Science.gov

Sample records for 11-year solar activity

  1. 11 -year planetary index of solar activity

    NASA Astrophysics Data System (ADS)

    Okhlopkov, Victor

    In papers [1,2] introduced me parameter - the average difference between the heliocentric longitudes of planets ( ADL ) , which was used for comparison with solar activity. The best connection of solar activity ( Wolf numbers used ) was obtained for the three planets - Venus, Earth and Jupiter. In [1,2] has been allocated envelope curve of the minimum values ADL which has a main periodicity for 22 years and describes well the alternating series of solar activity , which also has a major periodicity of 22. It was shown that the minimum values of the envelope curve extremes ADL planets Venus, Earth and Jupiter are well matched with the 11- year solar activity cycle In these extremes observed linear configuration of the planets Venus, Earth and Jupiter both in their location on one side of the Sun ( conjunctions ) and at the location on the opposite side of the Sun ( three configurations ) This work is a continuation of the above-mentioned , and here for minimum ADL ( planets are in conjunction ) , as well as on the minimum deviation of the planets from a line drawn through them and Sun at the location of the planets on opposite sides of the Sun , compiled index (denoted for brevity as JEV ) that uniquely describes the 11- year solar cycle A comparison of the index JEV with solar activity during the time interval from 1000 to 2013 conducted. For the period from 1000 to 1699 used the Schove series of solar activity and the number of Wolf (1700 - 2013 ) During the time interval from 1000 to 2013 and the main periodicity of the solar activity and the index ADL is 11.07 years. 1. Okhlopkov V.P. Cycles of Solar Activity and the Configurations of Planets // Moscow University Physics Bulletin, 2012 , Vol. 67 , No. 4 , pp. 377-383 http://www.springerlink.com/openurl.asp?genre=article&id=doi:10.3103/S0027134912040108. 2 Okhlopkov VP, Relationship of Solar Activity Cycles to Planetary Configurations // Bulletin of the Russian Academy of Sciences. Physics, 2013 , Vol. 77 , No. 5

  2. On dependence of seismic activity on 11 year variations in solar activity and/or cosmic rays

    NASA Astrophysics Data System (ADS)

    Zhantayev, Zhumabek; Khachikyan, Galina; Breusov, Nikolay

    2014-05-01

    It is found in the last decades that seismic activity of the Earth has a tendency to increase with decreasing solar activity (increasing cosmic rays). A good example of this effect may be the growing number of catastrophic earthquakes in the recent rather long solar minimum. Such results support idea on existence a solar-lithosphere relationship which, no doubts, is a part of total pattern of solar-terrestrial relationships. The physical mechanism of solar-terrestrial relationships is not developed yet. It is believed at present that one of the main contenders for such mechanism may be the global electric circuit (GEC) - vertical current loops, piercing and electrodynamically coupling all geospheres. It is also believed, that the upper boundary of the GEC is located at the magnetopause, where magnetic field of the solar wind reconnects with the geomagnetic field, that results in penetrating solar wind energy into the earth's environment. The effectiveness of the GEC operation depends on intensity of cosmic rays (CR), which ionize the air in the middle atmosphere and provide its conductivity. In connection with the foregoing, it can be expected: i) quantitatively, an increasing seismic activity from solar maximum to solar minimum may be in the same range as increasing CR flux; and ii) in those regions of the globe, where the crust is shipped by the magnetic field lines with number L= ~ 2.0, which are populated by anomalous cosmic rays (ACR), the relationship of seismic activity with variations in solar activity will be manifested most clearly, since there is a pronounced dependence of ACR on solar activity variations. Checking an assumption (i) with data of the global seismological catalog of the NEIC, USGS for 1973-2010, it was found that yearly number of earthquake with magnitude M≥4.5 varies into the 11 year solar cycle in a quantitative range of about 7-8% increasing to solar minimum, that qualitatively and quantitatively as well is in agreement with the

  3. Relationship between the north-south asymmetry of sunspot formation and the amplitude of 11-year solar activity cycles

    NASA Astrophysics Data System (ADS)

    Latyshev, S. V.; Olemskoy, S. V.

    2016-07-01

    A relationship between the north-south asymmetry of sunspot formation and the amplitude of 11-year cycles has been established from the RGO/USAF/NOAA data on sunspots. It is shown that the higher the solar cycle amplitude, the smaller the absolute value of the north-south asymmetry. The revealed pattern has been investigated in a numerical dynamo model with irregular variations of the alpha-effect.

  4. The relationship of air temperature variations over the northern hemisphere during the secular and 11-year solar cycles

    NASA Technical Reports Server (NTRS)

    Ryzhakov, L. Y.; Tomskaya, A. S.

    1978-01-01

    A comparison was made of air temperature anomaly maps for the months of January and July against a background of high and low secular solar activity, with and without regard for the 11 year cycle. By comparing temperature variations during the 11 year and secular cycles, it is found that the 11 year cycle influences thermal conditions more strongly than the secular cycle, and that temperature differences between extreme phases of the solar cycles are greater in January than in July.

  5. The stability of decametric type III burst parameters over the 11-year solar activity cycle - The frequency drift rate of radio bursts

    NASA Astrophysics Data System (ADS)

    Abranin, E. P.; Bazelyan, L. L.; Tsybko, Y. G.

    1990-02-01

    Results are presented from measurements of the frequency drift rates for the maximum of the solar type III and IIIb-III bursts in the 25-12.5 MHz range during the period from 1973 to 1984. In the decameter wavelength range, the frequency drift rate is proportional to the value of observational frequency and has a weak dependence on the type of phase within the 11-yr solar cycle. The results are compared with results for the hectometer range, showing that the hectometer type II burst generation process generally occurs at the first harmonic. Data on the frequency dependence of the drift rates at hectometer and decameter wavelengths are consistent with the generation of type II bursts in the streamer at a burst source speed of about 0.3 s.

  6. Amplifying the Pacific climate system response to a small 11-year solar cycle forcing.

    PubMed

    Meehl, Gerald A; Arblaster, Julie M; Matthes, Katja; Sassi, Fabrizio; van Loon, Harry

    2009-08-28

    One of the mysteries regarding Earth's climate system response to variations in solar output is how the relatively small fluctuations of the 11-year solar cycle can produce the magnitude of the observed climate signals in the tropical Pacific associated with such solar variability. Two mechanisms, the top-down stratospheric response of ozone to fluctuations of shortwave solar forcing and the bottom-up coupled ocean-atmosphere surface response, are included in versions of three global climate models, with either mechanism acting alone or both acting together. We show that the two mechanisms act together to enhance the climatological off-equatorial tropical precipitation maxima in the Pacific, lower the eastern equatorial Pacific sea surface temperatures during peaks in the 11-year solar cycle, and reduce low-latitude clouds to amplify the solar forcing at the surface.

  7. Amplifying the Pacific climate system response to a small 11-year solar cycle forcing.

    PubMed

    Meehl, Gerald A; Arblaster, Julie M; Matthes, Katja; Sassi, Fabrizio; van Loon, Harry

    2009-08-28

    One of the mysteries regarding Earth's climate system response to variations in solar output is how the relatively small fluctuations of the 11-year solar cycle can produce the magnitude of the observed climate signals in the tropical Pacific associated with such solar variability. Two mechanisms, the top-down stratospheric response of ozone to fluctuations of shortwave solar forcing and the bottom-up coupled ocean-atmosphere surface response, are included in versions of three global climate models, with either mechanism acting alone or both acting together. We show that the two mechanisms act together to enhance the climatological off-equatorial tropical precipitation maxima in the Pacific, lower the eastern equatorial Pacific sea surface temperatures during peaks in the 11-year solar cycle, and reduce low-latitude clouds to amplify the solar forcing at the surface. PMID:19713524

  8. The 11-year solar radiation rhythm and the North Atlantic Oscillation during the last two centuries

    NASA Astrophysics Data System (ADS)

    Brunck, Heiko; Sirocko, Frank

    2016-04-01

    The study is based on a historical chronology of freezing events in central Europe during the last 230 years (river Rhine (Sirocko et al. 2012), Baltic Sea (Koslowski and Glaser, 1999) and Lake Constance (Dobras, 1983)). These regions display both significant similarities with extremely cold winters in central Germany for the years 1799, 1830, 1895, 1929, 1940, 1942, 1947, 1956 and 1963, as well as regional differences in timing and severity of cold winters. The statistical analysis of all 92 historical freezing events showed that 80 events occurred during a negative NAOwinter phase. The bootstrap test defined the results as extremely significant. To understand the climatic forcing behind the freezing chronology the NAO data set was smoothed by a three point running mean filter and compared with the 11- year cyclicity of the sunspot numbers. A complete NAO cycle can be observed within each solar cycle back to 1960 and from 1820 to 1900. From 1900 to 1960 the correlation between the Sun and NAO was weak. This on/off mode becomes visible only in the smoothed NAO data, when time intervals longer than "normal" weather observations are analysed. Statistical test for the coherence of the entire 230 years are insignificant. However, the relation is highly significant, if only the intervals from 1960 to 2010 and 1830 to 1900 are analysed. The phase correlation can be explained by temperature variations up to +-2.5°C in time series of stratospheric air temperature at 40 km height, where ozone is formed by ultraviolet solar radiation. Advanced analysis of sea surface temperatures from reanalysis data (ECMWF Data Archiv, 2013) between 30° - 40°N and 65° - 75°N indicate similar temperature variations in phase with the solar activity. Consequently, the 11 year solar periodicity is related to various parts of the Earth/Ocean/Atmosphere system and not only to the stratospheric signal. However, the NAO is the dominating mediator to implement a solar component into the

  9. The 11 years solar cycle as the manifestation of the dark Universe

    DOE PAGES

    Zioutas, K.; Semertzidis, Y.; Tsagri, M.; Papaevangelou, T.; Hoffmann, D. H.H.; Anastassopoulos, V.

    2014-11-26

    Sun’s luminosity in the visible changes at the 10-3 level, following an 11 years period. In X-rays, which should not be there, the amplitude varies even ~105 times stronger, making their mysterious origin since the discovery in 1938 even more puzzling, and inspiring. We suggest that the multifaceted mysterious solar cycle is due to some kind of dark matter streams hitting the Sun. Planetary gravitational lensing enhances (occasionally) slow moving flows of dark constituents towards the Sun, giving rise to the periodic behaviour. Jupiter provides the driving oscillatory force, though its 11.8 years orbital period appears slightly decreased, just asmore » 11 years, if the lensing impact of other planets is included. Then, the 11 years solar clock may help to decipher (overlooked) signatures from the dark sector in laboratory experiments or observations in space.« less

  10. The 11 years solar cycle as the manifestation of the dark Universe

    SciTech Connect

    Zioutas, K.; Semertzidis, Y.; Tsagri, M.; Papaevangelou, T.; Hoffmann, D. H.H.; Anastassopoulos, V.

    2014-11-26

    Sun’s luminosity in the visible changes at the 10-3 level, following an 11 years period. In X-rays, which should not be there, the amplitude varies even ~105 times stronger, making their mysterious origin since the discovery in 1938 even more puzzling, and inspiring. We suggest that the multifaceted mysterious solar cycle is due to some kind of dark matter streams hitting the Sun. Planetary gravitational lensing enhances (occasionally) slow moving flows of dark constituents towards the Sun, giving rise to the periodic behaviour. Jupiter provides the driving oscillatory force, though its 11.8 years orbital period appears slightly decreased, just as 11 years, if the lensing impact of other planets is included. Then, the 11 years solar clock may help to decipher (overlooked) signatures from the dark sector in laboratory experiments or observations in space.

  11. Difference between even and odd cycles in the predictability of the amplitude of the around 11-year-period solar activity and prediction of the amplitude of cycle 25

    NASA Astrophysics Data System (ADS)

    Yoshida, A.; Sayre, R. J.

    2012-12-01

    The waxing and waning of the solar activity represented by a period of roughly 11 years is usually quantified by the change in the sunspot number (SSN). It is commonly held that these increases and decreases in the SSN as well as the changes in the general dipole-like magnetic field in the photosphere and corona are produced by a magneto-hydro dynamic process in the sun's underlying convection layer. Assuming this is the case, it follows that SSNs in past cycles should contain a certain kind of information that enables us to estimate the amplitudes of future cycles. We report here a set of new results along this line of research. The chief aim of this paper is to demonstrate a distinct difference in the predictability of solar activity between even and odd cycles. Yoshida and Yamagishi (2010) showed that the SSN at the point three years before a minimum is well correlated with the maximum SSN in the following cycle. Here, we show that the correlation between this locus and the average SSN supplies a higher correlation coefficient. Moreover, we demonstrate that the correlation coefficient for even cycles is far better than that for odd ones (i.e., 0.96 and 0.74, respectively). Though it has been known that the correlation between the SSN at a point three years after a minimum and the maximum SSN is high, we demonstrate here that taking this calculation along with the average SSN (instead of the maximum SSN), the correlation coefficient for even cycles (0.98) reveals itself to be noticeably larger than that for odd cycles (0.93). Furthermore, we have found that the average SSN of even cycles is highly correlated with that of succeeding odd cycles (i.e., the correlation coefficient - minus three outliers - is 0.99). Conversely, no correlation is observed between amplitudes of odd cycles and those of succeeding even cycles. These distinct differences between even-odd pairs and odd-even pairs in their connective features lead us to believe that pairs of even-odd cycles

  12. Evidence for climate variations induced by the 11-year solar and cosmic rays cycles

    NASA Astrophysics Data System (ADS)

    Bruckman, William; Ramos, Elio

    2010-02-01

    We analyzed data from PSMSL monthly mean sea level seeking correlations between sea level fluctuations and the solar and cosmic rays 11 year cycle. The data reveals decadal variability that could be causally connected to the solar and cosmic rays cycle, since these periodic changes are correlated. It is also found that the solar (cosmic rays) cycle correlates (anti-correlates) with the mean global surface temperature anomaly. A probable explanation of the above correlations is that the solar intensity and cosmic rays variations induce oscillations in the average temperature and precipitation, with corresponding changes in the continental water and snow accumulation. Thus, for instance, a higher than average snow and water over land, and lower temperatures produce oceans thermal contraction and lower mass, implicating lower mean sea level.

  13. The response of chemistry and climate to the 11-year solar cycle in UM-UKCA

    NASA Astrophysics Data System (ADS)

    Bednarz, Ewa; Telford, Paul; Maycock, Amanda; Abraham, Luke; Braesicke, Peter; Pyle, John

    2014-05-01

    It is now generally agreed that the UV variability associated with the 11-year solar cycle leads to changes in ozone and temperature in the upper stratosphere. In addition, a range of observational and modelling studies suggest that such changes are the starting point for a chain of processes (including feedbacks) resulting in circulation changes in many areas of the atmosphere. However, precise details of the interactions between chemistry and meteorology induced by solar variability remain under question. In our study, we use a version of the UM-UKCA chemistry-climate model with consistent spectrally-resolved solar variability. While the solar cycle in heating rates has been applied with the method used in HadGEM2-ES, fine spectrally-resolved solar variability has been uniquely incorporated into the Fast-JX photolysis scheme. We perform two 50-year-long perpetual year solar maximum and solar minimum integrations and complement them with a three member ensemble of a transient 1960-2010 integration in which boundary conditions correspond by and large to the CCMI Ref-C1 scenario. We show how the inferred solar signals vary between the individual experiments. This indicates high natural variability and the resulting contamination of the solar signal with contributions from other processes as well as the existence of possible non-linearities between the solar cycle and other atmospheric forcings. Therefore, we highlight that long data series are needed to ensure correct attribution of the modelled and observed anomalies. In addition, we present results from two perpetual year experiments in which the solar cycle was applied exclusively in either short-wave heating or photolysis. We find large non-linearities in the modelled anomalies as compared to the realistic integration with both modulations included. This highlights the subtle nature of the dynamical response to the solar cycle forcing and indicates the need for interactive chemistry with a detailed photolysis

  14. On the ambiguous nature of the 11-year solar cycle signal profile in stratospheric ozone

    NASA Astrophysics Data System (ADS)

    Dhomse, Sandip; Chipperfield, Martyn; Damadeo, Robert; Zawodny, Joe; Ball, William; Feng, Wuhu; Hossaini, Ryan; Mann, Graham; Haigh, Joana

    2016-04-01

    We use three satellite datasets and simulations from a 3-D chemical transport model, forced by three different solar flux datasets, to diagnose the 11-year solar cycle signal (SCS) in stratospheric ozone. Our analysis shows that compared to SAGE II v6.2, a reduced upper stratospheric SCS in SAGE II v7.0 is due to a more realistic ozone-temperature anti-correlation. Overall, all model simulations show a positive SCS in the lower and middle stratosphere and negligible SCS in the upper stratosphere in agreement with SAGE v7.0, HALOE and MLS data. The model simulations show a differently structured SCS over different time periods covered by the satellite datasets, which helps to resolve some observed differences. However, despite the improvements to the SAGE II data, due to remaining biases in current observational and reanalysis datasets, accurate quantification of the influence of solar flux variability on the climate system remains an open scientific question.

  15. Using the 11-year Solar Cycle to Predict the Heliosheath Environment at Voyager 1 and 2

    NASA Astrophysics Data System (ADS)

    Michael, A.; Opher, M.; Provornikova, E.; Richardson, J. D.; Toth, G.

    2015-12-01

    As Voyager 2 moves further into the heliosheath, the region of subsonic solar wind plasma in between the termination shock and the heliopause, it has observed an increase of the magnetic field strength to large values, all while maintaining magnetic flux conservation. Dr. Burlaga will present these observations in the 2015 AGU Fall meeting (abstract ID: 59200). The increase in magnetic field strength could be a signature of Voyager 2 approaching the heliopause or, possibly, due to solar cycle effects. In this work we investigate the role the 11-year solar cycle variations as well as magnetic dissipation effects have on the heliosheath environments observed at Voyager 1 and 2 using a global 3D magnetohydrodynamic model of the heliosphere. We use time and latitude-dependent solar wind velocity and density inferred from SOHO/SWAN and IPS data and solar cycle variations of the magnetic field derived from 27-day averages of the field magnitude average of the magnetic field at 1 AU from the OMNI database as presented in Michael et al. (2015). Since the model has already accurately matched the flows and magnetic field strength at Voyager 2 until 93 AU, we extend the boundary conditions to model the heliosheath up until Voyager 2 reaches the heliopause. This work will help clarify if the magnetic field observed at Voyager 2 should increase or decrease due to the solar cycle. We describe the solar magnetic field both as a dipole, with the magnetic and rotational axes aligned, and as a monopole, with magnetic field aligned with the interstellar medium to reduce numerical reconnection within the heliosheath, due to the removal of the heliospheric surrent sheet, and at the solar wind - interstellar medium interface. A comparison of the models allows for a crude estimation of the role that magnetic dissipation plays in the system and whether it allows for a better understanding of the Voyager 2 location in the heliosheath.

  16. Climate variability related to the 11 year solar cycle as represented in different spectral solar irradiance reconstructions

    NASA Astrophysics Data System (ADS)

    Kruschke, Tim; Kunze, Markus; Misios, Stergios; Matthes, Katja; Langematz, Ulrike; Tourpali, Kleareti

    2016-04-01

    shortwave heating rate differences (additionally collated with line-by-line calculations using libradtran), differences in the photolysis rates, as well as atmospheric circulation features (temperature, zonal wind, geopotential height, etc.). It is shown that atmospheric responses to the different SSI datasets differ significantly from each other. This is a result from direct radiative effects as well as indirect effects induced by ozone feedbacks. Differences originating from using different SSI datasets for the same level of solar activity are in the same order of magnitude as those associated with the 11 year solar cycle within a specific dataset. However, the climate signals related to the solar cycle are quite comparable across datasets.

  17. Observations and analysis of the Ionospheric Alfven resonance mode structure in a complete 11-year solar cycle

    NASA Astrophysics Data System (ADS)

    Baru, N. A.; Koloskov, A. V.; Yampolsky, Y. M.; Rakhmatulin, R. A.

    2016-03-01

    The long-term data of the ionospheric Alfven resonance (IAR) observations recorded at the Ukrainian Antarctic Station "Akademik Vernadsky" from 2002 to 2013 and at Sayan Solar Observatory (Mondy, Russia) from 2010 to 2013 are analyzed. IAR fine spectral structure is studied and a previously unknown effect of splitting of the several lowest resonance modes is discovered. The diurnal and seasonal dependencies of this effect are investigated as well as the dependences of the probability of IAR and splitting detection on Solar and geomagnetic activities in the 11-year cycle. The morphological features of the splitting frequency behavior are analyzed and three main characteristic periods of the splitting are identified, namely: the development, the stationary period and the disappearing. Possible mechanisms of the splitting effect are suggested.

  18. Altitude dependent sensitivity of equatorial atomic oxygen in the MLT region to the quasi-11-year and quasi-27-day solar cycles

    NASA Astrophysics Data System (ADS)

    Lednyts'kyy, Olexandr; Von Savigny, Christian

    2016-07-01

    We retrieved atomic oxygen concentration ([O]) profiles with help of volume emission rate (VER) profiles calculated from the measured by SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY) emissions of green line nightglow in the MLT (Mesosphere/Lower Thermosphere) region. We quantified the sensitivity of equatorial [O] to the 11-year and 27-day solar cycle forcing represented by such proxy indicators of solar activity as MgII index and Lyman-α with help of the wavelet, cross-correlation, superposed epoch, regression and harmonical analysis methods. We applied ordinary least squares bisector fitting on MgII index and F10.7 radio flux, which is measured in solar flux units (sfu), to convert the [O] sensitivity values in sfu and finally in percent changes. The same procedure was performed in the case of Lyman-α. Our results of the sensitivity analysis correspond well to the 11-year solar cycle response of O volume mixing ratios found in simulations performed with the WACCM3 (Whole Atmosphere Community Climate Model, v. 3) and the HAMMONIA (3D Hamburg Model of the Neutral and Ionized Atmosphere) model. We identified an 11-year solar cycle variation, quasi-biennial and annual/semi-annual oscillations as well as signatures of the 27-day cycle of solar activity as presented in the MLT O layer. The most remarkable result is that the found sensitivities agree within their uncertainties and do not depend on averaging method (annual, monthly and daily) of the [O] time series. We report on 11-year and 27-day solar cycle signatures in dependence on altitude intervals used to average the [O] time series.

  19. The Antarctic ozone minimum - Relationship to odd nitrogen, odd chlorine, the final warming, and the 11-year solar cycle

    NASA Technical Reports Server (NTRS)

    Callis, L. B.; Natarajan, M.

    1986-01-01

    Photochemical calculations along 'diabatic trajectories' in the meridional phase are used to search for the cause of the dramatic springtime minimum in Antarctic column ozone. The results indicate that the minimum is principally due to catalytic destruction of ozone by high levels of total odd nitrogen. Calculations suggest that these levels of odd nitrogen are transported within the polar vortex and during the polar night from the middle to upper stratosphere and lower mesosphere to the lower stratosphere. The possibility that these levels are related to the 11-year solar cycle and are increased by enhanced formation in the thermosphere and mesosphere during solar maximum conditions is discussed.

  20. The 11-year solar cycle in current reanalyses: a (non)linear attribution study of the middle atmosphere

    NASA Astrophysics Data System (ADS)

    Kuchar, A.; Sacha, P.; Miksovsky, J.; Pisoft, P.

    2015-06-01

    This study focusses on the variability of temperature, ozone and circulation characteristics in the stratosphere and lower mesosphere with regard to the influence of the 11-year solar cycle. It is based on attribution analysis using multiple nonlinear techniques (support vector regression, neural networks) besides the multiple linear regression approach. The analysis was applied to several current reanalysis data sets for the 1979-2013 period, including MERRA, ERA-Interim and JRA-55, with the aim to compare how these types of data resolve especially the double-peaked solar response in temperature and ozone variables and the consequent changes induced by these anomalies. Equatorial temperature signals in the tropical stratosphere were found to be in qualitative agreement with previous attribution studies, although the agreement with observational results was incomplete, especially for JRA-55. The analysis also pointed to the solar signal in the ozone data sets (i.e. MERRA and ERA-Interim) not being consistent with the observed double-peaked ozone anomaly extracted from satellite measurements. The results obtained by linear regression were confirmed by the nonlinear approach through all data sets, suggesting that linear regression is a relevant tool to sufficiently resolve the solar signal in the middle atmosphere. The seasonal evolution of the solar response was also discussed in terms of dynamical causalities in the winter hemispheres. The hypothetical mechanism of a weaker Brewer-Dobson circulation at solar maxima was reviewed together with a discussion of polar vortex behaviour.

  1. Relativistic electrons in the outer-zone: An 11 year cycle, their relation to the solar wind

    SciTech Connect

    Belian, R.D.; Cayton, T.E.; Christensen, R.A.; Ingraham, J.C.; Meier, M.M.; Reeves, G.D.; Lazarus, A.J.

    1994-12-31

    We examine Los Alamos energetic electron data from 1979 through the present to show long term trends in the trapped relativistic electron populations at geosynchronous-earth-orbit (GEO). Data is examined from several CPA and SOPA instruments to cover the interval from 1979 through June 1994. It is shown that the higher energy electrons fluxes (E > 300 keV) displayed a cycle of {approx}11 years. In agreement with other investigators, we also show that the relativistic electron cycle is out of phase with the sunspot cycle. We compare the occurrences of relativistic electrons and solar wind high speed streams and determine that on the time scale of 15 years the two do not correlate well. The long-term data set we provide here shows a systematic change of the electron energy spectrum during the course of the solar cycle. This information should be useful to magnetospheric scientists, model designers and space flight planners.

  2. Claim of solar influence is on thin ice: are 11-year cycle solar minima associated with severe winters in Europe?

    NASA Astrophysics Data System (ADS)

    van Oldenborgh, G. J.; de Laat, A. T. J.; Luterbacher, J.; Ingram, W. J.; Osborn, T. J.

    2013-06-01

    A recent paper in Geophysical Research Letters, ‘Solar influence on winter severity in central Europe’, by Sirocko et al (2012 Geophys. Res. Lett. 39 L16704) claims that ‘weak solar activity is empirically related to extremely cold winter conditions in Europe’ based on analyses of documentary evidence of freezing of the River Rhine in Germany and of the Reanalysis of the Twentieth Century (20C). However, our attempt to reproduce these findings failed. The documentary data appear to be selected subjectively and agree neither with instrumental observations nor with two other reconstructions based on documentary data. None of these datasets show significant connection between solar activity and winter severity in Europe beyond a common trend. The analysis of Sirocko et al of the 20C circulation and temperature is inconsistent with their time series analysis. A physically-motivated consistent methodology again fails to support the reported conclusions. We conclude that multiple lines of evidence contradict the findings of Sirocko et al.

  3. Harmonic model for solar and climate cyclical variation throughout the Holocene based on Jupiter-Saturn tidal frequencies plus the 11-year solar dynamo cycle

    NASA Astrophysics Data System (ADS)

    Scafetta, N.

    2012-12-01

    We show that the Schwabe frequency band of the Zurich sunspot record since 1749 is made of three major cycles that are closely related to the spring tidal period of Jupiter and Saturn (~9.93 year), to the tidal sidereal period of Jupiter (about 11.86 years) and to a central cycle that may be associated to a quasi-11-year solar dynamo cycle. The central harmonic is approximately synchronized to the average of the two planetary frequencies. A harmonic model based on the above two planetary tidal frequencies and on the exact dates of Jupiter and Saturn planetary tidal phases, plus a theoretically deduced 10.87-year central cycle reveals major beat periods occurring at about 115, 61 and 130 years, plus a quasi-millennial large beat cycle around 983 years. Equivalent synchronized cycles are found in cosmogenic solar proxy records used to reconstruct solar activity and in proxy climate records throughout the Holocene (last 12,000 years) up to now. The quasi-secular beat oscillations hindcast reasonably well the known prolonged periods of low solar activity during the last millennium such as the Oort, Wolf, Sporer, Maunder and Dalton minima, as well as the 17 115-year long oscillations found in a detailed temperature reconstruction of the Northern Hemisphere covering the last 2000 years. The millennial three-frequency beat cycle hindcasts equivalent solar and climate cycles for 12,000 years. Finally, the harmonic model herein proposed reconstructs the prolonged solar minima around 1900-1920 and 1960-1980, the secular solar maxima around 1870-1890, 1940-1950 and 1995-2005, and a secular upward trending during the 20th century. The latter modulated trending agrees well with some solar proxy model, with the ACRIM TSI satellite composite and with the global surface temperature modulation since 1850. The model forecasts a new prolonged solar minimum during 2020-2045, which is produced by the minima of both the 61 and 115-year reconstructed cycles. Finally, the model predicts

  4. Multi-scale harmonic model for solar and climate cyclical variation throughout the Holocene based on Jupiter-Saturn tidal frequencies plus the 11-year solar dynamo cycle

    NASA Astrophysics Data System (ADS)

    Scafetta, Nicola

    2012-05-01

    The Schwabe frequency band of the Zurich sunspot record since 1749 is found to be made of three major cycles with periods of about 9.98, 10.9 and 11.86 years. The side frequencies appear to be closely related to the spring tidal period of Jupiter and Saturn (range between 9.5 and 10.5 years, and median 9.93 years) and to the tidal sidereal period of Jupiter (about 11.86 years). The central cycle may be associated to a quasi-11-year solar dynamo cycle that appears to be approximately synchronized to the average of the two planetary frequencies. A simplified harmonic constituent model based on the above two planetary tidal frequencies and on the exact dates of Jupiter and Saturn planetary tidal phases, plus a theoretically deduced 10.87-year central cycle reveals complex quasi-periodic interference/beat patterns. The major beat periods occur at about 115, 61 and 130 years, plus a quasi-millennial large beat cycle around 983 years. We show that equivalent synchronized cycles are found in cosmogenic records used to reconstruct solar activity and in proxy climate records throughout the Holocene (last 12,000 years) up to now. The quasi-secular beat oscillations hindcast reasonably well the known prolonged periods of low solar activity during the last millennium such as the Oort, Wolf, Spörer, Maunder and Dalton minima, as well as the 17 115-year long oscillations found in a detailed temperature reconstruction of the Northern Hemisphere covering the last 2000 years. The millennial three-frequency beat cycle hindcasts equivalent solar and climate cycles for 12,000 years. Finally, the harmonic model herein proposed reconstructs the prolonged solar minima that occurred during 1900-1920 and 1960-1980 and the secular solar maxima around 1870-1890, 1940-1950 and 1995-2005 and a secular upward trending during the 20th century: this modulated trending agrees well with some solar proxy model, with the ACRIM TSI satellite composite and with the global surface temperature

  5. Predictors of Meeting Physical Activity and Fruit and Vegetable Recommendations in 9-11-Year-Old Children

    ERIC Educational Resources Information Center

    Beck, Jimikaye; De Witt, Peter; McNally, Janise; Siegfried, Scott; Hill, James O; Stroebele-Benschop, Nanette

    2015-01-01

    Objective: Childhood obesity represents a significant public health problem. This study examined physical activity and nutrition behaviours and attitudes of 9-11-year-olds, and factors influencing these behaviours. Design: Study participants recorded pedometer steps for 7 days and completed physical activity enjoyment, food attitudes and food…

  6. Upper School Maths: Lesson Plans and Activities for Ages 9-11 Years. Series of Caribbean Volunteer Publications, No. 9.

    ERIC Educational Resources Information Center

    Voluntary Services Overseas, Castries (St. Lucia).

    This collection of lesson plans and activities for students aged 9-11 years is based on a science curriculum developed by a group of Caribbean nations. The activities pertain to topics such as place value, prime and composite numbers, the sieve of Eratosthenes, square numbers, factors and multiples, sequences, averages, geometry, symmetry,…

  7. Evaluation of Low-Cost, Objective Instruments for Assessing Physical Activity in 10-11-Year-Old Children

    ERIC Educational Resources Information Center

    Hart, Teresa L.; Brusseau, Timothy; Kulinna, Pamela Hodges; McClain, James J.; Tudor-Locke, Catrine

    2011-01-01

    This study compared step counts detected by four, low-cost, objective, physical-activity-assessment instruments and evaluated their ability to detect moderate-to-vigorous physical activity (MVPA) compared to the ActiGraph accelerometer (AG). Thirty-six 10-11-year-old children wore the NL-1000, Yamax Digiwalker SW 200, Omron HJ-151, and Walk4Life…

  8. A New Component of Solar Dynamics: North-South Diverging Flows Migrating toward the Equator with an 11 Year Period

    NASA Technical Reports Server (NTRS)

    Beck, J. G.; Gizon, L.; Duvall, Thomas L., Jr.; Oegerle, William R. (Technical Monitor)

    2002-01-01

    Time-distance helioseismology analysis of dopplergrams provides maps of torsional oscillations and meridional flows. Meridional flow maps show a time-varying component that has a banded structure which matches the torsional oscillations with an equatorward migration over the solar cycle. The time-varying component of meridional flow consists of a flow diverging from the dominant latitude of magnetic activity. These maps are compared with other torsional oscillation maps and with magnetic flux maps, showing a strong correlation with active latitudes. These results demonstrate a strong link between the time-varying component of the meridional flow and the torsional oscillations.

  9. Active school transport and weekday physical activity in 9–11-year-old children from 12 countries

    PubMed Central

    Denstel, K D; Broyles, S T; Larouche, R; Sarmiento, O L; Barreira, T V; Chaput, J-P; Church, T S; Fogelholm, M; Hu, G; Kuriyan, R; Kurpad, A; Lambert, E V; Maher, C; Maia, J; Matsudo, V; Olds, T; Onywera, V; Standage, M; Tremblay, M S; Tudor-Locke, C; Zhao, P; Katzmarzyk, P T

    2015-01-01

    OBJECTIVES: Active school transport (AST) may increase the time that children spend in physical activity (PA). This study examined relationships between AST and weekday moderate-to-vigorous physical activity (MVPA), light physical activity (LPA), sedentary time (SED) and total activity during naturally organized time periods (daily, before school, during school and after school) in a sample of children from 12 countries. METHODS: The sample included 6224 children aged 9–11 years. PA and sedentary time were objectively measured using Actigraph accelerometers. AST was self-reported by participants. Multilevel generalized linear and logistic regression statistical models were used to determine associations between PA, SED and AST across and within study sites. RESULTS: After adjustment for age, highest parental educational attainment, BMI z-score and accelerometer wear time, children who engaged in AST accumulated significantly more weekday MVPA during all studied time periods and significantly less time in LPA before school compared with children who used motorized transport to school. AST was unrelated to time spent in sedentary behaviors. Across all study sites, AST was associated with 6.0 min (95% confidence interval (CI): 4.7–7.3; P<0.0001) more of weekday MVPA; however, there was some evidence that this differed across study sites (P for interaction=0.06). Significant positive associations were identified within 7 of 12 study sites, with differences ranging from 4.6 min (95% CI: 0.3–8.9; P=0.04, in Canada) to 10.2 min (95% CI: 5.9–14.4; P<0.0001, in Brazil) more of daily MVPA among children who engaged in AST compared with motorized transport. CONCLUSIONS: The present study demonstrated that AST was associated with children spending more time engaged in MVPA throughout the day and less time in LPA before school. AST represents a good behavioral target to increase levels of PA in children. PMID:27152177

  10. Solar Activity and Solar Eruptions

    NASA Technical Reports Server (NTRS)

    Sterling, Alphonse C.

    2006-01-01

    Our Sun is a dynamic, ever-changing star. In general, its atmosphere displays major variation on an 11-year cycle. Throughout the cycle, the atmosphere occasionally exhibits large, sudden outbursts of energy. These "solar eruptions" manifest themselves in the form of solar flares, filament eruptions, coronal mass ejections (CMEs), and energetic particle releases. They are of high interest to scientists both because they represent fundamental processes that occur in various astrophysical context, and because, if directed toward Earth, they can disrupt Earth-based systems and satellites. Research over the last few decades has shown that the source of the eruptions is localized regions of energy-storing magnetic field on the Sun that become destabilized, leading to a release of the stored energy. Solar scientists have (probably) unraveled the basic outline of what happens in these eruptions, but many details are still not understood. In recent years we have been studying what triggers these magnetic eruptions, using ground-based and satellite-based solar observations in combination with predictions from various theoretical models. We will present an overview of solar activity and solar eruptions, give results from some of our own research, and discuss questions that remain to be explored.

  11. The possible mechanism of the "stratospheric bridge" modulation by the Pacific Decadal Oscillation in early winter and the QBO, 11-year solar cycle in late winter

    NASA Astrophysics Data System (ADS)

    Jadin, Evgeny; Wei, Ke; Chen, Wen; Wang, Lin

    Questions of the interannual variations of the extra-tropical stratospheric dynamics, its rela-tionship with the sea surface temperature (SST) anomalies in the North Pacific (Pacific Decadal Oscillation -PDO) in early winter (November-December), Quasi-Biennial Oscillation (QBO) (Holton-Tan relations), a decadal modulation by the 11-year Solar Cycle (SC) (Labitzke, van Loon -LvL correlations) in late winter (January-February) are discussed. In early winter, the interannual changes of the planetary wave activity define partly the variations of the strato-spheric circulation in subsequent January [Zyulyaeva and Jadin, 2009]. The interannual and decadal variations of the stratospheric wave activity appear to be associated with those of the PDO [Jadin et al. 2009]. A decadal period from the mid-1970s to mid-1990s of the violation of the Holton-Tan (HT) relationship corresponds well to that of the positive PDO phase (anoma-lously cold SSTs in the central North Pacific). Using the NCEP and ERA-40 monthly mean reanalysis datasets, the three-dimensional Eliassen-Palm fluxes are calculated. The results of the analysis of relations between the upward/downward propagation of planetary waves in the lower stratosphere ("stratospheric bridge"), their interaction with the zonal wind and the HT and LvL correlations for January-February are presented. In contrast with early winter, the large role in the wave-zonal flow interaction plays the downward propagation of planetary waves from the stratosphere to the troposphere over Canada and North Atlantic ("stratospheric wave hole") responsible for the sink of the eddy energy from the stratosphere. One can suggest that there are two dominant regimes in the stratosphere-troposphere coupling in late winter: 1) the "ventilation regime" with the strong penetration of planetary waves from the troposphere over north Eurasia and their strong downward propagation over Canada and North Atlantic, and 2) the "blocking regime" with the weak those

  12. Four minutes of in-class high-intensity interval activity improves selective attention in 9- to 11-year olds.

    PubMed

    Ma, Jasmin K; Le Mare, Lucy; Gurd, Brendon J

    2015-03-01

    The amount of time allocated to physical activity in schools is declining. Time-efficient physical activity solutions that demonstrate their impact on academic achievement-related outcomes are needed to prioritize physical activity within the school curricula. "FUNtervals" are 4-min, high-intensity interval activities that use whole-body actions to complement a storyline. The purpose of this study was to (i) explore whether FUNtervals can improve selective attention, an executive function posited to be essential for learning and academic success; and (ii) examine whether this relationship is predicted by students' classroom off-task behaviour. Seven grade 3-5 classes (n = 88) were exposed to a single-group, repeated cross-over design where each student's selective attention was compared between no-activity and FUNtervals days. In week 1, students were familiarized with the d2 test of attention and FUNterval activities, and baseline off-task behaviour was observed. In both weeks 2 and 3 students completed the d2 test of attention following either a FUNterval break or a no-activity break. The order of these breaks was randomized and counterbalanced between weeks. Neither motor nor passive off-task behaviour predicted changes in selective attention following FUNtervals; however, a weak relationship was observed for verbal off-task behaviour and improvements in d2 test performance. More importantly, students made fewer errors during the d2 test following FUNtervals. In supporting the priority of physical activity inclusion within schools, FUNtervals, a time efficient and easily implemented physical activity break, can improve selective attention in 9- to 11-year olds.

  13. Middle Atmosphere Response to Different Descriptions of the 11-Year Solar Cycle in Spectral Irradiance in a Chemistry-Climate Model

    NASA Technical Reports Server (NTRS)

    Swartz, W. H.; Stolarski, R. S.; Oman, L. D.; Fleming, E. L.; Jackman, C. H.

    2012-01-01

    The 11-year solar cycle in solar spectral irradiance (SSI) inferred from measurements by the SOlar Radiation & Climate Experiment (SORCE) suggests a much larger variation in the ultraviolet than previously accepted. We present middle atmosphere ozone and temperature responses to the solar cycles in SORCE SSI and the ubiquitous Naval Research Laboratory (NRL) SSI reconstruction using the Goddard Earth Observing System chemistry-climate model (GEOS CCM). The results are largely consistent with other recent modeling studies. The modeled ozone response is positive throughout the stratosphere and lower mesosphere using the NRL SSI, while the SORCE SSI produces a response that is larger in the lower stratosphere but out of phase with respect to total solar irradiance above 45 km. The modeled responses in total ozone are similar to those derived from satellite and ground-based measurements, 3-6 Dobson Units per 100 units of 10.7-cm radio flux (F10.7) in the tropics. The peak zonal mean tropical temperature response 50 using the SORCE SSI is nearly 2 K per 100 units 3 times larger than the simulation using the NRL SSI. The GEOS CCM and the Goddard Space Flight Center (GSFC) 2-D coupled model are used to examine how the SSI solar cycle affects the atmosphere through direct solar heating and photolysis processes individually. Middle atmosphere ozone is affected almost entirely through photolysis, whereas the solar cycle in temperature is caused both through direct heating and photolysis feedbacks, processes that are mostly linearly separable. Further, the net ozone response results from the balance of ozone production at wavelengths less than 242 nm and destruction at longer wavelengths, coincidentally corresponding to the wavelength regimes of the SOLar STellar Irradiance Comparison Experiment (SOLSTICE) and Spectral Irradiance Monitor (SIM) on SORCE, respectively. A higher wavelength-resolution analysis of the spectral response could allow for a better prediction of the

  14. Hindcast and forecast of grand solar minina and maxima using a three-frequency dynamo model based on Jupiter-Saturn tidal frequencies modulating the 11-year sunspot cycle

    NASA Astrophysics Data System (ADS)

    Scafetta, Nicola

    2016-04-01

    The Schwabe frequency band of the Zurich sunspot record since 1749 is found to be made of three major cycles with periods of about 9.98, 10.9 and 11.86 years. The two side frequencies appear to be closely related to the spring tidal period of Jupiter and Saturn (range between 9.5 and 10.5 years, and median 9.93 years) and to the tidal sidereal period of Jupiter (about 11.86 years). The central cycle can be associated to a quasi-11-year sunspot solar dynamo cycle that appears to be approximately synchronized to the average of the two planetary frequencies. A simplified harmonic constituent model based on the above two planetary tidal frequencies and on the exact dates of Jupiter and Saturn planetary tidal phases, plus a theoretically deduced 10.87-year central cycle reveals complex quasi-periodic interference/beat patterns. The major beat periods occur at about 115, 61 and 130 years, plus a quasi-millennial large beat cycle around 983 years. These frequencies and other oscillations appear once the model is non-linearly processed. We show that equivalent synchronized cycles are found in cosmogenic records used to reconstruct solar activity and in proxy climate records throughout the Holocene (last 12,000 years) up to now. The quasi-secular beat oscillations hindcast reasonably well the known prolonged periods of low solar activity during the last millennium such as the Oort, Wolf, Sporer, Maunder and Dalton minima, as well as the 17 115-year long oscillations found in a detailed temperature reconstruction of the Northern Hemisphere covering the last 2000 years. The millennial cycle hindcasts equivalent solar and climate cycles for 12,000 years. Finally, the harmonic model herein proposed reconstructs the prolonged solar minima that occurred during 1900- 1920 and 1960-1980 and the secular solar maxima around 1870-1890, 1940-1950 and 1995-2005 and a secular upward trending during the 20th century: this modulated trending agrees well with some solar proxy model, with

  15. Cardiorespiratory fitness, activity level, health-related anthropometric variables, sedentary behaviour and socioeconomic status in a sample of Iranian 7-11 year old boys.

    PubMed

    Esmaeilzadeh, S; Kalantari, H; Nakhostin-Roohi, B

    2013-03-01

    The purpose of this study was to evaluate cardiorespiratory fitness (CRF), activity level, some health-related anthropometric variables, sedentary behaviour and socioeconomic status (SES) of 7-11 year old boys in the city of Ardabil, Iran. Of 21 253 school boys aged 7-11 years, 766 participated in this study using the cluster sampling method. Subjects underwent standard anthropometry. One-mile test was used to evaluate [Formula: see text]O2 max. BMI cut-off points were used to identify weight status. Child's TV watching and video playing daily time (TVVPT) was taken for sedentary behaviour evaluation. SES and activity level were measured by standard questionnaires. Of all participants, 8.9% (N=68) of students had CRF lower than normal and 58.6% (N=449) of them had inadequate physical activity. There was a significant adverse relationship between [Formula: see text]O2 max and body mass index (BMI), waist to height ratio (WHtR), waist circumference (WC), and fat mass (FM) (p<0.05). A significant direct association between SES and both FM and TVVPT was observed (p<0.05). Significantly lower physical activity and [Formula: see text]O2 max, and higher TVVPT were observed in the obese boys than their counterparts (p<0.05). The results of this study indicated a significant relationship between CRF and physical activity, and health-related anthropometric variables in a selected sample of 7-11 year boys. Moreover, the obese subjects had not only lower physical activity but also longer sedentary behaviour time than their counterparts.

  16. Habitual Levels of Physical Activity Influence Bone Mass in 11-Year-Old Children From the United Kingdom: Findings From a Large Population-Based Cohort

    PubMed Central

    Tobias, Jon H; Steer, Colin D; Mattocks, Calum G; Riddoch, Chris; Ness, Andy R

    2009-01-01

    We examined the influence of habitual levels of physical activity on bone mass in childhood by studying the relationship between accelerometer recordings and DXA parameters in 4457 11-year-old children. Physical activity was positively related to both BMD and bone size in fully adjusted models. However, further exploration revealed that this effect on bone size was modified by fat mass. Introduction Exercise interventions have been reported to increase bone mass in children, but it is unclear whether levels of habitual physical activity also influence skeletal development. Materials and Methods We used multivariable linear regression to analyze associations between amount of moderate and vigorous physical activity (MVPA), derived from accelerometer recordings for a minimum of 3 days, and parameters obtained from total body DXA scans in 4457 11-year-old boys and girls from the Avon Longitudinal Study of Parents and Children. The influence of different activity intensities was also studied by stratification based on lower and higher accelerometer cut-points for moderate (3600 counts/minute) and vigorous (6200 counts/minute) activity, respectively. Results MVPA was positively associated with lower limb BMD and BMC adjusted for bone area (aBMC; p < 0.001, adjusted for age, sex, socio-economic factors, and height, with or without additional adjustment for lean and fat mass). MVPA was inversely related to lower limb bone area after adjusting for height and lean mass (p = 0.01), whereas a positive association was observed when fat mass was also adjusted for (p < 0.001). Lower limb BMC was positively related to MVPA after adjusting for height and lean and fat mass (p < 0.001), whereas little relationship was observed after adjusting for height and lean mass alone (p = 0.1). On multivariable regression analysis using the fully adjusted model, moderate activity exerted a stronger influence on lower limb BMC compared with light activity (light activity: 2.9 [1.2–4.7, p = 0

  17. Coupling of the Matched Gravity and Electromagnetic Fields of the Sun with Jupiter and its Moons Together in Nearest Portion of Jupiter's Orbit to the Sun as the Main Cause of the Peak of Approximately 11 Yearly Solar Cycles and Hazards from Solar Storms

    NASA Astrophysics Data System (ADS)

    Gholibeigian, Kazem; Gholibeigian, Hassan

    2016-04-01

    strongest variable GEFs in solar system after the Sun. For example, Ganymede is the largest moon of Jupiter and in the Solar System. Completing an orbit in roughly seven days. It means that it generates 52 GEFs oscillations (loading, unloading) per year in solar cycle while it is rotating around the Jupiter. New observations of the planet's extreme ultraviolet emissions show that bright explosions of Jupiter's aurora by the planet-moon interaction, not by solar activity [Tomoki Kimura, JAEA]. Coupling of Jupiter's GEFs and its moons with the Sun generate very strong GEFs and approximately 11 yearly solar cycles. The peaks of each cycle is when the Jupiter passes from the nearest portion of its orbit to the Sun. which some of its peaks generate gigantic solar storms and hazards to the Earth. The Earth passes from between of Sun and Jupiter eleven times in each solar cycle and may be under shooting of storms from the both side specially during 2-3 years in cycle's peak.

  18. Climatic variables as indicators of solar activity

    NASA Astrophysics Data System (ADS)

    Balybina, A. S.; Karakhanyan, A. A.

    2012-12-01

    Tree-ring analysis is used successfully in studies of solar-terrestrial relations. We consider a linear dependence between the radial increment in conifers in Eastern Siberia and solar activity parameters: the length and amplitude of an 11-year solar cycle in the 20th century. It is shown that the increment in conifers in the region is larger in a longer and lower solar cycle than in a short and high one. A correlation between the increment in the width of annual rings of Pinus sylvestris and Siberian pine and the length of the ascending phase of an 11-year cycle is revealed: the longer the ascending phase, the larger the radial increment in conifers. The dynamics of the annual increment in conifers in the region is inversely related to the cycle amplitude and magnetic disturbances in the main solar cycle.

  19. Comparison of short-term energy intake and appetite responses to active and seated video gaming, in 8-11-year-old boys.

    PubMed

    Allsop, Susan; Green, Benjamin P; Dodd-Reynolds, Caroline J; Barry, Gillian; Rumbold, Penny L S

    2016-03-28

    The acute effects of active and seated video gaming on energy intake (EI), blood glucose, plasma glucagon-like peptide-1 (GLP-17-36) and subjective appetite (hunger, prospective food consumption and fullness) were examined in 8-11-year-old boys. In a randomised, crossover manner, twenty-two boys completed one 90-min active and one 90-min seated video gaming trial during which food and drinks were provided ad libitum. EI, plasma GLP-17-36, blood glucose and subjective appetite were measured during and following both trials. Time-averaged AUC blood glucose was increased (P=0·037); however, EI was lower during active video gaming (1·63 (sem 0·26) MJ) compared with seated video gaming (2·65 (sem 0·32) MJ) (P=0·000). In a post-gaming test meal 1 h later, there were no significant differences in EI between the active and seated gaming trials. Although estimated energy expenditure was significantly higher during active video gaming, there was still no compensation for the lower EI. At cessation of the trials, relative EI (REI) was significantly lower following active video gaming (2·06 (sem 0·30) MJ) v. seated video gaming (3·34 (sem 0·35) MJ) (P=0·000). No significant differences were detected in time-averaged AUC GLP-17-36 or subjective appetite. At cessation of the active video gaming trial, EI and REI were significantly less than for seated video gaming. In spite of this, the REI established for active video gaming was a considerable amount when considering the total daily estimated average requirement for 8-11-year-old boys in the UK (7·70 MJ). PMID:26817510

  20. Comparison of short-term energy intake and appetite responses to active and seated video gaming, in 8-11-year-old boys.

    PubMed

    Allsop, Susan; Green, Benjamin P; Dodd-Reynolds, Caroline J; Barry, Gillian; Rumbold, Penny L S

    2016-03-28

    The acute effects of active and seated video gaming on energy intake (EI), blood glucose, plasma glucagon-like peptide-1 (GLP-17-36) and subjective appetite (hunger, prospective food consumption and fullness) were examined in 8-11-year-old boys. In a randomised, crossover manner, twenty-two boys completed one 90-min active and one 90-min seated video gaming trial during which food and drinks were provided ad libitum. EI, plasma GLP-17-36, blood glucose and subjective appetite were measured during and following both trials. Time-averaged AUC blood glucose was increased (P=0·037); however, EI was lower during active video gaming (1·63 (sem 0·26) MJ) compared with seated video gaming (2·65 (sem 0·32) MJ) (P=0·000). In a post-gaming test meal 1 h later, there were no significant differences in EI between the active and seated gaming trials. Although estimated energy expenditure was significantly higher during active video gaming, there was still no compensation for the lower EI. At cessation of the trials, relative EI (REI) was significantly lower following active video gaming (2·06 (sem 0·30) MJ) v. seated video gaming (3·34 (sem 0·35) MJ) (P=0·000). No significant differences were detected in time-averaged AUC GLP-17-36 or subjective appetite. At cessation of the active video gaming trial, EI and REI were significantly less than for seated video gaming. In spite of this, the REI established for active video gaming was a considerable amount when considering the total daily estimated average requirement for 8-11-year-old boys in the UK (7·70 MJ).

  1. Physical activity and all-cause mortality among older Brazilian adults: 11-year follow-up of the Bambuí Health and Aging Study

    PubMed Central

    Ramalho, Juciany RO; Mambrini, Juliana VM; César, Cibele C; de Oliveira, César M; Firmo, Josélia OA; Lima-Costa, Maria Fernanda; Peixoto, Sérgio V

    2015-01-01

    Objective To investigate the association between physical activity (eg, energy expenditure) and survival over 11 years of follow-up in a large representative community sample of older Brazilian adults with a low level of education. Furthermore, we assessed sex as a potential effect modifier of this association. Materials and methods A population-based prospective cohort study was conducted on all the ≥60-year-old residents in Bambuí city (Brazil). A total of 1,606 subjects (92.2% of the population) enrolled, and 1,378 (85.8%) were included in this study. Type, frequency, and duration of physical activity were assessed in the baseline survey questionnaire, and the metabolic equivalent task tertiles were estimated. The follow-up time was 11 years (1997–2007), and the end point was mortality. Deaths were reported by next of kin during the annual follow-up interview and ascertained through the Brazilian System of Information on Mortality, Brazilian Ministry of Health. Hazard ratios (95% confidence intervals [CIs]) were estimated by Cox proportional-hazard models, and potential confounders were considered. Results A statistically significant interaction (P<0.03) was found between sex and energy expenditure. Among older men, increases in levels of physical activity were associated with reduced mortality risk. The hazard ratios were 0.59 (95% CI 0.43–0.81) and 0.47 (95% CI 0.34–0.66) for the second and third tertiles, respectively. Among older women, there was no significant association between physical activity and mortality. Conclusion It was possible to observe the effect of physical activity in reducing mortality risk, and there was a significant interaction between sex and energy expenditure, which should be considered in the analysis of this association in different populations. PMID:25931817

  2. Cosmogenic Isotope Variability During the Maunder Minimum: Normal 11-year Cycles Are Expected

    NASA Astrophysics Data System (ADS)

    Poluianov, S. V.; Usoskin, I. G.; Kovaltsov, G. A.

    2014-12-01

    The amplitude of the 11-year cycle measured in the cosmogenic isotope 10Be during the Maunder Minimum is comparable to that during the recent epoch of high solar activity. Because of the virtual absence of the cyclic variability of sunspot activity during the Maunder Minimum this seemingly contradicts an intuitive expectation that lower activity would result in smaller solar-cycle variations in cosmogenic radio-isotope data, or in none, leading to confusing and misleading conclusions. It is shown here that large 11-year solar cycles in cosmogenic data observed during periods of suppressed sunspot activity do not necessarily imply strong heliospheric fields. Normal-amplitude cycles in the cosmogenic radio-isotopes observed during the Maunder Minimum are consistent with theoretical expectations because of the nonlinear relation between solar activity and isotope production. Thus, cosmogenic-isotope data provide a good tool to study solar-cycle variability even during grand minima of solar activity.

  3. Acute effects of active gaming on ad libitum energy intake and appetite sensations of 8-11-year-old boys.

    PubMed

    Allsop, Susan; Dodd-Reynolds, Caroline J; Green, Benjamin P; Debuse, Dorothée; Rumbold, Penny L S

    2015-12-28

    The present study examined the acute effects of active gaming on energy intake (EI) and appetite responses in 8-11-year-old boys in a school-based setting. Using a randomised cross-over design, twenty-one boys completed four individual 90-min gaming bouts, each separated by 1 week. The gaming bouts were (1) seated gaming, no food or drink; (2) active gaming, no food or drink; (3) seated gaming with food and drink offered ad libitum; and (4) active gaming with food and drink offered ad libitum. In the two gaming bouts during which foods and drinks were offered, EI was measured. Appetite sensations - hunger, prospective food consumption and fullness - were recorded using visual analogue scales during all gaming bouts at 30-min intervals and at two 15-min intervals post gaming. In the two bouts with food and drink, no significant differences were found in acute EI (MJ) (P=0·238). Significant differences were detected in appetite sensations for hunger, prospective food consumption and fullness between the four gaming bouts at various time points. The relative EI calculated for the two gaming bouts with food and drink (active gaming 1·42 (sem 0·28) MJ; seated gaming 2·12 (sem 0·25) MJ) was not statistically different. Acute EI in response to active gaming was no different from seated gaming, and appetite sensations were influenced by whether food was made available during the 90-min gaming bouts. PMID:26435259

  4. Acute effects of active gaming on ad libitum energy intake and appetite sensations of 8-11-year-old boys.

    PubMed

    Allsop, Susan; Dodd-Reynolds, Caroline J; Green, Benjamin P; Debuse, Dorothée; Rumbold, Penny L S

    2015-12-28

    The present study examined the acute effects of active gaming on energy intake (EI) and appetite responses in 8-11-year-old boys in a school-based setting. Using a randomised cross-over design, twenty-one boys completed four individual 90-min gaming bouts, each separated by 1 week. The gaming bouts were (1) seated gaming, no food or drink; (2) active gaming, no food or drink; (3) seated gaming with food and drink offered ad libitum; and (4) active gaming with food and drink offered ad libitum. In the two gaming bouts during which foods and drinks were offered, EI was measured. Appetite sensations - hunger, prospective food consumption and fullness - were recorded using visual analogue scales during all gaming bouts at 30-min intervals and at two 15-min intervals post gaming. In the two bouts with food and drink, no significant differences were found in acute EI (MJ) (P=0·238). Significant differences were detected in appetite sensations for hunger, prospective food consumption and fullness between the four gaming bouts at various time points. The relative EI calculated for the two gaming bouts with food and drink (active gaming 1·42 (sem 0·28) MJ; seated gaming 2·12 (sem 0·25) MJ) was not statistically different. Acute EI in response to active gaming was no different from seated gaming, and appetite sensations were influenced by whether food was made available during the 90-min gaming bouts.

  5. Solar irradiance measurements - Minimum through maximum solar activity

    NASA Technical Reports Server (NTRS)

    Lee, R. B., III; Gibson, M. A.; Shivakumar, N.; Wilson, R.; Kyle, H. L.; Mecherikunnel, A. T.

    1991-01-01

    The Earth Radiation Budget Satellite (ERBS) and the NOAA-9 spacecraft solar monitors were used to measure the total solar irradiance during the period October 1984 to December 1989. Decreasing trends in the irradiance measurements were observed as sunspot activity decreased to minimum levels in 1986; after 1986, increasing trends were observed as sunspot activity increased. The magnitude of the irradiance variability was found to be approximately 0.1 percent between sunspot minimum and maximum (late 1989). When compared with the 1984 to 1989 indices of solar magnetic activity, the irradiance trends appear to be in phase with the 11-year sunspot cycle. Both irradiance series yielded 1,365/sq Wm as the mean value of the solar irradiance, normalized to the mean earth/sun distance. The monitors are electrical substitution, active-cavity radiometers with estimated measurement precisions and accuracies of less than 0.02 and 0.2 percent, respectively.

  6. A comparison of physical activity and sedentary behaviour in 9–11 year old British Pakistani and White British girls: a mixed methods study

    PubMed Central

    2014-01-01

    Background Previous studies suggest that British children of South Asian origin are less active and more sedentary than White British children. However, little is known about the behaviours underlying low activity levels, nor the familial contexts of active and sedentary behaviours in these groups. Our aim was to test hypotheses about differences between British Pakistani and White British girls using accelerometry and self-reports of key active and sedentary behaviours, and to obtain an understanding of factors affecting these behaviours using parental interviews. Methods Participants were 145 girls (70 White British and 75 British Pakistani) aged 9–11 years and parents of 19 of the girls. Accelerometry data were collected over 4 days and girls provided 24-hour physical activity interviews on 3 of these days. Multilevel linear regression models and generalised linear mixed models tested for ethnic differences in activity, sedentary time, and behaviours. Semi-structured interviews were conducted with parents. Results Compared to White British girls, British Pakistani girls accumulated 102 (95% CI 59, 145) fewer counts per minute and 14 minutes (95% CI 8, 20) less time in moderate to vigorous physical activity per day. British Pakistani girls spent more time (28 minutes per day, 95% CI 14, 42) sedentary. Fewer British Pakistani than White British girls reported participation in organised sports and exercise (OR 0.22 95% CI 0.08, 0.64) or in outdoor play (OR 0.42 95% CI 0.20, 0.91). Fewer British Pakistani girls travelled actively to school (OR 0.26 95% CI 0.10, 0.71). There was no significant difference in reported screen time (OR 0.88 95% CI 0.45, 1.73). Parental interviews suggested that structural constraints (e.g. busy family schedules) and parental concerns about safety were important influences on activity levels. Conclusions British Pakistani girls were less active than White British girls and were less likely to participate in key active behaviours

  7. Relationships between Parental Education and Overweight with Childhood Overweight and Physical Activity in 9–11 Year Old Children: Results from a 12-Country Study

    PubMed Central

    Muthuri, Stella K.; Onywera, Vincent O.; Tremblay, Mark S.; Broyles, Stephanie T.; Chaput, Jean-Philippe; Fogelholm, Mikael; Hu, Gang; Kuriyan, Rebecca; Kurpad, Anura; Lambert, Estelle V.; Maher, Carol; Maia, José; Matsudo, Victor; Olds, Timothy; Sarmiento, Olga L.; Standage, Martyn; Tudor-Locke, Catrine; Zhao, Pei; Church, Timothy S.; Katzmarzyk, Peter T.

    2016-01-01

    Background Globally, the high prevalence of overweight and low levels of physical activity among children has serious implications for morbidity and premature mortality in adulthood. Various parental factors are associated with childhood overweight and physical activity. The objective of this paper was to investigate relationships between parental education or overweight, and (i) child overweight, (ii) child physical activity, and (iii) explore household coexistence of overweight, in a large international sample. Methods Data were collected from 4752 children (9–11 years) as part of the International Study of Childhood Obesity, Lifestyle and the Environment in 12 countries around the world. Physical activity of participating children was assessed by accelerometry, and body weight directly measured. Questionnaires were used to collect parents’ education level, weight, and height. Results Maternal and paternal overweight were positively associated with child overweight. Higher household coexistence of parent-child overweight was observed among overweight children compared to the total sample. There was a positive relationship between maternal education and child overweight in Colombia 1.90 (1.23–2.94) [odds ratio (confidence interval)] and Kenya 4.80 (2.21–10.43), and a negative relationship between paternal education and child overweight in Brazil 0.55 (0.33–0.92) and the USA 0.54 (0.33–0.88). Maternal education was negatively associated with children meeting physical activity guidelines in Colombia 0.53 (0.33–0.85), Kenya 0.35 (0.19–0.63), and Portugal 0.54 (0.31–0.96). Conclusions Results are aligned with previous studies showing positive associations between parental and child overweight in all countries, and positive relationships between parental education and child overweight or negative associations between parental education and child physical activity in lower economic status countries. Relationships between maternal and paternal education

  8. The 11-year cycle in human births

    NASA Astrophysics Data System (ADS)

    Randall, Walter; Moos, Walter S.

    1993-06-01

    The annual numbers of human births were analyzed with regard to an 11-year cycle. The annual values were obtained from seven different regions: Australia, Germany, England and Wales, New Zealand, Japan, Switzerland, and the USA. Fifty-five annual values were obtained from each region for the years 1930 to 1984, comprising approximately five sunspot cycles. For each region the annual values were formed into 5 by 11 matrices; the eleven column means obtained were standardized, and plotted. A periodic regression technique, utilizing the fitting functions of the Fourier series, was used to evaluate the temporal order in the column means. Eleven-year rhythms were found and compared with solar and geophysical variables. Correlations were found with sunspots and solar flares, with terrestrial measures of magnetic disturbances (the magnetic indices derived from the K-index), and with temperature. The correlation of conceptions with the 11-year solar cycle may be a potential guide in the selection of further variables for the control and regulation of the rhythms in human conceptions.

  9. An Analysis of Solar Global Activity

    NASA Astrophysics Data System (ADS)

    Mouradian, Zadig

    2013-02-01

    This article proposes a unified observational model of solar activity based on sunspot number and the solar global activity in the rotation of the structures, both per 11-year cycle. The rotation rates show a variation of a half-century period and the same period is also associated to the sunspot amplitude variation. The global solar rotation interweaves with the observed global organisation of solar activity. An important role for this assembly is played by the Grand Cycle formed by the merging of five sunspot cycles: a forgotten discovery by R. Wolf. On the basis of these elements, the nature of the Dalton Minimum, the Maunder Minimum, the Gleissberg Cycle, and the Grand Minima are presented.

  10. Solar activity and explosive transient eruptions

    NASA Astrophysics Data System (ADS)

    Ambastha, Ashok

    2016-07-01

    We discuss active and explosive behavior of the Sun observable in a wide range of wavelengths (or energies) and spatio-temporal scales that are not possible for any other star. On the longer time scales, the most notable form of solar activity is the well known so called 11-year solar activity cycle. On the other hand, at shorter time scales of a few minutes to several hours, spectacular explosive transient events, such as, solar flares, prominence eruptions, and coronal mass ejections (CMEs) occur in the outer layers of solar atmosphere. These solar activity cycle and explosive phenomena influence and disturb the space between the Sun and planets. The state of the interplanetary medium, including planetary and terrestrial surroundings, or "the space weather", and its forecasting has important practical consequences. The reliable forecasting of space weather lies in continuously observing of the Sun. We present an account of the recent developments in our understanding of these phenomena using both space-borne and ground-based solar observations.

  11. Activities for Teaching Solar Energy.

    ERIC Educational Resources Information Center

    Mason, Jack Lee; Cantrell, Joseph S.

    1980-01-01

    Plans and activities are suggested for teaching elementary children about solar energy. Directions are included for constructing a flat plate collector and a solar oven. Activities for a solar field day are given. (SA)

  12. Some problems in coupling solar activity to meteorological phenomena

    NASA Technical Reports Server (NTRS)

    Dessler, A. J.

    1974-01-01

    The development of a theory of coupling of solar activity to meteorological phenomena has to date foundered on the two difficulties of (1) devising a mechanism that can modify the behavior of the troposphere while employing only a negligible amount of energy compared with the energy necessary to drive the normal meteorological system; and (2) determining how such a mechanism can effectively couple some relevant magnetospheric process into the troposphere in such a way as to influence the weather. A clue to the nature of the interaction between the weather and solar activity might be provided by the fact that most solar activity undergoes a definite 11-year cycle, while meteorological phenomena undergo either no closely correlated variation, or an 11-year variation, or a 22-year variation.

  13. Solar activity; weather and climate: a review

    NASA Astrophysics Data System (ADS)

    Pudovkin, M. I.

    2003-04-01

    In the proposed review, experimental evidences on a close relationship between the solar activity and the weather are discussed. Solar radiation variations associated with various manifestation of the solar activity on the Sun's surface (sunspots, flocculae) during both the short-term disturbances and 11-year solar cycles are considered. A conclusion is arrived on the intensity of those variations to be insufficient to produce observed disturbances in the lower atmosphere state (Foukal, Lin and others). Changes of the atmosphere transmittance and cloudiness associated with solar flares and geomagnetic disturbances are discussed. There is shown that variations of the solar radiation observed at the Earth's surface during the disturbances mentioned above may explain quantitatively the observed changes in the lower atmosphere state. There is supposed that the observed variations of the cloudiness and atmosphere transparency may be caused by the intensity variations of the cosmic rays flux of the galactic and cosmic origin (Tinsley, Scherrer, Hilis, Deer, Pudovkin, Veretenenko, Friis-Christensen, Svensmark and others). Various mechanisms of the cosmic rays influence on the atmospheric transparency and cloudiness variations are considered. Some numerical models describing the state and dynamics of the lower atmosphere are discussed and the possibility of incorporating in them as input parameters the observed variations of the cloudiness and atmosphere's transparency is analyzed.

  14. Radiocarbon version of 11-year variations in the interplanetary magnetic field since 1250

    NASA Astrophysics Data System (ADS)

    Volobuev, D. M.; Makarenko, N. G.

    2015-12-01

    It is known that the interplanetary magnetic field (IMF), which is controlled by solar activity, modulates the flux of galactic cosmic rays (GCRs). Because GCRs are the only source of the 14C isotope in the atmosphere before the era of atmospheric nuclear tests, the formation rate of this isotope in the atmosphere is one of the few reliable sources of information on solar activity before the initiation of regular telescopic observations. In this study, we solve the inverse problem for the equation of radiocarbon diffusion from the atmosphere into the ocean by calibrating the radiocarbon content in tree rings from 1510 to 1950. We obtain an approximation of 11-year IMF cycles represented by the IDV index from 1872 to 1950. The model extrapolation to the calibration curve for the Korean Peninsula over the time period from 1250 to 1650 makes it possible to calculate the sequence of minima of quasi-11-year cycles since 1250.

  15. Origins of Solar Activity

    NASA Astrophysics Data System (ADS)

    Rust, David M.

    1996-05-01

    Work under the subject grant began in August 1992, when Mr. J. J. Blanchette began study and data analysis in the area of solar flare research. Mr. Blanchette passed all requirements toward a Ph.D., except for the thesis. Mr. Blanchette worked with the APL Flare Genesis Experiment team to build a balloon-borne solar vector magnetograph. Other work on the magnetograph was partially supported by AFOSR grant F49620-94-1-0079. Mr. Blanchette assisted the Flare Genesis team prepare the telescope and focal plane optical elements for a test flight. He participated in instrument integ ration and in launch preparations for the flight, which took place on January 23, 1994. Mr. Blanchette was awarded a Masters Degree in Astrophysics by the Johns Hopkins University in recognition of his achievements. Mr. Blanchette indicated a desire to suspend work on the Ph.D. degree, and he left the AASERT program on August 31, 1994. Under the guidance of his advisor at JHU/APL, Dr. David M. Rust, Mr. Blanchette gained enough background in solar physics so that he can contribute to observational, analytical, and presentation efforts in solar research. Beginning in August 1995, Mr. Ashok Kumar was supported by the grant. Mr. Kumar demonstrated remarkable theoretical insight into the problems of solar activity. He developed the concept of intrinsic scale magnetic flux ropes in the solar atmosphere and interplanetary space. His model can explain the heating of interplanetary magnetic clouds. Recently, his idea has been extended to explain solar wind heating. If the idea is confirmed by further comparison with observations, it will be a major breakthrough in space physics and it may lead to an explanation for why the solar corona's temperature is over a million degrees.

  16. Commission 10: Solar Activity

    NASA Astrophysics Data System (ADS)

    van Driel-Gesztelyi, Lidia; Schrijver, Carolus J.; Klimchuk, James A.; Charbonneau, Paul; Fletcher, Lyndsay; Hasan, S. Sirajul; Hudson, Hugh S.; Kusano, Kanya; Mandrini, Cristina H.; Peter, Hardi; Vršnak, Bojan; Yan, Yihua

    2012-04-01

    Commission 10 of the International Astronomical Union has more than 650 members who study a wide range of activity phenomena produced by our nearest star, the Sun. Solar activity is intrinsically related to solar magnetic fields and encompasses events from the smallest energy releases (nano- or even picoflares) to the largest eruptions in the Solar System, coronal mass ejections (CMEs), which propagate into the Heliosphere reaching the Earth and beyond. Solar activity is manifested in the appearance of sunspot groups or active regions, which are the principal sources of activity phenomena from the emergence of their magnetic flux through their dispersion and decay. The period 2008-2009 saw an unanticipated extended solar cycle minimum and unprecedentedly weak polar-cap and heliospheric field. Associated with that was the 2009 historical maximum in galactic cosmic rays flux since measurements begun in the middle of the 20th Century. Since then Cycle 24 has re-started solar activity producing some spectacular eruptions observed with a fleet of spacecraft and ground-based facilities. In the last triennium major advances in our knowledge and understanding of solar activity were due to continuing success of space missions as SOHO, Hinode, RHESSI and the twin STEREO spacecraft, further enriched by the breathtaking images of the solar atmosphere produced by the Solar Dynamic Observatory (SDO) launched on 11 February 2010 in the framework of NASA's Living with a Star program. In August 2012, at the time of the IAU General Assembly in Beijing when the mandate of this Commission ends, we will be in the unique position to have for the first time a full 3-D view of the Sun and solar activity phenomena provided by the twin STEREO missions about 120 degrees behind and ahead of Earth and other spacecraft around the Earth and ground-based observatories. These new observational insights are continuously posing new questions, inspiring and advancing theoretical analysis and

  17. Solar Energy Project, Activities: General Solar Topics.

    ERIC Educational Resources Information Center

    Tullock, Bruce, Ed.; And Others

    This guide contains lesson plans and outlines of activities which introduce students to concepts and issues relating to solar energy. Lessons frequently presented in the context of solar energy as it relates to contemporary energy problems. Each unit presents an introduction; objectives; necessary skills and knowledge; materials; method;…

  18. Effects of long-period solar activity fluctuation on temperature and pressure of the terrestrial atmosphere

    NASA Technical Reports Server (NTRS)

    Rubashev, B. M.

    1978-01-01

    The present state of research on the influence of solar sunspot activity on tropospheric temperature and pressure is reviewed. The existence of an 11-year temperature cycle of 5 different types is affirmed. A cyclic change in atmospheric pressure, deducing characteristic changes between 11-year cycles is discussed. The existence of 80-year and 5-to-6-year cycles of temperature is established, and physical causes for birth are suggested.

  19. Commission 10: Solar Activity

    NASA Astrophysics Data System (ADS)

    Klimchuk, James A.; van Driel-Gesztelyi, Lidia; Schrijver, Carolus J.; Melrose, Donald B.; Fletcher, Lyndsay; Gopalswamy, Natchimuthuk; Harrison, Richard A.; Mandrini, Cristina H.; Peter, Hardi; Tsuneta, Saku; Vršnak, Bojan; Wang, Jing-Xiu

    Commission 10 deals with solar activity in all of its forms, ranging from the smallest nanoflares to the largest coronal mass ejections. This report reviews scientific progress over the roughly two-year period ending in the middle of 2008. This has been an exciting time in solar physics, highlighted by the launches of the Hinode and STEREO missions late in 2006. The report is reasonably comprehensive, though it is far from exhaustive. Limited space prevents the inclusion of many significant results. The report is divided into the following sections: Photosphere and chromosphere; Transition region; Corona and coronal heating; Coronal jets; flares; Coronal mass ejection initiation; Global coronal waves and shocks; Coronal dimming; The link between low coronal CME signatures and magnetic clouds; Coronal mass ejections in the heliosphere; and Coronal mass ejections and space weather. Primary authorship is indicated at the beginning of each section.

  20. Apparent Relations Between Solar Activity and Solar Tides Caused by the Planets

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh

    2007-01-01

    A solar storm is a storm of ions and electrons from the Sun. Large solar storms are usually preceded by solar flares, phenomena that can be characterized quantitatively from Earth. Twenty-five of the thirty-eight largest known solar flares were observed to start when one or more tide-producing planets (Mercury, Venus, Earth, and Jupiter) were either nearly above the event positions (less than 10 deg. longitude) or at the opposing side of the Sun. The probability for this to happen at random is 0.039 percent. This supports the hypothesis that the force or momentum balance (between the solar atmospheric pressure, the gravity field, and magnetic field) on plasma in the looping magnetic field lines in solar corona could be disturbed by tides, resulting in magnetic field reconnection, solar flares, and solar storms. Separately, from the daily position data of Venus, Earth, and Jupiter, an 11-year planet alignment cycle is observed to approximately match the sunspot cycle. This observation supports the hypothesis that the resonance and beat between the solar tide cycle and nontidal solar activity cycle influences the sunspot cycle and its varying magnitudes. The above relations between the unpredictable solar flares and the predictable solar tidal effects could be used and further developed to forecast the dangerous space weather and therefore reduce its destructive power against the humans in space and satellites controlling mobile phones and global positioning satellite (GPS) systems.

  1. Ionospheric effects of the extreme solar activity of February 1986

    NASA Technical Reports Server (NTRS)

    Boska, J.; Pancheva, D.

    1989-01-01

    During February 1986, near the minimum of the 11 year Solar sunspot cycle, after a long period of totally quiet solar activity (R sub z = 0 on most days in January) a period of a suddenly enhanced solar activity occurred in the minimum between solar cycles 21 and 22. Two proton flares were observed during this period. A few other flares, various phenomena accompanying proton flares, an extremely severe geomagnetic storm and strong disturbances in the Earth's ionosphere were observed in this period of enhanced solar activity. Two active regions appeared on the solar disc. The flares in both active regions were associated with enhancement of solar high energy proton flux which started on 4 February of 0900 UT. Associated with the flares, the magnetic storm with sudden commencement had its onset on 6 February 1312 UT and attained its maximum on 8 February (Kp = 9). The sudden enhancement in solar activity in February 1986 was accompanied by strong disturbances in the Earth's ionosphere, SIDs and ionospheric storm. These events and their effects on the ionosphere are discussed.

  2. Solar activity secular cycles

    NASA Astrophysics Data System (ADS)

    Kramynin, A. P.; Mordvinov, A. V.

    2013-12-01

    Long-term variations in solar activity secular cycles have been studied using a method for the expansion of reconstructed sunspot number series Sn( t) for 11400 years in terms of natural orthogonal functions. It has been established that three expansion components describe more than 98% of all Sn( t) variations. In this case, the contribution of the first expansion component is about 92%. The averaged form of the 88year secular cycle has been determined based on the form of the first expansion coordinate function. The quasi-periodicities modulating the secular cycle have been revealed based on the time function conjugate to the first function. The quasi-periodicities modulating the secular cycle coincide with those observed in the Sn( t) series spectrum. A change in the secular cycle form and the time variations in this form are described by the second and third expansion components, the contributions of which are about 4 and 2%, respectively. The variations in the steepness of the secular cycle branches are more pronounced in the 200-year cycle, and the secular cycle amplitude varies more evidently in the 2300-year cycle.

  3. Low Physical Activity Level and Short Sleep Duration Are Associated with an Increased Cardio-Metabolic Risk Profile: A Longitudinal Study in 8-11 Year Old Danish Children

    PubMed Central

    Hjorth, Mads F.; Chaput, Jean-Philippe; Damsgaard, Camilla T.; Dalskov, Stine-Mathilde; Andersen, Rikke; Astrup, Arne; Michaelsen, Kim F.; Tetens, Inge; Ritz, Christian; Sjödin, Anders

    2014-01-01

    Background As cardio-metabolic risk tracks from childhood to adulthood, a better understanding of the relationship between movement behaviors (physical activity, sedentary behavior and sleep) and cardio-metabolic risk in childhood may aid in preventing metabolic syndrome (MetS) in adulthood. Objective To examine independent and combined cross-sectional and longitudinal associations between movement behaviors and the MetS score in 8-11 year old Danish children. Design Physical activity, sedentary time and sleep duration (seven days and eight nights) were assessed by accelerometer and fat mass index (fat mass/height2) was assessed using Dual-energy X-ray absorptiometry. The MetS-score was based on z-scores of waist circumference, mean arterial blood pressure, homeostatic model assessment of insulin resistance, triglycerides and high density lipoprotein cholesterol. All measurements were taken at three time points separated by 100 days. Average of the three measurements was used as habitual behavior in the cross-sectional analysis and changes from first to third measurement was used in the longitudinal analysis. Results 723 children were included. In the cross-sectional analysis, physical activity was negatively associated with the MetS-score (P<0.03). In the longitudinal analysis, low physical activity and high sedentary time were associated with an increased MetS-score (all P<0.005); however, after mutual adjustments for movement behaviors, physical activity and sleep duration, but not sedentary time, were associated with the MetS-score (all P<0.03). Further adjusting for fat mass index while removing waist circumference from the MetS-score rendered the associations no longer statistically significant (all P>0.17). Children in the most favorable tertiles of changes in moderate-to-vigorous physical activity, sleep duration and sedentary time during the 200-day follow-up period had an improved MetS-score relative to children in the opposite tertiles (P = 0

  4. Solar activity and the weather

    NASA Technical Reports Server (NTRS)

    Wilcox, J. M.

    1975-01-01

    The attempts during the past century to establish a connection between solar activity and the weather are discussed; some critical remarks about the quality of much of the literature in this field are given. Several recent investigations are summarized. Use of the solar/interplanetary magnetic sector structure in future investigations is suggested to add an element of cohesiveness and interaction to these investigations.

  5. Solar activity and the weather

    NASA Technical Reports Server (NTRS)

    Wilcox, J. M.

    1974-01-01

    The attempts during the past century to establish a connection between solar activity and the weather are discussed. Some critical remarks about the quality of much of the literature in this field are given. Several recent investigations are summarized. Use of the solar interplanetary magnetic sector structure in future investigations is suggested to perhaps add an element of cohesiveness and interaction to these investigations.

  6. Solar activity and the weather

    NASA Technical Reports Server (NTRS)

    Wilcox, J. M.

    1975-01-01

    Attempts during the past century to establish a connection between solar activity and the weather are discussed. Some critical remarks about the quality of much of the literature in this field are given, and several recent investigations are summarized. Use of the solar-interplanetary magnetic sector structure in future investigations may add an element of cohesiveness and interaction to these investigations.

  7. Solar activity and myocardial infarction.

    PubMed

    Szczeklik, E; Mergentaler, J; Kotlarek-Haus, S; Kuliszkiewicz-Janus, M; Kucharczyk, J; Janus, W

    1983-01-01

    The correlation between the incidence of myocardial infarction, sudden cardiac death, the solar activity and geomagnetism in the period 1969-1976 was studied, basing on Wrocław hospitals material registered according to WHO standards; sudden death was assumed when a person died within 24 hours after the onset of the disease. The highest number of infarctions and sudden deaths was detected for 1975, which coincided with the lowest solar activity, and the lowest one for the years 1969-1970 coinciding with the highest solar activity. Such an inverse, statistically significant correlation was not found to exist between the studied biological phenomena and geomagnetism. PMID:6851574

  8. Solar activity over different timescales

    NASA Astrophysics Data System (ADS)

    Obridko, Vladimir; Nagovitsyn, Yuri

    The report deals with the “General History of the Sun” (multi-scale description of the long-term behavior of solar activity): the possibility of reconstruction. Time scales: • 100-150 years - the Solar Service. • 400 - instrumental observations. • 1000-2000 years - indirect data (polar auroras, sunspots seen with the naked eye). • Over-millennial scale (Holocene) -14С (10Be) Overview and comparison of data sets. General approaches to the problem of reconstruction of solar activity indices on a large timescale. North-South asymmetry of the sunspot formation activity. 200-year cycle over the “evolution timescales”.The relative contribution of the large-scale and low-latitude. components of the solar magnetic field to the general geomagnetic activity. “Large-scale” and low-latitude sources of geomagnetic disturbances.

  9. Deciphering Solar Magnetic Activity: On Grand Minima in Solar Activity

    NASA Astrophysics Data System (ADS)

    Mcintosh, Scott; Leamon, Robert

    2015-07-01

    The Sun provides the energy necessary to sustain our existence. While the Sun provides for us, it is also capable of taking away. The weather and climatic scales of solar evolution and the Sun-Earth connection are not well understood. There has been tremendous progress in the century since the discovery of solar magnetism - magnetism that ultimately drives the electromagnetic, particulate and eruptive forcing of our planetary system. There is contemporary evidence of a decrease in solar magnetism, perhaps even indicators of a significant downward trend, over recent decades. Are we entering a minimum in solar activity that is deeper and longer than a typical solar minimum, a "grand minimum"? How could we tell if we are? What is a grand minimum and how does the Sun recover? These are very pertinent questions for modern civilization. In this paper we present a hypothetical demonstration of entry and exit from grand minimum conditions based on a recent analysis of solar features over the past 20 years and their possible connection to the origins of the 11(-ish) year solar activity cycle.

  10. Solar active region display system

    NASA Astrophysics Data System (ADS)

    Golightly, M.; Raben, V.; Weyland, M.

    2003-04-01

    The Solar Active Region Display System (SARDS) is a client-server application that automatically collects a wide range of solar data and displays it in a format easy for users to assimilate and interpret. Users can rapidly identify active regions of interest or concern from color-coded indicators that visually summarize each region's size, magnetic configuration, recent growth history, and recent flare and CME production. The active region information can be overlaid onto solar maps, multiple solar images, and solar difference images in orthographic, Mercator or cylindrical equidistant projections. Near real-time graphs display the GOES soft and hard x-ray flux, flare events, and daily F10.7 value as a function of time; color-coded indicators show current trends in soft x-ray flux, flare temperature, daily F10.7 flux, and x-ray flare occurrence. Through a separate window up to 4 real-time or static graphs can simultaneously display values of KP, AP, daily F10.7 flux, GOES soft and hard x-ray flux, GOES >10 and >100 MeV proton flux, and Thule neutron monitor count rate. Climatologic displays use color-valued cells to show F10.7 and AP values as a function of Carrington/Bartel's rotation sequences - this format allows users to detect recurrent patterns in solar and geomagnetic activity as well as variations in activity levels over multiple solar cycles. Users can customize many of the display and graph features; all displays can be printed or copied to the system's clipboard for "pasting" into other applications. The system obtains and stores space weather data and images from sources such as the NOAA Space Environment Center, NOAA National Geophysical Data Center, the joint ESA/NASA SOHO spacecraft, and the Kitt Peak National Solar Observatory, and can be extended to include other data series and image sources. Data and images retrieved from the system's database are converted to XML and transported from a central server using HTTP and SOAP protocols, allowing

  11. Solar Energy Project, Activities: Biology.

    ERIC Educational Resources Information Center

    Tullock, Bruce, Ed.; And Others

    This guide contains lesson plans and outlines of science activities which present concepts of solar energy in the context of biology experiments. Each unit presents an introduction; objectives; skills and knowledge needed; materials; methods; questions; recommendations for further work; and a teacher information sheet. The teacher information…

  12. On the possible relations between solar activities and global seismicity in the solar cycle 20 to 23

    SciTech Connect

    Herdiwijaya, Dhani; Arif, Johan; Nurzaman, Muhamad Zamzam; Astuti, Isna Kusuma Dewi

    2015-09-30

    Solar activities consist of high energetic particle streams, electromagnetic radiation, magnetic and orbital gravitational forces. The well-know solar activity main indicator is the existence of sunspot which has mean variation in 11 years, named by solar cycle, allow for the above fluctuations. Solar activities are also related to the space weather affecting all planetary atmospheric variability, moreover to the Earth’s climate variability. Large extreme space and geophysical events (high magnitude earthquakes, explosive volcanic eruptions, magnetic storms, etc.) are hazards for humankind, infrastructure, economies, technology and the activities of civilization. With a growing world population, and with modern reliance on delicate technological systems, human society is becoming increasingly vulnerable to natural hazardous events. The big question arises to the relation between solar forcing energy to the Earth’s global seismic activities. Estimates are needed for the long term occurrence-rate probabilities of these extreme natural hazardous events. We studied connectivity from yearly seismic activities that refer to and sunspot number within the solar cycle 20 to 23 of year 1960 to 2013 (53 years). We found clear evidences that in general high magnitude earthquake events and their depth were related to the low solar activity.

  13. On the possible relations between solar activities and global seismicity in the solar cycle 20 to 23

    NASA Astrophysics Data System (ADS)

    Herdiwijaya, Dhani; Arif, Johan; Nurzaman, Muhamad Zamzam; Astuti, Isna Kusuma Dewi

    2015-09-01

    Solar activities consist of high energetic particle streams, electromagnetic radiation, magnetic and orbital gravitational forces. The well-know solar activity main indicator is the existence of sunspot which has mean variation in 11 years, named by solar cycle, allow for the above fluctuations. Solar activities are also related to the space weather affecting all planetary atmospheric variability, moreover to the Earth's climate variability. Large extreme space and geophysical events (high magnitude earthquakes, explosive volcanic eruptions, magnetic storms, etc.) are hazards for humankind, infrastructure, economies, technology and the activities of civilization. With a growing world population, and with modern reliance on delicate technological systems, human society is becoming increasingly vulnerable to natural hazardous events. The big question arises to the relation between solar forcing energy to the Earth's global seismic activities. Estimates are needed for the long term occurrence-rate probabilities of these extreme natural hazardous events. We studied connectivity from yearly seismic activities that refer to and sunspot number within the solar cycle 20 to 23 of year 1960 to 2013 (53 years). We found clear evidences that in general high magnitude earthquake events and their depth were related to the low solar activity.

  14. Solar activity and the weather

    NASA Technical Reports Server (NTRS)

    Svalgaard, L.

    1973-01-01

    Some evidence that the weather is influenced by solar activity is reviewed. It appears that the solar magnetic sector structure is related to the circulation of the earth's atmosphere during local winter. About 31/2 days after the passage of a sector boundary the maximum effect is seen: apparently the height of all pressure surfaces increases in high latitudes leading to anticyclogenesis, whereas at midlatitudes the height of the pressure surfaces decreases leading to low pressure systems or to deepening of existing systems. This later effect is clearly seen as an increase in the area of the base of air with absolute vorticity exceeding a given threshold. Since the increase of geomagnetic activity generally is small at a sector boundary, it is speculated that geomagnetic activity as such is not the cause of the response to the sector structure, but that both weather and geomagnetic activity are influenced by the same (unknown) mechanism.

  15. Solar activity and the weather

    NASA Technical Reports Server (NTRS)

    Svalgaard, L.

    1974-01-01

    Some new evidence that the weather is influenced by solar activity is reviewed. It appears that the solar magnetic sector structure is related to the circulation of the earth's atmosphere during local winter. About 3 1/2 days after the passage of a sector boundary the maximum effect is seen; apparently the height of all pressure surfaces increases in high latitudes leading to anticyclogenesis, whereas at midlatitudes the height of the pressure surfaces decreases leading to low pressure systems or to deepening of existing systems. This later effect is clearly seen as an increase in the area of the base of air with absolute vorticity exceeding a given threshold. Since the increase of geomagnetic activity generally is small at a sector boundary it is speculated that geomagnetic activity as such is not the cause of the response to the sector structure but that both weather and geomagnetic activity are influenced by the same (unknown) mechanism.

  16. IS THE CURRENT LACK OF SOLAR ACTIVITY ONLY SKIN DEEP?

    SciTech Connect

    Broomhall, A.-M.; Chaplin, W. J.; Elsworth, Y.; Fletcher, S. T.; New, R. E-mail: wjc@bison.ph.bham.ac.uk E-mail: S.Fletcher@shu.ac.uk

    2009-08-01

    The Sun is a variable star whose magnetic activity and total irradiance vary on a timescale of approximately 11 years. The current activity minimum has attracted considerable interest because of its unusual duration and depth. This raises the question: what might be happening beneath the surface where the magnetic activity ultimately originates? The surface activity can be linked to the conditions in the solar interior by the observation and analysis of the frequencies of the Sun's natural seismic modes of oscillation-the p modes. These seismic frequencies respond to changes in activity and are probes of conditions within the Sun. The Birmingham Solar-Oscillations Network (BiSON) has made measurements of p-mode frequencies over the last three solar activity cycles, and so is in a unique position to explore the current unusual and extended solar minimum. We show that the BiSON data reveal significant variations of the p-mode frequencies during the current minimum. This is in marked contrast to the surface activity observations, which show little variation over the same period. The level of the minimum is significantly deeper in the p-mode frequencies than in the surface observations. We observe a quasi-biennial signal in the p-mode frequencies, which has not previously been observed at mid- and low-activity levels. The stark differences in the behavior of the frequencies and the surface activity measures point to activity-related processes occurring in the solar interior, which are yet to reach the surface, where they may be attenuated.

  17. Seismic Forecasting of Solar Activity

    NASA Technical Reports Server (NTRS)

    Braun, Douglas; Lindsey, Charles

    2001-01-01

    We have developed and improved helioseismic imaging techniques of the far-side of the Sun as part of a synoptic monitor of solar activity. In collaboration with the MIDI team at Stanford University we are routinely applying our analysis to images within 24 hours of their acquisition by SOHO. For the first time, real-time seismic maps of large active regions on the Sun's far surface are publicly available. The synoptic images show examples of active regions persisting for one or more solar rotations, as well as those initially detected forming on the solar far side. Until recently, imaging the far surface of the Sun has been essentially blind to active regions more than about 50 degrees from the antipode of disk center. In a paper recently accepted for publication, we have demonstrated how acoustic travel-time perturbations may be mapped over the entire hemisphere of the Sun facing away from the Earth, including the polar regions. In addition to offering significant improvements to ongoing space weather forecasting efforts, the procedure offers the possibility of local seismic monitoring of both the temporal and spatial variations in the acoustic properties of the Sun over the entire far surface.

  18. USA: 11 years improving energy efficiency

    SciTech Connect

    Not Available

    1982-05-27

    Energy efficiency of the US economy has improved steadily for 11 consecutive years, as shown with data processed by Energy Detente. Between 1970 and 1981, the energy required to produce one constant dollar of goods and services has been reduced by 25.2% and experts expect further reduction in 1982. The same thing is happening in all industrialized countries. If this trend continues and if the world economy recovers in 1983, the developed world will experience times of economic growth without a corresponding increase in energy consumption. If this happens, it would be several years before energy consumption in industrialized countries reaches 1979 levels. However, North America has been doing other things that are promising for OPEC's destiny: Canada's private sector not participating in the Alsands and Cold Lake megaprojects; the political undermining of the Synthetic Fuel Corp. in the US; retreat of Exxon from the Colony (oil shale) project; cancelling or delaying other lesser syncrude projects when oil prices dropped slightly; delay of the Alaskan gas pipeline; and possible extension of time for development of the Orinoco Oil Belt in Venezuela. Brief summaries of energy activities in several Latin American countries and Canada are included. Also, the fuel price/tax series is updated for Western Hemisphere countries.

  19. Coronal Streamers and Solar Activity

    NASA Astrophysics Data System (ADS)

    Delone, A. B.; Porfir'eva, G. A.; Smirnova, O. B.; Yakunina, G. V.

    2013-03-01

    We analyze the structure of the streamer belt and plasma ejection dynamics during the last two solar minima (1996-1997 and 2006-2009) using white light observations by SOHO and STEREO space observatories. We consider the role of activity centers and of the sectorial structure of the Sun's global magnetic field in the streamer belt topology. During the last minimum plasma was ejected from the streamer belt at a velocity several tens of km/s higher than that during the preceding minimum. We have used the data from Internet and papers published in science journals.

  20. The dynamic heliosphere, solar activity, and cosmic rays

    NASA Astrophysics Data System (ADS)

    Potgieter, Marius S.

    2010-08-01

    This brief review addresses the relation between solar activity, cosmic ray variations and the dynamics of the heliosphere. The global features of the heliosphere influence what happens inside its boundaries on a variety of time-scales. Galactic and anomalous cosmic rays are the messengers that convey vital information on global heliospheric changes in the manner that they respond to these changes. By observing cosmic rays over a large range of energies at Earth, and with various space detectors, a better understanding is gained about space weather and climate. The causes of the cosmic ray variability are reviewed, with emphasis on the 11-year and 22-year cycles, step modulation, charge-sign dependent modulation and particle drifts. Advances in this field are selectively discussed in the context of what still are some of the important uncertainties and outstanding issues.

  1. Centennial Scale Variations in Lake Productivity Linked to Solar Activity

    NASA Astrophysics Data System (ADS)

    Englebrecht, A.; Bhattacharyya, S.; Guilderson, T. P.; Ingram, L.; Byrne, R.

    2012-12-01

    Solar variations on both decadal and centennial timescales have been associated with climate phenomena (van Loon et al., 2004; Hodell et al., 2001; White et al., 1997). The energy received by the Earth at the peak of the solar cycle increases by <0.1%; so the question has remained of how this could be amplified to produce an observable climate response. Recent modeling shows that the response of the Earth's climate system to the 11-year solar cycle may be amplified through stratosphere and ocean feedbacks and has the potential to impact climate variability on a multidecadal to centennial timescales (Meehl et al., 2009). Here, we report a 1000-year record of changes in the stratigraphy and carbon isotope composition of varved lake sediment from Isla Isabela (22°N, 106°W) in the subtropical northeast Pacific. Stable carbon isotopes and carbonate stratigraphy can be used to infer surface productivity in the lake. Our analysis shows variations in primary productivity on centennial timescales and suggests that solar activity may be an important component of Pacific climate variability. A possible response during solar maxima acts to keep the eastern equatorial Pacific cooler and drier than usual, producing conditions similar to a La Niña event. In the region around Isla Isabela peak solar years were characterized by decreased surface temperatures and suppressed precipitation (Meehl et al., 2009), which enhance productivity at Isabela (Kienel et al. 2011). In the future, we plan to analyze the data using advanced time series analysis techniques like the wavelets together with techniques to handle irregularly spaced time series data. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-571672

  2. Analysis of Solar Magnetic Activity with the Wavelet Coherence Method

    NASA Astrophysics Data System (ADS)

    Velasco, V. M.; Perez-Peraza, J. A.; Mendoza, B. E.; Valdes-Galicia, J. F.; Sosa, O.; Alvarez-Madrigal, M.

    2007-05-01

    The origin, behavior and evolution of the solar magnetic field is one of the main challenges of observational and theoretical solar physics. Up to now the Dynamo theory gives us the best approach to the problem. However, it is not yet able to predict many features of the solar activity, which seems not to be strictly a periodical phenomenon. Among the indicators of solar magnetic variability there is the 11-years cycle of sunspots, as well as the solar magnetic cycle of 22 years (the Hale cycle). In order to provide more elements to the Dynamo theory that could help it in the predicting task, we analyze here the plausible existence of other periodicities associated with the solar magnetic field. In this preliminary work we use historical data (sunspots and aurora borealis), proxies (Be10 and C14) and modern instrumental data (Coronal Holes, Cosmic Rays, sunspots, flare indexes and solar radio flux at 10.7 cm). To find relationships between different time-frequency series we have employed the t Wavelet Coherence technique: this technique indicates if two time-series of solar activity have the same periodicities in a given time interval. If so, it determines whether such relation is a linear one or not. Such a powerful tool indicates that, if some periodicity at a given frequency has a confidence level below 95%, it appears very lessened or does not appear in the Wavelet Spectral Analysis, such periodicity does not exist . Our results show that the so called Glaisberg cycle of 80-90 years and the periodicity of 205 years (the Suess cycle) do not exist . It can be speculated that such fictitious periodicities hav been the result of using the Fourier transform with series with are not of stationary nature, as it is the case of the Be10 and C14 series. In contrast we confirm the presence of periodicities of 1.3, 1.7, 3.5, 5.5, 7, 60, 120 and 240 years. The concept of a Glaisberg cycle falls between those of 60 and 120 years. We conclude that the periodicity of 120 years

  3. Recurrence of solar activity - Evidence for active longitudes

    NASA Technical Reports Server (NTRS)

    Bogart, R. S.

    1982-01-01

    It is pointed out that the autocorrelation coefficients of the daily Wolf sunspot numbers over a period of 128 years reveal a number of interesting features of the variability of solar activity. Besides establishing periodicities for the solar rotation, solar activity cycle, and, perhaps, the 'Gleissberg Cycle', they suggest that active longitudes do exist, but with much greater strength and persistence in some solar cycles than in others. Evidence is adduced for a variation in the solar rotation period, as measured by sunspot number, of as much as two days between different solar cycles.

  4. Solar Activities and Space Weather Hazards

    NASA Astrophysics Data System (ADS)

    Hady, Ahmed A.

    2013-03-01

    Geomagnetic storms have a good correlation with solar activity and solar radiation variability. Many proton events and geomagnetic storms have occurred during solar cycles21, 22, and 23. The solar activities during the last three cycles, gave us a good indication of the climatic change and its behavior during the 21st century. High energetic eruptive flares were recorded during the decline phase of the last three solar cycles. The appearances of the second peak on the decline phase of solar cycles have been detected. Halloween storms during Nov. 2003 and its effects on the geomagnetic storms have been studied analytically. The data of amplitude and phase of most common indicators of geomagnetic activities during solar cycle 23 have been analyzed.

  5. Workshop on Solar Activity, Solar Wind, Terrestrial Effects, and Solar Acceleration

    NASA Technical Reports Server (NTRS)

    1992-01-01

    A summary of the proceedings from the workshop are presented. The areas covered were solar activity, solar wind, terrestrial effects, and solar acceleration. Specific topics addressed include: (1) solar cycle manifestations, both large and small scale, as well as long-term and short-term changes, including transients such as flares; (2) sources of solar wind, as identified by interplanetary observations including coronal mass ejections (CME's) or x-ray bright points, and the theory for and evolution of large-scale and small-scale structures; (3) magnetosphere responses, as observed by spacecraft, to variable solar wind and transient energetic particle emissions; and (4) origin and propagation of solar cosmic rays as related to solar activity and terrestrial effects, and solar wind coronal-hole relationships and dynamics.

  6. Solar activity and oscillation frequency splittings

    NASA Technical Reports Server (NTRS)

    Woodard, M. F.; Libbrecht, K. G.

    1993-01-01

    Solar p-mode frequency splittings, parameterized by the coefficients through order N = 12 of a Legendre polynomial expansion of the mode frequencies as a function of m/L, were obtained from an analysis of helioseismology data taken at Big Bear Solar Observatory during the 4 years 1986 and 1988-1990 (approximately solar minimum to maximum). Inversion of the even-index splitting coefficients confirms that there is a significant contribution to the frequency splittings originating near the solar poles. The strength of the polar contribution is anti correlated with the overall level or solar activity in the active latitudes, suggesting a relation to polar faculae. From an analysis of the odd-index splitting coefficients we infer an uppor limit to changes in the solar equatorial near-surface rotatinal velocity of less than 1.9 m/s (3 sigma limit) between solar minimum and maximum.

  7. Sustainable Buildings. Using Active Solar Power

    SciTech Connect

    Sharp, M. Keith; Barnett, Russell

    2015-04-20

    The objective of this project is to promote awareness and knowledge of active solar energy technologies by installing and monitoring the following demonstration systems in Kentucky: 1) Pool heating system, Churchill Park School, 2) Water heating and daylighting systems, Middletown and Aiken Road Elementary Schools, 3) Photovoltaic street light comparison, Louisville Metro, 4) up to 25 domestic water heating systems across Kentucky. These tasks will be supported by outreach activities, including a solar energy installer training workshop and a Kentucky Solar Energy Conference.

  8. A Geomagnetic Precursor Technique for Predicting the Solar Activity Cycle

    NASA Astrophysics Data System (ADS)

    Sobel, E. I.; Rabin, D. M.

    2015-12-01

    The Western hemisphere has been recording sunspot numbers since Galileo discovered sunspots in the early 17th century, and the roughly 11-year solar cycle has been recognized since the 19th century. However, predicting the strength of any particular cycle remains a relatively imprecise task. This project's aim was to update and improve a forecasting technique based on geomagnetic precursors of future solar activity The model is a refinement of R. J. Thompson's 1993 paper that relates the number of geomagnetically disturbed days, as defined by the aa and Ap indices, to the sum of the sunspot number in the current and the previous cycle, Rn + Rn-1.[1] The method exploits the fact that two cycles coexist for some period on the Sun near solar minimum and therefore that the number of sunspots and disturbed days during the declining phase of one cycle gives an indication of the following cycle's strength. We wrote and updated IDL software procedures to define disturbed days with varying threshold values and graphed Rn + Rn-1 against them. The aa threshold was derived from the Ap threshold. After comparing the graphs for Ap values from 20 to 50, an Ap threshold of 30 and the corresponding aa threshold of 44 were chosen as yielding the best correlation. Confidence regions were computed to provide a quantitative uncertainty on future predictions. The 80% confidence region gives a range of ±40 in sunspot number. [1] Thompson, R. J. (1993). A technique for predicting the amplitude of the solar cycle. Solar Physics, 148, 2, 383-388.

  9. The tropospheric response pattern to solar activity forcing

    NASA Technical Reports Server (NTRS)

    Schuurmans, C. J. E.

    1989-01-01

    It is tempting to speculate on the possibility that solar flares sometimes are the initial cause of and atmospheric disturbance, which cumulative effect may give rise to a correlation at the 11 year timescale. Reasons to reconsider the possible relevance of solar flare response studies are stated. The discovery of the apparently decisive role of the Quasi-Biennial Oscillations (QBO) in establishing the atmospheric response pattern to solar forcing may throw new light on some of the earlier published relations. Reanalysis of old data in some cases may be advisable. Data on solar flares and their effects on the earth's atmosphere might be a promising candidate for reexamination.

  10. Dynamo theory prediction of solar activity

    NASA Technical Reports Server (NTRS)

    Schatten, Kenneth H.

    1988-01-01

    The dynamo theory technique to predict decadal time scale solar activity variations is introduced. The technique was developed following puzzling correlations involved with geomagnetic precursors of solar activity. Based upon this, a dynamo theory method was developed to predict solar activity. The method was used successfully in solar cycle 21 by Schatten, Scherrer, Svalgaard, and Wilcox, after testing with 8 prior solar cycles. Schatten and Sofia used the technique to predict an exceptionally large cycle, peaking early (in 1990) with a sunspot value near 170, likely the second largest on record. Sunspot numbers are increasing, suggesting that: (1) a large cycle is developing, and (2) that the cycle may even surpass the largest cycle (19). A Sporer Butterfly method shows that the cycle can now be expected to peak in the latter half of 1989, consistent with an amplitude comparable to the value predicted near the last solar minimum.

  11. Solar activity, the QBO, and tropospheric responses

    NASA Technical Reports Server (NTRS)

    Tinsley, Brian A.; Brown, Geoffrey M.; Scherrer, Philip H.

    1989-01-01

    The suggestion that galactic cosmic rays (GCR) as modulated by the solar wind are the carriers of the component of solar variability that affects weather and climate has been discussed in the literature for 30 years, and there is now a considerable body of evidence that supports it. Variations of GCR occur with the 11 year solar cycle, matching the time scale of recent results for atmospheric variations, as modulated by the quasibiennial oscillation of equatorial stratospheric winds (the QBO). Variations in GCR occur on the time scale of centuries with a well defined peak in the coldest decade of the little ice age. New evidence is presented on the meteorological responses to GCR variations on the time scale of a few days. These responses include changes in the vertical temperature profile in the troposphere and lower stratosphere in the two days following solar flare related high speed plasma streams and associated GCR decreases, and in decreases in Vorticity Area Index (VAI) following Forbush decreases of GCR. The occurrence of correlations of GCR and meteorological responses on all three time scales strengthens the hypothesis of GCR as carriers of solar variability to the lower atmosphere. Both short and long term tropospheric responses are understandable as changes in the intensity of cyclonic storms initiated by mechanisms involving cloud microphysical and cloud electrification processes, due to changes in local ion production from changes in GCR fluxes and other high energy particles in the MeV to low GeV range. The nature of these mechanisms remains undetermined. Possible stratospheric wind (particularly QBO) effects on the transport of HNO3 and other constituents incorporated in cluster ions and possible condensation and freezing nuclei are considered as relevant to the long term variations.

  12. Solar neutrinos, solar flares, solar activity cycle and the proton decay

    NASA Technical Reports Server (NTRS)

    Raychaudhuri, P.

    1985-01-01

    It is shown that there may be a correlation between the galactic cosmic rays and the solar neutrino data, but it appears that the neutrino flux which may be generated during the large solar cosmic ray events cannot in any way effect the solar neutrino data in Davis experiment. Only initial stage of mixing between the solar core and solar outer layers after the sunspot maximum in the solar activity cycle can explain the higher (run number 27 and 71) of solar neutrino data in Davis experiment. But solar flare induced atmospheric neutrino flux may have effect in the nucleon decay detector on the underground. The neutrino flux from solar cosmic rays may be a useful guide to understand the background of nucleon decay, magnetic monopole search, and the detection of neutrino flux in sea water experiment.

  13. Forecasting the solar activity cycle: new insights

    NASA Astrophysics Data System (ADS)

    Nandy, Dibyendu; Karak, Bidya Binay

    2013-07-01

    Having advance knowledge of solar activity is important because the Sun's magnetic output governs space weather and impacts technologies reliant on space. However, the irregular nature of the solar cycle makes solar activity predictions a challenging task. This is best achieved through appropriately constrained solar dynamo simulations and as such the first step towards predictions is to understand the underlying physics of the solar dynamo mechanism. In Babcock-Leighton type dynamo models, the poloidal field is generated near the solar surface whereas the toroidal field is generated in the solar interior. Therefore a finite time is necessary for the coupling of the spatially segregated source layers of the dynamo. This time delay introduces a memory in the dynamo mechanism which allows forecasting of future solar activity. Here we discuss how this forecasting ability of the solar cycle is affected by downward turbulent pumping of magnetic flux. With significant turbulent pumping the memory of the dynamo is severely degraded and thus long term prediction of the solar cycle is not possible; only a short term prediction of the next cycle peak may be possible based on observational data assimilation at the previous cycle minimum.

  14. The solar magnetic activity band interaction and instabilities that shape quasi-periodic variability.

    PubMed

    McIntosh, Scott W; Leamon, Robert J; Krista, Larisza D; Title, Alan M; Hudson, Hugh S; Riley, Pete; Harder, Jerald W; Kopp, Greg; Snow, Martin; Woods, Thomas N; Kasper, Justin C; Stevens, Michael L; Ulrich, Roger K

    2015-04-07

    Solar magnetism displays a host of variational timescales of which the enigmatic 11-year sunspot cycle is most prominent. Recent work has demonstrated that the sunspot cycle can be explained in terms of the intra- and extra-hemispheric interaction between the overlapping activity bands of the 22-year magnetic polarity cycle. Those activity bands appear to be driven by the rotation of the Sun's deep interior. Here we deduce that activity band interaction can qualitatively explain the 'Gnevyshev Gap'—a well-established feature of flare and sunspot occurrence. Strong quasi-annual variability in the number of flares, coronal mass ejections, the radiative and particulate environment of the heliosphere is also observed. We infer that this secondary variability is driven by surges of magnetism from the activity bands. Understanding the formation, interaction and instability of these activity bands will considerably improve forecast capability in space weather and solar activity over a range of timescales.

  15. The solar magnetic activity band interaction and instabilities that shape quasi-periodic variability

    PubMed Central

    McIntosh, Scott W.; Leamon, Robert J.; Krista, Larisza D.; Title, Alan M.; Hudson, Hugh S.; Riley, Pete; Harder, Jerald W.; Kopp, Greg; Snow, Martin; Woods, Thomas N.; Kasper, Justin C.; Stevens, Michael L.; Ulrich, Roger K.

    2015-01-01

    Solar magnetism displays a host of variational timescales of which the enigmatic 11-year sunspot cycle is most prominent. Recent work has demonstrated that the sunspot cycle can be explained in terms of the intra- and extra-hemispheric interaction between the overlapping activity bands of the 22-year magnetic polarity cycle. Those activity bands appear to be driven by the rotation of the Sun's deep interior. Here we deduce that activity band interaction can qualitatively explain the ‘Gnevyshev Gap'—a well-established feature of flare and sunspot occurrence. Strong quasi-annual variability in the number of flares, coronal mass ejections, the radiative and particulate environment of the heliosphere is also observed. We infer that this secondary variability is driven by surges of magnetism from the activity bands. Understanding the formation, interaction and instability of these activity bands will considerably improve forecast capability in space weather and solar activity over a range of timescales. PMID:25849045

  16. Dynamo Sensitivity in Solar Analogs with 50 Years of Ca II H & K Activity

    NASA Astrophysics Data System (ADS)

    Egeland, Ricky; Soon, Willie H.; Baliunas, Sallie L.; Hall, Jeffrey C.; Pevtsov, Alexei A.; Henry, Gregory W.

    2016-05-01

    The Sun has a steady 11-year cycle in magnetic activity most well-known by the rising and falling in the occurrence of dark sunspots on the solar disk in visible bandpasses. The 11-year cycle is also manifest in the variations of emission in the Ca II H & K line cores, due to non-thermal (i.e. magnetic) heating in the lower chromosphere. The large variation in Ca II H & K emission allows for study of the patterns of long-term variability in other stars thanks to synoptic monitoring with the Mount Wilson Observatory HK photometers (1966-2003) and Lowell Observatory Solar-Stellar Spectrograph (1994-present). Overlapping measurements for a set of 27 nearby solar-analog (spectral types G0-G5) stars were used to calibrate the two instruments and construct time series of magnetic activity up to 50 years in length. Precise properties of fundamental importance to the dynamo are available from Hipparcos, the Geneva-Copenhagen Survey, and CHARA interferometry. Using these long time series and measurements of fundamental properties, we do a comparative study of stellar "twins" to explore the sensitivity of the stellar dynamo to small changes to structure, rotation, and composition. We also compare this sample to the Sun and find hints that the regular periodic variability of the solar cycle may be rare among its nearest neighbors in parameter space.

  17. Solar Spots - Activities to Introduce Solar Energy into the K-8 Curricula.

    ERIC Educational Resources Information Center

    Longe, Karen M.; McClelland, Michael J.

    Following an introduction to solar technology which reviews solar heating and cooling, passive solar systems (direct gain systems, thermal storage walls, sun spaces, roof ponds, and convection loops), active solar systems, solar electricity (photovoltaic and solar thermal conversion systems), wind energy, and biomass, activities to introduce solar…

  18. On the Relationship of the Energy Spectrum Indexes of the 11-Year Variation of Galactic Cosmic Rays and the Interplanetary Magnetic Field Strength Fluctuations

    NASA Astrophysics Data System (ADS)

    Alania, M. V.; Iskra, K.; Modzelewska, R.; Siluszyk, M.

    2003-07-01

    Data of neutron super monitors and interplanetary magnetic field (IMF) have been used to find a relationship between the temporal changes of galactic cosmic rays (GCR) isotropic intensity variations energy spectrum index γ (δ D/D(R) ∝ R-γ , where R is the rigidity of GCR particles) and the exponent ( of the power spectral density (PSD) of the IMF's strength fluctuations (PSD ∝ f-ν , where f is the frequency). INTRODUCTION. The 11-year variation of GCR is generally related with the similar variation of solar activity (SA) [1-5]. Up to present it is not well established which of parameters or group of parameters of SA and of the solar wind are responsible for the 11-year variation of GCR. To answer to this question it is necessary to estimate the separate contributions of each processes — convection, diffusion, drift and energy changes of GCR due to the interaction with the solar wind. However, all above mentioned processes are interconnected and an estimation of the roles of each separate processes contains some uncertainties. Regarding contributions of all above mentioned processes in the formation of the 11-year variation of GCR the special role is ascrib ed to the varying character of the diffusion from the minima to the maxima epochs of SA. It was noted [6-8] that the exponent γ of GCR isotropic intensity variations (δ D(R)/D (R) = AR-γ , where R is the GCR particle's rigidity and A is he power) could be considered as one of the important indices for the explanation of the 11-year variation of GCR for the energy more than 1 GeV.

  19. [Effects of planting years of vegetable solar greenhouse on soil microbial flora and enzyme activities].

    PubMed

    Yang, Qin; Li, Liang

    2013-09-01

    Taking the vegetable solar greenhouses having been planted for 2, 4, 6, 11, 13, 16, and 19 years as test objects, and with the open vegetable field as the control, this paper studied the variations of soil microbial flora and enzyme activities. With the increasing years of planting, the numbers of soil bacteria, actinomycetes, and total microbes in vegetable solar greenhouses decreased after an initial increase, and reached the maximum in the greenhouse of 11 years planting, with a significant increment of 54.8%, 63.7%, and 55.4%, respectively, as compared to the control. The number of soil fungi in the vegetable solar greenhouses increased steadily with increasing planting years, being about 2.2 times higher in the greenhouse of 11 years planting. Among the microbial physiological groups, the numbers of aerobic cellulose-decomposer, aerobic azotobacter, nitrite bacteria, denitrifier, and sulphur reducer showed the same variation trend as the soil bacteria's, and those in the greenhouse of 11 years planting being 1.5, 1.6, 1.9, 1.4, and 1.1 times of the control, respectively. The number of ammonifiers increased after an initial decrease, reached the minimum in the greenhouse of 13 years planting, being only 56.0% of the control. The enzyme activities of soil urease, polyphenol oxidase, sucrase, protease, cellulase, and alkaline phosphatase increased firstly and then decreased with the increasing years of planting, but soil catalase activity was relatively stable. Correlation analysis showed that the numbers of soil bacteria, actinomycetes, and total microbes were significantly positively correlated with all test soil enzyme activities, while the number of soil fungi had significant negative correlation with the activity of soil catalase. PMID:24417112

  20. [Effects of planting years of vegetable solar greenhouse on soil microbial flora and enzyme activities].

    PubMed

    Yang, Qin; Li, Liang

    2013-09-01

    Taking the vegetable solar greenhouses having been planted for 2, 4, 6, 11, 13, 16, and 19 years as test objects, and with the open vegetable field as the control, this paper studied the variations of soil microbial flora and enzyme activities. With the increasing years of planting, the numbers of soil bacteria, actinomycetes, and total microbes in vegetable solar greenhouses decreased after an initial increase, and reached the maximum in the greenhouse of 11 years planting, with a significant increment of 54.8%, 63.7%, and 55.4%, respectively, as compared to the control. The number of soil fungi in the vegetable solar greenhouses increased steadily with increasing planting years, being about 2.2 times higher in the greenhouse of 11 years planting. Among the microbial physiological groups, the numbers of aerobic cellulose-decomposer, aerobic azotobacter, nitrite bacteria, denitrifier, and sulphur reducer showed the same variation trend as the soil bacteria's, and those in the greenhouse of 11 years planting being 1.5, 1.6, 1.9, 1.4, and 1.1 times of the control, respectively. The number of ammonifiers increased after an initial decrease, reached the minimum in the greenhouse of 13 years planting, being only 56.0% of the control. The enzyme activities of soil urease, polyphenol oxidase, sucrase, protease, cellulase, and alkaline phosphatase increased firstly and then decreased with the increasing years of planting, but soil catalase activity was relatively stable. Correlation analysis showed that the numbers of soil bacteria, actinomycetes, and total microbes were significantly positively correlated with all test soil enzyme activities, while the number of soil fungi had significant negative correlation with the activity of soil catalase.

  1. Science Activities in Energy: Solar Energy II.

    ERIC Educational Resources Information Center

    Oak Ridge Associated Universities, TN.

    Included in this science activities energy package are 14 activities related to solar energy for secondary students. Each activity is outlined on a single card and is introduced by a question such as: (1) how much solar heat comes from the sun? or (2) how many times do you have to run water through a flat-plate collector to get a 10 degree rise in…

  2. Gap between active and passive solar heating

    SciTech Connect

    Balcomb, J.D.

    1985-01-01

    The gap between active and passive solar could hardly be wider. The reasons for this are discussed and advantages to narrowing the gap are analyzed. Ten years of experience in both active and passive systems are reviewed, including costs, frequent problems, performance prediction, performance modeling, monitoring, and cooling concerns. Trends are analyzed, both for solar space heating and for service water heating. A tendency for the active and passive technologies to be converging is observed. Several recommendations for narrowing the gap are presented.

  3. History and Forecast of Solar Activity

    NASA Astrophysics Data System (ADS)

    Mikushina, O. V.; Klimenko, V. V.; Dovgalyuk, V. V.

    From a new reconstruction of the radiocarbon production rate in the atmosphere we obtain a long history of maximum Wolf sunspot numbers. Based on this reconstruction as well as on the history of other indicators of solar activity (10Be, aurora borealis), we derive a long-period trend which together with the results of spectral analysis of maximum Wolf numbers series (1506-1993) form a basis for prediction of solar activity up to 2100. The resulting trigonometric trend points to an essential decrease in solar activity in the coming decades.

  4. Solar collector manufacturing activity, 1992

    SciTech Connect

    Not Available

    1993-11-09

    This report presents data provided by US-based manufacturers and importers of solar collectors. Summary data on solar thermal collector shipments are presented for the years 1974 through 1992. Summary data on photovoltaic cell and module shipments are presented for the years 1982 through 1992. Detailed information for solar thermal collectors and photovoltaic cells and modules are presented for 1992. Appendix A describes the survey methodology. Appendix B contains the 1992 survey forms and instructions. Appendices C and D list the companies that responded to the 1992 surveys and granted permission for their names and addresses to appear in the report. Appendix E provides selected tables from this report with data shown in the International System of Units (SI) metric units. Appendix F provides an estimate of installed capacity and energy production from solar collectors for 1992.

  5. Sources of solar wind over the solar activity cycle

    PubMed Central

    Poletto, Giannina

    2012-01-01

    Fast solar wind has been recognized, about 40 years ago, to originate in polar coronal holes (CHs), that, since then, have been identified with sources of recurrent high speed wind streams. As of today, however, there is no general consensus about whether there are, within CHs, preferential locations where the solar wind is accelerated. Knowledge of slow wind sources is far from complete as well. Slow wind observed in situ can be traced back to its solar source by backward extrapolation of magnetic fields whose field lines are streamlines of the outflowing plasma. However, this technique often has not the necessary precision for an indisputable identification of the region where wind originates. As the Sun progresses through its activity cycle, different wind sources prevail and contribute to filling the heliosphere. Our present knowledge of different wind sources is here summarized. Also, a Section addresses the problem of wind acceleration in the low corona, as inferred from an analysis of UV data, and illustrates changes between fast and slow wind profiles and possible signatures of changes along the solar cycle. A brief reference to recent work about the deep roots of solar wind and their changes over different solar cycles concludes the review. PMID:25685421

  6. Sources of solar wind over the solar activity cycle.

    PubMed

    Poletto, Giannina

    2013-05-01

    Fast solar wind has been recognized, about 40 years ago, to originate in polar coronal holes (CHs), that, since then, have been identified with sources of recurrent high speed wind streams. As of today, however, there is no general consensus about whether there are, within CHs, preferential locations where the solar wind is accelerated. Knowledge of slow wind sources is far from complete as well. Slow wind observed in situ can be traced back to its solar source by backward extrapolation of magnetic fields whose field lines are streamlines of the outflowing plasma. However, this technique often has not the necessary precision for an indisputable identification of the region where wind originates. As the Sun progresses through its activity cycle, different wind sources prevail and contribute to filling the heliosphere. Our present knowledge of different wind sources is here summarized. Also, a Section addresses the problem of wind acceleration in the low corona, as inferred from an analysis of UV data, and illustrates changes between fast and slow wind profiles and possible signatures of changes along the solar cycle. A brief reference to recent work about the deep roots of solar wind and their changes over different solar cycles concludes the review.

  7. Solar activities and Climate change hazards

    NASA Astrophysics Data System (ADS)

    Hady, A. A., II

    2014-12-01

    Throughout the geological history of Earth, climate change is one of the recurrent natural hazards. In recent history, the impact of man brought about additional climatic change. Solar activities have had notable effect on palaeoclimatic changes. Contemporary, both solar activities and building-up of green-house gases effect added to the climatic changes. This paper discusses if the global worming caused by the green-house gases effect will be equal or less than the global cooling resulting from the solar activities. In this respect, we refer to the Modern Dalton Minimum (MDM) which stated that starting from year 2005 for the next 40 years; the earth's surface temperature will become cooler than nowadays. However the degree of cooling, previously mentioned in old Dalton Minimum (c. 210 y ago), will be minimized by building-up of green-house gases effect during MDM period. Regarding to the periodicities of solar activities, it is clear that now we have a new solar cycle of around 210 years. Keywords: Solar activities; solar cycles; palaeoclimatic changes; Global cooling; Modern Dalton Minimum.

  8. Science Activities in Energy: Solar Energy.

    ERIC Educational Resources Information Center

    Oak Ridge Associated Universities, TN.

    Presented is a science activities in energy package which includes 12 activities relating to solar energy. Activities are simple, concrete experiments for fourth, fifth, and sixth grades, which illustrate principles and problems relating to energy. Each activity is outlined on a single card which is introduced by a question. A teacher's supplement…

  9. Non-Stationary Effects and Cross Correlations in Solar Activity

    NASA Astrophysics Data System (ADS)

    Nefedyev, Yuri; Panischev, Oleg; Demin, Sergey

    2016-07-01

    In this paper within the framework of the Flicker-Noise Spectroscopy (FNS) we consider the dynamic properties of the solar activity by analyzing the Zurich sunspot numbers. As is well-known astrophysics objects are the non-stationary open systems, whose evolution are the quite individual and have the alternation effects. The main difference of FNS compared to other related methods is the separation of the original signal reflecting the dynamics of solar activity into three frequency bands: system-specific "resonances" and their interferential contributions at lower frequencies, chaotic "random walk" ("irregularity-jump") components at larger frequencies, and chaotic "irregularity-spike" (inertial) components in the highest frequency range. Specific parameters corresponding to each of the bands are introduced and calculated. These irregularities as well as specific resonance frequencies are considered as the information carriers on every hierarchical level of the evolution of a complex natural system with intermittent behavior, consecutive alternation of rapid chaotic changes in the values of dynamic variables on small time intervals with small variations of the values on longer time intervals ("laminar" phases). The jump and spike irregularities are described by power spectra and difference moments (transient structural functions) of the second order. FNS allows revealing the most crucial points of the solar activity dynamics by means of "spikiness" factor. It is shown that this variable behaves as the predictor of crucial changes of the sunspot number dynamics, particularly when the number comes up to maximum value. The change of averaging interval allows revealing the non-stationary effects depending by 11-year cycle and by inside processes in a cycle. To consider the cross correlations between the different variables of solar activity we use the Zurich sunspot numbers and the sequence of corona's radiation energy. The FNS-approach allows extracting the

  10. Solar activity and climate change during the 1750 A.D. solar minimum

    NASA Astrophysics Data System (ADS)

    Bard, Edouard; Baroni, Mélanie; Aster Team

    2015-04-01

    . Dyn.), who focused their data-model comparison on the Dalton Minimum, which occurred between 1790 and 1830 A.D. and which, fortuitously, included several major volcanic eruptions such as the Tambora eruption in 1815. Their conclusion was that the global imprint of the volcanic forcing was significantly larger than that of contemporaneous solar forcing and the increasing atmospheric CO2 concentrations. A different approach is to consider another recent solar minimum over a period characterized by a low volcanicity and minimal changes of greenhouse gases. Such a minimum does exist between the Maunder and the Dalton Minima and lasted for a mere two decades between 1745 and 1765 A.D. The sunspot number exhibits a clear 11-year cycle, but it only reaches a maximal value lower than 100, i.e. less than observed for the past seven 11-year cycles. Incidentally, the maximal values observed between 1745 and 1765 are similar to those observed during the maximum of the present solar cycle. The 1750 A.D. solar minimum can also be studied in other records such as counts of auroras at mid-latitudes and cosmogenic isotopes such as 14C and 10Be. In addition to reviewing published time series, we will report a new 10Be record from a well-dated ice core from Dome C in Antarctica. Sulfate concentration, a proxy for volcanic eruptions, has also been measured in the very same samples, allowing a precise comparison of both 10Be and sulfate profiles. The full record covers the last millennium and will be presented separately by Baroni, Bard and the ASTER Team. Zooming in on the century between 1700 and 1800 A.D. allows to identify an extended period of low volcanicity and to observe a clear 10Be increase corresponding to the solar minimum. We will present the new data over the 18th century as well as their first interpretation in the context of other useful records based on greenhouse gas concentrations, paleotemperature proxies and climate modeling available in the literature.

  11. Hinode Captures Images of Solar Active Region

    NASA Video Gallery

    In these images, Hinode's Solar Optical Telescope (SOT) zoomed in on AR 11263 on August 4, 2011, five days before the active region produced the largest flare of this cycle, an X6.9. We show images...

  12. Geomagnetic activity during 10 - 11 solar cycles that has been observed by old Russian observatories.

    NASA Astrophysics Data System (ADS)

    Seredyn, Tomasz; Wysokinski, Arkadiusz; Kobylinski, Zbigniew; Bialy, Jerzy

    2016-07-01

    A good knowledge of solar-terrestrial relations during past solar activity cycles could give the appropriate tools for a correct space weather forecast. The paper focuses on the analysis of the historical collections of the ground based magnetic observations and their operational indices from the period of two sunspot solar cycles 10 - 11, period 1856 - 1878 (Bartels rotations 324 - 635). We use hourly observations of H and D geomagnetic field components registered at Russian stations: St. Petersburg - Pavlovsk, Barnaul, Ekaterinburg, Nertshinsk, Sitka, and compare them to the data obtained from the Helsinki observatory. We compare directly these records and also calculated from the data of the every above mentioned station IHV indices introduced by Svalgaard (2003), which have been used for further comparisons in epochs of assumed different polarity of the heliospheric magnetic field. We used also local index C9 derived by Zosimovich (1981) from St. Petersburg - Pavlovsk data. Solar activity is represented by sunspot numbers. The correlative and continuous wavelet analyses are applied for estimation of the correctness of records from different magnetic stations. We have specially regard to magnetic storms in the investigated period and the special Carrington event of 1-2 Sep 1859. Generally studied magnetic time series correctly show variability of the geomagnetic activity. Geomagnetic activity presents some delay in relation to solar one as it is seen especially during descending and minimum phase of the even 11-year cycle. This pattern looks similarly in the case of 16 - 17 solar cycles.

  13. Low Latitude Aurora: Index of Solar Activity

    NASA Astrophysics Data System (ADS)

    Bekli, M. R.; Aissani, D.; Chadou, I.

    2010-10-01

    Observations of aurora borealis at low latitudes are rare, and are clearly associated with high solar activity. In this paper, we analyze some details of the solar activity during the years 1769-1792. Moreover, we describe in detail three low latitude auroras. The first event was reported by ash-Shalati and observed in North Africa (1770 AD). The second and third events were reported by l'Abbé Mann and observed in Europe (1770 and 1777 AD).

  14. Relationships between solar activity and climate change

    NASA Technical Reports Server (NTRS)

    Roberts, W. O.

    1975-01-01

    The relationship between recurrent droughts in the High Plains of the United States and the double sunspot cycle is discussed in detail. It is suggested that high solar activity is generally related to an increase in meridional circulation and blocking patterns at high and intermediate latitudes, especially in winter, and the effect is related to the sudden formation of cirrus clouds during strong geomagnetic activity that originates in the solar corpuscular emission.

  15. Statistical Properties of Extreme Solar Activity Intervals

    NASA Astrophysics Data System (ADS)

    Lioznova, A. V.; Blinov, A. V.

    2014-01-01

    A study of long-term solar variability reflected in indirect indices of past solar activity leads to stimulating results. We compare the statistics of intervals of very low and very high solar activity derived from two cosmogenic radionuclide records and look for consistency in their timing and physical interpretation. According to the applied criteria, the numbers of minima and of maxima are 61 and 68, respectively, from the 10Be record, and 42 and 46 from the 14C record. The difference between the enhanced and depressed states of solar activity becomes apparent in the difference in their statistical distributions. We find no correlation between the level or type (minimum or maximum) of an extremum and the level or type of the predecessor. The hypothesis of solar activity as a periodic process on the millennial time scale is not supported by the existing proxies. A new homogeneous series of 10Be measurements in polar ice covering the Holocene would be of great value for eliminating the existing discrepancy in the available solar activity reconstructions.

  16. Impact of Solar Variability on the quasi-2-year Modulation of Planetary Wave Activity in the Mesopause Region OH* Temperature Fluctuations

    NASA Astrophysics Data System (ADS)

    Höppner, Kathrin; Koppmann, Ralf; Steinbrecht, Wolfgang

    A time series of nightly mean OH*(3,1) temperature measurements from 1987 to 2007 using IR- spectrometers above Wuppertal (51° N, 7° E) and Hohenpeissenberg (48° N, 11° E) are analysed. After removing seasonal trends from the data record temperature fluctuations - calculated with the wavelet analysis - are interpreted to reflect planetary wave activity. These fluctuations show a nearly 22-year cycle. Superimposed on this 22-year variability a quasi-2-year modulation is found. The peak-to-peak amplitude of this variation is not uniform; it shows a maximum during 1994-1995 and a secondary maximum during 2005-2007. The quasi-2-year modulation is tentatively being interpreted as a QBO-effect on the planetary wave activity. Thus, it is expected that the QBO-modulation is large when planetary wave activity is well pronounced and vice versa. Maximum QBO-modulation is found to be correlated with the minima of the 11-year solar cycle and the maximum of the 22-year solar magnetic field (Hale cycle). Evidence is found that the planetary normal modes are well pronounced during solar minimum. This is taken as an indicator that planetary waves can develop more efficiently during solar minimum than solar maximum when external solar forcing is large. In addition former work has shown that planetary wave activity is systematically larger during maximum of the 22-year Hale cycle. The consequence of these findings is that the superimposed QBO-signal on the planetary wave activity is strongly pronounced if the minimum of the 11-year solar cycle coincides with the maximum of the 22-year solar magnetic Hale cycle. A secondary maximum of the QBO- modulation occurs when both the solar magnetic field and the 11-year solar cycle are in their minima.

  17. The solar activity measurements experiments (SAMEX) for improved scientific understanding of solar activity

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The Solar Activity Measurements Experiments (SAMEX) mission is described. It is designed to provide a look at the interactions of magnetic fields and plasmas that create flares and other explosive events on the sun in an effort to understand solar activity and the nature of the solar magnetic field. The need for this mission, the instruments to be used, and the expected benefits of SAMEX are discussed.

  18. Temporal offsets among solar activity indicators

    NASA Astrophysics Data System (ADS)

    Ramesh, K. B.; Vasantharaju, N.

    2014-04-01

    Temporal offsets between the time series of solar activity indicators provide important clues regarding the physical processes responsible for the cyclic variability in the solar atmosphere. Hysteresis patterns generated between any two indicators were popularly used to study their morphological features and further to understand their inter relationships. We use time series of different solar indicators to understand the possible cause-and-effect criteria between their respective source regions. Sensitivity of the upper atmosphere to the activity underneath might play an important role in introducing different evolutionary patterns in the profiles of solar indicators and in turn cause temporal offsets between them. Limitations in the observations may also cause relative shifts in the time series.

  19. Prediciting Solar Activity: Today, Tomorrow, Next Year

    NASA Technical Reports Server (NTRS)

    Pesnell, William Dean

    2008-01-01

    Fleets of satellites circle the Earth collecting science data, protecting astronauts, and relaying information. All of these satellites are sensitive at some level to space weather effects. Predictions of drag on LEO spacecraft are one of the most important. Launching a satellite with less fuel can mean a higher orbit, but unanticipated solar activity and increased drag can make that a Pyrrhic victory. Energetic events at the Sun can produce crippling radiation storms. Predicting those events that will affect our assets in space includes a solar prediction and how the radiation will propagate through the solar system. I will talk our need for solar activity predictions and anticipate how those predictions could be made more accurate in the future.

  20. Geomagnetic activity: Dependence on solar wind parameters

    NASA Technical Reports Server (NTRS)

    Svalgaard, L.

    1977-01-01

    Current ideas about the interaction between the solar wind and the earth's magnetosphere are reviewed. The solar wind dynamic pressure as well as the influx of interplanetary magnetic field lines are both important for the generation of geomagnetic activity. The influence of the geometry of the situation as well as the variability of the interplanetary magnetic field are both found to be important factors. Semi-annual and universal time variations are discussed as well as the 22-year cycle in geomagnetic activity. All three are found to be explainable by the varying geometry of the interaction. Long term changes in geomagnetic activity are examined.

  1. The Causes of Geomagnetic Storms During Solar Maximum

    NASA Technical Reports Server (NTRS)

    Tsurutani, B. T.; Gonzalez, W. D.

    1998-01-01

    One of the oldest mysteries in geomagnetism is the linkage between solar and geomagnetic activity. The 11-year cycles of both the numbers of sunspots and Earth geomagnetic storms were first noted by Sabine (1852).

  2. Solar Energy Education. Home economics: student activities. Field test edition

    SciTech Connect

    Not Available

    1981-03-01

    A view of solar energy from the standpoint of home economics is taken in this book of activities. Students are provided information on solar energy resources while performing these classroom activities. Instructions for the construction of a solar food dryer and a solar cooker are provided. Topics for study include window treatments, clothing, the history of solar energy, vitamins from the sun, and how to choose the correct solar home. (BCS)

  3. The effects of changing solar activity on climate: contributions from palaeoclimatological studies

    NASA Astrophysics Data System (ADS)

    Engels, Stefan; van Geel, Bas

    2012-07-01

    Natural climate change currently acts in concert with human-induced changes in the climate system. To disentangle the natural variability in the climate system and the human-induced effects on the global climate, a critical analysis of climate change in the past may offer a better understanding of the processes that drive the global climate system. In this review paper, we present palaeoclimatological evidence for the past influence of solar variability on Earth's climate, highlighting the effects of solar forcing on a range of timescales. On a decadal timescale, instrumental measurements as well as historical records show the effects of the 11-year Schwabe cycle on climate. The variation in total solar irradiance that is associated with a Schwabe cycle is only ~1 W m-2 between a solar minimum and a maximum, but winter and spring temperatures on the Northern Hemisphere show a response even to this small-scale variability. There is a large body of evidence from palaeoclimatic reconstructions that shows the influence of solar activity on a centennial to millennial timescale. We highlight a period of low solar activity starting at 2800 years before present when Europe experienced a shift to colder and wetter climate conditions. The spatial pattern of climate change that can be recognized in the palaeoclimatological data is in line with the suggested pattern of climate change as simulated by climate models. Millennial-scale climate oscillations can be recognized in sediment records from the Atlantic Ocean as well as in records of lake-level fluctuations in southeastern France. These oscillations coincide with variation in 14C production as recognized in the atmospheric 14C record (which is a proxy-record for solar activity), suggesting that Earth's climate is sensitive to changes in solar activity on a millennial timescale as well.

  4. The solar wind effect on cosmic rays and solar activity

    NASA Technical Reports Server (NTRS)

    Fujimoto, K.; Kojima, H.; Murakami, K.

    1985-01-01

    The relation of cosmic ray intensity to solar wind velocity is investigated, using neutron monitor data from Kiel and Deep River. The analysis shows that the regression coefficient of the average intensity for a time interval to the corresponding average velocity is negative and that the absolute effect increases monotonously with the interval of averaging, tau, that is, from -0.5% per 100km/s for tau = 1 day to -1.1% per 100km/s for tau = 27 days. For tau 27 days the coefficient becomes almost constant independently of the value of tau. The analysis also shows that this tau-dependence of the regression coefficiently is varying with the solar activity.

  5. A study of solar magnetic fields below the surface, at the surface, and in the solar atmosphere - understanding the cause of major solar activity

    NASA Astrophysics Data System (ADS)

    Chintzoglou, Georgios

    Magnetic fields govern all aspects of solar activity from the 11-year solar cycle to the most energetic events in the solar system, such as solar flares and Coronal Mass Ejections (CMEs). As seen on the surface of the sun, this activity emanates from localized concentrations of magnetic fields emerging sporadically from the solar interior. These locations are called solar Active Regions (ARs). However, the fundamental processes regarding the origin, emergence and evolution of solar magnetic fields as well as the generation of solar activity are largely unknown or remain controversial. In this dissertation, multiple important issues regarding solar magnetism and activities are addressed, based on advanced observations obtained by AIA and HMI instruments aboard the SDO spacecraft. First, this work investigates the formation of coronal magnetic flux ropes (MFRs), structures associated with major solar activity such as CMEs. In the past, several theories have been proposed to explain the cause of this major activity, which can be categorized in two contrasting groups (a) the MFR is formed in the eruption, and (b) the MFR pre-exists the eruption. This remains a topic of heated debate in modern solar physics. This dissertation provides a complete treatment of the role of MFRs from their genesis all the way to their eruption and even destruction. The study has uncovered the pre-existence of two weakly twisted MFRs, which formed during confined flaring 12 hours before their associated CMEs. Thus, it provides unambiguous evidence for MFRs truly existing before the CME eruptions, resolving the pre-existing MFR controversy. Second, this dissertation addresses the 3-D magnetic structure of complex emerging ARs. In ARs the photospheric fields might show all aspects of complexity, from simple bipolar regions to extremely complex multi-polar surface magnetic distributions. In this thesis, we introduce a novel technique to infer the subphotospheric configuration of emerging

  6. Effects of Solar Activities on the Transient Luminous Events

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Williams, E.; Chou, J.; Lee, L.; Huang, S.; Chang, S.; Chen, A. B.; Kuo, C.; Su, H.; Hsu, R.; Frey, H. U.; Takahashi, Y.; Lee, L.

    2013-12-01

    The Imager of Sprite and Upper Atmosphere Lightning (ISUAL) onboard the Formosat-2 was launched in May 2004; since then, it has continuously observed transient luminous events (TLEs) within the +/-60 degree of latitude for nearly 10 years. Due to ISUAL's long-term observations, the possible correlation between the TLE and the solar activity can be explored. Among the ISUAL TLEs, elves, which occur at the mesospheric altitude ~90 km and are caused by the heating incurred by the lightning-launched electromagnetic pulse of the lower ionosphere boundary are the most numerous and are the most suitable for this type of study. In previous studies, the elve distribution has proved to be a good surrogate for the lightning with exceptional peak current globally. ISUAL records the occurrence time and the height and location of elves, and the spectral emission intensities at six different band pass including the FUV N2 Lyman-Birge-Hopfield (LBH) band, which is a dominant emission in elves. The LBH intensity not only reflects the peak current of parent lightning, but may also represent the solar-activity-driven-lighting's perturbation to the ionosphere. In this study, we first examine whether the 11-year solar cycle affects the elve activity and altitude by analyzing the elve occurrence rates and heights in different latitudinal regions. To avoid the climatological and instrumental biases in the elve observations, the effects arising from the ENSO and moonlight must be carefully eliminated. Besides, we will discuss the elve variation in shorter time scale due to strong and sudden change of solar activity. Since the ion density of the mesosphere at mid-latitude may be significantly altered during/after a strong corona mass ejection (CME).Furthermore, it has been proven that the changes in the solar X-ray flux dominate the variations in the conductivity profile within the upper characteristic ELF layer (the 90-100km portion of the E-region). we will compare the variation of

  7. Solar activity geomagnetic field and terrestrial weather

    NASA Technical Reports Server (NTRS)

    Knight, J. W.; Sturrock, P. A.

    1976-01-01

    Spectral analysis is used as an independent test of the reported association between interplanetary-magnetic-field structure and terrestrial weather. Spectra of the Ap geomagnetic activity index and the vorticity area index for the years from 1964 to 1970 are examined for common features that may be associated with solar-related phenomena, specifically for peaks in the power spectra of both time series with periods near 27.1 days. The spectra are compared in three ways, and the largest peak with the smallest probability estimate is found to occur at a period of 27.49 days. This result is considered to be statistically significant at the 98% level. It is concluded that the period derived from the Ap spectrum is related to solar rotation and that the analysis provides supporting evidence for a connection between the vorticity area index and solar activity.

  8. Seismic Holography of Solar Activity

    NASA Technical Reports Server (NTRS)

    Lindsey, Charles

    2000-01-01

    The basic goal of the project was to extend holographic seismic imaging techniques developed under a previous NASA contract, and to incorporate phase diagnostics. Phase-sensitive imaging gives us a powerful probe of local thermal and Doppler perturbations in active region subphotospheres, allowing us to map thermal structure and flows associated with "acoustic moats" and "acoustic glories". These remarkable features were discovered during our work, by applying simple acoustic power holography to active regions. Included in the original project statement was an effort to obtain the first seismic images of active regions on the Sun's far surface.

  9. Solar Energy Project, Activities: Junior High Science.

    ERIC Educational Resources Information Center

    Tullock, Bruce, Ed.; And Others

    This guide contains lesson plans and outlines of science activities which present concepts of solar energy in the context of the junior high science curriculum. Each unit presents an introduction; objectives; skills and knowledge needed; materials; methods; questions; recommendations for further work; and a teacher information sheet. The teacher…

  10. Solar Energy Project, Activities: Earth Science.

    ERIC Educational Resources Information Center

    Tullock, Bruce, Ed.; And Others

    This guide contains lesson plans and outlines of science activities which present concepts of solar energy in the context of earth science experiments. Each unit presents an introduction; objectives; skills and knowledge needed; materials; method; questions; recommendations for further study; and a teacher information sheet. The teacher…

  11. Solar Energy Project, Activities: Chemistry & Physics.

    ERIC Educational Resources Information Center

    Tullock, Bruce, Ed.; And Others

    This guide contains lesson plans and outlines of science activities which present concepts of solar energy in the context of chemistry and physics experiments. Each unit presents an introduction to the unit; objectives; required skills and knowledge; materials; method; questions; recommendations for further work; and a teacher information sheet.…

  12. Two principal components of solar magnetic field variations and prediction of solar activity on multi-millennium timescale

    NASA Astrophysics Data System (ADS)

    Zharkova, Valentina; Popova, Helen; Zharkov, Sergei; Shepherd, Simon

    2016-07-01

    We present principal components analysis (PCA) of temporal magnetic field variations over the solar cycles 21-24 and their classification with symbolic regression analysis using Hamiltonian method. PCA reveals 4 pairs of magnetic waves with a significant variance and the two principal components with the highest eigen values covering about 40% of this variance. The PC waves are found to have close frequencies while travelling from the opposite hemispheres with an increasing phase shift. Extrapolation of these PCs through their summary curve backward for 5000 years reveals a repeated number of ~350-400 year grand cycles superimposed on 22 year-cycles with the features showing a remarkable resemblance to sunspot activity reported in the past including Maunder, Dalton and Wolf minima, as well as the modern, medieval and roman warmth periods. The summary curve calculated forward for the next millennium predicts further three grand cycles with the closest grand minimum (Maunder minimum) occurring in the forthcoming cycles 25-27 when the two magnetic field waves approach the phase shift of 11 years. We also note a super-grand cycle of about 2000 years which reveal the 5 repeated grand cycles of 350 years with the similar patterns. We discuss a role of other 3 pairs of magnetic waves in shaping the solar activity and compare our predicted curve with the previous predictions of the solar activity on a long timescale based on the terrestrial proxies. These grand cycle variations are probed by Parker's two layer dynamo model with meridional circulation revealing two dynamo waves generated with close frequencies. Their interaction leads to beating effects responsible for the grand cycles (300-350 years) and super-grand cycles of 2000 years superimposed on standard 22 year cycles. This approach opens a new era in investigation and prediction of solar activity on long-term timescales.

  13. [Cerebellar gangliocytoma in an 11-year-old child].

    PubMed

    Joly, Marie; Valmary-Degano, Séverine; Cattin, Françoise; Vasiljevic, Alexandre; Jouvet, Anne; Viennet, Gabriel

    2014-12-01

    Cerebellar gangliocytoma can correspond to Lhermitte-Duclos disease, a benign hamartomatous malformation encountered in young adults. It can also be a part of gangliogliomas/gangliocytomas family, which usually encompasses temporal pediatric neoplasms associated with longstanding seizures. We report a case of a young 11-year-old patient who presented with a gangliocytoma of the cerebellum revealed by neurologic manifestations (headache, dyspraxia, equilibrium and gait disturbances). Diagnosis was made on surgical material. Tumour was characterized by dysplastic mature ganglion cells, perivascular lymphocytic infiltrates and no glial neoplastic component. By immunohistochemistry, ganglion cells expressed neurofilaments, MAP2 protein, synaptophysin, chromogranin A and S100 protein. BRAF V600E mutation was absent. Clinical characteristics, radiology, histopathology of the two main diagnoses are discussed.

  14. First Manic Episode in an 11 Year-old Girl

    PubMed Central

    Tran, Don Quang; Beaudry, Vincent; Lajoie, Yves

    2013-01-01

    Objective: We present the case of an 11 year-old girl admitted to the Centre hospitalier universitaire de Sherbrooke for a first manic episode. Method: Differential diagnoses of adjustment disorder, attention-deficit/hyperactivity disorder, oppositional defiant disorder, and conduct disorder were considered but eliminated. Results: No organic etiology was detected. Her condition rapidly remitted with aripiprazole 3mg. After her discharge, she suffered a relapse due to instability of her living conditions and was rehospitalized. Conclusion: Mania is a difficult diagnosis in youths due to its nonspecific symptoms, rare prepubertal occurrence, and diagnostic complexity. Despite ongoing research, there is little conclusive information on the impact of psychosocial stressors on the evolution of early-onset bipolar disorder. PMID:24223053

  15. Magnetic activity in the young solar analog LQ Hydrae. I. Active longitudes and cycles

    NASA Astrophysics Data System (ADS)

    Berdyugina, S. V.; Pelt, J.; Tuominen, I.

    2002-11-01

    We present the first evidence that a single active dwarf of solar type can show a long-lived, nonaxisymmetric spot distribution - active longitudes on opposite hemispheres, similar to evolved, rapidly rotating RS CVn-type binary stars. We analyse new as well as published photometric observations of the young active dwarf LQ Hya, spanning almost 20 years. We find that activity of the star has three activity cycles: a 5.2-yr ``flip-flop'' cycle, a 7.7-yr period in the amplitude modulation of the brightness and an approximately 15-yr period in variations of the mean brightness. The two shorter cycles are related to the alternating active longitudes and are similar to cycles observed in RS CVn-type stars. The 15-yr cycle reflects periodic changes of the mean spottedness of the star and resembles the solar 11-year cycle. The spot rotation period (about 1.6 days) changes during the 15-yr cycle, indicating the presence of small differential rotation. The lengths of the three cycles are related as 3:2:1, with the repetition of the spot configuration after 15 years. We discuss the possibility that the observed spot cycles represent two different magnetic dynamo modes operating in LQ Hya: an axisymmetric mode, as in the Sun, and a nonaxisymmetric higher order mode with two cycles in spot patterns. Our results suggest that young stars exhibit their cycles in spot distribution, as seen in LQ Hya. This is in contrast to the conclusion based on the analysis of Ca Ii H&K emission from plages. The results suggest also that the Vaughan-Preston gap represents a transition from a multiple-mode dynamo to a single-mode dynamo. Table 2 is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/394/505

  16. Catawba Science Center solar activities. Final report

    SciTech Connect

    1983-01-01

    Two demonstration solar water heaters were built. One was to be used at the Science Center and the other with traveling programs. This was completed and both units are being used for these programs which continue. We were able to build a library of 99 solar energy books and booklets that are available to the public for reference. We also conducted programs for 683 students of all ages. The culminating activity was the planned Energy Awareness Festival. This was held on September 26, 1981 and attracted 450 area citizens. We offered free exhibit space and hosted 17 exhibitors.

  17. Division II: Commission 10: Solar Activity

    NASA Astrophysics Data System (ADS)

    van Driel-Gesztelyi, Lidia; Scrijver, Karel J.; Klimchuk, James A.; Charbonneau, Paul; Fletcher, Lyndsay; Hasan, S. Sirajul; Hudson, Hugh S.; Kusano, Kanya; Mandrini, Cristina H.; Peter, Hardi; Vršnak, Bojan; Yan, Yihua

    2015-08-01

    The Business Meeting of Commission 10 was held as part of the Business Meeting of Division II (Sun and Heliosphere), chaired by Valentin Martínez-Pillet, the President of the Division. The President of Commission 10 (C10; Solar activity), Lidia van Driel-Gesztelyi, took the chair for the business meeting of C10. She summarised the activities of C10 over the triennium and the election of the incoming OC.

  18. Resonant Rossby waves and solar activity

    NASA Technical Reports Server (NTRS)

    Krivolutsky, A. A.; Loshkova, O. A.

    1989-01-01

    Large scale transient waves are an essential part of atmospheric dynamics. Some of these waves (like 27 day waves) could have a solar nature. The contribution of the 27 day planetary waves to a total long period spectrum of the atmospheric processes during one solar cycle was investigated. Ivanovsky and Krivolutsky proposed that the 27 day wave has a resonant nature. The real atmospheric processes were investigated. The method of 2-D wave analysis used is described by Krivolutsky. It was concluded that the resonant nature of the 27 day wave is not unicum. There are long periods waves (50 day wave) in stratosphere which belong to the resonant waves, too. It is a very interesting fact for the solar activity-weather problem.

  19. Forecasts of solar and geomagnetic activity

    NASA Technical Reports Server (NTRS)

    Joselyn, Joann

    1987-01-01

    Forecasts of solar and geomagnetic activity are critical since these quantities are such important inputs to the thermospheric density models. At this time in the history of solar science there is no way to make such a forecast from first principles. Physical theory applied to the Sun is developing rapidly, but is still primitive. Techniques used for forecasting depend upon the observations over about 130 years, which is only twelve solar cycles. It has been noted that even-numbered cycles systematically tend to be smaller than the odd-numbered ones by about 20 percent. Another observation is that for the last 12 cycle pairs, an even-numbered sunspot cycle looks rather like the next odd-numbered cycle, but with the top cut off. These observations are examples of approximate periodicities that forecasters try to use to achieve some insight into the nature of an upcoming cycle. Another new and useful forecasting aid is a correlation that has been noted between geomagnetic indices and the size of the next solar cycle. Some best estimates are given concerning both activities.

  20. Division E Commission 10: Solar Activity

    NASA Astrophysics Data System (ADS)

    Schrijver, Carolus J.; Fletcher, Lyndsay; van Driel-Gesztelyi, Lidia; Asai, Ayumi; Cally, Paul S.; Charbonneau, Paul; Gibson, Sarah E.; Gomez, Daniel; Hasan, Siraj S.; Veronig, Astrid M.; Yan, Yihua

    2016-04-01

    After more than half a century of community support related to the science of ``solar activity'', IAU's Commission 10 was formally discontinued in 2015, to be succeeded by C.E2 with the same area of responsibility. On this occasion, we look back at the growth of the scientific disciplines involved around the world over almost a full century. Solar activity and fields of research looking into the related physics of the heliosphere continue to be vibrant and growing, with currently over 2,000 refereed publications appearing per year from over 4,000 unique authors, publishing in dozens of distinct journals and meeting in dozens of workshops and conferences each year. The size of the rapidly growing community and of the observational and computational data volumes, along with the multitude of connections into other branches of astrophysics, pose significant challenges; aspects of these challenges are beginning to be addressed through, among others, the development of new systems of literature reviews, machine-searchable archives for data and publications, and virtual observatories. As customary in these reports, we highlight some of the research topics that have seen particular interest over the most recent triennium, specifically active-region magnetic fields, coronal thermal structure, coronal seismology, flares and eruptions, and the variability of solar activity on long time scales. We close with a collection of developments, discoveries, and surprises that illustrate the range and dynamics of the discipline.

  1. Farming tractor fatalities in Virginia: an 11-year retrospective review.

    PubMed

    Fulcher, James; Noller, Anna; Kay, Deborah

    2012-12-01

    This retrospective case review examines farm tractor-related deaths in the Commonwealth of Virginia for an 11-year period, from 1997 to 2007. This study compares decedent's demographic information, toxicology results, and medical histories.A vast majority of farm tractor-related deaths were male (98%) and white (91%). The average age was 60 years with most deaths occurring between the ages of 40 and 80 years. Ethanol use was observed in 9% of all cases with 7% of cases being more than 0.08% wt/vol ethanol, which is the legal limit in Virginia to operate a motor vehicle.The more mountainous, Western District Office of the Chief Medical Examiner composed 60% of total cases with 43% of these western cases related to tractor use on a natural slope or incline. The deaths in other districts were all less than 13% natural slope or incline related, reflecting the topography of these areas.These findings confirm much of what observation would suggest; accidents with farming tractors typically involve older white men. Operating a tractor on steep inclines is dangerous as many tractors do not have adequate rollover protection. The use of ethanol is dangerous when using any heavy equipment.This study provides an initial look at tractor-related deaths in Virginia, and more research is needed in this area to improve safety mechanisms on this machinery.

  2. Two dynamo waves derived with Principal Component Analysis of solar magnetic field and prediction of solar activity on millenium scales

    NASA Astrophysics Data System (ADS)

    Zharkova, V. V.; Shepherd, S. J.; Popova, E.; Zharkov, S.

    2015-12-01

    We present principal components analysis (PCA) of temporal magnetic field variations over the solar cycles 21-24. These PCs reveal two main magnetic waves with close frequencies (covering 40% of data variance) travelling from the opposite hemispheres with an increasing phase shift. Extrapolation of these PCs through their summary curve backward for 2000 years reveals a number of ~350-year grand cycles superimposed on 22 year-cycles with the features showing a remarkable resemblance to sunspot activity reported in the past. The summary curve calculated forward for the next millennium predicts further three grand cycles with the closest grand minimum occurring in the forthcoming cycles 25-27 when the two magnetic field waves have a phase shift of 11 years. These grand cycle variations are probed by Parker's two layer dynamo model with meridional circulation revealing two dynamo waves generated with close frequencies. Their interaction leads to beating effects responsible for the grand cycles (300-350 years) superimposed on standard 22 year cycles and for the super-grand cycle of 900-1000 years. This approach opens a new era in investigation and prediction of solar activity on long-term timescales.

  3. Geomagnetic responses to the solar wind and the solar activity

    NASA Technical Reports Server (NTRS)

    Svalgaard, L.

    1975-01-01

    Following some historical notes, the formation of the magnetosphere and the magnetospheric tail is discussed. The importance of electric fields is stressed and the magnetospheric convection of plasma and magnetic field lines under the influence of large-scale magnetospheric electric fields is outlined. Ionospheric electric fields and currents are intimately related to electric fields and currents in the magnetosphere and the strong coupling between the two regions is discussed. The energy input of the solar wind to the magnetosphere and upper atmosphere is discussed in terms of the reconnection model where interplanetary magnetic field lines merge or connect with the terrestrial field on the sunward side of the magnetosphere. The merged field lines are then stretched behind earth to form the magnetotail so that kinetic energy from the solar wind is converted into magnetic energy in the field lines in the tail. Localized collapses of the crosstail current, which is driven by the large-scale dawn/dusk electric field in the magnetosphere, divert part of this current along geomagnetic field lines to the ionosphere, causing substorms with auroral activity and magnetic disturbances. The collapses also inject plasma into the radiation belts and build up a ring current. Frequent collapses in rapid succession constitute the geomagnetic storm.

  4. Cosmic rays, solar activity and the climate

    NASA Astrophysics Data System (ADS)

    Sloan, T.; Wolfendale, A. W.

    2013-12-01

    Although it is generally believed that the increase in the mean global surface temperature since industrialization is caused by the increase in green house gases in the atmosphere, some people cite solar activity, either directly or through its effect on cosmic rays, as an underestimated contributor to such global warming. In this letter a simplified version of the standard picture of the role of greenhouse gases in causing the global warming since industrialization is described. The conditions necessary for this picture to be wholly or partially wrong are then introduced. Evidence is presented from which the contributions of either cosmic rays or solar activity to this warming is deduced. The contribution is shown to be less than 10% of the warming seen in the twentieth century.

  5. Solar activities at Sandia National Laboratories

    NASA Astrophysics Data System (ADS)

    Klimas, Paul C.; Hasti, David E.

    The use of renewable energy technologies is typically thought of as an integral part of creating and sustaining an environment that maximizes the overall quality of life of the Earth's present inhabitants and does not leave an undue burden on future generations. Sandia National Laboratories has been a leader in developing and deploying many of these technologies over the last two decades. A common but special aspect of all of these activities is that they are all conducted in cooperation with various types of partners. Some of these partners have an interest in seeing these systems grow in the marketplace, while others are primarily concerned with economic benefits that can come from immediate use of these renewable energy systems. This paper describes solar thermal and photovoltaic technology activities at Sandia that are intended to accelerate the commercialization of these solar systems.

  6. The Little Ice Age and Solar Activity

    NASA Astrophysics Data System (ADS)

    Velasco Herrera, Victor Manuel; Leal Silva, C. M. Carmen; Velasco Herrera, Graciela

    We analyze the ice winter severity index on the Baltic region since 1501-1995. We found that the variability of this index is modulated among other factors by the secular solar activity. The little ice ages that have appeared in the North Hemisphere occurred during periods of low solar activity. Seemingly our star is experiencing a new quiet stage compared with Maunder or Dalton minimum, this is important because it is estimated that even small changes in weather can represent a great impact in ice index. These results are relevant since ice is a very important element in the climate system of the Baltic region and it can affect directly or indirectly many of the oceanographic, climatic, eco-logical, economical and cultural patterns.

  7. Normalized endothelial function but sustained cardiovascular risk profile 11 years following a pregnancy complicated by preeclampsia.

    PubMed

    Östlund, Eva; Al-Nashi, Maha; Hamad, Rangeen Rafik; Larsson, Anders; Eriksson, Maria; Bremme, Katarina; Kahan, Thomas

    2013-12-01

    Women with a history of preeclampsia are at increased risk of future cardiovascular disease. Preeclampsia is associated with elevated blood pressure, inflammation and endothelial dysfunction, and these findings remain 1 year after delivery. Whether these abnormalities persist long after delivery, and whether they may contribute to future cardiovascular disease, is not well studied. We studied 15 women with a history of preeclampsia and 16 matched controls with an uncomplicated pregnancy 11 years following the index pregnancy; all had also been previously examined at 1 year. We assessed arterial stiffness (pulse wave analysis), 24 h ambulatory blood pressure and endothelial function (forearm flow-mediated dilatation and pulse wave analysis following β receptor agonist provocation), and determined markers of glucose and lipid metabolism, inflammation and vascular function. The preeclampsia group had higher blood pressures and reduced night/day blood pressure ratios, increased body mass index and reduced glucose tolerance, and increased levels of tissue necrosis factor receptor 1 and intracellular adhesion molecule-1, suggesting inflammatory and vascular activation. However, the endothelial impairment observed in the preeclampsia group at 1 year was normalized at 11 years, whereas the control group remained unchanged during follow-up. Our findings of higher blood pressures, impaired glucose tolerance and normalization of endothelial function 11 years after preeclampsia suggest cardiovascular risk factors present already before pregnancy to be more important than permanent endothelial damage for the increased risk of future cardiovascular complications in women with a history of preeclampsia.

  8. Solar irradiance variations due to active regions

    SciTech Connect

    Oster, L.; Schatten, K.H.; Sofia, S.

    1982-05-15

    We have been able to reproduce the variations of the solar irradiance observed by ACRIM to an accuracy of better than +- 0.4 W m/sup -2/, assuming that during the 6 month observation period in 1980 the solar luminosity was constant. The improvement over previous attempts is primarily due to the inclusion of faculae. The reproduction scheme uses simple geometrical data on spot and facula areas, and conventional parameters for the respective fluxes and angular dependencies. The quality of reproduction is not very sensitive to most of the details of these parameters; nevertheless, there conventional parameters cannot be very different from their actual values in the solar atmosphere. It is interesting that the time average of the integrated excess emission (over directions) of the faculae cancels out the integrated deficit produced by the spots, within an accuracy of about 10%. If this behavior were maintained over longer periods of time, say, on the order of an activity cycle, active regions could be viewed as a kind of lighthouse where the energy deficit near the normal direction, associated with the spots, is primarily reemitted close to the tangential directions by the faculae. The currently available data suggest that energy ''storage'' associated with the redirection of flux near active regions on the Sun is comparable to the lifetime of the faculae.

  9. Solar Eruptions Initiated in Sigmoidal Active Regions

    NASA Astrophysics Data System (ADS)

    Savcheva, Antonia

    2016-07-01

    active regions that have been shown to possess high probability for eruption. They present a direct evidence of the existence of flux ropes in the corona prior to the impulsive phase of eruptions. In order to gain insight into their eruptive behavior and how they get destabilized we need to know their 3D magnetic field structure. First, we review some recent observations and modeling of sigmoidal active regions as the primary hosts of solar eruptions, which can also be used as useful laboratories for studying these phenomena. Then, we concentrate on the analysis of observations and highly data-constrained non-linear force-free field (NLFFF) models over the lifetime of several sigmoidal active regions, where we have captured their magnetic field structure around the times of major flares. We present the topology analysis of a couple of sigmoidal regions pointing us to the probable sites of reconnection. A scenario for eruption is put forward by this analysis. We demonstrate the use of this topology analysis to reconcile the observed eruption features with the standard flare model. Finally, we show a glimpse of how such a NLFFF model of an erupting region can be used to initiate a CME in a global MHD code in an unprecedented realistic manner. Such simulations can show the effects of solar transients on the near-Earth environment and solar system space weather.

  10. The Magnetic Origins of Solar Activity

    NASA Technical Reports Server (NTRS)

    Antiochos, S. K.

    2012-01-01

    The defining physical property of the Sun's corona is that the magnetic field dominates the plasma. This property is the genesis for all solar activity ranging from quasi-steady coronal loops to the giant magnetic explosions observed as coronal mass ejections/eruptive flares. The coronal magnetic field is also the fundamental driver of all space weather; consequently, understanding the structure and dynamics of the field, especially its free energy, has long been a central objective in Heliophysics. The main obstacle to achieving this understanding has been the lack of accurate direct measurements of the coronal field. Most attempts to determine the magnetic free energy have relied on extrapolation of photospheric measurements, a notoriously unreliable procedure. In this presentation I will discuss what measurements of the coronal field would be most effective for understanding solar activity. Not surprisingly, the key process for driving solar activity is magnetic reconnection. I will discuss, therefore, how next-generation measurements of the coronal field will allow us to understand not only the origins of space weather, but also one of the most important fundamental processes in cosmic and laboratory plasmas.

  11. SORCE 11 years after launch: What's new? What's next?

    NASA Astrophysics Data System (ADS)

    Cahalan, Robert; Kopp, Greg; Pilewskie, Peter; Richard, Erik; Woods, Tom

    2014-05-01

    We discuss recent changes in estimates of the Total Solar Irradiance (TSI) and the energy budget. We highlight the historic closing of the calibration gap between the suite of TSI instruments, due largely to comparisons made with a cryogenic Transfer Radiometer Facility (TRF) located at the University of Colorado, built by UCO/LASP with support from NASA and NIST. The resulting continuous record of TSI promises to be a milestone in improving understanding of the Sun's impact on Earth's climate. Climate models are sensitive not only to TSI, but also to variations in the Spectral Solar Irradiance (SSI), and the vertical profiles of temperature and ozone are especially sensitive to SSI variations. Variations in SSI need further study before they may be considered as firmly established as TSI variations, which themselves remain controversial, despite a strengthening consensus over the SORCE epoch. The TSIS SIM has recently undergone comprehensive end-to-end calibration in the LASP SSI Radiometry Facility (SRF) utilizing the NIST SIRCUS laser system covering 210 - 2400 nm for SSI, a facility not yet available when SORCE launched in 2003. With SORCE follow-on missions such as the Total and Spectral Solar Irradiance Sensor (TSIS), we anticipate narrowing uncertainties in SSI variability that will be important to improving our understanding of the climate responses to solar forcing. The long-term goal of improving the ability to monitor Earth's energy balance, and the energy imbalance that drives global warming, will need continued improvements in the measurement of both shortwave solar and longwave earth-emitted radiation.

  12. Cyclicity of Suicides May Be Modulated by Internal or External - 11-Year Cycles: An Example of Suicide Rates in Finland

    NASA Astrophysics Data System (ADS)

    Dimitrov, B. D.; Atanassova, P. A.; Rachkova, M. I.

    2009-12-01

    Multicomponent cyclicity in monthly suicides (periods T = 18, 46 and 198 months) was found and close similarity with heliogeophysical activity (HGA) suggested by Dimitrov in 1999. The current report aimed at scrutinizing the results on suicide annual cyclicity (seasonality) in Slovenia as reported by Oravecz et al in 2007 as well as at analyzing suicide data from Finland in this regard. We postulated that: (i) trans-year (12-24 months) or far-trans-year long-term cycles of suicides might interfere with their seasonality; and (ii) associations to environmental factors with alike cyclicity (e.g. HGA, temperature) could exist. Annual suicide incidence from Oulu, Finland over years 1987-1999 was analyzed. Annual data on solar activity (sunspot index Rz or Wolf number), planetary geomagnetic activity (aa-index) and local daily mean temperatures were used. The exploration of underlying chronomes (time structures) was done by periodogram regression analysis with trigonometric approximation. We analyzed temporal dynamics, revealed cyclicity, decomposed and reconstructed significant cycles and correlated the time series data. Suicide seasonality in Slovenia during the years 1971-2002 (n=384 months, peak May-June) was considered and, although some discrepancies and methodological weaknesses were suspected, we further hypothesized about trans-year and/or longer (far-transyear) cyclic components. Suicide incidence data from Finland indicated that the 12.5-year cyclic component (or trend) was almost parallel (coherent) to the cyclic heliogeophysical parameters and similar to local decreasing temperature dynamics. Also, 8-year and 24.5-year cycles were revealed. A correlation between the 12.5-year suicide cycle and 11-year solar cycle was found (R=0.919, p=0.000009). Above findings on cyclicity and temporal correlations of suicides with cyclic environmental factors, even being still preliminary, might not only allow for further more specific analyses. They might also corroborate

  13. Carotid Artery Stenting: Single-Center Experience Over 11 Years

    SciTech Connect

    Nolz, Richard Schernthaner, Ruediger Egbert; Cejna, Manfred; Schernthaner, Melanie Lammer, Johannes Schoder, Maria

    2010-04-15

    This article reports the results of carotid artery stenting during an 11-year period. Data from 168 carotid artery stenting procedures (symptomatic, n = 55; asymptomatic, n = 101; symptoms not accessible, n = 12) were retrospectively collected. Primary technical success rate, neurological events in-hospital, access-site complications, and contrast-induced nephropathy (n = 118) were evaluated. To evaluate the influence of experience in carotid artery stenting on intraprocedural neurologic complications, patients were divided into two groups. Group 1 included the first 80 treated patients, and group 2 the remainder of the patients (n = 88). In-stent restenoses at last-follow-up examinations (n = 89) were assessed. The overall primary technical success rate was 95.8%. The in-hospital stroke-death rate was 3.0% (n = 5; symptomatic, 5.4%; asymptomatic, 2.0%; p = 0.346). Neurologic complications were markedly higher in group 1 (4.2%; three major strokes; symptomatic, 2.8%, asymptomatic, 1.4%) compared to group 2 (2.4%; one major and one minor stroke-symptomatic, 1.2%, asymptomatic 1.2%), but this was not statistically significant. Further complications were access-site complications in 12 (7.1%), with surgical revision required in 1 (0.6%) and mild contrast-induced nephropathy in 1 (0.85%). Twenty-one (23.6%) patients had >50% in-stent restenosis during a mean follow-up of 28.2 months. In conclusion, advanced experience in carotid artery stenting leads to an acceptable periprocedural stroke-death rate. In-stent restenosis could be a critical factor during the follow-up course.

  14. A 449 year warm season temperature reconstruction in the southeastern Tibetan Plateau and its relation to solar activity

    NASA Astrophysics Data System (ADS)

    Duan, Jianping; Zhang, Qi-Bin

    2014-10-01

    There is a close relationship between solar activity and the Earth's surface temperature, but this relationship has weakened with recent global warming. To better understand this puzzle, temperature records need to be extended, and the relationship between long-term variation in temperature and solar activity needs to be examined. In this study, we reconstruct April-September temperature variation back to 1563 using tree ring maximum late wood density (MXD) data from Balfour spruce in the southeastern Tibetan Plateau (TP). Spatial correlation analysis indicates that our reconstruction is representative of temperature variability over the large-scale TP. On the 22 year time scale, the reconstructed April-September temperature corresponds generally to solar activity over the past three centuries. Spectral analyses also indicate that the significant periodicities of ~11 years, 54 years, and 204 years observed in the MXD chronology correspond to the Schwabe cycle, the fourth harmonic of the Suess cycle, and the Suess solar cycle, respectively. However, disparities between temperature change and solar activity are identified in two periods, the 1880s-1900s and the 1980s-present. These results suggest that solar forcing is the critical driver for long-term temperature variability in the TP, but other factors may uncouple surface temperature and solar activity in some periods. One possible cause of the weak effect of solar activity on temperature during the 1880s-1900s is internal climate variability, while human-activity-induced greenhouse gas emissions have likely superseded solar forcing as the major driver of the rapid warming observed since the 1980s.

  15. Solar Energy Education. Renewable energy activities for earth science

    SciTech Connect

    Not Available

    1980-01-01

    A teaching manual is provided to aid teachers in introducing renewable energy topics to earth science students. The main emphasis is placed on solar energy. Activities for the student include a study of the greenhouse effect, solar gain for home heating, measuring solar radiation, and the construction of a model solar still to obtain fresh water. Instructions for the construction of apparatus to demonstrate a solar still, the greenhouse effect and measurement of the altitude and azimuth of the sun are included. (BCS)

  16. The Pioneer Venus Orbiter: 11 years of data. A laboratory for atmospheres seminar talk

    NASA Technical Reports Server (NTRS)

    Kasprzak, W. T.

    1990-01-01

    The Pioneer Venus Orbiter has been in operation since orbit insertion on December 4, 1978. For the past 11 years, it has been acquiring data in the salient features of the planet, its atmosphere, ionosphere, and interaction with the solar wind. A few of the results of this mission are summarized and their contribution to our general understanding of the planet Venus is discussed. Although Earth and Venus are often called twin planets, they are only superficially similar. Possessing no obvious evidence of plate tectonics, lacking water and an intrinsic magnetic field, and having a hot, dense carbon dioxide atmosphere with sulfuric acid clouds makes Venus a unique object of study by the Orbiter's instruments.

  17. Influence of solar activity on Jupiter's atmosphere

    NASA Astrophysics Data System (ADS)

    Vidmachenko, A. P.

    2016-05-01

    The influx of solar energy to different latitudes while Jupiter's orbital motion around the Sun varies significantly. This leads to a change in the optical and physical characteristics of its atmosphere. Analysis of the data for 1850-1991 on determination of the integral magnitude Mj Jupiter in the V filter, and a comparison with the changes of the Wolf numbers W, characterizing the variations of solar activity (SA) - showed that the change of Mj in maxima of the SA - has minima for odd, and maximums - for the even of SA cycles. That is, changing of the Jupiter brightness in visible light is much evident 22.3-year magnetic cycle, and not just about the 11.1-year cycle of solar activity. Analysis of the obtained in 1960-2015 data on the relative distribution of brightness along the central meridian of Jupiter, for which we calculated the ratio of the brightness Aj of northern to the southern part of the tropical and temperate latitudinal zones, allowed to approximate the change of Aj by sinusoid with a period of 11.91±0.07 earth years. Comparison of time variation of Aj from changes in the index of SA R, and the movement of the planet in its orbit - indicates the delay of response of the visible cloud layer in the atmosphere of the Sun's exposure mode for 6 years. This value coincides with the radiative relaxation of the hydrogen-helium atmosphere

  18. Tsunami related to solar and geomagnetic activity

    NASA Astrophysics Data System (ADS)

    Cataldi, Gabriele; Cataldi, Daniele; Straser, Valentino

    2016-04-01

    The authors of this study wanted to verify the existence of a correlation between earthquakes of high intensity capable of generating tsunami and variations of solar and Earth's geomagnetic activity. To confirming or not the presence of this kind of correlation, the authors analyzed the conditions of Spaceweather "near Earth" and the characteristics of the Earth's geomagnetic field in the hours that preceded the four earthquakes of high intensity that have generated tsunamis: 1) Japan M9 earthquake occurred on March 11, 2011 at 05:46 UTC; 2) Japan M7.1 earthquake occurred on October 25, 2013 at 17:10 UTC; 3) Chile M8.2 earthquake occurred on April 1, 2014 at 23:46 UTC; 4) Chile M8.3 earthquake occurred on September 16, 2015 at 22:54 UTC. The data relating to the four earthquakes were provided by the United States Geological Survey (USGS). The data on ion density used to realize the correlation study are represented by: solar wind ion density variation detected by ACE (Advanced Composition Explorer) Satellite, in orbit near the L1 Lagrange point, at 1.5 million of km from Earth, in direction of the Sun. The instrument used to perform the measurement of the solar wind ion density is the Electron, Proton, and Alpha Monitor (EPAM) instrument, equipped on the ACE Satellite. To conduct the study, the authors have taken in consideration the variation of the solar wind protons density of three different energy fractions: differential proton flux 1060-1900 keV (p/cm^2-sec-ster-MeV); differential proton flux 761-1220 keV (p/cm^2-sec-ster-MeV); differential proton flux 310-580 keV (p/cm^2-sec-ster-MeV). Geomagnetic activity data were provided by Tromsø Geomagnetic Observatory (TGO), Norway; by Scoresbysund Geomagnetic Observatory (SCO), Greenland, Denmark and by Space Weather Prediction Center of Pushkov Institute of terrestrial magnetism, ionosphere and radio wave propagation (IZMIRAN), Troitsk, Moscow Region. The results of the study, in agreement with what already

  19. COUPLING THE SOLAR DYNAMO AND THE CORONA: WIND PROPERTIES, MASS, AND MOMENTUM LOSSES DURING AN ACTIVITY CYCLE

    SciTech Connect

    Pinto, Rui F.; Brun, Allan Sacha; Grappin, Roland

    2011-08-20

    We study the connections between the Sun's convection zone and the evolution of the solar wind and corona. We let the magnetic fields generated by a 2.5-dimensional (2.5D) axisymmetric kinematic dynamo code (STELEM) evolve in a 2.5D axisymmetric coronal isothermal magnetohydrodynamic code (DIP). The computations cover an 11 year activity cycle. The solar wind's asymptotic velocity varies in latitude and in time in good agreement with the available observations. The magnetic polarity reversal happens at different paces at different coronal heights. Overall the Sun's mass-loss rate, momentum flux, and magnetic braking torque vary considerably throughout the cycle. This cyclic modulation is determined by the latitudinal distribution of the sources of open flux and solar wind and the geometry of the Alfven surface. Wind sources and braking torque application zones also vary accordingly.

  20. Preferred longitudes in solar and stellar activity

    NASA Astrophysics Data System (ADS)

    Berdyugina, S. V.

    An analysis of the distribution of starspots on the surfaces of very active stars, such as RS CVn- FK Com-type stars as well as young solar analogs, reveals preferred longitudes of spot formation and their quasi-periodic oscillations, i.e. flip-flop cycles. A non-linear migration of the preferred longitudes suggests the presence of the differential rotation and variations of mean spot latitudes. It enables recovering stellar butterfly diagrams. Such phenomena are found to persist in the sunspot activity as well. A comparison of the observed properties of preferred longitudes on the Sun with those detected on more active stars leads to the conclusion that we can learn fine details of the stellar dynamo by studying the Sun, while its global parameters on the evolutionary time scale are provided by a sample of active stars.

  1. Nanoflare activity in the solar chromosphere

    SciTech Connect

    Jess, D. B.; Mathioudakis, M.; Keys, P. H.

    2014-11-10

    We use ground-based images of high spatial and temporal resolution to search for evidence of nanoflare activity in the solar chromosphere. Through close examination of more than 1 × 10{sup 9} pixels in the immediate vicinity of an active region, we show that the distributions of observed intensity fluctuations have subtle asymmetries. A negative excess in the intensity fluctuations indicates that more pixels have fainter-than-average intensities compared with those that appear brighter than average. By employing Monte Carlo simulations, we reveal how the negative excess can be explained by a series of impulsive events, coupled with exponential decays, that are fractionally below the current resolving limits of low-noise equipment on high-resolution ground-based observatories. Importantly, our Monte Carlo simulations provide clear evidence that the intensity asymmetries cannot be explained by photon-counting statistics alone. A comparison to the coronal work of Terzo et al. suggests that nanoflare activity in the chromosphere is more readily occurring, with an impulsive event occurring every ∼360 s in a 10,000 km{sup 2} area of the chromosphere, some 50 times more events than a comparably sized region of the corona. As a result, nanoflare activity in the chromosphere is likely to play an important role in providing heat energy to this layer of the solar atmosphere.

  2. Evidence of active region imprints on the solar wind structure

    NASA Technical Reports Server (NTRS)

    Hick, P.; Jackson, B. V.

    1995-01-01

    A common descriptive framework for discussing the solar wind structure in the inner heliosphere uses the global magnetic field as a reference: low density, high velocity solar wind emanates from open magnetic fields, with high density, low speed solar wind flowing outward near the current sheet. In this picture, active regions, underlying closed magnetic field structures in the streamer belt, leave little or no imprint on the solar wind. We present evidence from interplanetary scintillation measurements of the 'disturbance factor' g that active regions play a role in modulating the solar wind and possibly contribute to the solar wind mass output. Hence we find that the traditional view of the solar wind, though useful in understanding many features of solar wind structure, is oversimplified and possibly neglects important aspects of solar wind dynamics

  3. Transient flows of the solar wind associated with small-scale solar activity in solar minimum

    NASA Astrophysics Data System (ADS)

    Slemzin, Vladimir; Veselovsky, Igor; Kuzin, Sergey; Gburek, Szymon; Ulyanov, Artyom; Kirichenko, Alexey; Shugay, Yulia; Goryaev, Farid

    The data obtained by the modern high sensitive EUV-XUV telescopes and photometers such as CORONAS-Photon/TESIS and SPHINX, STEREO/EUVI, PROBA2/SWAP, SDO/AIA provide good possibilities for studying small-scale solar activity (SSA), which is supposed to play an important role in heating of the corona and producing transient flows of the solar wind. During the recent unusually weak solar minimum, a large number of SSA events, such as week solar flares, small CMEs and CME-like flows were observed and recorded in the databases of flares (STEREO, SWAP, SPHINX) and CMEs (LASCO, CACTUS). On the other hand, the solar wind data obtained in this period by ACE, Wind, STEREO contain signatures of transient ICME-like structures which have shorter duration (<10h), weaker magnetic field strength (<10 nT) and lower proton temperature than usual ICMEs. To verify the assumption that ICME-like transients may be associated with the SSA events we investigated the number of weak flares of C-class and lower detected by SPHINX in 2009 and STEREO/EUVI in 2010. The flares were classified on temperature and emission measure using the diagnostic means of SPHINX and Hinode/EIS and were confronted with the parameters of the solar wind (velocity, density, ion composition and temperature, magnetic field, pitch angle distribution of the suprathermal electrons). The outflows of plasma associated with the flares were identified by their coronal signatures - CMEs (only in few cases) and dimmings. It was found that the mean parameters of the solar wind projected to the source surface for the times of the studied flares were typical for the ICME-like transients. The results support the suggestion that weak flares can be indicators of sources of transient plasma flows contributing to the slow solar wind at solar minimum, although these flows may be too weak to be considered as separate CMEs and ICMEs. The research leading to these results has received funding from the European Union’s Seventh Programme

  4. MASC: Magnetic Activity of the Solar Corona

    NASA Astrophysics Data System (ADS)

    Auchere, Frederic; Fineschi, Silvano; Gan, Weiqun; Peter, Hardi; Vial, Jean-Claude; Zhukov, Andrei; Parenti, Susanna; Li, Hui; Romoli, Marco

    We present MASC, an innovative payload designed to explore the magnetic activity of the solar corona. It is composed of three complementary instruments: a Hard-X-ray spectrometer, a UV / EUV imager, and a Visible Light / UV polarimetric coronagraph able to measure the coronal magnetic field. The solar corona is structured in magnetically closed and open structures from which slow and fast solar winds are respectively released. In spite of much progress brought by two decades of almost uninterrupted observations from several space missions, the sources and acceleration mechanisms of both types are still not understood. This continuous expansion of the solar atmosphere is disturbed by sporadic but frequent and violent events. Coronal mass ejections (CMEs) are large-scale massive eruptions of magnetic structures out of the corona, while solar flares trace the sudden heating of coronal plasma and the acceleration of electrons and ions to high, sometimes relativistic, energies. Both phenomena are most probably driven by instabilities of the magnetic field in the corona. The relations between flares and CMEs are still not understood in terms of initiation and energy partition between large-scale motions, small-scale heating and particle acceleration. The initiation is probably related to magnetic reconnection which itself results magnetic topological changes due to e.g. flux emergence, footpoints motions, etc. Acceleration and heating are also strongly coupled since the atmospheric heating is thought to result from the impact of accelerated particles. The measurement of both physical processes and their outputs is consequently of major importance. However, despite its fundamental importance as a driver for the physics of the Sun and of the heliosphere, the magnetic field of our star’s outer atmosphere remains poorly understood. This is due in large part to the fact that the magnetic field is a very difficult quantity to measure. Our knowledge of its strength and

  5. Hyporeninemic hypoaldosteronism associated with multiple myeloma: 11 years of follow-up.

    PubMed

    Shaked, Y; Blau, A; Shpilberg, O; Samra, Y

    1993-08-01

    Hyporeninemic hypoaldosteronism is an important underlying condition, causing hyperkalemia with hyperchloremic metabolic acidosis, disproportionate to the degree of renal insufficiency present. The principal defect in this syndrome is a reduced level of plasma renin activity, which results in secondary hypoaldosteronism. Diabetes mellitus is usually the primary underlying renal disease, though other causes of renal diseases associated with this syndrome have been described. This case report describes for the first time an elderly patient with multiple myeloma, in remission for more than 11 years, associated with the syndrome of hyporeninemic hypoaldosteronism at the time of diagnosis. The complete resolution of the syndrome after vigorous chemotherapy is an intriguing possibility.

  6. Automatic Tracking of Active Regions and Detection of Solar Flares in Solar EUV Images

    NASA Astrophysics Data System (ADS)

    Caballero, C.; Aranda, M. C.

    2014-05-01

    Solar catalogs are frequently handmade by experts using a manual approach or semi-automated approach. The appearance of new tools is very useful because the work is automated. Nowadays it is impossible to produce solar catalogs using these methods, because of the emergence of new spacecraft that provide a huge amount of information. In this article an automated system for detecting and tracking active regions and solar flares throughout their evolution using the Extreme UV Imaging Telescope (EIT) on the Solar and Heliospheric Observatory (SOHO) spacecraft is presented. The system is quite complex and consists of different phases: i) acquisition and preprocessing; ii) segmentation of regions of interest; iii) clustering of these regions to form candidate active regions which can become active regions; iv) tracking of active regions; v) detection of solar flares. This article describes all phases, but focuses on the phases of tracking and detection of active regions and solar flares. The system relies on consecutive solar images using a rotation law to track the active regions. Also, graphs of the evolution of a region and solar evolution are presented to detect solar flares. The procedure developed has been tested on 3500 full-disk solar images (corresponding to 35 days) taken from the spacecraft. More than 75 % of the active regions are tracked and more than 85 % of the solar flares are detected.

  7. Magnetic helicity in emerging solar active regions

    SciTech Connect

    Liu, Y.; Hoeksema, J. T.; Bobra, M.; Hayashi, K.; Sun, X.; Schuck, P. W.

    2014-04-10

    Using vector magnetic field data from the Helioseismic and Magnetic Imager instrument aboard the Solar Dynamics Observatory, we study magnetic helicity injection into the corona in emerging active regions (ARs) and examine the hemispheric helicity rule. In every region studied, photospheric shearing motion contributes most of the helicity accumulated in the corona. In a sample of 28 emerging ARs, 17 follow the hemisphere rule (61% ± 18% at a 95% confidence interval). Magnetic helicity and twist in 25 ARs (89% ± 11%) have the same sign. The maximum magnetic twist, which depends on the size of an AR, is inferred in a sample of 23 emerging ARs with a bipolar magnetic field configuration.

  8. Background solar velocity spectrum at high and low phases of solar activity cycle

    NASA Astrophysics Data System (ADS)

    Régulo, C.; Roca Cortés, T.; Vázquez Ramió, H.

    2002-12-01

    Using GOLF/SOHO data a detailed analysis of the solar background spectrum has been performed at high and low phases of solar activity cycle. The analysis includes not only the non-periodic components of the background power spectrum but also the periodic ones. Apart from the solar activity, other causes produce similar effects in the data, particularly the different depths in the solar atmosphere where the measurements are done, because due to the sun-satellite relative velocity, we are observing at different positions in the line profile. Another effect is that different line wings are used in the observation at two different epochs, before and after SOHO loss and recovery which, unfortunately, coincide with minimum and maximum of solar activity. In this work we have tried to separate all these effects in order to really understand what is being seen in the data and ultimately extract the effects of solar activity on the acoustic background solar spectrum.

  9. Study of EGNOS safety of life service during the period of solar maximum activity

    NASA Astrophysics Data System (ADS)

    Grzegorzewski, Marek; Swiatek, Anna; Oszczak, Stanislaw; Ciecko, Adam; Cwiklak, Janusz

    2012-12-01

    The Satellite Base Augmentation System (SBAS) - EGNOS (European Geostationary Navigation Overlay Service) has been certified for Safety of Life (SoL) service for aircraft navigation since 2nd of March 2011. Unfortunately for the territory of Poland, located at the edge of EGNOS service area, the quality of the service corrections are still not sufficient for aircraft navigation requirements. Years 2012 and 2013 are forecasted as a maximum of solar activity in a 11-year solar cycle. This time period will be the chance to perform the first tests for the EGNOS Safety of Life service quality in disturbed ionospheric conditions. During the previous maximum of solar activity, the storm on 30 October 2003 resulted in the inability to use WAAS corrections for more than 12 hours. This was caused by a very large gradient of disturbances and its' very sharp boundaries - vertical TEC (VTEC) varied from ~ 40 to ~ 120 TECU (TEC units) within an hour (over ~ 150 km distance). These circumstances gave the opportunity to carry out the test flights to examine the navigation parameters obtained for EGNOS SoL service in disturbed ionospheric conditions. The paper presents project proposal of study and analyses of such fundamental navigation parameters as: accuracy of determined position, availability, continuity and integrity, determined for selected disturbances in relation to quiet conditions. It can give a possibility to estimate of the quality of EGNOS SoL service in Polish airspace during the different phases of flight and its resistance to critical ionospheric conditions.

  10. Interpretation of short and long-term oscillations of solar activity by alpha-omega dynamo model with two macro-cells of meridional fluxes

    NASA Astrophysics Data System (ADS)

    Popova, Elena

    2016-04-01

    Solar magnetic activity is related with generation strong magnetic fields in the depths of the Sun and manifested in sunspot occurrence on the solar surface. The amplitude and the spatial configuration of the magnetic field of our star are changing over the years. The most widely known variations of solar magnetic field are 11-years cycles and grand minima. The generation and evolution of the solar magnetic field and other stars is usually related to the dynamo mechanism. This mechanism is based on the consideration of the joint influence of the alpha-effect and differential rotation. Dynamo sources can be located at different depths (active layers) of the convection zone and can have different intensities. Based on such a system, the dynamical system with meridional fluxes in the case of the stellar dynamo with independent active layers has been constructed. We obtained quasi-biennial magnetic field oscillations for middle layer of the convective zone which can account for short term (2.5 years) oscillations often reported for 11 year solar cycles. Magnetic field waves from top and bottom layers of the convective zone are found generated with close frequencies whose interaction leads to beating effects responsible for the grand cycles (350-400 years) superimposed on a standard 22 year cycle. Using our model we made prediction of poloidal and toroidal fields on short (until 2040 year) and long-term timescale (until 3200 year) (V. V. Zharkova, S. J. Shepherd, E. Popova & S. I. Zharkov, Nature SR, 2015).

  11. Long-term persistence of solar activity

    NASA Technical Reports Server (NTRS)

    Ruzmaikin, Alexander; Feynman, Joan; Robinson, Paul

    1994-01-01

    We examine the question of whether or not the non-periodic variations in solar activity are caused by a white-noise, random process. The Hurst exponent, which characterizes the persistence of a time series, is evaluated for the series of C-14 data for the time interval from about 6000 BC to 1950 AD. We find a constant Hurst exponent, suggesting that solar activity in the frequency range from 100 to 3000 years includes an important continuum component in addition to the well-known periodic variations. The value we calculate, H approximately 0.8, is significantly larger than the value of 0.5 that would correspond to variations produced by a white-noise process. This value is in good agreement with the results for the monthly sunspot data reported elsewhere, indicating that the physics that produces the continuum is a correlated random process and that it is the same type of process over a wide range of time interval lengths.

  12. Are Solar Activity Variations Amplified by the QBO: A Modeling Study

    NASA Technical Reports Server (NTRS)

    Mengel, J. G.; Mayr, H. G.; Drob, D. P.; Porter, H. S.; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    Solar cycle activity effects (SCAE) in the lower and middle atmosphere, reported in several studies, are difficult to explain on the basis of the small changes in solar radiation that accompany the 11-year cycle. It is therefore natural to speculate that dynamical processes may come into play to produce a leverage. Such a leverage may be provided by the Quasi-Biennial Oscillation (QBO) in the zonal circulation of the stratosphere, which has been linked to solar activity variations. Driven primarily by wave mean flow interaction, the QBO period and its amplitude are variable but are also strongly influenced by the seasonal cycle in the solar radiation. This influence extends to low altitudes and is referred to as 'downward control'. Small changes in the solar radiative forcing may produce small changes in the period and phase of the QBO, but these in turn may produce measurable differences in the wind field. Thus, the QBO may be an amplifier of solar activity variations and a natural conduit of these variations to lower altitudes. To test this hypothesis, we conducted experiments with a 2D version of our Numerical Spectral Model that incorporates Hines' Doppler Spread Parameterization for small-scale gravity waves (GW). Solar cycle radiance variations (SCRV) are accounted for by changing the radiative heating rate on a logarithmic scale from 0.1% at the surface to 1% at 50 km to 10% at 100 km. With and without SCRV, but with the same GW flux, we then conduct numerical experiments to evaluate the magnitude of the SCAE in the zonal circulation. The numerical results indicate that, under certain conditions, the SCAE is significant and can extend to lower altitudes where the SCRV is small. For a modeled QBO period of 30 months, we find that the seasonal cycle in the solar forcing acts as a strong pacemaker to lock up the phase and period of the QBO. The SCAE then shows up primarily as a distinct but relatively weak amplitude modulation. But with a different QBO period

  13. Solar Energy Education. Industrial arts: student activities. Field test edition

    SciTech Connect

    Not Available

    1981-02-01

    In this teaching manual several activities are presented to introduce students to information on solar energy through classroom instruction. Wind power is also included. Instructions for constructing demonstration models for passive solar systems, photovoltaic cells, solar collectors and water heaters, and a bicycle wheel wind turbine are provided. (BCS)

  14. Solar-terrestrial predictions proceedings. Volume 4: Prediction of terrestrial effects of solar activity

    NASA Technical Reports Server (NTRS)

    Donnelly, R. E. (Editor)

    1980-01-01

    Papers about prediction of ionospheric and radio propagation conditions based primarily on empirical or statistical relations is discussed. Predictions of sporadic E, spread F, and scintillations generally involve statistical or empirical predictions. The correlation between solar-activity and terrestrial seismic activity and the possible relation between solar activity and biological effects is discussed.

  15. Solar wind turbulence as a driver of geomagnetic activity

    NASA Astrophysics Data System (ADS)

    Ikechukwu Ugwu, Ernest Benjamin; Nneka Okeke, Francisca; Ugonabo, Obiageli Josephine

    2016-07-01

    We carried out simultaneous analyses of interplanetary and geomagnetic datasets for the period of (solar Maunder) least (2009) and maximum (2002) solar activity to determine the nature of solar wind turbulence on geomagnetic activity using AE, ASY-D, and ASY-H indices. We determined the role played by Alfvénic fluctuations in the solar wind so as to find out the nature of the turbulence. Our analyses showed that solar wind turbulence play a role in geomagnetic processes at high latitudes during periods of low and high solaractivity but does not have any effect at mid-low latitudes.

  16. Prominences: The Key to Understanding Solar Activity

    NASA Technical Reports Server (NTRS)

    Karpen, Judy T.

    2011-01-01

    Prominences are spectacular manifestations of both quiescent and eruptive solar activity. The largest examples can be seen with the naked eye during eclipses, making prominences among the first solar features to be described and catalogued. Steady improvements in temporal and spatial resolution from both ground- and space-based instruments have led us to recognize how complex and dynamic these majestic structures really are. Their distinguishing characteristics - cool knots and threads suspended in the hot corona, alignment along inversion lines in the photospheric magnetic field within highly sheared filament channels, and a tendency to disappear through eruption - offer vital clues as to their origin and dynamic evolution. Interpreting these clues has proven to be contentious, however, leading to fundamentally different models that address the basic questions: What is the magnetic structure supporting prominences, and how does so much cool, dense plasma appear in the corona? Despite centuries of increasingly detailed observations, the magnetic and plasma structures in prominences are poorly known. Routine measurements of the vector magnetic field in and around prominences have become possible only recently, while long-term monitoring of the underlying filament-channel formation process also remains scarce. The process responsible for prominence mass is equally difficult to establish, although we have long known that the chromosphere is the only plausible source. As I will discuss, however, the motions and locations of prominence material can be used to trace the coronal field, thus defining the magnetic origins of solar eruptions. A combination of observations, theory, and numerical modeling must be used to determine whether any of the competing theories accurately represents the physics of prominences. I will discuss the criteria for a successful prominence model, compare the leading models, and present in detail one promising, comprehensive scenario for

  17. Solar Activity Studies using Microwave Imaging Observations

    NASA Technical Reports Server (NTRS)

    Gopalswamy, N.

    2016-01-01

    We report on the status of solar cycle 24 based on polar prominence eruptions (PEs) and microwave brightness enhancement (MBE) information obtained by the Nobeyama radioheliograph. The north polar region of the Sun had near-zero field strength for more than three years (2012-2015) and ended only in September 2015 as indicated by the presence of polar PEs and the lack of MBE. The zero-polar-field condition in the south started only around 2013, but it ended by June 2014. Thus the asymmetry in the times of polarity reversal switched between cycle 23 and 24. The polar MBE is a good proxy for the polar magnetic field strength as indicated by the high degree of correlation between the two. The cross-correlation between the high- and low-latitude MBEs is significant for a lag of approximately 5.5 to 7.3 years, suggesting that the polar field of one cycle indicates the sunspot number of the next cycle in agreement with the Babcock-Leighton mechanism of solar cycles. The extended period of near-zero field in the north-polar region should result in a weak and delayed sunspot activity in the northern hemisphere in cycle 25.

  18. Correlation between solar activity and El Niño Southern Oscillation (ENSO)

    NASA Astrophysics Data System (ADS)

    Mumtahana, Farahhati; Sulistiani, Santi; Kesumaningrum, Rasdewita

    2015-09-01

    ENSO (El Niño Southern Oscillation) is an oceanic anomaly and atmospheric phenomenon in equatorial pacific indicated by Southern Oscillation Index (SOI). It describes the air pressure between Darwin (Australia) and Tahiti (Southern Pacific Ocean). ENSO occurs at irregular interval between 3 and 7 years causing global climate system variation. Considering this event occurs periodically, it might be triggered by the 11-years of solar cycle as an energy source. In this case, the solar activity is represented by the variability of the periodical Sunspot number (R). Changes in the rate of heating and the amount of solar energy package is presumed to be the cause of the ENSO phenomenon. In this work, we use the data of Sunspot number (R) and SOI from 1870 to 2013. Derived from those data, spectral analysis of the output energy package is analyzed by using WWZ (Weighted Wavelet Z-Transform). Then we correlate with the periodicity and condition of ENSO phenomenon to obtain the prediction of occurrence interval.

  19. Downward Link of Solar Activity Variations Through Wave Driven Equatorial Oscillations (QBO and SAO)

    NASA Technical Reports Server (NTRS)

    Mengel, J. G.; Mayr, H. G.; Chan, K. L.; Porter, H. S.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Signatures of the 11-year solar activity/irradiance cycle are observed in the Quasi Biennial Oscillation (QBO) of the lower stratosphere. At these altitudes, the QBO is understood to be the result of "downward control" exerted by the wave mean flow interactions that drive the phenomenon. It is reasonable then to speculate that the QBO is a natural conduit to lower altitudes of solar activity variations in radiance (SAV). To test this hypothesis, we conducted experiments with a 2D version of our Numerical Spectral Model that incorporates Hines' Doppler Spread Parameterization for small-scale gravity waves (GW). To account for the SAV, we change the solar heating rate on a logarithmic scale from 0.1% at the surface to 1% at 50 kin to 10% at 100 km. With the same GW flux, we then conduct numerical experiments to evaluate the magnitude of the solar activity irradiance effect (SAE) on the zonal circulation at low latitudes. The numerical results obtained show that, under certain conditions, the SAE is significant in the zonal circulation and does extend to lower altitudes where the SAV is small. The differences in the wind velocities can be as large as 5 m/s at 20 kin. We carried out two numerical experiments with integrations over more than 20 years: 1) With the QBO period "tuned" to be 30 months, of academic interest but instructive, the seasonal cycle in the solar forcing [through the Semi-annual Oscillation (SAO)] acts as a strong pacemaker to produce a firm lock on the period and phase of the QBO. The SAE then shows up primarily as a distinct but relatively weak amplitude modulation. 2) With the QBO period between 30 and 34 (or less than 30, presumably) months, the seasonal phase lock is weak compared with (1). The SAV in the seasonal cycle then causes variations in the QBO period and phase, and this amplifies the SAE to produce relatively large variations in the wind field. We conclude that, under realistic conditions as in (2), the solar seasonal forcing, with

  20. Active Vibration Damping of Solar Arrays

    NASA Astrophysics Data System (ADS)

    Reinicke, Gunar; Baier, Horst; Grillebeck, Anton; Scharfeld, Frank; Hunger, Joseph; Abou-El-Ela, A.; Lohberg, Andreas

    2012-07-01

    Current generations of large solar array panels are lightweight and flexible constructions to reduce net masses. They undergo strong vibrations during launch. The active vibration damping is one convenient option to reduce vibration responses and limit stresses in facesheets. In this study, two actuator concepts are used for vibration damping. A stack interface actuator replaces a panel hold down and is decoupled from bending moments and shear forces. Piezoelectric patch actuators are used as an alternative, where the number, position and size of actuators are mainly driven by controllability analyses. Linear Quadratic Gaussian control is used to attenuate vibrations of selected mode shapes with both actuators. Simulations as well as modal and acoustic tests show the feasibility of selected actuator concepts.

  1. Solar Activity Forecasting for use in Orbit Prediction

    NASA Technical Reports Server (NTRS)

    Schatten, Kenneth

    2001-01-01

    Orbital prediction for satellites in low Earth orbit (LEO) or low planetary orbit depends strongly on exospheric densities. Solar activity forecasting is important in orbital prediction, as the solar UV and EUV inflate the upper atmospheric layers of the Earth and planets, forming the exosphere in which satellites orbit. Geomagnetic effects also relate to solar activity. Because of the complex and ephemeral nature of solar activity, with different cycles varying in strength by more than 100%, many different forecasting techniques have been utilized. The methods range from purely numerical techniques (essentially curve fitting) to numerous oddball schemes, as well as a small subset, called 'Precursor techniques.' The situation can be puzzling, owing to the numerous methodologies involved, somewhat akin to the numerous ether theories near the turn of the last century. Nevertheless, the Precursor techniques alone have a physical basis, namely dynamo theory, which provides a physical explanation for why this subset seems to work. I discuss this solar cycle's predictions, as well as the Sun's observed activity. I also discuss the SODA (Solar Dynamo Amplitude) index, which provides the user with the ability to track the Sun's hidden, interior dynamo magnetic fields. As a result, one may then update solar activity predictions continuously, by monitoring the solar magnetic fields as they change throughout the solar cycle. This paper ends by providing a glimpse into what the next solar cycle (#24) portends.

  2. Variability of Solar Irradiances Using Wavelet Analysis

    NASA Technical Reports Server (NTRS)

    Pesnell, William D.

    2007-01-01

    We have used wavelets to analyze the sunspot number, F10.7 (the solar irradiance at a wavelength of approx.10.7 cm), and Ap (a geomagnetic activity index). Three different wavelets are compared, showing how each selects either temporal or scale resolution. Our goal is an envelope of solar activity that better bounds the large amplitude fluctuations form solar minimum to maximum. We show how the 11-year cycle does not disappear at solar minimum, that minimum is only the other part of the solar cycle. Power in the fluctuations of solar-activity-related indices may peak during solar maximum but the solar cycle itself is always present. The Ap index has a peak after solar maximum that appears to be better correlated with the current solar cycle than with the following cycle.

  3. Are short-term variations in solar oscillation frequencies the signature of a second solar dynamo?

    NASA Astrophysics Data System (ADS)

    Broomhall, Anne-Marie; Fletcher, Stephen T.; Salabert, David; Basu, Sarbani; Chaplin, William J.; Elsworth, Yvonne; García, Rafael A.; Jiménez, Antonio; New, Roger

    2011-01-01

    In addition to the well-known 11-year solar cycle, the Sun's magnetic activity also shows significant variation on shorter time scales, e.g. between one and two years. We observe a quasi-biennial (2-year) signal in the solar p-mode oscillation frequencies, which are sensitive probes of the solar interior. The signal is visible in Sun-as-a-star data observed by different instruments and here we describe the results obtained using BiSON, GOLF, and VIRGO data. Our results imply that the 2-year signal is susceptible to the influence of the main 11-year solar cycle. However, the source of the signal appears to be separate from that of the 11-year cycle. We speculate as to whether it might be the signature of a second dynamo, located in the region of near-surface rotational shear.

  4. Solar activity during the deep minimum of 2009

    NASA Astrophysics Data System (ADS)

    Sylwester, Janusz; Siarkowski, Marek; Gburek, Szymon; Gryciuk, Magdalena; Kepa, Anna; Kowaliński, Mirosław; Mrozek, Tomek; Phillips, Kenneth J. H.; Podgórski, Piotr; Sylwester, Barbara

    2014-12-01

    We discuss the character of the unusually deep solar activity minimum of 2009 between Solar Cycles 23 and 24. Levels of solar activity in various parts of the solar atmosphere -- photosphere, chromosphere, transition region, and corona -- were observed to be at their lowest for a century. The soft X-ray emission from the corona (hot outer part of the Sun's atmosphere) was measured throughout most of 2009 with the Polish-built SphinX spectrophotometer. Unlike other X-ray monitoring spacecraft, this sensitive spacecraft-borne instrument was able to continue measurements throughout this extended period of low activity.

  5. Revisiting the question: Does high-latitude solar activity lead low-latitude solar activity in time phase?

    SciTech Connect

    Kong, D. F.; Qu, Z. N.; Guo, Q. L.

    2014-05-01

    Cross-correlation analysis and wavelet transform methods are used to investigate whether high-latitude solar activity leads low-latitude solar activity in time phase or not, using the data of the Carte Synoptique solar filaments archive from 1919 March to 1989 December. From the cross-correlation analysis, high-latitude solar filaments have a time lead of 12 Carrington solar rotations with respect to low-latitude ones. Both the cross-wavelet transform and wavelet coherence indicate that high-latitude solar filaments lead low-latitude ones in time phase. Furthermore, low-latitude solar activity is better correlated with high-latitude solar activity of the previous cycle than with that of the following cycle, which is statistically significant. Thus, the present study confirms that high-latitude solar activity in the polar regions is indeed better correlated with the low-latitude solar activity of the following cycle than with that of the previous cycle, namely, leading in time phase.

  6. Solar air-conditioning-active, hybrid and passive

    SciTech Connect

    Yellott, J. I.

    1981-04-01

    After a discussion of summer air conditioning requirements in the United States, active, hybrid, and passive cooling systems are defined. Active processes and systems include absorption, Rankine cycle, and a small variety of miscellaneous systems. The hybrid solar cooling and dehumidification technology of desiccation is covered as well as evaporative cooling. The passive solar cooling processes covered include convective, radiative and evaporative cooling. Federal and state involvement in solar cooling is then discussed. (LEW)

  7. Solar Irradiance Variations on Active Region Time Scales

    NASA Technical Reports Server (NTRS)

    Labonte, B. J. (Editor); Chapman, G. A. (Editor); Hudson, H. S. (Editor); Willson, R. C. (Editor)

    1984-01-01

    The variations of the total solar irradiance is an important tool for studying the Sun, thanks to the development of very precise sensors such as the ACRIM instrument on board the Solar Maximum Mission. The largest variations of the total irradiance occur on time scales of a few days are caused by solar active regions, especially sunspots. Efforts were made to describe the active region effects on total and spectral irradiance.

  8. Comparison of the extended solar minimum of 2006-2009 with the Spoerer, Maunder, and Dalton Grand Minima in solar activity in the past

    NASA Astrophysics Data System (ADS)

    McCracken, K. G.; Beer, J.

    2014-04-01

    We use cosmic radiation records (neutron monitor and the cosmogenic radionuclides, 10Be and 14C) as a proxy to compare the solar activity during the extended solar minimum 2006-2009, with that during the Grand Solar Minima and Maxima that occurred between 1391 and 2010. The inferred cosmic ray intensities during the Spoerer, Maunder, and Dalton Grand Minima were significantly greater than those during 2006-2009. The onset phases of the three Grand Minima extended over between two and five Schwabe (sunspot) cycles, the cosmic ray intensity at the Schwabe minima increasing from a value approximating that of 2006-2009, to substantially higher values later in the Grand Minimum. The minimum estimated strengths of the heliospheric magnetic field near Earth during the Grand Minima were 2.4 nT (Spoerer), <2.0 nT (Maunder), and 2.6 nT (Dalton), compared to 3.9 nT in 2009. We conclude that the periods of highest solar activity during the Maunder Minimum approximated those near the sunspot minima between 1954 and 1996. The average ratio of the maximum to minimum estimated HMF in the six Schwabe cycles in the Maunder Minimum is 1.54 (range 1.30-1.85) compared to 1.52 (1.31-1.63) for the modern epoch suggesting similar operation of the solar dynamo in both intervals. The onset phase of the Maunder Minimum extending over five Schwabe cycles, and the large increase in cosmic ray flux (and decrease in estimated heliospheric magnetic field), leads us to speculate that the magnetohydrodynamic amplification in the solar dynamo exhibits a relaxation time well in excess of the 11 year period of the Schwabe cycle.

  9. The periodicities of Solar Magnetic Activity with the Wavelet Coherence Method

    NASA Astrophysics Data System (ADS)

    Velasco Herrera, Victor Manuel

    The origin, behavior and evolution of the solar magnetic field is one of the main challenges of observational and theoretical solar physics. Up to now the Dynamo theory gives us the best approach to the problem. However, it is not yet able to predict many features of the solar activity, which seems not to be strictly a periodical phenomenon. Among the indicators of solar magnetic variability there is the 11-years cycle of sunspots, as well as the solar magnetic cycle of 22 years (the Hale cycle). In order to provide more elements to the Dynamo theory that could help it in the predicting task, we analyze here the plausible existence of other periodicities associated with the solar magnetic field. In this preliminary work we use historical data (sunspots and aurora borealis), proxies (10 Be and 14 C) and modern instrumental data (Coronal Holes, Cosmic Rays, sunspots, flare indexes and solar radio flux at 10.7 cm). To find relationships between different time-frequency series we have employed the Wavelet Coherence technique: this technique indicates if two time-series of solar activity have the same periodicities in a given time interval. If so, it determines whether such relation is a linear one or not. Such a powerful tool indicates that, if some periodicity at a given frequency has a confidence level below 95%, it appears very lessened or does not appear in the Wavelet Spectral Analysis, such periodicity does not exist. Our results show that the so called Glaisberg cycle of 80-90 years and the periodicity of 205 years (the Suess cycle) do not exist. It can be speculated that such fictitious periodicities have been the result of using the Fourier transform with series with are not of stationary nature, as it is the case of the Be10 and C14 series. In contrast we confirm the presence of periodicities of 1.3, 1.7, quasi-triennial, quasi-quinquennial, Shawabe-cycle, Gale-cycle 60, 120 and 240 years.

  10. Are solar activity and sperm whale Physeter macrocephalus strandings around the North Sea related?

    NASA Astrophysics Data System (ADS)

    Vanselow, Klaus Heinrich; Ricklefs, Klaus

    2005-04-01

    In the final decades of the last century, an increasing number of strandings of male sperm whales ( Physeter macrocephalus) around the North Sea led to an increase in public interest. Anthropogenic influences (such as contaminants or intensive sound disturbances) are supposed to be the main causes, but natural environmental effects may also explain the disorientation of the animals. We compared the documented sperm whale strandings in the period from 1712 to 2003 with solar activity, especially with sun spot number periodicity and found that 90% of 97 sperm whale stranding events around the North Sea took place when the smoothed sun spot period length was below the mean value of 11 years, while only 10% happened during periods of longer sun spot cycles. The relation becomes even more pronounced (94% to 6%, n = 70) if a smaller time window from November to March is used (which seems to be the main southward migration period of male sperm whales). Adequate chi-square tests of the data give a significance of 1% error probability that sperm whale strandings can depend on solar activity. As an alternative explanation, we suggest that variations of the earth's magnetic field, due to variable energy fluxes from the sun to the earth, may cause a temporary disorientation of migrating animals.

  11. Recent Perplexing Behavior in Solar Activity Indices

    NASA Astrophysics Data System (ADS)

    Lopresto, James C.

    1997-05-01

    Calcium K and Hα and SOHO He II UV plage and sunspot ara have been monitored using images on the INTERNET since November of 1992. The purpose of the project is to determine the degree of correlation between changing plage area and solar irradiance changes (also obtained via the INTERNET). Also the project provides a low cost process to involve undergraduates in astronomy research. When using weighted weekly averages for both spot Hα plage pixel counts, we see the expected decline from the last maximum. The activity continues to decline, or at best, has flattened out over the past several months. In contrast, the K-line plage pixel count from both Big Bear and Sacramento Peak show an upswing since mid-1995 or earlier. The k2 measurments from both Kitt Peak and Sacramento Peak are in general agreement with the spot and Hα behavior, indicating wer are in, or barely passed minimum. Images high in the chromosphere, detailing the magnetic network, may be more senstive to smaller field changes. This might be a partial explanation for the earlier upswing in K line and He 304 activity, which are receiving radiation near or at the top of the chromosphere.

  12. Initiation of non-tropical thunderstorms by solar activity

    NASA Technical Reports Server (NTRS)

    Herman, J. R.; Goldberg, R. A.

    1978-01-01

    A theory of thunderstorm initiation is proposed to account for the statistical correlation between solar activity and thunderstorm occurrence in middle to high latitudes. It is suggested that cosmic ray decreases and/or high-energy solar protons associated with active solar events enhance the electric field at low heights so that, if appropriate meteorological conditions are present during a solar event, the atmospheric electric field enhancement may be sufficient to trigger thunderstorm development. Statistical correlations and atmospheric electric effects are described. The theory could be tested if the possible forcing functions and the responding atmospheric electrical and ionic species' characteristics were measured.

  13. Solar Activity, Different Geomagnetic Activity Levels and Acute Myocardial Infarction

    NASA Astrophysics Data System (ADS)

    Dimitrova, Svetla; Jordanova, Malina; Stoilova, Irina; Taseva, Tatiana; Maslarov, Dimitar

    Results on revealing a possible relationship between solar activity (SA) and geomagnetic activity (GMA) and acute myocardial infarction (AMI) morbidity are presented. Studies were based on medical data covering the period from 1.12.1995 to 31.12.2004 and concerned daily distribution of patients with AMI diagnose (in total 1192 cases) from Sofia region on the day of admission at the hospital. Analysis of variance (ANOVA) was applied to check the significance of GMA intensity effect and the type of geomagnetic storms, those caused by Magnetic Clouds (MC) and by High Speed Solar Wind Streams (HSSWS), on AMI morbidity. Relevant correlation coefficients were calculated. Results revealed statistically significant positive correlation between considered GMA indices and AMI. ANOVA revealed that AMI number was signifi- cantly increased from the day before (-1st) till the day after (+1st) geomagnetic storms with different intensities. Geomagnetic storms caused by MC were related to significant increase of AMI number in comparison with the storms caused by HSSWS. There was a trend for such different effects even on -1st and +1st day.

  14. Representing Solar Active Regions with Triangulations

    NASA Technical Reports Server (NTRS)

    Turmon, M. J.; Mukhtar, S.

    1998-01-01

    The solar chromosphere consists of three classes which contribute differently to ultraviolet radiation reaching the earth. We describe a data set of solar images, means of segmenting the images into the constituent classes, and novel high-level representation for compact objects based on a triangulation spatial 'membership function'.

  15. Bayesian Infernce for Indentifying Solar Active Regions

    NASA Technical Reports Server (NTRS)

    Pap, Judit; Turmon, Michael; Mukhtar, Saleem

    1997-01-01

    The solar chromosphere consists of three classes-- plage, network, background -- which contribute differently to ultraviolet radiation reaching the earth. Solar physicists are interested in relating plage area and intensity to UV irradiance, as well as understanding the spatial and temporal evolution of plage shapes.

  16. Heliospheric Consecuences of Solar Activity In Several Interplanetary Phenomena

    NASA Astrophysics Data System (ADS)

    Valdés-Galicia, J. F.; Mendoza, B.; Lara, A.; Maravilla, D.

    We have done an analysis of several phenomena related to solar activity such as the total magnetic flux, coronal hole area and sunspots, investigated its long trend evolu- tion over several solar cycles and its possible relationships with interplanetary shocks, sudden storm commencements at earth and cosmic ray variations. Our results stress the physical connection between the solar magnetic flux emergence and the interplan- etary medium dynamics, in particular the importance of coronal hole evolution in the structuring of the heliosphere.

  17. IPS activity observed as a precursor of solar induced terrestrial activity. [solar wind density fluctuations

    NASA Technical Reports Server (NTRS)

    Cronyn, W. M.; Shawhan, S. D.; Rickard, J. J.; Mitchell, D. G.; Roelof, E. C.; Gotwols, B. L.

    1978-01-01

    A radio telescope designed to exploit the interplanetary scintillation (IPS) technique and locate, map, and track solar wind disturbances which result in geomagnetic disturbances, thereby providing a forecast capability, is described. Preliminary results from operation of the telescope include: (1) evidence for a precursor signal in the IPS activity with a 1-2 day lead time with respect to density enhancements which frequently give rise to geomagnetic activity; (2) detection of a spectral broadening signature which also serves as a precursor of geomagnetic activity; (3) out-of-the-ecliptic plasma density enhancements which were not detected by near-Earth, ecliptic plane spacecraft; (4) detection of 12 corotating density enhancements;(5) detection of over 80 sources which give detectable scintillation of which 45 have been used for detailed synoptic analysis and 9 for spectral analysis; and (6) measurement of 0-lag coefficient of 0.56 between density and IPS activity enhancements.

  18. MAGNETIC ENERGY SPECTRA IN SOLAR ACTIVE REGIONS

    SciTech Connect

    Abramenko, Valentyna; Yurchyshyn, Vasyl

    2010-09-01

    Line-of-sight magnetograms for 217 active regions (ARs) with different flare rates observed at the solar disk center from 1997 January until 2006 December are utilized to study the turbulence regime and its relationship to flare productivity. Data from the SOHO/MDI instrument recorded in the high-resolution mode and data from the BBSO magnetograph were used. The turbulence regime was probed via magnetic energy spectra and magnetic dissipation spectra. We found steeper energy spectra for ARs with higher flare productivity. We also report that both the power index, {alpha}, of the energy spectrum, E(k) {approx} k{sup -}{alpha}, and the total spectral energy, W = {integral}E(k)dk, are comparably correlated with the flare index, A, of an AR. The correlations are found to be stronger than those found between the flare index and the total unsigned flux. The flare index for an AR can be estimated based on measurements of {alpha} and W as A = 10{sup b}({alpha}W){sup c}, with b = -7.92 {+-} 0.58 and c = 1.85 {+-} 0.13. We found that the regime of the fully developed turbulence occurs in decaying ARs and in emerging ARs (at the very early stage of emergence). Well-developed ARs display underdeveloped turbulence with strong magnetic dissipation at all scales.

  19. Annual DOE active solar heating and cooling contractors' review meeting. Premeeting proceedings and project summaries

    SciTech Connect

    None,

    1981-09-01

    Ninety-three project summaries are presented which discuss the following aspects of active solar heating and cooling: Rankine solar cooling systems; absorption solar cooling systems; desiccant solar cooling systems; solar heat pump systems; solar hot water systems; special projects (such as the National Solar Data Network, hybrid solar thermal/photovoltaic applications, and heat transfer and water migration in soils); administrative/management support; and solar collector, storage, controls, analysis, and materials technology. (LEW)

  20. On the Relationship Between Solar Wind Speed, Geomagnetic Activity, and the Solar Cycle Using Annual Values

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.; Hathaway, David H.

    2008-01-01

    The aa index can be decomposed into two separate components: the leading sporadic component due to solar activity as measured by sunspot number and the residual or recurrent component due to interplanetary disturbances, such as coronal holes. For the interval 1964-2006, a highly statistically important correlation (r = 0.749) is found between annual averages of the aa index and the solar wind speed (especially between the residual component of aa and the solar wind speed, r = 0.865). Because cyclic averages of aa (and the residual component) have trended upward during cycles 11-23, cyclic averages of solar wind speed are inferred to have also trended upward.

  1. PERSPECTIVE: Low solar activity is blamed for winter chill over Europe

    NASA Astrophysics Data System (ADS)

    Benestad, Rasmus E.

    2010-06-01

    of long-term high-quality observations from remote sensing platforms. It is nevertheless well known that the temperature in northern Europe is strongly affected by atmospheric circulation. Crooks and Gray (2005) have identified a solar response in a number of atmospheric variables, and Labitske (1987), Labitske and Loon (1988) and Salby and Callagan (2000) provide convincing analyses suggesting that the zonal winds in the stratosphere are influenced by solar activity. Furthermore, Baldwin and Dunkerton (2001) provide a tentative link between the stratosphere and the troposphere. The results of Lockwood et al (2010) fit in with earlier work (Barriopedro et al 2008) and provide further evidence to support the current thinking on solar-terrestrial links. Thus, it is an example of incremental scientific progress rather than a breakthrough or a paradigm shift. References Baldwin M P and Dunkerton T J 2001 Stratospheric harbingers of anomalous weather regimes Science 294 581-4 Barriopedro D, Garcia-Herrera R and Huth R 2008 Solar modulation of Northern Hemisphere winter blocking J. Geophys. Res. 113 D14118 Benestad R E 2005 A review of the solar cycle length estimates Geophys. Res. Lett. 32 L15714 Benestad R E and Schmidt G A 2009 Solar trends and global warming J. Geophys. Res. Atmos. 114 D14101 Crook S A and Gray L J 2005 Characterization of the 11-year solar signal using a multiple regression analysis of the ERA-40 dataset J. Climate 18 996-1014 Haigh J D 2003 The effects of solar variability on the Earth's climate Phil. Trans. R. Soc. Lond. A 361 95-111 Helland-Hansen B and Nansen F 1920 Temperature variations in the North Atlantic ocean and in the atmosphere Smithsonian Miscellaneous Collections 70 (4) 408 pp Labitzke K 1987 Sunspots, the QBO, and the stratospheric temperature in the North polar region Geophys. Res. Lett. 14 535-7 Labitzke K and van Loon H 1988 Association between the 11-year solar cycle, the QBO, and the atmosphere, I. The troposphere and

  2. Hierarchical reproductive allocation and allometry within a perennial bunchgrass after 11 years of nutrient addition.

    PubMed

    Tian, Dashuan; Pan, Qingmin; Simmons, Matthew; Chaolu, Hada; Du, Baohong; Bai, Yongfei; Wang, Hong; Han, Xingguo

    2012-01-01

    Bunchgrasses are one of the most important plant functional groups in grassland ecosystems. Reproductive allocation (RA) for a bunchgrass is a hierarchical process; however, how bunchgrasses adjust their RAs along hierarchical levels in response to nutrient addition has never been addressed. Here, utilizing an 11-year nutrient addition experiment, we examined the patterns and variations in RA of Agropyron cristatum at the individual, tiller and spike levels. We evaluated the reproductive allometric relationship at each level by type II regression analysis to determine size-dependent and size-independent effects on plant RA variations. Our results indicate that the proportion of reproductive individuals in A. cristatum increased significantly after 11 years of nutrient addition. Adjustments in RA in A. cristatum were mainly occurred at the individual and tiller levels but not at the spike level. A size-dependent effect was a dominant mechanism underlying the changes in plant RA at both individual and tiller levels. Likewise, the distribution of plant size was markedly changed with large individuals increasing after nutrient addition. Tiller-level RA may be a limiting factor for the adjustment of RA in A. cristatum. To the best of our knowledge, this study is the first to examine plant responses in terms of reproductive allocation and allometry to nutrient enrichment within a bunchgrass population from a hierarchical view. Our findings have important implications for understanding the mechanisms underlying bunchgrass responses in RA to future eutrophication due to human activities. In addition, we developed a hierarchical analysis method for disentangling the mechanisms that lead to variation in RA for perennial bunchgrasses.

  3. The Nitrate Content of Greenland Ice and Solar Activity

    NASA Astrophysics Data System (ADS)

    Kocharov, G. E.; Kudryavtsev, I. V.; Ogurtsov, M. G.; Sonninen, E.; Jungner, H.

    2000-12-01

    Past solar activity is studied based on analysis of data on the nitrate content of Greenland ice in the period from 1576 1991. Hundred-year (over the entire period) and quasi-five-year (in the middle of the 18th century) variations in the nitrate content are detected. These reflect the secular solar-activity cycle and cyclicity in the flare activity of the Sun.

  4. Solar-collector manufacturing activity, July through December, 1981

    SciTech Connect

    1982-03-01

    Solar thermal collector and solar cell manufacturing activity is both summarized and tabulated. Data are compared for three survey periods (July through December, 1981; January through June, 1981; and July through December, 1980). Annual totals are also provided for the years 1979 through 1981. Data include total producer shipments, end use, market sector, imports and exports. (LEW)

  5. Solar Energy Education. Renewable energy activities for biology

    SciTech Connect

    Not Available

    1982-01-01

    An instructional aid for teachers is presented that will allow biology students the opportunity to learn about renewable energy sources. Some of the school activities include using leaves as collectors of solar energy, solar energy stored in wood, and a fuel value test for green and dry woods. A study of organic wastes as a source of fuel is included. (BCS)

  6. Solar energy education. Renewable energy activities for general science

    SciTech Connect

    Not Available

    1985-01-01

    Renewable energy topics are integrated with the study of general science. The literature is provided in the form of a teaching manual and includes such topics as passive solar homes, siting a home for solar energy, and wind power for the home. Other energy topics are explored through library research activities. (BCS)

  7. A Solar Cycle Dependence of Nonlinearity in Magnetospheric Activity

    SciTech Connect

    Johnson, Jay R; Wing, Simon

    2005-03-08

    The nonlinear dependencies inherent to the historical K(sub)p data stream (1932-2003) are examined using mutual information and cumulant based cost as discriminating statistics. The discriminating statistics are compared with surrogate data streams that are constructed using the corrected amplitude adjustment Fourier transform (CAAFT) method and capture the linear properties of the original K(sub)p data. Differences are regularly seen in the discriminating statistics a few years prior to solar minima, while no differences are apparent at the time of solar maximum. These results suggest that the dynamics of the magnetosphere tend to be more linear at solar maximum than at solar minimum. The strong nonlinear dependencies tend to peak on a timescale around 40-50 hours and are statistically significant up to one week. Because the solar wind driver variables, VB(sub)s and dynamical pressure exhibit a much shorter decorrelation time for nonlinearities, the results seem to indicate that the nonlinearity is related to internal magnetospheric dynamics. Moreover, the timescales for the nonlinearity seem to be on the same order as that for storm/ring current relaxation. We suggest that the strong solar wind driving that occurs around solar maximum dominates the magnetospheric dynamics suppressing the internal magnetospheric nonlinearity. On the other hand, in the descending phase of the solar cycle just prior to solar minimum, when magnetospheric activity is weaker, the dynamics exhibit a significant nonlinear internal magnetospheric response that may be related to increased solar wind speed.

  8. Analysis of regression methods for solar activity forecasting

    NASA Technical Reports Server (NTRS)

    Lundquist, C. A.; Vaughan, W. W.

    1979-01-01

    The paper deals with the potential use of the most recent solar data to project trends in the next few years. Assuming that a mode of solar influence on weather can be identified, advantageous use of that knowledge presumably depends on estimating future solar activity. A frequently used technique for solar cycle predictions is a linear regression procedure along the lines formulated by McNish and Lincoln (1949). The paper presents a sensitivity analysis of the behavior of such regression methods relative to the following aspects: cycle minimum, time into cycle, composition of historical data base, and unnormalized vs. normalized solar cycle data. Comparative solar cycle forecasts for several past cycles are presented as to these aspects of the input data. Implications for the current cycle, No. 21, are also given.

  9. Relationships among solar activity SEP occurrence frequency, and solar energetic particle event distribution function

    NASA Astrophysics Data System (ADS)

    Nymmik, Rikho

    The solar cycle 20-22 direct spacecraft measurement results are used to analyze the occurrence frequency and distribution function of solar energetic particle (SEP) events as dependent on solar activity. The analysis has shown that • the mean occurrence frequency of the SEP events with ≥30 MeV proton fluence sizes exceeding 106 is proportional to sunspot number, • the SEP event proton distribution functions for periods of different solar activity levels can be described to be power-law functions whose spectral form (spectral indices and cutoff values) are the same. The above results permit the following conclusions: a) to within statistical deviations, the total number of SEP events observed during any given time interval is proportional to the sum of mean-yearly sunspot numbers; b) large SEP events can occur to within quite a definite probability even during solar minima.

  10. Assessment of active solar systems in the residential sector of North Carolina, 1974 - 1995

    NASA Astrophysics Data System (ADS)

    Brown, D.; St. John, K.

    1981-02-01

    An evaluation is presented of the contribution active solar systems can make in North Carolina's residential sector over the next 15 years. The report is divided into 5 parts: introduction; current solar industry status; projected use of active solar systems to 1995; maximum potential for active solar systems to 1995; recommendations for state solar incentives. Information in the appendices includes: conversion methodology; square feet of collector to Btu; economic analysis of solar systems based on life costs; methodology for percentage breakdowns on projected solar system sales; North Carolina solar manufacturers/distributors and national manufacturers; solar legislation; economic analysis of solar systems; and data sources.

  11. Preliminary design activities for solar heating and cooling systems

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Information on the development of solar heating and cooling systems is presented. The major emphasis is placed on program organization, system size definition, site identification, system approaches, heat pump and equipment design, collector procurement, and other preliminary design activities.

  12. Solar activity dependence of nightside aurora in winter conditions

    NASA Astrophysics Data System (ADS)

    Zhou, Su; Luan, Xiaoli; Dou, Xiankang

    2016-02-01

    The dependence of the nightside (21:00-03:00 MLT; magnetic local time) auroral energy flux on solar activity was quantitatively studied for winter/dark and geomagnetically quiet conditions. Using data combined from Thermosphere, Ionosphere, Mesosphere Energetics and Dynamics/Global Ultraviolet Imager and Defense Meteorological Satellite Program/Special Sensor Ultraviolet Spectrographic Imager observations, we separated the effects of geomagnetic activity from those of solar flux on the nightside auroral precipitation. The results showed that the nightside auroral power was reduced by ~42% in solar maximum (F10.7 = 200 sfu; solar flux unit 1 sfu = 10-22 W m-2 Hz-1) with respect to that under solar minimum (F10.7 = 70 sfu) for the Kp = 1 condition, and this change rate became less (~21%) for the Kp = 3 condition. In addition, the solar cycle dependence of nightside auroral power was similar with that from both the premidnight (21:00-23:00 MLT) and postmidnight (01:00-03:00 MLT) sectors. These results indicated that as the ionospheric ionization increases with the enhanced auroral and geomagnetic activities, the solar activity dependences of nightside auroral power become weaker, at least under geomagnetically quiet conditions.

  13. Effects of Low Activity Solar Cycle on Orbital Debris Lifetime

    NASA Technical Reports Server (NTRS)

    Cable, Samual B.; Sutton, Eric K.; Lin, chin S.; Liou, J.-C.

    2011-01-01

    Long duration of low solar activity in the last solar minimum has an undesirable consequence of extending the lifetime of orbital debris. The AFRL TacSat-2 satellite decommissioned in 2008 has finally re-entered into the atmosphere on February 5th after more than one year overdue. Concerning its demise we have monitored its orbital decay and monthly forecasted Tacsat-2 re-entry since September 2010 by using the Orbital Element Prediction (OEP) model developed by the AFRL Orbital Drag Environment program. The model combines estimates of future solar activity with neutral density models, drag coefficient models, and an orbit propagator to predict satellite lifetime. We run the OEP model with solar indices forecast by the NASA Marshall Solar Activity Future Estimation model, and neutral density forecast by the MSIS-00 neutral density model. Based on the two line elements in 2010 up to mid September, we estimated at a 50% confidence level TacSat-2's re-entry time to be in early February 2011, which turned out to be in good agreement with Tacsat-2's actual re-entry date. The potential space weather effects of the coming low activity solar cycle on satellite lifetime and orbital debris population are examined. The NASA long-term orbital debris evolutionary model, LEGEND, is used to quantify the effects of solar flux on the orbital debris population in the 200-600 km altitude environment. The results are discussed for developing satellite orbital drag application product.

  14. Influence of solar activity on red sprites and on vertical coupling in the system stratosphere-mesosphere

    NASA Astrophysics Data System (ADS)

    Tonev, Peter T.; Velinov, Peter I. Y.

    2016-04-01

    The positive downward propagating streamers of sprites are considered as factors of vertical coupling in middle atmosphere. Sprites are initiated in the lower ionosphere (at 75-85 km) and their streamers propagate in the mesosphere and upper stratosphere where the solar activity (SA) can have significant influence. The problem considered by us is whether sprites are sensitive to the solar activity. Different possible ways of such influence are considered. They concern: i) relations between solar activity and the occurrence of sprite-producing lightning discharges; ii) sensitivity of streamer inception to solar variability; iii) 11-year variations of conductivity in the night-time mesosphere and stratosphere during solar cycle due to modulation of the galactic cosmic ray flux by solar activity, which can lead to changes in sprite-driving electric fields, and therefore, in sprites. Accounting for the effects of sprites on minor constituents (in particular NOx), a link between SA level and the che^mical balance in the mesosphere and stratosphere is considered, as well. With respect to this we study by modeling the response of the sprite-driving electric fields to SA variations with the account to a complex of parameters of sprite-producing lightning discharges and atmospheric conductivity. The lightning-driven electric fields needed for streamer propagation show minor dependence on conductivity changes caused by variations in cosmic ray flux during a solar cycle. The long-term changes in sprite's lower boundary by different parameters of lightning discharges and atmospheric conductivity parameters are estimated. During solar minimum, of the vertical dimension of sprites increases by up to 1.5 km than those during solar maximum. We estimate also the effect of the reduction of conductivity in thunderclouds with respect to the adjacent air. Reduction of cloud conductivity by a factor of 5-10 leads to larger vertical dimension of sprites due to descending of the sprite

  15. Electric utility solar energy activities: 1980 survey

    NASA Astrophysics Data System (ADS)

    Wentworth, M. C.

    1980-12-01

    Brief descriptions of 839 projects being conducted by 236 utility companies are given. Also included are an index of projects by category, a statistical summary, a list of participating utilities with information contacts and addresses, a list of utilities with projects designated by category, a list of utilities organized by state, a list of available reports on utility sponsored projects, and a list of projects having multiple utility participants. Project categories include solar heating and cooling of buildings, wind energy conversion, solar thermal electric power, photovoltaics, biomass conversion, process heat, and ocean energy conversion.

  16. Background solar irradiance spectrum at high and low phases of the solar activity cycle

    NASA Astrophysics Data System (ADS)

    Vázquez Ramió, H.; Roca Cortés, T.; Régulo, C.

    2002-12-01

    Two data series of disk integrated solar irradiance, taken by the Variability of the solar IRradiance and Gravity Oscillations (VIRGO) experiment on board the Solar and Heliospheric Observatory (SoHO) mission, corresponding to epochs of minimum and maximum solar activity have been analysed in order to study the background signal of the associated power spectra. We fit the most apparent convective structures that appear at low frequencies in the spectrum as well as non-periodic components. We aim to compare the results found in the three observed bands (centered in λ=402nm, λ=500nm and λ=862nm) as well as to find dependences of the non-periodic convective structures parameters with the solar cycle.

  17. On the Periodicity of Energy Release in Solar Active Regions

    NASA Astrophysics Data System (ADS)

    Goldvarg, T. B.; Nagovitsyn, Yu. A.; Solov'Ev, A. A.

    2005-06-01

    We investigate the periodic regimes of energy release on the Sun, namely, the recurrence of solar flares in active regions using the Solar Geophysical Data Journal on Hα flares from 1979 until 1981, which corresponds to the maximum of solar cycle 21. We obtained the following series of periods in the manifestation of flare activity bymeans of a correlation periodogram analysis, a self-similarity function, and a wavelet analysis: ˜1, 2, 3 h as well as ˜0.4, 1, 2, 5 days. We suggest a diffusive model for the quasi-periodic transfer of toroidal magnetic fields from under the photosphere to interpret the retrieved sequence of periods in the enhancement of flare activity. We estimated the typical spatial scales of the magnetic field variations in the solar convection zone: ˜17 000 km.

  18. Correlations between solar activity and the atmosphere - An unphysical explanation

    NASA Astrophysics Data System (ADS)

    Salby, Murry L.; Shea, Dennis J.

    1991-12-01

    Attention is given to the behavior of atmospheric properties and to a nonphysical explanation of their relationship to solar activity. The relatively short lengths of atmospheric records limit the ability of cross-covariance properties to discriminate to solar activity and hence to distinguish them from other forms of interanual variability. The discrete nature of the cross spectrum with solar activity admits only a few statistical degrees of freedom, which limits the reliability with which correlations can be determined. Coherence and correlation with sea level pressure both decrease with increasing record length and fall beneath the 90-percent level of statistical significance when records are extended back to the turn of the 20th century. The physical significance of such properties is considered in statistics generated from artificial solar variability, which demonstrate that behavior like that observed is not unique to the solar period. Over a wide range of periods, false solar variability leads to correlations and coherences that are as high as or higher than those produced by actual solar variability.

  19. The risk characteristics of solar and geomagnetic activity

    NASA Astrophysics Data System (ADS)

    Podolska, Katerina

    2016-04-01

    The main aim of this contribution is a deeper analysis of the influence of solar activity which is expected to have an impact on human health, and therefore on mortality, in particular civilization and degenerative diseases. We have constructed the characteristics that represent the risk of solar and geomagnetic activity on human health on the basis of our previous analysis of association between the daily numbers of death on diseases of the nervous system and diseases of the circulatory system and solar and geomagnetic activity in the Czech Republic during the years 1994 - 2013. We used long period daily time series of numbers of deaths by cause, long period time series of solar activity indices (namely R and F10.7), geomagnetic indicies (Kp planetary index, Dst) and ionospheric parameters (foF2 and TEC). The ionospheric parameters were related to the geographic location of the Czech Republic and adjusted for middle geographic latitudes. The risk characteristics were composed by cluster analysis in time series according to the phases of the solar cycle resp. the seasonal insolation at mid-latitudes or the daily period according to the impact of solar and geomagnetic activity on mortality by cause of death from medical cause groups of death VI. Diseases of the nervous system and IX. Diseases of the circulatory system mortality by 10th Revision of International Classification of Diseases WHO (ICD-10).

  20. Observations of Hysteresis Among Indicators of Solar Activity

    NASA Astrophysics Data System (ADS)

    Bachmann, K. T.; Ranganath, A.

    1999-05-01

    We show that filtered time series of five indicators of solar activity exhibit significant solar-cycle-dependent differences in their relative variations. This study expands upon previous work by including data from recent NASA missions, indicating that the detected hysteresis patterns continue through the decline of solar cycle 22. Among the indicators that we study, we find that the hysteresis effects are approximately simple phase shifts that we present qualitatively via plots similar to Lissajous figures. These phase shifts correspond to time delays of less than three months behind the leading indicator, the International Sunspot Number, and are small compared to the typical eleven-year solar cycle. We believe that hysteresis represents a real delay in the onset and decline for changing solar emission at various wavelengths. Our research is funded by the Research Corporation and by the NASA Joint Venture (JOVE) program.

  1. Active solar heating and cooling information user study

    SciTech Connect

    Belew, W.W.; Wood, B.L.; Marle, T.L.; Reinhardt, C.L.

    1981-01-01

    The results of a series of telephone interviews with groups of users of information on active solar heating and cooling (SHAC). An earlier study identified the information user groups in the solar community and the priority (to accelerate solar energy commercialization) of getting information to each group. In the current study only high-priority groups were examined. Results from 19 SHAC groups respondents are analyzed in this report: DOE-Funded Researchers, Non-DOE-Funded Researchers, Representatives of Manufacturers (4 groups), Distributors, Installers, Architects, Builders, Planners, Engineers (2 groups), Representatives of Utilities, Educators, Cooperative Extension Service County Agents, Building Owners/Managers, and Homeowners (2 groups). The data will be used as input to the determination of information products and services the Solar Energy Research Institute, the Solar Energy Information Data Bank Network, and the entire information outreach community should be preparing and disseminating.

  2. An assessment of selected solar energy industry activities

    NASA Astrophysics Data System (ADS)

    Roessner, J. D.

    1980-11-01

    The past, present, and near-term conditions of four industries based on solar energy technologies are examined-solar heating; photovoltaics; concentrating solar collectors for process heat and electric power applications; and passive components such as skylights and greenhouses. The report identifies key, unresolved issues for government policies intended to influence future solar industrial development; assesses the past and current federal role in these industries; and draws tentative conclusions about how government policies have affected their evolution. This evolution is compared to the evolution of typical, innovation-based industries. For each of the four solar industries researched, the collected data are discussed as follows: characteristics of sales; the government role; investment strategies and R & D activities; near-term trends; and comparisons with other industries.

  3. Meteoritic evidence for the Maunder minimum in solar activity

    NASA Technical Reports Server (NTRS)

    Forman, M. A.; Schaeffer, O. A.; Schaeffer, G. A.

    1978-01-01

    Concentrations of argon-39 produced by cosmic rays in the metal in 30 meteorites are remarkably similar, but they are slightly higher than expected for the present solar-cycle-averaged flux of cosmic rays. This supports the idea suggested by Eddy (1976) that there were prolonged minima in solar activity before 1715 which caused the deVries maximum in carbon-14 in earth's atmosphere by reducing the amount of cosmic-ray modulation in interplanetary space. The observations are easily consistent with 180 years of 'sunspot minimum' modulation during the Maunder and Spoerer minima, and possibly with virtually no solar modulation at all during that time. This would indicate that the solar wind then contained very little magnetic turbulence or whatever it is in the solar wind that causes the modulation of galactic cosmic rays.

  4. Observations of hysteresis in solar cycle variations among seven solar activity indicators

    NASA Technical Reports Server (NTRS)

    Bachmann, Kurt T.; White, Oran R.

    1994-01-01

    We show that smoothed time series of 7 indices of solar activity exhibit significant solar cycle dependent differences in their relative variations during the past 20 years. In some cases these observed hysteresis patterns start to repeat over more than one solar cycle, giving evidence that this is a normal feature of solar variability. Among the indices we study, we find that the hysteresis effects are approximately simple phase shifts, and we quantify these phase shifts in terms of lag times behind the leading index, the International Sunspot Number. Our measured lag times range from less than one month to greater than four months and can be much larger than lag times estimated from short-term variations of these same activity indices during the emergence and decay of major active regions. We argue that hysteresis represents a real delay in the onset and decline of solar activity and is an important clue in the search for physical processes responsible for changing solar emission at various wavelengths.

  5. Polarization aberrations in the solar activity measurements experiments (SAMEX) solar vector magnetograph

    NASA Technical Reports Server (NTRS)

    Mcguire, James P., Jr.; Chipman, Russell A.

    1989-01-01

    An optical design and polarization analysis of the Air Force/NASA Solar Activity Measurements Experiments solar vector magnetograph optical system is performed. Polarization aberration theory demonstrates that conventional telescope coating designs introduce unacceptably high levels of polarization aberrations into the optical system. Several ultralow polarization mirror and lens coatings designs for this instrument are discussed. Balancing of polarization aberrations at different surfaces is demonstrated.

  6. Response of Solar Oscillations to Magnetic Activity in Cycle 24

    NASA Astrophysics Data System (ADS)

    Jain, K.; Tripathy, S. C.; Hill, F.

    2015-12-01

    Acoustic mode parameters are generally used to study the variability of the solar interior in response to changing magnetic activity. While oscillation frequencies do vary in phase with the solar activity, the mode amplitudes are anti-correlated. Now, continuous measurements from ground and space allow us study the origin of such variability in detail. Here we use intermediate-dgree mode frequencies computed from a ground-based 6-site network ( GONG), covering almost two solar cycles from the minimum of cycle 23 to the declining phase of cycle 24, to investigate the effect of remarkably low solar activity on the solar oscillations in current cycle and the preceding minimum; is the response of acoustic oscillations to magnetic activity in cycle 24 similar to cycle 23 or there are differences between cycles 23 and 24? In this paper, we analyze results for both solar cycles, and try to understand the origin of similarities/differences between them. We will also compare our findings with the contemporaneous observations from space (SOHO/MDI and SDO/HMI).

  7. The biological effects of solar activity.

    PubMed

    Breus, T K; Pimenov, K Yu; Cornélissen, G; Halberg, E; Syutkina, E V; Baevsky, R M; Petrov, V M; Orth-Gómer, K; Akerstedt, T; Otsuka, K; Watanabe, Y; Chibisov, S M

    2002-01-01

    The synchronization of biological circadian and circannual rhythms is broadly viewed as a result of photic solar effects. Evidence for non-photic solar effects on biota is also slowly being recognized. The ultrastructure of cardiomyocytes from rabbits, the time structure of blood pressure and heart rate of neonates, and the heart rate variability of human adults on earth and in space were examined during magnetically disturbed and quiet days, as were morbidity statistics. Alterations in both the about-daily (circadian) and about-weekly (circaseptan) components are observed during disturbed vs. quite days. The about-weekly period of neonatal blood pressure correlates with that of the local geomagnetic disturbance index K. Circaseptans which are seen early in human life and in various other forms of life, including unicells, may provide information about the possible site(s) of life's origins from an integrative as well as adaptive evolutionary perspective. PMID:12653180

  8. Investigation of relationships between parameters of solar nano-flares and solar activity

    NASA Astrophysics Data System (ADS)

    Safari, Hossein; Javaherian, Mohsen; Kaki, Bardia

    2016-07-01

    Solar flares are one of the important coronal events which are originated in solar magnetic activity. They release lots of energy during the interstellar medium, right after the trigger. Flare prediction can play main role in avoiding eventual damages on the Earth. Here, to interpret solar large-scale events (e.g., flares), we investigate relationships between small-scale events (nano-flares) and large-scale events (e.g., flares). In our method, by using simulations of nano-flares based on Monte Carlo method, the intensity time series of nano-flares are simulated. Then, the solar full disk images taken at 171 angstrom recorded by SDO/AIA are employed. Some parts of the solar disk (quiet Sun (QS), coronal holes (CHs), and active regions (ARs)) are cropped and the time series of these regions are extracted. To compare the simulated intensity time series of nano-flares with the intensity time series of real data extracted from different parts of the Sun, the artificial neural networks is employed. Therefore, we are able to extract physical parameters of nano-flares like both kick and decay rate lifetime, and the power of their power-law distributions. The procedure of variations in the power value of power-law distributions within QS, CH is similar to AR. Thus, by observing the small part of the Sun, we can follow the procedure of solar activity.

  9. Physical mechanisms of solar activity effects in the middle atmosphere

    NASA Technical Reports Server (NTRS)

    Ebel, A.

    1989-01-01

    A great variety of physical mechanisms of possibly solar induced variations in the middle atmosphere has been discussed in the literature during the last decades. The views which have been put forward are often controversial in their physical consequences. The reason may be the complexity and non-linearity of the atmospheric response to comparatively weak forcing resulting from solar activity. Therefore this review focuses on aspects which seem to indicate nonlinear processes in the development of solar induced variations. Results from observations and numerical simulations are discussed.

  10. Somatotype in 6-11-year-old Italian and Estonian schoolchildren.

    PubMed

    Ventrella, A R; Semproli, S; Jürimäe, J; Toselli, S; Claessens, A L; Jürimäe, T; Brasili, P

    2008-01-01

    The study of somatotypes can contribute to the understanding of variability in human body build. The aim of this study was to compare the somatotypes of Italian and Estonian schoolchildren in order to evaluate factors that might lead to variability in somatotypes. The sample consisted of 762 Italian and 366 Estonian children aged 6-11 years. They were somatotyped by the Heath-Carter anthropometric method. Data on organised extra-curricular physical activity and hours of weekly training were also collected. One-way ANOVA was used to evaluate country-related variations of somatotype in each age/sex group, while factorial ANOVA was used to test the influence of country and organised physical activity on the variability of the anthropometric characteristics and somatotype components. There are significant differences in mean somatotypes between the Italian and Estonian children in many age classes and a different constitutional trend in children from the two different countries is observed. The Italian children are more endomorphic and less mesomorphic and ectomorphic than the Estonian children. On the other hand, it emerges from factorial ANOVA, that the somatotype components do not present significant variations related to organised physical activity and to the interaction between the country of origin and sport practice. Moreover, the results of the forward stepwise discriminant analyses show that mesomorphy is the best discriminator between the two countries, followed by ectomorphy. Our findings suggest that the observed differences between Italian and Estonian children could be related mainly to country rather than to the practice of organised physical activity in the two countries.

  11. Eating attitudes in a group of 11-year-old urban South African girls

    PubMed Central

    Petersen, Carmen D; Norris, Shane A; Pettifor, John M; MacKeown, Jenny M

    2009-01-01

    Objectives To explore and describe eating attitudes in early pubertal 11-year-old black and white South African girls in an urban environment undergoing transition. Design The study was designed as a cross-sectional baseline initiative within a longitudinal study. Subjects Two hundred and two subjects were randomly selected; 54 were white and 148 black. Methods Subjects completed questionnaires, and anthropometric measurements were taken. Outcome measures Variables included body mass index (BMI), eating attitudes (EAT score), dietary intake, socio-economic status, pubertal status and level of physical activity. Results As expected, the prevalence rate of abnormal eating attitudes in this group of girls was low (1%). No significant ethnic differences were found in the total EAT scores. White participants displayed greater oral control, while their black peers displayed greater tendencies toward dieting (p = 0.05). Girls who scored higher on the dieting subscale had a larger body size and were more inactive than low dieting scorers (p = 0.05). A relationship between body size measurements and dietary intake was found only in black girls. Traditionally a larger figure is accepted in black culture. However our data suggest a move away from this, indicating acculturation, as awareness of increased body size significantly influenced dieting attitudes. However, scores were within the normal range. Conclusions There is early evidence suggesting the impact of societal transition on young black girls with regard to eating attitudes. Black girls in this age group are adopting Western ideals of beauty and thinness. PMID:20526468

  12. Possible relationships between solar activity and meteorological phenomena

    NASA Technical Reports Server (NTRS)

    Bandeen, W. R. (Editor); Maran, S. P. (Editor)

    1975-01-01

    A symposium was conducted in which the following questions were discussed: (1) the evidence concerning possible relationships between solar activity and meteorological phenomena; (2) plausible physical mechanisms to explain these relationships; and (3) kinds of critical measurements needed to determine the nature of solar/meteorological relationships and/or the mechanisms to explain them, and which of these measurements can be accomplished best from space.

  13. Influence of solar activity on fibrinolysis and fibrinogenolysis. [statistical correlation between solar flare and blood coagulation indices

    NASA Technical Reports Server (NTRS)

    Marchenko, V. I.

    1974-01-01

    During periods of high solar activity fibrinolysis and fibrinogenolysis are increased. A direct correlative relationship is established between the indices of fibrinolysis, fibrinogenolysis and solar flares which were recorded two days before the blood was collected for analysis.

  14. Solar activity: The Sun as an X-ray star

    NASA Technical Reports Server (NTRS)

    Golub, L.

    1981-01-01

    The existence and constant activity of the Sun's outer atmosphere are thought to be due to the continual emergence of magnetic fields from the Solar interior and the stressing of these fields at or near the surface layers of the Sun. The structure and activity of the corona are thus symptomatic of the underlying magnetic dynamo and the existence of an outer turbulent convective zone on the Sun. A sufficient condition for the existence of coronal activity on other stars would be the existence of a magnetic dynamo and an outer convective zone. The theoretical relationship between magnetic fields and coronal activity can be tested by Solar observations, for which the individual loop structures can be resolved. A number of parameters however, which enter into the alternative theoretical formulations remain fixed in all Solar observations. To determine whether these are truly parameters of the theory observations need to be extended to nearby stars on which suitable conditions may occur.

  15. Relation Between Myocardial Infarction Deaths and Solar Activity in Mexico

    NASA Astrophysics Data System (ADS)

    Diaz-Sandoval, R.

    2002-05-01

    We study the daily incidence of myocardial infarction deaths in Mexico for 4 years (1996-99) with a total of 129 917 cases in all the country, collected at the General Directorate of Epidemiology (National Ministry of Health). We divided the cases by sex and age and perform two kinds of analysis. First, we did an spectral analysis using the Maximum Entropy Method, considering the complete period, and minimum and maximum epochs of solar activity. The results show that the most persistent periodicity at higher frequencies in the myocardial infarction death occurrence is that of seven days. Considering the solar cycle phases, we found that during solar minimum times some frequencies are not detectable compared with solar maximum epochs, particularly that of seven days. Biological rhythms close to seven days, the circaseptans, are in general thought to be only the result of the social organization of life. However, this cannot be the only explanation, because the 7-days periodicity has been encountered in lower organisms not related with our rhythms of life. Thus, it has been proposed that biological rhythms could be evolutionary adaptations to environmental conditions, particularly, solar activity. In the second analysis we compared two solar activity-related phenomena: the Forbush decreases of cosmic rays and the geomagnetic index Ap for various levels of geomagnetic perturbations. The results show that during decreases of cosmic ray fluxes, for most cases there is a higher average myocardial infarction deaths occurrence, compared with the average incidence in days of no decreases. For geomagnetic activity we find the same situation in most cases. Furthermore, this behavior is more pronounced as the level of the perturbation increases and in times of maximum solar activity.

  16. Short-term changes in solar oscillation frequencies and solar activity

    NASA Technical Reports Server (NTRS)

    Woodard, M. F.; Libbrecht, K. G.; Kuhn, J. R.; Murray, N.

    1991-01-01

    It is shown that the frequencies of solar rho-mode oscillations change significantly over periods as short as one month. These changes correlate significantly with variations in the strength of surface solar activity as measured by the average, over the sun's visible surface, of the magnitude of the line-of-sight magnetic field component from magnetograms. The frequency and mean magnetic variations are found to obey a linear relationship. It is seen that the mean frequency shift at any time depends on the history of solar activity over an interval of, at most, several months prior to the measurement and conclude that the dominant mechanism of the frequency shift is correlated with surface magnetic activity.

  17. Summary of solar activity observed in the Mauna Loa Solar Observatory, 1980 - 1983

    NASA Astrophysics Data System (ADS)

    Rock, K.; Fisher, R.; Garcia, C.; Yasukawa, E.

    1983-11-01

    The following technical note summarizes solar activity observed during the first four years operation of the experiment systems of the Coronal Dynamics Project, which are located at the Mauna Loa Solar Observatory. This short report has been produced with the general aim of providing users of Mauna Loa observations with a summary of data for specific events. So that this table might be as useful as possible, a comprehensive review of three sources was performed. The plain language logs, identified as the so-called observer's logs, the now-discontinued activity logs, and the prominence monitor quality control logs were the sources from which the information in the following tables was obtained.

  18. Some problems in coupling solar activity to meteorological phenomena

    NASA Technical Reports Server (NTRS)

    Dessler, A. J.

    1975-01-01

    The development of a theory of coupling of solar activity to meteorological phenomena is hindered by the difficulties of devising a mechanism that can modify the behavior of the troposphere while employing only a negligible amount of energy compared with the energy necessary to drive the normal meteorological system, and determining how such a mechanism can effectively couple some relevant magnetospheric process into the troposphere in such a way as to influence the weather. A clue to the nature of the interaction between the weather and solar activity might be provided by the fact that most solar activity undergoes a definite 11-yr cycle, and meteorological phenomena undergo either no closely correlated variation, an 11-yr variation, or a 22-yr variation.

  19. The birth and evolution of solar active regions

    NASA Astrophysics Data System (ADS)

    Gaizauskas, V.

    1993-09-01

    The growth of solar active regions is a well-observed surface phenomenon with its origins concealed in the solar interior. We review the salient facts about the emergence of active regions and the consequences of their growth on the solar atmosphere. The most powerful flares, the ones which display a range of phenomena that still pose serious challenges for high-energy astrophysics, are associated with regions of high magnetic complexity. How does that degree of complexity arise when the vast majority of active regions are simple bipolar entities? In order to gain some insight into that problem, we compare the emergence of magnetic flux in ordinary regions with an instance when magnetic complexity is apparent from the very first appearance of a new region - clearly a subsurface prefabrication of complexity - and with others wherein a new region interacts with a pre-existing one to create the complexity in plain view.

  20. Correlation of nighttime MF signal strength with solar activity

    NASA Astrophysics Data System (ADS)

    Kohata, Hiroki; Kimura, Iwane; Wakai, Noboru; Ogawa, Tadahiko

    Observations of the signal strength of MF broadcasting signals (774/770 kHz) transmitted from Akita, Japan, on board the Japanese Antarctic ice breaker Fuji, bound from Japan to Syowa station, Antarctica, have revealed an interesting positive correlation between strengths of long distance signals propagating at night and solar activity. It is already known that MF propagation characteristics in North America show a negative correlation with solar activity. The present paper, interprets the results by using the multihop method with full-wave analysis. The difference in correlation with solar activity between the results of Fuji and those in North America can be elucidated if it is assumed that there is a ledge in the electron-density profile around an altitude range of 85 to 90 km and that the density of the ledge is smaller in the North American region than in the equatorial region.

  1. Coronal activity cycles in solar analog stars

    NASA Astrophysics Data System (ADS)

    Favata, Fabio

    2013-10-01

    We propose continuation into AO13 of the ongoing long-term program for the monitoring of coronal cycles in a sample of five solar-type stars in three stellar systems. The targets have been monitored continuously since AO1, yielding the first unambiguous evidence of cyclic behavior in the X-ray emission from the coronae of cool stars. Thanks to the long-term monitoring our program is starting to show evidence of the complex behavior of stellar cycles, with significant cycle-to-cycle variability becoming apparent. The observations requested in AO-13 will allow us to capitalize on our long-term investment of XMM-Newton observing time and to continue assembling a unique long-term data set that is likely to remain unmatched for a long time.

  2. Wavelet analysis of the singular spectral reconstructed time series to study the imprints of solar-ENSO-geomagnetic activity on Indian climate

    NASA Astrophysics Data System (ADS)

    Lakshmi Sunkara, Sri; Krishna Tiwari, Rama

    2016-09-01

    To study the imprints of the solar-ENSO-geomagnetic activity on the Indian subcontinent, we have applied singular spectral analysis (SSA) and wavelet analysis to the tree-ring temperature variability record from the Western Himalayas. Other data used in the present study are the solar sunspot number (SSN), geomagnetic indices (aa index), and the Southern Oscillation Index (SOI) for the common time period of 1876-2000. Both SSA and wavelet spectral analyses reveal the presence of 5-7-year short-term ENSO variations and the 11-year solar cycle, indicating the possible combined influences of solar-geomagnetic activities and ENSO on the Indian temperature. Another prominent signal corresponding to 33-year periodicity in the tree-ring record suggests the Sun-temperature variability link probably induced by changes in the basic state of the Earth's atmosphere. In order to complement the above findings, we performed a wavelet analysis of SSA reconstructed time series, which agrees well with our earlier results and increases the signal-to-noise ratio, thereby showing the strong influence of solar-geomagnetic activity and ENSO throughout the entire period. The solar flares are considered responsible for causing the atmospheric circulation patterns. The net effect of solar-geomagnetic processes on the temperature record might suggest counteracting influences on shorter (about 5-6-year) and longer (about 11-12-year) timescales. The present analyses suggest that the influence of solar activities on the Indian temperature variability operates in part indirectly through coupling of ENSO on multilateral timescales. The analyses, hence, provide credible evidence of teleconnections of tropical Pacific climatic variability and Indian climate ranging from inter-annual to decadal timescales and also suggest the possible role of exogenic triggering in reorganizing the global Earth-ocean-atmospheric systems.

  3. Multi-scale statistical analysis of coronal solar activity

    DOE PAGES

    Gamborino, Diana; del-Castillo-Negrete, Diego; Martinell, Julio J.

    2016-07-08

    Multi-filter images from the solar corona are used to obtain temperature maps that are analyzed using techniques based on proper orthogonal decomposition (POD) in order to extract dynamical and structural information at various scales. Exploring active regions before and after a solar flare and comparing them with quiet regions, we show that the multi-scale behavior presents distinct statistical properties for each case that can be used to characterize the level of activity in a region. Information about the nature of heat transport is also to be extracted from the analysis.

  4. The Solar System Ballet: A Kinesthetic Spatial Astronomy Activity

    NASA Astrophysics Data System (ADS)

    Heyer, Inge; Slater, T. F.; Slater, S. J.; Astronomy, Center; Education ResearchCAPER, Physics

    2011-05-01

    The Solar System Ballet was developed in order for students of all ages to learn about the planets, their motions, their distances, and their individual characteristics. To teach people about the structure of our Solar System can be revealing and rewarding, for students and teachers. Little ones (and some bigger ones, too) often cannot yet grasp theoretical and spatial ideas purely with their minds. Showing a video is better, but being able to learn with their bodies, essentially being what they learn about, will help them understand and remember difficult concepts much more easily. There are three segments to this activity, which can be done together or separately, depending on time limits and age of the students. Part one involves a short introductory discussion about what students know about the planets. Then students will act out the orbital motions of the planets (and also moons for the older ones) while holding a physical model. During the second phase we look at the structure of the Solar System as well as the relative distances of the planets from the Sun, first by sketching it on paper, then by recreating a scaled version in the class room. Again the students act out the parts of the Solar System bodies with their models. The third segment concentrates on recreating historical measurements of Earth-Moon-Sun system. The Solar System Ballet activity is suitable for grades K-12+ as well as general public informal learning activities.

  5. DASL-Data and Activities for Solar Learning

    NASA Technical Reports Server (NTRS)

    Jones, Harrison P.; Henney, Carl; Hill, Frank; Gearen, Michael; Pompca, Stephen; Stagg, Travis; Stefaniak, Linda; Walker, Connie

    2004-01-01

    DASL-Data and Activities for Solar Learning Data and Activities for Solar Learning (DASL) provides a classroom learning environment based on a twenty-five year record of solar magnetograms from the National Solar Observatory (NSO) at Kitt Peak, AZ. The data, together with image processing software for Macs or PCs, can be used to learn basic facts about the Sun and astronomy at the middle school level. At the high school level, students can study properties of the Sun's magnetic cycle with classroom exercises emphasizing data and error analysis and can participate in a new scientific study, Research in Active Solar Longitudes (RASL), in collaboration with classrooms throughout the country and scientists at NSO and NASA. We present a half-day course to train teachers in the scientific content of the project and its classroom use. We will provide a compact disc with the data and software and will demonstrate software installation and use, classroom exercises, and participation in RASL with computer projection.

  6. Responsiveness and functional connectivity of the scene-sensitive retrosplenial complex in 7-11-year-old children.

    PubMed

    Jiang, Ping; Tokariev, Maksym; Aronen, Eeva T; Salonen, Oili; Ma, YuanYe; Vuontela, Virve; Carlson, Synnöve

    2014-10-29

    Brain imaging studies have identified two cortical areas, the parahippocampal place area (PPA) and the retrosplenial complex (RSC), that respond preferentially to the viewing of scenes. Contrary to the PPA, little is known about the functional maturation and cognitive control of the RSC. Here we used functional magnetic resonance imaging and tasks that required attention to scene (or face) images and suppression of face (or scene) images, respectively, to investigate task-dependent modulation of activity in the RSC and whole-brain functional connectivity (FC) of this area in 7-11-year-old children and young adults. We compared responsiveness of the RSC with that of the PPA. The RSC was selectively activated by scene images in both groups, albeit less than the PPA. Children modulated activity between the tasks similarly in the RSC and PPA, and to the same extent as adults in PPA, whereas adults modulated activity in the RSC less than in PPA. In children, the whole brain FC of the RSC was stronger in the Sf than Fs task between the left RSC and right fusiform gyrus. The between groups comparison suggested stronger FC in children than adults in the Sf task between the right RSC and the left inferior parietal lobule and intraparietal sulcus. Together the results suggest that the function of the RSC and the related networks undergo dynamic changes over the development from 7-11-year-old children to adulthood.

  7. Solar Cycle Variations of the Occurrence of Coronal Type III Radio Bursts and a New Solar Activity Index

    NASA Astrophysics Data System (ADS)

    Lobzin, V. V.; Cairns, I. H.; Robinson, P. A.

    2011-12-01

    The results of studies of solar cycle variations of the occurrence rate of coronal type III radio bursts are presented. The radio spectra are provided by the Learmonth Solar Radio Observatory (Western Australia), part of the USAF Radio Solar Telescope Network (RSTN). It is found that the occurrence rate of type III bursts strongly correlates with solar activity. However, the profiles for the smoothed type III burst occurrence rate differ considerably from those for the sunspot number, 10.7 cm solar radio flux, and solar flare index. The type III burst occurrence rate (T3BOR) is proposed as a new index of solar activity. T3BOR provides complementary information about solar activity and should be useful in different studies including solar cycle predictions and searches for different periodicities in solar activity. This index can be estimated from daily results of the Automated Radio Burst Identification System (ARBIS). Access to data from other RSTN sites will allow processing 24-hour radio spectra in near-real time and estimating true daily values of this index. It is also shown that coronal type III bursts can even occur when there are no visible sunspots on the Sun. However, no evidence is found that the bursts are not associated with active regions. It is also concluded that the type III burst productivity of active regions exhibits solar cycle variations.

  8. SOLAR CYCLE VARIATIONS OF THE OCCURRENCE OF CORONAL TYPE III RADIO BURSTS AND A NEW SOLAR ACTIVITY INDEX

    SciTech Connect

    Lobzin, Vasili; Cairns, Iver H.; Robinson, Peter A.

    2011-07-20

    This Letter presents the results of studies of solar cycle variations of the occurrence rate of coronal type III radio bursts. The radio spectra are provided by the Learmonth Solar Radio Observatory (Western Australia), part of the USAF Radio Solar Telescope Network (RSTN). It is found that the occurrence rate of type III bursts strongly correlates with solar activity. However, the profiles for the smoothed type III burst occurrence rate differ considerably from those for the sunspot number, 10.7 cm solar radio flux, and solar flare index. The type III burst occurrence rate (T3BOR) is proposed as a new index of solar activity. T3BOR provides complementary information about solar activity and should be useful in different studies including solar cycle predictions and searches for different periodicities in solar activity. This index can be estimated from daily results of the Automated Radio Burst Identification System. Access to data from other RSTN sites will allow processing 24 hr radio spectra in near-real time and estimating true daily values of this index. It is also shown that coronal type III bursts can even occur when there are no visible sunspots on the Sun. However, no evidence is found that the bursts are not associated with active regions. It is also concluded that the type III burst productivity of active regions exhibits solar cycle variations.

  9. An influence of solar activity on latitudinal distribution of atmospheric ozone and temperature in 2-D radiative-photochemical model

    NASA Technical Reports Server (NTRS)

    Dyominov, I. G.

    1989-01-01

    On the basis of the 2-D radiative-photochemical model of the ozone layer at heights 0 to 60 km in the Northern Hemisphere there are revealed and analyzed in detail the characteristic features of the season-altitude-latitude variations of ozone and temperature due to changes of the solar flux during the 11 year cycle, electron and proton precipitations.

  10. Trauma, mental health, and intergenerational associations in Kosovar Families 11 years after the war

    PubMed Central

    Schick, Matthis; Morina, Naser; Klaghofer, Richard; Schnyder, Ulrich; Müller, Julia

    2013-01-01

    Background While there is a considerable amount of literature addressing consequences of trauma in veterans and holocaust survivors, war and postwar civilian populations, particularly children, are still understudied. Evidence regarding intergenerational effects of trauma in families is inconsistent. Objective To shed light on intergenerational aspects of trauma-related mental health problems among families 11 years after the Kosovo war. Method In a cross-sectional study, a paired sample of 51 randomly selected triplets (school-aged child, mother, father, N=153) of Kosovar families was investigated with regard to trauma exposure, posttraumatic stress (UCLA Posttraumatic Diagnostic Scale), anxiety (Spence Children's Anxiety Scale, Hopkins Symptom Checklist-25), and depressive symptoms (Depressionsinventar für Kinder und Jugendliche [DIKJ; depression inventory for children and adolescents], Hopkins Symptom Checklist-25). Results Considerable trauma exposure and high prevalence rates of clinically relevant posttraumatic stress, anxiety, and depressive symptoms were found in both parents and children. While strong correlations were found between children's depressive symptoms and paternal posttraumatic stress, anxiety and depressive symptoms, maternal symptoms did not correlate with their children's. In multiple regression analyses, only posttraumatic stress symptoms of fathers were significantly related with children's depressive symptoms. Conclusion Eleven years after the Kosovo war, the presence of posttraumatic stress, anxiety, and depressive symptoms in civilian adults and their children is still substantial. As symptoms of parents and children are associated, mental health problems of close ones should be actively screened and accounted for in comprehensive treatment plans, using a systemic approach. Future research should include longitudinal studies conducting multivariate analyses with larger sample sizes in order to investigate indicators, causal and

  11. Solar Spectral Irradiance, Solar Activity, and the Near-Ultra-Violet

    NASA Astrophysics Data System (ADS)

    Fontenla, J. M.; Stancil, P. C.; Landi, E.

    2015-08-01

    The previous calculations of the Solar Spectral Irradiance (SSI) by the Solar Radiation Physical Modeling, version 2 system, are updated in this work by including new molecular photodissociation cross-sections of important species, and many more levels and lines in its treatment of non-LTE radiative transfer. The current calculations including the new molecular photodissociation opacities produce a reduced over-ionizaton of heavy elements in the lower chromosphere and solve the problems with prior studies of the UV SSI in the wavelength range 160-400 nm and now reproduce the available observations with much greater accuracy. Calculations and observations of the near-UV at 0.1 nm resolution and higher are compared. The current set of physical models includes four quiet-Sun and five active-region components, from which radiance is computed for ten observing angles. These radiances are combined with images of the solar disk to obtain the SSI and Total Solar Irradiance and their variations. The computed SSI is compared with measurements from space at several nm resolution and agreement is found within the accuracy level of these measurements. An important result is that the near-UV SSI increase with solar activity is significant for the photodissociation of ozone in the terrestrial atmosphere because a number of highly variable upper chromospheric lines overlap the ozone Hartley band.

  12. The features of longitudinal distribution of solar spots during the last 13 solar activity minima

    NASA Astrophysics Data System (ADS)

    Kostuchenko, I. G.; Benevolenskaya, E. E.

    2015-12-01

    We analyzed the features of the longitudinal distribution of the areas of solar spots during the solar activity minima, from the 11th cycle to the last minimum, based on data provided by the Greenwich Observatory and the Marshall Research Center. We discovered that the solar spots evolved in one or two neighboring bands (in terms of longitude), the Carrington longitude of which smoothly displaced from the east to the west, in the phase of the deep minimum in all of the considered cases. The spots at the high latitudes associated with a "new" cycle evolved on the same longitude bands. All of this led to the noticeable longitudinal asymmetry of magnetic fluxes related to the spots and flocculi. Based on our research, we propose the hypothesis that a nonaxisymmetric component of the total magnetic flux of the Sun is generated, together with the dipole component, by the solar dynamo mechanism, which is a typical feature of the phase of a minimum between the solar activity cycles.

  13. Long-Range Solar Activity Predictions: A Reprieve from Cycle #24's Activity

    NASA Technical Reports Server (NTRS)

    Richon, K.; Schatten, K.

    2003-01-01

    We discuss the field of long-range solar activity predictions and provide an outlook into future solar activity. Orbital predictions for satellites in Low Earth Orbit (LEO) depend strongly on exospheric densities. Solar activity forecasting is important in this regard, as the solar ultra-violet (UV) and extreme ultraviolet (EUV) radiations inflate the upper atmospheric layers of the Earth, forming the exosphere in which satellites orbit. Rather than concentrate on statistical, or numerical methods, we utilize a class of techniques (precursor methods) which is founded in physical theory. The geomagnetic precursor method was originally developed by the Russian geophysicist, Ohl, using geomagnetic observations to predict future solar activity. It was later extended to solar observations, and placed within the context of physical theory, namely the workings of the Sun s Babcock dynamo. We later expanded the prediction methods with a SOlar Dynamo Amplitude (SODA) index. The SODA index is a measure of the buried solar magnetic flux, using toroidal and poloidal field components. It allows one to predict future solar activity during any phase of the solar cycle, whereas previously, one was restricted to making predictions only at solar minimum. We are encouraged that solar cycle #23's behavior fell closely along our predicted curve, peaking near 192, comparable to the Schatten, Myers and Sofia (1996) forecast of 182+/-30. Cycle #23 extends from 1996 through approximately 2006 or 2007, with cycle #24 starting thereafter. We discuss the current forecast of solar cycle #24, (2006-2016), with a predicted smoothed F10.7 radio flux of 142+/-28 (1-sigma errors). This, we believe, represents a reprieve, in terms of reduced fuel costs, etc., for new satellites to be launched or old satellites (requiring reboosting) which have been placed in LEO. By monitoring the Sun s most deeply rooted magnetic fields; long-range solar activity can be predicted. Although a degree of uncertainty

  14. GLOBAL DYNAMICS OF SUBSURFACE SOLAR ACTIVE REGIONS

    SciTech Connect

    Jouve, L.; Brun, A. S.

    2013-01-01

    We present three-dimensional numerical simulations of a magnetic loop evolving in either a convectively stable or unstable rotating shell. The magnetic loop is introduced into the shell in such a way that it is buoyant only in a certain portion in longitude, thus creating an {Omega}-loop. Due to the action of magnetic buoyancy, the loop rises and develops asymmetries between its leading and following legs, creating emerging bipolar regions whose characteristics are similar to those of observed spots at the solar surface. In particular, we self-consistently reproduce the creation of tongues around the spot polarities, which can be strongly affected by convection. We further emphasize the presence of ring-shaped magnetic structures around our simulated emerging regions, which we call 'magnetic necklace' and which were seen in a number of observations without being reported as of today. We show that those necklaces are markers of vorticity generation at the periphery and below the rising magnetic loop. We also find that the asymmetry between the two legs of the loop is crucially dependent on the initial magnetic field strength. The tilt angle of the emerging regions is also studied in the stable and unstable cases and seems to be affected both by the convective motions and the presence of a differential rotation in the convective cases.

  15. Duration, Distance, and Speed Judgments of Two Moving Objects by 4- to 11-Year-Olds.

    ERIC Educational Resources Information Center

    Matsuda, Fumiko

    1996-01-01

    Four- to 11-year-olds made duration, distance, and speed judgments on Piagetian tasks where cars ran on parallel tracks. Among younger children, duration and distance judgments had approximately the same difficulty. Among older children, distance judgments were easier than duration judgments, and symmetry of effects of temporal and spatial…

  16. Persistence of Challenging Behaviours in Adults with Intellectual Disability over a Period of 11 Years

    ERIC Educational Resources Information Center

    Totsika, V.; Toogood, S.; Hastings, R. P.; Lewis, S.

    2008-01-01

    Background: Challenging behaviours in people with an intellectual disability (ID) often develop early and tend to persist throughout life. This study presents data on the chronicity of challenging behaviours in adults with ID over a period of 11 years, and explores the characteristics of people with persistent serious behaviour problems. Method:…

  17. Race and Ethnicity: An 11-Year Content Analysis of "Counseling and Values"

    ERIC Educational Resources Information Center

    Baker, Caroline A.; Bowen, Nikol V.; Butler, J. Yasmine; Shavers, Marjorie C.

    2013-01-01

    Using the Dimensions of Personal Identity Model proposed by Arredondo and Glauner (as cited in Arredondo et al., 1996), the authors reviewed the last 11 years of the Association for Spiritual, Ethical, and Religious Values in Counseling's journal, "Counseling and Values", specifically regarding the "A" dimensions of race and ethnicity. Twenty-five…

  18. Korean 4- to 11-Year-Old Student Conceptions of Heat and Temperature

    ERIC Educational Resources Information Center

    Paik, Seoung-Hey; Cho, Boo-Kyung; Go, Young-Mi

    2007-01-01

    The aim of the present study is to shed light on the conceptions that young students have of heat and temperature, concepts that are both important in school science curricula and closely related to daily life. The subjects of the study were students from a rural district in South Korea and they ranged in age from 4 to 11 years. Interviews were…

  19. Easy Growth Experiment on Peas Stimulates Interest in Biology for 10-11 Year Old Pupils

    ERIC Educational Resources Information Center

    McEwen, Birgitta

    2007-01-01

    How do we support the enthusiasm children show for biology in school? Unfortunately, lack of exciting practical work and boring biology lessons seem to make science less popular. As a senior lecturer in plant physiology at Karlstad University I have simplified experiments intended for students at university and then tested them on 10-11 year old…

  20. Basic Facts about Low-Income Children: Children 6 through 11 Years, 2013. Fact Sheet

    ERIC Educational Resources Information Center

    Jiang, Yang; Ekono, Mercedes; Skinner, Curtis

    2015-01-01

    Children under 18 years represent 23 percent of the population, but they comprise 33 percent of all people in poverty. Among all children, 44 percent live in low-income families and approximately one in every five (22 percent) live in poor families. Similarly, among children in middle childhood (age 6 through 11 years), 45 percent live in…

  1. [A case of porphyria cutanea tarda in an 11-year-old boy].

    PubMed

    Pindycka-Piaszczyńska, M; Danik, E; Bendkowski, W

    1995-06-01

    A rare case of porphyria cutanea tarda (PCT) in an 11-year-old boy is presented. The clinical manifestations were typical. Results of porphyrin analyses of urine and serum with a fluorescence emission maximum around 398 nm revealed a pattern consistent with PCT. PMID:8692611

  2. Meaning-Making with Colour in Multimodal Texts: An 11-Year-Old Student's Purposeful "Doing"

    ERIC Educational Resources Information Center

    Pantaleo, Sylvia

    2012-01-01

    Colour, a visual element of art and design, is a semiotic mode that is used strategically by sign-makers to communicate meaning. Understanding the meaning-making potential of colour can enhance students' understanding, appreciation, interpretation and composition of multimodal texts. This article features a case study of Anya, an 11-year-old…

  3. Solar activity and its evolution across the corona: recent advances

    NASA Astrophysics Data System (ADS)

    Zuccarello, Francesca; Balmaceda, Laura; Cessateur, Gael; Cremades, Hebe; Guglielmino, Salvatore L.; Lilensten, Jean; Dudok de Wit, Thierry; Kretzschmar, Matthieu; Lopez, Fernando M.; Mierla, Marilena; Parenti, Susanna; Pomoell, Jens; Romano, Paolo; Rodriguez, Luciano; Srivastava, Nandita; Vainio, Rami; West, Matt; Zuccarello, Francesco P.

    2013-04-01

    Solar magnetism is responsible for the several active phenomena that occur in the solar atmosphere. The consequences of these phenomena on the solar-terrestrial environment and on Space Weather are nowadays clearly recognized, even if not yet fully understood. In order to shed light on the mechanisms that are at the basis of the Space Weather, it is necessary to investigate the sequence of phenomena starting in the solar atmosphere and developing across the outer layers of the Sun and along the path from the Sun to the Earth. This goal can be reached by a combined multi-disciplinary, multi-instrument, multi-wavelength study of these phenomena, starting with the very first manifestation of solar active region formation and evolution, followed by explosive phenomena (i.e., flares, erupting prominences, coronal mass ejections), and ending with the interaction of plasma magnetized clouds expelled from the Sun with the interplanetary magnetic field and medium. This wide field of research constitutes one of the main aims of COST Action ES0803: Developing Space Weather products and services in Europe. In particular, one of the tasks of this COST Action was to investigate the Progress in Scientific Understanding of Space Weather. In this paper we review the state of the art of our comprehension of some phenomena that, in the scenario outlined above, might have a role on Space Weather, focusing on the researches, thematic reviews, and main results obtained during the COST Action ES0803.

  4. Climate interaction mechanism between solar activity and terrestrial biota

    NASA Astrophysics Data System (ADS)

    Osorio-Rosales, J.; Mendoza, B.

    2012-07-01

    The solar activity has been proposed as one of the main factors of Earth's climate variability, however biological processes have been also proposed. Dimethylsulfide (DMS) is the main biogenic sulfur compound in the atmosphere. DMS is mainly produced by the marine biosphere and plays an important role in the atmospheric sulfur cycle. Currently it is accepted that terrestrial biota not only adapts to environmental conditions but influences them through regulations of the chemical composition of the atmosphere. In the present study we used different methods of analysis to investigate the relationship between the DMS, Low Clouds, Ultraviolet Radiation A (UVA) and Sea Surface Temperature (SST) in the Southern Hemisphere. We found that the series analyzed have different periodicities which can be associated with climatic and solar phenomena such as El Niño, the Quasi-Biennial Oscillation (QBO) and the changes in solar activity. Also, we found an anticorrelation between DMS and UVA, the relation between DMS and clouds is mainly non-linear and there is a correlation between DMS and SST. Then, our results suggest a positive feedback interaction among DMS, solar radiation and cloud at time-scales shorter than the solar cycle.

  5. Hot spots and active longitudes: Organization of solar activity as a probe of the interior

    NASA Technical Reports Server (NTRS)

    Bai, Taeil; Hoeksema, J. Todd; Scherrer, Phil H.

    1995-01-01

    In order to investigate how solar activity is organized in longitude, major solar flares, large sunspot groups, and large scale photospheric magnetic field strengths were analyzed. The results of these analyses are reported. The following results are discussed: hot spots, initially recognized as areas of high concentration of major flares, are the preferred locations for the emergence of big sunspot groups; double hot spots appear in pairs that rotate at the same rate separated by about 180 deg in longitude, whereas, single hot spots have no such companions; the northern and southern hemispheres behave differently in organizing solar activity in longitude; the lifetime of hot spots range from one to several solar cycles; a hot spot is not always active throughout its lifetime, but goes through dormant periods; and hot spots with different rotational periods coexist in the same hemisphere during the same solar cycle.

  6. A solar cycle timing predictor - The latitude of active regions

    NASA Technical Reports Server (NTRS)

    Schatten, Kenneth H.

    1990-01-01

    A 'Spoerer butterfly' method is used to examine solar cycle 22. It is shown from the latitude of active regions that the cycle can now be expected to peak near November 1989 + or - 8 months, basically near the latter half of 1989.

  7. The ionosphere under extremely prolonged low solar activity

    NASA Astrophysics Data System (ADS)

    Liu, Libo; Chen, Yiding; Le, Huijun; Kurkin, Vladimir I.; Polekh, Nelya M.; Lee, Chien-Chih

    2011-04-01

    A critical question in ionospheric physics is the state of the ionosphere and relevant processes under extreme solar activities. The solar activity during 2007-2009 is extremely prolonged low, which offers us a unique opportunity to explore this issue. In this study, we collected the global ionosonde measurements of the F2 layer critical frequency (foF2), E layer critical frequency (foE), and F layer virtual height (h‧F) and the total electron content (TEC) maps produced by the Jet Propulsion Laboratory, which were retrieved from dual-frequency GPS receivers distributed worldwide, to investigate the ionospheric phenomena during solar minimum of cycle 23/24, particularly the difference in the ionosphere between solar minima of cycle 23/24 and the preceding cycles. The analysis indicates that the moving 1 year mean foF2 at most ionosonde stations and the global average TEC went to the lowest during cycle 23/24 minimum. The solar cycle differences in foF2 minima display local time dependence, being more negative during the daytime than at night. Furthermore, the cycle difference in daytime foF2 minima is about -0.5 MHz and even reaches to around -1.2 MHz. In contrast, a complex picture presents in global h‧F and foE. Evident reduction exists prevailingly in the moving 1 year mean h‧F at most stations, while no huge differences are detected at several stations. A compelling feature is the increase in foE at some stations, which requires independent data for further validation. Quantitative analysis indicates that record low foF2 and low TEC can be explained principally in terms of the decline in solar extreme ultraviolet irradiance recorded by SOHO/SEM, which suggests low solar EUV being the prevailing contributor to the unusual low electron density in the ionosphere during cycle 23/24 minimum. It also verifies that a quadratic fitting still reasonably captures the solar variability of foF2 and global average TEC at such low solar activity levels.

  8. Evidence of plasma heating in solar microflares during the minimum of solar activity

    NASA Astrophysics Data System (ADS)

    Kirichenko, Alexey; Bogachev, Sergey

    We present a statistical study of 80 solar microflares observed during the deep minimum of solar activity between 23 and 24 solar cycles. Our analysis covers the following characteristics of the flares: thermal energy of flaring plasma, its temperature and its emission measure in soft X-rays. The data were obtained during the period from April to July of 2009, which was favorable for observations of weak events because of very low level of solar activity. The most important part of our analysis was an investigation of extremely weak microflares corresponding to X-ray class below A1.0. We found direct evidence of plasma heating in more than 90% of such events. Temperature of flaring plasma was determined under the isothermal approximation using the data of two solar instruments: imaging spectroheliometer MISH onboard Coronas-Photon spacecraft and X-ray spectrophotometer SphinX operating in energy range 0.8 - 15 keV. The main advantage of MISH is the ability to image high temperature plasma (T above 4 MK) without a low-temperature background. The SphinX data was selected due to its high sensitivity, which makes available the registration of X-ray emission from extremely weak microflares corresponding GOES A0.1 - A0.01 classes. The temperature we obtained lies in the range from 2.6 to 13.6 MK, emission measure, integrated over the range 1 - 8 Å - 2.7times10(43) - 4.9times10(47) cm (-3) , thermal energy of flaring region - 5times10(26) - 1.6times10(29) erg. We compared our results with the data obtained by Feldman et. al. 1996 and Ryan et. al. 2012 for solar flares with X-ray classes above A2.0 and conclude that the relation between X-ray class of solar flare and its temperature is strongly different for ordinary flares (above A2.0) and for weak microflares (A0.01 - A2.0). Our result supports the idea that weak solar events (microflares and nanoflares) may play significant a role in plasma heating in solar corona.

  9. Statistical analysis of solar energetic particle events and related solar activity

    NASA Astrophysics Data System (ADS)

    Dierckxsens, Mark; Patsou, Ioanna; Tziotziou, Kostas; Marsh, Michael; Lygeros, Nik; Crosby, Norma; Dalla, Silvia; Malandraki, Olga

    2013-04-01

    The FP7 COMESEP (COronal Mass Ejections and Solar Energetic Particles: forecasting the space weather impact) project is developing tools for forecasting geomagnetic storms and solar energetic particle (SEP) radiation storms. Here we present preliminary results on a statistical analysis of SEP events and their parent solar activity during Solar Cycle 23. The work aims to identify correlations between solar events and SEP events relevant for space weather, as well as to quantify SEP event probabilities for use within the COMESEP alert system. The data sample covers the SOHO era and is based on the SEPEM reference event list [http://dev.sepem.oma.be/]. Events are subdivided if separate enhancements are observed in higher energy channels as defined for the list of Cane et al (2010). Energetic Storm Particle (ESP) enhancements during these events are identified by associating ESP-like increases in the proton channels with shocks detected in ACE and WIND data. Their contribution has been estimated and subtracted from the proton fluxes. Relationships are investigated between solar flare parameters such as X-ray intensity and heliographic location on the one hand, and the probability of occurrence and strength of energetic proton flux increases on the other hand. The same exercise is performed using the velocity and width of coronal mass ejections to examine their SEP productiveness. Relationships between solar event characteristics and SEP event spectral indices and fluences are also studied, as well as enhancements in heavy ion fluxes measured by the SIS instrument on board the ACE spacecraft during the same event periods. This work has received funding from the European Commission FP7 Project COMESEP (263252).

  10. An Alternative Measure of Solar Activity from Detailed Sunspot Datasets

    NASA Astrophysics Data System (ADS)

    Muraközy, J.; Baranyi, T.; Ludmány, A.

    2016-05-01

    The sunspot number is analyzed by using detailed sunspot data, including aspects of observability, sunspot sizes, and proper identification of sunspot groups as discrete entities of solar activity. The tests show that in addition to the subjective factors there are also objective causes of the ambiguities in the series of sunspot numbers. To introduce an alternative solar-activity measure, the physical meaning of the sunspot number has to be reconsidered. It contains two components whose numbers are governed by different physical mechanisms and this is one source of the ambiguity. This article suggests an activity index, which is the amount of emerged magnetic flux. The only long-term proxy measure is the detailed sunspot-area dataset with proper calibration to the magnetic flux. The Debrecen sunspot databases provide an appropriate source for the establishment of the suggested activity index.

  11. Impact of Magnetic Activity on Solar and Stellar Environments

    NASA Astrophysics Data System (ADS)

    Nandi, Dibyendu

    2015-08-01

    The variable activity of stars such as the Sun is mediated via stellar magnetic fields, radiative and energetic particle fluxes, stellar winds and magnetic storms. This activity influences planetary atmospheres, climate and habitability. Studies of this intimate relationship between the parent star, its astrosphere (i.e., the equivalent of the heliosphere) and the planets that it hosts have reached a certain level of maturity within our own solar system - fuelled both by advances in theoretical modelling and a host of satellites that observe the Sun-Earth system. Based on this understanding the first attempts are being made to characterize the interactions between stars and planets and their coupled evolution, which have relevance for habitability and the search for habitable planets. In this talk I will review recent findings in this context and highlight the activities of the IAU Inter-Division E-F Woking Group on “Impact of Magnetic Activity on Solar and Stellar Environments”.

  12. A Solar Station for Education and Research on Solar Activity at a National University in Peru

    NASA Astrophysics Data System (ADS)

    Ishitsuka, J. K.

    2006-11-01

    pepe@geo.igp.gob.pe Beginning in 1937, the Carnegie Institution of Washington made active regional observations with a spectro-helioscope at the Huancayo Observatory. In 1957, during the celebration of the International Geophysical Year Mutsumi Ishitsuka arrived at the Geophysical Institute of Peru and restarted solar observations from the Huancayo Observatory. Almost 69 years have passed and many contributions for the geophysical and solar sciences have been made. Now the Instituto Geofisico del Peru (IGP), in cooperation with the Faculty of Sciences of the Universidad Nacional San Luis Gonzaga de Ica (UNICA), and with the support of the National Astronomical Observatory of Japan, are planning to construct a solar station refurbishing a coelostat that worked for many years at the Huancayo Observatory. A 15 cm refractor telescope is already installed at the university, for the observation of sunspots. A solar Flare Monitor Telescope (FMT) from Hida Observatory of Kyoto University could be sent to Peru and installed at the solar station at UNICA. As the refurbished coelostat, FMT will become a good tool to improve education and research in sciences.

  13. Seismic Holography of the Solar Interior near the Maximum and Minimum of Solar Activity

    NASA Astrophysics Data System (ADS)

    Díaz Alfaro, M.; Pérez Hernández, F.; González Hernández, I.; Hartlep, T.

    2016-05-01

    The base of the convection zone and the tachocline play a major role in the study of the dynamics of the Sun, especially in the solar dynamo. Here, we present a phase-sensitive helioseismic holography method to infer changes in the sound-speed profile of the solar interior. We test the technique using numerically simulated data by Zhao et al. ( Astrophys. J. 702, 1150, 2009) with sound-speed perturbations at 0.7 R_{⊙}. The technique adequately recovers the perturbed sound-speed profile and is seen to be capable of detecting changes in the sound speed as low as 0.05 %. We apply the method to two GONG solar time series of approximately one year, each comprising 13 Bartels rotations, BR2295-BR2307 and BR2387-BR2399, near the maximum and at a minimum of solar activity, respectively. We successfully recover a sound-speed variation with respect to a standard solar model, consistent with previous results. However, we fail to recover a realistic sound-speed variation between maximum and minimum.

  14. Cosmic rays, solar activity, magnetic coupling, and lightning incidence

    NASA Technical Reports Server (NTRS)

    Ely, J. T. A.

    1984-01-01

    A theoretical model is presented and described that unifies the complex influence of several factors on spatial and temporal variation of lightning incidence. These factors include the cosmic radiation, solar activity, and coupling between geomagnetic and interplanetary (solar wind) magnetic fields. Atmospheric electrical conductivity in the 10 km region was shown to be the crucial parameter altered by these factors. The theory reconciles several large scale studies of lightning incidence previously misinterpreted or considered contradictory. The model predicts additional strong effects on variations in lightning incidence, but only small effects on the morphology and rate of thunderstorm development.

  15. Variations of Solar Activity and Irradiance (Julius Bartels Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Solanki, Sami K.

    2015-04-01

    Variations in solar activity and its fluctuating irradiance have been invoked as drivers of the Earth's space environment and its climate. Although, such variations and fluctuations have been followed for decades, partly even centuries, a number of important and basic questions surrounding them remain unanswered, or controversial. This also leads to significant uncertainties in the role played by the Sun in, e.g., driving climate change. In this lecture I provide an overview of our present knowledge and understanding of solar variability, covering both, commonly accepted and some of the more controversial aspects.

  16. Quasi-biennial modulation of solar neutrino flux: connections with solar activity

    NASA Astrophysics Data System (ADS)

    Vecchio, A.; Laurenza, M.; D'alessi, L.; Carbone, V.; Storini, M.

    2011-12-01

    A quasi-biennial periodicity has been recently found (Vecchio et al., 2010) in the solar neutrino flux, as detected at the Homestake experiment, as well as in the flux of solar energetic protons, by means of the Empirical Modes Decomposition technique. Moreover, both fluxes have been found to be significantly correlated at the quasi-biennial timescale, thus supporting the hypothesis of a connection between solar neutrinos and solar activity. The origin of this connection is investigated, by modeling how the standard Mikheyev-Smirnov-Wolfenstein (MSW) effect (the process for which the well-known neutrino flavor oscillations are modified in passing through the material) could be influenced by matter fluctuations. As proposed by Burgess et al., 2004, by introducing a background magnetic field in the helioseismic model, density fluctuations can be excited in the radiative zone by the resonance between helioseismic g-modes and Alfvén waves. In particular, with reasonable values of the background magnetic field (10-100 kG), the distance between resonant layers could be of the same order of neutrino oscillation length. We study the effect over this distance of a background magnetic field which is variable with a ~2 yr period, in agreement with typical variations of solar activity. Our findings suggest that the quasi-biennial modulation of the neutrino flux is theoretically possible as a consequence of the magnetic field variations in the solar interior. A. Vecchio, M. Laurenza, V. Carbone, M. Storini, The Astrophysical Journal Letters, 709, L1-L5 (2010). C. Burgess, N. S. Dzhalilov, T. I. Rashba, V., B.Semikoz, J. W. F. Valle, Mon. Not. R. Astron. Soc., 348, 609-624 (2004).

  17. Modeling of the atmospheric response to a strong decrease of the solar activity

    NASA Astrophysics Data System (ADS)

    Rozanov, Eugene V.; Egorova, Tatiana A.; Shapiro, Alexander I.; Schmutz, Werner K.

    2012-07-01

    We estimate the consequences of a potential strong decrease of the solar activity using the model simulations of the future driven by pure anthropogenic forcing as well as its combination with different solar activity related factors: total solar irradiance, spectral solar irradiance, energetic electron precipitation, solar protons and galactic cosmic rays. The comparison of the model simulations shows that introduced strong decrease of solar activity can lead to some delay of the ozone recovery and partially compensate greenhouse warming acting in the direction opposite to anthropogenic effects. The model results also show that all considered solar forcings are important in different atmospheric layers and geographical regions. However, in the global scale the solar irradiance variability can be considered as the most important solar forcing. The obtained results constitute probably the upper limit of the possible solar influence. Development of the better constrained set of future solar forcings is necessary to address the problem of future climate and ozone layer with more confidence.

  18. The variations of prominence activities during solar cycle

    NASA Astrophysics Data System (ADS)

    Shimojo, Masumi

    The prominence activities (prominence eruption/disappearance) in the solar atmosphere closely relate with the CMEs that cause great influences on heliosphere and magnetosphere. Gopal-swarmy et al. (2003) reported that 72 The Nobeyama Radioheliograph (NoRH) is observing Sun in microwave (17 GHz) since 1992. At a flare, the main component of the microwave from Sun is emitted from non-thermal electrons that are accelerated by flare. On the other hand, the main component of the microwave is thermal emission when Sun is quiet, and a prominence is clearly observed in microwave because there is the prominence on the limb. We developed the automatic prominence activity detection program based on 17 GHz images observed by NoRH, and investigated the variation of the properties of the prominence activities that oc-curred from 1992 to the end of 2009. We found the following results. 1. The variation in the number of prominence activities is similar to that of sunspots during one solar cycle but there are differences between the peak times of prominence activities and sunspots. 2. The frequency distribution as a function of the magnitude of the prominence activities the size of activated prominences at each phase shows a power-law distribution. The power-law index of the distribution does not change except around the solar minimum. 3. The number of promi-nence activities has a dependence on the latitude On the other hand the average magnitude is independent of the latitude. In the paper, we will also discuss the relationship the other properties of prominence eruptions, solar cycle and the photospheric magnetic field.

  19. Major geomagnetic storm due to solar activity (2006-2013).

    NASA Astrophysics Data System (ADS)

    Tiwari, Bhupendra Kumar

    Major geomagnetic storm due to solar activity (2006-2013). Bhupendra Kumar Tiwari Department of Physics, A.P.S.University, Rewa(M.P.) Email: - btiwtari70@yahoo.com mobile 09424981974 Abstract- The geospace environment is dominated by disturbances created by the sun, it is observed that coronal mass ejection (CME) and solar flare events are the causal link to solar activity that produces geomagnetic storm (GMS).CMEs are large scale magneto-plasma structures that erupt from the sun and propagate through the interplanetary medium with speeds ranging from only a few km/s to as large as 4000 km/s. When the interplanetary magnetic field associated with CMEs impinges upon the earth’s magnetosphere and reconnect occur geomagnetic storm. Based on the observation from SOHO/LASCO spacecraft for solar activity and WDC for geomagnetism Kyoto for geomagnetic storm events are characterized by the disturbance storm time (Dst) index during the period 2006-2013. We consider here only intense geomagnetic storm Dst <-100nT, are 12 during 2006-2013.Geomagnetic storm with maximum Dst< -155nT occurred on Dec15, 2006 associated with halo CME with Kp-index 8+ and also verify that halo CME is the main cause to produce large geomagnetic storms.

  20. Grand minima of solar activity during the last millennia

    NASA Astrophysics Data System (ADS)

    Usoskin, Ilya G.; Solanki, Sami K.; Kovaltsov, Gennady A.

    2012-07-01

    In this review we discuss the occurrence and statistical properties of Grand minima based on the available data covering the last millennia. In particular, we consider the historical record of sunspot numbers covering the last 400 years as well as records of cosmogenic isotopes in natural terrestrial archives, used to reconstruct solar activity for up to the last 11.5 millennia, i.e. throughout the Holocene. Using a reconstruction of solar activity from cosmogenic isotope data, we analyze statistics of the occurrence of Grand minima. We find that: the Sun spends about most of the time at moderate activity, 1/6 in a Grand minimum and some time also in a Grand maximum state; Occurrence of Grand minima is not a result of long-term cyclic variations but is defined by stochastic/chaotic processes; There is a tendency for Grand minima to cluster with the recurrence rate of roughly 2000-3000 years, with a weak ~210-yr periodicity existing within the clusters. Grand minima occur of two different types: shorter than 100 years (Maunder-type) and long ~150 years (Spörer-type). It is also discussed that solar cycles (most possibly not sunspots cycle) could exist during the Grand minima, perhaps with stretched length and asymmetric sunspot latitudinal distribution. These results set new observational constraints on long-term solar and stellar dynamo models.

  1. The interaction of active comets with the solar wind

    SciTech Connect

    Neugebauer, M. )

    1990-11-01

    The interaction of the solar wind with active comets is investigated based on observations of cometary plasma processes and studies of comets using telescopes and photographic plates. Data were also collected when a spacecraft flew through the tail of Comet Giacobini-Zinner in 1985 and five spacecraft encountered Comet Halley in 1986. The solar wind is considered to be supersonic (thermal Mach number 2-10) and to carry a magnetic field twisted into an Archimedean spiral by the rotation of the sun. Since the wind can change its properties during the time a spacecraft is inside the ionosphere or magnetosphere of the body being studied, it is difficult to separate spatial from temporal effects. Photoionization results in addition of plasma to the solar wind. Between the outer and inner edges of the cometosheath, the increasing rate of ion pickup causes the flow to slow down until it stagnates, while the plasma density and the magnetic field strength increase.

  2. Overview of solar detoxification activities in the United States

    SciTech Connect

    Mehos, M; Williams, T; Turchi, C

    1994-10-01

    The U.S. Department of Energy, through the National Renewable Energy Laboratory (NREL) and Sandia National Laboratories, has been investigating a process that uses solar energy to destroy hazardous wastes in air and water. The process, photocatalytic oxidation, uses ultraviolet light in conjunction with the semiconductor titanium dioxide to generate highly reactive hydroxyl radicals. Early research and development activities have demonstrated that photocatalysis may be cost effective for some applications. The Department of Energy is currently working to establish a commercial industry that uses solar energy to destroy hazardous wastes in air, water, and soil. To achieve this objective, NREL and Sandia are bringing together environmental firms, solar manufacturers, and organizations that have waste or remediation problems.

  3. Can El Nino Amplify the Solar Forcing of Climate?

    NASA Technical Reports Server (NTRS)

    Ruzmaikin, A.

    1999-01-01

    ENSO (El Nino and the Southern Oscillation) is considered as a stochastic driver that excites the atmospheric anomaly states, such as Pacific North American pattern. This can make the 11 year solar activity forcing feasible to climate through stochastic resonance -- a phenomenon that amplifies a weak input to a nonlinear bistable system by the assistance of noise.

  4. Data Assimilation Approach for Forecast of Solar Activity Cycles

    NASA Astrophysics Data System (ADS)

    Kitiashvili, Irina N.

    2016-11-01

    Numerous attempts to predict future solar cycles are mostly based on empirical relations derived from observations of previous cycles, and they yield a wide range of predicted strengths and durations of the cycles. Results obtained with current dynamo models also deviate strongly from each other, thus raising questions about criteria to quantify the reliability of such predictions. The primary difficulties in modeling future solar activity are shortcomings of both the dynamo models and observations that do not allow us to determine the current and past states of the global solar magnetic structure and its dynamics. Data assimilation is a relatively new approach to develop physics-based predictions and estimate their uncertainties in situations where the physical properties of a system are not well-known. This paper presents an application of the ensemble Kalman filter method for modeling and prediction of solar cycles through use of a low-order nonlinear dynamo model that includes the essential physics and can describe general properties of the sunspot cycles. Despite the simplicity of this model, the data assimilation approach provides reasonable estimates for the strengths of future solar cycles. In particular, the prediction of Cycle 24 calculated and published in 2008 is so far holding up quite well. In this paper, I will present my first attempt to predict Cycle 25 using the data assimilation approach, and discuss the uncertainties of that prediction.

  5. Solar luminosity fluctuations and active region photometry

    SciTech Connect

    Chapman, G.A.; Herzog, A.D.; Lawrence, J.K.; Shelton, J.C.

    1984-07-15

    We present monochromatic observations, obtained with a 512 element diode array, of the irradiance fluctuations of the sunspots and faculae of an active region during its disk transit in 1982 August. Bolometric and stray light corrections are approximately equal in magnitude but opposite in sign, so they have not been applied. The maximum sunspot fluctuation, as a fraction of the quiet-Sun irradiance, is -800 parts per million (ppm). Faculae have a maximum irradiance fluctuation of about +200 ppm near the limbs. We find that the facular energy excess is more than 50% of the sunspot energy deficit, which is -5.8 x 10/sup 35/ ergs. These observations show that faculae are an important element in active region energy balance.

  6. Some Daytime Activities in Solar Astronomy

    NASA Astrophysics Data System (ADS)

    Burin, Michael J.

    2016-01-01

    This century's transits of Venus (2004, 2012) captured significant public attention, reminding us that the wonders of astronomy need not be confined to the night. And while nighttime telescope viewing gatherings (a.k.a. "star parties") are perennially popular, astronomy classes are typically held in the daytime. The logistics of coordinating students outside of class can often be problematic, leading to dark-sky activities that are relegated to extra credit for only those who can attend.

  7. Earth Radiation Budget Satellite extraterrestrial solar constant measurements - 1986-1987 increasing trend

    NASA Technical Reports Server (NTRS)

    Lee, Robert B., III; Barkstrom, Bruce R.; Harrison, Edwin F.; Gibson, Michael A.; Natarajan, Sudha M.; Edmonds, William L.; Mecherikunnel, Ann T.; Kyle, H. Lee

    1988-01-01

    From June 1986 through Nov 1987, the Earth Radiation Budget Satellite (ERBS) pyrheliometric measurements indicated that the solar constant was increasing approximately +0.02 percent per year. Earlier ERBS measurements indicated that the solar constant was declining approximately -0.03 percent per year during the 1984 through mid-1986 period. Since mid-1986 represents the beginning of solar cycle 22, it is believed that the reversal in the long-term solar constant trend may be linked to increased solar activity associated with the beginning of the 11-year sunspot cycle. The typical value of the solar constant was found to be 1365 Wm-2.

  8. The role of the Fraunhofer lines in solar brightness variability

    NASA Astrophysics Data System (ADS)

    Shapiro, A. I.; Solanki, S. K.; Krivova, N. A.; Tagirov, R. V.; Schmutz, W. K.

    2015-09-01

    Context. The solar brightness varies on timescales from minutes to decades. A clear identification of the physical processes behind such variations is needed for developing and improving physics-based models of solar brightness variability and reconstructing solar brightness in the past. This is, in turn, important for better understanding the solar-terrestrial and solar-stellar connections. Aims: We estimate the relative contributions of the continuum, molecular, and atomic lines to the solar brightness variations on different timescales. Methods: Our approach is based on the assumption that variability of the solar brightness on timescales greater than a day is driven by the evolution of the solar surface magnetic field. We calculated the solar brightness variations employing the solar disc area coverage of magnetic features deduced from the MDI/SOHO observations. The brightness contrasts of magnetic features relative to the quiet Sun were calculated with a non-LTE radiative transfer code as functions of disc position and wavelength. By consecutive elimination of molecular and atomic lines from the radiative transfer calculations, we assessed the role of these lines in producing solar brightness variability. Results: We show that the variations in Fraunhofer lines define the amplitude of the solar brightness variability on timescales greater than a day and even the phase of the total solar irradiance variability over the 11-year cycle. We also demonstrate that molecular lines make substantial contribution to solar brightness variability on the 11-year activity cycle and centennial timescales. In particular, our model indicates that roughly a quarter of the total solar irradiance variability over the 11-year cycle originates in molecular lines. The maximum of the absolute spectral brightness variability on timescales greater than a day is associated with the CN violet system between 380 and 390 nm.

  9. Does age at first treatment episode make a difference in outcomes over 11 years?

    PubMed

    Chi, Felicia W; Weisner, Constance; Grella, Christine E; Hser, Yih-Ing; Moore, Charles; Mertens, Jennifer

    2014-04-01

    This study examines the associations between age at first substance use treatment entry and trajectory of outcomes over 11 years. We found significant differences in individual and treatment characteristics between adult intakes first treated during young adulthood (25 years or younger) and those first treated at an older age. Compared to their first treated older age counterparts matched on demographics and dependence type, those who entered first treatment during young adulthood had on average an earlier onset for substance use but a shorter duration between first substance use and first treatment entry; they also had worse alcohol and other drug outcomes 11 years post treatment entry. While subsequent substance use treatment and 12-step meeting attendance are important for both age groups in maintaining positive outcomes, relationships varied by age group. Findings underline the importance of different continuing care management strategies for those entering first treatment at different developmental stages. PMID:24462221

  10. Long-term persistence of solar activity. [Abstract only

    NASA Technical Reports Server (NTRS)

    Ruzmaikin, Alexander; Feynman, Joan; Robinson, Paul

    1994-01-01

    The solar irradiance has been found to change by 0.1% over the recent solar cycle. A change of irradiance of about 0.5% is required to effect the Earth's climate. How frequently can a variation of this size be expected? We examine the question of the persistence of non-periodic variations in solar activity. The Huerst exponent, which characterizes the persistence of a time series (Mandelbrot and Wallis, 1969), is evaluated for the series of C-14 data for the time interval from about 6000 BC to 1950 AD (Stuiver and Pearson, 1986). We find a constant Huerst exponent, suggesting that solar activity in the frequency range of from 100 to 3000 years includes an important continuum component in addition to the well-known periodic variations. The value we calculate, H approximately equal to 0.8, is significantly larger than the value of 0.5 that would correspond to variations produced by a white-noise process. This value is in good agreement with the results for the monthly sunspot data reported elsewhere, indicating that the physics that produces the continuum is a correlated random process (Ruzmaikin et al., 1992), and that is is the same type of process over a wide range of time interval lengths. We conclude that the time period over which an irradiance change of 0.5% can be expected to occur is significantly shorter than that which would be expected for variations produced by a white-noise process.

  11. Research on Magnetic Evolution in Solar Active Regions and Related Solar Eruptions

    NASA Astrophysics Data System (ADS)

    Yan, X. L.

    2014-07-01

    Research on sunspot activity and solar eruptions is one of the key and difficult issues in solar physics. The relationship between sunspot formation and its magnetic field evolution, and solar eruptions is not well understood. Magnetic emergence, magnetic cancellation, and sunspot motion can greatly affect the upper solar atmosphere, and even produce flares, coronal mass ejections (CMEs), filament eruptions, surges, and so on. Especially, large solar eruptions toward the earth can exert a huge influence on the Sun-Earth space weather. The observations of the Sun have been developed from those at a single wavelength based on the ground station to those at multi-wavelengths based on both the ground and space stations. In particular, from the launch of rockets in 1940s---1950s to the launch of the current spacecraft, the great achievements have been made based on the multi-wavelength and high resolution observations. This thesis is dedicated to the study of the evolution of active regions and related solar eruptions, especially the exploration on the origin of solar activities by using a great many data obtained by space and ground-based telescopes. Chapter 1 introduces the basic knowledge of sunspots (formation, fine-structure, magnetic field, material flow, and periodicity), filaments (formation, theoretical models, and triggering mechanisms), flares (classification, and theoretical models), and CMEs (structures, and physical models). In chapter 2, we investigate the relationship between magnetic emergence, magnetic cancellation, flares, CMEs, and filament eruptions in active regions by using ground and space observational data. Half of filament eruptions in active regions in our examples are accompanied by CMEs. The occurrence and speed of CMEs have a close relationship with the associated flares accompanied by filament eruptions. The halo CMEs are associated with large flares (≥ M-class flares). Magnetic emergence and cancellation often appear in the active

  12. Solar activity impact on the Earth's upper atmosphere

    NASA Astrophysics Data System (ADS)

    Kutiev, Ivan; Tsagouri, Ioanna; Perrone, Loredana; Pancheva, Dora; Mukhtarov, Plamen; Mikhailov, Andrei; Lastovicka, Jan; Jakowski, Norbert; Buresova, Dalia; Blanch, Estefania; Andonov, Borislav; Altadill, David; Magdaleno, Sergio; Parisi, Mario; Miquel Torta, Joan

    2013-02-01

    The paper describes results of the studies devoted to the solar activity impact on the Earth's upper atmosphere and ionosphere, conducted within the frame of COST ES0803 Action. Aim: The aim of the paper is to represent results coming from different research groups in a unified form, aligning their specific topics into the general context of the subject. Methods: The methods used in the paper are based on data-driven analysis. Specific databases are used for spectrum analysis, empirical modeling, electron density profile reconstruction, and forecasting techniques. Results: Results are grouped in three sections: Medium- and long-term ionospheric response to the changes in solar and geomagnetic activity, storm-time ionospheric response to the solar and geomagnetic forcing, and modeling and forecasting techniques. Section 1 contains five subsections with results on 27-day response of low-latitude ionosphere to solar extreme-ultraviolet (EUV) radiation, response to the recurrent geomagnetic storms, long-term trends in the upper atmosphere, latitudinal dependence of total electron content on EUV changes, and statistical analysis of ionospheric behavior during prolonged period of solar activity. Section 2 contains a study of ionospheric variations induced by recurrent CIR-driven storm, a case-study of polar cap absorption due to an intense CME, and a statistical study of geographic distribution of so-called E-layer dominated ionosphere. Section 3 comprises empirical models for describing and forecasting TEC, the F-layer critical frequency foF2, and the height of maximum plasma density. A study evaluates the usefulness of effective sunspot number in specifying the ionosphere state. An original method is presented, which retrieves the basic thermospheric parameters from ionospheric sounding data.

  13. FLUOR HANFORD (FH) MAKES CLEANUP A REALITY IN NEARLY 11 YEARS AT HANFORD

    SciTech Connect

    GERBER, M.S.

    2007-05-24

    For nearly 11 years, Fluor Hanford has been busy cleaning up the legacy of nuclear weapons production at one of the Department of Energy's (DOE'S) major sites in the United States. As prime nuclear waste cleanup contractor at the vast Hanford Site in southeastern Washington state, Fluor Hanford has changed the face of cleanup. Fluor beginning on October 1, 1996, Hanford Site cleanup was primarily a ''paper exercise.'' The Tri-Party Agreement, officially called the Hanford Federal Facility Agreement and Consent Order - the edict governing cleanup among the DOE, U.S. Environmental Protection Agency (EPA) and Washington state - was just seven years old. Milestones mandated in the agreement up until then had required mainly waste characterization, reporting, and planning, with actual waste remediation activities off in the future. Real work, accessing waste ''in the field'' - or more literally in huge underground tanks, decaying spent fuel POO{approx}{approx}S, groundwater, hundreds of contaminated facilities, solid waste burial grounds, and liquid waste disposal sites -began in earnest under Fluor Hanford. The fruits of labors initiated, completed and/or underway by Fluor Hanford can today be seen across the site. Spent nuclear fuel is buttoned up in secure, dry containers stored away from regional water resources, reactive plutonium scraps are packaged in approved containers, transuranic (TRU) solid waste is being retrieved from burial trenches and shipped offsite for permanent disposal, contaminated facilities are being demolished, contaminated groundwater is being pumped out of aquifers at record rates, and many other inventive solutions are being applied to Hanford's most intransigent nuclear wastes. (TRU) waste contains more than 100 nanocuries per gram, and contains isotopes higher than uranium on the Periodic Table of the Elements. (A nanocurie is one-billionth of a curie.) At the same time, Fluor Hanford has dramatically improved safety records, and cost

  14. Pemphigus foliaceus in an 11-year-old mexican girl with response to oral dapsone.

    PubMed

    García-Meléndez, Martha Elena; Eichelmann, Kristian; Salas-Alanís, Julio César; Gomez-Flores, Minerva; Ocampo-Candiani, Jorge

    2013-01-01

    Pemphigus foliaceus (PF) is rarely described in the pediatric population with less than 40 cases reported in the literature. We report the case of an 11-year-old girl who was diagnosed with PF after 6 months of starting with symptoms and who responded well to therapy with oral dapsone. Although therapeutic guidelines for PF in children are lacking, oral corticosteroids in combination with dapsone have proven to be effective as first-line treatment in this setting.

  15. Pemphigus Foliaceus in an 11-Year-Old Mexican Girl with Response to Oral Dapsone

    PubMed Central

    García-Meléndez, Martha Elena; Eichelmann, Kristian; Salas-Alanís, Julio César; Gomez-Flores, Minerva; Ocampo-Candiani, Jorge

    2013-01-01

    Pemphigus foliaceus (PF) is rarely described in the pediatric population with less than 40 cases reported in the literature. We report the case of an 11-year-old girl who was diagnosed with PF after 6 months of starting with symptoms and who responded well to therapy with oral dapsone. Although therapeutic guidelines for PF in children are lacking, oral corticosteroids in combination with dapsone have proven to be effective as first-line treatment in this setting. PMID:24416609

  16. The October-November, 2003 Solar Activity and its Relationship to the "approximately 155 day" Solar Periodicity

    NASA Technical Reports Server (NTRS)

    Richardson, I. G.; Cane, H. V.

    2005-01-01

    Periodicities of - 155 days in various solar and interplanetary phenomena were first discovered during solar cycle 21 and have been shown t o be intermittently present in other solar cycles. In the current solar cycle (23), they have been reported in solar energetic particle events and interplanetary coronal maSS ejections. We assess whether the "unexpected" October - November 2003 burst of solar activity during the late declining phase of the cycle may have been a manifestation of such a periodic behavior, and hence might have been to =me extent "predictable". If the pattern were to continue, episodes of enhanced activity might be expected around April - May and October, 2004. There was a mod- est increase activity increase in mid-April, 2004 which may conform to this pattern.

  17. The October-November, 2003 Solar Activity and its Relationship to the "approx. 155 day" Solar Periodicity

    NASA Technical Reports Server (NTRS)

    Richardson, I. G.; Cane, H. V.

    2004-01-01

    Periodicities of approx. 155 days in various solar and interplanetary phenomena were first discovered during solar cycle 21 and have been shown to be intermittently present in other solar cycles. In the current solar cycle (23), they have been reported in solar energetic particle events and interplanetary coronal mass ejections. We assess whether the "unexpected" October - November 2003 burst of solar activity during the late declining phase of the cycle may have been a manifestation of such a periodic behavior, and hence might have been to some extent "predictable". If the pattern were to continue, episodes of enhanced activity might be expected around April - May and October, 2004. There was a modest increase activity increase in mid-April, 2004 which may conform to this pattern.

  18. How Large Scale Flows in the Solar Convection Zone may Influence Solar Activity

    NASA Technical Reports Server (NTRS)

    Hathaway, D. H.

    2004-01-01

    Large scale flows within the solar convection zone are the primary drivers of the Sun s magnetic activity cycle. Differential rotation can amplify the magnetic field and convert poloidal fields into toroidal fields. Poleward meridional flow near the surface can carry magnetic flux that reverses the magnetic poles and can convert toroidal fields into poloidal fields. The deeper, equatorward meridional flow can carry magnetic flux toward the equator where it can reconnect with oppositely directed fields in the other hemisphere. These axisymmetric flows are themselves driven by large scale convective motions. The effects of the Sun s rotation on convection produce velocity correlations that can maintain the differential rotation and meridional circulation. These convective motions can influence solar activity themselves by shaping the large-scale magnetic field pattern. While considerable theoretical advances have been made toward understanding these large scale flows, outstanding problems in matching theory to observations still remain.

  19. Solar Activity and its Impact on Earth's Climate

    NASA Technical Reports Server (NTRS)

    Cahalan, Robert F.

    2004-01-01

    The Sun's activity is now approaching an expected 2006 minimum, following the dramatic maximum of Solar Cycle 23, that included events such as the 2001 "Bastille Day" Coronal Mass Ejection, and the record-setting Oct-Nov 2003 solar flares, with their associated sunspots and variations in Total Solar Irradiance, or TSI. On Nov 4,2003 the largest X-ray flare ever detected (X-28) was observed in detail. We discuss recent satellite measurements of TSI by ACRIM 2 and 3 and Virgo, and new precision observations of TSI and SSI (Solar Spectral Irradiance) from the SORCE mission, that launched on January 25,2003. TSI variations recorded during the June 8,2004 transit of Venus show the unprecedented precision of the SORCE Total Irradiance Monitor (TIM) instrument, the first of its kind to employ phase-sensitive detection. The SORCE spectral instruments, XPS, Solstice, and SIM, record the Sun's changes over a wide range of wavelengths, from 1 to more than 2000 nanometers, for the first time covering the peak of the solar spectrum, including spectral components that provide energy inputs to key components of the climate system - ultraviolet (UV) into the upper atmospheric ozone layer, infrared (IR) into the lower atmosphere and clouds, and Visible into the Oceans and biosphere. Succeeding satellite missions are planned to monitor both TSI and SSI through Cycle 24. We summarize current ideas about decadal and longer solar variability, and associated potential impacts on Earth's climate on time scales from decades to centuries, especially highlighting the role of feedbacks in the climate system.

  20. Three dimensional structures of solar active regions

    NASA Technical Reports Server (NTRS)

    Kundu, M. R.

    1986-01-01

    Three dimensional structure of an active region is determined from observations with the Very Large Array (VLA) at 2, 6, and 20 cm. This region exhibits a single magnetic loop of length approx. 10 to the 10th power cm. The 2 cm radiation is mostly thermal bremsstrahlung and originates from the footpoints of the loop. The 6 and 20 cm radiation is dominated by the low harmonic gyroresonance radiation and originates from the upper portion of the legs or the top of the loop. The loop broadens toward the apex. The top of the loop is not found to be the hottest point, but two temperature maxima on either side of the loop apex are observed, which is consistent with the model proposed for long loops. From 2 and 6 cm observations it can be concluded that the electron density and temperature cannot be uniform in a plane perpendicular to the axis of the loop; the density should decrease away from the axis of the loop.

  1. Amplification of the Steady Toroidal Magnetic Field in Solar Interior and Asymmetry of Sunspot Activity in Neighbouring Cycles

    NASA Astrophysics Data System (ADS)

    Kryvodubskyj, V. N.

    2006-08-01

    This investigation deals with the problem of the asymmetry of sunspot activity maximums in neighbouring solar cycles. The Gnevyshev-Ohl rule (Gnevyshev and Ohl 1948, Astron. Zhurn. 25, 18) is a likely evidence for the radiative interior pervaded by a strong steady magnetic field. Therefore, some effects are required to ensure existence this deep-laid field for long-duration times. The way for search of excitation mechanism of strong magnetic field gives us the helioseismological experiments. We take the physical parameters of the interiors from standard solar model by Allen (1973, Astrophysical Quantities, London) for calculations. It was found that main limiting factor on the magnetic field value is the magnetic flux loss due to buoyancy in the radiative (non-turbulent) zone (RZ) which overcomes the rate of the field decay caused by ohmic dissipation. The helioseismology inversions indicate that the radial, but not latitudinal, shear in the internal rotation of the Sun penetrates rather deep, almost to the solar core (Duval et al.1984, Nature 310, 22; Brown 1985, Nature 317, 591; Libbrecht 1986, Nature 319, 753). This radial differential rotation, acting on a weak relict poloidal magnetic field, about 1 G, in the stable RZ, can excite the rather strong steady toroidal fields (10 KG - 10 MG). Obtained estimations agree with the helioseismically determined magnetic intensities in the solar interiors (Dziembowski and Goode 1989, ApJ 347, 540; Antia, Chitre and Thompson 2003, A&A 399, 329). We assume that due to magnetic buoyancy and meridional circulation at the upper boundary of the RZ the power toroidal field may penetrate, partly, into the convective zone (CZ). Here stationary steady directed field will be add to oscillating toroidal field excited by αΩ-dynamo. Since the oscillating dynamo-field changes their own direction with 11-years cycle-period, then the amplitude of total, oscillating plus steady, toroidal field in the CZ has to be a few differing in

  2. Time distribution of the precipitable water vapor in central Saudi Arabia and its relationship to solar activity

    NASA Astrophysics Data System (ADS)

    Maghrabi, A. H.; Al Dajani, H. M.

    2014-04-01

    Water vapor is the most important greenhouse gas. It plays a major role in the dynamics of atmospheric circulation, radiation exchange within the atmosphere, and climate variability. Knowledge of the distribution of water vapor is important for understanding climate change and global warming. In this study, radiosonde data from 1985 to 2012 were used to examine the monthly, interannual, and annual variations and trends of precipitable water vapor (PWV) in central Saudi Arabia in the city of Riyadh (24° 43‧N; 46° 40‧E, 764 m a.s.l.). The results revealed a clear seasonal cycle of PWV with a maximum during the summer months (June-August) and a minimum during the winter (December-February). This variation follows the mean monthly variation of air temperature. The PWV displays considerable variability at the interannual scale. We could not attribute the variations to the air temperature because no relationship was found between the two variables when the interannual variations were examined. Study of the annual variations of the PWV showed cyclic variations with a period of approximately 10-11 years. The two maximums and minimums were in 1996 and 2007 and 1989 and 2000, respectively. The results showed that the annual PWV values are anticorrelated with solar activity, represented by sunspot number, during solar cycles 22 and 23. The physical mechanism underlying this relationship remains unclear. This finding is preliminary, and future investigations are recommended.

  3. The effects of low solar activity upon the cosmic radiation and the interplanetary magnetic field over the past 10,000 years, and implications for the future. (Invited)

    NASA Astrophysics Data System (ADS)

    McCracken, K. G.; McDonald, F. B.; Beer, J.; Abreu, J.; Steinhilber, F.

    2009-12-01

    -1910; and (c) a “Grand Minimum” with one or more 11 year cycles of very low activity similar to the Dalton Minimum.

  4. Wavelet analysis of the singular spectral reconstructed time series to study the imprints of Solar-ENSO-Geomagnetic activity on Indian climate

    NASA Astrophysics Data System (ADS)

    Sri Lakshmi, S.; Tiwari, R. K.

    2015-09-01

    In order to study the imprints of solar-ENSO-geomagnetic activity on the Indian Subcontinent, we have applied the Singular Spectral Analysis (SSA) and wavelet analysis to the tree ring temperature variability record from the western Himalayas. The data used in the present study are the Solar Sunspot Number (SSN), Geomagnetic Indices (aa Index), Southern Oscillation Index (SOI) and tree ring temperature record from western Himalayas (WH), for the period of 1876-2000. The SSA and wavelet spectra reveal the presence of 5 years short term ENSO variations to 11 year solar cycle indicating the influence of both the solar-geomagnetic and ENSO imprints in the tree ring data. The presence of 33-year cycle periodicity suggests the Sun-temperature variability probably involving the induced changes in the basic state of the atmosphere. Our wavelet analysis for the SSA reconstructed time series agrees with our previous results and also enhance the amplitude of the signals by removing the noise and showing a strong influence of solar-geomagnetic and ENSO patterns throughout the record. The solar flares are considered to be responsible for cause in the circulation patterns in the atmosphere. The net effect of solar-geomagnetic processes on temperature record thus appears to be the result of counteracting influences on shorter (about 5-6 years) and longer (about 11-12 years) time scales. The present analysis thus suggests that the influence of solar processes on Indian temperature variability operates in part indirectly through ENSO, but on more than one time scale. The analyses hence provides credible evidence for teleconnections of tropical pacific climatic variability with Indian climate ranging from interannual-decadal time scales and also demonstrate the possible role of exogenic triggering in reorganizing the global earth-ocean-atmospheric systems.

  5. Online educative activities for solar ultraviolet radiation based on measurements of cloud amount and solar exposures.

    PubMed

    Parisi, A V; Downs, N; Turner, J; Amar, A

    2016-09-01

    A set of online activities for children and the community that are based on an integrated real-time solar UV and cloud measurement system are described. These activities use the functionality of the internet to provide an educative tool for school children and the public on the influence of cloud and the angle of the sun above the horizon on the global erythemal UV or sunburning UV, the diffuse erythemal UV, the global UVA (320-400nm) and the vitamin D effective UV. Additionally, the units of UV exposure and UV irradiance are investigated, along with the meaning and calculation of the UV index (UVI). This research will help ensure that children and the general public are better informed about sun safety by improving their personal understanding of the daily and the atmospheric factors that influence solar UV radiation and the solar UV exposures of the various wavebands in the natural environment. The activities may correct common misconceptions of children and the public about UV irradiances and exposure, utilising the widespread reach of the internet to increase the public's awareness of the factors influencing UV irradiances and exposures in order to provide clear information for minimizing UV exposure, while maintaining healthy, outdoor lifestyles.

  6. Study of Distribution and Asymmetry of Solar Active Prominences during Solar Cycle 23

    NASA Astrophysics Data System (ADS)

    Joshi, Navin Chandra; Bankoti, Neeraj Singh; Pande, Seema; Pande, Bimal; Pandey, Kavita

    2009-12-01

    In this article we present the results of a study of the spatial distribution and asymmetry of solar active prominences (SAP) for the period 1996 through 2007 (solar cycle 23). For more meaningful statistical analysis we analyzed the distribution and asymmetry of SAP in two subdivisions viz. Group1 (ADF, APR, DSF, CRN, CAP) and Group2 (AFS, ASR, BSD, BSL, DSD, SPY, LPS). The North - South (N - S) latitudinal distribution shows that the SAP events are most prolific in the 21° to 30° slice in the Northern and Southern Hemispheres; the East - West (E - W) longitudinal distribution study shows that the SAP events are most prolific (best observable) in the 81° to 90° slice in the Eastern and Western Hemispheres. It was found that the SAP activity during this cycle is low compared to previous solar cycles. The present study indicates that during the rising phase of the cycle the number of SAP events are roughly equal in the Northern and Southern Hemispheres. However, activity in the Southern Hemisphere has been dominant since 1999. Our statistical study shows that the N - S asymmetry is more significant then the E - W asymmetry.

  7. Online educative activities for solar ultraviolet radiation based on measurements of cloud amount and solar exposures.

    PubMed

    Parisi, A V; Downs, N; Turner, J; Amar, A

    2016-09-01

    A set of online activities for children and the community that are based on an integrated real-time solar UV and cloud measurement system are described. These activities use the functionality of the internet to provide an educative tool for school children and the public on the influence of cloud and the angle of the sun above the horizon on the global erythemal UV or sunburning UV, the diffuse erythemal UV, the global UVA (320-400nm) and the vitamin D effective UV. Additionally, the units of UV exposure and UV irradiance are investigated, along with the meaning and calculation of the UV index (UVI). This research will help ensure that children and the general public are better informed about sun safety by improving their personal understanding of the daily and the atmospheric factors that influence solar UV radiation and the solar UV exposures of the various wavebands in the natural environment. The activities may correct common misconceptions of children and the public about UV irradiances and exposure, utilising the widespread reach of the internet to increase the public's awareness of the factors influencing UV irradiances and exposures in order to provide clear information for minimizing UV exposure, while maintaining healthy, outdoor lifestyles. PMID:27450297

  8. Prediction of Solar Activity Based on Neuro-Fuzzy Modeling

    NASA Astrophysics Data System (ADS)

    Attia, Abdel-Fattah; Abdel-Hamid, Rabab; Quassim, Maha

    2005-03-01

    This paper presents an application of the neuro-fuzzy modeling to analyze the time series of solar activity, as measured through the relative Wolf number. The neuro-fuzzy structure is optimized based on the linear adapted genetic algorithm with controlling population size (LAGA-POP). Initially, the dimension of the time series characteristic attractor is obtained based on the smallest regularity criterion (RC) and the neuro-fuzzy model. Then the performance of the proposed approach, in forecasting yearly sunspot numbers, is favorably compared to that of other published methods. Finally, a comparison predictions for the remaining part of the 22nd and the whole 23rd cycle of the solar activity are presented.

  9. GRAND MINIMA AND NORTH-SOUTH ASYMMETRY OF SOLAR ACTIVITY

    SciTech Connect

    Olemskoy, S. V.; Kitchatinov, L. L.

    2013-11-01

    A solar-type dynamo model in a spherical shell is developed with allowance for random dependence of the poloidal field generation mechanism on time and latitude. The model shows repeatable epochs of a strongly decreased amplitude of magnetic cycles similar to the Maunder minimum of solar activity. Random dependence of dynamo parameters on latitude breaks the equatorial symmetry of generated fields. The model shows the correlation of the occurrence of grand minima with deviations in the dynamo field from dipolar parity. An increased north-south asymmetry of magnetic activity can, therefore, be an indicator of transitions to grand minima. Qualitative interpretation of this correlation is suggested. Statistics of grand minima in the model are close to the Poisson random process, indicating that the onset of a grand minimum is statistically independent of preceding minima.

  10. Solar Activity-driven Variability of Instrumental Data Quality

    NASA Astrophysics Data System (ADS)

    Martayan, C.; Smette, A.; Hanuschik, R.; van Der Heyden, P.; Mieske, S.

    2016-06-01

    The unexplained variability of the data quality from Very Large Telescope instruments and the frequency of power cuts have been investigated. Origins for the variability in ambient temperature variations, software, data reduction pipelines and internal to hardware could be discarded. The most probable cause appears to be correlated with the evolution of the cosmic ray rate, and also with solar and terrestrial geomagnetic activity. We report on the consequences of such variability and describe how the observatory infrastructure, instruments and data are affected.

  11. Magnetic observations during the recent declining phase of solar activity

    NASA Astrophysics Data System (ADS)

    Smith, E. J.

    Changes in the heliospheric magnetic field during the recent declining phase in solar activity are reviewed and compared with observations during past sunspot cycles. The study is based principally on data obtained by IMP-8 and Ulysses. The field magnitude is found to have increased during the declining phase until it reached a maximum value of 11.5nT in approximately 1991.5, approximately two years after sunspot maximum. The field of the sun's south pole became negative after a reversal in early 1990. The sector structure disappeared at Ulysses in April 1993 when the latitude of the spacecraft was -30 deg revealing a low inclination of the heliospheric current sheet. A large outburst of solar activity in March 1991 caused four Coronal Mass Ejections (CMEs) and numerious shocks at the location of Ulysses. Following a delay of more than a year, a series of recurrent high speed streams and Corotating Interaction Regions commenced in July 1992 which were observed by IMP-8, Ulysses and Voyager 2. In all these respects, the behavior of the magnetic field mimics that seen in the two earlier sunspot cycles. The comprehensive data set suggests a correlation between the absolute value of B and sunspot number. The major solar cycle variations in the radial component (and magnitude) of the field have been successfully reproduced by a recent model consisting of a tilted solar dipole, whose strength and tilt undergo characteristic changes over the sunspot cycle, and the heliospheric current sheet. The large outbursts of activity in mid-1972, mid-1982 and the first quarter of 1991 may represent a characteristic last 'gasp' of solar activity before the sun evolves to a different state. The recurrent high speed streams in 1973, 1984 and 1992 accompany the developemnt of large asymetrical polar coronal holes and the growth in intensity of the polar cap fields. After they endure for about one year, the polar coronal holes recede and the high speed streams are replaced by weaker

  12. Dependence of the amplitude of Pc5-band magnetic field variations on the solar wind and solar activity

    NASA Astrophysics Data System (ADS)

    Takahashi, Kazue; Yumoto, Kiyohumi; Claudepierre, Seth G.; Sanchez, Ennio R.; Troshichev, Oleg A.; Janzhura, Alexander S.

    2012-04-01

    We have studied the dependence of the amplitude of magnetic field variations in the Pc5 band (1.6-6.7 mHz) on the solar wind and solar activity. Solar wind parameters considered are the bulk velocity Vsw and the variation of the solar wind dynamic pressure δPsw. The solar activity dependence is examined by contrasting observations made in 2001 (solar activity maximum) and 2006 (solar activity declining phase). We calculated hourly Pc5 amplitude using data from geostationary satellites at L = 6.8 and ground stations covering 1 < L < 9. The amplitude is positively correlated with both Vsw and δPsw, but the degree of correlation varies with L and magnetic local time. As measured by the correlation coefficient, the amplitude dependence on both Vsw and δPsw is stronger on the dayside than on the nightside, and the dependence on Vsw (δPsw) tends to be stronger at higher (lower) L, with the relative importance of the two solar wind parameters switching at L ˜ 5. We attribute the Vsw control to the Kelvin-Helmholtz instability on the magnetopause, occurring both at high and low latitudes, and the δPsw control to buffeting of the magnetosphere by variation of solar wind dynamic pressure. The GOES amplitude is higher at the solar maximum at all local times and the same feature is seen on the ground in the dawn sector at L > 6. A radial shift of the fast mode wave turning point, associated with the solar cycle variation of magnetosphere mass density, is a possible cause of this solar activity dependence.

  13. Grand minima and maxima of solar activity: new observational constraints

    NASA Astrophysics Data System (ADS)

    Usoskin, I. G.; Solanki, S. K.; Kovaltsov, G. A.

    2007-08-01

    Aims:Using a reconstruction of sunspot numbers stretching over multiple millennia, we analyze the statistics of the occurrence of grand minima and maxima and set new observational constraints on long-term solar and stellar dynamo models. Methods: We present an updated reconstruction of sunspot number over multiple millennia, from 14C data by means of a physics-based model, using an updated model of the evolution of the solar open magnetic flux. A list of grand minima and maxima of solar activity is presented for the Holocene (since 9500 BC) and the statistics of both the length of individual events as well as the waiting time between them are analyzed. Results: The occurrence of grand minima/maxima is driven not by long-term cyclic variability, but by a stochastic/chaotic process. The waiting time distribution of the occurrence of grand minima/maxima deviates from an exponential distribution, implying that these events tend to cluster together with long event-free periods between the clusters. Two different types of grand minima are observed: short (30-90 years) minima of Maunder type and long (>110 years) minima of Spörer type, implying that a deterministic behaviour of the dynamo during a grand minimum defines its length. The duration of grand maxima follows an exponential distribution, suggesting that the duration of a grand maximum is determined by a random process. Conclusions: These results set new observational constraints upon the long-term behaviour of the solar dynamo.

  14. SOLAR ROTATION RATE DURING THE CYCLE 24 MINIMUM IN ACTIVITY

    SciTech Connect

    Antia, H. M.; Basu, Sarbani E-mail: sarbani.basu@yale.ed

    2010-09-01

    The minimum of solar cycle 24 is significantly different from most other minima in terms of its duration as well as its abnormally low levels of activity. Using available helioseismic data that cover epochs from the minimum of cycle 23 to now, we study the differences in the nature of the solar rotation between the minima of cycles 23 and 24. We find that there are significant differences between the rotation rates during the two minima. There are differences in the zonal-flow pattern too. We find that the band of fast rotating region close to the equator bifurcated around 2005 and recombined by 2008. This behavior is different from that during the cycle 23 minimum. By autocorrelating the zonal-flow pattern with a time shift, we find that in terms of solar dynamics, solar cycle 23 lasted for a period of 11.7 years, consistent with the result of Howe et al. (2009). The autocorrelation coefficient also confirms that the zonal-flow pattern penetrates through the convection zone.

  15. Dayside Auroral Activity During Solar Maximum and Minimum Periods

    NASA Astrophysics Data System (ADS)

    Rawie, M.; Fasel, G. J.; Flicker, J.; Angelo, A.; Bender, S.; Alyami, M.; Sibeck, D. G.; Sigernes, F.; Lorentzen, D. A.; Green, D.

    2014-12-01

    It is well documented that the dayside auroral oval shifts equatorward when the interplanetary magnetic field (IMF) Bz-component turns southward [Burch, 1973; Akasofu, 1977; Horwitz and Akasofu, 1977; Sandholt et al., 1986, 1988]. During these periods of oval expansion dayside transients are observed to move away from the poleward edge of the auroral oval and drift poleward. These poleward-moving auroral forms are believed to be ionospheric signatures of dayside merging. The dayside auroral oval usually begins to contract when the interplanetary magnetic field turns sharply northward, Bz>0. Eighteen years of meridian scanning photometer (MSP) data from the Kjell Henriksen Observatory in Longyearbyen, Norway are analyzed. During the boreal winter the Sun is several degrees below the horizon. This permits optical observations throughout the daytime period. The MSP Data is selected two hours before and after local noon in Longyearbeyn. Solar wind data (solar wind pressure and speed, along with the IMF Bx, By, Bz components) are collected for each interval and combined with the MSP observations. This data is then separated using solar maximum and minimum periods. Auroral activity (oval expansions and contractions along with the frequency and number of poleward-moving auroral forms) is documented for both solar maximum and minimum periods.

  16. Forecasting the Peak of the Present Solar Activity Cycle

    NASA Astrophysics Data System (ADS)

    Hamid, Rabab; Marzouk, Beshir

    2016-07-01

    Solar forecasting of the level of sun Activity is very important subject for all space programs. Most predictions are based on the physical conditions prevailing at or before the solar cycle minimum preceding the maximum in question. Our aim is to predict the maximum peak of cycle 24 using precursor techniques in particular those using spotless event, geomagnetic aa min. index and solar flux F10.7. Also prediction of exact date of the maximum (Tr) is taken in consideration. A study of variation over previous spotless event for cycles 7-23 and that for even cycles (8-22) are carried out for the prediction. Linear correlation between RM and spotless event around the preceding minimum gives RM24t = 101.9with rise time Tr = 4.5 Y. For the even cycles RM24e = 108.3 with rise time Tr = 3.9 Y. Based on the average aa min. index for the year of sunspot minimum cycles (13 - 23), we estimate the expected amplitude for cycle 24 to be RMaa = 116.5 for both the total and even cycles. Application of the data of solar flux F10.7 which cover only cycles (19-23) was taken in consideration and gives predicted maximum amplitude R24 10.7 = 146, which are over estimation. Our result indicating a somewhat weaker cycle 24 as compared to cycles 21-23.

  17. How Large Scales Flows May Influence Solar Activity

    NASA Technical Reports Server (NTRS)

    Hathaway, D. H.

    2004-01-01

    Large scale flows within the solar convection zone are the primary drivers of the Sun's magnetic activity cycle and play important roles in shaping the Sun's magnetic field. Differential rotation amplifies the magnetic field through its shearing action and converts poloidal field into toroidal field. Poleward meridional flow near the surface carries magnetic flux that reverses the magnetic poles at about the time of solar maximum. The deeper, equatorward meridional flow can carry magnetic flux back toward the lower latitudes where it erupts through the surface to form tilted active regions that convert toroidal fields into oppositely directed poloidal fields. These axisymmetric flows are themselves driven by large scale convective motions. The effects of the Sun's rotation on convection produce velocity correlations that can maintain both the differential rotation and the meridional circulation. These convective motions can also influence solar activity directly by shaping the magnetic field pattern. While considerable theoretical advances have been made toward understanding these large scale flows, outstanding problems in matching theory to observations still remain.

  18. Active other worlds in the Solar System and beyond

    NASA Astrophysics Data System (ADS)

    Forget, François

    2016-04-01

    Over the past decades, space exploration has moved planetology from the field of astronomy to the disciplines of geosciences. A fleet of spacecrafts have discovered and study tens of worlds in our solar system and beyond. Everywhere, we have been surprised by the diversity and the vigour of the geophysical activity, from volcanic eruptions to plasma waves... Every scientists present at EGU could -and should- be interested in the extraterrestrial processes that are discovered and analyzed elsewhere. In our solar system, a variety of clouds and fluid dynamical phenomena can be studied in six terrestrial atmospheres and on four giant planets. Active glaciers are found on Mars and Pluto. Rivers and lakes have sculpted the surface of Titan and Mars. Sometime, we can even study geophysical activity with no equivalent on our planet: ice caps made of frozen atmosphere that erupt in geysers, hazes formed by organic polymers which can completely shroud a moon, etc. We study these active worlds because we are curious and wish to understand our universe and our origins. However, more than ever, two specific motivations drive solar system geosciences in 2016: Firstly, as we become more and more familiar with the other worlds around us, we can use them to better understand our own planet. Throughout the solar system, we can access to data that are simply not available on the Earth, or study active processes that are subtle on Earth but of greater importance elsewhere, so that we can better understand them. Many geophysical concepts and tools developed for the Earth can also be tested on other planets. For instance the numerical Climate Models used to assess Earth's future climate change are applied to other planets. Much is learned from such experiments. Secondly, the time has come to generalize the fundamental lessons that we have learned from the examples in the solar system (including the Earth) to address the countless scientific questions that are -and will be- raised by

  19. Prediction of Solar Activity from Solar Background Magnetic Field Variations in Cycles 21-23

    NASA Astrophysics Data System (ADS)

    Shepherd, Simon J.; Zharkov, Sergei I.; Zharkova, Valentina V.

    2014-11-01

    A comprehensive spectral analysis of both the solar background magnetic field (SBMF) in cycles 21-23 and the sunspot magnetic field in cycle 23 reported in our recent paper showed the presence of two principal components (PCs) of SBMF having opposite polarity, e.g., originating in the northern and southern hemispheres, respectively. Over a duration of one solar cycle, both waves are found to travel with an increasing phase shift toward the northern hemisphere in odd cycles 21 and 23 and to the southern hemisphere in even cycle 22. These waves were linked to solar dynamo waves assumed to form in different layers of the solar interior. In this paper, for the first time, the PCs of SBMF in cycles 21-23 are analyzed with the symbolic regression technique using Hamiltonian principles, allowing us to uncover the underlying mathematical laws governing these complex waves in the SBMF presented by PCs and to extrapolate these PCs to cycles 24-26. The PCs predicted for cycle 24 very closely fit (with an accuracy better than 98%) the PCs derived from the SBMF observations in this cycle. This approach also predicts a strong reduction of the SBMF in cycles 25 and 26 and, thus, a reduction of the resulting solar activity. This decrease is accompanied by an increasing phase shift between the two predicted PCs (magnetic waves) in cycle 25 leading to their full separation into the opposite hemispheres in cycle 26. The variations of the modulus summary of the two PCs in SBMF reveals a remarkable resemblance to the average number of sunspots in cycles 21-24 and to predictions of reduced sunspot numbers compared to cycle 24: 80% in cycle 25 and 40% in cycle 26.

  20. Prediction of solar activity from solar background magnetic field variations in cycles 21-23

    SciTech Connect

    Shepherd, Simon J.; Zharkov, Sergei I.; Zharkova, Valentina V. E-mail: s.zharkov@hull.ac.uk

    2014-11-01

    A comprehensive spectral analysis of both the solar background magnetic field (SBMF) in cycles 21-23 and the sunspot magnetic field in cycle 23 reported in our recent paper showed the presence of two principal components (PCs) of SBMF having opposite polarity, e.g., originating in the northern and southern hemispheres, respectively. Over a duration of one solar cycle, both waves are found to travel with an increasing phase shift toward the northern hemisphere in odd cycles 21 and 23 and to the southern hemisphere in even cycle 22. These waves were linked to solar dynamo waves assumed to form in different layers of the solar interior. In this paper, for the first time, the PCs of SBMF in cycles 21-23 are analyzed with the symbolic regression technique using Hamiltonian principles, allowing us to uncover the underlying mathematical laws governing these complex waves in the SBMF presented by PCs and to extrapolate these PCs to cycles 24-26. The PCs predicted for cycle 24 very closely fit (with an accuracy better than 98%) the PCs derived from the SBMF observations in this cycle. This approach also predicts a strong reduction of the SBMF in cycles 25 and 26 and, thus, a reduction of the resulting solar activity. This decrease is accompanied by an increasing phase shift between the two predicted PCs (magnetic waves) in cycle 25 leading to their full separation into the opposite hemispheres in cycle 26. The variations of the modulus summary of the two PCs in SBMF reveals a remarkable resemblance to the average number of sunspots in cycles 21-24 and to predictions of reduced sunspot numbers compared to cycle 24: 80% in cycle 25 and 40% in cycle 26.

  1. [Solar activity, dynamics of the ozone layer and possible role of ultraviolet radiation in heliobiology].

    PubMed

    Vladimirskiĭ, B M

    1982-01-01

    Solar activity influences the ozonosphere thickness, thus changing the intensity of the near-Earth ultraviolet radiation in the B band. In certain regions the radiation may change by 10--15%, with solar activity varying from its maximum to minimum. The variations in the ultraviolet intensity are very likely to be environmentally important. Thus, solar ultraviolet radiation at lambda = 290 -- 340 nm acts as one more physical agent transferring the effect of solar activity into the biosphere.

  2. Position of the Academy of Nutrition and Dietetics: nutrition guidance for healthy children ages 2 to 11 years.

    PubMed

    Ogata, Beth N; Hayes, Dayle

    2014-08-01

    It is the position of the Academy of Nutrition and Dietetics that children ages 2 to 11 years should achieve optimal physical and cognitive development, maintain healthy weights, enjoy food, and reduce the risk of chronic disease through appropriate eating habits and participation in regular physical activity. Rapid increases in the prevalence of childhood obesity during the 1980s and 1990s focused attention on young children's overconsumption of energy-dense, nutrient-poor foods and beverages and lack of physical activity. While recent data suggest a stabilization of obesity rates, several public health concerns remain. These include the most effective ways to promote healthy weights, the number of children living in food insecurity, the under-consumption of key nutrients, and the early development of diet-related risks for chronic diseases, such as cardiovascular disease, type 2 diabetes, cancer, obesity, and osteoporosis. This Position Paper reviews what children 2 to 11 years old in the United States are reportedly eating, explores trends in food and nutrient intakes, and examines the impact of federal nutrition programs on child nutrition. Current dietary recommendations and guidelines for physical activity are also discussed. The roles of parents and caregivers in influencing the development of life-long healthy eating behaviors are highlighted. The Academy of Nutrition and Dietetics works with other allied health and food industry professionals to translate dietary recommendations and guidelines into positive, practical health messages. Specific recommendations and sources of science-based nutrition messages to improve the nutritional well-being of children are provided for food and nutrition practitioners. PMID:25060139

  3. Position of the Academy of Nutrition and Dietetics: nutrition guidance for healthy children ages 2 to 11 years.

    PubMed

    Ogata, Beth N; Hayes, Dayle

    2014-08-01

    It is the position of the Academy of Nutrition and Dietetics that children ages 2 to 11 years should achieve optimal physical and cognitive development, maintain healthy weights, enjoy food, and reduce the risk of chronic disease through appropriate eating habits and participation in regular physical activity. Rapid increases in the prevalence of childhood obesity during the 1980s and 1990s focused attention on young children's overconsumption of energy-dense, nutrient-poor foods and beverages and lack of physical activity. While recent data suggest a stabilization of obesity rates, several public health concerns remain. These include the most effective ways to promote healthy weights, the number of children living in food insecurity, the under-consumption of key nutrients, and the early development of diet-related risks for chronic diseases, such as cardiovascular disease, type 2 diabetes, cancer, obesity, and osteoporosis. This Position Paper reviews what children 2 to 11 years old in the United States are reportedly eating, explores trends in food and nutrient intakes, and examines the impact of federal nutrition programs on child nutrition. Current dietary recommendations and guidelines for physical activity are also discussed. The roles of parents and caregivers in influencing the development of life-long healthy eating behaviors are highlighted. The Academy of Nutrition and Dietetics works with other allied health and food industry professionals to translate dietary recommendations and guidelines into positive, practical health messages. Specific recommendations and sources of science-based nutrition messages to improve the nutritional well-being of children are provided for food and nutrition practitioners.

  4. Free Magnetic Energy and Helicity in Active and Quiet Solar Regions and their role in Solar

    NASA Astrophysics Data System (ADS)

    Tziotziou, K.; Georgoulis, M. K.; Tsiropoula, G.; Moraitis, K.; Kontogiannis, I.

    2013-09-01

    We present a novel nonlinear force-free method designed to calculate the instantaneous free magnetic energy and relative magnetic helicity budgets of a solar region from a single photospheric/chromospheric vector magnetogram of the region. Our objective is to study the role of these quantities in solar eruptions and quiet-Sun dynamics. We apply the method to (1) derive the energy/helicity diagram of solar active regions from a sample of 162 vector magnetograms corresponding to 42 different active regions (ARs), suggesting that there exist 4 1031 erg and 2 1042 Mx2 thresholds in free energy and relative helicity, respectively, for ARs to enter eruptive territory, (2) study the dynamics of eruptive NOAA AR 11158 using a high-cadence 5-day time series of vector magnetograms, suggesting the formation of increasingly helical pre-eruption structures and a causal relation between flares and Coronal Mass Ejections (CMEs) and, (3) derive helicity and energy budgets in quiet Sun regions and construct the respective energy/helicity diagram. Our results highlight the importance of these two parameters in AR evolution and quiet-Sun dynamics and instigate further research including detailed analysis with synthetic, magnetohydrodynamical models. This work is supported by EU's Seventh Framework Programme via a Marie Curie Fellowship and by the Hellenic National Space Weather Research Network (HNSWRN) via the THALIS Programme.

  5. Simultaneous Solar Maximum Mission (SMM) and Very Large Array (VLA) observations of solar active regions

    NASA Technical Reports Server (NTRS)

    Willson, Robert F.

    1991-01-01

    Very Large Array observations at 20 cm wavelength can detect the hot coronal plasma previously observed at soft x ray wavelengths. Thermal cyclotron line emission was detected at the apex of coronal loops where the magnetic field strength is relatively constant. Detailed comparison of simultaneous Solar Maximum Mission (SMM) Satellite and VLA data indicate that physical parameters such as electron temperature, electron density, and magnetic field strength can be obtained, but that some coronal loops remain invisible in either spectral domain. The unprecedent spatial resolution of the VLA at 20 cm wavelength showed that the precursor, impulsive, and post-flare components of solar bursts originate in nearby, but separate loops or systems of loops.. In some cases preburst heating and magnetic changes are observed from loops tens of minutes prior to the impulsive phase. Comparisons with soft x ray images and spectra and with hard x ray data specify the magnetic field strength and emission mechanism of flaring coronal loops. At the longer 91 cm wavelength, the VLA detected extensive emission interpreted as a hot 10(exp 5) K interface between cool, dense H alpha filaments and the surrounding hotter, rarefield corona. Observations at 91 cm also provide evidence for time-correlated bursts in active regions on opposite sides of the solar equator; they are attributed to flare triggering by relativistic particles that move along large-scale, otherwise-invisible, magnetic conduits that link active regions in opposite hemispheres of the Sun.

  6. The dependence of solar energetic particle fluxes in the Earth-Mars-Earth route on solar activity period.

    PubMed

    Kuznetsov, N V; Nymmik, R A

    2002-01-01

    This report presents the results of analyzing the relative importance of particle fluxes of different origin in the Earth-Mars-Earth route during different solar activity periods. The analysis has been made in terms of the galactic cosmic ray and solar energetic particle flux models developed at Moscow State University. The results demonstrate the extreme importance of the high-energy solar particle fluxes in interplanetary space even during the years of "quiet" Sun.

  7. Solar-terrestrial effect controls seismic activity to a large extent (Invited)

    NASA Astrophysics Data System (ADS)

    Duma, G.

    2010-12-01

    Several observational results and corresponding publications in the 20 century indicate that earthquakes in many regions happen systematically in dependence on the time of day and on the season as well. In the recent decade, studies on this topic have also been intensively performed at the Central Institute for Meteorology and Geodynamics (ZAMG), Vienna. Any natural effect on Earth which systematically appears at certain hours of the day or at a special season can solely be caused by a solar or lunar influence. And actually, statistic results on seismic activity reveal a correlation with the solar cycles. Examples of this seismic performance are shown. To gain more clarity about these effects, the three-hour magnetic index Kp, which characterizes the magnetic field disturbances, mainly caused by the solar particle radiation, the solar wind, was correlated with the seismic energy released by earthquakes over decades. Kp is determined from magnetic records of 13 observatories worldwide and continuously published by ISGI, France. It is demonstrated that a highly significant correlation between the geomagnetic index Kp and the annual seismic energy release in regions at latitudes between 35 and 60° N exists. Three regions of continental size were investigated, using the USGS (PDE) earthquake catalogue data. In the period 1974-2009 the Kp cycle periods range between 9 and 12 years, somewhat different to the sunspot number cycles of 11 years. Seismicity follows the Kp cycles with high coincidence. A detailed analysis of this correlation for N-America reveals, that the sum of released energy by earthquakes per year changes by a factor up to 100 with Kp. It is shown that during years of high Kp there happen e.g. 1 event M7, 4 events M6 and 30 events M5 per year, instead of only 10 events M5 in years with lowest Kp. Almost the same relation appears in other regions of continental size, with the same significance. The seismicity in S-America clearly follows the Kp cycles

  8. The dynamic evolution of active-region-scale magnetic flux tubes in the turbulent solar convective envelope

    NASA Astrophysics Data System (ADS)

    Weber, Maria Ann

    2014-12-01

    The Sun exhibits cyclic properties of its large-scale magnetic field on the order of sigma22 years, with a ˜11 year frequency of sunspot occurrence. These sunspots, or active regions, are the centers of magnetically driven phenomena such as flares and coronal mass ejections. Volatile solar magnetic events directed toward the Earth pose a threat to human activities and our increasingly technological society. As such, the origin and nature of solar magnetic flux emergence is a topic of global concern. Sunspots are observable manifestations of solar magnetic fields, thus providing a photospheric link to the deep-seated dynamo mechanism. However, the manner by which bundles of magnetic field, or flux tubes, traverse the convection zone to eventual emergence at the solar surface is not well understood. To provide a connection between dynamo-generated magnetic fields and sunspots, I have performed simulations of magnetic flux emergence through the bulk of a turbulent, solar convective envelope by employing a thin flux tube model subject to interaction with flows taken from a hydrodynamic convection simulation computed through the Anelastic Spherical Harmonic (ASH) code. The convective velocity field interacts with the flux tube through the drag force it experiences as it traverses through the convecting medium. Through performing these simulations, much insight has been gained about the influence of turbulent solar-like convection on the flux emergence process and resulting active region properties. I find that the dynamic evolution of flux tubes change from convection dominated to magnetic buoyancy dominated as the initial field strength of the flux tubes increases from 15 kG to 100 kG. Additionally, active-region-scale flux tubes of 40 kG and greater exhibit properties similar to those of active regions on the Sun, such as: tilt angles, rotation rates, and morphological asymmetries. The joint effect of the Coriolis force and helical motions present in convective

  9. The solar radio emission during the minimum between the 23-24 cycles of solar activity

    NASA Astrophysics Data System (ADS)

    Mendoza-Torres, J. E.; Palacios-Fonseca, J. S.

    2016-11-01

    We analyze the total intensity (I) and circularly-polarized (V) RATAN-600 radio scans obtained at the 3.3-17.0 GHz range during the 23-24 minimum of solar activity. It is found that, in the 3.37-6.8 GHz range, the circular polarization varies linearly with the EW position. The slope is measured at different frequencies and different times. The value of the slope for a given frequency varies with time indicating a dependence with P and B solar angles. It is not clear what could be the reason of such behavior. A possible interpretation of this dependence could be made in terms of the variation of the magnetic field component along the line of sight, which plays an important role in the polarized flux observed in the case of Bremsstrahlung emission.

  10. A statistic study of ionospheric solar flare activity indicator

    NASA Astrophysics Data System (ADS)

    Xiong, Bo; Ding, Feng; Ning, Baiqi; Wan, Weixing; Yu, You; Hu, Lianhuan

    According to the Chapman ionization theory, an ionospheric solar flare activity indicator (ISFAI) is given by the solar zenith angle and the variation rate of ionospheric vertical total electron content, which is measured from a global network of dual-frequency GPS receivers. The ISFAI is utilized to statistically analyze the ionospheric responses to 1439 M-class and 126 X-class solar flares during solar cycle 23 (1996-2008). The statistical results show that the occurrence of ISFAI peak increases obviously at 3.2 total electron content unit (TECU)/h (1 TECU = 1016 elm-2) and reaches the maximum at 10 TECU/h during M-class flares and 10 TECU/h and 40 TECU/h for X-class flares. ISFAI is closely correlated with the 26-34 nm extreme ultraviolet flux but poorly related to the 0.1-0.8 nm X-ray flux. The central meridian distance (CMD) of flare location is an important reason for depressing relationship between ISFAI and X-ray Flux. Through the CMD effect modification, the ISFAI has a significant dependence on the X-ray flux with a correlation coefficient of 0.76. The ISFAI sensitivity enables to detect the extreme X-class flares, as well as the variations of one order of magnitude or even smaller (such as for C-class flares). Meanwhile, ISFAI is helpful to the calibration of the X-ray flux at 0.1-0.8 nm observed by GOES during some flares. In addition, statistical results demonstrate that ISFAI can detect 80% of all M-class flares and 92% for all X-class ones during 1996-2008. Owing to the high sensitivity and temporal resolution, ISFAI can be utilized as a solar flare detection parameter to monitor space weather.

  11. NASDA activities in space solar power system research, development and applications

    NASA Technical Reports Server (NTRS)

    Matsuda, Sumio; Yamamoto, Yasunari; Uesugi, Masato

    1993-01-01

    NASDA activities in solar cell research, development, and applications are described. First, current technologies for space solar cells such as Si, GaAs, and InP are reviewed. Second, future space solar cell technologies intended to be used on satellites of 21st century are discussed. Next, the flight data of solar cell monitor on ETS-V is shown. Finally, establishing the universal space solar cell calibration system is proposed.

  12. An international comparison of dietary patterns in 9–11-year-old children

    PubMed Central

    Mikkilä, V; Vepsäläinen, H; Saloheimo, T; Gonzalez, S A; Meisel, J D; Hu, G; Champagne, C M; Chaput, J-P; Church, T S; Katzmarzyk, P T; Kuriyan, R; Kurpad, A; Lambert, E V; Maher, C; Maia, J; Matsudo, V; Olds, T; Onywera, V; Sarmiento, O L; Standage, M; Tremblay, M S; Tudor-Locke, C; Zhao, P; Fogelholm, M

    2015-01-01

    OBJECTIVES: Dietary pattern is defined as a combination of foods and drinks and the frequency of consumption within a population. Dietary patterns are changing on a global level, which may be linked to an increased incidence of chronic diseases. The aim of this study was to identify and compare the dietary patterns among 9–11-year-old children living in urban regions in different parts of the world. METHODS: Participants were 7199 children (54% girls), aged 9–11 years, from 12 countries situated in all major world regions. Food consumption was assessed using a 23-item Food Frequency Questionnaire (FFQ). To identify dietary patterns, principal components analyses (PCA) were carried out using weekly portions as input variables. RESULTS: Both site-specific and pooled PCA resulted in two strong components. Component 1 (‘unhealthy diet pattern') included fast foods, ice cream, fried food, French fries, potato chips, cakes and sugar-sweetened sodas with >0.6 loadings. The loadings for component 2 (‘healthy diet pattern') were slightly weaker with only dark-green vegetables, orange vegetables, vegetables in general, and fruits and berries reaching a >0.6 loading. The site-specific diet pattern scores had very strong correlations with the pattern scores from the pooled data: r=0.82 and 0.94 for components 1 and 2, respectively. CONCULSIONS: The results suggest that the same ‘healthier' and ‘unhealthier' foods tend to be consumed in similar combinations among 9–11-year-old children in different countries, despite variation in food culture, geographical location, ethnic background and economic development. PMID:27152179

  13. Dexa Body Composition Assessment in 10-11 Year Healthy Children

    PubMed Central

    Doodeman, H. J.; Struijf, E.; Houdijk, A. P. J.

    2016-01-01

    Introduction Obesity is a growing health problem associated with metabolic derangements and cardiovascular disease. Accumulating evidence links the accumulation of visceral adipose tissue (VAT) to these obesity related health risks in adults. Childhood obesity is associated with a lifetime risk of cardiovascular disease and poses a serious challenge to future health care. In children, there is much less data on the prevalence and gender differences of visceral obesity than in adults. This study aims to provide reference values for VAT in children 10–11 years of age. Methods In a cross-sectional study performed in the north western part of theNetherlands, healthy children of 10–11 years of age, were recruited from primary schools. Anthropometric data consisting of height, weight, waist circumference (WC) and BMI were measured. Body composition was measured using DXA, providing measures for bone mineral content, total fat mass (TFM), lean body mass (LBM) and VAT. Results 217 children were eligible for this study. Girls appeared to have a greater TFM (31.4% vs 27.5% of total body weight (TBW); P < .01) but lower VAT (0.3% vs 0.5% of TBW;P < .01) than boys, whereas boys had higher LBM (65.4% vs 69.3% TBW;P < .01). Median VAT area (cm2) was 41.1 for boys and 22.4 for girls (P < .01). Moderate to strong correlations were found for WC and BMI with VAT (boys: r = .664 and r = .630; Girls r = .699 and r = .546 respectively all P < .001). Discussion This study shows gender specific differences in VAT percentiles in healthy non-obese 10–11 year old children as measured by DXA that may serve as reference values in children. Independent of BMI and WC, girls tend to have more TFM but less VAT and LBM than boys. PMID:27788168

  14. Solar cycle effects of spectrally varying solar irradiance in a coupled chemistry--climate model

    NASA Astrophysics Data System (ADS)

    Swartz, W. H.; Stolarski, R. S.; Oman, L.; Fleming, E. L.; Jackman, C. H.

    2010-12-01

    Variation of the solar spectral irradiance (SSI) with solar cycle impacts the composition and temperature of the atmosphere. Stratosphere ozone and temperature, for example, respond through both direct solar heating and photolysis. We have implemented an 11-year solar cycle in the Goddard Earth Observing System Chemistry--Climate Model (GEOS CCM). One of the SSI datasets used is a multi-decadal historical reconstruction based on contemporary observations of solar irradiance and historical proxies for solar activity. We examine the atmospheric response to SSI variations through direct solar heating and photolysis individually and also when coupled in the model. Ozone response is dominated by photolysis, whereas both direct heating and photolysis affect stratospheric temperatures approximately equally. We also find that the magnitude of the atmospheric response is sensitive to the spectral characteristics of the SSI dataset used.

  15. Isolated ileal ganglioneuromatosis in an 11-year-old boy: Case report and review of literature.

    PubMed

    Mitra, Subhashis; Mukherjee, Sanghamitra; Chakraborty, Hema

    2016-01-01

    Ganglioneuromatous proliferation in the gastrointestinal tract is a rare occurrence and is usually associated with specific syndrome complexes such as multiple endocrine neoplasia Type 2B or von Recklinghausen's disease. We report here a case of diffuse intestinal ganglioneuromatosis, presenting as intestinal obstruction and chronic constipation in an 11-year-old boy. Sporadic cases of intestinal ganglioneuromatosis in the absence of any systemic manifestations are a very rare cause of enteric motility disorders in childhood, and we discuss the pathological and clinical significance of this finding. Histopathological identification of this uncommon cause of a common pediatric problem is important since the condition is amenable to surgical treatment.

  16. An 11-year follow-up of a network of cocaine users.

    PubMed

    Murphy, S B; Reinarman, C; Waldorf, D

    1989-04-01

    This paper presents findings from an exploratory 11-year follow-up study of a small network of cocaine users. These findings suggest that while serious abuse potential exists, addiction is not a uniform outcome of sustained use and that long-term controlled use is possible. In all, four types of career use pattern are described, in addition to one case of regular abuse. These data also suggest the importance of user norms and informal social controls in mitigating against the force of pharmacological and physiological factors leading toward dependence or addiction.

  17. Mask face: bilateral simultaneous facial palsy in an 11-year-old boy.

    PubMed

    Güngör, Serdal; Güngör Raif, Sabiha; Arslan, Müjgan

    2013-04-01

    Bilateral facial paralysis is an uncommon clinical entity especially in the pediatric age group and occurs frequently as a manifestation of systemic disease. The most important causes are trauma, infectious diseases, neurological diseases, metabolic, neoplastic, autoimmune diseases and idiopathic disease (Bell's palsy). We report a case of an 11-year-old boy presenting with bilateral simultaneous peripheral facial paralysis. All possible infectious causes were excluded and the patient was diagnosed as having Bell's palsy (idiopathic). The most important approach in these cases is to rule out a life-threatening disease.

  18. Comparison of Solar Active Region Complexity Andgeomagnetic Activity from 1996 TO 2014

    NASA Astrophysics Data System (ADS)

    Tanskanen, E. I.; Nikbakhsh, S.; Perez-Suarez, D.; Hackman, T.

    2015-12-01

    We have studied the influence of magnetic complexity of solar Active Regions (ARs)on geomagnetic activity from 1996 to 2014. Sunspots are visual indicators of ARswhere the solar magnetic field is disturbed. We have used International, American,Space Environment Service Center (SESC) and Space Weather Prediction Center(SWPC) sunspot numbers to examine ARs. Major manifestations of solar magneticactivity, such as flares and Coronal Mass Ejections (CMEs), are associated withARs. For this study we chose the Mount Wilson scheme. It classifies ARs in terms oftheir magnetic topology from the least complex (?) to the most complex one ( ?).Several cases have been found where the more complex structures produce strongerflares and CMEs than the less complex ones. We have a list of identified substormsavailable with different phases and their durations. This will be compared to ourmagnetic complexity data to analyse the effects of active region magnetic complexityto the magnetic activity on the vicinity of the Earth.

  19. DISTRIBUTION OF ELECTRIC CURRENTS IN SOLAR ACTIVE REGIONS

    SciTech Connect

    Török, T.; Titov, V. S.; Mikić, Z.; Leake, J. E.; Archontis, V.; Linton, M. G.; Dalmasse, K.; Aulanier, G.; Kliem, B.

    2014-02-10

    There has been a long-standing debate on the question of whether or not electric currents in solar active regions are neutralized. That is, whether or not the main (or direct) coronal currents connecting the active region polarities are surrounded by shielding (or return) currents of equal total value and opposite direction. Both theory and observations are not yet fully conclusive regarding this question, and numerical simulations have, surprisingly, barely been used to address it. Here we quantify the evolution of electric currents during the formation of a bipolar active region by considering a three-dimensional magnetohydrodynamic simulation of the emergence of a sub-photospheric, current-neutralized magnetic flux rope into the solar atmosphere. We find that a strong deviation from current neutralization develops simultaneously with the onset of significant flux emergence into the corona, accompanied by the development of substantial magnetic shear along the active region's polarity inversion line. After the region has formed and flux emergence has ceased, the strong magnetic fields in the region's center are connected solely by direct currents, and the total direct current is several times larger than the total return current. These results suggest that active regions, the main sources of coronal mass ejections and flares, are born with substantial net currents, in agreement with recent observations. Furthermore, they support eruption models that employ pre-eruption magnetic fields containing such currents.

  20. Triennial Report 2006-2009. Commission 10: Solar Activity

    NASA Technical Reports Server (NTRS)

    Klimchuk, James A.

    2008-01-01

    Commission 10 deals with solar activity in all of its forms, ranging from the smallest nanoflares to the largest coronal mass ejections. This report reviews scientific progress over the roughly two-year period ending in the middle of 2008. This has been an exciting time in solar physics, highlighted by the launches of the Hinode and STEREO missions late in 2006. The report is reasonably comprehensive, though it is far from exhaustive. Limited space prevents the inclusion of many significant results. The report is divided into following sections: Photosphere and Chromosphere; Transition Region; Corona and Coronal Heating; Coronal Jets; Flares; Coronal Mass Ejection Initiation; Global Coronal Waves and Shocks; Coronal Dimming; The Link Between Low Coronal CME signatures and Magnetic Clouds; Coronal Mass Ejections in the Heliosphere; and Coronal Mass Ejections and Space Weather. Primary authorship is indicated at the beginning of each section.

  1. Multi-wavelength Observations of Solar Active Region NOAA 7154

    NASA Technical Reports Server (NTRS)

    Bruner, M. E.; Nitta, N. V.; Frank. Z. A.; Dame, L.; Suematsu, Y.

    2000-01-01

    We report on observations of a solar active region in May 1992 by the Solar Plasma Diagnostic Experiment (SPDE) in coordination with the Yohkoh satellite (producing soft X-ray images) and ground-based observatories (producing photospheric magnetograms and various filtergrams including those at the CN 3883 A line). The main focus is a study of the physical conditions of hot (T is approximately greater than 3 MK) coronal loops at their foot-points. The coronal part of the loops is fuzzy but what appear to be their footpoints in the transition region down to the photosphere are compact. Despite the morphological similarities, the footpoint emission at 10(exp 5) K is not quantitatively correlated with that at approximately 300 km above the tau (sub 5000) = 1 level, suggesting that the heat transport and therefore magnetic field topology in the intermediate layer is complicated. High resolution imaging observations with continuous temperature coverage are crucially needed.

  2. Solar EUV Variability from FISM and SDO/EVE During Solar Minimum, Active, and Flaring Time Periods

    NASA Technical Reports Server (NTRS)

    Chamberlin, Phillip C.

    2011-01-01

    The Living With a Star (LWS) Focus Science Team has identified three periods of different solar activity levels for which they will be determining the Earth's Ionosphere and Thermosphere response. Not only will the team be comparing individual models (e.g. FLIP, T1MEGCM, GLOW) outcome driven by the various levels of solar activity, but the models themselves will also be compared. These models all rely on the input solar EUV (0.1 -190 nm) irradiance to drive the variability. The Flare Irradiance Spectral Model (FISM) and the EUV Variability Experiment (EVE) onboard provide the Solar Dynamics Observatory (SDO) provide the most accurate quantification of these irradiances. Presented and discussed are how much the solar EUV irradiance changes during these three scenarios, both as a function of activity and wavelength.

  3. A Practical Application of Microcomputers to Control an Active Solar System.

    ERIC Educational Resources Information Center

    Goldman, David S.; Warren, William

    1984-01-01

    Describes the design and implementation of a microcomputer-based model active solar heating system. Includes discussions of: (1) the active solar components (solar collector, heat exchanger, pump, and fan necessary to provide forced air heating); (2) software components; and (3) hardware components (in the form of sensors and actuators). (JN)

  4. Solar technology assessment project. Volume 4: Solar air conditioning: Active, hybrid and passive

    NASA Astrophysics Data System (ADS)

    Yellott, J. I.

    1981-04-01

    The status of absorption cycle solar air conditioning and the Rankine cycle solar cooling system is reviewed. Vapor jet ejector chillers, solar pond based cooling, and photovoltaic compression air conditioning are also briefly discussed. Hybrid solar cooling by direct and indirect evaporative cooling, and dehumidification by desiccation are described and discussed. Passive solar cooling by convective and radiative processes, evaporative cooling by passive processes, and cooling with roof ponds and movable insulation are reviewed. Federal and state involvement in solar cooling is discussed.

  5. A new 10Be record recovered from an Antarctic ice core: validity and limitations to record the solar activity

    NASA Astrophysics Data System (ADS)

    Baroni, Mélanie; Bard, Edouard; Aster Team

    2015-04-01

    Cosmogenic nuclides provide the only possibility to document solar activity over millennia. Carbon-14 (14C) and beryllium-10 (10Be) records are retrieved from tree rings and ice cores, respectively. Recently, 14C records have also proven to be reliable to detect two large Solar Proton Events (SPE) (Miyake et al., Nature, 2012, Miyake et al., Nat. Commun., 2013) that occurred in 774-775 A.D. and in 993-994 A.D.. The origin of these events is still under debate but it opens new perspectives for the interpretation of 10Be ice core records. We present a new 10Be record from an ice core from Dome C (Antarctica) covering the last millennium. The chronology of this new ice core has been established by matching volcanic events on the WAIS Divide ice core (WDC06A) that is the best dated record in Antarctica over the Holocene (Sigl et al., JGR, 2013, Sigl et al., Nat. Clim. Change, 2014). The five minima of solar activity (Oort, Wolf, Spörer, Maunder and Dalton) are detected and characterized by a 10Be concentration increase of ca. 20% above average in agreement with previous studies of ice cores drilled at South Pole and Dome Fuji in Antarctica (Bard et al., EPSL, 1997; Horiuchi et al., Quat. Geochrono., 2008) and at NGRIP and Dye3 in Greenland (Berggren et al., GRL, 2009). The high resolution, on the order of a year, allows the detection of the 11-year solar cycle. Sulfate concentration, a proxy for volcanic eruptions, has also been measured in the very same samples, allowing a precise comparison of both 10Be and sulfate profiles. We confirm the systematic relationship between stratospheric eruptions and 10Be concentration increases, first evidenced by observations of the stratospheric volcanic eruptions of Agung in 1963 and Pinatubo in 1991 (Baroni et al., GCA, 2011). This relationship is due to an increase in 10Be deposition linked to the role played by the sedimentation of volcanic aerosols. In the light of these new elements, we will discuss the limitations and

  6. Neurofibromatosis 1 prevalence in children aged 9-11 years, Pinar del Río Province, Cuba.

    PubMed

    Orraca, Miladys; Morejón, Griselda; Cabrera, Niurka; Menéndez, Reinaldo; Orraca, Odalys

    2014-01-01

    INTRODUCTION Neurofibromatosis 1 is one of the most common heritable genetic disorders in humans. It is characterized by formation of neurofibromas, with marked variability in expression. Half the cases are due to autosomal dominant inheritance; the rest arise from de novo mutations. Prevalence varies by population, and prevalence in Cuba is unknown. OBJECTIVE Determine the prevalence of neurofibromatosis 1 in a population of Cuban children aged 9-11 years old in Pinar del Río Province, Cuba. METHODS A descriptive cross-sectional study was carried out in Pinar del Río Province in 2004, in which 19,392 children were assessed for neurofibromatosis 1. The study was conducted in two phases: the first, a survey of the entire population aged 9-11 years by genetic counselors in the province's schools; the second, assessment by clinical geneticists of children who met criteria for referral to the Provincial Medical Genetics Center. Neurofibromatosis 1 cases and first-degree relatives were examined to identify the origin of the mutation (de novo or inherited). Neurofibromatosis 1 prevalence was calculated, as well as history of a first-degree relative with the disease and frequency of several principal clinical signs-café au lait spots, freckles in places unexposed to sunlight, presence of neurofibromas, Lisch nodules and characteristic bone lesions. RESULTS Of the eligible population, 99.3% was screened (10,034 boys and 9358 girls). Active case finding resulted in referral of 200 children to medical geneticists and the disease was confirmed in 17, for a prevalence of one case per 1141 children aged 9-11 years old. Café au lait spots were the most frequent sign (100%), followed by freckles in areas unexposed to sunlight (82.4%) and characteristic bone lesions (41.2%). Only 4 of the 17 cases were previously being treated for the disease. CONCLUSIONS Neurofibromatosis 1 has high prevalence in the group studied in Pinar del Rio Province and most cases are not detected in

  7. A case of dissociative fugue and general amnesia with an 11-year follow-up.

    PubMed

    Helmes, Edward; Brown, Julie-May; Elliott, Linda

    2015-01-01

    Dissociative fugue refers to loss of personal identity, often with the associated loss of memories of events (general amnesia). Here we report on the psychological assessment of a 54-year-old woman with loss of identity and memories of 33 years of her life attributed to dissociative fugue, along with a follow-up 11 years later. Significant levels of personal injury and stress preceded the onset of the amnesia. A detailed neuropsychological assessment was completed at a university psychology clinic, with a follow-up assessment there about 11 years later with an intent to determine whether changes in her cognitive status were associated with better recall of her life and with her emotional state. Psychomotor slowing and low scores on measures of attention and both verbal and visual memory were present initially, along with significant psychological distress associated with the diagnosis of posttraumatic stress disorder. Although memories of her life had not returned by follow-up, distress had abated and memory test scores had improved. The passage of time and a better emotional state did not lead to recovery of lost memories. Contrary to expectations, performance on tests of executive functions was good on both occasions. Multiple stressful events are attributed as having a role in maintaining the loss of memories. PMID:25365262

  8. Frequency of family meals and 6-11-year-old children's social behaviors.

    PubMed

    Lora, Karina R; Sisson, Susan B; DeGrace, Beth W; Morris, Amanda S

    2014-08-01

    Family meals are regarded as an opportunity to promote healthy child development. In this brief report, we examined the relationship between frequency of family meals and children's social behaviors in 6-11-year-olds. The 2007 U.S. National Survey of Children's Health (NSCH) provided data on the frequency of family meals in a sample of 6-11-year-old children (N = 24,167). The following social behavior indicators were examined: child positive social skills, child problematic social behaviors, child engagement in school, and parental aggravation with the child. Individual logistic regression analyses were calculated in unadjusted and adjusted models. On average, families had 5.3 meals together per week. In adjusted models, more frequent family meals increased the odds of child positive social skills (OR = 1.08, 95% CI [1.02, 1.16]) and child engagement in school (OR = 1.11, 95% CI [1.06, 1.15]), and decreased the likelihood of child problematic social behaviors (OR = 0.92, 95% CI [0.87, 0.98]). There was no association between frequency of family meals and parental aggravation with the child (OR = 0.98, 95% CI [0.93, 1.04]). Findings support the promotion of family meals to benefit children's development of healthy social behaviors.

  9. A case of dissociative fugue and general amnesia with an 11-year follow-up.

    PubMed

    Helmes, Edward; Brown, Julie-May; Elliott, Linda

    2015-01-01

    Dissociative fugue refers to loss of personal identity, often with the associated loss of memories of events (general amnesia). Here we report on the psychological assessment of a 54-year-old woman with loss of identity and memories of 33 years of her life attributed to dissociative fugue, along with a follow-up 11 years later. Significant levels of personal injury and stress preceded the onset of the amnesia. A detailed neuropsychological assessment was completed at a university psychology clinic, with a follow-up assessment there about 11 years later with an intent to determine whether changes in her cognitive status were associated with better recall of her life and with her emotional state. Psychomotor slowing and low scores on measures of attention and both verbal and visual memory were present initially, along with significant psychological distress associated with the diagnosis of posttraumatic stress disorder. Although memories of her life had not returned by follow-up, distress had abated and memory test scores had improved. The passage of time and a better emotional state did not lead to recovery of lost memories. Contrary to expectations, performance on tests of executive functions was good on both occasions. Multiple stressful events are attributed as having a role in maintaining the loss of memories.

  10. Er:YAG laser ablation: 5-11 years prospective study

    NASA Astrophysics Data System (ADS)

    Dostalova, Tatjana; Jelinkova, Helena; Nemec, Michal; Sulc, Jan; Miyagi, Mitsunobu

    2005-03-01

    The Er:YAG laser at 2940 nm has been proposed for use in dental cavity preparation and removal of carious enamel and dentin. The purpose of the present study was to determine the effect of the Er:YAG laser ablation in treating dental caries after a period from 5 to 11 years. For this study, 133 cavities were chosen, and for their reparation of it the three restorative materials were used. Baseline examination was made in the following intervals: one week, 1 year, and from 5 to 11 years after cavity preparation and placement of filling material. Clinical assessments were carried out in accordance with the US Public Health Service System. The follow-up included: the marginal ridge, marginal adaptation, anatomic form, caries, color match, cavo surface margin discoloration, surface smoothness, and postoperative sensitivity. Er:YAG laser ablation is an excellent method for treating frontal teeth, i.e., incisors, canines, premolars, and initial occlusal caries of molars. However, visual control of non-contact therapy is necessary. Er:YAG laser ablation is safe, and it strongly reduces pain. The laser treatment markedly decreases the unpleasant sound and vibration.

  11. Memory T cell responses targeting the SARS coronavirus persist up to 11 years post-infection.

    PubMed

    Ng, Oi-Wing; Chia, Adeline; Tan, Anthony T; Jadi, Ramesh S; Leong, Hoe Nam; Bertoletti, Antonio; Tan, Yee-Joo

    2016-04-12

    Severe acute respiratory syndrome (SARS) is a highly contagious infectious disease which first emerged in late 2002, caused by a then novel human coronavirus, SARS coronavirus (SARS-CoV). The virus is believed to have originated from bats and transmitted to human through intermediate animals such as civet cats. The re-emergence of SARS-CoV remains a valid concern due to the continual persistence of zoonotic SARS-CoVs and SARS-like CoVs (SL-CoVs) in bat reservoirs. In this study, the screening for the presence of SARS-specific T cells in a cohort of three SARS-recovered individuals at 9 and 11 years post-infection was carried out, and all memory T cell responses detected target the SARS-CoV structural proteins. Two CD8(+) T cell responses targeting the SARS-CoV membrane (M) and nucleocapsid (N) proteins were characterized by determining their HLA restriction and minimal T cell epitope regions. Furthermore, these responses were found to persist up to 11 years post-infection. An absence of cross-reactivity of these CD8(+) T cell responses against the newly-emerged Middle East respiratory syndrome coronavirus (MERS-CoV) was also demonstrated. The knowledge of the persistence of SARS-specific celullar immunity targeting the viral structural proteins in SARS-recovered individuals is important in the design and development of SARS vaccines, which are currently unavailable. PMID:26954467

  12. Nonlinear techniques for forecasting solar activity directly from its time series

    NASA Technical Reports Server (NTRS)

    Ashrafi, S.; Roszman, L.; Cooley, J.

    1993-01-01

    This paper presents numerical techniques for constructing nonlinear predictive models to forecast solar flux directly from its time series. This approach makes it possible to extract dynamical in variants of our system without reference to any underlying solar physics. We consider the dynamical evolution of solar activity in a reconstructed phase space that captures the attractor (strange), give a procedure for constructing a predictor of future solar activity, and discuss extraction of dynamical invariants such as Lyapunov exponents and attractor dimension.

  13. Nonlinear techniques for forecasting solar activity directly from its time series

    NASA Technical Reports Server (NTRS)

    Ashrafi, S.; Roszman, L.; Cooley, J.

    1992-01-01

    Numerical techniques for constructing nonlinear predictive models to forecast solar flux directly from its time series are presented. This approach makes it possible to extract dynamical invariants of our system without reference to any underlying solar physics. We consider the dynamical evolution of solar activity in a reconstructed phase space that captures the attractor (strange), given a procedure for constructing a predictor of future solar activity, and discuss extraction of dynamical invariants such as Lyapunov exponents and attractor dimension.

  14. Solar wind and coronal rotation during an activity cycle

    NASA Astrophysics Data System (ADS)

    Pinto, Rui; Brun, Allan Sacha

    The properties of the solar wind flow are strongly affected by the time-varying strength and geometry of the global background magnetic field. The wind velocity and mass flux depend directly on the size and position of the wind sources at the surface, and on the geometry of the magnetic flux-tubes along which the wind flows. We address these problems by performing numerical simulations coupling a kinematic dynamo code (STELEM) evolve in a 2.5D axisymmetric coronal MHD code (DIP) covering an 11 yr activity cycle. The latitudinal distribution of the calculated wind velocities agrees with in-situ (ULYSSES, HELIO) and radio measurements (IPS). The transition from fast to slow wind flows can be explained in terms of the high overall flux-tube superradial expansion factors in the vicinities of coronal streamer boundaries. We found that the Alfvén radii and the global Sun's mass loss rate vary considerably throughout the cycle (by a factor 4.5 and 1.6, respectively), leading to strong temporal modulations of the global angular momentum flux and magnetic braking torque. The slowly varying magnetic topology introduces strong non-uniformities in the coronal rotation rate in the first few solar radii. Finally, we point out directions to assess the effects of surface transient phenomena on the global properties of the solar wind.

  15. THE ORIGIN OF NET ELECTRIC CURRENTS IN SOLAR ACTIVE REGIONS

    SciTech Connect

    Dalmasse, K.; Kliem, B.; Török, T.

    2015-09-01

    There is a recurring question in solar physics regarding whether or not electric currents are neutralized in active regions (ARs). This question was recently revisited using three-dimensional (3D) magnetohydrodynamic (MHD) numerical simulations of magnetic flux emergence into the solar atmosphere. Such simulations showed that flux emergence can generate a substantial net current in ARs. Other sources of AR currents are photospheric horizontal flows. Our aim is to determine the conditions for the occurrence of net versus neutralized currents with this second mechanism. Using 3D MHD simulations, we systematically impose line-tied, quasi-static, photospheric twisting and shearing motions to a bipolar potential magnetic field. We find that such flows: (1) produce both direct and return currents, (2) induce very weak compression currents—not observed in 2.5D—in the ambient field present in the close vicinity of the current-carrying field, and (3) can generate force-free magnetic fields with a net current. We demonstrate that neutralized currents are in general produced only in the absence of magnetic shear at the photospheric polarity inversion line—a special condition that is rarely observed. We conclude that  photospheric flows, as magnetic flux emergence, can build up net currents in the solar atmosphere, in agreement with recent observations. These results thus provide support for eruption models based on pre-eruption magnetic fields that possess a net coronal current.

  16. Predictions of the onset of mini ice age in the 25th solar cycle

    NASA Astrophysics Data System (ADS)

    Kumar, Rajiv

    2016-07-01

    Predictions of the ir-regularty in the 11 year heartbeat of the sun due to asyncronous of the two layered dynamo effect would result in mini ice age as in the Maunder minimum.The onset of this event is expected in the begining of 25th solar cycle and would go to its maximum in the 26th solar cycle.The minimum temperature is expected in 2028 due to the fall of solar activity by 60 % termed as solar hibernation.The predictions are based on the observations obtained by the Royal Greenwich observatory since 1874. Keywords: Dynamo effect,munder minimum,Solar hybernation

  17. Argonne Solar Energy Program annual report. Summary of solar program activities for fiscal year 1979

    SciTech Connect

    1980-06-01

    The R and D work done at Argonne National Laboratory on solar energy technologies during the period October 1, 1978 to September 30, 1979 is described. Technical areas included in the ANL solar program are solar energy collection, heating and cooling, thermal energy storage, ocean thermal energy conversion, photovoltaics, biomass conversion, satellite power systems, and solar liquid-metal MHD power systems.

  18. A statistic study of ionospheric solar flare activity indicator

    NASA Astrophysics Data System (ADS)

    Xiong, Bo; Wan, Weixing; Ning, Baiqi; Ding, Feng; Hu, Lianhuan; Yu, You

    2014-01-01

    According to the Chapman ionization theory, an ionospheric solar flare activity indicator (ISFAI) is given by the solar zenith angle and the variation rate of ionospheric vertical total electron content, which is measured from a global network of dual-frequency GPS receivers. The ISFAI is utilized to statistically analyze the ionospheric responses to 1439 M-class and 126 X-class solar flares during solar cycle 23 (1996-2008). The statistical results show that the occurrence of ISFAI peak increases obviously at 3.2 total electron content unit (TECU)/h (1 TECU = 1016 el m-2) and reaches the maximum at 10 TECU/h during M-class flares and 10 TECU/h and 40 TECU/h for X-class flares. ISFAI is closely correlated with the 26-34 nm extreme ultraviolet flux but poorly related to the 0.1-0.8 nm X-ray flux. The central meridian distance (CMD) of flare location is an important reason for depressing relationship between ISFAI and X-ray Flux. Through the CMD effect modification, the ISFAI has a significant dependence on the X-ray flux with a correlation coefficient of 0.76. The ISFAI sensitivity enables to detect the extreme X-class flares, as well as the variations of one order of magnitude or even smaller (such as for C-class flares). Meanwhile, ISFAI is helpful to the calibration of the X-ray flux at 0.1-0.8 nm observed by GOES during some flares. In addition, the statistical results demonstrate that ISFAI can detect 80% of all M-class flares and 92% for all X-class ones during 1996-2008.

  19. Solar activity around AD 775 from aurorae and radiocarbon

    NASA Astrophysics Data System (ADS)

    Neuhäuser, R.; Neuhäuser, D. L.

    2015-04-01

    A large variation in 14C around AD 775 has been considered to be caused by one or more solar super-flares within one year. We critically review all known aurora reports from Europe as well as the Near, Middle, and Far East from AD 731 to 825 and find 39 likely true aurorae plus four more potential aurorae and 24 other reports about halos, meteors, thunderstorms etc., which were previously misinterpreted as aurorae or misdated; we assign probabilities for all events according to five aurora criteria. We find very likely true aurorae in AD 743, 745, 762, 765, 772, 773, 793, 796, 807, and 817. There were two aurorae in the early 770s observed near Amida (now Diyarbak\\i r in Turkey near the Turkish-Syrian border), which were not only red, but also green-yellow - being at a relatively low geomagnetic latitude, they indicate a relatively strong solar storm. However, it cannot be argued that those aurorae (geomagnetic latitude 43 to 50°, considering five different reconstructions of the geomagnetic pole) could be connected to one or more solar super-flares causing the 14C increase around AD 775: There are several reports about low- to mid-latitude aurorae at 32 to 44° geomagnetic latitude in China and Iraq; some of them were likely observed (quasi-)simultaneously in two of three areas (Europe, Byzantium/Arabia, East Asia), one lasted several nights, and some indicate a particularly strong geomagnetic storm (red colour and dynamics), namely in AD 745, 762, 793, 807, and 817 - always without 14C peaks. We use 39 likely true aurorae as well as historic reports about sunspots together with the radiocarbon content from tree rings to reconstruct the solar activity: From AD {˜ 733} to {˜ 823}, we see at least nine Schwabe cycles; instead of one of those cycles, there could be two short, weak cycles - reflecting the rapid increase to a high 14C level since AD 775, which lies at the end of a strong cycle. In order to show the end of the dearth of naked-eye sunspots, we

  20. Magnetohydrodynamic (MHD) modelling of solar active phenomena via numerical methods

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    1988-01-01

    Numerical ideal MHD models for the study of solar active phenomena are summarized. Particular attention is given to the following physical phenomena: (1) local heating of a coronal loop in an isothermal and stratified atmosphere, and (2) the coronal dynamic responses due to magnetic field movement. The results suggest that local heating of a magnetic loop will lead to the enhancement of the density of the neighboring loops through MHD wave compression. It is noted that field lines can be pinched off and may form a self-contained magnetized plasma blob that may move outward into interplanetary space.

  1. Grand minima of solar activity and sociodynamics of culture

    NASA Astrophysics Data System (ADS)

    Vladimirsky, B. M.

    2012-12-01

    Indices of creative productivity introduced by C. Murrey were used to verify S. Ertel's conclusion about a global increase in creative productivity during the prolonged minimum of solar activity in 1640-1710. It was found that these indices for mathematicians, philosophers, and scientists increase in the Maunder era by factor of 1.6 in comparison with intervals of the same length before and after the minimum. A similar effect was obtained for mathematicians and philosophers for five earlier equitype minima in total (an increase by a factor of 1.9). The regularity that is revealed is confirmed by the fact that the most important achievements of high-ranking mathematicians and philosophers during the whole time period (2300 years) considered in this study fall on epochs of reduced levels of solar activity. The rise in the probability of the generation of rational ideas during grand minima is reflected also in the fact that they precede the appearance of written language and farming. Ultra-low-frequency electromagnetic fields appear to serve as a physical agent stimulating the activity of the brain's left hemisphere during the epochs of minima.

  2. The onset of the solar active cycle 22

    NASA Technical Reports Server (NTRS)

    Ahluwalia, H. S.

    1989-01-01

    There is a great deal of interest in being able to predict the main characteristics of a solar activity cycle (SAC). One would like to know, for instance, how large the amplitude (R sub m) of a cycle is likely to be, i.e., the annual mean of the sunspot numbers at the maximum of SAC. Also, how long a cycle is likely to last, i.e., its period. It would also be interesting to be able to predict the details, like how steep the ascending phase of a cycle is likely to be. Questions like these are of practical importance to NASA in planning the launch schedule for the low altitude, expensive spacecrafts like the Hubble Space Telescope, the Space Station, etc. Also, one has to choose a proper orbit, so that once launched the threat of an atmospheric drag on the spacecraft is properly taken into account. Cosmic ray data seem to indicate that solar activity cycle 22 will surpass SAC 21 in activity. The value of R sub m for SAC 22 may approach that of SAC 19. It would be interesting to see whether this prediction is borne out. Researchers are greatly encouraged to proceed with the development of a comprehensive prediction model which includes information provided by cosmic ray data.

  3. Solar Physics at Evergreen: Solar Dynamo and Chromospheric MHD

    NASA Astrophysics Data System (ADS)

    Zita, E. J.; Maxwell, J.; Song, N.; Dikpati, M.

    2006-12-01

    We describe our five year old solar physics research program at The Evergreen State College. Famed for its cloudy skies, the Pacific Northwest is an ideal location for theoretical and remote solar physics research activities. Why does the Sun's magnetic field flip polarity every 11 years or so? How does this contribute to the magnetic storms Earth experiences when the Sun's field reverses? Why is the temperature in the Sun's upper atmosphere millions of degrees higher than the Sun's surface temperature? How do magnetic waves transport energy in the Sun’s chromosphere and the Earth’s atmosphere? How does solar variability affect climate change? Faculty and undergraduates investigate questions such as these in collaboration with the High Altitude Observatory (HAO) at the National Center for Atmospheric Research (NCAR) in Boulder. We will describe successful student research projects, logistics of remote computing, and our current physics investigations into (1) the solar dynamo and (2) chromospheric magnetohydrodynamics.

  4. Eruptions that Drive Coronal Jets in a Solar Active Region

    NASA Technical Reports Server (NTRS)

    Sterling, Alphonse C.; Moore, Ronald L.; Falconer, David A.; Panesar, Navdeep K.; Akiyama, Sachiko; Yashiro, Seiji; Gopalswamy, Nat

    2016-01-01

    Solar coronal jets are common in both coronal holes and in active regions (e.g., Shibata et al. 1992, Shimojo et al. 1996, Cirtain et al. 2007. Savcheva et al. 2007). Recently, Sterling et al. (2015), using data from Hinode/XRT and SDO/AIA, found that coronal jets originating in polar coronal holes result from the eruption of small-scale filaments (minifilaments). The jet bright point (JBP) seen in X-rays and hotter EUV channels off to one side of the base of the jet's spire develops at the location where the minifilament erupts, consistent with the JBPs being miniature versions of typical solar flares that occur in the wake of large-scale filament eruptions. Here we consider whether active region coronal jets also result from the same minifilament-eruption mechanism, or whether they instead result from a different mechanism (e.g. Yokoyama & Shibata 1995). We present observations of an on-disk active region (NOAA AR 11513) that produced numerous jets on 2012 June 30, using data from SDO/AIA and HMI, and from GOES/SXI. We find that several of these active region jets also originate with eruptions of miniature filaments (size scale 20'') emanating from small-scale magnetic neutral lines of the region. This demonstrates that active region coronal jets are indeed frequently driven by minifilament eruptions. Other jets from the active region were also consistent with their drivers being minifilament eruptions, but we could not confirm this because the onsets of those jets were hidden from our view. This work was supported by funding from NASA/LWS, NASA/HGI, and Hinode. A full report of this study appears in Sterling et al. (2016).

  5. Evidence of solar activity and El Niño signals in tree rings of Araucaria araucana and A. angustifolia in South America

    NASA Astrophysics Data System (ADS)

    Perone, A.; Lombardi, F.; Marchetti, M.; Tognetti, R.; Lasserre, B.

    2016-10-01

    Tree rings reveal climatic variations through years, but also the effect of solar activity in influencing the climate on a large scale. In order to investigate the role of solar cycles on climatic variability and to analyse their influences on tree growth, we focused on tree-ring chronologies of Araucaria angustifolia and Araucaria araucana in four study areas: Irati and Curitiba in Brazil, Caviahue in Chile, and Tolhuaca in Argentina. We obtained an average tree-ring chronology of 218, 117, 439, and 849 years for these areas, respectively. Particularly, the older chronologies also included the period of the Maunder and Dalton minima. To identify periodicities and trends observable in tree growth, the time series were analysed using spectral, wavelet and cross-wavelet techniques. Analysis based on the Multitaper method of annual growth rates identified 2 cycles with periodicities of 11 (Schwebe cycle) and 5.5 years (second harmonic of Schwebe cycle). In the Chilean and Argentinian sites, significant agreement between the time series of tree rings and the 11-year solar cycle was found during the periods of maximum solar activity. Results also showed oscillation with periods of 2-7 years, probably induced by local environmental variations, and possibly also related to the El-Niño events. Moreover, the Morlet complex wavelet analysis was applied to study the most relevant variability factors affecting tree-ring time series. Finally, we applied the cross-wavelet spectral analysis to evaluate the time lags between tree-ring and sunspot-number time series, as well as for the interaction between tree rings, the Southern Oscillation Index (SOI) and temperature and precipitation. Trees sampled in Chile and Argentina showed more evident responses of fluctuations in tree-ring time series to the variations of short and long periodicities in comparison with the Brazilian ones. These results provided new evidence on the solar activity-climate pattern-tree ring connections over

  6. Pulmonary veno-occlusive disease in an 11-year-old girl: diagnostic pitfalls.

    PubMed

    Kano, Gen; Nakamura, Keiko; Sakamoto, Izumi

    2014-02-01

    Pulmonary veno-occlusive disease (PVOD) is a rare chronic lung disease that is difficult to diagnose due to non-specific clinical findings. Little is known about the pathogenesis of PVOD. Reported herein is the case of an 11-year-old girl who initially presented with 'bat-wing' shadows on chest radiography. This finding, coupled with prominent hemosiderosis in bronchoalveolar lavage fluid, initially led to a misdiagnosis of idiopathic pulmonary hemosiderosis. Oral prednisolone dramatically improved signs and symptoms initially, but her condition then gradually deteriorated during maintenance therapy with corticosteroids and other immunosuppressants. PVOD was suspected but not confirmed owing to a lack of hallmark radiographic findings and contraindications for lung biopsy. Three years later, while arranging for lung transplantation, the patient experienced sudden onset of fatal massive pulmonary edema. PVOD was confirmed at autopsy. This case provides insights regarding an unfamiliar presentation of PVOD and may help physicians to avoid diagnostic pitfalls.

  7. An 11-year-old boy with pharyngitis and cough: Lemierre syndrome

    PubMed Central

    Mação, Patricia; Cancelinha, Candida; Lopes, Paulo; Rodrigues, Fernanda

    2013-01-01

    The authors present the case of an 11-year-old boy with pharyngitis, treated with amoxicillin, that worsened on day 7, with cough, high fever and refusal to eat. Lethargy and respiratory distress were noted. Based on radiographic findings of bilateral infiltrates he was diagnosed with pneumonia and started on intravenous ampicillin and erythromycin. Two days later he complained of right-sided neck pain and a palpable mass was identified. An ultrasound showed partial thrombosis of the right internal jugular vein and a lung CT scan revealed multiple septic embolic lesions. Lemierre syndrome was diagnosed, antibiotic treatment adjusted and anticoagulation started. A neck CT-scan showed a large parapharyngeal abscess. His clinical condition improved gradually and after 3 weeks of intravenous antibiotics he was discharged home on oral treatment. This case illustrates the importance of diagnosing Lemierre syndrome in the presence of pharyngitis with localised neck pain and respiratory distress, to prevent potentially fatal complications. PMID:23616317

  8. A fatal outcome of complicated severe diabetic ketoacidosis in a 11-year-old girl.

    PubMed

    Severinski, Srećko; Butorac Ahel, Ivona; Ovuka, Aleksandar; Verbić, Arijan

    2016-08-01

    Diabetic ketoacidosis (DKA) is a complex metabolic state characterized by hyperglycemia, metabolic acidosis and ketonuria. Cerebral edema is the most common rare complication of DKA in children. The objective of the study was to emphasize the importance of careful evaluation and monitoring for signs and symptoms of cerebral edema in all children undergoing treatment for DKA. We present a case of 11-year-old girl with a history of diabetes mellitus type I (T1DM) who presented with severe DKA complicated by hypovolemic shock, cerebral edema and hematemesis. Considering the fact that complications of DKA are rare and require a high index of clinical suspicion, early recognition and treatment are crucial for avoiding permanent damage.

  9. Absorbed doses and radiation damage during the 11 years of LEP operation

    NASA Astrophysics Data System (ADS)

    Schönbacher, H.; Tavlet, M.

    2004-03-01

    During the 11 years of operation of the large electron-positron collider (LEP), synchrotron radiation was emitted in the tunnel. This ionizing radiation induced degradation in organic insulators and structural materials, as well as in electronics. Annual dosimetric measurements have shown that the level of radiation increased with the ninth power of the beam energy. During the machine shutdowns and at the end of the operation, samples of rigid and flexible polymeric insulators (magnet-coil resins and cable insulations) were taken out and checked for their integrity. The test results are compared with the results obtained during the qualification of the materials, 12-15 years ago. At that time, lifetime predictions were made; they are now compared with the real time-aged materials.

  10. A fatal outcome of complicated severe diabetic ketoacidosis in a 11-year-old girl.

    PubMed

    Severinski, Srećko; Butorac Ahel, Ivona; Ovuka, Aleksandar; Verbić, Arijan

    2016-08-01

    Diabetic ketoacidosis (DKA) is a complex metabolic state characterized by hyperglycemia, metabolic acidosis and ketonuria. Cerebral edema is the most common rare complication of DKA in children. The objective of the study was to emphasize the importance of careful evaluation and monitoring for signs and symptoms of cerebral edema in all children undergoing treatment for DKA. We present a case of 11-year-old girl with a history of diabetes mellitus type I (T1DM) who presented with severe DKA complicated by hypovolemic shock, cerebral edema and hematemesis. Considering the fact that complications of DKA are rare and require a high index of clinical suspicion, early recognition and treatment are crucial for avoiding permanent damage. PMID:27226096

  11. Performance as a function of shooting style in basketball players under 11 years of age.

    PubMed

    Arias, José L

    2012-04-01

    Shooting style in basketball refers to the height adopted by a player in holding the ball, specifically the height of the hand and the ball with regard to the line of sight before the final extension of the elbow during a shot. The literature differentiates between a high and a low style. This study analyzed shooting frequency in young boys as a function of style and which shooting style had the highest accuracy and success in real games. Participants were 81 boys from eight basketball teams, aged 9-11 years. The sample consisted of 5,740 standard shots in 56 games. The design was nomotethic, follow-up, and multidimensional. The results indicated that low style predominated over the high style, although overall accuracy and efficacy were better using the high style. Various strategies and practical considerations are suggested for teachers and coaches to focus on teaching the high style.

  12. Reconstructing past solar activity using meridian solar observations: The case of the Royal Observatory of the Spanish Navy (1833-1840)

    NASA Astrophysics Data System (ADS)

    Vaquero, J. M.; Gallego, M. C.

    2014-04-01

    Solar meridian observations have been used to evaluate the solar activity of the past. Some important examples are the solar meridian observations made at the Basilica of San Petronio in Bologna by several astronomers and the observations made by Hevelius published in his book Machina Coelestis. However, we do not know whether these observations, which were not aimed to estimate the solar activity, are reliable for evaluating solar activity. In this paper, we present the marginal notes about sunspots that are included in the manuscripts of the meridian solar observations made at the Royal Observatory of the Spanish Navy during the period 1833-1840. We compare these observations with other solar activity indices such as sunspot area and number. Our conclusion is that solar meridian observations should be used with extreme caution to evaluate past solar activity.

  13. Does school environment affect 11-year-olds' fruit and vegetable intake in Denmark?

    PubMed

    Krølner, Rikke; Due, Pernille; Rasmussen, Mette; Damsgaard, Mogens Trab; Holstein, Bjørn E; Klepp, Knut-Inge; Lynch, John

    2009-04-01

    It is often found that adolescents eat too little fruit and vegetables. We examined the importance of school for 11-year-olds' daily intake measured by food frequency- and 24-h recall questionnaires in Danish data from the European 2003 Pro Children Survey. Multilevel logistic regression analyses included matched student-parent-school questionnaire data (N=1410) from a random sample of 59 schools and were conducted for fruit and vegetables separately: 1) without explanatory variables, to decompose the between-school and within-school variance; 2) with individual level covariates (socioeconomic position, parental intake, etc.) to examine if the between-school variance was attributable to different student compositions of schools; and 3) with individual- and school-level covariates (school availability of fruit/vegetables and unhealthy food) to examine the effect of context. Additional analyses stratified by gender and home availability of fruit/vegetables examined if school food availability influenced subgroups differently. Between-school variations were quantified by intra class correlations and median odds ratios. We found that 40% of the students ate > or = 200 g fruit/day and 25% ate > or = 130 g vegetables/day. Most of the total variance in students' intake occurred at the individual level (93-98%). There were larger between-school variations in vegetable intake than in fruit intake. Fruit and vegetable consumption clustered within schools to a larger degree for boys than girls. The between-school variance did not differ by home availability. Boys and students from high availability homes consumed more fruit and/or vegetables if enrolled in schools with access to fruit/vegetables and unhealthy food or contrarily with no food available versus schools with only fruit/vegetables available. The small school-level effects on 11-year-olds' fruit and vegetable intake imply that family level interventions may be more important and that the success of school

  14. Size at birth and blood pressure: cross sectional study in 8-11 year old children.

    PubMed Central

    Taylor, S. J.; Whincup, P. H.; Cook, D. G.; Papacosta, O.; Walker, M.

    1997-01-01

    OBJECTIVE: To identify which patterns of fetal growth, represented by different measurements of size at birth, are associated with increased blood pressure in children aged 8-11 years. DESIGN AND SETTING: School based, cross sectional survey conducted in 10 towns in England and Wales in 1994. SUBJECTS: 3010 singleton children (response rate 75%) with physical measurements and information on birth weight from parental questionnaires. Hospital birth records were examined for 1573. MAIN OUTCOME MEASURES: Systolic and diastolic blood pressure at age 8-11 years. RESULTS: In the whole group birth weight was inversely related to systolic pressure (regression coefficient -1.48 mm Hg/kg; 95% confidence interval -2.20 to -0.76) after adjustment for current body size. There was no significant association between birth weight and diastolic pressure. The association with systolic pressure was much stronger in girls (-2.54 mm Hg/kg; -3.60 to -1.48) than in boys (-0.64 mm Hg/kg; -1.58 to 0.30), with a significant difference between the sexes (P = 0.006). Among the other neonatal measures, head circumference and placental weight were inversely associated with subsequent blood pressure in girls, and placental ratio (placental weight:birth weight) was positively associated with blood pressure in boys. Neither ponderal index at birth nor length:head circumference ratio was related to blood pressure in either sex. CONCLUSIONS: In these contemporary children the association between birth weight and blood pressure was apparent only in girls. There was no evidence that measures of size at birth, which may be related to nutrition at critical periods of pregnancy (thinness at birth or shortness in relation to head circumference), are related to blood pressure in the offspring. PMID:9056797

  15. Auditory-Motor Learning during Speech Production in 9-11-Year-Old Children

    PubMed Central

    Shiller, Douglas M.; Gracco, Vincent L.; Rvachew, Susan

    2010-01-01

    Background Hearing ability is essential for normal speech development, however the precise mechanisms linking auditory input and the improvement of speaking ability remain poorly understood. Auditory feedback during speech production is believed to play a critical role by providing the nervous system with information about speech outcomes that is used to learn and subsequently fine-tune speech motor output. Surprisingly, few studies have directly investigated such auditory-motor learning in the speech production of typically developing children. Methodology/Principal Findings In the present study, we manipulated auditory feedback during speech production in a group of 9–11-year old children, as well as in adults. Following a period of speech practice under conditions of altered auditory feedback, compensatory changes in speech production and perception were examined. Consistent with prior studies, the adults exhibited compensatory changes in both their speech motor output and their perceptual representations of speech sound categories. The children exhibited compensatory changes in the motor domain, with a change in speech output that was similar in magnitude to that of the adults, however the children showed no reliable compensatory effect on their perceptual representations. Conclusions The results indicate that 9–11-year-old children, whose speech motor and perceptual abilities are still not fully developed, are nonetheless capable of auditory-feedback-based sensorimotor adaptation, supporting a role for such learning processes in speech motor development. Auditory feedback may play a more limited role, however, in the fine-tuning of children's perceptual representations of speech sound categories. PMID:20886033

  16. ACTIVITY ANALYSES FOR SOLAR-TYPE STARS OBSERVED WITH KEPLER. I. PROXIES OF MAGNETIC ACTIVITY

    SciTech Connect

    He, Han; Wang, Huaning; Yun, Duo

    2015-11-15

    Light curves of solar-type stars often show gradual fluctuations due to rotational modulation by magnetic features (starspots and faculae) on stellar surfaces. Two quantitative measures of modulated light curves are employed as the proxies of magnetic activity for solar-type stars observed with Kepler telescope. The first is named autocorrelation index i{sub AC}, which describes the degree of periodicity of the light curve; the second is the effective fluctuation range of the light curve R{sub eff}, which reflects the depth of rotational modulation. The two measures are complementary and depict different aspects of magnetic activities on solar-type stars. By using the two proxies i{sub AC} and R{sub eff}, we analyzed activity properties of two carefully selected solar-type stars observed with Kepler (Kepler ID: 9766237 and 10864581), which have distinct rotational periods (14.7 versus 6.0 days). We also applied the two measures to the Sun for a comparative study. The result shows that both the measures can reveal cyclic activity variations (referred to as i{sub AC}-cycle and R{sub eff}-cycle) on the two Kepler stars and the Sun. For the Kepler star with the faster rotation rate, i{sub AC}-cycle and R{sub eff}-cycle are in the same phase, while for the Sun (slower rotator), they are in the opposite phase. By comparing the solar light curve with simultaneous photospheric magnetograms, it is identified that the magnetic feature that causes the periodic light curve during solar minima is the faculae of the enhanced network region, which can also be a candidate of magnetic features that dominate the periodic light curves on the two Kepler stars.

  17. Direct and indirect solar signature on global ozone content

    NASA Astrophysics Data System (ADS)

    Talukdar, Shamitaksha; Maitra, Animesh; Saha, Upal

    Solar activities affecting the Earth’s climate, traditionally measured by the number of sunspots (SSN), shows a periodic variation of 8-11 years. The solar radiation is a major component which drives the atmospheric circulation and thus induces global ozone variability in different parts of the earth. Total ozone varies strongly with latitude over the globe and with solar activity, with the largest values occurring at middle and high latitudes during all seasons. A critical analysis is done to study the direct and indirect effects of solar activity on the total ozone content (TOC) and tropospheric ozone residual (TOR) over urban metropolitan location, Kolkata (22°32'N, 88°20'E), along with 30⁰N and 30⁰S and 0⁰(equator) during the period 1979-2012. It has been focused through our study that the solar parameters have positive correlations with TOC whereas TOR is not much linked with solar activity. The positive correlations with SSN and TOC are valid for all the cases of 30⁰N and 30⁰S, equator (0⁰) and Kolkata region. But it has been observed that no association is found to occur with TOR and SSN. The wavelet spectrum of the signal variation due to Sunspot Number (SSN), Total Solar Irradiance (TSI) and Mg II Index (proxy for solar UV radiation) show peaks corresponding to 11-year cycle of the solar parameters. The TOC, taken from TOMS satellite, also shows a clear 11-year solar signal in all the region. But the spectral analysis show a random signal variation, including a 11-year signal at 30⁰S. At Kolkata, a significant positive correlation is obtained between TOC and SSN as also shown by wavelet spectral analysis. The TOR, taken from calibrated GOME and OMI/AURA satellite data analysis, show no positive 11-year signal feedback at all regions, except 30⁰S. A clear positive 11-year solar signal is found to be observed over this tropical southern hemisphere. The sea-surface temperature (SST), taken from NOAA Optimum Interpolation 1⁰x 1⁰ NCEP

  18. Solar Energy Education. Social studies: activities and teacher's guide. Field test edition

    SciTech Connect

    Not Available

    1982-01-01

    Solar energy information is made available to students through classroom instruction by way of the Solar Energy Education teaching manuals. In this manual solar energy, as well as other energy sources like wind power, is introduced by performing school activities in the area of social studies. A glossary of energy related terms is included. (BCS)

  19. Solar System Puzzle Kit: An Activity for Earth and Space Science.

    ERIC Educational Resources Information Center

    Vogt, Gregory L.; Rosenberg, Carla B.

    This Solar System Puzzle Kit for grades 5-8, allows students to create an eight-cube paper puzzle of the solar system and may be duplicated for classroom use or used as a take home activity for children and parents. By assembling the puzzle, hand-coloring the bodies of the solar system, and viewing the puzzle's 12 sides, students can reinforce…

  20. Solar and terrestrial physics. [effects of solar activities on earth environment

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The effects of solar radiation on the near space and biomental earth, the upper atmosphere, and the magnetosphere are discussed. Data obtained from the OSO satellites pertaining to the solar cycle variation of extreme ultraviolet (EUV) radiation are analyzed. The effects of solar cycle variation of the characteristics of the solar wind are examined. The fluid mechanics of shock waves and the specific relationship to the characteristics of solar shock waves are investigated. The solar and corpuscular heating of the upper atmosphere is reported based on the findings of the AEROS and NATE experiments. Seasonal variations of the upper atmosphere composition are plotted based on OGO-6 mass spectrometer data.

  1. Trichotillomania: Bizzare Patern of Hair Loss at 11-Year-old Girl.

    PubMed

    Zímová, Jana; Zímová, Pavlína

    2016-06-01

    Trichotillomania (TTM) is defined by the Diagnostics and Statistic Manual of Mental Disorders, 4th edition (DMS-IV) as hair loss from a patient`s repetitive self-pulling of hair. The disorder is included under anxiety disorders because it shares some obsessive-compulsive features. Patients have the tendency towards feelings of unattractiveness, body dissatisfaction, and low self-esteem (1,2). It is a major psychiatric problem, but many patients with this disorder first present to a dermatologist. An 11-year-old girl came to our department with a 2-month history of diffuse hair loss on the frontoparietal and parietotemporal area (Figure 1). She had originally been examined by a pediatrician with the diagnosis of alopecia areata. The patient`s personal history included hay fever and shortsightedness, and she suffered from varicella and mononucleosis. Nobody in the family history suffered from alopecia areata, but her father has male androgenetic alopecia (Norwood/Hamilton MAGA C3F3). The mother noticed that the child had had changeable mood for about 2 months and did not want to communicate with other persons in the family. The family did not have any pet at home. At school, her favorite subjects were Math and Computer Studies. She did not like Physical Education and did not participate in any sport activities during her free time. This was very strange because she was obese (body-mass index (BMI) 24.69). She was sometimes angry with her 13-year-old sister who had better results at school. The girl had suddenly started to wear a blue scarf. The parents did not notice that she pulled out her hair at home. Dermatological examination of the capillitium found a zone of incomplete alopecia in the frontoparietal and parietotemporal area, without inflammation, desquamation, and scaring. Hairs were of variable length (Figure 1). There was a patch of incomplete alopecia above the forehead between two stripes of hair of variable length (Figure 2). The hair pull test was

  2. Trichotillomania: Bizzare Patern of Hair Loss at 11-Year-old Girl.

    PubMed

    Zímová, Jana; Zímová, Pavlína

    2016-06-01

    Trichotillomania (TTM) is defined by the Diagnostics and Statistic Manual of Mental Disorders, 4th edition (DMS-IV) as hair loss from a patient`s repetitive self-pulling of hair. The disorder is included under anxiety disorders because it shares some obsessive-compulsive features. Patients have the tendency towards feelings of unattractiveness, body dissatisfaction, and low self-esteem (1,2). It is a major psychiatric problem, but many patients with this disorder first present to a dermatologist. An 11-year-old girl came to our department with a 2-month history of diffuse hair loss on the frontoparietal and parietotemporal area (Figure 1). She had originally been examined by a pediatrician with the diagnosis of alopecia areata. The patient`s personal history included hay fever and shortsightedness, and she suffered from varicella and mononucleosis. Nobody in the family history suffered from alopecia areata, but her father has male androgenetic alopecia (Norwood/Hamilton MAGA C3F3). The mother noticed that the child had had changeable mood for about 2 months and did not want to communicate with other persons in the family. The family did not have any pet at home. At school, her favorite subjects were Math and Computer Studies. She did not like Physical Education and did not participate in any sport activities during her free time. This was very strange because she was obese (body-mass index (BMI) 24.69). She was sometimes angry with her 13-year-old sister who had better results at school. The girl had suddenly started to wear a blue scarf. The parents did not notice that she pulled out her hair at home. Dermatological examination of the capillitium found a zone of incomplete alopecia in the frontoparietal and parietotemporal area, without inflammation, desquamation, and scaring. Hairs were of variable length (Figure 1). There was a patch of incomplete alopecia above the forehead between two stripes of hair of variable length (Figure 2). The hair pull test was

  3. Spring-fall asymmetry of substorm strength, geomagnetic activity and solar wind: Implications for semiannual variation and solar hemispheric asymmetry

    USGS Publications Warehouse

    Mursula, K.; Tanskanen, E.; Love, J.J.

    2011-01-01

    We study the seasonal variation of substorms, geomagnetic activity and their solar wind drivers in 1993-2008. The number of substorms and substorm mean duration depict an annual variation with maxima in Winter and Summer, respectively, reflecting the annual change of the local ionosphere. In contradiction, substorm mean amplitude, substorm total efficiency and global geomagnetic activity show a dominant annual variation, with equinoctial maxima alternating between Spring in solar cycle 22 and Fall in cycle 23. The largest annual variations were found in 1994 and 2003, in the declining phase of the two cycles when high-speed streams dominate the solar wind. A similar, large annual variation is found in the solar wind driver of substorms and geomagnetic activity, which implies that the annual variation of substorm strength, substorm efficiency and geomagnetic activity is not due to ionospheric conditions but to a hemispherically asymmetric distribution of solar wind which varies from one cycle to another. Our results imply that the overall semiannual variation in global geomagnetic activity has been seriously overestimated, and is largely an artifact of the dominant annual variation with maxima alternating between Spring and Fall. The results also suggest an intimate connection between the asymmetry of solar magnetic fields and some of the largest geomagnetic disturbances, offering interesting new pathways for forecasting disturbances with a longer lead time to the future. Copyright ?? 2011 by the American Geophysical Union.

  4. Spring-fall asymmetry of substorm strength, geomagnetic activity and solar wind: Implications for semiannual variation and solar hemispheric asymmetry

    USGS Publications Warehouse

    Marsula, K.; Tanskanen, E.; Love, J.J.

    2011-01-01

    We study the seasonal variation of substorms, geomagnetic activity and their solar wind drivers in 1993–2008. The number of substorms and substorm mean duration depict an annual variation with maxima in Winter and Summer, respectively, reflecting the annual change of the local ionosphere. In contradiction, substorm mean amplitude, substorm total efficiency and global geomagnetic activity show a dominant annual variation, with equinoctial maxima alternating between Spring in solar cycle 22 and Fall in cycle 23. The largest annual variations were found in 1994 and 2003, in the declining phase of the two cycles when high-speed streams dominate the solar wind. A similar, large annual variation is found in the solar wind driver of substorms and geomagnetic activity, which implies that the annual variation of substorm strength, substorm efficiency and geomagnetic activity is not due to ionospheric conditions but to a hemispherically asymmetric distribution of solar wind which varies from one cycle to another. Our results imply that the overall semiannual variation in global geomagnetic activity has been seriously overestimated, and is largely an artifact of the dominant annual variation with maxima alternating between Spring and Fall. The results also suggest an intimate connection between the asymmetry of solar magnetic fields and some of the largest geomagnetic disturbances, offering interesting new pathways for forecasting disturbances with a longer lead time to the future.

  5. Detectability of active triangulation range finder: a solar irradiance approach.

    PubMed

    Liu, Huizhe; Gao, Jason; Bui, Viet Phuong; Liu, Zhengtong; Lee, Kenneth Eng Kian; Peh, Li-Shiuan; Png, Ching Eng

    2016-06-27

    Active triangulation range finders are widely used in a variety of applications such as robotics and assistive technologies. The power of the laser source should be carefully selected in order to satisfy detectability and still remain eye-safe. In this paper, we present a systematic approach to assess the detectability of an active triangulation range finder in an outdoor environment. For the first time, we accurately quantify the background noise of a laser system due to solar irradiance by coupling the Perez all-weather sky model and ray tracing techniques. The model is validated with measurements with a modeling error of less than 14.0%. Being highly generic and sufficiently flexible, the proposed model serves as a guide to define a laser system for any geographical location and microclimate.

  6. Possible Relationship of the Solar Activity and Earthquakes

    NASA Astrophysics Data System (ADS)

    Gonzalez-Trejo, J. I.; Cervantes, F.; Real-Ramírez, C. A.; Hoyos-Reyes, L. F.; Miranda-Tello, R.; Area de Sistemas Computacionales

    2013-05-01

    Several authors have recently argued that there is a relationship between solar activity and big earthquakes. This work compares Dst index fluctuations along 2012 and 2013, with the earthquake activity near La Paz, Baja California, Mexico. The earthquakes measurements at this place were divided according its deep focus. It was observed that the frequency of the deeper earthquakes increases shortly after considerable fluctuations in the Dst index are registered. We assume that the number of deep earthquakes increases because the interaction of the tectonic plate below that place and the tectonic plates in contact with it increases. This work also shows that the frequency of shallowest minor and light earthquakes increases shortly before a strongest earthquake takes place in the vicinity.

  7. Detectability of active triangulation range finder: a solar irradiance approach.

    PubMed

    Liu, Huizhe; Gao, Jason; Bui, Viet Phuong; Liu, Zhengtong; Lee, Kenneth Eng Kian; Peh, Li-Shiuan; Png, Ching Eng

    2016-06-27

    Active triangulation range finders are widely used in a variety of applications such as robotics and assistive technologies. The power of the laser source should be carefully selected in order to satisfy detectability and still remain eye-safe. In this paper, we present a systematic approach to assess the detectability of an active triangulation range finder in an outdoor environment. For the first time, we accurately quantify the background noise of a laser system due to solar irradiance by coupling the Perez all-weather sky model and ray tracing techniques. The model is validated with measurements with a modeling error of less than 14.0%. Being highly generic and sufficiently flexible, the proposed model serves as a guide to define a laser system for any geographical location and microclimate. PMID:27410637

  8. Resonance of about-weekly human heart rate rhythm with solar activity change.

    PubMed

    Cornelissen, G; Halberg, F; Wendt, H W; Bingham, C; Sothern, R B; Haus, E; Kleitman, E; Kleitman, N; Revilla, M A; Revilla, M; Breus, T K; Pimenov, K; Grigoriev, A E; Mitish, M D; Yatsyk, G V; Syutkina, E V

    1996-12-01

    In several human adults, certain solar activity rhythms may influence an about 7-day rhythm in heart rate. When no about-weekly feature was found in the rate of change in sunspot area, a measure of solar activity, the double amplitude of a circadian heart rate rhythm, approximated by the fit of a 7-day cosine curve, was lower, as was heart rate corresponds to about-weekly features in solar activity and/or relates to a sunspot cycle.

  9. Chromospheric and photospheric evolution of an extremely active solar region in solar cycle 19

    NASA Technical Reports Server (NTRS)

    Mckenna-Lawlor, S. M. P.

    1981-01-01

    a comprehensive investigation was made of phenomena attending the disk passage, July 7 to 21, 1959, of active solar center HAO-59Q. At the photospheric level that comprised an aggregate of groups of sunspots of which one group, Mt. Wilson 14284, showed all the attributes deemed typical of solar regions associated with the production of major flares. A special characteristic of 59Q was its capability to eject dark material. Part of this material remained trapped in the strong magnetic fields above group 14284 where it formed a system of interrelated arches, the legs of which passed through components of the bright chromospheric network of the plage and were rooted in various underlying umbrae. Two apparently diffeent kinds of flare were identified in 59Q; namely, prominence flares (which comprised brightenings within part of the suspended dark prominence) and plage flares (which comprised brightenings within part of the chromospheric network). Prominence flares were of three varieties described as 'impact', 'stationary' and 'moving' prominence flares. Plage flares were accompanied in 3 percent of cases by Type III bursts. These latter radio events indicate the associated passage through the corona of energetic electrons in the approximate energy range 10 to 100 keV. At least 87.5 percent, and probably all, impulsive brightenings in 59Q began directly above minor spots, many of which satellites to major umbrae. Stationary and moving prominence flares were individually triggered at sites beneath which magnetic changes occurred within intervals which included each flare's flash phase.

  10. Near-Earth Solar Wind Flows and Related Geomagnetic Activity During more than Four Solar Cycles (1963-2011)

    NASA Technical Reports Server (NTRS)

    Richardson, Ian G.; Cane, Hilary V.

    2012-01-01

    In past studies, we classified the near-Earth solar wind into three basic flow types based on inspection of solar wind plasma and magnetic field parameters in the OMNI database and additional data (e.g., geomagnetic indices, energetic particle, and cosmic ray observations). These flow types are: (1) High-speed streams associated with coronal holes at the Sun, (2) Slow, interstream solar wind, and (3) Transient flows originating with coronal mass ejections at the Sun, including interplanetary coronal mass ejections and the associated upstream shocks and post-shock regions. The solar wind classification in these previous studies commenced with observations in 1972. In the present study, as well as updating this classification to the end of 2011, we have extended the classification back to 1963, the beginning of near-Earth solar wind observations, thereby encompassing the complete solar cycles 20 to 23 and the ascending phase of cycle 24. We discuss the cycle-to-cycle variations in near-Earth solar wind structures and l1e related geomagnetic activity over more than four solar cycles, updating some of the results of our earlier studies.

  11. Babcock-Leighton solar dynamo: the role of downward pumping and the equatorward propagation of activity

    NASA Astrophysics Data System (ADS)

    Karak, Bidya Binay; Cameron, Robert

    2016-05-01

    We investigate the role of downward magnetic pumping near the surface using a kinematic Babcock-Leighton model. We find that the pumping causes the poloidal field to become predominately radial in the near-surface shear layer. This allows the negative radial shear in the near-surface layer to effectively act on the radial field to produce a toroidal field. Consequently, we observe a clear equatorward migration of the toroidal field at low latitudes even when there is no meridional flow in the deep CZ. We show a case where the period of a dynamo wave solution is approximately 11 years. Flux transport models are also shown with periods close to 11 years. Both the dynamo wave and flux transport dynamo are thus able to reproduce some of the observed features of solar cycle. The main difference between the two types of dynamo is the value of $\\alpha$ required to produce dynamo action. In both types of dynamo, the surface meridional flow helps to advect and build the polar field in high latitudes, while in flux transport dynamo the equatorward flow near the bottom of CZ advects toroidal field to cause the equatorward migration in butterfly wings and this advection makes the dynamo easier by transporting strong toroidal field to low latitudes where $\\alpha$ effect works. Another conclusion of our study is that the magnetic pumping suppresses the diffusion of fields through the photospheric surface which helps to achieve the 11-year dynamo cycle at a moderately larger value of magnetic diffusivity than has previously been used.

  12. Pre- and main-sequence evolution of solar activity

    NASA Technical Reports Server (NTRS)

    Walter, Frederick M.; Barry, Don C.

    1991-01-01

    The magnetic activity on single solarlike stars declines with stellar age. This has important consequences for the influence of the sun on the early solar system. What is meant by stellar activity, and how it is measured, is reviewed. Stellar activity on the premain-sequence phase of evolution is discussed; the classical T Tauri stars do not exhibit solarlike activity, while the naked T Tauri stars do. The emission surface fluxes of the naked T Tauri stars are similar to those of the youngest main-sequence G stars. The best representation for solarlike stars is a decay proportional to exp(A x t exp 0.5), where A is a function of line excitation temperature. From these decay laws, one can determine the interdependences of the activity, age, and rotation periods. The fluxes of ionizing photons at the earth early in its history are discussed; there was sufficient fluence to account for the observed isotopic ratios of the noble gases.

  13. Heliobiology, its development, successes and tasks. [solar activity effects on life on earth

    NASA Technical Reports Server (NTRS)

    Platonova, A. T.

    1974-01-01

    Heliobiology studies the influence of changes in solar activity on life. Considered are the influence of periodic solar activity on the development and growth of epidemics, mortality from various diseases, the functional activity of the nervous system, the development of psychic disturbances, the details of the development of microorganisms and many other phenomena in the living world.

  14. Microzonality of luminescence of cave stalactites as a new indirect index of solar activity

    NASA Astrophysics Data System (ADS)

    Shopov, I.; Dermendzhiev, V.

    Solar activity as registered in cave stalactites is discussed. Laser luminescence microzonal analysis was conducted on a polished section of a cave flowstone. The molecular admixture of the stone was excited by an ultraviolet laser and its luminescence was photographed using a microscope. The data were processed and correlated with solar activity data. It is suggested that solar wind and heliospheric changes could lead to an anticorrelation between the galactic cosmic ray flux and the solar activity and this effect could be used for interpolation of past solar activity by radioactive isotopes. Data on solar activity during periods of up to seven million years (which is the age of the oldest cave stalactites) can be obtained.

  15. Observing large-scale solar surface flows with GONG: Investigation of a key element in solar activity buildup

    NASA Technical Reports Server (NTRS)

    Beck, John G.; Simon, George W.; Hathaway, David H.

    1996-01-01

    The Global Oscillation Network Group (GONG) solar telescope network has begun regular operations, and will provide continuous Doppler images of large-scale nearly-steady motions at the solar surface, primarily those due to supergranulation. Not only the Sun's well-known magnetic network, but also flux diffusion, dispersal, and concentration at the surface appear to be controlled by supergranulation. Through such magnetoconvective interactions, magnetic stresses develop, leading to solar activity. We show a Doppler movie made from a 45.5 hr time series obtained 1995 May 9-10 using data from three of the six GONG sites (Learmonth, Tenerife, Tucson), to demonstrate the capability of this system.

  16. SIMULATION OF THE FORMATION OF A SOLAR ACTIVE REGION

    SciTech Connect

    Cheung, M. C. M.; Title, A. M.; Rempel, M.; Schuessler, M.

    2010-09-01

    We present a radiative magnetohydrodynamics simulation of the formation of an active region (AR) on the solar surface. The simulation models the rise of a buoyant magnetic flux bundle from a depth of 7.5 Mm in the convection zone up into the solar photosphere. The rise of the magnetic plasma in the convection zone is accompanied by predominantly horizontal expansion. Such an expansion leads to a scaling relation between the plasma density and the magnetic field strength such that B {proportional_to} rhov{sup 1/2}. The emergence of magnetic flux into the photosphere appears as a complex magnetic pattern, which results from the interaction of the rising magnetic field with the turbulent convective flows. Small-scale magnetic elements at the surface first appear, followed by their gradual coalescence into larger magnetic concentrations, which eventually results in the formation of a pair of opposite polarity spots. Although the mean flow pattern in the vicinity of the developing spots is directed radially outward, correlations between the magnetic field and velocity field fluctuations allow the spots to accumulate flux. Such correlations result from the Lorentz-force-driven, counterstreaming motion of opposite polarity fragments. The formation of the simulated AR is accompanied by transient light bridges between umbrae and umbral dots. Together with recent sunspot modeling, this work highlights the common magnetoconvective origin of umbral dots, light bridges, and penumbral filaments.

  17. Simulation of the Formation of a Solar Active Region

    NASA Astrophysics Data System (ADS)

    Cheung, M. C. M.; Rempel, M.; Title, A. M.; Schüssler, M.

    2010-09-01

    We present a radiative magnetohydrodynamics simulation of the formation of an active region (AR) on the solar surface. The simulation models the rise of a buoyant magnetic flux bundle from a depth of 7.5 Mm in the convection zone up into the solar photosphere. The rise of the magnetic plasma in the convection zone is accompanied by predominantly horizontal expansion. Such an expansion leads to a scaling relation between the plasma density and the magnetic field strength such that B vprop rhov1/2. The emergence of magnetic flux into the photosphere appears as a complex magnetic pattern, which results from the interaction of the rising magnetic field with the turbulent convective flows. Small-scale magnetic elements at the surface first appear, followed by their gradual coalescence into larger magnetic concentrations, which eventually results in the formation of a pair of opposite polarity spots. Although the mean flow pattern in the vicinity of the developing spots is directed radially outward, correlations between the magnetic field and velocity field fluctuations allow the spots to accumulate flux. Such correlations result from the Lorentz-force-driven, counterstreaming motion of opposite polarity fragments. The formation of the simulated AR is accompanied by transient light bridges between umbrae and umbral dots. Together with recent sunspot modeling, this work highlights the common magnetoconvective origin of umbral dots, light bridges, and penumbral filaments.

  18. The influence of solar active region evolution on solar wind streams, coronal hole boundaries and geomagnetic storms

    NASA Technical Reports Server (NTRS)

    Gold, R. E.; Dodson-Prince, H. W.; Hedeman, E. R.; Roelof, E. C.

    1982-01-01

    Solar and interplanetary data are examined, taking into account the identification of the heliographic longitudes of the coronal source regions of high speed solar wind (SW) streams by Nolte and Roelof (1973). Nolte and Roelof have 'mapped' the velocities measured near earth back to the sun using the approximation of constant radial velocity. The 'Carrington carpet' for rotations 1597-1616 is shown in a graph. Coronal sources of high speed streams appear in the form of solid black areas. The contours of the stream sources are laid on 'evolutionary charts' of solar active region histories for the Southern and Northern Hemispheres. Questions regarding the interplay of active regions and solar wind are investigated, giving attention to developments during the years 1973, 1974, and 1975.

  19. The 11-year long-term follow-up study from the randomized BENEFIT CIS trial

    PubMed Central

    Edan, Gilles; Freedman, Mark S.; Montalbán, Xavier; Hartung, Hans-Peter; Hemmer, Bernhard; Fox, Edward J.; Barkhof, Frederik; Schippling, Sven; Schulze, Andrea; Pleimes, Dirk; Pohl, Christoph; Sandbrink, Rupert; Suarez, Gustavo; Wicklein, Eva-Maria

    2016-01-01

    Objective: To assess outcomes for patients treated with interferon beta-1b immediately after clinically isolated syndrome (CIS) or after a short delay. Methods: Participants in BENEFIT (Betaferon/Betaseron in Newly Emerging MS for Initial Treatment) were randomly assigned to receive interferon beta-1b (early treatment) or placebo (delayed treatment). After conversion to clinically definite multiple sclerosis (CDMS) or 2 years, patients on placebo could switch to interferon beta-1b or another treatment. Eleven years after randomization, patients were reassessed. Results: Two hundred seventy-eight (59.4%) of the original 468 patients (71.3% of those eligible at participating sites) were enrolled (early: 167 [57.2%]; delayed: 111 [63.1%]). After 11 years, risk of CDMS remained lower in the early-treatment arm compared with the delayed-treatment arm (p = 0.0012), with longer time to first relapse (median [Q1, Q3] days: 1,888 [540, not reached] vs 931 [253, 3,296]; p = 0.0005) and lower overall annualized relapse rate (0.21 vs 0.26; p = 0.0018). Only 25 patients (5.9%, overall; early, 4.5%; delayed, 8.3%) converted to secondary progressive multiple sclerosis. Expanded Disability Status Scale scores remained low and stable, with no difference between treatment arms (median [Q1, Q3]: 2.0 [1.0, 3.0]). The early-treatment group had better Paced Auditory Serial Addition Task–3 total scores (p = 0.0070). Employment rates remained high, and health resource utilization tended to be low in both groups. MRI metrics did not differ between groups. Conclusions: Although the delay in treatment was relatively short, several clinical outcomes favored earlier treatment. Along with low rates of disability and disease progression in both groups, this supports the value of treatment at CIS. ClinicalTrials.gov identifier: NCT01795872. Classification of evidence: This study provides Class IV evidence that early compared to delayed treatment prolongs time to CDMS in CIS after 11 years. PMID

  20. Reporting accuracy of packed lunch consumption among Danish 11-year-olds differ by gender

    PubMed Central

    Lyng, Nina; Fagt, Sisse; Davidsen, Michael; Hoppe, Camilla; Holstein, Bjørn; Tetens, Inge

    2013-01-01

    Background Packed lunch is the dominant lunch format in many countries including Denmark. School lunch is consumed unsupervised, and self-reported recalls are appropriate in the school setting. However, little is known about the accuracy of recalls in relation to packed lunch. Objective To assess the qualitative recall accuracy of self-reported consumption of packed lunch among Danish 11-year-old children in relation to gender and dietary assessment method. Design A cross-sectional dietary recall study of packed lunch consumption. Digital images (DIs) served as an objective reference method to determine food items consumed. Recalls were collected with a lunch recall questionnaire (LRQ) comprising an open-ended recall (OE-Q) and a pre-coded food group prompted recall (PC-Q). Individual interviews (INTs) were conducted successively. The number of food items was identified and accuracy was calculated as match rates (% identified by DIs and reported correctly) and intrusion rates (% not identified by DIs but reported) were determined. Setting and subjects Three Danish public schools from Copenhagen. A total of 114 Danish 11-year-old children, mean (SE) age=11.1 (0.03), and body mass index=18.2 (0.26). Results The reference (DIs) showed that girls consumed a higher number of food items than boys [mean (SE) 5.4 (0.25) vs. 4.6 (0.29) items (p=0.05)]. The number of food items recalled differed between genders with OE-Q recalls (p=0.005) only. Girls’ interview recalls were more accurate than boys’ with higher match rates (p=0.04) and lower intrusion rates (p=0.05). Match rates ranged from 67–90% and intrusion rates ranged from 13–39% with little differences between girls and boys using the OE-Q and PC-Q methods. Conclusion Dietary recall validation studies should not only consider match rates as an account of accuracy. Intrusions contribute to over-reporting in non-validation studies, and future studies should address recall accuracy and inaccuracies in relation to

  1. Examining Relative Age Effects in Fundamental Skill Proficiency in British Children Aged 6-11 Years.

    PubMed

    Birch, Samantha; Cummings, Laura; Oxford, Samuel W; Duncan, Michael J

    2016-10-01

    Birch, S, Cummings, L, Oxford, SW, and Duncan, MJ. Examining relative age effects in fundamental skill proficiency in British children aged 6-11 years. J Strength Cond Res 30(10): 2809-2815, 2016-The relative age effect (RAE) suggests that there is a clustering of birth dates just after the cutoff used for sports selection in age-grouped sports and that in such circumstances, relatively older sportspeople may enjoy maturational and physical advantages over their younger peers. Few studies have examined this issue in nonselective groups of children, and none have examined whether there is evidence of any RAE in skill performance. The aim of this study was to assess whether there were differences in fundamental movement skill (FMS) proficiency within children placed in age groups according to the school year. Six FMS (sprint, side gallop, balance, jump, catch, and throw) were assessed in 539 school children (258 boys and 281 girls) aged 6-11 years (mean age ± SD = 7.7 ± 1.7 years). We examined differences in these FMS between gender groups and children born in different quarters of the year after controlling for age and body mass index (BMI). For balance, chronological age was significant as a covariate (p = 0.0001) with increases in age associated with increases in balance. Boys had significantly higher sprint mastery compared with girls (p = 0.012), and increased BMI was associated with poorer sprint mastery (p = 0.001). Boys had higher catching mastery than girls (p = 0.003), and children born in Q1 had significantly greater catching mastery than those born in Q2 (p = 0.015), Q3 (p = 0.019), and Q4 (p = 0.01). Results for throwing mastery also indicated higher mastery in boys compared with girls (p = 0.013) and that children born in Q1 had higher throwing proficiency than those born in Q4 (p = 0.038). These results are important if coaches are basing sport selection on measures of skilled performance, particularly in object-control skills. Categorizing children

  2. MAGNETIC STRUCTURE PRODUCING X- AND M-CLASS SOLAR FLARES IN SOLAR ACTIVE REGION 11158

    SciTech Connect

    Inoue, S.; Magara, T.; Choe, G. S.; Hayashi, K.; Shiota, D.

    2013-06-10

    We study the three-dimensional magnetic structure of the solar active region 11158, which produced one X-class and several M-class flares on 2011 February 13-16. We focus on the magnetic twist in four flare events, M6.6, X2.2, M1.0, and M1.1. The magnetic twist is estimated from the nonlinear force-free field extrapolated from the vector fields obtained from the Helioseismic and Magnetic Imager on board the Solar Dynamic Observatory using the magnetohydrodynamic relaxation method developed by Inoue et al. We found that strongly twisted lines ranging from half-turn to one-turn twists were built up just before the M6.6 and X2.2 flares and disappeared after that. Because most of the twists remaining after these flares were less than a half-turn twist, this result suggests that the buildup of magnetic twist over the half-turn twist is a key process in the production of large flares. On the other hand, even though these strong twists were also built up just before the M1.0 and M1.1 flares, most of them remained afterward. Careful topological analysis before the M1.0 and M1.1 flares shows that the strongly twisted lines were surrounded mostly by the weakly twisted lines formed in accordance with the clockwise motion of the positive sunspot, whose footpoints are rooted in strong magnetic flux regions. These results imply that these weakly twisted lines might suppress the activity of the strongly twisted lines in the last two M-class flares.

  3. Inferred flows of electric currents in solar active regions

    NASA Technical Reports Server (NTRS)

    Ding, Y. J.; Hong, Q. F.; Hagyard, M. J.; Deloach, A. C.

    1985-01-01

    Techniques to identify sources of major current systems in active regions and their channels of flow are explored. Measured photospheric vector magnetic fields together with high resolution white light and H-alpha photographs provide the data base to derive the current systems in the photosphere and chromosphere of a solar active region. Simple mathematical constructions of active region fields and currents are used to interpret these data under the assumptions that the fields in the lower atmosphere (below 200 km) may not be force free but those in the chromosphere and higher are. The results obtained for the complex active region AR 2372 are: (1) Spots exhibiting significant spiral structure in the penumbral filaments were the source of vertical currents at the photospheric surface; (2) Magnetic neutral lines where the transverse magnetic field was strongly sheared were channels along which a strong current system flowed; (3) The inferred current systems produced a neutral sheet and oppositely-flowing currents in the area of the magnetic delta configuration that was the site of flaring.

  4. A Forecast of Reduced Solar Activity and Its Implications for NASA

    NASA Technical Reports Server (NTRS)

    Schatten, Kenneth; Franz, Heather

    2005-01-01

    The "Solar Dynamo" method of solar activity forecasting is reviewed. Known generically as a 'precursor" method, insofar as it uses observations which precede solar activity generation, this method now uses the Solar Dynamo Amplitude (SODA) Index to estimate future long-term solar activity. The peak amplitude of the next solar cycle (#24), is estimated at roughly 124 in terms of smoothed F10.7 Radio Flux and 74 in terms of the older, more traditional smoothed international or Zurich Sunspot number (Ri or Rz). These values are significantly smaller than the amplitudes of recent solar cycles. Levels of activity stay large for about four years near the peak in smoothed activity, which is estimated to occur near the 2012 timeflame. Confidence is added to the prediction of low activity by numerous examinations of the Sun s weakened polar field. Direct measurements are obtained by the Mount Wilson Solar Observatory and the Wilcox Solar Observatory. Further support is obtained by examining the Sun s polar faculae (bright features), the shape of coronal soft X-ray "holes," and the shape of the "source surface" - a calculated coronal feature which maps the large scale structure of the Sun s field. These features do not show the characteristics of well-formed polar coronal holes associated with typical solar minima. They show stunted polar field levels, which are thought to result in stunted levels of solar activity during solar cycle #24. The reduced levels of solar activity would have concomitant effects upon the space environment in which satellites orbit. In particular, the largest influences would affect orbit determination of satellites in LEO (Low Earth Orbit), based upon the altered thermospheric and exospheric densities. A decrease in solar activity would result in smaller satellite decay rates, as well as fewer large solar events that can destroy satellite electronic functions. Other effects of reduced solar activity upon the space environment include enhanced

  5. The impact of solar activities on the boreal winter climate and its decadal variation

    NASA Astrophysics Data System (ADS)

    Xiao, Z.; WANG, R.

    2015-12-01

    A lot of analysis revealed the relation between the variation of solar activity and climate over pole and high latitudes. Among them, Artic oscillation (AO) demonstrates a closely relationship with solar activity. Based on the F10.7cm solar radiant flux and NCEP reanalysis data sets from 1952 to 2011, we studied the impact of the variation of solar activity on the boreal winter climate over north hemisphere. Results show that solar activity closely related with the winter atmospheric circulation over East Asia. However, the relationship exhibits obviously differences between strong and weak solar activity periods. It suggests solar activity present an asymmetric influence on winter climate over East Asia. Further investigation indicates that the linkage between solar activity and East Asia winter climate is robust during active solar period but the connection is fairly weak during inactive phases. The more detail analysis reveals that the spacial characteristic of the atmospheric response to the solar variation is obviously different before and after later years 1970s. AO and F10.7cm flux appears a negative relation before 1978 but distinct positive relationship during the later years. During the period from 1952 to 1978, the variation of the solar activity is related to the sea surface temperature anomaly over Pacific and atmospheric zonal wind over tropical and low latitudes. On the other hand, it has a more closely relationship with temperature anomaly over Europe and Asian continent and the atmospheric circulation over mid-high latitudes during the time from 1979 to 2011. It is possibly caused by the climate condition transition in later 1970s and the solar radiant decadal variation influence on stratosphere and troposphere interaction.

  6. Birth weight and cognitive function at age 11 years: the Scottish Mental Survey 1932

    PubMed Central

    Shenkin, S; Starr, J; Pattie, A; Rush, M; Whalley, L; Deary, I; PHARAOH, E. P.

    2001-01-01

    AIMS—To examine the relation between birth weight and cognitive function at age 11 years, and to examine whether this relation is independent of social class.
METHODS—Retrospective cohort study based on birth records from 1921 and cognitive function measured while at school at age 11 in 1932.Subjects were 985 live singletons born in the Edinburgh Royal Maternity and Simpson Memorial Hospital in 1921. Moray House Test scores from the Scottish Mental Survey 1932 were traced on 449of these children.
RESULTS—Mean score on Moray House Test increased from 30.6 at a birth weight of <2500 g to 44.7 at 4001-4500 g, after correcting for gestational age, maternal age, parity, social class, and legitimacy of birth. Multiple regression showed that 15.6% of the variance in Moray House Test score is contributed by a combination of social class (6.6%), birth weight (3.8%), child's exact age (2.4%), maternal parity (2.0%), and illegitimacy (1.5%). Structural equation modelling confirmed the independent contribution from each of these variables in predicting cognitive ability. A model in which birth weight acted as a mediator of social class had poor fit statistics.
CONCLUSION—In this 1921 birth cohort, social class and birth weight have independent effects on cognitive function at age 11. Future research will relate these childhood data to health and cognition in old age.

 PMID:11517097

  7. Hydration Deficit in 9- to 11-Year-Old Egyptian Children

    PubMed Central

    Gouda, Zaghloul; Zarea, Mohamed; El-Hennawy, Usama; Viltard, Mélanie; Lepicard, Eve; Hawili, Nasrine; Constant, Florence

    2015-01-01

    Background. Children who drink too little to meet their daily water requirements are likely to become dehydrated, and even mild dehydration can negatively affect health. This is even more important in Middle-Eastern countries where high temperatures increase the risk of dehydration. We assessed morning hydration status in a sample of 519 Egyptian schoolchildren (9-11 years old). Methods. Children completed a questionnaire on breakfast intakes and collected a urine sample after breakfast. Breakfast food and fluid nutritional composition was analyzed and urine osmolality was measured using osmometry. Results. The mean urine osmolality of children was 814 mOsmol/kg: >800 mOsmol/kg (57%) and >1000 mOsmol/kg (24.7%). Furthermore, the results showed that a total water intake of less than 400 mL was associated with a significant higher risk of dehydration. Surprisingly, 63% of the children skipped breakfast. Conclusions. The results showed that a majority of Egyptian schoolchildren arrive at school with a hydration deficit. These results highlight the fact that there is a need to educate schoolchildren about the importance of having a breakfast and adequate hydration. PMID:27335985

  8. Time knowledge acquisition in children aged 6 to 11 years and its relationship with numerical skills.

    PubMed

    Labrell, Florence; Mikaeloff, Yann; Perdry, Hervé; Dellatolas, Georges

    2016-03-01

    Acquisition of time knowledge (TK; the correct representation and use of time units) is linked to the development of numerical abilities, but this relationship has not been investigated in children. The current study examined the acquisition of TK and its association with numerical skills. A total of 105 children aged 6 to 11 years were interviewed with our Time Knowledge Questionnaire (TKQ), developed for purposes of this study, and the Zareki-R, a battery for the evaluation of number processing and mental calculation. The TKQ assessed conventional time knowledge (temporal orientation, temporal sequences, relationships between time units, and telling the time on a clock), estimation of longer durations related to birthday and life span, and estimation of the duration of the interview. Time knowledge increased with age, especially from 6 to 8 years, and was strongly linked to numerical skills. Regression analyses showed that four numerical components were implicated in TK: academic knowledge of numbers and number facts (e.g., reading Arabic numerals, mental calculation), number line estimation (e.g., correspondence between a number and a distance), contextual estimation (e.g., many/few leaves on a tree, children in a family), and numerical tasks involving verbal working memory (e.g., comparison of numbers presented orally). Numerical correlations with TK varied according to children's age; subtests based on academic knowledge of numbers, working memory, and number line estimation were linked with TK in the younger children, but only contextual estimation was associated with TK in the older children. PMID:26590852

  9. Prenatal Cocaine Exposure Alters Cortisol Stress Reactivity in 11 Year Old Children

    PubMed Central

    Lester, Barry M.; LaGasse, Linda L.; Shankaran, Seetha; Bada, Henrietta S.; Bauer, Charles R.; Lin, Richard; Das, Abhik; Higgins, Rosemary

    2011-01-01

    Objective Determine the association between prenatal cocaine exposure and postnatal environmental adversity on salivary cortisol stress reactivity in school aged children. Study design Subjects included 743 11 year old children (n=320 cocaine exposed; 423 comparison) followed since birth in a longitudinal prospective multisite study. Saliva samples were collected to measure cortisol at baseline and after a standardized procedure to induce psychological stress. Children were divided into those who showed an increase in cortisol from baseline to post stress and those who showed a decrease or blunted cortisol response. Covariates measured included site, birthweight, maternal pre and postnatal use of alcohol, tobacco or marijuana, social class, changes in caretakers, maternal depression and psychological symptoms, domestic and community violence, child abuse and quality of the home. Results With adjustment for confounding variables, cortisol reactivity to stress was more likely to be blunted in children with prenatal cocaine exposure. Cocaine exposed children exposed to domestic violence showed the strongest effects. Conclusion The combination of prenatal cocaine exposure and an adverse postnatal environment could down regulate the hypothalamic-pituitary-adrenal axis (HPA) resulting in the blunted cortisol response to stress possibly increasing risk for later psychopathology and adult disease. PMID:20400094

  10. The EPICure Study: Association between Hemodynamics and Lung Function at 11 Years after Extremely Preterm Birth

    PubMed Central

    Bolton, Charlotte E.; Stocks, Janet; Hennessy, Enid; Cockcroft, John R.; Fawke, Joseph; Lum, Sooky; McEniery, Carmel M.; Wilkinson, Ian B.; Marlow, Neil

    2012-01-01

    Objective To investigate the relationship between disturbed lung function and large-artery hemodynamics in school-age children born extremely preterm (EP) (at 25 completed weeks of gestation or less). Study design This was a cross-sectional study of participants from the EPICure study, now aged 11 years (n = 66), and 86 age- and sex-matched term-born classmates. Spirometry parameters (including forced expiratory volume in 1 second), blood pressure, and augmentation index (AIx, a composite of arterial stiffness and global wave reflections) were measured. Results Compared with their classmates, the EP children had significantly impaired lung function, particularly those with neonatal bronchopulmonary dysplasia. Peripheral blood pressure did not differ significantly between the 2 groups, but AIx values were on average 5% higher (95% CI, 2%-8%) in the preterm infants, remaining significant after adjustment for potential confounders. Neonatal bronchopulmonary dysplasia status was not related to AIx. Lung function and maternal smoking were independently associated with AIx; AIx increased by 2.7% per z-score reduction in baseline forced expiratory volume in 1 second and by 4.9% in those whose mothers smoked during pregnancy. Conclusion The independent association between impaired lung function and cardiovascular physiology in early adolescence implies higher cardiovascular risk for children born EP, and suggests that prevention of chronic neonatal lung disease may be a priority in reducing later cardiovascular risk in preterm infants. PMID:22575246

  11. Picky eating during childhood: A longitudinal study to age 11-years

    PubMed Central

    Mascola, Anthony J.; Bryson, Susan W.

    2010-01-01

    Picky eating is a common disorder during childhood often causing considerable parental anxiety. This study examined the incidence, point prevalence, persistence and characteristics of picky eating in a prospective study of 120 children and their parents followed from 2 to 11 years. At any given age between 13% and 22% of the children were reported to be picky eaters. Incidence declined over time whereas point prevalence increased indicating that picky eating is often a chronic problem with 40% having a duration of more than 2-years. Those with longer duration differed from those with short duration having more strong likes and dislikes of food and not accepting new foods. Parents of picky eaters were more likely to report that their children consumed a limited variety of foods, required food prepared in specific ways, expressed stronger likes and dislikes for food, and threw tantrums when denied foods. They were also more likely to report struggles over feeding, preparing special meals, and commenting on their child’s eating. Hence, picky eating is a prevalent concern of parents and may remain so through childhood. It appears to be a relatively stable trait reflecting an individual eating style. However no significant effects on growth were observed. PMID:20850060

  12. Hydration Deficit in 9- to 11-Year-Old Egyptian Children.

    PubMed

    Gouda, Zaghloul; Zarea, Mohamed; El-Hennawy, Usama; Viltard, Mélanie; Lepicard, Eve; Hawili, Nasrine; Constant, Florence

    2015-01-01

    Background. Children who drink too little to meet their daily water requirements are likely to become dehydrated, and even mild dehydration can negatively affect health. This is even more important in Middle-Eastern countries where high temperatures increase the risk of dehydration. We assessed morning hydration status in a sample of 519 Egyptian schoolchildren (9-11 years old). Methods. Children completed a questionnaire on breakfast intakes and collected a urine sample after breakfast. Breakfast food and fluid nutritional composition was analyzed and urine osmolality was measured using osmometry. Results. The mean urine osmolality of children was 814 mOsmol/kg: >800 mOsmol/kg (57%) and >1000 mOsmol/kg (24.7%). Furthermore, the results showed that a total water intake of less than 400 mL was associated with a significant higher risk of dehydration. Surprisingly, 63% of the children skipped breakfast. Conclusions. The results showed that a majority of Egyptian schoolchildren arrive at school with a hydration deficit. These results highlight the fact that there is a need to educate schoolchildren about the importance of having a breakfast and adequate hydration. PMID:27335985

  13. Anemia and Iron Deficiency in Vietnamese Children, 6 to 11 Years Old.

    PubMed

    Le Nguyen Bao, Khanh; Tran Thuy, Nga; Nguyen Huu, Chinh; Khouw, Ilse; Deurenberg, Paul

    2016-07-01

    In a population sample of 385 children, 6 to 11 years old, venous blood parameters-hemoglobin (Hb), ferritin, red blood cell count (RBC), mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), mean corpuscular hemoglobin concentration (MCHC), C-reactive protein (CRP), and α1-acid glycoprotein (AGP)-were determined to get insight into the iron status. The prevalence of anemia was 11.4%; 5.6% had iron deficiency (ID), whereas 0.4% had ID anemia. Correction for inflammation based on CRP and AGP did not markedly change the overall prevalence of ID and ID anemia. Stunted children had lower Hb and ferritin values compared with nonstunted children, and thin children had lower values compared with normal-weight or overweight and obese children. Many nonanemic children had alert values for RBC, MCV, MCH, and MCHC. It is concluded that although the prevalence of anemia is of the magnitude of a mild public health problem, the iron status of many nonanemic children is borderline, as indicated by a high number of children with low values for red blood cytology. PMID:27052301

  14. Facial reconstruction of an 11-year-old female resident of 430 BC Athens.

    PubMed

    Papagrigorakis, Manolis J; Synodinos, Philippos N; Antoniadis, Aristomenis; Maravelakis, Emmanuel; Toulas, Panagiotis; Nilsson, Oscar; Baziotopoulou-Valavani, Effie

    2011-01-01

    Although modern standards of ideal proportions and facial esthetics are based mostly on observations of human faces as depicted in Classical Greek masterpieces of art, the real faces of ordinary ancient Greeks have, until now, remained elusive and subject to the imagination. Objective forensic techniques of facial reconstruction have never been applied before, because human skeletal material from Classical Greece has been extremely scarce, since most decent burials of that time required cremation. Here, the authors show stage by stage the facial reconstruction of an 11-year-old girl whose skull was unearthed in excellent condition from a mass grave with victims of the Plague that struck Athens of 430 bc. The original skull was replicated via three-dimensional modeling and rapid prototyping techniques. The reconstruction followed the Manchester method, laying the facial tissues from the surface of the skull outward by using depth-marker pegs as thickness guides. The shape, size, and position of the eyes, ears, nose, and mouth were determined according to features of the underlying skeletal tissues, whereas the hairstyle followed the fashion of the time. This is the first case of facial reconstruction of a layperson residing in Athens of the Golden Age of Pericles. It is ironic, however, that this unfortunate girl who lived such a short life in ancient Athens, will now, 2500 years later, have the chance to travel and be universally recognizable in a world much bigger than anybody in ancient Athens could have ever imagined. PMID:20936971

  15. Diagnosis and Treatment of Odontogenic Cutaneous Sinus Tracts in an 11-Year-Old Boy

    PubMed Central

    Chen, Ke; Liang, Yun; Xiong, Huacui

    2016-01-01

    Abstract Odontogenic cutaneous sinus tracts (OCSTs) are generally primarily misdiagnosed and inappropriately treated by virtue of their rarity and the absence of dental symptoms. Accurate diagnosis and treatment and the elimination of the source of infection can reduce the incidence of complications and relieve the pain of the patient. In this case report, we present the case of an 11-year-old patient with an apparent abscess but an unobvious draining sinus tract in his left cheek. Intraorally, a glass-ionomer-cement filling on the occlusal surface of the left mandibular first molar (tooth 36) was noted. Radiographic examination revealed a radiopaque mass inside the crown and pulp chamber and an irregular, radiolucent periapical lesion surrounding the distal root apex. He was diagnosed with an OCTS secondary to a periapical abscess of tooth 36. Precise root canal therapy (RCT) and chronic granuloma debridement was performed; 6 months later, the abscess and sinus had healed completely, and the periapical lesion had resolved. Odontogenic cutaneous sinus tracts are uncommon in the clinic. This case report reminds us of the significance of OCSTs and provides some implications for their diagnosis and treatment. PMID:27196471

  16. Sludge accumulation in shallow maturation ponds treating UASB reactor effluent: results after 11 years of operation.

    PubMed

    Possmoser-Nascimento, Thiago Emanuel; Rodrigues, Valéria Antônia Justino; von Sperling, Marcos; Vasel, Jean-Luc

    2014-01-01

    Polishing ponds are natural systems used for the post-treatment of upflow anaerobic sludge blanket (UASB) effluents. They are designed as maturation ponds and their main goal is the removal of pathogens and nitrogen and an additional removal of residual organic matter from the UASB reactor. This study aimed to evaluate organic matter and suspended solids removal as well as sludge accumulation in two shallow polishing ponds in series treating sanitary effluent from a UASB reactor with a population equivalent of 200 inhabitants in Brazil, operating since 2002. For this evaluation, long-term monitoring of biochemical oxygen demand and total suspended solids and bathymetric surveys have been undertaken. The ponds showed an irregular distribution of total solids mass in the sludge layer of the two ponds, with mean accumulation values of 0.020 m(3) person(-1) year(-1) and 0.004 m(3) person(-1) year(-1) in Ponds 1 and 2, leading to around 40% and 8% of the liquid volume occupied by the sediments after 11 years of operation. The first pond showed better efficiency in relation to organic matter removal, although its contribution was limited, due to algal growth. No simple input-output mass balance of solids can be applied to the ponds due to algal growth in the liquid phase and sludge digestion in the sludge.

  17. Physical training improves body composition of black obese 7- to 11-year-old girls.

    PubMed

    Gutin, B; Cucuzzo, N; Islam, S; Smith, C; Moffatt, R; Pargman, D

    1995-07-01

    We determined the effect of supervised physical training without dietary intervention, on body composition of obese girls. The subjects were 25 obese 7- to 11-year-old black girls, divided into physical training and lifestyle education groups which were comparable on baseline body composition; 22 girls finished all aspects of the study. Twelve girls engaged in aerobic training (10 weeks, 5 days/week) while 10 engaged in weekly lifestyle discussions without formal physical training. Total body and regional body composition were measured with dual energy x-ray absorptiometry, skinfolds and circumferences. Aerobic fitness was measured by heart rate response to submaximal treadmill exercise. The physical training group attended 94% of scheduled sessions and kept their heart rates at an average of 163 bpm for 28 minutes/session. The lifestyle group attended 95% of their sessions; they remained stable in aerobic fitness and most body composition measurements. The physical training group showed a significant improvement in aerobic fitness and a significant decline of 1.4% body fat. Skinfold and circumference indices of fatness also declined significantly in the training group. We conclude that controlled physical training, without dietary intervention, improved the fitness and body composition of obese black girls.

  18. Relationship between solar activities and thunderstorm activities in the Beijing area and the northeast region of China

    NASA Technical Reports Server (NTRS)

    Zhuang, Hong C.; Lu, Xi C.

    1989-01-01

    An analysis of the relationship between the IMF section boundary crossing, solar flares, the sunspot 11 year cycle variation and the thunderstorm index is given, using the superposition epoch method, for data from more than 13,000 thunderstorms from 10 meteorological stations in the Beijing area and the Northeast region during 1957 to 1978. The results show that for some years a correlation exists between the thunderstorm index and the positive IMF section boundary crossing. The thunderstorm index increases obviously within three days near the crossing and on the seventh day after the crossing. The influence of the crossing on thunderstorms is stronger in the first half year than the latter half year. For different classes of solar flares, the influences are not equally obvious. The solar flares which appeared on the west side, especially in the western region (from 0 to 30 deg) have the most obvious influence. There is no discernible correlation between the thunderstorm index and the sunspot eleven-year cycle.

  19. Solar activity cycle and the incidence of foetal chromosome abnormalities detected at prenatal diagnosis

    NASA Astrophysics Data System (ADS)

    Halpern, Gabrielle J.; Stoupel, Eliahu G.; Barkai, Gad; Chaki, Rina; Legum, Cyril; Fejgin, Moshe D.; Shohat, Mordechai

    1995-06-01

    We studied 2001 foetuses during the period of minimal solar activity of solar cycle 21 and 2265 foetuses during the period of maximal solar activity of solar cycle 22, in all women aged 37 years and over who underwent free prenatal diagnosis in four hospitals in the greater Tel Aviv area. There were no significant differences in the total incidence of chromosomal abnormalities or of trisomy between the two periods (2.15% and 1.8% versus 2.34% and 2.12%, respectively). However, the trend of excessive incidence of chromosomal abnormalities in the period of maximal solar activity suggests that a prospective study in a large population would be required to rule out any possible effect of extreme solar activity.

  20. Active space heating and hot water supply with solar energy

    SciTech Connect

    Karaki, S.; Loef, G. O.G.

    1981-04-01

    Technical and economic assessments are given of solar water heaters, both circulating, and of air-based and liquid-based solar space heating systems. Both new and retrofit systems are considered. The technical status of flat-plate and evacuated tube collectors and of thermal storage is also covered. Non-technical factors are also briefly discussed, including the participants in the use of solar heat, incentives and deterrents. Policy implications are considered as regards acceleration of solar use, goals for solar use, means for achieving goals, and interaction of governments, suppliers, and users. Government actions are recommended. (LEW)

  1. Solar Influence on Future Climate

    NASA Astrophysics Data System (ADS)

    Arsenovic, Pavle; Stenke, Andrea; Rozanov, Eugene; Peter, Thomas

    2015-04-01

    Global warming is one of the main threats to mankind. There is growing evidence that anthropogenic greenhouse gases have become the dominant factor, however natural factors such as solar variability cannot be neglected. Sun is a variable star; its activity varies in regular 11-years solar cycles. Longer periods of decreased solar activity are called Grand Solar Minima, which have stronger impact on terrestrial climate. Another natural factor related with solar activity are energetic particles. They can ionize neutral molecules in upper atmosphere and produce NOx and HOx which deplete ozone. We investigate the effect of proposed Grand Solar Minimum in 21st and 22nd century on terrestrial climate and ozone layer. The simulations are performed with different solar forcing scenarios for period of 200 years (2000-2200) using global chemistry-climate model coupled with ocean model (SOCOL-MPIOM). We also deal with problem of representation of middle range energy electrons (30-300 keV) in the model and investigation of their influence on climate.

  2. Endothelial Dysfunction and Blood Viscosity Inpatients with Unstable Angina in Different Periods of a Solar Activity

    NASA Astrophysics Data System (ADS)

    Parshina, S. S.; Tokaeva, L. K.; Dolgova, E. M.; Afanas'yeva, T. N.; Strelnikova, O. A.

    The origin of hemorheologic and endothelial defects in patients with unstable angina (comparing with healthy persons) is determined by a solar activity period: the blood viscosity increases in a period of high solar activity in the vessels of small, medium and macro diameters, a local decompensate dysfunction of small vessels endothelium had been fixed (microcirculation area). In the period of a low solar activity there is an increase of a blood viscosity in vessels of all diameters, generalized subcompensated endothelial dysfunction is developed (on the background of the III phase blood clotting activating). In the period of a high solar activity a higher blood viscosity had been fixed, comparing with the period of a low solar activity.

  3. Skin donors and human skin allografts: evaluation of an 11-year practice and discard in a referral tissue bank.

    PubMed

    Gaucher, Sonia; Khaznadar, Zena; Gourevitch, Jean-Claude; Jarraya, Mohamed

    2016-03-01

    The Saint Louis hospital tissue bank provides skin allografts to pediatric and adult burn units in the Paris area. The aim of this study was to analyze our activity during the last 11 years focusing on the reasons for skin discard. Skin is procured solely from the back of the body, which is divided into 10 zones that are harvested and processed separately. This retrospective study included all skin donors harvested between June 2002 and June 2013, representing a total of 336 donors and 2770 zones. The donors were multiorgan heart-beating donors in 91 % of cases (n = 307). The main reason for discarding harvested skin was microbial contamination, detected in 99 donors (29 %). Most contaminants were of low pathogenicity. Other reasons for discard included positive serologic tests for 2 donors [17 zones (0.61 %)], unsuitable physical skin characteristics for 3 zones (0.11 %), the donor's medical history for 53 zones (1.91 %), and technical issues with processing or distribution for 61 zones (2.2 %). In our experience, microbial contamination continues to be the main reason for discarding potential skin allografts. However, discards are limited by separate harvesting and processing of multiple zones in each donor. PMID:26275343

  4. [Drowning versus cardiac ischemia: Cardiac arrest of an 11-year-old boy at a swimming lake].

    PubMed

    Födinger, A; Wöss, C; Semsroth, S; Stadlbauer, K H; Wenzel, V

    2015-11-01

    This report describes a case of sudden cardiac arrest and subsequent attempted cardiopulmonary resuscitation of an 11-year-old child on the shores of a swimming lake. Reports of eyewitnesses excluded the obviously suspected diagnosis of a drowning accident. The result of the autopsy was sudden cardiac death due to a congenital coronary anomaly (abnormal left coronary artery, ALCA). Favored by vigorous physical activity, this anomaly can lead to malignant arrhythmias because the ectopic coronary artery with its intramural course through the aortic wall is compressed during every systole. This pathology was not known to the boy or his family; in fact he liked sports but had suffered of a syncope once which was not followed up. Without a strong suspicion it is difficult to diagnose a coronary artery anomaly and it is often missed even in college athletes. Tragically, sudden cardiac arrest may be the first symptom of an undiagnosed abnormal coronary artery. Following syncope or chest pain during exercise with a normal electrocardiogram (ECG) cardiac imaging, such as computed tomography (CT) or angiography should be initiated in order to enable surgical repair of an abnormal coronary artery.

  5. The Revised Sunspot Record in Comparison to Cosmogenic Radionuclide-Based Solar Activity Reconstructions

    NASA Astrophysics Data System (ADS)

    Muscheler, Raimund; Adolphi, Florian; Herbst, Konstantin; Nilsson, Andreas

    2016-09-01

    Recent revisions in the sunspot records illustrate the challenges related to obtaining a 400-year-long observational record of past solar-activity changes. Cosmogenic radionuclides offer the possibility of obtaining an alternative and completely independent record of solar variability. Here, we illustrate that these records offer great potential for quantitative solar-activity reconstructions far back into the past, and we provide updated radionuclide-based solar-activity reconstructions for the past 2000 years. However, cosmogenic-radionuclide records are also influenced by processes independent of solar activity, leading to the need for critical assessment and correction for the non-solar influences. Independent of these uncertainties, we show a very good agreement between the revised sunspot records and the 10Be records from Antarctica and, in particular, the 14C-based solar-activity reconstructions. This comparison offers the potential of identifying remaining non-solar processes in the radionuclide-based solar-activity reconstructions, but it also helps identifying remaining biases in the recently revised sunspot records.

  6. Lyman-alpha line as a solar activity index for calculations of solar spectrum in the EUV region

    NASA Astrophysics Data System (ADS)

    Nusinov, Anatoliy; Kazachevskaya, Tamara; Katyushina, Valeria; Woods, Thomas

    It is investigated a possibility of retrieval of solar spectrum data using intensity observational data of the only solar spectral line L (Hydrogen Lyman-alpha, 121.6 nm).Using as an example spectra obtained by SEE instruments on TIMED satellite, it was shown, that both for lines and for continuum in the spectral range 27-105 nm, which is essential for ionization processes in the ionosphere, a correlation between their intensities and L was high. Therefore it becomes possible to use L measurements data as a natural solar activity index for calculations of EUV solar emission spectrum for solving aeronomical problems. It is noticed, that EUV model, obtained with using SEE data, does not allow to calculate correctly critical frequencies of ionospheric E-layer owing to low intensities of lines 97.7 and 102.6 nm, which produce the main part of ionization in ionospheric E-region.

  7. The solar activity dependence of wave dynamical vertical coupling of atmospheres

    NASA Astrophysics Data System (ADS)

    Laskar, F. I.; Duggirala, P. R.; Lakshmi, T. V.; Reddy, M. A.; Veenadhari, B.; Chakrabarti, S.

    2014-12-01

    Analysis of oxygen dayglow emissions at OI 557.7, OI 630.0, and OI 777.4 nm showed that the wave dynamical vertical coupling of atmospheres is solar activity dependent. These emission intensities are obtained during January-March in the years 2011 and 2012 from Hyderabad (17.5oN, 78.5oE), India, using a high-spectral resolution multi-wavelength imaging echelle spectrograph (MISE). Spectral analysis of the variations revealed that oscillation periods near the atmospheric free-normal modes of 5, 10, 16, and 25 days (that are produced mainly in the troposphere) are found to register their presence in the upper atmospheric emission intensities. In an earlier study during high solar activity period (2001), the sunspot numbers (SSN) and the daily averaged OI 630.0 nm dayglow intensities were seen to be co-varying. In contrast, the variability in the dayglow emission intensities during relatively low solar activity period (2011) shows no or weaker correlation with that of the SSN but a greater similarity with that of the equatorial electrojet (EEJ) strength. Whereas, oscillations of both lower atmospheric normal modes and those related to sunspot are found during moderate solar activity (2012). These results suggest that the upper atmosphere responds mainly to lower atmospheric forcing during low solar activity, to solar forcing during high solar activity, and to both lower atmosphere and solar forcings during moderate solar activity level. A statistical study of the shorter period variations in the gravity wave regime showed they are present in greater numbers in the thermosphere during higher solar activity, which is ascribed to be due to decreasing wave dissipation with increasing solar activity. These results will be presented in the context of short- and long-period wave dynamics in the whole atmosphere.

  8. Relationships between solar activity and climate change. [sunspot cycle effects on lower atmosphere

    NASA Technical Reports Server (NTRS)

    Roberts, W. O.

    1974-01-01

    Recurrent droughts are related to the double sunspot cycle. It is suggested that high solar activity generally increases meridional circulations and blocking patterns at high and intermediate latitudes, especially in winter. This effect is related to the sudden formation of cirrus clouds during strong geomagnetic activity that originates in the solar corpuscular emission.

  9. Solar Energy Education. Humanities: activities and teacher's guide. Field test edition

    SciTech Connect

    Not Available

    1982-01-01

    Activities are outlined to introduce students to information on solar energy while performing ordinary classroom work. In this teaching manual solar energy is integrated with the humanities. The activities include such things as stories, newspapers, writing assignments, and art and musical presentations all filled with energy related terms. An energy glossary is provided. (BCS)

  10. Association between obesity and asthma in 4-11 year old children in the UK

    PubMed Central

    Figueroa-Munoz, J; Chinn, S; Rona, R

    2001-01-01

    BACKGROUND—There is evidence of a positive association between asthma and obesity in adults and in children. We investigated, in a large sample of English and Scottish primary school children, whether there is a consistent association between fatness and asthma symptoms in Britain.
METHODS—A cross sectional analysis was made of 18 218 children aged 4-11 years who participated in the 1993 or 1994 surveys of the National Study of Health and Growth (NSHG). Children belonged either to English or Scottish representative samples, or an English inner city sample. Asthma attacks in the previous year, occasional wheeze, or persistent wheeze were the symptoms used in the analysis. Body mass index (BMI) and the sum of triceps and subscapular skinfolds converted to standard deviation scores (SDS) were used to assess levels of fatness.
RESULTS—A total of 14 908 children (81.8%) were included in the analysis. In the multiple logistic analysis BMI and asthma (asthma attacks or wheeze) were associated in the representative sample (OR for the comparison of the 10th and 90th centiles of BMI 1.28,95% CI 1.11 to 1.48), but sum of skinfolds was unrelated to asthma symptoms in most analyses. The association between asthma and BMI was stronger in girls than in boys in the inner city sample, but less convincingly in the representative sample.
CONCLUSIONS—Levels of obesity are associated with asthma symptoms regardless of ethnicity. The association is more consistent for BMI than for sum of skinfolds, partly because obese children are more advanced in their maturation than other children. There is some evidence that, as in adults, the association is stronger in girls than in boys, but only in the multiethnic inner city sample.

 PMID:11209102

  11. Manual Control Age and Sex Differences in 4 to 11 Year Old Children

    PubMed Central

    Flatters, Ian; Hill, Liam J. B.; Williams, Justin H. G.; Barber, Sally E.; Mon-Williams, Mark

    2014-01-01

    To what degree does being male or female influence the development of manual skills in pre-pubescent children? This question is important because of the emphasis placed on developing important new manual skills during this period of a child's education (e.g. writing, drawing, using computers). We investigated age and sex-differences in the ability of 422 children to control a handheld stylus. A task battery deployed using tablet PC technology presented interactive visual targets on a computer screen whilst simultaneously recording participant's objective kinematic responses, via their interactions with the on-screen stimuli using the handheld stylus. The battery required children use the stylus to: (i) make a series of aiming movements, (ii) trace a series of abstract shapes and (iii) track a moving object. The tasks were not familiar to the children, allowing measurement of a general ability that might be meaningfully labelled ‘manual control’, whilst minimising culturally determined differences in experience (as much as possible). A reliable interaction between sex and age was found on the aiming task, with girls' movement times being faster than boys in younger age groups (e.g. 4–5 years) but with this pattern reversing in older children (10–11 years). The improved performance in older boys on the aiming task is consistent with prior evidence of a male advantage for gross-motor aiming tasks, which begins to emerge during adolescence. A small but reliable sex difference was found in tracing skill, with girls showing a slightly higher level of performance than boys irrespective of age. There were no reliable sex differences between boys and girls on the tracking task. Overall, the findings suggest that prepubescent girls are more likely to have superior manual control abilities for performing novel tasks. However, these small population differences do not suggest that the sexes require different educational support whilst developing their manual skills

  12. Nutritional anaemia in 11-year-old schoolchildren in the western Cape.

    PubMed

    Lamparelli, R D; van der Westhuyzen, J; Steyn, N P; Baynes, R D; MacFarlane, B J; Green, A; Bothwell, T H

    1988-04-16

    A nutritional anaemia survey was carried out on 610 11-year-old coloured, black and white schoolchildren in urban and rural communities in the western Cape. The mean (+/- 1 SD) haemoglobin concentration was 13.0 +/- 1.2 g/dl. The coloured and black subgroups considered together had a significantly lower mean haemoglobin concentration than the white subgroup (12.8 +/- 1.2 g/dl v. 13.4 +/- 1.0 g/dl) (F = 37.47; P less than 0.0001). The urban population as a whole had a significantly lower geometric mean (1 SD range) serum ferritin concentration than the rural population (25.6 (13.5-48.6) micrograms/l v. 34.1 (21.3-54.6) micrograms/l) (F = 42.94; P less than 0.0001). The lowest geometric mean serum ferritin values were found in the urban coloured (23.1 (11.5-46.4) micrograms/l) and urban black schoolchildren (23.7 (13.2-42.6) micrograms/l), with figures of less than 12 micrograms/l in 11.7% and 12.5% respectively. Although 28% of the children had red cell folate values below the recommended lower limit of normal (175 ng/ml), probability plot analysis of the data suggested that folate deficiency was not a major problem in the study population. The calculated daily iron and folate intakes were below the age-related recommended dietary allowance (RDA) in all the subgroups, yet anaemia was relatively uncommon. These findings suggest that the RDA values are too high. Overall the prevalence of nutritional anaemia was low and only the urban coloured subgroup showed significant second populations with low haemoglobin and serum ferritin measurements.

  13. Levels of selected urinary metabolites of volatile organic compounds among children aged 6-11 years.

    PubMed

    Jain, Ram B

    2015-10-01

    Data from National Health and Nutrition Examination Survey for the years 2011-2012 were used to evaluate variability in the observed levels of 20 urinary metabolites of volatile organic compounds (VOCs) by age, gender, and race/ethnicity among children aged 6-11 years. Exposure to environmental tobacco smoke was positively associated with the levels of selected metabolites of acrylonitrile, 1,3-butadiene, cyanide, and propylene oxide in a dose-response manner. Levels of the selected metabolites of acrolein, acrylonitrile, 1,3-butadiene, styrene, toluene, and xylene decreased with increase in age. Levels of 1-bromopropane decreased with number of rooms in the house but the reverse was true for 1,3-butadiene, carbon-disulfide, and N,N-dimethylformamide. Levels of most of the 20 metabolites did not vary with gender. Non-Hispanic white children had higher adjusted levels of N-Acetyl-S-(3,4-dihydroxybutyl)-L-cysteine (DHBMA), N-Acetyl-S-(N-methylcarbamoyl)-L-cysteine (AMCC), and phenylglyoxylic acid (PGA) than non-Hispanic black children. Non-Hispanic white children had statistically significantly higher adjusted levels of N-Acetyl-S-(2-carbamoyl-2-hydroxyethyl)-L-cysteine (GAMA), trans, trans-Muconic acid (MU), and N-Acetyl-S-(N-methylcarbamoyl)-L-cysteine (AMCC) than non-Hispanic Asian children but statistically significantly lower levels of N-Acetyl-S-(n-propyl)-L-cysteine (BPMA) than non-Hispanic Asian children. Non-Hispanic Asian children had the lowest levels of 13 of the 20 metabolites among four major racial/ethnic groups but highest levels for three metabolites. For selected metabolites of acrolein, acrylamide, acrylonitrile-vinyl chloride-ethylene oxide, benzene, 1,3-butadien, crotonaldehyde, cyanide, ethylbenzene-styrene, and toluene, children had statistically significantly higher levels than nonsmoking adults. These results demonstrate how vulnerable children are to being exposed to harmful chemicals like VOCs in their own homes. PMID:26257031

  14. Illegal Substance Use among Italian High School Students: Trends over 11 Years (1999–2009)

    PubMed Central

    Molinaro, Sabrina; Siciliano, Valeria; Curzio, Olivia; Denoth, Francesca; Salvadori, Stefano; Mariani, Fabio

    2011-01-01

    Purpose To monitor changes in habits in drug use among Italian high school students. Methods Cross-sectional European School Survey Project on Alcohol and Other Drugs (ESPAD) carried out in Italy annually for 11 years (1999–2009) with representative samples of youth attending high school. The sample size considered ranges from 15,752 to 41,365 students and response rate ranged from 85.5% to 98.6%. Data were analyzed to obtain measures of life-time prevalence (LT), use in the last year (LY), use in the last 30 days (LM), frequent use. Comparisons utilized difference in proportion tests. Tests for linear trends in proportion were performed using the Royston p trend test. Results When the time-averaged value was considered, cannabis (30% LT) was the most, and heroin the least (2%) frequently used, with cocaine (5%), hallucinogens (2%) and stimulants (2%) in between. A clear gender gap is evident for all drugs, more obvious for hallucinogens (average M/F LY prevalence ratio 2, range 1.7–2.4, p<0.05), less for cannabis (average M/F LY prevalence ratio 1.3, range 1.2–1.5, p<0.05). Data shows a change in trend between 2005 and 2008; in 2006 the trend for cannabis use and availability dropped and the price rose, while from 2005 cocaine and stimulant use prevalence showed a substantial increase and the price went down. After 2008 use of all substances seems to have decreased. Conclusions Drug use is widespread among students in Italy, with cannabis being the most and heroin the least prevalent. Girls are less vulnerable than boys to illegal drug use. In recent years, a decrease in heroin use is overbalanced by a marked rise in hallucinogen and stimulant use. PMID:21695199

  15. Drunkenness and heavy drinking among 11year olds - Findings from the UK Millennium Cohort Study.

    PubMed

    Kelly, Yvonne; Britton, Annie; Cable, Noriko; Sacker, Amanda; Watt, Richard G

    2016-09-01

    Heavy drinking among young people is linked to negative consequences including other risky behaviours, educational failure and premature mortality. There is a lack of research examining factors that influence heavy and binge drinking in early adolescence as prior work has focused on older teenagers. The objective of this paper was to identify individual and family factors associated with drunkenness and episodes of heavy drinking in early adolescence. We analysed data on 11,046 11year olds from the UK Millennium Cohort Study. Multivariate logistic regression was used to estimate odds ratios for associations. 1.2% of participants reported having been drunk, and 0.6% reported having had 5 or more drinks in a single episode. Participants who reported drunkenness were more likely to be boys (1.6% vs 0.7%, p<0.01), to have socioemotional difficulties (2.6% vs 1.0%, p<0.001), to report antisocial behaviours (none=0.6%, 1=2.0%, 2 or more=7.0%, p<0.001), report truancy (6.0% vs 1.0%, p<0.001), smoke cigarettes (12.0% vs 0.8%, p<0.001). Parental drinking did not appear to be associated with the odds of drunkenness. Associated with higher odds of drunkenness were: having friends who drank (OR=5.17); having positive expectancies towards alcohol (OR 2+=2.02); ever having smoked cigarettes (OR=5.32); the mother-child relationship not being close (OR=2.17). Associated with a reduced odds of drunkenness was having a heightened perception of harm from drinking 1-2 drinks daily (OR - some risk=0.48, great risk=0.40). Our findings support policies aimed at multiple levels, starting in the preadolescent years, which incorporate individual, family, and peer factors. PMID:27413004

  16. Impact of Clinical Pharmacist on the Pediatric Intensive Care Practice: An 11-Year Tertiary Center Experience

    PubMed Central

    Crabtree, Heidi M.; Fryer, Karen R.; Graner, Kevin K.; Arteaga, Grace M.

    2015-01-01

    OBJECTIVES: With increasing complexity of critical care medicine comes an increasing need for multidisciplinary involvement in care. In many institutions, pharmacists are an integral part of this team, but long-term data on the interventions performed by pharmacists and their effects on patient care and outcomes are limited. We aimed to describe the role of pediatric clinical pharmacists in pediatric intensive care unit (PICU) practice. METHODS: We retrospectively reviewed the records of pharmacy interventions in the PICU at the Mayo Clinic in Rochester, Minnesota, from 2003-2013, with a distinct period of increased pharmacist presence in the PICU from 2008 onward. We compared demographic and outcome data on patients who did and who did not have pharmacy interventions during 2 periods (2003–2007 and 2008–2013). RESULTS: We identified 27,773 total interventions by pharmacists during the 11-year period, of which 79.8% were accepted by the clinical team. These interventions were made on 10,963 unique PICU admissions and prevented 5867 order entry errors. Pharmacists' interventions increased year over year, including a significant change in 2008. Patients who required pharmacy involvement were younger, sicker, and had longer intensive care unit, hospital, and ventilator duration. Average central line infections and central line entry rates decreased significantly over the study period. CONCLUSIONS: Increased pharmacist presence in the PICU is associated with increased interventions and prevention of adverse drug events. Pharmacist participation during rounds and order entry substantially improved the care of critically sick children and should be encouraged. PMID:26380569

  17. Levels of selected urinary metabolites of volatile organic compounds among children aged 6-11 years.

    PubMed

    Jain, Ram B

    2015-10-01

    Data from National Health and Nutrition Examination Survey for the years 2011-2012 were used to evaluate variability in the observed levels of 20 urinary metabolites of volatile organic compounds (VOCs) by age, gender, and race/ethnicity among children aged 6-11 years. Exposure to environmental tobacco smoke was positively associated with the levels of selected metabolites of acrylonitrile, 1,3-butadiene, cyanide, and propylene oxide in a dose-response manner. Levels of the selected metabolites of acrolein, acrylonitrile, 1,3-butadiene, styrene, toluene, and xylene decreased with increase in age. Levels of 1-bromopropane decreased with number of rooms in the house but the reverse was true for 1,3-butadiene, carbon-disulfide, and N,N-dimethylformamide. Levels of most of the 20 metabolites did not vary with gender. Non-Hispanic white children had higher adjusted levels of N-Acetyl-S-(3,4-dihydroxybutyl)-L-cysteine (DHBMA), N-Acetyl-S-(N-methylcarbamoyl)-L-cysteine (AMCC), and phenylglyoxylic acid (PGA) than non-Hispanic black children. Non-Hispanic white children had statistically significantly higher adjusted levels of N-Acetyl-S-(2-carbamoyl-2-hydroxyethyl)-L-cysteine (GAMA), trans, trans-Muconic acid (MU), and N-Acetyl-S-(N-methylcarbamoyl)-L-cysteine (AMCC) than non-Hispanic Asian children but statistically significantly lower levels of N-Acetyl-S-(n-propyl)-L-cysteine (BPMA) than non-Hispanic Asian children. Non-Hispanic Asian children had the lowest levels of 13 of the 20 metabolites among four major racial/ethnic groups but highest levels for three metabolites. For selected metabolites of acrolein, acrylamide, acrylonitrile-vinyl chloride-ethylene oxide, benzene, 1,3-butadien, crotonaldehyde, cyanide, ethylbenzene-styrene, and toluene, children had statistically significantly higher levels than nonsmoking adults. These results demonstrate how vulnerable children are to being exposed to harmful chemicals like VOCs in their own homes.

  18. Recent decreasing trend in the total solar irradiance - 1981-1992 spacecraft measurements

    NASA Technical Reports Server (NTRS)

    Lee, Robert B., III; Gibson, M. A.; Wilson, Robert S.; Thomas, Susan

    1993-01-01

    During 1990-1992, pyrheliometric measurements from the Earth Radiation Budget Satellite (ERBS) indicate that the total solar irradiance is decreasing at an annual rate of -0.2 Wm exp -2 with declining solar magnetic activity. Regression analyses of spacecraft irradiance measurements and of solar magnetic activity indices (10.7-cm solar radio flux and photometric sunspot index) verified the ERBS decreasing trend. The decreasing rate suggests that the irradiance should decrease 0.1 percent by 1997 when minimum solar magnetic activity is forecasted. If the forecasted 1990-1997 irradiance decrease is equal in magnitude to the magnitude of the 1986-1989 irradiance rise, one could conclude that solar irradiance variability has a strong 11-year component and no significant 22-year component. The ERBS measurements yielded 1365.4 +/- 0.7 Wm exp -2 as the mean irradiance value. In this paper, 1981-1992 spacecraft irradiance measurements are presented and compared with solar indices.

  19. Detrimental Effects of Extreme Solar Activity on Life on Earth

    NASA Astrophysics Data System (ADS)

    Airapetian, Vladimir; Glocer, Alex; Jackman, Charles

    2015-07-01

    Solar Coronal Mass Ejections (CMEs), the most energetic eruptions in the Solar System, represent large-scale disturbances forming with the solar corona and are associated with solar flares and Solar Energetic Particles (SEP) events. Current Kepler data from solar-like stars suggest that the frequency of occurrence of energetic flares and associated CMEs from the Sun can be as high as 1 per 1500 years. What effects would CME and associated SEPs have on Earth's habitability? We have performed a three-dimensional time-dependent global magnetohydrodynamic simulation of the magnetic interaction of such a CME cloud with the Earth's magnetosphere. We calculated the global structure of the perturbed magnetosphere and derive the latitude of the open-closed magnetic field boundary. We used a 2D GSFC atmospheric code to calculate the efficiency of ozone depletion in the Earth's atmosphere due to SEP events and its effects on our society and life on Earth.

  20. Influence of solar wind variability on geomagnetic activity

    NASA Technical Reports Server (NTRS)

    Garrett, H. B.; Dessler, A. J.; Hill, T. W.

    1974-01-01

    A statistical study of solar wind data from the Explorer 33 satellite shows that interplanetary magnetic field irregularities are enhanced in the interaction region where a fast solar wind stream overtakes a slower solar wind stream. Comparison with geomagnetic AE and ap indexes further shows that these interplanetary irregularities enhance the level of geomagnetic disturbances. Thus while substorm occurrence is highly correlated with the dawn-dusk component of the solar wind electric field, the amplitude of the substorms is an increasing function of the variance in the interplanetary field. This result can be interpreted as a capacitative effect of the magnetopause that allows a time-varying solar wind electric field to penetrate the magnetosphere more effectively than a static solar wind electric field.

  1. Magnetic helicity and free energy in solar active regions

    NASA Astrophysics Data System (ADS)

    Moraitis, K.; Georgoulis, M.; Tziotziou, K.; Archontis, V.

    2013-09-01

    We study the evolution of the non-potential free magnetic energy and relative magnetic helicity budgets in solar active regions (ARs). For this we use a time-series of a three-dimensional, synthetic AR produced by magnetohydrodynamical (MHD) simulations. As a first step, we calculate the potential magnetic field that has the same normal components with the MHD field along all boundaries of the AR, by solving Laplace's equation. The free magnetic energy of the AR is then easily derived. From the two fields, MHD and potential one, we calculate the corresponding vector potentials with a recently proposed integration method. The knowledge of both fields and their respective vector potentials throughout the AR, allows us to estimate the relative magnetic helicity budget of the AR. Following this procedure for each snapshot of the AR, we reconstruct the evolution of free energy and helicity in the AR. Our method reproduces, for a synthetic AR, the energy/helicity relations known to hold in real active regions.

  2. Effect of a school-based intervention to promote healthy lifestyles in 7–11 year old children

    PubMed Central

    Gorely, Trish; Nevill, Mary E; Morris, John G; Stensel, David J; Nevill, Alan

    2009-01-01

    Background Physical inactivity is recognised as a public health concern within children and interventions to increase physical activity are needed. The purpose of this research was to evaluate the effect of a school-based healthy lifestyles intervention on physical activity, fruit and vegetable consumption, body composition, knowledge, and psychological variables. Method A non-randomised controlled study involving 8 primary schools (4 intervention, 4 control). Participants were 589 children aged 7–11 years. The intervention lasted 10 months and comprised a CD-rom learning and teaching resource for teachers; an interactive website for pupils, teachers and parents; two highlight physical activity events (1 mile school runs/walks); a local media campaign; and a summer activity wall planner and record. Primary outcome measures were objectively measured physical activity (pedometers and accelerometers) and fruit and vegetable consumption. Secondary outcomes included body mass index, waist circumference, estimated percent body fat, knowledge, psychological variables. Multi-level modelling was employed for the data analysis. Results Relative to children in control schools, those in intervention schools significantly increased their total time in moderate-to-vigorous physical activity (MVPA) (by 9 minutes/day vs a decrease of 10 minutes/day), their time in MVPA bouts lasting at least one minute (10 minutes/day increase vs no change) and increased daily steps (3059 steps per day increase vs 1527 steps per day increase). A similar pattern of results was seen in a subset of the least active participants at baseline. Older participants in intervention schools showed a significant slowing in the rate of increase in estimated percent body fat, BMI, and waist circumference. There were no differences between groups in fruit and vegetable intake. Extrinsic motivation decreased more in the intervention group. Conclusion The intervention produced positive changes in physical

  3. Activity of processes on the visible surfaces of Solar System bodies

    NASA Astrophysics Data System (ADS)

    Vidmachenko, A. P.

    2016-10-01

    We consider the physical processes on the surfaces of Solar System bodies, which lead to visible changes in their reflective characteristics. It is shown that each body in the Solar system has a set of chemical elements and their compounds, converting of which indicates significant activity in such a significant temperature change range from 700 K (for Mercury) to 30 K for Pluto. That is, all objects in the Solar system show a significant activity. However, they are very individual for the list and the type of the processes that take place on each body in the Solar system.

  4. A Study of Solar Magnetic Fields Below the Surface, at the Surface, and in the Solar Atmosphere - Understanding the Cause of Major Solar Activity

    NASA Astrophysics Data System (ADS)

    Chintzoglou, Georgios

    2016-05-01

    The fundamental processes regarding the origin, emergence and evolution of solar magnetic fields as well as the generation of solar activity are largely unknown or remain controversial. In this dissertation, multiple important issues regarding solar magnetism and activities are addressed, based on advanced observations obtained by the AIA and HMI instruments aboard the SDO spacecraft.This dissertation addresses the 3D magnetic structure of complex emerging Active Regions (ARs). In ARs the photospheric fields might show all aspects of complexity, from simple bipolar regions to extremely complex multipolar surface magnetic distributions. Here, we introduce a novel technique to infer the subphotospheric configuration of emerging magnetic flux tubes forming ARs on the surface. Using advanced 3D visualization tools with this technique on a complex flare and CME productive AR, we found that the magnetic flux tubes forming the complex AR may originate from a single progenitor flux tube in the SCZ. The complexity can be explained as a result of vertical and horizontal bifurcations that occurred on the progenitor flux tube.In addition, this dissertation proposes a new scenario on the origin of major solar activity. When more than one flux tubes are in close proximity to each other while they break through the photospheric surface, collision and shearing may occur as they emerge. Once this collisional shearing occurs between nonconjugated sunspots (opposite polarities not belonging to the same bipole), major solar activity is triggered. The collision and shearing occur due to the natural separation of polarities in emerging bipoles. In this continuous collision, more poloidal flux is added to the system effectively creating an expanding MFR into the corona, accompanied by filament formation above the PIL together with flare activity and CMEs. Our results reject two popular scenarios on the possible cause of solar eruptions (1) shearing motion between conjugate polarities, (2

  5. Investigation of solar active regions at high resolution by balloon flights of the solar optical universal polarimeter, definition phase

    NASA Technical Reports Server (NTRS)

    Tarbell, Theodore D.; Topka, Kenneth P.

    1992-01-01

    The definition phase of a scientific study of active regions on the sun by balloon flight of a former Spacelab instrument, the Solar Optical Universal Polarimeter (SOUP) is described. SOUP is an optical telescope with image stabilization, tunable filter and various cameras. After the flight phase of the program was cancelled due to budgetary problems, scientific and engineering studies relevant to future balloon experiments of this type were completed. High resolution observations of the sun were obtained using SOUP components at the Swedish Solar Observatory in the Canary Islands. These were analyzed and published in studies of solar magnetic fields and active regions. In addition, testing of low-voltage piezoelectric transducers was performed, which showed they were appropriate for use in image stabilization on a balloon.

  6. Liver resection for hepatocellular carcinoma. Results of 229 consecutive patients during 11 years.

    PubMed Central

    Nagasue, N; Kohno, H; Chang, Y C; Taniura, H; Yamanoi, A; Uchida, M; Kimoto, T; Takemoto, Y; Nakamura, T; Yukaya, H

    1993-01-01

    OBJECTIVE: This study analyzed the results in 229 patients with primary hepatocellular carcinoma (HCC) who were treated by radical hepatic resection in the past 11 years. SUMMARY BACKGROUND DATA: Due to marked advances in diagnostic and therapeutic methods, the therapeutic strategy for HCC has changed significantly. However, there are still many problems to be solved when hepatic resection is to be performed for HCC associated with chronic liver disease. A satisfactory result may be possible only when all of accurate operative indication, skillful surgical technique, and sophisticated postoperative management are met. METHODS: There were 188 men and 41 women. Age ranged from 32 to 79 years averaging 60.8. Underlying cirrhosis of the liver was found in 177 patients, and chronic hepatitis was found in 47 instances. Before surgery, 114 patients had 157 associated conditions; diabetes mellitus in 66, esophageal varices in 42, cholelithiasis in 22, peptic ulcer in 12, and miscellaneous in 15 cases. In addition to various types of hepatic resection, 69 patients underwent concomitant operations such as cholecystectomy, the Warren shunt, splenectomy, partial gastrectomy, and so forth. RESULTS: The 30-day (operative) mortality rate was 7.0%, and there were eight additional late deaths (3.5%). Child's class, bromosulphalein (BSP) test, and the estimated blood loss during surgery were good predictors for operative death. The cumulative 5- and 10-year survival rates for all patients were 26.4% and 19.4%, respectively. At present, 110 patients are alive; 2 more than 10 years and 21 more than 5 years. Younger age, absence of cirrhosis, smaller tumor, and postoperative chemotherapy were associated with increased survival. CONCLUSIONS: The results of hepatic resection in 229 patients with HCC were analyzed. Child's class, BSP test, and blood loss during surgery were good predictors for operative death. The 5- and 10-year survival rates were 26.4% and 19.4%, respectively. Age

  7. Overview of the Temperature Response in the Mesosphere and Lower Thermosphere to Solar Activity

    NASA Technical Reports Server (NTRS)

    Beig, Gufran; Scheer, Juergen; Mlynczak, Martin G.; Keckhut, Philippe

    2008-01-01

    The natural variability in the terrestrial mesosphere needs to be known to correctly quantify global change. The response of the thermal structure to solar activity variations is an important factor. Some of the earlier studies highly overestimated the mesospheric solar response. Modeling of the mesospheric temperature response to solar activity has evolved in recent years, and measurement techniques as well as the amount of data have improved. Recent investigations revealed much smaller solar signatures and in some case no significant solar signal at all. However, not much effort has been made to synthesize the results available so far. This article presents an overview of the energy budget of the mesosphere and lower thermosphere (MLT) and an up-to-date status of solar response in temperature structure based on recently available observational data. An objective evaluation of the data sets is attempted and important factors of uncertainty are discussed.

  8. Cosmogenic Radiocarbon as a Means of Studying Solar Activity in the Past

    NASA Astrophysics Data System (ADS)

    Kocharov, G. E.; Ogurtsov, M. G.; Tsereteli, S. L.

    2003-12-01

    A series of yearly data on the concentration of radioactive carbon 14C in tree rings measured at the Tbilisi State University in 1983-1986 and covering the time interval 1600-1940 is statistically analyzed. We find evidence for a 22-year cyclicity in the intensity of Galactic cosmic rays (GCRs) during the Maunder minimum of the solar activity (1645-1715), testifying that the solar dynamo mechanism continued to operate during this epoch. Variations of Δ14C on timescales of tens and hundreds of years correlate well with the corresponding variations of the GCR intensity and solar activity, making radiocarbon a reliable source of information on long-timescale variations of solar activity in the past. Short-timescale (<30 years) fluctuations of Δ14C may be appreciably distorted by time variations not associated directly with solar activity; probable origins of this distortion are discussed.

  9. THE EXPANSION OF ACTIVE REGIONS INTO THE EXTENDED SOLAR CORONA

    SciTech Connect

    Morgan, Huw; Jeska, Lauren; Leonard, Drew

    2013-06-01

    Advanced image processing of Large Angle and Spectrometric Coronagraph Experiment (LASCO) C2 observations reveals the expansion of the active region closed field into the extended corona. The nested closed-loop systems are large, with an apparent latitudinal extent of 50 Degree-Sign , and expanding to heights of at least 12 R{sub Sun }. The expansion speeds are {approx}10 km s{sup -1} in the AIA/SDO field of view, below {approx}20 km s{sup -1} at 2.3 R{sub Sun }, and accelerate linearly to {approx}60 km s{sup -1} at 5 R{sub Sun }. They appear with a frequency of one every {approx}3 hr over a time period of around three days. They are not coronal mass ejections (CMEs) since their gradual expansion is continuous and steady. They are also faint, with an upper limit of 3% of the brightness of background streamers. Extreme ultraviolet images reveal continuous birth and expansion of hot, bright loops from a new active region at the base of the system. The LASCO images show that the loops span a radial fan-like system of streamers, suggesting that they are not propagating within the main coronal streamer structure. The expanding loops brighten at low heights a few hours prior to a CME eruption, and the expansion process is temporarily halted as the closed field system is swept away. Closed magnetic structures from some active regions are not isolated from the extended corona and solar wind, but can expand to large heights in the form of quiescent expanding loops.

  10. Outline of the Solar System: Activities for elementary students

    NASA Technical Reports Server (NTRS)

    Hartsfield, J.; Sellers, M.

    1990-01-01

    An introduction to the solar system for the elementary school student is given. The introduction contains historical background, facts, and pertinent symbols concerning the sun, the nine major planets and their moons, and information about comets and asteroids. Aids to teaching are given, including a solar system crossword puzzle with answers.

  11. Study of the relationship between solar activity and terrestrial weather

    NASA Technical Reports Server (NTRS)

    Sturrock, P. A.; Brueckner, G. E.; Dickinson, R. E.; Fukuta, N.; Lanzerotti, L. J.; Lindzen, R. S.; Park, C. G.; Wilcox, J. M.

    1976-01-01

    Evidence for some connection between weather and solar related phenomena is presented. Historical data of world wide temperature variations with relationship to change in solar luminosity are examined. Several test methods for estimating the statistical significance of such phenomena are discussed in detail.

  12. Complex active regions as the main source of extreme and large solar proton events

    NASA Astrophysics Data System (ADS)

    Ishkov, V. N.

    2013-12-01

    A study of solar proton sources indicated that solar flare events responsible for ≥2000 pfu proton fluxes mostly occur in complex active regions (CARs), i.e., in transition structures between active regions and activity complexes. Different classes of similar structures and their relation to solar proton events (SPEs) and evolution, depending on the origination conditions, are considered. Arguments in favor of the fact that sunspot groups with extreme dimensions are CARs are presented. An analysis of the flare activity in a CAR resulted in the detection of "physical" boundaries, which separate magnetic structures of the same polarity and are responsible for the independent development of each structure.

  13. Norms for the Wisconsin Card Sorting Test in 6- to 11-year-old children in Taiwan.

    PubMed

    Shu, B C; Tien, A Y; Lung, F W; Chang, Y Y

    2000-08-01

    The main aims of this study were to develop norms for the Wisconsin Card Sorting Test in 6- to 11-year-old children in Taiwan; to explore the effect of sex, age, birth order, number of siblings, and parental education on WCST performance in 6- to 11-year-old children; and to make a comparison of WCST performance between children in Taiwan and the USA. The results of this comparison of developmental norms of school children in Taiwan and the United States may facilitate the WCST as a clinical or research instrument in combination with other test procedures to assess aspects of cognitive and neuropsychological functioning of school children.

  14. Anomalously extended minima of solar cycle~23

    NASA Astrophysics Data System (ADS)

    Singh, Ambika; Tiwari, Anil Kumar; Agrawal, S. P.

    The new millennium extended solar minimum of solar cycle 23 (2007-2009) contains some distinct surprises and is anomalous in comparison to the past few solar cycles. In general, the level of solar activity goes through the cyclic changes lasting roughly 11 years. The last solar cycle 23 started in the year 1996 and was expected to last until 2006. Nevertheless, the solar activity minima continued beyond the year 2006 and lasted till 2009. In fact, anomalously, during the years 2007-09, a deep sunspot minima was observed at the end of the last solar cycle 23. It is observed that the sun had no sunspots continuously for over 50 days in July-August, 2009. More so, it is found that the solar cycle 23 has the longest quiet period as compared to the last many previous solar cycles. Anomalously low values of the geomagnetic disturbance Ap is observed during the whole quiet period (2007-09) of the sun, particularly in the month of January-September 2009, during which the high speed solar wind streams are also not observed. As such, the past solar cycle 23 seems to have the very long period of about 14 years, which is anomalously distinct from previous four solar cycles, besides the obvious Ap correlation of very low activity. The low values of the sunspot numbers in years 2007-2009 also have a very distinct effect in producing lowest modulation in cosmic ray intensity, with highest values of neutron monitor counts observed in the year 2009, as compared to that observed so far in previous solar cycles. These results are discussed in the light of many associated solar-terrestrial phenomena.

  15. Seismic Study of The Solar Interior: Inferences from SOI/MDI Observations during Solar Activity

    NASA Technical Reports Server (NTRS)

    Korzennik, Sylvain G.

    2003-01-01

    The principal investigator describes several types of solar research conducted during the reporting period and gives a statement of work to be performed in the following year. Research conducted during the reporting period includes: exhaustive analysis of observational and instrumental effects that might cause systematic errors in the characterization of high-degree p-modes; study of the structure, asphericity and dynamics of the solar interior from p-mode frequencies and frequency splittings; characterizing the solar rotation; Time-Distance inversion; and developing and using a new peak-fitting method for very long MDI time series at low degrees.

  16. Solar activity at birth predicted infant survival and women's fertility in historical Norway.

    PubMed

    Skjærvø, Gine Roll; Fossøy, Frode; Røskaft, Eivin

    2015-02-22

    Ultraviolet radiation (UVR) can suppress essential molecular and cellular mechanisms during early development in living organisms and variations in solar activity during early development may thus influence their health and reproduction. Although the ultimate consequences of UVR on aquatic organisms in early life are well known, similar studies on terrestrial vertebrates, including humans, have remained limited. Using data on temporal variation in sunspot numbers and individual-based demographic data (N = 8662 births) from Norway between 1676 and 1878, while controlling for maternal effects, socioeconomic status, cohort and ecology, we show that solar activity (total solar irradiance) at birth decreased the probability of survival to adulthood for both men and women. On average, the lifespans of individuals born in a solar maximum period were 5.2 years shorter than those born in a solar minimum period. In addition, fertility and lifetime reproductive success (LRS) were reduced among low-status women born in years with high solar activity. The proximate explanation for the relationship between solar activity and infant mortality may be an effect of folate degradation during pregnancy caused by UVR. Our results suggest that solar activity at birth may have consequences for human lifetime performance both within and between generations. PMID:25567646

  17. Solar activity at birth predicted infant survival and women's fertility in historical Norway.

    PubMed

    Skjærvø, Gine Roll; Fossøy, Frode; Røskaft, Eivin

    2015-02-22

    Ultraviolet radiation (UVR) can suppress essential molecular and cellular mechanisms during early development in living organisms and variations in solar activity during early development may thus influence their health and reproduction. Although the ultimate consequences of UVR on aquatic organisms in early life are well known, similar studies on terrestrial vertebrates, including humans, have remained limited. Using data on temporal variation in sunspot numbers and individual-based demographic data (N = 8662 births) from Norway between 1676 and 1878, while controlling for maternal effects, socioeconomic status, cohort and ecology, we show that solar activity (total solar irradiance) at birth decreased the probability of survival to adulthood for both men and women. On average, the lifespans of individuals born in a solar maximum period were 5.2 years shorter than those born in a solar minimum period. In addition, fertility and lifetime reproductive success (LRS) were reduced among low-status women born in years with high solar activity. The proximate explanation for the relationship between solar activity and infant mortality may be an effect of folate degradation during pregnancy caused by UVR. Our results suggest that solar activity at birth may have consequences for human lifetime performance both within and between generations.

  18. Plasma Beta Above a Solar Active Region: Rethinking the Paradigm

    NASA Technical Reports Server (NTRS)

    Gary, G. Allen; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    In this paper, we present a model of the plasma beta above an active region and discuss its consequences in terms of coronal magnetic field modeling. The beta-plasma model is representative and derived from a collection of sources. The resulting beta variation with height is used to emphasize the assumption that the magnetic pressure dominates over the plasma pressure must be carefully considered depending on what part of the solar atmosphere is being considered. This paper points out (1) that the paradigm that the coronal magnetic field can be constructed from a force-free magnetic field must be used in the correct context, since the forcefree region is sandwiched between two regions which have beta greater than 1, (2) that the chromospheric MgIICIV magnetic measurements occur near the beta-minimum, and (3) that, moving from the photosphere upwards, beta can return to 1 at relatively low coronal heights, e.g. R approximately 1.2R(sub)s.

  19. Solar activity variations of ionosonde measurements and modeling results

    NASA Astrophysics Data System (ADS)

    Altadill, D.; Arrazola, D.; Blanch, E.; Buresova, D.

    2008-08-01

    The time series of hourly electron density profiles N(h) obtained at several mid-latitude stations in Europe have been used to obtain N(h) profiles on a monthly basis and to extract both the expected bottomside parameters and a proxy of the ionospheric variability as functions of time and height. With these data we present advances on a “Local Model” technique for the parameters B0 and B1, its applicability to other ionospheric stations, to other bottomside ionospheric parameters, and to modeling the time/height variability of the profile. The Local Model (LM) is an empirical model based on the experimental results of the solar activity dependence of the daily and seasonal behavior of the above parameters. The LM improves the IRI-2001 prediction of the B0 and B1 by factor of two at mid-latitudes. Moreover, the LM can be used to simulate other ionospheric parameters and to build mean N(h) profiles and the deviations from them. The modeling of both the average N(h) profiles and their deviations is an useful tool for ionospheric model users who want to know both the expected patterns and their deviations.

  20. 9,400 years of cosmic radiation and solar activity from ice cores and tree rings

    PubMed Central

    Steinhilber, Friedhelm; Beer, Jürg; Brunner, Irene; Christl, Marcus; Fischer, Hubertus; Heikkilä, Ulla; Kubik, Peter W.; Mann, Mathias; McCracken, Ken G.; Miller, Heinrich; Miyahara, Hiroko; Oerter, Hans

    2012-01-01

    Understanding the temporal variation of cosmic radiation and solar activity during the Holocene is essential for studies of the solar-terrestrial relationship. Cosmic-ray produced radionuclides, such as 10Be and 14C which are stored in polar ice cores and tree rings, offer the unique opportunity to reconstruct the history of cosmic radiation and solar activity over many millennia. Although records from different archives basically agree, they also show some deviations during certain periods. So far most reconstructions were based on only one single radionuclide record, which makes detection and correction of these deviations impossible. Here we combine different 10Be ice core records from Greenland and Antarctica with the global 14C tree ring record using principal component analysis. This approach is only possible due to a new high-resolution 10Be record from Dronning Maud Land obtained within the European Project for Ice Coring in Antarctica in Antarctica. The new cosmic radiation record enables us to derive total solar irradiance, which is then used as a proxy of solar activity to identify the solar imprint in an Asian climate record. Though generally the agreement between solar forcing and Asian climate is good, there are also periods without any coherence, pointing to other forcings like volcanoes and greenhouse gases and their corresponding feedbacks. The newly derived records have the potential to improve our understanding of the solar dynamics and to quantify the solar influence on climate. PMID:22474348

  1. 9,400 years of cosmic radiation and solar activity from ice cores and tree rings.

    PubMed

    Steinhilber, Friedhelm; Abreu, Jose A; Beer, Jürg; Brunner, Irene; Christl, Marcus; Fischer, Hubertus; Heikkilä, Ulla; Kubik, Peter W; Mann, Mathias; McCracken, Ken G; Miller, Heinrich; Miyahara, Hiroko; Oerter, Hans; Wilhelms, Frank

    2012-04-17

    Understanding the temporal variation of cosmic radiation and solar activity during the Holocene is essential for studies of the solar-terrestrial relationship. Cosmic-ray produced radionuclides, such as (10)Be and (14)C which are stored in polar ice cores and tree rings, offer the unique opportunity to reconstruct the history of cosmic radiation and solar activity over many millennia. Although records from different archives basically agree, they also show some deviations during certain periods. So far most reconstructions were based on only one single radionuclide record, which makes detection and correction of these deviations impossible. Here we combine different (10)Be ice core records from Greenland and Antarctica with the global (14)C tree ring record using principal component analysis. This approach is only possible due to a new high-resolution (10)Be record from Dronning Maud Land obtained within the European Project for Ice Coring in Antarctica in Antarctica. The new cosmic radiation record enables us to derive total solar irradiance, which is then used as a proxy of solar activity to identify the solar imprint in an Asian climate record. Though generally the agreement between solar forcing and Asian climate is good, there are also periods without any coherence, pointing to other forcings like volcanoes and greenhouse gases and their corresponding feedbacks. The newly derived records have the potential to improve our understanding of the solar dynamics and to quantify the solar influence on climate.

  2. H-alpha synoptic charts of solar activity during the first year of solar cycle 20, October 1964 - August 1965. [Skylab program

    NASA Technical Reports Server (NTRS)

    Mcintosh, P. S.

    1975-01-01

    Solar activity during the period October 28, 1964 through August 27, 1965 is presented in the form of charts for each solar rotation constructed from observations made with the chromospheric H-alpha spectra line. These H-alpha synoptic charts are identical in format and method of construction to those published for the period of Skylab observations. The sunspot minimum marking the start of Solar Cycle 20 occurred in October, 1964; therefore, charts represent solar activity during the first year of this solar cycle.

  3. Space-based Observations of the Solar Irradiance

    NASA Astrophysics Data System (ADS)

    Woods, Thomas N.

    2015-08-01

    Solar photon radiation is the dominant energy input to the Earth system, and this energy determines the temperature, structure, and dynamics of the atmosphere, warms the Earth surface, and sustains life. Observations of true solar variability became possible only after attaining access to space, so the observational record of the solar irradiance for sun-climate studies extends back only about 40 years. The total solar irradiance (TSI) and solar spectral irradiance (SSI) observations will be presented along with the discussion of the solar variability during the past four decades. The solar radiation varies on all time scales ranging from minutes to hours for solar eruptive events (flares), days to months for active region evolution and solar rotation (~27 days), and years to decades over the solar activity cycle (~11 years). The amount of solar variability is highly dependent on wavelength and ranges from orders of magnitude for the X-ray to 10-60% for part of the ultraviolet to only 0.1% for the visible and infrared. The accuracy and precision of the solar irradiance measurements have steadily improved with each new generation of instrumentation and with new laboratory (pre-flight) calibration facilities.

  4. Determining the solar wind speed above active regions using remote radio-wave observations

    NASA Technical Reports Server (NTRS)

    Fainberg, J.; Stone, R. G.; Bougeret, J.-L.

    1983-01-01

    A new technique has made it possible to measure the velocity of portions of the solar wind during its flow outward from the sun. This analysis utilizes spacecraft (ISEE-3) observations of radio emission generated in regions of the solar wind associated with solar active regions. By tracking the source of these radio waves over periods of days, it is possible to measure the motion of the emission regions. Evidence of solar wind acceleration during this outward flow, consistent with theoretical models, has also been obtained.

  5. Effect of Ball Mass on Dribble, Pass, and Pass Reception in 9-11-Year-Old Boys' Basketball

    ERIC Educational Resources Information Center

    Arias, Jose L.; Argudo, Francisco M.; Alonso, Jose I.

    2012-01-01

    The objective of the study was to analyze the effect of ball mass on dribble, pass, and pass reception in real game situations in 9-11-year-old boys' basketball. Participants were 54 boys identified from six federated teams. The independent variable was ball mass, and dependent variables were number of dribbles, passes, and pass receptions. Three…

  6. Expectations and Levels of Understanding When Using Mobile Phones among 9-11-Year Olds in Wales, UK

    ERIC Educational Resources Information Center

    Turley, Joanne; Baker, Sally-Ann; Lewis, Christopher Alan

    2014-01-01

    There is growing interest in examining the use of mobile technology among children. The present study extended this literature among a sample of 9-11-year olds in Wales, UK in three ways. First, to examine the level of mobile phone ownership; second, to consider how mobile phones are used, investigate timescales and expectations when communicating…

  7. Maximal Voluntary Static Force Production Characteristics of Skeletal Muscle in Children 8-11 Years of Age.

    ERIC Educational Resources Information Center

    Going, Scott B.; And Others

    1987-01-01

    A study of maximal voluntary isometric muscle contraction force-time curves among 32 normal, healthy 8- to 11-year-olds performing tasks involving separate muscle groups found that force and maximal rate of force increase were quite reproducible, but time to selected force levels reflected considerable variations. (Author/CB)

  8. Internet Use and Psychological Well-Being among 10-Year-Old and 11-Year-Old Children

    ERIC Educational Resources Information Center

    Devine, Paula; Lloyd, Katrina

    2012-01-01

    This paper uses data from the 2009 Kids' Life and Times Survey, involving 3657 children aged 10 or 11 years old in Northern Ireland. The survey indicated high levels of use of Internet applications, including social-networking sites and online games. Using the KIDSCREEN-27 instrument, the data indicate that the use of social-networking sites and…

  9. Chiari type 1 malformation, corpus callosum agenesis and patent craniopharyngeal canal in an 11-year-old boy.

    PubMed

    Tijssen, Maud Pm; Poretti, Andrea; Huisman, Thierry Agm

    2016-10-01

    We describe the neuroimaging findings of an 11-year-old boy who presented with mild occipital headache and precocious puberty. This child was found to have a combination of various midline anomalies including a Chiari type 1 malformation, corpus callosum agenesis and patent craniopharyngeal canal with adjacent intracranial dermoid cyst.

  10. Capturing the Cumulative Effects of School Reform: An 11-Year Study of the Impacts of America's Choice on Student Achievement

    ERIC Educational Resources Information Center

    May, Henry; Supovitz, Jonathan A.

    2006-01-01

    This article presents the results of an 11-year longitudinal study of the impact of America's Choice comprehensive school reform (CSR) design on student learning gains in Rochester, New York. A quasi-experimental interrupted time-series approach using Bayesian hierarchical growth curve analysis with crossed random effects is used to compare the…

  11. Comparative Analysis of Musical Abilities of 11-Year-Olds from Slovenia and the Island of Martinique

    ERIC Educational Resources Information Center

    Jerman, Janez; Pretnar, Tatjana

    2006-01-01

    The focus of the study is the comparison between the musical abilities of 11-year-old children on the island of Martinique and in Slovenia, and finding out to what extent their development of musical abilities is influenced by musical and cultural family background, music school attendance, choral singing and playing orchestral instruments. Our…

  12. Investigation of solar active regions at high resolution by balloon flights of the solar optical universal polarimeter, extended definition phase

    NASA Technical Reports Server (NTRS)

    Tarbell, Theodore D.

    1993-01-01

    Technical studies of the feasibility of balloon flights of the former Spacelab instrument, the Solar Optical Universal Polarimeter, with a modern charge-coupled device (CCD) camera, to study the structure and evolution of solar active regions at high resolution, are reviewed. In particular, different CCD cameras were used at ground-based solar observatories with the SOUP filter, to evaluate their performance and collect high resolution images. High resolution movies of the photosphere and chromosphere were successfully obtained using four different CCD cameras. Some of this data was collected in coordinated observations with the Yohkoh satellite during May-July, 1992, and they are being analyzed scientifically along with simultaneous X-ray observations.

  13. Solar activity influence on climatic variations of stratosphere and mesosphere in mid-latitudes

    NASA Technical Reports Server (NTRS)

    Taubenheim, J.; Entzian, G.; Voncossart, G.

    1989-01-01

    The direct modulation of temperature of the mid-latitude mesosphere by the solar-cycle EUV variation, which leads to greater heat input at higher solar activity, is well established. Middle atmosphere temperature modulation by the solar cycle is independently confirmed by the variation of reflection heights of low frequency radio waves in the lower ionosphere, which are regularly monitored over about 30 years. As explained elsewhere in detail, these reflection heights depend on the geometric altitude of a certain isobaric surface (near 80 k), and on the solar ionizing Lyman-alpha radiation flux. Knowing the solar cycle variation of Lyman-alpha how much the measured reflection heights would be lowered with the transition from solar minimum to maximum can be calculated, if the vertical baric structure of the neutral atmosphere would remain unchanged. An discrepancy between expected and observed height change must be explained by an uplifting of the isobaric level from solar minimum to maximum, caused by the temperature rise in the mesosphere. By integrating the solar cycle temperature changes over the height region of the middle atmosphere, and assuming that the lower boundary (tropopause) has no solar cycle variation, the magnitude of this uplifting can be estimated. It is given for the Lidar-derived and for the rocket-measured temperature variations. Comparison suggests that the real amplitude of the solar cycle temperature variation in the mesosphere is underestimated when using the rocket data, but probably overestimated with the Lidar data.

  14. Active region upflow plasma: its relation to small activity and the solar wind

    NASA Astrophysics Data System (ADS)

    Mandrini, Cristina H.; Culhane, J. Leonard; Cristiani, Germán; Vásquez, Alberto; Van Driel-Gesztelyi, Lidia; Baker, Deborah; Pick, Monique; Demoulin, Pascal; Nuevo, Federico

    Recent studies show that active region (AR) upflowing plasma, observed by the Hinode EUV Imaging Spectrometer (EIS), can gain access to open field lines and be released into the solar wind via magnetic interchange reconnection occurring below the source surface at magnetic null-points in pseudo-streamer configurations. When only one simple bipolar AR is present on the Sun and it is fully covered by the separatrix of a streamer, like AR 10978 on December 2007, it seems unlikely that the upflowing AR plasma could find its way into the slow solar wind. However, signatures of plasma with AR composition at 1 AU that appears to originate from the West of AR 10978 were recently found by Culhane and coworkers. We present a detailed topology analysis of AR 10978 based on a linear force-free magnetic field model at the AR scale, combined with a global PFSS model. This allows us, on one hand, to explain the variations observed in the upflows to the West of the AR as the result of magnetic reconnection at quasi-separatrix layers (QSLs). While at a global scale, we show that reconnection, occurring in at least two main steps, first at QSLs and later at a high-altitude coronal null-point, allows the AR plasma to get around the topological obstacle of the streamer separatrix and be released into the solar wind.

  15. The solar cycle variation of coronal mass ejections and the solar wind mass flux

    NASA Technical Reports Server (NTRS)

    Webb, David F.; Howard, Russell A.

    1994-01-01

    Coronal mass ejections (CMEs) are an important aspect of coronal physics and a potentially significant contributor to perturbations of the solar wind, such as its mass flux. Sufficient data on CMEs are now available to permit study of their longer-term occurrency patterns. Here we present the results of a study of CME occurrence rates over more than a complete 11-year solar sunspot cycle and a comparison of these rates with those of other activity related to CMEs and with the solar wind particle flux at 1 AU. The study includes an evaluation of correlations to the CME rates, which include instrument duty cycles, visibility functions, mass detection thresholds, and geometrical considerations. The main results are as follows: (1) The frequency of occurrence of CMEs tends to track the solar activity cycle in both amplitude and phase; (2) the CME rates from different instruments, when corrected for both duty cycles and visibility functions, are reasonably consistent; (3) considering only longer-term averages, no one class of solar activity is better correlated with CME rate than any other; (4) the ratio of the annualized CME to solar wind mass flux tends to track the solar cycle; and (5) near solar maximum, CMEs can provide a significant fraction (i.e., approximately equals 15%) of the average mass flux to the near-ecliptic solar wind.

  16. Comparison of solar activity during last two minima on turn of Activity Cycles 22/23 and 23/24

    NASA Astrophysics Data System (ADS)

    Gryciuk, Magdalena; Gburek, Szymon; Siarkowski, Marek; Podgorski, Piotr; Sylwester, Janusz; Farnik, Frantisek

    2013-07-01

    The subject of our work is the review and comparison of solar activity during the last two solar minima that occurred between recent activity cycles. We use the soft X-ray global solar corona observations covering the two nine-months long time intervals in 1997/98 and 2009. Data from RF15-I multichannel photometer are used for the penultimate minimum. For the last unusually deep and prolonged solar activity minimum in 2009 the data from SphinX spectrophotometer are used. Comparison of measurements from both minima takes place in the overlapping energy range 2-15 keV. We focus on the active region formation, evolution and flaring productivity during respective minima.

  17. New information on solar activity, 1779-1818, from Sir William Herschel's unpublished notebooks

    NASA Technical Reports Server (NTRS)

    Hoyt, Douglas V.; Schatten, Kenneth H.

    1992-01-01

    Herschel's observations are analyzed in order to determine the level of solar activity for solar cycle 5. It is concluded that solar cycle 5 may have peaked as early as 1801 based upon the average number of groups with a probable secondary maximum in 1804. Depending on the technique adopted, the peak for solar cycle 5 occurred sometime between 1801 and 1804, rather than 1805.2, as commonly assumed. Instead of a solar cycle of 17 yrs, a cycle length of 14 yrs is found. It is also found that the peak yearly mean sunspot number is only about 38 rather than 45, as deduced by Wolf (1855). A technique for making early solar observations homogeneous with modern sunspot observations is proposed.

  18. Relation between solar activity and regional sub-continental climate

    NASA Astrophysics Data System (ADS)

    Ramesh, Rengaswamy

    2012-07-01

    Using stable oxygen isotopes in tree rings, speleothems from the subcontinent and foraminifera of marine sediments from the Indian ocean, we have deciphered the past variations on monsoon quantitatively. Many of the well known solar periodicities are found in these records. In this talk I plan to review the available evidence for quantitative and high resolution monsoon changes and their relation to solar variability. Causal mechanisms and climate models will also be discussed and our current understanding will be summarized. noindent

  19. Spatial Regularities of Solar Activity Effects in the Troposphere

    NASA Astrophysics Data System (ADS)

    Smirnov, R. V.

    1984-12-01

    Joint analysis of maps of density variations (or density dispersions) in the troposphere after geomagnetic disturbances and of maps of advection, wind velocity divergence, etc. makes it possible to put forward a concept of solar-induced centres of atmospheric action (SICA). Solar-disturbance transfer and planetary-wave development in the atmosphere are accomplished by means of SICA where the level of baroclinic instability is high. Infrasonic waves are considered as an agent connecting the lower thermosphere and the troposphere.

  20. Level and length of cyclic solar activity during the Maunder minimum as deduced from the active-day statistics

    NASA Astrophysics Data System (ADS)

    Vaquero, J. M.; Kovaltsov, G. A.; Usoskin, I. G.; Carrasco, V. M. S.; Gallego, M. C.

    2015-05-01

    Aims: The Maunder minimum (MM) of greatly reduced solar activity took place in 1645-1715, but the exact level of sunspot activity is uncertain because it is based, to a large extent, on historical generic statements of the absence of spots on the Sun. Using a conservative approach, we aim to assess the level and length of solar cycle during the MM on the basis of direct historical records by astronomers of that time. Methods: A database of the active and inactive days (days with and without recorded sunspots on the solar disc) is constructed for three models of different levels of conservatism (loose, optimum, and strict models) regarding generic no-spot records. We used the active day fraction to estimate the group sunspot number during the MM. Results: A clear cyclic variability is found throughout the MM with peaks at around 1655-1657, 1675, 1684, 1705, and possibly 1666, with the active-day fraction not exceeding 0.2, 0.3, or 0.4 during the core MM, for the three models. Estimated sunspot numbers are found to be very low in accordance with a grand minimum of solar activity. Conclusions: For the core MM (1650-1700), we have found that (1) A large portion of no-spot records, which correspond to the solar meridian observations, may be unreliable in the conventional database. (2) The active-day fraction remained low (below 0.3-0.4) throughout the MM, indicating the low level of sunspot activity. (3) The solar cycle appears clearly during the core MM. (4) The length of the solar cycle during the core MM appears for 9 ± 1 years, but this is uncertain. (5) The magnitude of the sunspot cycle during MM is assessed to be below 5-10 in sunspot numbers. A hypothesis of the high solar cycles during the MM is not confirmed.

  1. MAGNETIC HELICITY AND ENERGY SPECTRA OF A SOLAR ACTIVE REGION

    SciTech Connect

    Zhang, Hongqi; Brandenburg, Axel; Sokoloff, D. D.

    2014-04-01

    We compute for the first time the magnetic helicity and energy spectra of the solar active region NOAA 11158 during 2011 February 11-15 at 20° southern heliographic latitude using observational photospheric vector magnetograms. We adopt the isotropic representation of the Fourier-transformed two-point correlation tensor of the magnetic field. The sign of the magnetic helicity turns out to be predominantly positive at all wavenumbers. This sign is consistent with what is theoretically expected for the southern hemisphere. The magnetic helicity normalized to its theoretical maximum value, here referred to as relative helicity, is around 4% and strongest at intermediate wavenumbers of k ≈ 0.4 Mm{sup –1}, corresponding to a scale of 2π/k ≈ 16 Mm. The same sign and a similar value are also found for the relative current helicity evaluated in real space based on the vertical components of magnetic field and current density. The modulus of the magnetic helicity spectrum shows a k {sup –11/3} power law at large wavenumbers, which implies a k {sup –5/3} spectrum for the modulus of the current helicity. A k {sup –5/3} spectrum is also obtained for the magnetic energy. The energy spectra evaluated separately from the horizontal and vertical fields agree for wavenumbers below 3 Mm{sup –1}, corresponding to scales above 2 Mm. This gives some justification to our assumption of isotropy and places limits resulting from possible instrumental artifacts at small scales.

  2. ON MAGNETIC ACTIVITY BAND OVERLAP, INTERACTION, AND THE FORMATION OF COMPLEX SOLAR ACTIVE REGIONS

    SciTech Connect

    McIntosh, Scott W.; Leamon, Robert J.

    2014-11-20

    Recent work has revealed a phenomenological picture of the how the ∼11 yr sunspot cycle of the Sun arises. The production and destruction of sunspots is a consequence of the latitudinal-temporal overlap and interaction of the toroidal magnetic flux systems that belong to the 22 yr magnetic activity cycle and are rooted deep in the Sun's convective interior. We present a conceptually simple extension of this work, presenting a hypothesis on how complex active regions can form as a direct consequence of the intra- and extra-hemispheric interaction taking place in the solar interior. Furthermore, during specific portions of the sunspot cycle, we anticipate that those complex active regions may be particularly susceptible to profoundly catastrophic breakdown, producing flares and coronal mass ejections of the most severe magnitude.

  3. The Updated Solar Activity Prediction during the MAVEN Mission, but Should We Believe It?

    NASA Technical Reports Server (NTRS)

    Chamberlin, Philip

    2009-01-01

    Mars atmospheric processes are very dependent not only on the absolute level of the solar irradiance but also the changes in solar irradiance. Correlated with many of these irradiance changes, especially during solar flares, are large particle events called coronal mass ejections that themselves significantly drive processes in the Martian atmosphere. The NOAA Space Weather Prediction Center has issued a consensus solar cycle activity prediction for the upcoming solar cycle 24 maximum, and this maximum period of solar activity will be during the prime MAVEN science mission. This 'consensus' prediction calls for lower activity than the previous solar cycle maximum that occurred during the years 2001-2002, but looking at the wide spread of peer-reviewed predictions there is little faith that can be taken in any one prediction. This drives the importance of real-time measurements from the LPW/EUV diodes and the measurement and modeling results that will be improved upon using results from the Solar Dynamics Observatory (SDO).

  4. National commercial solar heating and cooling demonstration: purposes, program activities, and implications for future programs

    SciTech Connect

    Koontz, R.; Genest, M.; Bryant, B.

    1980-05-01

    The Solar Heating and Cooling Demonstration Act of 1974 created a set of activities to demonstrate the potential use of solar heating within a three-year period and of combined solar heating and cooling within a five-year period. This study assesses the Commercial Demonstration Program portion of the activity in terms of its stated goals and objectives. The primary data base was DOE contractor reports on commercial demonstration projects. It was concluded that the program did not provide data to support a positive decision for the immediate construction or purchase of commercial solar systems. However, the program may have contributed to other goals in the subsequent legislation; i.e., research and development information, stimulation of the solar industry, and more informed policy decisions.

  5. Seismic Study of the Solar Interior: Inferences from SOI/MDI Observations During Solar Activity

    NASA Technical Reports Server (NTRS)

    Korzennik, Sylvain G.; Wagner, William J. (Technical Monitor)

    2005-01-01

    Work on the structure, asphericity and dynamics of the solar interior from p-mode frequencies and frequency splittings was carried out primarily in collaboration with Dr. Eff-Darwich (University of La Laguna, Tenerife). This ongoing collaboration produced new results for the inversion of the internal solar rotation rate and further development in inversion methodologies. It also resulted in inferences on the solar stratification. Substantial progress towards the characterization of high-degree p-modes has been achieved. In collaboration with Drs. Rabello-Soares and Schou (Stanford University), we have gained a clear conceptual understanding of the various elements that affect the leakage matrix of the SOI/MDI instrument. This work has precise implications on the properties and the characterization of the HMI instrument being developed for the SDO mission.

  6. The Variation of Solar Fe 14 and Fe 10 Flux over 1.5 Solar Activity Cycles

    NASA Technical Reports Server (NTRS)

    Altrock, Richard C.

    1990-01-01

    A new source of data on the solar output, namely limb flux from the one- and two-million degree corona is presented. This parameter is derived from data obtained at the National Solar Observatory at Sacramento Peak with the 40 cm coronagraph of the John W. Evans Solar Facility and the Emission Line Coronal Photometer. The limb flux is defined to be the latitude-averaged intensity in millionths of the brightness of disk center from an annulus of width 1.1 minutes centered at a height of 0.15 solar constant above the limb of emission from lines at 6374A (Fe X) or 5303A (Fe XIV). Fe XIV data have been obtained since 1973 and Fe X since 1984. Examination of the Fe XIV data shows that there is ambiguity in the definition of the last two solar activity minima, which can affect the determination of cycle rise times and lengths. There is an indication that a constant minimum or basal corona may exist at solar minimum. Cycle 22 has had a much faster onset than Cycle 21 and has now overtaken Cycle 21. The rise characteristics of the two cycles were very similar up until Jul. to Aug. 1989, at which time a long-term maximum occurred in Fe X and Fe XIV, which could possibly be the solar maximum. Another maximum is developing at the current time. Cycle 21 was characterized in Fe XIV by at least 4 major thrusts or bursts of activity, each lasting on the order of a year and all having similar maximum limb fluxes which indicates that coronal energy output is sustained over periods in which the sunspot number declines significantly. Dramatic increases in the limb fluxes occur from minimum to maximum, ranging from factors of 14 to 21 in the two lines. Two different techniques to predict the epoch of solar maximum have been applied to the Fe XIV data, resulting in estimates of April 1989 (plus or minus 1 mo) and May 1990 (plus or minus 2 mos).

  7. Statistical analysis of the relationships of solar, geomagnetic and human activities

    NASA Astrophysics Data System (ADS)

    Gil, Agnieszka; Alania, Michael; Modzelewska, Renata

    Data of galactic cosmic rays, solar and geomagnetic activities, solar wind parameters and car accident events (CAE) in Poland have been analyzed in order to reveal the statistical relationships among them for the period of 1990- 2007. Cross correlation, cross spectrum and filters method have been used to analyze data of the galactic cosmic ray intensity, the solar wind (SW) velocity, DST, Kp index of geomagnetic activity and CAE in Poland. For some epochs of the above-mentioned period there is found a consistent relationship between CAE, parameters of solar and geomagnetic activities in various periodicities; e.g. the periodicity of 7 days is clearly revealed in CAE, in galactic cosmic rays, SW, solar and geomagnetic activities, especially for the minimum epoch of solar activity. We suppose that there is not excluded that the 7 day periodicity is partially related with the human social activities. The periodicity of 3.5 days, generally found only in the series of CAE data, more or less should be ascribed to the social activities, besides we have not an explicit physical-biological explanation of this effect.

  8. Development and testing of heat transport fluids for use in active solar heating and cooling systems

    NASA Technical Reports Server (NTRS)

    Parker, J. C.

    1981-01-01

    Work on heat transport fluids for use with active solar heating and cooling systems is described. Program objectives and how they were accomplished including problems encountered during testing are discussed.

  9. Communist purges of Soviet Academy of Sciences members and solar activity

    NASA Astrophysics Data System (ADS)

    Tomilin, Konstantin A.

    The author is investigating the corelation between the intansity of Communsit purges under Members of the Academy of Sciences of USSR and Solar Activity, based on previous researches by Alexander Leonidovich Chizhevskij (1897-1964).

  10. The Variability of Solar Spectral Irradiance and Solar Surface Indices Through the Solar Activity Cycles 21-23

    NASA Astrophysics Data System (ADS)

    Deniz Goker, Umit

    2016-07-01

    A study of variations of solar spectral irradiance (SSI) in the wavelength ranges 121.5 nm-300.5 nm for the period 1981-2009 is presented. We used various data for ultraviolet (UV) spectral lines and international sunspot number (ISSN) from interactive data centers as SME (NSSDC), UARS (GDAAC), SORCE (LISIRD) and SIDC, respectively. We developed a special software for extracting the data and reduced this data by using the MATLAB. In this respect, we revealed negative correlations of intensities of UV (289.5 nm-300.5 nm) emission lines originating in the solar chromosphere with the ISSN index during the unusually prolonged minimum between the solar cycles (SCs) 23 and 24. We also compared our results with the ground-based telescopes as Solar Irradiance Platform, Stanford Data (SFO), Kodaikanal Data (KKL) and NGDC Homepage (Rome and Learmonth Solar Observatories). We studied the variations of total solar irradiance (TSI), magnetic field, sunspots/sunspot groups, Ca II K-flux, faculae and plage areas data with these ground-based telescopes, respectively. We reduced the selected data using the Phyton programming language and plot with the IDL programme. Therefore, we found that there was a decrease in the area of bright faculae and chromospheric plages while the percentage of dark faculae and plage decrease, as well. However, these decreases mainly occurred in small sunspots, contrary to this, these terms in large sunspot groups were comparable to previous SCs or even larger. Nevertheless, negative correlations between ISSN and SSI data indicate that these emissions are in close connection with the classes of sunspots/sunspot groups and "PLAGE" regions. Finally, we applied the time series of the chemical elements correspond to the wavelengths 121.5 nm-300.5 nm and compared with the ISSN data. We found an unexpected increasing in the 298.5 nm for the Fe II element. The variability of Fe II (298.5 nm) is in close connection with the plage regions and the sizes of the

  11. The Solar Thermal Design Assistance Center report of its activities and accomplishments in Fiscal Year 1993

    SciTech Connect

    Menicucci, D.F.

    1994-03-01

    The Solar Thermal Design Assistance Center (STDAC) at Sandia National Laboratories is a resource provided by the US Department of Energy`s Solar Thermal Program. Its major objectives are to accelerate the use of solar thermal systems through (a) direct technical assistance to users, (b) cooperative test, evaluation, and development efforts with private industry, and (c) educational outreach activities. This report outlines the major activities and accomplishments of the STDAC in Fiscal Year 1993. The report also contains a comprehensive list of persons who contacted the STDAC by telephone for information or technical consulting.

  12. RESEARCH PAPER: A logistic model for magnetic energy storage in solar active regions

    NASA Astrophysics Data System (ADS)

    Wang, Hua-Ning; Cui, Yan-Mei; He, Han

    2009-06-01

    Previous statistical analyses of a large number of SOHO/MDI full disk longitudinal magnetograms provided a result that demonstrated how responses of solar flares to photospheric magnetic properties can be fitted with sigmoid functions. A logistic model reveals that these fitted sigmoid functions might be related to the free energy storage process in solar active regions. Although this suggested model is rather simple, the free energy level of active regions can be estimated and the probability of a solar flare with importance over a threshold can be forecast within a given time window.

  13. Energy deposition in the earth's atmosphere due to impact of solar activity-generated disturbances

    NASA Technical Reports Server (NTRS)

    Wu, S. T.; Kan, L. C.; Tandberg-Hanssen, E.; Dryer, M.

    1979-01-01

    Energy deposition in and dynamic responses of the terrestrial atmosphere to solar flare-generated shocks and other physical processes - such as particle precipitation and local heating - are investigated self-consistently in the context of hydrodynamics, the problem being treated as an initial boundary-value problem. It is extremely difficult to construct a general model for the line solar activity-magnetosphere-atmosphere; however, a limited model for this link is possible. The paper describes such a model, and presents some results on energy deposition into the earth's atmosphere due to solar activity-generated disturbances. Results from the present calculations are presented and discussed.

  14. Magnitudes and timescales of total solar irradiance variability

    NASA Astrophysics Data System (ADS)

    Kopp, Greg

    2016-07-01

    The Sun's net radiative output varies on timescales of minutes to gigayears. Direct measurements of the total solar irradiance (TSI) show changes in the spatially- and spectrally-integrated radiant energy on timescales as short as minutes to as long as a solar cycle. Variations of ~0.01% over a few minutes are caused by the ever-present superposition of convection and oscillations with very large solar flares on rare occasion causing slightly-larger measurable signals. On timescales of days to weeks, changing photospheric magnetic activity affects solar brightness at the ~0.1% level. The 11-year solar cycle shows variations of comparable magnitude with irradiances peaking near solar maximum. Secular variations are more difficult to discern, being limited by instrument stability and the relatively short duration of the space-borne record. Historical reconstructions of the Sun's irradiance based on indicators of solar-surface magnetic activity, such as sunspots, faculae, and cosmogenic isotope records, suggest solar brightness changes over decades to millennia, although the magnitudes of these variations have high uncertainties due to the indirect historical records on which they rely. Stellar evolution affects yet longer timescales and is responsible for the greatest solar variabilities. In this manuscript I summarize the Sun's variability magnitudes over different temporal regimes and discuss the irradiance record's relevance for solar and climate studies as well as for detections of exo-solar planets transiting Sun-like stars.

  15. Acceleration and Radiation Model of Particles in Solar Active Regions

    NASA Astrophysics Data System (ADS)

    Anastasiadis, Anastasios; Dauphin, Cyril; Vilmer, Nicole

    2006-08-01

    Cellular Automata (CA) models have successfully reproduced several statistical properties of solar flares such as the peak flux or the total flux distribution. We are using a CA model based on the concept of self organized criticality (SOC) to model the evolution of the magnetic energy released in a solar flare. Each burst of magnetic energy released is assumed to be the consequence of a magnetic reconnection process, where the particles are accelerated by a direct electric field. We relate the difference of energy gain of particles (alpha particles, protons and electrons) to the magnetic energy released and we calculate the resulting kinetic energy distributions and the emitted radiation.

  16. Active Control of Solar Array Dynamics During Spacecraft Maneuvers

    NASA Technical Reports Server (NTRS)

    Ross, Brant A.; Woo, Nelson; Kraft, Thomas G.; Blandino, Joseph R.

    2016-01-01

    Recent NASA mission plans require spacecraft to undergo potentially significant maneuvers (or dynamic loading events) with large solar arrays deployed. Therefore there is an increased need to understand and possibly control the nonlinear dynamics in the spacecraft system during such maneuvers. The development of a nonlinear controller is described. The utility of using a nonlinear controller to reduce forces and motion in a solar array wing during a loading event is demonstrated. The result is dramatic reductions in system forces and motion during a 10 second loading event. A motion curve derived from the simulation with the closed loop controller is used to obtain similar benefits with a simpler motion control approach.

  17. The persistence of equatorial spread F - an analysis on seasonal, solar activity and geomagnetic activity aspects

    NASA Astrophysics Data System (ADS)

    Sreeja, V.; Devasia, C. V.; Ravindran, Sudha; Sridharan, R.

    2009-02-01

    The persistence (duration) of Equatorial Spread F (ESF), which has significant impact on communication systems, is addressed. Its behavior during different seasons and geomagnetic activity levels under the solar maximum (2001) and minimum (2006) conditions, is reported using the data from the magnetic equatorial location of Trivandrum (8.5° N; 77° E; dip 0.5° N) in India. The study reveals that the persistence of the irregularities can be estimated to a reasonable extent by knowing the post sunset F region vertical drift velocity (Vz) and the magnetic activity index Kp. Any sort of advance information on the possible persistence of the ionospheric irregularities responsible for ESF is important for understanding the scintillation morphology, and the results which form the first step in this direction are presented and discussed.

  18. Solar wind disturbances in th outer heliosphere caused by successive solar flares from the same active region

    NASA Technical Reports Server (NTRS)

    Akasofu, S. I.; Hakamada, K.

    1983-01-01

    Solar wind disturbances caused by successive flares from the same active region are traced to about 20 AU, using the modeling method developed by Hakamada and Akasofu (1982). It is shown that the flare-generated shock waves coalesce with the co-rotating interaction region of the interplanetary magnetic field, resulting in a large-scale magnetic field structure in the outer heliosphere. Such a structure may have considerable effects on the propagation of galactic cosmic rays.

  19. Skinfold thickness at ulnar, triceps, subscapular, and suprailiac regions in 1,656 Japanese children aged 3-11 years.

    PubMed

    Ohzeki, T; Hanaki, K; Motozumi, H; Matsuda-Ohtahara, H; Shiraki, K

    1992-01-01

    We measured body weight, height, and skinfold thickness (SFT) at ulnar, triceps, subscapular and suprailiac regions in 1,656 Japanese children aged 3-11 years. Means of SFT in boys and girls with normal weight exhibited similar changes with age to Caucasian children. However, nadirs of SFT were observed 1 year earlier and means at 11 years were slightly higher in Japanese. Correlation coefficients between SFT and excess weight (EW) were high in boys and girls when EW was more than 10%. Some children with EW of more than 10% had abnormal SFT. Skinfolds in all children with EW of 30% or more were beyond the normal limits. In this study, normal ranges of SFT in Japanese children are demonstrated and their racial characteristics are compared to Caucasians. It is suggested that children with EW of 10-30% are heterogenous and determination of fat volume is essential to confirm the diagnosis of obesity in these subjects.

  20. Effects of Space Weather on Biomedical Parameters during the Solar Activity Cycles 23-24.

    PubMed

    Ragul'skaya, M V; Rudenchik, E A; Chibisov, S M; Gromozova, E N

    2015-06-01

    The results of long-term (1998-2012) biomedical monitoring of the biotropic effects of space weather are discussed. A drastic change in statistical distribution parameters in the middle of 2005 was revealed that did not conform to usual sinusoidal distribution of the biomedical data reflecting changes in the number of solar spots over a solar activity cycle. The dynamics of space weather of 2001-2012 is analyzed. The authors hypothesize that the actual change in statistical distributions corresponds to the adaptation reaction of the biosphere to nonstandard geophysical characteristics of the 24th solar activity cycle and the probable long-term decrease in solar activity up to 2067. PMID:26085362