Science.gov

Sample records for 11-year solar activity

  1. 11 -year planetary index of solar activity

    NASA Astrophysics Data System (ADS)

    Okhlopkov, Victor

    In papers [1,2] introduced me parameter - the average difference between the heliocentric longitudes of planets ( ADL ) , which was used for comparison with solar activity. The best connection of solar activity ( Wolf numbers used ) was obtained for the three planets - Venus, Earth and Jupiter. In [1,2] has been allocated envelope curve of the minimum values ADL which has a main periodicity for 22 years and describes well the alternating series of solar activity , which also has a major periodicity of 22. It was shown that the minimum values of the envelope curve extremes ADL planets Venus, Earth and Jupiter are well matched with the 11- year solar activity cycle In these extremes observed linear configuration of the planets Venus, Earth and Jupiter both in their location on one side of the Sun ( conjunctions ) and at the location on the opposite side of the Sun ( three configurations ) This work is a continuation of the above-mentioned , and here for minimum ADL ( planets are in conjunction ) , as well as on the minimum deviation of the planets from a line drawn through them and Sun at the location of the planets on opposite sides of the Sun , compiled index (denoted for brevity as JEV ) that uniquely describes the 11- year solar cycle A comparison of the index JEV with solar activity during the time interval from 1000 to 2013 conducted. For the period from 1000 to 1699 used the Schove series of solar activity and the number of Wolf (1700 - 2013 ) During the time interval from 1000 to 2013 and the main periodicity of the solar activity and the index ADL is 11.07 years. 1. Okhlopkov V.P. Cycles of Solar Activity and the Configurations of Planets // Moscow University Physics Bulletin, 2012 , Vol. 67 , No. 4 , pp. 377-383 http://www.springerlink.com/openurl.asp?genre=article&id=doi:10.3103/S0027134912040108. 2 Okhlopkov VP, Relationship of Solar Activity Cycles to Planetary Configurations // Bulletin of the Russian Academy of Sciences. Physics, 2013 , Vol. 77 , No. 5

  2. On the existence of the 11-year cycle in solar activity before the Maunder minimum

    SciTech Connect

    Attolini, M.R.; Cecchini, S.; Cini Castagnoli, G.; Galli, M.; Nanni, T.

    1988-11-01

    The existence of the 11-year cycle in solar activity before the Maunder minimum is clearly demonstrated with cosmogenic /sup 10/Be in polar ice during 1180--1500 A.D. For that interval a periodicity of 11.4 +- 0.2 years is found with a high significance level. Indication of a cyclicity that resembles the Hale magnetic cycle is also observed at a lower significance level. A highly variable cyclicity in the band 9.5--11.5 years is also found in the record of historical aurorae which appears to be well correlated with the /sup 10/Be cyclicity for the same time interval. It is concluded that the Schwabe, or 11-year, cycle and the Hale magnetic cycle were present before and after the Maunder minimum, even though it is not possible to understand the variability of the cycle. copyright American Geophysical Union 1988

  3. On dependence of seismic activity on 11 year variations in solar activity and/or cosmic rays

    NASA Astrophysics Data System (ADS)

    Zhantayev, Zhumabek; Khachikyan, Galina; Breusov, Nikolay

    2014-05-01

    It is found in the last decades that seismic activity of the Earth has a tendency to increase with decreasing solar activity (increasing cosmic rays). A good example of this effect may be the growing number of catastrophic earthquakes in the recent rather long solar minimum. Such results support idea on existence a solar-lithosphere relationship which, no doubts, is a part of total pattern of solar-terrestrial relationships. The physical mechanism of solar-terrestrial relationships is not developed yet. It is believed at present that one of the main contenders for such mechanism may be the global electric circuit (GEC) - vertical current loops, piercing and electrodynamically coupling all geospheres. It is also believed, that the upper boundary of the GEC is located at the magnetopause, where magnetic field of the solar wind reconnects with the geomagnetic field, that results in penetrating solar wind energy into the earth's environment. The effectiveness of the GEC operation depends on intensity of cosmic rays (CR), which ionize the air in the middle atmosphere and provide its conductivity. In connection with the foregoing, it can be expected: i) quantitatively, an increasing seismic activity from solar maximum to solar minimum may be in the same range as increasing CR flux; and ii) in those regions of the globe, where the crust is shipped by the magnetic field lines with number L= ~ 2.0, which are populated by anomalous cosmic rays (ACR), the relationship of seismic activity with variations in solar activity will be manifested most clearly, since there is a pronounced dependence of ACR on solar activity variations. Checking an assumption (i) with data of the global seismological catalog of the NEIC, USGS for 1973-2010, it was found that yearly number of earthquake with magnitude M≥4.5 varies into the 11 year solar cycle in a quantitative range of about 7-8% increasing to solar minimum, that qualitatively and quantitatively as well is in agreement with the

  4. Fluctuations of the Caspian Sea level in the quasi-two-year and 11-year cycles of solar activity

    SciTech Connect

    Nuzhdina, M.A.

    1995-07-01

    Fluctuations of the Caspian Sea level due to dynamics of solar activity in its quasi-two-year and 11-year cycles, as well as to the influence of the 22-to 23-year magnetic cycle are analyzed. Perturbation of the geomagnetic field and the atmospheric circulation are regarded as a transmitting mechanism of the Sun`s influence on the Earth`s hydrosphere.

  5. Peculiarities of the fine structure of the 11-year cyclicity of solar activity

    SciTech Connect

    Voichishin, K.S.

    1981-01-01

    Substantiation is given for the concept of cyclicity, at the basis of which lie such characteristic features of heliophysical time series as stochasticity, discontinuity, and stability of the shape of the cycles. A conceptual and formal apparatus is developed for the description and analysis of cyclic oscillations. A simple model of cyclicity with disturbances of the phase structure and without them is analyzed on a heuristic level of rigor. The results of an investigation of the monthly fluctuations of Wolf numbers obtained within the framework of this model are presented. A connection between the quasideterminate amplitude component of the monthly fluctuations of Wolf numbers in the range of periods of from 2 to 15 months and the 11-year component is confirmed. It is shown that the fine structure of the 11-year averaged cycle of monthly average Wolf numbers is determined mainly by the almost-yearly quasideterminate component. The possibility of discontinuity (from cycle to cycle) in the quasi-determinate component of the above-mentioned fluctuations is pointed out.

  6. Relationship between the north-south asymmetry of sunspot formation and the amplitude of 11-year solar activity cycles

    NASA Astrophysics Data System (ADS)

    Latyshev, S. V.; Olemskoy, S. V.

    2016-07-01

    A relationship between the north-south asymmetry of sunspot formation and the amplitude of 11-year cycles has been established from the RGO/USAF/NOAA data on sunspots. It is shown that the higher the solar cycle amplitude, the smaller the absolute value of the north-south asymmetry. The revealed pattern has been investigated in a numerical dynamo model with irregular variations of the alpha-effect.

  7. Analysis of the sensitivity of the composition and temperature of the stratosphere to the variability of spectral solar radiation fluxes induced by the 11-year cycle of solar activity

    NASA Astrophysics Data System (ADS)

    Smyshlyaev, S. P.; Galin, V. Ya.; Blakitnaya, P. A.; Lemishchenko, A. K.

    2016-01-01

    The sensitivity of the gas composition of the atmosphere and its temperature to the changes in spectral radiation fluxes during the 11-year cycle of solar activity has been analyzed with a chemistry-climate model of the lower and middle atmosphere. For this, the data of satellite measurements acquired in the first decade of the 21st century were used. The results of the model calculations showed that, in addition to the increase in the spectral flux in the absorption bands of molecular oxygen that leads to the growth of the ozone content, the changes in the flux at longer wavelengths are significant for the composition and temperature of the atmosphere. The changes of the ozone destruction rate in different catalytic cycles partly compensate each other; in these processes, the destruction rate increases in the reaction with atomic oxygen, while it decreases in the hydrogen and chlorine cycles.

  8. The 11-year solar cycle continues during prolonged sunspot minima

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2012-12-01

    Streaming into the solar system at nearly the speed of light, galactic cosmic rays (GCRs) are a high-energy mix of protons, electrons, and atomic nuclei. As they pass into reach of the outflowing solar wind, the propagation of GCRs is inhibited. Galactic cosmic rays that make it to Earth interact with the atmosphere, creating a shower of heavy isotopes including beryllium-10. Beryllium-10 isotope concentrations recorded in ice cores provide a long-term, high temporal resolution record of galactic cosmic ray flux.

  9. Amplifying the Pacific climate system response to a small 11-year solar cycle forcing.

    PubMed

    Meehl, Gerald A; Arblaster, Julie M; Matthes, Katja; Sassi, Fabrizio; van Loon, Harry

    2009-08-28

    One of the mysteries regarding Earth's climate system response to variations in solar output is how the relatively small fluctuations of the 11-year solar cycle can produce the magnitude of the observed climate signals in the tropical Pacific associated with such solar variability. Two mechanisms, the top-down stratospheric response of ozone to fluctuations of shortwave solar forcing and the bottom-up coupled ocean-atmosphere surface response, are included in versions of three global climate models, with either mechanism acting alone or both acting together. We show that the two mechanisms act together to enhance the climatological off-equatorial tropical precipitation maxima in the Pacific, lower the eastern equatorial Pacific sea surface temperatures during peaks in the 11-year solar cycle, and reduce low-latitude clouds to amplify the solar forcing at the surface. PMID:19713524

  10. The 11-year solar radiation rhythm and the North Atlantic Oscillation during the last two centuries

    NASA Astrophysics Data System (ADS)

    Brunck, Heiko; Sirocko, Frank

    2016-04-01

    The study is based on a historical chronology of freezing events in central Europe during the last 230 years (river Rhine (Sirocko et al. 2012), Baltic Sea (Koslowski and Glaser, 1999) and Lake Constance (Dobras, 1983)). These regions display both significant similarities with extremely cold winters in central Germany for the years 1799, 1830, 1895, 1929, 1940, 1942, 1947, 1956 and 1963, as well as regional differences in timing and severity of cold winters. The statistical analysis of all 92 historical freezing events showed that 80 events occurred during a negative NAOwinter phase. The bootstrap test defined the results as extremely significant. To understand the climatic forcing behind the freezing chronology the NAO data set was smoothed by a three point running mean filter and compared with the 11- year cyclicity of the sunspot numbers. A complete NAO cycle can be observed within each solar cycle back to 1960 and from 1820 to 1900. From 1900 to 1960 the correlation between the Sun and NAO was weak. This on/off mode becomes visible only in the smoothed NAO data, when time intervals longer than "normal" weather observations are analysed. Statistical test for the coherence of the entire 230 years are insignificant. However, the relation is highly significant, if only the intervals from 1960 to 2010 and 1830 to 1900 are analysed. The phase correlation can be explained by temperature variations up to +-2.5°C in time series of stratospheric air temperature at 40 km height, where ozone is formed by ultraviolet solar radiation. Advanced analysis of sea surface temperatures from reanalysis data (ECMWF Data Archiv, 2013) between 30° - 40°N and 65° - 75°N indicate similar temperature variations in phase with the solar activity. Consequently, the 11 year solar periodicity is related to various parts of the Earth/Ocean/Atmosphere system and not only to the stratospheric signal. However, the NAO is the dominating mediator to implement a solar component into the

  11. The 11 years solar cycle as the manifestation of the dark Universe

    SciTech Connect

    Zioutas, K.; Semertzidis, Y.; Tsagri, M.; Papaevangelou, T.; Hoffmann, D. H.H.; Anastassopoulos, V.

    2014-11-26

    Sun’s luminosity in the visible changes at the 10-3 level, following an 11 years period. In X-rays, which should not be there, the amplitude varies even ~105 times stronger, making their mysterious origin since the discovery in 1938 even more puzzling, and inspiring. We suggest that the multifaceted mysterious solar cycle is due to some kind of dark matter streams hitting the Sun. Planetary gravitational lensing enhances (occasionally) slow moving flows of dark constituents towards the Sun, giving rise to the periodic behaviour. Jupiter provides the driving oscillatory force, though its 11.8 years orbital period appears slightly decreased, just as 11 years, if the lensing impact of other planets is included. Then, the 11 years solar clock may help to decipher (overlooked) signatures from the dark sector in laboratory experiments or observations in space.

  12. The 11 years solar cycle as the manifestation of the dark Universe

    DOE PAGESBeta

    Zioutas, K.; Semertzidis, Y.; Tsagri, M.; Papaevangelou, T.; Hoffmann, D. H.H.; Anastassopoulos, V.

    2014-11-26

    Sun’s luminosity in the visible changes at the 10-3 level, following an 11 years period. In X-rays, which should not be there, the amplitude varies even ~105 times stronger, making their mysterious origin since the discovery in 1938 even more puzzling, and inspiring. We suggest that the multifaceted mysterious solar cycle is due to some kind of dark matter streams hitting the Sun. Planetary gravitational lensing enhances (occasionally) slow moving flows of dark constituents towards the Sun, giving rise to the periodic behaviour. Jupiter provides the driving oscillatory force, though its 11.8 years orbital period appears slightly decreased, just asmore » 11 years, if the lensing impact of other planets is included. Then, the 11 years solar clock may help to decipher (overlooked) signatures from the dark sector in laboratory experiments or observations in space.« less

  13. Modulation of the Arctic Oscillation and the East Asian winter climate relationships by the 11-year solar cycle

    NASA Astrophysics Data System (ADS)

    Chen, Wen; Zhou, Qun

    2012-03-01

    The modulation of the relationship between the Arctic Oscillation (AO) and the East Asian winter climate by the 11-year solar cycle was investigated. During winters with high solar activity (HS), robust warming appeared in northern Asia in a positive AO phase. This result corresponded to an enhanced anticyclonic flow at 850 hPa over northeastern Asia and a weakened East Asian trough (EAT) at 500 hPa. However, during winters with low solar activity (LS), both the surface warming and the intensities of the anticyclonic flow and the EAT were much less in the presence of a positive AO phase. The possible atmospheric processes for this 11-year solar-cycle modulation may be attributed to the indirect influence that solar activity induces in the structural changes of AO. During HS winters, the sea level pressure oscillation associated with the AO became stronger, with the significant influence of AO extending to East Asia. In the meantime, the AO-related zonal-mean zonal winds tended to extend more into the stratosphere during HS winters, which implies a stronger coupling to the stratosphere. These trends may have led to an enhanced AO phase difference; thus the associated East Asian climate anomalies became larger and more significant. The situation tended to reverse during LS winters. Further analyses revealed that the relationship between the winter AO and surface-climate anomalies in the following spring is also modulated by the 11-year solar cycle, with significant signals appearing only during HS phases. Solar-cycle variation should be taken into consideration when the AO is used to predict winter and spring climate anomalies over East Asia.

  14. Difference between even and odd cycles in the predictability of the amplitude of the around 11-year-period solar activity and prediction of the amplitude of cycle 25

    NASA Astrophysics Data System (ADS)

    Yoshida, A.; Sayre, R. J.

    2012-12-01

    The waxing and waning of the solar activity represented by a period of roughly 11 years is usually quantified by the change in the sunspot number (SSN). It is commonly held that these increases and decreases in the SSN as well as the changes in the general dipole-like magnetic field in the photosphere and corona are produced by a magneto-hydro dynamic process in the sun's underlying convection layer. Assuming this is the case, it follows that SSNs in past cycles should contain a certain kind of information that enables us to estimate the amplitudes of future cycles. We report here a set of new results along this line of research. The chief aim of this paper is to demonstrate a distinct difference in the predictability of solar activity between even and odd cycles. Yoshida and Yamagishi (2010) showed that the SSN at the point three years before a minimum is well correlated with the maximum SSN in the following cycle. Here, we show that the correlation between this locus and the average SSN supplies a higher correlation coefficient. Moreover, we demonstrate that the correlation coefficient for even cycles is far better than that for odd ones (i.e., 0.96 and 0.74, respectively). Though it has been known that the correlation between the SSN at a point three years after a minimum and the maximum SSN is high, we demonstrate here that taking this calculation along with the average SSN (instead of the maximum SSN), the correlation coefficient for even cycles (0.98) reveals itself to be noticeably larger than that for odd cycles (0.93). Furthermore, we have found that the average SSN of even cycles is highly correlated with that of succeeding odd cycles (i.e., the correlation coefficient - minus three outliers - is 0.99). Conversely, no correlation is observed between amplitudes of odd cycles and those of succeeding even cycles. These distinct differences between even-odd pairs and odd-even pairs in their connective features lead us to believe that pairs of even-odd cycles

  15. Evidence for climate variations induced by the 11-year solar and cosmic rays cycles

    NASA Astrophysics Data System (ADS)

    Bruckman, William; Ramos, Elio

    2010-02-01

    We analyzed data from PSMSL monthly mean sea level seeking correlations between sea level fluctuations and the solar and cosmic rays 11 year cycle. The data reveals decadal variability that could be causally connected to the solar and cosmic rays cycle, since these periodic changes are correlated. It is also found that the solar (cosmic rays) cycle correlates (anti-correlates) with the mean global surface temperature anomaly. A probable explanation of the above correlations is that the solar intensity and cosmic rays variations induce oscillations in the average temperature and precipitation, with corresponding changes in the continental water and snow accumulation. Thus, for instance, a higher than average snow and water over land, and lower temperatures produce oceans thermal contraction and lower mass, implicating lower mean sea level.

  16. The response of chemistry and climate to the 11-year solar cycle in UM-UKCA

    NASA Astrophysics Data System (ADS)

    Bednarz, Ewa; Telford, Paul; Maycock, Amanda; Abraham, Luke; Braesicke, Peter; Pyle, John

    2014-05-01

    It is now generally agreed that the UV variability associated with the 11-year solar cycle leads to changes in ozone and temperature in the upper stratosphere. In addition, a range of observational and modelling studies suggest that such changes are the starting point for a chain of processes (including feedbacks) resulting in circulation changes in many areas of the atmosphere. However, precise details of the interactions between chemistry and meteorology induced by solar variability remain under question. In our study, we use a version of the UM-UKCA chemistry-climate model with consistent spectrally-resolved solar variability. While the solar cycle in heating rates has been applied with the method used in HadGEM2-ES, fine spectrally-resolved solar variability has been uniquely incorporated into the Fast-JX photolysis scheme. We perform two 50-year-long perpetual year solar maximum and solar minimum integrations and complement them with a three member ensemble of a transient 1960-2010 integration in which boundary conditions correspond by and large to the CCMI Ref-C1 scenario. We show how the inferred solar signals vary between the individual experiments. This indicates high natural variability and the resulting contamination of the solar signal with contributions from other processes as well as the existence of possible non-linearities between the solar cycle and other atmospheric forcings. Therefore, we highlight that long data series are needed to ensure correct attribution of the modelled and observed anomalies. In addition, we present results from two perpetual year experiments in which the solar cycle was applied exclusively in either short-wave heating or photolysis. We find large non-linearities in the modelled anomalies as compared to the realistic integration with both modulations included. This highlights the subtle nature of the dynamical response to the solar cycle forcing and indicates the need for interactive chemistry with a detailed photolysis

  17. The 11 year solar cycle signature on wave-driven dynamics in WACCM

    NASA Astrophysics Data System (ADS)

    Cullens, Chihoko Y.; England, Scott L.; Garcia, Rolando R.

    2016-04-01

    This study describes the influence of the 11 year solar cycle on gravity waves and the wave-driven circulation, using an ensemble of six simulations of the period from 1955 to 2005 along with fixed solar maximum and minimum simulations of the Whole Atmospheric Community Climate Model (WACCM). Solar cycle signals are estimated by calculating the difference between solar maximum and minimum conditions. Simulations under both time-varying and fixed solar inputs show statistically significant responses in temperatures and winds in the Southern Hemisphere (SH) during austral winter and spring. At solar maximum, the monthly mean, zonal mean temperature in the SH from July to October is cooler (~1-3 K) in the stratosphere and warmer (~1-4 K) in the mesosphere and the lower thermosphere (MLT). In solar maximum years, the SH polar vortex is more stable and its eastward speed is about 5-8 m s-1 greater than during solar minimum. The increase in the eastward wind propagates downward and poleward from July to October in the SH. Because of increase in the eastward wind, the propagation of eastward gravity waves to the MLT is reduced. This results in a net westward response in gravity wave drag, peaking at ~10 m s-1 d-1 in the SH high-latitude MLT. These changes in gravity wave drag modify the wave-induced residual circulation, and this contributes to the warming of ~1-4 K in the MLT.

  18. On the ambiguous nature of the 11-year solar cycle signal profile in stratospheric ozone

    NASA Astrophysics Data System (ADS)

    Dhomse, Sandip; Chipperfield, Martyn; Damadeo, Robert; Zawodny, Joe; Ball, William; Feng, Wuhu; Hossaini, Ryan; Mann, Graham; Haigh, Joana

    2016-04-01

    We use three satellite datasets and simulations from a 3-D chemical transport model, forced by three different solar flux datasets, to diagnose the 11-year solar cycle signal (SCS) in stratospheric ozone. Our analysis shows that compared to SAGE II v6.2, a reduced upper stratospheric SCS in SAGE II v7.0 is due to a more realistic ozone-temperature anti-correlation. Overall, all model simulations show a positive SCS in the lower and middle stratosphere and negligible SCS in the upper stratosphere in agreement with SAGE v7.0, HALOE and MLS data. The model simulations show a differently structured SCS over different time periods covered by the satellite datasets, which helps to resolve some observed differences. However, despite the improvements to the SAGE II data, due to remaining biases in current observational and reanalysis datasets, accurate quantification of the influence of solar flux variability on the climate system remains an open scientific question.

  19. Understanding the 11-year Solar Cycle Signal in Stratospheric Ozone using a 3D CTM

    NASA Astrophysics Data System (ADS)

    Dhomse, Sandip; Chipperfield, Martyn; Feng, Wuhu

    2014-05-01

    The exact structure of the 11-year solar cycle signal in stratospheric ozone is still an open scientific question. Long-term satellite data such as Stratospheric Aerosol and Gas Experiment (SAGE) and Solar Backscatter UltraViolet (SBUV) show a positive solar response in the tropical lower stratosphere and upper stratosphere/lower mesosphere (US/LM), but a negligible signal in the tropical middle stratosphere. On the other hand, Halogen Occultation Experiment (HALOE) measurements show a positive signal in the lower and middle stratosphere and smaller solar signal in the tropical US/LM. Currently most chemical models are able to simulate a "double-peak"-structured solar signal but the model simulated solar signals tend to show better agreement with the HALOE-derived solar signal than those from SBUV or SAGE measurements. Also, some recent studies argue that due to the significantly different solar variability during the recent solar cycle (23), the solar signal in the US/LM ozone is negative (out of phase with total solar irradiance changes) for this later period compared to previous solar cycles. We have used 3-D chemical transport model (CTM) simulations to better understand the possible mechanisms responsible for this discrepancy. Various model simulations have been performed for 1979-2012 time period using ERA-Interim meteorological fields as a dynamical forcing. Model output is sampled at collocated measurement points for three satellite instruments performing stratospheric ozone measurements using the solar occultation technique: SAGE II (1984-2005), HALOE (1992-2005) and Atmospheric Chemistry Experiment (ACE, 2003-present). Overall the modelled ozone shows good agreement with all the data sets. However, in the US/LM, modelled ozone anomalies are better correlated with HALOE and ACE than SAGE II measurements. Hence the modelled solar signal in the stratospheric and lower mesospheric ozone also shows better agreement with the solar signal derived using HALOE and

  20. Using the 11-year Solar Cycle to Predict the Heliosheath Environment at Voyager 1 and 2

    NASA Astrophysics Data System (ADS)

    Michael, A.; Opher, M.; Provornikova, E.; Richardson, J. D.; Toth, G.

    2015-12-01

    As Voyager 2 moves further into the heliosheath, the region of subsonic solar wind plasma in between the termination shock and the heliopause, it has observed an increase of the magnetic field strength to large values, all while maintaining magnetic flux conservation. Dr. Burlaga will present these observations in the 2015 AGU Fall meeting (abstract ID: 59200). The increase in magnetic field strength could be a signature of Voyager 2 approaching the heliopause or, possibly, due to solar cycle effects. In this work we investigate the role the 11-year solar cycle variations as well as magnetic dissipation effects have on the heliosheath environments observed at Voyager 1 and 2 using a global 3D magnetohydrodynamic model of the heliosphere. We use time and latitude-dependent solar wind velocity and density inferred from SOHO/SWAN and IPS data and solar cycle variations of the magnetic field derived from 27-day averages of the field magnitude average of the magnetic field at 1 AU from the OMNI database as presented in Michael et al. (2015). Since the model has already accurately matched the flows and magnetic field strength at Voyager 2 until 93 AU, we extend the boundary conditions to model the heliosheath up until Voyager 2 reaches the heliopause. This work will help clarify if the magnetic field observed at Voyager 2 should increase or decrease due to the solar cycle. We describe the solar magnetic field both as a dipole, with the magnetic and rotational axes aligned, and as a monopole, with magnetic field aligned with the interstellar medium to reduce numerical reconnection within the heliosheath, due to the removal of the heliospheric surrent sheet, and at the solar wind - interstellar medium interface. A comparison of the models allows for a crude estimation of the role that magnetic dissipation plays in the system and whether it allows for a better understanding of the Voyager 2 location in the heliosheath.

  1. Climate variability related to the 11 year solar cycle as represented in different spectral solar irradiance reconstructions

    NASA Astrophysics Data System (ADS)

    Kruschke, Tim; Kunze, Markus; Misios, Stergios; Matthes, Katja; Langematz, Ulrike; Tourpali, Kleareti

    2016-04-01

    shortwave heating rate differences (additionally collated with line-by-line calculations using libradtran), differences in the photolysis rates, as well as atmospheric circulation features (temperature, zonal wind, geopotential height, etc.). It is shown that atmospheric responses to the different SSI datasets differ significantly from each other. This is a result from direct radiative effects as well as indirect effects induced by ozone feedbacks. Differences originating from using different SSI datasets for the same level of solar activity are in the same order of magnitude as those associated with the 11 year solar cycle within a specific dataset. However, the climate signals related to the solar cycle are quite comparable across datasets.

  2. Observations and analysis of the Ionospheric Alfven resonance mode structure in a complete 11-year solar cycle

    NASA Astrophysics Data System (ADS)

    Baru, N. A.; Koloskov, A. V.; Yampolsky, Y. M.; Rakhmatulin, R. A.

    2016-03-01

    The long-term data of the ionospheric Alfven resonance (IAR) observations recorded at the Ukrainian Antarctic Station "Akademik Vernadsky" from 2002 to 2013 and at Sayan Solar Observatory (Mondy, Russia) from 2010 to 2013 are analyzed. IAR fine spectral structure is studied and a previously unknown effect of splitting of the several lowest resonance modes is discovered. The diurnal and seasonal dependencies of this effect are investigated as well as the dependences of the probability of IAR and splitting detection on Solar and geomagnetic activities in the 11-year cycle. The morphological features of the splitting frequency behavior are analyzed and three main characteristic periods of the splitting are identified, namely: the development, the stationary period and the disappearing. Possible mechanisms of the splitting effect are suggested.

  3. Estimating 11-year solar UV variations using 27-day response as a guide to isolate trends in total column ozone

    NASA Technical Reports Server (NTRS)

    Keating, G. M.; Brasseur, G. P.; Chiou, L. S.; Hsu, N. C.

    1994-01-01

    The total column ozone response to 11-year solar ultraviolet (UV) variations is estimated here from the observed response to 27-day solar variations adjusted for the theoretical difference between the 27-day response and 11-year response. The estimate is tested by comparing two data sets where long-term drifts have been removed, the Nimbus 7 TOMS Version 6 total column ozone and the 280 nm core-to-wing ratio (a proxy for solar UV variations). The 365-day running means of data area-weighted between 40 deg N to 40 deg S latitude give a 1.9% ozone variation related to the 11-year solar cycle compared with the estimate of 1.8%. Estimates of linear trends were reduced by a factor of 2 by including solar effects. The standard deviation from the empirical model was reduced from 1.0 to 0.6 Dobson Units, by including the quasi-biennial oscillation (QBO), but the QBO did not significantly alter trend estimates. Both the ozone responses to 27-day and 11-year solar variations were considerably stronger than predicted by a 2-D theoretical model.

  4. Pathways Linking Perceived Athletic Competence and Parental Support at Age 9 Years to Girls' Physical Activity at Age 11 Years

    ERIC Educational Resources Information Center

    Davison, Kirsten Krahnstoever; Downs, Danielle Symons; Birch, Leann L.

    2006-01-01

    Girls' perceived athletic competence and parental support of physical activity across the ages of 9 to 11 years were examined as predictors of girls' physical activity at age 11 years. Participants were 174 girls and their mothers and fathers who completed questionnaires when the girls were ages 9 and 11 years. Two alternative temporal pathways…

  5. Altitude dependent sensitivity of equatorial atomic oxygen in the MLT region to the quasi-11-year and quasi-27-day solar cycles

    NASA Astrophysics Data System (ADS)

    Lednyts'kyy, Olexandr; Von Savigny, Christian

    2016-07-01

    We retrieved atomic oxygen concentration ([O]) profiles with help of volume emission rate (VER) profiles calculated from the measured by SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY) emissions of green line nightglow in the MLT (Mesosphere/Lower Thermosphere) region. We quantified the sensitivity of equatorial [O] to the 11-year and 27-day solar cycle forcing represented by such proxy indicators of solar activity as MgII index and Lyman-α with help of the wavelet, cross-correlation, superposed epoch, regression and harmonical analysis methods. We applied ordinary least squares bisector fitting on MgII index and F10.7 radio flux, which is measured in solar flux units (sfu), to convert the [O] sensitivity values in sfu and finally in percent changes. The same procedure was performed in the case of Lyman-α. Our results of the sensitivity analysis correspond well to the 11-year solar cycle response of O volume mixing ratios found in simulations performed with the WACCM3 (Whole Atmosphere Community Climate Model, v. 3) and the HAMMONIA (3D Hamburg Model of the Neutral and Ionized Atmosphere) model. We identified an 11-year solar cycle variation, quasi-biennial and annual/semi-annual oscillations as well as signatures of the 27-day cycle of solar activity as presented in the MLT O layer. The most remarkable result is that the found sensitivities agree within their uncertainties and do not depend on averaging method (annual, monthly and daily) of the [O] time series. We report on 11-year and 27-day solar cycle signatures in dependence on altitude intervals used to average the [O] time series.

  6. The Antarctic ozone minimum - Relationship to odd nitrogen, odd chlorine, the final warming, and the 11-year solar cycle

    NASA Technical Reports Server (NTRS)

    Callis, L. B.; Natarajan, M.

    1986-01-01

    Photochemical calculations along 'diabatic trajectories' in the meridional phase are used to search for the cause of the dramatic springtime minimum in Antarctic column ozone. The results indicate that the minimum is principally due to catalytic destruction of ozone by high levels of total odd nitrogen. Calculations suggest that these levels of odd nitrogen are transported within the polar vortex and during the polar night from the middle to upper stratosphere and lower mesosphere to the lower stratosphere. The possibility that these levels are related to the 11-year solar cycle and are increased by enhanced formation in the thermosphere and mesosphere during solar maximum conditions is discussed.

  7. 11-year solar cycle in Schumann resonance data as observed in Antarctica

    NASA Astrophysics Data System (ADS)

    Nickolaenko, A. P.; Koloskov, A. V.; Hayakawa, M.; Yampolski, Yu. M.; Budanov, O. V.; Korepanov, V. E.

    2015-03-01

    Studies of Schumann resonance allows obtaining characteristics of the lower ionosphere and the dynamics of global thunderstorms based on the data recorded at a single or a few ground-based observatories. We use the simple model of a point source. The vertical profile of air conductivity is described by the "knee" model. We used continuous Schumann resonance record from the "Akademik Vernadsky" Ukrainian Antarctic station (geographic coordinates: 65.25S and 64.25W, L=2.6). A data processing show that the north-south seasonal drift of global thunderstorms was about 20°, and the intensity of global lightning activity changed annually by the factor 1.5-2. Unequal duration of the "electromagnetic" seasons was confirmed ("summer" ~ 120 days, "winter" ~ 60 days; duration of the "spring" is shorter than the "fall"). A possible explanation of inter-annual variations of Schumann resonance parameter follows from changes in the effective height of the lower ionosphere. In this case, we used the spatial thunderstorm distribution following from the annual data of the Optical Transient Detector satellite. We show that recorded inter-annual variations of resonance frequencies and intensities might be attributed to 1-2 km alterations in the knee height of ionosphere. The most realistic mechanism of changes should include both the height variations and the drift of global thunderstorms. Both the processes are governed by solar activity. We also estimated the feasible trend in the equatorial soil surface temperature by 1.6° C corresponding to the inter-annual change of Schumann resonance intensity.

  8. Relativistic electrons in the outer-zone: An 11 year cycle, their relation to the solar wind

    SciTech Connect

    Belian, R.D.; Cayton, T.E.; Christensen, R.A.; Ingraham, J.C.; Meier, M.M.; Reeves, G.D.; Lazarus, A.J.

    1994-12-31

    We examine Los Alamos energetic electron data from 1979 through the present to show long term trends in the trapped relativistic electron populations at geosynchronous-earth-orbit (GEO). Data is examined from several CPA and SOPA instruments to cover the interval from 1979 through June 1994. It is shown that the higher energy electrons fluxes (E > 300 keV) displayed a cycle of {approx}11 years. In agreement with other investigators, we also show that the relativistic electron cycle is out of phase with the sunspot cycle. We compare the occurrences of relativistic electrons and solar wind high speed streams and determine that on the time scale of 15 years the two do not correlate well. The long-term data set we provide here shows a systematic change of the electron energy spectrum during the course of the solar cycle. This information should be useful to magnetospheric scientists, model designers and space flight planners.

  9. Schoolyard physical activity of 6–11 year old children assessed by GPS and accelerometry

    PubMed Central

    2013-01-01

    Background Children’s current physical activity levels are disturbingly low when compared to recommended levels. This may be changed by intervening in the school environment. However, at present, it is unclear to what extent schoolyard physical activity contributes towards reaching the daily physical activity guideline. The aim of this study was to examine how long and at what intensity children are physically active at the schoolyard during different time segments of the day. Moreover, the contribution of schoolyard physical activity towards achieving the recommended guideline for daily physical activity was investigated. Methods Children (n=76) between the age of 6–11 years were recruited in six different schools in five cities (>70.000 residents) in the Netherlands. During the weekdays of a regular school week, childrens’ physical activity and location were measured with ActiGraph accelerometers and Travelrecorder GPS receivers. Data was collected from December 2008 to April 2009. From the data, the amount of moderate to vigorous physical activity (MVPA) on and outside the schoolyard was established. Moreover, the percentage of MVPA on the schoolyard was compared between the following segments of the day: pre-school, school, school recess, lunch break and post-school. Differences between boys and girls were compared using linear and logistic mixed-effects models. Results On average, children spent 40.1 minutes/day on the schoolyard. During this time, boys were more active on the schoolyard, with 27.3% of their time spent as MVPA compared to 16.7% among girls (OR=2.11 [95% CI 1.54 - 2.90]). The children were most active on the schoolyard during school recess, during which boys recorded 39.5% and girls recorded 23.4% of the time as MVPA (OR=2.55 [95% CI: 1.69 - 3.85]). Although children were only present at the schoolyard for 6.1% of the total reported time, this time contributed towards 17.5% and 16.8% of boys’ and girls’ minutes of MVPA. Conclusions On

  10. Global correlation between surface heat fluxes and insolation in the 11-year solar cycle: The latitudinal effect

    NASA Astrophysics Data System (ADS)

    Volobuev, D. M.; Makarenko, N. G.

    2014-12-01

    Because of the small amplitude of insolation variations (1365.2-1366.6 W m-2 or 0.1%) from the 11-year solar cycle minimum to the cycle maximum and the structural complexity of the climatic dynamics, it is difficult to directly observe a solar signal in the surface temperature. The main difficulty is reduced to two factors: (1) a delay in the temperature response to external action due to thermal inertia, and (2) powerful internal fluctuations of the climatic dynamics suppressing the solar-driven component. In this work we take into account the first factor, solving the inverse problem of thermal conductivity in order to calculate the vertical heat flux from the measured temperature near the Earth's surface. The main model parameter—apparent thermal inertia—is calculated from the local seasonal extremums of temperature and albedo. We level the second factor by averaging mean annual heat fluxes in a latitudinal belt. The obtained mean heat fluxes significantly correlate with a difference between the insolation and optical depth of volcanic aerosol in the atmosphere, converted into a hindered heat flux. The calculated correlation smoothly increases with increasing latitude to 0.4-0.6, and the revealed latitudinal dependence is explained by the known effect of polar amplification.

  11. Relativistic electrons in the outer-zone: An 11 year cycle; Their relation to the solar wind

    SciTech Connect

    Belian, R.D.; Cayton, T.E.; Christensen, R.A.; Ingraham, J.C.; Meier, M.M.; Reeves, G.D.; Lazarus, A.J.

    1996-07-01

    We examine Los Alamos energetic electron data from 1979 through the present to show long term trends in the trapped relativistic electron populations at geosynchronous-earth-orbit (GEO). Data is examined from several CPA and SOPA instruments to cover the interval from 1979 through June, 1994. It is shown that the higher energy electrons fluxes ({ital E}{gt}300 keV) displayed a cycle of {approx_equal}11 years. In agreement with other investigators, we also show that the relativistic electron cycle is out of phase with the sunspot cycle. We compare the occurrences of relativistic electrons and solar wind high speed streams and determine that on the time scale of 15 years the two do not correlate well. The long-term data set we provide here shows a systematic change of the electron energy spectrum during the course of the solar cycle. This information should be useful to magnetospheric scientists, model designers and space flight planners. {copyright} {ital 1996 American Institute of Physics.}

  12. Upper School Maths: Lesson Plans and Activities for Ages 9-11 Years. Series of Caribbean Volunteer Publications, No. 9.

    ERIC Educational Resources Information Center

    Voluntary Services Overseas, Castries (St. Lucia).

    This collection of lesson plans and activities for students aged 9-11 years is based on a science curriculum developed by a group of Caribbean nations. The activities pertain to topics such as place value, prime and composite numbers, the sieve of Eratosthenes, square numbers, factors and multiples, sequences, averages, geometry, symmetry,…

  13. Predictors of Meeting Physical Activity and Fruit and Vegetable Recommendations in 9-11-Year-Old Children

    ERIC Educational Resources Information Center

    Beck, Jimikaye; De Witt, Peter; McNally, Janise; Siegfried, Scott; Hill, James O; Stroebele-Benschop, Nanette

    2015-01-01

    Objective: Childhood obesity represents a significant public health problem. This study examined physical activity and nutrition behaviours and attitudes of 9-11-year-olds, and factors influencing these behaviours. Design: Study participants recorded pedometer steps for 7 days and completed physical activity enjoyment, food attitudes and food…

  14. Evaluation of Low-Cost, Objective Instruments for Assessing Physical Activity in 10-11-Year-Old Children

    ERIC Educational Resources Information Center

    Hart, Teresa L.; Brusseau, Timothy; Kulinna, Pamela Hodges; McClain, James J.; Tudor-Locke, Catrine

    2011-01-01

    This study compared step counts detected by four, low-cost, objective, physical-activity-assessment instruments and evaluated their ability to detect moderate-to-vigorous physical activity (MVPA) compared to the ActiGraph accelerometer (AG). Thirty-six 10-11-year-old children wore the NL-1000, Yamax Digiwalker SW 200, Omron HJ-151, and Walk4Life…

  15. Licence to be active: parental concerns and 10–11-year-old children's ability to be independently physically active

    PubMed Central

    Jago, Russell; Thompson, Janice L.; Page, Angie S.; Brockman, Rowan; Cartwright, Kim; Fox, Kenneth R.

    2009-01-01

    Background Physical activity independent of adult supervision is an important component of youth physical activity. This study examined parental attitudes to independent activity, factors that limit licence to be independently active and parental strategies to facilitate independent activity. Methods In-depth phone interviews were conducted with 24 parents (4 males) of 10–11-year-old children recruited from six primary schools in Bristol. Results Parents perceived that a lack of appropriate spaces in which to be active, safety, traffic, the proximity of friends and older children affected children's ability to be independently physically active. The final year of primary school was perceived as a period when children should be afforded increased licence. Parents managed physical activity licence by placing time limits on activity, restricting activity to close to home, only allowing activity in groups or under adult supervision. Conclusions Strategies are needed to build children's licence to be independently active; this could be achieved by developing parental self-efficacy to allow children to be active and developing structures such as safe routes to parks and safer play areas. Future programmes could make use of traffic-calming programmes as catalysts for safe independent physical activity. PMID:19505927

  16. A New Component of Solar Dynamics: North-South Diverging Flows Migrating toward the Equator with an 11 Year Period

    NASA Technical Reports Server (NTRS)

    Beck, J. G.; Gizon, L.; Duvall, Thomas L., Jr.; Oegerle, William R. (Technical Monitor)

    2002-01-01

    Time-distance helioseismology analysis of dopplergrams provides maps of torsional oscillations and meridional flows. Meridional flow maps show a time-varying component that has a banded structure which matches the torsional oscillations with an equatorward migration over the solar cycle. The time-varying component of meridional flow consists of a flow diverging from the dominant latitude of magnetic activity. These maps are compared with other torsional oscillation maps and with magnetic flux maps, showing a strong correlation with active latitudes. These results demonstrate a strong link between the time-varying component of the meridional flow and the torsional oscillations.

  17. Effect of the Great Activity Programme on healthy lifestyle behaviours in 7-11 year olds.

    PubMed

    Morris, John G; Gorely, Trish; Sedgwick, Matthew J; Nevill, Alan; Nevill, Mary E

    2013-01-01

    The study investigated the effect of a school-based healthy lifestyles intervention on physical activity and dietary variables. In total 378 children (177 intervention, 201 control; age 9.75 ± 0.82 years (mean ± s)) took part in the 7-month intervention comprising: preparation for and participation in 3 highlight events (a dance festival, a walking event and a running event); an interactive website for pupils, teachers and parents; and vacation activity planners. Primary outcome measures were objectively measured physical activity (pedometers and accelerometers), endurance fitness and dietary variables. Multi-level modelling was employed for data analysis. The increase in physical activity was greater in the intervention group than the control group (steps: 1049 vs 632 daily steps each month; moderate to vigorous physical activity (MVPA) total: 4.6 min · day(-1) · month(-1) vs 1.3 min · day(-1) · month(-1); MVPA bouts: 5.4 min · day(-1) · month(-1) vs 2.6 min · day(-1) · month(-1); all P < 0.05). The increase in multi-stage fitness test distance was greater for intervention participants (46 vs 29 m · month(-1) of intervention, group × month interaction, P < 0.05). There were no differences between groups in dietary variables, body composition, knowledge of healthy lifestyles or psychological variables. Thus an intervention centred around highlight events and including relatively few additional resources can impact positively on the objectively measured physical activity of children. PMID:23656302

  18. 11-year cycle solar modulation of cosmic ray intensity inferred from C-14 content variation in dated tree rings

    NASA Technical Reports Server (NTRS)

    Fan, C. Y.; Chen, T. M.; Yun, S. X.; Dai, K. M.

    1983-01-01

    A liquid scintillation-photomultiplier tube counter system was used to measure the Delta-C-14 values of 60 tree rings, dating from 1866 to 1925, that were taken from a white spruce grown in Canada at 68 deg N, 130 deg W. A 10-percent variation is found which is anticorrelated with sunspot numbers, although the amplitude of the variation is 2-3 times higher than expected in trees grown at lower latitudes. A large dip in the data at about 1875 suggests an anomalously large modulation of cosmic ray intensity during the 1867-1878 AD solar cycle, which was the most active of the 19th century.

  19. Prospective Associations Between Leisure-Time Physical Activity and Cognitive Performance Among Older Adults Across an 11-Year Period

    PubMed Central

    Ku, Po-Wen; Stevinson, Clare; Chen, Li-Jung

    2012-01-01

    Background Few studies have explored the relations between naturally occurring changes in physical activity and cognitive performance in later life. This study examined prospective associations between changes in physical activity and cognitive performance in a population-based sample of Taiwanese older adults during an 11-year period. Methods Analyses were based on nationally representative data from the Taiwan Health and Living Status of the Elderly Survey collected in 1996, 1999, 2003, and 2007. Data from a fixed cohort of 1160 participants who were aged 67 years or older in 1996 and followed for 11 years were included. Cognitive performance (outcome) was assessed using 5 questions from the Short Portable Mental Status Questionnaire. Physical activity (exposure) was self-reported as number of sessions per week. The latent growth model was used to examine associations between changes in physical activity and cognitive performance after controlling for sociodemographic variables, lifestyle behaviors, and health status. Results With multivariate adjustment, higher initial levels of physical activity were significantly associated with better initial cognitive performance (standardized coefficient β = 0.17). A higher level of physical activity at baseline (1996) was significantly related to slower decline in cognitive performance, as compared with a lower level of activity (β = 0.22). The association between changes in physical activity and changes in cognitive performance was stronger (β = 0.36) than the previous 2 associations. The effect remained after excluding participants with cognitive decline before baseline. Conclusions Physical activity in later life is associated with slower age-related cognitive decline. PMID:22343329

  20. Active school transport and weekday physical activity in 9–11-year-old children from 12 countries

    PubMed Central

    Denstel, K D; Broyles, S T; Larouche, R; Sarmiento, O L; Barreira, T V; Chaput, J-P; Church, T S; Fogelholm, M; Hu, G; Kuriyan, R; Kurpad, A; Lambert, E V; Maher, C; Maia, J; Matsudo, V; Olds, T; Onywera, V; Standage, M; Tremblay, M S; Tudor-Locke, C; Zhao, P; Katzmarzyk, P T

    2015-01-01

    OBJECTIVES: Active school transport (AST) may increase the time that children spend in physical activity (PA). This study examined relationships between AST and weekday moderate-to-vigorous physical activity (MVPA), light physical activity (LPA), sedentary time (SED) and total activity during naturally organized time periods (daily, before school, during school and after school) in a sample of children from 12 countries. METHODS: The sample included 6224 children aged 9–11 years. PA and sedentary time were objectively measured using Actigraph accelerometers. AST was self-reported by participants. Multilevel generalized linear and logistic regression statistical models were used to determine associations between PA, SED and AST across and within study sites. RESULTS: After adjustment for age, highest parental educational attainment, BMI z-score and accelerometer wear time, children who engaged in AST accumulated significantly more weekday MVPA during all studied time periods and significantly less time in LPA before school compared with children who used motorized transport to school. AST was unrelated to time spent in sedentary behaviors. Across all study sites, AST was associated with 6.0 min (95% confidence interval (CI): 4.7–7.3; P<0.0001) more of weekday MVPA; however, there was some evidence that this differed across study sites (P for interaction=0.06). Significant positive associations were identified within 7 of 12 study sites, with differences ranging from 4.6 min (95% CI: 0.3–8.9; P=0.04, in Canada) to 10.2 min (95% CI: 5.9–14.4; P<0.0001, in Brazil) more of daily MVPA among children who engaged in AST compared with motorized transport. CONCLUSIONS: The present study demonstrated that AST was associated with children spending more time engaged in MVPA throughout the day and less time in LPA before school. AST represents a good behavioral target to increase levels of PA in children. PMID:27152177

  1. Solar Activity and Solar Eruptions

    NASA Technical Reports Server (NTRS)

    Sterling, Alphonse C.

    2006-01-01

    Our Sun is a dynamic, ever-changing star. In general, its atmosphere displays major variation on an 11-year cycle. Throughout the cycle, the atmosphere occasionally exhibits large, sudden outbursts of energy. These "solar eruptions" manifest themselves in the form of solar flares, filament eruptions, coronal mass ejections (CMEs), and energetic particle releases. They are of high interest to scientists both because they represent fundamental processes that occur in various astrophysical context, and because, if directed toward Earth, they can disrupt Earth-based systems and satellites. Research over the last few decades has shown that the source of the eruptions is localized regions of energy-storing magnetic field on the Sun that become destabilized, leading to a release of the stored energy. Solar scientists have (probably) unraveled the basic outline of what happens in these eruptions, but many details are still not understood. In recent years we have been studying what triggers these magnetic eruptions, using ground-based and satellite-based solar observations in combination with predictions from various theoretical models. We will present an overview of solar activity and solar eruptions, give results from some of our own research, and discuss questions that remain to be explored.

  2. The possible mechanism of the "stratospheric bridge" modulation by the Pacific Decadal Oscillation in early winter and the QBO, 11-year solar cycle in late winter

    NASA Astrophysics Data System (ADS)

    Jadin, Evgeny; Wei, Ke; Chen, Wen; Wang, Lin

    Questions of the interannual variations of the extra-tropical stratospheric dynamics, its rela-tionship with the sea surface temperature (SST) anomalies in the North Pacific (Pacific Decadal Oscillation -PDO) in early winter (November-December), Quasi-Biennial Oscillation (QBO) (Holton-Tan relations), a decadal modulation by the 11-year Solar Cycle (SC) (Labitzke, van Loon -LvL correlations) in late winter (January-February) are discussed. In early winter, the interannual changes of the planetary wave activity define partly the variations of the strato-spheric circulation in subsequent January [Zyulyaeva and Jadin, 2009]. The interannual and decadal variations of the stratospheric wave activity appear to be associated with those of the PDO [Jadin et al. 2009]. A decadal period from the mid-1970s to mid-1990s of the violation of the Holton-Tan (HT) relationship corresponds well to that of the positive PDO phase (anoma-lously cold SSTs in the central North Pacific). Using the NCEP and ERA-40 monthly mean reanalysis datasets, the three-dimensional Eliassen-Palm fluxes are calculated. The results of the analysis of relations between the upward/downward propagation of planetary waves in the lower stratosphere ("stratospheric bridge"), their interaction with the zonal wind and the HT and LvL correlations for January-February are presented. In contrast with early winter, the large role in the wave-zonal flow interaction plays the downward propagation of planetary waves from the stratosphere to the troposphere over Canada and North Atlantic ("stratospheric wave hole") responsible for the sink of the eddy energy from the stratosphere. One can suggest that there are two dominant regimes in the stratosphere-troposphere coupling in late winter: 1) the "ventilation regime" with the strong penetration of planetary waves from the troposphere over north Eurasia and their strong downward propagation over Canada and North Atlantic, and 2) the "blocking regime" with the weak those

  3. Four minutes of in-class high-intensity interval activity improves selective attention in 9- to 11-year olds.

    PubMed

    Ma, Jasmin K; Le Mare, Lucy; Gurd, Brendon J

    2015-03-01

    The amount of time allocated to physical activity in schools is declining. Time-efficient physical activity solutions that demonstrate their impact on academic achievement-related outcomes are needed to prioritize physical activity within the school curricula. "FUNtervals" are 4-min, high-intensity interval activities that use whole-body actions to complement a storyline. The purpose of this study was to (i) explore whether FUNtervals can improve selective attention, an executive function posited to be essential for learning and academic success; and (ii) examine whether this relationship is predicted by students' classroom off-task behaviour. Seven grade 3-5 classes (n = 88) were exposed to a single-group, repeated cross-over design where each student's selective attention was compared between no-activity and FUNtervals days. In week 1, students were familiarized with the d2 test of attention and FUNterval activities, and baseline off-task behaviour was observed. In both weeks 2 and 3 students completed the d2 test of attention following either a FUNterval break or a no-activity break. The order of these breaks was randomized and counterbalanced between weeks. Neither motor nor passive off-task behaviour predicted changes in selective attention following FUNtervals; however, a weak relationship was observed for verbal off-task behaviour and improvements in d2 test performance. More importantly, students made fewer errors during the d2 test following FUNtervals. In supporting the priority of physical activity inclusion within schools, FUNtervals, a time efficient and easily implemented physical activity break, can improve selective attention in 9- to 11-year olds. PMID:25675352

  4. Middle Atmosphere Response to Different Descriptions of the 11-Year Solar Cycle in Spectral Irradiance in a Chemistry-Climate Model

    NASA Technical Reports Server (NTRS)

    Swartz, W. H.; Stolarski, R. S.; Oman, L. D.; Fleming, E. L.; Jackman, C. H.

    2012-01-01

    The 11-year solar cycle in solar spectral irradiance (SSI) inferred from measurements by the SOlar Radiation & Climate Experiment (SORCE) suggests a much larger variation in the ultraviolet than previously accepted. We present middle atmosphere ozone and temperature responses to the solar cycles in SORCE SSI and the ubiquitous Naval Research Laboratory (NRL) SSI reconstruction using the Goddard Earth Observing System chemistry-climate model (GEOS CCM). The results are largely consistent with other recent modeling studies. The modeled ozone response is positive throughout the stratosphere and lower mesosphere using the NRL SSI, while the SORCE SSI produces a response that is larger in the lower stratosphere but out of phase with respect to total solar irradiance above 45 km. The modeled responses in total ozone are similar to those derived from satellite and ground-based measurements, 3-6 Dobson Units per 100 units of 10.7-cm radio flux (F10.7) in the tropics. The peak zonal mean tropical temperature response 50 using the SORCE SSI is nearly 2 K per 100 units 3 times larger than the simulation using the NRL SSI. The GEOS CCM and the Goddard Space Flight Center (GSFC) 2-D coupled model are used to examine how the SSI solar cycle affects the atmosphere through direct solar heating and photolysis processes individually. Middle atmosphere ozone is affected almost entirely through photolysis, whereas the solar cycle in temperature is caused both through direct heating and photolysis feedbacks, processes that are mostly linearly separable. Further, the net ozone response results from the balance of ozone production at wavelengths less than 242 nm and destruction at longer wavelengths, coincidentally corresponding to the wavelength regimes of the SOLar STellar Irradiance Comparison Experiment (SOLSTICE) and Spectral Irradiance Monitor (SIM) on SORCE, respectively. A higher wavelength-resolution analysis of the spectral response could allow for a better prediction of the

  5. Hindcast and forecast of grand solar minina and maxima using a three-frequency dynamo model based on Jupiter-Saturn tidal frequencies modulating the 11-year sunspot cycle

    NASA Astrophysics Data System (ADS)

    Scafetta, Nicola

    2016-04-01

    The Schwabe frequency band of the Zurich sunspot record since 1749 is found to be made of three major cycles with periods of about 9.98, 10.9 and 11.86 years. The two side frequencies appear to be closely related to the spring tidal period of Jupiter and Saturn (range between 9.5 and 10.5 years, and median 9.93 years) and to the tidal sidereal period of Jupiter (about 11.86 years). The central cycle can be associated to a quasi-11-year sunspot solar dynamo cycle that appears to be approximately synchronized to the average of the two planetary frequencies. A simplified harmonic constituent model based on the above two planetary tidal frequencies and on the exact dates of Jupiter and Saturn planetary tidal phases, plus a theoretically deduced 10.87-year central cycle reveals complex quasi-periodic interference/beat patterns. The major beat periods occur at about 115, 61 and 130 years, plus a quasi-millennial large beat cycle around 983 years. These frequencies and other oscillations appear once the model is non-linearly processed. We show that equivalent synchronized cycles are found in cosmogenic records used to reconstruct solar activity and in proxy climate records throughout the Holocene (last 12,000 years) up to now. The quasi-secular beat oscillations hindcast reasonably well the known prolonged periods of low solar activity during the last millennium such as the Oort, Wolf, Sporer, Maunder and Dalton minima, as well as the 17 115-year long oscillations found in a detailed temperature reconstruction of the Northern Hemisphere covering the last 2000 years. The millennial cycle hindcasts equivalent solar and climate cycles for 12,000 years. Finally, the harmonic model herein proposed reconstructs the prolonged solar minima that occurred during 1900- 1920 and 1960-1980 and the secular solar maxima around 1870-1890, 1940-1950 and 1995-2005 and a secular upward trending during the 20th century: this modulated trending agrees well with some solar proxy model, with

  6. School related factors and 1yr change in physical activity amongst 9–11 year old English schoolchildren

    PubMed Central

    2012-01-01

    Background Activity levels are known to decline with age and there is growing evidence of associations between the school environment and physical activity. In this study we investigated how objectively measured one-year changes in physical activity may be associated with school-related factors in 9- to 10-year-old British children. Methods Data were analysed from 839 children attending 89 schools in the SPEEDY (Sport, Physical Activity, and Eating behaviours: Environmental Determinants in Young People) study. Outcomes variables were one year changes in objectively measured sedentary, moderate, and vigorous physical activity, with baseline measures taken when the children were 9–10 years old. School characteristics hypothesised to be associated with change in physical activity were identified from questionnaires, grounds audits, and computer mapping. Associations were examined using simple and multivariable multilevel regression models for both school (9 am – 3 pm) and travel (8–9 am and 3–4 pm) time. Results Significant associations during school time included the length of the morning break which was found to be supportive of moderate (β coefficient: 0.68 [p: 0.003]) and vigorous (β coefficient: 0.52 [p: 0.002]) activities and helps to prevent adverse changes in sedentary time (β coefficient: -2.52 [p: 0.001]). During travel time, positive associations were found between the presence of safe places to cross roads around the school and changes in moderate (β coefficient: 0.83 [p:0.022]) and vigorous (β coefficient: 0.56 [p:0.001]) activity, as well as sedentary time (β coefficient: -1.61 [p:0.005]). Conclusion This study suggests that having longer morning school breaks and providing road safety features such as cycling infrastructure, a crossing guard, and safe places for children to cross the road may have a role to play in supporting the maintenance of moderate and vigorous activity behaviours, and preventing the development of sedentary

  7. Comparison of short-term energy intake and appetite responses to active and seated video gaming, in 8-11-year-old boys.

    PubMed

    Allsop, Susan; Green, Benjamin P; Dodd-Reynolds, Caroline J; Barry, Gillian; Rumbold, Penny L S

    2016-03-28

    The acute effects of active and seated video gaming on energy intake (EI), blood glucose, plasma glucagon-like peptide-1 (GLP-17-36) and subjective appetite (hunger, prospective food consumption and fullness) were examined in 8-11-year-old boys. In a randomised, crossover manner, twenty-two boys completed one 90-min active and one 90-min seated video gaming trial during which food and drinks were provided ad libitum. EI, plasma GLP-17-36, blood glucose and subjective appetite were measured during and following both trials. Time-averaged AUC blood glucose was increased (P=0·037); however, EI was lower during active video gaming (1·63 (sem 0·26) MJ) compared with seated video gaming (2·65 (sem 0·32) MJ) (P=0·000). In a post-gaming test meal 1 h later, there were no significant differences in EI between the active and seated gaming trials. Although estimated energy expenditure was significantly higher during active video gaming, there was still no compensation for the lower EI. At cessation of the trials, relative EI (REI) was significantly lower following active video gaming (2·06 (sem 0·30) MJ) v. seated video gaming (3·34 (sem 0·35) MJ) (P=0·000). No significant differences were detected in time-averaged AUC GLP-17-36 or subjective appetite. At cessation of the active video gaming trial, EI and REI were significantly less than for seated video gaming. In spite of this, the REI established for active video gaming was a considerable amount when considering the total daily estimated average requirement for 8-11-year-old boys in the UK (7·70 MJ). PMID:26817510

  8. Coupling of the Matched Gravity and Electromagnetic Fields of the Sun with Jupiter and its Moons Together in Nearest Portion of Jupiter's Orbit to the Sun as the Main Cause of the Peak of Approximately 11 Yearly Solar Cycles and Hazards from Solar Storms

    NASA Astrophysics Data System (ADS)

    Gholibeigian, Kazem; Gholibeigian, Hassan

    2016-04-01

    strongest variable GEFs in solar system after the Sun. For example, Ganymede is the largest moon of Jupiter and in the Solar System. Completing an orbit in roughly seven days. It means that it generates 52 GEFs oscillations (loading, unloading) per year in solar cycle while it is rotating around the Jupiter. New observations of the planet's extreme ultraviolet emissions show that bright explosions of Jupiter's aurora by the planet-moon interaction, not by solar activity [Tomoki Kimura, JAEA]. Coupling of Jupiter's GEFs and its moons with the Sun generate very strong GEFs and approximately 11 yearly solar cycles. The peaks of each cycle is when the Jupiter passes from the nearest portion of its orbit to the Sun. which some of its peaks generate gigantic solar storms and hazards to the Earth. The Earth passes from between of Sun and Jupiter eleven times in each solar cycle and may be under shooting of storms from the both side specially during 2-3 years in cycle's peak.

  9. Physical activity and all-cause mortality among older Brazilian adults: 11-year follow-up of the Bambuí Health and Aging Study

    PubMed Central

    Ramalho, Juciany RO; Mambrini, Juliana VM; César, Cibele C; de Oliveira, César M; Firmo, Josélia OA; Lima-Costa, Maria Fernanda; Peixoto, Sérgio V

    2015-01-01

    Objective To investigate the association between physical activity (eg, energy expenditure) and survival over 11 years of follow-up in a large representative community sample of older Brazilian adults with a low level of education. Furthermore, we assessed sex as a potential effect modifier of this association. Materials and methods A population-based prospective cohort study was conducted on all the ≥60-year-old residents in Bambuí city (Brazil). A total of 1,606 subjects (92.2% of the population) enrolled, and 1,378 (85.8%) were included in this study. Type, frequency, and duration of physical activity were assessed in the baseline survey questionnaire, and the metabolic equivalent task tertiles were estimated. The follow-up time was 11 years (1997–2007), and the end point was mortality. Deaths were reported by next of kin during the annual follow-up interview and ascertained through the Brazilian System of Information on Mortality, Brazilian Ministry of Health. Hazard ratios (95% confidence intervals [CIs]) were estimated by Cox proportional-hazard models, and potential confounders were considered. Results A statistically significant interaction (P<0.03) was found between sex and energy expenditure. Among older men, increases in levels of physical activity were associated with reduced mortality risk. The hazard ratios were 0.59 (95% CI 0.43–0.81) and 0.47 (95% CI 0.34–0.66) for the second and third tertiles, respectively. Among older women, there was no significant association between physical activity and mortality. Conclusion It was possible to observe the effect of physical activity in reducing mortality risk, and there was a significant interaction between sex and energy expenditure, which should be considered in the analysis of this association in different populations. PMID:25931817

  10. Acute effects of active gaming on ad libitum energy intake and appetite sensations of 8-11-year-old boys.

    PubMed

    Allsop, Susan; Dodd-Reynolds, Caroline J; Green, Benjamin P; Debuse, Dorothée; Rumbold, Penny L S

    2015-12-28

    The present study examined the acute effects of active gaming on energy intake (EI) and appetite responses in 8-11-year-old boys in a school-based setting. Using a randomised cross-over design, twenty-one boys completed four individual 90-min gaming bouts, each separated by 1 week. The gaming bouts were (1) seated gaming, no food or drink; (2) active gaming, no food or drink; (3) seated gaming with food and drink offered ad libitum; and (4) active gaming with food and drink offered ad libitum. In the two gaming bouts during which foods and drinks were offered, EI was measured. Appetite sensations - hunger, prospective food consumption and fullness - were recorded using visual analogue scales during all gaming bouts at 30-min intervals and at two 15-min intervals post gaming. In the two bouts with food and drink, no significant differences were found in acute EI (MJ) (P=0·238). Significant differences were detected in appetite sensations for hunger, prospective food consumption and fullness between the four gaming bouts at various time points. The relative EI calculated for the two gaming bouts with food and drink (active gaming 1·42 (sem 0·28) MJ; seated gaming 2·12 (sem 0·25) MJ) was not statistically different. Acute EI in response to active gaming was no different from seated gaming, and appetite sensations were influenced by whether food was made available during the 90-min gaming bouts. PMID:26435259

  11. Solar irradiance measurements - Minimum through maximum solar activity

    NASA Technical Reports Server (NTRS)

    Lee, R. B., III; Gibson, M. A.; Shivakumar, N.; Wilson, R.; Kyle, H. L.; Mecherikunnel, A. T.

    1991-01-01

    The Earth Radiation Budget Satellite (ERBS) and the NOAA-9 spacecraft solar monitors were used to measure the total solar irradiance during the period October 1984 to December 1989. Decreasing trends in the irradiance measurements were observed as sunspot activity decreased to minimum levels in 1986; after 1986, increasing trends were observed as sunspot activity increased. The magnitude of the irradiance variability was found to be approximately 0.1 percent between sunspot minimum and maximum (late 1989). When compared with the 1984 to 1989 indices of solar magnetic activity, the irradiance trends appear to be in phase with the 11-year sunspot cycle. Both irradiance series yielded 1,365/sq Wm as the mean value of the solar irradiance, normalized to the mean earth/sun distance. The monitors are electrical substitution, active-cavity radiometers with estimated measurement precisions and accuracies of less than 0.02 and 0.2 percent, respectively.

  12. A comparison of physical activity and sedentary behaviour in 9–11 year old British Pakistani and White British girls: a mixed methods study

    PubMed Central

    2014-01-01

    Background Previous studies suggest that British children of South Asian origin are less active and more sedentary than White British children. However, little is known about the behaviours underlying low activity levels, nor the familial contexts of active and sedentary behaviours in these groups. Our aim was to test hypotheses about differences between British Pakistani and White British girls using accelerometry and self-reports of key active and sedentary behaviours, and to obtain an understanding of factors affecting these behaviours using parental interviews. Methods Participants were 145 girls (70 White British and 75 British Pakistani) aged 9–11 years and parents of 19 of the girls. Accelerometry data were collected over 4 days and girls provided 24-hour physical activity interviews on 3 of these days. Multilevel linear regression models and generalised linear mixed models tested for ethnic differences in activity, sedentary time, and behaviours. Semi-structured interviews were conducted with parents. Results Compared to White British girls, British Pakistani girls accumulated 102 (95% CI 59, 145) fewer counts per minute and 14 minutes (95% CI 8, 20) less time in moderate to vigorous physical activity per day. British Pakistani girls spent more time (28 minutes per day, 95% CI 14, 42) sedentary. Fewer British Pakistani than White British girls reported participation in organised sports and exercise (OR 0.22 95% CI 0.08, 0.64) or in outdoor play (OR 0.42 95% CI 0.20, 0.91). Fewer British Pakistani girls travelled actively to school (OR 0.26 95% CI 0.10, 0.71). There was no significant difference in reported screen time (OR 0.88 95% CI 0.45, 1.73). Parental interviews suggested that structural constraints (e.g. busy family schedules) and parental concerns about safety were important influences on activity levels. Conclusions British Pakistani girls were less active than White British girls and were less likely to participate in key active behaviours

  13. Relationships between Parental Education and Overweight with Childhood Overweight and Physical Activity in 9–11 Year Old Children: Results from a 12-Country Study

    PubMed Central

    Muthuri, Stella K.; Onywera, Vincent O.; Tremblay, Mark S.; Broyles, Stephanie T.; Chaput, Jean-Philippe; Fogelholm, Mikael; Hu, Gang; Kuriyan, Rebecca; Kurpad, Anura; Lambert, Estelle V.; Maher, Carol; Maia, José; Matsudo, Victor; Olds, Timothy; Sarmiento, Olga L.; Standage, Martyn; Tudor-Locke, Catrine; Zhao, Pei; Church, Timothy S.; Katzmarzyk, Peter T.

    2016-01-01

    Background Globally, the high prevalence of overweight and low levels of physical activity among children has serious implications for morbidity and premature mortality in adulthood. Various parental factors are associated with childhood overweight and physical activity. The objective of this paper was to investigate relationships between parental education or overweight, and (i) child overweight, (ii) child physical activity, and (iii) explore household coexistence of overweight, in a large international sample. Methods Data were collected from 4752 children (9–11 years) as part of the International Study of Childhood Obesity, Lifestyle and the Environment in 12 countries around the world. Physical activity of participating children was assessed by accelerometry, and body weight directly measured. Questionnaires were used to collect parents’ education level, weight, and height. Results Maternal and paternal overweight were positively associated with child overweight. Higher household coexistence of parent-child overweight was observed among overweight children compared to the total sample. There was a positive relationship between maternal education and child overweight in Colombia 1.90 (1.23–2.94) [odds ratio (confidence interval)] and Kenya 4.80 (2.21–10.43), and a negative relationship between paternal education and child overweight in Brazil 0.55 (0.33–0.92) and the USA 0.54 (0.33–0.88). Maternal education was negatively associated with children meeting physical activity guidelines in Colombia 0.53 (0.33–0.85), Kenya 0.35 (0.19–0.63), and Portugal 0.54 (0.31–0.96). Conclusions Results are aligned with previous studies showing positive associations between parental and child overweight in all countries, and positive relationships between parental education and child overweight or negative associations between parental education and child physical activity in lower economic status countries. Relationships between maternal and paternal education

  14. Vitamin D status is associated with cardiometabolic markers in 8-11-year-old children, independently of body fat and physical activity.

    PubMed

    Petersen, Rikke A; Dalskov, Stine-Mathilde; Sørensen, Louise B; Hjorth, Mads F; Andersen, Rikke; Tetens, Inge; Krarup, Henrik; Ritz, Christian; Astrup, Arne; Michaelsen, Kim F; Mølgaard, Christian; Damsgaard, Camilla T

    2015-11-28

    Vitamin D status has been associated with cardiometabolic markers even in children, but the associations may be confounded by fat mass and physical activity behaviour. This study investigated associations between vitamin D status and cardiometabolic risk profile, as well as the impact of fat mass and physical activity in Danish 8-11-year-old children, using baseline data from 782 children participating in the Optimal well-being, development and health for Danish children through a healthy New Nordic Diet (OPUS) School Meal Study. We assessed vitamin D status as serum 25-hydroxyvitamin D (25(OH)D) and measured blood pressure, fasting plasma glucose, homoeostasis model of assessment-insulin resistance, plasma lipids, inflammatory markers, anthropometry and fat mass by dual-energy X-ray absorptiometry, and physical activity by 7 d accelerometry during August-November. Mean serum 25(OH)D was 60·8 (sd 18·7) nmol/l. Each 10 mmol/l 25(OH)D increase was associated with lower diastolic blood pressure (-0·3 mmHg, 95 % CI -0·6, -0·0) (P=0·02), total cholesterol (-0·07 mmol/l, 95 % CI -0·10, -0·05), LDL-cholesterol (-0·05 mmol/l, 95 % CI -0·08, -0·03), TAG (-0·02 mmol/l, 95 % CI -0·03, -0·01) (P≤0·001 for all lipids) and lower metabolic syndrome (MetS) score (P=0·01). Adjustment for fat mass index did not change the associations, but the association with blood pressure became borderline significant after adjustment for physical activity (P=0·06). In conclusion, vitamin D status was negatively associated with blood pressure, plasma lipids and a MetS score in Danish school children with low prevalence of vitamin D deficiency, and apart from blood pressure the associations were independent of body fat and physical activity. The potential underlying cause-effect relationship and possible long-term implications should be investigated in randomised controlled trials. PMID:26382732

  15. The 11-year cycle in human births

    NASA Astrophysics Data System (ADS)

    Randall, Walter; Moos, Walter S.

    1993-06-01

    The annual numbers of human births were analyzed with regard to an 11-year cycle. The annual values were obtained from seven different regions: Australia, Germany, England and Wales, New Zealand, Japan, Switzerland, and the USA. Fifty-five annual values were obtained from each region for the years 1930 to 1984, comprising approximately five sunspot cycles. For each region the annual values were formed into 5 by 11 matrices; the eleven column means obtained were standardized, and plotted. A periodic regression technique, utilizing the fitting functions of the Fourier series, was used to evaluate the temporal order in the column means. Eleven-year rhythms were found and compared with solar and geophysical variables. Correlations were found with sunspots and solar flares, with terrestrial measures of magnetic disturbances (the magnetic indices derived from the K-index), and with temperature. The correlation of conceptions with the 11-year solar cycle may be a potential guide in the selection of further variables for the control and regulation of the rhythms in human conceptions.

  16. High Energetic Solar Flares in the Solar Minima Activity in Comparative Study with the Solar Maxima Activity from 1954 to 2014 and Their Effects on the Space Environment

    NASA Astrophysics Data System (ADS)

    Mohamed, Wael

    Solar 11-year cycle of solar activity is characterized by the rise and fall in the numbers and areas of sunspots. On solar maximum activity, many flares and CMEs can affect the near-earth space environment. But on the solar minimum activity, there are sometimes solar proton events, (e.g. High Energetic Solar Proton Flares on the declining phase of solar cycle 22 for M.A.Mosalam Shaltout, 1995), have the same effect for those on the solar maximum activity or more. So, a study must be made for the ascending and descending phases of solar activity for a set of solar cycles (from 1954 to 2014) to confirm the conclusion of Mosalam Shaltout on the light of the present high quality observations from ground and by artificial satellites.

  17. Trends in solar UV and EUV irradiance: An update to the MgII Index and a comparison of proxies and data to evaluate trends of the last 11-year solar cycle

    NASA Astrophysics Data System (ADS)

    Viereck, R. A.; Snow, M.; Deland, M. T.; Weber, M.; Puga, L.; Bouwer, D.

    2010-12-01

    Long records of solar spectral irradiance are quite rare and differentiating between solar variability and instrumental changes can be a challenge. Proxies for solar irradiance have provided independent measures of solar variability and can be used to extend the data record beyond the observation period and to help differentiate solar variability from instrument drifts. Recently however there are indications that the relationships, that have remained relatively constant over the last several solar cycles, have changed significantly during this recent cycle. There are increasing divergences between the proxies and the observed irradiances. This divergence may indicate a fundamental change in the sun itself. We will present an update to the MgII composite index which is used a proxy for solar EUV, UV, and total irradiances. We will examine this recent solar minimum period and compare the MgII and other proxies to each other and to the EUV, UV, and TSI in an effort to better understand the past, present, and future solar spectral irradiance records.

  18. Activities for Teaching Solar Energy.

    ERIC Educational Resources Information Center

    Mason, Jack Lee; Cantrell, Joseph S.

    1980-01-01

    Plans and activities are suggested for teaching elementary children about solar energy. Directions are included for constructing a flat plate collector and a solar oven. Activities for a solar field day are given. (SA)

  19. Influenza pandemics, solar activity cycles, and vitamin D.

    PubMed

    Hayes, Daniel P

    2010-05-01

    There is historic evidence that influenza pandemics are associated with solar activity cycles (the Schwabe-cycle of about 11-years periodicity). The hypothesis is presented and developed that influenza pandemics are associated with solar control of vitamin D levels in humans which waxes and wanes in concert with solar cycle dependent ultraviolet radiation. It is proposed that this solar cycle dependence arises both directly from cyclic control of the amount of ultraviolet radiation as well as indirectly through cyclic control of atmospheric circulation and dynamics. PMID:20056531

  20. Some problems in coupling solar activity to meteorological phenomena

    NASA Technical Reports Server (NTRS)

    Dessler, A. J.

    1974-01-01

    The development of a theory of coupling of solar activity to meteorological phenomena has to date foundered on the two difficulties of (1) devising a mechanism that can modify the behavior of the troposphere while employing only a negligible amount of energy compared with the energy necessary to drive the normal meteorological system; and (2) determining how such a mechanism can effectively couple some relevant magnetospheric process into the troposphere in such a way as to influence the weather. A clue to the nature of the interaction between the weather and solar activity might be provided by the fact that most solar activity undergoes a definite 11-year cycle, while meteorological phenomena undergo either no closely correlated variation, or an 11-year variation, or a 22-year variation.

  1. Causality principles in solar activity -climate relations.

    NASA Astrophysics Data System (ADS)

    Stauning, Peter

    The relations between solar activity and the terrestrial climate have quite often been inves-tigated. In most cases the analyses have been based on comparisons between time series of solar activity parameters, for instance sunspot numbers, and terrestrial climate parameters, for instance global temperatures. However, many of the reported close relations are based on skilfully manipulated data and neglect of basic causality principles. For cause-effect relations to be reliably established, the variations in the causative function must obviously happen prior to the related effects. Thus it is problematic to use, for instance, running averages of parameters, if the result depends too much on posterior elements of the causative time series or precursory elements of the effects. Even more neglected are the causality principles for cause-effect rela-tions with a strongly varying source function, like for instance the 11 year solar activity cycle. In such cases damping of source variations by smoothing data series, introduces additional im-plied delays, which should be considered in the judgement of apparent correlations between the processed time series of cause and effect parameters. The presentation shall illustrate causal-ity relations between solar activity and terrestrial climate parameters and discuss examples of frequently quoted solar activity-climate relations, which violate basic causality principles.

  2. Physics of solar activity

    NASA Technical Reports Server (NTRS)

    Sturrock, Peter A.

    1993-01-01

    The aim of the research activity was to increase our understanding of solar activity through data analysis, theoretical analysis, and computer modeling. Because the research subjects were diverse and many researchers were supported by this grant, a select few key areas of research are described in detail. Areas of research include: (1) energy storage and force-free magnetic field; (2) energy release and particle acceleration; (3) radiation by nonthermal electrons; (4) coronal loops; (5) flare classification; (6) longitude distributions of flares; (7) periodicities detected in the solar activity; (8) coronal heating and related problems; and (9) plasma processes.

  3. Solar activity and the mean global temperature

    NASA Astrophysics Data System (ADS)

    Erlykin, A. D.; Sloan, T.; Wolfendale, A. W.

    2009-01-01

    The variation with time from 1956 to 2002 of the globally averaged rate of ionization produced by cosmic rays in the atmosphere is deduced and shown to have a cyclic component of period roughly twice the 11 year solar cycle period. Long term variations in the global average surface temperature as a function of time since 1956 are found to have a similar cyclic component. The cyclic variations are also observed in the solar irradiance and in the mean daily sun spot number. The cyclic variation in the cosmic ray rate is observed to be delayed by 2-4 years relative to the temperature, the solar irradiance and daily sun spot variations suggesting that the origin of the correlation is more likely to be direct solar activity than cosmic rays. Assuming that the correlation is caused by such solar activity, we deduce that the maximum recent increase in the mean surface temperature of the Earth which can be ascribed to this activity is {\\lesssim }14% of the observed global warming.

  4. Changes in Commitment to Physical Activity among 8-to-11-Year-Old Girls Participating in a Curriculum-Based Running Program

    ERIC Educational Resources Information Center

    DeBate, Rita; Zhang, Yan; Thompson, Sharon H.

    2007-01-01

    Background: Despite findings that support physical activity (PA) as an effective means of improving health and quality of life, PA levels among girls tend to decline with age. Purpose: The purpose of this study was to assess changes pertaining to PA commitment following a curriculum-based running program designed for 3rd-to-5th-grade girls.…

  5. Solar cell activation system

    SciTech Connect

    Apelian, L.

    1983-07-05

    A system for activating solar cells involves the use of phosphorescent paint, the light from which is amplified by a thin magnifying lens and used to activate solar cells. In a typical system, a member painted with phosphorescent paint is mounted adjacent a thin magnifying lens which focuses the light on a predetermined array of sensitive cells such as selenium, cadmium or silicon, mounted on a plastic board. A one-sided mirror is mounted adjacent the cells to reflect the light back onto said cells for purposes of further intensification. The cells may be coupled to rechargeable batteries or used to directly power a small radio or watch.

  6. Commission 10: Solar Activity

    NASA Astrophysics Data System (ADS)

    van Driel-Gesztelyi, Lidia; Schrijver, Carolus J.; Klimchuk, James A.; Charbonneau, Paul; Fletcher, Lyndsay; Hasan, S. Sirajul; Hudson, Hugh S.; Kusano, Kanya; Mandrini, Cristina H.; Peter, Hardi; Vršnak, Bojan; Yan, Yihua

    2012-04-01

    Commission 10 of the International Astronomical Union has more than 650 members who study a wide range of activity phenomena produced by our nearest star, the Sun. Solar activity is intrinsically related to solar magnetic fields and encompasses events from the smallest energy releases (nano- or even picoflares) to the largest eruptions in the Solar System, coronal mass ejections (CMEs), which propagate into the Heliosphere reaching the Earth and beyond. Solar activity is manifested in the appearance of sunspot groups or active regions, which are the principal sources of activity phenomena from the emergence of their magnetic flux through their dispersion and decay. The period 2008-2009 saw an unanticipated extended solar cycle minimum and unprecedentedly weak polar-cap and heliospheric field. Associated with that was the 2009 historical maximum in galactic cosmic rays flux since measurements begun in the middle of the 20th Century. Since then Cycle 24 has re-started solar activity producing some spectacular eruptions observed with a fleet of spacecraft and ground-based facilities. In the last triennium major advances in our knowledge and understanding of solar activity were due to continuing success of space missions as SOHO, Hinode, RHESSI and the twin STEREO spacecraft, further enriched by the breathtaking images of the solar atmosphere produced by the Solar Dynamic Observatory (SDO) launched on 11 February 2010 in the framework of NASA's Living with a Star program. In August 2012, at the time of the IAU General Assembly in Beijing when the mandate of this Commission ends, we will be in the unique position to have for the first time a full 3-D view of the Sun and solar activity phenomena provided by the twin STEREO missions about 120 degrees behind and ahead of Earth and other spacecraft around the Earth and ground-based observatories. These new observational insights are continuously posing new questions, inspiring and advancing theoretical analysis and

  7. Solar activity and modulation of the cosmic ray intensity

    NASA Technical Reports Server (NTRS)

    Akasofu, S.-I.; Olmsted, C.; Lockwood, J. A.

    1985-01-01

    Since its discovery by Forbush (1954), the 11-year cycle modulation of the cosmic ray intensity has been studied extensively. Bowe and Hatton (1982) obtained a well-behaved transfer function F between the solar activity S and the cosmic ray intensity modulation Io-I. They suggested that the 11-year variation for sunspot cycle 20 can be attributed to the modulating effect of solar flare-induced shocks propagating through the heliosphere. The cosmic ray intensity in the absence of solar activity is denoted by Io, while I denotes the observed intensity. Bowe and Hatton infer that the boundary of the heliosphere is located at a distance of 70-90 AU. Since their conclusion is of great importance in understanding the mechanism of the 11-year modulation, the present investigation is concerned with a repetition of their study for two cycles, taking into account the use of a slightly modified method. The obtained results confirm the conclusions reached by Bowe and Hatton that there is a well-behaved transfer function for solar flares.

  8. Solar Energy Project, Activities: General Solar Topics.

    ERIC Educational Resources Information Center

    Tullock, Bruce, Ed.; And Others

    This guide contains lesson plans and outlines of activities which introduce students to concepts and issues relating to solar energy. Lessons frequently presented in the context of solar energy as it relates to contemporary energy problems. Each unit presents an introduction; objectives; necessary skills and knowledge; materials; method;…

  9. Effects of long-period solar activity fluctuation on temperature and pressure of the terrestrial atmosphere

    NASA Technical Reports Server (NTRS)

    Rubashev, B. M.

    1978-01-01

    The present state of research on the influence of solar sunspot activity on tropospheric temperature and pressure is reviewed. The existence of an 11-year temperature cycle of 5 different types is affirmed. A cyclic change in atmospheric pressure, deducing characteristic changes between 11-year cycles is discussed. The existence of 80-year and 5-to-6-year cycles of temperature is established, and physical causes for birth are suggested.

  10. The Heliosphere Through the Solar Activity Cycle

    NASA Technical Reports Server (NTRS)

    Balogh, A.; Lanzerotti, L. J.; Suess, S. T.

    2006-01-01

    Understanding how the Sun changes though its 11-year sunspot cycle and how these changes affect the vast space around the Sun the heliosphere has been one of the principal objectives of space research since the advent of the space age. This book presents the evolution of the heliosphere through an entire solar activity cycle. The last solar cycle (cycle 23) has been the best observed from both the Earth and from a fleet of spacecraft. Of these, the joint ESA-NASA Ulysses probe has provided continuous observations of the state of the heliosphere since 1990 from a unique vantage point, that of a nearly polar orbit around the Sun. Ulysses results affect our understanding of the heliosphere from the interior of the Sun to the interstellar medium - beyond the outer boundary of the heliosphere. Written by scientists closely associated with the Ulysses mission, the book describes and explains the many different aspects of changes in the heliosphere in response to solar activity. In particular, the authors describe the rise in solar ESA and NASA have now unamiously agreed a third extension to operate the highly successful Ulysses spacecraft until March 2008 and, in 2007 and 2008, the European-built space probe will fly over the poles of the Sun for a third time. This will enable Ulysses to add an important chapter to its survey of the high-latitude heliosphere and this additional material would be included in a 2nd edition of this book.

  11. Commission 10: Solar Activity

    NASA Astrophysics Data System (ADS)

    Klimchuk, James A.; van Driel-Gesztelyi, Lidia; Schrijver, Carolus J.; Melrose, Donald B.; Fletcher, Lyndsay; Gopalswamy, Natchimuthuk; Harrison, Richard A.; Mandrini, Cristina H.; Peter, Hardi; Tsuneta, Saku; Vršnak, Bojan; Wang, Jing-Xiu

    Commission 10 deals with solar activity in all of its forms, ranging from the smallest nanoflares to the largest coronal mass ejections. This report reviews scientific progress over the roughly two-year period ending in the middle of 2008. This has been an exciting time in solar physics, highlighted by the launches of the Hinode and STEREO missions late in 2006. The report is reasonably comprehensive, though it is far from exhaustive. Limited space prevents the inclusion of many significant results. The report is divided into the following sections: Photosphere and chromosphere; Transition region; Corona and coronal heating; Coronal jets; flares; Coronal mass ejection initiation; Global coronal waves and shocks; Coronal dimming; The link between low coronal CME signatures and magnetic clouds; Coronal mass ejections in the heliosphere; and Coronal mass ejections and space weather. Primary authorship is indicated at the beginning of each section.

  12. Apparent Relations Between Solar Activity and Solar Tides Caused by the Planets

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh

    2007-01-01

    A solar storm is a storm of ions and electrons from the Sun. Large solar storms are usually preceded by solar flares, phenomena that can be characterized quantitatively from Earth. Twenty-five of the thirty-eight largest known solar flares were observed to start when one or more tide-producing planets (Mercury, Venus, Earth, and Jupiter) were either nearly above the event positions (less than 10 deg. longitude) or at the opposing side of the Sun. The probability for this to happen at random is 0.039 percent. This supports the hypothesis that the force or momentum balance (between the solar atmospheric pressure, the gravity field, and magnetic field) on plasma in the looping magnetic field lines in solar corona could be disturbed by tides, resulting in magnetic field reconnection, solar flares, and solar storms. Separately, from the daily position data of Venus, Earth, and Jupiter, an 11-year planet alignment cycle is observed to approximately match the sunspot cycle. This observation supports the hypothesis that the resonance and beat between the solar tide cycle and nontidal solar activity cycle influences the sunspot cycle and its varying magnitudes. The above relations between the unpredictable solar flares and the predictable solar tidal effects could be used and further developed to forecast the dangerous space weather and therefore reduce its destructive power against the humans in space and satellites controlling mobile phones and global positioning satellite (GPS) systems.

  13. Activation of solar flares

    SciTech Connect

    Cargill, P.J.; Migliuolo, S.; Hood, A.W.

    1984-11-01

    The physics of the activation of two-ribbon solar flares via the MHD instability of coronal arcades is presented. The destabilization of a preflare magnetic field is necessary for a rapid energy release, characteristic of the impulsive phase of the flare, to occur. The stability of a number of configurations are examined, and the physical consequences and relative importance of varying pressure profiles and different sets of boundary conditions (involving field-line tying) are discussed. Instability modes, driven unstable by pressure gradients, are candidates for instability. Shearless vs. sheared equilibria are also discussed. (ESA)

  14. Limits of Predictability of Solar Activity

    NASA Astrophysics Data System (ADS)

    Kremliovsky, M. N.

    1995-07-01

    The study of a nonlinear chaotic map of 11-year cycle maxima evolution recently derived from observations is presented with the purpose of predicting the features of the long-term variability of solar activity. It is stressed that dynamical forecast is limited by the Lyapunov time and a statistical approach can be justified due to the ergodic properties of the chaotic evolution. The Gleissberg variation is described as a chaotic walk and its distribution over length is shown to be broad. The global minima are identified as laminar slots of temporal intermittency and their typical distribution over length is also given. We note that a long sunspot cycle can be used as a precursor of the global minimum and a close sequence of global minima (once in approximately 1500 2000 years) may be responsible for the climatic changes (Little Ice Ages).

  15. Ionospheric effects of the extreme solar activity of February 1986

    NASA Technical Reports Server (NTRS)

    Boska, J.; Pancheva, D.

    1989-01-01

    During February 1986, near the minimum of the 11 year Solar sunspot cycle, after a long period of totally quiet solar activity (R sub z = 0 on most days in January) a period of a suddenly enhanced solar activity occurred in the minimum between solar cycles 21 and 22. Two proton flares were observed during this period. A few other flares, various phenomena accompanying proton flares, an extremely severe geomagnetic storm and strong disturbances in the Earth's ionosphere were observed in this period of enhanced solar activity. Two active regions appeared on the solar disc. The flares in both active regions were associated with enhancement of solar high energy proton flux which started on 4 February of 0900 UT. Associated with the flares, the magnetic storm with sudden commencement had its onset on 6 February 1312 UT and attained its maximum on 8 February (Kp = 9). The sudden enhancement in solar activity in February 1986 was accompanied by strong disturbances in the Earth's ionosphere, SIDs and ionospheric storm. These events and their effects on the ionosphere are discussed.

  16. Solar activity secular cycles

    NASA Astrophysics Data System (ADS)

    Kramynin, A. P.; Mordvinov, A. V.

    2013-12-01

    Long-term variations in solar activity secular cycles have been studied using a method for the expansion of reconstructed sunspot number series Sn( t) for 11400 years in terms of natural orthogonal functions. It has been established that three expansion components describe more than 98% of all Sn( t) variations. In this case, the contribution of the first expansion component is about 92%. The averaged form of the 88year secular cycle has been determined based on the form of the first expansion coordinate function. The quasi-periodicities modulating the secular cycle have been revealed based on the time function conjugate to the first function. The quasi-periodicities modulating the secular cycle coincide with those observed in the Sn( t) series spectrum. A change in the secular cycle form and the time variations in this form are described by the second and third expansion components, the contributions of which are about 4 and 2%, respectively. The variations in the steepness of the secular cycle branches are more pronounced in the 200-year cycle, and the secular cycle amplitude varies more evidently in the 2300-year cycle.

  17. Solar activity and the weather

    NASA Technical Reports Server (NTRS)

    Wilcox, J. M.

    1975-01-01

    The attempts during the past century to establish a connection between solar activity and the weather are discussed; some critical remarks about the quality of much of the literature in this field are given. Several recent investigations are summarized. Use of the solar/interplanetary magnetic sector structure in future investigations is suggested to add an element of cohesiveness and interaction to these investigations.

  18. Solar activity and myocardial infarction.

    PubMed

    Szczeklik, E; Mergentaler, J; Kotlarek-Haus, S; Kuliszkiewicz-Janus, M; Kucharczyk, J; Janus, W

    1983-01-01

    The correlation between the incidence of myocardial infarction, sudden cardiac death, the solar activity and geomagnetism in the period 1969-1976 was studied, basing on Wrocław hospitals material registered according to WHO standards; sudden death was assumed when a person died within 24 hours after the onset of the disease. The highest number of infarctions and sudden deaths was detected for 1975, which coincided with the lowest solar activity, and the lowest one for the years 1969-1970 coinciding with the highest solar activity. Such an inverse, statistically significant correlation was not found to exist between the studied biological phenomena and geomagnetism. PMID:6851574

  19. Relationship between immunoglobulin levels and extremes of solar activity

    NASA Astrophysics Data System (ADS)

    Stoupel, Elijahu G.; Abramson, Eugene; Gabbay, Uri; Pick, Albert I.

    1995-06-01

    The possible relationship between epidemics and extremes of solar activity has been discussed previously. The purpose of the present study was to verify whether differences in the levels of immunoglobulins (IgA, IgG, IgM) could be noted at the highest (July 1989) and lowest (September 1986) points of the last (21st) and present (22nd) 11-year solar cycle. The work was divided into a 1-month study (covering the month of minimal or maximal solar activity), a 3-month study (1 month before and after the month of minimal or maximal solar activity) and a 5-month study (2 months before and after the month of minimal or maximal solar activity). A trend of a drop-off for all three immunoglobulins was seen on the far side of the maximal point of the solar cycle. Statistical significance was achieved in the 5-month study for IgM ( P=0.04), and a strong trend was shown for IgG ( P=0.07). Differences between the sexes were also noted.

  20. Solar activity over different timescales

    NASA Astrophysics Data System (ADS)

    Obridko, Vladimir; Nagovitsyn, Yuri

    The report deals with the “General History of the Sun” (multi-scale description of the long-term behavior of solar activity): the possibility of reconstruction. Time scales: • 100-150 years - the Solar Service. • 400 - instrumental observations. • 1000-2000 years - indirect data (polar auroras, sunspots seen with the naked eye). • Over-millennial scale (Holocene) -14С (10Be) Overview and comparison of data sets. General approaches to the problem of reconstruction of solar activity indices on a large timescale. North-South asymmetry of the sunspot formation activity. 200-year cycle over the “evolution timescales”.The relative contribution of the large-scale and low-latitude. components of the solar magnetic field to the general geomagnetic activity. “Large-scale” and low-latitude sources of geomagnetic disturbances.

  1. Deciphering Solar Magnetic Activity: On Grand Minima in Solar Activity

    NASA Astrophysics Data System (ADS)

    Mcintosh, Scott; Leamon, Robert

    2015-07-01

    The Sun provides the energy necessary to sustain our existence. While the Sun provides for us, it is also capable of taking away. The weather and climatic scales of solar evolution and the Sun-Earth connection are not well understood. There has been tremendous progress in the century since the discovery of solar magnetism - magnetism that ultimately drives the electromagnetic, particulate and eruptive forcing of our planetary system. There is contemporary evidence of a decrease in solar magnetism, perhaps even indicators of a significant downward trend, over recent decades. Are we entering a minimum in solar activity that is deeper and longer than a typical solar minimum, a "grand minimum"? How could we tell if we are? What is a grand minimum and how does the Sun recover? These are very pertinent questions for modern civilization. In this paper we present a hypothetical demonstration of entry and exit from grand minimum conditions based on a recent analysis of solar features over the past 20 years and their possible connection to the origins of the 11(-ish) year solar activity cycle.

  2. Solar collector manufacturing activity, 1988

    NASA Astrophysics Data System (ADS)

    1989-11-01

    This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy in cooperation with the Office of Conservation and Renewable Energy. The report presents data on producer shipments and end uses obtained from manufacturers and importers of solar thermal collectors and photovoltaic modules. It provides annual data necessary for the Department of Energy to execute its responsibility to: (1) monitor activities and trends in the solar collector manufacturing industry, (2) prepare the national energy strategy, and (3) provide information on the size and status of the industry to interested groups such as the U.S. Congress, government agencies, the Solar Energy Research institute, solar energy specialists, manufacturers, and the general public.

  3. Solar Energy Project, Activities: Biology.

    ERIC Educational Resources Information Center

    Tullock, Bruce, Ed.; And Others

    This guide contains lesson plans and outlines of science activities which present concepts of solar energy in the context of biology experiments. Each unit presents an introduction; objectives; skills and knowledge needed; materials; methods; questions; recommendations for further work; and a teacher information sheet. The teacher information…

  4. IS THE CURRENT LACK OF SOLAR ACTIVITY ONLY SKIN DEEP?

    SciTech Connect

    Broomhall, A.-M.; Chaplin, W. J.; Elsworth, Y.; Fletcher, S. T.; New, R. E-mail: wjc@bison.ph.bham.ac.uk E-mail: S.Fletcher@shu.ac.uk

    2009-08-01

    The Sun is a variable star whose magnetic activity and total irradiance vary on a timescale of approximately 11 years. The current activity minimum has attracted considerable interest because of its unusual duration and depth. This raises the question: what might be happening beneath the surface where the magnetic activity ultimately originates? The surface activity can be linked to the conditions in the solar interior by the observation and analysis of the frequencies of the Sun's natural seismic modes of oscillation-the p modes. These seismic frequencies respond to changes in activity and are probes of conditions within the Sun. The Birmingham Solar-Oscillations Network (BiSON) has made measurements of p-mode frequencies over the last three solar activity cycles, and so is in a unique position to explore the current unusual and extended solar minimum. We show that the BiSON data reveal significant variations of the p-mode frequencies during the current minimum. This is in marked contrast to the surface activity observations, which show little variation over the same period. The level of the minimum is significantly deeper in the p-mode frequencies than in the surface observations. We observe a quasi-biennial signal in the p-mode frequencies, which has not previously been observed at mid- and low-activity levels. The stark differences in the behavior of the frequencies and the surface activity measures point to activity-related processes occurring in the solar interior, which are yet to reach the surface, where they may be attenuated.

  5. On the possible relations between solar activities and global seismicity in the solar cycle 20 to 23

    NASA Astrophysics Data System (ADS)

    Herdiwijaya, Dhani; Arif, Johan; Nurzaman, Muhamad Zamzam; Astuti, Isna Kusuma Dewi

    2015-09-01

    Solar activities consist of high energetic particle streams, electromagnetic radiation, magnetic and orbital gravitational forces. The well-know solar activity main indicator is the existence of sunspot which has mean variation in 11 years, named by solar cycle, allow for the above fluctuations. Solar activities are also related to the space weather affecting all planetary atmospheric variability, moreover to the Earth's climate variability. Large extreme space and geophysical events (high magnitude earthquakes, explosive volcanic eruptions, magnetic storms, etc.) are hazards for humankind, infrastructure, economies, technology and the activities of civilization. With a growing world population, and with modern reliance on delicate technological systems, human society is becoming increasingly vulnerable to natural hazardous events. The big question arises to the relation between solar forcing energy to the Earth's global seismic activities. Estimates are needed for the long term occurrence-rate probabilities of these extreme natural hazardous events. We studied connectivity from yearly seismic activities that refer to and sunspot number within the solar cycle 20 to 23 of year 1960 to 2013 (53 years). We found clear evidences that in general high magnitude earthquake events and their depth were related to the low solar activity.

  6. On the possible relations between solar activities and global seismicity in the solar cycle 20 to 23

    SciTech Connect

    Herdiwijaya, Dhani; Arif, Johan; Nurzaman, Muhamad Zamzam; Astuti, Isna Kusuma Dewi

    2015-09-30

    Solar activities consist of high energetic particle streams, electromagnetic radiation, magnetic and orbital gravitational forces. The well-know solar activity main indicator is the existence of sunspot which has mean variation in 11 years, named by solar cycle, allow for the above fluctuations. Solar activities are also related to the space weather affecting all planetary atmospheric variability, moreover to the Earth’s climate variability. Large extreme space and geophysical events (high magnitude earthquakes, explosive volcanic eruptions, magnetic storms, etc.) are hazards for humankind, infrastructure, economies, technology and the activities of civilization. With a growing world population, and with modern reliance on delicate technological systems, human society is becoming increasingly vulnerable to natural hazardous events. The big question arises to the relation between solar forcing energy to the Earth’s global seismic activities. Estimates are needed for the long term occurrence-rate probabilities of these extreme natural hazardous events. We studied connectivity from yearly seismic activities that refer to and sunspot number within the solar cycle 20 to 23 of year 1960 to 2013 (53 years). We found clear evidences that in general high magnitude earthquake events and their depth were related to the low solar activity.

  7. Distant Futures of Solar Activity

    NASA Astrophysics Data System (ADS)

    Ayres, Thomas

    1997-07-01

    We will explore possible future fates of solar magnetic activity through high-S/N ultraviolet spectra of the ancient Sun analog, Arcturus {K2 III}. The fundamental mechanisms that drive the hot {T>10^6 K} coronae of cool stars remain elusive. Solving the mystery is a central theme of the ``solar-stellar connection;'' whose importance extends beyond astronomy to areas ranging from basic plasma physics to solar-terrestrial relations. A significant property of the activity is that it subsides with age: G dwarfs in young clusters are intense coronal sources, whereas old low mass K giants are so feable in soft X-rays that most are below current detection limits. For that reason, historical studies of activity have been biased towards the younger stars. Now HST/STIS easily can record faint coronal proxies {like Si IV and C IV} in nearby cool subgiants and giants, thereby mitigating the de facto age discrimination. In the solar neighborhood the brightest single star of advanced age {9-11 Gyr} is Alpha Bootis {K2 III}. Previous studies have placed the archetype red giant firmly in the ``coronal graveyard.'' Our project focuses on understanding the ``basal'' chromosphere; molecular cooling catastrophes and the structure of the passive ``COmosphere;'' the dynamics and energy balance of the residual subcoronal gas; and mass loss mechanisms. {This program is a carryover from a failed Cycle 5 GHRS observation.}

  8. How does clear-sky terrestrial irradiance vary with solar activity?

    NASA Astrophysics Data System (ADS)

    Feulner, Georg

    2013-04-01

    I investigate recent claims for a strong variation of clear-sky terrestrial solar irradiance with solar activity (on the level of O(1%) over the 11-year cycle) derived from ground-based observations of the Sun. As it turns out, these erroneous results arise because important effects like the dimming by volcanic aerosols and long-term changes in atmospheric transmission independent of solar activity have to be corrected for. After taking these into account, clear-sky terrestrial solar irradiance can be shown to vary by O(0.1%) as expected from satellite-based measurements of the changes in Total Solar Irradiance over the solar cycle. On the one hand this example illustrates the usefulness of ground-based monitoring of solar irradiance data, but on the other hand it highlights the difficulties which can hamper an unbiased analysis of such datasets. References Feulner, G., 2011: The Smithsonian solar constant data revisited: no evidence for a strong effect of solar activity in ground-based insolation data, Atmos. Chem. Phys., 11, 3291-3301, doi:10.5194/acp-11-3291-2011 Feulner, G., 2013: On the relation between solar activity and clear-sky terrestrial irradiance, Solar Phys., 282, 615-627, doi:10.1007/s11207-012-0129-z

  9. Solar activity predicted with artificial intelligence

    NASA Astrophysics Data System (ADS)

    Lundstedt, Henrik

    The variability of solar activity has been described as a non-linear chaotic dynamic system. AI methods are therefore especially suitable for modelling and predicting solar activity. Many indicators of the solar activity have been used, such as sunspot numbers, F 10.7 cm solar radio flux, X-ray flux, and magnetic field data. Artificial neural networks have also been used by many authors to predict solar cycle activity. Such predictions will be discussed. A new attempt to predict the solar activity using SOHO/MDI high-time resolution solar magnetic field data is discussed. The purpose of this new attempt is to be able to predict episodic events and to predict occurrence of coronal mass ejections. These predictions will be a part of the Lund Space Weather Model.

  10. Centennial Scale Variations in Lake Productivity Linked to Solar Activity

    NASA Astrophysics Data System (ADS)

    Englebrecht, A.; Bhattacharyya, S.; Guilderson, T. P.; Ingram, L.; Byrne, R.

    2012-12-01

    Solar variations on both decadal and centennial timescales have been associated with climate phenomena (van Loon et al., 2004; Hodell et al., 2001; White et al., 1997). The energy received by the Earth at the peak of the solar cycle increases by <0.1%; so the question has remained of how this could be amplified to produce an observable climate response. Recent modeling shows that the response of the Earth's climate system to the 11-year solar cycle may be amplified through stratosphere and ocean feedbacks and has the potential to impact climate variability on a multidecadal to centennial timescales (Meehl et al., 2009). Here, we report a 1000-year record of changes in the stratigraphy and carbon isotope composition of varved lake sediment from Isla Isabela (22°N, 106°W) in the subtropical northeast Pacific. Stable carbon isotopes and carbonate stratigraphy can be used to infer surface productivity in the lake. Our analysis shows variations in primary productivity on centennial timescales and suggests that solar activity may be an important component of Pacific climate variability. A possible response during solar maxima acts to keep the eastern equatorial Pacific cooler and drier than usual, producing conditions similar to a La Niña event. In the region around Isla Isabela peak solar years were characterized by decreased surface temperatures and suppressed precipitation (Meehl et al., 2009), which enhance productivity at Isabela (Kienel et al. 2011). In the future, we plan to analyze the data using advanced time series analysis techniques like the wavelets together with techniques to handle irregularly spaced time series data. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-571672

  11. Analysis of Solar Magnetic Activity with the Wavelet Coherence Method

    NASA Astrophysics Data System (ADS)

    Velasco, V. M.; Perez-Peraza, J. A.; Mendoza, B. E.; Valdes-Galicia, J. F.; Sosa, O.; Alvarez-Madrigal, M.

    2007-05-01

    The origin, behavior and evolution of the solar magnetic field is one of the main challenges of observational and theoretical solar physics. Up to now the Dynamo theory gives us the best approach to the problem. However, it is not yet able to predict many features of the solar activity, which seems not to be strictly a periodical phenomenon. Among the indicators of solar magnetic variability there is the 11-years cycle of sunspots, as well as the solar magnetic cycle of 22 years (the Hale cycle). In order to provide more elements to the Dynamo theory that could help it in the predicting task, we analyze here the plausible existence of other periodicities associated with the solar magnetic field. In this preliminary work we use historical data (sunspots and aurora borealis), proxies (Be10 and C14) and modern instrumental data (Coronal Holes, Cosmic Rays, sunspots, flare indexes and solar radio flux at 10.7 cm). To find relationships between different time-frequency series we have employed the t Wavelet Coherence technique: this technique indicates if two time-series of solar activity have the same periodicities in a given time interval. If so, it determines whether such relation is a linear one or not. Such a powerful tool indicates that, if some periodicity at a given frequency has a confidence level below 95%, it appears very lessened or does not appear in the Wavelet Spectral Analysis, such periodicity does not exist . Our results show that the so called Glaisberg cycle of 80-90 years and the periodicity of 205 years (the Suess cycle) do not exist . It can be speculated that such fictitious periodicities hav been the result of using the Fourier transform with series with are not of stationary nature, as it is the case of the Be10 and C14 series. In contrast we confirm the presence of periodicities of 1.3, 1.7, 3.5, 5.5, 7, 60, 120 and 240 years. The concept of a Glaisberg cycle falls between those of 60 and 120 years. We conclude that the periodicity of 120 years

  12. The effects of solar activity on the global solar radiation measured at Khargha Oasis in the Western Dessert of Egypt

    NASA Astrophysics Data System (ADS)

    Shaltout, M.; Mohamed, A.

    Khargha is an Oasis in the Western Desert of Egypt of coordinates lat. 25 o 27/ N, long. 30 o 32 / E, and elevation 77.8 meter over the sea level. It is one of the driest areas in the world, the global solar radiation measured starting from January 1976 till now by station belong to the Egyptian Meteorological Authority. We used the data for the last 25 years of the 20"' Century on the daily bases, it is more than two solar cycles. The annual mean of relative humidity for Khargha is 30, and the total rainfall in mms as annual mean is less than one. Where, the evaporation in mms per day as annual mean is about 16. The total sky cover in oktas as annual mean is 0.4 at the midnight, while it is one oktas at the noon as 2annual mean, and 0.7 oktas on the mean of the day. The annual mean is 6.5 Kwh/rn /day for global solar radiation. Fourier analysis technique used to analysis the time series to show any reflection for the 11-year cycle of the solar activity on the measured global radiation in remote, clean, and dry desert area. The results indicate periodicity's similar to the solar activity periodicities, especially that of the eleven year cycle, in a good indication for the effect of solar activity on the climate change.

  13. Borderline phylloides tumor in an 11-year-old girl.

    PubMed

    Selamzade, M; Gidener, C; Koyuncuoglu, M; Mevsim, A

    1999-07-01

    Phylloides tumor is an uncommon breast tumor in children. Only a few cases have been reported in the literature. A case of borderline phylloides tumor in an 11-year-old girl is described. PMID:10415310

  14. Recurrence of solar activity - Evidence for active longitudes

    NASA Technical Reports Server (NTRS)

    Bogart, R. S.

    1982-01-01

    It is pointed out that the autocorrelation coefficients of the daily Wolf sunspot numbers over a period of 128 years reveal a number of interesting features of the variability of solar activity. Besides establishing periodicities for the solar rotation, solar activity cycle, and, perhaps, the 'Gleissberg Cycle', they suggest that active longitudes do exist, but with much greater strength and persistence in some solar cycles than in others. Evidence is adduced for a variation in the solar rotation period, as measured by sunspot number, of as much as two days between different solar cycles.

  15. Sources of the solar wind at solar activity maximum

    NASA Astrophysics Data System (ADS)

    Neugebauer, M.; Liewer, P. C.; Smith, E. J.; Skoug, R. M.; Zurbuchen, T. H.

    2002-12-01

    The photospheric sources of solar wind observed by the Ulysses and ACE spacecraft from 1998 to early 2001 are determined through a two-step mapping process. Solar wind speed measured at the spacecraft is used in a ballistic model to determine a foot point on a source surface at a solar distance of 2.5 solar radii. A potential-field source-surface model is then used to trace the field and flow from the source surface to the photosphere. Comparison of the polarity of the measured interplanetary field with the polarity of the photospheric source region shows good agreement for spacecraft latitudes equatorward of 60°. At higher southern latitudes, the mapping predicts that Ulysses should have observed only outward directed magnetic fields, whereas both polarities were observed. A detailed analysis is performed on four of the solar rotations for which the mapped and observed polarities were in generally good agreement. For those rotations, the solar wind mapped to both coronal holes and active regions. These findings for a period of high solar activity differ from the findings of a similar study of the solar wind in 1994-1995 when solar activity was very low. At solar minimum the fastest wind mapped to the interior of large polar coronal holes while slower wind mapped to the boundaries of those holes or to smaller low-latitude coronal holes. For the data examined in the present study, neither spacecraft detected wind from the small polar coronal holes when they existed and the speed was never as high as that observed by Ulysses at solar minimum. The principal difference between the solar wind from coronal holes and from active regions is that the O7+/O6+ ion ratio is lower for the coronal hole flow, but not as low as in the polar coronal hole flow at solar minimum. Furthermore, the active-region flows appear to be organized into several substreams unlike the more monolithic structure of flows from coronal holes. The boundaries between plasma flows from neighboring

  16. Solar activity and oscillation frequency splittings

    NASA Technical Reports Server (NTRS)

    Woodard, M. F.; Libbrecht, K. G.

    1993-01-01

    Solar p-mode frequency splittings, parameterized by the coefficients through order N = 12 of a Legendre polynomial expansion of the mode frequencies as a function of m/L, were obtained from an analysis of helioseismology data taken at Big Bear Solar Observatory during the 4 years 1986 and 1988-1990 (approximately solar minimum to maximum). Inversion of the even-index splitting coefficients confirms that there is a significant contribution to the frequency splittings originating near the solar poles. The strength of the polar contribution is anti correlated with the overall level or solar activity in the active latitudes, suggesting a relation to polar faculae. From an analysis of the odd-index splitting coefficients we infer an uppor limit to changes in the solar equatorial near-surface rotatinal velocity of less than 1.9 m/s (3 sigma limit) between solar minimum and maximum.

  17. How active was solar cycle 22?

    NASA Technical Reports Server (NTRS)

    Hoegy, W. R.; Pesnell, W. D.; Woods, T. N.; Rottman, G. J.

    1993-01-01

    Solar EUV observations from the Langmuir probe on Pioneer Venus Orbiter suggest that at EUV wavelengths solar cycle 22 was more active than solar cycle 21. The Langmuir probe, acting as a photodiode, measured the integrated solar EUV flux over a 13 1/2 year period from January 1979 to June 1992, the longest continuous solar EUV measurement. The Ipe EUV flux correlated very well with the SME measurement of L-alpha during the lifetime of SME and with the UARS SOLSTICE L-alpha from October 1991 to June 1992 when the Ipe measurement ceased. Starting with the peak of solar cycle 21, there was good general agreement of Ipe EUV with the 10.7 cm, Ca K, and He 10830 solar indices, until the onset of solar cycle 22. From 1989 to the start of 1992, the 10.7 cm flux exhibited a broad maximum consisting of two peaks of nearly equal magnitude, whereas Ipe EUV exhibited a strong increase during this time period making the second peak significantly higher than the first. The only solar index that exhibits the same increase in solar activity as Ipe EUV and L-alpha during the cycle 22 peak is the total magnetic flux. The case for high activity during this peak is also supported by the presence of very high solar flare intensity.

  18. Workshop on Solar Activity, Solar Wind, Terrestrial Effects, and Solar Acceleration

    NASA Technical Reports Server (NTRS)

    1992-01-01

    A summary of the proceedings from the workshop are presented. The areas covered were solar activity, solar wind, terrestrial effects, and solar acceleration. Specific topics addressed include: (1) solar cycle manifestations, both large and small scale, as well as long-term and short-term changes, including transients such as flares; (2) sources of solar wind, as identified by interplanetary observations including coronal mass ejections (CME's) or x-ray bright points, and the theory for and evolution of large-scale and small-scale structures; (3) magnetosphere responses, as observed by spacecraft, to variable solar wind and transient energetic particle emissions; and (4) origin and propagation of solar cosmic rays as related to solar activity and terrestrial effects, and solar wind coronal-hole relationships and dynamics.

  19. Sustainable Buildings. Using Active Solar Power

    SciTech Connect

    Sharp, M. Keith; Barnett, Russell

    2015-04-20

    The objective of this project is to promote awareness and knowledge of active solar energy technologies by installing and monitoring the following demonstration systems in Kentucky: 1) Pool heating system, Churchill Park School, 2) Water heating and daylighting systems, Middletown and Aiken Road Elementary Schools, 3) Photovoltaic street light comparison, Louisville Metro, 4) up to 25 domestic water heating systems across Kentucky. These tasks will be supported by outreach activities, including a solar energy installer training workshop and a Kentucky Solar Energy Conference.

  20. Dynamo theory prediction of solar activity

    NASA Technical Reports Server (NTRS)

    Schatten, Kenneth H.

    1988-01-01

    The dynamo theory technique to predict decadal time scale solar activity variations is introduced. The technique was developed following puzzling correlations involved with geomagnetic precursors of solar activity. Based upon this, a dynamo theory method was developed to predict solar activity. The method was used successfully in solar cycle 21 by Schatten, Scherrer, Svalgaard, and Wilcox, after testing with 8 prior solar cycles. Schatten and Sofia used the technique to predict an exceptionally large cycle, peaking early (in 1990) with a sunspot value near 170, likely the second largest on record. Sunspot numbers are increasing, suggesting that: (1) a large cycle is developing, and (2) that the cycle may even surpass the largest cycle (19). A Sporer Butterfly method shows that the cycle can now be expected to peak in the latter half of 1989, consistent with an amplitude comparable to the value predicted near the last solar minimum.

  1. Solar activity, the QBO, and tropospheric responses

    NASA Technical Reports Server (NTRS)

    Tinsley, Brian A.; Brown, Geoffrey M.; Scherrer, Philip H.

    1989-01-01

    The suggestion that galactic cosmic rays (GCR) as modulated by the solar wind are the carriers of the component of solar variability that affects weather and climate has been discussed in the literature for 30 years, and there is now a considerable body of evidence that supports it. Variations of GCR occur with the 11 year solar cycle, matching the time scale of recent results for atmospheric variations, as modulated by the quasibiennial oscillation of equatorial stratospheric winds (the QBO). Variations in GCR occur on the time scale of centuries with a well defined peak in the coldest decade of the little ice age. New evidence is presented on the meteorological responses to GCR variations on the time scale of a few days. These responses include changes in the vertical temperature profile in the troposphere and lower stratosphere in the two days following solar flare related high speed plasma streams and associated GCR decreases, and in decreases in Vorticity Area Index (VAI) following Forbush decreases of GCR. The occurrence of correlations of GCR and meteorological responses on all three time scales strengthens the hypothesis of GCR as carriers of solar variability to the lower atmosphere. Both short and long term tropospheric responses are understandable as changes in the intensity of cyclonic storms initiated by mechanisms involving cloud microphysical and cloud electrification processes, due to changes in local ion production from changes in GCR fluxes and other high energy particles in the MeV to low GeV range. The nature of these mechanisms remains undetermined. Possible stratospheric wind (particularly QBO) effects on the transport of HNO3 and other constituents incorporated in cluster ions and possible condensation and freezing nuclei are considered as relevant to the long term variations.

  2. The solar magnetic activity band interaction and instabilities that shape quasi-periodic variability.

    PubMed

    McIntosh, Scott W; Leamon, Robert J; Krista, Larisza D; Title, Alan M; Hudson, Hugh S; Riley, Pete; Harder, Jerald W; Kopp, Greg; Snow, Martin; Woods, Thomas N; Kasper, Justin C; Stevens, Michael L; Ulrich, Roger K

    2015-01-01

    Solar magnetism displays a host of variational timescales of which the enigmatic 11-year sunspot cycle is most prominent. Recent work has demonstrated that the sunspot cycle can be explained in terms of the intra- and extra-hemispheric interaction between the overlapping activity bands of the 22-year magnetic polarity cycle. Those activity bands appear to be driven by the rotation of the Sun's deep interior. Here we deduce that activity band interaction can qualitatively explain the 'Gnevyshev Gap'—a well-established feature of flare and sunspot occurrence. Strong quasi-annual variability in the number of flares, coronal mass ejections, the radiative and particulate environment of the heliosphere is also observed. We infer that this secondary variability is driven by surges of magnetism from the activity bands. Understanding the formation, interaction and instability of these activity bands will considerably improve forecast capability in space weather and solar activity over a range of timescales. PMID:25849045

  3. The solar magnetic activity band interaction and instabilities that shape quasi-periodic variability

    PubMed Central

    McIntosh, Scott W.; Leamon, Robert J.; Krista, Larisza D.; Title, Alan M.; Hudson, Hugh S.; Riley, Pete; Harder, Jerald W.; Kopp, Greg; Snow, Martin; Woods, Thomas N.; Kasper, Justin C.; Stevens, Michael L.; Ulrich, Roger K.

    2015-01-01

    Solar magnetism displays a host of variational timescales of which the enigmatic 11-year sunspot cycle is most prominent. Recent work has demonstrated that the sunspot cycle can be explained in terms of the intra- and extra-hemispheric interaction between the overlapping activity bands of the 22-year magnetic polarity cycle. Those activity bands appear to be driven by the rotation of the Sun's deep interior. Here we deduce that activity band interaction can qualitatively explain the ‘Gnevyshev Gap'—a well-established feature of flare and sunspot occurrence. Strong quasi-annual variability in the number of flares, coronal mass ejections, the radiative and particulate environment of the heliosphere is also observed. We infer that this secondary variability is driven by surges of magnetism from the activity bands. Understanding the formation, interaction and instability of these activity bands will considerably improve forecast capability in space weather and solar activity over a range of timescales. PMID:25849045

  4. Dynamo Sensitivity in Solar Analogs with 50 Years of Ca II H & K Activity

    NASA Astrophysics Data System (ADS)

    Egeland, Ricky; Soon, Willie H.; Baliunas, Sallie L.; Hall, Jeffrey C.; Pevtsov, Alexei A.; Henry, Gregory W.

    2016-05-01

    The Sun has a steady 11-year cycle in magnetic activity most well-known by the rising and falling in the occurrence of dark sunspots on the solar disk in visible bandpasses. The 11-year cycle is also manifest in the variations of emission in the Ca II H & K line cores, due to non-thermal (i.e. magnetic) heating in the lower chromosphere. The large variation in Ca II H & K emission allows for study of the patterns of long-term variability in other stars thanks to synoptic monitoring with the Mount Wilson Observatory HK photometers (1966-2003) and Lowell Observatory Solar-Stellar Spectrograph (1994-present). Overlapping measurements for a set of 27 nearby solar-analog (spectral types G0-G5) stars were used to calibrate the two instruments and construct time series of magnetic activity up to 50 years in length. Precise properties of fundamental importance to the dynamo are available from Hipparcos, the Geneva-Copenhagen Survey, and CHARA interferometry. Using these long time series and measurements of fundamental properties, we do a comparative study of stellar "twins" to explore the sensitivity of the stellar dynamo to small changes to structure, rotation, and composition. We also compare this sample to the Sun and find hints that the regular periodic variability of the solar cycle may be rare among its nearest neighbors in parameter space.

  5. The Three-Dimenstional Solar Wind at Solar Activity Minimum

    NASA Technical Reports Server (NTRS)

    Neugebauer, M.

    1998-01-01

    In late 1997, the Ulysses spacecraft completed its first orbit around the Sun, observing the properties of the heliosphere at all latitudes between 80 degrees South and 80 degrees North. Because the mission occurred during a period of near-minimum solar activity, the configuration of the solar wind and interplanetary magnetic field were particularly simple, thus allowing confident comparisons between the properties of the polar corona observed by instruments of the Spartan and SOHO spacecraft and the resulting properties of the solar wind.

  6. Solar neutrinos, solar flares, solar activity cycle and the proton decay

    NASA Technical Reports Server (NTRS)

    Raychaudhuri, P.

    1985-01-01

    It is shown that there may be a correlation between the galactic cosmic rays and the solar neutrino data, but it appears that the neutrino flux which may be generated during the large solar cosmic ray events cannot in any way effect the solar neutrino data in Davis experiment. Only initial stage of mixing between the solar core and solar outer layers after the sunspot maximum in the solar activity cycle can explain the higher (run number 27 and 71) of solar neutrino data in Davis experiment. But solar flare induced atmospheric neutrino flux may have effect in the nucleon decay detector on the underground. The neutrino flux from solar cosmic rays may be a useful guide to understand the background of nucleon decay, magnetic monopole search, and the detection of neutrino flux in sea water experiment.

  7. Solar Activity Predictions Based on Solar Dynamo Theories

    NASA Astrophysics Data System (ADS)

    Schatten, Kenneth H.

    2009-05-01

    We review solar activity prediction methods, statistical, precursor, and recently the Dikpati and the Choudhury groups’ use of numerical flux-dynamo methods. Outlining various methods, we compare precursor techniques with weather forecasting. Precursors involve events prior to a solar cycle. First started by the Russian geomagnetician Ohl, and then Brown and Williams; the Earth's field variations near solar minimum was used to predict the next solar cycle, with a correlation of 0.95. From the standpoint of causality, as well as energetically, these relationships were somewhat bizarre. One index used was the "number of anomalous quiet days,” an antiquated, subjective index. Scientific progress cannot be made without some suspension of disbelief; otherwise old paradigms become tautologies. So, with youthful naïveté, Svalgaard, Scherrer, Wilcox and I viewed the results through rose-colored glasses and pressed ahead searching for understanding. We eventually fumbled our way to explaining how the Sun could broadcast the state of its internal dynamo to Earth. We noted one key aspect of the Babcock-Leighton Flux Dynamo theory: the polar field at the end of a cycle serves as a seed for the next cycle's growth. Near solar minimum this field usually bathes the Earth, and thereby affects geomagnetic indices then. We found support by examining 8 previous solar cycles. Using our solar precursor technique we successfully predicted cycles 21, 22 and 23 using WSO and MWSO data. Pesnell and I improved the method using a SODA (SOlar Dynamo Amplitude) Index. In 2005, nearing cycle 23's minimum, Svalgaard and I noted an unusually weak polar field, and forecasted a small cycle 24. We discuss future advances: the flux-dynamo methods. As far as future solar activity, I shall let the Sun decide; it will do so anyhow.

  8. Solar Spots - Activities to Introduce Solar Energy into the K-8 Curricula.

    ERIC Educational Resources Information Center

    Longe, Karen M.; McClelland, Michael J.

    Following an introduction to solar technology which reviews solar heating and cooling, passive solar systems (direct gain systems, thermal storage walls, sun spaces, roof ponds, and convection loops), active solar systems, solar electricity (photovoltaic and solar thermal conversion systems), wind energy, and biomass, activities to introduce solar…

  9. Conservative Management of Cardiac Hemangioma for 11 Years.

    PubMed

    Gribaa, Rym; Slim, Mehdi; Neffati, Elyes; Boughzela, Essia

    2015-10-01

    Cardiac hemangiomas are benign tumors with an unpredictable natural history. Surgical resection is the treatment of choice; however, conservative management can be an alternative in some patients. We report a case of a left-sided cardiac hemangioma that we managed conservatively for 11 years without obvious major complications in the patient, an adult woman. PMID:26504439

  10. Conservative Management of Cardiac Hemangioma for 11 Years

    PubMed Central

    Slim, Mehdi; Neffati, Elyes; Boughzela, Essia

    2015-01-01

    Cardiac hemangiomas are benign tumors with an unpredictable natural history. Surgical resection is the treatment of choice; however, conservative management can be an alternative in some patients. We report a case of a left-sided cardiac hemangioma that we managed conservatively for 11 years without obvious major complications in the patient, an adult woman. PMID:26504439

  11. Annual DOE Active Solar Heating and Cooling Contractors Review meeting

    NASA Astrophysics Data System (ADS)

    1981-09-01

    Ninety three project summaries dicussing the following aspects of active solar heating and cooling are presented: Rankine solar cooling systems; absorption solar cooling systems; desiccant solar cooling systems; solar heat pump systems; solar hot water systems; special projects (such as the National Solar Data Network, hybrid solar thermal/photovoltaic applications, and heat transfer and water migration in soils); administrative/management support; and solar collector, storage, controls, analysis, and materials technology.

  12. Science Activities in Energy: Solar Energy II.

    ERIC Educational Resources Information Center

    Oak Ridge Associated Universities, TN.

    Included in this science activities energy package are 14 activities related to solar energy for secondary students. Each activity is outlined on a single card and is introduced by a question such as: (1) how much solar heat comes from the sun? or (2) how many times do you have to run water through a flat-plate collector to get a 10 degree rise in…

  13. Gap between active and passive solar heating

    SciTech Connect

    Balcomb, J.D.

    1985-01-01

    The gap between active and passive solar could hardly be wider. The reasons for this are discussed and advantages to narrowing the gap are analyzed. Ten years of experience in both active and passive systems are reviewed, including costs, frequent problems, performance prediction, performance modeling, monitoring, and cooling concerns. Trends are analyzed, both for solar space heating and for service water heating. A tendency for the active and passive technologies to be converging is observed. Several recommendations for narrowing the gap are presented.

  14. Solar collector manufacturing activity, 1992

    SciTech Connect

    Not Available

    1993-11-09

    This report presents data provided by US-based manufacturers and importers of solar collectors. Summary data on solar thermal collector shipments are presented for the years 1974 through 1992. Summary data on photovoltaic cell and module shipments are presented for the years 1982 through 1992. Detailed information for solar thermal collectors and photovoltaic cells and modules are presented for 1992. Appendix A describes the survey methodology. Appendix B contains the 1992 survey forms and instructions. Appendices C and D list the companies that responded to the 1992 surveys and granted permission for their names and addresses to appear in the report. Appendix E provides selected tables from this report with data shown in the International System of Units (SI) metric units. Appendix F provides an estimate of installed capacity and energy production from solar collectors for 1992.

  15. Non-Stationary Effects and Cross Correlations in Solar Activity

    NASA Astrophysics Data System (ADS)

    Nefedyev, Yuri; Panischev, Oleg; Demin, Sergey

    2016-07-01

    In this paper within the framework of the Flicker-Noise Spectroscopy (FNS) we consider the dynamic properties of the solar activity by analyzing the Zurich sunspot numbers. As is well-known astrophysics objects are the non-stationary open systems, whose evolution are the quite individual and have the alternation effects. The main difference of FNS compared to other related methods is the separation of the original signal reflecting the dynamics of solar activity into three frequency bands: system-specific "resonances" and their interferential contributions at lower frequencies, chaotic "random walk" ("irregularity-jump") components at larger frequencies, and chaotic "irregularity-spike" (inertial) components in the highest frequency range. Specific parameters corresponding to each of the bands are introduced and calculated. These irregularities as well as specific resonance frequencies are considered as the information carriers on every hierarchical level of the evolution of a complex natural system with intermittent behavior, consecutive alternation of rapid chaotic changes in the values of dynamic variables on small time intervals with small variations of the values on longer time intervals ("laminar" phases). The jump and spike irregularities are described by power spectra and difference moments (transient structural functions) of the second order. FNS allows revealing the most crucial points of the solar activity dynamics by means of "spikiness" factor. It is shown that this variable behaves as the predictor of crucial changes of the sunspot number dynamics, particularly when the number comes up to maximum value. The change of averaging interval allows revealing the non-stationary effects depending by 11-year cycle and by inside processes in a cycle. To consider the cross correlations between the different variables of solar activity we use the Zurich sunspot numbers and the sequence of corona's radiation energy. The FNS-approach allows extracting the

  16. Science Activities in Energy: Solar Energy.

    ERIC Educational Resources Information Center

    Oak Ridge Associated Universities, TN.

    Presented is a science activities in energy package which includes 12 activities relating to solar energy. Activities are simple, concrete experiments for fourth, fifth, and sixth grades, which illustrate principles and problems relating to energy. Each activity is outlined on a single card which is introduced by a question. A teacher's supplement…

  17. Solar activities and Climate change hazards

    NASA Astrophysics Data System (ADS)

    Hady, A. A., II

    2014-12-01

    Throughout the geological history of Earth, climate change is one of the recurrent natural hazards. In recent history, the impact of man brought about additional climatic change. Solar activities have had notable effect on palaeoclimatic changes. Contemporary, both solar activities and building-up of green-house gases effect added to the climatic changes. This paper discusses if the global worming caused by the green-house gases effect will be equal or less than the global cooling resulting from the solar activities. In this respect, we refer to the Modern Dalton Minimum (MDM) which stated that starting from year 2005 for the next 40 years; the earth's surface temperature will become cooler than nowadays. However the degree of cooling, previously mentioned in old Dalton Minimum (c. 210 y ago), will be minimized by building-up of green-house gases effect during MDM period. Regarding to the periodicities of solar activities, it is clear that now we have a new solar cycle of around 210 years. Keywords: Solar activities; solar cycles; palaeoclimatic changes; Global cooling; Modern Dalton Minimum.

  18. Sources of solar wind over the solar activity cycle.

    PubMed

    Poletto, Giannina

    2013-05-01

    Fast solar wind has been recognized, about 40 years ago, to originate in polar coronal holes (CHs), that, since then, have been identified with sources of recurrent high speed wind streams. As of today, however, there is no general consensus about whether there are, within CHs, preferential locations where the solar wind is accelerated. Knowledge of slow wind sources is far from complete as well. Slow wind observed in situ can be traced back to its solar source by backward extrapolation of magnetic fields whose field lines are streamlines of the outflowing plasma. However, this technique often has not the necessary precision for an indisputable identification of the region where wind originates. As the Sun progresses through its activity cycle, different wind sources prevail and contribute to filling the heliosphere. Our present knowledge of different wind sources is here summarized. Also, a Section addresses the problem of wind acceleration in the low corona, as inferred from an analysis of UV data, and illustrates changes between fast and slow wind profiles and possible signatures of changes along the solar cycle. A brief reference to recent work about the deep roots of solar wind and their changes over different solar cycles concludes the review. PMID:25685421

  19. Geomagnetic activity during 10 - 11 solar cycles that has been observed by old Russian observatories.

    NASA Astrophysics Data System (ADS)

    Seredyn, Tomasz; Wysokinski, Arkadiusz; Kobylinski, Zbigniew; Bialy, Jerzy

    2016-07-01

    A good knowledge of solar-terrestrial relations during past solar activity cycles could give the appropriate tools for a correct space weather forecast. The paper focuses on the analysis of the historical collections of the ground based magnetic observations and their operational indices from the period of two sunspot solar cycles 10 - 11, period 1856 - 1878 (Bartels rotations 324 - 635). We use hourly observations of H and D geomagnetic field components registered at Russian stations: St. Petersburg - Pavlovsk, Barnaul, Ekaterinburg, Nertshinsk, Sitka, and compare them to the data obtained from the Helsinki observatory. We compare directly these records and also calculated from the data of the every above mentioned station IHV indices introduced by Svalgaard (2003), which have been used for further comparisons in epochs of assumed different polarity of the heliospheric magnetic field. We used also local index C9 derived by Zosimovich (1981) from St. Petersburg - Pavlovsk data. Solar activity is represented by sunspot numbers. The correlative and continuous wavelet analyses are applied for estimation of the correctness of records from different magnetic stations. We have specially regard to magnetic storms in the investigated period and the special Carrington event of 1-2 Sep 1859. Generally studied magnetic time series correctly show variability of the geomagnetic activity. Geomagnetic activity presents some delay in relation to solar one as it is seen especially during descending and minimum phase of the even 11-year cycle. This pattern looks similarly in the case of 16 - 17 solar cycles.

  20. Solar activity and climate change during the 1750 A.D. solar minimum

    NASA Astrophysics Data System (ADS)

    Bard, Edouard; Baroni, Mélanie; Aster Team

    2015-04-01

    . Dyn.), who focused their data-model comparison on the Dalton Minimum, which occurred between 1790 and 1830 A.D. and which, fortuitously, included several major volcanic eruptions such as the Tambora eruption in 1815. Their conclusion was that the global imprint of the volcanic forcing was significantly larger than that of contemporaneous solar forcing and the increasing atmospheric CO2 concentrations. A different approach is to consider another recent solar minimum over a period characterized by a low volcanicity and minimal changes of greenhouse gases. Such a minimum does exist between the Maunder and the Dalton Minima and lasted for a mere two decades between 1745 and 1765 A.D. The sunspot number exhibits a clear 11-year cycle, but it only reaches a maximal value lower than 100, i.e. less than observed for the past seven 11-year cycles. Incidentally, the maximal values observed between 1745 and 1765 are similar to those observed during the maximum of the present solar cycle. The 1750 A.D. solar minimum can also be studied in other records such as counts of auroras at mid-latitudes and cosmogenic isotopes such as 14C and 10Be. In addition to reviewing published time series, we will report a new 10Be record from a well-dated ice core from Dome C in Antarctica. Sulfate concentration, a proxy for volcanic eruptions, has also been measured in the very same samples, allowing a precise comparison of both 10Be and sulfate profiles. The full record covers the last millennium and will be presented separately by Baroni, Bard and the ASTER Team. Zooming in on the century between 1700 and 1800 A.D. allows to identify an extended period of low volcanicity and to observe a clear 10Be increase corresponding to the solar minimum. We will present the new data over the 18th century as well as their first interpretation in the context of other useful records based on greenhouse gas concentrations, paleotemperature proxies and climate modeling available in the literature.

  1. Hinode Captures Images of Solar Active Region

    NASA Video Gallery

    In these images, Hinode's Solar Optical Telescope (SOT) zoomed in on AR 11263 on August 4, 2011, five days before the active region produced the largest flare of this cycle, an X6.9. We show images...

  2. A History of Solar Activity over Millennia

    NASA Astrophysics Data System (ADS)

    Usoskin, Ilya G.

    2013-03-01

    Presented here is a review of present knowledge of the long-term behavior of solar activity on a multi-millennial timescale, as reconstructed using the indirect proxy method. The concept of solar activity is discussed along with an overview of the special indices used to quantify different aspects of variable solar activity, with special emphasis upon sunspot number. Over long timescales, quantitative information about past solar activity can only be obtained using a method based upon indirect proxies, such as the cosmogenic isotopes 14C and 10Be in natural stratified archives (e.g., tree rings or ice cores). We give an historical overview of the development of the proxy-based method for past solar-activity reconstruction over millennia, as well as a description of the modern state. Special attention is paid to the verification and cross-calibration of reconstructions. It is argued that this method of cosmogenic isotopes makes a solid basis for studies of solar variability in the past on a long timescale (centuries to millennia) during the Holocene. A separate section is devoted to reconstructions of strong solar energetic-particle (SEP) events in the past, that suggest that the present-day average SEP flux is broadly consistent with estimates on longer timescales, and that the occurrence of extra-strong events is unlikely. Finally, the main features of the long-term evolution of solar magnetic activity, including the statistics of grand minima and maxima occurrence, are summarized and their possible implications, especially for solar/stellar dynamo theory, are discussed.

  3. Spörer's law and relationship between the latitude and amplitude parameters of solar activity

    NASA Astrophysics Data System (ADS)

    Ivanov, V. G.; Miletsky, E. V.

    2014-12-01

    The equatorward drift of average sunspot latitudes (Spörer's law) and its relationship with other characteristics of the 11-year solar cycle are analyzed. The notion of cycle latitude phase (CLP) is introduced, which is calculated from behavior of average sunspot latitudes. The latter are shown to be expressed, with known accuracy, as a universal monotonic decreasing function of the CLP and to be independent of the cycle strength. The same applies to the latitudinal drift velocity of the sunspot generating zone. The shifts in the CLP reference times relative to the cycle minima are, on the contrary, well correlated with the amplitudes of the corresponding cycles. Solar activity in the declining phase of the solar cycle is found to be tightly related to the average sunspot latitude and CLP. The relationships found in the study can be used to reconstruct average sunspot latitudes in the pre-Greenwich epoch based on the available information on cycle amplitudes.

  4. Low Latitude Aurora: Index of Solar Activity

    NASA Astrophysics Data System (ADS)

    Bekli, M. R.; Aissani, D.; Chadou, I.

    2010-10-01

    Observations of aurora borealis at low latitudes are rare, and are clearly associated with high solar activity. In this paper, we analyze some details of the solar activity during the years 1769-1792. Moreover, we describe in detail three low latitude auroras. The first event was reported by ash-Shalati and observed in North Africa (1770 AD). The second and third events were reported by l'Abbé Mann and observed in Europe (1770 and 1777 AD).

  5. Relationships between solar activity and climate change

    NASA Technical Reports Server (NTRS)

    Roberts, W. O.

    1975-01-01

    The relationship between recurrent droughts in the High Plains of the United States and the double sunspot cycle is discussed in detail. It is suggested that high solar activity is generally related to an increase in meridional circulation and blocking patterns at high and intermediate latitudes, especially in winter, and the effect is related to the sudden formation of cirrus clouds during strong geomagnetic activity that originates in the solar corpuscular emission.

  6. New NSO Solar Surface Activity Maps

    NASA Astrophysics Data System (ADS)

    Henney, C. J.; Harvey, J. W.

    2001-05-01

    Using NSO-Kitt Peak Vacuum Telescope (KPVT) synoptic data, we present several new solar surface activity maps. The motivation is to test conventional wisdom about conditions that are likely to produce solar activity such as flares, coronal mass ejections and high speed solar wind streams. The ultimate goal is to improve real-time, observation-based models for the purpose of predicting solar activity. A large number of maps will eventually be produced based on the wide range of ideas and models of the conditions thought to lead to solar activity events. When data from the new SOLIS instruments becomes available, the range of possible models that can be tested will be greatly expanded. At present, the daily maps include ones that show magnetic field complexity, emerging flux and high speed solar wind sources. As a proxy for local magnetic potential energy, each element of the magnetic complexity map is the distance-weighted rms of the opposing ambient magnetic field. The flux emergence map is the difference between the two most recent absolute magnetic flux images. The solar wind source map is produced from coronal hole area data. The new maps are available on the NSO-Kitt Peak World Wide Web page. This research was supported in part by the Office of Navel Research Grant N00014-91-J-1040. The NSO-Kitt Peak data used here are produced cooperatively by NSF/AURA, NASA/GSFC, and NOAA/SEC.

  7. Volcanic eruptions and solar activity

    NASA Technical Reports Server (NTRS)

    Stothers, Richard B.

    1989-01-01

    The historical record of large volcanic eruptions from 1500 to 1980 is subjected to detailed time series analysis. In two weak but probably statistically significant periodicities of about 11 and 80 yr, the frequency of volcanic eruptions increases (decreases) slightly around the times of solar minimum (maximum). Time series analysis of the volcanogenic acidities in a deep ice core from Greenland reveals several very long periods ranging from about 80 to about 350 yr which are similar to the very slow solar cycles previously detected in auroral and C-14 records. Solar flares may cause changes in atmospheric circulation patterns that abruptly alter the earth's spin. The resulting jolt probably triggers small earthquakes which affect volcanism.

  8. Is Solar Activity Once More Fainting?

    NASA Astrophysics Data System (ADS)

    Mares Aguilar, C. E.; Schröder, K.-P.; Song, G.

    2013-04-01

    After an anomalously long and deep minimum, will the Sun now once again reach a period of weaker activity cycles, which would affect northern hemisphere winter climate? We here discuss the current state and outlook of solar activity, and we propose to monitor the solar Ca II K line emission “as a star”, as part of the regular observing schedule of the Hamburg robotic telescope, which is bound to move to Guanajuato this year (2012). In fact, the chromospheric Ca II K line emission is a good proxy for the solar far-ultraviolet flux, as both are generated at about the same plasma temperatures (12-15,000 K) and both originate from the same active regions (plages). The solar ultraviolet flux, in turn, warms the stratosphere by photo dissociation of ozone and other molecules and, consequently, affects the strength of the North Atlantic Oscillation (NOA).

  9. Total Solar Irradiance Variability: A Review

    NASA Technical Reports Server (NTRS)

    Pap, Judit M.

    1996-01-01

    Observations of total solar irradiance from space within the last two decaades convinced the skeptics that total irradiance varies over a wide range of periodicities: from minutes to the 11-year solar activity cycle. Analyses based on these space-borne observations have demonstrated that the irradiance variations are directly related to changes at the photosphere and the solar interior.

  10. Statistical Properties of Extreme Solar Activity Intervals

    NASA Astrophysics Data System (ADS)

    Lioznova, A. V.; Blinov, A. V.

    2014-01-01

    A study of long-term solar variability reflected in indirect indices of past solar activity leads to stimulating results. We compare the statistics of intervals of very low and very high solar activity derived from two cosmogenic radionuclide records and look for consistency in their timing and physical interpretation. According to the applied criteria, the numbers of minima and of maxima are 61 and 68, respectively, from the 10Be record, and 42 and 46 from the 14C record. The difference between the enhanced and depressed states of solar activity becomes apparent in the difference in their statistical distributions. We find no correlation between the level or type (minimum or maximum) of an extremum and the level or type of the predecessor. The hypothesis of solar activity as a periodic process on the millennial time scale is not supported by the existing proxies. A new homogeneous series of 10Be measurements in polar ice covering the Holocene would be of great value for eliminating the existing discrepancy in the available solar activity reconstructions.

  11. Global water cycle and solar activity variations

    NASA Astrophysics Data System (ADS)

    Al-Tameemi, Muthanna A.; Chukin, Vladimir V.

    2016-05-01

    The water cycle is the most active and most important component in the circulation of global mass and energy in the Earth system. Furthermore, water cycle parameters such as evaporation, precipitation, and precipitable water vapour play a major role in global climate change. In this work, we attempt to determine the impact of solar activity on the global water cycle by analyzing the global monthly values of precipitable water vapour, precipitation, and the Solar Modulation Potential in 1983-2008. The first object of this study was to calculate global evaporation for the period 1983-2008. For this purpose, we determined the water cycle rate from satellite data, and precipitation/evaporation relationship from 10 years of Planet Simulator model data. The second object of our study was to investigate the relationship between the Solar Modulation Potential (solar activity index) and the evaporation for the period 1983-2008. The results showed that there is a relationship between the solar modulation potential and the evaporation values for the period of study. Therefore, we can assume that the solar activity has an impact on the global water cycle.

  12. The solar activity measurements experiments (SAMEX) for improved scientific understanding of solar activity

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The Solar Activity Measurements Experiments (SAMEX) mission is described. It is designed to provide a look at the interactions of magnetic fields and plasmas that create flares and other explosive events on the sun in an effort to understand solar activity and the nature of the solar magnetic field. The need for this mission, the instruments to be used, and the expected benefits of SAMEX are discussed.

  13. Temporal offsets among solar activity indicators

    NASA Astrophysics Data System (ADS)

    Ramesh, K. B.; Vasantharaju, N.

    2014-04-01

    Temporal offsets between the time series of solar activity indicators provide important clues regarding the physical processes responsible for the cyclic variability in the solar atmosphere. Hysteresis patterns generated between any two indicators were popularly used to study their morphological features and further to understand their inter relationships. We use time series of different solar indicators to understand the possible cause-and-effect criteria between their respective source regions. Sensitivity of the upper atmosphere to the activity underneath might play an important role in introducing different evolutionary patterns in the profiles of solar indicators and in turn cause temporal offsets between them. Limitations in the observations may also cause relative shifts in the time series.

  14. Solar activity and Perseid meteor heights

    NASA Astrophysics Data System (ADS)

    Buček, M.; Porubčan, V.; Zigo, P.

    2012-04-01

    Photographic meteor heights of the Perseid meteoroid stream compiled in the IAU Meteor Data Center catalogue observed in 1939-1992, covering five solar activity cycles, are analyzed and their potential variation within a solar activity cycle is investigated and discussed. Of the 673 Perseids selected from the catalogue, the variations of the heights for three independent sets: 524 Perseids with known information on both heights, 397 with known brightness and 279 with the geocentric velocity within a one sigma limit, were investigated. The observed beginning and endpoint heights of the Perseids, normalized for the geocentric velocity and the absolute photographic magnitude correlated with the solar activity represented by the relative sunspot number R, do not exhibit a variation consistent with the solar activity cycle. The result, confirmed also by the correlation analysis, is derived for the mass ranges of larger meteoroids observed by photographic techniques. However, a possible variation of meteor heights controlled by solar activity for smaller meteoroids detected by television and radio techniques remains still open and has to be verified.

  15. The Causes of Geomagnetic Storms During Solar Maximum

    NASA Technical Reports Server (NTRS)

    Tsurutani, B. T.; Gonzalez, W. D.

    1998-01-01

    One of the oldest mysteries in geomagnetism is the linkage between solar and geomagnetic activity. The 11-year cycles of both the numbers of sunspots and Earth geomagnetic storms were first noted by Sabine (1852).

  16. Solar Energy Education. Home economics: student activities. Field test edition

    SciTech Connect

    Not Available

    1981-03-01

    A view of solar energy from the standpoint of home economics is taken in this book of activities. Students are provided information on solar energy resources while performing these classroom activities. Instructions for the construction of a solar food dryer and a solar cooker are provided. Topics for study include window treatments, clothing, the history of solar energy, vitamins from the sun, and how to choose the correct solar home. (BCS)

  17. A study of solar magnetic fields below the surface, at the surface, and in the solar atmosphere - understanding the cause of major solar activity

    NASA Astrophysics Data System (ADS)

    Chintzoglou, Georgios

    Magnetic fields govern all aspects of solar activity from the 11-year solar cycle to the most energetic events in the solar system, such as solar flares and Coronal Mass Ejections (CMEs). As seen on the surface of the sun, this activity emanates from localized concentrations of magnetic fields emerging sporadically from the solar interior. These locations are called solar Active Regions (ARs). However, the fundamental processes regarding the origin, emergence and evolution of solar magnetic fields as well as the generation of solar activity are largely unknown or remain controversial. In this dissertation, multiple important issues regarding solar magnetism and activities are addressed, based on advanced observations obtained by AIA and HMI instruments aboard the SDO spacecraft. First, this work investigates the formation of coronal magnetic flux ropes (MFRs), structures associated with major solar activity such as CMEs. In the past, several theories have been proposed to explain the cause of this major activity, which can be categorized in two contrasting groups (a) the MFR is formed in the eruption, and (b) the MFR pre-exists the eruption. This remains a topic of heated debate in modern solar physics. This dissertation provides a complete treatment of the role of MFRs from their genesis all the way to their eruption and even destruction. The study has uncovered the pre-existence of two weakly twisted MFRs, which formed during confined flaring 12 hours before their associated CMEs. Thus, it provides unambiguous evidence for MFRs truly existing before the CME eruptions, resolving the pre-existing MFR controversy. Second, this dissertation addresses the 3-D magnetic structure of complex emerging ARs. In ARs the photospheric fields might show all aspects of complexity, from simple bipolar regions to extremely complex multi-polar surface magnetic distributions. In this thesis, we introduce a novel technique to infer the subphotospheric configuration of emerging

  18. Manifestation of variations in solar activity 70-45 Ma ago

    NASA Astrophysics Data System (ADS)

    Raspopov, O. M.; Dergachev, V. A.; Dmitriev, P. B.; Kozyreva, O. V.

    2014-12-01

    Unique paleoenvironmental records (ring widths of fossil trees) with a temporal resolution of 1 year are analyzed with the aim of revealing periodicities in climatic processes during the time interval of 70-45 Ma ago. The periodicities thus obtained are compared with the solar and climatic periodicities observed at present. It is shown that quasi-bicentennial and quasi-secular periodicities that can be attributed to the influence of solar Suess-de Vries and Gleissberg cycles manifest themselves in the most intense manner in climatic oscillations in the past (70-45 Ma ago). The spectra of the paleoclimate data exhibit periodicities that are typical of solar activity, i.e., the quasi-20-year (Hale cycle) and 11-year (Schwabe cycle) ones derived from the instrumental data and historical observations of sunspots. It can be concluded that analyzing climatic periodicities obtained by paleodendrochronology gives information on the solar periodicity that cannot be achieved by other methods. The revealed periodicities are similar in values to the present-day periodicity of solar activity.

  19. Seismic Holography of Solar Activity

    NASA Technical Reports Server (NTRS)

    Lindsey, Charles

    2000-01-01

    The basic goal of the project was to extend holographic seismic imaging techniques developed under a previous NASA contract, and to incorporate phase diagnostics. Phase-sensitive imaging gives us a powerful probe of local thermal and Doppler perturbations in active region subphotospheres, allowing us to map thermal structure and flows associated with "acoustic moats" and "acoustic glories". These remarkable features were discovered during our work, by applying simple acoustic power holography to active regions. Included in the original project statement was an effort to obtain the first seismic images of active regions on the Sun's far surface.

  20. Two principal components of solar magnetic field variations and prediction of solar activity on multi-millennium timescale

    NASA Astrophysics Data System (ADS)

    Zharkova, Valentina; Popova, Helen; Zharkov, Sergei; Shepherd, Simon

    2016-07-01

    We present principal components analysis (PCA) of temporal magnetic field variations over the solar cycles 21-24 and their classification with symbolic regression analysis using Hamiltonian method. PCA reveals 4 pairs of magnetic waves with a significant variance and the two principal components with the highest eigen values covering about 40% of this variance. The PC waves are found to have close frequencies while travelling from the opposite hemispheres with an increasing phase shift. Extrapolation of these PCs through their summary curve backward for 5000 years reveals a repeated number of ~350-400 year grand cycles superimposed on 22 year-cycles with the features showing a remarkable resemblance to sunspot activity reported in the past including Maunder, Dalton and Wolf minima, as well as the modern, medieval and roman warmth periods. The summary curve calculated forward for the next millennium predicts further three grand cycles with the closest grand minimum (Maunder minimum) occurring in the forthcoming cycles 25-27 when the two magnetic field waves approach the phase shift of 11 years. We also note a super-grand cycle of about 2000 years which reveal the 5 repeated grand cycles of 350 years with the similar patterns. We discuss a role of other 3 pairs of magnetic waves in shaping the solar activity and compare our predicted curve with the previous predictions of the solar activity on a long timescale based on the terrestrial proxies. These grand cycle variations are probed by Parker's two layer dynamo model with meridional circulation revealing two dynamo waves generated with close frequencies. Their interaction leads to beating effects responsible for the grand cycles (300-350 years) and super-grand cycles of 2000 years superimposed on standard 22 year cycles. This approach opens a new era in investigation and prediction of solar activity on long-term timescales.

  1. Solar activities observed with the New Vacuum Solar Telescope

    NASA Astrophysics Data System (ADS)

    Yang, Shuhong

    2015-08-01

    The New Vacuum Solar Telescope is the most important facility of the Fuxian Solar Observatory in China. Based on the high spatial and temporal resolution NVST observations, we investigate the solar activities in the chromosphere and obtain some new results. (1) Observations of a flux rope tracked by filament activation (Yang et al. 2014a). The filament material is initially located at one end of the flux rope and fills in a section of the rope. Then the filament is activated and the material flows along helical threads, tracking the twisted flux rope structure. The flux rope can be detected in both low temperature and high temperature lines, and there exists a striking anti-correlation between the Hα and EUV lines, which could imply some mild heating of cool filament material to coronal temperatures during the filament activation. (2) Fine structures and overlying loops of homologous confined solar flares (Yang et al. 2014b). At the pre-flare stage, there exists a reconnection between small loops. During the flare processes, the overlying loops, some of which are tracked by activated dark materials, do not break out. These direct observations may illustrate the physical mechanism of confined flares, i.e., magnetic reconnection between the emerging loops and the pre-existing loops triggers flares and the overlying loops prevent the flares from being eruptive. (3) Magnetic reconnection between small-scale loops (Yang et al. 2015). We report the solid observational evidence of magnetic reconnection between two sets of small-scale loops. The observed signatures are consistent with the predictions by reconnection models. The thickness and length of the current sheet are determined to be about 420 km and 1.4 Mm, respectively. The reconnection process contains a slow step and a rapid step. We suggest that the successive slow reconnection changes the conditions around the reconnection site and disrupts the instability, thus leading to the rapid approach of the anti

  2. Solar Energy Project, Activities: Chemistry & Physics.

    ERIC Educational Resources Information Center

    Tullock, Bruce, Ed.; And Others

    This guide contains lesson plans and outlines of science activities which present concepts of solar energy in the context of chemistry and physics experiments. Each unit presents an introduction to the unit; objectives; required skills and knowledge; materials; method; questions; recommendations for further work; and a teacher information sheet.…

  3. Solar Energy Project, Activities: Junior High Science.

    ERIC Educational Resources Information Center

    Tullock, Bruce, Ed.; And Others

    This guide contains lesson plans and outlines of science activities which present concepts of solar energy in the context of the junior high science curriculum. Each unit presents an introduction; objectives; skills and knowledge needed; materials; methods; questions; recommendations for further work; and a teacher information sheet. The teacher…

  4. Solar Energy Project, Activities: Earth Science.

    ERIC Educational Resources Information Center

    Tullock, Bruce, Ed.; And Others

    This guide contains lesson plans and outlines of science activities which present concepts of solar energy in the context of earth science experiments. Each unit presents an introduction; objectives; skills and knowledge needed; materials; method; questions; recommendations for further study; and a teacher information sheet. The teacher…

  5. Division II: Commission 10: Solar Activity

    NASA Astrophysics Data System (ADS)

    van Driel-Gesztelyi, Lidia; Scrijver, Karel J.; Klimchuk, James A.; Charbonneau, Paul; Fletcher, Lyndsay; Hasan, S. Sirajul; Hudson, Hugh S.; Kusano, Kanya; Mandrini, Cristina H.; Peter, Hardi; Vršnak, Bojan; Yan, Yihua

    2015-08-01

    The Business Meeting of Commission 10 was held as part of the Business Meeting of Division II (Sun and Heliosphere), chaired by Valentin Martínez-Pillet, the President of the Division. The President of Commission 10 (C10; Solar activity), Lidia van Driel-Gesztelyi, took the chair for the business meeting of C10. She summarised the activities of C10 over the triennium and the election of the incoming OC.

  6. Influence of solar activity on climate change

    NASA Astrophysics Data System (ADS)

    Kirichenko, Kirill; Kovalenko, Vladimir

    The questions of primary importance for understanding the nature of climate changes in the XX century and main physical processes responsible for these changes are discussed. A physical model of the influence of solar activity on climate characteristics is presented. A key concept of this model is the influence of heliogeophysical disturbances on the Earth's climate system parameters controlling the long-wave radiation flux going out into space in high-latitude regions. A change in the Earth's radiation balance of high-latitude regions induces restructuring of the tropospheric thermobaric field, changes in the meridional temperature gradient responsible for meridional heat transfer. This causes changes in the heat content of the Earth's climate system and global climate. We present and discuss results of analysis of regularities and peculiarities of tropospheric and sea surface temperature (SST) responses both to separate heliogeophysical disturbances and to long-term changes of solar and geomagnetic activity. It is established that the climatic response in the tropospheric and sea surface temperature to the effect of solar and geomagnetic activity is characterised by a significant space-time irregularity and is local. A distinguishing feature of these distributions is the presence of regions of both positive and negative correlations. The exception is the epoch (1910-1940) when the SST response to geomagnetic activity was positive in virtually all regions, i. e. was global. This epoch coincides with the longest period of increase in geomagnetic activity during the period considered at the end of which annual averages of geomagnetic activity exceeded maximum values at the beginning of the epoch. Key words: climate, ocean, troposphere, solar activity.

  7. Forecasts of solar and geomagnetic activity

    NASA Technical Reports Server (NTRS)

    Joselyn, Joann

    1987-01-01

    Forecasts of solar and geomagnetic activity are critical since these quantities are such important inputs to the thermospheric density models. At this time in the history of solar science there is no way to make such a forecast from first principles. Physical theory applied to the Sun is developing rapidly, but is still primitive. Techniques used for forecasting depend upon the observations over about 130 years, which is only twelve solar cycles. It has been noted that even-numbered cycles systematically tend to be smaller than the odd-numbered ones by about 20 percent. Another observation is that for the last 12 cycle pairs, an even-numbered sunspot cycle looks rather like the next odd-numbered cycle, but with the top cut off. These observations are examples of approximate periodicities that forecasters try to use to achieve some insight into the nature of an upcoming cycle. Another new and useful forecasting aid is a correlation that has been noted between geomagnetic indices and the size of the next solar cycle. Some best estimates are given concerning both activities.

  8. Solar-stellar connection : A solar analogous behaviour by an active ultra fast rotator

    NASA Astrophysics Data System (ADS)

    Sairam, Lalitha; Schmitt, Juergen; Pal Singh, Kulinder

    2015-08-01

    AB Dor is an ultra-fast rotating (Prot ~ 0.51 d) active young K dwarf with an age of ~40-50 Myr. Located as a foreground star towards large magellanic cloud (LMC), AB Dor has the advantage of being observed at all times by most of the X-ray satellites making it a favourite calibration target. AB Dor has been repeatedly observed for calibration by reflection grating spectrometer (RGS) on board XMM- Newton over last decade. This gives an ideal opportunity to perform a detailed analysis of the coronal emission, and to compare the flare characteristics with the Sun, since the Sun is usually considered as a prototype of low mass stars. Flares are frequent in low mass active stars across the electromagnetic spectrum similar to the Sun. We will for the first time, present an analysis of 30 intense X-ray flares observed from AB Dor. These flares detected in XMM-Newton data show a rapid rise (500-3000 s) and a slow decay (1000-6000 s). The derived X-ray luminosity during the flares ranges between 30.20 ≤ log(Lx) ≤ 30.83 erg/s; the flare peak temperature lies between 30-80 MK and the emission measures for these flares are in the range of 52.3 ≤ log(EM) ≤ 53.5 cm^-3. Our studies suggest that the scaling law between the flare peak emission measure and the flare peak temperature for all the flares observed on AB Dor is very similar to the relationship followed by solar flares, despite the fact that the AB Dor flare emission is ~250 times higher than the solar flare emission. We also carried out a homogenous study of flare frequencies, energetics and its occurrence in AB Dor. The frequency distribution of flare energies is a crucial diagnostic to calculate the overall energy residing in a flare. Our results of this study indicate that the large flare (33 ≤ log(E) ≤ 34 erg) may not contribute to the heating of the corona. We will show the presence of a possible long-term cycle in AB Dor both from a photospheric and coronal point of view, similar to the 11-year

  9. Coronal Activity and Extended Solar Cycles

    NASA Astrophysics Data System (ADS)

    Altrock, R. C.

    2012-12-01

    Wilson et al. (1988, Nature 333, 748) discussed a number of solar parameters, which appear at high latitudes and gradually migrate towards the equator, merging with the sunspot "butterfly diagram". They found that this concept had been identified by earlier investigators extending back to 1957. They named this process the "Extended Solar Cycle" (ESC). Altrock (1997, Solar Phys. 170, 411) found that this process continued in Fe XIV 530.3 nm emission features. In cycles 21 - 23 solar maximum occurred when the number of Fe XIV emission regions per day > 0.19 (averaged over 365 days and both hemispheres) first reached latitudes 18°, 21° and 21°, for an average of 20° ± 1.7°. Other recent studies have shown that Torsional Oscillation (TO) negative-shear zones are co-located with the ESC from at least 50° down to the equator and also in the zones where the Rush to the Poles occur. These phenomena indicate that coronal activity occurring up to 50° and higher latitudes is related to TO shear zones, another indicator that the ESC is an important solar process. Another high-latitude process, which appears to be connected with the ESC, is the "Rush to the Poles" ("Rush") of polar crown prominences and their associated coronal emission, including Fe XIV. The Rush is is a harbinger of solar maximum (cf. Altrock, 2003, Solar Phys. 216, 343). Solar maximum in cycles 21 - 23 occurred when the center line of the Rush reached a critical latitude. These latitudes were 76°, 74° and 78°, respectively, for an average of 76° ± 2°. Applying the above conclusions to Cycle 24 is difficult due to the unusual nature of this cycle. Cycle 24 displays an intermittent "Rush" that is only well-defined in the northern hemisphere. In 2009 an initial slope of 4.6°/yr was found in the north, compared to an average of 9.4 ± 1.7 °/yr in the previous three cycles. This early fit to the Rush would have reached 76° at 2014.6. However, in 2010 the slope increased to 7.5°/yr (an increase

  10. Division E Commission 10: Solar Activity

    NASA Astrophysics Data System (ADS)

    Schrijver, Carolus J.; Fletcher, Lyndsay; van Driel-Gesztelyi, Lidia; Asai, Ayumi; Cally, Paul S.; Charbonneau, Paul; Gibson, Sarah E.; Gomez, Daniel; Hasan, Siraj S.; Veronig, Astrid M.; Yan, Yihua

    2016-04-01

    After more than half a century of community support related to the science of ``solar activity'', IAU's Commission 10 was formally discontinued in 2015, to be succeeded by C.E2 with the same area of responsibility. On this occasion, we look back at the growth of the scientific disciplines involved around the world over almost a full century. Solar activity and fields of research looking into the related physics of the heliosphere continue to be vibrant and growing, with currently over 2,000 refereed publications appearing per year from over 4,000 unique authors, publishing in dozens of distinct journals and meeting in dozens of workshops and conferences each year. The size of the rapidly growing community and of the observational and computational data volumes, along with the multitude of connections into other branches of astrophysics, pose significant challenges; aspects of these challenges are beginning to be addressed through, among others, the development of new systems of literature reviews, machine-searchable archives for data and publications, and virtual observatories. As customary in these reports, we highlight some of the research topics that have seen particular interest over the most recent triennium, specifically active-region magnetic fields, coronal thermal structure, coronal seismology, flares and eruptions, and the variability of solar activity on long time scales. We close with a collection of developments, discoveries, and surprises that illustrate the range and dynamics of the discipline.

  11. SORCE 11 years after launch: What's new? What's next?

    NASA Astrophysics Data System (ADS)

    Cahalan, Robert; Kopp, Greg; Pilewskie, Peter; Richard, Erik; Woods, Tom

    2014-05-01

    We discuss recent changes in estimates of the Total Solar Irradiance (TSI) and the energy budget. We highlight the historic closing of the calibration gap between the suite of TSI instruments, due largely to comparisons made with a cryogenic Transfer Radiometer Facility (TRF) located at the University of Colorado, built by UCO/LASP with support from NASA and NIST. The resulting continuous record of TSI promises to be a milestone in improving understanding of the Sun's impact on Earth's climate. Climate models are sensitive not only to TSI, but also to variations in the Spectral Solar Irradiance (SSI), and the vertical profiles of temperature and ozone are especially sensitive to SSI variations. Variations in SSI need further study before they may be considered as firmly established as TSI variations, which themselves remain controversial, despite a strengthening consensus over the SORCE epoch. The TSIS SIM has recently undergone comprehensive end-to-end calibration in the LASP SSI Radiometry Facility (SRF) utilizing the NIST SIRCUS laser system covering 210 - 2400 nm for SSI, a facility not yet available when SORCE launched in 2003. With SORCE follow-on missions such as the Total and Spectral Solar Irradiance Sensor (TSIS), we anticipate narrowing uncertainties in SSI variability that will be important to improving our understanding of the climate responses to solar forcing. The long-term goal of improving the ability to monitor Earth's energy balance, and the energy imbalance that drives global warming, will need continued improvements in the measurement of both shortwave solar and longwave earth-emitted radiation.

  12. Cyclicity of Suicides May Be Modulated by Internal or External - 11-Year Cycles: An Example of Suicide Rates in Finland

    NASA Astrophysics Data System (ADS)

    Dimitrov, B. D.; Atanassova, P. A.; Rachkova, M. I.

    2009-12-01

    Multicomponent cyclicity in monthly suicides (periods T = 18, 46 and 198 months) was found and close similarity with heliogeophysical activity (HGA) suggested by Dimitrov in 1999. The current report aimed at scrutinizing the results on suicide annual cyclicity (seasonality) in Slovenia as reported by Oravecz et al in 2007 as well as at analyzing suicide data from Finland in this regard. We postulated that: (i) trans-year (12-24 months) or far-trans-year long-term cycles of suicides might interfere with their seasonality; and (ii) associations to environmental factors with alike cyclicity (e.g. HGA, temperature) could exist. Annual suicide incidence from Oulu, Finland over years 1987-1999 was analyzed. Annual data on solar activity (sunspot index Rz or Wolf number), planetary geomagnetic activity (aa-index) and local daily mean temperatures were used. The exploration of underlying chronomes (time structures) was done by periodogram regression analysis with trigonometric approximation. We analyzed temporal dynamics, revealed cyclicity, decomposed and reconstructed significant cycles and correlated the time series data. Suicide seasonality in Slovenia during the years 1971-2002 (n=384 months, peak May-June) was considered and, although some discrepancies and methodological weaknesses were suspected, we further hypothesized about trans-year and/or longer (far-transyear) cyclic components. Suicide incidence data from Finland indicated that the 12.5-year cyclic component (or trend) was almost parallel (coherent) to the cyclic heliogeophysical parameters and similar to local decreasing temperature dynamics. Also, 8-year and 24.5-year cycles were revealed. A correlation between the 12.5-year suicide cycle and 11-year solar cycle was found (R=0.919, p=0.000009). Above findings on cyclicity and temporal correlations of suicides with cyclic environmental factors, even being still preliminary, might not only allow for further more specific analyses. They might also corroborate

  13. Testing the potential of 10Be in varved sediments from two lakes for solar activity reconstruction

    NASA Astrophysics Data System (ADS)

    Czymzik, Markus; Muscheler, Raimund; Brauer, Achim; Adolphi, Florian; Ott, Florian; Kienel, Ulrike; Dräger, Nadine; Slowinski, Michal; Aldahan, Ala; Possnert, Göran

    2015-04-01

    10Be deposition in both lakes and (2) that neither 10Be concentrations nor fluxes are the most suitable indicator of solar variability alone. Multiple regression analyses indicate that the combined 10Be concentration and flux time-series account for about 80% (Tiefer See) and 40% (Lake Czechowski) of the variability in the neutron monitor record, sufficient to reconstruct variability related to the 11-year solar cycle.

  14. Cosmic rays, solar activity and the climate

    NASA Astrophysics Data System (ADS)

    Sloan, T.; Wolfendale, A. W.

    2013-12-01

    Although it is generally believed that the increase in the mean global surface temperature since industrialization is caused by the increase in green house gases in the atmosphere, some people cite solar activity, either directly or through its effect on cosmic rays, as an underestimated contributor to such global warming. In this letter a simplified version of the standard picture of the role of greenhouse gases in causing the global warming since industrialization is described. The conditions necessary for this picture to be wholly or partially wrong are then introduced. Evidence is presented from which the contributions of either cosmic rays or solar activity to this warming is deduced. The contribution is shown to be less than 10% of the warming seen in the twentieth century.

  15. Solar activities at Sandia National Laboratories

    SciTech Connect

    Klimas, P.C.; Hasti, D.E.

    1994-03-01

    The use of renewable energy technologies is typically thought of as an integral part of creating and sustaining an environment that maximizes the overall quality of life of the Earth`s present inhabitants and does not leave an undue burden on future generations. Sandia National Laboratories has been a leader in developing and deploying many of these technologies over the last two decades. A common but special aspect of all of these activities is that they are all conducted in cooperation with various types of partners. Some of these partners have an interest in seeing these systems grow in the marketplace, while others are primarily concerned with economic benefits that can come from immediate use of these renewable energy systems. This paper describes solar thermal and photovoltaic technology activities at Sandia that are intended to accelerate the commercialization of these solar systems.

  16. Cosmic Rays, Solar Activity and the Climate

    NASA Astrophysics Data System (ADS)

    Sloan, T.

    2013-02-01

    Although it is generally believed that the increase in the mean global surface temperature since industrialisation is caused by the increase in green house gases in the atmosphere, some people cite solar activity, either directly or through its effect on cosmic rays, as an underestimated contributor to such global warming. In this paper a simplified version of the standard picture of the role of greenhouse gases in causing the global warming since industrialisation is described. The conditions necessary for this picture to be wholly or partially wrong are then introduced. Evidence is presented from which the contributions of either cosmic rays or solar activity to this warming is deduced. The contribution is shown to be less than 10% of the warming seen in the twentieth century.

  17. Solar activities at Sandia National Laboratories

    NASA Astrophysics Data System (ADS)

    Klimas, Paul C.; Hasti, David E.

    The use of renewable energy technologies is typically thought of as an integral part of creating and sustaining an environment that maximizes the overall quality of life of the Earth's present inhabitants and does not leave an undue burden on future generations. Sandia National Laboratories has been a leader in developing and deploying many of these technologies over the last two decades. A common but special aspect of all of these activities is that they are all conducted in cooperation with various types of partners. Some of these partners have an interest in seeing these systems grow in the marketplace, while others are primarily concerned with economic benefits that can come from immediate use of these renewable energy systems. This paper describes solar thermal and photovoltaic technology activities at Sandia that are intended to accelerate the commercialization of these solar systems.

  18. Geomagnetic responses to the solar wind and the solar activity

    NASA Technical Reports Server (NTRS)

    Svalgaard, L.

    1975-01-01

    Following some historical notes, the formation of the magnetosphere and the magnetospheric tail is discussed. The importance of electric fields is stressed and the magnetospheric convection of plasma and magnetic field lines under the influence of large-scale magnetospheric electric fields is outlined. Ionospheric electric fields and currents are intimately related to electric fields and currents in the magnetosphere and the strong coupling between the two regions is discussed. The energy input of the solar wind to the magnetosphere and upper atmosphere is discussed in terms of the reconnection model where interplanetary magnetic field lines merge or connect with the terrestrial field on the sunward side of the magnetosphere. The merged field lines are then stretched behind earth to form the magnetotail so that kinetic energy from the solar wind is converted into magnetic energy in the field lines in the tail. Localized collapses of the crosstail current, which is driven by the large-scale dawn/dusk electric field in the magnetosphere, divert part of this current along geomagnetic field lines to the ionosphere, causing substorms with auroral activity and magnetic disturbances. The collapses also inject plasma into the radiation belts and build up a ring current. Frequent collapses in rapid succession constitute the geomagnetic storm.

  19. Carotid Artery Stenting: Single-Center Experience Over 11 Years

    SciTech Connect

    Nolz, Richard Schernthaner, Ruediger Egbert; Cejna, Manfred; Schernthaner, Melanie Lammer, Johannes Schoder, Maria

    2010-04-15

    This article reports the results of carotid artery stenting during an 11-year period. Data from 168 carotid artery stenting procedures (symptomatic, n = 55; asymptomatic, n = 101; symptoms not accessible, n = 12) were retrospectively collected. Primary technical success rate, neurological events in-hospital, access-site complications, and contrast-induced nephropathy (n = 118) were evaluated. To evaluate the influence of experience in carotid artery stenting on intraprocedural neurologic complications, patients were divided into two groups. Group 1 included the first 80 treated patients, and group 2 the remainder of the patients (n = 88). In-stent restenoses at last-follow-up examinations (n = 89) were assessed. The overall primary technical success rate was 95.8%. The in-hospital stroke-death rate was 3.0% (n = 5; symptomatic, 5.4%; asymptomatic, 2.0%; p = 0.346). Neurologic complications were markedly higher in group 1 (4.2%; three major strokes; symptomatic, 2.8%, asymptomatic, 1.4%) compared to group 2 (2.4%; one major and one minor stroke-symptomatic, 1.2%, asymptomatic 1.2%), but this was not statistically significant. Further complications were access-site complications in 12 (7.1%), with surgical revision required in 1 (0.6%) and mild contrast-induced nephropathy in 1 (0.85%). Twenty-one (23.6%) patients had >50% in-stent restenosis during a mean follow-up of 28.2 months. In conclusion, advanced experience in carotid artery stenting leads to an acceptable periprocedural stroke-death rate. In-stent restenosis could be a critical factor during the follow-up course.

  20. The Pioneer Venus Orbiter: 11 years of data. A laboratory for atmospheres seminar talk

    NASA Technical Reports Server (NTRS)

    Kasprzak, W. T.

    1990-01-01

    The Pioneer Venus Orbiter has been in operation since orbit insertion on December 4, 1978. For the past 11 years, it has been acquiring data in the salient features of the planet, its atmosphere, ionosphere, and interaction with the solar wind. A few of the results of this mission are summarized and their contribution to our general understanding of the planet Venus is discussed. Although Earth and Venus are often called twin planets, they are only superficially similar. Possessing no obvious evidence of plate tectonics, lacking water and an intrinsic magnetic field, and having a hot, dense carbon dioxide atmosphere with sulfuric acid clouds makes Venus a unique object of study by the Orbiter's instruments.

  1. The Magnetic Origins of Solar Activity

    NASA Technical Reports Server (NTRS)

    Antiochos, S. K.

    2012-01-01

    The defining physical property of the Sun's corona is that the magnetic field dominates the plasma. This property is the genesis for all solar activity ranging from quasi-steady coronal loops to the giant magnetic explosions observed as coronal mass ejections/eruptive flares. The coronal magnetic field is also the fundamental driver of all space weather; consequently, understanding the structure and dynamics of the field, especially its free energy, has long been a central objective in Heliophysics. The main obstacle to achieving this understanding has been the lack of accurate direct measurements of the coronal field. Most attempts to determine the magnetic free energy have relied on extrapolation of photospheric measurements, a notoriously unreliable procedure. In this presentation I will discuss what measurements of the coronal field would be most effective for understanding solar activity. Not surprisingly, the key process for driving solar activity is magnetic reconnection. I will discuss, therefore, how next-generation measurements of the coronal field will allow us to understand not only the origins of space weather, but also one of the most important fundamental processes in cosmic and laboratory plasmas.

  2. Solar irradiance variations due to active regions

    SciTech Connect

    Oster, L.; Schatten, K.H.; Sofia, S.

    1982-05-15

    We have been able to reproduce the variations of the solar irradiance observed by ACRIM to an accuracy of better than +- 0.4 W m/sup -2/, assuming that during the 6 month observation period in 1980 the solar luminosity was constant. The improvement over previous attempts is primarily due to the inclusion of faculae. The reproduction scheme uses simple geometrical data on spot and facula areas, and conventional parameters for the respective fluxes and angular dependencies. The quality of reproduction is not very sensitive to most of the details of these parameters; nevertheless, there conventional parameters cannot be very different from their actual values in the solar atmosphere. It is interesting that the time average of the integrated excess emission (over directions) of the faculae cancels out the integrated deficit produced by the spots, within an accuracy of about 10%. If this behavior were maintained over longer periods of time, say, on the order of an activity cycle, active regions could be viewed as a kind of lighthouse where the energy deficit near the normal direction, associated with the spots, is primarily reemitted close to the tangential directions by the faculae. The currently available data suggest that energy ''storage'' associated with the redirection of flux near active regions on the Sun is comparable to the lifetime of the faculae.

  3. Solar Eruptions Initiated in Sigmoidal Active Regions

    NASA Astrophysics Data System (ADS)

    Savcheva, Antonia

    2016-07-01

    active regions that have been shown to possess high probability for eruption. They present a direct evidence of the existence of flux ropes in the corona prior to the impulsive phase of eruptions. In order to gain insight into their eruptive behavior and how they get destabilized we need to know their 3D magnetic field structure. First, we review some recent observations and modeling of sigmoidal active regions as the primary hosts of solar eruptions, which can also be used as useful laboratories for studying these phenomena. Then, we concentrate on the analysis of observations and highly data-constrained non-linear force-free field (NLFFF) models over the lifetime of several sigmoidal active regions, where we have captured their magnetic field structure around the times of major flares. We present the topology analysis of a couple of sigmoidal regions pointing us to the probable sites of reconnection. A scenario for eruption is put forward by this analysis. We demonstrate the use of this topology analysis to reconcile the observed eruption features with the standard flare model. Finally, we show a glimpse of how such a NLFFF model of an erupting region can be used to initiate a CME in a global MHD code in an unprecedented realistic manner. Such simulations can show the effects of solar transients on the near-Earth environment and solar system space weather.

  4. COUPLING THE SOLAR DYNAMO AND THE CORONA: WIND PROPERTIES, MASS, AND MOMENTUM LOSSES DURING AN ACTIVITY CYCLE

    SciTech Connect

    Pinto, Rui F.; Brun, Allan Sacha; Grappin, Roland

    2011-08-20

    We study the connections between the Sun's convection zone and the evolution of the solar wind and corona. We let the magnetic fields generated by a 2.5-dimensional (2.5D) axisymmetric kinematic dynamo code (STELEM) evolve in a 2.5D axisymmetric coronal isothermal magnetohydrodynamic code (DIP). The computations cover an 11 year activity cycle. The solar wind's asymptotic velocity varies in latitude and in time in good agreement with the available observations. The magnetic polarity reversal happens at different paces at different coronal heights. Overall the Sun's mass-loss rate, momentum flux, and magnetic braking torque vary considerably throughout the cycle. This cyclic modulation is determined by the latitudinal distribution of the sources of open flux and solar wind and the geometry of the Alfven surface. Wind sources and braking torque application zones also vary accordingly.

  5. Solar Energy Education. Renewable energy activities for earth science

    SciTech Connect

    Not Available

    1980-01-01

    A teaching manual is provided to aid teachers in introducing renewable energy topics to earth science students. The main emphasis is placed on solar energy. Activities for the student include a study of the greenhouse effect, solar gain for home heating, measuring solar radiation, and the construction of a model solar still to obtain fresh water. Instructions for the construction of apparatus to demonstrate a solar still, the greenhouse effect and measurement of the altitude and azimuth of the sun are included. (BCS)

  6. Influence of solar activity on Jupiter's atmosphere

    NASA Astrophysics Data System (ADS)

    Vidmachenko, A. P.

    2016-05-01

    The influx of solar energy to different latitudes while Jupiter's orbital motion around the Sun varies significantly. This leads to a change in the optical and physical characteristics of its atmosphere. Analysis of the data for 1850-1991 on determination of the integral magnitude Mj Jupiter in the V filter, and a comparison with the changes of the Wolf numbers W, characterizing the variations of solar activity (SA) - showed that the change of Mj in maxima of the SA - has minima for odd, and maximums - for the even of SA cycles. That is, changing of the Jupiter brightness in visible light is much evident 22.3-year magnetic cycle, and not just about the 11.1-year cycle of solar activity. Analysis of the obtained in 1960-2015 data on the relative distribution of brightness along the central meridian of Jupiter, for which we calculated the ratio of the brightness Aj of northern to the southern part of the tropical and temperate latitudinal zones, allowed to approximate the change of Aj by sinusoid with a period of 11.91±0.07 earth years. Comparison of time variation of Aj from changes in the index of SA R, and the movement of the planet in its orbit - indicates the delay of response of the visible cloud layer in the atmosphere of the Sun's exposure mode for 6 years. This value coincides with the radiative relaxation of the hydrogen-helium atmosphere

  7. Tsunami related to solar and geomagnetic activity

    NASA Astrophysics Data System (ADS)

    Cataldi, Gabriele; Cataldi, Daniele; Straser, Valentino

    2016-04-01

    The authors of this study wanted to verify the existence of a correlation between earthquakes of high intensity capable of generating tsunami and variations of solar and Earth's geomagnetic activity. To confirming or not the presence of this kind of correlation, the authors analyzed the conditions of Spaceweather "near Earth" and the characteristics of the Earth's geomagnetic field in the hours that preceded the four earthquakes of high intensity that have generated tsunamis: 1) Japan M9 earthquake occurred on March 11, 2011 at 05:46 UTC; 2) Japan M7.1 earthquake occurred on October 25, 2013 at 17:10 UTC; 3) Chile M8.2 earthquake occurred on April 1, 2014 at 23:46 UTC; 4) Chile M8.3 earthquake occurred on September 16, 2015 at 22:54 UTC. The data relating to the four earthquakes were provided by the United States Geological Survey (USGS). The data on ion density used to realize the correlation study are represented by: solar wind ion density variation detected by ACE (Advanced Composition Explorer) Satellite, in orbit near the L1 Lagrange point, at 1.5 million of km from Earth, in direction of the Sun. The instrument used to perform the measurement of the solar wind ion density is the Electron, Proton, and Alpha Monitor (EPAM) instrument, equipped on the ACE Satellite. To conduct the study, the authors have taken in consideration the variation of the solar wind protons density of three different energy fractions: differential proton flux 1060-1900 keV (p/cm^2-sec-ster-MeV); differential proton flux 761-1220 keV (p/cm^2-sec-ster-MeV); differential proton flux 310-580 keV (p/cm^2-sec-ster-MeV). Geomagnetic activity data were provided by Tromsø Geomagnetic Observatory (TGO), Norway; by Scoresbysund Geomagnetic Observatory (SCO), Greenland, Denmark and by Space Weather Prediction Center of Pushkov Institute of terrestrial magnetism, ionosphere and radio wave propagation (IZMIRAN), Troitsk, Moscow Region. The results of the study, in agreement with what already

  8. Is there long-range memory in solar activity on timescales shorter than the sunspot period?

    NASA Astrophysics Data System (ADS)

    Rypdal, M.; Rypdal, K.

    2012-04-01

    The sunspot number (SSN), the total solar irradiance (TSI), a TSI reconstruction, and the solar flare index (SFI) are analyzed for long-range persistence (LRP). Standard Hurst analysis yields H ≈ 0.9, which suggests strong LRP. However, solar activity time series are nonstationary because of the almost-periodic 11 year smooth component, and the analysis does not give the correct H for the stochastic component. Better estimates are obtained by detrended fluctuation analysis, but estimates are biased and errors are large because of the short time records. These time series can be modeled as a stochastic process of the form x(t) = y(t) + σy(t)wH(t), where y(t) is the smooth component and wH(t) is a stationary fractional noise with Hurst exponent H. From ensembles of numerical solutions to the stochastic model and application of Bayes' theorem, we can obtain bias and error bars on H and also a test of the hypothesis that a process is uncorrelated (H = 1/2). The conclusions from the present data sets are that SSN, TSI, and TSI reconstruction almost certainly are long-range persistent, but with the most probable value H ≈ 0.7. The SFI process, however, is either very weakly persistent (H < 0.6) or completely uncorrelated on timescales longer than a few solar rotations. Differences between stochastic properties of the TSI and its reconstruction indicate some error in the reconstruction scheme.

  9. Preferred longitudes in solar and stellar activity

    NASA Astrophysics Data System (ADS)

    Berdyugina, S. V.

    An analysis of the distribution of starspots on the surfaces of very active stars, such as RS CVn- FK Com-type stars as well as young solar analogs, reveals preferred longitudes of spot formation and their quasi-periodic oscillations, i.e. flip-flop cycles. A non-linear migration of the preferred longitudes suggests the presence of the differential rotation and variations of mean spot latitudes. It enables recovering stellar butterfly diagrams. Such phenomena are found to persist in the sunspot activity as well. A comparison of the observed properties of preferred longitudes on the Sun with those detected on more active stars leads to the conclusion that we can learn fine details of the stellar dynamo by studying the Sun, while its global parameters on the evolutionary time scale are provided by a sample of active stars.

  10. Solar-energy absorber: Active infrared (IR) trap

    NASA Technical Reports Server (NTRS)

    Brantley, L. W., Jr.

    1974-01-01

    Efficiency of solar-energy absorbers may be improved to 95% by actively cooling their intermediate glass plates. This approach may be of interest to manufacturers of solar absorbers and to engineers and scientists developing new sources of energy.

  11. Nanoflare activity in the solar chromosphere

    SciTech Connect

    Jess, D. B.; Mathioudakis, M.; Keys, P. H.

    2014-11-10

    We use ground-based images of high spatial and temporal resolution to search for evidence of nanoflare activity in the solar chromosphere. Through close examination of more than 1 × 10{sup 9} pixels in the immediate vicinity of an active region, we show that the distributions of observed intensity fluctuations have subtle asymmetries. A negative excess in the intensity fluctuations indicates that more pixels have fainter-than-average intensities compared with those that appear brighter than average. By employing Monte Carlo simulations, we reveal how the negative excess can be explained by a series of impulsive events, coupled with exponential decays, that are fractionally below the current resolving limits of low-noise equipment on high-resolution ground-based observatories. Importantly, our Monte Carlo simulations provide clear evidence that the intensity asymmetries cannot be explained by photon-counting statistics alone. A comparison to the coronal work of Terzo et al. suggests that nanoflare activity in the chromosphere is more readily occurring, with an impulsive event occurring every ∼360 s in a 10,000 km{sup 2} area of the chromosphere, some 50 times more events than a comparably sized region of the corona. As a result, nanoflare activity in the chromosphere is likely to play an important role in providing heat energy to this layer of the solar atmosphere.

  12. MASC: Magnetic Activity of the Solar Corona

    NASA Astrophysics Data System (ADS)

    Auchere, Frederic; Fineschi, Silvano; Gan, Weiqun; Peter, Hardi; Vial, Jean-Claude; Zhukov, Andrei; Parenti, Susanna; Li, Hui; Romoli, Marco

    We present MASC, an innovative payload designed to explore the magnetic activity of the solar corona. It is composed of three complementary instruments: a Hard-X-ray spectrometer, a UV / EUV imager, and a Visible Light / UV polarimetric coronagraph able to measure the coronal magnetic field. The solar corona is structured in magnetically closed and open structures from which slow and fast solar winds are respectively released. In spite of much progress brought by two decades of almost uninterrupted observations from several space missions, the sources and acceleration mechanisms of both types are still not understood. This continuous expansion of the solar atmosphere is disturbed by sporadic but frequent and violent events. Coronal mass ejections (CMEs) are large-scale massive eruptions of magnetic structures out of the corona, while solar flares trace the sudden heating of coronal plasma and the acceleration of electrons and ions to high, sometimes relativistic, energies. Both phenomena are most probably driven by instabilities of the magnetic field in the corona. The relations between flares and CMEs are still not understood in terms of initiation and energy partition between large-scale motions, small-scale heating and particle acceleration. The initiation is probably related to magnetic reconnection which itself results magnetic topological changes due to e.g. flux emergence, footpoints motions, etc. Acceleration and heating are also strongly coupled since the atmospheric heating is thought to result from the impact of accelerated particles. The measurement of both physical processes and their outputs is consequently of major importance. However, despite its fundamental importance as a driver for the physics of the Sun and of the heliosphere, the magnetic field of our star’s outer atmosphere remains poorly understood. This is due in large part to the fact that the magnetic field is a very difficult quantity to measure. Our knowledge of its strength and

  13. Transient flows of the solar wind associated with small-scale solar activity in solar minimum

    NASA Astrophysics Data System (ADS)

    Slemzin, Vladimir; Veselovsky, Igor; Kuzin, Sergey; Gburek, Szymon; Ulyanov, Artyom; Kirichenko, Alexey; Shugay, Yulia; Goryaev, Farid

    The data obtained by the modern high sensitive EUV-XUV telescopes and photometers such as CORONAS-Photon/TESIS and SPHINX, STEREO/EUVI, PROBA2/SWAP, SDO/AIA provide good possibilities for studying small-scale solar activity (SSA), which is supposed to play an important role in heating of the corona and producing transient flows of the solar wind. During the recent unusually weak solar minimum, a large number of SSA events, such as week solar flares, small CMEs and CME-like flows were observed and recorded in the databases of flares (STEREO, SWAP, SPHINX) and CMEs (LASCO, CACTUS). On the other hand, the solar wind data obtained in this period by ACE, Wind, STEREO contain signatures of transient ICME-like structures which have shorter duration (<10h), weaker magnetic field strength (<10 nT) and lower proton temperature than usual ICMEs. To verify the assumption that ICME-like transients may be associated with the SSA events we investigated the number of weak flares of C-class and lower detected by SPHINX in 2009 and STEREO/EUVI in 2010. The flares were classified on temperature and emission measure using the diagnostic means of SPHINX and Hinode/EIS and were confronted with the parameters of the solar wind (velocity, density, ion composition and temperature, magnetic field, pitch angle distribution of the suprathermal electrons). The outflows of plasma associated with the flares were identified by their coronal signatures - CMEs (only in few cases) and dimmings. It was found that the mean parameters of the solar wind projected to the source surface for the times of the studied flares were typical for the ICME-like transients. The results support the suggestion that weak flares can be indicators of sources of transient plasma flows contributing to the slow solar wind at solar minimum, although these flows may be too weak to be considered as separate CMEs and ICMEs. The research leading to these results has received funding from the European Union’s Seventh Programme

  14. Magnetic helicity in emerging solar active regions

    SciTech Connect

    Liu, Y.; Hoeksema, J. T.; Bobra, M.; Hayashi, K.; Sun, X.; Schuck, P. W.

    2014-04-10

    Using vector magnetic field data from the Helioseismic and Magnetic Imager instrument aboard the Solar Dynamics Observatory, we study magnetic helicity injection into the corona in emerging active regions (ARs) and examine the hemispheric helicity rule. In every region studied, photospheric shearing motion contributes most of the helicity accumulated in the corona. In a sample of 28 emerging ARs, 17 follow the hemisphere rule (61% ± 18% at a 95% confidence interval). Magnetic helicity and twist in 25 ARs (89% ± 11%) have the same sign. The maximum magnetic twist, which depends on the size of an AR, is inferred in a sample of 23 emerging ARs with a bipolar magnetic field configuration.

  15. Automatic Tracking of Active Regions and Detection of Solar Flares in Solar EUV Images

    NASA Astrophysics Data System (ADS)

    Caballero, C.; Aranda, M. C.

    2014-05-01

    Solar catalogs are frequently handmade by experts using a manual approach or semi-automated approach. The appearance of new tools is very useful because the work is automated. Nowadays it is impossible to produce solar catalogs using these methods, because of the emergence of new spacecraft that provide a huge amount of information. In this article an automated system for detecting and tracking active regions and solar flares throughout their evolution using the Extreme UV Imaging Telescope (EIT) on the Solar and Heliospheric Observatory (SOHO) spacecraft is presented. The system is quite complex and consists of different phases: i) acquisition and preprocessing; ii) segmentation of regions of interest; iii) clustering of these regions to form candidate active regions which can become active regions; iv) tracking of active regions; v) detection of solar flares. This article describes all phases, but focuses on the phases of tracking and detection of active regions and solar flares. The system relies on consecutive solar images using a rotation law to track the active regions. Also, graphs of the evolution of a region and solar evolution are presented to detect solar flares. The procedure developed has been tested on 3500 full-disk solar images (corresponding to 35 days) taken from the spacecraft. More than 75 % of the active regions are tracked and more than 85 % of the solar flares are detected.

  16. Interpretation of short and long-term oscillations of solar activity by alpha-omega dynamo model with two macro-cells of meridional fluxes

    NASA Astrophysics Data System (ADS)

    Popova, Elena

    2016-04-01

    Solar magnetic activity is related with generation strong magnetic fields in the depths of the Sun and manifested in sunspot occurrence on the solar surface. The amplitude and the spatial configuration of the magnetic field of our star are changing over the years. The most widely known variations of solar magnetic field are 11-years cycles and grand minima. The generation and evolution of the solar magnetic field and other stars is usually related to the dynamo mechanism. This mechanism is based on the consideration of the joint influence of the alpha-effect and differential rotation. Dynamo sources can be located at different depths (active layers) of the convection zone and can have different intensities. Based on such a system, the dynamical system with meridional fluxes in the case of the stellar dynamo with independent active layers has been constructed. We obtained quasi-biennial magnetic field oscillations for middle layer of the convective zone which can account for short term (2.5 years) oscillations often reported for 11 year solar cycles. Magnetic field waves from top and bottom layers of the convective zone are found generated with close frequencies whose interaction leads to beating effects responsible for the grand cycles (350-400 years) superimposed on a standard 22 year cycle. Using our model we made prediction of poloidal and toroidal fields on short (until 2040 year) and long-term timescale (until 3200 year) (V. V. Zharkova, S. J. Shepherd, E. Popova & S. I. Zharkov, Nature SR, 2015).

  17. Radio magnetography of the solar active regions

    NASA Astrophysics Data System (ADS)

    Gelfreikh, G. B.; Shibasaki, K.

    The observations of the solar magnetic fields is one of the most important basics for study of all important processes in structuring the solar atmosphere and most kinds of the release of the energy. The radio methods are of the special interest here because they gain the information on the magnetic field strength in the solar corona and upper chromosphere where traditional optical methods do not work. The construction of the Nobeyama radio heliograph opens a new era in usage radio methods for solar radio magnetography due to some unique property of the instrument: - The 2D mapping of the whole disk of the sun both in I and V Stokes parameters with resolution of 10 arcsec. - Regular observations (without breaks due to weather conditions), eight hours a day, already for seven years. The most effective and representative radio method of measuring the solar magnetic fields is to use polarization measurements of the thermal bremsstrahlung (free-free emission). It is applicable both to analysis of chromospheric and coronal magnetic fields and presents information on longitude component of the magnetic field strength in solar active regions. Three problems are met, however: (i) One needs to measure very low degree of polarization (small fraction of a percent); (ii) To get the real value of the field the spectral data are necessary. (iii) While observing an active region on the disk we have got the overlapping effects on polarized signal of the chromospheric and coronal magnetic fields. To get higher sensitivity the averaging of the radio maps over periods of about ten minutes were used with the results of sensitivity on V-maps of the order 0.1%. Observations for a number of dates have been analysed (August 22, 1992, October 31, 1992; June 30, 1993, July 22,1994, June 15, 1995 and some more). In all cases a very good similarity was found of the polarized regions (V-maps) with the Ca^ + plages in form and total coincidence with the direction of the magnetic fields on the

  18. Composite Mg II solar activity index for solar cycles 21 and 22

    NASA Technical Reports Server (NTRS)

    Deland, Matthew T.; Cebula, Richard P.

    1993-01-01

    On the basis of version 1.0 of the composite MG II solar activity index data set, it is shown that the change in the 27-day running average of the Mg II index from solar maximum to solar minimum is about 8 percent for solar cycle 21 and about 9 percent for solar cycle 22 through January 1992. Scaling factors based on the short-term variations in the Mg II index and solar irradiance data sets are developed for each instrument to estimate solar variability at mid-UV and near-UV wavelengths. A set of composite scale factors are derived for use with the present composite MG index. Near 205 cm, where solar irradiance variations are important for stratospheric chemistry, the estimated change in irradiance during solar cycle 22 is about 10 +/- 1 percent using the composite Mg II index (version 1.0) and scale factors.

  19. Correlation of Doppler noise during solar conjunctions with fluctuations in solar activity

    NASA Technical Reports Server (NTRS)

    Berman, A. L.; Rockwell, S. T.

    1975-01-01

    Deviations betweeb observed Doppler noise and the noise model during solar conjunction were analyzed. It is tentatively concluded that these deviations are due to short-term fluctuations in solar activity as seen along the signal path, and not to solar/antenna structure effects or system noise temperature.

  20. Modified Coronal Index of the Solar Activity

    NASA Astrophysics Data System (ADS)

    Lukáč, B.; Rybanský, M.

    2010-05-01

    The original coronal index of the solar activity (CI) has been constructed on the basis of ground-based measurements of the intensities of the coronal line of 530.3 nm (Rybanský in Bull. Astron. Inst. Czechoslov., 28, 367, 1975; Rybanský et al. in J. Geophys. Res., 110, A08106, 2005). In this paper, CI is compared with the EUV measurements on the CELIAS/SEM equipment based on the same idea as the original idea of the coronal index. The correlation is very good for the period 1996 - 2005 ( r=0.94 for daily values). The principal result of this paper is the introduction of the modified coronal index (MCI) which in all uses and contexts can replace the existing CI index. Daily MCI values extend over a time period of six solar activity cycles. Future MCI measurements will be derived from more reliable measurements made by space-based observatories that are not influenced by the weather. MCI measurements are and will continue to be archived at the web site of the Slovak Central Observatory in Hurbanovo ( http://www.suh.sk/obs/vysl/MCI.htm ).

  1. Long-term persistence of solar activity

    NASA Technical Reports Server (NTRS)

    Ruzmaikin, Alexander; Feynman, Joan; Robinson, Paul

    1994-01-01

    We examine the question of whether or not the non-periodic variations in solar activity are caused by a white-noise, random process. The Hurst exponent, which characterizes the persistence of a time series, is evaluated for the series of C-14 data for the time interval from about 6000 BC to 1950 AD. We find a constant Hurst exponent, suggesting that solar activity in the frequency range from 100 to 3000 years includes an important continuum component in addition to the well-known periodic variations. The value we calculate, H approximately 0.8, is significantly larger than the value of 0.5 that would correspond to variations produced by a white-noise process. This value is in good agreement with the results for the monthly sunspot data reported elsewhere, indicating that the physics that produces the continuum is a correlated random process and that it is the same type of process over a wide range of time interval lengths.

  2. Solar Energy Education. Industrial arts: student activities. Field test edition

    SciTech Connect

    Not Available

    1981-02-01

    In this teaching manual several activities are presented to introduce students to information on solar energy through classroom instruction. Wind power is also included. Instructions for constructing demonstration models for passive solar systems, photovoltaic cells, solar collectors and water heaters, and a bicycle wheel wind turbine are provided. (BCS)

  3. Solar-terrestrial predictions proceedings. Volume 4: Prediction of terrestrial effects of solar activity

    NASA Technical Reports Server (NTRS)

    Donnelly, R. E. (Editor)

    1980-01-01

    Papers about prediction of ionospheric and radio propagation conditions based primarily on empirical or statistical relations is discussed. Predictions of sporadic E, spread F, and scintillations generally involve statistical or empirical predictions. The correlation between solar-activity and terrestrial seismic activity and the possible relation between solar activity and biological effects is discussed.

  4. TEC variability over Havana for different solar activity conditions

    NASA Astrophysics Data System (ADS)

    Lazo, B.; Alazo, K.; Rodríguez, M.; Calzadilla, A.

    2004-01-01

    The variability of total electron content measured over Havana using ATS-6, SMS-1 and GOES-3 geosynchronous satellite signals has been investigated for low, middle and high solar activity periods from 1974 to 1982. The results show that the standard deviation is smooth during the nighttime hours and maximal at the noon or postnoon hours. A strong solar activity dependence of the standard deviation has been found with maximum values during periods of high solar activity.

  5. Solar wind turbulence as a driver of geomagnetic activity

    NASA Astrophysics Data System (ADS)

    Ikechukwu Ugwu, Ernest Benjamin; Nneka Okeke, Francisca; Ugonabo, Obiageli Josephine

    2016-07-01

    We carried out simultaneous analyses of interplanetary and geomagnetic datasets for the period of (solar Maunder) least (2009) and maximum (2002) solar activity to determine the nature of solar wind turbulence on geomagnetic activity using AE, ASY-D, and ASY-H indices. We determined the role played by Alfvénic fluctuations in the solar wind so as to find out the nature of the turbulence. Our analyses showed that solar wind turbulence play a role in geomagnetic processes at high latitudes during periods of low and high solaractivity but does not have any effect at mid-low latitudes.

  6. Prominences: The Key to Understanding Solar Activity

    NASA Technical Reports Server (NTRS)

    Karpen, Judy T.

    2011-01-01

    Prominences are spectacular manifestations of both quiescent and eruptive solar activity. The largest examples can be seen with the naked eye during eclipses, making prominences among the first solar features to be described and catalogued. Steady improvements in temporal and spatial resolution from both ground- and space-based instruments have led us to recognize how complex and dynamic these majestic structures really are. Their distinguishing characteristics - cool knots and threads suspended in the hot corona, alignment along inversion lines in the photospheric magnetic field within highly sheared filament channels, and a tendency to disappear through eruption - offer vital clues as to their origin and dynamic evolution. Interpreting these clues has proven to be contentious, however, leading to fundamentally different models that address the basic questions: What is the magnetic structure supporting prominences, and how does so much cool, dense plasma appear in the corona? Despite centuries of increasingly detailed observations, the magnetic and plasma structures in prominences are poorly known. Routine measurements of the vector magnetic field in and around prominences have become possible only recently, while long-term monitoring of the underlying filament-channel formation process also remains scarce. The process responsible for prominence mass is equally difficult to establish, although we have long known that the chromosphere is the only plausible source. As I will discuss, however, the motions and locations of prominence material can be used to trace the coronal field, thus defining the magnetic origins of solar eruptions. A combination of observations, theory, and numerical modeling must be used to determine whether any of the competing theories accurately represents the physics of prominences. I will discuss the criteria for a successful prominence model, compare the leading models, and present in detail one promising, comprehensive scenario for

  7. Correlation between solar activity and El Niño Southern Oscillation (ENSO)

    NASA Astrophysics Data System (ADS)

    Mumtahana, Farahhati; Sulistiani, Santi; Kesumaningrum, Rasdewita

    2015-09-01

    ENSO (El Niño Southern Oscillation) is an oceanic anomaly and atmospheric phenomenon in equatorial pacific indicated by Southern Oscillation Index (SOI). It describes the air pressure between Darwin (Australia) and Tahiti (Southern Pacific Ocean). ENSO occurs at irregular interval between 3 and 7 years causing global climate system variation. Considering this event occurs periodically, it might be triggered by the 11-years of solar cycle as an energy source. In this case, the solar activity is represented by the variability of the periodical Sunspot number (R). Changes in the rate of heating and the amount of solar energy package is presumed to be the cause of the ENSO phenomenon. In this work, we use the data of Sunspot number (R) and SOI from 1870 to 2013. Derived from those data, spectral analysis of the output energy package is analyzed by using WWZ (Weighted Wavelet Z-Transform). Then we correlate with the periodicity and condition of ENSO phenomenon to obtain the prediction of occurrence interval.

  8. The magnetic field structure in the active solar corona.

    NASA Technical Reports Server (NTRS)

    Schatten, K. H.

    1971-01-01

    The structure of the magnetic field of the active solar corona is discussed with reference to optical and radio observations of the solar atmosphere. Eclipse observations provide evidence of fine scale structures in the solar atmosphere that appear to relate to the coronal magnetic field. The coronal magnetic field used for comparison is calculated from potential theory; the influence of solar activity upon the potential theory field is discussed with reference to observations of the Faraday rotation of a microwave signal from Pioneer 6 as it was occulted by the solar atmosphere. Evidence has been found suggesting the existence of expanding magnetic bottles located at 10 solar radii above flaring active regions. The dynamics of these events is discussed. It is further suggested that these magnetic bottles are an important component in the solar corona.

  9. Solar Activity Studies using Microwave Imaging Observations

    NASA Technical Reports Server (NTRS)

    Gopalswamy, N.

    2016-01-01

    We report on the status of solar cycle 24 based on polar prominence eruptions (PEs) and microwave brightness enhancement (MBE) information obtained by the Nobeyama radioheliograph. The north polar region of the Sun had near-zero field strength for more than three years (2012-2015) and ended only in September 2015 as indicated by the presence of polar PEs and the lack of MBE. The zero-polar-field condition in the south started only around 2013, but it ended by June 2014. Thus the asymmetry in the times of polarity reversal switched between cycle 23 and 24. The polar MBE is a good proxy for the polar magnetic field strength as indicated by the high degree of correlation between the two. The cross-correlation between the high- and low-latitude MBEs is significant for a lag of approximately 5.5 to 7.3 years, suggesting that the polar field of one cycle indicates the sunspot number of the next cycle in agreement with the Babcock-Leighton mechanism of solar cycles. The extended period of near-zero field in the north-polar region should result in a weak and delayed sunspot activity in the northern hemisphere in cycle 25.

  10. The solar atmosphere and the structure of active regions. [aircraft accidents, weather

    NASA Technical Reports Server (NTRS)

    Sturrock, P. A.

    1975-01-01

    Numerical analyses of solar activities are presented. The effect of these activities on aircraft and weather conditions was studied. Topics considered are: (1) solar flares; (2) solar X-rays; and (3) solar magnetic fields (charts are shown).

  11. Are short-term variations in solar oscillation frequencies the signature of a second solar dynamo?

    NASA Astrophysics Data System (ADS)

    Broomhall, Anne-Marie; Fletcher, Stephen T.; Salabert, David; Basu, Sarbani; Chaplin, William J.; Elsworth, Yvonne; García, Rafael A.; Jiménez, Antonio; New, Roger

    2011-01-01

    In addition to the well-known 11-year solar cycle, the Sun's magnetic activity also shows significant variation on shorter time scales, e.g. between one and two years. We observe a quasi-biennial (2-year) signal in the solar p-mode oscillation frequencies, which are sensitive probes of the solar interior. The signal is visible in Sun-as-a-star data observed by different instruments and here we describe the results obtained using BiSON, GOLF, and VIRGO data. Our results imply that the 2-year signal is susceptible to the influence of the main 11-year solar cycle. However, the source of the signal appears to be separate from that of the 11-year cycle. We speculate as to whether it might be the signature of a second dynamo, located in the region of near-surface rotational shear.

  12. Active Vibration Damping of Solar Arrays

    NASA Astrophysics Data System (ADS)

    Reinicke, Gunar; Baier, Horst; Grillebeck, Anton; Scharfeld, Frank; Hunger, Joseph; Abou-El-Ela, A.; Lohberg, Andreas

    2012-07-01

    Current generations of large solar array panels are lightweight and flexible constructions to reduce net masses. They undergo strong vibrations during launch. The active vibration damping is one convenient option to reduce vibration responses and limit stresses in facesheets. In this study, two actuator concepts are used for vibration damping. A stack interface actuator replaces a panel hold down and is decoupled from bending moments and shear forces. Piezoelectric patch actuators are used as an alternative, where the number, position and size of actuators are mainly driven by controllability analyses. Linear Quadratic Gaussian control is used to attenuate vibrations of selected mode shapes with both actuators. Simulations as well as modal and acoustic tests show the feasibility of selected actuator concepts.

  13. Solar Activity Forecasting for use in Orbit Prediction

    NASA Technical Reports Server (NTRS)

    Schatten, Kenneth

    2001-01-01

    Orbital prediction for satellites in low Earth orbit (LEO) or low planetary orbit depends strongly on exospheric densities. Solar activity forecasting is important in orbital prediction, as the solar UV and EUV inflate the upper atmospheric layers of the Earth and planets, forming the exosphere in which satellites orbit. Geomagnetic effects also relate to solar activity. Because of the complex and ephemeral nature of solar activity, with different cycles varying in strength by more than 100%, many different forecasting techniques have been utilized. The methods range from purely numerical techniques (essentially curve fitting) to numerous oddball schemes, as well as a small subset, called 'Precursor techniques.' The situation can be puzzling, owing to the numerous methodologies involved, somewhat akin to the numerous ether theories near the turn of the last century. Nevertheless, the Precursor techniques alone have a physical basis, namely dynamo theory, which provides a physical explanation for why this subset seems to work. I discuss this solar cycle's predictions, as well as the Sun's observed activity. I also discuss the SODA (Solar Dynamo Amplitude) index, which provides the user with the ability to track the Sun's hidden, interior dynamo magnetic fields. As a result, one may then update solar activity predictions continuously, by monitoring the solar magnetic fields as they change throughout the solar cycle. This paper ends by providing a glimpse into what the next solar cycle (#24) portends.

  14. Variability of Solar Irradiances Using Wavelet Analysis

    NASA Technical Reports Server (NTRS)

    Pesnell, William D.

    2007-01-01

    We have used wavelets to analyze the sunspot number, F10.7 (the solar irradiance at a wavelength of approx.10.7 cm), and Ap (a geomagnetic activity index). Three different wavelets are compared, showing how each selects either temporal or scale resolution. Our goal is an envelope of solar activity that better bounds the large amplitude fluctuations form solar minimum to maximum. We show how the 11-year cycle does not disappear at solar minimum, that minimum is only the other part of the solar cycle. Power in the fluctuations of solar-activity-related indices may peak during solar maximum but the solar cycle itself is always present. The Ap index has a peak after solar maximum that appears to be better correlated with the current solar cycle than with the following cycle.

  15. Growth and Decay of Solar Active Regions

    NASA Astrophysics Data System (ADS)

    Dobias, J. J.; Chapman, G. A.; Cookson, A. M.; Preminger, D. G.; Walton, S. R.

    2002-05-01

    We report here on a study of growth and decay rates of sunspot and facular areas of solar active regions. The data used in this project come from an ongoing program of daily photometric observations of the sun with the Cartesian Full Disk Telescope No. 1 (CFDT1) at the San Fernando Observatory (SFO). Sunspot regions are determined from images taken with a red filter centered at 672.3 nm with a bandpass of 9.7 nm, while images taken with a Ca II K line filter, centered at 393.4 nm and with a bandpass of only 1nm, are used to find facular areas. Before any areas can be found on any observed images, they have to be calibrated then flattened by removing limb darkening thus producing contrast images. Sunspot areas are then determined from any pixel with contrast of -8.5% or less, while any pixel on a K line contrast image with a contrast of +4.8%/μ or higher, where μ is the cosine of the heliocentric angle, is considered to be a facular pixel. To identify the areas as clearly as possible, studied active regions were usually observed on the sun with relatively low activity; that means that each region is either alone on the sun's disk or with only very few other active regions present. Furthermore, to obtain growth and decay patterns of the areas as reliably as possible, only such active regions must be chosen for which there is as complete observational coverage as possible. At the present time studies have been finished for only a few active regions, but analysis of several others is on going. Obtained results will be presented at the meeting. This work is supported by NSF grant ATM-9912132 and NASA grants NAG5-7191 and NAG5-7778.

  16. Solar activity during the deep minimum of 2009

    NASA Astrophysics Data System (ADS)

    Sylwester, Janusz; Siarkowski, Marek; Gburek, Szymon; Gryciuk, Magdalena; Kepa, Anna; Kowaliński, Mirosław; Mrozek, Tomek; Phillips, Kenneth J. H.; Podgórski, Piotr; Sylwester, Barbara

    2014-12-01

    We discuss the character of the unusually deep solar activity minimum of 2009 between Solar Cycles 23 and 24. Levels of solar activity in various parts of the solar atmosphere -- photosphere, chromosphere, transition region, and corona -- were observed to be at their lowest for a century. The soft X-ray emission from the corona (hot outer part of the Sun's atmosphere) was measured throughout most of 2009 with the Polish-built SphinX spectrophotometer. Unlike other X-ray monitoring spacecraft, this sensitive spacecraft-borne instrument was able to continue measurements throughout this extended period of low activity.

  17. Revisiting the question: Does high-latitude solar activity lead low-latitude solar activity in time phase?

    SciTech Connect

    Kong, D. F.; Qu, Z. N.; Guo, Q. L.

    2014-05-01

    Cross-correlation analysis and wavelet transform methods are used to investigate whether high-latitude solar activity leads low-latitude solar activity in time phase or not, using the data of the Carte Synoptique solar filaments archive from 1919 March to 1989 December. From the cross-correlation analysis, high-latitude solar filaments have a time lead of 12 Carrington solar rotations with respect to low-latitude ones. Both the cross-wavelet transform and wavelet coherence indicate that high-latitude solar filaments lead low-latitude ones in time phase. Furthermore, low-latitude solar activity is better correlated with high-latitude solar activity of the previous cycle than with that of the following cycle, which is statistically significant. Thus, the present study confirms that high-latitude solar activity in the polar regions is indeed better correlated with the low-latitude solar activity of the following cycle than with that of the previous cycle, namely, leading in time phase.

  18. Solar Irradiance Variations on Active Region Time Scales

    NASA Technical Reports Server (NTRS)

    Labonte, B. J. (Editor); Chapman, G. A. (Editor); Hudson, H. S. (Editor); Willson, R. C. (Editor)

    1984-01-01

    The variations of the total solar irradiance is an important tool for studying the Sun, thanks to the development of very precise sensors such as the ACRIM instrument on board the Solar Maximum Mission. The largest variations of the total irradiance occur on time scales of a few days are caused by solar active regions, especially sunspots. Efforts were made to describe the active region effects on total and spectral irradiance.

  19. Solar air-conditioning-active, hybrid and passive

    SciTech Connect

    Yellott, J. I.

    1981-04-01

    After a discussion of summer air conditioning requirements in the United States, active, hybrid, and passive cooling systems are defined. Active processes and systems include absorption, Rankine cycle, and a small variety of miscellaneous systems. The hybrid solar cooling and dehumidification technology of desiccation is covered as well as evaporative cooling. The passive solar cooling processes covered include convective, radiative and evaporative cooling. Federal and state involvement in solar cooling is then discussed. (LEW)

  20. Models of Impulsively Heated Solar Active Regions

    NASA Astrophysics Data System (ADS)

    Airapetian, Vladimir; Klimchuk, J.

    2009-05-01

    A number of attempts to model solar active regions with steady coronal heating have been modestly successful at reproducing the observed soft X-ray emission, but they fail dramatically at explaining EUV observations. Since impulsive heating (nanoflare) models can reproduce individual EUV loops, it seems reasonable to consider that entire active regions are impulsively heated. However, nanoflares are characterized by many parameters, such as magnitude, duration, and time delay between successive events, and these parameters may depend on the strength of the magnetic field or the length of field lines, for example, so a wide range of active region models must be examined. We have recently begun such a study. Each model begins with a magnetic "skeleton” obtained by extrapolating an observed photospheric magnetogram into the corona. Field lines are populated with plasma using our highly efficient hydro code called Enthalpy Based Thermal Evolution of Loops (EBTEL). We then produce synthetic images corresponding to emission line or broad-band observations. By determining which set of nanoflare parameters best reproduces actual observations, we hope to constrain the properties of the heating and ultimately to reveal the physical mechanism. We here report on the initial progress of our study.

  1. The periodicities of Solar Magnetic Activity with the Wavelet Coherence Method

    NASA Astrophysics Data System (ADS)

    Velasco Herrera, Victor Manuel

    The origin, behavior and evolution of the solar magnetic field is one of the main challenges of observational and theoretical solar physics. Up to now the Dynamo theory gives us the best approach to the problem. However, it is not yet able to predict many features of the solar activity, which seems not to be strictly a periodical phenomenon. Among the indicators of solar magnetic variability there is the 11-years cycle of sunspots, as well as the solar magnetic cycle of 22 years (the Hale cycle). In order to provide more elements to the Dynamo theory that could help it in the predicting task, we analyze here the plausible existence of other periodicities associated with the solar magnetic field. In this preliminary work we use historical data (sunspots and aurora borealis), proxies (10 Be and 14 C) and modern instrumental data (Coronal Holes, Cosmic Rays, sunspots, flare indexes and solar radio flux at 10.7 cm). To find relationships between different time-frequency series we have employed the Wavelet Coherence technique: this technique indicates if two time-series of solar activity have the same periodicities in a given time interval. If so, it determines whether such relation is a linear one or not. Such a powerful tool indicates that, if some periodicity at a given frequency has a confidence level below 95%, it appears very lessened or does not appear in the Wavelet Spectral Analysis, such periodicity does not exist. Our results show that the so called Glaisberg cycle of 80-90 years and the periodicity of 205 years (the Suess cycle) do not exist. It can be speculated that such fictitious periodicities have been the result of using the Fourier transform with series with are not of stationary nature, as it is the case of the Be10 and C14 series. In contrast we confirm the presence of periodicities of 1.3, 1.7, quasi-triennial, quasi-quinquennial, Shawabe-cycle, Gale-cycle 60, 120 and 240 years.

  2. Are solar activity and sperm whale Physeter macrocephalus strandings around the North Sea related?

    NASA Astrophysics Data System (ADS)

    Vanselow, Klaus Heinrich; Ricklefs, Klaus

    2005-04-01

    In the final decades of the last century, an increasing number of strandings of male sperm whales ( Physeter macrocephalus) around the North Sea led to an increase in public interest. Anthropogenic influences (such as contaminants or intensive sound disturbances) are supposed to be the main causes, but natural environmental effects may also explain the disorientation of the animals. We compared the documented sperm whale strandings in the period from 1712 to 2003 with solar activity, especially with sun spot number periodicity and found that 90% of 97 sperm whale stranding events around the North Sea took place when the smoothed sun spot period length was below the mean value of 11 years, while only 10% happened during periods of longer sun spot cycles. The relation becomes even more pronounced (94% to 6%, n = 70) if a smaller time window from November to March is used (which seems to be the main southward migration period of male sperm whales). Adequate chi-square tests of the data give a significance of 1% error probability that sperm whale strandings can depend on solar activity. As an alternative explanation, we suggest that variations of the earth's magnetic field, due to variable energy fluxes from the sun to the earth, may cause a temporary disorientation of migrating animals.

  3. Effects of Solar Magnetic Activity on the Charge States of Minor Ions of Solar Wind

    NASA Astrophysics Data System (ADS)

    Wang, Xuyu

    We present an investigation of the effects of solar magnetic activity on the charge states of minor ions (Fe, Si, Mg, Ne, O, C) in the solar wind using ACE solar wind data, the Current Sheet Source Surface (CSSS) model of the corona and SoHO/MDI data during the 23rd solar cycle. We found that the mean charge states indicate a clear trend to increase with the solar activity when the solar wind speed is above 550 km/s. Below this speed, no significant solar activity dependence is found. When displayed as a function of solar wind speed, iron is different from other elements in that it displays lower charge states in slow wind than in fast wind. The percentages of the high charge states for species with higher m/q (Fe) increase with the solar wind speed, while for the species with lower m/q (Si,Mg, O, C), the percentages of the high charge states decrease with the solar wind speed.

  4. Recent Perplexing Behavior in Solar Activity Indices

    NASA Astrophysics Data System (ADS)

    Lopresto, James C.

    1997-05-01

    Calcium K and Hα and SOHO He II UV plage and sunspot ara have been monitored using images on the INTERNET since November of 1992. The purpose of the project is to determine the degree of correlation between changing plage area and solar irradiance changes (also obtained via the INTERNET). Also the project provides a low cost process to involve undergraduates in astronomy research. When using weighted weekly averages for both spot Hα plage pixel counts, we see the expected decline from the last maximum. The activity continues to decline, or at best, has flattened out over the past several months. In contrast, the K-line plage pixel count from both Big Bear and Sacramento Peak show an upswing since mid-1995 or earlier. The k2 measurments from both Kitt Peak and Sacramento Peak are in general agreement with the spot and Hα behavior, indicating wer are in, or barely passed minimum. Images high in the chromosphere, detailing the magnetic network, may be more senstive to smaller field changes. This might be a partial explanation for the earlier upswing in K line and He 304 activity, which are receiving radiation near or at the top of the chromosphere.

  5. Initiation of non-tropical thunderstorms by solar activity

    NASA Technical Reports Server (NTRS)

    Herman, J. R.; Goldberg, R. A.

    1978-01-01

    A theory of thunderstorm initiation is proposed to account for the statistical correlation between solar activity and thunderstorm occurrence in middle to high latitudes. It is suggested that cosmic ray decreases and/or high-energy solar protons associated with active solar events enhance the electric field at low heights so that, if appropriate meteorological conditions are present during a solar event, the atmospheric electric field enhancement may be sufficient to trigger thunderstorm development. Statistical correlations and atmospheric electric effects are described. The theory could be tested if the possible forcing functions and the responding atmospheric electrical and ionic species' characteristics were measured.

  6. Analysis of variability of p-mode parameters in 11 years of IRIS data

    NASA Astrophysics Data System (ADS)

    Salabert, D.; Jiménez-Reyes, S. J.; Fossat, E.; Cacciani, A.; Ehgamberdiev, S.; Gelly, B.; Grec, G.; Hoeksema, J. T.; Khalikov, S.; Lazrek, M.; Pallé, P.; Schmider, F. X.; Tomczyk, S.

    2002-03-01

    11 years of IRIS (the low degree helioseismology network) have been analysed for the study of p-modes parameters variability. The duty cycle of the network data has been improved by the partial gap filling method named "repetitive music". This paper discusses the variations of all p-modes parameters along these 11 years.

  7. Analytical Study of Geomagnetic and Solar Activities During Solar Cycle 23

    NASA Astrophysics Data System (ADS)

    Hady, A. A.

    The data of amplitude and phase of most common indicators of geomagnetic activities (especially aa index, A? index) have been analyzed and compared with the solar ac- tivities in the time of solar cycle 23(started from 1996 to 2007). The data taken from NOAA space environment center (SES), USA. during the period starting April 1996 Until Dec. 2001, have been analyzed by power spectrum method. The prediction until year 2007 of geomagnetic activities were studied according to the whole of behavior of solar cycle 23. The results show a good indication of the effects of solar activities on changes of earth climate and weather forecasting. The results are important to various techniques including the operation of low earth orbiting satellites. The climatologi- cal approach makes use of the secular trend since year 1900 until now, by about 15 nanotesla. This indication was recorded too, in solar activity changes during the last century.

  8. Solar Activity, Different Geomagnetic Activity Levels and Acute Myocardial Infarction

    NASA Astrophysics Data System (ADS)

    Dimitrova, Svetla; Jordanova, Malina; Stoilova, Irina; Taseva, Tatiana; Maslarov, Dimitar

    Results on revealing a possible relationship between solar activity (SA) and geomagnetic activity (GMA) and acute myocardial infarction (AMI) morbidity are presented. Studies were based on medical data covering the period from 1.12.1995 to 31.12.2004 and concerned daily distribution of patients with AMI diagnose (in total 1192 cases) from Sofia region on the day of admission at the hospital. Analysis of variance (ANOVA) was applied to check the significance of GMA intensity effect and the type of geomagnetic storms, those caused by Magnetic Clouds (MC) and by High Speed Solar Wind Streams (HSSWS), on AMI morbidity. Relevant correlation coefficients were calculated. Results revealed statistically significant positive correlation between considered GMA indices and AMI. ANOVA revealed that AMI number was signifi- cantly increased from the day before (-1st) till the day after (+1st) geomagnetic storms with different intensities. Geomagnetic storms caused by MC were related to significant increase of AMI number in comparison with the storms caused by HSSWS. There was a trend for such different effects even on -1st and +1st day.

  9. Multi-wavelength solar activity complexes evolution from Solar Dynamic Observatory (SDO)

    NASA Astrophysics Data System (ADS)

    Korolkova, Olga; Benevolenskaya, Elena

    The main problem of the solar physics is to understand a nature of the solar magnetic activity. New space missions and background observations provide us by data describing solar activity with a good space and time resolution. Space missions data observe the solar activity in multi-wavelength emissions come from photosphere to corona. The complex of the solar activity has roots in inte-rior and extends to the solar corona. Thus, modern data give an opportunity to study the activity on the Sun at different levels simultaneously. Solar Dynamics Observatory (SDO) [1] which launched at the beginning of 2010, looks at Sun in different wavelengths such as coronal lines 171Å & 335Å. Also SDO measures photospheric magnetic flux (line-of-sight component of the magnetic field strength) and gives images in continuum. We have studied a stable complexes of the solar activity (about 30 com-plexes) during 6 hours from 10 March 2013 to 14 October 2013 using 720s ca-dence of HMI (Helioseismic and Magnetic Imager) [2] and AIA (Atmospheric Imaging Assembly) [3] instruments of SDO. We have found a good relationship between the magnetic flux and coronal emissions. Here we discuss properties of the complexes in the different levels from photosphere to corona. References 1. W. Dean Pesnell, B.J. Thompson, P.C. Chamberlin // Solar Phys., v. 275, p. 3-15, (2012). 2. P.H. Scherrer, J. Schou, R.I. Bush et al. // Solar Phys., v. 275, p. 207-227, (2012). 3. James R. Lemen • Alan M. Title • David J. Akin et al. // Solar Phys., v. 275, p. 17-40, (2012).

  10. Hierarchical Reproductive Allocation and Allometry within a Perennial Bunchgrass after 11 Years of Nutrient Addition

    PubMed Central

    Tian, Dashuan; Pan, Qingmin; Simmons, Matthew; Chaolu, Hada; Du, Baohong; Bai, Yongfei; Wang, Hong; Han, Xingguo

    2012-01-01

    Bunchgrasses are one of the most important plant functional groups in grassland ecosystems. Reproductive allocation (RA) for a bunchgrass is a hierarchical process; however, how bunchgrasses adjust their RAs along hierarchical levels in response to nutrient addition has never been addressed. Here, utilizing an 11-year nutrient addition experiment, we examined the patterns and variations in RA of Agropyron cristatum at the individual, tiller and spike levels. We evaluated the reproductive allometric relationship at each level by type II regression analysis to determine size-dependent and size-independent effects on plant RA variations. Our results indicate that the proportion of reproductive individuals in A. cristatum increased significantly after 11 years of nutrient addition. Adjustments in RA in A. cristatum were mainly occurred at the individual and tiller levels but not at the spike level. A size-dependent effect was a dominant mechanism underlying the changes in plant RA at both individual and tiller levels. Likewise, the distribution of plant size was markedly changed with large individuals increasing after nutrient addition. Tiller-level RA may be a limiting factor for the adjustment of RA in A. cristatum. To the best of our knowledge, this study is the first to examine plant responses in terms of reproductive allocation and allometry to nutrient enrichment within a bunchgrass population from a hierarchical view. Our findings have important implications for understanding the mechanisms underlying bunchgrass responses in RA to future eutrophication due to human activities. In addition, we developed a hierarchical analysis method for disentangling the mechanisms that lead to variation in RA for perennial bunchgrasses. PMID:22984408

  11. Bayesian Infernce for Indentifying Solar Active Regions

    NASA Technical Reports Server (NTRS)

    Pap, Judit; Turmon, Michael; Mukhtar, Saleem

    1997-01-01

    The solar chromosphere consists of three classes-- plage, network, background -- which contribute differently to ultraviolet radiation reaching the earth. Solar physicists are interested in relating plage area and intensity to UV irradiance, as well as understanding the spatial and temporal evolution of plage shapes.

  12. Heliospheric Consecuences of Solar Activity In Several Interplanetary Phenomena

    NASA Astrophysics Data System (ADS)

    Valdés-Galicia, J. F.; Mendoza, B.; Lara, A.; Maravilla, D.

    We have done an analysis of several phenomena related to solar activity such as the total magnetic flux, coronal hole area and sunspots, investigated its long trend evolu- tion over several solar cycles and its possible relationships with interplanetary shocks, sudden storm commencements at earth and cosmic ray variations. Our results stress the physical connection between the solar magnetic flux emergence and the interplan- etary medium dynamics, in particular the importance of coronal hole evolution in the structuring of the heliosphere.

  13. MAGNETIC ENERGY SPECTRA IN SOLAR ACTIVE REGIONS

    SciTech Connect

    Abramenko, Valentyna; Yurchyshyn, Vasyl

    2010-09-01

    Line-of-sight magnetograms for 217 active regions (ARs) with different flare rates observed at the solar disk center from 1997 January until 2006 December are utilized to study the turbulence regime and its relationship to flare productivity. Data from the SOHO/MDI instrument recorded in the high-resolution mode and data from the BBSO magnetograph were used. The turbulence regime was probed via magnetic energy spectra and magnetic dissipation spectra. We found steeper energy spectra for ARs with higher flare productivity. We also report that both the power index, {alpha}, of the energy spectrum, E(k) {approx} k{sup -}{alpha}, and the total spectral energy, W = {integral}E(k)dk, are comparably correlated with the flare index, A, of an AR. The correlations are found to be stronger than those found between the flare index and the total unsigned flux. The flare index for an AR can be estimated based on measurements of {alpha} and W as A = 10{sup b}({alpha}W){sup c}, with b = -7.92 {+-} 0.58 and c = 1.85 {+-} 0.13. We found that the regime of the fully developed turbulence occurs in decaying ARs and in emerging ARs (at the very early stage of emergence). Well-developed ARs display underdeveloped turbulence with strong magnetic dissipation at all scales.

  14. PERSPECTIVE: Low solar activity is blamed for winter chill over Europe

    NASA Astrophysics Data System (ADS)

    Benestad, Rasmus E.

    2010-06-01

    of long-term high-quality observations from remote sensing platforms. It is nevertheless well known that the temperature in northern Europe is strongly affected by atmospheric circulation. Crooks and Gray (2005) have identified a solar response in a number of atmospheric variables, and Labitske (1987), Labitske and Loon (1988) and Salby and Callagan (2000) provide convincing analyses suggesting that the zonal winds in the stratosphere are influenced by solar activity. Furthermore, Baldwin and Dunkerton (2001) provide a tentative link between the stratosphere and the troposphere. The results of Lockwood et al (2010) fit in with earlier work (Barriopedro et al 2008) and provide further evidence to support the current thinking on solar-terrestrial links. Thus, it is an example of incremental scientific progress rather than a breakthrough or a paradigm shift. References Baldwin M P and Dunkerton T J 2001 Stratospheric harbingers of anomalous weather regimes Science 294 581-4 Barriopedro D, Garcia-Herrera R and Huth R 2008 Solar modulation of Northern Hemisphere winter blocking J. Geophys. Res. 113 D14118 Benestad R E 2005 A review of the solar cycle length estimates Geophys. Res. Lett. 32 L15714 Benestad R E and Schmidt G A 2009 Solar trends and global warming J. Geophys. Res. Atmos. 114 D14101 Crook S A and Gray L J 2005 Characterization of the 11-year solar signal using a multiple regression analysis of the ERA-40 dataset J. Climate 18 996-1014 Haigh J D 2003 The effects of solar variability on the Earth's climate Phil. Trans. R. Soc. Lond. A 361 95-111 Helland-Hansen B and Nansen F 1920 Temperature variations in the North Atlantic ocean and in the atmosphere Smithsonian Miscellaneous Collections 70 (4) 408 pp Labitzke K 1987 Sunspots, the QBO, and the stratospheric temperature in the North polar region Geophys. Res. Lett. 14 535-7 Labitzke K and van Loon H 1988 Association between the 11-year solar cycle, the QBO, and the atmosphere, I. The troposphere and

  15. Annual DOE active solar heating and cooling contractors' review meeting. Premeeting proceedings and project summaries

    SciTech Connect

    None,

    1981-09-01

    Ninety-three project summaries are presented which discuss the following aspects of active solar heating and cooling: Rankine solar cooling systems; absorption solar cooling systems; desiccant solar cooling systems; solar heat pump systems; solar hot water systems; special projects (such as the National Solar Data Network, hybrid solar thermal/photovoltaic applications, and heat transfer and water migration in soils); administrative/management support; and solar collector, storage, controls, analysis, and materials technology. (LEW)

  16. On the Relationship Between Solar Wind Speed, Geomagnetic Activity, and the Solar Cycle Using Annual Values

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.; Hathaway, David H.

    2008-01-01

    The aa index can be decomposed into two separate components: the leading sporadic component due to solar activity as measured by sunspot number and the residual or recurrent component due to interplanetary disturbances, such as coronal holes. For the interval 1964-2006, a highly statistically important correlation (r = 0.749) is found between annual averages of the aa index and the solar wind speed (especially between the residual component of aa and the solar wind speed, r = 0.865). Because cyclic averages of aa (and the residual component) have trended upward during cycles 11-23, cyclic averages of solar wind speed are inferred to have also trended upward.

  17. Possible relationships between solar activity and atmospheric constituents

    NASA Technical Reports Server (NTRS)

    Roosen, R. G.; Angione, R. J.

    1975-01-01

    The large body of data on solar variations and atmospheric constituents collected between 1902 and 1953 by the Astrophysical Observatory of the Smithsonian Institution (APO) was examined. Short-term variations in amounts of atmospheric aerosols and water vapor due to seasonal changes, volcanic activity, air pollution, and frontal activity are discussed. Preliminary evidence indicates that increased solar activity is at times associated with a decrease in attenuation due to airborne particulates.

  18. Possible relationships between solar activity and atmospheric constituents

    NASA Technical Reports Server (NTRS)

    Roosen, R. G.; Angione, R. J.

    1974-01-01

    The large body of data on solar variations and atmospheric constituents collected between 1902 and 1953 by the Astrophysical Observatory of the Smithsonian Institution (APO) is examined. Short term variations in amounts of atmospheric aerosols and water vapor due to seasonal changes, volcanic activity, air pollution, and frontal activity are discussed. Preliminary evidence indicates that increased solar activity is at times associated with a decrease in attenuation due to airborne particulates.

  19. Solar activity index for long-term ionospheric forecasts

    NASA Astrophysics Data System (ADS)

    Deminov, M. G.

    2016-01-01

    Based on the comparison of solar activity indices (annual average values of the relative number of sunspots Rz 12 and solar radio emission flux at a wavelength of 10.7 cm F 12) with the ionospheric index of solar activity IG 12 for 1954-2013, we have found that the index F 12 is a more accurate (than Rz 12) indicator of solar activity for the long-term forecast of foF2 (the critical frequency of the F2-layer). This advantage of the F 12 index becomes especially significant after 2000 if the specific features of extreme ultraviolet radiation of the Sun are additionally taken into account in the minima of solar cycles, using an appropriate correction to F 12. Qualitative arguments are given in favor of the use of F 12 for the long-term forecast of both foF2 and other ionospheric parameters.

  20. Low-Dimensional Chaos of High-Latitude Solar Activity

    NASA Astrophysics Data System (ADS)

    Li, Qi-Xiu; Li, Ke-Jun

    2007-10-01

    The chaos of high-latitude solar activity has been investigated by determining the behavior of the monthly averaged polar facula counts obtained from the National Astronomical Observatory of Japan (NAOJ) on the basis of nonlinear dynamics theories and methods. It is found that the high-latitude solar activity is also governed by a low-dimensional chaotic attractor in both the northern and southern solar hemispheres, which is the same as that of the low-latitude solar activity. However, their maximal Lyapunov exponents are different, showing different strength of chaos. The maximal Lyapunov exponent (MLE) of polar faculae in the southern solar hemisphere is about 0.0211 ± 0.0003 (month-1), which is nearly consistent with the low-latitude Wolf sunspot numbers, while the MLE in the northern one is approximately 0.0944 ± 0.0066 (month-1), which is obviously greater than the above two.

  1. Recent perspectives in solar physics - Elemental composition, coronal structure and magnetic fields, solar activity

    NASA Technical Reports Server (NTRS)

    Newkirk, G., Jr.

    1975-01-01

    Elemental abundances in the solar corona are studied. Abundances in the corona, solar wind and solar cosmic rays are compared to those in the photosphere. The variation in silicon and iron abundance in the solar wind as compared to helium is studied. The coronal small and large scale structure is investigated, emphasizing magnetic field activity and examining cosmic ray generation mechanisms. The corona is observed in the X-ray and EUV regions. The nature of coronal transients is discussed with emphasis on solar-wind modulation of galactic cosmic rays. A schematic plan view of the interplanetary magnetic field during sunspot minimum is given showing the presence of magnetic bubbles and their concentration in the region around 4-5 AU by a fast solar wind stream.

  2. Solar-collector manufacturing activity, July through December, 1981

    SciTech Connect

    1982-03-01

    Solar thermal collector and solar cell manufacturing activity is both summarized and tabulated. Data are compared for three survey periods (July through December, 1981; January through June, 1981; and July through December, 1980). Annual totals are also provided for the years 1979 through 1981. Data include total producer shipments, end use, market sector, imports and exports. (LEW)

  3. Solar Energy Education. Renewable energy activities for biology

    SciTech Connect

    Not Available

    1982-01-01

    An instructional aid for teachers is presented that will allow biology students the opportunity to learn about renewable energy sources. Some of the school activities include using leaves as collectors of solar energy, solar energy stored in wood, and a fuel value test for green and dry woods. A study of organic wastes as a source of fuel is included. (BCS)

  4. Solar energy education. Renewable energy activities for general science

    SciTech Connect

    Not Available

    1985-01-01

    Renewable energy topics are integrated with the study of general science. The literature is provided in the form of a teaching manual and includes such topics as passive solar homes, siting a home for solar energy, and wind power for the home. Other energy topics are explored through library research activities. (BCS)

  5. Martian induced magnetosphere variations with solar activity cycle

    NASA Astrophysics Data System (ADS)

    Fedorov, Andrey; Ronan, Modolo; Jarninen, Riku; Mazelle, Christian; Barabash, Stas

    2014-05-01

    During the last 6 years of ESA Mars Express mission we have accumulated plasma data taken inside and around the Martian induced magnetosphere corresponding to the increasing branch of solar activity. This data allows to make an enhanced study of the magnetosphere variations as a response of the solar activity level. Since Mars Express has no onboard magnetometer, we used the hybrid models of the Martian plasma environment to get a proper frame to make an adequate statistics of the magnetospheric response. In this paper we present a spatial distribution of the planetary plasma in the planetary wake as well as the ionsospheric escape as a function of the solar activity.

  6. [Unevenness of distribution of historical events throughout an 11-year solar cycle].

    PubMed

    Putilov, A A

    1992-01-01

    Tchizhevsky hypothesis (1922) of historical process heliotaraxia (helios--sun, taracsio--perturb) was empirically tested. Samples of near 13 and 4.6 thousand events mentioned in Chronology sections of two largest Soviet historical handbooks were analyzed. Events were classified into 4 groups on the basis of "strength" and "social contradictions meaning" of their names, called tolerance and polarity: tolerant--intolerant (e.f. riot--roform) and polar--neutral (e.f. civil war-external war). It was found that frequency and polarity of historical events increased in maximum of sunspot cycle and in the next year as compared with minimum and the year before minimum. The probability of revolution (the most polar and intolerant name of historical event) is the highest in maximum and the lowest in the year before minimum. Intolerance of polar events increased and neutral events decreased in maximum. All these relations were highly significant (P < 0.001). It was concluded that heliotaraxic phenomena exist and are basically associated with year of sunspot maximum. PMID:1420416

  7. A Solar Cycle Dependence of Nonlinearity in Magnetospheric Activity

    SciTech Connect

    Johnson, Jay R; Wing, Simon

    2005-03-08

    The nonlinear dependencies inherent to the historical K(sub)p data stream (1932-2003) are examined using mutual information and cumulant based cost as discriminating statistics. The discriminating statistics are compared with surrogate data streams that are constructed using the corrected amplitude adjustment Fourier transform (CAAFT) method and capture the linear properties of the original K(sub)p data. Differences are regularly seen in the discriminating statistics a few years prior to solar minima, while no differences are apparent at the time of solar maximum. These results suggest that the dynamics of the magnetosphere tend to be more linear at solar maximum than at solar minimum. The strong nonlinear dependencies tend to peak on a timescale around 40-50 hours and are statistically significant up to one week. Because the solar wind driver variables, VB(sub)s and dynamical pressure exhibit a much shorter decorrelation time for nonlinearities, the results seem to indicate that the nonlinearity is related to internal magnetospheric dynamics. Moreover, the timescales for the nonlinearity seem to be on the same order as that for storm/ring current relaxation. We suggest that the strong solar wind driving that occurs around solar maximum dominates the magnetospheric dynamics suppressing the internal magnetospheric nonlinearity. On the other hand, in the descending phase of the solar cycle just prior to solar minimum, when magnetospheric activity is weaker, the dynamics exhibit a significant nonlinear internal magnetospheric response that may be related to increased solar wind speed.

  8. Variability of the Lyman alpha flux with solar activity

    SciTech Connect

    Lean, J.L.; Skumanich, A.

    1983-07-01

    A three-component model of the solar chromosphere, developed from ground based observations of the Ca II K chromospheric emission, is used to calculate the variability of the Lyman alpha flux between 1969 and 1980. The Lyman alpha flux at solar minimum is required in the model and is taken as 2.32 x 10/sup 11/ photons/cm/sup 2//s. This value occurred during 1975 as well as in 1976 near the commencement of solar cycle 21. The model predicts that the Lyman alpha flux increases to as much as 5 x 10/sup 11/ photons/cm/sup 2//s at the maximum of the solar cycle. The ratio of the average fluxes for December 1979 (cycle maximum) and July 1976 (cycle minimum) is 1.9. During solar maximum the 27-day solar rotation is shown to cause the Lyman alpha flux to vary by as much as 40% or as little as 5%. The model also shows that the Lyman alpha flux varies over intermediate time periods of 2 to 3 years, as well as over the 11-year sunspot cycle. We conclude that, unlike the sunspot number and the 10.7-cm radio flux, the Lyman alpha flux had a variability that was approximately the same during each of the past three cycles. Lyman alpha fluxes calculated by the model are consistent with measurements of the Lyman alpha flux made by 11 of a total of 14 rocket experiments conducted during the period 1969--1980. The model explains satisfactorily the absolute magnitude, long-term trends, and the cycle variability seen in the Lyman alpha irradiances by the OSO 5 satellite experiment. The 27-day variability observed by the AE-E satellite experiment is well reproduced. However, the magntidue of the AE-E 1 Lyman alpha irradiances are higher than the model calculations by between 40% and 80%. We suggest that the assumed calibration of the AE-E irradiances is in error.

  9. Preliminary design activities for solar heating and cooling systems

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Information on the development of solar heating and cooling systems is presented. The major emphasis is placed on program organization, system size definition, site identification, system approaches, heat pump and equipment design, collector procurement, and other preliminary design activities.

  10. Influence of solar activity on red sprites and on vertical coupling in the system stratosphere-mesosphere

    NASA Astrophysics Data System (ADS)

    Tonev, Peter T.; Velinov, Peter I. Y.

    2016-04-01

    The positive downward propagating streamers of sprites are considered as factors of vertical coupling in middle atmosphere. Sprites are initiated in the lower ionosphere (at 75-85 km) and their streamers propagate in the mesosphere and upper stratosphere where the solar activity (SA) can have significant influence. The problem considered by us is whether sprites are sensitive to the solar activity. Different possible ways of such influence are considered. They concern: i) relations between solar activity and the occurrence of sprite-producing lightning discharges; ii) sensitivity of streamer inception to solar variability; iii) 11-year variations of conductivity in the night-time mesosphere and stratosphere during solar cycle due to modulation of the galactic cosmic ray flux by solar activity, which can lead to changes in sprite-driving electric fields, and therefore, in sprites. Accounting for the effects of sprites on minor constituents (in particular NOx), a link between SA level and the che^mical balance in the mesosphere and stratosphere is considered, as well. With respect to this we study by modeling the response of the sprite-driving electric fields to SA variations with the account to a complex of parameters of sprite-producing lightning discharges and atmospheric conductivity. The lightning-driven electric fields needed for streamer propagation show minor dependence on conductivity changes caused by variations in cosmic ray flux during a solar cycle. The long-term changes in sprite's lower boundary by different parameters of lightning discharges and atmospheric conductivity parameters are estimated. During solar minimum, of the vertical dimension of sprites increases by up to 1.5 km than those during solar maximum. We estimate also the effect of the reduction of conductivity in thunderclouds with respect to the adjacent air. Reduction of cloud conductivity by a factor of 5-10 leads to larger vertical dimension of sprites due to descending of the sprite

  11. Effects of Low Activity Solar Cycle on Orbital Debris Lifetime

    NASA Technical Reports Server (NTRS)

    Cable, Samual B.; Sutton, Eric K.; Lin, chin S.; Liou, J.-C.

    2011-01-01

    Long duration of low solar activity in the last solar minimum has an undesirable consequence of extending the lifetime of orbital debris. The AFRL TacSat-2 satellite decommissioned in 2008 has finally re-entered into the atmosphere on February 5th after more than one year overdue. Concerning its demise we have monitored its orbital decay and monthly forecasted Tacsat-2 re-entry since September 2010 by using the Orbital Element Prediction (OEP) model developed by the AFRL Orbital Drag Environment program. The model combines estimates of future solar activity with neutral density models, drag coefficient models, and an orbit propagator to predict satellite lifetime. We run the OEP model with solar indices forecast by the NASA Marshall Solar Activity Future Estimation model, and neutral density forecast by the MSIS-00 neutral density model. Based on the two line elements in 2010 up to mid September, we estimated at a 50% confidence level TacSat-2's re-entry time to be in early February 2011, which turned out to be in good agreement with Tacsat-2's actual re-entry date. The potential space weather effects of the coming low activity solar cycle on satellite lifetime and orbital debris population are examined. The NASA long-term orbital debris evolutionary model, LEGEND, is used to quantify the effects of solar flux on the orbital debris population in the 200-600 km altitude environment. The results are discussed for developing satellite orbital drag application product.

  12. Solar activity dependence of nightside aurora in winter conditions

    NASA Astrophysics Data System (ADS)

    Zhou, Su; Luan, Xiaoli; Dou, Xiankang

    2016-02-01

    The dependence of the nightside (21:00-03:00 MLT; magnetic local time) auroral energy flux on solar activity was quantitatively studied for winter/dark and geomagnetically quiet conditions. Using data combined from Thermosphere, Ionosphere, Mesosphere Energetics and Dynamics/Global Ultraviolet Imager and Defense Meteorological Satellite Program/Special Sensor Ultraviolet Spectrographic Imager observations, we separated the effects of geomagnetic activity from those of solar flux on the nightside auroral precipitation. The results showed that the nightside auroral power was reduced by ~42% in solar maximum (F10.7 = 200 sfu; solar flux unit 1 sfu = 10-22 W m-2 Hz-1) with respect to that under solar minimum (F10.7 = 70 sfu) for the Kp = 1 condition, and this change rate became less (~21%) for the Kp = 3 condition. In addition, the solar cycle dependence of nightside auroral power was similar with that from both the premidnight (21:00-23:00 MLT) and postmidnight (01:00-03:00 MLT) sectors. These results indicated that as the ionospheric ionization increases with the enhanced auroral and geomagnetic activities, the solar activity dependences of nightside auroral power become weaker, at least under geomagnetically quiet conditions.

  13. The Solar Non-activity Cycle of Polar Coronal Holes

    NASA Astrophysics Data System (ADS)

    Kirk, M. S.; Pesnell, W. D.; Young, C. A.

    2015-12-01

    After the unusually extended minimum in 2008 and 2009, solar cycle 24 continues to be an exceptionally weak cycle both in sunspot number and number of large magnetic storms. Coronal holes offer a direct measurement of the non-activity solar cycle, a missing link in our understanding of solar cycle progression. They are prevalent during solar minimum, non-axisymmetric, and are stable. Polar coronal holes are regularly observed capping the northern and southern solar poles in EUV images of the corona and are understood as the primary source of the fast solar wind. We make measurements of these features from 1996 through 2015 using four different NASA imagers: SOHO EIT, STEREO A and B EUVI, and SDO AIA. A measurement of the axial symmetry of the polar holes is seen to have clear solar cycle dependence. Polar coronal holes are aligned with the solar rotation axis during minimum and have a maximum asymmetry between holes of about 14 degrees in the declining phase of the current solar cycle.

  14. Radio Imaging Observations of Solar Activity Cycle and Its Anomaly

    NASA Astrophysics Data System (ADS)

    Shibasaki, K.

    2011-12-01

    The 24th solar activity cycle has started and relative sunspot numbers are increasing. However, their rate of increase is rather slow compared to previous cycles. Active region sizes are small, lifetime is short, and big (X-class) flares are rare so far. We study this anomalous situation using data from Nobeyama Radioheliograph (NoRH). Radio imaging observations have been done by NoRH since 1992. Nearly 20 years of daily radio images of the Sun at 17 GHz are used to synthesize a radio butterfly diagram. Due to stable operation of the instrument and a robust calibration method, uniform datasets are available covering the whole period of observation. The radio butterfly diagram shows bright features corresponding to active region belts and their migration toward low latitude as the solar cycle progresses. In the present solar activity cycle (24), increase of radio brightness is delayed and slow. There are also bright features around both poles (polar brightening). Their brightness show solar cycle dependence but peaks around solar minimum. Comparison between the last minimum and the previous one shows decrease of its brightness. This corresponds to weakening of polar magnetic field activity between them. In the northern pole, polar brightening is already weakened in 2011, which means it is close to solar maximum in the northern hemisphere. Southern pole does not show such feature yet. Slow rise of activity in active region belt, weakening of polar activity during the minimum, and large north-south asymmetry in polar activity imply that global solar activity and its synchronization are weakening.

  15. Reexamination of the coronal index of solar activity

    NASA Astrophysics Data System (ADS)

    Rybanský, M.; Rušin, V.; Minarovjech, M.; Klocok, L.; Cliver, E. W.

    2005-08-01

    The coronal index (CI) of solar activity is the irradiance of the Sun as a star in the coronal green line (Fe XIV, 530.3 nm or 5303 Å). It is derived from ground-based observations of the green corona made by the network of coronal stations (currently Kislovodsk, Lomnický Štít, Norikura, and Sacramento Peak). The CI was introduced by Rybanský (1975) to facilitate comparison of ground-based green line measurements with satellite-based extreme ultraviolet and soft X-ray observations. The CI since 1965 is based on the Lomnický Štít photometric scale; the CI was extended to earlier years by Rybanský et al. (1994) based on cross-calibrations of Lomnický Štít data with measurements made at Pic du Midi and Arosa. The resultant 1939-1992 CI had the interesting property that its value at the peak of the 11-year cycle increased more or less monotonically from cycle 18 through cycle 22 even though the peak sunspot number of cycle 20 exhibited a significant local minimum between that of cycles 19 and 21. Rušin and Rybanský (2002) recently showed that the green line intensity and photospheric magnetic field strength were highly correlated from 1976 to 1999. Since the photospheric magnetic field strength is highly correlated with sunspot number, the lack of close correspondence between the sunspot number and the CI from 1939 to 2002 is puzzling. Here we show that the CI and sunspot number are highly correlated only after 1965, calling the previously-computed coronal index for earlier years (1939-1965) into question. We can use the correlation between the CI and sunspot number (also the 2800 MHz radio flux and the cosmic ray intensity) to recompute daily values of the CI for years before 1966. In fact, this method can be used to obtain CI values as far back as we have reliable sunspot observations (˜1850). The net result of this exercise is a CI that closely tracks the sunspot number at all times. We can use the sunspot-CI relationship (for 1966-2002) to identify

  16. The risk characteristics of solar and geomagnetic activity

    NASA Astrophysics Data System (ADS)

    Podolska, Katerina

    2016-04-01

    The main aim of this contribution is a deeper analysis of the influence of solar activity which is expected to have an impact on human health, and therefore on mortality, in particular civilization and degenerative diseases. We have constructed the characteristics that represent the risk of solar and geomagnetic activity on human health on the basis of our previous analysis of association between the daily numbers of death on diseases of the nervous system and diseases of the circulatory system and solar and geomagnetic activity in the Czech Republic during the years 1994 - 2013. We used long period daily time series of numbers of deaths by cause, long period time series of solar activity indices (namely R and F10.7), geomagnetic indicies (Kp planetary index, Dst) and ionospheric parameters (foF2 and TEC). The ionospheric parameters were related to the geographic location of the Czech Republic and adjusted for middle geographic latitudes. The risk characteristics were composed by cluster analysis in time series according to the phases of the solar cycle resp. the seasonal insolation at mid-latitudes or the daily period according to the impact of solar and geomagnetic activity on mortality by cause of death from medical cause groups of death VI. Diseases of the nervous system and IX. Diseases of the circulatory system mortality by 10th Revision of International Classification of Diseases WHO (ICD-10).

  17. Somatotype in 6-11-year-old Italian and Estonian schoolchildren.

    PubMed

    Ventrella, A R; Semproli, S; Jürimäe, J; Toselli, S; Claessens, A L; Jürimäe, T; Brasili, P

    2008-01-01

    The study of somatotypes can contribute to the understanding of variability in human body build. The aim of this study was to compare the somatotypes of Italian and Estonian schoolchildren in order to evaluate factors that might lead to variability in somatotypes. The sample consisted of 762 Italian and 366 Estonian children aged 6-11 years. They were somatotyped by the Heath-Carter anthropometric method. Data on organised extra-curricular physical activity and hours of weekly training were also collected. One-way ANOVA was used to evaluate country-related variations of somatotype in each age/sex group, while factorial ANOVA was used to test the influence of country and organised physical activity on the variability of the anthropometric characteristics and somatotype components. There are significant differences in mean somatotypes between the Italian and Estonian children in many age classes and a different constitutional trend in children from the two different countries is observed. The Italian children are more endomorphic and less mesomorphic and ectomorphic than the Estonian children. On the other hand, it emerges from factorial ANOVA, that the somatotype components do not present significant variations related to organised physical activity and to the interaction between the country of origin and sport practice. Moreover, the results of the forward stepwise discriminant analyses show that mesomorphy is the best discriminator between the two countries, followed by ectomorphy. Our findings suggest that the observed differences between Italian and Estonian children could be related mainly to country rather than to the practice of organised physical activity in the two countries. PMID:18995850

  18. Active solar heating and cooling information user study

    SciTech Connect

    Belew, W.W.; Wood, B.L.; Marle, T.L.; Reinhardt, C.L.

    1981-01-01

    The results of a series of telephone interviews with groups of users of information on active solar heating and cooling (SHAC). An earlier study identified the information user groups in the solar community and the priority (to accelerate solar energy commercialization) of getting information to each group. In the current study only high-priority groups were examined. Results from 19 SHAC groups respondents are analyzed in this report: DOE-Funded Researchers, Non-DOE-Funded Researchers, Representatives of Manufacturers (4 groups), Distributors, Installers, Architects, Builders, Planners, Engineers (2 groups), Representatives of Utilities, Educators, Cooperative Extension Service County Agents, Building Owners/Managers, and Homeowners (2 groups). The data will be used as input to the determination of information products and services the Solar Energy Research Institute, the Solar Energy Information Data Bank Network, and the entire information outreach community should be preparing and disseminating.

  19. Observations of hysteresis in solar cycle variations among seven solar activity indicators

    NASA Technical Reports Server (NTRS)

    Bachmann, Kurt T.; White, Oran R.

    1994-01-01

    We show that smoothed time series of 7 indices of solar activity exhibit significant solar cycle dependent differences in their relative variations during the past 20 years. In some cases these observed hysteresis patterns start to repeat over more than one solar cycle, giving evidence that this is a normal feature of solar variability. Among the indices we study, we find that the hysteresis effects are approximately simple phase shifts, and we quantify these phase shifts in terms of lag times behind the leading index, the International Sunspot Number. Our measured lag times range from less than one month to greater than four months and can be much larger than lag times estimated from short-term variations of these same activity indices during the emergence and decay of major active regions. We argue that hysteresis represents a real delay in the onset and decline of solar activity and is an important clue in the search for physical processes responsible for changing solar emission at various wavelengths.

  20. Polarization aberrations in the solar activity measurements experiments (SAMEX) solar vector magnetograph

    NASA Technical Reports Server (NTRS)

    Mcguire, James P., Jr.; Chipman, Russell A.

    1989-01-01

    An optical design and polarization analysis of the Air Force/NASA Solar Activity Measurements Experiments solar vector magnetograph optical system is performed. Polarization aberration theory demonstrates that conventional telescope coating designs introduce unacceptably high levels of polarization aberrations into the optical system. Several ultralow polarization mirror and lens coatings designs for this instrument are discussed. Balancing of polarization aberrations at different surfaces is demonstrated.

  1. The Magnetic Classification of Solar Active Regions 1992-2015

    NASA Astrophysics Data System (ADS)

    Jaeggli, S. A.; Norton, A. A.

    2016-03-01

    The purpose of this Letter is to address a blindspot in our knowledge of solar active region (AR) statistics. To the best of our knowledge, there are no published results showing the variation of the Mount Wilson magnetic classifications as a function of solar cycle based on modern observations. We show statistics for all ARs reported in the daily Solar Region Summary from 1992 January 1 to 2015 December 31. We find that the α and β class ARs (including all sub-groups, e.g., βγ, βδ) make up fractions of approximately 20% and 80% of the sample, respectively. This fraction is relatively constant during high levels of activity however, an increase in the α fraction to about 35% and and a decrease in the β fraction to about 65% can be seen near each solar minimum and are statistically significant at the 2σ level. Over 30% of all ARs observed during the years of solar maxima were appended with the classifications γ and/or δ, while these classifications account for only a fraction of a percent during the years near the solar minima. This variation in the AR types indicates that the formation of complex ARs may be due to the pileup of frequent emergence of magnetic flux during solar maximum, rather than the emergence of complex, monolithic flux structures.

  2. Physical mechanisms of solar activity effects in the middle atmosphere

    NASA Technical Reports Server (NTRS)

    Ebel, A.

    1989-01-01

    A great variety of physical mechanisms of possibly solar induced variations in the middle atmosphere has been discussed in the literature during the last decades. The views which have been put forward are often controversial in their physical consequences. The reason may be the complexity and non-linearity of the atmospheric response to comparatively weak forcing resulting from solar activity. Therefore this review focuses on aspects which seem to indicate nonlinear processes in the development of solar induced variations. Results from observations and numerical simulations are discussed.

  3. Microbial solar cells: applying photosynthetic and electrochemically active organisms.

    PubMed

    Strik, David P B T B; Timmers, Ruud A; Helder, Marjolein; Steinbusch, Kirsten J J; Hamelers, Hubertus V M; Buisman, Cees J N

    2011-01-01

    Microbial solar cells (MSCs) are recently developed technologies that utilize solar energy to produce electricity or chemicals. MSCs use photoautotrophic microorganisms or higher plants to harvest solar energy, and use electrochemically active microorganisms in the bioelectrochemical system to generate electrical current. Here, we review the principles and performance of various MSCs in an effort to identify the most promising systems, as well as the bottlenecks and potential solutions, for "real-life" MSC applications. We present an outlook on future applications based on the intrinsic advantages of MSCs, specifically highlighting how these living energy systems can facilitate the development of an electricity-producing green roof. PMID:21067833

  4. Investigation of relationships between parameters of solar nano-flares and solar activity

    NASA Astrophysics Data System (ADS)

    Safari, Hossein; Javaherian, Mohsen; Kaki, Bardia

    2016-07-01

    Solar flares are one of the important coronal events which are originated in solar magnetic activity. They release lots of energy during the interstellar medium, right after the trigger. Flare prediction can play main role in avoiding eventual damages on the Earth. Here, to interpret solar large-scale events (e.g., flares), we investigate relationships between small-scale events (nano-flares) and large-scale events (e.g., flares). In our method, by using simulations of nano-flares based on Monte Carlo method, the intensity time series of nano-flares are simulated. Then, the solar full disk images taken at 171 angstrom recorded by SDO/AIA are employed. Some parts of the solar disk (quiet Sun (QS), coronal holes (CHs), and active regions (ARs)) are cropped and the time series of these regions are extracted. To compare the simulated intensity time series of nano-flares with the intensity time series of real data extracted from different parts of the Sun, the artificial neural networks is employed. Therefore, we are able to extract physical parameters of nano-flares like both kick and decay rate lifetime, and the power of their power-law distributions. The procedure of variations in the power value of power-law distributions within QS, CH is similar to AR. Thus, by observing the small part of the Sun, we can follow the procedure of solar activity.

  5. Self-similar signature of the active solar corona within the inertial range of solar-wind turbulence.

    PubMed

    Kiyani, K; Chapman, S C; Hnat, B; Nicol, R M

    2007-05-25

    We quantify the scaling of magnetic energy density in the inertial range of solar-wind turbulence seen in situ at 1 AU with respect to solar activity. At solar maximum, when the coronal magnetic field is dynamic and topologically complex, we find self-similar scaling in the solar wind, whereas at solar minimum, when the coronal fields are more ordered, we find multifractality. This quantifies the solar-wind signature that is of direct coronal origin and distinguishes it from that of local MHD turbulence, with quantitative implications for coronal heating of the solar wind. PMID:17677760

  6. Possible relationships between solar activity and meteorological phenomena

    NASA Technical Reports Server (NTRS)

    Bandeen, W. R. (Editor); Maran, S. P. (Editor)

    1975-01-01

    A symposium was conducted in which the following questions were discussed: (1) the evidence concerning possible relationships between solar activity and meteorological phenomena; (2) plausible physical mechanisms to explain these relationships; and (3) kinds of critical measurements needed to determine the nature of solar/meteorological relationships and/or the mechanisms to explain them, and which of these measurements can be accomplished best from space.

  7. General overview of the solar activity effects on the lower ionosphere

    NASA Technical Reports Server (NTRS)

    Danilov, A. D.

    1989-01-01

    Solar activity influences the ionospheric D region. That influence manifests itself both in the form of various solar induced disturbances and in the form of the D region dependence on solar activity parameters (UV-flux, interplanetary magnetic field, solar wind etc.) in quiet conditions. Relationship between solar activity and meteorological control of the D region behavior is considered in detail and examples of strong variations of aeronomical parameters due to solar or meteorological events are given.

  8. Solar activity: The Sun as an X-ray star

    NASA Technical Reports Server (NTRS)

    Golub, L.

    1981-01-01

    The existence and constant activity of the Sun's outer atmosphere are thought to be due to the continual emergence of magnetic fields from the Solar interior and the stressing of these fields at or near the surface layers of the Sun. The structure and activity of the corona are thus symptomatic of the underlying magnetic dynamo and the existence of an outer turbulent convective zone on the Sun. A sufficient condition for the existence of coronal activity on other stars would be the existence of a magnetic dynamo and an outer convective zone. The theoretical relationship between magnetic fields and coronal activity can be tested by Solar observations, for which the individual loop structures can be resolved. A number of parameters however, which enter into the alternative theoretical formulations remain fixed in all Solar observations. To determine whether these are truly parameters of the theory observations need to be extended to nearby stars on which suitable conditions may occur.

  9. Semiannual variation of the geomagnetic activity and solar wind parameters

    NASA Astrophysics Data System (ADS)

    Orlando, M.; Moreno, G.; Parisi, M.; Storini, M.

    1993-10-01

    The semiannual variation of the geomagnetic activity is investigated in connection with a large set of solar wind and interplanetary magnetic field data (4494 daily averages from 1965 to 1987). Our analysis confirms that the geomagnetic activity (described by the aa index), is mainly modulated by the southward component of the magnetic field (BS), as suggested by Russell and McPherron. On the other hand, it is also found that the solar wind velocity (V) has a relevant role in this phenomenon. In fact, the amplitude of the aa modulation is best correlated with the function BSV2. We also explore the linkage between the annual trend of aa and the sunspot activity (1868-1989), showing that the modulation of the geomagnetic activity follows a more regular pattern during the descending phase of the solar cycle than during the rising and maximum parts.

  10. Influence of solar activity on fibrinolysis and fibrinogenolysis. [statistical correlation between solar flare and blood coagulation indices

    NASA Technical Reports Server (NTRS)

    Marchenko, V. I.

    1974-01-01

    During periods of high solar activity fibrinolysis and fibrinogenolysis are increased. A direct correlative relationship is established between the indices of fibrinolysis, fibrinogenolysis and solar flares which were recorded two days before the blood was collected for analysis.

  11. Relation Between Myocardial Infarction Deaths and Solar Activity in Mexico

    NASA Astrophysics Data System (ADS)

    Diaz-Sandoval, R.

    2002-05-01

    We study the daily incidence of myocardial infarction deaths in Mexico for 4 years (1996-99) with a total of 129 917 cases in all the country, collected at the General Directorate of Epidemiology (National Ministry of Health). We divided the cases by sex and age and perform two kinds of analysis. First, we did an spectral analysis using the Maximum Entropy Method, considering the complete period, and minimum and maximum epochs of solar activity. The results show that the most persistent periodicity at higher frequencies in the myocardial infarction death occurrence is that of seven days. Considering the solar cycle phases, we found that during solar minimum times some frequencies are not detectable compared with solar maximum epochs, particularly that of seven days. Biological rhythms close to seven days, the circaseptans, are in general thought to be only the result of the social organization of life. However, this cannot be the only explanation, because the 7-days periodicity has been encountered in lower organisms not related with our rhythms of life. Thus, it has been proposed that biological rhythms could be evolutionary adaptations to environmental conditions, particularly, solar activity. In the second analysis we compared two solar activity-related phenomena: the Forbush decreases of cosmic rays and the geomagnetic index Ap for various levels of geomagnetic perturbations. The results show that during decreases of cosmic ray fluxes, for most cases there is a higher average myocardial infarction deaths occurrence, compared with the average incidence in days of no decreases. For geomagnetic activity we find the same situation in most cases. Furthermore, this behavior is more pronounced as the level of the perturbation increases and in times of maximum solar activity.

  12. Forecast for solar cycle 23 activity: a progress report

    NASA Astrophysics Data System (ADS)

    Ahluwalia, H. S.

    2001-08-01

    At the 25th International Cosmic Ray Conference (ICRC) at Durban, South Africa, I announced the discovery of a three cycle quasi-periodicity in the ion chamber data string assembled by me, for the 1937 to 1994 period (Conf. Pap., v. 2, p. 109, 1997). It corresponded in time with a similar quasi-periodicity observed in the dataset for the planetary index Ap. At the 26th ICRC at Salt Lake City, UT, I reported on our analysis of the Ap data to forecast the amplitude of solar cycle 23 activity (Conf. Pap., v. 2, pl. 260, 1999). I predicted that cycle 23 will be moderate (a la cycle 17), notwithstanding the early exuberant forecasts of some solar astronomers that cycle 23, "may be one of the greatest cycles in recent times, if not the greatest." Sunspot number data up to April 2001 indicate that our forecast appears to be right on the mark. We review the solar, interplanetary and geophysical data and describe the important lessons learned from this experience. 1. Introduction Ohl (1971) was the first to realize that Sun may be sending us a subliminal message as to its intent for its activity (Sunspot Numbers, SSN) in the next cycle. He posited that the message was embedded in the geomagnetic activity (given by sum Kp). Schatten at al (1978) suggested that Ohl hypothesis could be understood on the basis of the model proposed by Babcock (1961) who suggested that the high latitude solar poloidal fields, near a minimum, emerge as the toroidal fields on opposite sides of the solar equator. This is known as the Solar Dynamo Model. One can speculate that the precursor poloidal solar field is entrained in the high speed solar wind streams (HSSWS) from the coronal holes which are observed at Earth's orbit during the descending phase of the previous cycle. The interaction

  13. North-south asymmetry of different solar activity features during solar cycle 23

    NASA Astrophysics Data System (ADS)

    Bankoti, Neeraj Singh; Joshi, Navin Chandra; Pande, Seema; Pande, Bimal; Pandey, Kavita

    2010-08-01

    A study on north-south (N-S) asymmetry of different solar activity features (DSAF) such as solar proton events, solar active prominences [total, low (⩽40°) and high (⩾50°) latitudes], H α flare indices, soft X-ray flares, monthly mean sunspot areas and monthly mean sunspot numbers carried out from May 1996 to October 2008. Study shows a southern dominance of DSAF during this period. During the rising phase of the cycle 23 the number of DSAF approximately equals on both, the northern and the southern hemispheres. But these activities tend to shift from northern to southern hemisphere during the period 1998-1999. The statistical significance of the asymmetry time series using a χ2-test of goodness of fit indicates that in most of the cases the asymmetry is highly significant, meaning thereby that the asymmetry is a real feature in the N-S distribution of DSAF.

  14. Short-term changes in solar oscillation frequencies and solar activity

    NASA Technical Reports Server (NTRS)

    Woodard, M. F.; Libbrecht, K. G.; Kuhn, J. R.; Murray, N.

    1991-01-01

    It is shown that the frequencies of solar rho-mode oscillations change significantly over periods as short as one month. These changes correlate significantly with variations in the strength of surface solar activity as measured by the average, over the sun's visible surface, of the magnitude of the line-of-sight magnetic field component from magnetograms. The frequency and mean magnetic variations are found to obey a linear relationship. It is seen that the mean frequency shift at any time depends on the history of solar activity over an interval of, at most, several months prior to the measurement and conclude that the dominant mechanism of the frequency shift is correlated with surface magnetic activity.

  15. The Impact of Solar Variability on Climate

    PubMed

    Haigh

    1996-05-17

    A general circulation model that simulated changes in solar irradiance and stratospheric ozone was used to investigate the response of the atmosphere to the 11-year solar activity cycle. At solar maximum, a warming of the summer stratosphere was found to strengthen easterly winds, which penetrated into the equatorial upper troposphere, causing poleward shifts in the positions of the subtropical westerly jets, broadening of the tropical Hadley circulations, and poleward shifts of the storm tracks. These effects are similar to, although generally smaller in magnitude than, those observed in nature. A simulation in which only solar irradiance was changed showed a much weaker response. PMID:8662582

  16. Some problems in coupling solar activity to meteorological phenomena

    NASA Technical Reports Server (NTRS)

    Dessler, A. J.

    1975-01-01

    The development of a theory of coupling of solar activity to meteorological phenomena is hindered by the difficulties of devising a mechanism that can modify the behavior of the troposphere while employing only a negligible amount of energy compared with the energy necessary to drive the normal meteorological system, and determining how such a mechanism can effectively couple some relevant magnetospheric process into the troposphere in such a way as to influence the weather. A clue to the nature of the interaction between the weather and solar activity might be provided by the fact that most solar activity undergoes a definite 11-yr cycle, and meteorological phenomena undergo either no closely correlated variation, an 11-yr variation, or a 22-yr variation.

  17. Correlation of nighttime MF signal strength with solar activity

    NASA Astrophysics Data System (ADS)

    Kohata, Hiroki; Kimura, Iwane; Wakai, Noboru; Ogawa, Tadahiko

    Observations of the signal strength of MF broadcasting signals (774/770 kHz) transmitted from Akita, Japan, on board the Japanese Antarctic ice breaker Fuji, bound from Japan to Syowa station, Antarctica, have revealed an interesting positive correlation between strengths of long distance signals propagating at night and solar activity. It is already known that MF propagation characteristics in North America show a negative correlation with solar activity. The present paper, interprets the results by using the multihop method with full-wave analysis. The difference in correlation with solar activity between the results of Fuji and those in North America can be elucidated if it is assumed that there is a ledge in the electron-density profile around an altitude range of 85 to 90 km and that the density of the ledge is smaller in the North American region than in the equatorial region.

  18. A prediction of geomagnetic activity for solar cycle 23

    NASA Astrophysics Data System (ADS)

    Cliver, E. W.; Ling, A. G.; Wise, J. E.; Lanzerotti, L. J.

    1999-04-01

    Using a database of 13 solar cycles of geomagnetic aa data, we obtained correlations between cycle averages of geomagnetic activity (and sunspot number) and the numbers of days with disturbance levels above certain aa thresholds. We then used a precursor-type relation to predict an average aa index of 23.1 nT for cycle 23 and inserted this average aa value into the above correlations to forecast the integral size distribution of geomagnetic activity for the new cycle. The predicted size distribution is similar to that observed for cycles 21 and 22 but most closely resembles that of solar cycle 18 (1944-1954), which was slightly smaller than cycles 21 and 22. Our prediction agrees reasonably well with the ``climatology-based'' forecast made by the intergovernmental panel tasked to predict geomagnetic activity for the coming solar cycle and is significantly different from their ``precursor-based'' prediction.

  19. Topside electron temperature models for low and high solar activity

    NASA Astrophysics Data System (ADS)

    Pandey, V. K.; Sethi, N. K.; Mahajan, K. K.

    It is now well known that in the topside ionosphere thermal conduction from the protonosphere becomes the dominant factor over the heating and loss terms in shaping the ionospheric electron temperature (Te) profile. By analyzing a limited database of incoherent scatter (IS) Te measurements, Mahajan and Pandey [J. Geophys. Res. 85 (1980) 213] reported a correlation between the electron heat flux and electron density in the topside ionosphere. Since attention has been steadily mounting for the empirical modeling of Te, we now exploit the large database of IS measurements of Te and Ne at Arecibo during 1989-1990 (high solar activity), as well as during 1975-1976 (low solar activity) for this purpose. We again find a functional relationship between heat flux and electron density in the topside ionosphere during both the solar activities. These functional relationships are used to generate topside Te profiles.

  20. Summary of solar activity observed in the Mauna Loa Solar Observatory, 1980 - 1983

    NASA Astrophysics Data System (ADS)

    Rock, K.; Fisher, R.; Garcia, C.; Yasukawa, E.

    1983-11-01

    The following technical note summarizes solar activity observed during the first four years operation of the experiment systems of the Coronal Dynamics Project, which are located at the Mauna Loa Solar Observatory. This short report has been produced with the general aim of providing users of Mauna Loa observations with a summary of data for specific events. So that this table might be as useful as possible, a comprehensive review of three sources was performed. The plain language logs, identified as the so-called observer's logs, the now-discontinued activity logs, and the prominence monitor quality control logs were the sources from which the information in the following tables was obtained.

  1. Trauma, mental health, and intergenerational associations in Kosovar Families 11 years after the war

    PubMed Central

    Schick, Matthis; Morina, Naser; Klaghofer, Richard; Schnyder, Ulrich; Müller, Julia

    2013-01-01

    Background While there is a considerable amount of literature addressing consequences of trauma in veterans and holocaust survivors, war and postwar civilian populations, particularly children, are still understudied. Evidence regarding intergenerational effects of trauma in families is inconsistent. Objective To shed light on intergenerational aspects of trauma-related mental health problems among families 11 years after the Kosovo war. Method In a cross-sectional study, a paired sample of 51 randomly selected triplets (school-aged child, mother, father, N=153) of Kosovar families was investigated with regard to trauma exposure, posttraumatic stress (UCLA Posttraumatic Diagnostic Scale), anxiety (Spence Children's Anxiety Scale, Hopkins Symptom Checklist-25), and depressive symptoms (Depressionsinventar für Kinder und Jugendliche [DIKJ; depression inventory for children and adolescents], Hopkins Symptom Checklist-25). Results Considerable trauma exposure and high prevalence rates of clinically relevant posttraumatic stress, anxiety, and depressive symptoms were found in both parents and children. While strong correlations were found between children's depressive symptoms and paternal posttraumatic stress, anxiety and depressive symptoms, maternal symptoms did not correlate with their children's. In multiple regression analyses, only posttraumatic stress symptoms of fathers were significantly related with children's depressive symptoms. Conclusion Eleven years after the Kosovo war, the presence of posttraumatic stress, anxiety, and depressive symptoms in civilian adults and their children is still substantial. As symptoms of parents and children are associated, mental health problems of close ones should be actively screened and accounted for in comprehensive treatment plans, using a systemic approach. Future research should include longitudinal studies conducting multivariate analyses with larger sample sizes in order to investigate indicators, causal and

  2. Antimicrobial Susceptibility of Invasive Streptococcus pneumoniae Isolates in Portugal over an 11-Year Period

    PubMed Central

    Dias, Ricardo; Louro, Deolinda; Caniça, Manuela

    2006-01-01

    This national surveillance study presents the in vitro activities of the main antimicrobial agents against 1,331 S. pneumoniae isolates as tested by an agar dilution method according to the guidelines of the Clinical and Laboratory Standards Institute (formerly NCCLS). The strains were isolated in several regions of Portugal from cases of invasive disease over an 11-year period (1994 to 2004). This study shows that the percentage of penicillin-nonsusceptible strains increased from 12% in 1994 to 28.5% in 2000. Then the rate declined to 17.7% in 2003 but increased again to 23.2% in 2004. Nevertheless, the rate of highly resistant isolates declined consistently, to 0.9% in 2001 to 2004. Ceftriaxone- and cefotaxime-nonsusceptible isolates became less frequent, from 4% and 8%, respectively, in 1994 to ≤1% in 2004. The macrolide-lincosamide-streptogramin B phenotype was the predominant macrolide phenotype found. The increase in the percentage of isolates that were only nonsusceptible to erythromycin (3.7% in 1994 to 1998 to 9.1% in 2002 to 2004) was similar to that for isolates with coresistance to penicillin and erythromycin (3.3% in 1994 to 1998 to 9.1% in 2002 to 2004). The nonsusceptibility to ciprofloxacin increased during recent years, from 0.5% in 2002 to 3.5% in 2004. Multidrug resistance also increased in recent years: from 7.9% in 2002 to 15.6% in 2004. The increasing use of macrolides could be causing the increase in penicillin and multidrug resistance, due to the coresistance to macrolides. The use of penicillin to treat empirical invasive pneumococci infections may need to be reconsidered. PMID:16723571

  3. Training compliance control yields improved drawing in 5-11year old children with motor difficulties.

    PubMed

    Snapp-Childs, Winona; Shire, Katy; Hill, Liam; Mon-Williams, Mark; Bingham, Geoffrey P

    2016-08-01

    There are a large number of children with motor difficulties including those that have difficulty producing movements qualitatively well enough to improve in perceptuo-motor learning without intervention. We have developed a training method that supports active movement generation to allow improvement in a 3D tracing task requiring good compliance control. Previously, we tested a limited age range of children and found that training improved performance on the 3D tracing task and that the training transferred to a 2D drawing test. In the present study, school children (5-11years old) with motor difficulties were trained in the 3D tracing task and transfer to a 2D drawing task was tested. We used a cross-over design where half of the children received training on the 3D tracing task during the first training period and the other half of the children received training during the second training period. Given previous results, we predicted that younger children would initially show reduced performance relative to the older children, and that performance at all ages would improve with training. We also predicted that training would transfer to the 2D drawing task. However, the pre-training performance of both younger and older children was equally poor. Nevertheless, post-training performance on the 3D task was dramatically improved for both age groups and the training transferred to the 2D drawing task. Overall, this work contributes to a growing body of literature that demonstrates relatively preserved motor learning in children with motor difficulties and further demonstrates the importance of games in therapeutic interventions. PMID:27219739

  4. 11- and 22-year variations of the cosmic ray density and of the solar wind speed

    NASA Technical Reports Server (NTRS)

    Chirkov, N. P.

    1985-01-01

    Cosmic ray density variations for 17-21 solar activity cycles and the solar wind speed for 20-21 events are investigated. The 22-year solar wind speed recurrence was found in even and odd cycles. The 22-year variations of cosmic ray density were found to be opposite that of solar wind speed and solar activity. The account of solar wind speed in 11-year variations significantly decreases the modulation region of cosmic rays when E = 10-20 GeV.

  5. Solar Wind and Magnetic Storms in 24-th Cycle of Solar Activity

    NASA Astrophysics Data System (ADS)

    Val'chuk, T. E.

    2013-01-01

    Slow growth of 24-th solar cycle allows adding of this cycle to the type of low cycles. Geomagnetic activity is not expensive too - strong geomagnetic storms were absent in the beginning of growth branch of this cycle. Very prolonged minimum was lasting about 4 years. We may remember that century minimum of solar activity was proposed after XX century high strong cycles. It may be - we look this situation now in 2012. Our work is connected with sporadic phenomena in 24-th cycle. These more or less intensive variations of solar activity are not predicted, they are caused by flowing up of new magnetic fields of spots, the excitement of flares, intensive plasma flows, coronal mass ejections (CME) and filament eruptions. Now two last versions (CME and filaments) are primary. Geomagnetic activity on a descending phase of solar cycle depends on quality of coronal holes providing the recurrent geomagnetic storms. Sporadic phenomena, which generated geomagnetic storms in Earth magnetosphere if flare flows reached the Earth magnetosphere and transferred it the energy are more interesting for us - they are the valuable characteristics of 24-th cycle. The disturbed period of several geomagnetic storms was generated by solar active region N11429. It is one sample only, this case is difficult and indicative. Replacing each other scenarios describe geomagnetic variations at the beginning of March 2012. Detailed consideration of this interval revealed its communication with sporadic events on the Sun. The structural configuration of plasma in flare flows was defined by means fractal dimension calculations of solar plasma parameters: velocity Vx and density N in flare streams.

  6. More Solar Activities for Astro 101

    NASA Astrophysics Data System (ADS)

    West, M. L.

    2002-12-01

    For many astronomy students the sun is not only the brightest astronomical object they can observe but also the most interesting since it has an immediate effect on their daily lives. Students enjoy analyzing their own observations using a Sunspotter, or images from archives such as the RBSE CD-ROM (1999, 2000, T. Rector), or current images found on the Internet. They can measure each sunspot's latitude, longitude, and approximate surface area by transparent Stonyhurst grids and fine graph paper, or NIH Image or Scion Image tools. Graphing latitude vs. time shows its near constancy. Longitude increases linearly with time and allows a measure of the sun's rotation period. Area vs. time increases for some spot groups, decreases for others, and fades but revives for others. This behavior elicits a lot of questions, hypotheses, and plans for more observations. The variation of solar rotation period with latitude can be tested. Does the sun's rotation period change with month and year also? One of the oldest calendar markers is the sun's altitude at local noon. It can be measured easily with a paper scale attached to the cradle of a Sunspotter. Noticing the civil time at local noon allows one to understand the analemma. What do sunspots correlate with? Students have investigated the correlation of sunspot numbers or areas with radio bursts, visible light or x-ray flares, solar wind speed, density, or magnetic field, aurorae, geomagnetic storms, the Earth's ozone layer, aircraft flight safety, ultraviolet light, global average temperature, local daily temperature variations, power grid outages, disruptions of Earth orbiting satellites or interplanetary spacecraft, earthquakes, hurricanes, tornadoes, or other natural disasters,

  7. Multi-scale statistical analysis of coronal solar activity

    DOE PAGESBeta

    Gamborino, Diana; del-Castillo-Negrete, Diego; Martinell, Julio J.

    2016-07-08

    Multi-filter images from the solar corona are used to obtain temperature maps that are analyzed using techniques based on proper orthogonal decomposition (POD) in order to extract dynamical and structural information at various scales. Exploring active regions before and after a solar flare and comparing them with quiet regions, we show that the multi-scale behavior presents distinct statistical properties for each case that can be used to characterize the level of activity in a region. Information about the nature of heat transport is also to be extracted from the analysis.

  8. Variation of Meteor Heights and Solar-Cycle Activity

    NASA Astrophysics Data System (ADS)

    Porubcan, Vladimír; Bucek, Marek; Cevolani, Giordano; Zigo, Pavel

    2012-08-01

    Photographic meteor observations of the Perseid meteoroid stream compiled from the IAU Meteor Data Center catalogue are analyzed from the viewpoint of possible long-term variation of meteor heights with the solar-cycle activity, which was previously reported from radio observations. The observed beginning and end-point heights of the Perseids, normalized for the geocentric velocity and the absolute photographic magnitude, do not show a variation consistent with the solar-cycle activity. This result is valid for the mass range of larger meteoroids observed by photographic techniques, and must be still verified also for the range of smaller meteoroids observed by TV and radio methods.

  9. Multi-scale statistical analysis of coronal solar activity

    NASA Astrophysics Data System (ADS)

    Gamborino, Diana; del-Castillo-Negrete, Diego; Martinell, Julio J.

    2016-07-01

    Multi-filter images from the solar corona are used to obtain temperature maps that are analyzed using techniques based on proper orthogonal decomposition (POD) in order to extract dynamical and structural information at various scales. Exploring active regions before and after a solar flare and comparing them with quiet regions, we show that the multi-scale behavior presents distinct statistical properties for each case that can be used to characterize the level of activity in a region. Information about the nature of heat transport is also to be extracted from the analysis.

  10. An influence of solar activity on latitudinal distribution of atmospheric ozone and temperature in 2-D radiative-photochemical model

    NASA Technical Reports Server (NTRS)

    Dyominov, I. G.

    1989-01-01

    On the basis of the 2-D radiative-photochemical model of the ozone layer at heights 0 to 60 km in the Northern Hemisphere there are revealed and analyzed in detail the characteristic features of the season-altitude-latitude variations of ozone and temperature due to changes of the solar flux during the 11 year cycle, electron and proton precipitations.

  11. Korean 4- to 11-Year-Old Student Conceptions of Heat and Temperature

    ERIC Educational Resources Information Center

    Paik, Seoung-Hey; Cho, Boo-Kyung; Go, Young-Mi

    2007-01-01

    The aim of the present study is to shed light on the conceptions that young students have of heat and temperature, concepts that are both important in school science curricula and closely related to daily life. The subjects of the study were students from a rural district in South Korea and they ranged in age from 4 to 11 years. Interviews were…

  12. Easy Growth Experiment on Peas Stimulates Interest in Biology for 10-11 Year Old Pupils

    ERIC Educational Resources Information Center

    McEwen, Birgitta

    2007-01-01

    How do we support the enthusiasm children show for biology in school? Unfortunately, lack of exciting practical work and boring biology lessons seem to make science less popular. As a senior lecturer in plant physiology at Karlstad University I have simplified experiments intended for students at university and then tested them on 10-11 year old…

  13. Race and Ethnicity: An 11-Year Content Analysis of "Counseling and Values"

    ERIC Educational Resources Information Center

    Baker, Caroline A.; Bowen, Nikol V.; Butler, J. Yasmine; Shavers, Marjorie C.

    2013-01-01

    Using the Dimensions of Personal Identity Model proposed by Arredondo and Glauner (as cited in Arredondo et al., 1996), the authors reviewed the last 11 years of the Association for Spiritual, Ethical, and Religious Values in Counseling's journal, "Counseling and Values", specifically regarding the "A" dimensions of race and ethnicity. Twenty-five…

  14. Duration, Distance, and Speed Judgments of Two Moving Objects by 4- to 11-Year-Olds.

    ERIC Educational Resources Information Center

    Matsuda, Fumiko

    1996-01-01

    Four- to 11-year-olds made duration, distance, and speed judgments on Piagetian tasks where cars ran on parallel tracks. Among younger children, duration and distance judgments had approximately the same difficulty. Among older children, distance judgments were easier than duration judgments, and symmetry of effects of temporal and spatial…

  15. Basic Facts about Low-Income Children: Children 6 through 11 Years, 2013. Fact Sheet

    ERIC Educational Resources Information Center

    Jiang, Yang; Ekono, Mercedes; Skinner, Curtis

    2015-01-01

    Children under 18 years represent 23 percent of the population, but they comprise 33 percent of all people in poverty. Among all children, 44 percent live in low-income families and approximately one in every five (22 percent) live in poor families. Similarly, among children in middle childhood (age 6 through 11 years), 45 percent live in…

  16. Developing Number Knowledge: Assessment, Teaching and Intervention with 7-11 Year Olds. Math Recovery

    ERIC Educational Resources Information Center

    Wright, Robert J.; Ellemor-Collins, David; Tabor, Pamela D.

    2011-01-01

    This fourth book in the Mathematics Recovery series equips teachers with detailed pedagogical knowledge and resources for teaching number to 7 to 11-year olds. Drawing on extensive programs of research, curriculum development, and teacher development, the book offers a coherent, up-to-date approach emphasizing computational fluency and the…

  17. Psychiatric Disorders in Extremely Preterm Children: Longitudinal Finding at Age 11 Years in the EPICure Study

    ERIC Educational Resources Information Center

    Johnson, Samantha; Hollis, Chris; Kochhar, Puja; Hennessy, Enid; Wolke, Dieter; Marlow, Neil

    2010-01-01

    Objective: To investigate the prevalence and risk factors for psychiatric disorders in extremely preterm children. Method: All babies born less than 26 weeks gestation in the United Kingdom and Ireland from March through December 1995 were recruited to the EPICure Study. Of 307 survivors at 11 years of age, 219 (71%) were assessed alongside 153…

  18. Dermatitis rhabditidosa in an 11-year-old girl: a new cutaneous parasitic disease of man.

    PubMed

    Pasyk, K

    1978-01-01

    Rhabditiform larvae of Rhabditis (Pelodera) strongyloides caused pruritic lesions in an 11-year-old girl, and persisted for 2 1/2 months. Larvae were found in skin scrapings from the child and in the family dog's hair. PMID:564202

  19. Meaning-Making with Colour in Multimodal Texts: An 11-Year-Old Student's Purposeful "Doing"

    ERIC Educational Resources Information Center

    Pantaleo, Sylvia

    2012-01-01

    Colour, a visual element of art and design, is a semiotic mode that is used strategically by sign-makers to communicate meaning. Understanding the meaning-making potential of colour can enhance students' understanding, appreciation, interpretation and composition of multimodal texts. This article features a case study of Anya, an 11-year-old…

  20. The Relationship among 100% Juice Consumption, Nutrient Intake, and Weight of Children 2-11 Years

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Inconsistent research findings have led to continued debate over the potential associations between 100% juice consumption (JC), nutrient intake,and weight in children. The objective is to investigate the associations between JC, nutrient intake, and weight in children. Children 2 to 11 years of a...

  1. Position of the American Dietetic Association: Nutrition Guidance for Health Children Ages 2 to 11 Years

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It is the position of the American Dietetic Association that children ages 2 to 11 years should achieve optimal physical and cognitive development, attain a healthy weight, enjoy food, and reduce the risk of chronic disease through appropriate eating habits and participation in regular physical acti...

  2. Losing Our Way? The Downward Path for Outdoor Learning for Children Aged 2-11 Years

    ERIC Educational Resources Information Center

    Waite, Sue

    2010-01-01

    This paper draws on three related empirical studies in the South West of England: a survey of outdoor experiential learning opportunities, examining attitudes, practice and aspirations of practitioners and children in educational and care settings for children between 2-11 years within a rural county; a follow-up series of five case studies; and…

  3. Solar activity forecast: Spectral analysis and neurofuzzy prediction

    NASA Astrophysics Data System (ADS)

    Gholipour, Ali; Lucas, Caro; Araabi, Babak N.; Shafiee, Masoud

    2005-04-01

    Active research in the last two decades indicates that the physical precursor and solar dynamo techniques are preferred as practical tools for long-term prediction of solar activity. But why should we omit more than 23 cycles of solar activity history, and just use empirical methods or simple autoregressive methods on the basis of observations for the latest eight cycles? In this article, a method based on spectral analysis and neurofuzzy modeling is proposed that is capable of issuing very accurate long-term prediction of sunspot number time series. A locally linear neurofuzzy model is optimized for each of the principal components obtained from singular spectrum analysis, and the multi-step predicted values are recombined to make the sunspot number time series. The proposed method is used for solar cycles 22 and 23 and the results are remarkably good in comparison to the predictions made by solar dynamo and precursor methods. An early prediction of the maximum smoothed international sunspot number for cycle 24 is 145 in 2011 2012.

  4. DASL-Data and Activities for Solar Learning

    NASA Technical Reports Server (NTRS)

    Jones, Harrison P.; Henney, Carl; Hill, Frank; Gearen, Michael; Pompca, Stephen; Stagg, Travis; Stefaniak, Linda; Walker, Connie

    2004-01-01

    DASL-Data and Activities for Solar Learning Data and Activities for Solar Learning (DASL) provides a classroom learning environment based on a twenty-five year record of solar magnetograms from the National Solar Observatory (NSO) at Kitt Peak, AZ. The data, together with image processing software for Macs or PCs, can be used to learn basic facts about the Sun and astronomy at the middle school level. At the high school level, students can study properties of the Sun's magnetic cycle with classroom exercises emphasizing data and error analysis and can participate in a new scientific study, Research in Active Solar Longitudes (RASL), in collaboration with classrooms throughout the country and scientists at NSO and NASA. We present a half-day course to train teachers in the scientific content of the project and its classroom use. We will provide a compact disc with the data and software and will demonstrate software installation and use, classroom exercises, and participation in RASL with computer projection.

  5. Active control of the Chinese Giant Solar Telescope

    NASA Astrophysics Data System (ADS)

    Dai, Yichun; Yang, Dehua; Jin, Zhenyu; Liu, Zhong; Qin, Wei

    2014-07-01

    The Chinese Giant Solar Telescope (CGST) is the next generation solar telescope of China with diameter of 8 meter. The unique feature of CGST is that its primary is a ring, which facilitates the polarization detection and thermal control. In its present design and development phase, two primary mirror patterns are considered. For one thing, the primary mirror is expected to construct with mosaic mirror with 24 trapezoidal (or petal) segments, for another thing, a monolithic mirror is also a candidate for its primary mirror. Both of them depend on active control technique to maintain the optical quality of the ring mirror. As a solar telescope, the working conditions of the CGST are quite different from those of the stellar telescopes. To avoid the image deterioration due to the mirror seeing and dome seeing, especially in the case of the concentration of flux in a solar telescope, large aperture solar projects prefer to adopt open telescopes and open domes. In this circumstance, higher wind loads act on the primary mirror directly, which will cause position errors and figure errors of the primary with matters worse than those of the current 10-meter stellar telescopes with dome protect. Therefore, it gives new challenges to the active control capability, telescope structure design, and wind shielding design. In this paper, the study progress of active control of CGST for its mosaic and monolithic mirror are presented, and the wind effects on such two primary mirrors are also investigated.

  6. The Solar System Ballet: A Kinesthetic Spatial Astronomy Activity

    NASA Astrophysics Data System (ADS)

    Heyer, Inge; Slater, T. F.; Slater, S. J.; Astronomy, Center; Education ResearchCAPER, Physics

    2011-05-01

    The Solar System Ballet was developed in order for students of all ages to learn about the planets, their motions, their distances, and their individual characteristics. To teach people about the structure of our Solar System can be revealing and rewarding, for students and teachers. Little ones (and some bigger ones, too) often cannot yet grasp theoretical and spatial ideas purely with their minds. Showing a video is better, but being able to learn with their bodies, essentially being what they learn about, will help them understand and remember difficult concepts much more easily. There are three segments to this activity, which can be done together or separately, depending on time limits and age of the students. Part one involves a short introductory discussion about what students know about the planets. Then students will act out the orbital motions of the planets (and also moons for the older ones) while holding a physical model. During the second phase we look at the structure of the Solar System as well as the relative distances of the planets from the Sun, first by sketching it on paper, then by recreating a scaled version in the class room. Again the students act out the parts of the Solar System bodies with their models. The third segment concentrates on recreating historical measurements of Earth-Moon-Sun system. The Solar System Ballet activity is suitable for grades K-12+ as well as general public informal learning activities.

  7. SOLAR CYCLE VARIATIONS OF THE OCCURRENCE OF CORONAL TYPE III RADIO BURSTS AND A NEW SOLAR ACTIVITY INDEX

    SciTech Connect

    Lobzin, Vasili; Cairns, Iver H.; Robinson, Peter A.

    2011-07-20

    This Letter presents the results of studies of solar cycle variations of the occurrence rate of coronal type III radio bursts. The radio spectra are provided by the Learmonth Solar Radio Observatory (Western Australia), part of the USAF Radio Solar Telescope Network (RSTN). It is found that the occurrence rate of type III bursts strongly correlates with solar activity. However, the profiles for the smoothed type III burst occurrence rate differ considerably from those for the sunspot number, 10.7 cm solar radio flux, and solar flare index. The type III burst occurrence rate (T3BOR) is proposed as a new index of solar activity. T3BOR provides complementary information about solar activity and should be useful in different studies including solar cycle predictions and searches for different periodicities in solar activity. This index can be estimated from daily results of the Automated Radio Burst Identification System. Access to data from other RSTN sites will allow processing 24 hr radio spectra in near-real time and estimating true daily values of this index. It is also shown that coronal type III bursts can even occur when there are no visible sunspots on the Sun. However, no evidence is found that the bursts are not associated with active regions. It is also concluded that the type III burst productivity of active regions exhibits solar cycle variations.

  8. Initiation of non-tropical thunderstorms by solar activity

    NASA Technical Reports Server (NTRS)

    Herman, J. R.; Goldberg, R. A.

    1976-01-01

    Correlative evidence accumulating since 1926 suggests that there must be some physical coupling mechanism between solar activity and thunderstorm occurrence in middle to high latitudes. Such a link may be provided by alteration of atmospheric electric parameters through the combined influence of high-energy solar protons and decreased cosmic ray intensities, both of which are associated with active solar events. The protons produce excess ionization near and above 20km, while the Forbush decreases a lowered conductivity and enhanced fair-weather atmospheric electric field below that altitude. Consequent effects ultimately lead to a charge distribution similar to that found in thunderclouds, and then other cloud physics processes take over to generate the intense electric fields required for lightning discharge.

  9. Magnetic Cloud Polarity and Geomagnetic Activities over Three Solar Cycles

    NASA Astrophysics Data System (ADS)

    Li, Y.; Luhmann, J.

    2006-12-01

    Interplanetary coronal mass ejections (ICMEs) that show fluxrope magnetic structures are named magnetic clouds (MCs). Majority of the MCs exhibit bipolar signature in their north-south component (Bz) in IMF measurements. The Bz component of a bipolar cloud is either NS (north first then turning south as the MC traverses the spacecraft) or SN. Studies show that the occurrence of these two types of MCs has some solar cycle dependence. However it appears to be a complex relationship as the switch between the two types of MCs is not concurrent with either the solar polar reversal or the time of the sunspot minimum when the new cycle sunspots start to appear. In this paper, we use ACE solar wind and IMF observations to obtain the most updated MC signatures and their temporal variation. In combination with our previously published results, we analyze MC polarity variations over the three solar cycles of 21, 22 and 23. Interpretations in terms of their solar sources will be attempted. On the other hand, the geomagnetic activities over the same solar cycles will be studied using geomagnetic indices. The geoeffectiveness of the MC will be evaluated in the aid of Dst indices.

  10. Solar Spectral Irradiance, Solar Activity, and the Near-Ultra-Violet

    NASA Astrophysics Data System (ADS)

    Fontenla, J. M.; Stancil, P. C.; Landi, E.

    2015-08-01

    The previous calculations of the Solar Spectral Irradiance (SSI) by the Solar Radiation Physical Modeling, version 2 system, are updated in this work by including new molecular photodissociation cross-sections of important species, and many more levels and lines in its treatment of non-LTE radiative transfer. The current calculations including the new molecular photodissociation opacities produce a reduced over-ionizaton of heavy elements in the lower chromosphere and solve the problems with prior studies of the UV SSI in the wavelength range 160-400 nm and now reproduce the available observations with much greater accuracy. Calculations and observations of the near-UV at 0.1 nm resolution and higher are compared. The current set of physical models includes four quiet-Sun and five active-region components, from which radiance is computed for ten observing angles. These radiances are combined with images of the solar disk to obtain the SSI and Total Solar Irradiance and their variations. The computed SSI is compared with measurements from space at several nm resolution and agreement is found within the accuracy level of these measurements. An important result is that the near-UV SSI increase with solar activity is significant for the photodissociation of ozone in the terrestrial atmosphere because a number of highly variable upper chromospheric lines overlap the ozone Hartley band.

  11. Long-Range Solar Activity Predictions: A Reprieve from Cycle #24's Activity

    NASA Technical Reports Server (NTRS)

    Richon, K.; Schatten, K.

    2003-01-01

    We discuss the field of long-range solar activity predictions and provide an outlook into future solar activity. Orbital predictions for satellites in Low Earth Orbit (LEO) depend strongly on exospheric densities. Solar activity forecasting is important in this regard, as the solar ultra-violet (UV) and extreme ultraviolet (EUV) radiations inflate the upper atmospheric layers of the Earth, forming the exosphere in which satellites orbit. Rather than concentrate on statistical, or numerical methods, we utilize a class of techniques (precursor methods) which is founded in physical theory. The geomagnetic precursor method was originally developed by the Russian geophysicist, Ohl, using geomagnetic observations to predict future solar activity. It was later extended to solar observations, and placed within the context of physical theory, namely the workings of the Sun s Babcock dynamo. We later expanded the prediction methods with a SOlar Dynamo Amplitude (SODA) index. The SODA index is a measure of the buried solar magnetic flux, using toroidal and poloidal field components. It allows one to predict future solar activity during any phase of the solar cycle, whereas previously, one was restricted to making predictions only at solar minimum. We are encouraged that solar cycle #23's behavior fell closely along our predicted curve, peaking near 192, comparable to the Schatten, Myers and Sofia (1996) forecast of 182+/-30. Cycle #23 extends from 1996 through approximately 2006 or 2007, with cycle #24 starting thereafter. We discuss the current forecast of solar cycle #24, (2006-2016), with a predicted smoothed F10.7 radio flux of 142+/-28 (1-sigma errors). This, we believe, represents a reprieve, in terms of reduced fuel costs, etc., for new satellites to be launched or old satellites (requiring reboosting) which have been placed in LEO. By monitoring the Sun s most deeply rooted magnetic fields; long-range solar activity can be predicted. Although a degree of uncertainty

  12. High flare activity and redistribution of solar global magnetic fields

    NASA Astrophysics Data System (ADS)

    Bumba, V.; Hejna, L.; Gesztelyi, L.

    It is demonstrated that, both on the global scale and on the scale of large and complex active regions, high flare activity is closely related to changes in the whole background magnetic-field distribution. It is found that the disturbances of the normal course of magnetic active longitudes (MAL) during the years 1965-1980 correlated with the maxima of flare activity, while the mode of the MAL distribution correlated with the mean level of solar flare numbers. The development of activity during the last two submaxima of the 21st cycle, especially the formation of the white-light flare region of April 1984, were parts of global processes in the solar atmosphere. They were accompanied by a complete reorganization of the MAL patterns, background field sector structure, and coronal holes.

  13. Proton activity of the Sun in current solar cycle 24

    NASA Astrophysics Data System (ADS)

    Li, Chuan; Miroshnichenko, Leonty I.; Fang, Cheng

    2015-07-01

    We present a study of seven large solar proton events in the current solar cycle 24 (from 2009 January up to the current date). They were recorded by the GOES spacecraft with the highest proton fluxes being over 200 pfu for energies >10 MeV. In situ particle measurements show that: (1) The profiles of the proton fluxes are highly dependent on the locations of their solar sources, namely flares or coronal mass ejections (CMEs), which confirms the “heliolongitude rules” associated with solar energetic particle fluxes; (2) The solar particle release (SPR) times fall in the decay phase of the flare emission, and are in accordance with the times when the CMEs travel to an average height of 7.9 solar radii; and (3) The time differences between the SPR and the flare peak are also dependent on the locations of the solar active regions. The results tend to support the scenario of proton acceleration by the CME-driven shock, even though there exists a possibility of particle acceleration at the flare site, with subsequent perpendicular diffusion of accelerated particles in the interplanetary magnetic field. We derive the integral time-of-maximum spectra of solar protons in two forms: a single power-law distribution and a power law roll-over with an exponential tail. It is found that the unique ground level enhancement that occurred in the event on 2012 May 17 displays the hardest spectrum and the largest roll-over energy which may explain why this event could extend to relativistic energies. Supported by the National Natural Science Foundation of China.

  14. GLOBAL DYNAMICS OF SUBSURFACE SOLAR ACTIVE REGIONS

    SciTech Connect

    Jouve, L.; Brun, A. S.

    2013-01-01

    We present three-dimensional numerical simulations of a magnetic loop evolving in either a convectively stable or unstable rotating shell. The magnetic loop is introduced into the shell in such a way that it is buoyant only in a certain portion in longitude, thus creating an {Omega}-loop. Due to the action of magnetic buoyancy, the loop rises and develops asymmetries between its leading and following legs, creating emerging bipolar regions whose characteristics are similar to those of observed spots at the solar surface. In particular, we self-consistently reproduce the creation of tongues around the spot polarities, which can be strongly affected by convection. We further emphasize the presence of ring-shaped magnetic structures around our simulated emerging regions, which we call 'magnetic necklace' and which were seen in a number of observations without being reported as of today. We show that those necklaces are markers of vorticity generation at the periphery and below the rising magnetic loop. We also find that the asymmetry between the two legs of the loop is crucially dependent on the initial magnetic field strength. The tilt angle of the emerging regions is also studied in the stable and unstable cases and seems to be affected both by the convective motions and the presence of a differential rotation in the convective cases.

  15. Hot spots and active longitudes: Organization of solar activity as a probe of the interior

    NASA Technical Reports Server (NTRS)

    Bai, Taeil; Hoeksema, J. Todd; Scherrer, Phil H.

    1995-01-01

    In order to investigate how solar activity is organized in longitude, major solar flares, large sunspot groups, and large scale photospheric magnetic field strengths were analyzed. The results of these analyses are reported. The following results are discussed: hot spots, initially recognized as areas of high concentration of major flares, are the preferred locations for the emergence of big sunspot groups; double hot spots appear in pairs that rotate at the same rate separated by about 180 deg in longitude, whereas, single hot spots have no such companions; the northern and southern hemispheres behave differently in organizing solar activity in longitude; the lifetime of hot spots range from one to several solar cycles; a hot spot is not always active throughout its lifetime, but goes through dormant periods; and hot spots with different rotational periods coexist in the same hemisphere during the same solar cycle.

  16. Solar activity and its evolution across the corona: recent advances

    NASA Astrophysics Data System (ADS)

    Zuccarello, Francesca; Balmaceda, Laura; Cessateur, Gael; Cremades, Hebe; Guglielmino, Salvatore L.; Lilensten, Jean; Dudok de Wit, Thierry; Kretzschmar, Matthieu; Lopez, Fernando M.; Mierla, Marilena; Parenti, Susanna; Pomoell, Jens; Romano, Paolo; Rodriguez, Luciano; Srivastava, Nandita; Vainio, Rami; West, Matt; Zuccarello, Francesco P.

    2013-04-01

    Solar magnetism is responsible for the several active phenomena that occur in the solar atmosphere. The consequences of these phenomena on the solar-terrestrial environment and on Space Weather are nowadays clearly recognized, even if not yet fully understood. In order to shed light on the mechanisms that are at the basis of the Space Weather, it is necessary to investigate the sequence of phenomena starting in the solar atmosphere and developing across the outer layers of the Sun and along the path from the Sun to the Earth. This goal can be reached by a combined multi-disciplinary, multi-instrument, multi-wavelength study of these phenomena, starting with the very first manifestation of solar active region formation and evolution, followed by explosive phenomena (i.e., flares, erupting prominences, coronal mass ejections), and ending with the interaction of plasma magnetized clouds expelled from the Sun with the interplanetary magnetic field and medium. This wide field of research constitutes one of the main aims of COST Action ES0803: Developing Space Weather products and services in Europe. In particular, one of the tasks of this COST Action was to investigate the Progress in Scientific Understanding of Space Weather. In this paper we review the state of the art of our comprehension of some phenomena that, in the scenario outlined above, might have a role on Space Weather, focusing on the researches, thematic reviews, and main results obtained during the COST Action ES0803.

  17. A solar cycle timing predictor - The latitude of active regions

    NASA Technical Reports Server (NTRS)

    Schatten, Kenneth H.

    1990-01-01

    A 'Spoerer butterfly' method is used to examine solar cycle 22. It is shown from the latitude of active regions that the cycle can now be expected to peak near November 1989 + or - 8 months, basically near the latter half of 1989.

  18. No evidence for planetary influence on solar activity

    NASA Astrophysics Data System (ADS)

    Cameron, R. H.; Schüssler, M.

    2013-09-01

    Context. Recently, Abreu et al. (2012, A&A. 548, A88) proposed a long-term modulation of solar activity through tidal effects exerted by the planets. This claim is based upon a comparison of (pseudo-)periodicities derived from records of cosmogenic isotopes with those arising from planetary torques on an ellipsoidally deformed Sun. Aims: We examined the statistical significance of the reported similarity of the periods. Methods: The tests carried out by Abreu et al. were repeated with artificial records of solar activity in the form of white or red noise. The tests were corrected for errors in the noise definition as well as in the apodisation and filtering of the random series. Results: The corrected tests provide probabilities for chance coincidence that are higher than those claimed by Abreu et al. by about 3 and 8 orders of magnitude for white and red noise, respectively. For an unbiased choice of the width of the frequency bins used for the test (a constant multiple of the frequency resolution) the probabilities increase by another two orders of magnitude to 7.5% for red noise and 22% for white noise. Conclusions: The apparent agreement between the periodicities in records of cosmogenic isotopes as proxies for solar activity and planetary torques is statistically insignificant. There is no evidence for a planetary influence on solar activity.

  19. Topside electron temperature models for low and high solar activity

    NASA Astrophysics Data System (ADS)

    Pandey, V.; Sethi, N.; Mahajan, K.

    It is now well known that in the topside ionosphere, thermal conduction from the protonosphere becomes the dominant factor over the "heating" and "loss" terms in shaping the ionospheric electron temperature (Te) profile. By analyzing a limited data base of incoherent scatter (i.s.) Te measurements , Mahajan and Pandey (1980) reported a correlation between the topside electron heat flux and electron density, Ne at 400 km. In the recent years, since attention has been steadily mounting for the empirical modelling of Te, in this paper we exploit the large data base of i.s. measurements of Te and Ne at Arecibo, during 1989 -90 (high solar activity), as well as during 1975-76 ( low solar activity). We again find a functional relationship between heat flux and electron density in the topside ionosphere during both the solar activities. These functional relationships are used to generate topside Te profiles. As the current IRI Te model does not include variations with solar activity, the present work can contribute in improving the topside Te model.

  20. The ionosphere under extremely prolonged low solar activity

    NASA Astrophysics Data System (ADS)

    Liu, Libo; Chen, Yiding; Le, Huijun; Kurkin, Vladimir I.; Polekh, Nelya M.; Lee, Chien-Chih

    2011-04-01

    A critical question in ionospheric physics is the state of the ionosphere and relevant processes under extreme solar activities. The solar activity during 2007-2009 is extremely prolonged low, which offers us a unique opportunity to explore this issue. In this study, we collected the global ionosonde measurements of the F2 layer critical frequency (foF2), E layer critical frequency (foE), and F layer virtual height (h‧F) and the total electron content (TEC) maps produced by the Jet Propulsion Laboratory, which were retrieved from dual-frequency GPS receivers distributed worldwide, to investigate the ionospheric phenomena during solar minimum of cycle 23/24, particularly the difference in the ionosphere between solar minima of cycle 23/24 and the preceding cycles. The analysis indicates that the moving 1 year mean foF2 at most ionosonde stations and the global average TEC went to the lowest during cycle 23/24 minimum. The solar cycle differences in foF2 minima display local time dependence, being more negative during the daytime than at night. Furthermore, the cycle difference in daytime foF2 minima is about -0.5 MHz and even reaches to around -1.2 MHz. In contrast, a complex picture presents in global h‧F and foE. Evident reduction exists prevailingly in the moving 1 year mean h‧F at most stations, while no huge differences are detected at several stations. A compelling feature is the increase in foE at some stations, which requires independent data for further validation. Quantitative analysis indicates that record low foF2 and low TEC can be explained principally in terms of the decline in solar extreme ultraviolet irradiance recorded by SOHO/SEM, which suggests low solar EUV being the prevailing contributor to the unusual low electron density in the ionosphere during cycle 23/24 minimum. It also verifies that a quadratic fitting still reasonably captures the solar variability of foF2 and global average TEC at such low solar activity levels.

  1. THE MAGNETIC ENERGY-HELICITY DIAGRAM OF SOLAR ACTIVE REGIONS

    SciTech Connect

    Tziotziou, Kostas; Georgoulis, Manolis K.; Raouafi, Nour-Eddine

    2012-11-01

    Using a recently proposed nonlinear force-free method designed for single-vector magnetograms of solar active regions, we calculate the instantaneous free magnetic energy and relative magnetic helicity budgets in 162 vector magnetograms corresponding to 42 different active regions. We find a statistically robust, monotonic correlation between the free magnetic energy and the relative magnetic helicity in the studied regions. This correlation implies that magnetic helicity, in addition to free magnetic energy, may be an essential ingredient for major solar eruptions. Eruptive active regions appear well segregated from non-eruptive ones in both free energy and relative helicity with major (at least M-class) flares occurring in active regions with free energy and relative helicity exceeding 4 Multiplication-Sign 10{sup 31} erg and 2 Multiplication-Sign 10{sup 42} Mx{sup 2}, respectively. The helicity threshold agrees well with estimates of the helicity contents of typical coronal mass ejections.

  2. An Alternative Measure of Solar Activity from Detailed Sunspot Datasets

    NASA Astrophysics Data System (ADS)

    Muraközy, J.; Baranyi, T.; Ludmány, A.

    2016-05-01

    The sunspot number is analyzed by using detailed sunspot data, including aspects of observability, sunspot sizes, and proper identification of sunspot groups as discrete entities of solar activity. The tests show that in addition to the subjective factors there are also objective causes of the ambiguities in the series of sunspot numbers. To introduce an alternative solar-activity measure, the physical meaning of the sunspot number has to be reconsidered. It contains two components whose numbers are governed by different physical mechanisms and this is one source of the ambiguity. This article suggests an activity index, which is the amount of emerged magnetic flux. The only long-term proxy measure is the detailed sunspot-area dataset with proper calibration to the magnetic flux. The Debrecen sunspot databases provide an appropriate source for the establishment of the suggested activity index.

  3. Evidence of plasma heating in solar microflares during the minimum of solar activity

    NASA Astrophysics Data System (ADS)

    Kirichenko, Alexey; Bogachev, Sergey

    We present a statistical study of 80 solar microflares observed during the deep minimum of solar activity between 23 and 24 solar cycles. Our analysis covers the following characteristics of the flares: thermal energy of flaring plasma, its temperature and its emission measure in soft X-rays. The data were obtained during the period from April to July of 2009, which was favorable for observations of weak events because of very low level of solar activity. The most important part of our analysis was an investigation of extremely weak microflares corresponding to X-ray class below A1.0. We found direct evidence of plasma heating in more than 90% of such events. Temperature of flaring plasma was determined under the isothermal approximation using the data of two solar instruments: imaging spectroheliometer MISH onboard Coronas-Photon spacecraft and X-ray spectrophotometer SphinX operating in energy range 0.8 - 15 keV. The main advantage of MISH is the ability to image high temperature plasma (T above 4 MK) without a low-temperature background. The SphinX data was selected due to its high sensitivity, which makes available the registration of X-ray emission from extremely weak microflares corresponding GOES A0.1 - A0.01 classes. The temperature we obtained lies in the range from 2.6 to 13.6 MK, emission measure, integrated over the range 1 - 8 Å - 2.7times10(43) - 4.9times10(47) cm (-3) , thermal energy of flaring region - 5times10(26) - 1.6times10(29) erg. We compared our results with the data obtained by Feldman et. al. 1996 and Ryan et. al. 2012 for solar flares with X-ray classes above A2.0 and conclude that the relation between X-ray class of solar flare and its temperature is strongly different for ordinary flares (above A2.0) and for weak microflares (A0.01 - A2.0). Our result supports the idea that weak solar events (microflares and nanoflares) may play significant a role in plasma heating in solar corona.

  4. Cosmic rays, solar activity, magnetic coupling, and lightning incidence

    NASA Technical Reports Server (NTRS)

    Ely, J. T. A.

    1984-01-01

    A theoretical model is presented and described that unifies the complex influence of several factors on spatial and temporal variation of lightning incidence. These factors include the cosmic radiation, solar activity, and coupling between geomagnetic and interplanetary (solar wind) magnetic fields. Atmospheric electrical conductivity in the 10 km region was shown to be the crucial parameter altered by these factors. The theory reconciles several large scale studies of lightning incidence previously misinterpreted or considered contradictory. The model predicts additional strong effects on variations in lightning incidence, but only small effects on the morphology and rate of thunderstorm development.

  5. Can El Nino Amplify the Solar Forcing of Climate?

    NASA Technical Reports Server (NTRS)

    Ruzmaikin, A.

    1999-01-01

    ENSO (El Nino and the Southern Oscillation) is considered as a stochastic driver that excites the atmospheric anomaly states, such as Pacific North American pattern. This can make the 11 year solar activity forcing feasible to climate through stochastic resonance -- a phenomenon that amplifies a weak input to a nonlinear bistable system by the assistance of noise.

  6. The variations of prominence activities during solar cycle

    NASA Astrophysics Data System (ADS)

    Shimojo, Masumi

    The prominence activities (prominence eruption/disappearance) in the solar atmosphere closely relate with the CMEs that cause great influences on heliosphere and magnetosphere. Gopal-swarmy et al. (2003) reported that 72 The Nobeyama Radioheliograph (NoRH) is observing Sun in microwave (17 GHz) since 1992. At a flare, the main component of the microwave from Sun is emitted from non-thermal electrons that are accelerated by flare. On the other hand, the main component of the microwave is thermal emission when Sun is quiet, and a prominence is clearly observed in microwave because there is the prominence on the limb. We developed the automatic prominence activity detection program based on 17 GHz images observed by NoRH, and investigated the variation of the properties of the prominence activities that oc-curred from 1992 to the end of 2009. We found the following results. 1. The variation in the number of prominence activities is similar to that of sunspots during one solar cycle but there are differences between the peak times of prominence activities and sunspots. 2. The frequency distribution as a function of the magnitude of the prominence activities the size of activated prominences at each phase shows a power-law distribution. The power-law index of the distribution does not change except around the solar minimum. 3. The number of promi-nence activities has a dependence on the latitude On the other hand the average magnitude is independent of the latitude. In the paper, we will also discuss the relationship the other properties of prominence eruptions, solar cycle and the photospheric magnetic field.

  7. Modeling of the atmospheric response to a strong decrease of the solar activity

    NASA Astrophysics Data System (ADS)

    Rozanov, Eugene V.; Egorova, Tatiana A.; Shapiro, Alexander I.; Schmutz, Werner K.

    2012-07-01

    We estimate the consequences of a potential strong decrease of the solar activity using the model simulations of the future driven by pure anthropogenic forcing as well as its combination with different solar activity related factors: total solar irradiance, spectral solar irradiance, energetic electron precipitation, solar protons and galactic cosmic rays. The comparison of the model simulations shows that introduced strong decrease of solar activity can lead to some delay of the ozone recovery and partially compensate greenhouse warming acting in the direction opposite to anthropogenic effects. The model results also show that all considered solar forcings are important in different atmospheric layers and geographical regions. However, in the global scale the solar irradiance variability can be considered as the most important solar forcing. The obtained results constitute probably the upper limit of the possible solar influence. Development of the better constrained set of future solar forcings is necessary to address the problem of future climate and ozone layer with more confidence.

  8. Seismic Holography of the Solar Interior near the Maximum and Minimum of Solar Activity

    NASA Astrophysics Data System (ADS)

    Díaz Alfaro, M.; Pérez Hernández, F.; González Hernández, I.; Hartlep, T.

    2016-06-01

    The base of the convection zone and the tachocline play a major role in the study of the dynamics of the Sun, especially in the solar dynamo. Here, we present a phase-sensitive helioseismic holography method to infer changes in the sound-speed profile of the solar interior. We test the technique using numerically simulated data by Zhao et al. (Astrophys. J. 702, 1150, 2009) with sound-speed perturbations at 0.7 R_{⊙ }. The technique adequately recovers the perturbed sound-speed profile and is seen to be capable of detecting changes in the sound speed as low as 0.05 %. We apply the method to two GONG solar time series of approximately one year, each comprising 13 Bartels rotations, BR2295-BR2307 and BR2387-BR2399, near the maximum and at a minimum of solar activity, respectively. We successfully recover a sound-speed variation with respect to a standard solar model, consistent with previous results. However, we fail to recover a realistic sound-speed variation between maximum and minimum.

  9. Quasi-biennial modulation of solar neutrino flux: connections with solar activity

    NASA Astrophysics Data System (ADS)

    Vecchio, A.; Laurenza, M.; D'alessi, L.; Carbone, V.; Storini, M.

    2011-12-01

    A quasi-biennial periodicity has been recently found (Vecchio et al., 2010) in the solar neutrino flux, as detected at the Homestake experiment, as well as in the flux of solar energetic protons, by means of the Empirical Modes Decomposition technique. Moreover, both fluxes have been found to be significantly correlated at the quasi-biennial timescale, thus supporting the hypothesis of a connection between solar neutrinos and solar activity. The origin of this connection is investigated, by modeling how the standard Mikheyev-Smirnov-Wolfenstein (MSW) effect (the process for which the well-known neutrino flavor oscillations are modified in passing through the material) could be influenced by matter fluctuations. As proposed by Burgess et al., 2004, by introducing a background magnetic field in the helioseismic model, density fluctuations can be excited in the radiative zone by the resonance between helioseismic g-modes and Alfvén waves. In particular, with reasonable values of the background magnetic field (10-100 kG), the distance between resonant layers could be of the same order of neutrino oscillation length. We study the effect over this distance of a background magnetic field which is variable with a ~2 yr period, in agreement with typical variations of solar activity. Our findings suggest that the quasi-biennial modulation of the neutrino flux is theoretically possible as a consequence of the magnetic field variations in the solar interior. A. Vecchio, M. Laurenza, V. Carbone, M. Storini, The Astrophysical Journal Letters, 709, L1-L5 (2010). C. Burgess, N. S. Dzhalilov, T. I. Rashba, V., B.Semikoz, J. W. F. Valle, Mon. Not. R. Astron. Soc., 348, 609-624 (2004).

  10. Major geomagnetic storm due to solar activity (2006-2013).

    NASA Astrophysics Data System (ADS)

    Tiwari, Bhupendra Kumar

    Major geomagnetic storm due to solar activity (2006-2013). Bhupendra Kumar Tiwari Department of Physics, A.P.S.University, Rewa(M.P.) Email: - btiwtari70@yahoo.com mobile 09424981974 Abstract- The geospace environment is dominated by disturbances created by the sun, it is observed that coronal mass ejection (CME) and solar flare events are the causal link to solar activity that produces geomagnetic storm (GMS).CMEs are large scale magneto-plasma structures that erupt from the sun and propagate through the interplanetary medium with speeds ranging from only a few km/s to as large as 4000 km/s. When the interplanetary magnetic field associated with CMEs impinges upon the earth’s magnetosphere and reconnect occur geomagnetic storm. Based on the observation from SOHO/LASCO spacecraft for solar activity and WDC for geomagnetism Kyoto for geomagnetic storm events are characterized by the disturbance storm time (Dst) index during the period 2006-2013. We consider here only intense geomagnetic storm Dst <-100nT, are 12 during 2006-2013.Geomagnetic storm with maximum Dst< -155nT occurred on Dec15, 2006 associated with halo CME with Kp-index 8+ and also verify that halo CME is the main cause to produce large geomagnetic storms.

  11. Does age at first treatment episode make a difference in outcomes over 11 years?

    PubMed

    Chi, Felicia W; Weisner, Constance; Grella, Christine E; Hser, Yih-Ing; Moore, Charles; Mertens, Jennifer

    2014-04-01

    This study examines the associations between age at first substance use treatment entry and trajectory of outcomes over 11 years. We found significant differences in individual and treatment characteristics between adult intakes first treated during young adulthood (25 years or younger) and those first treated at an older age. Compared to their first treated older age counterparts matched on demographics and dependence type, those who entered first treatment during young adulthood had on average an earlier onset for substance use but a shorter duration between first substance use and first treatment entry; they also had worse alcohol and other drug outcomes 11 years post treatment entry. While subsequent substance use treatment and 12-step meeting attendance are important for both age groups in maintaining positive outcomes, relationships varied by age group. Findings underline the importance of different continuing care management strategies for those entering first treatment at different developmental stages. PMID:24462221

  12. FLUOR HANFORD (FH) MAKES CLEANUP A REALITY IN NEARLY 11 YEARS AT HANFORD

    SciTech Connect

    GERBER, M.S.

    2007-05-24

    For nearly 11 years, Fluor Hanford has been busy cleaning up the legacy of nuclear weapons production at one of the Department of Energy's (DOE'S) major sites in the United States. As prime nuclear waste cleanup contractor at the vast Hanford Site in southeastern Washington state, Fluor Hanford has changed the face of cleanup. Fluor beginning on October 1, 1996, Hanford Site cleanup was primarily a ''paper exercise.'' The Tri-Party Agreement, officially called the Hanford Federal Facility Agreement and Consent Order - the edict governing cleanup among the DOE, U.S. Environmental Protection Agency (EPA) and Washington state - was just seven years old. Milestones mandated in the agreement up until then had required mainly waste characterization, reporting, and planning, with actual waste remediation activities off in the future. Real work, accessing waste ''in the field'' - or more literally in huge underground tanks, decaying spent fuel POO{approx}{approx}S, groundwater, hundreds of contaminated facilities, solid waste burial grounds, and liquid waste disposal sites -began in earnest under Fluor Hanford. The fruits of labors initiated, completed and/or underway by Fluor Hanford can today be seen across the site. Spent nuclear fuel is buttoned up in secure, dry containers stored away from regional water resources, reactive plutonium scraps are packaged in approved containers, transuranic (TRU) solid waste is being retrieved from burial trenches and shipped offsite for permanent disposal, contaminated facilities are being demolished, contaminated groundwater is being pumped out of aquifers at record rates, and many other inventive solutions are being applied to Hanford's most intransigent nuclear wastes. (TRU) waste contains more than 100 nanocuries per gram, and contains isotopes higher than uranium on the Periodic Table of the Elements. (A nanocurie is one-billionth of a curie.) At the same time, Fluor Hanford has dramatically improved safety records, and cost

  13. Non-insulin-dependent diabetes and 11-year mortality in Asian Indian and Melanesian Fijians.

    PubMed

    Collins, V R; Dowse, G K; Ram, P; Cabealawa, S; Zimmet, P Z

    1996-02-01

    This study reports 11-year all-cause and cause-specific mortality rates according to baseline glucose tolerance for a population-based sample of adult Melanesian and Indian Fijians (n = 2638), first surveyed in 1980. Risk factors for all-cause and cardiovascular disease (CVD) mortality in subjects with non-insulin-dependent diabetes (NIDDM) are also described. The baseline survey included 75 g oral glucose tolerance tests, measurements of blood pressure, body mass index, and triceps skinfold, assays of plasma cholesterol and triglycerides, electrocardiograms, and details of smoking habits and physical activity. Mortality status was ascertained for 2546 subjects through surveillance of death certificates, medical records and interview of subjects (or relatives). Mortality rates were increased in diabetic men and women of both ethnic groups: relative risks compared to subjects without diabetes at baseline were 1.7 (CI:0.9-3.1) and 2.0 (1.1-3.7) in Melanesian and 4.2 (2.7-6.5), 3.2 (1.9-5.7) in Indian men and women, respectively. A large proportion of mortality among diabetic subjects was attributed to CVD (62%, 66% in Melanesian and 54%, 58% in Indian men and women, respectively). Mortality rates tended to be higher in Melanesians than Indians, except for diabetic men where Indians had higher total and cardiovascular disease rates. In contrast to non-diabetic Fijians, diabetic women of both ethnic groups lost their relative protection from coronary heart disease (CHD). Cox regressions for diabetic subjects showed age and fasting plasma glucose to be independent predictors of all-cause mortality in men, and age, body mass index (inversely) and systolic blood pressure in women, but lipid concentrations, and cigarette smoking were not related. After accounting for conventional CVD risk factors, diabetes conferred significantly increased risk of total, CVD, and CHD mortality. The mortality experience of Melanesian and Indian Fijians with NIDDM is similar to that

  14. Some Daytime Activities in Solar Astronomy

    NASA Astrophysics Data System (ADS)

    Burin, Michael J.

    2016-01-01

    This century's transits of Venus (2004, 2012) captured significant public attention, reminding us that the wonders of astronomy need not be confined to the night. And while nighttime telescope viewing gatherings (a.k.a. "star parties") are perennially popular, astronomy classes are typically held in the daytime. The logistics of coordinating students outside of class can often be problematic, leading to dark-sky activities that are relegated to extra credit for only those who can attend.

  15. [Acute bilateral impaired vision with central scotoma in an 11-year-old boy].

    PubMed

    Pollithy, S; Ach, T; Schaal, K B; Dithmar, S

    2012-09-01

    This article presents a case of acute bilateral impaired vision and central scotoma in an 11-year-old boy. Looking directly into a laser beam of a laser pointer for only a few seconds can cause retinal damage in the form of lesions of the retinal pigment epithelium and the photoreceptor layer, up to retinal hemorrhage. Patients often complain about impaired vision and a central scotoma of the affected eye. PMID:22740016

  16. Adult onset asynchronous multifocal eosinophilic granuloma of bone: an 11-year follow-up

    PubMed Central

    Dallaudière, Benjamin; Kerger, Joseph; Malghem, Jacques; Galant, Christine

    2015-01-01

    Multifocal eosinophilic granuloma (EG) is a rare observation within the spectrum of histiocytosis X, generally described in children. We report the case of a 33-year-old man with multifocal EG showing an asynchronous evolution of bone lesions during a follow-up of 11 years. We also present the therapeutic approach chosen for this patient and the repeated magnetic resonance imaging (MRI) examinations used to monitor the disease with a final favorable outcome. PMID:25793108

  17. Interplanetary proton flux and solar wind conditions for different solar activities interacting with spacecraft and astronauts in space

    NASA Astrophysics Data System (ADS)

    Nejat, Cyrus

    2014-01-01

    The goal of this research is to determine the interplanetary proton flux and solar wind conditions by using data from several satellites such as Advanced Composition Explorer (ACE), Geostationary Operational Environmental Satellites (GOES) in particular GOES 9, GOES 11, GOES 12, GOES 13, and Solar Heliospheric Observatory (SOHO) to determine proton flux in different solar wind conditions. The data from above satellites were used to determine space weather conditions in which the goals are to evaluate proton fluxes for four periods of solar cycle activity: a solar cycle 23/24 minimum (2008), close to a solar cycle 22/23 minimum (1997), with intermediate activity (2011) and for about maximum activity for the cycle 23 (2003), to compare data of two period of solar cycle in 2003 and 2008 (Max vs. Min), to compare data of two period of solar cycle in 1997 and 2008 (Min vs. Min), to compare soft X-ray flux from SOHO with proton 1-10 MeV flux from GOES 9 for strong flare in 1997. To conclude the above evaluations are being used to determine the interaction between the space weather conditions and the following consequences of these conditions important for astronautics and everyday human activity: 1- Satellite and Spacecraft charging, 2-Dangerous conditions for onboard electronics and astronauts during strong solar flare events, and 3- Total Electron Content (TEC), Global Positioning System (GPS), and radio communication problems related to solar activity.

  18. Earth Radiation Budget Satellite extraterrestrial solar constant measurements - 1986-1987 increasing trend

    NASA Technical Reports Server (NTRS)

    Lee, Robert B., III; Barkstrom, Bruce R.; Harrison, Edwin F.; Gibson, Michael A.; Natarajan, Sudha M.; Edmonds, William L.; Mecherikunnel, Ann T.; Kyle, H. Lee

    1988-01-01

    From June 1986 through Nov 1987, the Earth Radiation Budget Satellite (ERBS) pyrheliometric measurements indicated that the solar constant was increasing approximately +0.02 percent per year. Earlier ERBS measurements indicated that the solar constant was declining approximately -0.03 percent per year during the 1984 through mid-1986 period. Since mid-1986 represents the beginning of solar cycle 22, it is believed that the reversal in the long-term solar constant trend may be linked to increased solar activity associated with the beginning of the 11-year sunspot cycle. The typical value of the solar constant was found to be 1365 Wm-2.

  19. Long-term persistence of solar activity. [Abstract only

    NASA Technical Reports Server (NTRS)

    Ruzmaikin, Alexander; Feynman, Joan; Robinson, Paul

    1994-01-01

    The solar irradiance has been found to change by 0.1% over the recent solar cycle. A change of irradiance of about 0.5% is required to effect the Earth's climate. How frequently can a variation of this size be expected? We examine the question of the persistence of non-periodic variations in solar activity. The Huerst exponent, which characterizes the persistence of a time series (Mandelbrot and Wallis, 1969), is evaluated for the series of C-14 data for the time interval from about 6000 BC to 1950 AD (Stuiver and Pearson, 1986). We find a constant Huerst exponent, suggesting that solar activity in the frequency range of from 100 to 3000 years includes an important continuum component in addition to the well-known periodic variations. The value we calculate, H approximately equal to 0.8, is significantly larger than the value of 0.5 that would correspond to variations produced by a white-noise process. This value is in good agreement with the results for the monthly sunspot data reported elsewhere, indicating that the physics that produces the continuum is a correlated random process (Ruzmaikin et al., 1992), and that is is the same type of process over a wide range of time interval lengths. We conclude that the time period over which an irradiance change of 0.5% can be expected to occur is significantly shorter than that which would be expected for variations produced by a white-noise process.

  20. Solar activity impact on the Earth's upper atmosphere

    NASA Astrophysics Data System (ADS)

    Kutiev, Ivan; Tsagouri, Ioanna; Perrone, Loredana; Pancheva, Dora; Mukhtarov, Plamen; Mikhailov, Andrei; Lastovicka, Jan; Jakowski, Norbert; Buresova, Dalia; Blanch, Estefania; Andonov, Borislav; Altadill, David; Magdaleno, Sergio; Parisi, Mario; Miquel Torta, Joan

    2013-02-01

    The paper describes results of the studies devoted to the solar activity impact on the Earth's upper atmosphere and ionosphere, conducted within the frame of COST ES0803 Action. Aim: The aim of the paper is to represent results coming from different research groups in a unified form, aligning their specific topics into the general context of the subject. Methods: The methods used in the paper are based on data-driven analysis. Specific databases are used for spectrum analysis, empirical modeling, electron density profile reconstruction, and forecasting techniques. Results: Results are grouped in three sections: Medium- and long-term ionospheric response to the changes in solar and geomagnetic activity, storm-time ionospheric response to the solar and geomagnetic forcing, and modeling and forecasting techniques. Section 1 contains five subsections with results on 27-day response of low-latitude ionosphere to solar extreme-ultraviolet (EUV) radiation, response to the recurrent geomagnetic storms, long-term trends in the upper atmosphere, latitudinal dependence of total electron content on EUV changes, and statistical analysis of ionospheric behavior during prolonged period of solar activity. Section 2 contains a study of ionospheric variations induced by recurrent CIR-driven storm, a case-study of polar cap absorption due to an intense CME, and a statistical study of geographic distribution of so-called E-layer dominated ionosphere. Section 3 comprises empirical models for describing and forecasting TEC, the F-layer critical frequency foF2, and the height of maximum plasma density. A study evaluates the usefulness of effective sunspot number in specifying the ionosphere state. An original method is presented, which retrieves the basic thermospheric parameters from ionospheric sounding data.

  1. Time distribution of the precipitable water vapor in central Saudi Arabia and its relationship to solar activity

    NASA Astrophysics Data System (ADS)

    Maghrabi, A. H.; Al Dajani, H. M.

    2014-04-01

    Water vapor is the most important greenhouse gas. It plays a major role in the dynamics of atmospheric circulation, radiation exchange within the atmosphere, and climate variability. Knowledge of the distribution of water vapor is important for understanding climate change and global warming. In this study, radiosonde data from 1985 to 2012 were used to examine the monthly, interannual, and annual variations and trends of precipitable water vapor (PWV) in central Saudi Arabia in the city of Riyadh (24° 43‧N; 46° 40‧E, 764 m a.s.l.). The results revealed a clear seasonal cycle of PWV with a maximum during the summer months (June-August) and a minimum during the winter (December-February). This variation follows the mean monthly variation of air temperature. The PWV displays considerable variability at the interannual scale. We could not attribute the variations to the air temperature because no relationship was found between the two variables when the interannual variations were examined. Study of the annual variations of the PWV showed cyclic variations with a period of approximately 10-11 years. The two maximums and minimums were in 1996 and 2007 and 1989 and 2000, respectively. The results showed that the annual PWV values are anticorrelated with solar activity, represented by sunspot number, during solar cycles 22 and 23. The physical mechanism underlying this relationship remains unclear. This finding is preliminary, and future investigations are recommended.

  2. The influence of nonstationarity of the solar activity and general solar field on modulation of cosmic rays

    NASA Technical Reports Server (NTRS)

    Zusmanovich, A. G.; Kryakunova, O. N.; Churunova, L. F.; Shvartsman, Y. E.

    1985-01-01

    A numerical model of the propagation of galactic cosmic rays in interplanetary space was constructed for the case when the modulation depth determined by the level of solar activity changed in time. Also the contribution of particle drift in the regular field was calculated, and the agreement with experimental data concerning the ratio of protons and electrons in two solar activity minima is shown.

  3. The October-November, 2003 Solar Activity and its Relationship to the "approximately 155 day" Solar Periodicity

    NASA Technical Reports Server (NTRS)

    Richardson, I. G.; Cane, H. V.

    2005-01-01

    Periodicities of - 155 days in various solar and interplanetary phenomena were first discovered during solar cycle 21 and have been shown t o be intermittently present in other solar cycles. In the current solar cycle (23), they have been reported in solar energetic particle events and interplanetary coronal maSS ejections. We assess whether the "unexpected" October - November 2003 burst of solar activity during the late declining phase of the cycle may have been a manifestation of such a periodic behavior, and hence might have been to =me extent "predictable". If the pattern were to continue, episodes of enhanced activity might be expected around April - May and October, 2004. There was a mod- est increase activity increase in mid-April, 2004 which may conform to this pattern.

  4. The October-November, 2003 Solar Activity and its Relationship to the "approx. 155 day" Solar Periodicity

    NASA Technical Reports Server (NTRS)

    Richardson, I. G.; Cane, H. V.

    2004-01-01

    Periodicities of approx. 155 days in various solar and interplanetary phenomena were first discovered during solar cycle 21 and have been shown to be intermittently present in other solar cycles. In the current solar cycle (23), they have been reported in solar energetic particle events and interplanetary coronal mass ejections. We assess whether the "unexpected" October - November 2003 burst of solar activity during the late declining phase of the cycle may have been a manifestation of such a periodic behavior, and hence might have been to some extent "predictable". If the pattern were to continue, episodes of enhanced activity might be expected around April - May and October, 2004. There was a modest increase activity increase in mid-April, 2004 which may conform to this pattern.

  5. How Large Scale Flows in the Solar Convection Zone may Influence Solar Activity

    NASA Technical Reports Server (NTRS)

    Hathaway, D. H.

    2004-01-01

    Large scale flows within the solar convection zone are the primary drivers of the Sun s magnetic activity cycle. Differential rotation can amplify the magnetic field and convert poloidal fields into toroidal fields. Poleward meridional flow near the surface can carry magnetic flux that reverses the magnetic poles and can convert toroidal fields into poloidal fields. The deeper, equatorward meridional flow can carry magnetic flux toward the equator where it can reconnect with oppositely directed fields in the other hemisphere. These axisymmetric flows are themselves driven by large scale convective motions. The effects of the Sun s rotation on convection produce velocity correlations that can maintain the differential rotation and meridional circulation. These convective motions can influence solar activity themselves by shaping the large-scale magnetic field pattern. While considerable theoretical advances have been made toward understanding these large scale flows, outstanding problems in matching theory to observations still remain.

  6. Summary of solar activity observed at the Mauna Loa Solar Observatory: 1980-1983. Technical note

    SciTech Connect

    Rock, K.; Fisher, R.; Garcia, C.; Yasukawa, E.

    1983-11-01

    The following technical note summarizes solar activity observed during the first four years operation of the experiment systems of the Coronal Dynamics Project, which are located at the Mauna Loa Solar Observatory. This short report has been produced with the general aim of providing users of Mauna Loa observations with a summary of data for specific events. So that this table might be as useful as possible, a comprehensive review of three sources was performed. The plain language logs, identified as the so-called observer's logs, the now-discontinued activity logs, and the prominence monitor quality control logs were the sources from which the information in the following tables was obtained. It is expected that this review will be of particular use to those investigators who intend to use both the K-coronameter data base and the SMM Coronagraph-Polarimeter data for the study of coronal transient events.

  7. Solar Activity and its Impact on Earth's Climate

    NASA Technical Reports Server (NTRS)

    Cahalan, Robert F.

    2004-01-01

    The Sun's activity is now approaching an expected 2006 minimum, following the dramatic maximum of Solar Cycle 23, that included events such as the 2001 "Bastille Day" Coronal Mass Ejection, and the record-setting Oct-Nov 2003 solar flares, with their associated sunspots and variations in Total Solar Irradiance, or TSI. On Nov 4,2003 the largest X-ray flare ever detected (X-28) was observed in detail. We discuss recent satellite measurements of TSI by ACRIM 2 and 3 and Virgo, and new precision observations of TSI and SSI (Solar Spectral Irradiance) from the SORCE mission, that launched on January 25,2003. TSI variations recorded during the June 8,2004 transit of Venus show the unprecedented precision of the SORCE Total Irradiance Monitor (TIM) instrument, the first of its kind to employ phase-sensitive detection. The SORCE spectral instruments, XPS, Solstice, and SIM, record the Sun's changes over a wide range of wavelengths, from 1 to more than 2000 nanometers, for the first time covering the peak of the solar spectrum, including spectral components that provide energy inputs to key components of the climate system - ultraviolet (UV) into the upper atmospheric ozone layer, infrared (IR) into the lower atmosphere and clouds, and Visible into the Oceans and biosphere. Succeeding satellite missions are planned to monitor both TSI and SSI through Cycle 24. We summarize current ideas about decadal and longer solar variability, and associated potential impacts on Earth's climate on time scales from decades to centuries, especially highlighting the role of feedbacks in the climate system.

  8. Position of the Academy of Nutrition and Dietetics: nutrition guidance for healthy children ages 2 to 11 years.

    PubMed

    Ogata, Beth N; Hayes, Dayle

    2014-08-01

    It is the position of the Academy of Nutrition and Dietetics that children ages 2 to 11 years should achieve optimal physical and cognitive development, maintain healthy weights, enjoy food, and reduce the risk of chronic disease through appropriate eating habits and participation in regular physical activity. Rapid increases in the prevalence of childhood obesity during the 1980s and 1990s focused attention on young children's overconsumption of energy-dense, nutrient-poor foods and beverages and lack of physical activity. While recent data suggest a stabilization of obesity rates, several public health concerns remain. These include the most effective ways to promote healthy weights, the number of children living in food insecurity, the under-consumption of key nutrients, and the early development of diet-related risks for chronic diseases, such as cardiovascular disease, type 2 diabetes, cancer, obesity, and osteoporosis. This Position Paper reviews what children 2 to 11 years old in the United States are reportedly eating, explores trends in food and nutrient intakes, and examines the impact of federal nutrition programs on child nutrition. Current dietary recommendations and guidelines for physical activity are also discussed. The roles of parents and caregivers in influencing the development of life-long healthy eating behaviors are highlighted. The Academy of Nutrition and Dietetics works with other allied health and food industry professionals to translate dietary recommendations and guidelines into positive, practical health messages. Specific recommendations and sources of science-based nutrition messages to improve the nutritional well-being of children are provided for food and nutrition practitioners. PMID:25060139

  9. Solar flare activity changes and global magnetic field disturbances

    NASA Astrophysics Data System (ADS)

    Bumba, V.; Hejna, L.

    1988-01-01

    Published observational data on solar-flare activity in the period 1965-1980 are analyzed statistically and related to changes in the magnetic active longitudes (MALs) identified and studied by Bumba and Hejna (1986). MALs are long strips of single-polarity fields which may persist for about 8-30 rotations and display internal structure. The data sets employed are briefly characterized, and the results are presented graphically. Flare maxima are found to correlate well with MAL disturbances, especially during the ascending phase of the solar cycle and with MALs of negative polarity. The possible implications of these findings for the interplanetary magnetic field and for theoretical models of flare generation are indicated.

  10. GRAND MINIMA AND NORTH-SOUTH ASYMMETRY OF SOLAR ACTIVITY

    SciTech Connect

    Olemskoy, S. V.; Kitchatinov, L. L.

    2013-11-01

    A solar-type dynamo model in a spherical shell is developed with allowance for random dependence of the poloidal field generation mechanism on time and latitude. The model shows repeatable epochs of a strongly decreased amplitude of magnetic cycles similar to the Maunder minimum of solar activity. Random dependence of dynamo parameters on latitude breaks the equatorial symmetry of generated fields. The model shows the correlation of the occurrence of grand minima with deviations in the dynamo field from dipolar parity. An increased north-south asymmetry of magnetic activity can, therefore, be an indicator of transitions to grand minima. Qualitative interpretation of this correlation is suggested. Statistics of grand minima in the model are close to the Poisson random process, indicating that the onset of a grand minimum is statistically independent of preceding minima.

  11. Longitudinal structure of solar activity: Regular and stochastic behavior

    NASA Astrophysics Data System (ADS)

    Erofeev, D. V.

    2015-12-01

    The ratio of regular and stochastic components in the behavior of the longitudinal-temporal distribution of solar activity is studied with the use of correlation and spectral analysis of data on sunspot groups for 12 solar cycles. It was found that data samples of about 10 years in length often (in 50% of cases) show the presence of regular structures in the longitudinal distribution of sunspot groups. However, these structures are nonstationary; their characteristic scales and rotation periods vary when changing from one 10-year interval to another. The behavior of the longitudinal structure of sunspot activity is mainly stochastic on a long time scale (50-100 years); it is characterized by a wide spectrum of spatial scales and a continuous spectrum of rotation periods, which takes a period from 25.6 to 28.5 days.

  12. Online educative activities for solar ultraviolet radiation based on measurements of cloud amount and solar exposures.

    PubMed

    Parisi, A V; Downs, N; Turner, J; Amar, A

    2016-09-01

    A set of online activities for children and the community that are based on an integrated real-time solar UV and cloud measurement system are described. These activities use the functionality of the internet to provide an educative tool for school children and the public on the influence of cloud and the angle of the sun above the horizon on the global erythemal UV or sunburning UV, the diffuse erythemal UV, the global UVA (320-400nm) and the vitamin D effective UV. Additionally, the units of UV exposure and UV irradiance are investigated, along with the meaning and calculation of the UV index (UVI). This research will help ensure that children and the general public are better informed about sun safety by improving their personal understanding of the daily and the atmospheric factors that influence solar UV radiation and the solar UV exposures of the various wavebands in the natural environment. The activities may correct common misconceptions of children and the public about UV irradiances and exposure, utilising the widespread reach of the internet to increase the public's awareness of the factors influencing UV irradiances and exposures in order to provide clear information for minimizing UV exposure, while maintaining healthy, outdoor lifestyles. PMID:27450297

  13. Study of Distribution and Asymmetry of Solar Active Prominences during Solar Cycle 23

    NASA Astrophysics Data System (ADS)

    Joshi, Navin Chandra; Bankoti, Neeraj Singh; Pande, Seema; Pande, Bimal; Pandey, Kavita

    2009-12-01

    In this article we present the results of a study of the spatial distribution and asymmetry of solar active prominences (SAP) for the period 1996 through 2007 (solar cycle 23). For more meaningful statistical analysis we analyzed the distribution and asymmetry of SAP in two subdivisions viz. Group1 (ADF, APR, DSF, CRN, CAP) and Group2 (AFS, ASR, BSD, BSL, DSD, SPY, LPS). The North - South (N - S) latitudinal distribution shows that the SAP events are most prolific in the 21° to 30° slice in the Northern and Southern Hemispheres; the East - West (E - W) longitudinal distribution study shows that the SAP events are most prolific (best observable) in the 81° to 90° slice in the Eastern and Western Hemispheres. It was found that the SAP activity during this cycle is low compared to previous solar cycles. The present study indicates that during the rising phase of the cycle the number of SAP events are roughly equal in the Northern and Southern Hemispheres. However, activity in the Southern Hemisphere has been dominant since 1999. Our statistical study shows that the N - S asymmetry is more significant then the E - W asymmetry.

  14. Periodicities in the occurrence of aurora as indicators of solar variability

    NASA Astrophysics Data System (ADS)

    Nian-Zu, D.; Mei-Dong, C.; Zhen-Jin, Z.; Mendillo, M.

    1983-11-01

    A compilation of records of the aurora observed in China from the Time of the Legends (2000 - 3000 B.C.) to the mid-18th century has been used to infer the frequencies and strengths of solar activity prior to modern times. A merging of this analysis with auroral and solar activity patterns during the last 200 years provides basically continuous information about solar activity during the last 2000 years. The results show periodicities in solar activity that contain average components with a long period (approx. 412 years), three middle periods (approx. 38 years, approx. 77 years, and approx. 130 years), and the well known short period (approx. 11 years).

  15. Periodicities in the occurrence of aurora as indicators of solar variability

    NASA Technical Reports Server (NTRS)

    Nian-Zu, D.; Mei-Dong, C.; Zhen-Jin, Z.; Mendillo, M.

    1983-01-01

    A compilation of records of the aurora observed in China from the Time of the Legends (2000 - 3000 B.C.) to the mid-18th century has been used to infer the frequencies and strengths of solar activity prior to modern times. A merging of this analysis with auroral and solar activity patterns during the last 200 years provides basically continuous information about solar activity during the last 2000 years. The results show periodicities in solar activity that contain average components with a long period (approx. 412 years), three middle periods (approx. 38 years, approx. 77 years, and approx. 130 years), and the well known short period (approx. 11 years).

  16. Solar Activity-driven Variability of Instrumental Data Quality

    NASA Astrophysics Data System (ADS)

    Martayan, C.; Smette, A.; Hanuschik, R.; van Der Heyden, P.; Mieske, S.

    2016-06-01

    The unexplained variability of the data quality from Very Large Telescope instruments and the frequency of power cuts have been investigated. Origins for the variability in ambient temperature variations, software, data reduction pipelines and internal to hardware could be discarded. The most probable cause appears to be correlated with the evolution of the cosmic ray rate, and also with solar and terrestrial geomagnetic activity. We report on the consequences of such variability and describe how the observatory infrastructure, instruments and data are affected.

  17. Correlation of Far Ultraviolet Lunar Albedo with Solar Activity

    NASA Technical Reports Server (NTRS)

    Maddox, Will; Spann, James F.; Germany, Glynn

    2004-01-01

    We present a correlative analysis between the variability of the lunar albedo in the far ultraviolet wavelength range (130- 190 nm) and various solar activity indices for a two-week period. We also report lunar albedo measurements in four separate wavelength ranges, corresponding to four filters on the Polar Ultraviolet Imager. To our knowledge this is the first reported long term measurements of the lunar albedo in this wavelength range.

  18. Magnetic observations during the recent declining phase of solar activity

    NASA Astrophysics Data System (ADS)

    Smith, E. J.

    Changes in the heliospheric magnetic field during the recent declining phase in solar activity are reviewed and compared with observations during past sunspot cycles. The study is based principally on data obtained by IMP-8 and Ulysses. The field magnitude is found to have increased during the declining phase until it reached a maximum value of 11.5nT in approximately 1991.5, approximately two years after sunspot maximum. The field of the sun's south pole became negative after a reversal in early 1990. The sector structure disappeared at Ulysses in April 1993 when the latitude of the spacecraft was -30 deg revealing a low inclination of the heliospheric current sheet. A large outburst of solar activity in March 1991 caused four Coronal Mass Ejections (CMEs) and numerious shocks at the location of Ulysses. Following a delay of more than a year, a series of recurrent high speed streams and Corotating Interaction Regions commenced in July 1992 which were observed by IMP-8, Ulysses and Voyager 2. In all these respects, the behavior of the magnetic field mimics that seen in the two earlier sunspot cycles. The comprehensive data set suggests a correlation between the absolute value of B and sunspot number. The major solar cycle variations in the radial component (and magnitude) of the field have been successfully reproduced by a recent model consisting of a tilted solar dipole, whose strength and tilt undergo characteristic changes over the sunspot cycle, and the heliospheric current sheet. The large outbursts of activity in mid-1972, mid-1982 and the first quarter of 1991 may represent a characteristic last 'gasp' of solar activity before the sun evolves to a different state. The recurrent high speed streams in 1973, 1984 and 1992 accompany the developemnt of large asymetrical polar coronal holes and the growth in intensity of the polar cap fields. After they endure for about one year, the polar coronal holes recede and the high speed streams are replaced by weaker

  19. Magnetic observations during the recent declining phase of solar activity

    NASA Technical Reports Server (NTRS)

    Smith, E. J.

    1995-01-01

    Changes in the heliospheric magnetic field during the recent declining phase in solar activity are reviewed and compared with observations during past sunspot cycles. The study is based principally on data obtained by IMP-8 and Ulysses. The field magnitude is found to have increased during the declining phase until it reached a maximum value of 11.5nT in approximately 1991.5, approximately two years after sunspot maximum. The field of the sun's south pole became negative after a reversal in early 1990. The sector structure disappeared at Ulysses in April 1993 when the latitude of the spacecraft was -30 deg revealing a low inclination of the heliospheric current sheet. A large outburst of solar activity in March 1991 caused four Coronal Mass Ejections (CMEs) and numerious shocks at the location of Ulysses. Following a delay of more than a year, a series of recurrent high speed streams and Corotating Interaction Regions commenced in July 1992 which were observed by IMP-8, Ulysses and Voyager 2. In all these respects, the behavior of the magnetic field mimics that seen in the two earlier sunspot cycles. The comprehensive data set suggests a correlation between the absolute value of B and sunspot number. The major solar cycle variations in the radial component (and magnitude) of the field have been successfully reproduced by a recent model consisting of a tilted solar dipole, whose strength and tilt undergo characteristic changes over the sunspot cycle, and the heliospheric current sheet. The large outbursts of activity in mid-1972, mid-1982 and the first quarter of 1991 may represent a characteristic last 'gasp' of solar activity before the sun evolves to a different state. The recurrent high speed streams in 1973, 1984 and 1992 accompany the developemnt of large asymetrical polar coronal holes and the growth in intensity of the polar cap fields. After they endure for about one year, the polar coronal holes recede and the high speed streams are replaced by weaker

  20. How Large Scales Flows May Influence Solar Activity

    NASA Technical Reports Server (NTRS)

    Hathaway, D. H.

    2004-01-01

    Large scale flows within the solar convection zone are the primary drivers of the Sun's magnetic activity cycle and play important roles in shaping the Sun's magnetic field. Differential rotation amplifies the magnetic field through its shearing action and converts poloidal field into toroidal field. Poleward meridional flow near the surface carries magnetic flux that reverses the magnetic poles at about the time of solar maximum. The deeper, equatorward meridional flow can carry magnetic flux back toward the lower latitudes where it erupts through the surface to form tilted active regions that convert toroidal fields into oppositely directed poloidal fields. These axisymmetric flows are themselves driven by large scale convective motions. The effects of the Sun's rotation on convection produce velocity correlations that can maintain both the differential rotation and the meridional circulation. These convective motions can also influence solar activity directly by shaping the magnetic field pattern. While considerable theoretical advances have been made toward understanding these large scale flows, outstanding problems in matching theory to observations still remain.

  1. Dayside Auroral Activity During Solar Maximum and Minimum Periods

    NASA Astrophysics Data System (ADS)

    Rawie, M.; Fasel, G. J.; Flicker, J.; Angelo, A.; Bender, S.; Alyami, M.; Sibeck, D. G.; Sigernes, F.; Lorentzen, D. A.; Green, D.

    2014-12-01

    It is well documented that the dayside auroral oval shifts equatorward when the interplanetary magnetic field (IMF) Bz-component turns southward [Burch, 1973; Akasofu, 1977; Horwitz and Akasofu, 1977; Sandholt et al., 1986, 1988]. During these periods of oval expansion dayside transients are observed to move away from the poleward edge of the auroral oval and drift poleward. These poleward-moving auroral forms are believed to be ionospheric signatures of dayside merging. The dayside auroral oval usually begins to contract when the interplanetary magnetic field turns sharply northward, Bz>0. Eighteen years of meridian scanning photometer (MSP) data from the Kjell Henriksen Observatory in Longyearbyen, Norway are analyzed. During the boreal winter the Sun is several degrees below the horizon. This permits optical observations throughout the daytime period. The MSP Data is selected two hours before and after local noon in Longyearbeyn. Solar wind data (solar wind pressure and speed, along with the IMF Bx, By, Bz components) are collected for each interval and combined with the MSP observations. This data is then separated using solar maximum and minimum periods. Auroral activity (oval expansions and contractions along with the frequency and number of poleward-moving auroral forms) is documented for both solar maximum and minimum periods.

  2. Forecasting the Peak of the Present Solar Activity Cycle

    NASA Astrophysics Data System (ADS)

    Hamid, Rabab; Marzouk, Beshir

    2016-07-01

    Solar forecasting of the level of sun Activity is very important subject for all space programs. Most predictions are based on the physical conditions prevailing at or before the solar cycle minimum preceding the maximum in question. Our aim is to predict the maximum peak of cycle 24 using precursor techniques in particular those using spotless event, geomagnetic aa min. index and solar flux F10.7. Also prediction of exact date of the maximum (Tr) is taken in consideration. A study of variation over previous spotless event for cycles 7-23 and that for even cycles (8-22) are carried out for the prediction. Linear correlation between RM and spotless event around the preceding minimum gives RM24t = 101.9with rise time Tr = 4.5 Y. For the even cycles RM24e = 108.3 with rise time Tr = 3.9 Y. Based on the average aa min. index for the year of sunspot minimum cycles (13 - 23), we estimate the expected amplitude for cycle 24 to be RMaa = 116.5 for both the total and even cycles. Application of the data of solar flux F10.7 which cover only cycles (19-23) was taken in consideration and gives predicted maximum amplitude R24 10.7 = 146, which are over estimation. Our result indicating a somewhat weaker cycle 24 as compared to cycles 21-23.

  3. SOLAR ROTATION RATE DURING THE CYCLE 24 MINIMUM IN ACTIVITY

    SciTech Connect

    Antia, H. M.; Basu, Sarbani E-mail: sarbani.basu@yale.ed

    2010-09-01

    The minimum of solar cycle 24 is significantly different from most other minima in terms of its duration as well as its abnormally low levels of activity. Using available helioseismic data that cover epochs from the minimum of cycle 23 to now, we study the differences in the nature of the solar rotation between the minima of cycles 23 and 24. We find that there are significant differences between the rotation rates during the two minima. There are differences in the zonal-flow pattern too. We find that the band of fast rotating region close to the equator bifurcated around 2005 and recombined by 2008. This behavior is different from that during the cycle 23 minimum. By autocorrelating the zonal-flow pattern with a time shift, we find that in terms of solar dynamics, solar cycle 23 lasted for a period of 11.7 years, consistent with the result of Howe et al. (2009). The autocorrelation coefficient also confirms that the zonal-flow pattern penetrates through the convection zone.

  4. An 11-year-old girl presenting with chronic knee pain: a case report with diagnostic dilemma.

    PubMed

    Maj, M Kamal; Ar, Abdul Halim; Faisal, Syed A; Ahmad, Johan; Das, Srijit

    2010-01-01

    Discoid meniscus is the commonest anatomical aberration of the knee joint, among rare cases such as bilateral separated lateral meniscus, accessory lateral meniscus, partial deficiency of the lateral meniscus and double-layered lateral meniscus. An 11-year-old girl presented with history of chronic pain in her right knee for the last 6 months. The problem disturbed her involvement in the sport activities at school. Clinical examination revealed a clicking sensation on knee extension with lateral joint line tenderness. Magnetic resonance imaging (MRI) of her right knee showed torn posterior horn of lateral meniscus. Arthroscopy examination revealed a discoid meniscus with absence posterior horn. Posterior horn deficient discoid meniscus is a rare form of a congenital meniscus anomaly. We as clinicians believe that the abnormal shaped meniscus may pose a diagnostic challenge clinically and radiologically. Presentation of this case may be beneficial for orthopaedicians in their daily clinical practice. PMID:21400986

  5. Dependence of the amplitude of Pc5-band magnetic field variations on the solar wind and solar activity

    NASA Astrophysics Data System (ADS)

    Takahashi, Kazue; Yumoto, Kiyohumi; Claudepierre, Seth G.; Sanchez, Ennio R.; Troshichev, Oleg A.; Janzhura, Alexander S.

    2012-04-01

    We have studied the dependence of the amplitude of magnetic field variations in the Pc5 band (1.6-6.7 mHz) on the solar wind and solar activity. Solar wind parameters considered are the bulk velocity Vsw and the variation of the solar wind dynamic pressure δPsw. The solar activity dependence is examined by contrasting observations made in 2001 (solar activity maximum) and 2006 (solar activity declining phase). We calculated hourly Pc5 amplitude using data from geostationary satellites at L = 6.8 and ground stations covering 1 < L < 9. The amplitude is positively correlated with both Vsw and δPsw, but the degree of correlation varies with L and magnetic local time. As measured by the correlation coefficient, the amplitude dependence on both Vsw and δPsw is stronger on the dayside than on the nightside, and the dependence on Vsw (δPsw) tends to be stronger at higher (lower) L, with the relative importance of the two solar wind parameters switching at L ˜ 5. We attribute the Vsw control to the Kelvin-Helmholtz instability on the magnetopause, occurring both at high and low latitudes, and the δPsw control to buffeting of the magnetosphere by variation of solar wind dynamic pressure. The GOES amplitude is higher at the solar maximum at all local times and the same feature is seen on the ground in the dawn sector at L > 6. A radial shift of the fast mode wave turning point, associated with the solar cycle variation of magnetosphere mass density, is a possible cause of this solar activity dependence.

  6. Active other worlds in the Solar System and beyond

    NASA Astrophysics Data System (ADS)

    Forget, François

    2016-04-01

    Over the past decades, space exploration has moved planetology from the field of astronomy to the disciplines of geosciences. A fleet of spacecrafts have discovered and study tens of worlds in our solar system and beyond. Everywhere, we have been surprised by the diversity and the vigour of the geophysical activity, from volcanic eruptions to plasma waves... Every scientists present at EGU could -and should- be interested in the extraterrestrial processes that are discovered and analyzed elsewhere. In our solar system, a variety of clouds and fluid dynamical phenomena can be studied in six terrestrial atmospheres and on four giant planets. Active glaciers are found on Mars and Pluto. Rivers and lakes have sculpted the surface of Titan and Mars. Sometime, we can even study geophysical activity with no equivalent on our planet: ice caps made of frozen atmosphere that erupt in geysers, hazes formed by organic polymers which can completely shroud a moon, etc. We study these active worlds because we are curious and wish to understand our universe and our origins. However, more than ever, two specific motivations drive solar system geosciences in 2016: Firstly, as we become more and more familiar with the other worlds around us, we can use them to better understand our own planet. Throughout the solar system, we can access to data that are simply not available on the Earth, or study active processes that are subtle on Earth but of greater importance elsewhere, so that we can better understand them. Many geophysical concepts and tools developed for the Earth can also be tested on other planets. For instance the numerical Climate Models used to assess Earth's future climate change are applied to other planets. Much is learned from such experiments. Secondly, the time has come to generalize the fundamental lessons that we have learned from the examples in the solar system (including the Earth) to address the countless scientific questions that are -and will be- raised by

  7. An international comparison of dietary patterns in 9–11-year-old children

    PubMed Central

    Mikkilä, V; Vepsäläinen, H; Saloheimo, T; Gonzalez, S A; Meisel, J D; Hu, G; Champagne, C M; Chaput, J-P; Church, T S; Katzmarzyk, P T; Kuriyan, R; Kurpad, A; Lambert, E V; Maher, C; Maia, J; Matsudo, V; Olds, T; Onywera, V; Sarmiento, O L; Standage, M; Tremblay, M S; Tudor-Locke, C; Zhao, P; Fogelholm, M

    2015-01-01

    OBJECTIVES: Dietary pattern is defined as a combination of foods and drinks and the frequency of consumption within a population. Dietary patterns are changing on a global level, which may be linked to an increased incidence of chronic diseases. The aim of this study was to identify and compare the dietary patterns among 9–11-year-old children living in urban regions in different parts of the world. METHODS: Participants were 7199 children (54% girls), aged 9–11 years, from 12 countries situated in all major world regions. Food consumption was assessed using a 23-item Food Frequency Questionnaire (FFQ). To identify dietary patterns, principal components analyses (PCA) were carried out using weekly portions as input variables. RESULTS: Both site-specific and pooled PCA resulted in two strong components. Component 1 (‘unhealthy diet pattern') included fast foods, ice cream, fried food, French fries, potato chips, cakes and sugar-sweetened sodas with >0.6 loadings. The loadings for component 2 (‘healthy diet pattern') were slightly weaker with only dark-green vegetables, orange vegetables, vegetables in general, and fruits and berries reaching a >0.6 loading. The site-specific diet pattern scores had very strong correlations with the pattern scores from the pooled data: r=0.82 and 0.94 for components 1 and 2, respectively. CONCULSIONS: The results suggest that the same ‘healthier' and ‘unhealthier' foods tend to be consumed in similar combinations among 9–11-year-old children in different countries, despite variation in food culture, geographical location, ethnic background and economic development. PMID:27152179

  8. Toxic interaction between fluvoxamine and sustained release theophylline in an 11-year-old boy.

    PubMed

    Sperber, A D

    1991-01-01

    An 11-year-old boy with asthma had been receiving a controlled release theophylline preparation. He was prescribed fluvoxamine for a depressive disorder and within a week complained of severe headaches, tiredness and vomiting. His serum theophylline concentration had increased from 14.2 mg/L (shortly before fluvoxamine was started) to 27.4 mg/L. Fluvoxamine was withdrawn and theophylline concentrations decreased. Clomipramine was substituted for fluvoxamine with no further problems, and a later theophylline concentration was 13.7 mg/L. Competitive inhibition of hepatic microsomal enzymes by fluvoxamine may have been responsible for the elevated theophylline concentrations and toxicity observed in this case. PMID:1793525

  9. Extrapyramidal side-effects of low-dose aripiprazole in an 11-year-old child.

    PubMed

    Mohapatra, Satyakam

    2016-01-01

    Partial agonism of D2 and 5-HT1A receptors accounts for the low incidence of extrapyramidal side-effects of aripiprazole. Extrapyramidal symptoms (EPS) during treatment with therapeutical doses of aripiprazole have been reported in adults and children. To the best of our knowledge, no cases of EPS with low doses (5 mg) have been reported until now. In this article, we present an 11-year-old child who developed EPS on low doses (5 mg) aripiprazole. This case emphasizes the need for careful surveillance for the development of EPS in patients treated even with low doses of aripiprazole. PMID:26933364

  10. Enterobius granuloma: an unusual cause of omental mass in an 11-year-old girl.

    PubMed

    Kılıç, Sinan; Ekinci, Saniye; Orhan, Diclehan; Senocak, Mehmet Emin

    2014-01-01

    Enterobius vermicularis (pinworm) is the only nematode that infects humans. It is one of the most common intestinal parasites. Pinworm commonly infests the terminal ileum and colon, and does not cause severe morbidity unless ectopic infection occurs. However, granulomatous lesions caused by ectopic Enterobius vermicularis infection may lead to unusual clinical symptoms and may be misinterpreted as malignant lesions. Herein, the authors present an 11-year-old girl with pinworm infection who presented with abdominal pain and an omental mass, with special emphasis on the diagnosis and treatment. PMID:24911856

  11. Giant appendix or an appendiceal mucocele? Case report of an 11-year-old child

    PubMed Central

    Nad, Marta; Kiraly, Adrienn; Bali, Ottilia; Rashed, Adel; Vizsy, Laszlo

    2014-01-01

    We present an 11-year-old male child with an enormous appendix that was regarded as an appendiceal mucocele. The disorder is very rare and usually appears in middle aged patients. It is a clinical diagnosis. It could cause a variety of symptoms, especially, acute appendicitis and unidentified lesion in the right iliac fossa. According to the reasons, it could be just a curiosity without any relevancy or the sign of a malignant lesion with bad prognostic factors. The histopathological findings prove the origin. PMID:25598994

  12. Extrapyramidal side-effects of low-dose aripiprazole in an 11-year-old child

    PubMed Central

    Mohapatra, Satyakam

    2016-01-01

    Partial agonism of D2 and 5-HT1A receptors accounts for the low incidence of extrapyramidal side-effects of aripiprazole. Extrapyramidal symptoms (EPS) during treatment with therapeutical doses of aripiprazole have been reported in adults and children. To the best of our knowledge, no cases of EPS with low doses (5 mg) have been reported until now. In this article, we present an 11-year-old child who developed EPS on low doses (5 mg) aripiprazole. This case emphasizes the need for careful surveillance for the development of EPS in patients treated even with low doses of aripiprazole. PMID:26933364

  13. Sacrococcygeal fetiform teratoma altman type 1: a rare case report in a 11 year old girl.

    PubMed

    Sood, Neelam; Kamboj, Meenakshi; Chaabra, Maninder

    2013-06-01

    Fetiform teratoma (homunculus) is a rare but distinct entity, characterized by presence of more organoid differentiation than the classical teratoma but not enough to classify as fetus-in-fetu. Presence of rudimentary limbs in presence/absence of axial skeleton is often reported as an important differentiating feature. Sacrococcygeal location has been reported in a few case reports but in neonates only. This is a rare case of sacrococcygeal fetiform teratoma (Altman type 1) in an 11-year-old girl presenting as a gluteal mass. PMID:24426616

  14. Prediction of solar activity from solar background magnetic field variations in cycles 21-23

    SciTech Connect

    Shepherd, Simon J.; Zharkov, Sergei I.; Zharkova, Valentina V. E-mail: s.zharkov@hull.ac.uk

    2014-11-01

    A comprehensive spectral analysis of both the solar background magnetic field (SBMF) in cycles 21-23 and the sunspot magnetic field in cycle 23 reported in our recent paper showed the presence of two principal components (PCs) of SBMF having opposite polarity, e.g., originating in the northern and southern hemispheres, respectively. Over a duration of one solar cycle, both waves are found to travel with an increasing phase shift toward the northern hemisphere in odd cycles 21 and 23 and to the southern hemisphere in even cycle 22. These waves were linked to solar dynamo waves assumed to form in different layers of the solar interior. In this paper, for the first time, the PCs of SBMF in cycles 21-23 are analyzed with the symbolic regression technique using Hamiltonian principles, allowing us to uncover the underlying mathematical laws governing these complex waves in the SBMF presented by PCs and to extrapolate these PCs to cycles 24-26. The PCs predicted for cycle 24 very closely fit (with an accuracy better than 98%) the PCs derived from the SBMF observations in this cycle. This approach also predicts a strong reduction of the SBMF in cycles 25 and 26 and, thus, a reduction of the resulting solar activity. This decrease is accompanied by an increasing phase shift between the two predicted PCs (magnetic waves) in cycle 25 leading to their full separation into the opposite hemispheres in cycle 26. The variations of the modulus summary of the two PCs in SBMF reveals a remarkable resemblance to the average number of sunspots in cycles 21-24 and to predictions of reduced sunspot numbers compared to cycle 24: 80% in cycle 25 and 40% in cycle 26.

  15. The dynamic evolution of active-region-scale magnetic flux tubes in the turbulent solar convective envelope

    NASA Astrophysics Data System (ADS)

    Weber, Maria Ann

    2014-12-01

    The Sun exhibits cyclic properties of its large-scale magnetic field on the order of sigma22 years, with a ˜11 year frequency of sunspot occurrence. These sunspots, or active regions, are the centers of magnetically driven phenomena such as flares and coronal mass ejections. Volatile solar magnetic events directed toward the Earth pose a threat to human activities and our increasingly technological society. As such, the origin and nature of solar magnetic flux emergence is a topic of global concern. Sunspots are observable manifestations of solar magnetic fields, thus providing a photospheric link to the deep-seated dynamo mechanism. However, the manner by which bundles of magnetic field, or flux tubes, traverse the convection zone to eventual emergence at the solar surface is not well understood. To provide a connection between dynamo-generated magnetic fields and sunspots, I have performed simulations of magnetic flux emergence through the bulk of a turbulent, solar convective envelope by employing a thin flux tube model subject to interaction with flows taken from a hydrodynamic convection simulation computed through the Anelastic Spherical Harmonic (ASH) code. The convective velocity field interacts with the flux tube through the drag force it experiences as it traverses through the convecting medium. Through performing these simulations, much insight has been gained about the influence of turbulent solar-like convection on the flux emergence process and resulting active region properties. I find that the dynamic evolution of flux tubes change from convection dominated to magnetic buoyancy dominated as the initial field strength of the flux tubes increases from 15 kG to 100 kG. Additionally, active-region-scale flux tubes of 40 kG and greater exhibit properties similar to those of active regions on the Sun, such as: tilt angles, rotation rates, and morphological asymmetries. The joint effect of the Coriolis force and helical motions present in convective

  16. [Can solar/geomagnetic activity restrict the occurrence of some shellfish poisoning outbreaks? The example of PSP caused by Gymnodinium catenatum at the Atlantic Portuguese coast].

    PubMed

    Vale, P

    2013-01-01

    Cyclic outbreaks of accumulation of paralytic shellfish poisoning (PSP) toxins in mussels attributed to Gymnodinium catenatum blooms displayed several of the highest inter-annual maxima coincidental with minima of the 11-year solar sunspot number (SSN) cycle. The monthly distribution of PSP was associated with low levels of the solar radio flux, a more quantitative approach than SSN for fluctuations in solar activity. A comparison between monthly distribution of PSP and other common biotoxins (okadaic acid (OA), dinophysistoxin-2 (DTX2) and amnesic shellfish poisoning (ASP) toxins) demonstrated that only PSP was significantly associated with low levels of radio flux (p < 0.01). PSP occurrence suggests a prior decline in solar activity could be required to act as a trigger, in a similar manner to a photoperiodic signal. The seasonal frequency increased towards autumn during the study period, which might be related to the progressive atmospheric cut-off of deleterious radiation associated with the seasonal change in solar declination, and might play an additional role in seasonal signal-triggering. PSP distribution was also associated with low levels of the geomagnetic index Aa. A comparison between monthly distribution of PSP and other common biotoxins, also demonstrated that only PSP was significantly associated with low levels of the Aa index (p < 0.01). In some years of SSN minima no significant PSP-outbreaks in mussels were detected. This was attributed to a steady rise in geomagnetic activity that could disrupt the triggering signal. Global distribution patterns show that hotspots for G. catenatum blooms are regions with deficient crustal magnetic anomalies. In addition to the variable magnetic field mostly of solar origin, static fields related to magnetized rocks in the crust and upper mantle might play a role in restricting worldwide geographic distribution. PMID:24455892

  17. A new simple dynamo model for solar activity cycle

    NASA Astrophysics Data System (ADS)

    Yokoi, Nobumitsu; Schmitt, Dieter

    2015-04-01

    The solar magnetic activity cycle has been investigated in an elaborated manner with several types of dynamo models [1]. In most of the current mean-field approaches, the inhomogeneity of the large-scale flow is treated as an essential ingredient in the mean magnetic field equation whereas it is completely neglected in the turbulence equation. In this work, a new simple model for the solar activity cycle is proposed. The present model differs from the previous ones mainly in two points. First, in addition to the helicity coefficient α, we consider a term related to the cross helicity, which represents the effect of the inhomogeneous mean flow, in the turbulent electromotive force [2, 3]. Second, this transport coefficient (γ) is not treated as an adjustable parameter, but the evolution equation for γ is simultaneously solved. The basic scenario for the solar activity cycle in this approach is as follows: The toroidal field is induced by the toroidal rotation in mediation by the turbulent cross helicity. Then due to the α or helicity effect, the poloidal field is generated from the toroidal field. The poloidal field induced by the α effect produces a turbulent cross helicity whose sign is opposite to the original one (negative cross-helicity production). The cross helicity with this opposite sign induces a reversed toroidal field. Results of the eigenvalue analysis of the model equations are shown, which confirm the above scenario. References [1] Charbonneau, Living Rev. Solar Phys. 7, 3 (2010). [2] Yoshizawa, A. Phys. Fluids B 2, 1589 (1990). [3] Yokoi, N. Geophys. Astrophys. Fluid Dyn. 107, 114 (2013).

  18. Simultaneous Solar Maximum Mission (SMM) and Very Large Array (VLA) observations of solar active regions

    NASA Technical Reports Server (NTRS)

    Willson, Robert F.

    1991-01-01

    Very Large Array observations at 20 cm wavelength can detect the hot coronal plasma previously observed at soft x ray wavelengths. Thermal cyclotron line emission was detected at the apex of coronal loops where the magnetic field strength is relatively constant. Detailed comparison of simultaneous Solar Maximum Mission (SMM) Satellite and VLA data indicate that physical parameters such as electron temperature, electron density, and magnetic field strength can be obtained, but that some coronal loops remain invisible in either spectral domain. The unprecedent spatial resolution of the VLA at 20 cm wavelength showed that the precursor, impulsive, and post-flare components of solar bursts originate in nearby, but separate loops or systems of loops.. In some cases preburst heating and magnetic changes are observed from loops tens of minutes prior to the impulsive phase. Comparisons with soft x ray images and spectra and with hard x ray data specify the magnetic field strength and emission mechanism of flaring coronal loops. At the longer 91 cm wavelength, the VLA detected extensive emission interpreted as a hot 10(exp 5) K interface between cool, dense H alpha filaments and the surrounding hotter, rarefield corona. Observations at 91 cm also provide evidence for time-correlated bursts in active regions on opposite sides of the solar equator; they are attributed to flare triggering by relativistic particles that move along large-scale, otherwise-invisible, magnetic conduits that link active regions in opposite hemispheres of the Sun.

  19. A statistic study of ionospheric solar flare activity indicator

    NASA Astrophysics Data System (ADS)

    Xiong, Bo; Ding, Feng; Ning, Baiqi; Wan, Weixing; Yu, You; Hu, Lianhuan

    According to the Chapman ionization theory, an ionospheric solar flare activity indicator (ISFAI) is given by the solar zenith angle and the variation rate of ionospheric vertical total electron content, which is measured from a global network of dual-frequency GPS receivers. The ISFAI is utilized to statistically analyze the ionospheric responses to 1439 M-class and 126 X-class solar flares during solar cycle 23 (1996-2008). The statistical results show that the occurrence of ISFAI peak increases obviously at 3.2 total electron content unit (TECU)/h (1 TECU = 1016 elm-2) and reaches the maximum at 10 TECU/h during M-class flares and 10 TECU/h and 40 TECU/h for X-class flares. ISFAI is closely correlated with the 26-34 nm extreme ultraviolet flux but poorly related to the 0.1-0.8 nm X-ray flux. The central meridian distance (CMD) of flare location is an important reason for depressing relationship between ISFAI and X-ray Flux. Through the CMD effect modification, the ISFAI has a significant dependence on the X-ray flux with a correlation coefficient of 0.76. The ISFAI sensitivity enables to detect the extreme X-class flares, as well as the variations of one order of magnitude or even smaller (such as for C-class flares). Meanwhile, ISFAI is helpful to the calibration of the X-ray flux at 0.1-0.8 nm observed by GOES during some flares. In addition, statistical results demonstrate that ISFAI can detect 80% of all M-class flares and 92% for all X-class ones during 1996-2008. Owing to the high sensitivity and temporal resolution, ISFAI can be utilized as a solar flare detection parameter to monitor space weather.

  20. NASDA activities in space solar power system research, development and applications

    NASA Technical Reports Server (NTRS)

    Matsuda, Sumio; Yamamoto, Yasunari; Uesugi, Masato

    1993-01-01

    NASDA activities in solar cell research, development, and applications are described. First, current technologies for space solar cells such as Si, GaAs, and InP are reviewed. Second, future space solar cell technologies intended to be used on satellites of 21st century are discussed. Next, the flight data of solar cell monitor on ETS-V is shown. Finally, establishing the universal space solar cell calibration system is proposed.

  1. Comparison of Solar Active Region Complexity Andgeomagnetic Activity from 1996 TO 2014

    NASA Astrophysics Data System (ADS)

    Tanskanen, E. I.; Nikbakhsh, S.; Perez-Suarez, D.; Hackman, T.

    2015-12-01

    We have studied the influence of magnetic complexity of solar Active Regions (ARs)on geomagnetic activity from 1996 to 2014. Sunspots are visual indicators of ARswhere the solar magnetic field is disturbed. We have used International, American,Space Environment Service Center (SESC) and Space Weather Prediction Center(SWPC) sunspot numbers to examine ARs. Major manifestations of solar magneticactivity, such as flares and Coronal Mass Ejections (CMEs), are associated withARs. For this study we chose the Mount Wilson scheme. It classifies ARs in terms oftheir magnetic topology from the least complex (?) to the most complex one ( ?).Several cases have been found where the more complex structures produce strongerflares and CMEs than the less complex ones. We have a list of identified substormsavailable with different phases and their durations. This will be compared to ourmagnetic complexity data to analyse the effects of active region magnetic complexityto the magnetic activity on the vicinity of the Earth.

  2. Dose estimations for Iranian 11-year-old pediatric phantoms undergoing computed tomography examinations.

    PubMed

    Akhlaghi, Parisa; Miri-Hakimabad, Hashem; Rafat-Motavalli, Laleh

    2015-07-01

    In order to establish an organ and effective dose database for Iranian children undergoing computed tomography (CT) examinations, in the first step, two Iranian 11-year-old phantoms were constructed from image series obtained from CT and magnetic resonance imaging (MRI). Organ and effective doses for these phantoms were calculated for head, chest, abdomen-pelvis and chest-abdomen-pelvis (CAP) scans at tube voltages of 80, 100 and 120 kVp, and then they were compared with those of the University of Florida (UF) 11-year-old male phantom. Depth distributions of the organs and the mass of the surrounding tissues located in the beam path, which shield the internal organs, were determined for all phantoms. From the results, it was determined that the main organs of the UF phantom receive smaller doses than the two Iranian phantoms, except for the urinary bladder of the Iranian girl phantom. In addition, the relationship between the anatomical differences and the size of the dose delivered was also investigated and the discrepancies between the results were examined and justified. PMID:25972393

  3. A case of dissociative fugue and general amnesia with an 11-year follow-up.

    PubMed

    Helmes, Edward; Brown, Julie-May; Elliott, Linda

    2015-01-01

    Dissociative fugue refers to loss of personal identity, often with the associated loss of memories of events (general amnesia). Here we report on the psychological assessment of a 54-year-old woman with loss of identity and memories of 33 years of her life attributed to dissociative fugue, along with a follow-up 11 years later. Significant levels of personal injury and stress preceded the onset of the amnesia. A detailed neuropsychological assessment was completed at a university psychology clinic, with a follow-up assessment there about 11 years later with an intent to determine whether changes in her cognitive status were associated with better recall of her life and with her emotional state. Psychomotor slowing and low scores on measures of attention and both verbal and visual memory were present initially, along with significant psychological distress associated with the diagnosis of posttraumatic stress disorder. Although memories of her life had not returned by follow-up, distress had abated and memory test scores had improved. The passage of time and a better emotional state did not lead to recovery of lost memories. Contrary to expectations, performance on tests of executive functions was good on both occasions. Multiple stressful events are attributed as having a role in maintaining the loss of memories. PMID:25365262

  4. Memory T cell responses targeting the SARS coronavirus persist up to 11 years post-infection.

    PubMed

    Ng, Oi-Wing; Chia, Adeline; Tan, Anthony T; Jadi, Ramesh S; Leong, Hoe Nam; Bertoletti, Antonio; Tan, Yee-Joo

    2016-04-12

    Severe acute respiratory syndrome (SARS) is a highly contagious infectious disease which first emerged in late 2002, caused by a then novel human coronavirus, SARS coronavirus (SARS-CoV). The virus is believed to have originated from bats and transmitted to human through intermediate animals such as civet cats. The re-emergence of SARS-CoV remains a valid concern due to the continual persistence of zoonotic SARS-CoVs and SARS-like CoVs (SL-CoVs) in bat reservoirs. In this study, the screening for the presence of SARS-specific T cells in a cohort of three SARS-recovered individuals at 9 and 11 years post-infection was carried out, and all memory T cell responses detected target the SARS-CoV structural proteins. Two CD8(+) T cell responses targeting the SARS-CoV membrane (M) and nucleocapsid (N) proteins were characterized by determining their HLA restriction and minimal T cell epitope regions. Furthermore, these responses were found to persist up to 11 years post-infection. An absence of cross-reactivity of these CD8(+) T cell responses against the newly-emerged Middle East respiratory syndrome coronavirus (MERS-CoV) was also demonstrated. The knowledge of the persistence of SARS-specific celullar immunity targeting the viral structural proteins in SARS-recovered individuals is important in the design and development of SARS vaccines, which are currently unavailable. PMID:26954467

  5. Dose estimations for Iranian 11-year-old pediatric phantoms undergoing computed tomography examinations

    PubMed Central

    Akhlaghi, Parisa; Miri-Hakimabad, Hashem; Rafat-Motavalli, Laleh

    2015-01-01

    In order to establish an organ and effective dose database for Iranian children undergoing computed tomography (CT) examinations, in the first step, two Iranian 11-year-old phantoms were constructed from image series obtained from CT and magnetic resonance imaging (MRI). Organ and effective doses for these phantoms were calculated for head, chest, abdomen–pelvis and chest–abdomen–pelvis (CAP) scans at tube voltages of 80, 100 and 120 kVp, and then they were compared with those of the University of Florida (UF) 11-year-old male phantom. Depth distributions of the organs and the mass of the surrounding tissues located in the beam path, which shield the internal organs, were determined for all phantoms. From the results, it was determined that the main organs of the UF phantom receive smaller doses than the two Iranian phantoms, except for the urinary bladder of the Iranian girl phantom. In addition, the relationship between the anatomical differences and the size of the dose delivered was also investigated and the discrepancies between the results were examined and justified. PMID:25972393

  6. Er:YAG laser ablation: 5-11 years prospective study

    NASA Astrophysics Data System (ADS)

    Dostalova, Tatjana; Jelinkova, Helena; Nemec, Michal; Sulc, Jan; Miyagi, Mitsunobu

    2005-03-01

    The Er:YAG laser at 2940 nm has been proposed for use in dental cavity preparation and removal of carious enamel and dentin. The purpose of the present study was to determine the effect of the Er:YAG laser ablation in treating dental caries after a period from 5 to 11 years. For this study, 133 cavities were chosen, and for their reparation of it the three restorative materials were used. Baseline examination was made in the following intervals: one week, 1 year, and from 5 to 11 years after cavity preparation and placement of filling material. Clinical assessments were carried out in accordance with the US Public Health Service System. The follow-up included: the marginal ridge, marginal adaptation, anatomic form, caries, color match, cavo surface margin discoloration, surface smoothness, and postoperative sensitivity. Er:YAG laser ablation is an excellent method for treating frontal teeth, i.e., incisors, canines, premolars, and initial occlusal caries of molars. However, visual control of non-contact therapy is necessary. Er:YAG laser ablation is safe, and it strongly reduces pain. The laser treatment markedly decreases the unpleasant sound and vibration.

  7. DISTRIBUTION OF ELECTRIC CURRENTS IN SOLAR ACTIVE REGIONS

    SciTech Connect

    Török, T.; Titov, V. S.; Mikić, Z.; Leake, J. E.; Archontis, V.; Linton, M. G.; Dalmasse, K.; Aulanier, G.; Kliem, B.

    2014-02-10

    There has been a long-standing debate on the question of whether or not electric currents in solar active regions are neutralized. That is, whether or not the main (or direct) coronal currents connecting the active region polarities are surrounded by shielding (or return) currents of equal total value and opposite direction. Both theory and observations are not yet fully conclusive regarding this question, and numerical simulations have, surprisingly, barely been used to address it. Here we quantify the evolution of electric currents during the formation of a bipolar active region by considering a three-dimensional magnetohydrodynamic simulation of the emergence of a sub-photospheric, current-neutralized magnetic flux rope into the solar atmosphere. We find that a strong deviation from current neutralization develops simultaneously with the onset of significant flux emergence into the corona, accompanied by the development of substantial magnetic shear along the active region's polarity inversion line. After the region has formed and flux emergence has ceased, the strong magnetic fields in the region's center are connected solely by direct currents, and the total direct current is several times larger than the total return current. These results suggest that active regions, the main sources of coronal mass ejections and flares, are born with substantial net currents, in agreement with recent observations. Furthermore, they support eruption models that employ pre-eruption magnetic fields containing such currents.

  8. A new 10Be record recovered from an Antarctic ice core: validity and limitations to record the solar activity

    NASA Astrophysics Data System (ADS)

    Baroni, Mélanie; Bard, Edouard; Aster Team

    2015-04-01

    Cosmogenic nuclides provide the only possibility to document solar activity over millennia. Carbon-14 (14C) and beryllium-10 (10Be) records are retrieved from tree rings and ice cores, respectively. Recently, 14C records have also proven to be reliable to detect two large Solar Proton Events (SPE) (Miyake et al., Nature, 2012, Miyake et al., Nat. Commun., 2013) that occurred in 774-775 A.D. and in 993-994 A.D.. The origin of these events is still under debate but it opens new perspectives for the interpretation of 10Be ice core records. We present a new 10Be record from an ice core from Dome C (Antarctica) covering the last millennium. The chronology of this new ice core has been established by matching volcanic events on the WAIS Divide ice core (WDC06A) that is the best dated record in Antarctica over the Holocene (Sigl et al., JGR, 2013, Sigl et al., Nat. Clim. Change, 2014). The five minima of solar activity (Oort, Wolf, Spörer, Maunder and Dalton) are detected and characterized by a 10Be concentration increase of ca. 20% above average in agreement with previous studies of ice cores drilled at South Pole and Dome Fuji in Antarctica (Bard et al., EPSL, 1997; Horiuchi et al., Quat. Geochrono., 2008) and at NGRIP and Dye3 in Greenland (Berggren et al., GRL, 2009). The high resolution, on the order of a year, allows the detection of the 11-year solar cycle. Sulfate concentration, a proxy for volcanic eruptions, has also been measured in the very same samples, allowing a precise comparison of both 10Be and sulfate profiles. We confirm the systematic relationship between stratospheric eruptions and 10Be concentration increases, first evidenced by observations of the stratospheric volcanic eruptions of Agung in 1963 and Pinatubo in 1991 (Baroni et al., GCA, 2011). This relationship is due to an increase in 10Be deposition linked to the role played by the sedimentation of volcanic aerosols. In the light of these new elements, we will discuss the limitations and

  9. Triennial Report 2006-2009. Commission 10: Solar Activity

    NASA Technical Reports Server (NTRS)

    Klimchuk, James A.

    2008-01-01

    Commission 10 deals with solar activity in all of its forms, ranging from the smallest nanoflares to the largest coronal mass ejections. This report reviews scientific progress over the roughly two-year period ending in the middle of 2008. This has been an exciting time in solar physics, highlighted by the launches of the Hinode and STEREO missions late in 2006. The report is reasonably comprehensive, though it is far from exhaustive. Limited space prevents the inclusion of many significant results. The report is divided into following sections: Photosphere and Chromosphere; Transition Region; Corona and Coronal Heating; Coronal Jets; Flares; Coronal Mass Ejection Initiation; Global Coronal Waves and Shocks; Coronal Dimming; The Link Between Low Coronal CME signatures and Magnetic Clouds; Coronal Mass Ejections in the Heliosphere; and Coronal Mass Ejections and Space Weather. Primary authorship is indicated at the beginning of each section.

  10. The Role of Magnetic Reconnection in Solar Activity

    NASA Technical Reports Server (NTRS)

    Antiochos, Spiro; DeVore, C. R.

    2008-01-01

    The central challenge in solar/heliospheric physics is to understand how the emergence and transport of magnetic flux at the photosphere drives the structure and dynamics that we observe in the corona and heliosphere. This presentation focuses on the role of magnetic reconnection in determining solar/heliospheric activity. We demonstrate that two generic properties of the photospheric magnetic and velocity fields are responsible for the ubiquitous reconnection in the corona. First, the photospheric velocities are complex, which leads to the injection of energy and helicity into the coronal magnetic fields and to the efficient, formation of small-scale structure. Second, the flux distribution at the photosphere is multi-polar, which implies that topological discontinuities and, consequently, current sheets, must be present in the coronal magnetic field. We: present numerical simulations showing that photospherically-driven reconnection is responsible for the heating and dynamics of coronal plasma, and for the topology of the coronal/heliospheric magnetic field.

  11. Multi-wavelength Observations of Solar Active Region NOAA 7154

    NASA Technical Reports Server (NTRS)

    Bruner, M. E.; Nitta, N. V.; Frank. Z. A.; Dame, L.; Suematsu, Y.

    2000-01-01

    We report on observations of a solar active region in May 1992 by the Solar Plasma Diagnostic Experiment (SPDE) in coordination with the Yohkoh satellite (producing soft X-ray images) and ground-based observatories (producing photospheric magnetograms and various filtergrams including those at the CN 3883 A line). The main focus is a study of the physical conditions of hot (T is approximately greater than 3 MK) coronal loops at their foot-points. The coronal part of the loops is fuzzy but what appear to be their footpoints in the transition region down to the photosphere are compact. Despite the morphological similarities, the footpoint emission at 10(exp 5) K is not quantitatively correlated with that at approximately 300 km above the tau (sub 5000) = 1 level, suggesting that the heat transport and therefore magnetic field topology in the intermediate layer is complicated. High resolution imaging observations with continuous temperature coverage are crucially needed.

  12. Impacts of Extended Periods of Low Solar Activity on Climate (Abstract)

    NASA Astrophysics Data System (ADS)

    Denig, W. F.

    2016-06-01

    (Abstract only) There has been great interest in determining the length and amplitude of Solar Cycle 24 in recent years, in part due to increasing speculation that the current solar minimum is anomalously quiet and perhaps signaling the beginning of a decreased period of solar activity in the coming decades. We aim to examine the current solar minimum and compare it to previous solar minima in order to: determine if the current minimum shares characteristics with other historically quiet solar minima (sometimes referred to as grand minima); outline the potential consequences of a grand minimum with respect to climate; and predict the future of Solar Cycle 24.

  13. A Practical Application of Microcomputers to Control an Active Solar System.

    ERIC Educational Resources Information Center

    Goldman, David S.; Warren, William

    1984-01-01

    Describes the design and implementation of a microcomputer-based model active solar heating system. Includes discussions of: (1) the active solar components (solar collector, heat exchanger, pump, and fan necessary to provide forced air heating); (2) software components; and (3) hardware components (in the form of sensors and actuators). (JN)

  14. The Solar Dynamos

    NASA Astrophysics Data System (ADS)

    Cattaneo, F.

    2000-05-01

    Magnetic activity on the Sun presents us with an interesting dichotomy. On large spatial and temporal scales the solar magnetic field displays a remarkable degree of organization. The 11 years cadence of the solar cycle, Hales' polarity law, and the systematic drift of the regions of emergence of active regions towards the equator throughout the solar cycle are all indicative of a powerful organizing process. On small spatial and temporal scales, the Solar magnetic field appears random and chaotic. It is interesting that recent advances in dynamo theory provide us with a unified approach to solar magnetic activity whereby both large and small scales emerge naturally as dynamo processes associated with rotationally constrained and unconstrained scales of motions in the convection zone (or directly below it). According to this view all coherent scales of motions produce magnetic structures of comparable coherence length. Those that are further endowed with lack of reflectional symmetry by virtue of being rotationally constrained are further associated with inverse cascades that can generate magnetic structures on larger scales still. The picture that emerges is one in which dynamo action proceeds on different time scales all over the convection zone. But only in very special regions, like for instance the solar tachocline, is the magnetic field organized on large scales. This idea provides a natural explanation for the origin of active regions, ephemeral regions, and intra--network fields.

  15. Solar EUV Variability from FISM and SDO/EVE During Solar Minimum, Active, and Flaring Time Periods

    NASA Technical Reports Server (NTRS)

    Chamberlin, Phillip C.

    2011-01-01

    The Living With a Star (LWS) Focus Science Team has identified three periods of different solar activity levels for which they will be determining the Earth's Ionosphere and Thermosphere response. Not only will the team be comparing individual models (e.g. FLIP, T1MEGCM, GLOW) outcome driven by the various levels of solar activity, but the models themselves will also be compared. These models all rely on the input solar EUV (0.1 -190 nm) irradiance to drive the variability. The Flare Irradiance Spectral Model (FISM) and the EUV Variability Experiment (EVE) onboard provide the Solar Dynamics Observatory (SDO) provide the most accurate quantification of these irradiances. Presented and discussed are how much the solar EUV irradiance changes during these three scenarios, both as a function of activity and wavelength.

  16. Solar technology assessment project. Volume 4: Solar air conditioning: Active, hybrid and passive

    NASA Astrophysics Data System (ADS)

    Yellott, J. I.

    1981-04-01

    The status of absorption cycle solar air conditioning and the Rankine cycle solar cooling system is reviewed. Vapor jet ejector chillers, solar pond based cooling, and photovoltaic compression air conditioning are also briefly discussed. Hybrid solar cooling by direct and indirect evaporative cooling, and dehumidification by desiccation are described and discussed. Passive solar cooling by convective and radiative processes, evaporative cooling by passive processes, and cooling with roof ponds and movable insulation are reviewed. Federal and state involvement in solar cooling is discussed.

  17. Real Research In The Classroom - Solar Active Longitudes

    NASA Astrophysics Data System (ADS)

    Stagg, T.; Gearen, M.; Jacoby, S. H.; Jones, H. P.; Henney, C. J.; Hill, F.

    2000-12-01

    We present a high-school level educational/research module for a project that improves computer and analytical skills and contributes new scientific results to the field of solar astronomy and physics. The module has been developed within the RET (Research Experience for Teachers) program as a new application of a cooperative project between the RBSE (Research-Based Science Education) initiative of the NSF and the NASA Education/Public Outreach program. The research goal is to improve our knowledge of the characteristics of solar active longitudes, where sunspots tend to cluster. In particular, the rotation rate of these regions is poorly known. It is suspected that the active longitude rotation rate (ALRR) is different from the rotation rate of the solar surface. If this is true, the ALRR can be compared with the internal rotation rate deduced by helioseismology providing an estimate of the active region depth. A good determination of the ALRR requires the measurement of the position of thousands of individual active regions, a step best done by interactive examination of images, selection of regions, and determination of heliographic position. These tasks are well-suited for high school students, who are thus provided with a motivation to improve their computer and scientific thinking skills. ScionImage (PC)/NIH Image (Macs) macros for this purpose have been developed which access a CD-ROM of 25 years of NSO/Kitt Peak magnetogram data and laboratory exercises developed previously for classroom use. In the future, a web site will be created for collecting the data from classrooms across the US, and for status reports on the results.

  18. Nonlinear techniques for forecasting solar activity directly from its time series

    NASA Technical Reports Server (NTRS)

    Ashrafi, S.; Roszman, L.; Cooley, J.

    1992-01-01

    Numerical techniques for constructing nonlinear predictive models to forecast solar flux directly from its time series are presented. This approach makes it possible to extract dynamical invariants of our system without reference to any underlying solar physics. We consider the dynamical evolution of solar activity in a reconstructed phase space that captures the attractor (strange), given a procedure for constructing a predictor of future solar activity, and discuss extraction of dynamical invariants such as Lyapunov exponents and attractor dimension.

  19. Nonlinear techniques for forecasting solar activity directly from its time series

    NASA Technical Reports Server (NTRS)

    Ashrafi, S.; Roszman, L.; Cooley, J.

    1993-01-01

    This paper presents numerical techniques for constructing nonlinear predictive models to forecast solar flux directly from its time series. This approach makes it possible to extract dynamical in variants of our system without reference to any underlying solar physics. We consider the dynamical evolution of solar activity in a reconstructed phase space that captures the attractor (strange), give a procedure for constructing a predictor of future solar activity, and discuss extraction of dynamical invariants such as Lyapunov exponents and attractor dimension.

  20. [Pulmonary tuberculosis after 11 years of observation in a patient suffering from advanced squamous lung cancer cured by radical radiotherapy--a case report].

    PubMed

    Mysiorski, Grzegorz; Marciniak, Marek; Rogowska, Danuta; Sedlaczek, Andrzej; Witkiewicz, Iwona; Tarnowska-Matusiak, Marzenna; Pankowski, Juliusz

    2003-01-01

    Advanced lung cancer is a neoplasm of a poor prognosis. The treatment may improve it to a certain degree but not satisfactory. A case of squamous- cell lung cancer, in a stage III B of TNM classification, which was by cured completely radiotherapy is described. The 11 years post-treatment observation was performed without any symptoms of recurrence. Actually patient is hospitalised due to active tuberculosis. No evidence for lung cancer was found until now. PMID:14587431

  1. Theoretical model for calculation of helicity in solar active regions

    NASA Astrophysics Data System (ADS)

    Chatterjee, P.

    We (Choudhuri, Chatterjee and Nandy, 2005) calculate helicities of solar active regions based on the idea of Choudhuri (2003) that poloidal flux lines get wrapped around a toroidal flux tube rising through the convection zone, thereby giving rise to the helicity. Rough estimates based on this idea compare favourably with the observed magnitude of helicity. We use our solar dynamo model based on the Babcock--Leighton α-effect to study how helicity varies with latitude and time. At the time of solar maximum, our theoretical model gives negative helicity in the northern hemisphere and positive helicity in the south, in accordance with observed hemispheric trends. However, we find that, during a short interval at the beginning of a cycle, helicities tend to be opposite of the preferred hemispheric trends. Next we (Chatterjee, Choudhuri and Petrovay 2006) use the above idea along with the sunspot decay model of Petrovay and Moreno-Insertis, (1997) to estimate the distribution of helicity inside a flux tube as it keeps collecting more azimuthal flux during its rise through the convection zone and as turbulent diffusion keeps acting on it. By varying parameters over reasonable ranges in our simple 1-d model, we find that the azimuthal flux penetrates the flux tube to some extent instead of being confined to a narrow sheath outside.

  2. Predictions of the onset of mini ice age in the 25th solar cycle

    NASA Astrophysics Data System (ADS)

    Kumar, Rajiv

    2016-07-01

    Predictions of the ir-regularty in the 11 year heartbeat of the sun due to asyncronous of the two layered dynamo effect would result in mini ice age as in the Maunder minimum.The onset of this event is expected in the begining of 25th solar cycle and would go to its maximum in the 26th solar cycle.The minimum temperature is expected in 2028 due to the fall of solar activity by 60 % termed as solar hibernation.The predictions are based on the observations obtained by the Royal Greenwich observatory since 1874. Keywords: Dynamo effect,munder minimum,Solar hybernation

  3. A statistic study of ionospheric solar flare activity indicator

    NASA Astrophysics Data System (ADS)

    Xiong, Bo; Wan, Weixing; Ning, Baiqi; Ding, Feng; Hu, Lianhuan; Yu, You

    2014-01-01

    According to the Chapman ionization theory, an ionospheric solar flare activity indicator (ISFAI) is given by the solar zenith angle and the variation rate of ionospheric vertical total electron content, which is measured from a global network of dual-frequency GPS receivers. The ISFAI is utilized to statistically analyze the ionospheric responses to 1439 M-class and 126 X-class solar flares during solar cycle 23 (1996-2008). The statistical results show that the occurrence of ISFAI peak increases obviously at 3.2 total electron content unit (TECU)/h (1 TECU = 1016 el m-2) and reaches the maximum at 10 TECU/h during M-class flares and 10 TECU/h and 40 TECU/h for X-class flares. ISFAI is closely correlated with the 26-34 nm extreme ultraviolet flux but poorly related to the 0.1-0.8 nm X-ray flux. The central meridian distance (CMD) of flare location is an important reason for depressing relationship between ISFAI and X-ray Flux. Through the CMD effect modification, the ISFAI has a significant dependence on the X-ray flux with a correlation coefficient of 0.76. The ISFAI sensitivity enables to detect the extreme X-class flares, as well as the variations of one order of magnitude or even smaller (such as for C-class flares). Meanwhile, ISFAI is helpful to the calibration of the X-ray flux at 0.1-0.8 nm observed by GOES during some flares. In addition, the statistical results demonstrate that ISFAI can detect 80% of all M-class flares and 92% for all X-class ones during 1996-2008.

  4. Solar activity around AD 775 from aurorae and radiocarbon

    NASA Astrophysics Data System (ADS)

    Neuhäuser, R.; Neuhäuser, D. L.

    2015-04-01

    A large variation in 14C around AD 775 has been considered to be caused by one or more solar super-flares within one year. We critically review all known aurora reports from Europe as well as the Near, Middle, and Far East from AD 731 to 825 and find 39 likely true aurorae plus four more potential aurorae and 24 other reports about halos, meteors, thunderstorms etc., which were previously misinterpreted as aurorae or misdated; we assign probabilities for all events according to five aurora criteria. We find very likely true aurorae in AD 743, 745, 762, 765, 772, 773, 793, 796, 807, and 817. There were two aurorae in the early 770s observed near Amida (now Diyarbak\\i r in Turkey near the Turkish-Syrian border), which were not only red, but also green-yellow - being at a relatively low geomagnetic latitude, they indicate a relatively strong solar storm. However, it cannot be argued that those aurorae (geomagnetic latitude 43 to 50°, considering five different reconstructions of the geomagnetic pole) could be connected to one or more solar super-flares causing the 14C increase around AD 775: There are several reports about low- to mid-latitude aurorae at 32 to 44° geomagnetic latitude in China and Iraq; some of them were likely observed (quasi-)simultaneously in two of three areas (Europe, Byzantium/Arabia, East Asia), one lasted several nights, and some indicate a particularly strong geomagnetic storm (red colour and dynamics), namely in AD 745, 762, 793, 807, and 817 - always without 14C peaks. We use 39 likely true aurorae as well as historic reports about sunspots together with the radiocarbon content from tree rings to reconstruct the solar activity: From AD {˜ 733} to {˜ 823}, we see at least nine Schwabe cycles; instead of one of those cycles, there could be two short, weak cycles - reflecting the rapid increase to a high 14C level since AD 775, which lies at the end of a strong cycle. In order to show the end of the dearth of naked-eye sunspots, we

  5. Postintubation tracheal stenosis in an 11-year-old boy: a surgical and anaesthetic challenge.

    PubMed

    Aguilera, I M; Walker, R W M; Dearlove, O R

    2002-10-01

    We present a case of postintubation tracheal stenosis in an 11-year-old boy occurring after a relatively short period of intubation. He had been intubated and ventilated in a paediatric intensive care unit after a road traffic accident. Clinical symptoms manifested by oxygen desaturation and wheeziness, finally leading to deterioration of the level of consciousness, occurred a few hours after the first attempt at extubation after 48 h requiring reintubation. Endoscopic examination performed a few weeks later revealed a tracheal stenosis. Consequently, he underwent an initial period of conservative treatment consisting of balloon dilatation and intralesional injection of steroids, followed by a tracheal resection and reconstruction. The anaesthetic management of patients with tracheal stenosis presenting for laryngo-tracheobronchoscopy and balloon dilatation is discussed. PMID:12472713

  6. Acute Ataxia in Childhood: 11-Year Experience at a Major Pediatric Neurology Referral Center.

    PubMed

    Thakkar, Kavita; Maricich, Stephen M; Alper, Gulay

    2016-08-01

    We categorized the causes of acute ataxia in the pediatric population-referred to the Division of Neurology-at a large, urban pediatric medical center. Of the 120 cases identified over the past 11 years, post-infectious cerebellar ataxia was the most commonly diagnosed (59%), followed by drug intoxication, opsoclonus-myoclonus ataxia syndrome, episodic ataxia, acute cerebellitis, cerebellar stroke, ADEM, meningitis, cerebral vein thrombosis, Leigh's disease, Miller-Fisher syndrome, and concussion. Among the patients with post-infectious cerebellar ataxia, 85% were 1-6 years old and all had a history of antecedent viral illness. CSF pleocytosis was present in 40% of patients; all had normal brain MRIs. The majority (91%) recovered within 30 days. We conclude that post-infectious cerebellar ataxia remains the most common cause of acute ataxia in childhood and that it carries a good prognosis. We also differentiate acute post-infectious cerebellar ataxia from other causes with similar presentations. PMID:27071467

  7. An 11-year-old boy with pharyngitis and cough: Lemierre syndrome

    PubMed Central

    Mação, Patricia; Cancelinha, Candida; Lopes, Paulo; Rodrigues, Fernanda

    2013-01-01

    The authors present the case of an 11-year-old boy with pharyngitis, treated with amoxicillin, that worsened on day 7, with cough, high fever and refusal to eat. Lethargy and respiratory distress were noted. Based on radiographic findings of bilateral infiltrates he was diagnosed with pneumonia and started on intravenous ampicillin and erythromycin. Two days later he complained of right-sided neck pain and a palpable mass was identified. An ultrasound showed partial thrombosis of the right internal jugular vein and a lung CT scan revealed multiple septic embolic lesions. Lemierre syndrome was diagnosed, antibiotic treatment adjusted and anticoagulation started. A neck CT-scan showed a large parapharyngeal abscess. His clinical condition improved gradually and after 3 weeks of intravenous antibiotics he was discharged home on oral treatment. This case illustrates the importance of diagnosing Lemierre syndrome in the presence of pharyngitis with localised neck pain and respiratory distress, to prevent potentially fatal complications. PMID:23616317

  8. Performance as a function of shooting style in basketball players under 11 years of age.

    PubMed

    Arias, José L

    2012-04-01

    Shooting style in basketball refers to the height adopted by a player in holding the ball, specifically the height of the hand and the ball with regard to the line of sight before the final extension of the elbow during a shot. The literature differentiates between a high and a low style. This study analyzed shooting frequency in young boys as a function of style and which shooting style had the highest accuracy and success in real games. Participants were 81 boys from eight basketball teams, aged 9-11 years. The sample consisted of 5,740 standard shots in 56 games. The design was nomotethic, follow-up, and multidimensional. The results indicated that low style predominated over the high style, although overall accuracy and efficacy were better using the high style. Various strategies and practical considerations are suggested for teachers and coaches to focus on teaching the high style. PMID:22755449

  9. A fatal outcome of complicated severe diabetic ketoacidosis in a 11-year-old girl.

    PubMed

    Severinski, Srećko; Butorac Ahel, Ivona; Ovuka, Aleksandar; Verbić, Arijan

    2016-08-01

    Diabetic ketoacidosis (DKA) is a complex metabolic state characterized by hyperglycemia, metabolic acidosis and ketonuria. Cerebral edema is the most common rare complication of DKA in children. The objective of the study was to emphasize the importance of careful evaluation and monitoring for signs and symptoms of cerebral edema in all children undergoing treatment for DKA. We present a case of 11-year-old girl with a history of diabetes mellitus type I (T1DM) who presented with severe DKA complicated by hypovolemic shock, cerebral edema and hematemesis. Considering the fact that complications of DKA are rare and require a high index of clinical suspicion, early recognition and treatment are crucial for avoiding permanent damage. PMID:27226096

  10. An 11-year-old boy with Plasmodium falciparum malaria and dengue co-infection.

    PubMed

    Issaranggoon na ayuthaya, Satja; Wangjirapan, Anchalee; Oberdorfer, Peninnah

    2014-01-01

    Malaria and dengue fever are major mosquito-borne public health problems in tropical countries. The authors report a malaria and dengue co-infection in an 11-year-old boy who presented with sustained fever for 10 days. The physical examination revealed a flushed face, injected conjunctivae and left submandibular lymphadenopathy. His peripheral blood smear showed few ring-form trophozoites of Plasmodium falciparum. His blood tests were positive for dengue NS-1 antigen and IgM antibody, and negative for IgG antibody. After the initiation of antimalarial treatment with artesunate and mefloquine, his clinical condition gradually improved. However, he still had low-grade fever that persisted for 6 days. Finally, he recovered well without fluid leakage, shock or severe bleeding. This case report emphasises that early recognition and concomitant treatment of malaria and dengue co-infection in endemic areas can improve clinical outcome and prevent serious complications. PMID:24692379

  11. Pulmonary veno-occlusive disease in an 11-year-old girl: diagnostic pitfalls.

    PubMed

    Kano, Gen; Nakamura, Keiko; Sakamoto, Izumi

    2014-02-01

    Pulmonary veno-occlusive disease (PVOD) is a rare chronic lung disease that is difficult to diagnose due to non-specific clinical findings. Little is known about the pathogenesis of PVOD. Reported herein is the case of an 11-year-old girl who initially presented with 'bat-wing' shadows on chest radiography. This finding, coupled with prominent hemosiderosis in bronchoalveolar lavage fluid, initially led to a misdiagnosis of idiopathic pulmonary hemosiderosis. Oral prednisolone dramatically improved signs and symptoms initially, but her condition then gradually deteriorated during maintenance therapy with corticosteroids and other immunosuppressants. PVOD was suspected but not confirmed owing to a lack of hallmark radiographic findings and contraindications for lung biopsy. Three years later, while arranging for lung transplantation, the patient experienced sudden onset of fatal massive pulmonary edema. PVOD was confirmed at autopsy. This case provides insights regarding an unfamiliar presentation of PVOD and may help physicians to avoid diagnostic pitfalls. PMID:24548200

  12. Music listening and cognitive abilities in 10- and 11-year-olds: the blur effect.

    PubMed

    Schellenberg, E Glenn; Hallam, Susan

    2005-12-01

    The spatial abilities of a large sample of 10 and 11 year olds were tested after they listened to contemporary pop music, music composed by Mozart, or a discussion about the present experiment. After being assigned at random to one of the three listening experiences, each child completed two tests of spatial abilities. Performance on one of the tests (square completion) did not differ as a function of the listening experience, but performance on the other test (paper folding) was superior for children who listened to popular music compared to the other two groups. These findings are consistent with the view that positive benefits of music listening on cognitive abilities are most likely to be evident when the music is enjoyed by the listener. PMID:16597767

  13. Continuous plasma outflows from the edge of a solar active region as a possible source of solar wind.

    PubMed

    Sakao, Taro; Kano, Ryouhei; Narukage, Noriyuki; Kotoku, Jun'ichi; Bando, Takamasa; Deluca, Edward E; Lundquist, Loraine L; Tsuneta, Saku; Harra, Louise K; Katsukawa, Yukio; Kubo, Masahito; Hara, Hirohisa; Matsuzaki, Keiichi; Shimojo, Masumi; Bookbinder, Jay A; Golub, Leon; Korreck, Kelly E; Su, Yingna; Shibasaki, Kiyoto; Shimizu, Toshifumi; Nakatani, Ichiro

    2007-12-01

    The Sun continuously expels a huge amount of ionized material into interplanetary space as the solar wind. Despite its influence on the heliospheric environment, the origin of the solar wind has yet to be well identified. In this paper, we report Hinode X-ray Telescope observations of a solar active region. At the edge of the active region, located adjacent to a coronal hole, a pattern of continuous outflow of soft-x-ray-emitting plasmas was identified emanating along apparently open magnetic field lines and into the upper corona. Estimates of temperature and density for the outflowing plasmas suggest a mass loss rate that amounts to approximately 1/4 of the total mass loss rate of the solar wind. These outflows may be indicative of one of the solar wind sources at the Sun. PMID:18063788

  14. Grand minima of solar activity and sociodynamics of culture

    NASA Astrophysics Data System (ADS)

    Vladimirsky, B. M.

    2012-12-01

    Indices of creative productivity introduced by C. Murrey were used to verify S. Ertel's conclusion about a global increase in creative productivity during the prolonged minimum of solar activity in 1640-1710. It was found that these indices for mathematicians, philosophers, and scientists increase in the Maunder era by factor of 1.6 in comparison with intervals of the same length before and after the minimum. A similar effect was obtained for mathematicians and philosophers for five earlier equitype minima in total (an increase by a factor of 1.9). The regularity that is revealed is confirmed by the fact that the most important achievements of high-ranking mathematicians and philosophers during the whole time period (2300 years) considered in this study fall on epochs of reduced levels of solar activity. The rise in the probability of the generation of rational ideas during grand minima is reflected also in the fact that they precede the appearance of written language and farming. Ultra-low-frequency electromagnetic fields appear to serve as a physical agent stimulating the activity of the brain's left hemisphere during the epochs of minima.

  15. Magnetohydrodynamic (MHD) modelling of solar active phenomena via numerical methods

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    1988-01-01

    Numerical ideal MHD models for the study of solar active phenomena are summarized. Particular attention is given to the following physical phenomena: (1) local heating of a coronal loop in an isothermal and stratified atmosphere, and (2) the coronal dynamic responses due to magnetic field movement. The results suggest that local heating of a magnetic loop will lead to the enhancement of the density of the neighboring loops through MHD wave compression. It is noted that field lines can be pinched off and may form a self-contained magnetized plasma blob that may move outward into interplanetary space.

  16. Large active retrodirective arrays for solar power satellites

    NASA Technical Reports Server (NTRS)

    Chernoff, R.

    1978-01-01

    An active retrodirective array (ARA) transmits a beam toward the apparent source of an illuminating signal called the pilot. The array produces the RF power. Retrodirectivity is achieved by retransmitting from each element of the array a signal whose phase is the 'conjugate' of that received by the element. Application of the ARA to the solar power satellite concept has been proposed. A method of providing a reference phase is described, called 'central phasing', which eliminates the need for a rigid structure ordinarily needed in order to realize accurate retrodirectivity.

  17. Argonne Solar Energy Program annual report. Summary of solar program activities for fiscal year 1979

    SciTech Connect

    1980-06-01

    The R and D work done at Argonne National Laboratory on solar energy technologies during the period October 1, 1978 to September 30, 1979 is described. Technical areas included in the ANL solar program are solar energy collection, heating and cooling, thermal energy storage, ocean thermal energy conversion, photovoltaics, biomass conversion, satellite power systems, and solar liquid-metal MHD power systems.

  18. Solar Physics at Evergreen: Solar Dynamo and Chromospheric MHD

    NASA Astrophysics Data System (ADS)

    Zita, E. J.; Maxwell, J.; Song, N.; Dikpati, M.

    2006-12-01

    We describe our five year old solar physics research program at The Evergreen State College. Famed for its cloudy skies, the Pacific Northwest is an ideal location for theoretical and remote solar physics research activities. Why does the Sun's magnetic field flip polarity every 11 years or so? How does this contribute to the magnetic storms Earth experiences when the Sun's field reverses? Why is the temperature in the Sun's upper atmosphere millions of degrees higher than the Sun's surface temperature? How do magnetic waves transport energy in the Sun’s chromosphere and the Earth’s atmosphere? How does solar variability affect climate change? Faculty and undergraduates investigate questions such as these in collaboration with the High Altitude Observatory (HAO) at the National Center for Atmospheric Research (NCAR) in Boulder. We will describe successful student research projects, logistics of remote computing, and our current physics investigations into (1) the solar dynamo and (2) chromospheric magnetohydrodynamics.

  19. Eruptions that Drive Coronal Jets in a Solar Active Region

    NASA Technical Reports Server (NTRS)

    Sterling, Alphonse C.; Moore, Ronald L.; Falconer, David A.; Panesar, Navdeep K.; Akiyama, Sachiko; Yashiro, Seiji; Gopalswamy, Nat

    2016-01-01

    Solar coronal jets are common in both coronal holes and in active regions (e.g., Shibata et al. 1992, Shimojo et al. 1996, Cirtain et al. 2007. Savcheva et al. 2007). Recently, Sterling et al. (2015), using data from Hinode/XRT and SDO/AIA, found that coronal jets originating in polar coronal holes result from the eruption of small-scale filaments (minifilaments). The jet bright point (JBP) seen in X-rays and hotter EUV channels off to one side of the base of the jet's spire develops at the location where the minifilament erupts, consistent with the JBPs being miniature versions of typical solar flares that occur in the wake of large-scale filament eruptions. Here we consider whether active region coronal jets also result from the same minifilament-eruption mechanism, or whether they instead result from a different mechanism (e.g. Yokoyama & Shibata 1995). We present observations of an on-disk active region (NOAA AR 11513) that produced numerous jets on 2012 June 30, using data from SDO/AIA and HMI, and from GOES/SXI. We find that several of these active region jets also originate with eruptions of miniature filaments (size scale 20'') emanating from small-scale magnetic neutral lines of the region. This demonstrates that active region coronal jets are indeed frequently driven by minifilament eruptions. Other jets from the active region were also consistent with their drivers being minifilament eruptions, but we could not confirm this because the onsets of those jets were hidden from our view. This work was supported by funding from NASA/LWS, NASA/HGI, and Hinode. A full report of this study appears in Sterling et al. (2016).

  20. Trichotillomania: Bizzare Patern of Hair Loss at 11-Year-old Girl.

    PubMed

    Zímová, Jana; Zímová, Pavlína

    2016-06-01

    Trichotillomania (TTM) is defined by the Diagnostics and Statistic Manual of Mental Disorders, 4th edition (DMS-IV) as hair loss from a patient`s repetitive self-pulling of hair. The disorder is included under anxiety disorders because it shares some obsessive-compulsive features. Patients have the tendency towards feelings of unattractiveness, body dissatisfaction, and low self-esteem (1,2). It is a major psychiatric problem, but many patients with this disorder first present to a dermatologist. An 11-year-old girl came to our department with a 2-month history of diffuse hair loss on the frontoparietal and parietotemporal area (Figure 1). She had originally been examined by a pediatrician with the diagnosis of alopecia areata. The patient`s personal history included hay fever and shortsightedness, and she suffered from varicella and mononucleosis. Nobody in the family history suffered from alopecia areata, but her father has male androgenetic alopecia (Norwood/Hamilton MAGA C3F3). The mother noticed that the child had had changeable mood for about 2 months and did not want to communicate with other persons in the family. The family did not have any pet at home. At school, her favorite subjects were Math and Computer Studies. She did not like Physical Education and did not participate in any sport activities during her free time. This was very strange because she was obese (body-mass index (BMI) 24.69). She was sometimes angry with her 13-year-old sister who had better results at school. The girl had suddenly started to wear a blue scarf. The parents did not notice that she pulled out her hair at home. Dermatological examination of the capillitium found a zone of incomplete alopecia in the frontoparietal and parietotemporal area, without inflammation, desquamation, and scaring. Hairs were of variable length (Figure 1). There was a patch of incomplete alopecia above the forehead between two stripes of hair of variable length (Figure 2). The hair pull test was

  1. Effects of solar cycle 24 activity on WAAS navigation

    NASA Astrophysics Data System (ADS)

    Datta-Barua, Seebany; Walter, Todd; Bust, Gary S.; Wanner, William

    2014-01-01

    This paper reviews the effects of geomagnetic activity of solar cycle 24 from 2011 through mid-2013 on the Federal Aviation Administration's Wide Area Augmentation System (WAAS) navigation service in the U.S., to identify (a) major impacts and their severity compared with the previous cycle and (b) effects in new service regions of North America added since last solar cycle. We examine two cases: a storm that reduced service coverage for several hours and ionospheric scintillation that led to anomalous receiver tracking. Using the 24-25 October 2011 storm as an example, we examine WAAS operational system coverage for the conterminous U.S. (CONUS). The WAAS algorithm upgrade to ionospheric estimation, in effect since late 2011, is able to mitigate the daytime coverage loss but not the nighttime loss. We correlate WAAS availability to maps of the storm plasma generated with the data assimilative model Ionospheric Data Assimilation 4-D, which show a local nighttime corotating persistent plume of plasma extending from Florida across central CONUS. We study the effect of scintillation on 9 October 2012 on the WAAS reference station at Fairbanks, Alaska. Data from a nearby scintillation monitor in Gakona and all-sky imaging of aurora at Poker Flat corroborate the event. Anomalous receiver processing triggered by scintillation reduces accuracy at Fairbanks for a few minutes. Users experiencing similar effects would have their confidence bounds inflated, possibly trading off service continuity for safety. The activity to date in solar cycle 24 has had minor effects on WAAS service coverage, mainly occurring in Alaska and Canada.

  2. Direct and indirect solar signature on global ozone content

    NASA Astrophysics Data System (ADS)

    Talukdar, Shamitaksha; Maitra, Animesh; Saha, Upal

    Solar activities affecting the Earth’s climate, traditionally measured by the number of sunspots (SSN), shows a periodic variation of 8-11 years. The solar radiation is a major component which drives the atmospheric circulation and thus induces global ozone variability in different parts of the earth. Total ozone varies strongly with latitude over the globe and with solar activity, with the largest values occurring at middle and high latitudes during all seasons. A critical analysis is done to study the direct and indirect effects of solar activity on the total ozone content (TOC) and tropospheric ozone residual (TOR) over urban metropolitan location, Kolkata (22°32'N, 88°20'E), along with 30⁰N and 30⁰S and 0⁰(equator) during the period 1979-2012. It has been focused through our study that the solar parameters have positive correlations with TOC whereas TOR is not much linked with solar activity. The positive correlations with SSN and TOC are valid for all the cases of 30⁰N and 30⁰S, equator (0⁰) and Kolkata region. But it has been observed that no association is found to occur with TOR and SSN. The wavelet spectrum of the signal variation due to Sunspot Number (SSN), Total Solar Irradiance (TSI) and Mg II Index (proxy for solar UV radiation) show peaks corresponding to 11-year cycle of the solar parameters. The TOC, taken from TOMS satellite, also shows a clear 11-year solar signal in all the region. But the spectral analysis show a random signal variation, including a 11-year signal at 30⁰S. At Kolkata, a significant positive correlation is obtained between TOC and SSN as also shown by wavelet spectral analysis. The TOR, taken from calibrated GOME and OMI/AURA satellite data analysis, show no positive 11-year signal feedback at all regions, except 30⁰S. A clear positive 11-year solar signal is found to be observed over this tropical southern hemisphere. The sea-surface temperature (SST), taken from NOAA Optimum Interpolation 1⁰x 1⁰ NCEP

  3. On the solar activity variations of nocturnal F region vertical drifts covering two solar cycles in the Indian longitude sector

    NASA Astrophysics Data System (ADS)

    Madhav Haridas, M. K.; Manju, G.; Pant, Tarun Kumar

    2015-02-01

    A comprehensive analysis of the seasonal and solar cycle variabilities of nighttime vertical drift over the Indian longitude sector is accomplished using ionosonde data located at the magnetic equatorial location, Trivandrum (8.5°N, 76.5°E). The analysis extends over a span of two decades (1988-2008). The representative seasonal variations based on the extensive data of nocturnal vertical drift during three different solar activity epochs is arrived at, for the first time. Seasonally, it is seen that maximum post sunset Vd is obtained in vernal equinox (VE), followed by autumnal equinox (AE), winter solstice (WS), and summer solstice (SS) for high and moderate solar epochs, while for low solar epoch, maximum Vd occurs in WS followed by VE, AE, and SS. Further, the role of sunset times at the magnetic conjugate points in modulating the time and magnitude of peak drifts during different solar epochs is ascertained. The equinoctial asymmetry in peak Vd during high and moderate solar epochs is another significant outcome of this study. The solar activity dependence of vertical drift for a wide range of solar fluxes has been quantified for all the seasons. In the present era of GPS-based communication and navigation, these are important results that give a better handle in understanding essential factors that impact equatorial ionospheric phenomena.

  4. A relationship between solar activity and frequency of natural disasters in China

    NASA Astrophysics Data System (ADS)

    Wang, Zhongrui; Song, Feng; Tang, Maocang

    2003-11-01

    The relationship between the length of the solar cycle, a good indicator of long-term change in solar activity, and natural disasters (drought, flood, and strong earthquakes) in China during the last 108 years is analyzed. The results suggest that the length of solar cycle may be a useful indicator for drought/flood and strong earthquakes. When the solar activity strengthens, we see the length of the solar cycle shorten and more floods occur in South China and frequent strong earthquakes happen in the Tibetan Plateau, but the droughts in East China as well as the strong earthquakes in Taiwan and at the western boundary of China are very few. The opposite frequencies occur when the solar activity weakens. The current study indicates that the solar activity may play an important role in the climate extremes and behavior in the lithosphere.

  5. Solar System Puzzle Kit: An Activity for Earth and Space Science.

    ERIC Educational Resources Information Center

    Vogt, Gregory L.; Rosenberg, Carla B.

    This Solar System Puzzle Kit for grades 5-8, allows students to create an eight-cube paper puzzle of the solar system and may be duplicated for classroom use or used as a take home activity for children and parents. By assembling the puzzle, hand-coloring the bodies of the solar system, and viewing the puzzle's 12 sides, students can reinforce…

  6. Solar Energy Education. Social studies: activities and teacher's guide. Field test edition

    SciTech Connect

    Not Available

    1982-01-01

    Solar energy information is made available to students through classroom instruction by way of the Solar Energy Education teaching manuals. In this manual solar energy, as well as other energy sources like wind power, is introduced by performing school activities in the area of social studies. A glossary of energy related terms is included. (BCS)

  7. Magnetic coupling of the active chromosphere to the solar interior.

    NASA Technical Reports Server (NTRS)

    Foukal, P.

    1972-01-01

    Evidence is summarized to show that the configuration of e lines which governs the appearance of H-alpha fine structure in active regions is set mainly by motions in the subphotosphere where these lines are anchored. It is shown that H-alpha fine structure is directly coupled to a layer probably more than 5000 km below the photosphere, and little distortion of the strong fields is expected in the ines. The shorter rotation period of active regions observed by Howard and others (compared to the photospheric gas) reted as a result ofthis direct coupling of the strong field to a more rapidly rotating solar interior. The effects of dragging such a field through a photosphere of finite resistivity are briefly considered for features of various observed cross-sections.

  8. Possible Relationship of the Solar Activity and Earthquakes

    NASA Astrophysics Data System (ADS)

    Gonzalez-Trejo, J. I.; Cervantes, F.; Real-Ramírez, C. A.; Hoyos-Reyes, L. F.; Miranda-Tello, R.; Area de Sistemas Computacionales

    2013-05-01

    Several authors have recently argued that there is a relationship between solar activity and big earthquakes. This work compares Dst index fluctuations along 2012 and 2013, with the earthquake activity near La Paz, Baja California, Mexico. The earthquakes measurements at this place were divided according its deep focus. It was observed that the frequency of the deeper earthquakes increases shortly after considerable fluctuations in the Dst index are registered. We assume that the number of deep earthquakes increases because the interaction of the tectonic plate below that place and the tectonic plates in contact with it increases. This work also shows that the frequency of shallowest minor and light earthquakes increases shortly before a strongest earthquake takes place in the vicinity.

  9. Detectability of active triangulation range finder: a solar irradiance approach.

    PubMed

    Liu, Huizhe; Gao, Jason; Bui, Viet Phuong; Liu, Zhengtong; Lee, Kenneth Eng Kian; Peh, Li-Shiuan; Png, Ching Eng

    2016-06-27

    Active triangulation range finders are widely used in a variety of applications such as robotics and assistive technologies. The power of the laser source should be carefully selected in order to satisfy detectability and still remain eye-safe. In this paper, we present a systematic approach to assess the detectability of an active triangulation range finder in an outdoor environment. For the first time, we accurately quantify the background noise of a laser system due to solar irradiance by coupling the Perez all-weather sky model and ray tracing techniques. The model is validated with measurements with a modeling error of less than 14.0%. Being highly generic and sufficiently flexible, the proposed model serves as a guide to define a laser system for any geographical location and microclimate. PMID:27410637

  10. High resolution studies of complex solar active regions

    NASA Astrophysics Data System (ADS)

    Deng, Na

    Flares and Coronal Mass Ejections (CMEs) are energetic events, which can even impact the near-Earth environment and are the principal source of space weather. Most of them originate in solar active regions. The most violent events are produced in sunspots with a complex magnetic field topology. Studying their morphology and dynamics is helpful in understanding the energy accumulation and release mechanisms for flares and CMEs, which are intriguing problems in solar physics. The study of complex active regions is based on high-resolution observations from space missions and new instruments at the Big Bear Solar Observatory (BBSO). Adaptive optics (AO) in combination with image restoration techniques (speckle masking imaging) can achieve improved image quality and a spatial resolution (about 100 km on the solar surface) close to the diffraction limit of BBSO's 65 cm vacuum telescope. Dopplergrams obtained with a two-dimensional imaging spectrometer combined with horizontal flow maps derived with Local Correlation Tracking (LCT) provide precise measurements of the three-dimensional velocity field in sunspots. Magnetic field measurements from ground- and space-based instruments complement these data. At the outset of this study, the evolution and morphology of a typical round sunspot are described in some detail. The sunspot was followed from disk center to the limb, thus providing some insight into the geometry of the magnetic flux system. Having established a benchmark for a stable sunspot, the attention is turned to changes of the sunspot structure associated with flares and CMEs. Rapid penumbral decay and the strengthening of sunspot umbrae are manifestations of photospheric magnetic field changes after a flare. These sudden intensity changes are interpreted as a result of magnetic reconnection during the flare, which causes the magnetic field lines to be turned from more inclined to more vertical. Strong photospheric shear flows along the flaring magnetic

  11. Spring-fall asymmetry of substorm strength, geomagnetic activity and solar wind: Implications for semiannual variation and solar hemispheric asymmetry

    USGS Publications Warehouse

    Mursula, K.; Tanskanen, E.; Love, J.J.

    2011-01-01

    We study the seasonal variation of substorms, geomagnetic activity and their solar wind drivers in 1993-2008. The number of substorms and substorm mean duration depict an annual variation with maxima in Winter and Summer, respectively, reflecting the annual change of the local ionosphere. In contradiction, substorm mean amplitude, substorm total efficiency and global geomagnetic activity show a dominant annual variation, with equinoctial maxima alternating between Spring in solar cycle 22 and Fall in cycle 23. The largest annual variations were found in 1994 and 2003, in the declining phase of the two cycles when high-speed streams dominate the solar wind. A similar, large annual variation is found in the solar wind driver of substorms and geomagnetic activity, which implies that the annual variation of substorm strength, substorm efficiency and geomagnetic activity is not due to ionospheric conditions but to a hemispherically asymmetric distribution of solar wind which varies from one cycle to another. Our results imply that the overall semiannual variation in global geomagnetic activity has been seriously overestimated, and is largely an artifact of the dominant annual variation with maxima alternating between Spring and Fall. The results also suggest an intimate connection between the asymmetry of solar magnetic fields and some of the largest geomagnetic disturbances, offering interesting new pathways for forecasting disturbances with a longer lead time to the future. Copyright ?? 2011 by the American Geophysical Union.

  12. Spring-fall asymmetry of substorm strength, geomagnetic activity and solar wind: Implications for semiannual variation and solar hemispheric asymmetry

    USGS Publications Warehouse

    Marsula, K.; Tanskanen, E.; Love, J.J.

    2011-01-01

    We study the seasonal variation of substorms, geomagnetic activity and their solar wind drivers in 1993–2008. The number of substorms and substorm mean duration depict an annual variation with maxima in Winter and Summer, respectively, reflecting the annual change of the local ionosphere. In contradiction, substorm mean amplitude, substorm total efficiency and global geomagnetic activity show a dominant annual variation, with equinoctial maxima alternating between Spring in solar cycle 22 and Fall in cycle 23. The largest annual variations were found in 1994 and 2003, in the declining phase of the two cycles when high-speed streams dominate the solar wind. A similar, large annual variation is found in the solar wind driver of substorms and geomagnetic activity, which implies that the annual variation of substorm strength, substorm efficiency and geomagnetic activity is not due to ionospheric conditions but to a hemispherically asymmetric distribution of solar wind which varies from one cycle to another. Our results imply that the overall semiannual variation in global geomagnetic activity has been seriously overestimated, and is largely an artifact of the dominant annual variation with maxima alternating between Spring and Fall. The results also suggest an intimate connection between the asymmetry of solar magnetic fields and some of the largest geomagnetic disturbances, offering interesting new pathways for forecasting disturbances with a longer lead time to the future.

  13. Solar and terrestrial physics. [effects of solar activities on earth environment

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The effects of solar radiation on the near space and biomental earth, the upper atmosphere, and the magnetosphere are discussed. Data obtained from the OSO satellites pertaining to the solar cycle variation of extreme ultraviolet (EUV) radiation are analyzed. The effects of solar cycle variation of the characteristics of the solar wind are examined. The fluid mechanics of shock waves and the specific relationship to the characteristics of solar shock waves are investigated. The solar and corpuscular heating of the upper atmosphere is reported based on the findings of the AEROS and NATE experiments. Seasonal variations of the upper atmosphere composition are plotted based on OGO-6 mass spectrometer data.

  14. Babcock-Leighton solar dynamo: the role of downward pumping and the equatorward propagation of activity

    NASA Astrophysics Data System (ADS)

    Karak, Bidya Binay; Cameron, Robert

    2016-05-01

    We investigate the role of downward magnetic pumping near the surface using a kinematic Babcock-Leighton model. We find that the pumping causes the poloidal field to become predominately radial in the near-surface shear layer. This allows the negative radial shear in the near-surface layer to effectively act on the radial field to produce a toroidal field. Consequently, we observe a clear equatorward migration of the toroidal field at low latitudes even when there is no meridional flow in the deep CZ. We show a case where the period of a dynamo wave solution is approximately 11 years. Flux transport models are also shown with periods close to 11 years. Both the dynamo wave and flux transport dynamo are thus able to reproduce some of the observed features of solar cycle. The main difference between the two types of dynamo is the value of $\\alpha$ required to produce dynamo action. In both types of dynamo, the surface meridional flow helps to advect and build the polar field in high latitudes, while in flux transport dynamo the equatorward flow near the bottom of CZ advects toroidal field to cause the equatorward migration in butterfly wings and this advection makes the dynamo easier by transporting strong toroidal field to low latitudes where $\\alpha$ effect works. Another conclusion of our study is that the magnetic pumping suppresses the diffusion of fields through the photospheric surface which helps to achieve the 11-year dynamo cycle at a moderately larger value of magnetic diffusivity than has previously been used.

  15. Reporting accuracy of packed lunch consumption among Danish 11-year-olds differ by gender

    PubMed Central

    Lyng, Nina; Fagt, Sisse; Davidsen, Michael; Hoppe, Camilla; Holstein, Bjørn; Tetens, Inge

    2013-01-01

    Background Packed lunch is the dominant lunch format in many countries including Denmark. School lunch is consumed unsupervised, and self-reported recalls are appropriate in the school setting. However, little is known about the accuracy of recalls in relation to packed lunch. Objective To assess the qualitative recall accuracy of self-reported consumption of packed lunch among Danish 11-year-old children in relation to gender and dietary assessment method. Design A cross-sectional dietary recall study of packed lunch consumption. Digital images (DIs) served as an objective reference method to determine food items consumed. Recalls were collected with a lunch recall questionnaire (LRQ) comprising an open-ended recall (OE-Q) and a pre-coded food group prompted recall (PC-Q). Individual interviews (INTs) were conducted successively. The number of food items was identified and accuracy was calculated as match rates (% identified by DIs and reported correctly) and intrusion rates (% not identified by DIs but reported) were determined. Setting and subjects Three Danish public schools from Copenhagen. A total of 114 Danish 11-year-old children, mean (SE) age=11.1 (0.03), and body mass index=18.2 (0.26). Results The reference (DIs) showed that girls consumed a higher number of food items than boys [mean (SE) 5.4 (0.25) vs. 4.6 (0.29) items (p=0.05)]. The number of food items recalled differed between genders with OE-Q recalls (p=0.005) only. Girls’ interview recalls were more accurate than boys’ with higher match rates (p=0.04) and lower intrusion rates (p=0.05). Match rates ranged from 67–90% and intrusion rates ranged from 13–39% with little differences between girls and boys using the OE-Q and PC-Q methods. Conclusion Dietary recall validation studies should not only consider match rates as an account of accuracy. Intrusions contribute to over-reporting in non-validation studies, and future studies should address recall accuracy and inaccuracies in relation to

  16. Chromospheric and photospheric evolution of an extremely active solar region in solar cycle 19

    NASA Technical Reports Server (NTRS)

    Mckenna-Lawlor, S. M. P.

    1981-01-01

    a comprehensive investigation was made of phenomena attending the disk passage, July 7 to 21, 1959, of active solar center HAO-59Q. At the photospheric level that comprised an aggregate of groups of sunspots of which one group, Mt. Wilson 14284, showed all the attributes deemed typical of solar regions associated with the production of major flares. A special characteristic of 59Q was its capability to eject dark material. Part of this material remained trapped in the strong magnetic fields above group 14284 where it formed a system of interrelated arches, the legs of which passed through components of the bright chromospheric network of the plage and were rooted in various underlying umbrae. Two apparently diffeent kinds of flare were identified in 59Q; namely, prominence flares (which comprised brightenings within part of the suspended dark prominence) and plage flares (which comprised brightenings within part of the chromospheric network). Prominence flares were of three varieties described as 'impact', 'stationary' and 'moving' prominence flares. Plage flares were accompanied in 3 percent of cases by Type III bursts. These latter radio events indicate the associated passage through the corona of energetic electrons in the approximate energy range 10 to 100 keV. At least 87.5 percent, and probably all, impulsive brightenings in 59Q began directly above minor spots, many of which satellites to major umbrae. Stationary and moving prominence flares were individually triggered at sites beneath which magnetic changes occurred within intervals which included each flare's flash phase.

  17. Chromospheric and photospheric evolution of an extremely active solar region in solar cycle 19

    SciTech Connect

    Mckenna-Lawlor, S.M.P.

    1981-08-01

    a comprehensive investigation was made of phenomena attending the disk passage, July 7 to 21, 1959, of active solar center HAO-59Q. At the photospheric level that comprised an aggregate of groups of sunspots of which one group, Mt. Wilson 14284, showed all the attributes deemed typical of solar regions associated with the production of major flares. A special characteristic of 59Q was its capability to eject dark material. Part of this material remained trapped in the strong magnetic fields above group 14284 where it formed a system of interrelated arches, the legs of which passed through components of the bright chromospheric network of the plage and were rooted in various underlying umbrae. Two apparently diffeent kinds of flare were identified in 59Q namely, prominence flares (which comprised brightenings within part of the suspended dark prominence) and plage flares (which comprised brightenings within part of the chromospheric network). Prominence flares were of three varieties described as 'impact', 'stationary' and 'moving' prominence flares. Plage flares were accompanied in 3 percent of cases by Type III bursts. These latter radio events indicate the associated passage through the corona of energetic electrons in the approximate energy range 10 to 100 keV. At least 87.5 percent, and probably all, impulsive brightenings in 59Q began directly above minor spots, many of which satellites to major umbrae. Stationary and moving prominence flares were individually triggered at sites beneath which magnetic changes occurred within intervals which included each flare's flash phase.

  18. Pre- and main-sequence evolution of solar activity

    NASA Technical Reports Server (NTRS)

    Walter, Frederick M.; Barry, Don C.

    1991-01-01

    The magnetic activity on single solarlike stars declines with stellar age. This has important consequences for the influence of the sun on the early solar system. What is meant by stellar activity, and how it is measured, is reviewed. Stellar activity on the premain-sequence phase of evolution is discussed; the classical T Tauri stars do not exhibit solarlike activity, while the naked T Tauri stars do. The emission surface fluxes of the naked T Tauri stars are similar to those of the youngest main-sequence G stars. The best representation for solarlike stars is a decay proportional to exp(A x t exp 0.5), where A is a function of line excitation temperature. From these decay laws, one can determine the interdependences of the activity, age, and rotation periods. The fluxes of ionizing photons at the earth early in its history are discussed; there was sufficient fluence to account for the observed isotopic ratios of the noble gases.

  19. Heliobiology, its development, successes and tasks. [solar activity effects on life on earth

    NASA Technical Reports Server (NTRS)

    Platonova, A. T.

    1974-01-01

    Heliobiology studies the influence of changes in solar activity on life. Considered are the influence of periodic solar activity on the development and growth of epidemics, mortality from various diseases, the functional activity of the nervous system, the development of psychic disturbances, the details of the development of microorganisms and many other phenomena in the living world.

  20. Solar activity during Skylab: Its distribution and relation to coronal holes

    NASA Technical Reports Server (NTRS)

    Speich, D. M.; Smith, J. B., Jr.; Wilson, R. M.; Mcintosh, P. S.

    1978-01-01

    Solar active regions observed during the period of Skylab observations (May 1973-February 1974) were examined for properties that varied systematically with location on the sun, particularly with respect to the location of coronal holes. Approximately 90 percent of the optical and X-ray flare activity occurred in one solar hemisphere (136-315 heliographic degrees longitude). Active regions within 20 heliographic degrees of coronal holes were below average in lifetimes, flare production, and magnetic complexity. Histograms of solar flares as a function of solar longitude were aligned with H alpha synoptic charts on which active region serial numbers and coronal hole boundaries were added.

  1. Equatorial Total Electron Content (TEC) at Low and High Solar Activity

    NASA Astrophysics Data System (ADS)

    Mene, M. N.; Obrou, O. K.; Kobea, A. T.; Zaka, K. Z.

    2007-05-01

    Total Electron Content derived from ionosonde data recorded at Korhogo (Lat=9.33 N, Long =5.43 W, Dip = 0.67 S) are compared to the Internatial Reference Ionosphere (IRI) model predicted TEC for high (1999) and low (1994) solar activity conditions. The result shows that the TEC has a solar activity and seasonal dependence. The IRI predicted values are closer to the observed TEC at high solar activity. However, at low solar activity the IRI overestimates the observed TEC. The deviation is more prominent in equinox during the time range 0900 to 2300 local time. The deviation is estimated to 60% of the observed TEC.

  2. Energy balance in solar active regions - The dip of April, 1985

    NASA Technical Reports Server (NTRS)

    Hudson, H. S.

    1986-01-01

    The presence of a solar active region affects the luminosity of the sun. Sunspots directly produce 'dips' in the total solar irradiance approximately proportionally to their projected area, while faculae produce excess energy. These effects were discovered during the solar maximum period of 1980, and the sunspot effect during solar minimum is examined. The 'dip' due to an active region in April, 1985, as observed in the total solar irradiance by the ACRIM instrument on the Solar Maximum Mission is examined. These data (obtained after the spacecraft repair in May, 1984) have simple variations, relative to those observed in 1980, because of the reduced level of activity approaching solar minimum. It is found that the PSI index of projected sunspot area as defined in 1980 appears to describe this 'dip' satisfactorily.

  3. Near-Earth Solar Wind Flows and Related Geomagnetic Activity During more than Four Solar Cycles (1963-2011)

    NASA Technical Reports Server (NTRS)

    Richardson, Ian G.; Cane, Hilary V.

    2012-01-01

    In past studies, we classified the near-Earth solar wind into three basic flow types based on inspection of solar wind plasma and magnetic field parameters in the OMNI database and additional data (e.g., geomagnetic indices, energetic particle, and cosmic ray observations). These flow types are: (1) High-speed streams associated with coronal holes at the Sun, (2) Slow, interstream solar wind, and (3) Transient flows originating with coronal mass ejections at the Sun, including interplanetary coronal mass ejections and the associated upstream shocks and post-shock regions. The solar wind classification in these previous studies commenced with observations in 1972. In the present study, as well as updating this classification to the end of 2011, we have extended the classification back to 1963, the beginning of near-Earth solar wind observations, thereby encompassing the complete solar cycles 20 to 23 and the ascending phase of cycle 24. We discuss the cycle-to-cycle variations in near-Earth solar wind structures and l1e related geomagnetic activity over more than four solar cycles, updating some of the results of our earlier studies.

  4. The EPICure Study: Association between Hemodynamics and Lung Function at 11 Years after Extremely Preterm Birth

    PubMed Central

    Bolton, Charlotte E.; Stocks, Janet; Hennessy, Enid; Cockcroft, John R.; Fawke, Joseph; Lum, Sooky; McEniery, Carmel M.; Wilkinson, Ian B.; Marlow, Neil

    2012-01-01

    Objective To investigate the relationship between disturbed lung function and large-artery hemodynamics in school-age children born extremely preterm (EP) (at 25 completed weeks of gestation or less). Study design This was a cross-sectional study of participants from the EPICure study, now aged 11 years (n = 66), and 86 age- and sex-matched term-born classmates. Spirometry parameters (including forced expiratory volume in 1 second), blood pressure, and augmentation index (AIx, a composite of arterial stiffness and global wave reflections) were measured. Results Compared with their classmates, the EP children had significantly impaired lung function, particularly those with neonatal bronchopulmonary dysplasia. Peripheral blood pressure did not differ significantly between the 2 groups, but AIx values were on average 5% higher (95% CI, 2%-8%) in the preterm infants, remaining significant after adjustment for potential confounders. Neonatal bronchopulmonary dysplasia status was not related to AIx. Lung function and maternal smoking were independently associated with AIx; AIx increased by 2.7% per z-score reduction in baseline forced expiratory volume in 1 second and by 4.9% in those whose mothers smoked during pregnancy. Conclusion The independent association between impaired lung function and cardiovascular physiology in early adolescence implies higher cardiovascular risk for children born EP, and suggests that prevention of chronic neonatal lung disease may be a priority in reducing later cardiovascular risk in preterm infants. PMID:22575246

  5. Spontaneous pneumomediastinum in an 11-year-old boy after a shallow breath-hold dive.

    PubMed

    Laitila, Maija; Eskola, Vesa

    2013-12-01

    Spontaneous pneumomediastinum is caused by pulmonary barotrauma due to transiently increased intra-alveolar and intra-bronchial pressure. The most frequent triggers of spontaneous pneumomediastinum in children are asthma and manoeuvres creating forced expiration. It has been rarely associated with breath-hold diving. Chest pain and dyspnoea are the main symptoms, and the diagnosis can be confirmed by chest X-ray. The treatment of choice is oxygen, analgesics and monitoring the patient. The recurrence rate is low. The main differential diagnoses of spontaneous pneumomediastinum are oesophageal perforation and pericarditis. We report a case of an 11-year-old boy with no substantial medical history, who tried to breath-hold in shallow water for as long as possible. After diving, he felt dyspnoea and chest pain. Chest X-ray revealed pneumomediastinum and subcutaneous emphysema. The patient was admitted to the PICU for observation and was discharged after two days' follow up. Spontaneous pneumomediastinum in children may be more common than thus far acknowledged. It requires a high index of suspicion and should be considered in all children with acute chest pain. PMID:24510332

  6. Hydration Deficit in 9- to 11-Year-Old Egyptian Children

    PubMed Central

    Gouda, Zaghloul; Zarea, Mohamed; El-Hennawy, Usama; Viltard, Mélanie; Lepicard, Eve; Hawili, Nasrine; Constant, Florence

    2015-01-01

    Background. Children who drink too little to meet their daily water requirements are likely to become dehydrated, and even mild dehydration can negatively affect health. This is even more important in Middle-Eastern countries where high temperatures increase the risk of dehydration. We assessed morning hydration status in a sample of 519 Egyptian schoolchildren (9-11 years old). Methods. Children completed a questionnaire on breakfast intakes and collected a urine sample after breakfast. Breakfast food and fluid nutritional composition was analyzed and urine osmolality was measured using osmometry. Results. The mean urine osmolality of children was 814 mOsmol/kg: >800 mOsmol/kg (57%) and >1000 mOsmol/kg (24.7%). Furthermore, the results showed that a total water intake of less than 400 mL was associated with a significant higher risk of dehydration. Surprisingly, 63% of the children skipped breakfast. Conclusions. The results showed that a majority of Egyptian schoolchildren arrive at school with a hydration deficit. These results highlight the fact that there is a need to educate schoolchildren about the importance of having a breakfast and adequate hydration. PMID:27335985

  7. Anemia and Iron Deficiency in Vietnamese Children, 6 to 11 Years Old.

    PubMed

    Le Nguyen Bao, Khanh; Tran Thuy, Nga; Nguyen Huu, Chinh; Khouw, Ilse; Deurenberg, Paul

    2016-07-01

    In a population sample of 385 children, 6 to 11 years old, venous blood parameters-hemoglobin (Hb), ferritin, red blood cell count (RBC), mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), mean corpuscular hemoglobin concentration (MCHC), C-reactive protein (CRP), and α1-acid glycoprotein (AGP)-were determined to get insight into the iron status. The prevalence of anemia was 11.4%; 5.6% had iron deficiency (ID), whereas 0.4% had ID anemia. Correction for inflammation based on CRP and AGP did not markedly change the overall prevalence of ID and ID anemia. Stunted children had lower Hb and ferritin values compared with nonstunted children, and thin children had lower values compared with normal-weight or overweight and obese children. Many nonanemic children had alert values for RBC, MCV, MCH, and MCHC. It is concluded that although the prevalence of anemia is of the magnitude of a mild public health problem, the iron status of many nonanemic children is borderline, as indicated by a high number of children with low values for red blood cytology. PMID:27052301

  8. Assessment of bully/victim problems in 8 to 11 year-olds.

    PubMed

    Austin, S; Joseph, S

    1996-12-01

    The aim of the present study was to develop two six-item self-report scales (the Bullying-Behaviour Scale and the Peer-Victimisation Scale) to assess bully-victim problems at school. These scales were designed so that they could be immersed within the Self-Perception Profile for Children (SPPC: Harter, 1985) thus reducing the saliency of the items. Internal reliability of both scales was found to be satisfactory (Cronbach's alpha = 0.83 and 0.82 respectively). Data are reported on the association between scores on both scales and scores on the SPPC and the Birleson Depression Inventory (Birleson, 1981) with 425 children (204 boys and 221 girls) ranging from 8 to 11 years (mean = 9.2 years). Forty-six per cent of the children were classified as bullies, victims, or both: 22 per cent were classified as victims only, 15 per cent as bully/victims, and 9 per cent as bullies only. PMID:9008423

  9. Pneumomediastinum and Pneumopericardium in an 11-Year-Old Rugby Player: A Case Report

    PubMed Central

    Vanzo, Valentina; Bugin, Samuela; Snijders, Deborah; Bottecchia, Laura; Storer, Veronica; Barbato, Angelo

    2013-01-01

    Objective: Pneumomediastinum and pneumopericardium are rare occurrences in young athletes, but they can result in potentially life-threatening consequences. Background: While involved in a rugby match, an 11-year-old boy received a chest compression by 3 players during a tackle. He continued to play, but 2 hours later, he developed sharp retrosternal chest pain. A chest radiograph and an echocardiograph at the nearest emergency department showed pneumopericardium and pneumomediastinum. Differential Diagnosis: Sternal and rib contusions, rib fractures, heartburn, acute asthma exacerbation, pneumomediastinum, pneumopericardium, pneumothorax, traumatic tracheal rupture, myocardial infarction, and costochondritis (Tietze syndrome). Treatment: Acetaminophen for pain control. Uniqueness: To our knowledge, this is the only case in the international literature of the simultaneous occurrence of pneumomediastinum and pneumopericardium in a child as a consequence of blunt chest trauma during a rugby match. Conclusions: Pneumomediastinum and pneumopericardium may be consequences of rugby blunt chest trauma. Symptoms can appear 1 to 2 hours later, and the conditions may result in serious complications. Immediate admission to the emergency department is required. PMID:23672393

  10. Hypohydrotic ectodermal dysplasia: an unusual presentation and management in an 11-year-old Xhosa boy.

    PubMed

    Sarvan, I; Naidoo, S; Norval, E J

    2000-01-01

    Ectodermal dysplasia (ED) is an inherited disorder in which two or more ectodermally derived structures fail to develop, or are abnormal in development. Hypohydrotic ectodermal dysplasia (HED) or Christ-Siemens-Touraine syndrome, is an X-linked recessive syndrome with an incidence of 1/10,000 to 1/100,000 births. Because of its X-linked inheritance pattern, it is more common in males. HED is characterised by hypohydrosis (diminished perspiration), hypotrichosis (decreased amount of hair) and microdontia (small teeth), hypodontia (lack of development of one or more teeth) or adontia (total lack of tooth development). These patients present diagnostic and treatment challenges because of variable oral manifestations. This report describes an 11-year-old Xhosa boy, who was referred to the University Dental Faculty by his general medical practitioner because of hypodontia. General facial features included: frontal bossing, a depressed nasal bridge, 'butterfly' pattern of eczema over the nasal bridge to the malar process of each cheek, thinned out hair, loss of vertical dimension of face and dry skin. Intra-oral examination revealed hypodontia with peg-shaped anterior teeth and diastemas. Radiological examination revealed no developing permanent teeth or tooth buds. Diagnosis was confirmed by doing a sweat gland count. Management included oral hygiene instruction, fluoride treatments, construction of a partial lower denture and counselling about his condition with particular reference to the danger of hyperthermia and control of allergies. PMID:12608250

  11. Diagnosis and Treatment of Odontogenic Cutaneous Sinus Tracts in an 11-Year-Old Boy

    PubMed Central

    Chen, Ke; Liang, Yun; Xiong, Huacui

    2016-01-01

    Abstract Odontogenic cutaneous sinus tracts (OCSTs) are generally primarily misdiagnosed and inappropriately treated by virtue of their rarity and the absence of dental symptoms. Accurate diagnosis and treatment and the elimination of the source of infection can reduce the incidence of complications and relieve the pain of the patient. In this case report, we present the case of an 11-year-old patient with an apparent abscess but an unobvious draining sinus tract in his left cheek. Intraorally, a glass-ionomer-cement filling on the occlusal surface of the left mandibular first molar (tooth 36) was noted. Radiographic examination revealed a radiopaque mass inside the crown and pulp chamber and an irregular, radiolucent periapical lesion surrounding the distal root apex. He was diagnosed with an OCTS secondary to a periapical abscess of tooth 36. Precise root canal therapy (RCT) and chronic granuloma debridement was performed; 6 months later, the abscess and sinus had healed completely, and the periapical lesion had resolved. Odontogenic cutaneous sinus tracts are uncommon in the clinic. This case report reminds us of the significance of OCSTs and provides some implications for their diagnosis and treatment. PMID:27196471

  12. The occurrence of an abdominal wall abscess 11 years after appendectomy: report of a case.

    PubMed

    Matsuda, K; Masaki, T; Toyoshima, O; Ono, M; Muto, T

    1999-01-01

    Most complications after appendectomy occur within 10 days; however, we report herein the unusual case of a patient in whom a wound abscess was detected more than 10 years after an appendectomy. A 26-year-old woman presented to our hospital with nausea and vomiting, pain, and a mass in the right lower abdominal wall. She had undergone an appendectomy 11 years previously. Physical examination revealed a tender mass, 5 cm in diameter, under the appendectomy scar. An abdominal ultrasonography demonstrated a low-echoic mass lesion measuring 9.0 x 5.0 x 2.0 cm. Incision of the connective tissue revealed about 3 ml of cream-colored and odorless fluid in the abscess cavity. Fistulography revealed an abscess cavity not communicating with the bowel lumen. Floss was discovered in the connective tissue and removed. Debridement of the abscess wall was performed and a piece of the wall was sent for histologic examination. Pathological examination revealed panniculitis of the subcutaneous tissue, and panniculitis with granulation and granuloma of the abscess wall. This case report demonstrates that a preoperative diagnosis should be based not on one finding, but on all findings collected, inclusively. PMID:10489140

  13. Acceptance of Nordic snack bars in children aged 8–11 years

    PubMed Central

    Holmer, Anna; Hausner, Helene; Reinbach, Helene C.; Bredie, Wender L. P.; Wendin, Karin

    2012-01-01

    Background A health promoting diet is suggested to be tailored to regional circumstances to preserve the cultural diversity in eating habits, as well as contribute to more environmentally friendly eating. It may influence consumer acceptance, however, if the components of the diet differs considerably from their habitual food. Objective This study aimed to investigate whether snack bars composed of Nordic ingredients were accepted by 8–11 year-old Danish (n=134) and Swedish (n=109) children. Design A seven-point hedonic scale was used to measure the children's acceptance of five snack bars that varied in their composition of whole grains, berries and nuts. A preference rank ordering of the five bars was also performed. Results The results showed that samples that were rated highest in liking and were most preferred in both countries were a kamut/pumpkin bar and an oat/cranberry bar. The sample with the lowest rating that was also least preferred was a pumpernickel/sea buckthorn bar. Flavour was the most important determinant of overall liking followed by texture, odour and appearance. Conclusions Children's acceptances and preferences were highly influenced by the sensory characteristics of the bars, mainly flavour. In agreement with earlier studies, the novel food ingredients seemed to influence children's preferences. The Nordic snack bars may have a potential to be a snack option for Danish and Swedish school children, but repeated exposures to the products are recommended to increase children's acceptance. PMID:22545034

  14. Successful treatment of florid cutaneous warts with intravenous cidofovir in an 11-year-old girl.

    PubMed

    Cusack, Caitriona; Fitzgerald, Deborah; Clayton, Timothy M; Irvine, Alan D

    2008-01-01

    Cutaneous warts, commonly seen in children and the immunosuppressed are socially distressing and are often resistant to traditional treatments. Here, we report an 11-year-old girl with bilateral florid verrucous lesions on her hands, feet and chin, which were refractory to a number of standard treatments including cryotherapy, cantharidin preparations, topical salicylic acid, surgical debulking techniques, oral Cimetidine, and topical and intralesional Cidofovir. As the disfiguring lesions had a marked adverse effect on her quality of life, a trial of IV Cidofovir was instituted. We administered five cycles of IV Cidofovir with a 1-week interval between the first and second treatment, followed by 2-week intervals thereafter. This regime was well tolerated and we report dramatic resolution of the lesions with persistent clearance 6 months after completion of the fifth infusion. Resolution of recalcitrant warts with IV Cidofovir has been reported in a limited number of cases. Our experience supports its efficacy in this setting, and to the best of our knowledge this is the first report of successful treatment of cutaneous warts with IV Cidofovir in a pediatric case. PMID:18577053

  15. Facial reconstruction of an 11-year-old female resident of 430 BC Athens.

    PubMed

    Papagrigorakis, Manolis J; Synodinos, Philippos N; Antoniadis, Aristomenis; Maravelakis, Emmanuel; Toulas, Panagiotis; Nilsson, Oscar; Baziotopoulou-Valavani, Effie

    2011-01-01

    Although modern standards of ideal proportions and facial esthetics are based mostly on observations of human faces as depicted in Classical Greek masterpieces of art, the real faces of ordinary ancient Greeks have, until now, remained elusive and subject to the imagination. Objective forensic techniques of facial reconstruction have never been applied before, because human skeletal material from Classical Greece has been extremely scarce, since most decent burials of that time required cremation. Here, the authors show stage by stage the facial reconstruction of an 11-year-old girl whose skull was unearthed in excellent condition from a mass grave with victims of the Plague that struck Athens of 430 bc. The original skull was replicated via three-dimensional modeling and rapid prototyping techniques. The reconstruction followed the Manchester method, laying the facial tissues from the surface of the skull outward by using depth-marker pegs as thickness guides. The shape, size, and position of the eyes, ears, nose, and mouth were determined according to features of the underlying skeletal tissues, whereas the hairstyle followed the fashion of the time. This is the first case of facial reconstruction of a layperson residing in Athens of the Golden Age of Pericles. It is ironic, however, that this unfortunate girl who lived such a short life in ancient Athens, will now, 2500 years later, have the chance to travel and be universally recognizable in a world much bigger than anybody in ancient Athens could have ever imagined. PMID:20936971

  16. Upward movement of plutonium to surface sediments during an 11-year field study.

    PubMed

    Kaplan, D I; Demirkanli, D I; Molz, F J; Beals, D M; Cadieux, J R; Halverson, J E

    2010-05-01

    An 11-year lysimeter study was established to monitor the movement of Pu through vadose zone sediments. Sediment Pu concentrations as a function of depth indicated that some Pu moved upward from the buried source material. Subsequent numerical modeling suggested that the upward movement was largely the result of invading grasses taking up the Pu and translocating it upward. The objective of this study was to determine if the Pu of surface sediments originated from atmosphere fallout or from the buried lysimeter source material (weapons-grade Pu), providing additional evidence that plants were involved in the upward migration of Pu. The (240)Pu/(239)Pu and (242)Pu/(239)Pu atomic fraction ratios of the lysimeter surface sediments, as determined by Thermal Ionization Mass Spectroscopy (TIMS), were 0.063 and 0.00045, respectively; consistent with the signatures of the weapons-grade Pu. Our numerical simulations indicate that because plants create a large water flux, small concentrations over multiple years may result in a measurable accumulation of Pu on the ground surface. These results may have implications on the conceptual model for calculating risk associated with long-term stewardship and monitored natural attenuation management of Pu contaminated subsurface and surface sediments. PMID:20227801

  17. Very Late Stent Thrombosis 11 Years after Implantation of a Drug-Eluting Stent

    PubMed Central

    Jepson, Nigel

    2015-01-01

    Very late stent thrombosis is an infrequent yet potentially fatal complication associated with drug-eluting stents. We report the case of an 88-year-old man who sustained an ST-segment-elevation myocardial infarction 11 years after initial sirolimus-eluting stent implantation. Optical coherence tomograms of the lesion showed that the focal incomplete endothelialization of the stent struts was the likely cause; neointimal formation, neoatherosclerosis, and late stent malapposition might also have contributed. To our knowledge, this is the longest reported intervening period between stent insertion and the development of an acute coronary event secondary to very late stent thrombosis. The associated prognostic and therapeutic implications are considerable, because they illuminate the uncertainties surrounding the optimal duration of antiplatelet therapy in patients who have drug-eluting stents. Clinicians face challenges in treating these patients, particularly when competing medical demands necessitate the discontinuation of antiplatelet therapy. In addition to the patient's case, we discuss factors that can contribute to very late stent thrombosis. PMID:26504449

  18. SIMULATION OF THE FORMATION OF A SOLAR ACTIVE REGION

    SciTech Connect

    Cheung, M. C. M.; Title, A. M.; Rempel, M.; Schuessler, M.

    2010-09-01

    We present a radiative magnetohydrodynamics simulation of the formation of an active region (AR) on the solar surface. The simulation models the rise of a buoyant magnetic flux bundle from a depth of 7.5 Mm in the convection zone up into the solar photosphere. The rise of the magnetic plasma in the convection zone is accompanied by predominantly horizontal expansion. Such an expansion leads to a scaling relation between the plasma density and the magnetic field strength such that B {proportional_to} rhov{sup 1/2}. The emergence of magnetic flux into the photosphere appears as a complex magnetic pattern, which results from the interaction of the rising magnetic field with the turbulent convective flows. Small-scale magnetic elements at the surface first appear, followed by their gradual coalescence into larger magnetic concentrations, which eventually results in the formation of a pair of opposite polarity spots. Although the mean flow pattern in the vicinity of the developing spots is directed radially outward, correlations between the magnetic field and velocity field fluctuations allow the spots to accumulate flux. Such correlations result from the Lorentz-force-driven, counterstreaming motion of opposite polarity fragments. The formation of the simulated AR is accompanied by transient light bridges between umbrae and umbral dots. Together with recent sunspot modeling, this work highlights the common magnetoconvective origin of umbral dots, light bridges, and penumbral filaments.

  19. Active-solar-energy-system materials research priorities

    SciTech Connect

    Herzenberg, S.A.; Hien, L.K.; Silberglitt, R.

    1983-01-01

    THis report describes and prioritizes materials research alternatives to improve active solar heating and cooling system cost-effectiveness. Materials research areas analyzed are (polymer) glazings, heat mirrors, (selective) absorber surfaces, absorber adhesives, absorber substrates, fluids, thermal storage materials, and desiccants. Three classes of solar collectors are considered in the cost-effectiveness analysis: medium-temperature flat-plate collectors (operating temperature, 70/sup 0/C); high-temperature flat-plate collectors (operating temperature, 70 to 120/sup 0/C); and evacuated tubes (operating temperature 70 to 230/sup 0/C). We found the highest priority for medium-temperature flat-plate collectors to be research on polymeric materials to improve performance and durability characteristics. For the high-temperature, flat-plate collectors and evacuated tubes, heat mirror and selective absorber research is the highest priority. Research on storage materials, fluids, and desiccants is of relatively low priority for improving cost-effectiveness in all cases. The highest priority materials research areas identified include: optical properties and degradation of transparent conducting oxide heat mirrors and thickness insensitive selective paints; uv and thermal stabilization of polymeric glazing materials; and systems analysis of integrated polymeric collectors.

  20. A complete solar eruption activity processing tool with robotization and real time (II)

    NASA Astrophysics Data System (ADS)

    Lin, Ganghua; Zhao, Cui; Yang, Xiao

    2014-07-01

    Intense solar active events have made significant impacts on the modern high technology system and living environment of human being, therefore solar activities forecast and space weather forecast are getting more and more attention. Meanwhile, data volume acquisitioned by solar monitor facility is growing larger and larger due to the requirement of multiple dimensions observation and high temporal and spatial resolution. As staffs of a solar monitor data producer, we are encouraged to adopt new techniques and methods to provide valuable information to solar activities forecast organization and the other related users, and provide convenient products and tools to the users. In the previous paper "A complete solar eruption activities processing tool with robotization and real time (I)", we presented a fully automatic and real time detecting architecture for different solar erupt activities. In this paper, we present new components of new data sets in the architecture design, latest progresses on automatic recognition of solar flare, filament and magnetic field, and a newly introduced method with which solar photospheric magnetic nonpotentiality parameters are processed in real time, then its result directly can be used in solar active forecast.

  1. Observing large-scale solar surface flows with GONG: Investigation of a key element in solar activity buildup

    NASA Technical Reports Server (NTRS)

    Beck, John G.; Simon, George W.; Hathaway, David H.

    1996-01-01

    The Global Oscillation Network Group (GONG) solar telescope network has begun regular operations, and will provide continuous Doppler images of large-scale nearly-steady motions at the solar surface, primarily those due to supergranulation. Not only the Sun's well-known magnetic network, but also flux diffusion, dispersal, and concentration at the surface appear to be controlled by supergranulation. Through such magnetoconvective interactions, magnetic stresses develop, leading to solar activity. We show a Doppler movie made from a 45.5 hr time series obtained 1995 May 9-10 using data from three of the six GONG sites (Learmonth, Tenerife, Tucson), to demonstrate the capability of this system.

  2. MAGNETIC STRUCTURE PRODUCING X- AND M-CLASS SOLAR FLARES IN SOLAR ACTIVE REGION 11158

    SciTech Connect

    Inoue, S.; Magara, T.; Choe, G. S.; Hayashi, K.; Shiota, D.

    2013-06-10

    We study the three-dimensional magnetic structure of the solar active region 11158, which produced one X-class and several M-class flares on 2011 February 13-16. We focus on the magnetic twist in four flare events, M6.6, X2.2, M1.0, and M1.1. The magnetic twist is estimated from the nonlinear force-free field extrapolated from the vector fields obtained from the Helioseismic and Magnetic Imager on board the Solar Dynamic Observatory using the magnetohydrodynamic relaxation method developed by Inoue et al. We found that strongly twisted lines ranging from half-turn to one-turn twists were built up just before the M6.6 and X2.2 flares and disappeared after that. Because most of the twists remaining after these flares were less than a half-turn twist, this result suggests that the buildup of magnetic twist over the half-turn twist is a key process in the production of large flares. On the other hand, even though these strong twists were also built up just before the M1.0 and M1.1 flares, most of them remained afterward. Careful topological analysis before the M1.0 and M1.1 flares shows that the strongly twisted lines were surrounded mostly by the weakly twisted lines formed in accordance with the clockwise motion of the positive sunspot, whose footpoints are rooted in strong magnetic flux regions. These results imply that these weakly twisted lines might suppress the activity of the strongly twisted lines in the last two M-class flares.

  3. Inferred flows of electric currents in solar active regions

    NASA Technical Reports Server (NTRS)

    Ding, Y. J.; Hong, Q. F.; Hagyard, M. J.; Deloach, A. C.

    1985-01-01

    Techniques to identify sources of major current systems in active regions and their channels of flow are explored. Measured photospheric vector magnetic fields together with high resolution white light and H-alpha photographs provide the data base to derive the current systems in the photosphere and chromosphere of a solar active region. Simple mathematical constructions of active region fields and currents are used to interpret these data under the assumptions that the fields in the lower atmosphere (below 200 km) may not be force free but those in the chromosphere and higher are. The results obtained for the complex active region AR 2372 are: (1) Spots exhibiting significant spiral structure in the penumbral filaments were the source of vertical currents at the photospheric surface; (2) Magnetic neutral lines where the transverse magnetic field was strongly sheared were channels along which a strong current system flowed; (3) The inferred current systems produced a neutral sheet and oppositely-flowing currents in the area of the magnetic delta configuration that was the site of flaring.

  4. Relationship between solar activities and thunderstorm activities in the Beijing area and the northeast region of China

    NASA Technical Reports Server (NTRS)

    Zhuang, Hong C.; Lu, Xi C.

    1989-01-01

    An analysis of the relationship between the IMF section boundary crossing, solar flares, the sunspot 11 year cycle variation and the thunderstorm index is given, using the superposition epoch method, for data from more than 13,000 thunderstorms from 10 meteorological stations in the Beijing area and the Northeast region during 1957 to 1978. The results show that for some years a correlation exists between the thunderstorm index and the positive IMF section boundary crossing. The thunderstorm index increases obviously within three days near the crossing and on the seventh day after the crossing. The influence of the crossing on thunderstorms is stronger in the first half year than the latter half year. For different classes of solar flares, the influences are not equally obvious. The solar flares which appeared on the west side, especially in the western region (from 0 to 30 deg) have the most obvious influence. There is no discernible correlation between the thunderstorm index and the sunspot eleven-year cycle.

  5. [Drowning versus cardiac ischemia: Cardiac arrest of an 11-year-old boy at a swimming lake].

    PubMed

    Födinger, A; Wöss, C; Semsroth, S; Stadlbauer, K H; Wenzel, V

    2015-11-01

    This report describes a case of sudden cardiac arrest and subsequent attempted cardiopulmonary resuscitation of an 11-year-old child on the shores of a swimming lake. Reports of eyewitnesses excluded the obviously suspected diagnosis of a drowning accident. The result of the autopsy was sudden cardiac death due to a congenital coronary anomaly (abnormal left coronary artery, ALCA). Favored by vigorous physical activity, this anomaly can lead to malignant arrhythmias because the ectopic coronary artery with its intramural course through the aortic wall is compressed during every systole. This pathology was not known to the boy or his family; in fact he liked sports but had suffered of a syncope once which was not followed up. Without a strong suspicion it is difficult to diagnose a coronary artery anomaly and it is often missed even in college athletes. Tragically, sudden cardiac arrest may be the first symptom of an undiagnosed abnormal coronary artery. Following syncope or chest pain during exercise with a normal electrocardiogram (ECG) cardiac imaging, such as computed tomography (CT) or angiography should be initiated in order to enable surgical repair of an abnormal coronary artery. PMID:26423258

  6. A Forecast of Reduced Solar Activity and Its Implications for NASA

    NASA Technical Reports Server (NTRS)

    Schatten, Kenneth; Franz, Heather

    2005-01-01

    The "Solar Dynamo" method of solar activity forecasting is reviewed. Known generically as a 'precursor" method, insofar as it uses observations which precede solar activity generation, this method now uses the Solar Dynamo Amplitude (SODA) Index to estimate future long-term solar activity. The peak amplitude of the next solar cycle (#24), is estimated at roughly 124 in terms of smoothed F10.7 Radio Flux and 74 in terms of the older, more traditional smoothed international or Zurich Sunspot number (Ri or Rz). These values are significantly smaller than the amplitudes of recent solar cycles. Levels of activity stay large for about four years near the peak in smoothed activity, which is estimated to occur near the 2012 timeflame. Confidence is added to the prediction of low activity by numerous examinations of the Sun s weakened polar field. Direct measurements are obtained by the Mount Wilson Solar Observatory and the Wilcox Solar Observatory. Further support is obtained by examining the Sun s polar faculae (bright features), the shape of coronal soft X-ray "holes," and the shape of the "source surface" - a calculated coronal feature which maps the large scale structure of the Sun s field. These features do not show the characteristics of well-formed polar coronal holes associated with typical solar minima. They show stunted polar field levels, which are thought to result in stunted levels of solar activity during solar cycle #24. The reduced levels of solar activity would have concomitant effects upon the space environment in which satellites orbit. In particular, the largest influences would affect orbit determination of satellites in LEO (Low Earth Orbit), based upon the altered thermospheric and exospheric densities. A decrease in solar activity would result in smaller satellite decay rates, as well as fewer large solar events that can destroy satellite electronic functions. Other effects of reduced solar activity upon the space environment include enhanced

  7. 19th century auroral observations reveal solar activity patterns

    NASA Astrophysics Data System (ADS)

    Silverman, Sam

    Growing interest in the aurora in the early part of the eighteenth century, which resulted from the spectacular reappearance of the aurora in 1707 and 1716, followed a relative scarcity of great auroras during the Maunder minimum, a period of prolonged reduced solar activity from about 1645-1715. Observations in the early eighteenth century led to questions about the geographical extent, nature, and temporal variability of the auroras. Typically, such observations were included as part of recorded meteorological notations, though occasionally early astronomers, such as Tycho Brahe in the 1590s, included auroras in their observations. Meteorological observations were important because of the effects of weather and climate on agriculture, and, according to the belief at the time, on disease.

  8. Solar activity and climate during the last millennium

    NASA Astrophysics Data System (ADS)

    Solanki, S. K.; Usoskin, I.; Schüssler, M.

    The sunspot number is the longest running direct index of solar activity, with direct measurements starting in 1610. For many purposes, e.g., for comparisons with climate indices, it is still too short. We present a reconstruction of the cycle-averaged sunspot number over the last millennium based on 10Be concentrations in Greenland and Antarctic ice cores. As intermediate steps of the method, we also reconstruct the cosmic ray flux at Earth and the Sun's open magnetic flux. The reconstructions are validated by comparison with direct measurements or independent reconstructions. We also compare with records of global climate, in particular with the global temperature ("hockey stick") curve of Mann et al (1998). A reasonable agreement is found for the entire millennium, excluding only the last decades, when the two curves start diverging from each other.

  9. Solar activity cycle and the incidence of foetal chromosome abnormalities detected at prenatal diagnosis

    NASA Astrophysics Data System (ADS)

    Halpern, Gabrielle J.; Stoupel, Eliahu G.; Barkai, Gad; Chaki, Rina; Legum, Cyril; Fejgin, Moshe D.; Shohat, Mordechai

    1995-06-01

    We studied 2001 foetuses during the period of minimal solar activity of solar cycle 21 and 2265 foetuses during the period of maximal solar activity of solar cycle 22, in all women aged 37 years and over who underwent free prenatal diagnosis in four hospitals in the greater Tel Aviv area. There were no significant differences in the total incidence of chromosomal abnormalities or of trisomy between the two periods (2.15% and 1.8% versus 2.34% and 2.12%, respectively). However, the trend of excessive incidence of chromosomal abnormalities in the period of maximal solar activity suggests that a prospective study in a large population would be required to rule out any possible effect of extreme solar activity.

  10. Multifractality as a Measure of Complexity in Solar Flare Activity

    NASA Astrophysics Data System (ADS)

    Sen, Asok K.

    2007-03-01

    In this paper we use the notion of multifractality to describe the complexity in H α flare activity during the solar cycles 21, 22, and 23. Both northern and southern hemisphere flare indices are analyzed. Multifractal behavior of the flare activity is characterized by calculating the singularity spectrum of the daily flare index time series in terms of the Hölder exponent. The broadness of the singularity spectrum gives a measure of the degree of multifractality or complexity in the flare index data. The broader the spectrum, the richer and more complex is the structure with a higher degree of multifractality. Using this broadness measure, complexity in the flare index data is compared between the northern and southern hemispheres in each of the three cycles, and among the three cycles in each of the two hemispheres. Other parameters of the singularity spectrum can also provide information about the fractal properties of the flare index data. For instance, an asymmetry to the left or right in the singularity spectrum indicates a dominance of high or low fractal exponents, respectively, reflecting a relative abundance of large or small fluctuations in the total energy emitted by the flares. Our results reveal that in the even (22nd) cycle the singularity spectra are very similar for the northern and southern hemispheres, whereas in the odd cycles (21st and 23rd) they differ significantly. In particular, we find that in cycle 21, the northern hemisphere flare index data have higher complexity than its southern counterpart, with an opposite pattern prevailing in cycle 23. Furthermore, small-scale fluctuations in the flare index time series are predominant in the northern hemisphere in the 21st cycle and are predominant in the southern hemisphere in the 23rd cycle. Based on these findings one might suggest that, from cycle to cycle, there exists a smooth switching between the northern and southern hemispheres in the multifractality of the flaring process. This new

  11. Evolution of Solar and Geomagnetic Activity Indices, and Their Relationship: 1960 - 2001

    NASA Astrophysics Data System (ADS)

    Verbanac, G.; Mandea, M.; Vršnak, B.; Sentic, S.

    2011-07-01

    We employ annually averaged solar and geomagnetic activity indices for the period 1960 - 2001 to analyze the relationship between different measures of solar activity as well as the relationship between solar activity and various aspects of geomagnetic activity. In particular, to quantify the solar activity we use the sunspot number R s, group sunspot number R g, cumulative sunspot area Cum, solar radio flux F10.7, and interplanetary magnetic field strength IMF. For the geomagnetic activity we employ global indices Ap, Dst and Dcx, as well as the regional geomagnetic index RES, specifically estimated for the European region. In the paper we present the relative evolution of these indices and quantify the correlations between them. Variations have been found in: i) time lag between the solar and geomagnetic indices; ii) relative amplitude of the geomagnetic and solar activity peaks; iii) dual-peak distribution in some of solar and geomagnetic indices. The behavior of geomagnetic indices is correlated the best with IMF variations. Interestingly, among geomagnetic indices, RES shows the highest degree of correlation with solar indices.

  12. Active space heating and hot water supply with solar energy

    SciTech Connect

    Karaki, S.; Loef, G. O.G.

    1981-04-01

    Technical and economic assessments are given of solar water heaters, both circulating, and of air-based and liquid-based solar space heating systems. Both new and retrofit systems are considered. The technical status of flat-plate and evacuated tube collectors and of thermal storage is also covered. Non-technical factors are also briefly discussed, including the participants in the use of solar heat, incentives and deterrents. Policy implications are considered as regards acceleration of solar use, goals for solar use, means for achieving goals, and interaction of governments, suppliers, and users. Government actions are recommended. (LEW)

  13. Illegal Substance Use among Italian High School Students: Trends over 11 Years (1999–2009)

    PubMed Central

    Molinaro, Sabrina; Siciliano, Valeria; Curzio, Olivia; Denoth, Francesca; Salvadori, Stefano; Mariani, Fabio

    2011-01-01

    Purpose To monitor changes in habits in drug use among Italian high school students. Methods Cross-sectional European School Survey Project on Alcohol and Other Drugs (ESPAD) carried out in Italy annually for 11 years (1999–2009) with representative samples of youth attending high school. The sample size considered ranges from 15,752 to 41,365 students and response rate ranged from 85.5% to 98.6%. Data were analyzed to obtain measures of life-time prevalence (LT), use in the last year (LY), use in the last 30 days (LM), frequent use. Comparisons utilized difference in proportion tests. Tests for linear trends in proportion were performed using the Royston p trend test. Results When the time-averaged value was considered, cannabis (30% LT) was the most, and heroin the least (2%) frequently used, with cocaine (5%), hallucinogens (2%) and stimulants (2%) in between. A clear gender gap is evident for all drugs, more obvious for hallucinogens (average M/F LY prevalence ratio 2, range 1.7–2.4, p<0.05), less for cannabis (average M/F LY prevalence ratio 1.3, range 1.2–1.5, p<0.05). Data shows a change in trend between 2005 and 2008; in 2006 the trend for cannabis use and availability dropped and the price rose, while from 2005 cocaine and stimulant use prevalence showed a substantial increase and the price went down. After 2008 use of all substances seems to have decreased. Conclusions Drug use is widespread among students in Italy, with cannabis being the most and heroin the least prevalent. Girls are less vulnerable than boys to illegal drug use. In recent years, a decrease in heroin use is overbalanced by a marked rise in hallucinogen and stimulant use. PMID:21695199

  14. An 11-year retrospective review of venlafaxine ingestion in children from the California Poison Control System.

    PubMed

    Doroudgar, S; Perry, P J; Lackey, G D; Veselova, N G; Chuang, H M; Albertson, T E

    2016-07-01

    Venlafaxine is commonly used in the United States for approved and non-Food and Drug Administration-approved indications in adults. It is used off-label to treat children for psychiatric diagnoses. The aim of the study was to describe venlafaxine toxicities in children and to identify the venlafaxine dose per weight that correlates with toxicities. An 11-year retrospective study of venlafaxine ingestion in children was performed using the California Poison Control System (CPCS) database. Data was extracted from phone calls received by CPCS clinicians and follow-up phone calls made to assess the patient's progress in a health-care setting. Inclusion criteria were venlafaxine ingestion cases reported to CPCS between January 2001 and December 2011, children aged 20 years and under, venlafaxine as the only ingested substance, managed in a health-care facility, and followed to a known outcome. Two hundred sixty-two cases met the study criteria. Common presentations included gastrointestinal (14.9%), altered mental status (13.7%), and tachycardia (13.4%). The majority of the cases resulted in no effect (51.5%) or minor effect (19.9%). The average estimated dose per weight was 18.3 mg/kg in all patients and 64.5 mg/kg in those experiencing moderate-to-severe adverse effects. Seizures occurred in only 4 of the 262 cases at doses ranging from 1500 to 7500 mg. Although the estimated dose per weight exceeded 10 mg/kg for the majority of the cases, only 12 cases resulted in moderate or severe outcomes. The majority of venlafaxine ingestion cases in children resulted in either no clinical effects or minor clinical effects. PMID:26351291

  15. Regeneration of a Coastal Pine (Pinus thunbergii Parl.) Forest 11 Years after Thinning, Niigata, Japan

    PubMed Central

    Zhu, Jiaojun; Gonda, Yutaka; Yu, Lizhong; Li, Fengqin; Yan, Qiaoling; Sun, Yirong

    2012-01-01

    To examine the effects of thinning intensity on wind vulnerability and regeneration in a coastal pine (Pinus thunbergii) forest, thinning with intensities of 20%, 30% and 50% was conducted in December 1997; there was an unthinned treatment as the control (total 8 stands). We re-measured the permanent sites to assess the regeneration characteristics 11 years after thinning. In the 50% thinned stand, seedlings aged from 2 to 10 years exhibited the highest pine seedling density and growth. The age composition ranged from 1–3 years with densities of 9.9 and 5.1 seedlings m−2 in 30% and 20% thinned stands; only 1-year-old seedlings with a density of 6.1 seedlings m−2 in the unthinned stand. Similar trends were found for the regeneration of broadleaved species such as Robinia pseudoacacia and Prunus serrulata. We speculate that the canopy openness and moss coverage contributed to the regeneration success in the 50% thinned stand, while the higher litter depth and lack of soil moisture induced the regeneration failure in the unthinned stand. The stands thinned at 20% or 30% were less favourable for pine regeneration than the stands thinned at 50%. Therefore, thinning with less than 30% canopy openness (20% and 30% thinned stands) should be avoided, and thinning at higher than 30% canopy openness (50% thinned stand, approximately 1500 stems ha−1 at ages 40–50 years) is suggested for increasing regeneration in the coastal pine forest. The implications of thinning-based silviculture in the coastal pine forest management are also discussed. The ongoing development of the broadleaved seedlings calls for further observations. PMID:23091632

  16. Manual control age and sex differences in 4 to 11 year old children.

    PubMed

    Flatters, Ian; Hill, Liam J B; Williams, Justin H G; Barber, Sally E; Mon-Williams, Mark

    2014-01-01

    To what degree does being male or female influence the development of manual skills in pre-pubescent children? This question is important because of the emphasis placed on developing important new manual skills during this period of a child's education (e.g. writing, drawing, using computers). We investigated age and sex-differences in the ability of 422 children to control a handheld stylus. A task battery deployed using tablet PC technology presented interactive visual targets on a computer screen whilst simultaneously recording participant's objective kinematic responses, via their interactions with the on-screen stimuli using the handheld stylus. The battery required children use the stylus to: (i) make a series of aiming movements, (ii) trace a series of abstract shapes and (iii) track a moving object. The tasks were not familiar to the children, allowing measurement of a general ability that might be meaningfully labelled 'manual control', whilst minimising culturally determined differences in experience (as much as possible). A reliable interaction between sex and age was found on the aiming task, with girls' movement times being faster than boys in younger age groups (e.g. 4-5 years) but with this pattern reversing in older children (10-11 years). The improved performance in older boys on the aiming task is consistent with prior evidence of a male advantage for gross-motor aiming tasks, which begins to emerge during adolescence. A small but reliable sex difference was found in tracing skill, with girls showing a slightly higher level of performance than boys irrespective of age. There were no reliable sex differences between boys and girls on the tracking task. Overall, the findings suggest that prepubescent girls are more likely to have superior manual control abilities for performing novel tasks. However, these small population differences do not suggest that the sexes require different educational support whilst developing their manual skills. PMID

  17. Regeneration of a coastal pine (Pinus thunbergii Parl.) forest 11 years after thinning, Niigata, Japan.

    PubMed

    Zhu, Jiaojun; Gonda, Yutaka; Yu, Lizhong; Li, Fengqin; Yan, Qiaoling; Sun, Yirong

    2012-01-01

    To examine the effects of thinning intensity on wind vulnerability and regeneration in a coastal pine (Pinus thunbergii) forest, thinning with intensities of 20%, 30% and 50% was conducted in December 1997; there was an unthinned treatment as the control (total 8 stands). We re-measured the permanent sites to assess the regeneration characteristics 11 years after thinning. In the 50% thinned stand, seedlings aged from 2 to 10 years exhibited the highest pine seedling density and growth. The age composition ranged from 1-3 years with densities of 9.9 and 5.1 seedlings m(-2) in 30% and 20% thinned stands; only 1-year-old seedlings with a density of 6.1 seedlings m(-2) in the unthinned stand. Similar trends were found for the regeneration of broadleaved species such as Robinia pseudoacacia and Prunus serrulata. We speculate that the canopy openness and moss coverage contributed to the regeneration success in the 50% thinned stand, while the higher litter depth and lack of soil moisture induced the regeneration failure in the unthinned stand. The stands thinned at 20% or 30% were less favourable for pine regeneration than the stands thinned at 50%. Therefore, thinning with less than 30% canopy openness (20% and 30% thinned stands) should be avoided, and thinning at higher than 30% canopy openness (50% thinned stand, approximately 1500 stems ha(-1) at ages 40-50 years) is suggested for increasing regeneration in the coastal pine forest. The implications of thinning-based silviculture in the coastal pine forest management are also discussed. The ongoing development of the broadleaved seedlings calls for further observations. PMID:23091632

  18. Coroner autopsy study of homicides in Rivers State of Nigeria: 11-year review.

    PubMed

    Obiorah, C C; Amakiri, C N

    2014-01-01

    As most developing countries, including Nigeria, grapple with economic crisis, poor human capital development and high levels of income inequality, violent crimes - especially homicides - continue to be a cause for concern. We studied the pathology and demographic distribution of homicides in Rivers State of Nigeria expecting that the findings would be useful in formulating preventive strategies. Reports of homicide autopsies in the state for 11 years were retrospectively scrutinized for age, gender, type of weapon, site of injury, circumstances, mechanisms and causes of death. The data were analyzed using SPSS version 17. Homicides constituted 50.5% of the medicolegal autopsies. Although the overall male:female ratio was 12.4 : 1, there was variation with weapon. Deaths by firearm had the highest male:female ratio of 24.6 : 1. The mean and peak ages were 29.2 ± 11.4 and 21-30 years, respectively, while the range was 1 to 96 years. Firearms were the most common weapons, at 68.9%, hemorrhagic shock and head injuries at 61.5% and 28.2% respectively were the most common mechanisms and causes of death. Armed robbery incidents were the most common circumstances, while the head was the most common site of injury at 48.8%. The homicide rate is high in our environment and most homicides are committed during armed robberies using firearms. Improving medical care and providing emergency medical services will reduce cases of deaths from homicides, most of which occur due to manageable hemorrhagic shock. Increasing the drive towards controlling illegal arms acquisition and possession will reduce the present carnage in the state. PMID:23945261

  19. Solar Influence on Future Climate

    NASA Astrophysics Data System (ADS)

    Arsenovic, Pavle; Stenke, Andrea; Rozanov, Eugene; Peter, Thomas

    2015-04-01

    Global warming is one of the main threats to mankind. There is growing evidence that anthropogenic greenhouse gases have become the dominant factor, however natural factors such as solar variability cannot be neglected. Sun is a variable star; its activity varies in regular 11-years solar cycles. Longer periods of decreased solar activity are called Grand Solar Minima, which have stronger impact on terrestrial climate. Another natural factor related with solar activity are energetic particles. They can ionize neutral molecules in upper atmosphere and produce NOx and HOx which deplete ozone. We investigate the effect of proposed Grand Solar Minimum in 21st and 22nd century on terrestrial climate and ozone layer. The simulations are performed with different solar forcing scenarios for period of 200 years (2000-2200) using global chemistry-climate model coupled with ocean model (SOCOL-MPIOM). We also deal with problem of representation of middle range energy electrons (30-300 keV) in the model and investigation of their influence on climate.

  20. Minimum extreme temperature in the gulf of mexico: is there a connection with solar activity?

    NASA Astrophysics Data System (ADS)

    Maravilla, D.; Mendoza, B.; Jauregui, E.

    Minimum extreme temperature ( MET) series from several meteorological stations of the Gulf of Mexico are spectrally analyzed using the Maximum Entrophy Method. We obtained periodicities similar to those found in the sunspot number, the magnetic solar cycle, comic ray fluxes and geomagnetic activity which are modulated by solar activity. We suggested that the solar signal is perhaps present in the MET record of this region of Mexico.

  1. Endothelial Dysfunction and Blood Viscosity Inpatients with Unstable Angina in Different Periods of a Solar Activity

    NASA Astrophysics Data System (ADS)

    Parshina, S. S.; Tokaeva, L. K.; Dolgova, E. M.; Afanas'yeva, T. N.; Strelnikova, O. A.

    The origin of hemorheologic and endothelial defects in patients with unstable angina (comparing with healthy persons) is determined by a solar activity period: the blood viscosity increases in a period of high solar activity in the vessels of small, medium and macro diameters, a local decompensate dysfunction of small vessels endothelium had been fixed (microcirculation area). In the period of a low solar activity there is an increase of a blood viscosity in vessels of all diameters, generalized subcompensated endothelial dysfunction is developed (on the background of the III phase blood clotting activating). In the period of a high solar activity a higher blood viscosity had been fixed, comparing with the period of a low solar activity.

  2. Solar Activity in Cycle 24 - What do Acoustic Oscillations tell us?

    NASA Astrophysics Data System (ADS)

    Jain, Kiran; Tripathy, Sushant; Simoniello, Rosaria; Hill, Frank

    2016-05-01

    Solar Cycle 24 is the weakest cycle in modern era of space- and ground-based observations. The number of sunspots visible on solar disk and other measures of magnetic activity have significantly decreased from the last cycle. It was also preceeded by an extended phase of low activity, a period that raised questions on our understanding of the solar activity cycle and its origin. This unusual behavior was not only limited to the visible features in Sun's atmosphere, the helioseismic observations also revealed peculiar behavior in the interior. It was suggested that the changes in magnetic activity were confined to shallower layers only, as a result low-degree mode frequencies were found to be anti-correlated with solar activity. Here we present results on the progression of Cycle 24 by analyzing the uninterrupted helioseismic data from GONG and SDO/HMI, and discuss differences and similarity between cycles 23 and 24 in relation to the solar activity.

  3. Solar Activity in the Green Corona Over Cycle 23

    NASA Astrophysics Data System (ADS)

    Rušin, V.

    2006-12-01

    The intensity of the green coronal line (5303Å, Fe {\\sc xiv), which is directly proportional to the electron density as well as the temperature of the corona, is a good and sensitive indicator of the reflection of the photospheric activity in the emission corona, mapping also the evolution of the magnetic fields in the active regions on the solar surface. In cycle 23 (1996 -2007), the average intensity of the green corona was of about 30% less when compared with that of the preceding cycle; this, however, does not necessarily imply a lower temperature of the corona, but rather a smaller number of active regions and/or smaller strength of local magnetic fields in the latter. The maximum of the intensity of the green corona was observed in August 2001, preceding for about one and a half year that of sunspot number. Moreover, the increased intensities were not observed continuously in time and heliographic latitude, but rather in particular latitudes, with a slight time-lag between the north and south hemispheres. It is well known that a time-latitudinal distribution of the intensity of the green corona features two kinds of large-scale motions. The first is the so-called polar branch, which separates from the "main flow" in the middle latitudes in the cycle minimum, lasts for about 3 -4 years and disappears at the time of the maxima of solar activity near the poles. The other is the equatorial (or principal) branch, which after separation in middle-latitudes moves first towards the poles, then roughly 2 years after the polar branch reached the poles makes a U-turn at upper heliographic latitudes of ±70 degrees, and migrates towards the equator where it disappears in the next minimum; the life-time of this branch is about 18 years. Given the time of the splitting of the two branches, we can guess the time of the maximum and minimum of the forthcoming cycle - cycle 24: the corresponding numbers are 2011 and 2012.5 for the time of the "double" maximum and 2019 for

  4. The effect of solar activity on the evolution of solar wind parameters during the rise of the 24th cycle

    NASA Astrophysics Data System (ADS)

    Rod'kin, D. G.; Shugay, Yu. S.; Slemzin, V. A.; Veselovskii, I. S.

    2016-01-01

    The dynamics of parameters of the near-Earth solar wind (SW) and the effect of solar activity on the parameters of three SW components (fast SW from large-scale coronal holes (CHs); slow SW from active regions, streamers, and other sources; and transient flows related to sporadic solar activity) at the beginning of the 24th solar cycle (2009-2011) are analyzed. It is demonstrated that temperaturedependent parameters of ionic composition (C+6/C+5 and O+7/O+6) of the transient SW component in the profound minimum of solar activity in 2009 were correlated with the variation of the rate of weak (type C and weaker) flares. This verifies the presence of a hot component associated with these flares in the SW. The variations in the velocity and the kinetic temperature of fast SW from CHs with an increase in activity are more pronounced in the bulk of the high-speed stream, and the variations of O+7/O+6 and Fe/O ratios and the magnitude of the interplanetary magnetic field are the most prominent in the region of interaction between fast and slow SW streams. The analysis reveals that a value of O+7/O+6 = 0.1 serves as the criterion to distinguish between fast SW streams and interplanetary coronal mass ejections in the 2009 activity minimum. This value is lower than the one (0.145) determined earlier based on the data on the 23rd cycle (Zhao et al., 2009). Therefore, the distinguishing criterion is not an absolute one and depends on the solar activity level.

  5. Solar Energy Education. Humanities: activities and teacher's guide. Field test edition

    SciTech Connect

    Not Available

    1982-01-01

    Activities are outlined to introduce students to information on solar energy while performing ordinary classroom work. In this teaching manual solar energy is integrated with the humanities. The activities include such things as stories, newspapers, writing assignments, and art and musical presentations all filled with energy related terms. An energy glossary is provided. (BCS)

  6. Lyman-alpha line as a solar activity index for calculations of solar spectrum in the EUV region

    NASA Astrophysics Data System (ADS)

    Nusinov, Anatoliy; Kazachevskaya, Tamara; Katyushina, Valeria; Woods, Thomas

    It is investigated a possibility of retrieval of solar spectrum data using intensity observational data of the only solar spectral line L (Hydrogen Lyman-alpha, 121.6 nm).Using as an example spectra obtained by SEE instruments on TIMED satellite, it was shown, that both for lines and for continuum in the spectral range 27-105 nm, which is essential for ionization processes in the ionosphere, a correlation between their intensities and L was high. Therefore it becomes possible to use L measurements data as a natural solar activity index for calculations of EUV solar emission spectrum for solving aeronomical problems. It is noticed, that EUV model, obtained with using SEE data, does not allow to calculate correctly critical frequencies of ionospheric E-layer owing to low intensities of lines 97.7 and 102.6 nm, which produce the main part of ionization in ionospheric E-region.

  7. Spectroscopic Observations of Fe XVIII in Solar Active Regions

    NASA Astrophysics Data System (ADS)

    Teriaca, Luca; Warren, Harry P.; Curdt, Werner

    2012-08-01

    The large uncertainties associated with measuring the amount of high temperature emission in solar active regions (ARs) represents a significant impediment to making progress on the coronal heating problem. Most current observations at temperatures of 3 MK and above are taken with broadband soft X-ray instruments. Such measurements have proven difficult to interpret unambiguously. Here, we present the first spectroscopic observations of the Fe XVIII 974.86 Å emission line in an on-disk AR taken with the SUMER instrument on SOHO. Fe XVIII has a peak formation temperature of 7.1 MK and provides important constraints on the amount of impulsive heating in the corona. Detailed evaluation of the spectra and comparison of the SUMER data with soft X-ray images from the X-Ray Telescope on Hinode confirm that this line is unblended. We also compare the spectroscopic data with observations from the Atmospheric Imaging Assembly (AIA) 94 Å channel on the Solar Dynamics Observatory. The AIA 94 Å channel also contains Fe XVIII, but is blended with emission formed at lower temperatures. We find that it is possible to remove the contaminating blends and form relatively pure Fe XVIII images that are consistent with the spectroscopic observations from SUMER. The observed spectra also contain the Ca XIV 943.63 Å line that, although a factor 2-6 weaker than the Fe XVIII 974.86 Å line, allows us to probe the plasma around 3.5 MK. The observed ratio between the two lines indicates (isothermal approximation) that most of the plasma in the brighter Fe XVIII AR loops is at temperatures between 3.5 and 4 MK.

  8. Helicity from observational solar magnetic fields and the relationship with solar activities

    NASA Astrophysics Data System (ADS)

    Zhang, Hongqi

    The helicity is important to present the basic topological configuration of magnetic field trans-ferred form the solar subatmosphere into the interplanetary space. In this talk, the basic configuration of magnetic field and helicity in the solar atmosphere have been discussed in the following: 1) The Hinode high resolution vector magnetograms provide the important infor-mation on the fine features of current helicity density and the possible accumulated process of magnetic helicity in the solar atmosphere. 2) The relationship between the eruption of solar flare-CMEs and helicity transfer from the suntamosphere has be presented based on the analy-sis of photospheric vector magnetograms. 3) The statistical distribution of magnetic field (and helicity) in solar atmosphere and its reversals with solar cycles are presented by means of the observational (vector) magnetograms. As the magnetic fields in the solar surface provides the information on the formation of magnetic field in the solar convection zone, the statistical anal-ysis of the observational magnetic helicity is important for the confirmation of the alpha-effect of the solar dynamo.

  9. Solar flare acceleration of solar wind - Influence of active region magnetic field

    NASA Technical Reports Server (NTRS)

    Lundstedt, H.; Wilcox, J. M.; Scherrer, P. H.

    1981-01-01

    The direction of the photospheric magnetic field at the site of a solar flare is a good predictor of whether the flare will accelerate solar wind plasma. If the field has a southward component, high-speed solar wind plasma is usually observed near the earth about 4 days later. If the field has a northward component, such high-speed solar wind is almost never observed. Southward-field flares may then be expected to have much larger terrestrial effects than northward flares.

  10. Detrimental Effects of Extreme Solar Activity on Life on Earth

    NASA Astrophysics Data System (ADS)

    Airapetian, Vladimir; Glocer, Alex; Jackman, Charles

    2015-07-01

    Solar Coronal Mass Ejections (CMEs), the most energetic eruptions in the Solar System, represent large-scale disturbances forming with the solar corona and are associated with solar flares and Solar Energetic Particles (SEP) events. Current Kepler data from solar-like stars suggest that the frequency of occurrence of energetic flares and associated CMEs from the Sun can be as high as 1 per 1500 years. What effects would CME and associated SEPs have on Earth's habitability? We have performed a three-dimensional time-dependent global magnetohydrodynamic simulation of the magnetic interaction of such a CME cloud with the Earth's magnetosphere. We calculated the global structure of the perturbed magnetosphere and derive the latitude of the open-closed magnetic field boundary. We used a 2D GSFC atmospheric code to calculate the efficiency of ozone depletion in the Earth's atmosphere due to SEP events and its effects on our society and life on Earth.

  11. MDR-TB Outbreak among HIV-Negative Tunisian Patients followed during 11 Years

    PubMed Central

    Dekhil, Naira; Meftahi, Nedra; Mhenni, Besma; Ben Fraj, Saloua; Haltiti, Raja; Belhaj, Sameh; Mardassi, Helmi

    2016-01-01

    Background Multidrug-resistant tuberculosis (MDR-TB) outbreaks that evolve, from the outset, in a context strictly negative for HIV infection deserve special consideration since they reflect the true intrinsic epidemic potential of the causative strain. To our knowledge, the long-term evolution of such exceptional outbreaks and the treatment outcomes for the involved patients has never been reported hitherto. Here we provide a thorough description, over an 11-year period, of an MDR-TB outbreak that emerged and expanded in an HIV-negative context, Northern Tunisia. Methodology/Principal Findings From October 2001 to June 2011, the MDR-TB outbreak involved 48 HIV-negative individuals that are mainly young (mean age 31.09 yrs; 89.6% male) and noninstitutionalized. Drug susceptibility testing coupled to mutational analysis revealed that initial transmission involved an isolate that was simultaneously resistant to isoniazid, rifampicin, ethambutol, and streptomycin. The causative Haarlem3-ST50 outbreak strain expanded mainly as an 11-banded IS6110 RFLP profile (77.1%), from which a 12-banded subclone evolved. After undergoing a 2-year treatment with second-line drugs, 22 (45.8%) patients were cured and 3 (6.2%) completed treatment, thus yielding an overall treatment success rate of 52.1%. Among the patients that experienced unfavorable treatment outcomes, 10 (20.8%) failed treatment, 3 (6.2%) were lost to follow-up, 5 (10.4%) died, and 5 (10.4%) could not be evaluated. Poor adherence to treatment was found to be the main independent predictor of unfavorable outcomes (HR: 9.15; 95% CI 1.72–48.73; P = 0.014). Intriguingly, the evolved 12-banded subclone proved significantly associated with unfavorable outcomes (HR: 4.90; 95% CI 1.04–23.04, P = 0.044). High rate of fatality and relapse was further demonstrated at the long-term, since 70% of those whose treatment failed have died, and 24% among those deemed successfully treated have relapsed. Conclusions

  12. Activity trends in young solar-type stars

    NASA Astrophysics Data System (ADS)

    Lehtinen, J.; Jetsu, L.; Hackman, T.; Kajatkari, P.; Henry, G. W.

    2016-04-01

    Aims: We study a sample of 21 young and active solar-type stars with spectral types ranging from late F to mid K and characterize the behaviour of their activity. Methods: We apply the continuous period search (CPS) time series analysis method on Johnson B- and V-band photometry of the sample stars, collected over a period of 16 to 27 years. Using the CPS method, we estimate the surface differential rotation and determine the existence and behaviour of active longitudes and activity cycles on the stars. We supplement the time series results by calculating new log R'HK = log F'HK/σTeff4 emission indices for the stars from high resolution spectroscopy. Results: The measurements of the photometric rotation period variations reveal a positive correlation between the relative differential rotation coefficient and the rotation period as k ∝ Prot1.36, but do not reveal any dependence of the differential rotation on the effective temperature of the stars. Secondary period searches reveal activity cycles in 18 of the stars and temporary or persistent active longitudes in 11 of them. The activity cycles fall into specific activity branches when examined in the log Prot/Pcyc vs. log Ro-1, where Ro-1 = 2Ωτc, or log Prot/Pcyc vs. log R'HK diagram. We find a new split into sub-branches within this diagram, indicating multiple simultaneously present cycle modes. Active longitudes appear to be present only on the more active stars. There is a sharp break at approximately log R'HK = -4.46 separating the less active stars with long-term axisymmetric spot distributions from the more active ones with non-axisymmetric configurations. In seven out of eleven of our stars with clearly detected long-term non-axisymmetric spot activity the estimated active longitude periods are significantly shorter than the mean photometric rotation periods. This systematic trend can be interpreted either as a sign of the active longitudes being sustained from a deeper level in the stellar interior

  13. Solar Irradiance: Observations, Proxies, and Models (Invited)

    NASA Astrophysics Data System (ADS)

    Lean, J.

    2013-12-01

    Solar irradiance has been measured from space for more than thirty years. Variations in total (spectrally integrated) solar irradiance associated with the Sun's 11-year activity cycle and 27-day rotation are now well characterized. But the magnitude, and even the sign, of spectral irradiance changes at near ultraviolet, visible and near infrared wavelengths, remain uncertain on time scales longer than a few months. Drifts in the calibration of the instruments that measure solar irradiance and incomplete understanding of the causes of irradiance variations preclude specification of multi-decadal solar irradiance variations with any confidence, including whether, or not, irradiance levels were lower during the 2008-2009 anomalously low solar activity minimum than in prior minima. The ultimate cause of solar irradiance variations is the Sun's changing activity, driven by a sub-surface dynamo that generates magnetic features called sunspots and faculae, which respectively deplete and enhance the net radiative output. Solar activity also alters parameters that have been measured from the ground for longer periods and with greater stability than the solar irradiance datasets. The longest and most stable such record is the Sun's irradiance at 10.7 cm in the radio spectrum, which is used frequently as a proxy indicator of solar irradiance variability. Models have been developed that relate the solar irradiance changes - both total and spectral - evident in extant databases to proxies chosen to best represent the sunspot darkening and facular brightening influences. The proxy models are then used to reconstruct solar irradiance variations at all wavelengths on multi-decadal time scales, for input to climate and atmospheric model simulations that seek to quantity the Sun's contribution to Earth's changing environment. This talk provides an overview of solar total and spectral irradiance observations and their relevant proxies, describes the formulation and construction of

  14. Distribution of activity at the solar active longitudes between 1979 - 2011 in the northern hemisphere

    NASA Astrophysics Data System (ADS)

    Gyenge, N.; Baranyi, T.; Ludmány, A.

    The solar active longitudes were studied in the northern hemisphere in cycles 22 and 23 by using data of DPD sunspot catalogue. The active longitudes are not fixed in the Carrington system, they have a well recognizable migration path between the descending phase of cycle 21 (from about 1984) and ascending phase of cycle 23 (until about 1996), out of this interval the migration path is ambiguous. The longitudinal distribution on both sides of the path has been computed and averaged for the length of the path. The so-called flip-flop phenomenon, when the activity temporarily gets to the opposite longitude, can also be recognized. The widths of the active domains are fairly narrow in the increasing and decaying phases of cycle 22, their half widths are about 20°-30° for both the main and secondary active belts but it is more flat and stretched around the maximum with a half width of about 60°.

  15. A Study of Solar Magnetic Fields Below the Surface, at the Surface, and in the Solar Atmosphere - Understanding the Cause of Major Solar Activity

    NASA Astrophysics Data System (ADS)

    Chintzoglou, Georgios

    2016-05-01

    The fundamental processes regarding the origin, emergence and evolution of solar magnetic fields as well as the generation of solar activity are largely unknown or remain controversial. In this dissertation, multiple important issues regarding solar magnetism and activities are addressed, based on advanced observations obtained by the AIA and HMI instruments aboard the SDO spacecraft.This dissertation addresses the 3D magnetic structure of complex emerging Active Regions (ARs). In ARs the photospheric fields might show all aspects of complexity, from simple bipolar regions to extremely complex multipolar surface magnetic distributions. Here, we introduce a novel technique to infer the subphotospheric configuration of emerging magnetic flux tubes forming ARs on the surface. Using advanced 3D visualization tools with this technique on a complex flare and CME productive AR, we found that the magnetic flux tubes forming the complex AR may originate from a single progenitor flux tube in the SCZ. The complexity can be explained as a result of vertical and horizontal bifurcations that occurred on the progenitor flux tube.In addition, this dissertation proposes a new scenario on the origin of major solar activity. When more than one flux tubes are in close proximity to each other while they break through the photospheric surface, collision and shearing may occur as they emerge. Once this collisional shearing occurs between nonconjugated sunspots (opposite polarities not belonging to the same bipole), major solar activity is triggered. The collision and shearing occur due to the natural separation of polarities in emerging bipoles. In this continuous collision, more poloidal flux is added to the system effectively creating an expanding MFR into the corona, accompanied by filament formation above the PIL together with flare activity and CMEs. Our results reject two popular scenarios on the possible cause of solar eruptions (1) shearing motion between conjugate polarities, (2

  16. THE EXPANSION OF ACTIVE REGIONS INTO THE EXTENDED SOLAR CORONA

    SciTech Connect

    Morgan, Huw; Jeska, Lauren; Leonard, Drew

    2013-06-01

    Advanced image processing of Large Angle and Spectrometric Coronagraph Experiment (LASCO) C2 observations reveals the expansion of the active region closed field into the extended corona. The nested closed-loop systems are large, with an apparent latitudinal extent of 50 Degree-Sign , and expanding to heights of at least 12 R{sub Sun }. The expansion speeds are {approx}10 km s{sup -1} in the AIA/SDO field of view, below {approx}20 km s{sup -1} at 2.3 R{sub Sun }, and accelerate linearly to {approx}60 km s{sup -1} at 5 R{sub Sun }. They appear with a frequency of one every {approx}3 hr over a time period of around three days. They are not coronal mass ejections (CMEs) since their gradual expansion is continuous and steady. They are also faint, with an upper limit of 3% of the brightness of background streamers. Extreme ultraviolet images reveal continuous birth and expansion of hot, bright loops from a new active region at the base of the system. The LASCO images show that the loops span a radial fan-like system of streamers, suggesting that they are not propagating within the main coronal streamer structure. The expanding loops brighten at low heights a few hours prior to a CME eruption, and the expansion process is temporarily halted as the closed field system is swept away. Closed magnetic structures from some active regions are not isolated from the extended corona and solar wind, but can expand to large heights in the form of quiescent expanding loops.

  17. Investigation of solar active regions at high resolution by balloon flights of the solar optical universal polarimeter, definition phase

    NASA Technical Reports Server (NTRS)

    Tarbell, Theodore D.; Topka, Kenneth P.

    1992-01-01

    The definition phase of a scientific study of active regions on the sun by balloon flight of a former Spacelab instrument, the Solar Optical Universal Polarimeter (SOUP) is described. SOUP is an optical telescope with image stabilization, tunable filter and various cameras. After the flight phase of the program was cancelled due to budgetary problems, scientific and engineering studies relevant to future balloon experiments of this type were completed. High resolution observations of the sun were obtained using SOUP components at the Swedish Solar Observatory in the Canary Islands. These were analyzed and published in studies of solar magnetic fields and active regions. In addition, testing of low-voltage piezoelectric transducers was performed, which showed they were appropriate for use in image stabilization on a balloon.

  18. Study of intensive solar flares in the rise phase of solar cycle 23 and 24 and other activities

    NASA Astrophysics Data System (ADS)

    Subramanian, S. Prasanna; Shanmugaraju, A.

    2016-02-01

    We present a statistical study and comparison on the properties of intensive solar flares (>M5.0 X-ray flare), decameter-hectometric (DH) wavelength [frequency, 1-14 MHz] type II radio bursts and solar energetic particle (SEP) events during the rising phase of solar cycles 23 and 24. The period of study is May 1996-November 2000 for solar cycle 23 and December 2008-June 2013 for solar cycle 24. Apart from reported weakness of solar cycle 24 compared to the cycle 23, we noted the following differences between the two cycles on the properties of these activities associated with intensive flares: (i) The reduction in the number of intensive flares (>M5.0 class) in cycle 24 is ˜34 %, similar to the reduction in sunspot number reported by Gopalswamy et al. (2014a); (ii) The slightly higher mean starting-frequency (4.15 MHz) and lower ending frequency (0.58 MHz) in cycle 24 compared to those of cycle 23 (2.63 and 0.89 MHz, respectively) indicate that the radio emission of this cycle started closer to the Sun and the CME-shock travelled farther away from the Sun in cycle 24; (iv) Cycle 23 produced a nearly equal number of SEP events as cycle 24 during the rising phase. The correlation between SEP intensity and CME speed is more prominent in cycle 23 (CC=0.7) than in cycle 24 (CC=0.3).

  19. Overview of the Temperature Response in the Mesosphere and Lower Thermosphere to Solar Activity

    NASA Technical Reports Server (NTRS)

    Beig, Gufran; Scheer, Juergen; Mlynczak, Martin G.; Keckhut, Philippe

    2008-01-01

    The natural variability in the terrestrial mesosphere needs to be known to correctly quantify global change. The response of the thermal structure to solar activity variations is an important factor. Some of the earlier studies highly overestimated the mesospheric solar response. Modeling of the mesospheric temperature response to solar activity has evolved in recent years, and measurement techniques as well as the amount of data have improved. Recent investigations revealed much smaller solar signatures and in some case no significant solar signal at all. However, not much effort has been made to synthesize the results available so far. This article presents an overview of the energy budget of the mesosphere and lower thermosphere (MLT) and an up-to-date status of solar response in temperature structure based on recently available observational data. An objective evaluation of the data sets is attempted and important factors of uncertainty are discussed.

  20. Complex active regions as the main source of extreme and large solar proton events

    NASA Astrophysics Data System (ADS)

    Ishkov, V. N.

    2013-12-01

    A study of solar proton sources indicated that solar flare events responsible for ≥2000 pfu proton fluxes mostly occur in complex active regions (CARs), i.e., in transition structures between active regions and activity complexes. Different classes of similar structures and their relation to solar proton events (SPEs) and evolution, depending on the origination conditions, are considered. Arguments in favor of the fact that sunspot groups with extreme dimensions are CARs are presented. An analysis of the flare activity in a CAR resulted in the detection of "physical" boundaries, which separate magnetic structures of the same polarity and are responsible for the independent development of each structure.

  1. Solar Energy Education. Renewable energy activities for chemistry and physics

    SciTech Connect

    Not Available

    1985-01-01

    Information on renewable energy sources is provided for students in this teachers' guide. With the chemistry and physics student in mind, solar energy topics such as absorber plate coatings for solar collectors and energy collection and storage methods are studied. (BCS)

  2. Outline of the Solar System: Activities for elementary students

    NASA Technical Reports Server (NTRS)

    Hartsfield, J.; Sellers, M.

    1990-01-01

    An introduction to the solar system for the elementary school student is given. The introduction contains historical background, facts, and pertinent symbols concerning the sun, the nine major planets and their moons, and information about comets and asteroids. Aids to teaching are given, including a solar system crossword puzzle with answers.

  3. Study of the relationship between solar activity and terrestrial weather

    NASA Technical Reports Server (NTRS)

    Sturrock, P. A.; Brueckner, G. E.; Dickinson, R. E.; Fukuta, N.; Lanzerotti, L. J.; Lindzen, R. S.; Park, C. G.; Wilcox, J. M.

    1976-01-01

    Evidence for some connection between weather and solar related phenomena is presented. Historical data of world wide temperature variations with relationship to change in solar luminosity are examined. Several test methods for estimating the statistical significance of such phenomena are discussed in detail.

  4. Plasma Beta Above a Solar Active Region: Rethinking the Paradigm

    NASA Technical Reports Server (NTRS)

    Gary, G. Allen; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    In this paper, we present a model of the plasma beta above an active region and discuss its consequences in terms of coronal magnetic field modeling. The beta-plasma model is representative and derived from a collection of sources. The resulting beta variation with height is used to emphasize the assumption that the magnetic pressure dominates over the plasma pressure must be carefully considered depending on what part of the solar atmosphere is being considered. This paper points out (1) that the paradigm that the coronal magnetic field can be constructed from a force-free magnetic field must be used in the correct context, since the forcefree region is sandwiched between two regions which have beta greater than 1, (2) that the chromospheric MgIICIV magnetic measurements occur near the beta-minimum, and (3) that, moving from the photosphere upwards, beta can return to 1 at relatively low coronal heights, e.g. R approximately 1.2R(sub)s.

  5. Solar activity variations of ionosonde measurements and modeling results

    NASA Astrophysics Data System (ADS)

    Altadill, D.; Arrazola, D.; Blanch, E.; Buresova, D.

    2008-08-01

    The time series of hourly electron density profiles N(h) obtained at several mid-latitude stations in Europe have been used to obtain N(h) profiles on a monthly basis and to extract both the expected bottomside parameters and a proxy of the ionospheric variability as functions of time and height. With these data we present advances on a “Local Model” technique for the parameters B0 and B1, its applicability to other ionospheric stations, to other bottomside ionospheric parameters, and to modeling the time/height variability of the profile. The Local Model (LM) is an empirical model based on the experimental results of the solar activity dependence of the daily and seasonal behavior of the above parameters. The LM improves the IRI-2001 prediction of the B0 and B1 by factor of two at mid-latitudes. Moreover, the LM can be used to simulate other ionospheric parameters and to build mean N(h) profiles and the deviations from them. The modeling of both the average N(h) profiles and their deviations is an useful tool for ionospheric model users who want to know both the expected patterns and their deviations.

  6. Extremely low geomagnetic activity during the recent deep solar cycle minimum

    NASA Astrophysics Data System (ADS)

    Echer, E.; Tsurutani, B. T.; Gonzalez, W. D.

    2012-07-01

    The recent solar minimum (2008-2009) was extreme in several aspects: the sunspot number, R z , interplanetary magnetic field (IMF) magnitude B o and solar wind speed V sw were the lowest during the space era. Furthermore, the variance of the IMF southward B z component was low. As a consequence of these exceedingly low solar wind parameters, there was a minimum in the energy transfer from solar wind to the magnetosphere, and the geomagnetic activity ap index reached extremely low levels. The minimum in geomagnetic activity was delayed in relation to sunspot cycle minimum. We compare the solar wind and geomagnetic activity observed in this recent minimum with previous solar cycle values during the space era (1964-2010). Moreover, the geomagnetic activity conditions during the current minimum are compared with long term variability during the period of available geomagnetic observations. The extremely low geomagnetic activity observed in this solar minimum was previously recorded only at the end of XIX century and at the beginning of the XX century, and this might be related to the Gleissberg (80-100 years) solar cycle.

  7. Solar activity at birth predicted infant survival and women's fertility in historical Norway

    PubMed Central

    Skjærvø, Gine Roll; Fossøy, Frode; Røskaft, Eivin

    2015-01-01

    Ultraviolet radiation (UVR) can suppress essential molecular and cellular mechanisms during early development in living organisms and variations in solar activity during early development may thus influence their health and reproduction. Although the ultimate consequences of UVR on aquatic organisms in early life are well known, similar studies on terrestrial vertebrates, including humans, have remained limited. Using data on temporal variation in sunspot numbers and individual-based demographic data (N = 8662 births) from Norway between 1676 and 1878, while controlling for maternal effects, socioeconomic status, cohort and ecology, we show that solar activity (total solar irradiance) at birth decreased the probability of survival to adulthood for both men and women. On average, the lifespans of individuals born in a solar maximum period were 5.2 years shorter than those born in a solar minimum period. In addition, fertility and lifetime reproductive success (LRS) were reduced among low-status women born in years with high solar activity. The proximate explanation for the relationship between solar activity and infant mortality may be an effect of folate degradation during pregnancy caused by UVR. Our results suggest that solar activity at birth may have consequences for human lifetime performance both within and between generations. PMID:25567646

  8. Solar activity at birth predicted infant survival and women's fertility in historical Norway.

    PubMed

    Skjærvø, Gine Roll; Fossøy, Frode; Røskaft, Eivin

    2015-02-22

    Ultraviolet radiation (UVR) can suppress essential molecular and cellular mechanisms during early development in living organisms and variations in solar activity during early development may thus influence their health and reproduction. Although the ultimate consequences of UVR on aquatic organisms in early life are well known, similar studies on terrestrial vertebrates, including humans, have remained limited. Using data on temporal variation in sunspot numbers and individual-based demographic data (N = 8662 births) from Norway between 1676 and 1878, while controlling for maternal effects, socioeconomic status, cohort and ecology, we show that solar activity (total solar irradiance) at birth decreased the probability of survival to adulthood for both men and women. On average, the lifespans of individuals born in a solar maximum period were 5.2 years shorter than those born in a solar minimum period. In addition, fertility and lifetime reproductive success (LRS) were reduced among low-status women born in years with high solar activity. The proximate explanation for the relationship between solar activity and infant mortality may be an effect of folate degradation during pregnancy caused by UVR. Our results suggest that solar activity at birth may have consequences for human lifetime performance both within and between generations. PMID:25567646

  9. DISTRIBUTION OF FORCED VITAL CAPACITY AND FORCED EXPIRATORY VOLUME IN ONE SECOND IN CHILDREN 6 TO 11 YEARS OF AGE

    EPA Science Inventory

    The authors analyzed 44,664 annual measurements of forced vital capacity (FVC) and forced expiratory volume in one second (FEV1) in 12,258 white children and 1,041 black children between 6 and 11 years of age in 6 communities. Sex and race-specific lung function development is de...

  10. Effect of Ball Mass on Dribble, Pass, and Pass Reception in 9-11-Year-Old Boys' Basketball

    ERIC Educational Resources Information Center

    Arias, Jose L.; Argudo, Francisco M.; Alonso, Jose I.

    2012-01-01

    The objective of the study was to analyze the effect of ball mass on dribble, pass, and pass reception in real game situations in 9-11-year-old boys' basketball. Participants were 54 boys identified from six federated teams. The independent variable was ball mass, and dependent variables were number of dribbles, passes, and pass receptions. Three…

  11. Internet Use and Psychological Well-Being among 10-Year-Old and 11-Year-Old Children

    ERIC Educational Resources Information Center

    Devine, Paula; Lloyd, Katrina

    2012-01-01

    This paper uses data from the 2009 Kids' Life and Times Survey, involving 3657 children aged 10 or 11 years old in Northern Ireland. The survey indicated high levels of use of Internet applications, including social-networking sites and online games. Using the KIDSCREEN-27 instrument, the data indicate that the use of social-networking sites and…

  12. Comparative Analysis of Musical Abilities of 11-Year-Olds from Slovenia and the Island of Martinique

    ERIC Educational Resources Information Center

    Jerman, Janez; Pretnar, Tatjana

    2006-01-01

    The focus of the study is the comparison between the musical abilities of 11-year-old children on the island of Martinique and in Slovenia, and finding out to what extent their development of musical abilities is influenced by musical and cultural family background, music school attendance, choral singing and playing orchestral instruments. Our…

  13. Maximal Voluntary Static Force Production Characteristics of Skeletal Muscle in Children 8-11 Years of Age.

    ERIC Educational Resources Information Center

    Going, Scott B.; And Others

    1987-01-01

    A study of maximal voluntary isometric muscle contraction force-time curves among 32 normal, healthy 8- to 11-year-olds performing tasks involving separate muscle groups found that force and maximal rate of force increase were quite reproducible, but time to selected force levels reflected considerable variations. (Author/CB)

  14. Testing Effectiveness of a Community-Based Aggression Management Program for Children 7 to 11 Years Old and Their Families.

    ERIC Educational Resources Information Center

    Lipman, Ellen L.; Boyle, Michael H.; Cunningham, Charles; Kenny, Meghan; Sniderman, Carrie; Duku, Eric; Mills, Brenda; Evans, Peter; Waymouth, Marjorie

    2006-01-01

    Objective: There are few well-evaluated uncomplicated community-based interventions for childhood aggression. The authors assess the impact of a community-based anger management group on child aggressive behaviors, using a randomized, controlled trial (RCT). Method: Families with children 7 to 11 years old were recruited through advertisements and…

  15. Expectations and Levels of Understanding When Using Mobile Phones among 9-11-Year Olds in Wales, UK

    ERIC Educational Resources Information Center

    Turley, Joanne; Baker, Sally-Ann; Lewis, Christopher Alan

    2014-01-01

    There is growing interest in examining the use of mobile technology among children. The present study extended this literature among a sample of 9-11-year olds in Wales, UK in three ways. First, to examine the level of mobile phone ownership; second, to consider how mobile phones are used, investigate timescales and expectations when communicating…

  16. Element pool changes within a scrub-oak ecosystem after 11 years of elevated CO2 exposure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Elevated CO2 effects on soil element pool size and fluxes are equivocal. We measured above and belowground pools of non-nitrogen macro and micronutrients in a Florida scrub-oak ecosystem exposed to twice-ambient CO2 concentrations for 11 years. We quantified element pools in above ground biomass of ...

  17. An Evaluation of Computerised Essay Marking for National Curriculum Assessment in the UK for 11-Year-Olds

    ERIC Educational Resources Information Center

    Hutchison, Dougal

    2007-01-01

    This paper reports a comparison of human and computer marking of approximately 600 essays produced by 11-year-olds in the UK. Each essay script was scored by three human markers. Scripts were also scored by the "e-rater" program. There was a good agreement between human and machine marking. Scripts with highly discrepant scores were flagged and…

  18. 9,400 years of cosmic radiation and solar activity from ice cores and tree rings

    PubMed Central

    Steinhilber, Friedhelm; Beer, Jürg; Brunner, Irene; Christl, Marcus; Fischer, Hubertus; Heikkilä, Ulla; Kubik, Peter W.; Mann, Mathias; McCracken, Ken G.; Miller, Heinrich; Miyahara, Hiroko; Oerter, Hans

    2012-01-01

    Understanding the temporal variation of cosmic radiation and solar activity during the Holocene is essential for studies of the solar-terrestrial relationship. Cosmic-ray produced radionuclides, such as 10Be and 14C which are stored in polar ice cores and tree rings, offer the unique opportunity to reconstruct the history of cosmic radiation and solar activity over many millennia. Although records from different archives basically agree, they also show some deviations during certain periods. So far most reconstructions were based on only one single radionuclide record, which makes detection and correction of these deviations impossible. Here we combine different 10Be ice core records from Greenland and Antarctica with the global 14C tree ring record using principal component analysis. This approach is only possible due to a new high-resolution 10Be record from Dronning Maud Land obtained within the European Project for Ice Coring in Antarctica in Antarctica. The new cosmic radiation record enables us to derive total solar irradiance, which is then used as a proxy of solar activity to identify the solar imprint in an Asian climate record. Though generally the agreement between solar forcing and Asian climate is good, there are also periods without any coherence, pointing to other forcings like volcanoes and greenhouse gases and their corresponding feedbacks. The newly derived records have the potential to improve our understanding of the solar dynamics and to quantify the solar influence on climate. PMID:22474348

  19. Skylab observations of X-ray loops connecting separate active regions. [solar activity

    NASA Technical Reports Server (NTRS)

    Chase, R. C.; Krieger, A. S.; Svestka, Z.; Vaiana, G. S.

    1976-01-01

    One hundred loops interconnecting 94 separate active solar regions detectable in soft X-rays were identified during the Skylab mission. While close active regions are commonly interconnected with loops, the number of such interconnections decreases steeply for longer distances; the longest interconnecting loop observed in the Skylab data connected regions separated by 37 deg. Several arguments are presented which support the point of view that this is the actual limit of the size of magnetic interconnections between active regions. No sympathetic flares could be found in the interconnected regions. These results cast doubt on the hypothesis that accelerated particles can be guided in interconnecting loops from one active region to another over distances of 100 deg or more and eventually produce sympathetic flares in them.

  20. Ionospheric Response to Geomagnetic Activity during 2007-2009 Solar Minimum

    NASA Astrophysics Data System (ADS)

    Chen, Yiding; Liu, Libo; Huijun Le, lake709.; Wan, Weixing

    The significant effect of weaker geomagnetic activity on ionospheric day-to-day variability during 2007-2009 solar minimum was highlighted by investigating the response of global electron content (GEC) to geomagnetic activity index Ap. A case distinctly manifests the modulation of recurrent weaker geomagnetic disturbance on GEC during the solar minimum. Statistical analyses indicate that the effect of weaker geomagnetic activity on GEC day-to-day variability is significant during 2007-2009, even under relatively quiet geomagnetic activity condition, while geomagnetic activity effect on GEC is not prominent during 2003-2005 solar cycle descending phase except under strong geomagnetic disturbance condition. Nevertheless, statistically the most important effect on GEC day-to-day variability during 2007-2009 comes from the factors other than geomagnetic activity and solar EUV irradiance.