies for the treatment of glaucoma and other retinal degenerative diseases. PMID:23489919

  10. Tissue Engineering the Retinal Ganglion Cell Nerve Fiber Layer

    PubMed Central

    Kador, Karl E.; Montero, Ramon B.; Venugopalan, Praseeda; Hertz, Jonathan; Zindell, Allison N.; Valenzuela, Daniel A.; Uddin, Mohammed S.; Lavik, Erin B.; Muller, Kenneth J.; Andreopoulos, Fotios M.; Goldberg, Jeffrey L.

    2013-01-01

    Retinal degenerative diseases, such as glaucoma and macular degeneration, affect millions of people worldwide and ultimately lead to retinal cell death and blindness. Cell transplantation therapies for photoreceptors demonstrate integration and restoration of function, but transplantation into the ganglion cell layer is more complex, requiring guidance of axons from transplanted cells to the optic nerve head in order to reach targets in the brain. Here we create a biodegradable electrospun (ES) scaffold designed to direct the growth of retinal ganglion cell (RGC) axons radially, mimicking axon orientation in the retina. Using this scaffold we observed an increase in RGC survival and no significant change in their electrophysiological properties. When analyzed for alignment, 81% of RGCs were observed to project axons radially along the scaffold fibers, with no difference in alignment compared to the nerve fiber layer of retinal explants. When transplanted onto retinal explants, RGCs on ES scaffolds followed the radial pattern of the host retinal nerve fibers, whereas RGCs transplanted directly grew axons in a random pattern. Thus, the use of this scaffold as a cell delivery device represents a significant step towards the use of cell transplant therapies for the treatment of glaucoma and other retinal degenerative diseases. PMID:23489919

  11. Retinal safety of near-infrared lasers in cataract surgery

    NASA Astrophysics Data System (ADS)

    Wang, Jenny; Sramek, Christopher; Paulus, Yannis M.; Lavinsky, Daniel; Schuele, Georg; Anderson, Dan; Dewey, David; Palanker, Daniel

    2012-09-01

    Femtosecond lasers have added unprecedented precision and reproducibility to cataract surgery. However, retinal safety limits for the near-infrared lasers employed in surgery are not well quantified. We determined retinal injury thresholds for scanning patterns while considering the effects of reduced blood perfusion from rising intraocular pressure and retinal protection from light scattering on bubbles and tissue fragments produced by laser cutting. We measured retinal damage thresholds of a stationary, 1030-nm, continuous-wave laser with 2.6-mm retinal spot size for 10- and 100-s exposures in rabbits to be 1.35 W (1.26 to 1.42) and 0.78 W (0.73 to 0.83), respectively, and 1.08 W (0.96 to 1.11) and 0.36 W (0.33 to 0.41) when retinal perfusion is blocked. These thresholds were input into a computational model of ocular heating to calculate damage threshold temperatures. By requiring the tissue temperature to remain below the damage threshold temperatures determined in stationary beam experiments, one can calculate conservative damage thresholds for cataract surgery patterns. Light scattering on microbubbles and tissue fragments decreased the transmitted power by 88% within a 12 deg angle, adding a significant margin for retinal safety. These results can be used for assessment of the maximum permissible exposure during laser cataract surgery under various assumptions of blood perfusion, treatment duration, and scanning patterns.

  12. Screening retinal transplants with Fourier-domain OCT

    NASA Astrophysics Data System (ADS)

    Rao, Bin

    2009-02-01

    Transplant technologies have been studied for the recovery of vision loss from retinitis pigmentosa (RP) and age-related macular degeneration (AMD). In several rodent retinal degeneration models and in patients, retinal progenitor cells transplanted as layers to the subretinal space have been shown to restore or preserve vision. The methods for evaluation of transplants are expensive considering the large amount of animals. Alternatively, time-domain Stratus OCT was previously shown to be able to image the morphological structure of transplants to some extent, but could not clearly identify laminated transplants. The efficacy of screening retinal transplants with Fourier-domain OCT was studied on 37 S334ter line 3 rats with retinal degeneration 6-67 days after transplant surgery. The transplants were morphologically categorized as no transplant, detachment, rosettes, small laminated area and larger laminated area with both Fourier-domain OCT and histology. The efficacy of Fourier-domain OCT in screening retinal transplants was evaluated by comparing the categorization results with OCT and histology. Additionally, 4 rats were randomly selected for multiple OCT examinations (1, 5, 9, 14 and 21days post surgery) in order to determine the earliest image time of OCT examination since the transplanted tissue may need some time to show its tendency of growing. Finally, we demonstrated the efficacy of Fourier-domain OCT in screening retinal transplants in early stages and determined the earliest imaging time for OCT. Fourier-domain OCT makes itself valuable in saving resource spent on animals with unsuccessful transplants.

  13. Measurement of retinal physiology using functional Fourier domain OCT concepts

    NASA Astrophysics Data System (ADS)

    Leitgeb, R. A.; Bachmann, A. H.; Villiger, M.; Michaely, R.; Blatter, C.; Lasser, T.; Pache, C.; Pircher, M.

    2007-02-01

    Fourier Domain OCT proved to be an outstanding tool for measuring 3D retinal structures with high sensitivity, resolution, and speed. We extended the FDOCT concept towards functional imaging by analyzing the spectroscopic tissue properties, polarization contrast and Doppler velocity imaging. Differential spectral contrast FDOCT allows optical staining of retinal tomograms and to contrast tissue of high pigmentation such as the retinal pigment epithelium (RPE). The latter shows strong correlation if compared to polarization sensitive OCT images. First implementations of Doppler FDOCT systems demonstrated the capability of measuring in-vivo retinal blood flow profiles and pulsatility. We developed a new concept of Doppler FDOCT that allows measuring also large flow velocities typically close to the optic nerve head. Studies of retinal perfusion based on Laser Doppler Flowmetry (LDF) demonstrated the high sensitivity of blood flow to external stimuli. We performed first experiments of studying retinal perfusion in response to flicker stimulation. An increase in vessel diameter by 11% and of flow velocity by 49% was measured. We believe that a multi-modal functional imaging concept is of high value for an accurate and early diagnosis and understanding of retinal pathologies and pathogenesis.

  14. Development of Animal Models of Local Retinal Degeneration

    PubMed Central

    Lorach, Henri; Kung, Jennifer; Beier, Corinne; Mandel, Yossi; Dalal, Roopa; Huie, Philip; Wang, Jenny; Lee, Seungjun; Sher, Alexander; Jones, Bryan William; Palanker, Daniel

    2015-01-01

    Purpose Development of nongenetic animal models of local retinal degeneration is essential for studies of retinal pathologies, such as chronic retinal detachment or age-related macular degeneration. We present two different methods to induce a highly localized retinal degeneration with precise onset time, that can be applied to a broad range of species in laboratory use. Methods A 30-μm thin polymer sheet was implanted subretinally in wild-type (WT) rats. The effects of chronic retinal separation from the RPE were studied using histology and immunohistochemistry. Another approach is applicable to species with avascular retina, such as rabbits, where the photoreceptors and RPE were thermally ablated over large areas, using a high power scanning laser. Results Photoreceptors above the subretinal implant in rats degenerated over time, with 80% of the outer nuclear layer disappearing within a month, and the rest by 3 months. Similar loss was obtained by selective photocoagulation with a scanning laser. Cells in the inner nuclear layer and ganglion cell layer were preserved in both cases. However, there were signs of rewiring and decrease in the size of the bipolar cell terminals in the damaged areas. Conclusions Both methods induce highly reproducible degeneration of photoreceptors over a defined area, with complete preservation of the inner retinal neurons during the 3-month follow-up. They provide a reliable platform for studies of local retinal degeneration and development of therapeutic strategies in a wide variety of species. PMID:26207299

  15. Retinal compensatory changes after light damage in albino mice

    PubMed Central

    Montalbán-Soler, Luis; Alarcón-Martínez, Luis; Jiménez-López, Manuel; Salinas-Navarro, Manuel; Galindo-Romero, Caridad; Bezerra de Sá, Fabrízio; García-Ayuso, Diego; Avilés-Trigueros, Marcelino; Vidal-Sanz, Manuel; Agudo-Barriuso, Marta

    2012-01-01

    Purpose To investigate the anatomic and functional changes triggered by light exposure in the albino mouse retina and compare them with those observed in the albino rat. Methods BALB/c albino mice were exposed to 3,000 lx of white light during 24 h and their retinas analyzed from 1 to 180 days after light exposure (ALE). Left pupil mydriasis was induced with topical atropine. Retinal function was analyzed by electroretinographic (ERG) recording. To assess retinal degeneration, hematoxylin and eosin staining, the TdT-mediated dUTP nick-end labeling (TUNEL) technique, and quantitative immunohistofluorescence for synaptophysin and protein kinase Cα (PKCα) were used in cross sections. Intravenous injection of horseradish peroxidase and Fluoro-Gold™ tracing were used in whole-mounted retinas to study the retinal vasculature and the retinal ganglion cell (RGC) population, respectively. Results Light exposure caused apoptotic photoreceptor death in the central retina. This death was more severe in the dorsal than in the ventral retina, sparing the periphery. Neither retinal vascular leakage nor retinal ganglion cell death was observed ALE. The electroretinographic a-wave was permanently impaired, while the b-wave decreased but recovered gradually by 180 days ALE. The scotopic threshold responses, associated with the inner retinal function, diminished at first but recovered completely by 14 days ALE. This functional recovery was concomitant with the upregulation of protein kinase Cα and synaptophysin. Similar results were obtained in both eyes, irrespective of mydriasis. Conclusions In albino mice, light exposure induces substantial retinal damage, but the surviving photoreceptors, together with compensatory morphological/molecular changes, allow an important restoration of the retinal function. PMID:22509098

  16. Role of the Retinal Vascular Endothelial Cell in Ocular Disease

    PubMed Central

    Bharadwaj, Arpita S.; Appukuttan, Binoy; Wilmarth, Phillip A.; Pan, Yuzhen; Stempel, Andrew J.; Chipps, Timothy J.; Benedetti, Eric E.; Zamora, David O.; Choi, Dongseok; David, Larry L.; Smith, Justine R.

    2012-01-01

    Retinal endothelial cells line the arborizing microvasculature that supplies and drains the neural retina. The anatomical and physiological characteristics of these endothelial cells are consistent with nutritional requirements and protection of a tissue critical to vision. On the one hand, the endothelium must ensure the supply of oxygen and other nutrients to the metabolically active retina, and allow access to circulating cells that maintain the vasculature or survey the retina for the presence of potential pathogens. On the other hand, the endothelium contributes to the blood-retinal barrier that protects the retina by excluding circulating molecular toxins, microorganisms, and pro-inflammatory leukocytes. Features required to fulfill these functions may also predispose to disease processes, such as retinal vascular leakage and neovascularization, and trafficking of microbes and inflammatory cells. Thus, the retinal endothelial cell is a key participant in retinal ischemic vasculopathies that include diabetic retinopathy and retinopathy of prematurity, and retinal inflammation or infection, as occurs in posterior uveitis. Using gene expression and proteomic profiling, it has been possible to explore the molecular phenotype of the human retinal endothelial cell and contribute to understanding of the pathogenesis of these diseases. In addition to providing support for the involvement of well-characterized endothelial molecules, profiling has the power to identify new players in retinal pathologies. Findings may have implications for the design of new biological therapies. Additional progress in this field is anticipated as other technologies, including epigenetic profiling methods, whole transcriptome shotgun sequencing, and metabolomics, are used to study the human retinal endothelial cell. PMID:22982179

  17. Changes in retinal vessels related to varicocele: a pilot investigation.

    PubMed

    Coşkun, M; Ilhan, N; Elbeyli, A; Rifaioğlu, M M; Inci, M; Davran, R; Tuzcu, E A; Yarbağ, A; Davarci, M; Gökçe, A

    2016-06-01

    The aim of this study was to investigate whether retinal vasculature changes had occurred (retinal artery diameter, retinal vein diameter and artery/vein ratio) in patients with varicocele. This pilot study included 50 healthy subjects with any eye disease apart from slight refractive errors and 55 patients with varicocele. Retinal arteriolar and venular diameters were measured and summarised as central retinal arteriolar equivalent (CRAE) and central retinal venular equivalent (CRVE). Retinal microvascular diameters and the arteriolar-to-venular ratio (AVR) were assessed with a digital retinal camera. All measurements and calculations were performed using a computer-based program. The mean CRAE value was 151.8 ± 3.6 μm in the study group and 150.4 ± 4.5 μm in the control group. Mean CRVE value was 209.4 ± 5.9 μm in the study group and 200.1 ± 8.7 μm in the control group. AVR was found 0.72 ± 0.02 in the study group and 0.75 ± 0.03 in the control group. There were significant differences between groups in terms of CRVE and AVR. There were no significant differences between groups in terms of CRAE. The results of this study showed that the patients with varicocele showed significant changes on retinal vascular diameter. PMID:26314401

  18. LACK OF PROTEIN-TYROSINE SULFATION DISRUPTS PHOTORECEPTOR OUTER SEGMENT MORPHOGENESIS, RETINAL FUNCTION AND RETINAL ANATOMY

    PubMed Central

    Sherry, David M.; Murray, Anne R.; Kanan, Yogita; Arbogast, Kelsey L.; Hamilton, Robert A.; Fliesler, Steven J.; Burns, Marie E.; Moore, Kevin L.; Al-Ubaidi, Muayyad R.

    2010-01-01

    To investigate the role(s) of protein-tyrosine sulfation in the retina, we examined retinal function and structure in mice lacking tyrosylprotein sulfotransferases (TPST) 1 and 2. Tpst double knockout (DKO; Tpst1−/−/Tpst2−/−) retinas had drastically reduced electroretinographic responses, although their photoreceptors exhibited normal responses in single cell recordings. These retinas appeared normal histologically; however, the rod photoreceptors had ultrastructurally abnormal outer segments, with membrane evulsions into the extracellular space, irregular disc membrane spacing, and expanded intradiscal space. Photoreceptor synaptic terminals were disorganized in Tpst DKO retinas, but established ultrastructurally normal synapses, as did bipolar and amacrine cells; however, the morphology and organization of neuronal processes in the inner retina were abnormal. These results indicate that protein-tyrosine sulfation is essential for proper outer segment morphogenesis and synaptic function, but is not critical for overall retinal structure or synapse formation, and may serve broader functions in neuronal development and maintenance. PMID:21039965

  19. Overexpression of Pax6 results in microphthalmia, retinal dysplasia and defective retinal ganglion cell axon guidance

    PubMed Central

    Manuel, Martine; Pratt, Thomas; Liu, Min; Jeffery, Glen; Price, David J

    2008-01-01

    Background The transcription factor Pax6 is expressed by many cell types in the developing eye. Eyes do not form in homozygous loss-of-function mouse mutants (Pax6Sey/Sey) and are abnormally small in Pax6Sey/+ mutants. Eyes are also abnormally small in PAX77 mice expressing multiple copies of human PAX6 in addition to endogenous Pax6; protein sequences are identical in the two species. The developmental events that lead to microphthalmia in PAX77 mice are not well-characterised, so it is not clear whether over- and under-expression of Pax6/PAX6 cause microphthalmia through similar mechanisms. Here, we examined the consequences of over-expression for the eye and its axonal connections. Results Eyes form in PAX77+/+ embryos but subsequently degenerate. At E12.5, we found no abnormalities in ocular morphology, retinal cell cycle parameters and the incidence of retinal cell death. From E14.5 on, we observed malformations of the optic disc. From E16.5 into postnatal life there is progressively more severe retinal dysplasia and microphthalmia. Analyses of patterns of gene expression indicated that PAX77+/+ retinae produce a normal range of cell types, including retinal ganglion cells (RGCs). At E14.5 and E16.5, quantitative RT-PCR with probes for a range of molecules associated with retinal development showed only one significant change: a slight reduction in levels of mRNA encoding the secreted morphogen Shh at E16.5. At E16.5, tract-tracing with carbocyanine dyes in PAX77+/+ embryos revealed errors in intraretinal navigation by RGC axons, a decrease in the number of RGC axons reaching the thalamus and an increase in the proportion of ipsilateral projections among those RGC axons that do reach the thalamus. A survey of embryos with different Pax6/PAX6 gene dosage (Pax6Sey/+, Pax6+/+, PAX77+ and PAX77+/+) showed that (1) the total number of RGC axons projected by the retina and (2) the proportions that are sorted into the ipsilateral and contralateral optic tracts at the

  20. Bucky Paper as a Support Membrane in Retinal Cell Transplantation

    NASA Technical Reports Server (NTRS)

    Loftus, David J. (Inventor); Leng, Theodore (Inventor); Huie, Philip (Inventor); Fishman, Harvey (Inventor)

    2006-01-01

    A method for repairing a retinal system of an eye, using bucky paper on which a plurality of retina pigment epithelial cells and/or iris pigment epithelial cells and/or stem cells is deposited, either randomly or in a selected cell pattern. The cell-covered bucky paper is positioned in a sub-retinal space to transfer cells to this space and thereby restore the retina to its normal functioning, where retinal damage or degeneration, such as macular degeneration, has occurred.

  1. Bilateral Simultaneous Rhegmatogenous Retinal Detachment following Laser in situ Keratomileusis

    PubMed Central

    Yumusak, Erhan; Ornek, Kemal; Ozkal, Fatma

    2016-01-01

    A 21-year-old woman developed simultaneous rhegmatogenous retinal detachment after laser in situ keratomileusis (LASIK) in both eyes. She underwent pars plana vitrectomy surgery combined with endolaser photocoagulation and silicone oil tamponade in the right eye. A week later, pneumatic retinopexy was done in the left eye. As the retinal tear did not seal, 360° scleral buckling surgery was performed and retina was attached. Bilateral simultaneous rhegmatogenous retinal detachment after LASIK for correction of myopia can be a serious complication. Patients should be informed about the possibility of this complication. PMID:27462264

  2. Two-photon in vivo imaging of retinal microstructures

    NASA Astrophysics Data System (ADS)

    Schejter, Adi; Farah, Nairouz; Shoham, Shy

    2014-02-01

    Non-invasive fluorescence retinal imaging in small animals is an important requirement in an array of translational vision applications. Two-photon imaging has the potential for long-term investigation of healthy and diseased retinal function and structure in vivo. Here, we demonstrate that two-photon microscopy through a mouse's pupil can yield high-quality optically sectioned fundus images. By remotely scanning using an electronically tunable lens we acquire highly-resolved 3D fluorescein angiograms. These results provide an important step towards various applications that will benefit from the use of infrared light, including functional imaging of retinal responses to light stimulation.

  3. High speed optical holography of retinal blood flow

    NASA Astrophysics Data System (ADS)

    Pellizzari, M.; Simonutti, M.; Degardin, J.; Sahel, J.-A.; Fink, M.; Paques, M.; Atlan, M.

    2016-08-01

    We performed non-invasive video imaging of retinal blood flow in a pigmented rat by holographic interferometry of near-infrared laser light backscattered by retinal tissue, beating against an off-axis reference beam sampled at a frame rate of 39 kHz with a high throughput camera. Local Doppler contrasts emerged from the envelopes of short-time Fourier transforms and the phase of autocorrelation functions of holograms rendered by Fresnel transformation. This approach permitted imaging of blood flow in large retinal vessels (30 microns diameter) over 400 by 400 pixels with a spatial resolution of 8 microns and a temporal resolution of 6.5 ms.

  4. Using human induced pluripotent stem cells to treat retinal disease☆

    PubMed Central

    Borooah, S.; Phillips, M.J.; Bilican, B.; Wright, A.F.; Wilmut, I.; Chandran, S.; Gamm, D.; Dhillon, B.

    2013-01-01

    The eye is an ideal target for exploiting the potential of human induced pluripotent stem cell (hiPSC) technology in order to understand disease pathways and explore novel therapeutic strategies for inherited retinal disease. The aim of this article is to map the pathway from state-of-the art laboratory-based discoveries to realising the translational potential of this emerging technique. We describe the relevance and routes to establishing hiPSCs in selected models of human retinal disease. Additionally, we define pathways for applying hiPSC technology in treating currently incurable, progressive and blinding retinal disease. PMID:24104210

  5. Bilateral Simultaneous Rhegmatogenous Retinal Detachment following Laser in situ Keratomileusis.

    PubMed

    Yumusak, Erhan; Ornek, Kemal; Ozkal, Fatma

    2016-01-01

    A 21-year-old woman developed simultaneous rhegmatogenous retinal detachment after laser in situ keratomileusis (LASIK) in both eyes. She underwent pars plana vitrectomy surgery combined with endolaser photocoagulation and silicone oil tamponade in the right eye. A week later, pneumatic retinopexy was done in the left eye. As the retinal tear did not seal, 360° scleral buckling surgery was performed and retina was attached. Bilateral simultaneous rhegmatogenous retinal detachment after LASIK for correction of myopia can be a serious complication. Patients should be informed about the possibility of this complication. PMID:27462264

  6. Experimental retinal branch vein occlusion in rhesus monkeys. II. Retinal blood flow studies.

    PubMed Central

    Rosen, D A; Marshall, J; Kohner, E M; Hamilton, A M; Dollery, C T

    1979-01-01

    Experimental branch vein occlusion by laser photocoagulation in the rhesus monkey leads to early, marked, and lasting reduction of blood flow to the affected retinal region. The radioactive microsphere method demonstrates this reduction of blood flow in both gamma counting and autoradiography. The reduction of flow becomes evident as early as 2 hours after occlusion and persists up to 1 week. The mechanism of the altered flow is discussed. PMID:111702

  7. Human retinal gene therapy for Leber congenital amaurosis shows advancing retinal degeneration despite enduring visual improvement.

    PubMed

    Cideciyan, Artur V; Jacobson, Samuel G; Beltran, William A; Sumaroka, Alexander; Swider, Malgorzata; Iwabe, Simone; Roman, Alejandro J; Olivares, Melani B; Schwartz, Sharon B; Komáromy, András M; Hauswirth, William W; Aguirre, Gustavo D

    2013-02-01

    Leber congenital amaurosis (LCA) associated with retinal pigment epithelium-specific protein 65 kDa (RPE65) mutations is a severe hereditary blindness resulting from both dysfunction and degeneration of photoreceptors. Clinical trials with gene augmentation therapy have shown partial reversal of the dysfunction, but the effects on the degeneration are not known. We evaluated the consequences of gene therapy on retinal degeneration in patients with RPE65-LCA and its canine model. In untreated RPE65-LCA patients, there was dysfunction and degeneration of photoreceptors, even at the earliest ages. Examined serially over years, the outer photoreceptor nuclear layer showed progressive thinning. Treated RPE65-LCA showed substantial visual improvement in the short term and no detectable decline from this new level over the long term. However, retinal degeneration continued to progress unabated. In RPE65-mutant dogs, the first one-quarter of their lifespan showed only dysfunction, and there was normal outer photoreceptor nuclear layer thickness retina-wide. Dogs treated during the earlier dysfunction-only stage showed improved visual function and dramatic protection of treated photoreceptors from degeneration when measured 5-11 y later. Dogs treated later during the combined dysfunction and degeneration stage also showed visual function improvement, but photoreceptor loss continued unabated, the same as in human RPE65-LCA. The results suggest that, in RPE65 disease treatment, protection from visual function deterioration cannot be assumed to imply protection from degeneration. The effects of gene augmentation therapy are complex and suggest a need for a combinatorial strategy in RPE65-LCA to not only improve function in the short term but also slow retinal degeneration in the long term. PMID:23341635

  8. LOCAL SIGNALING FROM A RETINAL PROSTHETIC IN A RODENT RETINITIS PIGMENTOSA MODEL IN VIVO

    PubMed Central

    Fransen, James W.; Pangeni, Gobinda; Pardue, Machelle T.; McCall, Maureen A.

    2014-01-01

    Objective In clinical trials, retinitis pigmentosa (RP) patients implanted with a retinal prosthetic device show enhanced spatial vision, including the ability to read large text and navigate. New prosthetics aim to increase spatial resolution by decreasing pixel/electrode size and limiting current spread. To examine spatial resolution of a new prosthetic design, we characterized and compared two photovoltaic array (PVA) designs and their interaction with the retina after subretinal implantation in transgenic S334ter line 3 rats (Tg S334ter-3). Approach PVAs were implanted subretinally at two stages of degeneration and assessed in vivo using extracellular recordings in the superior colliculus (SC). Several aspects of this interaction were evaluated by varying duration, irradiance and position of a near infrared (NIR) laser focused on the PVA. These characteristics included: activation threshold, response linearity, SC signal topography and spatial localization. The major design difference between the two PVA designs is the inclusion of local current returns in the newer design. Main Results When tested in vivo, PVA-evoked response thresholds were independent of pixel/electrode size, but differ between the new and old PVA designs. Response thresholds were independent of implantation age and duration (≤ 7.5 months). For both prosthesis designs, threshold intensities were within established safety limits. PVA-evoked responses require inner retina synaptic transmission and do not directly activate retinal ganglion cells (RGCs). The new PVA design evokes local retinal activation, which is not found with the older PVA design that lacks local current returns. Significance Our study provides in vivo evidence that prosthetics make functional contacts with the inner nuclear layer at several stages of degeneration. The new PVA design enhances local activation within the retina and SC. Together these results predict that the new design can potentially harness the inherent

  9. Local signaling from a retinal prosthetic in a rodent retinitis pigmentosa model in vivo

    NASA Astrophysics Data System (ADS)

    Fransen, James W.; Pangeni, Gobinda; Pardue, Machelle T.; McCall, Maureen A.

    2014-08-01

    Objective. In clinical trials, retinitis pigmentosa patients implanted with a retinal prosthetic device show enhanced spatial vision, including the ability to read large text and navigate. New prosthetics aim to increase spatial resolution by decreasing pixel/electrode size and limiting current spread. To examine spatial resolution of a new prosthetic design, we characterized and compared two photovoltaic array (PVA) designs and their interaction with the retina after subretinal implantation in transgenic S334ter line 3 rats (Tg S334ter-3). Approach. PVAs were implanted subretinally at two stages of degeneration and assessed in vivo using extracellular recordings in the superior colliculus (SC). Several aspects of this interaction were evaluated by varying duration, irradiance and position of a near infrared laser focused on the PVA. These characteristics included: activation threshold, response linearity, SC signal topography and spatial localization. The major design difference between the two PVA designs is the inclusion of local current returns in the newer design. Main results. When tested in vivo, PVA-evoked response thresholds were independent of pixel/electrode size, but differ between the new and old PVA designs. Response thresholds were independent of implantation age and duration (⩽7.5 months). For both prosthesis designs, threshold intensities were within established safety limits. PVA-evoked responses require inner retina synaptic transmission and do not directly activate retinal ganglion cells. The new PVA design evokes local retinal activation, which is not found with the older PVA design that lacks local current returns. Significance. Our study provides in vivo evidence that prosthetics make functional contacts with the inner nuclear layer at several stages of degeneration. The new PVA design enhances local activation within the retina and SC. Together these results predict that the new design can potentially harness the inherent processing within

  10. New nonlinear optical potassium iodate K[IO{sub 3}] and borates K{sub 3}[B{sub 6}O{sub 10}]Br, KTa[B{sub 4}O{sub 6}(OH){sub 4}](OH){sub 2}{center_dot}1.33H{sub 2}O-Synthesis, structures and relation to the properties

    SciTech Connect

    Belokoneva, Elena L.; Stefanovich, Sergej Yu; Dimitrova, Olga V.

    2012-11-15

    Three optically uniaxial non-centrosymmetric potassium compounds, iodate K[IO{sub 3}] and two borates K{sub 3}[B{sub 6}O{sub 10}]Br, KTa[B{sub 4}O{sub 6}(OH){sub 4}](OH){sub 2}{center_dot}1.33H{sub 2}O have been synthesized and characterized by single-crystal X-ray diffraction. The materials were synthesized through hydrothermal techniques using initial reagents and mineralizers. All the compounds are trigonal-hexagonal: the space groups are R3 (K[IO{sub 3}]), R3m (K[B{sub 6}O{sub 10}]Br) and P-62m (KTa[B{sub 4}O{sub 6}(OH){sub 4}](OH){sub 2}{center_dot}1.33H{sub 2}O). Powder second-harmonic generation (SHG) measurements on crystals, using 1064 nm Nd:YAG laser radiation, indicate the materials are all phase-matchable and have strong second-order nonlinearities. The correlation with the perovskite structure has been found and described for K,Br-borate and K-iodate. Structure-properties relation is discussed and attributed to stereo-active lone-pair on I{sup 5+} and asymmetrical bonds in the compounds. The role of K atoms is pronounced from crystal chemistry point of view, contributing optical nonlinearities. - Graphical abstract: Structure-properties relation is attributed to stereo-active lone-pair on I{sup 5+} and asymmetrical bonds in the compounds with the crucial role of K atoms, K[IO{sub 3}] structure along 3-fold axis with umbrella-like IO{sub 3}-group and with octahedral coordination-analog with perovskite. Highlights: Black-Right-Pointing-Pointer Syntheses in hydrothermal conditions trigonal KIO{sub 3}, K{sub 3}[B{sub 6}O{sub 10}]Br and KTa[B{sub 4}O{sub 6}(OH){sub 4}](OH){sub 2}. Black-Right-Pointing-Pointer Correlation with the perovskite, found for K-iodate and K,Br-borate. Black-Right-Pointing-Pointer Structure-properties relation, attributed to I{sup 5+} lone-pair and asymmetric bonds including K-atoms. Black-Right-Pointing-Pointer The compounds are phase matchable and strongly nonlinear from powder SHG measurements. Black

  11. Bietti crystalline retinal dystrophy with subfoveal neurosensory detachment and congenital tortuosity of retinal vessels: case report.

    PubMed

    Padhi, Tapas Ranjan; Kesarwani, Siddharth; Jalali, Subhadra

    2011-06-01

    A 34-year-old man presented with reduction and distortion of vision in both the eyes. The best-corrected vision was 20/20 parts, N6 in either eye. The external and slit lamp examination of both the eyes was unremarkable. The fundus examination showed multiple intraretinal crystalline deposits at the posterior pole, extending up to midperiphery, tortuous retinal blood vessels with S-shaped deflections, and absent foveal reflex in both the eyes. There were no corneal crystals, and the color vision was defective in both the eyes. Fundus autofluorescence and fundus fluorescein angiogram (FFA) were suggestive of geographic areas of retinal pigment epithelium (RPE) and choriocapillary (CC) loss. OCT revealed subfoveal neurosensory detachment. Flash ERG and EOG were normal except for a slight decrease in amplitude and delay in latency of pattern ERG waveforms. The Humphrey's visual field showed paracentral scotoma with reduction in the amplitude of waveforms from the corresponding area in the multifocal ERG in both the eyes. Systemic evaluation for crystalline retinopathy was unremarkable. He was diagnosed to be a case of Bietti crystalline retinopathy (local/regional variant). The subfoveal neurosensory detachment could represent early RPE dysfunction caused by these crystals and could account for the mild visual disturbance in both the eyes. Retinal vascular tortuosity and neurosensory detachment seen in this case is the first time to be reported in literature. PMID:21611771

  12. Preliminary investigation of multispectral retinal tissue oximetry mapping using a hyperspectral retinal camera.

    PubMed

    Desjardins, Michèle; Sylvestre, Jean-Philippe; Jafari, Reza; Kulasekara, Susith; Rose, Kalpana; Trussart, Rachel; Arbour, Jean Daniel; Hudson, Chris; Lesage, Frédéric

    2016-05-01

    Oximetry measurement of principal retinal vessels represents a first step towards understanding retinal metabolism, but the technique could be significantly enhanced by spectral imaging of the fundus outside of main vessels. In this study, a recently developed Hyperspectral Retinal Camera was used to measure relative oximetric (SatO2) and total hemoglobin (HbT) maps of the retina, outside of large vessels, in healthy volunteers at baseline (N = 7) and during systemic hypoxia (N = 11), as well as in patients with glaucoma (N = 2). Images of the retina, on a field of view of ∼30°, were acquired between 500 and 600 nm with 2 and 5 nm steps, in under 3 s. The reflectance spectrum from each pixel was fitted to a model having oxy- and deoxyhemoglobin as the main absorbers and scattering modeled by a power law, yielding estimates of relative SatO2 and HbT over the fundus. Average optic nerve head (ONH) saturation over 8 eyes was 68 ± 5%. During systemic hypoxia, mean ONH saturation decreased by 12.5% on average. Upon further development and validation, the relative SatO2 and HbT maps of microvasculature obtained with this imaging system could ultimately contribute to the diagnostic and management of diseases affecting the ONH and retina. PMID:27060375

  13. Detection of retinal nerve fiber layer defects on retinal fundus images for early diagnosis of glaucoma

    NASA Astrophysics Data System (ADS)

    Muramatsu, Chisako; Hayashi, Yoshinori; Sawada, Akira; Hatanaka, Yuji; Hara, Takeshi; Yamamoto, Tetsuya; Fujita, Hiroshi

    2010-01-01

    Retinal nerve fiber layer defect (NFLD) is a major sign of glaucoma, which is the second leading cause of blindness in the world. Early detection of NFLDs is critical for improved prognosis of this progressive, blinding disease. We have investigated a computerized scheme for detection of NFLDs on retinal fundus images. In this study, 162 images, including 81 images with 99 NFLDs, were used. After major blood vessels were removed, the images were transformed so that the curved paths of retinal nerves become approximately straight on the basis of ellipses, and the Gabor filters were applied for enhancement of NFLDs. Bandlike regions darker than the surrounding pixels were detected as candidates of NFLDs. For each candidate, image features were determined and the likelihood of a true NFLD was determined by using the linear discriminant analysis and an artificial neural network (ANN). The sensitivity for detecting the NFLDs was 91% at 1.0 false positive per image by using the ANN. The proposed computerized system for the detection of NFLDs can be useful to physicians in the diagnosis of glaucoma in a mass screening.

  14. Astrocytes and Müller Cell Alterations During Retinal Degeneration in a Transgenic Rat Model of Retinitis Pigmentosa

    PubMed Central

    Fernández-Sánchez, Laura; Lax, Pedro; Campello, Laura; Pinilla, Isabel; Cuenca, Nicolás

    2015-01-01

    Purpose: Retinitis pigmentosa includes a group of progressive retinal degenerative diseases that affect the structure and function of photoreceptors. Secondarily to the loss of photoreceptors, there is a reduction in retinal vascularization, which seems to influence the cellular degenerative process. Retinal macroglial cells, astrocytes, and Müller cells provide support for retinal neurons and are fundamental for maintaining normal retinal function. The aim of this study was to investigate the evolution of macroglial changes during retinal degeneration in P23H rats. Methods: Homozygous P23H line-3 rats aged from P18 to 18 months were used to study the evolution of the disease, and SD rats were used as controls. Immunolabeling with antibodies against GFAP, vimentin, and transducin were used to visualize macroglial cells and cone photoreceptors. Results: In P23H rats, increased GFAP labeling in Müller cells was observed as an early indicator of retinal gliosis. At 4 and 12 months of age, the apical processes of Müller cells in P23H rats clustered in firework-like structures, which were associated with ring-like shaped areas of cone degeneration in the outer nuclear layer. These structures were not observed at 16 months of age. The number of astrocytes was higher in P23H rats than in the SD matched controls at 4 and 12 months of age, supporting the idea of astrocyte proliferation. As the disease progressed, astrocytes exhibited a deteriorated morphology and marked hypertrophy. The increase in the complexity of the astrocytic processes correlated with greater connexin 43 expression and higher density of connexin 43 immunoreactive puncta within the ganglion cell layer (GCL) of P23H vs. SD rat retinas. Conclusions: In the P23H rat model of retinitis pigmentosa, the loss of photoreceptors triggers major changes in the number and morphology of glial cells affecting the inner retina. PMID:26733810

  15. Reducing the artifacts in the identification of outer retinal boundary in the SD-OCT image with inherit retinal dystrophies.

    PubMed

    Min Zhang; Sekiguchi, Hiroyuki; Uji, Akihito; Yakami, Masahiro; Togashi, Kaori

    2015-08-01

    This paper presents a new SD-OCT outer retinal boundary identification method based on the improved graph-theoretic approach in SD-OCT retinal image, which is robust to the image quality degradation and the pathological morphology variability. The performance of the proposed method was verified using the SD-OCT image database with inherit retinal dystrophies, which suffer from the artifacts most among different macular degeneration diseases. The experimental results of the subjective evaluation indicated that the identification results using the proposed method was substantially improved compared with the current built-in software in the SD-OCT devices. PMID:26737258

  16. A novel method for detection of preferred retinal locus (PRL) through simple retinal image processing using MATLAB

    NASA Astrophysics Data System (ADS)

    Kalikivayi, V.; Pal, Sudip; Ganesan, A. R.

    2013-09-01

    simple and new technique for detection of `Preferred Retinal Locus' (PRL) in human eye is proposed in this paper. Simple MATLAB algorithms for estimating RGB pixel intensity values of retinal images were used. The technique proved non-existence of `S' cones in Fovea Centralis and also proposes that rods are involved in blue color perception. Retinal images of central vision loss and normal retina were taken for image processing. Blue minimum, Red maximum and Red+Green maximum were the three methods used in detecting PRL. Comparative analyses were also performed for these methods with patient's age and visual acuity.

  17. Degeneration of retinal ganglion cells in diabetic dogs and mice: Relationship to glycemic control and retinal capillary degeneration

    PubMed Central

    Howell, Scott J.; Mekhail, Mena N.; Azem, Rami; Ward, Nicole L.

    2013-01-01

    Purpose The purpose of this study was to investigate (i) the effect of diabetes on retinal ganglion cell death in diabetic dogs and mice, (ii) the effect of prolonged glycemic control on diabetes-induced death of retinal ganglion cells, (iii) whether retinal ganglion cell death in diabetes is associated with degeneration of retinal capillaries, and (iv) the effect of diet on diabetes-induced degeneration of retinal ganglion cells in mice. Methods Diabetes was induced in dogs using streptozotocin, and levels of glycemic control (good, moderate, and poor) were maintained for 5 years. Diabetes was studied in two mouse models (diabetes induced in C57Bl/6J mice using streptozotocin and spontaneously diabetic Ins2Akita mice). Retinal ganglion cell death was investigated by counting the number of axons from the ganglion cells in the optic nerve and with terminal transferase deoxyuridine triphosphate nick-end labeling and annexin V staining in mice. Results As reported previously, the development and severity of vascular lesions of diabetic retinopathy in diabetic dogs were strongly associated with glycemic control. Loss of retinal ganglion cells was extensive in dogs kept in poor glycemic control, and was essentially prevented in diabetic dogs kept in good glycemic control for the 5 years of study. In contrast, “moderate” glycemic control (intermediate between poor and good glycemic control) caused a significant increase in vascular pathology, but did not cause loss of retinal axons in the optic nerve. Using this validated optic nerve axon counting method, the two mouse models of diabetic retinopathy were studied to assess ganglion cell death. Despite 10 months of diabetes (a duration that has been shown to cause retinal capillary degeneration in both models), neither mouse model showed loss of optic nerve axons (thus suggesting no loss of retinal ganglion cells). Likewise, other parameters of cell death (terminal transferase deoxyuridine triphosphate nick

  18. Vitreal Ocygenation in Retinal Ischemia Reperfusion

    SciTech Connect

    Abdallab, Walid; AmeriMD, Hossein; Barron, Ernesto; ChaderPhD, Gerald; Greenbaum, Elias; Hinton, David E; Humayun, Mark S

    2011-01-01

    PURPOSE. To study the feasibility of anterior vitreal oxygenation for the treatment of acute retinal ischemia. METHODS. Twenty rabbits were randomized into an oxygenation group, a sham treatment group, and a no treatment group. Baseline electroretinography (ERG) and preretinal oxygen (PO2) measurements were obtained 3 to 5 days before surgery. Intraocular pressure was raised to 100 mm Hg for 90 minutes and then normalized. The oxygenation group underwent vitreal oxygenation for 30 minutes using intravitreal electrodes. The sham treatment group received inactive electrodes for 30 minutes while there was no intervention for the no treatment group. Preretinal PO2 in the posterior vitreous was measured 30 minutes after intervention or 30 minutes after reperfusion (no treatment group) and on postoperative days (d) 3, 6, 9, and 12. On d14, rabbits underwent ERG and were euthanatized.

  19. Snapshot retinal imaging Mueller matrix polarimeter

    NASA Astrophysics Data System (ADS)

    Wang, Yifan; Kudenov, Michael; Kashani, Amir; Schwiegerling, Jim; Escuti, Michael

    2015-09-01

    Early diagnosis of glaucoma, which is a leading cause for visual impairment, is critical for successful treatment. It has been shown that Imaging polarimetry has advantages in early detection of structural changes in the retina. Here, we theoretically and experimentally present a snapshot Mueller Matrix Polarimeter fundus camera, which has the potential to record the polarization-altering characteristics of retina with a single snapshot. It is made by incorporating polarization gratings into a fundus camera design. Complete Mueller Matrix data sets can be obtained by analyzing the polarization fringes projected onto the image plane. In this paper, we describe the experimental implementation of the snapshot retinal imaging Mueller matrix polarimeter (SRIMMP), highlight issues related to calibration, and provide preliminary images acquired from the camera.

  20. Intersecting Circuits Generate Precisely Patterned Retinal Waves

    PubMed Central

    Akrouh, Alejandro; Kerschensteiner, Daniel

    2013-01-01

    SUMMARY The developing retina generates spontaneous glutamatergic (stage III) waves of activity that sequentially recruit neighboring ganglion cells with opposite light responses (ON and OFF RGCs). This activity pattern is thought to help establish parallel ON and OFF pathways in downstream visual areas. The circuits that produce stage III waves and desynchronize ON and OFF RGC firing remain obscure. Using dual patch clamp recordings, we find that ON and OFF RGCs receive sequential excitatory input from ON and OFF cone bipolar cells (CBCs), respectively. This input sequence is generated by crossover circuits, in which ON CBCs control glutamate release from OFF CBCs via diffusely stratified inhibitory amacrine cells. In addition, neighboring ON CBCs communicate directly and indirectly through lateral glutamatergic transmission and gap junctions, both of which are required for wave initiation and propagation. Thus, intersecting lateral excitatory and vertical inhibitory circuits give rise to precisely patterned stage III retinal waves. PMID:23830830

  1. Retinal representation of the elementary visual signal

    PubMed Central

    Li, Peter H.; Field, Greg D.; Greschner, Martin; Ahn, Daniel; Gunning, Deborah E.; Mathieson, Keith; Sher, Alexander; Litke, Alan M.; Chichilnisky, E.J.

    2014-01-01

    Summary The propagation of visual signals from individual cone photoreceptors through parallel neural circuits was examined in the primate retina. Targeted stimulation of individual cones was combined with simultaneous recording from multiple retinal ganglion cells of identified types. The visual signal initiated by an individual cone produced strong responses with different kinetics in three of the four numerically dominant ganglion cell types. The magnitude and kinetics of light responses in each ganglion cell varied nonlinearly with stimulus strength, but in a manner that was independent of the cone of origin after accounting for the overall input strength of each cone. Based on this property of independence, the receptive field profile of an individual ganglion cell could be well estimated from responses to stimulation of each cone individually. Together these findings provide a quantitative account of how elementary visual inputs form the ganglion cell receptive field. PMID:24411737

  2. The entoptic view of the retinal vessels.

    PubMed

    Mark, Harry H

    2014-05-01

    The first time the retinal vessels were seen in man in vivo was reported in 1819 by Purkinje as an entoptic view. This was understood to show the shadow of the vessels, an interpretation objected to in 1834 by Brewster. Müller in 1855 (Über die entoptische wahrnehmung der netzhautgefässe, insbesondere als beweismittel für die lichtperception durch die nach hinten gelegenen netzhautelemente, Stahel, Würzburg) used the phenomenon to deduce the location of the photoreceptive layer of the retina, and his conclusion is accepted as true today. Because the phenomenon has some characteristics of an afterimage, it touches on the question of what is subjective and what is objective physical reality. It was recently used clinically to measure potential visual acuity and in the diagnoses of diabetic retinopathy and macular degeneration. PMID:23890291

  3. Retinal oximetry with a multiaperture camera

    NASA Astrophysics Data System (ADS)

    Lemaillet, Paul; Lompado, Art; Ibrahim, Mohamed; Nguyen, Quan Dong; Ramella-Roman, Jessica C.

    2010-02-01

    Oxygen saturation measurements in the retina is an essential measurement in monitoring eye health of diabetic patient. In this paper, preliminary result of oxygen saturation measurements for a healthy patient retina is presented. The retinal oximeter used is based on a regular fundus camera to which was added an optimized optical train designed to perform aperture division whereas a filter array help select the requested wavelengths. Hence, nine equivalent wavelength-dependent sub-images are taken in a snapshot which helps minimizing the effects of eye movements. The setup is calibrated by using a set of reflectance calibration phantoms and a lookuptable (LUT) is computed. An inverse model based on the LUT is presented to extract the optical properties of a patient fundus and further estimate the oxygen saturation in a retina vessel.

  4. In Vivo Molecular Imaging in Retinal Disease

    PubMed Central

    Xie, Fang; Luo, Wenting; Zhang, Zhongyu; Sun, Dawei

    2012-01-01

    There is an urgent need for early diagnosis in medicine, whereupon effective treatments could prevent irreversible tissue damage. The special structure of the eye provides a unique opportunity for noninvasive light-based imaging of ocular fundus vasculature. To detect endothelial injury at the early and reversible stage of adhesion molecule upregulation, some novel imaging agents that target retinal endothelial molecules were generated. In vivo molecular imaging has a great potential to impact medicine by detecting diseases or screening disease in early stages, identifying extent of disease, selecting disease and patient-specific therapeutic treatment, applying a directed or targeted therapy, and measuring molecular-specific effects of treatment. Current preclinical findings and advances in instrumentation such as endoscopes and microcatheters suggest that these molecular imaging modalities have numerous clinical applications and will be translated into clinical use in the near future. PMID:22363836

  5. Retinal Changes Induced by Epiretinal Tangential Forces

    PubMed Central

    Romano, Mario R.; Comune, Chiara; Ferrara, Mariantonia; Cennamo, Gilda; De Cillà, Stefano; Toto, Lisa; Cennamo, Giovanni

    2015-01-01

    Two kinds of forces are active in vitreoretinal traction diseases: tangential and anterior-posterior forces. However, tangential forces are less characterized and classified in literature compared to the anterior-posterior ones. Tangential epiretinal forces are mainly due to anomalous posterior vitreous detachment (PVD), vitreoschisis, vitreopapillary adhesion (VPA), and epiretinal membranes (ERMs). Anomalous PVD plays a key role in the formation of the tangential vectorial forces on the retinal surface as consequence of gel liquefaction (synchysis) without sufficient and fast vitreous dehiscence at the vitreoretinal interface. The anomalous and persistent adherence of the posterior hyaloid to the retina can lead to vitreomacular/vitreopapillary adhesion or to a formation of avascular fibrocellular tissue (ERM) resulting from the proliferation and transdifferentiation of hyalocytes resident in the cortical vitreous remnants after vitreoschisis. The right interpretation of the forces involved in the epiretinal tangential tractions helps in a better definition of diagnosis, progression, prognosis, and surgical outcomes of vitreomacular interfaces. PMID:26421183

  6. Cleavage of β-Carotene to Retinal

    NASA Astrophysics Data System (ADS)

    Wyss, Adrian; von Lintig, Johannes

    Elucidating the physiological roles played by vitamins has always been a major goal of nutritionists and biochemists. In humans, vitamin A deficiency disorder (VADD) in milder forms leads to night blindness, whilst more severe progression can lead to corneal malformations, e.g. xerophthalmia (See Volume 5, Chapters 8 and 9). This deficiency also affects the immune system, leads to infertility and causes malformations during embryogenesis. The molecular basis for these diverse effects lies in the dual role of vitamin A (retinol, 1) derivatives. In all visual systems, retinal (2), or a closely related compound such as 3-hydroxyretinal (3), is the chromophore of the visual pigments (e.g. rhodopsin) [1,2]. In vertebrates, the derivative retinoic acid (RA, 4) is a major signalling molecule that controls a wide range of processes. Retinoic acid is the ligand of the nuclear retinoic acid receptors (RARs) and retinoid X receptors (RXRs) [3-6] (see Chapter 15).

  7. DSP based image processing for retinal prosthesis.

    PubMed

    Parikh, Neha J; Weiland, James D; Humayun, Mark S; Shah, Saloni S; Mohile, Gaurav S

    2004-01-01

    The real-time image processing in retinal prosthesis consists of the implementation of various image processing algorithms like edge detection, edge enhancement, decimation etc. The algorithmic computations in real-time may have high level of computational complexity and hence the use of digital signal processors (DSPs) for the implementation of such algorithms is proposed here. This application desires that the DSPs be highly computationally efficient while working on low power. DSPs have computational capabilities of hundreds of millions of instructions per second (MIPS) or millions of floating point operations per second (MFLOPS) along with certain processor configurations having low power. The various image processing algorithms, the DSP requirements and capabilities of different platforms would be discussed in this paper. PMID:17271974

  8. Laser injury to multiple retinal foci

    SciTech Connect

    Kearney, J.J.; Cohen, H.B.; Stuck, B.E.; Rudd, G.P.; Beresky, D.E.; Wertz, F.D.

    1987-01-01

    A 21-year-old man received an accidental laser injury to three separate foci of the retina of his right eye from a Q-switched Nd:YAG laser target designator emitting at 1064 nm, operating at 10 Hz, with a pulse duration of 20 ns. The nominal output of this device was 50 mJ, and the diameter of the output beam was approximately 4 cm. The extent of injury consisted of retinal necrosis, subretinal hemorrhage, vitreous hemorrhage, and striate retinopathy. The initial visual acuity was 20/400, but quickly recovered to 20/30. One year following injury the visual acuity was 20/40. Mature chorioretinal scars were apparent. A preretinal membrane was evident with marked wrinkling effect on the macular area of the retina.

  9. Retinal haemorrhages associated with fatal paediatric infections.

    PubMed

    Salvatori, Marcus C; Lantz, Patrick E

    2015-04-01

    For many physicians, retinal haemorrhages (RHs) in infants and young children remain highly diagnostic of non-accidental (abusive) head trauma. Because clinicians have applied indirect ophthalmoscopy selectively to cases of suspected child abuse, the association between RH and other conditions such as infection, coagulopathy and accidental trauma has encountered habitual bias, creating the potential for iatrogenic misdiagnosis of child abuse. We present an autopsy case series of four children, aged three years old or younger, in whom RHs were detected by post-mortem monocular indirect ophthalmoscopy after the patients had died from infections. We discuss the laterality, number, type and location of RHs in these cases, and summarize proposed mechanisms of RH formation in fatalities from paediatric infection. We demonstrate that many of the ophthalmological findings that have been considered diagnostic of abusive head trauma can also occur in association with infective processes. PMID:24644226

  10. Intraretinal proliferation induced by retinal detachment

    SciTech Connect

    Fisher, S.K.; Erickson, P.A.; Lewis, G.P.; Anderson, D.H. )

    1991-05-01

    Cellular proliferation after retinal detachment was studied by {sup 3}H-thymidine light microscopic autoradiography in cats that had experimental detachments of 0.5-180 days duration. The animals underwent labeling 2 hr before death with an intraocular injection of 200 microCi of {sup 3}H-thymidine. The number of labeled nuclei were counted in 1-micron thick tissue sections in regions of detachment, in regions of the experimental eyes that remained attached, and in control eyes that had no detachments. In the normal eye, in one that had only the lens and vitreous removed, and in the eyes with 0.5- and 1-day detachments, the number of labeled nuclei ranged from 0/mm (0.5-day detachment) to 0.38/mm (lens and vitreous removed only). By 2 days postdetachment, the number of labeled nuclei increased to 2.09/mm. The highest levels of labeling occurred in two animals with detachments of 3 (7.86/mm) and 4 (7.09/mm) days. Thereafter, the numbers declined steadily until near-baseline counts were obtained at 14 days. The number of labeled nuclei was slightly elevated in the attached regions of two animals with 3-day detachments. Labeled cell types included: Mueller cells, astrocytes, pericytes, and endothelial cells of the retinal vasculature, and both resident (microglial cells) and invading macrophages. In an earlier study RPE cells were also shown to proliferate in response to detachment. Thus, these data show that proliferation is a rapid response to detachment, reaching a maximum within 4 days, and that virtually every nonneuronal cell type in the retina can participate in this response. The data suggest that events leading to such clinical manifestations as proliferative vitreoretinopathy and subretinal fibrosis may have their beginnings in this very early proliferative response.

  11. Spike timing control in retinal prosthetic

    NASA Astrophysics Data System (ADS)

    Werblin, Frank

    2005-03-01

    To restore meaningful vision to blind patients requires a retinal prosthetic device that can generate precise spiking patterns in retinal ganglion cells. We sought to develop a stimulus protocol that could reliably elicit one ganglion cell spike for every stimulation pulse over a broad frequency range. Small tipped platinum-iridium epiretinal electrodes were used to deliver biphasic cathodal electrical stimulus pulses at frequencies ranging from 10 to 125 Hz. We measured spiking responses with on-cell patch clamp from ganglion cells in the flat mount rabbit retina, identified by light response and morphology. Single electrical 30 pA cathodal pulses of 1 msec duration elicited both by direct electrical activation of ganglion cells and synaptic excitation and inhibition. Direct activation elicited a single spike that followed the onset of the cathodic pulse by about 100 μsec; presynaptic activation typically elicited multiple spikes which began after 10 msec and could persist for more than 50 ms depending on pulse amplitude levels. Limiting the pulse duration to 100 μsec eliminated all presynaptic activity: only ganglion cells were driven. Each pulse elicited a single pike for stimulation frequencies tested from 10 to125 Hz. Our ability to elicit one spike per pulse provides many important advantages: This protocol can be used to generate temporal patterns of activity in ganglion cells with precision. We can now mimic normal light evoked responses for either transient or sustained cells, and we can modulate spike frequency to simulate changes in intensity, contrast, motion and other essential cues in the visual environment.

  12. Central retinal vein occlusion and pseudoexfoliation syndrome

    PubMed Central

    Karagiannis, Dimitrios; Kontadakis, Georgios A; Klados, Nektarios E; Tsoumpris, Ioannis; Kandarakis, Artemios S; Parikakis, Efstratios A; Georgalas, Ilias; Tsilimbaris, Miltiadis K

    2015-01-01

    Purpose The purpose of this study was to investigate the existence of pseudoexfoliation syndrome (PXF) as a risk factor for the development of central retinal vein occlusion (CRVO). Methods This was a retrospective, comparative study of the prevalence of pseudoexfoliation in three groups of patients: 48 patients with CRVO, 164 patients with branch retinal vein occlusion (BRVO), and 70 control patients (70 eyes). All patients were phakic and had no previous diagnosis of glaucoma. Patients were matched in terms of age and systemic hypertension. All patients had normal intraocular pressure (IOP) at presentation (defined as less than or equal to 21 mmHg). Results In the CRVO group, 14 out of 48 patients were diagnosed as having PXF (29.17%). In the BRVO group, 14 out of 164 patients had PXF (8.5%), and in the control group, six out of 70 patients had PXF (8.6%). Differences of percentage between groups were statistically significant (P<0.001, χ2 test). When comparing patient subgroup with ischemic CRVO with subgroup with non-ischemic CRVO, we found that in the ischemic CRVO group, 13 out of 27 patients were diagnosed as having PXF (48.15%), and in the non-ischemic CRVO group, one out of 21 patients was diagnosed as having PXF (4.7%; P<0.001, χ2 test). The relative odds of having CRVO in patients with PXF versus patients without PXF were 4.406 (confidence interval [CI], 2.03–9.54). Conclusion PXF and CRVO, especially ischemic, are strongly associated in our study. Our results indicate that PXF might be an independent factor for CRVO, as it is related with CRVO independently from glaucoma. PMID:26056437

  13. Advantages of diabetic tractional retinal detachment repair

    PubMed Central

    Sternfeld, Amir; Axer-Siegel, Ruth; Stiebel-Kalish, Hadas; Weinberger, Dov; Ehrlich, Rita

    2015-01-01

    Purpose To evaluate the outcomes and complications of patients with diabetic tractional retinal detachment (TRD) treated with pars plana vitrectomy (PPV). Patients and methods We retrospectively studied a case series of 24 eyes of 21 patients at a single tertiary, university-affiliated medical center. A review was carried out on patients who underwent PPV for the management of TRD due to proliferative diabetic retinopathy from October 2011 to November 2013. Preoperative and final visual outcomes, intraoperative and postoperative complications, and medical background were evaluated. Results A 23 G instrumentation was used in 23 eyes (95.8%), and a 25 G instrumentation in one (4.2%). Mean postoperative follow-up time was 13.3 months (4–30 months). Visual acuity significantly improved from logarithm of the minimum angle of resolution (LogMAR) 1.48 to LogMAR 1.05 (P<0.05). Visual acuity improved by ≥3 lines in 75% of patients. Intraoperative complications included iatrogenic retinal breaks in seven eyes (22.9%) and vitreal hemorrhage in nine eyes (37.5%). In two eyes, one sclerotomy was enlarged to 20 G (8.3%). Postoperative complications included reoperation in five eyes (20.8%) due to persistent subretinal fluid (n=3), vitreous hemorrhage (n=1), and dislocated intraocular lens (n=1). Thirteen patients (54.2%) had postoperative vitreous hemorrhage that cleared spontaneously, five patients (20.8%) required antiglaucoma medications for increased intraocular pressure, seven patients (29.2%) developed an epiretinal membrane, and two patients (8.3%) developed a macular hole. Conclusion Patients with diabetic TRD can benefit from PPV surgery. Intraoperative and postoperative complications can be attributed to the complexity of this disease. PMID:26604667

  14. Congenital retinal macrovessel: atypical presentation using optical coherence tomography.

    PubMed

    Ceylan, Osman M; Gullulu, Gulay; Akin, Tugrul; Bilen, Harun

    2011-02-01

    To describe a congenital retinal macrovessel with macular thickening. This case was investigated using fundus photography, fluorescein angiography, Spectralis optical coherence tomography and a 10-2 visual field test. A 23-year-old man was referred to our clinic with decreased vision in the right eye. Fundus examination of the right eye revealed a congenital retinal macrovessel that originated inferior to the superotemporal branch of the central retinal vein. Using fluorescein angiography, early filling and delayed emptying of the aberrant vein were observed. Spectralis optical coherence tomography demonstrated macular thickening and was supported by a 10-2 visual field test that revealed a relative scotoma corresponding to the same location. At the 18-month follow-up, visual acuity remained stable. Although rare, this case demonstrated that macular thickening can cause decreased visual acuity in the presence of a congenital retinal macrovessel. PMID:20922460

  15. Retinal output changes qualitatively with every change in ambient illuminance

    PubMed Central

    Seitter, Hartwig; Hovhannisyan, Anahit; Procyk, Christopher A.; Allen, Annette E.; Schenk, Martin; Lucas, Robert J.; Münch, Thomas A.

    2014-01-01

    The collective activity pattern of retinal ganglion cells, the retinal code, underlies higher visual processing. How does the ambient illuminance of the visual scene influence this retinal output? We recorded from isolated mouse and pig retina and from mouse dLGN in-vivo at up to seven ambient light levels covering the scotopic to photopic regimes. Across each luminance transition, the majority of ganglion cells exhibited qualitative response changes, while maintaining stable responses within each luminance. Strikingly, we commonly observed the appearance and disappearance of ON responses in OFF cells and vice versa. Such qualitative response changes occurred for a variety of stimuli, including full-field and localized contrast steps, and naturalistic movies. Our results suggest that the retinal code is not fixed but varies with every change of ambient luminance. This finding raises new questions about signal processing within the retina and has intriguing implications for visual processing in higher brain areas. PMID:25485757

  16. Case report: retinitis pigmentosa following cytotoxic chemotherapy in Usher's syndrome.

    PubMed

    Blanchet, P; Wellemeyer, M L; Burton, G V

    1992-05-01

    Ocular toxicity is an uncommon complication of cytotoxic chemotherapy. Retinitis pigmentosa complicating cancer chemotherapy has not been reported. A patient with probable Usher's syndrome (congenital sensorineural deafness) had apparent acceleration of retinitis pigmentosa with blindness following cytotoxic chemotherapy for non-Hodgkin's lymphoma. Retinitis pigmentosa, a feature of Usher's syndrome, usually develops as a slowly progressive process. The rapid acceleration of retinopathy following tumor therapy suggests a possible relationship to the cytotoxic chemotherapy. Lymphocytes and fibroblasts from patients with Usher's syndrome are hypersensitive to the x-ray type of DNA-damaging agents. The DNA-damaging effects of chemotherapy may have accelerated the progression of retinitis pigmentosa in this patient. PMID:1580321

  17. Despeckling vs averaging of retinal UHROCT tomograms: advantages and limitations

    NASA Astrophysics Data System (ADS)

    Eichel, Justin A.; Lee, Donghyun D.; Wong, Alexander; Fieguth, Paul W.; Clausi, David A.; Bizheva, Kostadinka K.

    2011-03-01

    Imaging time can be reduced using despeckled tomograms, which have similar image metrics to those obtained by averaging several low speed tomograms or many high speed tomograms. Quantitative analysis was used to compare the performance of two speckle denoising approaches, algorithmic despeckling and frame averaging, as applied to retinal OCT images. Human retinal tomograms were acquired from healthy subjects with a research grade 1060nm spectral domain UHROCT system with 5μm axial resolution in the retina. Single cross-sectional retinal tomograms were processed with a novel speckle denoising algorithm and compared with frame averaged retinal images acquired at the same location. Image quality metrics such as the image SNR and contrast-to-noise ratio (CNR) were evaluated for both cases.

  18. Characteristic Findings of Optical Coherence Tomography in Retinal Angiomatous Proliferation

    PubMed Central

    Lim, Eun-Hae; Kim, Chul Gu; Cho, Sung Won; Lee, Tae Gon

    2013-01-01

    Purpose To identify the unique pathologic findings of retinal angiomatous proliferation (RAP) in optical coherence tomography (OCT). Methods Retrospectively, 29 eyes of 25 patients with age-related macular degeneration and complicated RAP were analyzed. All 29 eyes had choroidal neovascularization (CNV) in the area of pigment epithelial detachment (PED) or adjacent to it, which was visible with fluorescein angiography or indocyanine green angiography. Cross-sectional images were obtained by OCT scanning through the CNV lesions. Results Six distinctive findings of OCT included drusen (100%), inner retinal cyst (80%), outer retinal cyst (68%), fibrovascular PED (84%), serous retinal detachment (40%), and PED (68%). Conclusions Through analysis of OCT findings, we revealed six different types of lesions distinctive of RAP which may provide helpful diagnostic information for subsequent treatment and predicting the prognosis of RAP. PMID:24082773

  19. Preparation of embryonic retinal explants to study CNS neurite growth.

    PubMed

    Hanea, Sonia T; Shanmugalingam, Ushananthini; Fournier, Alyson E; Smith, Patrice D

    2016-05-01

    This protocol outlines the preparation of embryonic mouse retinal explants, which provides an effective technique to analyze neurite outgrowth in central nervous system (CNS) neurons. This validated ex vivo system, which displays limited neuronal death, is highly reproducible and particularly amenable to manipulation. Our previously published studies involving embryonic chick or adult mouse retinal explants were instrumental in the preparation of this protocol; aspects of these previous techniques were combined, adopted and optimized. This protocol thus permits more efficient analysis of neurite growth. Briefly, the retina is dissected from the embryonic mouse eye using precise techniques that take into account the small size of the embryonic eye. The approach applied ensures that the retinal ganglion cell (RGC) layer faces the adhesion substrate on coated cover slips. Neurite growth is clear, well-delineated and readily quantifiable. These retinal explants can therefore be used to examine the neurite growth effects elicited by potential therapeutic agents. PMID:27072342

  20. Reprogramming of adult rod photoreceptors prevents retinal degeneration

    PubMed Central

    Montana, Cynthia L.; Kolesnikov, Alexander V.; Shen, Susan Q.; Myers, Connie A.; Kefalov, Vladimir J.; Corbo, Joseph C.

    2013-01-01

    A prime goal of regenerative medicine is to direct cell fates in a therapeutically useful manner. Retinitis pigmentosa is one of the most common degenerative diseases of the eye and is associated with early rod photoreceptor death followed by secondary cone degeneration. We hypothesized that converting adult rods into cones, via knockdown of the rod photoreceptor determinant Nrl, could make the cells resistant to the effects of mutations in rod-specific genes, thereby preventing secondary cone loss. To test this idea, we engineered a tamoxifen-inducible allele of Nrl to acutely inactivate the gene in adult rods. This manipulation resulted in reprogramming of rods into cells with a variety of cone-like molecular, histologic, and functional properties. Moreover, reprogramming of adult rods achieved cellular and functional rescue of retinal degeneration in a mouse model of retinitis pigmentosa. These findings suggest that elimination of Nrl in adult rods may represent a unique therapy for retinal degeneration. PMID:23319618