Science.gov

Sample records for 11-point numerical rating

  1. An automated system for numerically rating document image quality

    SciTech Connect

    Cannon, M.; Kelly, P.; Iyengar, S.S.; Brener, N.

    1997-04-01

    As part of the Department of Energy document declassification program, the authors have developed a numerical rating system to predict the OCR error rate that they expect to encounter when processing a particular document. The rating algorithm produces a vector containing scores for different document image attributes such as speckle and touching characters. The OCR error rate for a document is computed from a weighted sum of the elements of the corresponding quality vector. The predicted OCR error rate will be used to screen documents that would not be handled properly with existing document processing products.

  2. Evaluating the Controls on Magma Ascent Rates Through Numerical Modelling

    NASA Astrophysics Data System (ADS)

    Thomas, M. E.; Neuberg, J. W.

    2015-12-01

    The estimation of the magma ascent rate is a key factor in predicting styles of volcanic activity and relies on the understanding of how strongly the ascent rate is controlled by different magmatic parameters. The ability to link potential changes in such parameters to monitoring data is an essential step to be able to use these data as a predictive tool. We present the results of a suite of conduit flow models that assess the influence of individual model parameters such as the magmatic water content, temperature or bulk magma composition on the magma flow in the conduit during an extrusive dome eruption. By systematically varying these parameters we assess their relative importance to changes in ascent rate. The results indicate that potential changes to conduit geometry and excess pressure in the magma chamber are amongst the dominant controlling variables that effect ascent rate, but the single most important parameter is the volatile content (assumed in this case as only water). Modelling this parameter across a range of reported values causes changes in the calculated ascent velocities of up to 800%, triggering fluctuations in ascent rates that span the potential threshold between effusive and explosive eruptions.

  3. Convergence rate for numerical computation of the lattice Green's function.

    PubMed

    Ghazisaeidi, M; Trinkle, D R

    2009-03-01

    Flexible boundary-condition methods couple an isolated defect to bulk through the bulk lattice Green's function. Direct computation of the lattice Green's function requires projecting out the singular subspace of uniform displacements and forces for the infinite lattice. We calculate the convergence rates for elastically isotropic and anisotropic cases for three different techniques: relative displacement, elastic Green's function correction, and discontinuity correction. The discontinuity correction has the most rapid convergence for the general case. PMID:19392089

  4. A numerical procedure for analysis of finite rate reacting flows

    NASA Technical Reports Server (NTRS)

    Shang, H. M.; Chen, Y. S.; Chen, Z. J.; Chen, C. P.; Wang, T. S.

    1993-01-01

    Combustion processes in rocket propulsion systems are characterized by the existence of multiple, vastly differing time and length scales, as well as flow-speeds at wide variation of Mach numbers. The chemical kinetics processes in the highly active reaction zone are characterized by much smaller scales compared to fluid convective and diffusive time scales. An operator splitting procedure for transient finite rate chemistry problems has been developed using a pressure based method, which can be applied to all speed flows without difficulties. The splitting of chemical kinetics terms formed the fluid-mechanical terms of the species equation ameliorated the difficulties associated with the disparate time scales and stiffness in the set of equations which describes highly exothermic combustion. A combined efficient ordinary differential equations (ODE) solver was used to integrate the effective chemical source terms over the residence time at each grid cell. One and two dimensional reacting flow situations were carried out to demonstrate and verify the current procedure. Different chemical kinetics with different degrees of nonlinearity have also been incorporated to test the robustness and generality of the proposed method.

  5. The numerical response: rate of increase and food limitation in herbivores and predators.

    PubMed Central

    Bayliss, Peter; Choquenot, David

    2002-01-01

    Two types of numerical response function have evolved since Solomon first introduced the term to generalize features of Lotka-Volterra predator-prey models: (i) the demographic numerical response, which links change in consumer demographic rates to food availability; and (ii) the isocline numerical response, which links consumer abundance per se to food availability. These numerical responses are interchangeable because both recognize negative feedback loops between consumer and food abundance resulting in population regulation. We review how demographic and isocline numerical responses have been used to enhance our understanding of population regulation of kangaroos and possums, and argue that their utility may be increased by explicitly accounting for non-equilibrium dynamics (due to environmental variability and/or biological interactions) and the existence of multiple limiting factors. Interferential numerical response functions may help bridge three major historical dichotomies in population ecology (equilibrium versus non-equilibrium dynamics, extrinsic versus intrinsic regulation and demographic versus isocline numerical responses). PMID:12396515

  6. A numerical method for determining the strain rate intensity factor under plane strain conditions

    NASA Astrophysics Data System (ADS)

    Alexandrov, S.; Kuo, C.-Y.; Jeng, Y.-R.

    2016-07-01

    Using the classical model of rigid perfectly plastic solids, the strain rate intensity factor has been previously introduced as the coefficient of the leading singular term in a series expansion of the equivalent strain rate in the vicinity of maximum friction surfaces. Since then, many strain rate intensity factors have been determined by means of analytical and semi-analytical solutions. However, no attempt has been made to develop a numerical method for calculating the strain rate intensity factor. This paper presents such a method for planar flow. The method is based on the theory of characteristics. First, the strain rate intensity factor is derived in characteristic coordinates. Then, a standard numerical slip-line technique is supplemented with a procedure to calculate the strain rate intensity factor. The distribution of the strain rate intensity factor along the friction surface in compression of a layer between two parallel plates is determined. A high accuracy of this numerical solution for the strain rate intensity factor is confirmed by comparison with an analytic solution. It is shown that the distribution of the strain rate intensity factor is in general discontinuous.

  7. BCS theory has to be overhauled: Reassurance from numerical survival rate

    NASA Astrophysics Data System (ADS)

    Zheng, X. H.; Walmsley, D. G.

    2016-07-01

    The BCS theory has conceptual and numerical difficulties. We have previously overhauled it with a new scheme of phonon-mediated electron pairing that can be expressed analytically in terms of an empirical pairing survival rate factor, S(q) = 0 or 1/2, depending on phonon momentum, q. Now we evaluate S(q) numerically entirely from experimental data on normal state electrical resistivity and on superconducting tunnelling conductance. The empirical and numerical S(q) are reassuringly close in aluminium and lead and particularly so in two other cases, niobium and tantalum.

  8. A method for generating numerical pilot opinion ratings using the optimal pilot model

    NASA Technical Reports Server (NTRS)

    Hess, R. A.

    1976-01-01

    A method for generating numerical pilot opinion ratings using the optimal pilot model is introduced. The method is contained in a rating hypothesis which states that the numerical rating which a human pilot assigns to a specific vehicle and task can be directly related to the numerical value of the index of performance resulting from the optimal pilot modeling procedure as applied to that vehicle and task. The hypothesis is tested using the data from four piloted simulations. The results indicate that the hypothesis is reasonable, but that the predictive capability of the method is a strong function of the accuracy of the pilot model itself. This accuracy is, in turn, dependent upon the parameters which define the optimal modeling problem. A procedure for specifying the parameters for the optimal pilot model in the absence of experimental data is suggested.

  9. Assessing the numerical dissipation rate and viscosity in CFD simulations of fluid flows

    NASA Astrophysics Data System (ADS)

    Schranner, F. S.; Domaradzki, J. A.; Hickel, S.; Adams, N. A.

    2014-11-01

    We describe a method for quantifying the effective numerical dissipation rate and the effective numerical viscosity in Computational Fluid Dynamics simulations. Differently from the previous approach that was formulated in spectral space, the proposed method is developed in a physical-space representation and allows for determining numerical dissipation rates and viscosities locally, i.e., at the individual cell level or for arbitrary subdomains of the computational domain. The method is self-contained using only results produced by the Navier-Stokes solver being investigated. Since no extraneous information is required, the method is suitable for a straightforward quantification of the numerical dissipation as a post-processing step. We demonstrate the method's capabilities on the example of implicit large-eddy simulations of three-dimensional Taylor-Green vortex flows that exhibit laminar, transitional, and turbulent flow behavior at different stages of time evolution. For validation, we compare the numerical dissipation rate obtained using this method with exact reference data obtained with an accurate, spectral-space approach. Supported by Deutsche Forschungsgemeinschaft and Alexander von Humboldt Foundation.

  10. A fast numerical approach to option pricing with stochastic interest rate, stochastic volatility and double jumps

    NASA Astrophysics Data System (ADS)

    Zhang, Sumei; Wang, Lihe

    2013-07-01

    This study proposes a pricing model through allowing for stochastic interest rate and stochastic volatility in the double exponential jump-diffusion setting. The characteristic function of the proposed model is then derived. Fast numerical solutions for European call and put options pricing based on characteristic function and fast Fourier transform (FFT) technique are developed. Simulations show that our numerical technique is accurate, fast and easy to implement, the proposed model is suitable for modeling long-time real-market changes. The model and the proposed option pricing method are useful for empirical analysis of asset returns and risk management in firms.

  11. Numerical calculation of relative dose rates from spherical 106Ru beta sources used in ophthalmic brachytherapy

    NASA Astrophysics Data System (ADS)

    de Paiva, Eduardo

    Concave beta sources of 106Ru/106Rh are used in radiotherapy to treat ophthalmic tumors. However, a problem that arises is the difficult determination of absorbed dose distributions around such sources mainly because of the small range of the electrons and the steep dose gradients. In this sense, numerical methods have been developed to calculate the dose distributions around the beta applicators. In this work a simple code in Fortran language is developed to estimate the dose rates along the central axis of 106Ru/106Rh curved plaques by numerical integration of the beta point source function and results are compared with other calculated data.

  12. Numerical solution of the Penna model of biological aging with age-modified mutation rate.

    PubMed

    Magdoń-Maksymowicz, M S; Maksymowicz, A Z

    2009-06-01

    In this paper we present results of numerical calculation of the Penna bit-string model of biological aging, modified for the case of a -dependent mutation rate m(a), where a is the parent's age. The mutation rate m(a) is the probability per bit of an extra bad mutation introduced in offspring inherited genome. We assume that m(a) increases with age a. As compared with the reference case of the standard Penna model based on a constant mutation rate m , the dynamics of the population growth shows distinct changes in age distribution of the population. Here we concentrate on mortality q(a), a fraction of items eliminated from the population when we go from age (a) to (a+1) in simulated transition from time (t) to next time (t+1). The experimentally observed q(a) dependence essentially follows the Gompertz exponential law for a above the minimum reproduction age. Deviation from the Gompertz law is however observed for the very old items, close to the maximal age. This effect may also result from an increase in mutation rate m with age a discussed in this paper. The numerical calculations are based on analytical solution of the Penna model, presented in a series of papers by Coe et al. [J. B. Coe, Y. Mao, and M. E. Cates, Phys. Rev. Lett. 89, 288103 (2002)]. Results of the numerical calculations are supported by the data obtained from computer simulation based on the solution by Coe et al. PMID:19658536

  13. Effects of heterogeneity in aquifer permeability and biomass on biodegradation rate calculations - Results from numerical simulations

    USGS Publications Warehouse

    Scholl, M.A.

    2000-01-01

    Numerical simulations were used to examine the effects of heterogeneity in hydraulic conductivity (K) and intrinsic biodegradation rate on the accuracy of contaminant plume-scale biodegradation rates obtained from field data. The simulations were based on a steady-state BTEX contaminant plume-scale biodegradation under sulfate-reducing conditions, with the electron acceptor in excess. Biomass was either uniform or correlated with K to model spatially variable intrinsic biodegradation rates. A hydraulic conductivity data set from an alluvial aquifer was used to generate three sets of 10 realizations with different degrees of heterogeneity, and contaminant transport with biodegradation was simulated with BIOMOC. Biodegradation rates were calculated from the steady-state contaminant plumes using decreases in concentration with distance downgradient and a single flow velocity estimate, as is commonly done in site characterization to support the interpretation of natural attenuation. The observed rates were found to underestimate the actual rate specified in the heterogeneous model in all cases. The discrepancy between the observed rate and the 'true' rate depended on the ground water flow velocity estimate, and increased with increasing heterogeneity in the aquifer. For a lognormal K distribution with variance of 0.46, the estimate was no more than a factor of 1.4 slower than the true rate. For aquifer with 20% silt/clay lenses, the rate estimate was as much as nine times slower than the true rate. Homogeneous-permeability, uniform-degradation rate simulations were used to generate predictions of remediation time with the rates estimated from heterogeneous models. The homogeneous models were generally overestimated the extent of remediation or underestimated remediation time, due to delayed degradation of contaminants in the low-K areas. Results suggest that aquifer characterization for natural attenuation at contaminated sites should include assessment of the presence

  14. Modified shifted angular spectrum method for numerical propagation at reduced spatial sampling rates.

    PubMed

    Ritter, André

    2014-10-20

    The shifted angular spectrum method allows a reduction of the number of samples required for numerical off-axis propagation of scalar wave fields. In this work, a modification of the shifted angular spectrum method is presented. It allows a further reduction of the spatial sampling rate for certain wave fields. We calculate the benefit of this method for spherical waves. Additionally, a working implementation is presented showing the example of a spherical wave propagating through a circular aperture. PMID:25401659

  15. A numerical basis for strain-gradient plasticity theory: Rate-independent and rate-dependent formulations

    NASA Astrophysics Data System (ADS)

    Nielsen, K. L.; Niordson, C. F.

    2014-02-01

    A numerical model formulation of the higher order flow theory (rate-independent) by Fleck and Willis [2009. A mathematical basis for strain-gradient plasticity theory - part II: tensorial plastic multiplier. Journal of the Mechanics and Physics of Solids 57, 1045-1057.], that allows for elastic-plastic loading/unloading and the interaction of multiple plastic zones, is proposed. The predicted model response is compared to the corresponding rate-dependent version of visco-plastic origin, and coinciding results are obtained in the limit of small strain-rate sensitivity. First, (i) the evolution of a single plastic zone is analyzed to illustrate the agreement with earlier published results, whereafter examples of (ii) multiple plastic zone interaction, and (iii) elastic-plastic loading/unloading are presented. Here, the simple shear problem of an infinite slab constrained between rigid plates is considered, and the effect of strain gradients, strain hardening and rate sensitivity is brought out. For clarity of results, a 1D model is constructed following a procedure suitable for generalization to 2D and 3D.

  16. On the efficient and reliable numerical solution of rate-and-state friction problems

    NASA Astrophysics Data System (ADS)

    Pipping, Elias; Kornhuber, Ralf; Rosenau, Matthias; Oncken, Onno

    2016-03-01

    We present a mathematically consistent numerical algorithm for the simulation of earthquake rupture with rate-and-state friction. Its main features are adaptive time stepping, a novel algebraic solution algorithm involving nonlinear multigrid and a fixed point iteration for the rate-and-state decoupling. The algorithm is applied to a laboratory scale subduction zone which allows us to compare our simulations with experimental results. Using physical parameters from the experiment, we find a good fit of recurrence time of slip events as well as their rupture width and peak slip. Computations in 3-D confirm efficiency and robustness of our algorithm.

  17. A comparison of the efficiency of numerical methods for integrating chemical kinetic rate equations

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, K.

    1984-01-01

    The efficiency of several algorithms used for numerical integration of stiff ordinary differential equations was compared. The methods examined included two general purpose codes EPISODE and LSODE and three codes (CHEMEQ, CREK1D and GCKP84) developed specifically to integrate chemical kinetic rate equations. The codes were applied to two test problems drawn from combustion kinetics. The comparisons show that LSODE is the fastest code available for the integration of combustion kinetic rate equations. It is shown that an iterative solution of the algebraic energy conservation equation to compute the temperature can be more efficient then evaluating the temperature by integrating its time-derivative.

  18. A numerical investigation of oxygen concentration dependence on biodegradation rate laws in vapor intrusion

    PubMed Central

    Yao, Yijun; Shen, Rui; Pennel, Kelly G.; Suuberg, Eric M.

    2013-01-01

    In subsurface vapor intrusion, aerobic biodegradation has been considered as a major environmental factor that determines the soil gas concentration attenuation factors for contaminants such as petroleum hydrocarbons. The site investigation showed that oxygen could play an important role in this biodegradation rate, and this paper explores the influence of oxygen concentration in biodegradation reactions included in vapor intrusion (VI) models. Two different three dimensional (3-D) numerical models of vapor intrusion were explored for their sensitivity to the form of the biodegradation rate law. A second order biodegradation rate law, explicitly including oxygen concentration dependence, was introduced into one model. The results indicate that the aerobic/anoxic interface depth is determined by the ratio of contaminant source vapor to atmospheric oxygen concentration, and that the contaminant concentration profile in the aerobic zone was significantly influenced by the choice of rate law. PMID:24197079

  19. A numerical investigation of oxygen concentration dependence on biodegradation rate laws in vapor intrusion.

    PubMed

    Yao, Yijun; Shen, Rui; Pennel, Kelly G; Suuberg, Eric M

    2013-12-01

    In subsurface vapor intrusion, aerobic biodegradation has been considered as a major environmental factor that determines the soil gas concentration attenuation factors for contaminants such as petroleum hydrocarbons. The site investigation has shown that oxygen can play an important role in this biodegradation rate, and this paper explores the influence of oxygen concentration on biodegradation reactions included in vapor intrusion (VI) models. Two different three dimensional (3-D) numerical models of vapor intrusion were explored for their sensitivity to the form of the biodegradation rate law. A second order biodegradation rate law, explicitly including oxygen concentration dependence, was introduced into one model. The results indicate that the aerobic/anoxic interface depth is determined by the ratio of contaminant source vapor to atmospheric oxygen concentration, and that the contaminant concentration profile in the aerobic zone was significantly influenced by the choice of rate law. PMID:24197079

  20. Experimental and numerical study on tensile strength of concrete under different strain rates.

    PubMed

    Min, Fanlu; Yao, Zhanhu; Jiang, Teng

    2014-01-01

    The dynamic characterization of concrete is fundamental to understand the material behavior in case of heavy earthquakes and dynamic events. The implementation of material constitutive law is of capital importance for the numerical simulation of the dynamic processes as those caused by earthquakes. Splitting tensile concrete specimens were tested at strain rates of 10(-7) s(-1) to 10(-4) s(-1) in an MTS material test machine. Results of tensile strength versus strain rate are presented and compared with compressive strength and existing models at similar strain rates. Dynamic increase factor versus strain rate curves for tensile strength were also evaluated and discussed. The same tensile data are compared with strength data using a thermodynamic model. Results of the tests show a significant strain rate sensitive behavior, exhibiting dynamic tensile strength increasing with strain rate. In the quasistatic strain rate regime, the existing models often underestimate the experimental results. The thermodynamic theory for the splitting tensile strength of concrete satisfactorily describes the experimental findings of strength as effect of strain rates. PMID:24883355

  1. Experimental and Numerical Study on Tensile Strength of Concrete under Different Strain Rates

    PubMed Central

    Min, Fanlu; Yao, Zhanhu; Jiang, Teng

    2014-01-01

    The dynamic characterization of concrete is fundamental to understand the material behavior in case of heavy earthquakes and dynamic events. The implementation of material constitutive law is of capital importance for the numerical simulation of the dynamic processes as those caused by earthquakes. Splitting tensile concrete specimens were tested at strain rates of 10−7 s−1 to 10−4 s−1 in an MTS material test machine. Results of tensile strength versus strain rate are presented and compared with compressive strength and existing models at similar strain rates. Dynamic increase factor versus strain rate curves for tensile strength were also evaluated and discussed. The same tensile data are compared with strength data using a thermodynamic model. Results of the tests show a significant strain rate sensitive behavior, exhibiting dynamic tensile strength increasing with strain rate. In the quasistatic strain rate regime, the existing models often underestimate the experimental results. The thermodynamic theory for the splitting tensile strength of concrete satisfactorily describes the experimental findings of strength as effect of strain rates. PMID:24883355

  2. Rate-Dependent Embedded Discontinuity Approach Incorporating Heterogeneity for Numerical Modeling of Rock Fracture

    NASA Astrophysics Data System (ADS)

    Saksala, Timo

    2015-07-01

    In this paper, the embedded discontinuity approach is applied in finite element modeling of rock in compression and tension. For this end, a rate-dependent constitutive model based on (strong) embedded displacement discontinuity model is developed to describe the mode I, mode II and mixed mode fracture of rock. The constitutive model describes the bulk material as linear elastic until reaching the elastic limit. Beyond the elastic limit, the rate-dependent exponential softening law governs the evolution of the displacement jump. Rock heterogeneity is incorporated in the present approach by random description of the mineral texture of rock. Moreover, initial microcrack population always present in natural rocks is accounted for as randomly-oriented embedded discontinuities. In the numerical examples, the model properties are extensively studied in uniaxial compression. The effect of loading rate and confining pressure is also tested in the 2D (plane strain) numerical simulations. These simulations demonstrate that the model captures the salient features of rock in confined compression and uniaxial tension. The developed method has the computational efficiency of continuum plasticity models. However, it also has the advantage, over these models, of accounting for the orientation of introduced microcracks. This feature is crucial with respect to the fracture behavior of rock in compression as shown in this paper.

  3. A numerical and experimental analysis of reactor performance and deposition rates for CVD on monofilaments

    NASA Technical Reports Server (NTRS)

    Gokoglu, S. A.; Kuczmarski, M.; Veitch, L.; Tsui, P.; Chait, A.

    1990-01-01

    The computational fluid dynamics (CFD) code FLUENT is adopted to simulate a cylindrical upflow reactor designed for chemical vapor deposition (CVD) on monofilaments. Equilibrium temperature profiles along the fiber and quartz reactor wall are experimentally measured and used as boundary conditions in numerical simulations. Two-dimensional axisymmetric flow and temperature fields are calculated for hydrogen and argon; the effect of free convection is assessed. The gas and surface chemistry is included for predicting silicon deposition from silane. The model predictions are compared with experimentally measured silicon CVD rates. Inferences are made for optimum conditions to obtain uniformity.

  4. Microwave (SSM/I) Estimates of the Precipitation Rate to Improve Numerical Atmospheric Model Forecasts

    NASA Technical Reports Server (NTRS)

    Raymond, William H.; Olson, William S.

    1990-01-01

    Delay in the spin-up of precipitation early in numerical atmospheric forecasts is a deficiency correctable by diabatic initialization combined with diabatic forcing. For either to be effective requires some knowledge of the magnitude and vertical placement of the latent heating fields. Until recently the best source of cloud and rain water data was the remotely sensed vertical integrated precipitation rate or liquid water content. Vertical placement of the condensation remains unknown. Some information about the vertical distribution of the heating rates and precipitating liquid water and ice can be obtained from retrieval techniques that use a physical model of precipitating clouds to refine and improve the interpretation of the remotely sensed data. A description of this procedure and an examination of its 3-D liquid water products, along with improved modeling methods that enhance or speed-up storm development is discussed.

  5. A comparison of the efficiency of numerical methods for integrating chemical kinetic rate equations

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, K.

    1984-01-01

    A comparison of the efficiency of several algorithms recently developed for the efficient numerical integration of stiff ordinary differential equations is presented. The methods examined include two general-purpose codes EPISODE and LSODE and three codes (CHEMEQ, CREK1D, and GCKP84) developed specifically to integrate chemical kinetic rate equations. The codes are applied to two test problems drawn from combustion kinetics. The comparisons show that LSODE is the fastest code currently available for the integration of combustion kinetic rate equations. An important finding is that an iterative solution of the algebraic energy conservation equation to compute the temperature can be more efficient than evaluating the temperature by integrating its time-derivative.

  6. Estimation of geopotential from satellite-to-satellite range rate data: Numerical results

    NASA Technical Reports Server (NTRS)

    Thobe, Glenn E.; Bose, Sam C.

    1987-01-01

    A technique for high-resolution geopotential field estimation by recovering the harmonic coefficients from satellite-to-satellite range rate data is presented and tested against both a controlled analytical simulation of a one-day satellite mission (maximum degree and order 8) and then against a Cowell method simulation of a 32-day mission (maximum degree and order 180). Innovations include: (1) a new frequency-domain observation equation based on kinetic energy perturbations which avoids much of the complication of the usual Keplerian element perturbation approaches; (2) a new method for computing the normalized inclination functions which unlike previous methods is both efficient and numerically stable even for large harmonic degrees and orders; (3) the application of a mass storage FFT to the entire mission range rate history; (4) the exploitation of newly discovered symmetries in the block diagonal observation matrix which reduce each block to the product of (a) a real diagonal matrix factor, (b) a real trapezoidal factor with half the number of rows as before, and (c) a complex diagonal factor; (5) a block-by-block least-squares solution of the observation equation by means of a custom-designed Givens orthogonal rotation method which is both numerically stable and tailored to the trapezoidal matrix structure for fast execution.

  7. Finite Volume Numerical Methods for Aeroheating Rate Calculations from Infrared Thermographic Data

    NASA Technical Reports Server (NTRS)

    Daryabeigi, Kamran; Berry, Scott A.; Horvath, Thomas J.; Nowak, Robert J.

    2003-01-01

    The use of multi-dimensional finite volume numerical techniques with finite thickness models for calculating aeroheating rates from measured global surface temperatures on hypersonic wind tunnel models was investigated. Both direct and inverse finite volume techniques were investigated and compared with the one-dimensional semi -infinite technique. Global transient surface temperatures were measured using an infrared thermographic technique on a 0.333-scale model of the Hyper-X forebody in the Langley Research Center 20-Inch Mach 6 Air tunnel. In these tests the effectiveness of vortices generated via gas injection for initiating hypersonic transition on the Hyper-X forebody were investigated. An array of streamwise orientated heating striations were generated and visualized downstream of the gas injection sites. In regions without significant spatial temperature gradients, one-dimensional techniques provided accurate aeroheating rates. In regions with sharp temperature gradients due to the striation patterns two-dimensional heat transfer techniques were necessary to obtain accurate heating rates. The use of the one-dimensional technique resulted in differences of 20% in the calculated heating rates because it did not account for lateral heat conduction in the model.

  8. Numerical simulation of hypersonic inlet flows with equilibrium or finite rate chemistry

    NASA Technical Reports Server (NTRS)

    Yu, Sheng-Tao; Hsieh, Kwang-Chung; Shuen, Jian-Shun; Mcbride, Bonnie J.

    1988-01-01

    An efficient numerical program incorporated with comprehensive high temperature gas property models has been developed to simulate hypersonic inlet flows. The computer program employs an implicit lower-upper time marching scheme to solve the two-dimensional Navier-Stokes equations with variable thermodynamic and transport properties. Both finite-rate and local-equilibrium approaches are adopted in the chemical reaction model for dissociation and ionization of the inlet air. In the finite rate approach, eleven species equations coupled with fluid dynamic equations are solved simultaneously. In the local-equilibrium approach, instead of solving species equations, an efficient chemical equilibrium package has been developed and incorporated into the flow code to obtain chemical compositions directly. Gas properties for the reaction products species are calculated by methods of statistical mechanics and fit to a polynomial form for C(p). In the present study, since the chemical reaction time is comparable to the flow residence time, the local-equilibrium model underpredicts the temperature in the shock layer. Significant differences of predicted chemical compositions in shock layer between finite rate and local-equilibrium approaches have been observed.

  9. Gate-tunable Kondo resistivity and dephasing rate in graphene studied by numerical renormalization group calculations

    NASA Astrophysics Data System (ADS)

    Lo, Po-Wei; Guo, Guang-Yu; Anders, Frithjof B.

    2014-05-01

    Motivated by the recent observation of the Kondo effect in graphene in transport experiments, we investigate the resistivity and dephasing rate in the Kondo regime due to magnetic impurities in graphene with different chemical potentials (μ). The Kondo effect due to either carbon vacancies or magnetic adatoms in graphene is described by the single-orbital pseudogap asymmetric Anderson impurity model which is solved by the accurate numerical renormalization group method. We find that although the Anderson impurity model considered here is a mixed-valence system, it can be driven into either the Kondo [μ >μc (critical value) >0], mixed-valency (μ ≈μc), or empty-orbital (μ <μc) regime by a gate voltage, giving rise to characteristic features in resistivity and dephasing rate in each regime. Specifically, in the case of μ <μc, the shapes of the resistivity (dephasing rate) curves for different μ are nearly identical. However, as temperature decreases, they start to increase to their maxima at a lower T /TK, but more rapidly [as (TK/T)3/2] than in normal metals [here, T (TK) denotes the (Kondo) temperature]. As T further decreases, after reaching the maximum, the dephasing rate drops more quickly than in normal metals, behaving as (T/TK)3 instead of (T/TK)2. Furthermore, the resistivity has a distinct peak above the saturation value near TK. In the case of μ >μc, in contrast, the resistivity curve has an additional broad shoulder above 10TK and the dephasing rate exhibits an interesting shoulder-peak shape. In the narrow boundary region (μ ≈μc), both the resistivity and dephasing rate curves are similar to the corresponding ones in normal metals. This explains the conventional Kondo-like resistivity from recent experiments on graphene with defects, although the distinct features in the resistivity in the other cases (μ <μc or μ >μc) were not seen in the experiments. The interesting features in the resistivity and dephasing rate are analyzed in

  10. Numerical simulation of mud erosion rate in sand-mud alternate layer and comparison with experiment

    NASA Astrophysics Data System (ADS)

    Yoshida, T.; Yamaguchi, T.; Oyama, H.; Sato, T.

    2015-12-01

    For gas production from methane hydrates in sand-mud alternate layers, depressurization method is expected as feasible. After methane hydrate is dissociated, gas and water flow in pore space. There is a concern about the erosion of mud surface and it may result in flow blockage that disturbs the gas production. As a part of a Japanese National hydrate research program (MH21, funded by METI), we developed a numerical simulation of water-induced mud erosion in pore-scale sand-mud domains to model such mud erosion. The size of which is of the order of 100 micro meter. Water flow is simulated using a lattice Boltzmann method (LBM) and mud surface is treated as solid boundary with arbitrary shape, which changes with time. Periodic boundary condition is adopted at the domain boundaries, except for the surface of mud layers and the upper side. Shear stress acting on the mud surface is calculated using a momentum-exchange method. Mud layer is eroded when the shear stress exceeds a threshold coined a critical shear stress. In this study, we compared the simulated mud erosion rate with experimental data acquired from an experiment using artificial sand-mud core. As a result, the simulated erosion rate agrees well with that of the experiment.

  11. Existence, numerical convergence and evolutionary relaxation for a rate-independent phase-transformation model.

    PubMed

    Heinz, Sebastian; Mielke, Alexander

    2016-04-28

    We revisit the model for a two-well phase transformation in a linearly elastic body that was introduced and studied in Mielke et al. (2002 Arch. Ration. Mech. Anal. 162: , 137-177). This energetic rate-independent system is posed in terms of the elastic displacement and an internal variable that gives the phase portion of the second phase. We use a new approach based on mutual recovery sequences, which are adjusted to a suitable energy increment plus the associated dissipated energy and, thus, enable us to pass to the limit in the construction of energetic solutions. We give three distinct constructions of mutual recovery sequences which allow us (i) to generalize the existence result in Mielke et al. (2002), (ii) to establish the convergence of suitable numerical approximations via space-time discretization and (iii) to perform the evolutionary relaxation from the pure-state model to the relaxed-mixture model. All these results rely on weak converge and involve the H-measure as an essential tool. PMID:27002066

  12. Numerical implementation of a crystal plasticity model with dislocation transport for high strain rate applications

    NASA Astrophysics Data System (ADS)

    Mayeur, Jason R.; Mourad, Hashem M.; Luscher, Darby J.; Hunter, Abigail; Kenamond, Mark A.

    2016-05-01

    This paper details a numerical implementation of a single crystal plasticity model with dislocation transport for high strain rate applications. Our primary motivation for developing the model is to study the influence of dislocation transport and conservation on the mesoscale response of metallic crystals under extreme thermo-mechanical loading conditions (e.g. shocks). To this end we have developed a single crystal plasticity theory (Luscher et al (2015)) that incorporates finite deformation kinematics, internal stress fields caused by the presence of geometrically necessary dislocation gradients, advection equations to model dislocation density transport and conservation, and constitutive equations appropriate for shock loading (equation of state, drag-limited dislocation velocity, etc). In the following, we outline a coupled finite element–finite volume framework for implementing the model physics, and demonstrate its capabilities in simulating the response of a [1 0 0] copper single crystal during a plate impact test. Additionally, we explore the effect of varying certain model parameters (e.g. mesh density, finite volume update scheme) on the simulation results. Our results demonstrate that the model performs as intended and establishes a baseline of understanding that can be leveraged as we extend the model to incorporate additional and/or refined physics and move toward a multi-dimensional implementation.

  13. Numerical study on the deposition rate of hematite particle on polypropylene walls: role of surface roughness.

    PubMed

    Henry, Christophe; Minier, Jean-Pierre; Lefèvre, Grégory; Hurisse, Olivier

    2011-04-19

    test case. These new numerical results show that nonzero deposition rates are now obtained even in repulsive conditions, which confirms that surface roughness is a relevant aspect to introduce in general approaches to deposition. PMID:21405065

  14. Ensemble Monte Carlo calculation of the hole initiated impact ionization rate in bulk GaAs and silicon using a k-dependent, numerical transition rate formulation

    NASA Technical Reports Server (NTRS)

    Oguzman, Ismail H.; Wang, Yang; Kolnik, Jan; Brennan, Kevin F.

    1995-01-01

    The hole initiated impact ionization rate in bulk silicon and GaAs is calculated using a numerical formulation of the impact ionization transition rate incorporated into an ensemble Monte Carlo simulation. The transition rate is calculated from Fermi's golden rule using a two-body screened Coulomb interaction including a wavevector dependent dielectric function. It is found that the effective threshold for hole initiated ionization is relatively soft in both materials, that the split-off band dominates the ionization process in GaAs. and that no clear dominance by any one band is observed in silicon, though the rate out of the light hole band is greatest.

  15. Numerical study of the wave-vector dependence of the electron interband impact ionization rate in bulk GaAs

    NASA Technical Reports Server (NTRS)

    Wang, Yang; Brennan, Kevin F.

    1994-01-01

    Ensemble Monte Carlo calculations of the electron interband impact ionization rate in bulk GaAs are presented using a wave-vector (k)-dependent formulation of the ionization transition rate. The transition rate is evaluated through the use of numerically generated wavefunctions determined via a k-p calculation within the first two conduction bands at numerous points within a finely spaced three-dimensional grid in k space. The transition rate is determined to be greatest for states within the second conduction band. Is is found that the interband impact ionization transition rate in bulk GaAs is best characterized as having an exceedingly soft threshold energy. As a consequence, the dead space, defined as the distance over which the ionization probability for a given carrier is assumed to be zero, is estimated to be much larger than that estimated using a harder threshold. These results have importance in the design of the multiquantum-well avalanche photodiodes.

  16. Numerical Study of the Wave-Vector Dependence of the Electron Interband Impact Ionization Rate in Bulk GaAs

    NASA Technical Reports Server (NTRS)

    Wang, Yang; Brennan, Kevin F.

    1994-01-01

    Ensemble Monte Carlo calculations of the electron interband impact ionization rate in bulk GaAs are presented using a wave-vector (k)-dependent formulation of the ionization transition rate. The transition rate is evaluated through use of numerically generated wavefunctions determined via a k-p calculation within the first two conduction bonds at numerous points within a finely spaced three-dimensional grid in k space. The transition rate is determined to be greatest for states within the second conduction band. It is found that the interband impact ionization transition rate in bulk GaAs is best characterized as having an exceedingly "soft" threshold energy. As a consequence, the dead space, defined as the distance over which the ionization probability for a given carrier is assumed to be zero, is estimated to be-much larger than that estimated using a "harder" threshold. These results have importance in the design of multiquantum-well avalanche photodiodes.

  17. Dynamic Brazilian Test of Rock Under Intermediate Strain Rate: Pendulum Hammer-Driven SHPB Test and Numerical Simulation

    NASA Astrophysics Data System (ADS)

    Zhu, W. C.; Niu, L. L.; Li, S. H.; Xu, Z. H.

    2015-09-01

    The tensile strength of rock subjected to dynamic loading constitutes many engineering applications such as rock drilling and blasting. The dynamic Brazilian test of rock specimens was conducted with the split Hopkinson pressure bar (SHPB) driven by pendulum hammer, in order to determine the indirect tensile strength of rock under an intermediate strain rate ranging from 5.2 to 12.9 s-1, which is achieved when the incident bar is impacted by pendulum hammer with different velocities. The incident wave excited by pendulum hammer is triangular in shape, featuring a long rising time, and it is considered to be helpful for achieving a constant strain rate in the rock specimen. The dynamic indirect tensile strength of rock increases with strain rate. Then, the numerical simulator RFPA-Dynamics, a well-recognized software for simulating the rock failure under dynamic loading, is validated by reproducing the Brazilian test of rock when the incident stress wave retrieved at the incident bar is input as the boundary condition, and then it is employed to study the Brazilian test of rock under the higher strain rate. Based on the numerical simulation, the strain-rate dependency of tensile strength and failure pattern of the Brazilian disc specimen under the intermediate strain rate are numerically simulated, and the associated failure mechanism is clarified. It is deemed that the material heterogeneity should be a reason for the strain-rate dependency of rock.

  18. Numerical calculation of protein-ligand binding rates through solution of the Smoluchowski equation using smoothed particle hydrodynamics

    DOE PAGESBeta

    Pan, Wenxiao; Daily, Michael; Baker, Nathan A.

    2015-05-07

    Background: The calculation of diffusion-controlled ligand binding rates is important for understanding enzyme mechanisms as well as designing enzyme inhibitors. Methods: We demonstrate the accuracy and effectiveness of a Lagrangian particle-based method, smoothed particle hydrodynamics (SPH), to study diffusion in biomolecular systems by numerically solving the time-dependent Smoluchowski equation for continuum diffusion. Unlike previous studies, a reactive Robin boundary condition (BC), rather than the absolute absorbing (Dirichlet) BC, is considered on the reactive boundaries. This new BC treatment allows for the analysis of enzymes with “imperfect” reaction rates. Results: The numerical method is first verified in simple systems and thenmore » applied to the calculation of ligand binding to a mouse acetylcholinesterase (mAChE) monomer. Rates for inhibitor binding to mAChE are calculated at various ionic strengths and compared with experiment and other numerical methods. We find that imposition of the Robin BC improves agreement between calculated and experimental reaction rates. Conclusions: Although this initial application focuses on a single monomer system, our new method provides a framework to explore broader applications of SPH in larger-scale biomolecular complexes by taking advantage of its Lagrangian particle-based nature.« less

  19. Numerical calculation of protein-ligand binding rates through solution of the Smoluchowski equation using smoothed particle hydrodynamics

    SciTech Connect

    Pan, Wenxiao; Daily, Michael; Baker, Nathan A.

    2015-05-07

    Background: The calculation of diffusion-controlled ligand binding rates is important for understanding enzyme mechanisms as well as designing enzyme inhibitors. Methods: We demonstrate the accuracy and effectiveness of a Lagrangian particle-based method, smoothed particle hydrodynamics (SPH), to study diffusion in biomolecular systems by numerically solving the time-dependent Smoluchowski equation for continuum diffusion. Unlike previous studies, a reactive Robin boundary condition (BC), rather than the absolute absorbing (Dirichlet) BC, is considered on the reactive boundaries. This new BC treatment allows for the analysis of enzymes with “imperfect” reaction rates. Results: The numerical method is first verified in simple systems and then applied to the calculation of ligand binding to a mouse acetylcholinesterase (mAChE) monomer. Rates for inhibitor binding to mAChE are calculated at various ionic strengths and compared with experiment and other numerical methods. We find that imposition of the Robin BC improves agreement between calculated and experimental reaction rates. Conclusions: Although this initial application focuses on a single monomer system, our new method provides a framework to explore broader applications of SPH in larger-scale biomolecular complexes by taking advantage of its Lagrangian particle-based nature.

  20. Physical and mathematical justification of the numerical Brillouin zone integration of the Boltzmann rate equation by Gaussian smearing

    NASA Astrophysics Data System (ADS)

    Illg, Christian; Haag, Michael; Teeny, Nicolas; Wirth, Jens; Fähnle, Manfred

    2016-03-01

    Scatterings of electrons at quasiparticles or photons are very important for many topics in solid-state physics, e.g., spintronics, magnonics or photonics, and therefore a correct numerical treatment of these scatterings is very important. For a quantum-mechanical description of these scatterings, Fermi's golden rule is used to calculate the transition rate from an initial state to a final state in a first-order time-dependent perturbation theory. One can calculate the total transition rate from all initial states to all final states with Boltzmann rate equations involving Brillouin zone integrations. The numerical treatment of these integrations on a finite grid is often done via a replacement of the Dirac delta distribution by a Gaussian. The Dirac delta distribution appears in Fermi's golden rule where it describes the energy conservation among the interacting particles. Since the Dirac delta distribution is a not a function it is not clear from a mathematical point of view that this procedure is justified. We show with physical and mathematical arguments that this numerical procedure is in general correct, and we comment on critical points.

  1. Numerical calculation of protein-ligand binding rates through solution of the Smoluchowski equation using smooth particle hydrodynamics

    SciTech Connect

    Pan, Wenxiao; Daily, Michael D.; Baker, Nathan A.

    2015-12-01

    We demonstrate the accuracy and effectiveness of a Lagrangian particle-based method, smoothed particle hydrodynamics (SPH), to study diffusion in biomolecular systems by numerically solving the time-dependent Smoluchowski equation for continuum diffusion. The numerical method is first verified in simple systems and then applied to the calculation of ligand binding to an acetylcholinesterase monomer. Unlike previous studies, a reactive Robin boundary condition (BC), rather than the absolute absorbing (Dirichlet) boundary condition, is considered on the reactive boundaries. This new boundary condition treatment allows for the analysis of enzymes with "imperfect" reaction rates. Rates for inhibitor binding to mAChE are calculated at various ionic strengths and compared with experiment and other numerical methods. We find that imposition of the Robin BC improves agreement between calculated and experimental reaction rates. Although this initial application focuses on a single monomer system, our new method provides a framework to explore broader applications of SPH in larger-scale biomolecular complexes by taking advantage of its Lagrangian particle-based nature.

  2. Finite Volume Numerical Methods for Aeroheating Rate Calculations from Infrared Thermographic Data

    NASA Technical Reports Server (NTRS)

    Daryabeigi, Kamran; Berry, Scott A.; Horvath, Thomas J.; Nowak, Robert J.

    2006-01-01

    The use of multi-dimensional finite volume heat conduction techniques for calculating aeroheating rates from measured global surface temperatures on hypersonic wind tunnel models was investigated. Both direct and inverse finite volume techniques were investigated and compared with the standard one-dimensional semi-infinite technique. Global transient surface temperatures were measured using an infrared thermographic technique on a 0.333-scale model of the Hyper-X forebody in the NASA Langley Research Center 20-Inch Mach 6 Air tunnel. In these tests the effectiveness of vortices generated via gas injection for initiating hypersonic transition on the Hyper-X forebody was investigated. An array of streamwise-orientated heating striations was generated and visualized downstream of the gas injection sites. In regions without significant spatial temperature gradients, one-dimensional techniques provided accurate aeroheating rates. In regions with sharp temperature gradients caused by striation patterns multi-dimensional heat transfer techniques were necessary to obtain more accurate heating rates. The use of the one-dimensional technique resulted in differences of 20% in the calculated heating rates compared to 2-D analysis because it did not account for lateral heat conduction in the model.

  3. Neglected Numerators, Drifting Denominators, and Fractured Fractions: Determining Participation Rates for Students with Disabilities.

    ERIC Educational Resources Information Center

    Erickson, Ron; Ysseldyke, Jim; Thurlow, Martha

    1997-01-01

    Reviews present difficulties in the way that states report the participation of students with disabilities in their testing programs. Recommendations for policymakers include the following: identify students with disabilities in statewide assessment programs, standardize procedures for calculating participation rates, and improve lines of…

  4. A method for the direct numerical simulation of hypersonic boundary-layer instability with finite-rate chemistry

    SciTech Connect

    Marxen, Olaf; Magin, Thierry E.; Shaqfeh, Eric S.G.; Iaccarino, Gianluca

    2013-12-15

    A new numerical method is presented here that allows to consider chemically reacting gases during the direct numerical simulation of a hypersonic fluid flow. The method comprises the direct coupling of a solver for the fluid mechanical model and a library providing the physio-chemical model. The numerical method for the fluid mechanical model integrates the compressible Navier–Stokes equations using an explicit time advancement scheme and high-order finite differences. This Navier–Stokes code can be applied to the investigation of laminar-turbulent transition and boundary-layer instability. The numerical method for the physio-chemical model provides thermodynamic and transport properties for different gases as well as chemical production rates, while here we exclusively consider a five species air mixture. The new method is verified for a number of test cases at Mach 10, including the one-dimensional high-temperature flow downstream of a normal shock, a hypersonic chemical reacting boundary layer in local thermodynamic equilibrium and a hypersonic reacting boundary layer with finite-rate chemistry. We are able to confirm that the diffusion flux plays an important role for a high-temperature boundary layer in local thermodynamic equilibrium. Moreover, we demonstrate that the flow for a case previously considered as a benchmark for the investigation of non-equilibrium chemistry can be regarded as frozen. Finally, the new method is applied to investigate the effect of finite-rate chemistry on boundary layer instability by considering the downstream evolution of a small-amplitude wave and comparing results with those obtained for a frozen gas as well as a gas in local thermodynamic equilibrium.

  5. Numerical study of strain-rate effect in cold rolls forming of steel

    NASA Astrophysics Data System (ADS)

    Falsafi, J.; Demirci, E.; Silberschmidt, V. V.

    2013-07-01

    Cold roll forming (CRF) is a well-known continuous manufacturing process, in which a flat strip is deformed by successive rotating pairs of tools, without changing the material thickness. In the past decades, to lessen the process-development efforts, finite-element simulations have been increasingly employed to improve the process design and predict the manufacturing-induced defects. One of the important aspects in design of the CRF process is consideration of resulting strains in the final product as the material passes through several complex forming stands. Sufficient knowledge of longitudinal strain in the workpiece is required to set various process parameters. Increasing a process speed in a roll forming operation can bring cost advantages, but the influence of the forming speed on the strain distribution should be explored. This study is focussed on a strain-rate effect in the CRF process of steel sheets. The strain-rate dependency of a plastic behaviour observed in most metals can affect the finished product's quality as well as process parameters. This paper investigates the influence of the strain rate on longitudinal strains induced in the roll forming operation by incorporating a phenomenological Johnson-Cook constitutive model, which allows studying the impact of the process speed on the output product. Taking advantage of 3D finite element analysis, a roll forming process was simulated using MCS.Marc, comprising a complete set of forming stations. Through the changing of the process speed, the strain rate impact on longitudinal peak strains and forming length was investigated. The results highlight the effect of the strain rate on edge thinning and subsequent undesirable distortions in the product.

  6. Numerical simulation of the scavenging rates of ice crystals of various microphysical characteristics

    NASA Astrophysics Data System (ADS)

    Pitter, Richard L.; Zhang, Renyi

    1991-06-01

    Numerical models of trajectories of small aerosol spheres relative to oblate spheroids were used to determine ice crystal scavenging efficiencies. The models included the effects of aerodynamic flow about the ice particle, gravity, aerosol particle inertia and drag and electrostatic effects. Two electric configurations of the ice particle were investigated in detail. The first applied a net charge to the ice particle, of magnitude equal to the mean thunderstorm charge distribution, while the second applied a charge distribution, with no net charge, to the ice particle to model the electric multipole charge distribution. The results show that growing ice crystals with electric multipoles are better scavengers than single ice crystals with net thunderstorm charges, especially in the Greenfield gap (0.1 to 1.0 μm), and that larger single crystals are better scavengers than smaller single crystals. The results also show that the low density ice crystals are more effective scavengers with net charges than they are with charge distribution.

  7. Numerical study of finite-rate supersonic combustion using parabolized equations

    NASA Technical Reports Server (NTRS)

    Chitsomboon, T.; Kumar, A.; Tiwari, S. N.

    1987-01-01

    A set of partial differential equations, describing the two-dimensional supersonic chemically-reacting flow of the hydrogen-air system, is formulated such that the equations are parabolic in the streamwise direction. A fully-implicit fully-coupled finite-difference algorithm is used to develop a computer code which solves the governing equations by marching in the streamwise direction. The combustion process is modeled by a two-step finite-rate chemistry whereas turbulence is simulated by an algebraic turbulence model. Results of two calculations of internal supersonic reacting flow show fairly good agreement with the results obtained by the more costly full Navier-Stokes procedure.

  8. Strain-rate sensitivity of foam materials: A numerical study using 3D image-based finite element model

    NASA Astrophysics Data System (ADS)

    Sun, Yongle; Li, Q. M.; Withers, P. J.

    2015-09-01

    Realistic simulations are increasingly demanded to clarify the dynamic behaviour of foam materials, because, on one hand, the significant variability (e.g. 20% scatter band) of foam properties and the lack of reliable dynamic test methods for foams bring particular difficulty to accurately evaluate the strain-rate sensitivity in experiments; while on the other hand numerical models based on idealised cell structures (e.g. Kelvin and Voronoi) may not be sufficiently representative to capture the actual structural effect. To overcome these limitations, the strain-rate sensitivity of the compressive and tensile properties of closed-cell aluminium Alporas foam is investigated in this study by means of meso-scale realistic finite element (FE) simulations. The FE modelling method based on X-ray computed tomography (CT) image is introduced first, as well as its applications to foam materials. Then the compression and tension of Alporas foam at a wide variety of applied nominal strain-rates are simulated using FE model constructed from the actual cell geometry obtained from the CT image. The stain-rate sensitivity of compressive strength (collapse stress) and tensile strength (0.2% offset yield point) are evaluated when considering different cell-wall material properties. The numerical results show that the rate dependence of cell-wall material is the main cause of the strain-rate hardening of the compressive and tensile strengths at low and intermediate strain-rates. When the strain-rate is sufficiently high, shock compression is initiated, which significantly enhances the stress at the loading end and has complicated effect on the stress at the supporting end. The plastic tensile wave effect is evident at high strain-rates, but shock tension cannot develop in Alporas foam due to the softening associated with single fracture process zone occurring in tensile response. In all cases the micro inertia of individual cell walls subjected to localised deformation is found to

  9. Numerical Modelling of Wire-EDM for Predicting Erosion Rate of Silicon

    NASA Astrophysics Data System (ADS)

    Joshi, Kamlesh; Sharma, Gaurav; Dongre, Ganesh; Joshi, Suhas Sitaram

    2016-05-01

    Recently, a lot of work is carried out in photovoltaic industry for slicing Si ingots using non-conventional technique like wire-EDM apart from conventional techniques like inner diameter saw and multi-wire saw. It is an emerging technology in field of Si wafer slicing and has a potential to be cost efficient. It reduces the kerf-loss and produces crack-free Si wafers. In general, the process of Si wafer cutting using wire-EDM is less understood due to its complex nature. In this work, the complex phenomena like formation of plasma channel, melting and erosion of Si material has been modelled mathematically. Further, the effect of input energy parameters like current, open voltage and pulse on-time on plasma and plasma-ingot interface temperature has been studied. The model is further extended along the length of the wire to evaluate the erosion depth and rate. The effect of process parameters on erosion depth and rate was validated experimentally. The model considers variation in material removal through the `plasma flushing efficiency'.

  10. Numerical investigation and thermodynamic analysis of the effect of electrolyte flow rate on performance of all vanadium redox flow batteries

    NASA Astrophysics Data System (ADS)

    Khazaeli, Ali; Vatani, Ali; Tahouni, Nassim; Panjeshahi, Mohammad Hassan

    2015-10-01

    In flow batteries, electrolyte flow rate plays a crucial role on the minimizing mass transfer polarization which is at the compensation of higher pressure drop. In this work, a two-dimensional numerical method is applied to investigate the effect of electrolyte flow rate on cell voltage, maximum depth of discharge and pressure drop a six-cell stack of VRFB. The results show that during the discharge process, increasing electrolyte flow rate can raise the voltage of each cell up to 50 mV on average. Moreover, the maximum depth of discharge dramatically increases with electrolyte flow rate. On the other hand, the pressure drop also positively correlates with electrolyte flow rate. In order to investigate all these effects simultaneously, average energy and exergy efficiencies are introduced in this study for the transient process of VRFB. These efficiencies give insight into choosing an appropriate strategy for the electrolyte flow rate. Finally, the energy efficiency of electricity storage using VRFB is investigated and compared with other energy storage systems. The results illustrate that this kind of battery has at least 61% storage efficiency based on the second law of thermodynamics, which is considerably higher than that of their counterparts.

  11. Diastolic Calcium Release Controls the Beating Rate of Rabbit Sinoatrial Node Cells: Numerical Modeling of the Coupling Process

    PubMed Central

    Maltsev, Victor A.; Vinogradova, Tatiana M.; Bogdanov, Konstantin Y.; Lakatta, Edward G.; Stern, Michael D.

    2004-01-01

    Recent studies employing Ca2+ indicators and confocal microscopy demonstrate substantial local Ca2+ release beneath the cell plasma membrane (subspace) of sinoatrial node cells (SANCs) occurring during diastolic depolarization. Pharmacological and biophysical experiments have suggested that the released Ca2+ interacts with the plasma membrane via the ion current (INaCa) produced by the Na+/Ca2+ exchanger and constitutes an important determinant of the pacemaker rate. This study provides a numerical validation of the functional importance of diastolic Ca2+ release for rate control. The subspace Ca2+ signals in rabbit SANCs were measured by laser confocal microscopy, averaged, and calibrated. The time course of the subspace [Ca2+] displayed both diastolic and systolic components. The diastolic component was mainly due to the local Ca2+ releases; it was numerically approximated and incorporated into a SANC cellular electrophysiology model. The model predicts that the diastolic Ca2+ release strongly interacts with plasma membrane via INaCa and thus controls the phase of the action potential upstroke and ultimately the final action potential rate. PMID:15041695

  12. Numerical analysis of high strain rate failure of electro-magnetically loaded steel sheets

    NASA Astrophysics Data System (ADS)

    Erice, Borja; Mohr, Dirk

    2015-09-01

    Electro-magnetic forces provide a potentially power full means in designing dynamic experiments with active control of the loading conditions. This article deals with the development of computational models to simulate the thermo-mechanical response of electro-magnetically loaded metallic structures. The model assumes linear electromagnetic constitutive equations and time-independent electric induction to estimate the Joule heating and the Lorentz forces. The latter are then taken into account when evaluating stress equilibrium. A thermo-visco-plastic model with Johnson-Cook type of temperature and strain rate dependence and combined Swift-Voce hardening is used to evaluate the material's thermo-mechanical response. As a first application, the model is used to analyse the effect of electro-magnetic loading on the ductility of advanced high strength steels.

  13. Impact of model geometry and recharge rates on catchment's residence time distributions - numerical experiments

    NASA Astrophysics Data System (ADS)

    Neubauer, M.; Musolff, A.; Fleckenstein, J. H.

    2013-12-01

    Residence time distributions (RTD) of water in catchments are promising tools to characterize and model solute transport on a larger scale. In the last decade, much research has been conducted on the estimation and the application of RTD's. However, there are still some major issues to be addressed to complex derivation, parameterization and transient behavior. Through improved remote sensing data, the surface elevation can mostly be resolved in detail, while subsurface volumes and boundaries remain highly undetermined. Our objectives are to systematically evaluate the impact of different depths and geometries of the domain bottom and groundwater recharge rates on RTD's. The study site is a small (1.6 km2) headwater catchment located within the Harz Mountains, Germany. For this catchment long time series of climate, discharge and hydrochemistry are available while groundwater flow field and subsurface structure are less known. The site is intensively influenced by agricultural land use and exhibits strong seasonal dynamics of water flow and hydrochemistry due to the snowmelt. The modeling was performed using HydroGeoSphere, a coupled surface and subsurface model, which solves the Richards Equation for variable saturated soils. The Open Source software Paraview and R was chosen as postprocessors to perform and analyze forward particle tracking algorithms under steady state conditions. Ten depth and geometry scenarios of the domain bottom were created (5 horizontal bottom geometries - constant base and 5 variable bottom geometries - parallel to surface topography; both minimum depths ranging from 2 m to 50 m). The model's internal structure was discretized by two homogenous layers (averaged catchment representation) parallel to the input digital elevation model (2x2 m). The geometry scenarios were combined with fifteen steady state simulations for different groundwater recharge rate scenarios (0.1 mm up to 15 mm per day). Model results indicate a strong influence of

  14. Numerical Simulation of Alongshore Variation of Sediment Transport Rate Downdrift of a Tidal Inlet

    NASA Astrophysics Data System (ADS)

    Keshtpoor, M.; Puleo, J. A.; Shi, F.

    2013-12-01

    Indian River Inlet is located at the midpoint of the Atlantic-facing Delaware coast and connects Delaware inland bays (Rehoboth Bay to the north and Indian River Bay due west) to the Atlantic Ocean. In late 1930's the US Army Corps of Engineers constructed twin jetties to provide a safe channel for navigational and recreational purposes. Offshore extended jetties interrupted the alongshore sediment transport that resulted in severe downdrift beach recession. The main concern is the retreat of the shoreline toward the inland infrastucture, such as State Route 1, within 1000 m downdrift of the inlet. In recent years the rate of sediment loss from the downdrift beach has increased and the sediment bypassing system was not able to mitigate the shoreline recession. Here, NearCOM, that couples a wave model, a nearshore circulation model, and a sediment transport model is applied to simulate the hydrodynamics and sediment transport under the impact of tide and wave forcing in the inlet adjacent area at the downdrift beach. The main goal is to understand the patterns of sediment transport and causes of erosion near the morphologically complex inlet. Simulations are carried out for the dominant wave cases with the high probability of occurrence. In addition, the offshore boundary is forced with conditions observed during Hurricane Felix to obtain the beach response to a severe wave case. The effect of applied wave cases on the alongshore variability of sediment transport will be discussed to address the causes of downdrift beach erosion.

  15. Numerical analysis of reaction-diffusion effects on species mixing rates in turbulent premixed methane-air combustion

    SciTech Connect

    Richardson, E.S.; Grout, R.W.; Chen, J.H.; Sankaran, R.

    2010-03-15

    The scalar mixing time scale, a key quantity in many turbulent combustion models, is investigated for reactive scalars in premixed combustion. Direct numerical simulations (DNS) of three-dimensional, turbulent Bunsen flames with reduced methane-air chemistry have been analyzed in the thin reaction zones regime. Previous conclusions from single step chemistry DNS studies are confirmed regarding the role of dilatation and turbulence-chemistry interactions on the progress variable dissipation rate. Compared to the progress variable, the mixing rates of intermediate species is found to be several times greater. The variation of species mixing rates are explained with reference to the structure of one-dimensional premixed laminar flames. According to this analysis, mixing rates are governed by the strong gradients which are imposed by flamelet structures at high Damkoehler numbers. This suggests a modeling approach to estimate the mixing rate of individual species which can be applied, for example, in transported probability density function simulations. Flame-turbulence interactions which modify the flamelet based representation are analyzed. (author)

  16. A critical analysis of the accuracy of several numerical techniques for combustion kinetic rate equations

    NASA Technical Reports Server (NTRS)

    Radhadrishnan, Krishnan

    1993-01-01

    A detailed analysis of the accuracy of several techniques recently developed for integrating stiff ordinary differential equations is presented. The techniques include two general-purpose codes EPISODE and LSODE developed for an arbitrary system of ordinary differential equations, and three specialized codes CHEMEQ, CREK1D, and GCKP4 developed specifically to solve chemical kinetic rate equations. The accuracy study is made by application of these codes to two practical combustion kinetics problems. Both problems describe adiabatic, homogeneous, gas-phase chemical reactions at constant pressure, and include all three combustion regimes: induction, heat release, and equilibration. To illustrate the error variation in the different combustion regimes the species are divided into three types (reactants, intermediates, and products), and error versus time plots are presented for each species type and the temperature. These plots show that CHEMEQ is the most accurate code during induction and early heat release. During late heat release and equilibration, however, the other codes are more accurate. A single global quantity, a mean integrated root-mean-square error, that measures the average error incurred in solving the complete problem is used to compare the accuracy of the codes. Among the codes examined, LSODE is the most accurate for solving chemical kinetics problems. It is also the most efficient code, in the sense that it requires the least computational work to attain a specified accuracy level. An important finding is that use of the algebraic enthalpy conservation equation to compute the temperature can be more accurate and efficient than integrating the temperature differential equation.

  17. Preliminary numerical study on the cumulus-stratus transition induced by the increase of formation rate of aerosols

    NASA Astrophysics Data System (ADS)

    Shima, Shin-ichiro; Hasegawa, Koichi; Kusano, Kanya

    2015-04-01

    The influence of aerosol-cloud interactions on the steady state of marine stratocumulus is investigated through a series of numerical simulations of an idealized meteorological system in which aerosols are formed constantly. We constructed the system by modifying the set-up based on the RICO composite case defined in van Zanten et al. (2011). The super-droplet method (SDM) (Shima, 2008; Shima et al., 2009) is used for the simulation of cloud microphysical processes. The SDM is a particle-based and probabilistic method, with which the time evolution of aerosol/cloud/precipitation particles are calculated in a unified and accurate manner. For the simulation of atmospheric fluid dynamical processes, the cloud resolving model CReSS (Tsuboki, 2008) is used, in which the quasi-compressible approximation and the sound mode splitting method are applied. The steady states of the system are compared changing the aerosol nucleation rate and the initial number density of aerosols. It is observed that the system gradually evolves to reach its final steady state in a few days, which is irrelevant to the initial number density of aerosols. A transition of the final steady state from cumuli to strati occurs when the aerosol formation rate is increased. Chemical reactions in the gas phase and the liquid phase are not yet incorporated in the model, and the numerical simulations are performed in two dimensions. For these limitations, the results obtained are still preliminary.

  18. Illuminating a black box - determination of rates of reactive transport by combining numerical tools with optimized experiments

    NASA Astrophysics Data System (ADS)

    Wehrer, Dr; Totsche, Dr

    2009-04-01

    Only the combination of physical models and experiments can elucidate the processes of reactive transport in porous media. Column scale experiments offer a great opportunity to identify and quantify processes of reactive transport. In contrast to batch experiments, approximately natural flow dynamics can be realized. However, due to the complexity of interactions and wide range of parameters the experiment can be insensitive to the wanted process and misinterpretation of the results is likely. In the proposed talk we want to give examples how numerical tools can be applied for thorough planning and evaluation of experiments. In a first phase, we performed systematical numerical experiments to optimize the experimental conditions, which allow the quantification of (de-)sorption kinetics under percolation conditions. For short term column experiments we found, that the application of flow interruptions along with two different flow velocities can be applied to avoid uniqueness problems with respect to identification of partitioning coefficient and mass transfer rate. By a sensitivity analysis the parameter space was divided into regions where physical reasonable parameter estimates can be expected and where equifinal solutions are likely. In a second phase we conducted column experiments to test this optimized experimental design for its suitability for the identification and quantification of rate-limited contaminant release. We used materials polluted with organic and inorganic contaminants originating from different soils, sites and materials (Coke oven sites, abandoned industrial sites, destruction debris, municipal waste incineration ash). Repacked soil columns were percolated under saturated and unsaturated conditions and were subjected to multiple flow interruptions and different flow velocities. The third phase consisted of data evaluation and process quantification applying numerical inversion of a physical transport model. The parameter sets were evaluated

  19. Quantifying the feedback of evaporation and transpiration rates to soil moisture dynamics and meteorological condition changes by a numerical model

    NASA Astrophysics Data System (ADS)

    Su, Ye; Shao, Wei; Vlček, Lukáš; Langhammer, Jakub

    2015-04-01

    Evapotranspiration drives the hydrological process through energy-driven water-phase changes between systems of soil-vegetation-atmosphere. Evapotranspiration performs a rather complex process attributable to the spatial and temporal variation of soil-vegetation-atmosphere system. For vegetation-covered land surfaces, the transpiration process is governed by the stomatal behavior and water uptake from the root zone, and evaporation is related with the interception of rainfall and radiation on the canopy and soil surface. This study is emphasized on describing the hydrological process and energy cycle in a basic hydrological response unit, a hillslope. The experimental hillslope is located in an experimental catchment of the Bohemian Forest Mountains' headwaters in the Czech Republic, where is mostly covered by dead Norway spruce forest (Picea abies) stands caused by balk beetle outbreak. High-frequency monitoring network of the hydro-climatic data, soil pore water pressure and soil temperature has been launched since 2012. To conceptualize the land-surface energy and water fluxes in a complex hillslope, a soil-vegetation-atmosphere transport (SVAT) model, coupled with a multi-phase soil physics process (i.e. the water, vapor and heat flow transport) is used. We selected an 8-week basis dataset from 2013 as a pilot for partitioning the evapotranspiration into three interactive components: transpiration (Et), canopy interception evaporation (Ei), and soil evaporation (Es), by using this numerical model. Within such model framework, the sensitive feedback of evapotranspiration rates to rainfall intensity, soil moisture, and solar radiation will be examined by conducting numerical experiments to better understand the mechanism of evapotranspiration process under various influencing factors. Such application study and followed numerical simulations provide a new path for quantifying the behaviors of the soil-vegetation-atmosphere system.

  20. Numerical Simulation of the Combustion of Fuel Droplets: Finite Rate Kinetics and Flame Zone Grid Adaptation (CEFD)

    NASA Technical Reports Server (NTRS)

    Gogos, George; Bowen, Brent D.; Nickerson, Jocelyn S.

    2002-01-01

    The NASA Nebraska Space Grant (NSGC) & EPSCoR programs have continued their effort to support outstanding research endeavors by funding the Numerical Simulation of the Combustion of Fuel Droplets study at the University of Nebraska at Lincoln (UNL). This team of researchers has developed a transient numerical model to study the combustion of suspended and moving droplets. The engines that propel missiles, jets, and many other devices are dependent upon combustion. Therefore, data concerning the combustion of fuel droplets is of immediate relevance to aviation and aeronautical personnel, especially those involved in flight operations. The experiments being conducted by Dr. Gogos and Dr. Nayagam s research teams, allow investigators to gather data for comparison with theoretical predictions of burning rates, flame structures, and extinction conditions. The consequent improved hndamental understanding droplet combustion may contribute to the clean and safe utilization of fossil hels (Williams, Dryer, Haggard & Nayagam, 1997, 72). The present state of knowledge on convective extinction of he1 droplets derives fiom experiments conducted under normal gravity conditions. However, any data obtained with suspended droplets under normal gravity are grossly affected by gravity. The need to obtain experimental data under microgravity conditions is therefore well justified and addresses one of the goals of NASA s Human Exploration and Development of Space (HEDS) microgravity combustion experiment.

  1. An investigation of the effect of pore scale flow on average geochemical reaction rates using direct numerical simulation

    SciTech Connect

    Rafa, S. Molins; Trebotich, D.; Steefel, C. I.; Shen, C.

    2012-02-01

    The scale-dependence of geochemical reaction rates hinders their use in continuum scale models intended for the interpretation and prediction of chemical fate and transport in subsurface environments such as those considered for geologic sequestration of CO{sub 2}. Processes that take place at the pore scale, especially those involving mass transport limitations to reactive surfaces, may contribute to the discrepancy commonly observed between laboratory-determined and continuum-scale or field rates. Here, the dependence of mineral dissolution rates on the pore structure of the porous media is investigated by means of pore scale modeling of flow and multicomponent reactive transport. The pore scale model is comprised of high performance simulation tools and algorithms for incompressible flow and conservative transport combined with a general-purpose multicomponent geochemical reaction code. The model performs direct numerical simulation of reactive transport based on an operator-splitting approach to coupling transport and reactions. The approach is validated with a Poiseuille flow single-pore experiment and verified with an equivalent 1D continuum-scale model of a capillary tube packed with calcite spheres. Using the case of calcite dissolution as an example, the high resolution model is used to demonstrate that non-uniformity in the flow field at the pore scale has the effect of decreasing the overall reactivity of the system, even when systems with identical reactive surface area are considered. The effect becomes more pronounced as the heterogeneity of the reactive grain packing increases, particularly where the flow slows sufficiently such that the solution approaches equilibrium locally and the average rate becomes transport-limited.

  2. Numerical modeling of crustal block-and-fault dynamics, earthquakes and slip rates in the Tibet-Himalayan region

    NASA Astrophysics Data System (ADS)

    Ismail-Zadeh, Alik; Le Mouël, Jean-Louis; Soloviev, Alexander; Tapponnier, Paul; Vorovieva, Inessa

    2007-06-01

    The Tibetan plateau and Himalayans have resulted from the continuous Indian and Eurasian plate convergence following their initial collision about 55 million years ago. Earthquakes in the region occur mainly in response to the crustal motion and stress localization associated with this convergence. To understand the basic features of the crustal motion and seismicity in the Tibet-Himalayan region, we develop a numerical model of block-and-fault dynamics. The model structure is composed of six major upper crustal blocks separated by fault planes. These blocks are assumed to be perfectly rigid and move as a consequence of the Indian plate push and of a flow of the lower crust. Deformations take place along the fault planes separating the blocks. The interaction of the blocks along the fault planes is visco-elastic as long as the ratio of the shear stress to the difference between the pore pressure and normal stress remains below a critical strength level. When the critical level is exceeded in some part of a fault plane, an earthquake (stress-drop) occurs causing also failures in adjacent parts of the fault plane. The stress-drop-affected parts of the fault plane enter in a state of creep immediately after the earthquake, and the creep lasts until the stress falls below a certain level. We develop several sets of numerical experiments to analyze the earthquake clustering, frequency-to-magnitude relationships, earthquake focal mechanisms, and fault slip rates in the model. Large events in the numerical experiments cluster on the fault segments associated with the Himalayan Frontal Thrust as well as at some internal faults of the Tibetan plateau. The clustering of earthquakes on a given fault is a consequence of the dynamics of the regional fault system rather than that of the fault only. We show that variations in the relationship of magnitude to frequency of the events are associated with changes in the motion of the upper crustal blocks and depend on the rheological

  3. Predicting SF-6D utility scores from the Neck Disability Index and Numeric Rating Scales for Neck and Arm Pain

    PubMed Central

    Carreon, Leah Y.; Anderson, Paul A.; McDonough, Christine M.; Djurasovic, Mladen; Glassman, Steven D.

    2010-01-01

    Study Design Cross-sectional cohort Objective This study aims to provide an algorithm estimate SF-6D utilities using data from the NDI, neck pain and arm pain scores. Summary of Background Data Although cost-utility analysis is increasingly used to provide information about the relative value of alternative interventions, health state values or utilities are rarely available from clinical trial data. The Neck Disability Index (NDI) and numeric rating scales for neck and arm pain, are widely used disease-specific measures of symptoms, function and disability in patients with cervical degenerative disorders. The purpose of this study is to provide an algorithm to allow estimation of SF-6D utilities using data from the NDI, and numeric rating scales for neck and arm pain. Methods SF-36, NDI, neck and arm pain rating scale scores were prospectively collected pre-operatively, at 12 and 24 months post-operatively in 2080 patients undergoing cervical fusion for degenerative disorders. SF-6D utilities were computed and Spearman correlation coefficients were calculated for paired observations from multiple time points between NDI, neck and arm pain scores and SF-6D utility scores. SF-6D scores were estimated from the NDI, neck and arm pain scores using a linear regression model. Using a separate, independent dataset of 396 patients in which and NDI scores were available SF-6D was estimated for each subject and compared to their actual SF-6D. Results The mean age for those in the development sample, was 50.4 ± 11.0 years and 33% were male. In the validation sample the mean age was 53.1 ± 9.9 years and 35% were male. Correlations between the SF-6D and the NDI, neck and arm pain scores were statistically significant (p<0.0001) with correlation coefficients of 0.82, 0.62, and 0.50 respectively. The regression equation using NDI alone to predict SF-6D had an R2 of 0.66 and a root mean square error (RMSE) of 0.056. In the validation analysis, there was no statistically

  4. The Effects of Changes in the Order of Verbal Labels and Numerical Values on Children's Scores on Attitude and Rating Scales

    ERIC Educational Resources Information Center

    Betts, Lucy; Hartley, James

    2012-01-01

    Research with adults has shown that variations in verbal labels and numerical scale values on rating scales can affect the responses given. However, few studies have been conducted with children. The study aimed to examine potential differences in children's responses to Likert-type rating scales according to their anchor points and scale…

  5. Narrative descriptions should replace grades and numerical ratings for clinical performance in medical education in the United States

    PubMed Central

    Hanson, Janice L.; Rosenberg, Adam A.; Lane, J. Lindsey

    2013-01-01

    Background: In medical education, evaluation of clinical performance is based almost universally on rating scales for defined aspects of performance and scores on examinations and checklists. Unfortunately, scores and grades do not capture progress and competence among learners in the complex tasks and roles required to practice medicine. While the literature suggests serious problems with the validity and reliability of ratings of clinical performance based on numerical scores, the critical issue is not that judgments about what is observed vary from rater to rater but that these judgments are lost when translated into numbers on a scale. As the Next Accreditation System of the Accreditation Council on Graduate Medical Education (ACGME) takes effect, medical educators have an opportunity to create new processes of evaluation to document and facilitate progress of medical learners in the required areas of competence. Proposal and initial experience: Narrative descriptions of learner performance in the clinical environment, gathered using a framework for observation that builds a shared understanding of competence among the faculty, promise to provide meaningful qualitative data closely linked to the work of physicians. With descriptions grouped in categories and matched to milestones, core faculty can place each learner along the milestones' continua of progress. This provides the foundation for meaningful feedback to facilitate the progress of each learner as well as documentation of progress toward competence. Implications: This narrative evaluation system addresses educational needs as well as the goals of the Next Accreditation System for explicitly documented progress. Educators at other levels of education and in other professions experience similar needs for authentic assessment and, with meaningful frameworks that describe roles and tasks, may also find useful a system built on descriptions of learner performance in actual work settings. Conclusions: We

  6. An analysis of lower-dimensional approximations to the scalar dissipation rate using direct numerical simulations of plane jet flames

    SciTech Connect

    Chen, Jackie; Sankaran, Ramanan; Hawkes, Evatt R

    2009-05-01

    The difficulty of experimental measurements of the scalar dissipation rate in turbulent flames has required researchers to estimate the true three-dimensional (3D) scalar dissipation rate from one-dimensional (1D) or two-dimensional (2D) gradient measurements. In doing so, some relationship must be assumed between the true values and their lower dimensional approximations. We develop these relationships by assuming a form for the statistics of the gradient vector orientation, which enables several new results to be obtained and the true 3D scalar dissipation PDF to be reconstructed from the lower-dimensional approximations. We use direct numerical simulations (DNS) of turbulent plane jet flames to examine the orientation statistics, and verify our assumptions and final results. We develop and validate new theoretical relationships between the lower-dimensional and true moments of the scalar dissipation PDF assuming a log-normal true PDF. We compare PDFs reconstructed from lower-dimensional gradient projections with the true values and find an excellent agreement for a 2D simulated measurement and also for a 1D simulated measurement perpendicular to the mean flow variations. Comparisons of PDFs of thermal dissipation from DNS with those obtained via reconstruction from 2D experimental measurements show a very close match, indicating this PDF is not unique to a particular flame configuration. We develop a technique to reconstruct the joint PDF of the scalar dissipation and any other scalar, such as chemical species or temperature. Reconstructed conditional means of the hydroxyl mass fraction are compared with the true values and an excellent agreement is obtained.

  7. The Worst Itch Numeric Rating Scale for patients with moderate to severe plaque psoriasis or psoriatic arthritis.

    PubMed

    Naegeli, April N; Flood, Emuella; Tucker, Jennifer; Devlen, Jennifer; Edson-Heredia, Emily

    2015-06-01

    Plaque psoriasis (PP) and psoriatic arthritis (PsA) are autoinflammatory chronic conditions associated with skin involvement. Pruritus, or itching, is a prevalent and bothersome symptom in patients with PP and is associated with reduced health-related quality of life. The Worst Itch Numeric Rating Scale (WI-NRS) has been developed as a simple, single item with which to assess the patient-reported severity of this symptom at its most intense during the previous 24-hour period. Qualitative research was undertaken to assess the content validity of the WI-NRS. Patients with moderate to severe PP and patients with PsA were recruited from clinical sites in the USA. The qualitative research entailed two-part interviews, which began with concept elicitation to gain understanding of patients' experiences of itching, followed by cognitive debriefing of the WI-NRS to assess the instrument's understandability, clarity, and degree of appropriateness from the patient's perspective. Twelve patients with PP and 22 with PsA participated in the study. Patients reported that itching was an important and relevant symptom of their psoriatic disease. The WI-NRS was reported to be complete and easy to understand; the recall period was considered appropriate, the response scale was familiar, and, overall, the instrument was found to be appropriate for assessing itching severity. Patient responses support the content validity of the WI-NRS. The psychometric properties of the tool will be evaluated in future studies. PMID:25515935

  8. Regulation of Star Formation Rates in Multiphase Galactic Disks: Numerical Tests of the Thermal/Dynamical Equilibrium Model

    NASA Astrophysics Data System (ADS)

    Kim, Chang-Goo; Kim, Woong-Tae; Ostriker, Eve C.

    2011-12-01

    We use vertically resolved numerical hydrodynamic simulations to study star formation and the interstellar medium (ISM) in galactic disks. We focus on outer-disk regions where diffuse H I dominates, with gas surface densities Σ = 3-20 M⊙ pc-2 and star-plus-dark matter volume densities ρsd = 0.003-0.5 M⊙ pc-3. Star formation occurs in very dense, self-gravitating clouds that form by mergers of smaller cold cloudlets. Turbulence, driven by momentum feedback from supernova events, destroys bound clouds and puffs up the disk vertically. Time-dependent radiative heating (FUV from recent star formation) offsets gas cooling. We use our simulations to test a new theory for self-regulated star formation. Consistent with this theory, the disks evolve to a state of vertical dynamical equilibrium and thermal equilibrium with both warm and cold phases. The range of star formation surface densities and midplane thermal pressures is ΣSFR ∼ 10-4 to 10-2 M⊙ kpc-2 yr-1 and P th/k B ∼ 102 to 104 cm-3 K. In agreement with observations, turbulent velocity dispersions are ~7 km s-1 and the ratio of the total (effective) to thermal pressure is Ptot/Pth ∼ 4-5, across this whole range (provided shielding is similar to the solar neighborhood). We show that ΣSFR is not well correlated with Σ alone, but rather with Σ ρsd1/2, because the vertical gravity from stars and dark matter dominates in outer disks. We also find that ΣSFR has a strong, nearly linear correlation with Ptot, which itself is within ~13% of the dynamical equilibrium estimate Ptot, DE. The quantitative relationships we find between &SigmaSFR and the turbulent and thermal pressures show that star formation is highly efficient for energy and momentum production, in contrast to the low efficiency of mass consumption. Star formation rates adjust until the ISM's energy and momentum losses are replenished by feedback within a dynamical time.

  9. RESPONSIVENESS OF THE ACTIVITIES OF DAILY LIVING SCALE OF THE KNEE OUTCOME SURVEY AND NUMERIC PAIN RATING SCALE IN PATIENTS WITH PATELLOFEMORAL PAIN

    PubMed Central

    Piva, Sara R.; Gil, Alexandra B.; Moore, Charity G.; Fitzgerald, G. Kelley

    2016-01-01

    Objective To assess internal and external responsiveness of the Activity of Daily Living Scale of the Knee Outcome Survey and Numeric Pain Rating Scale on patients with patellofemoral pain. Design One group pre-post design. Subjects A total of 60 individuals with patellofemoral pain (33 women; mean age 29.9 (standard deviation 9.6) years). Methods The Activity of Daily Living Scale and the Numeric Pain Rating Scale were assessed before and after 8 weeks of physical therapy program. Patients completed a global rating of change scale at the end of therapy. The standardized effect size, Guyatt responsiveness index, and the minimum clinical important difference were calculated. Results Standardized effect size of the Activity of Daily Living Scale was 0.63, Guyatt responsiveness index was 1.4, area under the curve was 0.83 (95% confidence interval: 0.72, 0.94), and the minimum clinical important difference corresponded to an increase of 7.1 percentile points. Standardized effect size of the Numeric Pain Rating Scale was 0.72, Guyatt responsiveness index was 2.2, area under the curve was 0.80 (95% confidence interval: 0.70, 0.92), and the minimum clinical important difference corresponded to a decrease of 1.16 points. Conclusion Information from this study may be helpful to therapists when evaluating the effectiveness of rehabilitation intervention on physical function and pain, and to power future clinical trials on patients with patellofemoral pain. PMID:19229444

  10. Effects of emission layer doping on the spatial distribution of charge and host recombination rate density in organic light emitting devices: A numerical study

    SciTech Connect

    Li, Yanli; Zhou, Maoqing; Zheng, Tingcai; Yao, Bo; Peng, Yingquan

    2013-12-28

    Based on drift-diffusion theory, a numerical model of the doping of a single energy level trap in the emission layer of an organic light emitting device (OLED) was developed, and the effects of doping of this single energy level trap on the distribution of the charge density, the recombination rate density, and the electric field in single- and double-layer OLEDs were studied numerically. The results show that by doping the n-type (p-type) emission layer with single energy electron (hole) traps, the distribution of the recombination rate density can be tuned and shifted, which is useful for improvement of the device performance by reduced electrode quenching or for realization of desirable special functions, e.g., emission spectrum tuning in multiple dye-doped white OLEDs.

  11. Comparison of heat transfer in liquid and slush nitrogen by numerical simulation of cooling rates for French straws used for sperm cryopreservation.

    PubMed

    Sansinena, M; Santos, M V; Zaritzky, N; Chirife, J

    2012-05-01

    Slush nitrogen (SN(2)) is a mixture of solid nitrogen and liquid nitrogen, with an average temperature of -207 °C. To investigate whether plunging a French plastic straw (commonly used for sperm cryopreservation) in SN(2) substantially increases cooling rates with respect to liquid nitrogen (LN(2)), a numerical simulation of the heat conduction equation with convective boundary condition was used to predict cooling rates. Calculations performed using heat transfer coefficients in the range of film boiling confirmed the main benefit of plunging a straw in slush over LN(2) did not arise from their temperature difference (-207 vs. -196 °C), but rather from an increase in the external heat transfer coefficient. Numerical simulations using high heat transfer (h) coefficients (assumed to prevail in SN(2)) suggested that plunging in SN(2) would increase cooling rates of French straw. This increase of cooling rates was attributed to a less or null film boiling responsible for low heat transfer coefficients in liquid nitrogen when the straw is placed in the solid-liquid mixture or slush. In addition, predicted cooling rates of French straws in SN(2) tended to level-off for high h values, suggesting heat transfer was dictated by heat conduction within the liquid filled plastic straw. PMID:22225685

  12. Physical and numerical sources of computational inefficiency in integration of chemical kinetic rate equations: Etiology, treatment and prognosis

    NASA Technical Reports Server (NTRS)

    Pratt, D. T.; Radhakrishnan, K.

    1986-01-01

    The design of a very fast, automatic black-box code for homogeneous, gas-phase chemical kinetics problems requires an understanding of the physical and numerical sources of computational inefficiency. Some major sources reviewed in this report are stiffness of the governing ordinary differential equations (ODE's) and its detection, choice of appropriate method (i.e., integration algorithm plus step-size control strategy), nonphysical initial conditions, and too frequent evaluation of thermochemical and kinetic properties. Specific techniques are recommended (and some advised against) for improving or overcoming the identified problem areas. It is argued that, because reactive species increase exponentially with time during induction, and all species exhibit asymptotic, exponential decay with time during equilibration, exponential-fitted integration algorithms are inherently more accurate for kinetics modeling than classical, polynomial-interpolant methods for the same computational work. But current codes using the exponential-fitted method lack the sophisticated stepsize-control logic of existing black-box ODE solver codes, such as EPISODE and LSODE. The ultimate chemical kinetics code does not exist yet, but the general characteristics of such a code are becoming apparent.

  13. Numerical solution to the Boltzmann equation for use in calculating pumping rates in a CO sub 2 discharge laser. Master's thesis

    SciTech Connect

    Honey, D.A.

    1989-12-01

    The collisional Boltzmann equation was solved numerically to obtain excitation rates for use in a CO{sub 2} laser design program. The program was written in Microsoft QuickBasic for use on the IBM Personal Computer or equivalent. Program validation involved comparisons of computed transport coefficients with experimental data and previous theoretical work. Four different numerical algorithms were evaluated in terms of accuracy and efficiency. L-U decomposition was identified as the preferred approach. The calculated transport coefficients were found to agree with empirical data within one to five percent. The program was integrated into a CO{sub 2} laser design program. Studies were then performed to evaluate the effects on predicted laser output power and energy density as parameters affecting electron kinetics were changed. Plotting routines were written for both programs.

  14. Numerical Study of the Role of Magnetic Field Ramping Rate on the Structure Formation in Magnetorheological Fluids

    NASA Astrophysics Data System (ADS)

    Mohebi, M.; Jamasbi, N.; Flores, G. A.; Liu, Jing

    A molecular dynamics model is presented to understand the structural formation of MR fluids by including the thermal motion of the particles. The simulation results indicate that the complexity of the lateral pattern as viewed in the direction of the applied field increases with the rate of the application of external magnetic field. We have also found that the maximum range for attractive interaction (escape distance) for two initially straight chains increases with temperature. These results are relevant to understand the mechanisms and conditions for the formation of labyrinthine and columnar patterns found in MR fluids.

  15. Theoretical investigation of wave-vector-dependent analytical and numerical formulations of the interband impact-ionization transition rate for electrons in bulk silicon and GaAs

    NASA Technical Reports Server (NTRS)

    Kolnik, Jan; Wang, Yang; Oguzman, Ismail H.; Brennan, Kevin F.

    1994-01-01

    The electron interband impact-ionization rate for both silicon and gallium arsenide is calculated using an ensemble Monte Carlo simulation with the expressed purpose of comparing different formulations of the interband ionization transition rate. Specifically, three different treatments of the transition rate are examined: the traditional Keldysh formula, a new k-dependent analytical formulation first derived by W. Quade, E. Scholl, and M. Rudan (1993), and a more exact, numerical method of Y. Wang and K. F. Brennan (1994). Although the completely numerical formulation contains no adjustable parameters and as such provides a very reliable result, it is highly computationally intensive. Alternatively, the Keldysh formular, although inherently simple and computationally efficient, fails to include the k dependence as well as the details of the energy band structure. The k-dependent analytical formulation of Quade and co-workers overcomes the limitations of both of these models but at the expense of some new parameterization. It is found that the k-dependent analytical method of Quade and co-workers produces very similar results to those obtained with the completely numerical model for some quantities. Specifically, both models predict that the effective threshold for impact ionization in GaAs and silicon is quite soft, that the majority of ionization events originate from the second conduction band in both materials, and that the transition rate is k dependent. Therefore, it is concluded that the k-dependent analytical model can qualitatively reproduce results similar to those obtained with the numerical model yet with far greater computational efficiency. Nevertheless, there exist some important drawbacks to the k-dependent analytical model of Quade and co-workers: These are that it does not accurately reproduce the quantum yield data for bulk silicon, it requires determination of a new parameter, related physically to the overlap intergrals of the Bloch state which

  16. Kinlsq: a program for fitting kinetics data with numerically integrated rate equations and its application to the analysis of slow, tight-binding inhibition data.

    PubMed

    Gutheil, W G; Kettner, C A; Bachovchin, W W

    1994-11-15

    Kinlsq, a Matlab-based computer program for the least-squares fitting of parameters to kinetics data described by numerically integrated rate equations, is described, and three applications to the analysis of enzyme kinetics data are given. The first application was to the analysis of a simple bimolecular enzyme plus inhibitor binding curve. The kinlsq fit to these data was essentially identical to that obtained with the corresponding analytically integrated rate equation, validating kinlsq. The second application was to the fit of a numerically integrated Michaelis-Menten model to the progress curve for dipeptidyl peptidase IV-catalyzed hydrolysis of Ala-Pro-p-nitroanilide as a demonstration of the analysis of steady-state enzyme kinetics data. The results obtained with kinlsq were compared with the results obtained by fitting this time course with the integrated Michaelis-Menten equation, and with the results obtained by fitting the (S,dP/dt) transform of the data with the Michaelis-Menten equation. The third application was to the analysis of the inhibition of chymotrypsin by the slow, tight-binding inhibitor MeOSuc-Ala-Ala-Pro-boroPhe, data not readily amenable to other methods of analysis. These applications demonstrate how kinlsq can be used to fit rate constants, equilibrium constants, steady-state constants, and the stoichiometric relationships between components. PMID:7695087

  17. Assessment of external heat transfer coefficient during oocyte vitrification in liquid and slush nitrogen using numerical simulations to determine cooling rates.

    PubMed

    Santos, M V; Sansinena, M; Zaritzky, N; Chirife, J

    2012-01-01

    In oocyte vitrification, plunging directly into liquid nitrogen favor film boiling and strong nitrogen vaporization. A survey of literature values of heat transfer coefficients (h) for film boiling of small metal objects with different geometries plunged in liquid nitrogen revealed values between 125 to 1000 W per per square m per K. These h values were used in a numerical simulation of cooling rates of two oocyte vitrification devices (open-pulled straw and Cryotop), plunged in liquid and slush nitrogen conditions. Heat conduction equation with convective boundary condition was considered a linear mathematical problem and was solved using the finite element method applying the variational formulation. COMSOL Multiphysics was used to simulate the cooling process of the systems. Predicted cooling rates for OPS and Cryotop when cooled at -196 degree C (liquid nitrogen) or -207 degree C (average for slush nitrogen) for heat transfer coefficients estimated to be representative of film boiling, indicated lowering the cooling temperature produces only a maximum 10 percent increase in cooling rates; confirming the main benefit of plunging in slush over liquid nitrogen does not arise from their temperature difference. Numerical simulations also demonstrated that a hypothetical four-fold increase in the cooling rate of vitrification devices when plunging in slush nitrogen would be explained by an increase in heat transfer coefficient. This improvement in heat transfer (i.e., high cooling rates) in slush nitrogen is attributed to less or null film boiling when a sample is placed in slush (mixture of liquid and solid nitrogen) because it first melts the solid nitrogen before causing the liquid to boil and form a film. PMID:22434120

  18. Multifractal analysis of heart rate variability and laser Doppler flowmetry fluctuations:comparison of results from different numerical methods

    NASA Astrophysics Data System (ADS)

    Humeau, Anne; Buard, Benjamin; Mahé, Guillaume; Chapeau-Blondeau, François; Rousseau, David; Abraham, Pierre

    2010-10-01

    To contribute to the understanding of the complex dynamics in the cardiovascular system (CVS), the central CVS has previously been analyzed through multifractal analyses of heart rate variability (HRV) signals that were shown to bring useful contributions. Similar approaches for the peripheral CVS through the analysis of laser Doppler flowmetry (LDF) signals are comparatively very recent. In this direction, we propose here a study of the peripheral CVS through a multifractal analysis of LDF fluctuations, together with a comparison of the results with those obtained on HRV fluctuations simultaneously recorded. To perform these investigations concerning the biophysics of the CVS, first we have to address the problem of selecting a suitable methodology for multifractal analysis, allowing us to extract meaningful interpretations on biophysical signals. For this purpose, we test four existing methodologies of multifractal analysis. We also present a comparison of their applicability and interpretability when implemented on both simulated multifractal signals of reference and on experimental signals from the CVS. One essential outcome of the study is that the multifractal properties observed from both the LDF fluctuations (peripheral CVS) and the HRV fluctuations (central CVS) appear very close and similar over the studied range of scales relevant to physiology.

  19. A Numerical Investigation of the Extinction of Low Strain Rate Diffusion Flames by an Agent in Microgravity

    NASA Technical Reports Server (NTRS)

    Puri, Ishwar K.

    2004-01-01

    Our goal has been to investigate the influence of both dilution and radiation on the extinction process of nonpremixed flames at low strain rates. Simulations have been performed by using a counterflow code and three radiation models have been included in it, namely, the optically thin, the narrowband, and discrete ordinate models. The counterflow flame code OPPDIFF was modified to account for heat transfer losses by radiation from the hot gases. The discrete ordinate method (DOM) approximation was first suggested by Chandrasekhar for solving problems in interstellar atmospheres. Carlson and Lathrop developed the method for solving multi-dimensional problem in neutron transport. Only recently has the method received attention in the field of heat transfer. Due to the applicability of the discrete ordinate method for thermal radiation problems involving flames, the narrowband code RADCAL was modified to calculate the radiative properties of the gases. A non-premixed counterflow flame was simulated with the discrete ordinate method for radiative emissions. In comparison with two other models, it was found that the heat losses were comparable with the optically thin and simple narrowband model. The optically thin model had the highest heat losses followed by the DOM model and the narrow-band model.

  20. Integral quantification of contaminant mass flow rates in a contaminated aquifer: conditioning of the numerical inversion of concentration-time series.

    PubMed

    Herold, Maria; Ptak, Thomas; Bayer-Raich, Marti; Wendel, Thomas; Grathwohl, Peter

    2009-04-15

    A series of integral pumping tests (IPTs) has been conducted at a former gasworks site to quantify the contaminant mass flow rates and average concentration in groundwater along three control planes across the groundwater flow direction. The measured concentration-time series were analysed numerically with the help of the inversion code CSTREAM and a flow and transport model representing the highly heterogeneous aquifer. Since the control planes cover the entire downstream width of the potentially contaminated area, they allow conclusions to be drawn about the current location and spread of the contaminant plume. Previous evaluations of integral pumping tests could calculate three scenarios concerning the spread of the plume around the IPT well: (i) the plume is located to the right of the pumping well, (ii) to the left, or (iii) is distributed symmetrically around it. To create a more realistic picture of the plume position, a series of direct-push monitoring wells were installed along one control plane. The concentrations found in these wells were included in the numerical analysis to condition the numerical inversion results, and allowed the identification of a more pronounced plume centre and fringe, which supports the development of optimised remediation strategies. PMID:19167131

  1. Integral quantification of contaminant mass flow rates in a contaminated aquifer: Conditioning of the numerical inversion of concentration-time series

    NASA Astrophysics Data System (ADS)

    Herold, Maria; Ptak, Thomas; Bayer-Raich, Marti; Wendel, Thomas; Grathwohl, Peter

    2009-04-01

    A series of integral pumping tests (IPTs) has been conducted at a former gasworks site to quantify the contaminant mass flow rates and average concentration in groundwater along three control planes across the groundwater flow direction. The measured concentration-time series were analysed numerically with the help of the inversion code CSTREAM and a flow and transport model representing the highly heterogeneous aquifer. Since the control planes cover the entire downstream width of the potentially contaminated area, they allow conclusions to be drawn about the current location and spread of the contaminant plume. Previous evaluations of integral pumping tests could calculate three scenarios concerning the spread of the plume around the IPT well: (i) the plume is located to the right of the pumping well, (ii) to the left, or (iii) is distributed symmetrically around it. To create a more realistic picture of the plume position, a series of direct-push monitoring wells were installed along one control plane. The concentrations found in these wells were included in the numerical analysis to condition the numerical inversion results, and allowed the identification of a more pronounced plume centre and fringe, which supports the development of optimised remediation strategies.

  2. Fluvial Discharge Rates of Martian Gullies: Slope Measurements From Stereo HiRISE Images and Numerical Modeling of Sediment Transport

    NASA Astrophysics Data System (ADS)

    Parsons, R. A.; Nimmo, F.; Kreslavsky, M.

    2008-12-01

    Using a stereo pair of HiRISE images of a crater slope incised by fourteen gullies at -37.86 N, 217.92 E we calculate relative elevation changes between pairs of hand-selected points. Using the method of Kreslavsky [1]. The background slope on which the gullies are located has a slope of 22 degrees. Out of the five gullies we analyzed, all show a steadily decreasing slope from an average of 30 ± 4 degrees at the alcove to 16 ± 2 degrees at the apron. These measurements are in agreement with previous gully slope measurements done at MOLA resolution in a different region [2]. The slope beyond the base of the gully aprons is 4±1 degrees. The depth of alcove incision in nine of the gullies is 17±8.5~m. We take advantage of this slope and incision data to determine the evolution of a one-dimensional gully profile over time with a 1D sediment transport model [3]. The shear stress applied to the channel bed by flowing water is τ = ρ g h sinθ where h is the channel depth, g is gravity, and h is the channel depth. The rate of transport is non-linearly related to τ/τrg where the reference stress for a gravel bed is τrg = 0.035 ( (s-1)ρ g Dg ) where s is the ratio of sediment to water density, ρ is 1000~m3, and Dg is the sediment grainsize. The two significant unknowns in applying the theory to Martian gullies are the sediment grainsize and channel depth. We ran simulations for various channel depths and grainsizes to get a range of water discharges and simulation times that result in alcoves 25~m deep. Erosion is rapid due to the high slopes; incision rates decrease with decreasing channel depth and increasing grainsize. For grains 20~cm in diameter and a conservatively low channel depth of 20~cm, alcove incision occurs over a 5~h period, discharging a volume of 8500 m3 of water. These discharges assume a 1~m wide channel and a constant, bank-full discharge over the duration of the simulation. Gullies are spaced about every 500~m along the slope. If liquid water

  3. Oceanic transform fault earthquake nucleation process and source scaling relations - A numerical modeling study with rate-state friction (Invited)

    NASA Astrophysics Data System (ADS)

    Liu, Y.; McGuire, J. J.; Behn, M. D.

    2013-12-01

    We use a three-dimensional strike-slip fault model in the framework of rate and state-dependent friction to investigate earthquake behavior and scaling relations on oceanic transform faults (OTFs). Gabbro friction data under hydrothermal conditions are mapped onto OTFs using temperatures from (1) a half-space cooling model, and (2) a thermal model that incorporates a visco-plastic rheology, non-Newtonian viscous flow and the effects of shear heating and hydrothermal circulation. Without introducing small-scale frictional heterogeneities on the fault, our model predicts that an OTF segment can transition between seismic and aseismic slip over many earthquake cycles, consistent with the multimode hypothesis for OTF ruptures. The average seismic coupling coefficient χ is strongly dependent on the ratio of seismogenic zone width W to earthquake nucleation size h*; χ increases by four orders of magnitude as W/h* increases from ~ 1 to 2. Specifically, the average χ = 0.15 +/- 0.05 derived from global OTF earthquake catalogs can be reached at W/h* ≈ 1.2-1.7. The modeled largest earthquake rupture area is less than the total seismogenic area and we predict a deficiency of large earthquakes on long transforms, which is also consistent with observations. Earthquake magnitude and distribution on the Gofar (East Pacific Rise) and Romanche (equatorial Mid-Atlantic) transforms are better predicted using the visco-plastic model than the half-space cooling model. We will also investigate how fault gouge porosity variation during an OTF earthquake nucleation phase may affect the seismic wave velocity structure, for which up to 3% drop was observed prior to the 2008 Mw6 Gofar earthquake.

  4. Impacts of a Sub-Slab Aggregate Layer and a Sub-Aggregate Membrane on Radon Entry Rate: A Numerical Study

    SciTech Connect

    Bonnefous, Y.C.; Gadgil, A.J.; Revzan, K.L.; Fisk, W.J.; Riley, W.J.

    1993-01-01

    A subslab aggregate layer can increase the radon entry rate into a building by up to a factor of 5. We use a previously tested numerical technique to investigate and confirm this phenomenon. Then we demonstrate that a sub-aggregate membrane has the potential to significantly reduce the increase in radon entry rate due to the aggregate layer, even when a gap exists between the perimeter of the membrane and the footer. Such membranes greatly reduce diffusion of radon from the soil into the aggregate and are impermeable to flow. Radon entry through the basement floor slab is limited to radon entry through the holes in the membrane. In addition, a sub-aggregate membrane is predicted to improve the performance of active sub-slab ventilation systems and makes passive systems more promising.

  5. A comparative numerical study of rotating and stationary RF coils in terms of flip angle and specific absorption rate for 7 T MRI

    NASA Astrophysics Data System (ADS)

    Trakic, A.; Jin, J.; Li, M. Y.; McClymont, D.; Weber, E.; Liu, F.; Crozier, S.

    2013-11-01

    While high-field magnetic resonance imaging promises improved image quality and faster scan time, it is affected by non-uniform flip angle distributions and unsafe specific absorption rate levels within the patient, as a result of the complicated radiofrequency (RF) field - tissue interactions. This numerical study explored the possibility of using a single mechanically rotating RF coil for RF shimming and specific absorption rate management applications at 7 T. In particular, this new approach (with three different RF coil element arrangements) was compared against both an 8-channel parallel coil array and a birdcage volume coil, with and without RF current optimisation. The evaluation was conducted using an in-house developed and validated finite-difference time-domain method in conjunction with a tissue-equivalent human head model. It was found that, without current optimisation, the rotating RF coil method produced a more uniform flip angle distribution and a lower maximum global and local specific absorption rate compared to the 8-channel parallel coil array and birdcage resonator. In addition, due to the large number of degrees of freedom in the form of rotated sensitivity profiles, the rotating RF coil approach exhibited good RF shimming and specific absorption rate management performance. This suggests that the proposed method can be useful in the development of techniques that address contemporary RF issues associated with high-field magnetic resonance imaging.

  6. Foliation development and progressive strain-rate partitioning in the crystallizing carapace of a tonalite pluton: microstructural evidence and numerical modeling

    NASA Astrophysics Data System (ADS)

    Johnson, Scott E.; Vernon, Ron H.; Upton, Phaedra

    2004-10-01

    The San José pluton in Baja California, México, comprises at least two well-defined, texturally distinct units. The northern unit was intruded by the central unit after the former had extensively crystallized at its margins. During intrusion of the central unit, the margin of the northern unit underwent brittle and crystal-plastic deformation, at least part of which occurred in the presence of residual melt. We infer that biotite grains in this rock readily deformed by slip and frictional sliding along (001) planes, which caused strain-rate and differential-stress gradients across their grain boundaries into the surrounding plagioclase framework causing it to fracture. These microfractures grew and coalesced, and became sites of localized ductile flow. Continued development of these microshear zones led to coalescence of biotite grains, mainly by mechanical entrainment, and ultimately to a pervasive mylonitic foliation. Thus, in a single deformation, these rocks passed through a brittle-ductile transition. The development of an anastomosing network of ductile microshear zones allowed the progressive partitioning of strain rates, probably over several orders of magnitude, between the microshear zones and intervening polymineralic aggregates. Numerical experiments were conducted to evaluate the process of biotite-assisted fracturing of the stress-supporting framework, and the progressive evolution of differential stress and strain rate. The results are consistent with experimental evidence that biotite is extremely weak in shear, and that phyllosilicate-bearing rocks may accommodate strain rates several orders of magnitude higher than the bulk strain rate. This study also supports previous suggestions that strain rates associated with the growth of crustal magma chambers may be several, to many, orders of magnitude greater than those normally associated with regional tectonic deformation.

  7. Computation of the time-varying flow rate from an artesian well in central Dade County, Florida, by analytical and numerical simulation methods

    USGS Publications Warehouse

    Merritt, Michael L.

    1995-01-01

    To construct a digital simulation of a plume of brackish water in the surficial Biscayne aquifer of central Dade County, Florida, that originated from a flowing artesian well, it was necessary to quantify the rate of spillage and the consequent point-source loading of the aquifer. However, a flow-rate measurement (2,350 gallons per minute) made 2 months after drilling of the well in 1944 was inconsistent with later measurements (1,170 gallons per minute) in 1964, 1965, and 1969. Possible explanations were the: (1) drawdown of the aquifer over time; (2) raising of the altitude at which the water was discharged; (3) installation of 80 feet of 8-inch liner; (4) an increase in the density of the flowing water; and (5) gradual deterioration of the well casing. The first approach to reconciling the measured flow rates was to apply a form of the equation for constant-drawdown analysis often used to estimate aquifer transmissivity. Next, a numerical simulation analysis was made that pro- vided the means to account for friction loss in the well and recharge across vertically adjacent con- fining layers and from lateral boundaries. The numerical analysis required the construction of a generalized model of the subsurface from the surficial Biscayne aquifer to the cavernous, dolomitic Boulder Zone at a depth of 3,000 feet. Calibration of the generalized flow model required that the moddle confining unit of the Floridan aquifer system separating the artesian flow zone in the Upper Floridan aquifer from the Lower Floridan aquifer (the Boulder Zone) have a vertical hydraulic conductivity of at least 1 foot per day. The intermediate confining unit separating the flow zone from the surficial Biscayne aquifer was assigned a much lower hydraulic conductivity (0.01 foot per day or less). The model indicated that the observed mounding of Upper Floridan aquifer heads along the axis of the Florida Peninsula was related to the variable depth of the freshwater and brackish-water zone

  8. Development and numerical/experimental characterization of a lab-scale flat flame reactor allowing the analysis of pulverized solid fuel devolatilization and oxidation at high heating rates.

    PubMed

    Lemaire, R; Menanteau, S

    2016-01-01

    This paper deals with the thorough characterization of a new experimental test bench designed to study the devolatilization and oxidation of pulverized fuel particles in a wide range of operating conditions. This lab-scale facility is composed of a fuel feeding system, the functioning of which has been optimized by computational fluid dynamics. It allows delivering a constant and time-independent mass flow rate of fuel particles which are pneumatically transported to the central injector of a hybrid McKenna burner using a carrier gas stream that can be inert or oxidant depending on the targeted application. A premixed propane/air laminar flat flame stabilized on the porous part of the burner is used to generate the hot gases insuring the heating of the central coal/carrier-gas jet with a thermal gradient similar to those found in industrial combustors (>10(5) K/s). In the present work, results issued from numerical simulations performed a priori to characterize the velocity and temperature fields in the reaction chamber have been analyzed and confronted with experimental measurements carried out by coupling particle image velocimetry, thermocouple and two-color pyrometry measurements so as to validate the order of magnitude of the heating rate delivered by such a new test bench. Finally, the main features of the flat flame reactor we developed have been discussed with respect to those of another laboratory-scale system designed to study coal devolatilization at a high heating rate. PMID:26827350

  9. Development and numerical/experimental characterization of a lab-scale flat flame reactor allowing the analysis of pulverized solid fuel devolatilization and oxidation at high heating rates

    NASA Astrophysics Data System (ADS)

    Lemaire, R.; Menanteau, S.

    2016-01-01

    This paper deals with the thorough characterization of a new experimental test bench designed to study the devolatilization and oxidation of pulverized fuel particles in a wide range of operating conditions. This lab-scale facility is composed of a fuel feeding system, the functioning of which has been optimized by computational fluid dynamics. It allows delivering a constant and time-independent mass flow rate of fuel particles which are pneumatically transported to the central injector of a hybrid McKenna burner using a carrier gas stream that can be inert or oxidant depending on the targeted application. A premixed propane/air laminar flat flame stabilized on the porous part of the burner is used to generate the hot gases insuring the heating of the central coal/carrier-gas jet with a thermal gradient similar to those found in industrial combustors (>105 K/s). In the present work, results issued from numerical simulations performed a priori to characterize the velocity and temperature fields in the reaction chamber have been analyzed and confronted with experimental measurements carried out by coupling particle image velocimetry, thermocouple and two-color pyrometry measurements so as to validate the order of magnitude of the heating rate delivered by such a new test bench. Finally, the main features of the flat flame reactor we developed have been discussed with respect to those of another laboratory-scale system designed to study coal devolatilization at a high heating rate.

  10. The rate of loss of CR1 from ageing erythrocytes in vivo in normal subjects and SLE patients: no correlation with structural or numerical polymorphisms.

    PubMed Central

    Moldenhauer, F; Botto, M; Walport, M J

    1988-01-01

    The stability of CR1 (complement receptor type 1) on ageing erythrocytes in vivo was examined in a group of normal subjects who had been genotyped using a restriction fragment length polymorphism (detected using a cDNA probe for CR1) that correlates with the numerical expression of CR1 on normal erythrocytes (H = allele correlating with high expression, L = low). Erythrocytes were separated into 5 fractions of increasing age on discontinuous Percoll gradients. Mean CR1 numbers on erythrocytes fell from 636 molecules per cell in the first fraction to 384 in the fifth in the HH group and from 478 to 315 in the LL group. There was no difference in the rate of decline of CR1 numbers between the groups. A group of nine SLE patients was also studied in the same way; their genotypes were HH (four) and HL (five). Mean CR1 numbers amongst all of these patients fell from 477 to 232, a faster rate of decline than in a genotypically matched group of normal subjects. There was no difference in the prevalence of the different structural allotypes amongst 30 SLE patients compared with 21 normal subjects. These data provide further evidence that there are enhanced extracellular mechanisms for the removal of CR1 from erythrocytes of SLE patients and do not support the hypothesis that inherited variation in CR1 expression on erythrocytes increases disease susceptibility to SLE. PMID:2899464

  11. Numerical Simulations Used to Test the Effects of Lithology and Recharge Rates on Temperature Profiles Beneath Ephemeral Streams in Southern Arizona

    NASA Astrophysics Data System (ADS)

    Thomasson, M. J.; Hoffmann, J. P.; Ferré, P. A.

    2003-12-01

    Recent studies conducted by the U.S. Geological Survey (USGS) have shown that deep temperature profiles, measured before and after controlled infiltration, can be used to determine infiltration rates within the unsaturated zone. In this investigation, we extend this method to deep-temperature profiles measured before and after streamflow events in two boreholes located in the channel of an ephemeral stream in southern Arizona to infer recharge rates from short-term flow events. The deep-temperature profiles were analyzed to determine vertical fluxes with the use of a one-dimensional, forward numerical computer model. Temperature profiles were collected in boreholes located in Rillito Creek, in Tucson, Arizona. The two sites are about 6 kilometers apart and were selected on the basis of their lithology and hydraulic characteristics. The lithology at the upstream site is primarily homogeneous coarse sand, and the water table is approximately 37 meters below land surface. The initial response of the water table lags the onset of streamflow by about 2 weeks, and the water-level changes are as much as a few meters depending on the magnitude of the streamflow. The lithology at the downstream site is primarily homogeneous sand, with the exception of a clay layer at 12 meters below land surface, and the water table is approximately 41 meters below land surface. The initial response of the water table at the downstream site is rapid, occurring within about a day of streamflow. The magnitude of the water table response, however, is typically less than a meter and usually on the order of a few centimeters. Basic hydrologic models were developed for each site using hydraulic and thermal properties inferred from borehole core samples and cuttings, and from laboratory-determined hydraulic parameters. Water-table elevations and stream stages were used to define hydrologic boundary conditions. Field-measured temperature profiles were used to calibrate the models. The basic

  12. Numerical calculation of cosmic ray ionization rate profiles in the middle atmosphere and lower ionosphere with relation to characteristic energy intervals

    NASA Astrophysics Data System (ADS)

    Velinov, Peter; Asenovski, Simeon; Mateev, Lachezar

    2013-04-01

    Numerical calculations of galactic cosmic ray (GCR) ionization rate profiles are presented for the middle atmosphere and lower ionosphere altitudes (35-90 km) for the full GCR composition (protons, alpha particles, and groups of heavier nuclei: light L, medium M, heavy H, very heavy VH). This investigation is based on a model developed by Velinov et al. (1974) and Velinov and Mateev (2008), which is further improved in the present paper. Analytical expressions for energy interval contributions are provided. An approximation of the ionization function on three energy intervals is used and for the first time the charge decrease interval for electron capturing (Dorman 2004) is investigated quantitatively. Development in this field of research is important for better understanding the impact of space weather on the atmosphere. GCRs influence the ionization and electric parameters in the atmosphere and also the chemical processes (ozone creation and depletion in the stratosphere) in it. The model results show good agreement with experimental data (Brasseur and Solomon 1986, Rosenberg and Lanzerotti 1979, Van Allen 1952).

  13. Numerical Boundary Condition Procedures

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Topics include numerical procedures for treating inflow and outflow boundaries, steady and unsteady discontinuous surfaces, far field boundaries, and multiblock grids. In addition, the effects of numerical boundary approximations on stability, accuracy, and convergence rate of the numerical solution are discussed.

  14. Validation of a New “Objective Pain Score” Vs. “Numeric Rating Scale” For the Evaluation of Acute Pain: A Comparative Study

    PubMed Central

    Tandon, Manish; Singh, Anshuman; Saluja, Vandana; Dhankhar, Mandeep; Pandey, Chandra Kant; Jain, Priyanka

    2016-01-01

    Background: Pain scores are used for acute pain management. The assessment of pain by the patient as well as the caregiver can be influenced by a variety of factors. The numeric rating scale (NRS) is widely used due to its easy application. The NRS requires abstract thinking by a patient to assign a score to correctly reflect analgesic needs, and its interpretation is subject to bias. Objectives: The study was done to validate a 4-point objective pain score (OPS) for the evaluation of acute postoperative pain and its comparison with the NRS. Patient and Methods: A total of 1021 paired readings of the OPS and NRS of 93 patients who underwent laparotomy and used patient-controlled analgesia were evaluated. Acute pain service (APS) personnel recorded the OPS and NRS. Rescue analgesia was divided into two incremental levels (level 1-paracetamol 1 g for NRS 2 - 5 and OPS 3, Level 2-Fentanyl 25 mcg for NRS ≥ 6 and OPS 1 and 2). In cases of disagreement between the two scores, an independent consultant decided the rescue analgesia. Results: The NRS and OPS agreed across the range of pain. There were 25 disagreements in 8 patients. On 24 occasions, rescue analgesia was increased from level 1 to 2, and one occasion it was decreased from level 2 to 1. On all 25 occasions, the decision to supplement analgesia went in favor of the OPS over the NRS. Besides these 25 disagreements, there were 17 occasions in which observer bias was possible for level 2 rescue analgesia. Conclusions: The OPS is a good stand-alone pain score and is better than the NRS for defining mild and moderate pain. It may even be used to supplement NRS when it is indicative of mild or moderate pain. PMID:27110530

  15. Numerical analysis of specific absorption rate in the human head due to a 13.56 MHz RFID-based intra-ocular pressure measurement system.

    PubMed

    Hirtl, Rene; Schmid, Gernot

    2013-09-21

    A modern wireless intra-ocular pressure monitoring system, based on 13.56 MHz inductively coupled data transmission, was dosimetrically analyzed with respect to the specific absorption rate (SAR) induced inside the head and the eye due to the electromagnetic field exposure caused by the reader antenna of the transmission system. The analysis was based on numerical finite difference time domain computations using a high resolution anatomical eye model integrated in a modern commercially available anatomical model of a male head. Three different reader antenna configurations, a 7-turn elliptic (30 mm × 50 mm) antenna at 12 mm distance from the eye, a flexible circular antenna (60 mm diameter, 8 turns on 2 mm substrate) directly attached to the skin, and a circular 7-turn antenna (30 mm diameter at 12 mm distance to the eye) were analyzed, respectively. Possible influences of the eye-lid status (closed or opened) and the transponder antenna contained in a contact lens directly attached to the eye were taken into account. The results clearly demonstrated that for typical reader antenna currents required for proper data transmission, the SAR values remain far below the limits for localized exposure of the head, as defined by the International Commission for Non-Ionizing Radiation Protection. Particularly the induced SAR inside the eye was found to be substantially (orders of magnitudes for typical reader antenna currents in the order of 1 A turn) below values which have been reported to be critical with respect to thermally induced adverse health effects in eye tissues. PMID:24002053

  16. Practical Dyspnea Assessment: Relationship Between the 0–10 Numerical Rating Scale and the Four-Level Categorical Verbal Descriptor Scale of Dyspnea Intensity

    PubMed Central

    Wysham, Nicholas G.; Miriovsky, Benjamin J.; Currow, David C.; Herndon, James E.; Samsa, Gregory P.; Wilcock, Andrew; Abernethy, Amy P.

    2016-01-01

    Context Measurement of dyspnea is important for clinical care and research. Objectives To characterize the relationship between the 0–10 Numerical Rating Scale (NRS) and four-level categorical Verbal Descriptor Scale (VDS) for dyspnea assessment. Methods This was a substudy of a double-blind randomized controlled trial comparing palliative oxygen to room air for relief of refractory breathlessness in patients with life-limiting illness. Dyspnea was assessed with both a 0–10 NRS and a four-level categorical VDS over the one-week trial. NRS and VDS responses were analyzed in cross section and longitudinally. Relationships between NRS and VDS responses were portrayed using descriptive statistics and visual representations. Results Two hundred twenty-six participants contributed responses. At baseline, mild and moderate levels of breathlessness were reported by 41.9% and 44.6% of participants, respectively. NRS scores demonstrated increasing mean and median levels for increasing VDS intensity, from a mean (SD) of 0.6 (±1.04) for VDS none category to 8.2 (1.4) for VDS severe category. The Spearman correlation coefficient was strong at 0.78 (P < 0.0001). Based on the distribution of NRS scores within VDS categories, we calculated test characteristics of two different cutpoint models. Both models yielded 75% correct translations from NRS to VDS; however, Model A was more sensitive for moderate or greater dyspnea, with fewer misses downcoded. Conclusion There is strong correlation between VDS and NRS measures for dyspnea. Proposed practical cutpoints for the relationship between the dyspnea VDS and NRS are 0 for none, 1–4 for mild, 5–8 for moderate, and 9–10 for severe. PMID:26004401

  17. Evaluation of dispersive mixing, extension rate and bubble size distribution using numerical simulation of a non-Newtonian fluid in a twin-screw mixer

    NASA Astrophysics Data System (ADS)

    Rathod, Maureen L.

    Initially 3D FEM simulation of a simplified mixer was used to examine the effect of mixer configuration and operating conditions on dispersive mixing of a non-Newtonian fluid. Horizontal and vertical velocity magnitudes increased with increasing mixer speed, while maximum axial velocity and shear rate were greater with staggered paddles. In contrast, parallel paddles produced an area of efficient dispersive mixing between the center of the paddle and the barrel wall. This study was expanded to encompass the complete nine-paddle mixing section using power-law and Bird-Carreau fluid models. In the center of the mixer, simple shear flow was seen, corresponding with high [special character omitted]. Efficient dispersive mixing appeared near the barrel wall at all flow rates and near the barrel center with parallel paddles. Areas of backflow, improving fluid retention time, occurred with staggered paddles. The Bird-Carreau fluid showed greater influence of paddle motion under the same operating conditions due to the inelastic nature of the fluid. Shear-thinning behavior also resulted in greater maximum shear rate as shearing became easier with decreasing fluid viscosity. Shear rate distributions are frequently calculated, but extension rate calculations have not been made in a complex geometry since Debbaut and Crochet (1988) defined extension rate as the ratio of the third to the second invariant of the strain rate tensor. Extension rate was assumed to be negligible in most studies, but here extension rate is shown to be significant. It is possible to calculate maximum stable bubble diameter from capillary number if shear and extension rates in a flow field are known. Extension rate distributions were calculated for Newtonian and non-Newtonian fluids. High extension and shear rates were found in the intermeshing region. Extension is the major influence on critical capillary number and maximum stable bubble diameter, but when extension rate values are low shear rate has

  18. Calculation of Inter-Subchannel Turbulent Mixing Rate and Heat Transfer in a Triangular-Arrayed Rod Bundle Using Direct Numerical Simulation

    SciTech Connect

    Yudov, Yury V.

    2006-07-01

    The direct numerical simulation, extended to boundary - fitted coordinate, has been carried out for a fully-developed turbulent flow thermal hydraulics in a triangular rod bundle. The rod bundle is premised to be an infinite array. The spacer grid effects are ignored. The purpose of this work is to verify DNS methodology to be applied for deriving coefficients for inter-subchannel turbulent mixing and heat transfer on a rod. These coefficients are incorporated in subchannel analysis codes. To demonstrate the validity of this methodology, numerical calculation was performed for the bundle with the pitch to diameter ratio 1.2, at friction Reynolds number of 600 and Prandtl number of 1. The results for the hydraulic parameters are compared with published DNS data, and the results for the heat exchange coefficients -- with those obtained using semi-empirical correlations. (authors)

  19. What Is Numerical Control?

    ERIC Educational Resources Information Center

    Goold, Vernell C.

    1977-01-01

    Numerical control (a technique involving coded, numerical instructions for the automatic control and performance of a machine tool) does not replace fundamental machine tool training. It should be added to the training program to give the student an additional tool to accomplish production rates and accuracy that were not possible before. (HD)

  20. Computation of the time-varying flow rate from an artesian well in central Dade County, Florida, by analytical and numerical simulation methods

    USGS Publications Warehouse

    Merritt, Michael L.

    1997-01-01

    Simulation modeling techniques can by used advantageously in estimating artesian flow rates of wells in the upper Floridan Aquifer or for estimating transmissivity based in measured flow rates. The generalized aquifer model was useful in testing conceptual models of the relation between the various aquifers and confining layers beneath the surface of Dade County.

  1. Numerical Development

    ERIC Educational Resources Information Center

    Siegler, Robert S.; Braithwaite, David W.

    2016-01-01

    In this review, we attempt to integrate two crucial aspects of numerical development: learning the magnitudes of individual numbers and learning arithmetic. Numerical magnitude development involves gaining increasingly precise knowledge of increasing ranges and types of numbers: from non-symbolic to small symbolic numbers, from smaller to larger…

  2. Rates, causes, and dynamic of long-term landscape evolution of the South Atlantic "passive continental margin", Brazil and Namibia, as revealed by thermo-kinematic numerical modeling.

    NASA Astrophysics Data System (ADS)

    Christian, Stippich; Anton, Glasmacher Ulrich; Peter, Christian, Hackspacher

    2014-05-01

    The aim of the research is to quantify the long-term landscape evolution of the South Atlantic passive continental margin (SAPCM) in SE-Brazil and NW-Namibia. Excellent onshore outcrop conditions and complete rift to post-rift archives between Sao Paulo and Porto Alegre and in the transition from Namibia to Angola (onshore Walvis ridge) allow a high precision quantification of exhumation, and uplift rates, influencing physical parameters, long-term acting forces, and process-response systems. Research will integrate the published and partly published thermochronological data from Brazil and Namibia, and test lately published new concepts on causes of long-term landscape evolution at rifted margins. The climate-continental margin-mantle coupled process-response system is caused by the interaction between endogenous and exogenous forces, which are related to the mantle-process driven rift - drift - passive continental margin evolution of the South Atlantic, and the climate change since the Early/Late Cretaceous climate maximum. Special emphasis will be given to the influence of long-living transform faults such as the Florianopolis Fracture Zone (FFZ) on the long-term topography evolution of the SAPCM's. A long-term landscape evolution model with process rates will be achieved by thermo-kinematic 3-D modeling (software code PECUBE and FastCape). Testing model solutions obtained for a multidimensional parameter space against the real thermochronological and geomorphological data set, the most likely combinations of parameter rates, and values can be constrained. The data and models will allow separating the exogenous and endogenous forces and their process rates.

  3. Laboratory experiments and numerical modelling of CO2-rich brine injection through sandstone samples: Role of flow rate, brine composition, mixing and spreading effects

    NASA Astrophysics Data System (ADS)

    Luquot, L.; Gouze, P.; soler Sagarra, J.; Saaltink, M.; Martinez-Perez, L.; Carrera, J.

    2015-12-01

    The Heletz structure has been selected as a test site for a prospective CO2 reservoir and for the MUSTANG European project injection experiment based on the analysis of the available geological, geophysical and borehole data from various areas of Israel. The Heletz area is located in the Southern part of the Mediterranean Coastal Plain, about 7 km from the sea shore. The target layer is composed of sandstone, has a thickness of around 20 meters and is located at a depth of 1500 m. Flow-through laboratory experiments of CO2-rich brine were realized to evaluate the chemical processes occurring in the Heletz site.
The Heletz sandstone rock is poorly consolidated and has a high porosity (around 23%) and connectivity. We performed four flow-through experiments at in situ storage conditions (T = 60ºC, P = 15 MPa, PCO2 =1.8 MPa). The flow rates injection were 0.05 and 0.30 mL.min-1. Two different brine solutions were used, both representative of the Heletz reservoir native water. The first one was a synthetic brine of the Heletz reservoir (closed to seawater). The second one was the first one equilibrated with gypsum. The results show an increase in permeability for all the percolation experiment whatever the flow rate and the brine solution. This is explained by the dissolution of ankerite, dolomite and feldspar. We observed that the permeability increase is higher and faster for high flow rate injection than for low flow rate. Precipitation of secondary phases is characterized such as gypsum during equilibrated-gypsum brine injection. Secondary clay minerals precipitation is also observed near feldspar dissolution. Modeling these experiments is a non-trivial task, as some chemical processes are local in space. Reactive transport models have been performed in order to understand and reproduce the observed processes. We have used a water mixing approach which uses the mass mixing fraction between mobile and/or immobile zones. The approach relies in the fact of not

  4. Flow rates in the East Pacific rise (21/sup 0/N) hot springs, and numerical investigations of two regimes of hydrothermal circulation

    SciTech Connect

    Converse, D.R.

    1985-01-01

    Flow rates of 0.7 to 2.4 m/s were measured in the hot springs on the East Pacific Rise (21/sup 0/N). We estimate that the Southwest, National Geographic, and the OBS vents collectively discharge 2 x 10/sup 8/ watts and 150 kg H/sub 2/O/S. The lifetimes of hot springs can not exceed 40,000 years because of the limited heat supply. Mechanical or chemical clogging of the flow routes may shorten these lifetime significantly. We predict that less than 3% of the sulfide particles debouched by the hot springs settle near the vents.

  5. A QUARTER-CENTURY OF OBSERVATIONS OF COMET 10P/TEMPEL 2 AT LOWELL OBSERVATORY: CONTINUED SPIN-DOWN, COMA MORPHOLOGY, PRODUCTION RATES, AND NUMERICAL MODELING

    SciTech Connect

    Knight, Matthew M.; Schleicher, David G.; Schwieterman, Edward W.; Christensen, Samantha R.; Farnham, Tony L.

    2012-11-01

    We report on photometry and imaging of Comet 10P/Tempel 2 obtained at Lowell Observatory from 1983 through 2011. We measured a nucleus rotation period of 8.950 {+-} 0.002 hr from 16 nights of imaging acquired between 2010 September and 2011 January. This rotation period is longer than the period we previously measured in 1999, which was itself longer than the period measured in 1988, and demonstrates that Tempel 2 is continuing to spin down, presumably due to torques caused by asymmetric outgassing. A nearly linear jet was observed which varied little during a rotation cycle in both R and CN images acquired during the 1999 and 2010 apparitions. We measured the projected direction of this jet throughout the two apparitions and, under the assumption that the source region of the jet was near the comet's pole, determined a rotational pole direction of R.A./decl. = 151 Degree-Sign /+59 Degree-Sign from CN measurements and R.A./decl. = 173 Degree-Sign /+57 Degree-Sign from dust measurements (we estimate a circular uncertainty of 3 Degree-Sign for CN and 4 Degree-Sign for dust). Different combinations of effects likely bias both gas and dust solutions and we elected to average these solutions for a final pole direction of R.A./decl. = 162 Degree-Sign {+-} 11 Degree-Sign /+58 Degree-Sign {+-} 1 Degree-Sign . Photoelectric photometry was acquired on 3 nights in 1983, 2 nights in 1988, 19 nights in 1999/2000, and 10 nights in 2010/2011. The activity exhibited a steep 'turn-on' {approx}3 months prior to perihelion (the exact timing of which varies) and a relatively smooth decline after perihelion. The activity during the 1999 and 2010 apparitions was similar; limited data in 1983 and 1988 (along with IUE data from the literature) were systematically higher and the difference cannot be explained entirely by the smaller perihelion distance. We measured a 'typical' composition, in agreement with previous investigators. Monte Carlo numerical modeling with our pole solution best

  6. A Quarter-century of Observations of Comet 10P/Tempel 2 at Lowell Observatory: Continued Spin-down, Coma Morphology, Production Rates, and Numerical Modeling

    NASA Astrophysics Data System (ADS)

    Knight, Matthew M.; Schleicher, David G.; Farnham, Tony L.; Schwieterman, Edward W.; Christensen, Samantha R.

    2012-11-01

    We report on photometry and imaging of Comet 10P/Tempel 2 obtained at Lowell Observatory from 1983 through 2011. We measured a nucleus rotation period of 8.950 ± 0.002 hr from 16 nights of imaging acquired between 2010 September and 2011 January. This rotation period is longer than the period we previously measured in 1999, which was itself longer than the period measured in 1988, and demonstrates that Tempel 2 is continuing to spin down, presumably due to torques caused by asymmetric outgassing. A nearly linear jet was observed which varied little during a rotation cycle in both R and CN images acquired during the 1999 and 2010 apparitions. We measured the projected direction of this jet throughout the two apparitions and, under the assumption that the source region of the jet was near the comet's pole, determined a rotational pole direction of R.A./decl. = 151°/+59° from CN measurements and R.A./decl. = 173°/+57° from dust measurements (we estimate a circular uncertainty of 3° for CN and 4° for dust). Different combinations of effects likely bias both gas and dust solutions and we elected to average these solutions for a final pole direction of R.A./decl. = 162° ± 11°/+58° ± 1°. Photoelectric photometry was acquired on 3 nights in 1983, 2 nights in 1988, 19 nights in 1999/2000, and 10 nights in 2010/2011. The activity exhibited a steep "turn-on" ~3 months prior to perihelion (the exact timing of which varies) and a relatively smooth decline after perihelion. The activity during the 1999 and 2010 apparitions was similar; limited data in 1983 and 1988 (along with IUE data from the literature) were systematically higher and the difference cannot be explained entirely by the smaller perihelion distance. We measured a "typical" composition, in agreement with previous investigators. Monte Carlo numerical modeling with our pole solution best replicated the observed coma morphology for a source region located near a comet latitude of +80° and having a

  7. Relationships between rating scales, question stem wording, and community responses to railway noise

    NASA Astrophysics Data System (ADS)

    Sato, Tetsumi; Yano, Takashi; Morihara, Takashi; Masden, Kirk

    2004-10-01

    Two series of social surveys on community responses to railway noise were carried out in Japan to evaluate the relationships between two verbal scales and a numeric scale, and those among four base descriptors. In the first survey, two types of questionnaires were prepared in which a 0-10- point numeric scale was used in combination with either a four-point or a five-point verbal scale. The key questions concerned annoyance, activity disturbance and related effects caused by railway noise. Community responses were compared on the basis of the dose-response relationships. Regarding the percentages of respondents who answered, "highly annoyed," it was found that there were no systematic differences between the two verbal scales. It was also found that the extent of noise annoyance rated on the four-point or five-point verbal scale corresponded with that rated on the 11-point numeric scale by percentages of scale steps. In the second survey, four types of questionnaires were prepared, each using one of the four base descriptors. Community responses to general noise annoyance among the four base descriptors were compared. No systematic differences were found among the four base descriptors.

  8. Theoretical study of hole initiated impact ionization in bulk silicon and GaAs using a wave-vector-dependent numerical transition rate formulation within an ensemble Monte Carlo calculation

    NASA Technical Reports Server (NTRS)

    Oguzman, Ismail H.; Wang, Yang; Kolnik, Jan; Brennan, Kevin F.

    1995-01-01

    In this paper, calculations of the hole initiated interband impact ionization rate in bulk silicon and GaAs are presented based on an ensemble Monte Carlo simulation with the inclusion of a wave-vector-dependent numerical transition rate formulation. The ionization transition rate is determined for each of the three valence bands, heavy, light, and split-off, using Fermi's golden rule with a two-body, screened Coulomb interaction. The dielectric function used within the calculation is assumed to be wave-vector-dependent. Calculations of the field-dependent impact ionization rate as well as the quantum yield are presented. It is found from both the quantum yield results and examination of the hole distribution function that the effective threshold energy for hole initiated impact ionization is relatively soft, similar to that predicted for the corresponding electron initiated ionization events occur more frequently than either heavy or split-offf initiated ionization events in bulk silicon over the applied electric field strengths examined here, 250-500 kV/cm. Conversely,in GaAs, the vast majority of hole initated ionization events originate from holes within the split-off band.

  9. Numerical Integration

    ERIC Educational Resources Information Center

    Sozio, Gerry

    2009-01-01

    Senior secondary students cover numerical integration techniques in their mathematics courses. In particular, students would be familiar with the "midpoint rule," the elementary "trapezoidal rule" and "Simpson's rule." This article derives these techniques by methods which secondary students may not be familiar with and an approach that…

  10. Numerical Relativity

    NASA Technical Reports Server (NTRS)

    Baker, John G.

    2009-01-01

    Recent advances in numerical relativity have fueled an explosion of progress in understanding the predictions of Einstein's theory of gravity, General Relativity, for the strong field dynamics, the gravitational radiation wave forms, and consequently the state of the remnant produced from the merger of compact binary objects. I will review recent results from the field, focusing on mergers of two black holes.

  11. Translation of random painful stimuli into numerical responses in fibromyalgia and perioperative patients.

    PubMed

    Oudejans, Linda; van Velzen, Monique; Olofsen, Erik; Beun, Robert; Dahan, Albert; Niesters, Marieke

    2016-01-01

    Number-based assessment tools are used to evaluate pain perception in patients and determine the effect of pain management. The aim of this study was to determine the ability of chronic and acute pain patients to score their response to randomly applied noxious stimuli and assess the effect of opioid treatment. Thirty-seven healthy controls, 30 fibromyalgia patients, and 62 postoperative patients with acute pain received random heat pain (Hp) and electrical pain (Ep) stimuli. All subjects rated their pain on an 11-point numerical rating scale (NRS). The data were analyzed using a penalty score system, based on the assumption that stimuli of higher intensity are scored with a greater NRS, and stratified into cohorts corresponding to "good," "mediocre," and "poor" scoring. Healthy controls were well able to score pain with 73% (Hp) and 81% (Ep) of subjects classified into cohort "good." Fibromyalgia had a negative effect on scoring with 45% (Hp, P = 0.03 vs controls) and 67% (Ep) of patients in cohort "good." In controls, scoring deteriorated during opioid administration leaving just 40% (Hp, P = 0.015 vs baseline) and 70% (Ep) of subjects in the cohort "good." Similar observations were made in fibromyalgia patients (P = 0.02) but not in surgical patients with postoperative pain. Consistency to grade pain using an NRS is high in healthy volunteers but deteriorates in chronic pain and during opioid administration to volunteers and chronic pain patients but not to acute pain patients. PMID:26307857

  12. [The level of DNA damage and DNA reparation rate in cells of earthworms sampled from natural populations for numerous generations inhabited territories with anthropogenically enhanced levels of radionuclides in soil].

    PubMed

    Kaneva, A V; Belykh, E S; Maystrenko, T A; Shadrin, D M; Pylina, Ya I; Velegzhaninov, I O

    2015-01-01

    Low doses of ionizing radiation and chemical toxic agent effects on biological systems on different organization levels have been studied by numerous researchers. But there is a clear lack of experimental data that allow one to reveal molecular and cellular adaptations of plants and animals from natural populations to adverse effects of environmental factors. The present study was aimed to assess genotoxic effects in earthworms Aporrectodea caliginosa Savigny and Lumbricus rubellus Hoffmeister sampled from the populations that during numerous generations inhabited the territories with a technogeneously enhanced content of natural origin radionuclides and heavy metals in soil. The levels ofthe DNA damage detected with alkaline and neutral versions of Comet-assay in invertebrates from contaminated territories were established not to differ from the spontaneous level found in the animals from the reference population. At the same time the rate of the DNA damage reparation induced in A. caliginosa sampled from the contaminated sites with additional acute γ-irradiation (4 Gy) was found to be considerably higher as compared with earthworms from the reference population. PMID:25962273

  13. Understanding of the Effects of Ionic Strength on the Bimolecular Rate Constant between Structurally Identified Redox Enzymes and Charged Substrates Using Numerical Simulations on the Basis of the Poisson-Boltzmann Equation.

    PubMed

    Sugimoto, Yu; Kitazumi, Yuki; Shirai, Osamu; Yamamoto, Masahiro; Kano, Kenji

    2016-03-31

    To understand electrostatic interactions in biomolecules, the bimolecular rate constants (k) between redox enzymes and charged substrates (in this study, redox mediators in the electrode reaction) were evaluated at various ionic strengths (I) for the mediated bioelectrocatalytic reaction. The k value between bilirubin oxidase (BOD) and positively charged mediators increased with I, while that between BOD and negatively charged mediators decreased with I. The opposite trend was observed for the reaction of glucose oxidase (GOD). In the case of noncharged mediators, the k value was independent of I for both BOD and GOD. These results reflect the electrostatic interactions between the enzymes and the mediators. Furthermore, we estimated k/k° (k° being the thermodynamic rate constant) by numerical simulation (finite element method) based on the Poisson-Boltzmann (PB) equation. By considering the charges of individual atoms involved in the amino acids around the substrate binding sites in the enzymes, the simulated k/k° values well reproduced the experimental data. In conclusion, k/k° can be predicted by PB-based simulation as long as the crystal structure of the enzyme and the substrate binding site are known. PMID:26956542

  14. Self-Reported Pain Intensity with the Numeric Reporting Scale in Adult Dengue

    PubMed Central

    Wong, Joshua G. X.; Gan, Victor C.; Ng, Ee-Ling; Leo, Yee-Sin; Chan, Siew-Pang; Choo, Robin; Lye, David C.

    2014-01-01

    Background Pain is a prominent feature of acute dengue as well as a clinical criterion in World Health Organization guidelines in diagnosing dengue. We conducted a prospective cohort study to compare levels of pain during acute dengue between different ethnicities and dengue severity. Methods Demographic, clinical and laboratory data were collected. Data on self-reported pain was collected using the 11-point Numerical Rating Scale. Generalized structural equation models were built to predict progression to severe disease. Results A total of 499 laboratory confirmed dengue patients were recruited in the Prospective Adult Dengue Study at Tan Tock Seng Hospital, Singapore. We found no statistically significant differences between pain score with age, gender, ethnicity or the presence of co-morbidity. Pain score was not predictive of dengue severity but highly correlated to patients’ day of illness. Prevalence of abdominal pain in our cohort was 19%. There was no difference in abdominal pain score between grades of dengue severity. Conclusion Dengue is a painful disease. Patients suffer more pain at the earlier phase of illness. However, pain score cannot be used to predict a patient’s progression to severe disease. PMID:24788828

  15. Numerical simulations in combustion

    NASA Technical Reports Server (NTRS)

    Chung, T. J.

    1989-01-01

    This paper reviews numerical simulations in reacting flows in general and combustion phenomena in particular. It is shown that use of implicit schemes and/or adaptive mesh strategies can improve convergence, stability, and accuracy of the solution. Difficulties increase as turbulence and multidimensions are considered, particularly when finite-rate chemistry governs the given combustion problem. Particular attention is given to the areas of solid-propellant combustion dynamics, turbulent diffusion flames, and spray droplet vaporization.

  16. Numerical Aerodynamic Simulation

    NASA Technical Reports Server (NTRS)

    1989-01-01

    An overview of historical and current numerical aerodynamic simulation (NAS) is given. The capabilities and goals of the Numerical Aerodynamic Simulation Facility are outlined. Emphasis is given to numerical flow visualization and its applications to structural analysis of aircraft and spacecraft bodies. The uses of NAS in computational chemistry, engine design, and galactic evolution are mentioned.

  17. Numerical models of complex diapirs

    NASA Astrophysics Data System (ADS)

    Podladchikov, Yu.; Talbot, C.; Poliakov, A. N. B.

    1993-12-01

    Numerically modelled diapirs that rise into overburdens with viscous rheology produce a large variety of shapes. This work uses the finite-element method to study the development of diapirs that rise towards a surface on which a diapir-induced topography creeps flat or disperses ("erodes") at different rates. Slow erosion leads to diapirs with "mushroom" shapes, moderate erosion rate to "wine glass" diapirs and fast erosion to "beer glass"- and "column"-shaped diapirs. The introduction of a low-viscosity layer at the top of the overburden causes diapirs to develop into structures resembling a "Napoleon hat". These spread lateral sheets.

  18. Numerical simulation of small perturbation transonic flows

    NASA Technical Reports Server (NTRS)

    Seebass, A. R.; Yu, N. J.

    1976-01-01

    The results of a systematic study of small perturbation transonic flows are presented. Both the flow over thin airfoils and the flow over wedges were investigated. Various numerical schemes were employed in the study. The prime goal of the research was to determine the efficiency of various numerical procedures by accurately evaluating the wave drag, both by computing the pressure integral around the body and by integrating the momentum loss across the shock. Numerical errors involved in the computations that affect the accuracy of drag evaluations were analyzed. The factors that effect numerical stability and the rate of convergence of the iterative schemes were also systematically studied.

  19. Rocket engine numerical simulation

    NASA Technical Reports Server (NTRS)

    Davidian, Ken

    1993-01-01

    The topics are presented in view graph form and include the following: a definition of the rocket engine numerical simulator (RENS); objectives; justification; approach; potential applications; potential users; RENS work flowchart; RENS prototype; and conclusions.

  20. Numbers and Numerals.

    ERIC Educational Resources Information Center

    Smith, David Eugene; Ginsburg, Jekuthiel

    Counting, naming numbers, numerals, computation, and fractions are the topics covered in this pamphlet. Number lore and interesting number properties are noted; the derivation of some arithmetic terms is briefly discussed. (DT)

  1. Numerical analysis of bifurcations

    SciTech Connect

    Guckenheimer, J.

    1996-06-01

    This paper is a brief survey of numerical methods for computing bifurcations of generic families of dynamical systems. Emphasis is placed upon algorithms that reflect the structure of the underlying mathematical theory while retaining numerical efficiency. Significant improvements in the computational analysis of dynamical systems are to be expected from more reliance of geometric insight coming from dynamical systems theory. {copyright} {ital 1996 American Institute of Physics.}

  2. Numerical Techniques in Acoustics

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J. (Compiler)

    1985-01-01

    This is the compilation of abstracts of the Numerical Techniques in Acoustics Forum held at the ASME's Winter Annual Meeting. This forum was for informal presentation and information exchange of ongoing acoustic work in finite elements, finite difference, boundary elements and other numerical approaches. As part of this forum, it was intended to allow the participants time to raise questions on unresolved problems and to generate discussions on possible approaches and methods of solution.

  3. Numerical ability predicts mortgage default.

    PubMed

    Gerardi, Kristopher; Goette, Lorenz; Meier, Stephan

    2013-07-01

    Unprecedented levels of US subprime mortgage defaults precipitated a severe global financial crisis in late 2008, plunging much of the industrialized world into a deep recession. However, the fundamental reasons for why US mortgages defaulted at such spectacular rates remain largely unknown. This paper presents empirical evidence showing that the ability to perform basic mathematical calculations is negatively associated with the propensity to default on one's mortgage. We measure several aspects of financial literacy and cognitive ability in a survey of subprime mortgage borrowers who took out loans in 2006 and 2007, and match them to objective, detailed administrative data on mortgage characteristics and payment histories. The relationship between numerical ability and mortgage default is robust to controlling for a broad set of sociodemographic variables, and is not driven by other aspects of cognitive ability. We find no support for the hypothesis that numerical ability impacts mortgage outcomes through the choice of the mortgage contract. Rather, our results suggest that individuals with limited numerical ability default on their mortgage due to behavior unrelated to the initial choice of their mortgage. PMID:23798401

  4. Numerical ability predicts mortgage default

    PubMed Central

    Gerardi, Kristopher; Goette, Lorenz; Meier, Stephan

    2013-01-01

    Unprecedented levels of US subprime mortgage defaults precipitated a severe global financial crisis in late 2008, plunging much of the industrialized world into a deep recession. However, the fundamental reasons for why US mortgages defaulted at such spectacular rates remain largely unknown. This paper presents empirical evidence showing that the ability to perform basic mathematical calculations is negatively associated with the propensity to default on one’s mortgage. We measure several aspects of financial literacy and cognitive ability in a survey of subprime mortgage borrowers who took out loans in 2006 and 2007, and match them to objective, detailed administrative data on mortgage characteristics and payment histories. The relationship between numerical ability and mortgage default is robust to controlling for a broad set of sociodemographic variables, and is not driven by other aspects of cognitive ability. We find no support for the hypothesis that numerical ability impacts mortgage outcomes through the choice of the mortgage contract. Rather, our results suggest that individuals with limited numerical ability default on their mortgage due to behavior unrelated to the initial choice of their mortgage. PMID:23798401

  5. Frontiers in Numerical Relativity

    NASA Astrophysics Data System (ADS)

    Evans, Charles R.; Finn, Lee S.; Hobill, David W.

    2011-06-01

    Preface; Participants; Introduction; 1. Supercomputing and numerical relativity: a look at the past, present and future David W. Hobill and Larry L. Smarr; 2. Computational relativity in two and three dimensions Stuart L. Shapiro and Saul A. Teukolsky; 3. Slowly moving maximally charged black holes Robert C. Ferrell and Douglas M. Eardley; 4. Kepler's third law in general relativity Steven Detweiler; 5. Black hole spacetimes: testing numerical relativity David H. Bernstein, David W. Hobill and Larry L. Smarr; 6. Three dimensional initial data of numerical relativity Ken-ichi Oohara and Takashi Nakamura; 7. Initial data for collisions of black holes and other gravitational miscellany James W. York, Jr.; 8. Analytic-numerical matching for gravitational waveform extraction Andrew M. Abrahams; 9. Supernovae, gravitational radiation and the quadrupole formula L. S. Finn; 10. Gravitational radiation from perturbations of stellar core collapse models Edward Seidel and Thomas Moore; 11. General relativistic implicit radiation hydrodynamics in polar sliced space-time Paul J. Schinder; 12. General relativistic radiation hydrodynamics in spherically symmetric spacetimes A. Mezzacappa and R. A. Matzner; 13. Constraint preserving transport for magnetohydrodynamics John F. Hawley and Charles R. Evans; 14. Enforcing the momentum constraints during axisymmetric spacelike simulations Charles R. Evans; 15. Experiences with an adaptive mesh refinement algorithm in numerical relativity Matthew W. Choptuik; 16. The multigrid technique Gregory B. Cook; 17. Finite element methods in numerical relativity P. J. Mann; 18. Pseudo-spectral methods applied to gravitational collapse Silvano Bonazzola and Jean-Alain Marck; 19. Methods in 3D numerical relativity Takashi Nakamura and Ken-ichi Oohara; 20. Nonaxisymmetric rotating gravitational collapse and gravitational radiation Richard F. Stark; 21. Nonaxisymmetric neutron star collisions: initial results using smooth particle hydrodynamics

  6. Numerical calculations of strained premixed laminar flames

    NASA Astrophysics Data System (ADS)

    Darabiha, N.; Candel, S.; Marble, F. E.

    The structure of a strained laminar flame in the vicinity of a stagnation point is examined numerically. The stagnation point is established by the counterflow of fresh mixture and hot products. This situation is described by standard reactive boundary layer equations. The numerical scheme used to solve the similar boundary layer equations put in F-V form (block-implicit) is an adaptation of the schemes proposed by Blottner (1979). The calculations are performed first on an uniform grid and then confirmed with an adaptive grid method due to Smooke (1982). Numerical calculations allow an exact description of the flame structure in physical and also reduced coordinates. Predictions of Libby and Williams (1982) for high and intermediate values of the strain rate based on activation energy asymptotics are confirmed. For low strain rates (ordinary unstrained laminar flame) the mass rate of reaction per unit flame area differs from that obtained by activation energy asymptotics.

  7. Toward Scientific Numerical Modeling

    NASA Technical Reports Server (NTRS)

    Kleb, Bil

    2007-01-01

    Ultimately, scientific numerical models need quantified output uncertainties so that modeling can evolve to better match reality. Documenting model input uncertainties and verifying that numerical models are translated into code correctly, however, are necessary first steps toward that goal. Without known input parameter uncertainties, model sensitivities are all one can determine, and without code verification, output uncertainties are simply not reliable. To address these two shortcomings, two proposals are offered: (1) an unobtrusive mechanism to document input parameter uncertainties in situ and (2) an adaptation of the Scientific Method to numerical model development and deployment. Because these two steps require changes in the computational simulation community to bear fruit, they are presented in terms of the Beckhard-Harris-Gleicher change model.

  8. Modelling Heart Rate Kinetics

    PubMed Central

    Zakynthinaki, Maria S.

    2015-01-01

    The objective of the present study was to formulate a simple and at the same time effective mathematical model of heart rate kinetics in response to movement (exercise). Based on an existing model, a system of two coupled differential equations which give the rate of change of heart rate and the rate of change of exercise intensity is used. The modifications introduced to the existing model are justified and discussed in detail, while models of blood lactate accumulation in respect to time and exercise intensity are also presented. The main modification is that the proposed model has now only one parameter which reflects the overall cardiovascular condition of the individual. The time elapsed after the beginning of the exercise, the intensity of the exercise, as well as blood lactate are also taken into account. Application of the model provides information regarding the individual’s cardiovascular condition and is able to detect possible changes in it, across the data recording periods. To demonstrate examples of successful numerical fit of the model, constant intensity experimental heart rate data sets of two individuals have been selected and numerical optimization was implemented. In addition, numerical simulations provided predictions for various exercise intensities and various cardiovascular condition levels. The proposed model can serve as a powerful tool for a complete means of heart rate analysis, not only in exercise physiology (for efficiently designing training sessions for healthy subjects) but also in the areas of cardiovascular health and rehabilitation (including application in population groups for which direct heart rate recordings at intense exercises are not possible or not allowed, such as elderly or pregnant women). PMID:25876164

  9. Modelling heart rate kinetics.

    PubMed

    Zakynthinaki, Maria S

    2015-01-01

    The objective of the present study was to formulate a simple and at the same time effective mathematical model of heart rate kinetics in response to movement (exercise). Based on an existing model, a system of two coupled differential equations which give the rate of change of heart rate and the rate of change of exercise intensity is used. The modifications introduced to the existing model are justified and discussed in detail, while models of blood lactate accumulation in respect to time and exercise intensity are also presented. The main modification is that the proposed model has now only one parameter which reflects the overall cardiovascular condition of the individual. The time elapsed after the beginning of the exercise, the intensity of the exercise, as well as blood lactate are also taken into account. Application of the model provides information regarding the individual's cardiovascular condition and is able to detect possible changes in it, across the data recording periods. To demonstrate examples of successful numerical fit of the model, constant intensity experimental heart rate data sets of two individuals have been selected and numerical optimization was implemented. In addition, numerical simulations provided predictions for various exercise intensities and various cardiovascular condition levels. The proposed model can serve as a powerful tool for a complete means of heart rate analysis, not only in exercise physiology (for efficiently designing training sessions for healthy subjects) but also in the areas of cardiovascular health and rehabilitation (including application in population groups for which direct heart rate recordings at intense exercises are not possible or not allowed, such as elderly or pregnant women). PMID:25876164

  10. Approaches to Numerical Relativity

    NASA Astrophysics Data System (ADS)

    d'Inverno, Ray

    2005-07-01

    Introduction Ray d'Inverno; Preface C. J. S. Clarke; Part I. Theoretical Approaches: 1. Numerical relativity on a transputer array Ray d'Inverno; 2. Some aspects of the characteristic initial value problem in numerical relativity Nigel Bishop; 3. The characteristic initial value problem in general relativity J. M. Stewart; 4. Algebraic approachs to the characteristic initial value problem in general relativity Jõrg Frauendiener; 5. On hyperboidal hypersurfaces Helmut Friedrich; 6. The initial value problem on null cones J. A. Vickers; 7. Introduction to dual-null dynamics S. A. Hayward; 8. On colliding plane wave space-times J. B. Griffiths; 9. Boundary conditions for the momentum constraint Niall O Murchadha; 10. On the choice of matter model in general relativity A. D. Rendall; 11. A mathematical approach to numerical relativity J. W. Barrett; 12. Making sense of the effects of rotation in general relativity J. C. Miller; 13. Stability of charged boson stars and catastrophe theory Franz E. Schunck, Fjodor V. Kusmartsev and Eckehard W. Mielke; Part II. Practical Approaches: 14. Numerical asymptotics R. Gómez and J. Winicour; 15. Instabilities in rapidly rotating polytropes Scott C. Smith and Joan M. Centrella; 16. Gravitational radiation from coalescing binary neutron stars Ken-Ichi Oohara and Takashi Nakamura; 17. 'Critical' behaviour in massless scalar field collapse M. W. Choptuik; 18. Goudunov-type methods applied to general relativistic gravitational collapse José Ma. Ibánez, José Ma. Martí, Juan A. Miralles and J. V. Romero; 19. Astrophysical sources of gravitational waves and neutrinos Silvano Bonazzola, Eric Gourgoulhon, Pawel Haensel and Jean-Alain Marck; 20. Gravitational radiation from triaxial core collapse Jean-Alain Marck and Silvano Bonazzola; 21. A vacuum fully relativistic 3D numerical code C. Bona and J. Massó; 22. Solution of elliptic equations in numerical relativity using multiquadrics M. R. Dubal, S. R. Oliveira and R. A. Matzner; 23

  11. Pneumotachometer counts respiration rate of human subject

    NASA Technical Reports Server (NTRS)

    Graham, O.

    1964-01-01

    To monitor breaths per minute, two rate-to-analog converters are alternately used to read and count the respiratory rate from an impedance pneumograph sequentially displayed numerically on electroluminescent matrices.

  12. Numerical Simulations of Thermobaric Explosions

    SciTech Connect

    Kuhl, A L; Bell, J B; Beckner, V E; Khasainov, B

    2007-05-04

    A Model of the energy evolution in thermobaric explosions is presented. It is based on the two-phase formulation: conservation laws for the gas and particle phases along with inter-phase interaction terms. It incorporates a Combustion Model based on the mass conservation laws for fuel, air and products; source/sink terms are treated in the fast-chemistry limit appropriate for such gas dynamic fields. The Model takes into account both the afterburning of the detonation products of the booster with air, and the combustion of the fuel (Al or TNT detonation products) with air. Numerical simulations were performed for 1.5-g thermobaric explosions in five different chambers (volumes ranging from 6.6 to 40 liters and length-to-diameter ratios from 1 to 12.5). Computed pressure waveforms were very similar to measured waveforms in all cases - thereby proving that the Model correctly predicts the energy evolution in such explosions. The computed global fuel consumption {mu}(t) behaved as an exponential life function. Its derivative {dot {mu}}(t) represents the global rate of fuel consumption. It depends on the rate of turbulent mixing which controls the rate of energy release in thermobaric explosions.

  13. Numerical thermal analysis

    SciTech Connect

    Ketkar, S.P.

    1999-07-01

    This new volume is written for both practicing engineers who want to refresh their knowledge in the fundamentals of numerical thermal analysis as well as for students of numerical heat transfer. it is a handy desktop reference that covers all the basics of finite difference, finite element, and control volume methods. In this volume, the author presents a unique hybrid method that combines the best features of finite element modeling and the computational efficiency of finite difference network solution techniques. It is a robust technique that is used in commercially available software. The contents include: heat conduction: fundamentals and governing equations; finite difference method; control volume method; finite element method; the hybrid method; and software selection.

  14. Hybrid undulator numerical optimization

    SciTech Connect

    Hairetdinov, A.H.; Zukov, A.A.

    1995-12-31

    3D properties of the hybrid undulator scheme arc studied numerically using PANDIRA code. It is shown that there exist two well defined sets of undulator parameters which provide either maximum on-axis field amplitude or minimal higher harmonics amplitude of the basic undulator field. Thus the alternative between higher field amplitude or pure sinusoidal field exists. The behavior of the undulator field amplitude and harmonics structure for a large set of (undulator gap)/(undulator wavelength) values is demonstrated.

  15. Numerical computation of Pop plot

    SciTech Connect

    Menikoff, Ralph

    2015-03-23

    The Pop plot — distance-of-run to detonation versus initial shock pressure — is a key characterization of shock initiation in a heterogeneous explosive. Reactive burn models for high explosives (HE) must reproduce the experimental Pop plot to have any chance of accurately predicting shock initiation phenomena. This report describes a methodology for automating the computation of a Pop plot for a specific explosive with a given HE model. Illustrative examples of the computation are shown for PBX 9502 with three burn models (SURF, WSD and Forest Fire) utilizing the xRage code, which is the Eulerian ASC hydrocode at LANL. Comparison of the numerical and experimental Pop plot can be the basis for a validation test or as an aid in calibrating the burn rate of an HE model. Issues with calibration are discussed.

  16. Numerical Aerodynamic Simulation (NAS)

    NASA Technical Reports Server (NTRS)

    Peterson, V. L.; Ballhaus, W. F., Jr.; Bailey, F. R.

    1983-01-01

    The history of the Numerical Aerodynamic Simulation Program, which is designed to provide a leading-edge capability to computational aerodynamicists, is traced back to its origin in 1975. Factors motivating its development and examples of solutions to successively refined forms of the governing equations are presented. The NAS Processing System Network and each of its eight subsystems are described in terms of function and initial performance goals. A proposed usage allocation policy is discussed and some initial problems being readied for solution on the NAS system are identified.

  17. Numerical Propulsion System Simulation

    NASA Technical Reports Server (NTRS)

    Naiman, Cynthia

    2006-01-01

    The NASA Glenn Research Center, in partnership with the aerospace industry, other government agencies, and academia, is leading the effort to develop an advanced multidisciplinary analysis environment for aerospace propulsion systems called the Numerical Propulsion System Simulation (NPSS). NPSS is a framework for performing analysis of complex systems. The initial development of NPSS focused on the analysis and design of airbreathing aircraft engines, but the resulting NPSS framework may be applied to any system, for example: aerospace, rockets, hypersonics, power and propulsion, fuel cells, ground based power, and even human system modeling. NPSS provides increased flexibility for the user, which reduces the total development time and cost. It is currently being extended to support the NASA Aeronautics Research Mission Directorate Fundamental Aeronautics Program and the Advanced Virtual Engine Test Cell (AVETeC). NPSS focuses on the integration of multiple disciplines such as aerodynamics, structure, and heat transfer with numerical zooming on component codes. Zooming is the coupling of analyses at various levels of detail. NPSS development includes capabilities to facilitate collaborative engineering. The NPSS will provide improved tools to develop custom components and to use capability for zooming to higher fidelity codes, coupling to multidiscipline codes, transmitting secure data, and distributing simulations across different platforms. These powerful capabilities extend NPSS from a zero-dimensional simulation tool to a multi-fidelity, multidiscipline system-level simulation tool for the full development life cycle.

  18. Confidence in Numerical Simulations

    SciTech Connect

    Hemez, Francois M.

    2015-02-23

    This PowerPoint presentation offers a high-level discussion of uncertainty, confidence and credibility in scientific Modeling and Simulation (M&S). It begins by briefly evoking M&S trends in computational physics and engineering. The first thrust of the discussion is to emphasize that the role of M&S in decision-making is either to support reasoning by similarity or to “forecast,” that is, make predictions about the future or extrapolate to settings or environments that cannot be tested experimentally. The second thrust is to explain that M&S-aided decision-making is an exercise in uncertainty management. The three broad classes of uncertainty in computational physics and engineering are variability and randomness, numerical uncertainty and model-form uncertainty. The last part of the discussion addresses how scientists “think.” This thought process parallels the scientific method where by a hypothesis is formulated, often accompanied by simplifying assumptions, then, physical experiments and numerical simulations are performed to confirm or reject the hypothesis. “Confidence” derives, not just from the levels of training and experience of analysts, but also from the rigor with which these assessments are performed, documented and peer-reviewed.

  19. Time rate collision matrix

    SciTech Connect

    Stoenescu, M.L.; Smith, T.M.

    1980-02-01

    The collision integral terms in Boltzmann equation are reformulated numerically leading to the substitution of the multiple integrals with a multiplicative matrix of the two colliding species velocity distribution functions which varies with the differential collision cross section. A matrix of lower rank may be constructed when one of the distribution functions is specified, in which case the matrix elements represent kinetic transition probabilities in the velocity space and the multiplication of the time rate collision matrix with the unknown velocity distribution function expresses the time rate of change of the distribution. The collision matrix may be used to describe the time evolution of systems in nonequilibrium conditions, to evaluate the rate of momentum and energy transfer between given species, or to generate validity criteria for linearized kinetic equations.

  20. Numerical approach for unstructured quantum key distribution.

    PubMed

    Coles, Patrick J; Metodiev, Eric M; Lütkenhaus, Norbert

    2016-01-01

    Quantum key distribution (QKD) allows for communication with security guaranteed by quantum theory. The main theoretical problem in QKD is to calculate the secret key rate for a given protocol. Analytical formulas are known for protocols with symmetries, since symmetry simplifies the analysis. However, experimental imperfections break symmetries, hence the effect of imperfections on key rates is difficult to estimate. Furthermore, it is an interesting question whether (intentionally) asymmetric protocols could outperform symmetric ones. Here we develop a robust numerical approach for calculating the key rate for arbitrary discrete-variable QKD protocols. Ultimately this will allow researchers to study 'unstructured' protocols, that is, those that lack symmetry. Our approach relies on transforming the key rate calculation to the dual optimization problem, which markedly reduces the number of parameters and hence the calculation time. We illustrate our method by investigating some unstructured protocols for which the key rate was previously unknown. PMID:27198739

  1. Numerical approach for unstructured quantum key distribution

    NASA Astrophysics Data System (ADS)

    Coles, Patrick J.; Metodiev, Eric M.; Lütkenhaus, Norbert

    2016-05-01

    Quantum key distribution (QKD) allows for communication with security guaranteed by quantum theory. The main theoretical problem in QKD is to calculate the secret key rate for a given protocol. Analytical formulas are known for protocols with symmetries, since symmetry simplifies the analysis. However, experimental imperfections break symmetries, hence the effect of imperfections on key rates is difficult to estimate. Furthermore, it is an interesting question whether (intentionally) asymmetric protocols could outperform symmetric ones. Here we develop a robust numerical approach for calculating the key rate for arbitrary discrete-variable QKD protocols. Ultimately this will allow researchers to study `unstructured' protocols, that is, those that lack symmetry. Our approach relies on transforming the key rate calculation to the dual optimization problem, which markedly reduces the number of parameters and hence the calculation time. We illustrate our method by investigating some unstructured protocols for which the key rate was previously unknown.

  2. Numerical approach for unstructured quantum key distribution

    PubMed Central

    Coles, Patrick J.; Metodiev, Eric M.; Lütkenhaus, Norbert

    2016-01-01

    Quantum key distribution (QKD) allows for communication with security guaranteed by quantum theory. The main theoretical problem in QKD is to calculate the secret key rate for a given protocol. Analytical formulas are known for protocols with symmetries, since symmetry simplifies the analysis. However, experimental imperfections break symmetries, hence the effect of imperfections on key rates is difficult to estimate. Furthermore, it is an interesting question whether (intentionally) asymmetric protocols could outperform symmetric ones. Here we develop a robust numerical approach for calculating the key rate for arbitrary discrete-variable QKD protocols. Ultimately this will allow researchers to study ‘unstructured' protocols, that is, those that lack symmetry. Our approach relies on transforming the key rate calculation to the dual optimization problem, which markedly reduces the number of parameters and hence the calculation time. We illustrate our method by investigating some unstructured protocols for which the key rate was previously unknown. PMID:27198739

  3. Rythmos Numerical Integration Package

    SciTech Connect

    Coffey, Todd S.; Bartlett, Roscoe A.

    2006-09-01

    Rythmos numerically integrates transient differential equations. The differential equations can be explicit or implicit ordinary differential equations ofr formulated as fully implicit differential-algebraic equations. Methods include backward Euler, forward Euler, explicit Runge-Kutta, and implicit BDF at this time. Native support for operator split methods and strict modularity are strong design goals. Forward sensitivity computations will be included in the first release with adjoint sensitivities coming in the near future. Rythmos heavily relies on Thyra for linear algebra and nonlinear solver interfaces to AztecOO, Amesos, IFPack, and NOX in Tilinos. Rythmos is specially suited for stiff differential equations and thos applictions where operator split methods have a big advantage, e.g. Computational fluid dynamics, convection-diffusion equations, etc.

  4. Rythmos Numerical Integration Package

    2006-09-01

    Rythmos numerically integrates transient differential equations. The differential equations can be explicit or implicit ordinary differential equations ofr formulated as fully implicit differential-algebraic equations. Methods include backward Euler, forward Euler, explicit Runge-Kutta, and implicit BDF at this time. Native support for operator split methods and strict modularity are strong design goals. Forward sensitivity computations will be included in the first release with adjoint sensitivities coming in the near future. Rythmos heavily relies on Thyra formore » linear algebra and nonlinear solver interfaces to AztecOO, Amesos, IFPack, and NOX in Tilinos. Rythmos is specially suited for stiff differential equations and thos applictions where operator split methods have a big advantage, e.g. Computational fluid dynamics, convection-diffusion equations, etc.« less

  5. Numerical Modeling of Ablation Heat Transfer

    NASA Technical Reports Server (NTRS)

    Ewing, Mark E.; Laker, Travis S.; Walker, David T.

    2013-01-01

    A unique numerical method has been developed for solving one-dimensional ablation heat transfer problems. This paper provides a comprehensive description of the method, along with detailed derivations of the governing equations. This methodology supports solutions for traditional ablation modeling including such effects as heat transfer, material decomposition, pyrolysis gas permeation and heat exchange, and thermochemical surface erosion. The numerical scheme utilizes a control-volume approach with a variable grid to account for surface movement. This method directly supports implementation of nontraditional models such as material swelling and mechanical erosion, extending capabilities for modeling complex ablation phenomena. Verifications of the numerical implementation are provided using analytical solutions, code comparisons, and the method of manufactured solutions. These verifications are used to demonstrate solution accuracy and proper error convergence rates. A simple demonstration of a mechanical erosion (spallation) model is also provided to illustrate the unique capabilities of the method.

  6. Using PASCAL for numerical analysis

    NASA Technical Reports Server (NTRS)

    Volper, D.; Miller, T. C.

    1978-01-01

    The data structures and control structures of PASCAL enhance the coding ability of the programmer. Proposed extensions to the language further increase its usefulness in writing numeric programs and support packages for numeric programs.

  7. Developmental Change in Numerical Estimation

    ERIC Educational Resources Information Center

    Slusser, Emily B.; Santiago, Rachel T.; Barth, Hilary C.

    2013-01-01

    Mental representations of numerical magnitude are commonly thought to undergo discontinuous change over development in the form of a "representational shift." This idea stems from an apparent categorical shift from logarithmic to linear patterns of numerical estimation on tasks that involve translating between numerical magnitudes and spatial…

  8. MFIX documentation numerical technique

    SciTech Connect

    Syamlal, M.

    1998-01-01

    MFIX (Multiphase Flow with Interphase eXchanges) is a general-purpose hydrodynamic model for describing chemical reactions and heat transfer in dense or dilute fluid-solids flows, which typically occur in energy conversion and chemical processing reactors. The calculations give time-dependent information on pressure, temperature, composition, and velocity distributions in the reactors. The theoretical basis of the calculations is described in the MFIX Theory Guide. Installation of the code, setting up of a run, and post-processing of results are described in MFIX User`s manual. Work was started in April 1996 to increase the execution speed and accuracy of the code, which has resulted in MFIX 2.0. To improve the speed of the code the old algorithm was replaced by a more implicit algorithm. In different test cases conducted the new version runs 3 to 30 times faster than the old version. To increase the accuracy of the computations, second order accurate discretization schemes were included in MFIX 2.0. Bubbling fluidized bed simulations conducted with a second order scheme show that the predicted bubble shape is rounded, unlike the (unphysical) pointed shape predicted by the first order upwind scheme. This report describes the numerical technique used in MFIX 2.0.

  9. Personalized numerical observer

    NASA Astrophysics Data System (ADS)

    Brankov, Jovan G.; Pretorius, P. Hendrik

    2010-02-01

    It is widely accepted that medical image quality should be assessed using task-based criteria, such as humanobserver (HO) performance in a lesion-detection (scoring) task. HO studies are time consuming and cost prohibitive to be used for image quality assessment during development of either reconstruction methods or imaging systems. Therefore, a numerical observer (NO), a HO surrogate, is highly desirable. In the past, we have proposed and successfully tested a NO based on a supervised-learning approach (namely a support vector machine) for cardiac gated SPECT image quality assessment. In the supervised-learning approach, the goal is to identify the relationship between measured image features and HO myocardium defect likelihood scores. Thus far we have treated multiple HO readers by simply averaging or pooling their respective scores. Due to observer variability, this may be suboptimal and less accurate. Therefore, in this work, we are setting our goal to predict individual observer scores independently in the hope to better capture some relevant lesion-detection mechanism of the human observers. This is even more important as there are many ways to get equivalent observer performance (measured by area under receiver operating curve), and simply predicting some joint (average or pooled) score alone is not likely to succeed.

  10. Numerical Relativity and Astrophysics

    NASA Astrophysics Data System (ADS)

    Lehner, Luis; Pretorius, Frans

    2014-08-01

    Throughout the Universe many powerful events are driven by strong gravitational effects that require general relativity to fully describe them. These include compact binary mergers, black hole accretion, and stellar collapse, where velocities can approach the speed of light and extreme gravitational fields (ΦNewt/c2≃1) mediate the interactions. Many of these processes trigger emission across a broad range of the electromagnetic spectrum. Compact binaries further source strong gravitational wave emission that could directly be detected in the near future. This feat will open up a gravitational wave window into our Universe and revolutionize our understanding of it. Describing these phenomena requires general relativity, and—where dynamical effects strongly modify gravitational fields—the full Einstein equations coupled to matter sources. Numerical relativity is a field within general relativity concerned with studying such scenarios that cannot be accurately modeled via perturbative or analytical calculations. In this review, we examine results obtained within this discipline, with a focus on its impact in astrophysics.

  11. Numerical methods used in fusion science numerical modeling

    NASA Astrophysics Data System (ADS)

    Yagi, M.

    2015-04-01

    The dynamics of burning plasma is very complicated physics, which is dominated by multi-scale and multi-physics phenomena. To understand such phenomena, numerical simulations are indispensable. Fundamentals of numerical methods used in fusion science numerical modeling are briefly discussed in this paper. In addition, the parallelization technique such as open multi processing (OpenMP) and message passing interface (MPI) parallel programing are introduced and the loop-level parallelization is shown as an example.

  12. Rates inferred from the space debris catalog

    SciTech Connect

    Canavan, G.H.

    1996-08-01

    Collision and fragmentation rates are inferred from the AFSPC space debris catalog and compare with estimates from other treatments. The collision rate is evaluated without approximation. The fragmentation rate requires additional empirical assessments. The number of fragments per collision is low compared to analytic and numerical treatments, is peaked low, and falls rapidly with altitude.

  13. Representation of Numerical and Non-Numerical Order in Children

    ERIC Educational Resources Information Center

    Berteletti, Ilaria; Lucangeli, Daniela; Zorzi, Marco

    2012-01-01

    The representation of numerical and non-numerical ordered sequences was investigated in children from preschool to grade 3. The child's conception of how sequence items map onto a spatial scale was tested using the Number-to-Position task (Siegler & Opfer, 2003) and new variants of the task designed to probe the representation of the alphabet…

  14. Direct numerical simulation of hot jets

    NASA Technical Reports Server (NTRS)

    Jacob, Marc C.

    1993-01-01

    The ultimate motivation of this work is to investigate the stability of two dimensional heated jets and its implications for aerodynamic sound generation from data obtained with direct numerical simulations (DNS). As pointed out in our last report, these flows undergo two types of instabilities, convective or absolute, depending on their temperature. We also described the limits of earlier experimental and theoretical studies and explained why a numerical investigation could give us new insight into the physics of these instabilities. The aeroacoustical interest of these flows was also underlined. In order to reach this goal, we first need to succeed in the DNS of heated jets. Our past efforts have been focused on this issue which encountered several difficulties. Our numerical difficulties are directly related to the physical problem we want to investigate since these absolutely or almost absolutely unstable flows are by definition very sensitive to the smallest disturbances and are very likely to reach nonlinear saturation through a numerical feedback mechanism. As a result, it is very difficult to compute a steady laminar solution using a spatial DNS. A steady state was reached only for strongly co-flowed jets, but these flows are almost equivalent to two independent mixing layers. Thus they are far from absolute instability and have much lower growth rates.

  15. Highly Parallel, High-Precision Numerical Integration

    SciTech Connect

    Bailey, David H.; Borwein, Jonathan M.

    2005-04-22

    This paper describes a scheme for rapidly computing numerical values of definite integrals to very high accuracy, ranging from ordinary machine precision to hundreds or thousands of digits, even for functions with singularities or infinite derivatives at endpoints. Such a scheme is of interest not only in computational physics and computational chemistry, but also in experimental mathematics, where high-precision numerical values of definite integrals can be used to numerically discover new identities. This paper discusses techniques for a parallel implementation of this scheme, then presents performance results for 1-D and 2-D test suites. Results are also given for a certain problem from mathematical physics, which features a difficult singularity, confirming a conjecture to 20,000 digit accuracy. The performance rate for this latter calculation on 1024 CPUs is 690 Gflop/s. We believe that this and one other 20,000-digit integral evaluation that we report are the highest-precision non-trivial numerical integrations performed to date.

  16. Numerical Asymptotic Solutions Of Differential Equations

    NASA Technical Reports Server (NTRS)

    Thurston, Gaylen A.

    1992-01-01

    Numerical algorithms derived and compared with classical analytical methods. In method, expansions replaced with integrals evaluated numerically. Resulting numerical solutions retain linear independence, main advantage of asymptotic solutions.

  17. Ferrofluids: Modeling, numerical analysis, and scientific computation

    NASA Astrophysics Data System (ADS)

    Tomas, Ignacio

    This dissertation presents some developments in the Numerical Analysis of Partial Differential Equations (PDEs) describing the behavior of ferrofluids. The most widely accepted PDE model for ferrofluids is the Micropolar model proposed by R.E. Rosensweig. The Micropolar Navier-Stokes Equations (MNSE) is a subsystem of PDEs within the Rosensweig model. Being a simplified version of the much bigger system of PDEs proposed by Rosensweig, the MNSE are a natural starting point of this thesis. The MNSE couple linear velocity u, angular velocity w, and pressure p. We propose and analyze a first-order semi-implicit fully-discrete scheme for the MNSE, which decouples the computation of the linear and angular velocities, is unconditionally stable and delivers optimal convergence rates under assumptions analogous to those used for the Navier-Stokes equations. Moving onto the much more complex Rosensweig's model, we provide a definition (approximation) for the effective magnetizing field h, and explain the assumptions behind this definition. Unlike previous definitions available in the literature, this new definition is able to accommodate the effect of external magnetic fields. Using this definition we setup the system of PDEs coupling linear velocity u, pressure p, angular velocity w, magnetization m, and magnetic potential ϕ We show that this system is energy-stable and devise a numerical scheme that mimics the same stability property. We prove that solutions of the numerical scheme always exist and, under certain simplifying assumptions, that the discrete solutions converge. A notable outcome of the analysis of the numerical scheme for the Rosensweig's model is the choice of finite element spaces that allow the construction of an energy-stable scheme. Finally, with the lessons learned from Rosensweig's model, we develop a diffuse-interface model describing the behavior of two-phase ferrofluid flows and present an energy-stable numerical scheme for this model. For a

  18. Numerical data frame readout system used in testing telemetry systems

    NASA Technical Reports Server (NTRS)

    Cote, C. E.; Cressey, J. R.

    1967-01-01

    Digital telemetry systems are treated by a display system that offers direct readout as high data rates. The rates appear in numerical format and are adaptable to photographic recording techniques. The system can show bit dropouts at a memory output or locate a malfunction in a system.

  19. Numerical calculation for cavitation flow of inducer

    NASA Astrophysics Data System (ADS)

    Ning, C.; Wang, Y.; Zhu, Z. T.; Xie, S. F.; Zhao, L. F.; Liu, Z. C.

    2015-01-01

    Inducer has significant effect on improving the cavitation characteristic of centrifugal pump. Several inducers were designed and modeled by Pro/E software. The mesh of flow field was done by ICEM and then was imported to ANSYS CFX to analyze the inducer's cavitation characteristic. Effects of the blade number on the performance of an inducer are investigated in the present paper. The inducers were designed on the basis of identical design flow rate and identical pressure elevation at nominal flow rate. The study focuses on the steady behavior of the inducers in cavitating conditions. Evolutions of performance, torque, mass flow rate, and amplitude of radial forces on the shaft according to the inlet pressure are considered. Furthermore, cavitation instabilities are analyzed in the study. The purpose of the present study is to investigate the pressure distribution and vapour volume fraction distribution through numerical simulations using the Navier-stokes solver with computational fluid dynamics (CFD) code.

  20. Numerical simulation of dusty plasmas

    SciTech Connect

    Winske, D.

    1995-09-01

    The numerical simulation of physical processes in dusty plasmas is reviewed, with emphasis on recent results and unresolved issues. Three areas of research are discussed: grain charging, weak dust-plasma interactions, and strong dust-plasma interactions. For each area, we review the basic concepts that are tested by simulations, present some appropriate examples, and examine numerical issues associated with extending present work.

  1. Numerical modeling of Hall thruster

    SciTech Connect

    Chable, S.; Rogier, F.

    2005-05-16

    A stationary plasma thruster is numerically studied using different levels. An one dimensional modeling is first analyzed and compared with experimental results. A simplified model of oscillations thruster is proposed and used to control the amplitude of oscillations. A two dimensional numerical method is discussed and applied to the computation of the flow in the exhaust.

  2. Aerodynamic design using numerical optimization

    NASA Technical Reports Server (NTRS)

    Murman, E. M.; Chapman, G. T.

    1983-01-01

    The procedure of using numerical optimization methods coupled with computational fluid dynamic (CFD) codes for the development of an aerodynamic design is examined. Several approaches that replace wind tunnel tests, develop pressure distributions and derive designs, or fulfill preset design criteria are presented. The method of Aerodynamic Design by Numerical Optimization (ADNO) is described and illustrated with examples.

  3. Computerized Numerical Control Curriculum Guide.

    ERIC Educational Resources Information Center

    Reneau, Fred; And Others

    This guide is intended for use in a course in programming and operating a computerized numerical control system. Addressed in the course are various aspects of programming and planning, setting up, and operating machines with computerized numerical control, including selecting manual or computer-assigned programs and matching them with…

  4. A Vocabulary for Numerical Control.

    ERIC Educational Resources Information Center

    Campbell, Clifton Paul

    This glossary presents a standardized nomenclature for numerical control. It defines and describes some 286 technical words, terms, abbreviations, and acronyms which form a specialized vocabulary. The aim of this glossary is to provide a means for arriving at some common understanding of terminology for numerical control technology. Numerous…

  5. Note on symmetric BCJ numerator

    NASA Astrophysics Data System (ADS)

    Fu, Chih-Hao; Du, Yi-Jian; Feng, Bo

    2014-08-01

    We present an algorithm that leads to BCJ numerators satisfying manifestly the three properties proposed by Broedel and Carrasco in [42]. We explicitly calculate the numerators at 4, 5 and 6-points and show that the relabeling property is generically satisfied.

  6. Numerically controlled oscillator for the Fermilab booster

    SciTech Connect

    Crisp, J.L.; Ducar, R.J.

    1989-04-01

    In order to improve the stability of the Fermilab Booster low level rf system, a numerically controlled oscillator system is being constructed. Although the system has not been implemented to date, the design is outlined in this paper. The heart of the new system consists of a numerically synthesized frequency generator manufactured by the Sciteq Company. The 3 Ghz/sec rate and 30 to 53 MHz range of the Booster frequency program required the design of a CAMAC based, fast-cycling (1 MHz), 65K X 32 bit, digital function generator. A 1 MHz digital adder and 12 bit analog to digital converter will be used to correct small program errors by phase locking the oscillator to the beam. 6 refs., 1 fig.

  7. A numerical method for predicting hypersonic flowfields

    NASA Technical Reports Server (NTRS)

    Maccormack, Robert W.; Candler, Graham V.

    1989-01-01

    The flow about a body traveling at hypersonic speed is energetic enough to cause the atmospheric gases to chemically react and reach states in thermal nonequilibrium. The prediction of hypersonic flowfields requires a numerical method capable of solving the conservation equations of fluid flow, the chemical rate equations for specie formation and dissociation, and the transfer of energy relations between translational and vibrational temperature states. Because the number of equations to be solved is large, the numerical method should also be as efficient as possible. The proposed paper presents a fully implicit method that fully couples the solution of the fluid flow equations with the gas physics and chemistry relations. The method flux splits the inviscid flow terms, central differences of the viscous terms, preserves element conservation in the strong chemistry source terms, and solves the resulting block matrix equation by Gauss Seidel line relaxation.

  8. Dynamics of Numerics and CFD

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Rai, Man Mohan (Technical Monitor)

    1994-01-01

    This lecture attempts to illustrate the basic ideas of how the recent advances in nonlinear dynamical systems theory (dynamics) can provide new insights into the understanding of numerical algorithms used in solving nonlinear differential equations (DEs). Examples will be given of the use of dynamics to explain unusual phenomena that occur in numerics. The inadequacy of the use of linearized analysis for the understanding of long time behavior of nonlinear problems will be illustrated, and the role of dynamics in studying the nonlinear stability, accuracy, convergence property and efficiency of using time- dependent approaches to obtaining steady-state numerical solutions in computational fluid dynamics (CFD) will briefly be explained.

  9. New fine structure cooling rate

    NASA Technical Reports Server (NTRS)

    Hoegy, W. R.

    1976-01-01

    One of the dominant electron cooling processes in the ionosphere is caused by electron impact induced fine structure transitions among the ground state levels of atomic oxygen. This fine structure cooling rate is based on theoretical cross sections. Recent advances in the numerical cross section determinations to include polarization effects and more accurate representations of the atomic target result in new lower values. These cross sections are employed in this paper to derive a new fine structure cooling rate which is between 40% and 60% of the currently used rate. A new generalized formula is presented for the cooling rate (from which the fine structure cooling rate is derived), valid for arbitrary mass and temperature difference of the colliding particles and arbitrary inelastic energy difference.

  10. Numerical Simulation of Nix's Rotation

    NASA Video Gallery

    This is a numerical simulation of the orientation of Nix as seen from the center of the Pluto system. It has been sped up so that one orbit of Nix around Pluto takes 2 seconds instead of 25 days. L...

  11. Numerical Optimization Using Computer Experiments

    NASA Technical Reports Server (NTRS)

    Trosset, Michael W.; Torczon, Virginia

    1997-01-01

    Engineering design optimization often gives rise to problems in which expensive objective functions are minimized by derivative-free methods. We propose a method for solving such problems that synthesizes ideas from the numerical optimization and computer experiment literatures. Our approach relies on kriging known function values to construct a sequence of surrogate models of the objective function that are used to guide a grid search for a minimizer. Results from numerical experiments on a standard test problem are presented.

  12. Bidirectional Modulation of Numerical Magnitude.

    PubMed

    Arshad, Qadeer; Nigmatullina, Yuliya; Nigmatullin, Ramil; Asavarut, Paladd; Goga, Usman; Khan, Sarah; Sander, Kaija; Siddiqui, Shuaib; Roberts, R E; Cohen Kadosh, Roi; Bronstein, Adolfo M; Malhotra, Paresh A

    2016-05-01

    Numerical cognition is critical for modern life; however, the precise neural mechanisms underpinning numerical magnitude allocation in humans remain obscure. Based upon previous reports demonstrating the close behavioral and neuro-anatomical relationship between number allocation and spatial attention, we hypothesized that these systems would be subject to similar control mechanisms, namely dynamic interhemispheric competition. We employed a physiological paradigm, combining visual and vestibular stimulation, to induce interhemispheric conflict and subsequent unihemispheric inhibition, as confirmed by transcranial direct current stimulation (tDCS). This allowed us to demonstrate the first systematic bidirectional modulation of numerical magnitude toward either higher or lower numbers, independently of either eye movements or spatial attention mediated biases. We incorporated both our findings and those from the most widely accepted theoretical framework for numerical cognition to present a novel unifying computational model that describes how numerical magnitude allocation is subject to dynamic interhemispheric competition. That is, numerical allocation is continually updated in a contextual manner based upon relative magnitude, with the right hemisphere responsible for smaller magnitudes and the left hemisphere for larger magnitudes. PMID:26879093

  13. Numerical anomalies mimicking physical effects

    NASA Astrophysics Data System (ADS)

    Menikoff, R.

    Numerical simulations of flows with shock waves typically use finite-difference shock-capturing algorithms. These algorithms give a shock a numerical width in order to generate the entropy increase that must occur across a shock wave. For algorithms in conservation form, steady-state shock waves are insensitive to the numerical dissipation because of the Hugoniot jump conditions. However, localized numerical errors occur when shock waves interact. Examples are the 'excess wall heating' in the Noh problem (shock reflected from rigid wall), errors when a shock impacts a material interface or an abrupt change in mesh spacing, and the start-up error from initializing a shock as a discontinuity. This class of anomalies can be explained by the entropy generation that occurs in the transient flow when a shock profile is formed or changed. The entropy error is localized spatially but under mesh refinement does not decrease in magnitude. Similar effects have been observed in shock tube experiments with partly dispersed shock waves. In this case, the shock has a physical width due to a relaxation process. An entropy anomaly from a transient shock interaction is inherent in the structure of the conservation equations for fluid flow. The anomaly can be expected to occur whenever heat conduction can be neglected and a shock wave has a non-zero width, whether the width is physical or numerical. Thus, the numerical anomaly from an artificial shock width mimics a real physical effect.

  14. Bidirectional Modulation of Numerical Magnitude

    PubMed Central

    Arshad, Qadeer; Nigmatullina, Yuliya; Nigmatullin, Ramil; Asavarut, Paladd; Goga, Usman; Khan, Sarah; Sander, Kaija; Siddiqui, Shuaib; Roberts, R. E.; Cohen Kadosh, Roi; Bronstein, Adolfo M.; Malhotra, Paresh A.

    2016-01-01

    Numerical cognition is critical for modern life; however, the precise neural mechanisms underpinning numerical magnitude allocation in humans remain obscure. Based upon previous reports demonstrating the close behavioral and neuro-anatomical relationship between number allocation and spatial attention, we hypothesized that these systems would be subject to similar control mechanisms, namely dynamic interhemispheric competition. We employed a physiological paradigm, combining visual and vestibular stimulation, to induce interhemispheric conflict and subsequent unihemispheric inhibition, as confirmed by transcranial direct current stimulation (tDCS). This allowed us to demonstrate the first systematic bidirectional modulation of numerical magnitude toward either higher or lower numbers, independently of either eye movements or spatial attention mediated biases. We incorporated both our findings and those from the most widely accepted theoretical framework for numerical cognition to present a novel unifying computational model that describes how numerical magnitude allocation is subject to dynamic interhemispheric competition. That is, numerical allocation is continually updated in a contextual manner based upon relative magnitude, with the right hemisphere responsible for smaller magnitudes and the left hemisphere for larger magnitudes. PMID:26879093

  15. Experimental and Numerical Studies of Oceanic Overflow

    NASA Astrophysics Data System (ADS)

    Gibson, Thomas; Hohman, Fred; Morrison, Theresa; Reckinger, Shanon; Reckinger, Scott

    2014-11-01

    Oceanic overflows occur when dense water flows down a continental slope into less dense ambient water. The resulting density driven plumes occur naturally in various regions of the global ocean and affect the large-scale circulation. General circulation models currently rely on parameterizations for representing dense overflows due to resolution restrictions. The work presented here involves a direct qualitative and quantitative comparison between physical laboratory experiments and lab-scale numerical simulations. Laboratory experiments are conducted using a rotating square tank customized for idealized overflow and a high-resolution camera mounted on the table in the rotating reference frame for data collection. Corresponding numerical simulations are performed using the MIT general circulation model (MITgcm) run in the non-hydrostatic configuration. Resolution and numerical parameter studies are presented to ensure accuracy of the simulation. Laboratory and computational experiments are compared across a wide range of physical parameters, including Coriolis parameter, inflow density anomaly, and dense inflow volumetric flow rate. The results are analyzed using various calculated metrics, such as the plume velocity. Funding for this project is provided by the National Science Foundation.

  16. 48 CFR 1816.405-275 - Award fee evaluation rating.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... each adjectival rating category contained in FAR 16.401(e)(iv). (b) The following numerical scoring...). The numerical score for each factor is then multiplied by the weighting for that factor to determine... numerical score for that factor is 80, the weighted technical score is 48 (80 × 60 percent). The...

  17. Numerical Simulation of Coherent Error Correction

    NASA Astrophysics Data System (ADS)

    Crow, Daniel; Joynt, Robert; Saffman, Mark

    A major goal in quantum computation is the implementation of error correction to produce a logical qubit with an error rate lower than that of the underlying physical qubits. Recent experimental progress demonstrates physical qubits can achieve error rates sufficiently low for error correction, particularly for codes with relatively high thresholds such as the surface code and color code. Motivated by experimental capabilities of neutral atom systems, we use numerical simulation to investigate whether coherent error correction can be effectively used with the 7-qubit color code. The results indicate that coherent error correction does not work at the 10-qubit level in neutral atom array quantum computers. By adding more qubits there is a possibility of making the encoding circuits fault-tolerant which could improve performance.

  18. Numerical MHD codes for modeling astrophysical flows

    NASA Astrophysics Data System (ADS)

    Koldoba, A. V.; Ustyugova, G. V.; Lii, P. S.; Comins, M. L.; Dyda, S.; Romanova, M. M.; Lovelace, R. V. E.

    2016-05-01

    We describe a Godunov-type magnetohydrodynamic (MHD) code based on the Miyoshi and Kusano (2005) solver which can be used to solve various astrophysical hydrodynamic and MHD problems. The energy equation is in the form of entropy conservation. The code has been implemented on several different coordinate systems: 2.5D axisymmetric cylindrical coordinates, 2D Cartesian coordinates, 2D plane polar coordinates, and fully 3D cylindrical coordinates. Viscosity and diffusivity are implemented in the code to control the accretion rate in the disk and the rate of penetration of the disk matter through the magnetic field lines. The code has been utilized for the numerical investigations of a number of different astrophysical problems, several examples of which are shown.

  19. Submarine sand volcanos: experiments and numerical modelling

    NASA Astrophysics Data System (ADS)

    Philippe, P.; Ngoma, J.; Delenne, J.

    2012-12-01

    Fluid overpressure at the bottom of a soil layer may generate fracturation in preferential paths for a cohesive material. But the case of sandy soils is rather different: a significant internal flow is allowed within the material and can potentially induce hydro-mechanical instabilities whose most common example is fluidization. Many works have been devoted to fluidization but very few have the issue of initiation and development of a fluidized zone inside a granular bed, prior entire fluidization of the medium. In this contribution, we report experimental results and numerical simulations on a model system of immersed sand volcanos generated by a localized upward spring of liquid, injected at constant flow-rate at the bottom of a granular layer. Such a localized state of fluidization is relevant for some industrial processes (spouted bed, maintenance of navigable waterways,…) and for several geological issues (kimberlite volcano conduits, fluid venting, oil recovery in sandy soil, More precisely, what is presented here is a comparison between experiments, carried out by direct visualization throughout the medium, and numerical simulations, based on DEM modelling of the grains coupled to resolution of NS equations in the liquid phase (LBM). There is a very good agreement between the experimental phenomenology and the simulation results. When the flow-rate is increased, three regimes are successively observed: static bed, fluidized cavity that does not extend to the top of the layer, and finally fluidization over the entire height of layer that creates a fluidized chimney. A very strong hysteretic effect is present here with an extended range of stability for fluidized cavities when flow-rate is decreased back. This can be interpreted in terms force chains and arches. The influences of grain diameter, layer height and injection width are studied and interpreted using a model previously developed by Zoueshtiagh [1]. Finally, growing rate of the fluidized zone and

  20. Numerical dosimetry dedicated to children RF exposure.

    PubMed

    Wiart, Joe; Hadjem, Abdelhamid; Varsier, Nadège; Conil, Emmanuelle

    2011-12-01

    Children are more and more using wireless communication systems. This growth has strengthened public concern and has highlighted the need to assess the radio frequency (RF) exposure of children. In dosimetry, taking advantage of the improvement of High Performance Calculation systems, great efforts have been carried out to improve the numerical tools and human models used to assess the Specific Absorption Rate (SAR). This paper analyses progress in building child and foetus models for numerical dosimetry purpose. The simulation results, in terms of Specific Absorption Rate over 1 and 10 g of tissues, in specific organs such as brain and averaged over the whole body, are reported and analysed. The results show that compliance methods used nowadays to certify phones are valid for children. The studies also show that specific tissues such as peripheral brain tissues can have higher exposure with children than with adults. Studies performed with plane waves as sources and whole body children models show that the whole body SAR of children can be higher than the WBSAR of adults and that the compliance to ICNIRP reference levels does not guarantee the compliance to ICNIRP basic restrictions. Dealing with the foetus models and dielectric properties great efforts have been made. Preliminary results show that the foetus exposure is often lower than the mother exposure, with an important influencing parameter: the foetus position in the uterus. PMID:22005525

  1. Numeral Incorporation in Japanese Sign Language

    ERIC Educational Resources Information Center

    Ktejik, Mish

    2013-01-01

    This article explores the morphological process of numeral incorporation in Japanese Sign Language. Numeral incorporation is defined and the available research on numeral incorporation in signed language is discussed. The numeral signs in Japanese Sign Language are then introduced and followed by an explanation of the numeral morphemes which are…

  2. Numerical cognition: Adding it up.

    PubMed

    LeFevre, Jo-Anne

    2016-03-01

    In this article, I provide a historical overview of the field of numerical cognition. I first situate the evolution and development of this field in the more general context of the cognitive revolution, which started in the mid-1950s. I then discuss the genesis of numerical cognition from 6 areas: psychophysics, information processing, neuropsychology, mathematics education, psychometrics, and cognitive development. This history is personal: I discuss some of my own work over the last 30 years and describe how each of the authors of the articles in this collection originally connected with the field. One important goal of the article is to highlight the major findings, both for experts and for those who are less familiar with research on numerical processing. In sum, I sketch a context within which to appreciate the neural, computational, and behavioural work that the other 4 authors summarise in their articles in this special section. (PsycINFO Database Record PMID:26913781

  3. Numerical analysis of engine instability

    NASA Astrophysics Data System (ADS)

    Habiballah, M.; Dubois, I.

    Following a literature review on numerical analyses of combustion instability, to give the state of the art in the area, the paper describes the ONERA methodology used to analyze the combustion instability in liquid propellant engines. Attention is also given to a model (named Phedre) which describes the unsteady turbulent two-phase reacting flow in a liquid rocket engine combustion chamber. The model formulation includes axial or radial propellant injection, baffles, and acoustic resonators modeling, and makes it possible to treat different engine types. A numerical analysis of a cryogenic engine stability is presented, and the results of the analysis are compared with results of tests of the Viking engine and the gas generator of the Vulcain engine, showing good qualitative agreement and some general trends between experiments and numerical analysis.

  4. Numerical Package in Computer Supported Numeric Analysis Teaching

    ERIC Educational Resources Information Center

    Tezer, Murat

    2007-01-01

    At universities in the faculties of Engineering, Sciences, Business and Economics together with higher education in Computing, it is stated that because of the difficulty, calculators and computers can be used in Numerical Analysis (NA). In this study, the learning computer supported NA will be discussed together with important usage of the…

  5. Numerical Modelling of Gelating Aerosols

    SciTech Connect

    Babovsky, Hans

    2008-09-01

    The numerical simulation of the gel phase transition of an aerosol system is an interesting and demanding task. Here, we follow an approach first discussed in [6, 8] which turns out as a useful numerical tool. We investigate several improvements and generalizations. In the center of interest are coagulation diffusion systems, where the aerosol dynamics is supplemented with diffusive spreading in physical space. This leads to a variety of scenarios (depending on the coagulation kernel and the diffusion model) for the spatial evolution of the gelation area.

  6. Numerical methods in structural mechanics

    NASA Astrophysics Data System (ADS)

    Obraztsov, I. F.

    The papers contained in this volume focus on numerical, numerical-analytical, and theoretical methods for dealing with strength, stability, and dynamics problems in the design of the structural elements of flight vehicles. Topics discussed include the solution of homogeneous boundary value problems for systems of ordinary differential equations modified by a difference factorization method, a study of the rupture strength of a welded joint between plates, singular solutions in mixed problems for a wedge and a half-strip, and a thermoelasticity problem for an open-profile cylindrical shell with a localized temperature field.

  7. Numerical integration of subtraction terms

    NASA Astrophysics Data System (ADS)

    Seth, Satyajit; Weinzierl, Stefan

    2016-06-01

    Numerical approaches to higher-order calculations often employ subtraction terms, both for the real emission and the virtual corrections. These subtraction terms have to be added back. In this paper we show that at NLO the real subtraction terms, the virtual subtraction terms, the integral representations of the field renormalization constants and—in the case of initial-state partons—the integral representation for the collinear counterterm can be grouped together to give finite integrals, which can be evaluated numerically. This is useful for an extension towards next-to-next-to-leading order.

  8. Numerical models of galactic dynamos

    NASA Astrophysics Data System (ADS)

    Elstner, Detlef

    The state of the art for dynamo models in spiral galaxies is reviewed. The comparison of numerical models with special properties of observed magnetic fields yields constraints for the turbulent diffusivity and the α-effect. The derivation of the turbulence parameters from the vertical structure of the interstellar medium gives quite reasonable values for modelling the regular magnetic fields in galaxies with an α2Ω-dynamo. Considering the differences of the turbulence between spiral arms and interarm regions, the observed interarm magnetic fields are recovered in the numerical models due to the special properties of the α2Ω-dynamo.

  9. The representation of numerical magnitude

    PubMed Central

    Brannon, Elizabeth M

    2006-01-01

    The combined efforts of many fields are advancing our understanding of how number is represented. Researchers studying numerical reasoning in adult humans, developing humans and non-human animals are using a suite of behavioral and neurobiological methods to uncover similarities and differences in how each population enumerates and compares quantities to identify the neural substrates of numerical cognition. An important picture emerging from this research is that adult humans share with non-human animals a system for representing number as language-independent mental magnitudes and that this system emerges early in development. PMID:16546373

  10. Numerical investigations of gaseous spherical diffusion flames

    NASA Astrophysics Data System (ADS)

    Lecoustre, Vivien R.

    Spherical diffusion flames have several unique characteristics that make them attractive from experimental and theoretical perspectives. They can be modeled with one spatial dimension, which frees computational resources for detailed chemistry, transport, and radiative loss models. This dissertation is a numerical study of two classes of spherical diffusion flames: hydrogen micro-diffusion flames, emphasizing kinetic extinction, and ethylene diffusion flames, emphasizing sooting limits. The flames were modeled using a one-dimensional, time-accurate diffusion flame code with detailed chemistry and transport. Radiative losses from products were modeled using a detailed absorption/emission statistical narrow band model and the discrete ordinates method. During this work the code has been enhanced by the implementation of a soot formation/oxidation model using the method of moments. Hydrogen micro-diffusion flames were studied experimentally and numerically. The experiments involved gas jets of hydrogen. At their quenching limits, these flames had heat release rates of 0.46 and 0.25 W in air and in oxygen, respectively. These are the weakest flames ever observed. The modeling results confirmed the quenching limits and revealed high rates of reactant leakage near the limits. The effects of the burner size and mass flow rate were predicted to have a significant impact on the flame chemistry and species distribution profiles, favoring kinetic extinction. Spherical ethylene diffusion flames at their sooting limits were also examined. Seventeen normal and inverse spherical flames were considered. Initially sooty, these flames were experimentally observed to reach their sooting limits 2 s after ignition. Structure of the flames at 2 s was considered, with an emphasis on the relationships among local temperature, carbon to oxygen atom ratio (C/O), and scalar dissipation rate. A critical C/O ratio was identified, along with two different sooting limit regimes. Diffusion flames

  11. The Origin of Roman Numerals

    ERIC Educational Resources Information Center

    Dapre, P. A.

    1977-01-01

    A theory on the origin of Roman numerals proposes that the principal numbers can be stylized in terms of a square. It is speculated that the abacus or its equivalents, such as the counter or chequer-board, was used to count before the alphabet became common. (SW)

  12. DEVELOPMENT OF NUMERICAL NUTRIENT CRITERIA

    EPA Science Inventory

    A major goal of the numeric nutrient criteria program is to develop waterbody-type technical guidance manuals for assessing trophic state. EPA has published guidance for lakes and for rivers. EPA Region 1 is publishing New England-specific guidance in 2001 for lakes, ponds and ...

  13. NUMERICAL SIMULATION OF LARYNGEAL FLOW

    EPA Science Inventory

    In this study, we have investigated laryngeal air flows by numerically solving the corresponding Navier-Stokes equations expressed in a two-dimensional cylindrical coordinate system. The glottal aperture, defined by the geometry of the vocal folds was allowed to change with the v...

  14. Numerical calculations of flow fields

    NASA Technical Reports Server (NTRS)

    Anderson, D.; Vogel, J. M.

    1973-01-01

    Numerical calculations were made of flow fields generated by various aerodynamic configurations. Data cover flow fields generated by a finitely thick lifting three dimensional wing with subsonic tips moving at supersonic speeds, cross flow instability associated with lifting delta wing configurations such as space shuttles, and flow fields produced by a lifting elliptic cone. Finite difference techniques were used to determine elliptic cone flow.

  15. Conditional Convergence of Numerical Series

    ERIC Educational Resources Information Center

    Gomez, E.; Plaza, A.

    2002-01-01

    One of the most astonishing properties when studying numerical series is that the sum is not commutative, that is the sum may change when the order of its elements is altered. In this note an example is given of such a series. A well-known mathematical proof is given and a MATLAB[C] program used for different rearrangements of the series…

  16. Elliptic systems and numerical transformations

    NASA Technical Reports Server (NTRS)

    Mastin, C. W.; Thompson, J. F.

    1976-01-01

    Properties of a transformation method, which was developed for solving fluid dynamic problems on general two dimensional regions, are discussed. These include construction error of the transformation and applications to mesh generation. An error and stability analysis for the numerical solution of a model parabolic problem is also presented.

  17. Numerical simulation of asymmetric particle precipitation by pitch angle diffusion

    NASA Astrophysics Data System (ADS)

    Thorne, Richard M.; Abel, Robert W.; Summers, Danny

    1996-11-01

    A numerical simulation code is developed to evaluate the loss rate of particles trapped in a mirror magnetic field geometry with asymmetric loss cones. The one-dimensional model can accommodate particle diffusion at any prescribed rate and loss cones of any prescribed sizes, and it incorporates the important effect of atmospheric backscattering. Numerical solutions for the loss cone particle distribution function calculated for the case of equal loss cones provide an acceptable simulation of the well-known modified Bessel function solution. The code provides the first quantitative solutions for any specified rate of pitch angle scattering for the general case of arbitrary asymmetry in loss cone size. In the case of weak or moderate diffusion the ratio of particle precipitation fluxes into the two loss cones can provide a sensitive measurement of the rate of particle scattering, but to utilize this important diagnostic property, one must also have information on the fraction of particles that are backscattered from the atmosphere.

  18. Numerical discrimination is mediated by neural coding variation.

    PubMed

    Prather, Richard W

    2014-12-01

    One foundation of numerical cognition is that discrimination accuracy depends on the proportional difference between compared values, closely following the Weber-Fechner discrimination law. Performance in non-symbolic numerical discrimination is used to calculate individual Weber fraction, a measure of relative acuity of the approximate number system (ANS). Individual Weber fraction is linked to symbolic arithmetic skills and long-term educational and economic outcomes. The present findings suggest that numerical discrimination performance depends on both the proportional difference and absolute value, deviating from the Weber-Fechner law. The effect of absolute value is predicted via computational model based on the neural correlates of numerical perception. Specifically, that the neural coding "noise" varies across corresponding numerosities. A computational model using firing rate variation based on neural data demonstrates a significant interaction between ratio difference and absolute value in predicting numerical discriminability. We find that both behavioral and computational data show an interaction between ratio difference and absolute value on numerical discrimination accuracy. These results further suggest a reexamination of the mechanisms involved in non-symbolic numerical discrimination, how researchers may measure individual performance, and what outcomes performance may predict. PMID:25238315

  19. Direct numerical simulation of turbulent aerosol coagulation

    NASA Astrophysics Data System (ADS)

    Reade, Walter Caswell

    There are numerous systems-including both industrial applications and natural occurring phenomena-in which the collision/coagulation rates of aerosols are of significant interest. Two examples are the production of fine powders (such as titanium dioxide) and the formation of rain drops in the atmosphere. During the last decade, it has become apparent that dense aerosol particles behave much differently in a turbulent fluid than has been previously assumed. Particles with a response time on the order of the small-scale fluid time scale tend to collect in regions of low vorticity. The result is a particle concentration field that can be highly non-uniform. Sundaram and Collins (1997) recently demonstrated the effect that turbulence can have on the particle collision rate of a monodisperse system. The collision rates of finite-inertia particles can be as much as two orders of magnitude greater than particles that precisely follow the fluid streamlines. Sundaram and Collins derived a general collision expression that explicitly accounted for the two phenomena that affect the collision rate-changes in the particle concentration field and changes in the particle relative velocities. The result of Sundaram and Collins has generated further interest in the turbulent-aerosol problem. This thesis shows that, in addition to changing the rate that an aerosol size distribution might form, turbulence has the potential of dramatically changing the shape of the distribution. This result is demonstrated using direct numerical simulation of a turbulent-aerosol system over a wide range of particle parameters, and a moderate range of turbulence levels. Results show that particles with a small (but finite) initial inertia have the greatest potential of forming broad size distributions. The shape of the resulting size distribution is also affected by the initial size of the particles. Observations are explained using the statistics identified by Sundaram and Collins (1997). A major

  20. A Numerical Study of Hypersonic Forebody/Inlet Integration Problem

    NASA Technical Reports Server (NTRS)

    Kumar, Ajay

    1991-01-01

    A numerical study of hypersonic forebody/inlet integration problem is presented in the form of the view-graphs. The following topics are covered: physical/chemical modeling; solution procedure; flow conditions; mass flow rate at inlet face; heating and skin friction loads; 3-D forebogy/inlet integration model; and sensitivity studies.

  1. 3D Numerical simulations of oblique subduction

    NASA Astrophysics Data System (ADS)

    Malatesta, C.; Gerya, T.; Scambelluri, M.; Crispini, L.; Federico, L.; Capponi, G.

    2012-04-01

    In the past 2D numerical studies (e.g. Gerya et al., 2002; Gorczyk et al., 2007; Malatesta et al., 2012) provided evidence that during intraoceanic subduction a serpentinite channel forms above the downgoing plate. This channel forms as a result of hydration of the mantle wedge by uprising slab-fluids. Rocks buried at high depths are finally exhumed within this buoyant low-viscosity medium. Convergence rate in these 2D models was described by a trench-normal component of velocity. Several present and past subduction zones worldwide are however driven by oblique convergence between the plates, where trench-normal motion of the subducting slab is coupled with trench-parallel displacement of the plates. Can the exhumation mechanism and the exhumation rates of high-pressure rocks be affected by the shear component of subduction? And how uprise of these rocks can vary along the plate margin? We tried to address these questions performing 3D numerical models that simulate an intraoceanic oblique subduction. The models are based on thermo-mechanical equations that are solved with finite differences method and marker-in-cell techniques combined with multigrid approach (Gerya, 2010). In most of the models a narrow oceanic basin (500 km-wide) surrounded by continental margins is depicted. The basin is floored by either layered or heterogeneous oceanic lithosphere with gabbro as discrete bodies in serpentinized peridotite and a basaltic layer on the top. A weak zone in the mantle is prescribed to control the location of subduction initiation and therefore the plate margins geometry. Finally, addition of a third dimension in the simulations allowed us to test the role of different plate margin geometries on oblique subduction dynamics. In particular in each model we modified the dip angle of the weak zone and its "lateral" geometry (e.g. continuous, segmented). We consider "continuous" weak zones either parallel or increasingly moving away from the continental margins

  2. High Rate Digital Demodulator ASIC

    NASA Technical Reports Server (NTRS)

    Ghuman, Parminder; Sheikh, Salman; Koubek, Steve; Hoy, Scott; Gray, Andrew

    1998-01-01

    The architecture of High Rate (600 Mega-bits per second) Digital Demodulator (HRDD) ASIC capable of demodulating BPSK and QPSK modulated data is presented in this paper. The advantages of all-digital processing include increased flexibility and reliability with reduced reproduction costs. Conventional serial digital processing would require high processing rates necessitating a hardware implementation in other than CMOS technology such as Gallium Arsenide (GaAs) which has high cost and power requirements. It is more desirable to use CMOS technology with its lower power requirements and higher gate density. However, digital demodulation of high data rates in CMOS requires parallel algorithms to process the sampled data at a rate lower than the data rate. The parallel processing algorithms described here were developed jointly by NASA's Goddard Space Flight Center (GSFC) and the Jet Propulsion Laboratory (JPL). The resulting all-digital receiver has the capability to demodulate BPSK, QPSK, OQPSK, and DQPSK at data rates in excess of 300 Mega-bits per second (Mbps) per channel. This paper will provide an overview of the parallel architecture and features of the HRDR ASIC. In addition, this paper will provide an over-view of the implementation of the hardware architectures used to create flexibility over conventional high rate analog or hybrid receivers. This flexibility includes a wide range of data rates, modulation schemes, and operating environments. In conclusion it will be shown how this high rate digital demodulator can be used with an off-the-shelf A/D and a flexible analog front end, both of which are numerically computer controlled, to produce a very flexible, low cost high rate digital receiver.

  3. Numerical analysis of Stirling engine

    NASA Astrophysics Data System (ADS)

    Sekiya, Hiroshi

    1992-11-01

    A simulation model of the Stirling engine based on the third order method of analysis is presented. The fundamental equations are derived by applying conservation laws of physics to the machine model, the characteristic equations for heat transfer and gas flow are represented, and a numerical calculation technique using these equations is discussed. A numerical model of the system for balancing pressure in four cylinders is included in the simulation model. Calculations results from the model are compared with experimental results. A comparable study of engine performance using helium and hydrogen as working gas is conducted, clarifying the heat transfer and gas flow characteristics, and the effects of temperature conditions in the hot and cold engine sections on driving conditions. The design optimization of the heat exchanger is addressed.

  4. Numerical investigation of stall flutter

    SciTech Connect

    Ekaterinaris, J.A.; Platzer, M.F.

    1996-04-01

    Unsteady, separated, high Reynolds number flow over an airfoil undergoing oscillatory motion is investigated numerically. The compressible form of the Reynolds-averaged governing equations is solved using a high-order, upwind biased numerical scheme. The turbulent flow region is computed using a one-equation turbulence model. The computed results show that the key to the accurate prediction of the unsteady loads at stall flutter conditions is the modeling of the transitional flow region at the leading edge. A simplified criterion for the transition onset is used. The transitional flow region is computed with a modified form of the turbulence model. The computed solution, where the transitional flow region is included, shows that the small laminar/transitional separation bubble forming during the pitch-up motion has a decisive effect on the near-wall flow and the development of the unsteady loads. Detailed comparisons of computed fully turbulent and transitional flow solutions with experimental data are presented.

  5. Numerical simulations of hot spots

    NASA Astrophysics Data System (ADS)

    Norman, Michael L.

    Numerical simulations of hot spots and their associated jets are examined with emphasis on their dynamical variability. Attention is given to two-dimensional simulations, which incorporate dynamically passive and important magnetic fields in the ideal MHD limit. Distributions of total and polarized radio brightness have been derived for comparison with observations. The move toward three-dimensional simulations is documented, and hydrodynamical models for multiple hot spots are discussed. It is suggested that useful insights can be obtained from two-dimensional slab jet simulation, which relax the axisymmetric constraints while allowing high numerical resolution. In particular the dentist-drill model of Scheuer (1982) for working-surface variability is substantiated, and it is shown to result from self-excited jet instabilities near the working surface.

  6. Numerical simulation of electrochemical desalination.

    PubMed

    Hlushkou, D; Knust, K N; Crooks, R M; Tallarek, U

    2016-05-18

    We present an effective numerical approach to simulate electrochemically mediated desalination of seawater. This new membraneless, energy efficient desalination method relies on the oxidation of chloride ions, which generates an ion depletion zone and local electric field gradient near the junction of a microchannel branch to redirect sea salt into the brine stream, consequently producing desalted water. The proposed numerical model is based on resolution of the 3D coupled Navier-Stokes, Nernst-Planck, and Poisson equations at non-uniform spatial grids. The model is implemented as a parallel code and can be employed to simulate mass-charge transport coupled with surface or volume reactions in 3D systems showing an arbitrarily complex geometrical configuration. PMID:27089841

  7. Numerical simulation of electrochemical desalination

    NASA Astrophysics Data System (ADS)

    Hlushkou, D.; Knust, K. N.; Crooks, R. M.; Tallarek, U.

    2016-05-01

    We present an effective numerical approach to simulate electrochemically mediated desalination of seawater. This new membraneless, energy efficient desalination method relies on the oxidation of chloride ions, which generates an ion depletion zone and local electric field gradient near the junction of a microchannel branch to redirect sea salt into the brine stream, consequently producing desalted water. The proposed numerical model is based on resolution of the 3D coupled Navier–Stokes, Nernst–Planck, and Poisson equations at non-uniform spatial grids. The model is implemented as a parallel code and can be employed to simulate mass–charge transport coupled with surface or volume reactions in 3D systems showing an arbitrarily complex geometrical configuration.

  8. Fresnel Integral Equations: Numerical Properties

    SciTech Connect

    Adams, R J; Champagne, N J II; Davis, B A

    2003-07-22

    A spatial-domain solution to the problem of electromagnetic scattering from a dielectric half-space is outlined. The resulting half-space operators are referred to as Fresnel surface integral operators. When used as preconditioners for nonplanar geometries, the Fresnel operators yield surface Fresnel integral equations (FIEs) which are stable with respect to dielectric constant, discretization, and frequency. Numerical properties of the formulations are discussed.

  9. Cuba: Multidimensional numerical integration library

    NASA Astrophysics Data System (ADS)

    Hahn, Thomas

    2016-08-01

    The Cuba library offers four independent routines for multidimensional numerical integration: Vegas, Suave, Divonne, and Cuhre. The four algorithms work by very different methods, and can integrate vector integrands and have very similar Fortran, C/C++, and Mathematica interfaces. Their invocation is very similar, making it easy to cross-check by substituting one method by another. For further safeguarding, the output is supplemented by a chi-square probability which quantifies the reliability of the error estimate.

  10. Numerical simulation of detonation failure in nitromethane

    SciTech Connect

    Kipp, M.E.; Nunziato, J.W.

    1981-01-01

    Detonation failure in the homogeneous liquid explosive nitromethane has been observed experimentally in a wide variety of confining geometries. However, numerical simulation of these failure situations with a wave propagation code has been essentially non-existent due to the large differences between the critical diameter and the length of the reaction zone - characteristic dimensions which differ by about two orders of magnitude. This inability to spatially resolve both the reaction zone and geometries of significant size has led us to propose a new numerical technique, based on the stability criterion for rate-type material models, in which only temporal resolution of the reaction zone is required. Using an improved model for nitromethane, we have carried out a series of two-dimensional calculations which illustrate the utility of the present approach in predicting a wide range of experimental observations. Of particular computational significance is the removal of the difficulty requiring spatial resolution of the reaction zone, so that problems of practical size can be analyzed with existing computer capabilities.

  11. Numerical Simulation of Taylor Cone-Jet

    NASA Astrophysics Data System (ADS)

    Toledo, Ronne

    The Taylor cone-jet is a particular type of electrohydrodynamic phenomenon where electrostatic stresses and surface tension effects shape the interface of the jet in a peculiar conical shape. A thin jet is issued from the cone apex that further breaks up into a fine aerosol. Due to its monodispersive properties, this fine aerosol has found a number of applications, ranging from mass spectrometry, colloidal space propulsion, combustion, nano-fabrication, coating/painting, and many others. In this study, a general non-dimensional analysis is performed to derive the governing equations and boundary conditions. In accordance with the observations of Gamero-Castano (2010), noting that droplet electric potential is insensitive to the flow rate conditions, a particular set of characteristic parameters is proposed, based on the terminal jet diameter. In order to solve the non-dimensional set of governing equations and boundary conditions, a numerical method combining the Boundary Element Method and the Finite Volume Method is developed. Results of electric current have shown good agreement with numerical and experimental data available in the literature. The main feature of the algorithm developed is related to the decoupling of the electrostatic from the hydrodynamic problem, allowing us to accurately prescribe the far field electric potential boundary conditions away from the hydrodynamic computational domain used to solve the hydrodynamics of the transition region near the cone apex.

  12. Numerical simulation of conservation laws

    NASA Technical Reports Server (NTRS)

    Chang, Sin-Chung; To, Wai-Ming

    1992-01-01

    A new numerical framework for solving conservation laws is being developed. This new approach differs substantially from the well established methods, i.e., finite difference, finite volume, finite element and spectral methods, in both concept and methodology. The key features of the current scheme include: (1) direct discretization of the integral forms of conservation laws, (2) treating space and time on the same footing, (3) flux conservation in space and time, and (4) unified treatment of the convection and diffusion fluxes. The model equation considered in the initial study is the standard one dimensional unsteady constant-coefficient convection-diffusion equation. In a stability study, it is shown that the principal and spurious amplification factors of the current scheme, respectively, are structurally similar to those of the leapfrog/DuFort-Frankel scheme. As a result, the current scheme has no numerical diffusion in the special case of pure convection and is unconditionally stable in the special case of pure diffusion. Assuming smooth initial data, it will be shown theoretically and numerically that, by using an easily determined optimal time step, the accuracy of the current scheme may reach a level which is several orders of magnitude higher than that of the MacCormack scheme, with virtually identical operation count.

  13. Requirements definition by numerical simulation

    NASA Astrophysics Data System (ADS)

    Hickman, James J.; Kostas, Chris; Tsang, Kang T.

    1994-10-01

    We are investigating the issues involved in requirements definition for narcotics interdiction: how much of a particular signature is possible, how does this amount change for different conditions, and what is the temporal relationship in various scenarios. Our approach has been to simulate numerically the conditions that arise during vapor or particulate transport. The advantages of this approach are that (1) a broad range of scenarios can be rapidly and inexpensively analyzed by simulation, and (2) simulations can display quantities that are difficult or impossible to measure. The drawback of this approach is that simulations cannot include all of the phenomena present in a real measurement, and therefore the fidelity of the simulation results is always an issue. To address this limitation, we will ultimately combine the results of numerical simulations with measurements of physical parameters for inclusion in the simulation. In this paper, we discuss these issues and how they apply to the current problems in narcotics interdictions, especially cargo containers. We also show the results of 1D and 3D numerical simulations, and compare these results with analytical solutions. The results indicate that this approach is viable. We also present data from 3D simulations of vapor transport in a loaded cargo container and some of the issues present in this ongoing work.

  14. Numerical methods for turbulent flow

    NASA Astrophysics Data System (ADS)

    Turner, James C., Jr.

    1988-09-01

    It has generally become accepted that the Navier-Strokes equations predict the dynamic behavior of turbulent as well as laminar flows of a fluid at a point in space away form a discontinuity such as a shock wave. Turbulence is also closely related to the phenomena of non-uniqueness of solutions of the Navier-Strokes equations. These second order, nonlinear partial differential equations can be solved analytically for only a few simple flows. Turbulent flow fields are much to complex to lend themselves to these few analytical methods. Numerical methods, therefore, offer the only possibility of achieving a solution of turbulent flow equations. In spite of recent advances in computer technology, the direct solution, by discrete methods, of the Navier-Strokes equations for turbulent flow fields is today, and in the foreseeable future, impossible. Thus the only economically feasible way to solve practical turbulent flow problems numerically is to use statistically averaged equations governing mean-flow quantities. The objective is to study some recent developments relating to the use of numerical methods to study turbulent flow.

  15. Numerical Studies of Impurities in Fusion Plasmas

    DOE R&D Accomplishments Database

    Hulse, R. A.

    1982-09-01

    The coupled partial differential equations used to describe the behavior of impurity ions in magnetically confined controlled fusion plasmas require numerical solution for cases of practical interest. Computer codes developed for impurity modeling at the Princeton Plasma Physics Laboratory are used as examples of the types of codes employed for this purpose. These codes solve for the impurity ionization state densities and associated radiation rates using atomic physics appropriate for these low-density, high-temperature plasmas. The simpler codes solve local equations in zero spatial dimensions while more complex cases require codes which explicitly include transport of the impurity ions simultaneously with the atomic processes of ionization and recombination. Typical applications are discussed and computational results are presented for selected cases of interest.

  16. Numerical Simulations of Acoustically Driven, Burning Droplets

    NASA Technical Reports Server (NTRS)

    Kim, H.-C.; Karagozian, A. R.; Smith, O. I.; Urban, Dave (Technical Monitor)

    1999-01-01

    This computational study focuses on understanding and quantifying the effects of external acoustical perturbations on droplet combustion. A one-dimensional, axisymmetric representation of the essential diffusion and reaction processes occurring in the vicinity of the droplet stagnation point is used here in order to isolate the effects of the imposed acoustic disturbance. The simulation is performed using a third order accurate, essentially non-oscillatory (ENO) numerical scheme with a full methanol-air reaction mechanism. Consistent with recent microgravity and normal gravity combustion experiments, focus is placed on conditions where the droplet is situated at a velocity antinode in order for the droplet to experience the greatest effects of fluid mechanical straining of flame structures. The effects of imposed sound pressure level and frequency are explored here, and conditions leading to maximum burning rates are identified.

  17. Numerical Analysis of Convection/Transpiration Cooling

    NASA Technical Reports Server (NTRS)

    Glass, David E.; Dilley, Arthur D.; Kelly, H. Neale

    1999-01-01

    An innovative concept utilizing the natural porosity of refractory-composite materials and hydrogen coolant to provide CONvective and TRANspiration (CONTRAN) cooling and oxidation protection has been numerically studied for surfaces exposed to a high heat flux high temperature environment such as hypersonic vehicle engine combustor walls. A boundary layer code and a porous media finite difference code were utilized to analyze the effect of convection and transpiration cooling on surface heat flux and temperature. The boundary layer code determined that transpiration flow is able to provide blocking of the surface heat flux only if it is above a minimum level due to heat addition from combustion of the hydrogen transpirant. The porous media analysis indicated that cooling of the surface is attained with coolant flow rates that are in the same range as those required for blocking, indicating that a coupled analysis would be beneficial.

  18. Numerical Analysis of Convection/Transpiration Cooling

    NASA Technical Reports Server (NTRS)

    Glass, David E.; Dilley, Arthur D.; Kelly, H. Neale

    1999-01-01

    An innovative concept utilizing the natural porosity of refractory-composite materials and hydrogen coolant to provide CONvective and TRANspiration (CONTRAN) cooling and oxidation protection has been numerically studied for surfaces exposed to a high heat flux, high temperature environment such as hypersonic vehicle engine combustor walls. A boundary layer code and a porous media finite difference code were utilized to analyze the effect of convection and transpiration cooling on surface heat flux and temperature. The boundary, layer code determined that transpiration flow is able to provide blocking of the surface heat flux only if it is above a minimum level due to heat addition from combustion of the hydrogen transpirant. The porous media analysis indicated that cooling of the surface is attained with coolant flow rates that are in the same range as those required for blocking, indicating that a coupled analysis would be beneficial.

  19. Entropy Splitting and Numerical Dissipation

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Vinokur, M.; Djomehri, M. J.

    1999-01-01

    A rigorous stability estimate for arbitrary order of accuracy of spatial central difference schemes for initial-boundary value problems of nonlinear symmetrizable systems of hyperbolic conservation laws was established recently by Olsson and Oliger (1994) and Olsson (1995) and was applied to the two-dimensional compressible Euler equations for a perfect gas by Gerritsen and Olsson (1996) and Gerritsen (1996). The basic building block in developing the stability estimate is a generalized energy approach based on a special splitting of the flux derivative via a convex entropy function and certain homogeneous properties. Due to some of the unique properties of the compressible Euler equations for a perfect gas, the splitting resulted in the sum of a conservative portion and a non-conservative portion of the flux derivative. hereafter referred to as the "Entropy Splitting." There are several potential desirable attributes and side benefits of the entropy splitting for the compressible Euler equations that were not fully explored in Gerritsen and Olsson. The paper has several objectives. The first is to investigate the choice of the arbitrary parameter that determines the amount of splitting and its dependence on the type of physics of current interest to computational fluid dynamics. The second is to investigate in what manner the splitting affects the nonlinear stability of the central schemes for long time integrations of unsteady flows such as in nonlinear aeroacoustics and turbulence dynamics. If numerical dissipation indeed is needed to stabilize the central scheme, can the splitting help minimize the numerical dissipation compared to its un-split cousin? Extensive numerical study on the vortex preservation capability of the splitting in conjunction with central schemes for long time integrations will be presented. The third is to study the effect of the non-conservative proportion of splitting in obtaining the correct shock location for high speed complex shock

  20. Towards numerical prediction of cavitation erosion.

    PubMed

    Fivel, Marc; Franc, Jean-Pierre; Chandra Roy, Samir

    2015-10-01

    This paper is intended to provide a potential basis for a numerical prediction of cavitation erosion damage. The proposed method can be divided into two steps. The first step consists in determining the loading conditions due to cavitation bubble collapses. It is shown that individual pits observed on highly polished metallic samples exposed to cavitation for a relatively small time can be considered as the signature of bubble collapse. By combining pitting tests with an inverse finite-element modelling (FEM) of the material response to a representative impact load, loading conditions can be derived for each individual bubble collapse in terms of stress amplitude (in gigapascals) and radial extent (in micrometres). This step requires characterizing as accurately as possible the properties of the material exposed to cavitation. This characterization should include the effect of strain rate, which is known to be high in cavitation erosion (typically of the order of several thousands s(-1)). Nanoindentation techniques as well as compressive tests at high strain rate using, for example, a split Hopkinson pressure bar test system may be used. The second step consists in developing an FEM approach to simulate the material response to the repetitive impact loads determined in step 1. This includes a detailed analysis of the hardening process (isotropic versus kinematic) in order to properly account for fatigue as well as the development of a suitable model of material damage and failure to account for mass loss. Although the whole method is not yet fully operational, promising results are presented that show that such a numerical method might be, in the long term, an alternative to correlative techniques used so far for cavitation erosion prediction. PMID:26442139

  1. Direct numerical simulation of turbulent reacting flows

    SciTech Connect

    Chen, J.H.

    1993-12-01

    The development of turbulent combustion models that reflect some of the most important characteristics of turbulent reacting flows requires knowledge about the behavior of key quantities in well defined combustion regimes. In turbulent flames, the coupling between the turbulence and the chemistry is so strong in certain regimes that is is very difficult to isolate the role played by one individual phenomenon. Direct numerical simulation (DNS) is an extremely useful tool to study in detail the turbulence-chemistry interactions in certain well defined regimes. Globally, non-premixed flames are controlled by two limiting cases: the fast chemistry limit, where the turbulent fluctuations. In between these two limits, finite-rate chemical effects are important and the turbulence interacts strongly with the chemical processes. This regime is important because industrial burners operate in regimes in which, locally the flame undergoes extinction, or is at least in some nonequilibrium condition. Furthermore, these nonequilibrium conditions strongly influence the production of pollutants. To quantify the finite-rate chemistry effect, direct numerical simulations are performed to study the interaction between an initially laminar non-premixed flame and a three-dimensional field of homogeneous isotropic decaying turbulence. Emphasis is placed on the dynamics of extinction and on transient effects on the fine scale mixing process. Differential molecular diffusion among species is also examined with this approach, both for nonreacting and reacting situations. To address the problem of large-scale mixing and to examine the effects of mean shear, efforts are underway to perform large eddy simulations of round three-dimensional jets.

  2. Statistical theory of asteroid escape rates.

    PubMed

    Jaffé, Charles; Ross, Shane D; Lo, Martin W; Marsden, Jerrold; Farrelly, David; Uzer, T

    2002-07-01

    Transition states in phase space are identified and shown to regulate the rate of escape of asteroids temporarily captured in circumplanetary orbits. The transition states, similar to those occurring in chemical reaction dynamics, are then used to develop a statistical semianalytical theory for the rate of escape of asteroids temporarily captured by Mars. Theory and numerical simulations are found to agree to better than 1%. These calculations suggest that further development of transition state theory in celestial mechanics, as an alternative to large-scale numerical simulations, will be a fruitful approach to mass transport calculations. PMID:12097024

  3. Advanced Numerical Model for Irradiated Concrete

    SciTech Connect

    Giorla, Alain B.

    2015-03-01

    In this report, we establish a numerical model for concrete exposed to irradiation to address these three critical points. The model accounts for creep in the cement paste and its coupling with damage, temperature and relative humidity. The shift in failure mode with the loading rate is also properly represented. The numerical model for creep has been validated and calibrated against different experiments in the literature [Wittmann, 1970, Le Roy, 1995]. Results from a simplified model are shown to showcase the ability of numerical homogenization to simulate irradiation effects in concrete. In future works, the complete model will be applied to the analysis of the irradiation experiments of Elleuch et al. [1972] and Kelly et al. [1969]. This requires a careful examination of the experimental environmental conditions as in both cases certain critical information are missing, including the relative humidity history. A sensitivity analysis will be conducted to provide lower and upper bounds of the concrete expansion under irradiation, and check if the scatter in the simulated results matches the one found in experiments. The numerical and experimental results will be compared in terms of expansion and loss of mechanical stiffness and strength. Both effects should be captured accordingly by the model to validate it. Once the model has been validated on these two experiments, it can be applied to simulate concrete from nuclear power plants. To do so, the materials used in these concrete must be as well characterized as possible. The main parameters required are the mechanical properties of each constituent in the concrete (aggregates, cement paste), namely the elastic modulus, the creep properties, the tensile and compressive strength, the thermal expansion coefficient, and the drying shrinkage. These can be either measured experimentally, estimated from the initial composition in the case of cement paste, or back-calculated from mechanical tests on concrete. If some

  4. Lethality of Suicide Attempt Rating Scale.

    ERIC Educational Resources Information Center

    Smith, K.; And Others

    1984-01-01

    Presents an 11-point scale for measuring the degree of lethality of suicide attempts. The scale has nine example "anchors" and uses the relative lethality of an extensive table of drugs. The scale can be used reliably by nonmedical personnel with no prior training. (Author/BL)

  5. Quantitative comparisons of numerical models of brittle wedge dynamics

    NASA Astrophysics Data System (ADS)

    Buiter, Susanne

    2010-05-01

    Numerical and laboratory models are often used to investigate the evolution of deformation processes at various scales in crust and lithosphere. In both approaches, the freedom in choice of simulation method, materials and their properties, and deformation laws could affect model outcomes. To assess the role of modelling method and to quantify the variability among models, we have performed a comparison of laboratory and numerical experiments. Here, we present results of 11 numerical codes, which use finite element, finite difference and distinct element techniques. We present three experiments that describe shortening of a sand-like, brittle wedge. The material properties of the numerical ‘sand', the model set-up and the boundary conditions are strictly prescribed and follow the analogue setup as closely as possible. Our first experiment translates a non-accreting wedge with a stable surface slope of 20 degrees. In agreement with critical wedge theory, all models maintain the same surface slope and do not deform. This experiment serves as a reference that allows for testing against analytical solutions for taper angle, root-mean-square velocity and gravitational rate of work. The next two experiments investigate an unstable wedge in a sandbox-like setup, which deforms by inward translation of a mobile wall. The models accommodate shortening by formation of forward and backward shear zones. We compare surface slope, rate of dissipation of energy, root-mean-square velocity, and the location, dip angle and spacing of shear zones. We show that we successfully simulate sandbox-style brittle behaviour using different numerical modelling techniques and that we obtain the same styles of deformation behaviour in numerical and laboratory experiments at similar levels of variability. The GeoMod2008 Numerical Team: Markus Albertz, Michelle Cooke, Tony Crook, David Egholm, Susan Ellis, Taras Gerya, Luke Hodkinson, Boris Kaus, Walter Landry, Bertrand Maillot, Yury Mishin

  6. Numerical methods for molecular dynamics

    SciTech Connect

    Skeel, R.D.

    1991-01-01

    This report summarizes our research progress to date on the use of multigrid methods for three-dimensional elliptic partial differential equations, with particular emphasis on application to the Poisson-Boltzmann equation of molecular biophysics. This research is motivated by the need for fast and accurate numerical solution techniques for three-dimensional problems arising in physics and engineering. In many applications these problems must be solved repeatedly, and the extremely large number of discrete unknowns required to accurately approximate solutions to partial differential equations in three-dimensional regions necessitates the use of efficient solution methods. This situation makes clear the importance of developing methods which are of optimal order (or nearly so), meaning that the number of operations required to solve the discrete problem is on the order of the number of discrete unknowns. Multigrid methods are generally regarded as being in this class of methods, and are in fact provably optimal order for an increasingly large class of problems. The fundamental goal of this research is to develop a fast and accurate numerical technique, based on multi-level principles, for the solutions of the Poisson-Boltzmann equation of molecular biophysics and similar equations occurring in other applications. An outline of the report is as follows. We first present some background material, followed by a survey of the literature on the use of multigrid methods for solving problems similar to the Poisson-Boltzmann equation. A short description of the software we have developed so far is then given, and numerical results are discussed. Finally, our research plans for the coming year are presented.

  7. Numerical methods for multibody systems

    NASA Technical Reports Server (NTRS)

    Glowinski, Roland; Nasser, Mahmoud G.

    1994-01-01

    This article gives a brief summary of some results obtained by Nasser on modeling and simulation of inequality problems in multibody dynamics. In particular, the augmented Lagrangian method discussed here is applied to a constrained motion problem with impulsive inequality constraints. A fundamental characteristic of the multibody dynamics problem is the lack of global convexity of its Lagrangian. The problem is transformed into a convex analysis problem by localization (piecewise linearization), where the augmented Lagrangian has been successfully used. A model test problem is considered and a set of numerical experiments is presented.

  8. Results from Numerical General Relativity

    NASA Technical Reports Server (NTRS)

    Baker, John G.

    2011-01-01

    For several years numerical simulations have been revealing the details of general relativity's predictions for the dynamical interactions of merging black holes. I will review what has been learned of the rich phenomenology of these mergers and the resulting gravitational wave signatures. These wave forms provide a potentially observable record of the powerful astronomical events, a central target of gravitational wave astronomy. Asymmetric radiation can produce a thrust on the system which may accelerate the single black hole resulting from the merger to high relative velocity.

  9. Numerical study of rock blasting

    NASA Astrophysics Data System (ADS)

    Stefanov, Yu. P.; Bakeev, R. A.; Yudin, A. S.; Kuznetsova, N. S.

    2015-10-01

    The paper presents numerical simulation results on fracture of a concrete block due to dynamic explosive loads applied to the walls of a blast hole. Considered in the study is the influence of the pulse shape and rock properties on the pattern of irreversible deformation and cracking. It is found that a fractured zone bounded by a plastically deformed contour always arises around the explosion site. Comparison of elastoplastic deformation and fracture induced in the concrete block by explosion pulses of different durations and amplitudes shows that shorter pulses with higher amplitudes and steeper rise times provide a higher blasting efficiency.

  10. Radiation transport in numerical astrophysics

    SciTech Connect

    Lund, C.M.

    1983-02-01

    In this article, we discuss some of the numerical techniques developed by Jim Wilson and co-workers for the calculation of time-dependent radiation flow. Difference equations for multifrequency transport are given for both a discrete-angle representation of radiation transport and a Fick's law-like representation. These methods have the important property that they correctly describe both the streaming and diffusion limits of transport theory in problems where the mean free path divided by characteristic distances varies from much less than one to much greater than one. They are also stable for timesteps comparable to the changes in physical variables, rather than being limited by stability requirements.

  11. Disruptive Innovation in Numerical Hydrodynamics

    SciTech Connect

    Waltz, Jacob I.

    2012-09-06

    We propose the research and development of a high-fidelity hydrodynamic algorithm for tetrahedral meshes that will lead to a disruptive innovation in the numerical modeling of Laboratory problems. Our proposed innovation has the potential to reduce turnaround time by orders of magnitude relative to Advanced Simulation and Computing (ASC) codes; reduce simulation setup costs by millions of dollars per year; and effectively leverage Graphics Processing Unit (GPU) and future Exascale computing hardware. If successful, this work will lead to a dramatic leap forward in the Laboratory's quest for a predictive simulation capability.

  12. Gyrotactic trapping: A numerical study

    NASA Astrophysics Data System (ADS)

    Ghorai, S.

    2016-04-01

    Gyrotactic trapping is a mechanism proposed by Durham et al. ["Disruption of vertical motility by shear triggers formation of thin Phytoplankton layers," Science 323, 1067-1070 (2009)] to explain the formation of thin phytoplankton layer just below the ocean surface. This mechanism is examined numerically using a rational model based on the generalized Taylor dispersion theory. The crucial role of sedimentation speed in the thin layer formation is demonstrated. The effects of variation in different parameters on the thin layer formation are also investigated.

  13. Numerical study of the small scale structures in Boussinesq convection

    NASA Technical Reports Server (NTRS)

    Weinan, E.; Shu, Chi-Wang

    1992-01-01

    Two-dimensional Boussinesq convection is studied numerically using two different methods: a filtered pseudospectral method and a high order accurate Essentially Nonoscillatory (ENO) scheme. The issue whether finite time singularity occurs for initially smooth flows is investigated. The numerical results suggest that the collapse of the bubble cap is unlikely to occur in resolved calculations. The strain rate corresponding to the intensification of the density gradient across the front saturates at the bubble cap. We also found that the cascade of energy to small scales is dominated by the formulation of thin and sharp fronts across which density jumps.

  14. Formulation of numerical procedures for dynamic analysis of spinning structures

    NASA Technical Reports Server (NTRS)

    Gupta, K. K.

    1986-01-01

    The paper presents the descriptions of recently developed numerical algorithms that prove to be useful for the solution of the free vibration problem of spinning structures. First, a generalized procedure for the computation of nodal centrifugal forces in a finite element owing to any specified spin rate is derived in detail. This is followed by a description of an improved eigenproblem solution procedure that proves to be economical for the free vibration analysis of spinning structures. Numerical results are also presented which indicate the efficacy of the currently developed procedures.

  15. Numerical study of homogeneous nanodroplet growth.

    PubMed

    Quang, Tran Si Bui; Leong, Fong Yew; Mirsaidov, Utkur M

    2015-01-15

    We investigate the axisymmetric homogeneous growth of 10-100 nm water nanodroplets on a substrate surface. The main mechanism of droplet growth is attributed to the accumulation of laterally diffusing water monomers, formed by the absorption of water vapour in the environment onto the substrate. Under assumptions of quasi-steady thermodynamic equilibrium, the nanodroplet evolves according to the augmented Young-Laplace equation. Using continuum theory, we model the dynamics of nanodroplet growth including the coupled effects of disjoining pressure, contact angle and monomer diffusion. Our numerical results show that the initial droplet growth is dominated by monomer diffusion, and the steady late growth rate of droplet radius follows a power law of 1/3, which is unaffected by the substrate disjoining pressure. Instead, the disjoining pressure modifies the growth rate of the droplet height, which then follows a power law of 1/4. We demonstrate how spatial depletion of monomers could lead to a growth arrest of the nanodroplet, as observed experimentally. This work has further implications on the growth kinetics, transport and phase transition of liquids at the nanoscale. PMID:25454424

  16. Numerical modeling of fluidic flow meters

    NASA Astrophysics Data System (ADS)

    Choudhury, D.; Patel, B. R.

    1992-05-01

    The transient fluid flow in fluidic flow meters has been modeled using Creare.x's flow modeling computer program FLUENT/BFC that solves the Navier-Stokes equations in general curvilinear coordinates. The numerical predictions of fluid flow in a fluidic flow meter have been compared with the available experimental results for a particular design, termed the PC-4 design. Overall flow structures such as main jet bending, and primary and secondary vortices predicted by FLUENT/BFC are in excellent agreement with flow visualization results. The oscillation frequencies of the PC-4 design have been predicted for a range of flow rates encompassing laminar and turbulent flow and the results are in good agreement with experiments. The details of the flow field predictions reveal that an important factor that determines the onset of oscillations in the fluidic flow meter is the feedback jet momentum relative to the main jet momentum. The insights provided by the analysis of the PC-4 fluidic flow meter design have led to an improved design. The improved design has sustained oscillations at lower flow rates compared with the PC-4 design and has a larger rangeability.

  17. Saturn's North Polar Hexagon Numerical Modeling Results

    NASA Astrophysics Data System (ADS)

    Morales-Juberias, R.; Sayanagi, K. M.; Dowling, T. E.

    2008-12-01

    In 1980, Voyager images revealed the presence of a circumpolar wave at 78 degrees planetographic latitude in the northern hemisphere of Saturn. It was notable for having a dominant planetary wavenumber-six zonal mode, and for being stationary with respect to Saturn's Kilometric Radiation rotation rate measured by Voyager. The center of this hexagonal feature was coincident with the center of a sharp eastward jet with a peak speed of 100 ms-1 and it had a meridional width of about 4 degrees. This hexagonal feature was confirmed in 1991 through ground-based observations, and it was observed again in 2006 with the Cassini VIMS instrument. The latest observations highlight the longevity of the hexagon and suggest that it extends at least several bars deep into the atmosphere. We use the Explicit Planetary Isentropic Code (EPIC) to perform high-resolution numerical simulations of this unique feature. We show that a wavenumber six instability mode arises naturally from initially barotropic jets when seeded with weak random turbulence. We also discuss the properties of the wave activity on the background vertical stability, zonal wind, planetary rotation rate and adjacent vortices. Computational resources were provided by the New Mexico Computing Applications Center and New Mexico Institute of Mining and Technology and the Comparative Planetology Laboratory at the University of Louisville.

  18. Numerical Propulsion System Simulation Architecture

    NASA Technical Reports Server (NTRS)

    Naiman, Cynthia G.

    2004-01-01

    The Numerical Propulsion System Simulation (NPSS) is a framework for performing analysis of complex systems. Because the NPSS was developed using the object-oriented paradigm, the resulting architecture is an extensible and flexible framework that is currently being used by a diverse set of participants in government, academia, and the aerospace industry. NPSS is being used by over 15 different institutions to support rockets, hypersonics, power and propulsion, fuel cells, ground based power, and aerospace. Full system-level simulations as well as subsystems may be modeled using NPSS. The NPSS architecture enables the coupling of analyses at various levels of detail, which is called numerical zooming. The middleware used to enable zooming and distributed simulations is the Common Object Request Broker Architecture (CORBA). The NPSS Developer's Kit offers tools for the developer to generate CORBA-based components and wrap codes. The Developer's Kit enables distributed multi-fidelity and multi-discipline simulations, preserves proprietary and legacy codes, and facilitates addition of customized codes. The platforms supported are PC, Linux, HP, Sun, and SGI.

  19. Numerical tests of stochastic tomography

    NASA Astrophysics Data System (ADS)

    Ru-Shan, Wu; Xiao-Bi, Xie

    1991-05-01

    The method of stochastic tomography proposed by Wu is tested numerically. This method reconstructs the heterospectra (power spectra of heterogeneities) at all depths of a non-uniform random medium using measured joint transverse-angular coherence functions (JTACF) of transmission fluctuations on an array. The inversion method is based on a constrained least-squares inversion implemented via the singular value decomposition. The inversion is also applicable to reconstructions using transverse coherence functions (TCF) or angular coherence functions (ACF); these are merely special cases of JTACF. Through the analysis of sampling functions and singular values, and through numerical examples of reconstruction using theoretically generated coherence functions, we compare the resolution and robustness of reconstructions using TCF, ACF and JTACF. The JTACF can `focus' the coherence analysis at different depths and therefore has a better depth resolution than TCF and ACF. In addition, the JTACF contains much more information than the sum of TCF and ACF, and has much better noise resistance properties than TCF and ACF. Inversion of JTACF can give a reliable reconstruction of heterospectra at different depths even for data with 20% noise contamination. This demonstrates the feasibility of stochastic tomography using JTACF.

  20. Suppressing the numerical Cherenkov radiation in the Yee numerical scheme

    NASA Astrophysics Data System (ADS)

    Nuter, Rachel; Tikhonchuk, Vladimir

    2016-01-01

    The next generation of laser facilities will routinely produce relativistic particle beams from the interaction of intense laser pulses with solids and/or gases. Their modeling with Particle-In-Cell (PIC) codes needs dispersion-free Maxwell solvers in order to properly describe the interaction of electromagnetic waves with relativistic particles. A particular attention is devoted to the suppression of the numerical Cherenkov instability, responsible for the noise generation. It occurs when the electromagnetic wave is artificially slowed down because of the finite mesh size, thus allowing for the high energy particles to propagate with super-luminous velocities. In the present paper, we show how a slight increase of the light velocity in the Maxwell's equations enables to suppress this instability while keeping a good overall precision of calculations.

  1. Numerical modeling of chemical vapor deposition (CVD) in a horizontal reactor

    NASA Technical Reports Server (NTRS)

    Sheikholeslami, M. Z.; Jasinski, T.; Fretz, K. W.

    1988-01-01

    In the present numerical prediction of the deposition rate of silicon from silane in a CVD process, the conservation equations for mass, momentum, energy, and chemical species are solved on a staggered grid using the SIMPLE algorithm, while the rate of chemical reactions in the gas phase and on the susceptor surface is obtained from an Arrhenius rate equation. Predicted deposition rates as a function of position along the susceptor with and without the gas phase chemical reaction are compared with the available experimental and numerical data; agreement is excellent except at the leading edge of the susceptor, where the deposition rate is overpredicted.

  2. Kramers' rate for systems with multiplicative noise

    NASA Astrophysics Data System (ADS)

    Rosas, Alexandre; Pinto, Italo'Ivo Lima Dias; Lindenberg, Katja

    2016-07-01

    Kramers' rate for the passage of trajectories X (t ) over an energy barrier due to thermal or other fluctuations is usually associated with additive noise. We present a generalization of Kramers' rate for systems with multiplicative noise. We show that the expression commonly used in the literature for multiplicative noise is not correct, and we present results of numerical integrations of the Langevin equation for d X (t )/d t evolving in a quartic bistable potential which corroborate our claim.

  3. Kramers' rate for systems with multiplicative noise.

    PubMed

    Rosas, Alexandre; Pinto, Italo'Ivo Lima Dias; Lindenberg, Katja

    2016-07-01

    Kramers' rate for the passage of trajectories X(t) over an energy barrier due to thermal or other fluctuations is usually associated with additive noise. We present a generalization of Kramers' rate for systems with multiplicative noise. We show that the expression commonly used in the literature for multiplicative noise is not correct, and we present results of numerical integrations of the Langevin equation for dX(t)/dt evolving in a quartic bistable potential which corroborate our claim. PMID:27575071

  4. Nucleation rate in monotectic alloys

    NASA Astrophysics Data System (ADS)

    Falk, F.

    Cooling a melt of a monotectic system into the miscibility gap results in nucleation of fluid droplets in a fluid matrix prior to solidification. For homogeneous nucleation the temperature dependence of the nucleation rate is calculated. As material parameters the chemical potential of the species involved, the diffusion constant of the fluid, and the surface tension between adjacent phases are important. Since their temperature dependence is not well known from experiments, different theoretical models are used and their influence is discussed. The surface tension turns out to be the most crucial parameter in determining the nucleation rate. For AlIn numerical results are presented. In this system the undercooling with respect to homogeneous nucleation increases from zero at the critical point to 100 K at a composition near the monotectic point.

  5. Numerical Modeling of Shear Bands and Dynamic Fracture in Metals

    NASA Astrophysics Data System (ADS)

    McAuliffe, Colin James

    Understanding the failure of metals at high strain rate is of utmost importance in the design of a broad range of engineering systems. Numerical methods offer the ability to analyze such complex physics and aid the design of structural systems. The objective of this research will be to develop reliable finite element models for high strain rate failure modelling, incorporating shear bands and fracture. Shear band modelling is explored first, and the subsequent developments are extended to incorporate fracture. Mesh sensitivity, the spurious dependence of failure on the discretization, is a well known hurdle in achieving reliable numerical results for shear bands and fracture, or any other strain softening model. Mesh sensitivity is overcome by regularization, and while details of regularization techniques may differ, all are similar in that a length scale is introduced which serves as a localization limiter. This dissertation contains two main contributions, the first of which presents several developments in shear band modeling. The importance of using a monolithic nonlinear solver in combination with a PDE model accounting for thermal diffusion is demonstrated. In contrast, excluding one or both of these components leads to unreliable numerical results. The Pian-Sumihara stress interpolants are also employed in small and finite deformation and shown to significantly improve the computational cost of shear band modelling. This is partly due to the fact that fewer unknowns than an irreducible discretization result from the same mesh, and more significantly, the fact that convergence of numerical results upon mesh refinement is improved drastically. This means coarser meshes are adequate to resolve shear bands, alleviating some of the computational cost of numerical modelling, which are notoriously significant. Since extremely large deformations are present during shear banding, a mesh to mesh transfer algorithm is presented for the Pian Sumihara element and used as

  6. Seafloor weathering buffering climate: numerical experiments

    NASA Astrophysics Data System (ADS)

    Farahat, N. X.; Archer, D. E.; Abbot, D. S.

    2013-12-01

    Continental silicate weathering is widely held to consume atmospheric CO2 at a rate controlled in part by temperature, resulting in a climate-weathering feedback [Walker et al., 1981]. It has been suggested that weathering of oceanic crust of warm mid-ocean ridge flanks also has a CO2 uptake rate that is controlled by climate [Sleep and Zahnle, 2001; Brady and Gislason, 1997]. Although this effect might not be significant on present-day Earth [Caldeira, 1995], seafloor weathering may be more pronounced during snowball states [Le Hir et al., 2008], during the Archean when seafloor spreading rates were faster [Sleep and Zahnle, 2001], and on waterworld planets [Abbot et al., 2012]. Previous studies of seafloor weathering have made significant contributions using qualitative, generally one-box, models, and the logical next step is to extend this work using a spatially resolved model. For example, experiments demonstrate that seafloor weathering reactions are temperature dependent, but it is not clear whether the deep ocean temperature affects the temperature at which the reactions occur, or if instead this temperature is set only by geothermal processes. Our goal is to develop a 2-D numerical model that can simulate hydrothermal circulation and resulting alteration of oceanic basalts, and can therefore address such questions. A model of diffusive and convective heat transfer in fluid-saturated porous media simulates hydrothermal circulation through porous oceanic basalt. Unsteady natural convection is solved for using a Darcy model of porous media flow that has been extensively benchmarked. Background hydrothermal circulation is coupled to mineral reaction kinetics of basaltic alteration and hydrothermal mineral precipitation. In order to quantify seafloor weathering as a climate-weathering feedback process, this model focuses on hydrothermal reactions that influence carbon uptake as well as ocean alkalinity: silicate rock dissolution, calcium and magnesium leaching

  7. Revealing Educationally Critical Aspects of Rate

    ERIC Educational Resources Information Center

    Herbert, Sandra; Pierce, Robyn

    2012-01-01

    Rate (of change) is an important but complicated mathematical concept describing a ratio comparing two different numeric, measurable quantities. Research referring to students' difficulties with this concept spans more than 20 years. It suggests that problems experienced by some calculus students are likely a result of pre-existing limited or…

  8. Numerical experiments in homogeneous turbulence

    NASA Technical Reports Server (NTRS)

    Rogallo, R. S.

    1981-01-01

    The direct simulation methods developed by Orszag and Patternson (1972) for isotropic turbulence were extended to homogeneous turbulence in an incompressible fluid subjected to uniform deformation or rotation. The results of simulations for irrotational strain (plane and axisymmetric), shear, rotation, and relaxation toward isotropy following axisymmetric strain are compared with linear theory and experimental data. Emphasis is placed on the shear flow because of its importance and because of the availability of accurate and detailed experimental data. The computed results are used to assess the accuracy of two popular models used in the closure of the Reynolds-stress equations. Data from a variety of the computed fields and the details of the numerical methods used in the simulation are also presented.

  9. Numerical propagator through PIAA optics

    NASA Astrophysics Data System (ADS)

    Pueyo, Laurent; Shaklan, Stuart; Give'On, Amir; Krist, John

    2009-08-01

    In this communication we address two outstanding issues pertaining the modeling of PIAA coronagraphs, accurate numerical propagation of edge effects and fast propagation of mid spatial frequencies for wavefront control. In order to solve them, we first derive a quadratic approximation of the Huygens wavelets that allows us to develop an angular spectrum propagator for pupil remapping. Using this result we introduce an independent method to verify the ultimate contrast floor, due to edge propagation effects, of PIAA units currently being tested in various testbeds. We then delve into the details of a novel fast algorithm, based on the recognition that angular spectrum computations with a pre-apodised system are computationally light. When used for the propagation of mid spatial frequencies, such a fast propagator will ultimately allow us to develop robust wavefront control algorithms with DMs located before the pupil remapping mirrors.

  10. Numerical classification of coding sequences

    NASA Technical Reports Server (NTRS)

    Collins, D. W.; Liu, C. C.; Jukes, T. H.

    1992-01-01

    DNA sequences coding for protein may be represented by counts of nucleotides or codons. A complete reading frame may be abbreviated by its base count, e.g. A76C158G121T74, or with the corresponding codon table, e.g. (AAA)0(AAC)1(AAG)9 ... (TTT)0. We propose that these numerical designations be used to augment current methods of sequence annotation. Because base counts and codon tables do not require revision as knowledge of function evolves, they are well-suited to act as cross-references, for example to identify redundant GenBank entries. These descriptors may be compared, in place of DNA sequences, to extract homologous genes from large databases. This approach permits rapid searching with good selectivity.

  11. Numerical calculations of flow fields

    NASA Technical Reports Server (NTRS)

    Anderson, D. M.; Vogel, J. M.

    1972-01-01

    The solutions to the equations of motion for inviscid fluid flow around a pointed elliptic cone at incidence are presented. The numerical method used, MacCormack's second order preferential predictor-corrector finite difference approximation, is applied to the fluid flow equations derived in conservation-law form. The entropy boundary condition, hitherto unused for elliptic cone problems, is investigated and compared to reflection boundary condition solutions. The stagnation streamline movement of the inclined elliptic cone is noted and surface pressure coefficients are plotted. Also presented are solutions for an elliptic cone and a circular cone at zero incidence and a circular cone at a small angle of attack. Comparisons are made between these present solutions and previously published theory.

  12. Numerical studies of frontal dynamics

    NASA Technical Reports Server (NTRS)

    Keyser, Daniel

    1986-01-01

    Efforts concentrated on the development of a two dimensional primitive equation (PE) model of frontogenesis that simultaneously incorporates the frontagenetical mechanisms of confluence and horizontal shear. Applying this model to study the effects of upper level frontogenesis, it appeared to be dominated by tilting effects associated with cross front variation of vertical motion, in which subsidence is maximized within and to the warm side of the frontal zone. Results suggest that aspects characteristic of three-dimensional baroclinic waves may be abstracted to a significant extent in a two dimensional framework. They also show that upper-level frontogenesis and tropopause folding can occur in the absence of three-dimensional curvature effects, commonly believed to be necessary for realistic upper-level frontogenesis. An implication of the dominant tilting effects is that they may have to be adequately resolved by numerical weather prediction models, thus requiring better horizontal and vertical resolution.

  13. Comprehensive numerical modelling of tokamaks

    SciTech Connect

    Cohen, R.H.; Cohen, B.I.; Dubois, P.F.

    1991-01-03

    We outline a plan for the development of a comprehensive numerical model of tokamaks. The model would consist of a suite of independent, communicating packages describing the various aspects of tokamak performance (core and edge transport coefficients and profiles, heating, fueling, magnetic configuration, etc.) as well as extensive diagnostics. These codes, which may run on different computers, would be flexibly linked by a user-friendly shell which would allow run-time specification of packages and generation of pre- and post-processing functions, including workstation-based visualization of output. One package in particular, the calculation of core transport coefficients via gyrokinetic particle simulation, will become practical on the scale required for comprehensive modelling only with the advent of teraFLOP computers. Incremental effort at LLNL would be focused on gyrokinetic simulation and development of the shell.

  14. Numerical Cosmic-Ray Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Miniati, F.

    2009-04-01

    We present a numerical method for integrating the equations describing a system made of a fluid and cosmic-rays. We work out the modified characteristic equations that include the CR dynamical effects in smooth flows. We model the energy exchange between cosmic-rays and the fluid, due to diffusive processes in configuration and momentum space, with a flux conserving method. For a specified shock acceleration efficiency as a function of the upstream conditions and shock Mach number, we modify the Riemann solver to take into account the cosmic-ray mediation at shocks without resolving the cosmic-ray induced substructure. A self-consistent time-dependent shock solution is obtained by using our modified solver with Glimm's method. Godunov's method is applied in smooth parts of the flow.

  15. Dynamical Casimir effect in superconducting circuits: A numerical approach

    NASA Astrophysics Data System (ADS)

    Lombardo, F. C.; Mazzitelli, F. D.; Soba, A.; Villar, P. I.

    2016-03-01

    We present a numerical analysis of the particle creation for a quantum field in the presence of time-dependent boundary conditions. Having in mind recent experiments involving superconducting circuits, we consider their description in terms of a scalar field in a one-dimensional cavity satisfying generalized boundary conditions that involve a time-dependent linear combination of the field and its spatial and time derivatives. We evaluate numerically the Bogoliubov transformation between i n - and o u t -states and find that the rate of particle production strongly depends on whether the spectrum of the unperturbed cavity is equidistant or not, and also on the amplitude of the temporal oscillations of the boundary conditions. We provide analytic justifications for the different regimes found numerically.

  16. Numerical Simulations of the Geodynamo and Scaling Laws

    NASA Astrophysics Data System (ADS)

    Oruba, L.; Dormy, E.

    2013-12-01

    State of the art numerical models of the Geodynamo are still performed in a parameter regime extremely remote from the values relevant to the physics of the Earth core. In order to establish a connection between dynamo modeling and the geophysical motivation, it is necessary to use scaling laws. Such laws establish the dependency of essential quantities (such as the magnetic field strength) on measured or controlled quantities. They allow for a direct confrontation of advanced models with geophysical constraints. We will present a detailed analysis of scaling laws based on a wide database of 185 direct numerical simulations (courtesy of U. Christensen) and test various existing scaling laws. Our main concern is to stress the risks of a direct numerical fit free from physical insight. We show that different a priori hypothesis can yield contradictory dependences, in particular concerning the dependence of the magnetic field strength on the rotation rate as well as on the viscosity.

  17. NUMERICAL SIMULATION OF NATURAL GAS-SWIRL BURNER

    SciTech Connect

    Ala Qubbaj

    2005-03-01

    A numerical simulation of a turbulent natural gas jet diffusion flame at a Reynolds number of 9000 in a swirling air stream is presented. The numerical computations were carried out using the commercially available software package CFDRC. The instantaneous chemistry model was used as the reaction model. The thermal, composition, flow (velocity), as well as stream function fields for both the baseline and air-swirling flames were numerically simulated in the near-burner region, where most of the mixing and reactions occur. The results were useful to interpret the effects of swirl in enhancing the mixing rates in the combustion zone as well as in stabilizing the flame. The results showed the generation of two recirculating regimes induced by the swirling air stream, which account for such effects. The present investigation will be used as a benchmark study of swirl flow combustion analysis as a step in developing an enhanced swirl-cascade burner technology.

  18. Numerical simulation of an axial blood pump.

    PubMed

    Chua, Leok Poh; Su, Boyang; Lim, Tau Meng; Zhou, Tongming

    2007-07-01

    The axial blood pump with a magnetically suspended impeller is superior to other artificial blood pumps because of its small size. In this article, the distributions of velocity, path line, pressure, and shear stress in the straightener, the rotor, and the diffuser of the axial blood pump, as well as the gap zone were obtained using the commercial software, Fluent (version 6.2). The main focus was on the flow field of the blood pump. The numerical results showed that the axial blood pump could produce 5.14 L/min of blood at 100 mm Hg through the outlet when rotating at 11,000 rpm. However, there was a leakage flow of 1.06 L/min in the gap between the rotor cylinder and the pump housing, and thus the overall flow rate the impeller could generate was 6.2 L/min. The numerical results showed that 75% of the scalar shear stresses (SSs) were less than 250 Pa, and 10% were higher than 500 Pa within the whole pump. The high SS region appeared around the blade tip where a large variation of velocity direction and magnitude was found, which might be due to the steep angle variation at the blade tip. Because the exposure time of the blood cell at the high SS region within the pump was relatively short, it might not cause serious damage to the blood cells, but the improvement of blade profile should be considered in the future design of the axial pump. PMID:17584481

  19. Teaching Mathematics with Technology: Numerical Relationships.

    ERIC Educational Resources Information Center

    Bright, George W.

    1989-01-01

    Developing numerical relationships with calculators is emphasized. Calculators furnish some needed support for students as they investigate the value of fractions as the numerators or denominators change. An example with Logo programing for computers is also included. (MNS)

  20. Numerical Simulation of Nanostructure Growth

    NASA Technical Reports Server (NTRS)

    Hwang, Helen H.; Bose, Deepak; Govindan, T. R.; Meyyappan, M.

    2004-01-01

    Nanoscale structures, such as nanowires and carbon nanotubes (CNTs), are often grown in gaseous or plasma environments. Successful growth of these structures is defined by achieving a specified crystallinity or chirality, size or diameter, alignment, etc., which in turn depend on gas mixture ratios. pressure, flow rate, substrate temperature, and other operating conditions. To date, there has not been a rigorous growth model that addresses the specific concerns of crystalline nanowire growth, while demonstrating the correct trends of the processing conditions on growth rates. Most crystal growth models are based on the Burton, Cabrera, and Frank (BCF) method, where adatoms are incorporated into a growing crystal at surface steps or spirals. When the supersaturation of the vapor is high, islands nucleate to form steps, and these steps subsequently spread (grow). The overall bulk growth rate is determined by solving for the evolving motion of the steps. Our approach is to use a phase field model to simulate the growth of finite sized nanowire crystals, linking the free energy equation with the diffusion equation of the adatoms. The phase field method solves for an order parameter that defines the evolving steps in a concentration field. This eliminates the need for explicit front tracking/location, or complicated shadowing routines, both of which can be computationally expensive, particularly in higher dimensions. We will present results demonstrating the effect of process conditions, such as substrate temperature, vapor supersaturation, etc. on the evolving morphologies and overall growth rates of the nanostructures.

  1. Reconnection rates of magnetic fields

    SciTech Connect

    Park, W.; Monticello, D.A.; White, R.B.

    1983-05-01

    The Sweet-Parker and Petschek scalings of magnetic reconnection rate are modified to include the effect of the viscosity. The modified scalings show that the viscous effect can be important in high-..beta.. plasmas. The theoretical reconnection scalings are compared with numerical simulation results in a tokamak geometry for three different cases: a forced reconnection driven by external coils, the nonlinear m = 1 resistive internal kink, and the nonlinear m = 2 tearing mode. In the first two cases, the numerical reconnection rate agrees well with the modified Sweet-Parker scaling, when the viscosity is sufficiently large. When the viscosity is negligible, a steady state which was assumed in the derivation of the reconnection scalings is not reached and the current sheet in the reconnection layer either remains stable through sloshing motions of the plasma or breaks up to higher m modes. When the current sheet remains stable, a rough comparison with the Sweet-Parker scaling is obtained. In the nonlinear m = 2 tearing mode case where the instability is purely resistive, the reconnection occurs on the slower dissipation time scale (Psi/sub s/ approx. eta). In addition, experimental data of the nonlinear m = 1 resistive internal kink in tokamak discharges are analyzed and are found to give reasonable agreement with the modified Sweet-Parker scaling.

  2. Numeric Databases in the 80s.

    ERIC Educational Resources Information Center

    Fried, John B.; Kovacs, Gabor J.

    1982-01-01

    Defining a numeric database as a computer-readable collection of data predominantly numeric in nature, this article reviews techniques and technologies having a positive influence on the growth of numeric databases, such as videotex, mini- and microcomputers, artificial intelligence, improved software, telecommunications, and office automation.…

  3. Descriptive Report on Numerically Controlled Equipment.

    ERIC Educational Resources Information Center

    Campbell, Clifton P.

    This report presents descriptive information on numerically controlled operational devises. The information is designed for the education and training community, manufacturers, supervisors, machine operators, and others who do not have an extensive technical background in numerical control. In the first of three chapters, numerical control…

  4. The Language of Numerical Control: A Glossary.

    ERIC Educational Resources Information Center

    Campbell, Clifton Paul

    Numerical control, a technique for automatically controlling equipment, is a system in which machine actions are determined by symbolic data recorded on a suitable media. This glossary of standardized nomenclature for numerical control defines and describes some 286 technical words and terms. Numerous entries are defined and described as they…

  5. Interagency mechanical operations group numerical systems group

    SciTech Connect

    1997-09-01

    This report consists of the minutes of the May 20-21, 1971 meeting of the Interagency Mechanical Operations Group (IMOG) Numerical Systems Group. This group looks at issues related to numerical control in the machining industry. Items discussed related to the use of CAD and CAM, EIA standards, data links, and numerical control.

  6. Numerical homogenization on approach for stokesian suspensions.

    SciTech Connect

    Haines, B. M.; Berlyand, L. V.; Karpeev, D. A.

    2012-01-20

    In this technical report we investigate efficient methods for numerical simulation of active suspensions. The prototypical system is a suspension of swimming bacteria in a Newtonian fluid. Rheological and other macroscopic properties of such suspensions can differ dramatically from the same properties of the suspending fluid alone or of suspensions of similar but inactive particles. Elongated bacteria, such as E. coli or B. subtilis, swim along their principal axis, propelling themselves with the help of flagella, attached at the anterior of the organism and pushing it forward in the manner of a propeller. They interact hydrodynamically with the surrounding fluid and, because of their asymmetrical shape, have the propensity to align with the local flow. This, along with the dipolar nature of bacteria (the two forces a bacterium exerts on a fluid - one due to self-propulsion and the other opposing drag - have equal magnitude and point in opposite directions), causes nearby bacteria to tend to align, resulting in a intermittent local ordering on the mesoscopic scale, which is between the microscopic scale of an individual bacterium and the macroscopic scale of the suspension (e.g., its container). The local ordering is sometimes called a collective mode or collective swimming. Thanks to self-propulsion, collective modes inject momentum into the fluid in a coherent way. This enhances the local strain rate without changing the macroscopic stress applied at the boundary of the container. The macroscopic effective viscosity of the suspension is defined roughly as the ratio of the applied stress to the bulk strain rate. If local alignment and therefore local strain-rate enhancement, are significant, the effective viscosity can be appreciably lower than that of the corresponding passive suspension or even of the surrounding fluid alone. Indeed, a sevenfold decrease in the effective viscosity was observed in experiments with B. subtilis. More generally, local collective

  7. Uncertainty evaluation in numerical modeling of complex devices

    NASA Astrophysics Data System (ADS)

    Cheng, X.; Monebhurrun, V.

    2014-10-01

    Numerical simulation is an efficient tool for exploring and understanding the physics of complex devices, e.g. mobile phones. For meaningful results, it is important to evaluate the uncertainty of the numerical simulation. Uncertainty quantification in specific absorption rate (SAR) calculation using a full computer-aided design (CAD) mobile phone model is a challenging task. Since a typical SAR numerical simulation is computationally expensive, the traditional Monte Carlo (MC) simulation method proves inadequate. The unscented transformation (UT) is an alternative and numerically efficient method herein investigated to evaluate the uncertainty in the SAR calculation using the realistic models of two commercially available mobile phones. The electromagnetic simulation process is modeled as a nonlinear mapping with the uncertainty in the inputs e.g. the relative permittivity values of the mobile phone material properties, inducing an uncertainty in the output, e.g. the peak spatial-average SAR value.The numerical simulation results demonstrate that UT may be a potential candidate for the uncertainty quantification in SAR calculations since only a few simulations are necessary to obtain results similar to those obtained after hundreds or thousands of MC simulations.

  8. Design and numerical simulation of an optofluidic pressure sensor.

    PubMed

    Ebnali-Heidari, Majid; Mansouri, Morteza; Mokhtarian, Saeed; Moravvej-Farshi, Mohammed Kazem

    2012-06-01

    We present a numerical design procedure for an all-optical compact sensor by means of integrating the optofluidic switch polymer interferometers to measure the microfluidic air pressure and flow rate. The design is based on a flexible air gap optical cavity that can generate an interference pattern when illuminated by a monochromatic light. The optical interference pattern directly depends on the pressure. In our numerical simulations, we take the effects of fluid flow rate, solid deformation, and the light interference into account. We use the beam propagation method for simulating the optics and the finite element method for simulating the mechanics. The significance of the proposed sensor lies with its low power consumption, compactness, low cost, and short length. This sensor can operate under pressure range of 0-60±6%  Pa at a constant temperature of 20 °C. PMID:22695574

  9. Numerical Investigation of Flow in a Centrifugal Compressor

    NASA Astrophysics Data System (ADS)

    Grishin, Yu. A.; Bakulin, V. N.

    2015-09-01

    With the use of the domestic software suite of computational hydrodynamics Flow Vision based on application of the method of control volumes, numerical simulation of air composition and delivery by a centrifugal compressor employed for supercharging a piston engine has been carried out. The head-flow characteristics of the compressor, as well as the 3D fields of flow velocity and pressure distributions in the elements of the compressor flow passage, including the interblade channels of the impeller, have been obtained for various regimes. In the regimes of diminished air flow rate, surging phenomena are identified, characterized by a return flow. The application of the technique of numerical experiment will make it possible from here on to carry out design optimization of the compressor flow passage profile and thus to improve its basic characteristics — the degree of pressure increase, compressed air flow rate, and the efficiency — as well as to reduce the costs of the development and production of compressors.

  10. Numerical method for shear bands in ductile metal with inclusions

    SciTech Connect

    Plohr, Jee Yeon N; Plohr, Bradley J

    2010-01-01

    A numerical method for mesoscale simulation of high strain-rate loading of ductile metal containing inclusions is described. Because of small-scale inhomogeneities, such a composite material is prone to localized shear deformation (adiabatic shear bands). The modeling framework is the Generalized Method of Cells of Paley and Aboudi [Mech. Materials, vol. 14, pp. /27-139, 1992], which ensures that the micromechanical response of the material is reflected in the behavior of the composite at the mesoscale. To calculate the effective plastic strain rate when shear bands are present, the analytic and numerical analysis of shear bands by Glimm, Plohr, and Sharp [Mech. Materials, vol. 24, pp. 31-41, 1996] is adapted and extended.

  11. Application of Numerical Optimization to Aluminum Alloy Wheel Casting

    NASA Astrophysics Data System (ADS)

    Duan, J.; Reilly, C.; Maijer, D. M.; Cockcroft, S. L.; Phillion, A. B.

    2015-06-01

    A method of numerically optimizing the cooling conditions in a low- pressure die casting process from the standpoint of maintaining good directional solidification, high cooling rates and reduced cycle times has been developed for the production of aluminumalloy wheels. The method focuses on the optimization of cooling channel timing and utilizes an open source numerical optimization algorithm coupled with an experimentally validated, ABAQUS-based, heat transfer model of the casting process. Key features of the method include: 1) carefully designed constraint functions to ensure directional solidification along the centerlineof the wheel; and 2) carefully formulated objective functions to maximize cooling rate. The method has been implemented on a prototype production die and the results have been tested with plant trial test.

  12. Numerical Studies of Topological phases

    NASA Astrophysics Data System (ADS)

    Geraedts, Scott

    The topological phases of matter have been a major part of condensed matter physics research since the discovery of the quantum Hall effect in the 1980s. Recently, much of this research has focused on the study of systems of free fermions, such as the integer quantum Hall effect, quantum spin Hall effect, and topological insulator. Though these free fermion systems can play host to a variety of interesting phenomena, the physics of interacting topological phases is even richer. Unfortunately, there is a shortage of theoretical tools that can be used to approach interacting problems. In this thesis I will discuss progress in using two different numerical techniques to study topological phases. Recently much research in topological phases has focused on phases made up of bosons. Unlike fermions, free bosons form a condensate and so interactions are vital if the bosons are to realize a topological phase. Since these phases are difficult to study, much of our understanding comes from exactly solvable models, such as Kitaev's toric code, as well as Levin-Wen and Walker-Wang models. We may want to study systems for which such exactly solvable models are not available. In this thesis I present a series of models which are not solvable exactly, but which can be studied in sign-free Monte Carlo simulations. The models work by binding charges to point topological defects. They can be used to realize bosonic interacting versions of the quantum Hall effect in 2D and topological insulator in 3D. Effective field theories of ''integer'' (non-fractionalized) versions of these phases were available in the literature, but our models also allow for the construction of fractional phases. We can measure a number of properties of the bulk and surface of these phases. Few interacting topological phases have been realized experimentally, but there is one very important exception: the fractional quantum Hall effect (FQHE). Though the fractional quantum Hall effect we discovered over 30

  13. Numerical modelling of the solidification of ductile iron

    NASA Astrophysics Data System (ADS)

    Liu, J.; Elliott, R.

    1998-01-01

    Numerical calculations are presented describing the solidification of a ductile iron based on the Stefanescu macroscopic heat transfer-microscopic solidification kinetic model but using a different kinetic model than that used by Stefanescu. The results show that the kinetic model used influences the recalescence behaviour predicted by the modelling. Cooling curves calculated with the present model show reasonable agreement with experimentally measured cooling curves for four different cooling rates.

  14. Numerical modeling of injection experiments at The Geysers

    SciTech Connect

    Pruess, Karsten; Enedy, Steve

    1993-01-28

    Data from injection experiments in the southeast Geysers are presented that show strong interference (both negative and positive) with a neighboring production well. Conceptual and numerical models are developed that explain the negative interference (decline of production rate) in terms of heat transfer limitations and water-vapor relative permeability effects. Recovery and overrecovery following injection shut-in are attributed to boiling of injected fluid, with heat of vaporization provided by the reservoir rocks.

  15. Numerical analysis of a microwave torch with axial gas injection

    SciTech Connect

    Gritsinin, S. I.; Davydov, A. M.; Kossyi, I. A.; Kulumbaev, E. B.; Lelevkin, V. M.

    2013-07-15

    The characteristics of a microwave discharge in an argon jet injected axially into a coaxial channel with a shortened inner electrode are numerically analyzed using a self-consistent equilibrium gas-dynamic model. The specific features of the excitation and maintenance of the microwave discharge are determined, and the dependences of the discharge characteristics on the supplied electromagnetic power and gas flow rate are obtained. The calculated results are compared with experimental data.

  16. Boltzmann Fluctuations in Numerical Simulations of Nonequilibrium Lattice Threshold Systems

    SciTech Connect

    Rundle, J.B.; Klein, W.; Gross, S.; Turcotte, D.L.

    1995-08-21

    Nonequilibrium threshold systems such as slider blocks are now used to model a variety of dynamical systems, including earthquake faults, driven neural networks, and sliding charge density waves. We show that for general mean field models driven at low rates fluctuations in the internal energy field are characterized by Boltzmann statistics. Numerical simulations confirm this prediction. Our results indicate that mean field models can be effectively treated as equilibrium systems.

  17. Numerical modeling of injection experiments at The Geysers

    SciTech Connect

    Pruess, K. ); Enedy, S. )

    1993-01-01

    Data from injection experiments in the southeast Geysers are presented that show strong interference (both negative and positive) with a neighboring production well. Conceptual and numerical models are developed that explain the negative interference (decline of production rate) in terms of heat transfer limitations and water-vapor relative permeability effects. Recovery and over-recovery following injection shut-in are attributed to boiling of injected fluid, with heat of vaporization provided by the reservoir rocks.

  18. Recent deformation rates on Venus

    NASA Astrophysics Data System (ADS)

    Grimm, Robert E.

    1994-11-01

    Constraints on the recent geological evolution of Venus may be provided by quantitative estimates of the rates of the principal resurfacing processes, volcanism and tectonism. This paper focuses on the latter, using impact craters as strain indicators. The total postimpact tectonic strain lies in the range 0.5-6.5%, which defines a recent mean strain rate of 10-18-10-17/s when divided by the mean surface age. Interpretation of the cratering record as one of pure production requires a decline in resurfacing rates at about 500 Ma (catastrophic resurfacing model). If distributed tectonic resurfacing contributed strongly before that time, as suggested by the widespread occurrence of tessera as inliers, the mean global strain rate must have been at least approximately 10-15/s, which is also typical of terrestrial active margins. Numerical calculations of the response of the lithosphere to inferred mantle convective forces were performed to test the hypothesis that a decrease in surface strain rate by at least two orders of magnitude could be caused by a steady decline in heat flow over the last billion years. Parameterized convection models predict that the mean global thermal gradient decreases by only about 5 K/km over this time; even with the exponential dependence of viscosity upon temperature, the surface strain rate drops by little more than one order of magnitude. Strongly unsteady cooling and very low thermal gradients today are necessary to satisfy the catastrophic model. An alternative, uniformitarian resurfacing hypothesis holds that Venus is resurfaced in quasi-random 'patches' several hundred kilometers in size that occur in response to changing mantle convection patterns.

  19. Numerical Modeling of Nanoelectronic Devices

    NASA Technical Reports Server (NTRS)

    Klimeck, Gerhard; Oyafuso, Fabiano; Bowen, R. Chris; Boykin, Timothy

    2003-01-01

    Nanoelectronic Modeling 3-D (NEMO 3-D) is a computer program for numerical modeling of the electronic structure properties of a semiconductor device that is embodied in a crystal containing as many as 16 million atoms in an arbitrary configuration and that has overall dimensions of the order of tens of nanometers. The underlying mathematical model represents the quantummechanical behavior of the device resolved to the atomistic level of granularity. The system of electrons in the device is represented by a sparse Hamiltonian matrix that contains hundreds of millions of terms. NEMO 3-D solves the matrix equation on a Beowulf-class cluster computer, by use of a parallel-processing matrix vector multiplication algorithm coupled to a Lanczos and/or Rayleigh-Ritz algorithm that solves for eigenvalues. In a recent update of NEMO 3-D, a new strain treatment, parameterized for bulk material properties of GaAs and InAs, was developed for two tight-binding submodels. The utility of the NEMO 3-D was demonstrated in an atomistic analysis of the effects of disorder in alloys and, in particular, in bulk In(x)Ga(l-x)As and in In0.6Ga0.4As quantum dots.

  20. Numerical Relativity meets Data Analysis

    NASA Astrophysics Data System (ADS)

    Schmidt, Patricia

    2016-03-01

    Gravitational waveforms (GW) from coalescing black hole binaries obtained by Numerical Relativity (NR) play a crucial role in the construction and validation of waveform models used as templates in GW matched filter searches and parameter estimation. In previous efforts, notably the NINJA and NINJA-2 collaborations, NR groups and data analysts worked closely together to use NR waveforms as mock GW signals to test the search and parameter estimation pipelines employed by LIGO. Recently, however, NR groups have been able to simulate hundreds of different binary black holes systems. It is desirable to directly use these waveforms in GW data analysis, for example to assess systematic errors in waveform models, to test general relativity or to appraise the limitations of aligned-spin searches among many other applications. In this talk, I will introduce recent developments that aim to fully integrate NR waveforms into the data analysis pipelines through a standardized interface. I will highlight a number of select applications for this new infrastructure.

  1. Linking scales through numerical simulations

    NASA Astrophysics Data System (ADS)

    Lunati, I.

    2012-12-01

    Field-scale models of flow through porous media rely on a continuum description, which disregard pore-scale details and focus on macroscopic effects. As it is always the case, this choice is quite effective in reducing the number of model parameters, but this comes at expenses of an inherent loss of information and generality. Models based on Darcy's law, for instance, require spatial and temporal scale separation (locality and equilibrium). Although these conditions are generally met for single-phase flow, multiphase flow is far more complex: the interaction between nonlinearity of the interface behavior and the pore structure (disorder) creates a variety of flow regimes for which scale separation does not hold. In recent years, the increased computational power has led to a revival of pore-scale modeling in order to overcome this issue and describe the flow at the scale in which it physically occurs. If appropriate techniques are chosen, it is possible to use numerical simulations to complement experimental observations and advance our understanding of multiphase flow. By means of examples, we discuss the role played by these models in contributing to solve open problems and in devising alternatives to the standard description of flow through porous media.

  2. Numerical Modeling of Ocean Circulation

    NASA Astrophysics Data System (ADS)

    Miller, Robert N.

    2007-01-01

    The modelling of ocean circulation is important not only for its own sake, but also in terms of the prediction of weather patterns and the effects of climate change. This book introduces the basic computational techniques necessary for all models of the ocean and atmosphere, and the conditions they must satisfy. It describes the workings of ocean models, the problems that must be solved in their construction, and how to evaluate computational results. Major emphasis is placed on examining ocean models critically, and determining what they do well and what they do poorly. Numerical analysis is introduced as needed, and exercises are included to illustrate major points. Developed from notes for a course taught in physical oceanography at the College of Oceanic and Atmospheric Sciences at Oregon State University, this book is ideal for graduate students of oceanography, geophysics, climatology and atmospheric science, and researchers in oceanography and atmospheric science. Features examples and critical examination of ocean modelling and results Demonstrates the strengths and weaknesses of different approaches Includes exercises to illustrate major points and supplement mathematical and physical details

  3. Numerical Simulations of High Enthalpy Pulse Facilities

    NASA Technical Reports Server (NTRS)

    Wilson, Gregory J.; Edwards, Thomas A. (Technical Monitor)

    1995-01-01

    Axisymmetric flows within shock tubes and expansion tubes are simulated including the effects of finite rate chemistry and both laminar and turbulent boundary layers. The simulations demonstrate the usefulness of computational fluid dynamics for characterizing the flows in high enthalpy pulse facilities. The modeling and numerical requirements necessary to simulate these flows accurately are also discussed. Although there is a large body of analysis which explains and quantifies the boundary layer growth between the shock and the interface in a shock tube, there is a need for more detailed solutions. Phenomena such as thermochemical nonequilibrium. or turbulent transition behind the shock are excluded in the assumptions of Mirels' analysis. Additionally there is inadequate capability to predict the influence of the boundary layer on the expanded gas behind the interface. Quantifying the gas in this region is particularly important in expansion tubes because it is the location of the test gas. Unsteady simulations of the viscous flow in shock tubes are computationally expensive because they must follow features such as a shock wave over the length of the facility and simultaneously resolve the small length scales within the boundary layer. As a result, efficient numerical algorithms are required. The numerical approach of the present work is to solve the axisymmetric gas dynamic equations using an finite-volume formulation where the inviscid fluxes are computed with a upwind TVD scheme. Multiple species equations are included in the formulation so that finite-rate chemistry can be modeled. The simulations cluster grid points at the shock and interface and translate this clustered grid with these features to minimize numerical errors. The solutions are advanced at a CFL number of less than one based on the inviscid gas dynamics. To avoid limitations on the time step due to the viscous terms, these terms are treated implicitly. This requires a block tri

  4. Numerical analysis of decoy state quantum key distribution protocols

    SciTech Connect

    Harrington, Jim W; Rice, Patrick R

    2008-01-01

    Decoy state protocols are a useful tool for many quantum key distribution systems implemented with weak coherent pulses, allowing significantly better secret bit rates and longer maximum distances. In this paper we present a method to numerically find optimal three-level protocols, and we examine how the secret bit rate and the optimized parameters are dependent on various system properties, such as session length, transmission loss, and visibility. Additionally, we show how to modify the decoy state analysis to handle partially distinguishable decoy states as well as uncertainty in the prepared intensities.

  5. Numerical studies of transverse curvature effects on transonic flow stability

    NASA Technical Reports Server (NTRS)

    Macaraeg, M. G.; Daudpota, Q. I.

    1992-01-01

    A numerical study of transverse curvature effects on compressible flow temporal stability for transonic to low supersonic Mach numbers is presented for axisymmetric modes. The mean flows studied include a similar boundary-layer profile and a nonsimilar axisymmetric boundary-layer solution. The effect of neglecting curvature in the mean flow produces only small quantitative changes in the disturbance growth rate. For transonic Mach numbers (1-1.4) and aerodynamically relevant Reynolds numbers (5000-10,000 based on displacement thickness), the maximum growth rate is found to increase with curvature - the maximum occurring at a nondimensional radius (based on displacement thickness) between 30 and 100.

  6. Numerical simulation of tulip flame dynamics

    SciTech Connect

    Cloutman, L.D.

    1991-11-30

    A finite difference reactive flow hydrodynamics program based on the full Navier-Stokes equations was used to simulate the combustion process in a homogeneous-charge, constant-volume combustion bomb in which an oddly shaped flame, known as a ``tulip flame`` in the literature, occurred. The ``tulip flame`` was readily reproduced in the numerical simulations, producing good agreement with the experimental flame shapes and positions at various times. The calculations provide sufficient detail about the dynamics of the experiment to provide some insight into the physical mechanisms responsible for the peculiar flame shape. Several factors seem to contribute to the tulip formation. The most important process is the baroclinic production of vorticity by the flame front, and this rate of production appears to be dramatically increased by the nonaxial flow generated when the initial semicircular flame front burns out along the sides of the chamber. The vorticity produces a pair of vortices behind the flame that advects the flame into the tulip shape. Boundary layer effects contribute to the details of the flame shape next to the walls of the chamber, but are otherwise not important. 24 refs.

  7. Numerical simulation of tulip flame dynamics

    SciTech Connect

    Cloutman, L.D.

    1991-11-30

    A finite difference reactive flow hydrodynamics program based on the full Navier-Stokes equations was used to simulate the combustion process in a homogeneous-charge, constant-volume combustion bomb in which an oddly shaped flame, known as a tulip flame'' in the literature, occurred. The tulip flame'' was readily reproduced in the numerical simulations, producing good agreement with the experimental flame shapes and positions at various times. The calculations provide sufficient detail about the dynamics of the experiment to provide some insight into the physical mechanisms responsible for the peculiar flame shape. Several factors seem to contribute to the tulip formation. The most important process is the baroclinic production of vorticity by the flame front, and this rate of production appears to be dramatically increased by the nonaxial flow generated when the initial semicircular flame front burns out along the sides of the chamber. The vorticity produces a pair of vortices behind the flame that advects the flame into the tulip shape. Boundary layer effects contribute to the details of the flame shape next to the walls of the chamber, but are otherwise not important. 24 refs.

  8. Numerical Modeling of Ocular Dysfunction in Space

    NASA Technical Reports Server (NTRS)

    Nelson, Emily S.; Mulugeta, Lealem; Vera, J.; Myers, J. G.; Raykin, J.; Feola, A. J.; Gleason, R.; Samuels, B.; Ethier, C. R.

    2014-01-01

    Upon introduction to microgravity, the near-loss of hydrostatic pressure causes a marked cephalic (headward) shift of fluid in an astronaut's body. The fluid shift, along with other factors of spaceflight, induces a cascade of interdependent physiological responses which occur at varying time scales. Long-duration missions carry an increased risk for the development of the Visual Impairment and Intracranial Pressure (VIIP) syndrome, a spectrum of ophthalmic changes including posterior globe flattening, choroidal folds, distension of the optic nerve sheath, kinking of the optic nerve and potentially permanent degradation of visual function. In the cases of VIIP found to date, the initial onset of symptoms occurred after several weeks to several months of spaceflight, by which time the gross bodily fluid distribution is well established. We are developing a suite of numerical models to simulate the effects of fluid shift on the cardiovascular, central nervous and ocular systems. These models calculate the modified mean volumes, flow rates and pressures that are characteristic of the altered quasi-homeostatic state in microgravity, including intracranial and intraocular pressures. The results of the lumped models provide initial and boundary data to a 3D finite element biomechanics simulation of the globe, optic nerve head and retrobulbar subarachnoid space. The integrated set of models will be used to investigate the evolution of the biomechanical stress state in the ocular tissues due to long-term exposure to microgravity.

  9. Externally fed star formation: a numerical study

    NASA Astrophysics Data System (ADS)

    Mohammadpour, Motahareh; Stahler, Steven W.

    2013-08-01

    We investigate, through a series of numerical calculations, the evolution of dense cores that are accreting external gas up to and beyond the point of star formation. Our model clouds are spherical, unmagnetized configurations with fixed outer boundaries, across which gas enters subsonically. When we start with any near-equilibrium state, we find that the cloud's internal velocity also remains subsonic for an extended period, in agreement with observations. However, the velocity becomes supersonic shortly before the star forms. Consequently, the accretion rate building up the protostar is much greater than the benchmark value c_s^3/G, where cs is the sound speed in the dense core. This accretion spike would generate a higher luminosity than those seen in even the most embedded young stars. Moreover, we find that the region of supersonic infall surrounding the protostar races out to engulf much of the cloud, again in violation of the observations, which show infall to be spatially confined. Similar problematic results have been obtained by all other hydrodynamic simulations to date, regardless of the specific infall geometry or boundary conditions adopted. Low-mass star formation is evidently a quasi-static process, in which cloud gas moves inward subsonically until the birth of the star itself. We speculate that magnetic tension in the cloud's deep interior helps restrain the infall prior to this event.

  10. Numerical Modeling of Suspension HVOF Spray

    NASA Astrophysics Data System (ADS)

    Jadidi, M.; Moghtadernejad, S.; Dolatabadi, A.

    2016-02-01

    A three-dimensional two-way coupled Eulerian-Lagrangian scheme is used to simulate suspension high-velocity oxy-fuel spraying process. The mass, momentum, energy, and species equations are solved together with the realizable k-ɛ turbulence model to simulate the gas phase. Suspension is assumed to be a mixture of solid particles [mullite powder (3Al2O3·2SiO2)], ethanol, and ethylene glycol. The process involves premixed combustion of oxygen-propylene, and non-premixed combustion of oxygen-ethanol and oxygen-ethylene glycol. One-step global reaction is used for each mentioned reaction together with eddy dissipation model to compute the reaction rate. To simulate the droplet breakup, Taylor Analogy Breakup model is applied. After the completion of droplet breakup, and solvent evaporation/combustion, the solid suspended particles are tracked through the domain to determine the characteristics of the coating particles. Numerical simulations are validated against the experimental results in the literature for the same operating conditions. Seven or possibly eight shock diamonds are captured outside the nozzle. In addition, a good agreement between the predicted particle temperature, velocity, and diameter, and the experiment is obtained. It is shown that as the standoff distance increases, the particle temperature and velocity reduce. Furthermore, a correlation is proposed to determine the spray cross-sectional diameter and estimate the particle trajectories as a function of standoff distance.

  11. Direct numerical simulations of aeolian sand ripples

    PubMed Central

    Durán, Orencio; Claudin, Philippe; Andreotti, Bruno

    2014-01-01

    Aeolian sand beds exhibit regular patterns of ripples resulting from the interaction between topography and sediment transport. Their characteristics have been so far related to reptation transport caused by the impacts on the ground of grains entrained by the wind into saltation. By means of direct numerical simulations of grains interacting with a wind flow, we show that the instability turns out to be driven by resonant grain trajectories, whose length is close to a ripple wavelength and whose splash leads to a mass displacement toward the ripple crests. The pattern selection results from a compromise between this destabilizing mechanism and a diffusive downslope transport which stabilizes small wavelengths. The initial wavelength is set by the ratio of the sediment flux and the erosion/deposition rate, a ratio which increases linearly with the wind velocity. We show that this scaling law, in agreement with experiments, originates from an interfacial layer separating the saltation zone from the static sand bed, where momentum transfers are dominated by midair collisions. Finally, we provide quantitative support for the use of the propagation of these ripples as a proxy for remote measurements of sediment transport. PMID:25331873

  12. Direct numerical simulations of aeolian sand ripples.

    PubMed

    Durán, Orencio; Claudin, Philippe; Andreotti, Bruno

    2014-11-01

    Aeolian sand beds exhibit regular patterns of ripples resulting from the interaction between topography and sediment transport. Their characteristics have been so far related to reptation transport caused by the impacts on the ground of grains entrained by the wind into saltation. By means of direct numerical simulations of grains interacting with a wind flow, we show that the instability turns out to be driven by resonant grain trajectories, whose length is close to a ripple wavelength and whose splash leads to a mass displacement toward the ripple crests. The pattern selection results from a compromise between this destabilizing mechanism and a diffusive downslope transport which stabilizes small wavelengths. The initial wavelength is set by the ratio of the sediment flux and the erosion/deposition rate, a ratio which increases linearly with the wind velocity. We show that this scaling law, in agreement with experiments, originates from an interfacial layer separating the saltation zone from the static sand bed, where momentum transfers are dominated by midair collisions. Finally, we provide quantitative support for the use of the propagation of these ripples as a proxy for remote measurements of sediment transport. PMID:25331873

  13. Rating Movies and Rating the Raters Who Rate Them.

    PubMed

    Zhou, Hua; Lange, Kenneth

    2009-11-01

    The movie distribution company Netflix has generated considerable buzz in the statistics community by offering a million dollar prize for improvements to its movie rating system. Among the statisticians and computer scientists who have disclosed their techniques, the emphasis has been on machine learning approaches. This article has the modest goal of discussing a simple model for movie rating and other forms of democratic rating. Because the model involves a large number of parameters, it is nontrivial to carry out maximum likelihood estimation. Here we derive a straightforward EM algorithm from the perspective of the more general MM algorithm. The algorithm is capable of finding the global maximum on a likelihood landscape littered with inferior modes. We apply two variants of the model to a dataset from the MovieLens archive and compare their results. Our model identifies quirky raters, redefines the raw rankings, and permits imputation of missing ratings. The model is intended to stimulate discussion and development of better theory rather than to win the prize. It has the added benefit of introducing readers to some of the issues connected with analyzing high-dimensional data. PMID:20802818

  14. Rating Movies and Rating the Raters Who Rate Them

    PubMed Central

    Zhou, Hua; Lange, Kenneth

    2010-01-01

    The movie distribution company Netflix has generated considerable buzz in the statistics community by offering a million dollar prize for improvements to its movie rating system. Among the statisticians and computer scientists who have disclosed their techniques, the emphasis has been on machine learning approaches. This article has the modest goal of discussing a simple model for movie rating and other forms of democratic rating. Because the model involves a large number of parameters, it is nontrivial to carry out maximum likelihood estimation. Here we derive a straightforward EM algorithm from the perspective of the more general MM algorithm. The algorithm is capable of finding the global maximum on a likelihood landscape littered with inferior modes. We apply two variants of the model to a dataset from the MovieLens archive and compare their results. Our model identifies quirky raters, redefines the raw rankings, and permits imputation of missing ratings. The model is intended to stimulate discussion and development of better theory rather than to win the prize. It has the added benefit of introducing readers to some of the issues connected with analyzing high-dimensional data. PMID:20802818

  15. Numerical simulation of transitional flow

    NASA Technical Reports Server (NTRS)

    Biringen, Sedat

    1986-01-01

    The applicability of active control of transition by periodic suction-blowing is investigated via direct simulations of the Navier-Stokes equations. The time-evolution of finite-amplitude disturbances in plane channel flow is compared in detail with and without control. The analysis indicates that, for relatively small three-dimensional amplitudes, a two-dimensional control effectively reduces disturbance growth rates even for linearly unstable Reynolds numbers. After the flow goes through secondary instability, three-dimensional control seems necessary to stabilize the flow. An investigation of the temperature field suggests that passive temperature contamination is operative to reflect the flow dynamics during transition.

  16. Playing Linear Numerical Board Games Promotes Low-Income Children's Numerical Development

    ERIC Educational Resources Information Center

    Siegler, Robert S.; Ramani, Geetha B.

    2008-01-01

    The numerical knowledge of children from low-income backgrounds trails behind that of peers from middle-income backgrounds even before the children enter school. This gap may reflect differing prior experience with informal numerical activities, such as numerical board games. Experiment 1 indicated that the numerical magnitude knowledge of…

  17. Relativistic positioning systems: Numerical simulations

    NASA Astrophysics Data System (ADS)

    Puchades Colmenero, Neus

    The position of users located on the Earth's surface or near it may be found with the classic positioning systems (CPS). Certain information broadcast by satellites of global navigation systems, as GPS and GALILEO, may be used for positioning. The CPS are based on the Newtonian formalism, although relativistic post-Newtonian corrections are done when they are necessary. This thesis contributes to the development of a different positioning approach, which is fully relativistic from the beginning. In the relativistic positioning systems (RPS), the space-time position of any user (ship, spacecraft, and so on) can be calculated with the help of four satellites, which broadcast their proper times by means of codified electromagnetic signals. In this thesis, we have simulated satellite 4-tuples of the GPS and GALILEO constellations. If a user receives the signals from four satellites simultaneously, the emission proper times read -after decoding- are the user "emission coordinates". In order to find the user "positioning coordinates", in an appropriate almost inertial reference system, there are two possibilities: (a) the explicit relation between positioning and emission coordinates (broadcast by the satellites) is analytically found or (b) numerical codes are designed to calculate the positioning coordinates from the emission ones. Method (a) is only viable in simple ideal cases, whereas (b) allows us to consider realistic situations. In this thesis, we have designed numerical codes with the essential aim of studying two appropriate RPS, which may be generalized. Sometimes, there are two real users placed in different positions, which receive the same proper times from the same satellites; then, we say that there is bifurcation, and additional data are needed to choose the real user position. In this thesis, bifurcation is studied in detail. We have analyzed in depth two RPS models; in both, it is considered that the satellites move in the Schwarzschild's space

  18. Numerical simulations of Lake Vostok

    NASA Astrophysics Data System (ADS)

    Curchitser, E.; Tremblay, B.

    2003-04-01

    Numerical simulations of Lake Vostok We present a systematic approach towards a realistic hydrodynamic model of lake Vostok. The lake is characterized by the unusual combination of size (permitting significant geostrophic motion) and an overlying ice sheet several kilometers thick. A priori estimates of the circulation in the deep lake predict a mostly geostrophic circulation driven by horizontal temperature gradients produced by the pressure-dependent freezing point at the base of the (non-uniform) ice sheet. Further preliminary (remote) research has revealed the steep topography and the elliptical geometry of the lake. A three dimensional, primitive equation, free surface, model is used as a starting point for the Lake configuration. We show how the surface pressure gradient forces are modified to permit a simulation that includes the hydrostatic effects of the overlying ice sheet. A thermodynamic ice model is coupled with the circulation component to simulate the ice accretion/melting at the base of the ice sheet. A stretching of the terrain following vertical coordinate is used to resolve the boundary layer in the ice/water interface. Furthermore, the terrain-following coordinate evolves in time, and is used to track the evolution of the ice sheet due to ice accretion/melting. Both idealized and realistic ice sheet bottom topographies (from remote radar data) are used to drive the simulations. Steady state and time evolving simulations (i.e., constant and evolving ice sheet geometry) will be descirbed, as well as a comparison to an idealized box model (Tremblay, Clarke, and Hohman). The coastline and lake bathymetry used in the simulation are derived from radar data and are accurately represented in our model.

  19. Accuracy of numerically produced compensators.

    PubMed

    Thompson, H; Evans, M D; Fallone, B G

    1999-01-01

    A feasibility study is performed to assess the utility of a computer numerically controlled (CNC) mill to produce compensating filters for conventional clinical use and for the delivery of intensity-modulated beams. A computer aided machining (CAM) software is used to assist in the design and construction of such filters. Geometric measurements of stepped and wedged surfaces are made to examine the accuracy of surface milling. Molds are milled and filled with molten alloy to produce filters, and both the molds and filters are examined for consistency and accuracy. Results show that the deviation of the filter surfaces from design does not exceed 1.5%. The effective attenuation coefficient is measured for CadFree, a cadmium-free alloy, in a 6 MV photon beam. The effective attenuation coefficients at the depth of maximum dose (1.5 cm) and at 10 cm in solid water phantom are found to be 0.546 cm-1 and 0.522 cm-1, respectively. Further attenuation measurements are made with Cerrobend to assess the variations of the effective attenuation coefficient with field size and source-surface distance. The ability of the CNC mill to accurately produce surfaces is verified with dose profile measurements in a 6 MV photon beam. The test phantom is composed of a 10 degrees polystyrene wedge and a 30 degrees polystyrene wedge, presenting both a sharp discontinuity and sloped surfaces. Dose profiles, measured at the depth of compensation (10 cm) beneath the test phantom and beneath a flat phantom, are compared to those produced by a commercial treatment planning system. Agreement between measured and predicted profiles is within 2%, indicating the viability of the system for filter production. PMID:10100166

  20. Numerical simulations of multifluid flows

    NASA Astrophysics Data System (ADS)

    Unverdi, Salih Ozen

    1990-01-01

    A method for full numerical simulations of unsteady, incompressible Navier-Stokes equations for multi-fluid systems is developed. Moving interfaces between dissimilar fluids are explicitly tracked and fluid properties are constructed on a stationary grid using the position of the interfaces. While the interfaces are explicitly tracked, they are not kept completely sharp but are given a finite thickness of the order of the mesh size to provide stability and smoothness. This thickness remains constant for all time but decreases with finer resolution of the stationary grid. A unique feature of the method is that the tracked interfaces carry the jump in properties across the interface and that, at each time step, the property fields are reconstructed by solving a Poisson equation. The advantage of this approach is that interfaces can interact in a natural way, since the gradients add or cancel as the grid distribution is constructed from the information carried by the tracked front. The emphasis is on the shape regimes of bubbles and bubble-bubble interactions in a stationary fluid. The circular, elliptical and skirted shape regimes and wake structures of two-dimensional bubbles are studied. Three-dimensional evolution of the interaction of two bubbles in a stationary fluid is investigated. Interaction of bubbles in a periodic array is also studied and it is found that a pair of bubbles in a free rise can interact in the absence of a toroidal wake below the upper bubble and that the interaction time is smaller as the viscosity of the outer fluid decreases. It is shown that the kinetic energy of the flow field decreases during this interaction. Sensitivity of the bubble interaction process to fluid properties is shown by different trajectories followed by bubbles in fluids of different viscosity. The Rayleigh-Taylor instability is also studied.

  1. Simulating reionization in numerical cosmology

    NASA Astrophysics Data System (ADS)

    Sokasian, Aaron

    2003-11-01

    The incorporation of radiative transfer effects into cosmological hydrodynamical simulations is essential for understanding how the intergalactic medium (IGM) makes the transition from a neutral medium to one that is almost fully ionized. I present an approximate numerical method designed to study in a statistical sense how a cosmological density field is ionized by various sets of sources. The method requires relatively few time steps and can be employed with simulations of high resolution. First, I explore the reionization history of Helium II by z < 6 quasars. Comparisons between HeII opacities measured observationally and inferred from our analysis reveal that the uncertainties in the empirical luminosity function provide enough leeway to provide a satisfactory match. A property common to all the calculations is that the epoch of Helium II reionization must have occurred between 3≲z≲4 . I extend my analysis to study the constraints that can be placed on the nature of the cosmic ultraviolet (UV) background in the redshift interval 2.5≲z≲5 . I find that in order to simultaneously match observational estimates of the HI and HeII opacities, galaxies and quasars must contribute about equally to the ionizing background in HI at z ≃ 3. Moreover, my analysis requires the stellar component to rise for z > 3 to compensate for the declining contribution from bright quasars at higher redshift. To investigate how stellar source may have reionized the universe at z > 6, I have combined our 3D radiative transfer code with high resolution hydrodynamical simulations to study how population II and III type stars affected the reionization process. The resulting complex reionization histories are presented and comparisons made with observational constraints on the neutral fraction of hydrogen at z ˜ 6 derived from the z = 6.28 SDSS quasar of Becker and coworkers and the recent WMAP measurements of the electron scattering optical depth analysis of Kogut

  2. Numerical Modeling of Plasmas in which Nanoparticles Nucleate and Grow

    NASA Astrophysics Data System (ADS)

    Agarwal, Pulkit

    Dusty plasmas refer to a broad category of plasmas. Plasmas such as argon-silane plasmas in which particles nucleate and grow are widely used in semiconductor processing and nanoparticle manufacturing. In such dusty plasmas, the plasma and the dust particles are strongly coupled to each other. This means that the presence of dust particles significantly affects the plasma properties and vice versa. Therefore such plasmas are highly complex and they involve several interesting phenomena like nucleation, growth, coagulation, charging and transport. Dusty plasma afterglow is equally complex and important. Especially, residual charge on dust particles carries special significance in several industrial and laboratory situations and it has not been well understood. A 1D numerical model was developed of a low-pressure capacitively-coupled plasma in which nanoparticles nucleate and grow. Polydispersity of particle size distributions can be important in such plasmas. Sectional method, which is well known in aerosol literature, was used to model the evolving particle size and charge distribution. The numerical model is transient and one-dimensional and self consistently accounts for nucleation, growth, coagulation, charging and transport of dust particles and their effect on plasma properties. Nucleation and surface growth rates were treated as input parameters. Results were presented in terms of particle size and charge distribution with an emphasis on importance of polydispersity in particle growth and dynamics. Results of numerical model were compared with experimental measurements of light scattering and light emission from plasma. Reasonable qualitative agreement was found with some discrepancies. Pulsed dusty plasma can be important for controlling particle production and/or unwanted particle deposition. In this case, it is important to understand the behavior of the particle cloud during the afterglow following plasma turn-off. Numerical model was modified to self

  3. Numerical Models of Ophiolite Genesis and Obduction

    NASA Astrophysics Data System (ADS)

    Guilmette, C.; Beaumont, C.; Jamieson, R.

    2013-12-01

    Ophiolites are relics of oceanic lithosphere tectonically emplaced in continental settings. They are diagnostic features of continental suture zones, where they mark past plate boundaries. Even after having been studied for more than 40 years, the mechanisms involved in the genesis and subsequent obduction of ophiolites over continental margins are still debated. We present the results of 2D thermal-mechanical numerical models that successfully reproduce characteristics of natural examples like the Semail, Bay of Islands, Yarlung-Zangbo, and Coast Range ophiolites. The numerical models are upper mantle scale and use pressure-, temperature- and strain-dependent viscous-plastic rheologies. Both divergent and convergent velocity boundary conditions are used and tectonic boundary forces are monitored. The models start with the rifting of a stable continent, followed by development of an ocean ridge and accretion of oceanic lithosphere at a total rate of 3 cm/y. Once a specified ocean size/age is achieved, the velocity boundary conditions are reversed leading to convergence and the spontaneous inception of a suduction zone at the mid-ocean ridge. We present results for models including different ages of oceans (40 to 90 Ma) and different convergence velocities (5 to 15 cm/y). The interaction between the lower plate passive margin and the oceanic upper plate results in 5 different tectonic styles. These differ mainly by the presence or absence of oceanic spreading in the upper plate (back-arc basin), leading to supra-subduction zone ophiolites vs. MORB-type, and by the behaviour of the oceanic slab, e.g., slab rollback vs. breakoff. The evolution of effective slab pull is interpreted to be the major control on the resulting tectonic style. Low effective slab pull models (young oceans and fast convergence rates) fail to obduct an ophiolite. Strong effective slab pull models (old oceans and lower convergence rates) result in subduction zone retreat and spontaneous oceanic

  4. Zdeněk Kopal: Numerical Analyst

    NASA Astrophysics Data System (ADS)

    Křížek, M.

    2015-07-01

    We give a brief overview of Zdeněk Kopal's life, his activities in the Czech Astronomical Society, his collaboration with Vladimír Vand, and his studies at Charles University, Cambridge, Harvard, and MIT. Then we survey Kopal's professional life. He published 26 monographs and 20 conference proceedings. We will concentrate on Kopal's extensive monograph Numerical Analysis (1955, 1961) that is widely accepted to be the first comprehensive textbook on numerical methods. It describes, for instance, methods for polynomial interpolation, numerical differentiation and integration, numerical solution of ordinary differential equations with initial or boundary conditions, and numerical solution of integral and integro-differential equations. Special emphasis will be laid on error analysis. Kopal himself applied numerical methods to celestial mechanics, in particular to the N-body problem. He also used Fourier analysis to investigate light curves of close binaries to discover their properties. This is, in fact, a problem from mathematical analysis.

  5. Structural application and numerical calculation

    SciTech Connect

    Sih, G.C.; Ditommaso, A.

    1984-01-01

    Since cost effectiveness has always been one of the more important aspects of design, reinforced and/or prestressed concrete is being increasingly used in many other areas, such as in the construction of floating marine structures, storage tanks, and nuclear vessel containments. A subject of major concern is how the localized segregation of the constituents in concrete would affect its global behaviour. The degree of nonhomogenity due to material property and damage by yielding and/or cracking depends on the size scale and loading rate under consideration. Hence, a wider knowledge of concrete behaviour on a large scale is desirable, and it is hoped that this volume, in which the application of Linear Elastic Fracture Mechanics is also fully discussed, will go some way to achieving this.

  6. Numerical tools for atomistic simulations.

    SciTech Connect

    Fang, H.; Gullett, Philip Michael; Slepoy, Alexander; Horstemeyer, Mark F.; Baskes, Michael I.; Wagner, Gregory John; Li, Mo

    2004-01-01

    The final report for a Laboratory Directed Research and Development project entitled 'Parallel Atomistic Computing for Failure Analysis of Micromachines' is presented. In this project, atomistic algorithms for parallel computers were developed to assist in quantification of microstructure-property relations related to weapon micro-components. With these and other serial computing tools, we are performing atomistic simulations of various sizes, geometries, materials, and boundary conditions. These tools provide the capability to handle the different size-scale effects required to predict failure. Nonlocal continuum models have been proposed to address this problem; however, they are phenomenological in nature and are difficult to validate for micro-scale components. Our goal is to separately quantify damage nucleation, growth, and coalescence mechanisms to provide a basis for macro-scale continuum models that will be used for micromachine design. Because micro-component experiments are difficult, a systematic computational study that employs Monte Carlo methods, molecular statics, and molecular dynamics (EAM and MEAM) simulations to compute continuum quantities will provide mechanism-property relations associated with the following parameters: specimen size, number of grains, crystal orientation, strain rates, temperature, defect nearest neighbor distance, void/crack size, chemical state, and stress state. This study will quantify sizescale effects from nanometers to microns in terms of damage progression and thus potentially allow for optimized micro-machine designs that are more reliable and have higher fidelity in terms of strength. In order to accomplish this task, several atomistic methods needed to be developed and evaluated to cover the range of defects, strain rates, temperatures, and sizes that a material may see in micro-machines. Therefore we are providing a complete set of tools for large scale atomistic simulations that include pre-processing of

  7. Numerical Simulations of Granular Processes

    NASA Astrophysics Data System (ADS)

    Richardson, Derek C.; Michel, Patrick; Schwartz, Stephen R.; Ballouz, Ronald-Louis; Yu, Yang; Matsumura, Soko

    2014-11-01

    Spacecraft images and indirect observations including thermal inertia measurements indicate most small bodies have surface regolith. Evidence of granular flow is also apparent in the images. This material motion occurs in very low gravity, therefore in a completely different gravitational environment than on the Earth. Understanding and modeling these motions can aid in the interpretation of imaged surface features that may exhibit signatures of constituent material properties. Also, upcoming sample-return missions to small bodies, and possible future manned missions, will involve interaction with the surface regolith, so it is important to develop tools to predict the surface response. We have added new capabilities to the parallelized N-body gravity tree code pkdgrav [1,2] that permit the simulation of granular dynamics, including multi-contact physics and friction forces, using the soft-sphere discrete-element method [3]. The numerical approach has been validated through comparison with laboratory experiments (e.g., [3,4]). Ongoing and recently completed projects include: impacts into granular materials using different projectile shapes [5]; possible tidal resurfacing of asteroid Apophis during its 2029 encounter [6]; the Brazil-nut effect in low gravity [7]; and avalanche modeling.Acknowledgements: DCR acknowledges NASA (grants NNX08AM39G, NNX10AQ01G, NNX12AG29G) and NSF (AST1009579). PM acknowledges the French agency CNES. SRS works on the NEOShield Project funded under the European Commission’s FP7 program agreement No. 282703. SM acknowledges support from the Center for Theory and Computation at U Maryland and the Dundee Fellowship at U Dundee. Most simulations were performed using the YORP cluster in the Dept. of Astronomy at U Maryland and on the Deepthought High-Performance Computing Cluster at U Maryland.References: [1] Richardson, D.C. et al. 2000, Icarus 143, 45; [2] Stadel, J. 2001, Ph.D. Thesis, U Washington; [3] Schwartz, S.R. et al. 2012, Gran

  8. Numerical simulation of 3D breaking waves

    NASA Astrophysics Data System (ADS)

    Fraunie, Philippe; Golay, Frederic

    2015-04-01

    Numerical methods dealing with two phase flows basically can be classified in two ways : the "interface tracking" methods when the two phases are resolved separately including boundary conditions fixed at the interface and the "interface capturing" methods when a single flow is considered with variable density. Physical and numerical properties of the two approaches are discussed, based on some numerical experiments performed concerning 3D breaking waves. Acknowledgements : This research was supported by the Modtercom program of Region PACA.

  9. Numerical Algorithm for Delta of Asian Option

    PubMed Central

    Zhang, Boxiang; Yu, Yang; Wang, Weiguo

    2015-01-01

    We study the numerical solution of the Greeks of Asian options. In particular, we derive a close form solution of Δ of Asian geometric option and use this analytical form as a control to numerically calculate Δ of Asian arithmetic option, which is known to have no explicit close form solution. We implement our proposed numerical method and compare the standard error with other classical variance reduction methods. Our method provides an efficient solution to the hedging strategy with Asian options. PMID:26266271

  10. Numerical Algorithm for Delta of Asian Option.

    PubMed

    Zhang, Boxiang; Yu, Yang; Wang, Weiguo

    2015-01-01

    We study the numerical solution of the Greeks of Asian options. In particular, we derive a close form solution of Δ of Asian geometric option and use this analytical form as a control to numerically calculate Δ of Asian arithmetic option, which is known to have no explicit close form solution. We implement our proposed numerical method and compare the standard error with other classical variance reduction methods. Our method provides an efficient solution to the hedging strategy with Asian options. PMID:26266271

  11. The Geometric Grids of the Hieratic Numeral.

    NASA Astrophysics Data System (ADS)

    Aboulfotouh, Hossam M. K.

    The paper discusses the geometrical designs of the hieratic numeral signs. It shows the regular-grid-patterns of squares upon which, the shapes of the already decoded hieratic numeral-signs, have been designed. Also, it shows the design of some hieratic numeral signs, based on subdividing the circle; and the hieratic signs of modular notation. It might reveal the basic geometrical level of understanding of anonymous ancient Egyptians who designed them some four thousand years ago.

  12. Spurious Numerical Solutions Of Differential Equations

    NASA Technical Reports Server (NTRS)

    Lafon, A.; Yee, H. C.

    1995-01-01

    Paper presents detailed study of spurious steady-state numerical solutions of differential equations that contain nonlinear source terms. Main objectives of this study are (1) to investigate how well numerical steady-state solutions of model nonlinear reaction/convection boundary-value problem mimic true steady-state solutions and (2) to relate findings of this investigation to implications for interpretation of numerical results from computational-fluid-dynamics algorithms and computer codes used to simulate reacting flows.

  13. Nonlinear dynamics and numerical uncertainties in CFD

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Sweby, P. K.

    1996-01-01

    The application of nonlinear dynamics to improve the understanding of numerical uncertainties in computational fluid dynamics (CFD) is reviewed. Elementary examples in the use of dynamics to explain the nonlinear phenomena and spurious behavior that occur in numerics are given. The role of dynamics in the understanding of long time behavior of numerical integrations and the nonlinear stability, convergence, and reliability of using time-marching, approaches for obtaining steady-state numerical solutions in CFD is explained. The study is complemented with spurious behavior observed in CFD computations.

  14. Probabilistic numerics and uncertainty in computations

    PubMed Central

    Hennig, Philipp; Osborne, Michael A.; Girolami, Mark

    2015-01-01

    We deliver a call to arms for probabilistic numerical methods: algorithms for numerical tasks, including linear algebra, integration, optimization and solving differential equations, that return uncertainties in their calculations. Such uncertainties, arising from the loss of precision induced by numerical calculation with limited time or hardware, are important for much contemporary science and industry. Within applications such as climate science and astrophysics, the need to make decisions on the basis of computations with large and complex data have led to a renewed focus on the management of numerical uncertainty. We describe how several seminal classic numerical methods can be interpreted naturally as probabilistic inference. We then show that the probabilistic view suggests new algorithms that can flexibly be adapted to suit application specifics, while delivering improved empirical performance. We provide concrete illustrations of the benefits of probabilistic numeric algorithms on real scientific problems from astrometry and astronomical imaging, while highlighting open problems with these new algorithms. Finally, we describe how probabilistic numerical methods provide a coherent framework for identifying the uncertainty in calculations performed with a combination of numerical algorithms (e.g. both numerical optimizers and differential equation solvers), potentially allowing the diagnosis (and control) of error sources in computations. PMID:26346321

  15. Numerical investigation of fluid flow in a chandler loop.

    PubMed

    Touma, Hisham; Sahin, Iskender; Gaamangwe, Tidimogo; Gorbet, Maud B; Peterson, Sean D

    2014-07-01

    The Chandler loop is an artificial circulatory platform for in vitro hemodynamic experiments. In most experiments, the working fluid is subjected to a strain rate field via rotation of the Chandler loop, which, in turn, induces biochemical responses of the suspended cells. For low rotation rates, the strain rate field can be approximated using laminar flow in a straight tube. However, as the rotation rate increases, the effect of the tube curvature causes significant deviation from the laminar straight tube approximation. In this manuscript, we investigate the flow and associated strain rate field of an incompressible Newtonian fluid in a Chandler loop as a function of the governing nondimensional parameters. Analytical estimates of the strain rate from a perturbation solution for pressure driven steady flow in a curved tube suggest that the strain rate should increase with Dean number, which is proportional to the tangential velocity of the rotating tube, and the radius to radius of curvature ratio of the loop. Parametrically varying the rotation rate, tube geometry, and fill ratio of the loop show that strain rate can actually decrease with Dean number. We show that this is due to the nonlinear relationship between the tube rotation rate and height difference between the two menisci in the rotating tube, which provides the driving pressure gradient. An alternative Dean number is presented to naturally incorporate the fill ratio and collapse the numerical data. Using this modified Dean number, we propose an empirical formula for predicting the average fluid strain rate magnitude that is valid over a much wider parameter range than the more restrictive straight tube-based prediction. PMID:24686927

  16. The Validity of Reading Comprehension Rate: Reading Speed, Comprehension, and Comprehension Rates

    ERIC Educational Resources Information Center

    Skinner, Christopher H.; Williams, Jacqueline L.; Morrow, Jennifer Ann; Hale, Andre D.; Neddenriep, Christine E.; Hawkins, Renee O.

    2009-01-01

    This article describes a secondary analysis of a brief reading comprehension rate measure, percent comprehension questions correct per minute spent reading (%C/M). This measure includes reading speed (seconds to read) in the denominator and percentage of comprehension questions answered correctly in the numerator. Participants were 22 4th-, 29…

  17. Fertility Clinic Success Rates

    MedlinePlus

    ... 2013 Assisted Reproductive Technology Fertility Clinic Success Rates Report Recommend on Facebook Tweet Share Compartir 2013 ART Fertility Clinic Success Rates Report [PDF - 1MB] Bookmarks and thumbnails are available within ...

  18. Glomerular filtration rate

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/007305.htm Glomerular filtration rate To use the sharing features on this page, please enable JavaScript. Glomerular filtration rate (GFR) is a test used to check ...

  19. Target Heart Rate Calculator

    MedlinePlus

    ... My Saved Articles » My ACS » + - Text Size Target Heart Rate Calculator Compute your best workout Enter your age ... is your age? years. How to Check Your Heart Rate Right after you stop exercising, take your pulse: ...

  20. Rocket Engine Numerical Simulator (RENS)

    NASA Technical Reports Server (NTRS)

    Davidian, Kenneth O.

    1997-01-01

    Work is being done at three universities to help today's NASA engineers use the knowledge and experience of their Apolloera predecessors in designing liquid rocket engines. Ground-breaking work is being done in important subject areas to create a prototype of the most important functions for the Rocket Engine Numerical Simulator (RENS). The goal of RENS is to develop an interactive, realtime application that engineers can utilize for comprehensive preliminary propulsion system design functions. RENS will employ computer science and artificial intelligence research in knowledge acquisition, computer code parallelization and objectification, expert system architecture design, and object-oriented programming. In 1995, a 3year grant from the NASA Lewis Research Center was awarded to Dr. Douglas Moreman and Dr. John Dyer of Southern University at Baton Rouge, Louisiana, to begin acquiring knowledge in liquid rocket propulsion systems. Resources of the University of West Florida in Pensacola were enlisted to begin the process of enlisting knowledge from senior NASA engineers who are recognized experts in liquid rocket engine propulsion systems. Dr. John Coffey of the University of West Florida is utilizing his expertise in interviewing and concept mapping techniques to encode, classify, and integrate information obtained through personal interviews. The expertise extracted from the NASA engineers has been put into concept maps with supporting textual, audio, graphic, and video material. A fundamental concept map was delivered by the end of the first year of work and the development of maps containing increasing amounts of information is continuing. Find out more information about this work at the Southern University/University of West Florida. In 1996, the Southern University/University of West Florida team conducted a 4day group interview with a panel of five experts to discuss failures of the RL10 rocket engine in conjunction with the Centaur launch vehicle. The

  1. Theoretical and numerical predictions of hypervelocity impact-generated plasma

    SciTech Connect

    Li, Jianqiao; Song, Weidong Ning, Jianguo

    2014-08-15

    The hypervelocity impact generated plasmas (HVIGP) in thermodynamic non-equilibrium state were theoretically analyzed, and a physical model was presented to explore the relationship between plasma ionization degree and internal energy of the system by a group of equations including a chemical reaction equilibrium equation, a chemical reaction rate equation, and an energy conservation equation. A series of AUTODYN 3D (a widely used software in dynamic numerical simulations and developed by Century Dynamic Inc.) numerical simulations of the impacts of hypervelocity Al projectile on its targets at different incident angles were performed. The internal energy and the material density obtained from the numerical simulations were then used to calculate the ionization degree and the electron temperature. Based on a self-developed 2D smooth particle hydrodynamic (SPH) code and the theoretical model, the plasmas generated by 6 hypervelocity impacts were directly simulated and their total charges were calculated. The numerical results are in good agreements with the experimental results as well as the empirical formulas, demonstrating that the theoretical model is justified by the AUTODYN 3D and self-developed 2D SPH simulations and applicable to predict HVIGPs. The study is of significance for astrophysical and cosmonautic researches and safety.

  2. Sequential analysis of the numerical Stroop effect reveals response suppression.

    PubMed

    Cohen Kadosh, Roi; Gevers, Wim; Notebaert, Wim

    2011-09-01

    Automatic processing of irrelevant stimulus dimensions has been demonstrated in a variety of tasks. Previous studies have shown that conflict between relevant and irrelevant dimensions can be reduced when a feature of the irrelevant dimension is repeated. The specific level at which the automatic process is suppressed (e.g., perceptual repetition, response repetition), however, is less understood. In the current experiment we used the numerical Stroop paradigm, in which the processing of irrelevant numerical values of 2 digits interferes with the processing of their physical size, to pinpoint the precise level of the suppression. Using a sequential analysis, we dissociated perceptual repetition from response repetition of the relevant and irrelevant dimension. Our analyses of reaction times, error rates, and diffusion modeling revealed that the congruity effect is significantly reduced or even absent when the response sequence of the irrelevant dimension, rather than the numerical value or the physical size, is repeated. These results suggest that automatic activation of the irrelevant dimension is suppressed at the response level. The current results shed light on the level of interaction between numerical magnitude and physical size as well as the effect of variability of responses and stimuli on automatic processing. PMID:21500951

  3. Numerical analysis of volcanic SO{sub 2} plume transport

    SciTech Connect

    Uno, Itsushi

    1996-12-31

    Mt. Sakurajima volcano (1060m) located southern part of Kyushu island, Japan, emitted a huge amount of volcanic gas (e.g., 1000-2000 SO{sub 2}-ton/day) and has a strong impact in the environmental SO{sub 2} concentration. This volcanic SO{sub 2} plume transport process over the Kyushu island was simulated by a random walk model based on the wind and turbulence fields simulated by a mesoscale numerical model using four-dimensional data assimilation (FDDA). Continuous four days of numerical simulation was the period covering from May 7 to May 10, 1987. Grided global analysis by ECMWF and the special pilot-balloon observation data were used in the FDDA. Mesoscale numerical model with FDDA simulated well the general wind fields during the passage of high pressure system, and the complicated local wind circulation within the planetary boundary layer (PBL). Simulated surface wind variation was quantitatively compared with the observation data, and showed the good agreements. Numerical results of plume transport process were compared with SO{sub 2} surface and 3-D airborne measurements. It was revealed that simulated three-dimensional plume behavior explained well the observed SO{sub 2} variation, and the day-time development of PBL played an important role for the transport of the volcanic SO{sub 2} aloft to the surface level. Transformation rate from SO{sub 2} to sulfate was also determined from the trajectory by the random walk calculation.

  4. Numerical tests of nucleation theories for the Ising models

    NASA Astrophysics Data System (ADS)

    Ryu, Seunghwa; Cai, Wei

    2010-07-01

    The classical nucleation theory (CNT) is tested systematically by computer simulations of the two-dimensional (2D) and three-dimensional (3D) Ising models with a Glauber-type spin flip dynamics. While previous studies suggested potential problems with CNT, our numerical results show that the fundamental assumption of CNT is correct. In particular, the Becker-Döring theory accurately predicts the nucleation rate if the correct droplet free energy function is provided as input. This validates the coarse graining of the system into a one dimensional Markov chain with the largest droplet size as the reaction coordinate. Furthermore, in the 2D Ising model, the droplet free energy predicted by CNT matches numerical results very well, after a logarithmic correction term from Langer’s field theory and a constant correction term are added. But significant discrepancies are found between the numerical results and existing theories on the magnitude of the logarithmic correction term in the 3D Ising model. Our analysis underscores the importance of correctly accounting for the temperature dependence of surface energy when comparing numerical results and nucleation theories.

  5. Numerical estimation of cavitation intensity

    NASA Astrophysics Data System (ADS)

    Krumenacker, L.; Fortes-Patella, R.; Archer, A.

    2014-03-01

    Cavitation may appear in turbomachinery and in hydraulic orifices, venturis or valves, leading to performance losses, vibrations and material erosion. This study propose a new method to predict the cavitation intensity of the flow, based on a post-processing of unsteady CFD calculations. The paper presents the analyses of cavitating structures' evolution at two different scales: • A macroscopic one in which the growth of cavitating structures is calculated using an URANS software based on a homogeneous model. Simulations of cavitating flows are computed using a barotropic law considering presence of air and interfacial tension, and Reboud's correction on the turbulence model. • Then a small one where a Rayleigh-Plesset software calculates the acoustic energy generated by the implosion of the vapor/gas bubbles with input parameters from macroscopic scale. The volume damage rate of the material during incubation time is supposed to be a part of the cumulated acoustic energy received by the solid wall. The proposed analysis method is applied to calculations on hydrofoil and orifice geometries. Comparisons between model results and experimental works concerning flow characteristic (size of cavity, pressure,velocity) as well as pitting (erosion area, relative cavitation intensity) are presented.

  6. Handbook of noise ratings

    NASA Technical Reports Server (NTRS)

    Pearsons, K. S.; Bennett, R. L.

    1974-01-01

    The handbook was compiled to provide information in a concise form, describing the multitude of noise rating schemes. It is hoped that by describing the noise rating methods in a single volume the user will have better access to the definitions, application and calculation procedures of the current noise rating methods.

  7. Electrohydraulic forming of dual phase steels; numerical and experimental work

    NASA Astrophysics Data System (ADS)

    Hassannejadasl, Amir; Green, Daniel E.; Golovashchenko, Sergey F.

    2013-12-01

    Electrohydraulic Forming (EHF) is a high velocity forming process, in which the strain-rate in the sheet metal can reach very high values depending on the prescribed input energy, the chamber geometry, the die geometry, instrumentation efficiency and the mechanical properties of the sheet material. In EHF, a high voltage discharge between electrodes that are submerged in a water-filled chamber generates a plasma channel that leads to propagation of a shockwave through the water that forms the sheet, with or without a die, in less than a millisecond. EHF generates a complex pressure pulse history that is extremely challenging to simulate. In this work, three-dimensional finite element simulations of DP590 sheet were completed in free-forming (EHFF) and die-forming (EHDF) conditions using ABAQUS/Explicit and a combination of Eulerian and Lagrangian elements. The Johnson-Cook constitutive plasticity model was selected and the parameters were calibrated based on uniaxial tensile test data at different strain-rates. A comprehensive numerical study was carried out with a view to understanding the differences between EHFF and EHDF in terms of the history of the deformation profile of the specimen, the strain-rate history, the loading path and through-thickness stresses. Higher strain-rates and more complex strain-paths were predicted in EHDF compared to EHFF due to dynamic sheet/die interaction. Good correlation between the experimental and numerical results demonstrated the ability of numerical models to accurately predict the history of the deformation profile in both EHDF and EHFF conditions.

  8. Numerical simulation of seasonal groundwater pumping

    NASA Astrophysics Data System (ADS)

    Filimonova, Elena; Baldenkov, Mikhail

    2015-04-01

    Increasing scarcity and contamination of water recourses require innovative water management strategies such as combined water system. The combined water system is a complex technology comprising two separate wells, major catchment-zone well and compensation pumping well, located inside a single stream basin. The major well is supplied by the well's catchment zone or surface flow, thus depleting the stream flow. The pumping rate of a major well is determined by the difference between the current stream flow and the minimum permissible stream flow. The deficiency of the stream flow in dry seasons can be compensated for by the short-term pumping of groundwater. The compensation pumping rate is determined by the difference between water demand and the permissible water withdrawal of the major well. The source for the compensation well is the aquifer storage. The estimation of streamflow depletion caused by compensation pumping is major question to evaluate the efficiency of the combined water system. Short-term groundwater pumping can use aquifer storage instead of catchment-zone water until the drawdown reaches the edge of the stream. Traditionally pumping simulation calculates in two-step procedure. Natural conditions, an aquifer system is in an approximate dynamic equilibrium, describe by steady-state model. A steady-state solution provides an initial heads, a set of flows through boundaries, and used as initial state for transient solutions, when pumping is imposed on an aquifer system. The transient solutions provide the total change in flows through the boundaries. A difference between the transient and steady-state solutions estimates the capture and the streamflow depletion. Numerical modeling of cyclical compensation pumping has special features: the periodic solution, the seasonal changes through the boundaries and the importance even small drawdown of stream level. When seasonality is a modeling feature, traditional approach leads to mistaken values of

  9. MHD micropumping of power-law fluids: A numerical solution

    NASA Astrophysics Data System (ADS)

    Moghaddam, Saied

    2013-02-01

    The performance of MHD micropumps is studied numerically assuming that the viscosity of the fluid is shear-dependent. Using power-law model to represent the fluid of interest, the effect of power-law exponent, N, is investigated on the volumetric flow rate in a rectangular channel. Assuming that the flow is laminar, incompressible, two-dimensional, but (approximately) unidirectional, finite difference method (FDM) is used to solve the governing equations. It is found that shear-thinning fluids provide a larger flow rate as compared to Newtonian fluids provided that the Hartmann number is above a critical value. There exists also an optimum Hartmann number (which is larger than the critical Hartmann number) at which the flow rate is maximum. The power-law exponent, N, strongly affects the optimum geometry depending on the Hartmann number being smaller or larger than the critical Hartmann number.

  10. Numerical Magnitude Representations Influence Arithmetic Learning

    ERIC Educational Resources Information Center

    Booth, Julie L.; Siegler, Robert S.

    2008-01-01

    This study examined whether the quality of first graders' (mean age = 7.2 years) numerical magnitude representations is correlated with, predictive of, and causally related to their arithmetic learning. The children's pretest numerical magnitude representations were found to be correlated with their pretest arithmetic knowledge and to be…

  11. Pure Left Neglect for Arabic Numerals

    ERIC Educational Resources Information Center

    Priftis, Konstantinos; Albanese, Silvia; Meneghello, Francesca; Pitteri, Marco

    2013-01-01

    Arabic numerals are diffused and language-free representations of number magnitude. To be effectively processed, the digits composing Arabic numerals must be spatially arranged along a left-to-right axis. We studied one patient (AK) to show that left neglect, after right hemisphere damage, can selectively impair the computation of the spatial…

  12. An Integrative Theory of Numerical Development

    ERIC Educational Resources Information Center

    Siegler, Robert; Lortie-Forgues, Hugues

    2014-01-01

    Understanding of numerical development is growing rapidly, but the volume and diversity of findings can make it difficult to perceive any coherence in the process. The integrative theory of numerical development posits that a coherent theme is present, however--progressive broadening of the set of numbers whose magnitudes can be accurately…

  13. Numerical Integration: One Step at a Time

    ERIC Educational Resources Information Center

    Yang, Yajun; Gordon, Sheldon P.

    2016-01-01

    This article looks at the effects that adding a single extra subdivision has on the level of accuracy of some common numerical integration routines. Instead of automatically doubling the number of subdivisions for a numerical integration rule, we investigate what happens with a systematic method of judiciously selecting one extra subdivision for…

  14. Numerical experiments on the theta pinch

    NASA Technical Reports Server (NTRS)

    Volosevich, P. P.; Zukakishyili, G. G.

    1979-01-01

    Numerical calculation of theta pinch problems are presented. Physical processes in theta pinch systems are considered in a one dimensional, two temperature magnetohydrodynamic, approximation with allowance for end losses by longitudinal heat conductivity. The numerical calculations are compared with results of earlier experiments.

  15. Nonclassicality thresholds for multiqubit states: Numerical analysis

    SciTech Connect

    Gruca, Jacek; Zukowski, Marek; Laskowski, Wieslaw; Kiesel, Nikolai; Wieczorek, Witlef; Weinfurter, Harald; Schmid, Christian

    2010-07-15

    States that strongly violate Bell's inequalities are required in many quantum-informational protocols as, for example, in cryptography, secret sharing, and the reduction of communication complexity. We investigate families of such states with a numerical method which allows us to reveal nonclassicality even without direct knowledge of Bell's inequalities for the given problem. An extensive set of numerical results is presented and discussed.

  16. NUMERICAL NOISE PM SIMULATION IN CMAQ

    EPA Science Inventory

    We have found that numerical noise in the latest release of CMAQ using the yamo advection scheme when compiled on Linux cluster with pgf90 (5.0 or 6.0). We recommend to use -C option to eliminate the numerical noise.

  17. Handbook on Numerically Controlled Operational Devices.

    ERIC Educational Resources Information Center

    Campbell, Clifton P.

    This handbook presents an organized set of descriptive information on numerically controlled operational devices. The information is intended for those involved in industry and technical education and to contribute to the knowledge of numerical control technology. It is also intended for supervisors, manufacturers, machine operators, and others…

  18. Intersensory Redundancy Accelerates Preverbal Numerical Competence

    ERIC Educational Resources Information Center

    Jordan, Kerry E.; Suanda, Sumarga H.; Brannon, Elizabeth M.

    2008-01-01

    Intersensory redundancy can facilitate animal and human behavior in areas as diverse as rhythm discrimination, signal detection, orienting responses, maternal call learning, and associative learning. In the realm of numerical development, infants show similar sensitivity to numerical differences in both the visual and auditory modalities. Using a…

  19. Numerical Investigation of Slag Behavior for RSRM

    NASA Technical Reports Server (NTRS)

    Liaw, P.; Chen, Y.-S.; Shang, H.; Shih, M.; Doran, D.; Stewart, E.

    1996-01-01

    It is known that the flow field of the redesigned solid rocket motor (RSRM) is very complicated due to the complex characteristics of turbulent multi-phase flow, chemical reaction, particle combustion, evaporation, breakup and agglomeration etc. It requires multi-phase calculations, chemical reaction simulation, and particle combustion, evaporation, and breakup models to obtain a better understanding of thermophysics for the RSRM design using numerical methods. Also, the slag buildup due to the molten particles is another factor affecting the performance of the RSRM. To achieve this goal, the volume of fluid (VOF) method is used to capture the free surface motion so as to simulate the accumulation of the molten particles (slag) of the RSRM. A finite rate chemistry model is used to simulate the chemical reaction effects. For multi-phase calculations, the Hermsen combustion model is used for the aluminum particle combustion analysis and the Taylor Analogy Breakup (TAB) model is used for the particle breakup analysis. An interphase mas-exchange model introduced by Spalding is used for the evaporation calculation. The particle trajectories are calculated using a one-step implicit method for several groups of particle sizes by which the drag forces and heat fluxes are then coupled with the gas phase equations. The preliminary results predicted a reasonable physical simulation of the particle effects using a simple two dimensional solid rocket motor configuration. It shows that the AL/AL2O3 particle sizes are reduced due to the combustion, evaporation, and breakup. The flow field is disturbed by the particles. Mach number distributions in the nozzle are deformed due to the effect of particle concentrations away from the center line.

  20. Numerical simulation of baroclinic Jovian vortices

    NASA Astrophysics Data System (ADS)

    Achterberg, R. K.; Ingersoll, A. P.

    1994-02-01

    We examine the evolution of baroclinic vortices in a time-dependent, nonlinear numerical model of a Jovian atmosphere. The model uses a normal-mode expansion in the vertical, using the barotropic and first two baroclinic modes. Results for the stability of baroclinic vortices on an f plane in the absence of a mean zonal flow are similar to results of Earth vortex models, although the presence of a fluid interior on the Jovian planets shifts the stability boundaries to smaller length scales. The presence of a barotropic mean zonal flow in the interior stabilizes vortices against instability and significantly modifies the finite amplitude form of baroclinic instabilities. The effect of a zonal flow on a form of barotropic instability produces periodic oscillations in the latitude and longitude of the vortex as observed at the level of the cloud tops. This instability may explain some, but not all, observations of longitudinal oscillations of vortices on the outer planets. Oscillations in aspect ratio and orientation of stable vortices in a zonal shear flow are observed in this baroclinic model, as in simpler two-dimensional models. Such oscillations are also observed in the atmospheres of Jupiter and Neptune. The meridional propagation and decay of vortices on a beta plane is inhibited by the presence of a mean zonal flow. The direction of propagation of a vortex relative to the mean zonal flow depends upon the sign of the meridional potential vorticity gradient; combined with observations of vortex drift rates, this may provide a constraint on model assumption for the flow in the deep interior of the Jovian planets.

  1. Rate theories for biologists

    PubMed Central

    Zhou, Huan-Xiang

    2012-01-01

    Some of the rate theories that are most useful for modeling biological processes are reviewed. By delving into some of the details and subtleties in the development of the theories, the review will hopefully help the reader gain a more than superficial perspective. Examples are presented to illustrate how rate theories can be used to generate insight at the microscopic level into biomolecular behaviors. Attempt is made to clear up a number of misconceptions in the literature regarding popular rate theories, including the appearance of Planck’s constant in the transition-state theory and the Smoluchowski result as an upper limit for protein-protein and protein-DNA association rate constants. Future work in combining the implementation of rate theories through computer simulations with experimental probes of rate processes, and in modeling effects of intracellular environments so theories can be used for generating rate constants for systems biology studies is particularly exciting. PMID:20691138

  2. Eulerian-Lagrangian numerical scheme for simulating advection, dispersion, and transient storage in streams and a comparison of numerical methods

    USGS Publications Warehouse

    Cox, T.J.; Runkel, R.L.

    2008-01-01

    Past applications of one-dimensional advection, dispersion, and transient storage zone models have almost exclusively relied on a central differencing, Eulerian numerical approximation to the nonconservative form of the fundamental equation. However, there are scenarios where this approach generates unacceptable error. A new numerical scheme for this type of modeling is presented here that is based on tracking Lagrangian control volumes across a fixed (Eulerian) grid. Numerical tests are used to provide a direct comparison of the new scheme versus nonconservative Eulerian numerical methods, in terms of both accuracy and mass conservation. Key characteristics of systems for which the Lagrangian scheme performs better than the Eulerian scheme include: nonuniform flow fields, steep gradient plume fronts, and pulse and steady point source loadings in advection-dominated systems. A new analytical derivation is presented that provides insight into the loss of mass conservation in the nonconservative Eulerian scheme. This derivation shows that loss of mass conservation in the vicinity of spatial flow changes is directly proportional to the lateral inflow rate and the change in stream concentration due to the inflow. While the nonconservative Eulerian scheme has clearly worked well for past published applications, it is important for users to be aware of the scheme's limitations. ?? 2008 ASCE.

  3. Numerical simulations of cryogenic cavitating flows

    NASA Astrophysics Data System (ADS)

    Kim, Hyunji; Kim, Hyeongjun; Min, Daeho; Kim, Chongam

    2015-12-01

    The present study deals with a numerical method for cryogenic cavitating flows. Recently, we have developed an accurate and efficient baseline numerical scheme for all-speed water-gas two-phase flows. By extending such progress, we modify the numerical dissipations to be properly scaled so that it does not show any deficiencies in low Mach number regions. For dealing with cryogenic two-phase flows, previous EOS-dependent shock discontinuity sensing term is replaced with a newly designed EOS-free one. To validate the proposed numerical method, cryogenic cavitating flows around hydrofoil are computed and the pressure and temperature depression effect in cryogenic cavitation are demonstrated. Compared with Hord's experimental data, computed results are turned out to be satisfactory. Afterwards, numerical simulations of flow around KARI turbopump inducer in liquid rocket are carried out under various flow conditions with water and cryogenic fluids, and the difference in inducer flow physics depending on the working fluids are examined.

  4. A numerical method for cardiac mechanoelectric simulations.

    PubMed

    Pathmanathan, Pras; Whiteley, Jonathan P

    2009-05-01

    Much effort has been devoted to developing numerical techniques for solving the equations that describe cardiac electrophysiology, namely the monodomain equations and bidomain equations. Only a limited selection of publications, however, address the development of numerical techniques for mechanoelectric simulations where cardiac electrophysiology is coupled with deformation of cardiac tissue. One problem commonly encountered in mechanoelectric simulations is instability of the coupled numerical scheme. In this study, we develop a stable numerical scheme for mechanoelectric simulations. A number of convergence tests are carried out using this stable technique for simulations where deformations are of the magnitude typically observed in a beating heart. These convergence tests demonstrate that accurate computation of tissue deformation requires a nodal spacing of around 1 mm in the mesh used to calculate tissue deformation. This is a much finer computational grid than has previously been acknowledged, and has implications for the computational efficiency of the resulting numerical scheme. PMID:19263223

  5. Confidence bands for measured economically optimal nitrogen rates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    While numerous researchers have computed economically optimal N rate (EONR) values from measured yield – N rate data, nearly all have neglected to compute or estimate the statistical reliability of these EONR values. In this study, a simple method for computing EONR and its confidence bands is descr...

  6. Rate-based ABR flow control using two timescale SPSA

    NASA Astrophysics Data System (ADS)

    Bhatnagar, Shalabh; Fu, Michael C.; Marcus, Steven I.

    1999-08-01

    In this paper, a two timescale simultaneous perturbation stochastic approximation algorithm is developed and applied to closed loop rate based available bit rate flow control. The relevant convergence results are stated and explained. Numerical experiments demonstrate fast convergence even in the presence of significant delays and a large number of parameterized policy levels.

  7. Did Unilateral Divorce Laws Raise Divorce Rates in Western Europe?

    ERIC Educational Resources Information Center

    Kneip, Thorsten; Bauer, Gerrit

    2009-01-01

    The increase in European divorce rates over the past decades was accompanied by several changes in divorce laws. Yet for European countries, research on the effects of divorce law on the divorce rate is scarce. Most of the existing studies are based on data from North America and provide numerous, but inconsistent, results. We use fixed-effects…

  8. Numerical and experimental study of rotating jet flows

    NASA Astrophysics Data System (ADS)

    Shin, Seungwon; Che, Zhizhao; Kahouadji, Lyes; Matar, Omar; Chergui, Jalel; Juric, Damir

    2015-11-01

    Rotating jets are investigated through experimental measurements and numerical simulations. The experiments are performed on a rotating jet rig and the effects of a range of parameters controlling the liquid jet are investigated, e.g. jet flow rate, rotation speed, jet diameter, etc. Different regimes of the jet morphology are identified, and the dependence on several dimensionless numbers is studied, e.g. Reynolds number, Weber number, etc. The breakup process of droplets is visualized through high speed imaging. Full three-dimensional direct numerical simulations are performed using BLUE, a massively parallel two-phase flow code. The novel interface algorithms in BLUE track the gas-liquid interface through a wide dynamic range including ligament formation, break up and rupture. EPSRC Programme Grant, MEMPHIS, EP/K0039761/1.

  9. Numerical Estimation of the Curvature of Biological Surfaces

    NASA Technical Reports Server (NTRS)

    Todd, P. H.

    1985-01-01

    Many biological systems may profitably be studied as surface phenomena. A model consisting of isotropic growth of a curved surface from a flat sheet is assumed. With such a model, the Gaussian curvature of the final surface determines whether growth rate of the surface is subharmonic or superharmonic. These properties correspond to notions of convexity and concavity, and thus to local excess growth and local deficiency of growth. In biological models where the major factors controlling surface growth are intrinsic to the surface, researchers thus gained from geometrical study information on the differential growth undergone by the surface. These ideas were applied to an analysis of the folding of the cerebral cortex, a geometrically rather complex surface growth. A numerical surface curvature technique based on an approximation to the Dupin indicatrix of the surface was developed. A metric for comparing curvature estimates is introduced, and considerable numerical testing indicated the reliability of this technique.

  10. Numerical study of unsteady processes in a Faraday MHD generator

    NASA Astrophysics Data System (ADS)

    Vinogradova, G. N.; Panchenko, V. P.

    1981-07-01

    A numerical study is presented on the unsteady processes occurring in a Faraday MHD generator with a high power-conversion efficiency. A supersonic MHD generator operating with an equilibrium plasma and designed to convert energy in a system using a thermonuclear reactor is considered, and the steady operating modes are established for cases when an ohmic load is connected, disconnected, or reduced. A magnetic field is assumed to be generated by a suitable profiling of the external magnetic field, and the working medium is modeled by an ideal gas. Partial differential equations are solved numerically by using a central difference predictor-corrector scheme. The study can be applied to problems (e.g., transient times, nominal parameter maximal values and rates of change, methods of regulating the generator and switching it on and off) arising during the design of MHD generators.

  11. Mapping numerical magnitudes onto symbols: the numerical distance effect and individual differences in children's mathematics achievement.

    PubMed

    Holloway, Ian D; Ansari, Daniel

    2009-05-01

    Although it is often assumed that abilities that reflect basic numerical understanding, such as numerical comparison, are related to children's mathematical abilities, this relationship has not been tested rigorously. In addition, the extent to which symbolic and nonsymbolic number processing play differential roles in this relationship is not yet understood. To address these questions, we collected mathematics achievement measures from 6- to 8-year-olds as well as reaction times from a numerical comparison task. Using the reaction times, we calculated the size of the numerical distance effect exhibited by each child. In a correlational analysis, we found that the individual differences in the distance effect were related to mathematics achievement but not to reading achievement. This relationship was found to be specific to symbolic numerical comparison. Implications for the role of basic numerical competency and the role of accessing numerical magnitude information from Arabic numerals for the development of mathematical skills and their impairment are discussed. PMID:18513738

  12. Leukocyte margination at arteriole shear rate

    PubMed Central

    Takeishi, Naoki; Imai, Yohsuke; Nakaaki, Keita; Yamaguchi, Takami; Ishikawa, Takuji

    2014-01-01

    Abstract We numerically investigated margination of leukocytes at arteriole shear rate in straight circular channels with diameters ranging from 10 to 22 μm. Our results demonstrated that passing motion of RBCs effectively induces leukocyte margination not only in small channels but also in large channels. A longer time is needed for margination to occur in a larger channel, but once a leukocyte has marginated, passing motion of RBCs occurs continuously independent of the channel diameter, and leukocyte margination is sustained for a long duration. We also show that leukocytes rarely approach the wall surface to within a microvillus length at arteriole shear rate. PMID:24907300

  13. Numerical simulation and modeling of combustion in scramjets

    NASA Astrophysics Data System (ADS)

    Clark, Ryan James

    In the last fifteen years the development of a viable scramjet has quickly approached the following long term goals: responsive sub-orbital space access; long-range, prompt global strike; and high-speed transportation. Nonetheless, there are significant challenges that need to be resolved. These challenges include high skin friction drag and high heat transfer rates, inherent to vehicles in sustained, hypersonic flight. Another challenge is sustaining combustion. Numerical simulation and modeling was performed to provide insight into reducing skin friction drag and sustaining combustion. Numerical simulation was used to investigate boundary layer combustion, which has been shown to reduce skin friction drag. The objective of the numerical simulations was to quantify the effect of fuel injection parameters on boundary layer combustion and ultimately on the change in the skin friction coefficient and heat transfer rate. A qualitative analysis of the results suggest that the reduction in the skin friction coefficient depends on multiple parameters and potentially an interaction between parameters. Sustained combustion can be achieved through a stabilized detonation wave. Additionally, stabilizing a detonation wave will yield rapid combustion. This will allow for a shorter and lighter-weight engine system, resulting in less required combustor cooling. A stabilized detonation wave was numerically modeled for various inlet and geometric cases. The effect of fuel concentration, inlet Mach number, and geometric configuration on the stability of a detonation wave was quantified. Correlations were established between fuel concentration, inlet speed, geometric configuration and parameters characterizing the detonation wave. A linear relationship was quantified between the fuel concentration and the parameters characterizing the detonation wave.

  14. Numerical evaluation of a sensible heat balance method to determine rates of soil freezing and thawing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In-situ determination of ice formation and thawing in soils is difficult despite its importance for many environmental processes. A sensible heat balance (SHB) method using a sequence of heat pulse probes has been shown to accurately measure water evaporation in subsurface soil, and it has the poten...

  15. Concepts for radically increasing the numerical convergence rate of the Euler equations

    NASA Technical Reports Server (NTRS)

    Nixon, David; Tzuoo, Keh-Lih; Caruso, Steven C.; Farshchi, Mohammad; Klopfer, Goetz H.; Ayoub, Alfred

    1987-01-01

    Integral equation and finite difference methods have been developed for solving transonic flow problems using linearized forms of the transonic small disturbance and Euler equations. A key element is the use of a strained coordinate system in which the shock remains fixed. Additional criteria are developed to determine the free parameters in the coordinate straining; these free parameters are functions of the shock location. An integral equation analysis showed that the shock is located by ensuring that no expansion shocks exist in the solution. The expansion shock appears as oscillations in the solution near the sonic line, and the correct shock location is determined by removing these oscillations. A second objective was to study the ability of the Euler equation to model separated flow.

  16. Fine Root Mortality Rates in a Temperate Forest: Estimates using Radiocarbon Data and Numerical Modeling

    SciTech Connect

    Riley, William J.; Gaudinski, Julia B.; Torn, Margaret S.; JoslinJr., John D.; Hanson, Paul J

    2009-01-01

    Carbon (C) fluxes through roots are the most uncertain of all C exchanges between the atmosphere, plants, and soil. Yet the three dominant methods to characterize root C fluxes (minirhizotron, sequential coring, and isotopes) yield significantly different estimates of temperate forest root mortality turnover times. We contend that these discrepancies result from limitations in interpreting these very distinct types of observations. In this study we used a whole-ecosystem 14C label to develop, parameterize, and test a model (Radix1.0) of fine-root mortality and decomposition. Radix simulates two live roots pools (one with structural and non-structural C components), two dead root pools, non-normally distributed root mortality turnover times, a stored C pool, seasonal growth and respiration patterns, a best-fit to measurements approach to estimate model parameters, and Monte Carlo uncertainty analysis. We applied Radix at a temperate forest in Oak Ridge Tennessee using 14C measurements from two root size classes (<0.5 mm and 0.5−2.0 mm) and three soil depth increments (O horizon, 0−15, and 30−60 cm). Predicted root lifetimes were 0.1-0.9 y and 11-14 y for fast and slow live root pools respectively, and 0.1-4 y and 11-14 y for fast and slow dead root pool decomposition turnover times, respectively. We estimated that C fluxes through fine roots <2 mm diameter are ~40, 220, and 90 g C m-2 y 1 in the O horizon, 0−15 cm, and 30−60 cm depth intervals, respectively. We conclude that accurate characterization of C flows through fine roots required a model with two live fine-root pools, two dead fine-root pools, and root respiration. Further, root turnover times on the order of a decade imply different response times in biomass and growth than are currently predicted by models with a single annual turnover pool.

  17. Numerical study of supersonic combustion using a finite rate chemistry model

    NASA Technical Reports Server (NTRS)

    Chitsomboon, T.; Tiwari, S. N.; Kumar, A.; Drummond, J. P.

    1986-01-01

    The governing equations of two-dimensional chemically reacting flows are presented together with a global two-step chemistry model for H2-air combustion. The explicit unsplit MacCormack finite difference algorithm is used to advance the discrete system of the governing equations in time until convergence is attained. The source terms in the species equations are evaluated implicitly to alleviate stiffness associated with fast reactions. With implicit source terms, the species equations give rise to a block-diagonal system which can be solved very efficiently on vector-processing computers. A supersonic reacting flow in an inlet-combustor configuration is calculated for the case where H2 is injected into the flow from the side walls and the strut. Results of the calculation are compared against the results obtained by using a complete reaction model.

  18. Fine-root mortality rates in a temperate forest: Estimates using radiocarbon data and numerical modeling

    SciTech Connect

    Riley, W.J.; Gaudinski, J.B.; Torn, M.S.; Joslin, J.D.; Hanson, P.J.

    2009-09-01

    We used an inadvertent whole-ecosystem {sup 14}C label at a temperate forest in Oak Ridge, Tennessee, USA to develop a model (Radix1.0) of fine-root dynamics. Radix simulates two live-root pools, two dead-root pools, non-normally distributed root mortality turnover times, a stored carbon (C) pool, and seasonal growth and respiration patterns. We applied Radix to analyze measurements from two root size classes (< 0.5 and 0.5-2.0 mm diameter) and three soil-depth increments (O horizon, 0-15 cm and 30-60 cm). Predicted live-root turnover times were < 1 yr and 10 yr for short- and long-lived pools, respectively. Dead-root pools had decomposition turnover times of 2 yr and 10 yr. Realistic characterization of C flows through fine roots requires a model with two live fine-root populations, two dead fine-root pools, and root respiration. These are the first fine-root turnover time estimates that take into account respiration, storage, seasonal growth patterns, and non-normal turnover time distributions. The presence of a root population with decadal turnover times implies a lower amount of belowground net primary production used to grow fine-root tissue than is currently predicted by models with a single annual turnover pool.

  19. Solutions of two-factor models with variable interest rates

    NASA Astrophysics Data System (ADS)

    Li, Jinglu; Clemons, C. B.; Young, G. W.; Zhu, J.

    2008-12-01

    The focus of this work is on numerical solutions to two-factor option pricing partial differential equations with variable interest rates. Two interest rate models, the Vasicek model and the Cox-Ingersoll-Ross model (CIR), are considered. Emphasis is placed on the definition and implementation of boundary conditions for different portfolio models, and on appropriate truncation of the computational domain. An exact solution to the Vasicek model and an exact solution for the price of bonds convertible to stock at expiration under a stochastic interest rate are derived. The exact solutions are used to evaluate the accuracy of the numerical simulation schemes. For the numerical simulations the pricing solution is analyzed as the market completeness decreases from the ideal complete level to one with higher volatility of the interest rate and a slower mean-reverting environment. Simulations indicate that the CIR model yields more reasonable results than the Vasicek model in a less complete market.

  20. Numeral-Incorporating Roots in Numeral Systems: A Comparative Analysis of Two Sign Languages

    ERIC Educational Resources Information Center

    Fuentes, Mariana; Massone, Maria Ignacia; Fernandez-Viader, Maria del Pilar; Makotrinsky, Alejandro; Pulgarin, Francisca

    2010-01-01

    Numeral-incorporating roots in the numeral systems of Argentine Sign Language (LSA) and Catalan Sign Language (LSC), as well as the main features of the number systems of both languages, are described and compared. Informants discussed the use of numerals and roots in both languages (in most cases in natural contexts). Ten informants took part in…

  1. An Introduction to Numerical Control. Problems for Numerical Control Part Programming.

    ERIC Educational Resources Information Center

    Campbell, Clifton P.

    This combination text and workbook is intended to introduce industrial arts students to numerical control part programming. Discussed in the first section are the impact of numerical control, training efforts, numerical control in established programs, related information for drafting, and the Cartesian Coordinate System and dimensioning…

  2. Observed Barium Emission Rates

    NASA Technical Reports Server (NTRS)

    Stenbaek-Nielsen, H. C.; Wescott, E. M.; Hallinan, T. J.

    1993-01-01

    The barium releases from the CRRES satellite have provided an opportunity for verifying theoretically calculated barium ion and neutral emission rates. Spectra of the five Caribbean releases in the summer of 1991 were taken with a spectrograph on board a U.S. Air Force jet aircraft. Because the line of sight release densities are not known, only relative rates could be obtained. The observed relative rates agree well with the theoretically calculated rates and, together with other observations, confirm the earlier detailed theoretical emission rates. The calculated emission rates can thus with good accuracy be used with photometric observations. It has been postulated that charge exchange between neutral barium and oxygen ions represents a significant source for ionization. If so. it should be associated with emissions at 4957.15 A and 5013.00 A, but these emissions were not detected.

  3. Reliability of Complex Nonlinear Numerical Simulations

    NASA Technical Reports Server (NTRS)

    Yee, H. C.

    2004-01-01

    This work describes some of the procedure to ensure a higher level of confidence in the predictability and reliability (PAR) of numerical simulation of multiscale complex nonlinear problems. The focus is on relating PAR of numerical simulations with complex nonlinear phenomena of numerics. To isolate sources of numerical uncertainties, the possible discrepancy between the chosen partial differential equation (PDE) model and the real physics and/or experimental data is set aside. The discussion is restricted to how well numerical schemes can mimic the solution behavior of the underlying PDE model for finite time steps and grid spacings. The situation is complicated by the fact that the available theory for the understanding of nonlinear behavior of numerics is not at a stage to fully analyze the nonlinear Euler and Navier-Stokes equations. The discussion is based on the knowledge gained for nonlinear model problems with known analytical solutions to identify and explain the possible sources and remedies of numerical uncertainties in practical computations. Examples relevant to turbulent flow computations are included.

  4. On Numerical Methods For Hypersonic Turbulent Flows

    NASA Astrophysics Data System (ADS)

    Yee, H. C.; Sjogreen, B.; Shu, C. W.; Wang, W.; Magin, T.; Hadjadj, A.

    2011-05-01

    Proper control of numerical dissipation in numerical methods beyond the standard shock-capturing dissipation at discontinuities is an essential element for accurate and stable simulation of hypersonic turbulent flows, including combustion, and thermal and chemical nonequilibrium flows. Unlike rapidly developing shock interaction flows, turbulence computations involve long time integrations. Improper control of numerical dissipation from one time step to another would be compounded over time, resulting in the smearing of turbulent fluctuations to an unrecognizable form. Hypersonic turbulent flows around re- entry space vehicles involve mixed steady strong shocks and turbulence with unsteady shocklets that pose added computational challenges. Stiffness of the source terms and material mixing in combustion pose yet other types of numerical challenges. A low dissipative high order well- balanced scheme, which can preserve certain non-trivial steady solutions of the governing equations exactly, may help minimize some of these difficulties. For stiff reactions it is well known that the wrong propagation speed of discontinuities occurs due to the under-resolved numerical solutions in both space and time. Schemes to improve the wrong propagation speed of discontinuities for systems of stiff reacting flows remain a challenge for algorithm development. Some of the recent algorithm developments for direct numerical simulations (DNS) and large eddy simulations (LES) for the subject physics, including the aforementioned numerical challenges, will be discussed.

  5. Mean Element Propagations Using Numerical Averaging

    NASA Technical Reports Server (NTRS)

    Ely, Todd A.

    2009-01-01

    The long-term evolution characteristics (and stability) of an orbit are best characterized using a mean element propagation of the perturbed two body variational equations of motion. The averaging process eliminates short period terms leaving only secular and long period effects. In this study, a non-traditional approach is taken that averages the variational equations using adaptive numerical techniques and then numerically integrating the resulting EOMs. Doing this avoids the Fourier series expansions and truncations required by the traditional analytic methods. The resultant numerical techniques can be easily adapted to propagations at most solar system bodies.

  6. Waste glass melter numerical and physical modeling

    SciTech Connect

    Eyler, L.L.; Peters, R.D.; Lessor, D.L.; Lowery, P.S.; Elliott, M.L.

    1991-10-01

    Results of physical and numerical simulation modeling of high-level liquid waste vitrification melters are presented. Physical modeling uses simulant fluids in laboratory testing. Visualization results provide insight into convective melt flow patterns from which information is derived to support performance estimation of operating melters and data to support numerical simulation. Numerical simulation results of several melter configurations are presented. These are in support of programs to evaluate melter operation characteristics and performance. Included are investigations into power skewing and alternating current electric field phase angle in a dual electrode pair reference design and bi-modal convective stability in an advanced design. 9 refs., 9 figs., 1 tab.

  7. An algebraic approach to BCJ numerators

    NASA Astrophysics Data System (ADS)

    Fu, Chih-Hao; Du, Yi-Jian; Feng, Bo

    2013-03-01

    One important discovery in recent years is that the total amplitude of gauge theory can be written as BCJ form where kinematic numerators satisfy Jacobi identity. Although the existence of such kinematic numerators is no doubt, the simple and explicit construction is still an important problem. As a small step, in this note we provide an algebraic approach to construct these kinematic numerators. Under our Feynman-diagram-like construction, the Jacobi identity is manifestly satisfied. The corresponding color ordered amplitudes satisfy off-shell KK-relation and off-shell BCJ relation similar to the color ordered scalar theory. Using our construction, the dual DDM form is also established.

  8. Coincidental match of numerical simulation and physics

    NASA Astrophysics Data System (ADS)

    Pierre, B.; Gudmundsson, J. S.

    2010-08-01

    Consequences of rapid pressure transients in pipelines range from increased fatigue to leakages and to complete ruptures of pipeline. Therefore, accurate predictions of rapid pressure transients in pipelines using numerical simulations are critical. State of the art modelling of pressure transient in general, and water hammer in particular include unsteady friction in addition to the steady frictional pressure drop, and numerical simulations rely on the method of characteristics. Comparison of rapid pressure transient calculations by the method of characteristics and a selected high resolution finite volume method highlights issues related to modelling of pressure waves and illustrates that matches between numerical simulations and physics are purely coincidental.

  9. Numerical modeling of combustion dynamics in a lean premixed combustor

    SciTech Connect

    Cannon, S.M.; Smith, C.E.

    1998-07-01

    The objective of this study was to evaluate the ability of a time-accurate, 2-D axi-symmetric CFD model to accurately predict combustion dynamics in a premixed pipe combustor driven by mixture feed variation. Independently measured data, including the magnitude and frequency of combustor pressure, were used to evaluate the model. The Smagorinsky, RGN k-{var{underscore}epsilon}, and molecular viscosity models were used to describe the subgrid turbulence, and a one-step, finite-rate reaction to equilibrium products model was used to describe the subgrid chemistry. Swirl source terms were included within the premix passage's computational domain and allowed the model to retain known boundary conditions at the choked flow inlet and the constant pressure exit. To ensure pressure waves were accurately captured, 1-D numerical analyses were first performed to assess the effects of boundary conditions, temporal and spatial differencing, time step, and grid size. It was found that the selected numerical details produced little numerical dissipation of the pressure waves. Then, 2-D axisymmetric analyses were performed in which the inlet temperature was varied. It was found that increases in the inlet temperature (keeping a constant mass flow rate) had a large effect on the unsteady combustor behavior since reaction and advection rates were increased. The correct trend of decreasing rms pressures with increasing inlet temperature was predicted. This agreement in rms pressure behavior supports the ability of the CFD model to accurately capture unsteady heat release and its coupling with resonant acoustic waves in multi-dimensional combustor systems. The effect of subgrid turbulence model was small for the unstable cases studied here.

  10. NPP ATMS Snowfall Rate Product

    NASA Technical Reports Server (NTRS)

    Meng, Huan; Ferraro, Ralph; Kongoli, Cezar; Wang, Nai-Yu; Dong, Jun; Zavodsky, Bradley; Yan, Banghua

    2015-01-01

    Passive microwave measurements at certain high frequencies are sensitive to the scattering effect of snow particles and can be utilized to retrieve snowfall properties. Some of the microwave sensors with snowfall sensitive channels are Advanced Microwave Sounding Unit (AMSU), Microwave Humidity Sounder (MHS) and Advance Technology Microwave Sounder (ATMS). ATMS is the follow-on sensor to AMSU and MHS. Currently, an AMSU and MHS based land snowfall rate (SFR) product is running operationally at NOAA/NESDIS. Based on the AMSU/MHS SFR, an ATMS SFR algorithm has been developed recently. The algorithm performs retrieval in three steps: snowfall detection, retrieval of cloud properties, and estimation of snow particle terminal velocity and snowfall rate. The snowfall detection component utilizes principal component analysis and a logistic regression model. The model employs a combination of temperature and water vapor sounding channels to detect the scattering signal from falling snow and derive the probability of snowfall (Kongoli et al., 2015). In addition, a set of NWP model based filters is also employed to improve the accuracy of snowfall detection. Cloud properties are retrieved using an inversion method with an iteration algorithm and a two-stream radiative transfer model (Yan et al., 2008). A method developed by Heymsfield and Westbrook (2010) is adopted to calculate snow particle terminal velocity. Finally, snowfall rate is computed by numerically solving a complex integral. NCEP CMORPH analysis has shown that integration of ATMS SFR has improved the performance of CMORPH-Snow. The ATMS SFR product is also being assessed at several NWS Weather Forecast Offices for its usefulness in weather forecast.

  11. Numerical Simulation of Two-Phase Critical Flow with the Phase Change in the Nozzle Tube

    NASA Astrophysics Data System (ADS)

    Ishigaki, Masahiro; Watanabe, Tadashi; Nakamura, Hideo

    Two-phase critical flow in the nozzle tube is analyzed numerically by the best estimate code TRACE and the CFD code FLUENT, and the performance of the mass flow rate estimation by the numerical codes is discussed. For the best estimate analysis by the TRACE code, the critical flow option is turned on. The mixture model is used with the cavitation model and the evaporation-condensation model for the numerical simulation by the FLUENT code. Two test cases of the two-phase critical flow are analyzed. One case is the critical flashing flow in a convergent-divergent nozzle (Super Moby Dick experiment), and the other case is the break nozzle flow for a steam generator tube rupture experiment of pressurized water reactors at Large Scale Test Facility of Japan Atomic Energy Agency. The calculation results of the mass flow rates by the numerical simulations show good agreements with the experimental results.

  12. Thrombosis modeling in intracranial aneurysms: a lattice Boltzmann numerical algorithm

    NASA Astrophysics Data System (ADS)

    Ouared, R.; Chopard, B.; Stahl, B.; Rüfenacht, D. A.; Yilmaz, H.; Courbebaisse, G.

    2008-07-01

    The lattice Boltzmann numerical method is applied to model blood flow (plasma and platelets) and clotting in intracranial aneurysms at a mesoscopic level. The dynamics of blood clotting (thrombosis) is governed by mechanical variations of shear stress near wall that influence platelets-wall interactions. Thrombosis starts and grows below a shear rate threshold, and stops above it. Within this assumption, it is possible to account qualitatively well for partial, full or no occlusion of the aneurysm, and to explain why spontaneous thrombosis is more likely to occur in giant aneurysms than in small or medium sized aneurysms.

  13. Numerical simulation of film-cooled ablative rocket nozzles

    NASA Technical Reports Server (NTRS)

    Landrum, D. B.; Beard, R. M.

    1996-01-01

    The objective of this research effort was to evaluate the impact of incorporating an additional cooling port downstream between the injector and nozzle throat in the NASA Fast Track chamber. A numerical model of the chamber was developed for the analysis. The analysis did not model ablation but instead correlated the initial ablation rate with the initial nozzle wall temperature distribution. The results of this study provide guidance in the development of a potentially lighter, second generation ablative rocket nozzle which maintains desired performance levels.

  14. Simple numerical method for predicting steady compressible flows

    NASA Technical Reports Server (NTRS)

    Vonlavante, Ernst; Nelson, N. Duane

    1986-01-01

    A numerical method for solving the isenthalpic form of the governing equations for compressible viscous and inviscid flows was developed. The method was based on the concept of flux vector splitting in its implicit form. The method was tested on several demanding inviscid and viscous configurations. Two different forms of the implicit operator were investigated. The time marching to steady state was accelerated by the implementation of the multigrid procedure. Its various forms very effectively increased the rate of convergence of the present scheme. High quality steady state results were obtained in most of the test cases; these required only short computational times due to the relative efficiency of the basic method.

  15. Projected discrete ordinates methods for numerical transport problems

    SciTech Connect

    Larsen, E.W.

    1985-01-01

    A class of Projected Discrete-Ordinates (PDO) methods is described for obtaining iterative solutions of discrete-ordinates problems with convergence rates comparable to those observed using Diffusion Synthetic Acceleration (DSA). The spatially discretized PDO solutions are generally not equal to the DSA solutions, but unlike DSA, which requires great care in the use of spatial discretizations to preserve stability, the PDO solutions remain stable and rapidly convergent with essentially arbitrary spatial discretizations. Numerical results are presented which illustrate the rapid convergence and the accuracy of solutions obtained using PDO methods with commonplace differencing methods.

  16. Numerical simulation of carbon arc discharge for nanoparticle synthesis

    SciTech Connect

    Kundrapu, M.; Keidar, M.

    2012-07-15

    Arc discharge with catalyst-filled carbon anode in helium background was used for the synthesis of carbon nanoparticles. In this paper, we present the results of numerical simulation of carbon arc discharges with arc current varying from 10 A to 100 A in a background gas pressure of 68 kPa. Anode sublimation rate and current voltage characteristics are compared with experiments. Distribution of temperature and species density, which is important for the estimation of the growth of nanoparticles, is obtained. The probable location of nanoparticle growth region is identified based on the temperature range for the formation of catalyst clusters.

  17. A numerical and experimental study of confined swirling jets

    NASA Technical Reports Server (NTRS)

    Nikjooy, M.; Mongia, H. C.; Samuelsen, G. S.; Mcdonell, V. G.

    1989-01-01

    A numerical and experimental study of a confined strong swirling flow is presented. Detailed velocity measurements are made using a two-component laser Doppler velocimeter (LDV) technique. Computations are performed using a differential second-moment (DSM) closure. The effect of inlet dissipation rate on calculated mean and turbulence fields is investigated. Various model constants are employed in the pressure-strain model to demonstrate their influences on the predicted results. Finally, comparison of the DSM calculations with the algebraic second-monent (ASM) closure results shows that the DSM is better suited for complex swirling flow analysis.

  18. Preliminary numerical analysis of improved gas chromatograph model

    NASA Technical Reports Server (NTRS)

    Woodrow, P. T.

    1973-01-01

    A mathematical model for the gas chromatograph was developed which incorporates the heretofore neglected transport mechanisms of intraparticle diffusion and rates of adsorption. Because a closed-form analytical solution to the model does not appear realizable, techniques for the numerical solution of the model equations are being investigated. Criteria were developed for using a finite terminal boundary condition in place of an infinite boundary condition used in analytical solution techniques. The class of weighted residual methods known as orthogonal collocation is presently being investigated and appears promising.

  19. Numerical Modeling of Unsteady Thermofluid Dynamics in Cryogenic Systems

    NASA Technical Reports Server (NTRS)

    Majumdar, Alok

    2003-01-01

    A finite volume based network analysis procedure has been applied to model unsteady flow without and with heat transfer. Liquid has been modeled as compressible fluid where the compressibility factor is computed from the equation of state for a real fluid. The modeling approach recognizes that the pressure oscillation is linked with the variation of the compressibility factor; therefore, the speed of sound does not explicitly appear in the governing equations. The numerical results of chilldown process also suggest that the flow and heat transfer are strongly coupled. This is evident by observing that the mass flow rate during 90-second chilldown process increases by factor of ten.

  20. Metabolic rate measurement system

    NASA Technical Reports Server (NTRS)

    Koester, K.; Crosier, W.

    1980-01-01

    The Metabolic Rate Measurement System (MRMS) is an uncomplicated and accurate apparatus for measuring oxygen consumption and carbon dioxide production of a test subject. From this one can determine the subject's metabolic rate for a variety of conditions, such as resting or light exercise. MRMS utilizes an LSI/11-03 microcomputer to monitor and control the experimental apparatus.

  1. Applications of Reaction Rate

    ERIC Educational Resources Information Center

    Cunningham, Kevin

    2007-01-01

    This article presents an assignment in which students are to research and report on a chemical reaction whose increased or decreased rate is of practical importance. Specifically, students are asked to represent the reaction they have chosen with an acceptable chemical equation, identify a factor that influences its rate and explain how and why it…

  2. Controlled Rate Cooling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Controlled-rate cooling is one of several techniques available for the long-term storage of plants in liquid nitrogen. In this technique samples are slowly cooled to an intermediate temperature and then plunged in liquid nitrogen. Controlled rate cooling is based on osmotic regulation of cell conte...

  3. Scaling metabolic rate fluctuations.

    PubMed

    Labra, Fabio A; Marquet, Pablo A; Bozinovic, Francisco

    2007-06-26

    Complex ecological and economic systems show fluctuations in macroscopic quantities such as exchange rates, size of companies or populations that follow non-Gaussian tent-shaped probability distributions of growth rates with power-law decay, which suggests that fluctuations in complex systems may be governed by universal mechanisms, independent of particular details and idiosyncrasies. We propose here that metabolic rate within individual organisms may be considered as an example of an emergent property of a complex system and test the hypothesis that the probability distribution of fluctuations in the metabolic rate of individuals has a "universal" form regardless of body size or taxonomic affiliation. We examined data from 71 individuals belonging to 25 vertebrate species (birds, mammals, and lizards). We report three main results. First, for all these individuals and species, the distribution of metabolic rate fluctuations follows a tent-shaped distribution with power-law decay. Second, the standard deviation of metabolic rate fluctuations decays as a power-law function of both average metabolic rate and body mass, with exponents -0.352 and -1/4 respectively. Finally, we find that the distributions of metabolic rate fluctuations for different organisms can all be rescaled to a single parent distribution, supporting the existence of general principles underlying the structure and functioning of individual organisms. PMID:17578913

  4. Extended rate equations

    SciTech Connect

    Shore, B.W.

    1981-01-30

    The equations of motion are discussed which describe time dependent population flows in an N-level system, reviewing the relationship between incoherent (rate) equations, coherent (Schrodinger) equations, and more general partially coherent (Bloch) equations. Approximations are discussed which replace the elaborate Bloch equations by simpler rate equations whose coefficients incorporate long-time consequences of coherence.

  5. The Numeric Solution of Eigenvalue Problems.

    ERIC Educational Resources Information Center

    Bauer, H.; Roth, K.

    1980-01-01

    Presents the mathematical background for solving eigenvalue problems, with illustrations of the applications in computer programing. The numerical matrix treatment is presented, with a demonstration of the simple HMO theory. (CS)

  6. Numerical noise in ocean and estuarine models

    USGS Publications Warehouse

    Walters, R.; Carey, G.F.

    1984-01-01

    Approximate methods for solving the shallow water equations may lead to solutions exhibiting large fictitious, numerically-induced oscillations. The analysis of the discrete dispersion relation and modal solutions of small wavelengths provides a powerful technique for assessing the sensitivity of alternative numerical schemes to irregular data which may lead to such oscillatory numerical noise. For those schemes where phase speed vanishes at a finite wavenumber or there are multiple roots for wavenumber, oscillation modes can exist which are uncoupled from the dynamics of the problem. The discrete modal analysis approach is used here to identify two classes of spurious oscillation modes associated respectively with the two different asymptotic limits corresponding to estuarine and large scale ocean models. The analysis provides further insight into recent numerical results for models which include large spatial scales and Coriolis acceleration. ?? 1984.

  7. Numerical models for high beta magnetohydrodynamic flow

    SciTech Connect

    Brackbill, J.U.

    1987-01-01

    The fundamentals of numerical magnetohydrodynamics for highly conducting, high-beta plasmas are outlined. The discussions emphasize the physical properties of the flow, and how elementary concepts in numerical analysis can be applied to the construction of finite difference approximations that capture these features. The linear and nonlinear stability of explicit and implicit differencing in time is examined, the origin and effect of numerical diffusion in the calculation of convective transport is described, and a technique for maintaining solenoidality in the magnetic field is developed. Many of the points are illustrated by numerical examples. The techniques described are applicable to the time-dependent, high-beta flows normally encountered in magnetically confined plasmas, plasma switches, and space and astrophysical plasmas. 40 refs.

  8. NUMERICAL MODELS FOR PREDICTING WATERSHED ACIDIFICATION

    EPA Science Inventory

    Three numerical models of watershed acidification, including the MAGIC II, ETD, and ILWAS models, are reviewed, and a comparative study is made of the specific process formulations that are incorporated in the models to represent hydrological, geochemical, and biogeochemical proc...

  9. Numerical approach to Zeeman line radiative transfer

    NASA Astrophysics Data System (ADS)

    Takeda, Yoichi

    1991-10-01

    An accelerated lambda iteration (ALI) method, a version of the operator perturbation technique, is formulated for applications to Zeeman line formation problems in the presence of magnetic fields. This approach has proven to be quite an effective and flexible numerical device, being applicable to extensive problems (e.g., LTE one-way integration problem, noncoherent scattering etc.). In addition to its general formulation, a specialized practical version is also proposed which is limited to scattering (or multi-level) problems under the assumption of complete frequency redistribution (CRD), but requiring much less computing time. In order to examine the computational efficiency of this ALI method, numerical examples are presented concerning line formation in a magnetic field for several simple cases (LTE Milne-Eddington model, noncoherent CRD scattering, angle-dependent coherent scattering), showing a reasonably rapid convergence with notable numerical stability. Comparisons with other recent numerical techniques confirm the distinguished superiority of the present method.

  10. Quaternionic Numerical Ranges of Normal Quaternion Matrices

    SciTech Connect

    Feng Lianggui

    2009-09-09

    By the Jordan canonical block-entry form introduced in this paper, a practical method of determining the convexity and an estimation of the location on the quaternionic numerical range are given for a normal quaternion matrix.

  11. Symbolic-numeric interface: A review

    NASA Technical Reports Server (NTRS)

    Ng, E. W.

    1980-01-01

    A survey of the use of a combination of symbolic and numerical calculations is presented. Symbolic calculations primarily refer to the computer processing of procedures from classical algebra, analysis, and calculus. Numerical calculations refer to both numerical mathematics research and scientific computation. This survey is intended to point out a large number of problem areas where a cooperation of symbolic and numerical methods is likely to bear many fruits. These areas include such classical operations as differentiation and integration, such diverse activities as function approximations and qualitative analysis, and such contemporary topics as finite element calculations and computation complexity. It is contended that other less obvious topics such as the fast Fourier transform, linear algebra, nonlinear analysis and error analysis would also benefit from a synergistic approach.

  12. Object-oriented numerical computing C++

    NASA Technical Reports Server (NTRS)

    Vanrosendale, John

    1994-01-01

    An object oriented language is one allowing users to create a set of related types and then intermix and manipulate values of these related types. This paper discusses object oriented numerical computing using C++.

  13. Numerical Stimulation of Multicomponent Chromatography Using Spreadsheets.

    ERIC Educational Resources Information Center

    Frey, Douglas D.

    1990-01-01

    Illustrated is the use of spreadsheet programs for implementing finite difference numerical simulations of chromatography as an instructional tool in a separations course. Discussed are differential equations, discretization and integration, spreadsheet development, computer requirements, and typical simulation results. (CW)

  14. Value-Engineering Review for Numerical Control

    NASA Technical Reports Server (NTRS)

    Warner, J. L.

    1984-01-01

    Selecting parts for conversion from conventional machining to numerical control, value-engineering review performed for every part to identify potential changes to part design that result in increased production efficiency.

  15. Interest rates mapping

    NASA Astrophysics Data System (ADS)

    Kanevski, M.; Maignan, M.; Pozdnoukhov, A.; Timonin, V.

    2008-06-01

    The present study deals with the analysis and mapping of Swiss franc interest rates. Interest rates depend on time and maturity, defining term structure of the interest rate curves (IRC). In the present study IRC are considered in a two-dimensional feature space-time and maturity. Exploratory data analysis includes a variety of tools widely used in econophysics and geostatistics. Geostatistical models and machine learning algorithms (multilayer perceptron and Support Vector Machines) were applied to produce interest rate maps. IR maps can be used for the visualisation and pattern perception purposes, to develop and to explore economical hypotheses, to produce dynamic asset-liability simulations and for financial risk assessments. The feasibility of an application of interest rates mapping approach for the IRC forecasting is considered as well.

  16. Optimal firing rate estimation

    NASA Technical Reports Server (NTRS)

    Paulin, M. G.; Hoffman, L. F.

    2001-01-01

    We define a measure for evaluating the quality of a predictive model of the behavior of a spiking neuron. This measure, information gain per spike (Is), indicates how much more information is provided by the model than if the prediction were made by specifying the neuron's average firing rate over the same time period. We apply a maximum Is criterion to optimize the performance of Gaussian smoothing filters for estimating neural firing rates. With data from bullfrog vestibular semicircular canal neurons and data from simulated integrate-and-fire neurons, the optimal bandwidth for firing rate estimation is typically similar to the average firing rate. Precise timing and average rate models are limiting cases that perform poorly. We estimate that bullfrog semicircular canal sensory neurons transmit in the order of 1 bit of stimulus-related information per spike.

  17. Mutation rates as adaptations.

    PubMed

    Maley, C

    1997-06-01

    In order to better understand life, it is helpful to look beyond the envelop of life as we know it. A simple model of coevolution was implemented with the addition of a gene for the mutation rate of the individual. This allowed the mutation rate itself to evolve in a lineage. The model shows that when the individuals interact in a sort of zero-sum game, the lineages maintain relatively high mutation rates. However, when individuals engage in interactions that have greater consequences for one individual in the interaction than the other, lineages tend to evolve relatively low mutation rates. This model suggests that one possible cause for differential mutation rates across genes may be the coevolutionary pressure of the various forms of interactions with other genes. PMID:9219670

  18. Numerical analysis of randomly forced glycolitic oscillations

    SciTech Connect

    Ryashko, Lev

    2015-03-10

    Randomly forced glycolytic oscillations in Higgins model are studied both numerically and analytically. Numerical analysis is based on the direct simulation of the solutions of stochastic system. Non-uniformity of the stochastic bundle along the deterministic cycle is shown. For the analytical investigation of the randomly forced Higgins model, the stochastic sensitivity function technique and confidence domains method are applied. Results of the influence of additive noise on the cycle of this model are given.

  19. Hardware-Independent Proofs of Numerical Programs

    NASA Technical Reports Server (NTRS)

    Boldo, Sylvie; Nguyen, Thi Minh Tuyen

    2010-01-01

    On recent architectures, a numerical program may give different answers depending on the execution hardware and the compilation. Our goal is to formally prove properties about numerical programs that are true for multiple architectures and compilers. We propose an approach that states the rounding error of each floating-point computation whatever the environment. This approach is implemented in the Frama-C platform for static analysis of C code. Small case studies using this approach are entirely and automatically proved

  20. Numerical Simulations of Thermographic Responses in Composites

    NASA Technical Reports Server (NTRS)

    Winfree, William P.; Cramer, K. Elliot; Zalameda, Joseph N.; Howell, Patricia A.

    2015-01-01

    Numerical simulations of thermographic responses in composite materials have been a useful for evaluating and optimizing thermographic analysis techniques. Numerical solutions are particularly beneficial for thermographic techniques, since the fabrication of specimens with realistic flaws is difficult. Simulations are presented with different ply layups that incorporated the anisotropic thermal properties that exist in each ply. The results are compared to analytical series solutions and thermal measurements on composites with flat bottom holes and delaminations.

  1. Numerical focusing in diffraction phase microscopy

    NASA Astrophysics Data System (ADS)

    Talaikova, N. A.; Grebenyuk, A. A.; Kalyanov, A. L.; Ryabukho, V. P.

    2016-04-01

    Diffraction phase microscopy (DPM) provides the possibility of high-resolution quantitative phase imaging, based on equipment of an optical microscope with a special module working in a common-path off-axis configuration. As an optical microscopy technique, DPM has a limited focus depth, which is the smaller the higher is the objective's numerical aperture. In this paper we present the results of experimental investigation of numerical focusing with the angular spectrum method in DPM.

  2. Numerical vorticity creation based on impulse conservation.

    PubMed Central

    Summers, D M; Chorin, A J

    1996-01-01

    The problem of creating solenoidal vortex elements to satisfy no-slip boundary conditions in Lagrangian numerical vortex methods is solved through the use of impulse elements at walls and their subsequent conversion to vortex loops. The algorithm is not uniquely defined, due to the gauge freedom in the definition of impulse; the numerically optimal choice of gauge remains to be determined. Two different choices are discussed, and an application to flow past a sphere is sketched. PMID:11607636

  3. Numerical Study of a Convective Turbulence Encounter

    NASA Technical Reports Server (NTRS)

    Proctor, Fred H.; Hamilton, David W.; Bowles, Roland L.

    2002-01-01

    A numerical simulation of a convective turbulence event is investigated and compared with observational data. The specific case was encountered during one of NASA's flight tests and was characterized by severe turbulence. The event was associated with overshooting convective turrets that contained low to moderate radar reflectivity. Model comparisons with observations are quite favorable. Turbulence hazard metrics are proposed and applied to the numerical data set. Issues such as adequate grid size are examined.

  4. Two Different Methods for Numerical Solution of the Modified Burgers' Equation

    PubMed Central

    Karakoç, Seydi Battal Gazi; Başhan, Ali; Geyikli, Turabi

    2014-01-01

    A numerical solution of the modified Burgers' equation (MBE) is obtained by using quartic B-spline subdomain finite element method (SFEM) over which the nonlinear term is locally linearized and using quartic B-spline differential quadrature (QBDQM) method. The accuracy and efficiency of the methods are discussed by computing L 2 and L ∞ error norms. Comparisons are made with those of some earlier papers. The obtained numerical results show that the methods are effective numerical schemes to solve the MBE. A linear stability analysis, based on the von Neumann scheme, shows the SFEM is unconditionally stable. A rate of convergence analysis is also given for the DQM. PMID:25162064

  5. Explicit numerical solutions of a microbial survival model under nonisothermal conditions.

    PubMed

    Zhu, Si; Chen, Guibing

    2016-03-01

    Differential equations used to describe the original and modified Geeraerd models were, respectively, simplified into an explicit equation in which the integration of the specific inactivation rate with respect to time was numerically approximated using the Simpson's rule. The explicit numerical solutions were then used to simulate microbial survival curves and fit nonisothermal survival data for identifying model parameters in Microsoft Excel. The results showed that the explicit numerical solutions provided an easy way to accurately simulate microbial survival and estimate model parameters from nonisothermal survival data using the Geeraerd models. PMID:27004117

  6. Numerical analysis of the transient response of an axisymmetric ablative char layer considering internal flow effects

    NASA Technical Reports Server (NTRS)

    Pittman, C. M.; Howser, L. M.

    1972-01-01

    The differential equations governing the transient response of the char layer of an ablating axisymmetric body, internal pyrolysis gas flow effects being considered, have been derived. These equations have been expanded into finite difference form and programed for numerical solution on a digital computer. Numerical results compare favorably with simplified exact solutions. The complete numerical analysis was used to obtain solutions for two representative body shapes subjected to a typical entry heating environment. Pronounced effects of the lateral flow of pyrolysis gases on the mass flow field within the char layer and the associated surface and pyrolysis interface recession rates are shown.

  7. Numerical simulation of subcooled flow boiling

    NASA Astrophysics Data System (ADS)

    Park, Won Cheol

    Sub-cooled flow boiling in a U-bend has been examined using numerical methods. An Eulerian/Eulerian mathematical description was used with a multiphase computational algorithm to predict several types of flows and to examine sub-cooled flow boiling. As a prelude to the study of sub-cooled boiling and two-phase flows, single-phase laminar and turbulent flows in a U-bend were investigated. Air-water bubbly up flow in a vertical straight duct followed by a U-bend with heat transfer was analyzed. In such a flow, as the flow develops through the U-bend the bubbles move from center and outer wall toward inner wall. After half way through the U-bend, the fluids do not have sufficient time for complete reorganization in the presence of centrifugal forces and the pressure gradients. After the U-bend, the bubbles finally reach the original distribution in about forty diameters. The heat transfer in the U-bend was also calculated and as expected heat transfer rate on the outer wall is higher than on the inner wall. For air-water bubbly two-phase flow, Nusselt numbers in the U-bend can be as high as 400 percent of the value in the straight duct on one of the walls. The method of partitioned wall heat flux was used to study sub-cooled flow boiling. For sub-cooled flow boiling in a U-bend, axial and lateral velocity distributions as well as quality and void fraction variations were analyzed. Computed axial and lateral variations of void fraction compare favorably with existing experimental data. As expected, the pressure drop for bubbly flow through the U-bend is larger than for single-phase flow by as much as fifty percent. Computed pressure drop for flow with phase change falls between the predictions of two different correlations in the literature, and thus seems reasonable. Predictions of heat transfer and void fraction under sub-cooled flow boiling using two-fluid models need better quantitative knowledge related to the mechanisms associated with bubble growth and

  8. Transient Numerical Modeling of Catalytic Channels

    NASA Technical Reports Server (NTRS)

    Struk, Peter M.; Dietrich, Daniel L.; Miller, Fletcher J.; T'ien, James S.

    2007-01-01

    This paper presents a transient model of catalytic combustion suitable for isolated channels and monolith reactors. The model is a lumped two-phase (gas and solid) model where the gas phase is quasi-steady relative to the transient solid. Axial diffusion is neglected in the gas phase; lateral diffusion, however, is accounted for using transfer coefficients. The solid phase includes axial heat conduction and external heat loss due to convection and radiation. The combustion process utilizes detailed gas and surface reaction models. The gas-phase model becomes a system of stiff ordinary differential equations while the solid phase reduces, after discretization, into a system of stiff ordinary differential-algebraic equations. The time evolution of the system came from alternating integrations of the quasi-steady gas and transient solid. This work outlines the numerical model and presents some sensitivity studies on important parameters including internal transfer coefficients, catalytic surface site density, and external heat-loss (if applicable). The model is compared to two experiments using CO fuel: (1) steady-state conversion through an isothermal platinum (Pt) tube and (2) transient propagation of a catalytic reaction inside a small Pt tube. The model requires internal mass-transfer resistance to match the experiments at lower residence times. Under mass-transport limited conditions, the model reasonably predicted exit conversion using global mass-transfer coefficients. Near light-off, the model results did not match the experiment precisely even after adjustment of mass-transfer coefficients. Agreement improved for the first case after adjusting the surface kinetics such that the net rate of CO adsorption increased compared to O2. The CO / O2 surface mechanism came from a sub-set of reactions in a popular CH4 / O2 mechanism. For the second case, predictions improved for lean conditions with increased external heat loss or adjustment of the kinetics as in the

  9. Numerical Speed of Sound and its Application to Schemes for all Speeds

    NASA Technical Reports Server (NTRS)

    Liou, Meng-Sing; Edwards, Jack R.

    1999-01-01

    The concept of "numerical speed of sound" is proposed in the construction of numerical flux. It is shown that this variable is responsible for the accurate resolution of' discontinuities, such as contacts and shocks. Moreover, this concept can he readily extended to deal with low speed and multiphase flows. As a results, the numerical dissipation for low speed flows is scaled with the local fluid speed, rather than the sound speed. Hence, the accuracy is enhanced the correct solution recovered, and the convergence rate improved. We also emphasize the role of mass flux and analyze the behavior of this flux. Study of mass flux is important because the numerical diffusivity introduced in it can be identified. In addition, it is the term common to all conservation equations. We show calculated results for a wide variety of flows to validate the effectiveness of using the numerical speed of sound concept in constructing the numerical flux. We especially aim at achieving these two goals: (1) improving accuracy and (2) gaining convergence rates for all speed ranges. We find that while the performance at high speed range is maintained, the flux now has the capability of performing well even with the low: speed flows. Thanks to the new numerical speed of sound, the convergence is even enhanced for the flows outside of the low speed range. To realize the usefulness of the proposed method in engineering problems, we have also performed calculations for complex 3D turbulent flows and the results are in excellent agreement with data.

  10. Benchmark calculations of thermal reaction rates. I - Quantal scattering theory

    NASA Technical Reports Server (NTRS)

    Chatfield, David C.; Truhlar, Donald G.; Schwenke, David W.

    1991-01-01

    The thermal rate coefficient for the prototype reaction H + H2 yields H2 + H with zero total angular momentum is calculated by summing, averaging, and numerically integrating state-to-state reaction probabilities calculated by time-independent quantum-mechanical scattering theory. The results are very carefully converged with respect to all numerical parameters in order to provide high-precision benchmark results for confirming the accuracy of new methods and testing their efficiency.

  11. MODELING THE RATE-CONTROLLED SORPTION OF HEXAVALENT CHROMIUM.

    USGS Publications Warehouse

    Grove, D.B.; Stollenwerk, K.G.

    1985-01-01

    Sorption of chromium VI on the iron-oxide- and hydroxide-coated surface of alluvial material was numerically simulated with rate-controlled reactions. Reaction kinetics and diffusional processes, in the form of film, pore, and particle diffusion, were simulated and compared with experimental results. The use of empirically calculated rate coefficients for diffusion through the reacting surface was found to simulate experimental data; pore or particle diffusion is believed to be a possible rate-controlling mechanism. The use of rate equations to predict conservative transport and rate- and local-equilibrium-controlled reactions was shown to be feasible.

  12. Growth rates made easy.

    PubMed

    Hall, Barry G; Acar, Hande; Nandipati, Anna; Barlow, Miriam

    2014-01-01

    In the 1960s-1980s, determination of bacterial growth rates was an important tool in microbial genetics, biochemistry, molecular biology, and microbial physiology. The exciting technical developments of the 1990s and the 2000s eclipsed that tool; as a result, many investigators today lack experience with growth rate measurements. Recently, investigators in a number of areas have started to use measurements of bacterial growth rates for a variety of purposes. Those measurements have been greatly facilitated by the availability of microwell plate readers that permit the simultaneous measurements on up to 384 different cultures. Only the exponential (logarithmic) portions of the resulting growth curves are useful for determining growth rates, and manual determination of that portion and calculation of growth rates can be tedious for high-throughput purposes. Here, we introduce the program GrowthRates that uses plate reader output files to automatically determine the exponential portion of the curve and to automatically calculate the growth rate, the maximum culture density, and the duration of the growth lag phase. GrowthRates is freely available for Macintosh, Windows, and Linux. We discuss the effects of culture volume, the classical bacterial growth curve, and the differences between determinations in rich media and minimal (mineral salts) media. This protocol covers calibration of the plate reader, growth of culture inocula for both rich and minimal media, and experimental setup. As a guide to reliability, we report typical day-to-day variation in growth rates and variation within experiments with respect to position of wells within the plates. PMID:24170494

  13. Numerical modeling of odorant uptake in the rat nasal cavity.

    PubMed

    Yang, Geoffrey C; Scherer, Peter W; Zhao, Kai; Mozell, Maxwell M

    2007-03-01

    An anatomically accurate 3-dimensional numerical model of the right rat nasal cavity was developed and used to compute low, medium, and high flow rate inspiratory and expiratory mucosal odorant uptake (imposed patterning) for 3 odorants with different mucus solubilities. The computed surface mass flux distributions were compared with anatomic receptor gene expression zones identified in the literature. In general, simulations predicted that odorants that were highly soluble in mucus were absorbed dorsally and medially, corresponding roughly to receptors from one of the gene expression zones. Insoluble odorants tended to be absorbed more peripherally in the rat olfactory region corresponding to the other 2 zones. These findings also agreed in general with the electroolfactogram measurements and the voltage-sensitive dye measurements reported in the literature. This numerical approach is the first to predict detailed odorant flux information across the olfactory mucosa in the rat nasal cavity during inspiratory and expiratory flow and to relate it to anatomic olfactory receptor location, physiological function, and biochemical experiment. This numerical technique can allow us to separate the contributions of imposed and inherent patterning mechanisms on the rat olfactory mucosa. PMID:17220517

  14. Fuel optimum low-thrust elliptic transfer using numerical averaging

    NASA Astrophysics Data System (ADS)

    Tarzi, Zahi; Speyer, Jason; Wirz, Richard

    2013-05-01

    Low-thrust electric propulsion is increasingly being used for spacecraft missions primarily due to its high propellant efficiency. As a result, a simple and fast method for low-thrust trajectory optimization is of great value for preliminary mission planning. However, few low-thrust trajectory tools are appropriate for preliminary mission design studies. The method presented in this paper provides quick and accurate solutions for a wide range of transfers by using numerical orbital averaging to improve solution convergence and include orbital perturbations. Thus, preliminary trajectories can be obtained for transfers which involve many revolutions about the primary body. This method considers minimum fuel transfers using first-order averaging to obtain the fuel optimum rates of change of the equinoctial orbital elements in terms of each other and the Lagrange multipliers. Constraints on thrust and power, as well as minimum periapsis, are implemented and the equations are averaged numerically using a Gausian quadrature. The use of numerical averaging allows for more complex orbital perturbations to be added in the future without great difficulty. The effects of zonal gravity harmonics, solar radiation pressure, and thrust limitations due to shadowing are included in this study. The solution to a transfer which minimizes the square of the thrust magnitude is used as a preliminary guess for the minimum fuel problem, thus allowing for faster convergence to a wider range of problems. Results from this model are shown to provide a reduction in propellant mass required over previous minimum fuel solutions.

  15. An educational interactive numerical model of the Chesapeake Bay

    NASA Astrophysics Data System (ADS)

    Crouch, Jessica R.; Shen, Yuzhong; Austin, Jay A.; Dinniman, Michael S.

    2008-03-01

    Scientists use sophisticated numerical models to study ocean circulation and other physical systems, but the complex nature of such simulation software generally make them inaccessible to non-expert users. In principle, however, numerical models represent an ideal teaching tool, allowing users to model the response of a complex system to changing conditions. We have designed an interactive simulation program that allows a casual user to control the forcing conditions applied to a numerical ocean circulation model using a graphical user interface, and to observe the results in real-time. This program is implemented using the Regional Ocean Modeling System (ROMS) applied to the Chesapeake Bay. Portions of ROMS were modified to facilitate user interaction, and the user interface and visualization capabilities represent new software development. The result is an interactive simulation of the Chesapeake Bay environment that allows a user to control wind speed and direction along with the rate of flow from the rivers that feed the bay. The simulation provides a variety of visualizations of the response of the system, including water height, velocity, and salinity across horizontal and vertical planes.

  16. Experimental and numerical investigation of failure of alumina

    SciTech Connect

    Gao, J.; Wang, M.L.; Schreyer, H.L.

    1995-12-31

    Failure modes of polycrystalline alumina in compact-tension specimens were studied using the scanning electron microscope (SEM). Microcrack propagation was monitored under large magnification. Starting with a pre-existing chevron notch, it was found that cracks propagated in a branching manner along the boundaries, i.e. intergranular fracture occurred. According to these experimental observations, a finite element method was developed based on continuum damage mechanics. The numerical model in two dimensions is established for a small specimen composed of a set of grains and grain boundaries. Grain boundaries are considered as thin regions of elastic damaging material; and each grain is isotropic elastic. A Voronoi diagram was used to generate realistic grain structure for alumina. Numerical analysis of a specimen under pure tension was conducted to show similar features of crack propagation. The effects of different damaging rates for the bulk and shear moduli on peak stress and softening are given. It is shown that the combination of reduced damage of the shear modulus and the restriction of tortuous cracking along grain boundaries results in a significant enhancement of strength in the composite ceramic over the material strength in the grain boundary. The numerical results also displayed the fundamental microfracture mechanisms of ceramics.

  17. Numerical solution of High-kappa model of superconductivity

    SciTech Connect

    Karamikhova, R.

    1996-12-31

    We present formulation and finite element approximations of High-kappa model of superconductivity which is valid in the high {kappa}, high magnetic field setting and accounts for applied magnetic field and current. Major part of this work deals with steady-state and dynamic computational experiments which illustrate our theoretical results numerically. In our experiments we use Galerkin discretization in space along with Backward-Euler and Crank-Nicolson schemes in time. We show that for moderate values of {kappa}, steady states of the model system, computed using the High-kappa model, are virtually identical with results computed using the full Ginzburg-Landau (G-L) equations. We illustrate numerically optimal rates of convergence in space and time for the L{sup 2} and H{sup 1} norms of the error in the High-kappa solution. Finally, our numerical approximations demonstrate some well-known experimentally observed properties of high-temperature superconductors, such as appearance of vortices, effects of increasing the applied magnetic field and the sample size, and the effect of applied constant current.

  18. Numerical modeling for primary atomization of liquid jets

    NASA Technical Reports Server (NTRS)

    Przekwas, A. J.; Chuech, S. G.; Singhal, A. K.

    1989-01-01

    In the proposed numerical model for primary atomization, surface-wave dispersion equations are solved in conjunction with the jet-embedding technique of solving mean flow equations of a liquid jet. Linear and approximate nonlinear models have been considered. In each case, the dispersion equation is solved over the whole wavelength spectrum to predict drop sizes, frequency, and liquid-mass breakup rates without using any empirical constants. The present model has been applied to several low-speed and high-speed jets. For the high-speed case (the LOX/H2 coaxial injector of the Space Shuttle Main Engine Preburner), predicted drop sizes and liquid breakup rates are in good agreement with the results of the CICM code, which have been calibrated against measured data.

  19. Numerical measurement of turbulent responses in drift-Alfven turbulence

    SciTech Connect

    Fernandez, E.; Terry, P.W.

    1997-07-01

    A drift-Alfven magnetoturbulence model that augments reduced magnetohydrodynamics with evolution of electron density under parallel compression and fluid advection has been studied numerically. In the Alfvenic regime, measurement of spectral transfer rates, frequency spectra, energy partitions, and the ensemble-averaged turbulent response reveals both Alfvenic and hydrodynamic characteristics. The rms turbulent frequency is Alfvenic, the energies are equipartitioned, and there is a fast, Alfven-time scale relaxation in the turbulent response. The mean frequency is hydrodynamic, with diamagnetic and eddy straining signatures, and there is an eddy straining decorrelation appearing as a distinct, long time scale branch in the turbulent response. The decay rates and relative fluctuation strengths associated with fast and slow time scale decorrelation are in good agreement with theoretical predictions that posit a Kolmogorov spectrum in the Alfvenic regime. {copyright} {ital 1997 American Institute of Physics.}

  20. Numerical Study on Microwave Scattering by Various Plasma Objects

    NASA Astrophysics Data System (ADS)

    Wang, Guibin; Zhang, Lin; He, Feng; Ouyang, Jiting

    2016-08-01

    The scattering features of microwave (MW) by planar plasma layer, plasma column and plasma-column array under different parameters have been numerically studied by the finite-difference time-domain (FDTD) method. The effects of the plasma frequency and electron collision rate on MW's reflectance, transmittance and absorptance are examined. The results show that for the planar plasma layer, the electron collision plays an important role in MW absorption and the reduction of wave reflection. In the plasma column condition, strong scattering occurs in certain directions. The scattering pattern depends on the plasma frequency, electron collision rate and column radius. A collisional, non-planar shaped plasma object like the plasma-column array can reduce significantly the wave reflection comparing with the planar plasma layer.

  1. Integrating Numerical Groundwater Modeling Results With Geographic Information Systems

    NASA Astrophysics Data System (ADS)

    Witkowski, M. S.; Robinson, B. A.; Linger, S. P.

    2001-12-01

    ? - Which locations need to be assigned different infiltration rates based on physiographic and hydrologic setting? - Which regions of the Laboratory are likely problem areas based on the hydrostratigrahphy, infiltration rate, and location of contaminant sources? By integrating GIS technology with 3D numerical modeling techniques, we provide an effective means to analyze, store, and view a wide range of data, which has proven useful for modeling groundwater flow and transport. An example presented in this study is a 3D flow and transport model for the vadose zone beneath Los Alamos canyon in northern New Mexico, the site of past contaminant releases by Los Alamos National Laboratory.

  2. Verification of an Analytical Method for Measuring Crystal Nucleation Rates in Glasses from DTA Data

    NASA Technical Reports Server (NTRS)

    Ranasinghe, K. S.; Wei, P. F.; Kelton, K. F.; Ray, C. S.; Day, D. E.

    2004-01-01

    A recently proposed analytical (DTA) method for estimating the nucleation rates in glasses has been evaluated by comparing experimental data with numerically computed nucleation rates for a model lithium disilicate glass. The time and temperature dependent nucleation rates were predicted using the model and compared with those values from an analysis of numerically calculated DTA curves. The validity of the numerical approach was demonstrated earlier by a comparison with experimental data. The excellent agreement between the nucleation rates from the model calculations and fiom the computer generated DTA data demonstrates the validity of the proposed analytical DTA method.

  3. Compressible magnetic Rayleigh-Taylor instability in stratified plasmas: Comparison of analytical and numerical results in the linear regime

    SciTech Connect

    Liberatore, S.; Jaouen, S.; Tabakhoff, E.; Canaud, B.

    2009-04-15

    Magnetic Rayleigh-Taylor instability is addressed in compressible hydrostatic media. A full model is presented and compared to numerical results from a linear perturbation code. A perfect agreement between both approaches is obtained in a wide range of parameters. Compressibility effects are examined and substantial deviations from classical Chandrasekhar growth rates are obtained and confirmed by the model and the numerical calculations.

  4. Burning Rate Emulator

    NASA Video Gallery

    The Burning Rate Emulator is a gas fuel investigation attempting to emulate the burning of solids to improve our understanding of materials''flammability over a wide range of conditions. The approa...

  5. The ratings game

    NASA Astrophysics Data System (ADS)

    Braben, Donald W.

    2009-04-01

    How sad to read a supposedly serious debate among distinguished physicists (February p19) about which combinations of the latest Research Assessment Exercise (RAE) ratings represent a university physics department's true strengths.

  6. National ART Success Rates

    MedlinePlus

    ... ART and Birth Defects ART and Autism 2013 Assisted Reproductive Technology National Summary Report Recommend on Facebook Tweet Share ... live-birth rate? [PDF - 1.37MB] Section 2: ART Cycles using fresh nondonor eggs or embryos What ...

  7. Rating the Risks.

    ERIC Educational Resources Information Center

    Slovic, Paul; And Others

    1979-01-01

    Explains how people arrive at personal hazard assessments. Explores why people overestimate some hazards and underestimate others. Examines risk ratings for activities and technologies such as nuclear power, motor vehicles, pesticides, and vaccinations. (MA)

  8. Heart Rate Monitor

    NASA Technical Reports Server (NTRS)

    1984-01-01

    In the mid 70's, NASA saw a need for a long term electrocardiographic electrode suitable for use on astronauts. Heart Rate Inc.'s insulated capacitive electrode is constructed of thin dielectric film applied to stainless steel surface, originally developed under a grant by Texas Technical University. HRI, Inc. was awarded NASA license and continued development of heart rate monitor for use on exercise machines for physical fitness and medical markets.

  9. Hydration rate of obsidian.

    PubMed

    Friedman, I; Long, W

    1976-01-30

    The hydration rates of 12 obsidian samples of different chemical compositions were measured at temperatures from 95 degrees to 245 degrees C. An expression relating hydration rate to temperature was derived for each sample. The SiO(2) content and refractive index are related to the hydration rate, as are the CaO, MgO, and original water contents. With this information it is possible to calculate the hydration rate of a sample from its silica content, refractive index, or chemical index and a knowledge of the effective temperature at which the hydration occurred. The effective hydration temperature can be either measured or approximated from weather records. Rates have been calculated by both methods, and the results show that weather records can give a good approximation to the true EHT, particularly in tropical and subtropical climates. If one determines the EHT by any of the methods suggested, and also measures or knows the rate of hydration of the particular obsidian used, it should be possible to carry out absolute dating to +/- 10 percent of the true age over periods as short as several years and as long as millions of years. PMID:17782901

  10. Heart Rate Monitors

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Under a NASA grant, Dr. Robert M. Davis and Dr. William M. Portnoy came up with a new type of electrocardiographic electrode that would enable long term use on astronauts. Their invention was an insulated capacitive electrode constructed of a thin dielectric film. NASA subsequently licensed the electrode technology to Richard Charnitski, inventor of the VersaClimber, who founded Heart Rate, Inc., to further develop and manufacture personal heart monitors and to produce exercise machines using the technology for the physical fitness, medical and home markets. Same technology is on both the Home and Institutional Model VersaClimbers. On the Home Model an infrared heart beat transmitter is worn under exercise clothing. Transmitted heart rate is used to control the work intensity on the VersaClimber using the heart rate as the speedometer of the exercise. This offers advantages to a full range of users from the cardiac rehab patient to the high level physical conditioning of elite athletes. The company manufactures and markets five models of the 1*2*3 HEART RATE monitors that are used wherever people exercise to accurately monitor their heart rate. Company is developing a talking heart rate monitor that works with portable headset radios. A version of the heart beat transmitter will be available to the manufacturers of other aerobic exercise machines.

  11. Merger rates of dark matter haloes

    NASA Astrophysics Data System (ADS)

    Neistein, Eyal; Dekel, Avishai

    2008-08-01

    We derive analytic merger rates for dark matter haloes within the framework of the extended Press-Schechter (EPS) formalism. These rates become self-consistent within EPS once we realize that the typical merger in the limit of a small time-step involves more than two progenitors, contrary to the assumption of binary mergers adopted in earlier studies. We present a general method for computing merger rates that span the range of solutions permitted by the EPS conditional mass function, and focus on a specific solution that attempts to match the merger rates in N-body simulations. The corrected EPS merger rates are more accurate than the earlier estimates of Lacey & Cole by ~20 per cent for major mergers and by up to a factor of ~3 for minor mergers of mass ratio 1:104. Based on the revised merger rates, we provide a new algorithm for constructing Monte Carlo EPS merger trees, which could be useful in semi-analytic modelling. We provide analytic expressions and plot numerical results for several quantities that are very useful in studies of galaxy formation. This includes (i) the rate of mergers of a given mass ratio per given final halo, (ii) the fraction of mass added by mergers to a halo and (iii) the rate of mergers per given main progenitor. The creation and destruction rates of haloes serve for a self-consistency check. Our method for computing merger rates can be applied to conditional mass functions beyond EPS, such as those obtained by the ellipsoidal collapse model or extracted from N-body simulations.

  12. A rumor spreading model with variable forgetting rate

    NASA Astrophysics Data System (ADS)

    Zhao, Laijun; Xie, Wanlin; Gao, H. Oliver; Qiu, Xiaoyan; Wang, Xiaoli; Zhang, Shuhai

    2013-12-01

    A rumor spreading model with the consideration of forgetting rate changing over time is examined in small-world networks. The mean-field equations are derived to describe the dynamics of rumor spreading in small-world networks. Further, numerical solutions are conducted on LiveJournal, an online social blogging platform, to better understand the performance of the model. Results show that the forgetting rate has a significant impact on the final size of rumor spreading: the larger the initial forgetting rate or the faster the forgetting speed, the smaller the final size of the rumor spreading. Numerical solutions also show that the final size of rumor spreading is much larger under a variable forgetting rate compared to that under a constant forgetting rate.

  13. Numerical Study of Pyrolysis of Biomass in Fluidized Beds

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Lathouwers, Danny

    2003-01-01

    A report presents a numerical-simulation study of pyrolysis of biomass in fluidized-bed reactors, performed by use of the mathematical model described in Model of Fluidized Bed Containing Reacting Solids and Gases (NPO-30163), which appears elsewhere in this issue of NASA Tech Briefs. The purpose of the study was to investigate the effect of various operating conditions on the efficiency of production of condensable tar from biomass. The numerical results indicate that for a fixed particle size, the fluidizing-gas temperature is the foremost parameter that affects the tar yield. For the range of fluidizing-gas temperatures investigated, and under the assumption that the pyrolysis rate exceeds the feed rate, the optimum steady-state tar collection was found to occur at 750 K. In cases in which the assumption was not valid, the optimum temperature for tar collection was found to be only slightly higher. Scaling up of the reactor was found to exert a small negative effect on tar collection at the optimal operating temperature. It is also found that slightly better scaling is obtained by use of shallower fluidized beds with greater fluidization velocities.

  14. Influence of clearance model on numerical simulation of centrifugal pump

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Gao, B.; Yang, L.; Du, W. Q.

    2016-05-01

    Computing models are always simplified to save the computing resources and time. Particularly, the clearance that between impeller and pump casing is always ignored. But the completer model is, the more precise result of numerical simulation is in theory. This paper study the influence of clearance model on numerical simulation of centrifugal pump. We present such influence via comparing performance, flow characteristic and pressure pulsation of two cases that the one of two cases is the model pump with clearance and the other is not. And the results show that the head decreases and power increases so that efficiency decreases after computing with front and back cavities. Then no-leakage model would improve absolute velocity magnitude in order to reach the rated flow rate. Finally, more disturbance induced by front cavity flow and wear-ring flow would change the pressure pulsation of impeller and volute. The performance of clearance flow is important for the whole pump in performance, flow characteristic, pressure pulsation and other respects.

  15. Numerical Modeling of Propellant Boiloff in Cryogenic Storage Tank

    NASA Technical Reports Server (NTRS)

    Majumdar, A. K.; Steadman, T. E.; Maroney, J. L.

    2007-01-01

    This Technical Memorandum (TM) describes the thermal modeling effort undertaken at Marshall Space Flight Center to support the Cryogenic Test Laboratory at Kennedy Space Center (KSC) for a study of insulation materials for cryogenic tanks in order to reduce propellant boiloff during long-term storage. The Generalized Fluid System Simulation program has been used to model boiloff in 1,000-L demonstration tanks built for testing the thermal performance of glass bubbles and perlite insulation. Numerical predictions of boiloff rate and ullage temperature have been compared with the measured data from the testing of demonstration tanks. A satisfactory comparison between measured and predicted data has been observed for both liquid nitrogen and hydrogen tests. Based on the experience gained with the modeling of the demonstration tanks, a numerical model of the liquid hydrogen storage tank at launch complex 39 at KSC was built. The predicted boiloff rate of hydrogen has been found to be in good agreement with observed field data. This TM describes three different models that have been developed during this period of study (March 2005 to June 2006), comparisons with test data, and results of parametric studies.

  16. Estimating surface fluxes using eddy covariance and numerical ogive optimization

    NASA Astrophysics Data System (ADS)

    Sievers, J.; Papakyriakou, T.; Larsen, S. E.; Jammet, M. M.; Rysgaard, S.; Sejr, M. K.; Sørensen, L. L.

    2015-02-01

    Estimating representative surface fluxes using eddy covariance leads invariably to questions concerning inclusion or exclusion of low-frequency flux contributions. For studies where fluxes are linked to local physical parameters and up-scaled through numerical modelling efforts, low-frequency contributions interfere with our ability to isolate local biogeochemical processes of interest, as represented by turbulent fluxes. No method currently exists to disentangle low-frequency contributions on flux estimates. Here, we present a novel comprehensive numerical scheme to identify and separate out low-frequency contributions to vertical turbulent surface fluxes. For high flux rates (|Sensible heat flux| > 40 Wm-2, |latent heat flux|> 20 Wm-2 and |CO2 flux|> 100 mmol m-2 d-1 we found that the average relative difference between fluxes estimated by ogive optimization and the conventional method was low (5-20%) suggesting negligible low-frequency influence and that both methods capture the turbulent fluxes equally well. For flux rates below these thresholds, however, the average relative difference between flux estimates was found to be very high (23-98%) suggesting non-negligible low-frequency influence and that the conventional method fails in separating low-frequency influences from the turbulent fluxes. Hence, the ogive optimization method is an appropriate method of flux analysis, particularly in low-flux environments.

  17. Some common problems in the numerical modeling of impact phenomena

    NASA Astrophysics Data System (ADS)

    Zukas, J. A.

    1993-02-01

    In 1972, in the preface of his book Impact Strength of Materials, W. Johnson noted that most engineers in the U.S.A. and U.K. graduate without familiarity with impact phenomena, save possibly rigid body impacts. Since the publication of Johnson's book, a wealth of material has appeared in print on impact phenomena spanning the velocity spectrum. There are a large number of books, conference proceedings, short courses, and even a journal devoted to impact problems. Yet the problem noted by Johnson persists. It is particularly evident when looking at computational results of impact problems. The most frequently occurring errors are the use of a computer model inappropriate to the problem, inability to recognize numerical instabilities and attributing these to physical phenomena, improper choice of computational grid, selection of an inappropriate material model or, more likely, the use of material data for a given model generated at strain rates inappropriate to the problem at hand. Most of these can be readily avoided by gaining familiarity with the basic concepts of wave propagation in solids, particularly with reference to the effect of boundaries and material interfaces, attention to the concept of strain rate and a rudimentary familiarity with the approximations involved in transforming a set of coupled nonlinear partial differential equations to a much larger set of algebraic equations. After a brief review of fundamentals, this paper addresses problems common to numerical simulation of high and low velocity impact, to illustrate these concepts.

  18. Numerical modeling for underground nuclear test monitoring

    NASA Astrophysics Data System (ADS)

    Taylor, Steven R.; Kamm, James R.

    The symposium for Numerical Modeling for Underground Nuclear Test Monitoring was held March 23-25 in Durango, Colo. Funded by the DOE Office of Arms Control and Nonproliferation (OACN) and hosted by the Source Region Program at Los Alamos National Laboratory (LANL), the meetings's purpose was to discuss the state-of-the-art in numerical simulations of nuclear explosion phenomenology with applications to test-ban monitoring. In particular, we wished to focus on the uniqueness of model fits to data, the measurement and characterization of material response models, advanced modeling techniques, and applications of modeling to monitoring problems.The concept for the meeting arose through discussions with Marv Denny, who was on assignment at Department of Energy Headquarters from Lawrence Livermore National Laboratory (LLNL). In these conversations, the following question was discussed: how are numerical modeling techniques being used to understand the effects of explosion- source phenomenology on test-ban treaty monitoring? Numerical studies are becoming increasingly important in the evaluation of capabilities for proliferation monitoring; this trend has accelerated with the curtailment of the nuclear testing program. During these discussions, the issue of the uniqueness and limitations of numerical models arose. It was decided to address these questions by convening a group of experts to present and discuss the problems associated with modeling of close-in data from explosions.

  19. Numerical Simulation of Two Phase Flows

    NASA Technical Reports Server (NTRS)

    Liou, Meng-Sing

    2001-01-01

    Two phase flows can be found in broad situations in nature, biology, and industry devices and can involve diverse and complex mechanisms. While the physical models may be specific for certain situations, the mathematical formulation and numerical treatment for solving the governing equations can be general. Hence, we will require information concerning each individual phase as needed in a single phase. but also the interactions between them. These interaction terms, however, pose additional numerical challenges because they are beyond the basis that we use to construct modern numerical schemes, namely the hyperbolicity of equations. Moreover, due to disparate differences in time scales, fluid compressibility and nonlinearity become acute, further complicating the numerical procedures. In this paper, we will show the ideas and procedure how the AUSM-family schemes are extended for solving two phase flows problems. Specifically, both phases are assumed in thermodynamic equilibrium, namely, the time scales involved in phase interactions are extremely short in comparison with those in fluid speeds and pressure fluctuations. Details of the numerical formulation and issues involved are discussed and the effectiveness of the method are demonstrated for several industrial examples.

  20. Numerical multi-loop integrals and applications

    NASA Astrophysics Data System (ADS)

    Freitas, A.

    2016-09-01

    Higher-order radiative corrections play an important role in precision studies of the electroweak and Higgs sector, as well as for the detailed understanding of large backgrounds to new physics searches. For corrections beyond the one-loop level and involving many independent mass and momentum scales, it is in general not possible to find analytic results, so that one needs to resort to numerical methods instead. This article presents an overview of a variety of numerical loop integration techniques, highlighting their range of applicability, suitability for automatization, and numerical precision and stability. In a second part of this article, the application of numerical loop integration methods in the area of electroweak precision tests is illustrated. Numerical methods were essential for obtaining full two-loop predictions for the most important precision observables within the Standard Model. The theoretical foundations for these corrections will be described in some detail, including aspects of the renormalization, resummation of leading log contributions, and the evaluation of the theory uncertainty from missing higher orders.

  1. Direct Numerical Simulation of the Leidenfrost Effect

    NASA Astrophysics Data System (ADS)

    Tanguy, Sebastien; Rueda Villegas, Lucia; Fluid Mechanics Institute of Toulouse Team

    2015-11-01

    The development of numerical methods for the direct numerical simulation of two-phase flows with phase changes, is the main topic of this study. We propose a novel numerical method which allows dealing with both evaporation and boiling at the interface between a liquid and a gas. For instance it can occur for a Leidenfrost droplet; a water drop levitating above a hot plate which temperature is much higher than the boiling temperature. In this case, boiling occurs in the film of saturated vapor which is entrapped between the bottom of the drop and the plate, whereas the top of the water droplet evaporates in contact of ambient air. Thus, boiling and evaporation can occur simultaneously on different regions of the same liquid interface or occur successively at different times of the history of an evaporating droplet. Usual numerical methods are not able to perform computations in these transient regimes, therefore, we propose in this paper a novel numerical method to achieve this challenging task. Finally, we present several accurate validations against experimental results on Leidenfrost Droplets to strengthen the relevance of this new method.

  2. Mathematical modeling of electrocardiograms: a numerical study.

    PubMed

    Boulakia, Muriel; Cazeau, Serge; Fernández, Miguel A; Gerbeau, Jean-Frédéric; Zemzemi, Nejib

    2010-03-01

    This paper deals with the numerical simulation of electrocardiograms (ECG). Our aim is to devise a mathematical model, based on partial differential equations, which is able to provide realistic 12-lead ECGs. The main ingredients of this model are classical: the bidomain equations coupled to a phenomenological ionic model in the heart, and a generalized Laplace equation in the torso. The obtention of realistic ECGs relies on other important features--including heart-torso transmission conditions, anisotropy, cell heterogeneity and His bundle modeling--that are discussed in detail. The numerical implementation is based on state-of-the-art numerical methods: domain decomposition techniques and second order semi-implicit time marching schemes, offering a good compromise between accuracy, stability and efficiency. The numerical ECGs obtained with this approach show correct amplitudes, shapes and polarities, in all the 12 standard leads. The relevance of every modeling choice is carefully discussed and the numerical ECG sensitivity to the model parameters investigated. PMID:20033779

  3. Numerical flow modeling of power plant windboxes

    SciTech Connect

    LaRose, J.A.; Hopkins, M.W.

    1995-12-31

    Numerical flow modeling has become an increasingly important design and analysis tool for improving the air distribution to power plant burners. Uniform air distribution allows the burners to perform as designed to achieve the lowest possible emissions and best fuel burn-out. Modifications can be made internal to the existing windbox to improve the burner-to-burner and burner peripheral air distributions. These modifications can include turning vanes, flow splitters, perforated plate, and burner shrouding. Numerical modeling allows the analysis of design trade-offs between adding flow resistance, fan power, and windbox modification construction cost. Numerical modeling has advantages over physical modeling in that actual geometric scales and air temperatures are used. Advantages over a field data based study include the ability to quickly and cheaply analyze a variety of design options without actually modifying the windbox, and the availability of significantly more data with which to interpret the results. Costs to perform a numerical study are generally one-half to one-third of the cost to perform a physical flow model and can be one-forth of the cost to perform a field study. The continued development of affordable, high speed, large memory workstations and reliable, commercially available computation fluid dynamics (CFD) software allows practical analyses of power plant windboxes. This paper discusses (1) the impact of air distribution on burner performance, (2) the methodology used to perform numerical flow modeling of power plant windboxes, and (3) the results from several windbox analyses including available post-modification observations.

  4. Boundary acquisition for setup of numerical simulation

    SciTech Connect

    Diegert, C.

    1997-12-31

    The author presents a work flow diagram that includes a path that begins with taking experimental measurements, and ends with obtaining insight from results produced by numerical simulation. Two examples illustrate this path: (1) Three-dimensional imaging measurement at micron scale, using X-ray tomography, provides information on the boundaries of irregularly-shaped alumina oxide particles held in an epoxy matrix. A subsequent numerical simulation predicts the electrical field concentrations that would occur in the observed particle configurations. (2) Three-dimensional imaging measurement at meter scale, again using X-ray tomography, provides information on the boundaries fossilized bone fragments in a Parasaurolophus crest recently discovered in New Mexico. A subsequent numerical simulation predicts acoustic response of the elaborate internal structure of nasal passageways defined by the fossil record. The author must both add value, and must change the format of the three-dimensional imaging measurements before the define the geometric boundary initial conditions for the automatic mesh generation, and subsequent numerical simulation. The author applies a variety of filters and statistical classification algorithms to estimate the extents of the structures relevant to the subsequent numerical simulation, and capture these extents as faceted geometries. The author will describe the particular combination of manual and automatic methods used in the above two examples.

  5. Numerical simulation of freeway traffic flow

    SciTech Connect

    Liu, G.; Lyrintzis, A.S.; Michalopoulos, P.G.

    1997-11-01

    A new high-order continuum model is presented in this paper. This high-order model exhibits smooth solutions rather than discontinuities, is able to describe the amplification of small disturbances on heavy traffic, and allows fluctuations of speed around the equilibrium values. Furthermore, unlike some earlier high-order models, it does not result in negative speeds at the tail of congested regions and disturbance propagation speeds greater than the flow speed. The model takes into account the relaxation time as a function of density and, in the equilibrium limit, it is consistent with the simple continuum model. A Riemann-problem-based numerical method is proposed for the solution of the new high-order model. Modeling of interrupted flow behavior such as merging, diverging, and weaving is also investigated. Based on the new high order model, the proposed numerical method and the modeling of interrupted flow, a versatile code is developed for the numerical simulation of freeway traffic flow that includes several freeway geometries. The authors compare the high-order model with the simple continuum model and the proposed numerical method with the Lax method based on 30-s and 5-min field data. The model is tested in interrupted flow situations (e.g., pipeline, merging, diverging, and weaving areas). A comparison of numerical results with limited field data shows that the high-order model performs better than the simple continuum model and describes better than a previously proposed method.

  6. Calculation of molecular excitation rates

    NASA Technical Reports Server (NTRS)

    Flynn, George

    1993-01-01

    State-to-state collisional excitation rates for interstellar molecules observed by radio astronomers continue to be required to interpret observed line intensities in terms of local temperatures and densities. A problem of particular interest is collisional excitation of water which is important for modeling the observed interstellar masers. In earlier work supported by a different NASA Grant, excitation of water in collisions with He atoms was studied; after many years of successively more refined calculations that problem now seems to be well understood, and discrepancies with earlier experimental data for related (pressure broadening) phenomena are believed to reflect experimental errors. Because of interstellar abundances, excitation by H2, the dominant interstellar species, is much more important than excitation by He, although it has been argued that rates for excitation by these are similar. Under the current grant theoretical study of this problem has begun which is greatly complicated by the additional degrees of freedom which must be included both in determining the interaction potential and also in the molecular scattering calculation. We have now computed the interaction forces for nearly a thousand molecular geometries and are close to having an acceptable global fit to these points which is necessary for the molecular dynamics calculations. Also, extensive modifications have been made to the molecular scattering code, MOLSCAT. These included coding the rotational basis sets and coupling matrix elements required for collisions of an asymmetric top with a linear rotor. A new method for numerical solution of the coupled equations has been incorporated. Because of the long-ranged nature of the water-hydrogen interaction it is necessary to integrate the equations to rather large intermolecular separations, and the integration methods previously available in MOLSCAT are not ideal for such cases. However, the method used by Alexander in his HIBRIDON code is

  7. Numerical investigation of the flow profiles in the electrically enhanced cyclone.

    PubMed

    Shi, Liming; Bayless, David J; Kremer, Greg; Stuart, Ben

    2007-04-01

    A numerical model for simulation of the electrohydrodynamic flow in an electrically enhanced cyclone is presented. A finite element approach was applied to solve the coupled equations for the positive corona-induced electric field. Three-dimensional simulations of gas flow were carried using Reynolds-Averaged Navier-Stokes equations including the Reynolds stress model and the electrohydrodynamic effect. Numerical results show that the change in the flow profile because of the influence of the corona-induced electric field is apparent when the inlet flow rate is low but is negligible at higher flow rates. PMID:17458468

  8. Pricing American options for interest rate caps and coupon bonds in quantum finance

    NASA Astrophysics Data System (ADS)

    Baaquie, Belal E.; Liang, Cui

    2007-07-01

    American option for interest rate caps and coupon bonds are analyzed in the formalism of quantum finance. Calendar time and future time are discretized to yield a lattice field theory of interest rates that provides an efficient numerical algorithm for evaluating the price of American options. The algorithm is shown to hold over a wide range of strike prices and coupon rates. All the theoretical constraints that American options have to obey are shown to hold for the numerical prices of American interest rate caps and coupon bond options. Non-trivial correlation between the different interest rates are efficiently incorporated in the numerical algorithm. New inequalities are conjectured, based on the results of the numerical study, for American options on interest rate instruments.

  9. Numerical calculations of complex Mach reflection

    NASA Technical Reports Server (NTRS)

    Yamamoto, O.; Anderson, D. A.; Salas, M. D.

    1984-01-01

    Numerical simulations of the interaction of a planar blast wave with a compression ramp are presented. The split coefficient matrix (SCM) method in conjunction with boundary shock and floating discontinuity-fitting procedures was employed to obtain the time-asymptotic solutions of the two-dimensional, unsteady Euler equations. The solutions were computed for the complex Mach reflection (CMR) regime of the shock diffraction problem in an attempt to explore the basic physical process governing the evolution of an incipient second Mach stem and the associated topological changes. Numerical results were obtained for shock diffraction over a 40 degree ramp with varying incident shock Mach numbers. The validity of the present approach has been substantiated by experimental observations and earlier numerical calculations.

  10. Numerical Evaluation of 2D Ground States

    NASA Astrophysics Data System (ADS)

    Kolkovska, Natalia

    2016-02-01

    A ground state is defined as the positive radial solution of the multidimensional nonlinear problem \\varepsilon propto k_ bot 1 - ξ with the function f being either f(u) =a|u|p-1u or f(u) =a|u|pu+b|u|2pu. The numerical evaluation of ground states is based on the shooting method applied to an equivalent dynamical system. A combination of fourth order Runge-Kutta method and Hermite extrapolation formula is applied to solving the resulting initial value problem. The efficiency of this procedure is demonstrated in the 1D case, where the maximal difference between the exact and numerical solution is ≈ 10-11 for a discretization step 0:00025. As a major application, we evaluate numerically the critical energy constant. This constant is defined as a functional of the ground state and is used in the study of the 2D Boussinesq equations.

  11. Numerical Methods for Radiation Magnetohydrodynamics in Astrophysics

    SciTech Connect

    Klein, R I; Stone, J M

    2007-11-20

    We describe numerical methods for solving the equations of radiation magnetohydrodynamics (MHD) for astrophysical fluid flow. Such methods are essential for the investigation of the time-dependent and multidimensional dynamics of a variety of astrophysical systems, although our particular interest is motivated by problems in star formation. Over the past few years, the authors have been members of two parallel code development efforts, and this review reflects that organization. In particular, we discuss numerical methods for MHD as implemented in the Athena code, and numerical methods for radiation hydrodynamics as implemented in the Orion code. We discuss the challenges introduced by the use of adaptive mesh refinement in both codes, as well as the most promising directions for future developments.

  12. Numerical evaluation of uniform beam modes.

    SciTech Connect

    Tang, Y.; Reactor Analysis and Engineering

    2003-12-01

    The equation for calculating the normal modes of a uniform beam under transverse free vibration involves the hyperbolic sine and cosine functions. These functions are exponential growing without bound. Tables for the natural frequencies and the corresponding normal modes are available for the numerical evaluation up to the 16th mode. For modes higher than the 16th, the accuracy of the numerical evaluation will be lost due to the round-off errors in the floating-point math imposed by the digital computers. Also, it is found that the functions of beam modes commonly presented in the structural dynamics books are not suitable for numerical evaluation. In this paper, these functions are rearranged and expressed in a different form. With these new equations, one can calculate the normal modes accurately up to at least the 100th mode. Mike's Arbitrary Precision Math, an arbitrary precision math library, is used in the paper to verify the accuracy.

  13. Numerical FEM modeling in dental implantology

    NASA Astrophysics Data System (ADS)

    Roateşi, Iulia; Roateşi, Simona

    2016-06-01

    This paper is devoted to a numerical approach of the stress and displacement calculation of a system made up of dental implant, ceramic crown and surrounding bone. This is the simulation of a clinical situation involving both biological - the bone tissue, and non-biological - the implant and the crown, materials. On the other hand this problem deals with quite fine technical structure details - the threads, tapers, etc with a great impact in masticatory force transmission. Modeling the contact between the implant and the bone tissue is important to a proper bone-implant interface model and implant design. The authors proposed a three-dimensional numerical model to assess the biomechanical behaviour of this complex structure in order to evaluate its stability by determining the risk zones. A comparison between this numerical analysis and clinical cases is performed and a good agreement is obtained.

  14. Numerical stability in problems of linear algebra.

    NASA Technical Reports Server (NTRS)

    Babuska, I.

    1972-01-01

    Mathematical problems are introduced as mappings from the space of input data to that of the desired output information. Then a numerical process is defined as a prescribed recurrence of elementary operations creating the mapping of the underlying mathematical problem. The ratio of the error committed by executing the operations of the numerical process (the roundoff errors) to the error introduced by perturbations of the input data (initial error) gives rise to the concept of lambda-stability. As examples, several processes are analyzed from this point of view, including, especially, old and new processes for solving systems of linear algebraic equations with tridiagonal matrices. In particular, it is shown how such a priori information can be utilized as, for instance, a knowledge of the row sums of the matrix. Information of this type is frequently available where the system arises in connection with the numerical solution of differential equations.

  15. Manufacturing in space: Fluid dynamics numerical analysis

    NASA Technical Reports Server (NTRS)

    Robertson, S. J.; Nicholson, L. A.; Spradley, L. W.

    1981-01-01

    Natural convection in a spherical container with cooling at the center was numerically simulated using the Lockheed-developed General Interpolants Method (GIM) numerical fluid dynamic computer program. The numerical analysis was simplified by assuming axisymmetric flow in the spherical container, with the symmetry axis being a sphere diagonal parallel to the gravity vector. This axisymmetric spherical geometry was intended as an idealization of the proposed Lal/Kroes growing experiments to be performed on board Spacelab. Results were obtained for a range of Rayleigh numbers from 25 to 10,000. For a temperature difference of 10 C from the cooling sting at the center to the container surface, and a gravitional loading of 0.000001 g a computed maximum fluid velocity of about 2.4 x 0.00001 cm/sec was reached after about 250 sec. The computed velocities were found to be approximately proportional to the Rayleigh number over the range of Rayleigh numbers investigated.

  16. Heart rate turbulence.

    PubMed

    Cygankiewicz, Iwona

    2013-01-01

    Heart rate turbulence (HRT) is a baroreflex-mediated biphasic reaction of heart rate in response to premature ventricular beats. Heart rate turbulence is quantified by: turbulence onset (TO) reflecting the initial acceleration of heart rate following premature beat and turbulence slope (TS) describing subsequent deceleration of heart rate. Abnormal HRT identifies patients with autonomic dysfunction or impaired baroreflex sensitivity due to variety of disorders, but also may reflect changes in autonomic nervous system induced by different therapeutic modalities such as drugs, revascularization, or cardiac resynchronization therapy. More importantly, impaired HRT has been shown to identify patients at high risk of all-cause mortality and sudden death, particularly in postinfarction and congestive heart failure patients. It should be emphasized that abnormal HRT has a well-established role in stratification of postinfarction and heart failure patients with relatively preserved left ventricular ejection fraction. The ongoing clinical trials will document whether HRT can be used to guide implantation of cardioverter-defibrillators in this subset of patients, not covered yet by ICD guidelines. This review focuses on the current state-of-the-art knowledge regarding clinical significance of HRT in detection of autonomic dysfunction and regarding the prognostic significance of this parameter in predicting all-cause mortality and sudden death. PMID:24215748

  17. Numerical Algorithms Based on Biorthogonal Wavelets

    NASA Technical Reports Server (NTRS)

    Ponenti, Pj.; Liandrat, J.

    1996-01-01

    Wavelet bases are used to generate spaces of approximation for the resolution of bidimensional elliptic and parabolic problems. Under some specific hypotheses relating the properties of the wavelets to the order of the involved operators, it is shown that an approximate solution can be built. This approximation is then stable and converges towards the exact solution. It is designed such that fast algorithms involving biorthogonal multi resolution analyses can be used to resolve the corresponding numerical problems. Detailed algorithms are provided as well as the results of numerical tests on partial differential equations defined on the bidimensional torus.

  18. Multiple spatial mappings in numerical cognition.

    PubMed

    Shaki, Samuel; Fischer, Martin H

    2012-06-01

    A recent cross-cultural comparison (Shaki, Fischer, & Petrusic, 2009) suggested that spatially consistent processing habits for words and numbers are a necessary condition for the spatial representation of numbers (Spatial-Numerical Association of Response Codes; SNARC effect). Here we reexamine the SNARC in Israelis who read text from right to left but numbers from left to right. We show that, despite these spatially inconsistent processing habits, a SNARC effect still emerges when the response dimension is spatially orthogonal to the conflicting processing dimension. These results clarify the cognitive conditions for spatial-numerical mappings. PMID:22428673

  19. Numerical taxonomy on data: Experimental results

    SciTech Connect

    Cohen, J.; Farach, M.

    1997-12-01

    The numerical taxonomy problems associated with most of the optimization criteria described above are NP - hard [3, 5, 1, 4]. In, the first positive result for numerical taxonomy was presented. They showed that if e is the distance to the closest tree metric under the L{sub {infinity}} norm. i.e., e = min{sub T} [L{sub {infinity}} (T-D)], then it is possible to construct a tree T such that L{sub {infinity}} (T-D) {le} 3e, that is, they gave a 3-approximation algorithm for this problem. We will refer to this algorithm as the Single Pivot (SP) heuristic.

  20. Advances in numerical and applied mathematics

    NASA Technical Reports Server (NTRS)

    South, J. C., Jr. (Editor); Hussaini, M. Y. (Editor)

    1986-01-01

    This collection of papers covers some recent developments in numerical analysis and computational fluid dynamics. Some of these studies are of a fundamental nature. They address basic issues such as intermediate boundary conditions for approximate factorization schemes, existence and uniqueness of steady states for time dependent problems, and pitfalls of implicit time stepping. The other studies deal with modern numerical methods such as total variation diminishing schemes, higher order variants of vortex and particle methods, spectral multidomain techniques, and front tracking techniques. There is also a paper on adaptive grids. The fluid dynamics papers treat the classical problems of imcompressible flows in helically coiled pipes, vortex breakdown, and transonic flows.

  1. Numerical Based Linear Model for Dipole Magnets

    SciTech Connect

    Li,Y.; Krinsky, S.; Rehak, M.

    2009-05-04

    In this paper, we discuss an algorithm for constructing a numerical linear optics model for dipole magnets from a 3D field map. The difference between the numerical model and K. Brown's analytic approach is investigated and clarified. It was found that the optics distortion due to the dipoles' fringe focusing must be properly taken into account to accurately determine the chromaticities. In NSLS-II, there are normal dipoles with 35-mm gap and dipoles for infrared sources with 90-mm gap. This linear model of the dipole magnets is applied to the NSLS-II lattice design to match optics parameters between the DBA cells having dipoles with different gaps.

  2. Numerical studies of supersonic/hypersonic combustion

    SciTech Connect

    Yoon, W.S.; Chung, T.J. )

    1992-01-01

    This paper is concerned with the development of direct numerical simulations of turbulence interacting with shock waves and chemical reactions using unstructured adaptive finite element h-p methods. Reliable methods for resolving the complicated time and length scales involved in turbulence interacting with shock waves and chemical reactions are not yet available. Direct numerical simulations are here developed via Taylor-Galerkin finite element implicit scheme, with mesh refinements and spectral orders optimized such that errors are reduced where gradients of variables are large. 31 refs.

  3. Numerical Studies of Collisionless Current Layers

    NASA Technical Reports Server (NTRS)

    Quest, Kevin B.

    1993-01-01

    The purpose of this proposal was to investigate collisionless current layers using a variety of analytic and numerical tools. The first year of the contract was dedicated to analytical studies, to the porting and adaption of codes being used in this study, and to the numerical simulation of collisionless current layers. The second year entailed the development of multi-dimensional hybrid algorithms as well as the re-examination of the problem of integro-differential equations that occur in the linear stage of plasma instabilities.

  4. The quiet revolution of numerical weather prediction

    NASA Astrophysics Data System (ADS)

    Bauer, Peter; Thorpe, Alan; Brunet, Gilbert

    2015-09-01

    Advances in numerical weather prediction represent a quiet revolution because they have resulted from a steady accumulation of scientific knowledge and technological advances over many years that, with only a few exceptions, have not been associated with the aura of fundamental physics breakthroughs. Nonetheless, the impact of numerical weather prediction is among the greatest of any area of physical science. As a computational problem, global weather prediction is comparable to the simulation of the human brain and of the evolution of the early Universe, and it is performed every day at major operational centres across the world.

  5. Optical rate sensor algorithms

    NASA Technical Reports Server (NTRS)

    Uhde-Lacovara, Jo A.

    1989-01-01

    Optical sensors, in particular Charge Coupled Device (CCD) arrays, will be used on Space Station to track stars in order to provide inertial attitude reference. Algorithms are presented to derive attitude rate from the optical sensors. The first algorithm is a recursive differentiator. A variance reduction factor (VRF) of 0.0228 was achieved with a rise time of 10 samples. A VRF of 0.2522 gives a rise time of 4 samples. The second algorithm is based on the direct manipulation of the pixel intensity outputs of the sensor. In 1-dimensional simulations, the derived rate was with 0.07 percent of the actual rate in the presence of additive Gaussian noise with a signal to noise ratio of 60 dB.

  6. Weather Balloon Ascent Rate

    NASA Astrophysics Data System (ADS)

    Denny, Mark

    2016-05-01

    The physics of a weather balloon is analyzed. The surprising aspect of the motion of these balloons is that they ascend to great altitudes (typically 35 km) at a more or less constant rate. Such behavior is not surprising near the ground—say for a helium-filled party balloon rising from street level to the top of the Empire State building—but it is unexpected for a balloon that rises to altitudes where the air is rarefied. We show from elementary physical laws why the ascent rate is approximately constant.

  7. Physical and Numerical Modeling of Buoyant Groundwater Plumes

    NASA Astrophysics Data System (ADS)

    Brakefield, L. K.; Abarca, E.; Langevin, C. D.; Clement, T. P.

    2007-12-01

    In coastal states, the injection of treated wastewater into deep saline aquifers offers a disposal alternative to ocean outfalls and discharge directly into local waterways. The density of treated wastewater is similar to that of freshwater but is often much lower than the ambient density of deep aquifers. This significant density contrast can cause upward buoyant movement of the wastewater plume during and after injection. Since some wastewater treatment plants inject more than 100 MGD of this treated wastewater, it is of the utmost importance to be able to not only determine the fate and transport rates of the plume, but to be able to best determine locations for monitoring wells for early detection of possible problems. In this study, both physical and numerical modeling were undertaken to investigate and understand buoyant plume behavior and transport. Physical models using a 2D cross-sectional Plexiglas tank filled with glass beads were carried out under different ambient density scenarios. The experiments consisted of injection of a freshwater pulse-source bubble into a fully saline tank. The injection occurred in an initially static system with no ambient flow. In the scenarios, the freshwater plume migrated vertically upward until reaching the top of the tank. Fingers developed because of the heterogeneity of the density dependent flow field. The vertical velocities and transport patterns of these plumes were compared to one another to investigate variances due to different ambient water densities. Using the finite-difference numerical code SEAWAT to simulate variable density flow, the experiments were numerically modeled and compared with the physical model results. Due to the sensitivity of this problem to numerical resolution, results from three different grids were compared to determine a reasonable compromise between computer runtimes and numerical accuracy. Furthermore, a comparison of advection solvers was undertaken to identify the best solver to

  8. Faceted spurs at normal fault scarps: Insights from numerical modeling

    NASA Astrophysics Data System (ADS)

    Petit, C.; Gunnell, Y.; Gonga-Saholiariliva, N.; Meyer, B.; SéGuinot, J.

    2009-05-01

    We present a combined surface processes and tectonic model which allows us to determine the climatic and tectonic parameters that control the development of faceted spurs at normal fault scarps. Sensitivity tests to climatic parameter values are performed. For a given precipitation rate, when hillslope diffusion is high and channel bedrock is highly resistant to erosion, the scarp is smooth and undissected. When, instead, the bedrock is easily eroded and diffusion is limited, numerous channels develop and the scarp becomes deeply incised. Between these two end-member states, diffusion and incision compete to produce a range of scarp morphologies, including faceted spurs. The sensitivity tests allow us to determine a dimensionless ratio of erosion, f, for which faceted spurs can develop. This study evidences a strong dependence of facet slope angle on throw rate for throw rates between 0.4 and 0.7 mm/a. Facet height is also shown to be a linear function of fault throw rate. Model performance is tested on the Wasatch Fault, Utah, using topographic, geologic, and seismologic data. A Monte Carlo inversion on the topography of a portion of the Weber segment shows that the 5 Ma long development of this scarp has been dominated by a low effective precipitation rate (˜1.1 m/a) and a moderate diffusion coefficient (0.13 m2/a). Results demonstrate the ability of our model to estimate normal fault throw rates from the height of triangular facets and to retrieve the average long-term diffusion and incision parameters that prevailed during scarp evolution using an accurate 2-D misfit criterion.

  9. Mapping Numerical Magnitudes onto Symbols: The Numerical Distance Effect and Individual Differences in Children's Mathematics Achievement

    ERIC Educational Resources Information Center

    Holloway, Ian D.; Ansari, Daniel

    2009-01-01

    Although it is often assumed that abilities that reflect basic numerical understanding, such as numerical comparison, are related to children's mathematical abilities, this relationship has not been tested rigorously. In addition, the extent to which symbolic and nonsymbolic number processing play differential roles in this relationship is not yet…

  10. Children's Developing Numerical Notations: The Impact of Input Display, Numerical Size and Operational Complexity

    ERIC Educational Resources Information Center

    Teubal, E.; Dockrell, J.E.

    2005-01-01

    This paper addresses the emergence of children's early use of numerical notation. Children's notations for different forms of numerical input were investigated and the development of these forms is described. Eighty children, 3.0-5.8, recorded the results of a throw of a die in a game. Numerosities were represented with digits or dots on the die.…

  11. Numerical considerations for Lagrangian stochastic dispersion models: Eliminating rogue trajectories, and the importance of numerical accuracy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    When Lagrangian stochastic models for turbulent dispersion are applied to complex flows, some type of ad hoc intervention is almost always necessary to eliminate unphysical behavior in the numerical solution. This paper discusses numerical considerations when solving the Langevin-based particle velo...

  12. A 3D numerical model for Kepler's supernova remnant

    NASA Astrophysics Data System (ADS)

    Toledo-Roy, J. C.; Esquivel, A.; Velázquez, P. F.; Reynoso, E. M.

    2014-07-01

    We present new 3D numerical simulations for Kepler's supernova remnant. In this work we revisit the possibility that the asymmetric shape of the remnant in X-rays is the product of a Type Ia supernova explosion which occurs inside the wind bubble previously created by an AGB companion star. Due to the large peculiar velocity of the system, the interaction of the strong AGB wind with the interstellar medium results in a bow shock structure. In this new model we propose that the AGB wind is anisotropic, with properties such as mass-loss rate and density having a latitude dependence, and that the orientation of the polar axis of the AGB star is not aligned with the direction of motion. The ejecta from the Type Ia supernova explosion is modelled using a power-law density profile, and we let the remnant evolve for 400 yr. We computed synthetic X-ray maps from the numerical results. We find that the estimated size and peculiar X-ray morphology of Kepler's supernova remnant are well reproduced by considering an AGB mass-loss rate of 10-5 M⊙ yr-1, a wind terminal velocity of 10 km s-1, an ambient medium density of 10-3 cm-3 and an explosion energy of 7 × 1050 erg. The obtained total X-ray luminosity of the remnant in this model reaches 6 × 1050 erg, which is within a factor of 2 of the observed value, and the time evolution of the luminosity shows a rate of decrease in recent decades of ˜2.4 per cent yr-1 that is consistent with the observations.

  13. SINFAC - SYSTEMS IMPROVED NUMERICAL FLUIDS ANALYSIS CODE

    NASA Technical Reports Server (NTRS)

    Costello, F. A.

    1994-01-01

    The Systems Improved Numerical Fluids Analysis Code, SINFAC, consists of additional routines added to the April 1983 revision of SINDA, a general thermal analyzer program. The purpose of the additional routines is to allow for the modeling of active heat transfer loops. The modeler can simulate the steady-state and pseudo-transient operations of 16 different heat transfer loop components including radiators, evaporators, condensers, mechanical pumps, reservoirs and many types of valves and fittings. In addition, the program contains a property analysis routine that can be used to compute the thermodynamic properties of 20 different refrigerants. SINFAC can simulate the response to transient boundary conditions. SINFAC was first developed as a method for computing the steady-state performance of two phase systems. It was then modified using CNFRWD, SINDA's explicit time-integration scheme, to accommodate transient thermal models. However, SINFAC cannot simulate pressure drops due to time-dependent fluid acceleration, transient boil-out, or transient fill-up, except in the accumulator. SINFAC also requires the user to be familiar with SINDA. The solution procedure used by SINFAC is similar to that which an engineer would use to solve a system manually. The solution to a system requires the determination of all of the outlet conditions of each component such as the flow rate, pressure, and enthalpy. To obtain these values, the user first estimates the inlet conditions to the first component of the system, then computes the outlet conditions from the data supplied by the manufacturer of the first component. The user then estimates the temperature at the outlet of the third component and computes the corresponding flow resistance of the second component. With the flow resistance of the second component, the user computes the conditions down stream, namely the inlet conditions of the third. The computations follow for the rest of the system, back to the first component

  14. Controlling Your Utility Rates.

    ERIC Educational Resources Information Center

    Lucht, Ray; Dembowski, Frederick L.

    1985-01-01

    A cost-effective alternative to high utility bills for middle-sized and smaller utility users is the service of utility rate consultants. The consultants analyze utility invoices for the previous 12 months to locate available refunds or credits. (MLF)

  15. Currency Exchange Rates.

    ERIC Educational Resources Information Center

    Siler, Carl R.

    This curriculum unit of the Muncie (Indiana) Southside High School is to simulate the dynamics of foreign currency exchange rates from the perspectives of: (1) a major U.S. corporation, ABB Power T & D Company, Inc., of Muncie, Indiana, a manufacturer of large power transformers for the domestic and foreign markets; and (2) individual consumers…

  16. Paradoxes in Film Ratings

    ERIC Educational Resources Information Center

    Moore, Thomas L.

    2006-01-01

    The author selected a simple random sample of 100 movies from the "Movie and Video Guide" (1996), by Leonard Maltin. The author's intent was to obtain some basic information on the population of roughly 19,000 movies through a small sample. The "Movie and Video Guide" by Leonard Maltin is an annual ratings guide to movies. While not all films ever…

  17. DATA ATTRIBUTE RATING SYSTEM

    EPA Science Inventory

    The paper discusses a data attribute rating system (DARS), developed by EPA to assist in evaluating data associated with emission inventories. he paper presents DARS for evaluation by the potential user community. ARS was originally conceived as a method for evaluating country-sp...

  18. Variable rate irrigation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Systems are available to producers to make variable-rate applications of defoliants, fertilizer, lime, pesticides, plant growth regulators, and seed. These systems could potentially offer cost savings to a producer; however, the full potential of the benefits and savings cannot be realized if water ...

  19. Variable Rate Irrigation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Systems are available to producers with the ability to make variable-rate applications of defoliants, fertilizer, lime, pesticides, plant growth regulators, and seed. These systems could potentially offer a producer great cost savings; however, the full potential of these benefits and savings cannot...

  20. Toy Stories: Modeling Rates

    ERIC Educational Resources Information Center

    Swanson, Patricia E.

    2015-01-01

    Elementary school mathematics is increasingly recognized for its crucial role in developing the foundational skills and understandings for algebra. In this article, the author uses a lesson to introduce the concept of "rates"--comparing two different types and units of measure--and how to graph them. Described is the lesson and shared…

  1. Understanding Rates of Change.

    ERIC Educational Resources Information Center

    Weil, Aurelia; Russell, Larry

    This paper presents three activities on how to analyze rates of change in real-life situations using TI-83 calculators and computer-based laboratories. Activities include 24 hour temperature data, the temperature of a light bulb, and an M&M toss. Each section contains descriptions of equipment/materials, data collection, and data analysis. The…

  2. A hybrid numerical scheme for the numerical solution of the Burgers' equation

    NASA Astrophysics Data System (ADS)

    Jiwari, Ram

    2015-03-01

    In this article, a hybrid numerical scheme based on Euler implicit method, quasilinearization and uniform Haar wavelets has been developed for the numerical solutions of Burgers' equation. Most of the numerical methods available in the literature fail to capture the physical behavior of the equations when viscosity ν → 0. In Jiwari (2012), the author presented the numerical results up to ν = 0.003 and the scheme failed for values smaller than ν = 0.003. The main aim in the development of the present scheme is to overcome the drawback of the scheme developed in Jiwari (2012). Lastly, three test problems are chosen to check the accuracy of the proposed scheme. The approximated results are compared with existing numerical and exact solutions found in literature. The use of uniform Haar wavelet is found to be accurate, simple, fast, flexible, convenient and at small computation costs.

  3. Processing of Numerical and Proportional Quantifiers

    ERIC Educational Resources Information Center

    Shikhare, Sailee; Heim, Stefan; Klein, Elise; Huber, Stefan; Willmes, Klaus

    2015-01-01

    Quantifier expressions like "many" and "at least" are part of a rich repository of words in language representing magnitude information. The role of numerical processing in comprehending quantifiers was studied in a semantic truth value judgment task, asking adults to quickly verify sentences about visual displays using…

  4. Numerical techniques for lattice gauge theories

    SciTech Connect

    Creutz, M.

    1981-02-06

    The motivation for formulating gauge theories on a lattice is reviewed. Monte Carlo simulation techniques are then discussed for these systems. Finally, the Monte Carlo methods are combined with renormalization group analysis to give strong numerical evidence for confinement of quarks by non-Abelian gauge fields.

  5. Multiple Spatial Mappings in Numerical Cognition

    ERIC Educational Resources Information Center

    Shaki, Samuel; Fischer, Martin H.

    2012-01-01

    A recent cross-cultural comparison (Shaki, Fischer, & Petrusic, 2009) suggested that spatially consistent processing habits for words and numbers are a necessary condition for the spatial representation of numbers (Spatial-Numerical Association of Response Codes; SNARC effect). Here we reexamine the SNARC in Israelis who read text from right to…

  6. 32 CFR 241.11 - Numerical limitation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 2 2013-07-01 2013-07-01 false Numerical limitation. 241.11 Section 241.11 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) MISCELLANEOUS PILOT PROGRAM FOR TEMPORARY EXCHANGE OF INFORMATION TECHNOLOGY PERSONNEL § 241.11...

  7. A numerical method of detecting singularity

    NASA Technical Reports Server (NTRS)

    Laporte, M.; Vignes, J.

    1978-01-01

    A numerical method is reported which determines a value C for the degree of conditioning of a matrix. This value is C = 0 for a singular matrix and has progressively larger values for matrices which are increasingly well-conditioned. This value is C sub = C max sub max (C defined by the precision of the computer) when the matrix is perfectly well conditioned.

  8. Filing Numerically. Student's Manual and Instructor's Manual.

    ERIC Educational Resources Information Center

    McLeod, Sadie

    Supporting performance objective 22 of the V-TECS (Vocational-Technical Education Consortium of States) Secretarial Catalog, both a set of student materials and an instructor's manual on filing materials numerically are included in this packet. (The packet is the fourth in a set of nine on maintaining files and a library--CE 016 939-947.) The…

  9. A numerical simulation of galaxy subcluster mergers

    NASA Technical Reports Server (NTRS)

    Roettiger, Kurt; Burns, Jack O.; Loken, Chris

    1993-01-01

    We present preliminary results of a 3-D numerical simulation of two merging subclusters of galaxies. By self-consistently modelling the intracluster gas and dark matter dynamics, we hope to gain insight as to how the dynamics of both relate to such observables as the cluster x-ray emission, radio source morphology, and velocity dispersions.

  10. Key Curriculum Reform Research on Numerical Analysis

    NASA Astrophysics Data System (ADS)

    Li, Zhong; Peng, Chensong

    Based on the current undergraduate teaching characteristics and the actual teaching situation of numerical analysis curriculum, this paper gives a useful discussion and appropriate adjustments for this course's teaching content and style, and it also proposes some new curriculum reform plans to improve the teaching effectiveness which can develop student's abilities of mathematical thinking and computational practice.

  11. Multiaxis Computer Numerical Control Internship Report

    ERIC Educational Resources Information Center

    Rouse, Sharon M.

    2012-01-01

    (Purpose) The purpose of this paper was to examine the issues associated with bringing new technology into the classroom, in particular, the vocational/technical classroom. (Methodology) A new Haas 5 axis vertical Computer Numerical Control machining center was purchased to update the CNC machining curriculum at a community college and the process…

  12. Numerical Cognition in Bees and Other Insects

    PubMed Central

    Pahl, Mario; Si, Aung; Zhang, Shaowu

    2013-01-01

    The ability to perceive the number of objects has been known to exist in vertebrates for a few decades, but recent behavioral investigations have demonstrated that several invertebrate species can also be placed on the continuum of numerical abilities shared with birds, mammals, and reptiles. In this review article, we present the main experimental studies that have examined the ability of insects to use numerical information. These studies have made use of a wide range of methodologies, and for this reason it is striking that a common finding is the inability of the tested animals to discriminate numerical quantities greater than four. Furthermore, the finding that bees can not only transfer learnt numerical discrimination to novel objects, but also to novel numerosities, is strongly suggestive of a true, albeit limited, ability to count. Later in the review, we evaluate the available evidence to narrow down the possible mechanisms that the animals might be using to solve the number-based experimental tasks presented to them. We conclude by suggesting avenues of further research that take into account variables such as the animals’ age and experience, as well as complementary cognitive systems such as attention and the time sense. PMID:23616774

  13. IRIS Spectrum Line Plot - Numeric Simulation

    NASA Video Gallery

    This video is similar to the IRIS Spectrum Line Plot video at http://www.youtube.com/watch?v=E4V_vF3qMSI, but now as derived from a numerical simulation of the Sun by the University of Oslo. Credit...

  14. On the comparison of fundamental numerical ephemerides

    NASA Astrophysics Data System (ADS)

    Tkachuk, V. V.; Choliy, V. Ya.

    2013-12-01

    We present the results of our comparison of three main numerical ephemerides (DELE, INPOP, EPM) for the determination of precision and errors of their dynamical coordinate systems. It was shown that all of them have comparable levels of precision, however the EPM demonstrates an unusual shift of the coordinate origin. Systematic errors were estimated as well, and mutual shifts of coordinate centres were found.

  15. Numerical Estimation in Deaf and Hearing Adults

    ERIC Educational Resources Information Center

    Bull, Rebecca; Marschark, Marc; Sapere, Patty; Davidson, Wendy A.; Murphy, Derek; Nordmann, Emily

    2011-01-01

    Deaf students often lag behind hearing peers in numerical and mathematical abilities. Studies of hearing children with mathematical difficulties highlight the importance of estimation skills as the foundation for formal mathematical abilities, but research with adults is limited. Deaf and hearing college students were assessed on the…

  16. Simple Numerical Analysis of Longboard Speedometer Data

    ERIC Educational Resources Information Center

    Hare, Jonathan

    2013-01-01

    Simple numerical data analysis is described, using a standard spreadsheet program, to determine distance, velocity (speed) and acceleration from voltage data generated by a skateboard/longboard speedometer (Hare 2012 "Phys. Educ." 47 409-17). This simple analysis is an introduction to data processing including scaling data as well as…

  17. Numerical Convergence In Smoothed Particle Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Zhu, Qirong; Hernquist, Lars; Li, Yuexing

    2015-02-01

    We study the convergence properties of smoothed particle hydrodynamics (SPH) using numerical tests and simple analytic considerations. Our analysis shows that formal numerical convergence is possible in SPH only in the joint limit N → ∞, h → 0, and Nnb → ∞, where N is the total number of particles, h is the smoothing length, and Nnb is the number of neighbor particles within the smoothing volume used to compute smoothed estimates. Previous work has generally assumed that the conditions N → ∞ and h → 0 are sufficient to achieve convergence, while holding Nnb fixed. We demonstrate that if Nnb is held fixed as the resolution is increased, there will be a residual source of error that does not vanish as N → ∞ and h → 0. Formal numerical convergence in SPH is possible only if Nnb is increased systematically as the resolution is improved. Using analytic arguments, we derive an optimal compromise scaling for Nnb by requiring that this source of error balance that present in the smoothing procedure. For typical choices of the smoothing kernel, we find Nnb vpropN 0.5. This means that if SPH is to be used as a numerically convergent method, the required computational cost does not scale with particle number as O(N), but rather as O(N 1 + δ), where δ ≈ 0.5, with a weak dependence on the form of the smoothing kernel.

  18. Simple Numerical Simulation of Strain Measurement

    NASA Technical Reports Server (NTRS)

    Tai, H.

    2002-01-01

    By adopting the basic principle of the reflection (and transmission) of a plane polarized electromagnetic wave incident normal to a stack of films of alternating refractive index, a simple numerical code was written to simulate the maximum reflectivity (transmittivity) of a fiber optic Bragg grating corresponding to various non-uniform strain conditions including photo-elastic effect in certain cases.

  19. Numerical tokamak turbulence project (OFES grand challenge)

    SciTech Connect

    Beer, M; Cohen, B I; Crotinger, J; Dawson, J; Decyk, V; Dimits, A M; Dorland, W D; Hammett, G W; Kerbel, G D; Leboeuf, J N; Lee, W W; Lin, Z; Nevins, W M; Reynders, J; Shumaker, D E; Smith, S; Sydora, R; Waltz, R E; Williams, T

    1999-08-27

    The primary research objective of the Numerical Tokamak Turbulence Project (NTTP) is to develop a predictive ability in modeling turbulent transport due to drift-type instabilities in the core of tokamak fusion experiments, through the use of three-dimensional kinetic and fluid simulations and the derivation of reduced models.

  20. John Todd--Numerical Mathematics Pioneer

    ERIC Educational Resources Information Center

    Albers, Don

    2007-01-01

    John Todd, now in his mid-90s, began his career as a pure mathematician, but World War II interrupted that. In this interview, he talks about his education, the significant developments in his becoming a numerical analyst, and the journey that concluded at Caltech. Among the interesting stories are how he met his wife-to-be the mathematician Olga…