Science.gov

Sample records for 111in implanted zno

  1. Continuous and Localized Mn Implantation of ZnO

    PubMed Central

    2009-01-01

    We present results derived from continuous and localized 35 keV55Mn+ion implantations into ZnO. Localized implantations were carried out by using self-ordered alumina membranes as masks leading to ordered arrays of implanted volumes on the substrate surfaces. Defects and vacancies in the small implantation volumes of ZnO were generated due to the implantation processes besides the creation of new phases. Rapid thermal annealing was applied in the case of continuous implantation. The samples were characterized by HRSEM, GIXRD, Raman spectroscopy and RBS/C. Magnetic characterization of the samples pointed out appreciable differences among the samples obtained by the different implantation methods. This fact was mainly attributed to the different volume/surface ratios present in the implanted zones as well as to the increase of Mn atom concentrations along the grain frontiers in the nanostructured surfaces. The samples also showed a ferromagnetic transition phase at temperature value higher than room temperature. PMID:20596285

  2. Nanocluster formation in Co/Fe implanted ZnO

    NASA Astrophysics Data System (ADS)

    Bharuth-Ram, K.; Masenda, H.; Doyle, T. B.; Geburt, S.; Ronning, C.

    2015-04-01

    Conversion electron Mössbauer Spectroscopy (CEMS) measurements were made on a ZnO single crystal sample implanted at room temperature (RT) with of 145 and 345 keV 59Co ions with respective fluences of 1.15×1016 ions/cm 2 and 4.17×1016 ions/cm 2, followed by implantation of 60 keV 57Fe to a fluence of 0.50×1016/cm 2 to yield a `box-shaped' implantation profile with a Co + Fe concentration of about 3.2 at. %. CEM spectra were collected after annealing the sample up to 973 K. The spectra after annealing up to 973 K are similar to spectra observed in other CEMS studies on Fe implanted ZnO, but show a dramatic change after the 973 K annealing step; it is dominated by a doublet component with fit parameters typical of Fe 3+. Magnetization curves of the sample after the 973 K anneal show hysteresis, with a small residual magnetization at RT that increases at 4 K. The saturation magnetization at 4 K was approximately 0.33 μ B/CoFe ion, in good agreement with observations for 5-8 nm sized Co nanoclusters in ZnO.

  3. Amorphous clusters in Co implanted ZnO induced by boron pre-implantation

    SciTech Connect

    Potzger, K.; Shalimov, A.; Zhou, S.; Schmidt, H.; Mucklich, A.; Helm, M.; Fassbender, J.; Liberati, M.; Arenholz, E.

    2009-02-09

    We demonstrate the formation of superparamagnetic/ferromagnetic regions within ZnO(0001) single crystals sequently implanted with B and Co. While the pre-implantation with B plays a minor role for the electrical transport properties, its presence leads to the formation of amorphous phases. Moreover, B acts strongly reducing on the implanted Co. Thus, the origin of the ferromagnetic ordering in local clusters with large Co concentration is itinerant d-electrons as in the case of metallic Co. The metallic amorphous phases are non-detectable by common X-ray diffraction.

  4. Formation of p-type ZnO thin film through co-implantation

    NASA Astrophysics Data System (ADS)

    Chuang, Yao-Teng; Liou, Jhe-Wei; Woon, Wei-Yen

    2017-01-01

    We present a study on the formation of p-type ZnO thin film through ion implantation. Group V dopants (N, P) with different ionic radii are implanted into chemical vapor deposition grown ZnO thin film on GaN/sapphire substrates prior to thermal activation. It is found that mono-doped ZnO by N+ implantation results in n-type conductivity under thermal activation. Dual-doped ZnO film with a N:P ion implantation dose ratio of 4:1 is found to be p-type under certain thermal activation conditions. Higher p-type activation levels (1019 cm-3) under a wider thermal activation range are found for the N/P dual-doped ZnO film co-implanted by additional oxygen ions. From high resolution x-ray diffraction and x-ray photoelectron spectroscopy it is concluded that the observed p-type conductivities are a result of the promoted formation of PZn-4NO complex defects via the concurrent substitution of nitrogen at oxygen sites and phosphorus at zinc sites. The enhanced solubility and stability of acceptor defects in oxygen co-implanted dual-doped ZnO film are related to the reduction of oxygen vacancy defects at the surface. Our study demonstrates the prospect of the formation of stable p-type ZnO film through co-implantation.

  5. Effects of high-dose hydrogen implantation on defect formation and dopant diffusion in silver implanted ZnO crystals

    NASA Astrophysics Data System (ADS)

    Yaqoob, Faisal; Huang, Mengbing

    2016-07-01

    This work reports on the effects of a deep high-dose hydrogen ion implant on damage accumulation, defect retention, and silver diffusion in silver implanted ZnO crystals. Single-crystal ZnO samples were implanted with Ag ions in a region ˜150 nm within the surface, and some of these samples were additionally implanted with hydrogen ions to a dose of 2 × 1016 cm-2, close to the depth ˜250 nm. Rutherford backscattering/ion channeling measurements show that crystal damage caused by Ag ion implantation and the amount of defects retained in the near surface region following post-implantation annealing were found to diminish in the case with the H implantation. On the other hand, the additional H ion implantation resulted in a reduction of substitutional Ag atoms upon post-implantation annealing. Furthermore, the presence of H also modified the diffusion properties of Ag atoms in ZnO. We discuss these findings in the context of the effects of nano-cavities on formation and annihilation of point defects as well as on impurity diffusion and trapping in ZnO crystals.

  6. Narrow fluence window of hydrogen-implantation-induced exfoliation in ZnO

    NASA Astrophysics Data System (ADS)

    Singh, R.; Scholz, R.; Gösele, U.; Christiansen, S. H.

    2007-11-01

    Zinc oxide (ZnO) bulk crystals were implanted by 100 keV H+2 ions with various fluences in the range of 5 × 1016 to 3 × 1017 cm-2 and subsequently annealed at temperatures up to 800 °C in order to observe the formation of surface blisters or exfoliation. The ZnO crystals implanted up to a fluence of 2.2 × 1017 cm-2 did not show any surface blistering/exfoliation even after post-implantation annealing, while those crystals implanted at or above a fluence of 2.8 × 1017 cm-2 already exhibited exfoliated surfaces in the as-implanted state. The ZnO crystals implanted with a fluence of 2.5 × 1017 cm-2 showed surface exfoliation only after post-implantation annealing. Cross-sectional transmission electron microscopic images showed that a large number of nanovoids were formed within the implanted zone of ZnO. These nanovoids served as precursors for the formation of microcracks leading to the exfoliation of ZnO layers.

  7. Modification of the optical properties of ZnO thin films by proton implantation

    SciTech Connect

    Ham, Yong Ju; Park, Jun Kue; Lee, W.; Lee, Cheol Eui; Park, W.

    2012-09-15

    Highlights: ► Optical properties of proton-implanted ZnO thin film prepared by rf magneton sputtering were studied. ► Increase in the ordinary refractive index after proton implantation was explained by the polarizability. ► A slight decrease in the optical bandgap by proton implantation was identified. -- Abstract: Optical properties of proton-implanted ZnO thin film prepared by radio-frequency (rf) magneton sputtering have been studied, the optical constants being obtained from the reflectance measurements by employing Cauchy–Urbach model. Increase in the ordinary refractive index after proton implantation was explained by that in the polarizability. Besides, a slight increase in the optical band gap by proton implantation was identified and discussed in terms of the hydrogen shallow donors introduced by the proton implantation.

  8. P-Type Zno:. as Obtained by Ion Implantation of AS+ with Post-Implantation Annealing in Oxygen Radicals

    NASA Astrophysics Data System (ADS)

    Georgobiani, A. N.; Demin, V. I.; Kotlyarevsky, M. B.; Rogozin, I. V.; Marakhovsky, A. V.

    2004-07-01

    Zinc oxide is the promising material for creation of the new generation of detectors for particle physics and radiation dosimetry. It has been shown that ion implantation of arsenic into zinc oxide film (arsenic is an acceptor impurity in ZnO) can result in formation of the p-type conductivity only in case of annealing in the flux of atomic oxygen. The ion implantation and the following annealing had influenced not only electrical properties of ZnO:As+ layers, but also their photoluminescence spectra. The ultraviolet luminescence band with the maximum at 3.33. eV corresponding to the AsO acceptor center had been clearly observed in the spectra of ZnO films implanted by As+ ions. The optimal temperature range of annealing in the atomic oxygen flux, required for obtaining of p-type conductivity in ZnO films, had been determined.

  9. Fabrication of highly transparent Al-ion-implanted ZnO thin films by metal vapor vacuum arc method

    NASA Astrophysics Data System (ADS)

    Lee, Han; Sivashanmugan, Kundan; Kao, Chi-Yuan; Liao, Jiunn-Der

    2017-03-01

    In this study, we utilized the metal vapor vacuum arc technique to implant vaporized aluminum (Al) ions in zinc oxide (ZnO) thin films. By adjusting the ion implantation dose and operational parameters, the conductivity and optical properties of the ZnO thin film can be controlled. The electrical sheet resistance of Al-ion-implanted ZnO decreased from 3.02 × 107 to 3.03 × 104 Ω/sq, while the transparency of the film was mostly preserved (91.5% at a wavelength of 550 nm). The ZnO thin-film Young’s modulus significantly increased with increasing Al ion dose.

  10. Third generation biosensing matrix based on Fe-implanted ZnO thin film

    SciTech Connect

    Saha, Shibu; Gupta, Vinay; Sreenivas, K.; Tan, H. H.; Jagadish, C.

    2010-09-27

    Third generation biosensor based on Fe-implanted ZnO (Fe-ZnO) thin film has been demonstrated. Implantation of Fe in rf-sputtered ZnO thin film introduces redox center along with shallow donor level and thereby enhance its electron transfer property. Glucose oxidase (GOx), chosen as model enzyme, has been immobilized on the surface of the matrix. Cyclic voltammetry and photometric assay show that the prepared bioelectrode, GOx/Fe-ZnO/ITO/Glass is sensitive to the glucose concentration with enhanced response of 0.326 {mu}A mM{sup -1} cm{sup -2} and low Km of 2.76 mM. The results show promising application of Fe-implanted ZnO thin film as an attractive matrix for third generation biosensing.

  11. Damage annealing in low temperature Fe/Mn implanted ZnO

    NASA Astrophysics Data System (ADS)

    Gunnlaugsson, H. P.; Bharuth-Ram, K.; Johnston, K.; Langouche, G.; Mantovan, R.; Mølholt, T. E.; Naidoo, D.; Ólafsson, O.; Weyer, G.

    2015-04-01

    57Fe Emission Mössbauer spectra obtained after low fluence (<1012 cm -2) implantation of 57Mn ( T 1/2= 1.5 min.) into ZnO single crystal held at temperatures below room temperature (RT) are presented. The spectra can be analysed in terms of four components due to Fe 2+ and Fe 3+ on Zn sites, interstitial Fe and Fe in damage regions (Fe D ). The Fe D component is found to be indistinguishable from similar component observed in emission Mössbauer spectra of higher fluence (˜1015 cm -2)57Fe/ 57Co implanted ZnO and 57Fe implanted ZnO, demonstrating that the nature of the damage regions in the two types of experiments is similar. The defect component observed in the low temperature regime was found to anneal below RT.

  12. Correlation between microstructural and magnetic properties of Tb implanted ZnO

    NASA Astrophysics Data System (ADS)

    Murmu, P. P.; Kennedy, J.; Ruck, B. J.; Williams, G. V. M.; Markwitz, A.; Rubanov, S.; Suvorova, A. A.

    2013-04-01

    We report the results from microstructural and magnetic measurements on 40 keV Tb implanted ZnO single crystals. RBS and channeling measurements for 6.7 × 1014 cm-2 implanted ZnO showed that around 85% of the Tb atoms occupied Zn substitutional lattice sites. Annealing at 650 °C had a small effect on the Tb location where only 81% of the Tb atoms were located at substitutional lattice sites. Energy-filtered TEM micrographs showed that the Tb atoms were located at an average depth of ˜15 nm. Raman spectroscopy results indicated that annealing resulted in a reduction in the implantation induced disorder in the ZnO lattice. Room temperature ferromagnetic order was observed in ZnO:Tb annealed at 650 °C. Superparamagnetic behavior was observed with an average blocking temperature of °40 K for high Tb concentrations and a distribution in the blocking temperature for low Tb concentrations.

  13. Charge states and lattice sites of dilute implanted Sn in ZnO

    NASA Astrophysics Data System (ADS)

    Mølholt, T. E.; Gunnlaugsson, H. P.; Johnston, K.; Mantovan, R.; Röder, J.; Adoons, V.; Mokhles Gerami, A.; Masenda, H.; Matveyev, Y. A.; Ncube, M.; Unzueta, I.; Bharuth-Ram, K.; Gislason, H. P.; Krastev, P.; Langouche, G.; Naidoo, D.; Ólafsson, S.; Zenkevich, A.; ISOLDE Collaboration

    2017-04-01

    The common charge states of Sn are 2+  and 4+. While charge neutrality considerations favour 2+  to be the natural charge state of Sn in ZnO, there are several reports suggesting the 4+  state instead. In order to investigate the charge states, lattice sites, and the effect of the ion implantation process of dilute Sn atoms in ZnO, we have performed 119Sn emission Mössbauer spectroscopy on ZnO single crystal samples following ion implantation of radioactive 119In (T ½  =  2.4 min) at temperatures between 96 K and 762 K. Complementary perturbed angular correlation measurements on 111mCd implanted ZnO were also conducted. Our results show that the 2+  state is the natural charge state for Sn in defect free ZnO and that the 4+  charge state is stabilized by acceptor defects created in the implantation process.

  14. Decrease in work function of boron ion-implanted ZnO thin films.

    PubMed

    Heo, Gi-Seok; Hong, Sang-Jin; Park, Jong-Woon; Choi, Bum-Ho; Lee, Jong-Ho; Shin, Dong-Chan

    2007-11-01

    We have fabricated boron ion-implanted ZnO thin films by ion implantation into sputtered ZnO thin films on a glass substrate. An investigation of the effects of ion doses and activation time on the electrical and optical properties of the films has been made. The electrical sheet resistance and resistivity of the implanted films are observed to increase with increasing rapid thermal annealing (RTA) time, while decreasing as the ion dose increases. Without any RTA process, the variation of the carrier density is insensitive to the ion dose. With the RTA process, however, the carrier density of the implanted films increases and approaches that of the un-implanted ZnO film as the ion dose increases. On the other hand, the carrier mobility is shown to decrease with increasing ion doses when no RTA process is applied. With the RTA process, however, there is almost no change in the mobility. We have achieved the optical transmittance as high as 87% within the visible wavelength range up to 800 nm. It is also demonstrated that the work function can be engineered by changing the ion dose during the ion implantation process. We have found that the work function decreases as the ion dose increases.

  15. Study of the negative magneto-resistance of single proton-implanted lithium-doped ZnO microwires.

    PubMed

    Lorite, I; Zandalazini, C; Esquinazi, P; Spemann, D; Friedländer, S; Pöppl, A; Michalsky, T; Grundmann, M; Vogt, J; Meijer, J; Heluani, S P; Ohldag, H; Adeagbo, W A; Nayak, S K; Hergert, W; Ernst, A; Hoffmann, M

    2015-07-01

    The magneto-transport properties of single proton-implanted ZnO and of Li(7%)-doped ZnO microwires have been studied. The as-grown microwires were highly insulating and not magnetic. After proton implantation the Li(7%) doped ZnO microwires showed a non-monotonous behavior of the negative magneto-resistance (MR) at temperature above 150 K. This is in contrast to the monotonous NMR observed below 50 K for proton-implanted ZnO. The observed difference in the transport properties of the wires is related to the amount of stable Zn vacancies created at the near surface region by the proton implantation and Li doping. The magnetic field dependence of the resistance might be explained by the formation of a magnetic/non-magnetic heterostructure in the wire after proton implantation.

  16. Damage formation and annealing at low temperatures in ion implanted ZnO

    SciTech Connect

    Lorenz, K.; Alves, E.; Wendler, E.; Bilani, O.; Wesch, W.; Hayes, M.

    2005-11-07

    N, Ar, and Er ions were implanted into ZnO at 15 K within a large fluence range. The Rutherford backscattering technique in the channeling mode was used to study in situ the damage built-up in the Zn sublattice at 15 K. Several stages in the damage formation were observed. From the linear increase of the damage for low implantation fluences, an upper limit of the Zn displacement energy of 65 eV could be estimated for [0001] oriented ZnO. Annealing measurements below room temperature show a significant recovery of the lattice starting at temperatures between 80 and 130 K for a sample implanted with low Er fluence. Samples with higher damage levels do not reveal any damage recovery up to room temperature, pointing to the formation of stable defect complexes.

  17. Origins of low resistivity in Al ion-implanted ZnO bulk single crystals

    SciTech Connect

    Oga, T.; Izawa, Y.; Kuriyama, K.; Kushida, K.; Kinomura, A.

    2011-06-15

    The origins of low resistivity in Al ion-implanted ZnO bulk single crystals are studied by combining Rutherford backscattering spectroscopy (RBS), nuclear reaction analysis (NRA), photoluminescence (PL), and Van der Pauw methods. The Al-ion implantation (peak concentration: 2.6 x 10{sup 20}cm{sup -3}) into ZnO is performed using a multiple-step energy. The resistivity decreases from {approx}10{sup 4{Omega}} cm for un-implanted ZnO to 1.4 x 10{sup -1{Omega}} cm for as-implanted, and reaches 6.0 x 10{sup -4{Omega}} cm for samples annealed at 1000 deg. C. RBS and NRA measurements for as-implanted ZnO suggest the existence of the lattice displacement of Zn (Zn{sub i}) and O (O{sub i}), respectively. After annealing at 1000 deg. C, the Zn{sub i} related defects remain and the O{sub i} related defects disappear. The origin of the low resistivity in the as-implanted sample is attributed to the Zn{sub i} ({approx}30 meV [Look et al., Phys. Rev. Lett. 82, 2552 (1999)]). In contrast, the origin of the low resistivity in the sample annealed at 1000 deg. C is assigned to both of the Zn{sub i} related defects and the electrically activated Al donor. A new PL emission appears at around 3.32 eV after annealing at 1000 deg. C, suggesting electrically activated Al donors.

  18. Gallium ion implantation greatly reduces thermal conductivity and enhances electronic one of ZnO nanowires

    SciTech Connect

    Xia, Minggang; Cheng, Zhaofang; Han, Jinyun; Zhang, Shengli; Zheng, Minrui; Sow, Chorng-Haur; Thong, John T. L.; Li, Baowen

    2014-05-15

    The electrical and thermal conductivities are measured for individual zinc oxide (ZnO) nanowires with and without gallium ion (Ga{sup +}) implantation at room temperature. Our results show that Ga{sup +} implantation enhances electrical conductivity by one order of magnitude from 1.01 × 10{sup 3} Ω{sup −1}m{sup −1} to 1.46 × 10{sup 4} Ω{sup −1}m{sup −1} and reduces its thermal conductivity by one order of magnitude from 12.7 Wm{sup −1}K{sup −1} to 1.22 Wm{sup −1}K{sup −1} for ZnO nanowires of 100 nm in diameter. The measured thermal conductivities are in good agreement with those in theoretical simulation. The increase of electrical conductivity origins in electron donor doping by Ga{sup +} implantation and the decrease of thermal conductivity is due to the longitudinal and transverse acoustic phonons scattering by Ga{sup +} point scattering. For pristine ZnO nanowires, the thermal conductivity decreases only two times when its diameter reduces from 100 nm to 46 nm. Therefore, Ga{sup +}-implantation may be a more effective method than diameter reduction in improving thermoelectric performance.

  19. Work function increase of Al-doped ZnO thin films by B+ ion implantation.

    PubMed

    Hong, Sang-Jin; Heo, Gi-Seok; Park, Jong-Woon; Lee, In-Hwan; Choi, Bum-Ho; Lee, Jong-Ho; Park, Se-Yeon; Shin, Dong-Chan

    2007-11-01

    The work function of an Al-doped ZnO (AZO) thin film can be increased via B+ ion implantation from 3.92 eV up to 4.22 eV. The ion implantation has been carried out with the ion dose of 1 x 10(16) cm(-2) and ion energy of 5 keV. The resistance of the B+ implanted AZO films has been a bit raised, while their transmittance is slightly lowered, compared to those of un-implanted AZO films. These behaviors can be explained by the doping profile and the resultant band diagram. It is concluded that the coupling between the B+ ions and oxygen vacancies would be the main reason for an increase in the work function and a change in the other properties. We also address that the work function is more effectively alterable if the defect density of the top transparent conducting oxide layer can be controlled.

  20. Structural and photoluminescence properties of Gd implanted ZnO single crystals

    NASA Astrophysics Data System (ADS)

    Murmu, P. P.; Mendelsberg, R. J.; Kennedy, J.; Carder, D. A.; Ruck, B. J.; Markwitz, A.; Reeves, R. J.; Malar, P.; Osipowicz, T.

    2011-08-01

    We present the structural and photoluminescence properties of 30 keV gadolinium implanted and subsequently annealed zinc oxide (ZnO) single crystals. Rutherford backscattering and channeling results reveal a low surface region defect density which was reduced further upon annealing. For low implantation fluence, around 85% of the Gd atoms are estimated to be in sites aligned with the ZnO lattice, while for higher fluences the Gd is largely disordered and likely forms precipitates. The Raman spectra of the implanted samples show defect-induced modes, which match the one-phonon density of states for the most heavily implanted samples. Annealing eliminates these features implying the removal of Gd-associated lattice disorder. Low temperature photoluminescence spectra revealed a red-shift in the defect emission, from green to orange/yellow, indicating the suppression of a deep level, which is thought to be due to oxygen vacancies. It is suggested that the orange/yellow emission is unmasked when the green emission is quenched by the presence of the implanted Gd atoms.

  1. Rutherford backscattering and nuclear reaction analyses of hydrogen ion-implanted ZnO bulk single crystals

    NASA Astrophysics Data System (ADS)

    Kaida, T.; Kamioka, K.; Ida, T.; Kuriyama, K.; Kushida, K.; Kinomura, A.

    2014-08-01

    The origins of low resistivity in H ion-implanted ZnO bulk single crystals are studied by Rutherford backscattering spectrometry (RBS), nuclear reaction analysis (NRA) photoluminescence (PL), and Van der Pauw methods. The H-ion implantation (peak concentration: 1.45 × 1020 cm-3) into ZnO is performed using a 500 keV implanter. The resistivity decreases from 2.5 × 103 Ω cm for unimplanted ZnO to 6.5 Ω cm for as-implanted one. RBS measurements show that Zn interstitial as a shallow donor is not recognized in as-implanted samples. From photoluminescence measurements, the broad green band emission is observed in as-implanted samples. NRA measurements for as-implanted ZnO suggest the existence of the oxygen interstitial. The origins of the low resistivity in the as-implanted sample are attributed to both the H interstitial as a shallow donor and complex donor between H and disordered O. The activation energy of H related donors estimated from the temperature dependence of carrier concentration is 29 meV.

  2. The photoluminescence response to structural changes of Yb implanted ZnO crystals subjected to non-equilibrium processing

    NASA Astrophysics Data System (ADS)

    Ratajczak, R.; Prucnal, S.; Guziewicz, E.; Mieszczynski, C.; Snigurenko, D.; Stachowicz, M.; Skorupa, W.; Turos, A.

    2017-02-01

    In this paper, we present the detailed study of optical and structural properties of Yb implanted single ZnO crystals. Hydrothermally grown wurtzite (0001) ZnO crystals were implanted with 150 keV Yb ions to fluencies of 5 × 1014 and 1 × 1015 at/cm2. After ion implantation, two different types of annealing were performed: rapid thermal annealing (RTA) and millisecond range flash lamp annealing (FLA). Crystalline quality, damage recovery, and Yb lattice site location were evaluated by the Channeling Rutherford Backscattering Spectrometry (RBS/c). It is shown that independent of the used annealing technique, defects formed in ZnO during ion implantation can be removed. Upon RTA performed at the temperature higher than 800 °C, strong out-diffusion of implanted Yb atoms and precipitation on the surface takes place. Consequently, the degradation of the photoluminescence (PL) efficiency is observed. The diffusion of implanted Yb during millisecond range FLA does not occur for such experimental conditions. Moreover, FLA treatment for 20 ms leads to the formation of single crystalline ZnO layer with Yb incorporated in the substitutional lattice sites. According to RBS/c and PL data, Yb atoms substituted in the Zn sublattice are predominantly in the 2+ oxidation state. The most intensive PL has been observed after annealing at 800 °C for 20 min which is accompanied with the reduction of Yb substitutional fraction and formation of octahedron Yb-oxygen clusters within ZnO.

  3. Who make transparent ZnO colorful? - Ion implantation and thermal annealing effects

    NASA Astrophysics Data System (ADS)

    Chen, Y. N.; Zheng, C. C.; Ning, J. Q.; Wang, R. X.; Ling, C. C.; Xu, S. J.

    2016-11-01

    ZnO has re-attracted considerable interest as a wide band gap semiconductor and energy material in recent years. When most of the near-band-edge exciton sharp lines in the ultraviolet spectral region have been firmly identified, defect origins of broad color emissions are still open to debate. By implanting Cu+ and Zn+ ions into high quality ZnO single crystal, respectively, and investigating their photoluminescence spectra at different temperatures, we firmly show that the structured green emission band is indeed associated with copper impurity. Incorporation of excess Zn ions into ZnO results in a structureless red emission band with a nearly perfect Gaussian lineshape. The pure electronic level locations of these two color emission bands were inclusively determined by using generalized multiple Brownian oscillator model when the simultaneous multiphonon emission was taken into account. The nature of the two colorful luminescent centers, including their charge states, was discussed with the aid of the latest theoretical results on different point defects and their optical transitions in ZnO.

  4. Compositional and Structural Study of Gd Implanted ZnO Films

    SciTech Connect

    Murmu, Peter P.; Kennedy, John V.; Markwitz, Andreas; Ruck, Ben J.

    2009-07-23

    We report a compositional and structural study of ZnO films implanted with 30 keV Gd ions. The depth profile of the implanted ions, measured by Rutherford backscattering spectrometry, matches predictions of DYNAMIC-TRIM calculations. However, after annealing at temperatures above 550 deg. C the Gd ions are observed to migrate towards the bulk, and at the same time atomic force microscope images of the film surfaces show significant roughening. Raman spectroscopy shows that the annealed films have a reduced number of crystalline defects. The overall results are useful for developing an implantation-annealing regime to produce well characterized samples to investigate magnetism in the ZnO:Gd system.

  5. Compositional and Structural Study of Gd Implanted ZnO Films

    NASA Astrophysics Data System (ADS)

    Murmu, Peter P.; Kennedy, John V.; Markwitz, Andreas; Ruck, Ben J.

    2009-07-01

    We report a compositional and structural study of ZnO films implanted with 30 keV Gd ions. The depth profile of the implanted ions, measured by Rutherford backscattering spectrometry, matches predictions of DYNAMIC-TRIM calculations. However, after annealing at temperatures above 550° C the Gd ions are observed to migrate towards the bulk, and at the same time atomic force microscope images of the film surfaces show significant roughening. Raman spectroscopy shows that the annealed films have a reduced number of crystalline defects. The overall results are useful for developing an implantation-annealing regime to produce well characterized samples to investigate magnetism in the ZnO:Gd system.

  6. Biofunctionalization of carbon nanotubes/chitosan hybrids on Ti implants by atom layer deposited ZnO nanostructures

    NASA Astrophysics Data System (ADS)

    Zhu, Yizhou; Liu, Xiangmei; Yeung, Kelvin W. K.; Chu, Paul K.; Wu, Shuilin

    2017-04-01

    One-dimensional (1D) nanostructures of ZnO using atomic layer deposition (ALD) on chitosan (CS) modified carbon nanotubes (CNTs) were first introduced onto the surfaces of biomedical implants. When the content of ZnO is not sufficient, CNTs can strengthen the antibacterial activity against E. coli and S. aureus by 8% and 39%, respectively. CS can improve the cytocompatibility of CNTs and ZnO. The amount of Zn content can be controlled by changing the cycling numbers of ALD processes. This hybrid coating can not only endow medical implants with high self-antibacterial efficacy against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) of over 73% and 98%, respectively, but also regulate the proliferation and osteogenic differentiation of osteoblasts by controlling the amount of ZnO.

  7. Process Dependence of H Passivation and Doping in H-implanted ZnO

    DTIC Science & Technology

    2013-01-04

    full text article. 2013 J. Phys. D: Appl. Phys. 46 055107 (http://iopscience.iop.org/0022- 3727 /46/5/055107) Download details: IP Address: 131.84.11.215...MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10 . SPONSOR/MONITOR’S ACRONYM(S) 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION/AVAILABILITY...Appl. Phys. 46 (2013) 055107 (7pp) doi:10.1088/0022- 3727 /46/5/055107 Process dependence of H passivation and doping in H-implanted ZnO Z Zhang1, D C

  8. A CEMS search for precipitate formation in 57Fe implanted ZnO

    NASA Astrophysics Data System (ADS)

    Bharuth-Ram, Krishanlal; Masenda, Hilary; Doyle, Terence B.; Geburt, Sebastian; Ronning, Carsten; Gunnlaugsson, Harald Palle

    2012-03-01

    Conversion electron Mössbauer Spectroscopy measurements have been made on ZnO single crystals implanted with 60 keV 57Fe to 4 and 8 at.% peak concentrations, and annealed up to 800°C. The spectra show quite strong changes with annealing, but no evidence of magnetic components, thus precluding the formation of large sized precipitates or secondary phases. Above an annealing temperature of 650°C, the dominant spectral component is a doublet with hyperfine parameters typical of Fe3 + , which is attributed to Fe3 + ions in nano-precipitates ˜5 nm in size.

  9. Lattice location and thermal stability of implanted Fe in ZnO

    SciTech Connect

    Rita, E.; Wahl, U.; Correia, J.G.; Alves, E.; Soares, J.C.

    2004-11-22

    The emission channeling technique was applied to evaluate the lattice location of implanted {sup 59}Fe in single-crystalline ZnO. The angular distribution of {beta}{sup -} particles emitted by {sup 59}Fe was monitored with a position-sensitive electron detector, following 60 keV low dose (2.0x10{sup 13} cm{sup -2}) room-temperature implantation of the precursor isotope {sup 59}Mn. The emission patterns around the [0001], [1102],[1101], and [2113] directions revealed that following annealing at 800 deg. C, 95(8)% of the Fe atoms occupy ideal substitutional Zn sites with rms displacements of 0.06-0.09 A.

  10. Tunable transport properties of n-type ZnO nanowires by Ti plasma immersion ion implantation

    SciTech Connect

    Liao, L.; Zhang, Z.; Yan, B.; Li, G. P.; Wu, T.; Shen, Z. X.; Yu, T.; Yang, Y.; Cao, H. T.; Chen, L. L.; Tay, B. K.; Sun, X. W.

    2008-10-01

    Single-crystalline, transparent conducting ZnO nanowires were obtained simply by Ti plasma immersion ion implantation (PIII). Electrical transport characterizations demonstrate that the n-type conduction of ZnO nanowire could be tuned by appropriate Ti-PIII. When the energy of PIII is increased, the resistivity of ZnO decreases from 4x10{sup 2} to 3.3x10{sup -3} {omega} cm, indicating a semiconductor-metal transition. The failure-current densities of the metallic ZnO could be up to 2.75x10{sup 7} A/cm{sup 2}. Therefore, this facile method may provide an inexpensive alternative to tin doped indium oxide as transparent conducting oxide materials.

  11. Tuning quantum corrections and magnetoresistance in ZnO nanowires by ion implantation.

    PubMed

    Zeng, Y J; Pereira, L M C; Menghini, M; Temst, K; Vantomme, A; Locquet, J-P; Van Haesendonck, C

    2012-02-08

    Using ion implantation, the electrical as well as the magnetotransport properties of individual ZnO nanowires (NWs) can be tuned. The virgin NWs are configured as field-effect transistors which are in the enhancement mode. Al-implanted NWs reveal a three-dimensional metallic-like behavior, for which the magnetoresistance is well described by a semiempirical model that takes into account the presence of doping induced local magnetic moments and of two conduction bands. On the other hand, one-dimensional electron transport is observed in Co-implanted NWs. At low magnetic fields, the anisotropic magnetoresistance can be described in the framework of weak electron localization in the presence of strong spin-orbit scattering. From the weak localization, a large phase coherence length is inferred that reaches up to 800 nm at 2.5 K. The temperature-dependent dephasing is shown to result from a one-dimensional Nyquist noise-related mechanism. At the lowest temperatures, the phase coherence length becomes limited by magnetic scattering.

  12. Enhanced sputtering and incorporation of Mn in implanted GaAs and ZnO nanowires

    NASA Astrophysics Data System (ADS)

    Johannes, A.; Noack, S.; Paschoal, W., Jr.; Kumar, S.; Jacobsson, D.; Pettersson, H.; Samuelson, L.; Dick, K. A.; Martinez-Criado, G.; Burghammer, M.; Ronning, C.

    2014-10-01

    We simulated and experimentally investigated the sputter yield of ZnO and GaAs nanowires, which were implanted with energetic Mn ions at room temperature. The resulting thinning of the nanowires and the dopant concentration with increasing Mn ion fluency were measured by accurate scanning electron microscopy (SEM) and nano-x-Ray Fluorescence (nanoXRF) quantification, respectively. We observed a clearly enhanced sputter yield for the irradiated nanowires compared to bulk, which is also corroborated by iradina simulations. These show a maximum if the ion range matches the nanowire diameter. As a consequence of the erosion thinning of the nanowire, the incorporation of the Mn dopants is also enhanced and increases non-linearly with increasing ion fluency.

  13. Crucial role of implanted atoms on dynamic defect annealing in ZnO

    SciTech Connect

    Azarov, A. Yu.; Kuznetsov, A. Yu.; Svensson, B. G.; Wendler, E.

    2014-02-03

    Processes of defect formation in radiation hard semiconductors exhibiting efficient dynamic annealing are different from those in amorphizible ones, and the latter are generally more well-studied. In the present work, we investigate structural disorder in wurtzite ZnO, which is a radiation hard material, implanted with different ions at room temperature and 15 K. The sample analysis was undertaken by Rutherford backscattering/channeling spectrometry performed in-situ without changing the sample temperature. The fluence dependence of bulk disorder exhibits the so-called IV-stage evolution, where the high fluence regime is characterized by both a strong influence on the damage build-up by the ion type and a reverse temperature effect. A straightforward methodology is demonstrated to differentiate between the contributions of pure ballistic and ion-defect reaction processes in the damage formation.

  14. Ferromagnetism and suppression of metallic clusters in Fe implanted ZnO -- a phenomenon related to defects?

    SciTech Connect

    Arenholz, Elke; Zhou, S.; Potzger, K.; Talut, G.; Reuther, H.; Kuepper, K.; Grenzer, J.; Xu, Q.; Mucklich, A.; Helm, M.; Fassbender, J.; Arenholz, E.

    2008-03-12

    We investigated ZnO(0001) single crystals annealed in high vacuum with respect to their magnetic properties and cluster formation tendency after implant-doping with Fe. While metallic Fe cluster formation is suppressed, no evidence for the relevance of the Fe magnetic moment to the observed ferromagnetism was found. The latter along with the cluster suppression is discussed with respect to defects in the ZnO host matrix, since the crystalline quality of the substrates was lowered due to the preparation as observed by x-ray diffraction.

  15. Characteristic properties of Raman scattering and photoluminescence on ZnO crystals doped through phosphorous-ion implantation

    SciTech Connect

    Jeong, T. S.; Yu, J. H.; Mo, H. S.; Kim, T. S.; Lim, K. Y.; Youn, C. J.; Hong, K. J.

    2014-02-07

    P-doped ZnO was fabricated by means of the ion-implantation method. At the Raman measurement, the blue shift of the E{sub 2}{sup high} mode and A{sub 1}(LO) phonon of the inactive mode were observed after the P-ion implantation. It suggested to be caused by the compressive stress. Thus, Hall effect measurement indicates that the acceptor levels exists in P-doped ZnO while still maintaining n-type ZnO. From the X-ray photoelectron spectroscopy, the chemical bond formation of the P2p{sub 3/2} spectrum consisted of 2(P{sub 2}O{sub 5}) molecules. Therefore, the implanted P ions were substituted to the Zn site in ZnO. From the photoluminescence (PL) spectra, P-related PL peaks were observed in the energy ranges of 3.1 and 3.5 eV, and its origin was analyzed at P{sub Zn}-2V{sub Zn} complexes, acting as a shallow acceptor. With increasing temperatures, the neutral-acceptor bound-exciton emission, (A{sup 0}, X), shows a tendency to quench the intensity and extend the emission linewidth. From the relations of the intensity and the linewidth as a function of temperature, the broadening of linewidth was believed to the result that the vibration mode of E{sub 2}{sup high} participates in the broadening process of (A{sup 0}, X) and the change of luminescent intensity was attributed to the partial dissociation of (A{sup 0}, X). Consequently, these facts indicate that the acceptor levels existed in P-doped ZnO layer by the ion implantation.

  16. Optical activity and defect/dopant evolution in ZnO implanted with Er

    SciTech Connect

    Azarov, Alexander; Galeckas, Augustinas; Kuznetsov, Andrej; Monakhov, Edouard; Svensson, Bengt G.; Hallén, Anders

    2015-09-28

    The effects of annealing on the optical properties and defect/dopant evolution in wurtzite (0001) ZnO single crystals implanted with Er ions are studied using a combination of Rutherford backscattering/channeling spectrometry and photoluminescence measurements. The results suggest a lattice recovery behavior dependent on ion dose and involving formation/evolution of an anomalous multipeak defect distribution, thermal stability of optically active Er complexes, and Er outdiffusion. An intermediate defect band occurring between the surface and ion-induced defects in the bulk is stable up to 900 °C and has a photoluminescence signature around 420 nm well corresponding to Zn interstitials. The optical activity of the Er atoms reaches a maximum after annealing at 700 °C but is not directly associated to the ideal Zn site configuration, since the Er substitutional fraction is maximal already in the as-implanted state. In its turn, annealing at temperatures above 700 °C leads to dissociation of the optically active Er complexes with subsequent outdiffusion of Er accompanied by the efficient lattice recovery.

  17. Nuclear reaction analysis of Ge ion-implanted ZnO bulk single crystals: The evaluation of the displacement in oxygen lattices

    NASA Astrophysics Data System (ADS)

    Kamioka, K.; Oga, T.; Izawa, Y.; Kuriyama, K.; Kushida, K.; Kinomura, A.

    2014-08-01

    The displacement of oxygen lattices in Ge ion-implanted ZnO bulk single crystals is studied by nuclear reaction analysis (NAR), photoluminescence (PL), and Van der Pauw methods. The Ge ion-implantation (net concentration: 2.6 × 1020 cm-3) into ZnO is performed using a multiple-step energy. The high resistivity of ∼103 Ω cm in un-implanted samples remarkably decreased to ∼10-2 Ω cm after implanting Ge-ion and annealing subsequently. NRA measurements of as-implanted and annealed samples suggest the existence of the lattice displacement of O atoms acting as acceptor defects. As O related defects still remain after annealing, these defects are not attributed to the origin of the low resistivity in 800 and 1000 °C annealed ZnO.

  18. Emission Mössbauer spectroscopy study of fluence dependence of paramagnetic relaxation in Mn/Fe implanted ZnO

    NASA Astrophysics Data System (ADS)

    Masenda, H.; Geburt, S.; Bharuth-Ram, K.; Naidoo, D.; Gunnlaugsson, H. P.; Johnston, K.; Mantovan, R.; Mølholt, T. E.; Ncube, M.; Shayestehaminzadeh, S.; Gislason, H. P.; Langouche, G.; Ólafsson, S.; Ronning, C.

    2016-12-01

    Emission Mössbauer Spectroscopy following the implantation of radioactive precursor isotope 57Mn+ ( T 1/2= 1.5 min) into ZnO single crystals at ISOLDE/CERN shows that a large fraction of 57Fe atoms produced in the 57Mn beta decay is created as paramagnetic Fe3+ with relatively long spin-lattice relaxation times. Here we report on ZnO pre-implanted with 56Fe to fluences of 2×1013, 5×10 13 and 8 × 1013 ions/cm2 in order to investigate the dependence of the paramagnetic relaxation rate of Fe3+ on fluence. The spectra are dominated by magnetic features displaying paramagnetic relaxation effects. The extracted spin-lattice relaxation rates show a slight increase with increasing ion fluence at corresponding temperatures and the area fraction of Fe3+ at room temperature reaches a maximum contribution of 80(3)% in the studied fluence range.

  19. Origins of low resistivity and Ge donor level in Ge ion-implanted ZnO bulk single crystals

    SciTech Connect

    Kamioka, K.; Oga, T.; Izawa, Y.; Kuriyama, K.; Kushida, K.

    2013-12-04

    The energy level of Ge in Ge-ion implanted ZnO single crystals is studied by Hall-effect and photoluminescence (PL) methods. The variations in resistivity from ∼10{sup 3} Ωcm for un-implanted samples to ∼10{sup −2} Ωcm for as-implanted ones are observed. The resistivity is further decreased to ∼10{sup −3} Ωcm by annealing. The origins of the low resistivity are attributed to both the zinc interstitial (Zn{sub i}) related defects and the electrical activated Ge donor. An activation energy of Ge donors estimated from the temperature dependence of carrier concentration is 102 meV. In PL studies, the new peak at 372 nm (3.33 eV) related to the Ge donor is observed in 1000 °C annealed samples.

  20. Controlling the growth of ZnO quantum dots embedded in silica by Zn/F sequential ion implantation and subsequent annealing.

    PubMed

    Ren, F; Zhang, L Y; Xiao, X H; Cai, G X; Fan, L X; Liao, L; Jiang, C Z

    2008-04-16

    We report the formation of embedded ZnO quantum dots (QDs) by Zn and F ion sequential implantation and subsequent annealing. Optical absorption and photoluminescence spectrum measurements, transmission electron microscopy bright field images and selected area electron diffraction patterns indicate that ZnO QDs were formed after annealing in air or vacuum at temperatures higher than 500 °C. Atomic force microscopy images show a comparatively flat surface of the annealed samples, which indicates that only very few Zn atoms are evaporated to the surfaces. The formation of ZnO QDs during the thermal annealing can be attributed to the direct oxidization of Zn nanoparticles by the oxygen molecules in the substrate produced during the implantation of F ions. The quality of ZnO QDs increases with the increase of annealing temperature.

  1. Current transport studies of ZnO /p-Si heterostructures grown by plasma immersion ion implantation and deposition

    NASA Astrophysics Data System (ADS)

    Chen, X. D.; Ling, C. C.; Fung, S.; Beling, C. D.; Mei, Y. F.; Fu, Ricky K. Y.; Siu, G. G.; Chu, Paul. K.

    2006-03-01

    Rectifying undoped and nitrogen-doped ZnO /p-Si heterojunctions were fabricated by plasma immersion ion implantation and deposition. The undoped and nitrogen-doped ZnO films were n type (n˜1019cm-3) and highly resistive (resistivity ˜105Ωcm), respectively. While forward biasing the undoped-ZnO /p-Si, the current follows Ohmic behavior if the applied bias Vforward is larger than ˜0.4V. However, for the nitrogen-doped-ZnO /p-Si sample, the current is Ohmic for Vforward<1.0V and then transits to J ˜V2 for Vforward>2.5V. The transport properties of the undoped-ZnO /p-Si and the N-doped-ZnO /p-Si diodes were explained in terms of the Anderson model and the space charge limited current model, respectively.

  2. Analysis of subthreshold photo-leakage current in ZnO thin-film transistors using indium-ion implantation

    NASA Astrophysics Data System (ADS)

    Kamada, Yudai; Fujita, Shizuo; Hiramatsu, Takahiro; Matsuda, Tokiyoshi; Furuta, Mamoru; Hirao, Takashi

    2010-11-01

    Mechanism of photo-leakage current in the ZnO TFTs has been analyzed by comparison between the light irradiated TFTs and indium (In) ion implanted TFTs where the selected areas of the channel region were irradiated or implanted. In case of the TFT with In ion implantation at a source region, the positive charge of ionized donors at the source region lowered the potential barrier at the source electrode and increased leakage current even at a dark condition due to carrier injection from the source into the channel region. In case of light irradiation of the ZnO TFT, similar phenomenon was observed due to the hole accumulation at the source region. From the analogy of the leakage properties, it is confirmed that the photo-leakage current is mainly due to the accumulation of holes near the source electrode, which lowers the potential barrier for the carrier injection from the source to the channel region, contributing to the generation of the leakage current.

  3. Effect of Ar+ ion post-irradiation on crystal structure, magnetic behavior and optical band gap of Co-implanted ZnO wafers

    NASA Astrophysics Data System (ADS)

    Xu, N. N.; Li, G. P.; Lin, Q. L.; Liu, H.; Bao, L. M.

    2016-12-01

    Single crystals wurtzite ZnO with (001) orientation were implanted with Co+ ions at room temperature (RT). To tune their magnetic behavior as well as the band gap of the implanted wafers, Ar+ ion post-irradiation (PI) was performed using the calculated energy and ion dose. The formed Co clusters present in the high dose Co-implanted ZnO wafer were observed to be absent after the PI, which is quite different from the low dose doped one. It is found that all the implanted samples showed a giant magnetic moment and a narrowing optical band gap, and that the post-irradiated ones exhibited an even further redshifted absorption edge and ferromagnetic behavior but with saturation magnetization (MS) drastically decreased.

  4. Evaluation of Carbon Interstitial in C-ion Implanted ZnO Bulk Single Crystals by a Nuclear Reaction Analysis Study: An Origin of Low Resistivity

    SciTech Connect

    Izawa, Y.; Matsumoto, K.; Oga, T.; Kuriyama, K.; Kushida, K.; Kinomura, A.

    2011-12-23

    Nuclear reaction analysis (NRA) of carbon-implanted ZnO bulk single crystals (carbon concentration: 1.5x10{sup 20} cm{sup -3}), in conjunction with the channeling technique, using the {sup 12}C(d,p){sup 13}C and {sup 16}O(d,p){sup 17}O reactions shows the presence of the interstitial carbon (C{sub i}) and the occupancy of substitute sites of oxygen atoms. These results suggest that the variation in resistivity from the order of 10{sup 4} {Omega}cm(for un-implanted samples) to that of 10 {Omega}cm (for as-implanted ones) is attributed to the C{sub i} and/or its complex defects, which would act as a shallow donor in ZnO.

  5. Hydrogen interstitial in H-ion implanted ZnO bulk single crystals: Evaluation by elastic recoil detection analysis and electron paramagnetic resonance

    NASA Astrophysics Data System (ADS)

    Kaida, T.; Kamioka, K.; Nishimura, T.; Kuriyama, K.; Kushida, K.; Kinomura, A.

    2015-12-01

    The origins of low resistivity in H ion-implanted ZnO bulk single crystals are evaluated by elastic recoil detection analysis (ERDA), electron paramagnetic resonance (EPR), and Van der Pauw methods. The H-ion implantation (peak concentration: 5.0 × 1015 cm-2) into ZnO is performed using a 500 keV implanter. The maximum of the concentration of the implanted H estimated by a TRIM simulation is at 3600 nm in depth. The resistivity decreases from ∼103 Ω cm for un implanted ZnO to 6.5 Ω cm for as-implanted, 2.3 × 10-1 Ω cm for 200 °C annealed, and 3.2 × 10-1 Ω cm for 400 °C annealed samples. The ERDA measurements can evaluate the concentration of hydrogens which move to the vicinity of the surface (surface to 300 nm or 100 nm) because of the diffusion by the annealing at 200 °C and 400 °C. The hydrogen concentration near the surface estimated using the 2.0 MeV helium beam is ∼3.8 × 1013 cm-2 for annealed samples. From EPR measurements, the oxygen vacancy of +charge state (Vo+) is observed in as-implanted samples. The Vo+ related signal (g = 1.96) observed under no illumination disappears after successive illumination with a red LED and appears again with a blue light illumination. The activation energy of as-implanted, 200 °C annealed, and 400 °C annealed samples estimated from the temperature dependence of carrier concentration lies between 29 meV and 23 meV, suggesting the existence of H interstitial as a shallow donor level.

  6. Revealing the surface origin of green band emission from ZnO nanostructures by plasma immersion ion implantation induced quenching

    SciTech Connect

    Yang, Y.; Sun, X. W.; Tay, B. K.; Cao, Peter H. T.; Wang, J. X.; Zhang, X. H.

    2008-03-15

    Surface defect passivation for ZnO nanocombs (NCBs), random nanowires (RNWs), and aligned nanowires (ANWs) was performed through a metal plasma immersion ion implantation with low bias voltages ranging from 0 to 10 kV, where Ni was used as the modification ion. The depth of surface-originated green band (GB) emission is thus probed, revealing the surface origin of the GB. It is also found that the GB is closely related to oxygen gas content during growth of the nanostructures. The GB origin of NCBs and RNWs grown with higher oxygen content is shallower ({approx}0.5 nm), which can be completely quenched with no bias applied. However, the GB origin of ANWs grown at lower oxygen content is much deeper ({approx}7 nm) with a complete quenching bias of 10 kV. Quenching of the GB can be attributed to passivation of the surface hole or electron trapping sites (oxygen vacancies) by Ni ions.

  7. Evolution kinetics of elementary point defects in ZnO implanted with low fluences of helium at cryogenic temperature

    NASA Astrophysics Data System (ADS)

    Bhoodoo, C.; Hupfer, A.; Vines, L.; Monakhov, E. V.; Svensson, B. G.

    2016-11-01

    Hydrothermally grown n -type ZnO samples, implanted with helium (He+) at a sample temperature of ˜40 K and fluences of 5 ×109 and 5 ×1010cm-2 , have been studied in situ by capacitance voltage (CV) and junction spectroscopy measurements. The results are complemented by data from secondary ion mass spectrometry and Fourier transform infrared absorption measurements and first-principles calculations. Removal/passivation of an implantation-induced shallow donor center or alternatively growth of a deep acceptor defect are observed after annealing, monitored via charge carrier concentration (Nd) versus depth profiles extracted from CV data. Isothermal anneals in the temperature range of 290-325 K were performed to study the evolution in Nd, revealing a first-order kinetics with an activation energy, Ea≈0.7 eV and frequency factor, c0˜106s-1 . Two models are discussed in order to explain these annealing results. One relies on transition of oxygen interstitials (Oi) from a split configuration (neutral state) to an octahedral configuration (deep double acceptor state) as a key feature. The other one is based on the migration of Zn interstitials (double donor) and trapping by neutral Zn-vacancy-hydrogen complexes as the core ingredient. In particular, the latter model exhibits good quantitative agreement with the experimental data and gives an activation energy of ˜0.75 eV for the migration of Zn interstitials.

  8. Structural and optical characterization of indium-antimony complexes in ZnO

    NASA Astrophysics Data System (ADS)

    Türker, M.; Deicher, M.; Johnston, K.; Wolf, H.; Wichert, Th.

    2015-04-01

    One of the main obstacles to the technical application of the wide-gap semiconductor ZnO represents the difficulty to achieve reliable p-type doping of ZnO with group V elements (N, P, As, Sb) acting as acceptors located on O lattice sites. The theoretically proposed concepts of cluster-doping or codoping may lead to an enhanced and stable p-type conductivity of ZnO. We report on PAC results obtained by codoping experiments of ZnO by ion implantation using the donor 111In and the group-V acceptor Sb. The formation of In-Sb pairs has been observed. Based on these PAC results, there is no evidence for the formation of In-acceptor complexes involving more than one Sb acceptor. These results has been complemented by photoluminescence measurements.

  9. Defects in virgin and N+ -implanted ZnO single crystals studied by positron annihilation, Hall effect, and deep-level transient spectroscopy

    NASA Astrophysics Data System (ADS)

    Brauer, G.; Anwand, W.; Skorupa, W.; Kuriplach, J.; Melikhova, O.; Moisson, C.; von Wenckstern, H.; Schmidt, H.; Lorenz, M.; Grundmann, M.

    2006-07-01

    High-quality single crystals of ZnO in the as-grown and N+ ion-implanted states have been investigated using a combination of three experimental techniques—namely, positron lifetime/slow positron implantation spectroscopy accompanied by theoretical calculations of the positron lifetime for selected defects, temperature-dependent Hall (TDH) measurements, and deep level transient spectroscopy (DLTS). The positron lifetime in bulk ZnO is measured to be (151±2)ps and that for positrons trapped in defects (257±2)ps . On the basis of theoretical calculations the latter is attributed to Zn+O divacancies, existing in the sample in neutral charge state, and not to the Zn vacancy proposed in previous experimental work. Their concentration is estimated to be 3.7×1017cm-3 . From TDH measurements the existence of negatively charged intrinsic defects acting as compensating acceptors is concluded which are invisible to positrons—maybe interstitial oxygen. This view is supported from TDH results in combination with DLTS which revealed the creation of the defect E1 , and an increase in concentration of the defect E3 after N+ ion implantation, and peculiarities in the observation of the defect E4 .

  10. Characterization of the lattice defects in Ge-ion implanted ZnO bulk single crystals by Rutherford Backscattering: Origins of low resistivity

    NASA Astrophysics Data System (ADS)

    Kamioka, K.; Oga, T.; Izawa, Y.; Kuriyama, K.; Kushida, K.

    2013-07-01

    A Ge ion implantation using a multiple-step energy into ZnO bulk single crystals is performed (net concentration: 2.6 × 1020 cm-3). The origins of low resistivity of the Ge implanted ZnO samples are studied by Rutherford backscattering spectroscopy (RBS), photoluminescence (PL). The resistivity measured by Van der Pauw method decreases from ˜103 Ωcm for the un-implanted samples to 1.45 × 10-2 Ωcm for the as-implanted samples, originating from the lattice displacement of Zn (Zni) (˜30 meV [Look et al., Phys. Rev. Lett. 82, 2552 (1999)]), the existence of which is revealed by the RBS measurements. In contrast, the 1000 °C annealed samples show the higher resistivity of 6.26 × 10-1 Ωcm, indicating that the Zni related defects decrease but still remain despite the annealing. A new PL emission appears at around 372 nm (3.33 eV) in the annealed samples, suggesting a Ge donor with an activation energy of 100 meV. This value corresponds to the activation energy (102 meV) of a Ge donor estimated from the temperature dependence of carrier concentration. These results suggest that the resistivity in the 1000 °C annealed samples results from both the Zni related defects and the electrically activated Ge donor.

  11. Study of non-linear Hall effect in nitrogen-grown ZnO microstructure and the effect of H{sup +}-implantation

    SciTech Connect

    Kumar, Yogesh Bern, Francis; Barzola-Quiquia, Jose; Lorite, Israel; Esquinazi, Pablo

    2015-07-13

    We report magnetotransport studies on microstructured ZnO film grown by pulsed laser deposition in N{sub 2} atmosphere on a-plane Al{sub 2}O{sub 3} substrates and the effect of low energy H{sup +}-implantation. Non-linearity has been found in the magnetic field dependent Hall resistance, which decreases with temperature. We explain this effect with a two-band model assuming the conduction through two different parallel channels having different types of charge carriers. Reduced non-linearity after H{sup +}-implantation in the grown film is due to the shallow-donor effect of hydrogen giving rise to an increment in the electron density, reducing the effect of the other channel.

  12. Development of novel implants with self-antibacterial performance through in-situ growth of 1D ZnO nanowire.

    PubMed

    Wang, Wenhao; Li, Tak Lung; Wong, Hoi Man; Chu, Paul K; Kao, Richard Y T; Wu, Shuilin; Leung, Frankie K L; Wong, Tak Man; To, Michael K T; Cheung, Kenneth M C; Yeung, Kelvin W K

    2016-05-01

    To prevent the attachment of bacteria to implant surfaces, the 1D zinc oxide nanowire-coating has been successfully developed on material surfaces by using a custom-made hydrothermal approach. The chemical nature, surface topography and wettability of spike-like 1D ZnO nanowire-coating are comprehensively investigated. The anti-adhesive and antimicrobial properties of 1D nanowire-coating are tested against Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli by using in vitro live/dead staining and scanning electron microscopy. We find that the adhesion of bacteria can be reduced via the special spike-like topography and that the release of Zn(2+) ions can help suppress the growth of attached bacteria. Furthermore, the antimicrobial effect is also evaluated under in vivo conditions by using a rat model infected with bioluminescent S. aureus. The amount of live bacteria in the rat implanted with a nanowire-coated sample is less than that of the control at various time points. Hence, it is believed that the nanowire-coated material is promising for application in orthopaedic implantation after the long-term animal studies have been completed.

  13. Magnetic and Mössbauer effect studies of ZnO thin film implanted with iron ions to high fluence

    NASA Astrophysics Data System (ADS)

    Zinnatullin, A. L.; Gumarov, A. I.; Gilmutdinov, I. F.; Valeev, V. F.; Khaibullin, R. I.; Vagizov, F. G.

    2017-01-01

    We present the results of magnetic and Mössbauer effect studies of zinc oxide thin film obtained by RF magnetron sputtering and implanted with 40 keV iron ions to a fluence of 1.5·1017 ion/cm2. As-implanted and post-annealed sample shows ferromagnetic properties at room temperature and consists of paramagnetic and ferromagnetic phases according to Mössbauer spectroscopy.

  14. Electronic structure and ferromagnetism of Mn implanted n-type and p-type ZnO

    NASA Astrophysics Data System (ADS)

    Petit, Leon; Schulthess, Thomas; Svane, Axel; Temmerman, Walter; Szotek, Zdzislawa

    2004-03-01

    The prediction of room temperature magnetism in Mn doped ZnO has generated considerable interest in this compound, both from the experimental and theoretical point of views. In order to take into account the strong on-site correlations of the rather localized d-electrons, we use the self-interaction corrected (SIC)-LSD approximation. Within this scheme, the 3d electron manifold is considered to consist of both localized and itinerant states, both of which are treated on an equal footing, by adding a contribution for each d-electron to localize. By varying the relative proportions of localized and delocalized states, the most favourable (groundstate) configuration can be established. Our calculations show that the 3d electrons in Mn doped ZnO prefer to localize. We furthermore have studied the effects on the electronic structure, when Zn_1-xMn_xO is codoped with N atoms (n-type ZnOMn), and Ga and Sn atoms (n-type ZnOMn) respectively.

  15. Iliac artery mural thrombus formation. Effect of antiplatelet therapy on 111In-platelet deposition in baboons

    SciTech Connect

    Hanson, S.R.; Paxton, L.D.; Harker, L.A.

    1986-09-01

    To measure the rate, extent, and time course of arterial mural thrombus formation in vivo and to assess the effects of antiplatelet therapy in that setting, we have studied autologous /sup 111/In-platelet deposition induced by experimental iliac artery aneurysms in baboons. Scintillation camera imaging analyses were performed at 1, 24, 48, and 72 hours after implantation of the device. Correction for tissue attenuation was determined by using a small, comparably located /sup 111/In source implanted at the time of surgery. In five animals, /sup 111/In-platelet activity accumulated progressively after device implantation, reaching a maximum after the third day. Repeat image analysis carried out 2 weeks after the surgical procedure also showed progressive accumulation of /sup 111/In-platelets over 3 days but at markedly reduced amounts as compared with the initial study. In five additional animals, treatment with a combination of aspirin and dipyridamole begun 1 hour after surgical implantation reduced /sup 111/In-platelet deposition to negligible levels by the third day. Although platelet survival time was shortened and platelet turnover was reciprocally increased in all operated animals, platelet survival and turnover were not affected by antiplatelet therapy. We conclude that, in contrast to platelet survival and turnover measurements, /sup 111/In-platelet imaging is a reliable and sensitive method for localizing and quantifying focal arterial thrombi and for assessing the effects of antiplatelet therapy.

  16. Growth of a Novel Nanostructured ZnO Urchin: Control of Cytotoxicity and Dissolution of the ZnO Urchin.

    PubMed

    Imani, Roghayeh; Drašler, Barbara; Kononenko, Veno; Romih, Tea; Eleršič, Kristina; Jelenc, Janez; Junkar, Ita; Remškar, Maja; Drobne, Damjana; Kralj-Iglič, Veronika; Iglič, Aleš

    2015-12-01

    The applications of zinc oxide (ZnO) nanowires (NWs) in implantable wireless devices, such as diagnostic nanobiosensors and nanobiogenerators, have recently attracted enormous attention due to their unique properties. However, for these implantable nanodevices, the biocompatibility and the ability to control the behaviour of cells in contact with ZnO NWs are demanded for the success of these implantable devices, but to date, only a few contrasting results from their biocompatibility can be found. There is a need for more research about the biocompatibility of ZnO nanostructures and the adhesion and viability of cells on the surface of ZnO nanostructures. Here, we introduce synthesis of a new nature-inspired nanostructured ZnO urchin, with the dimensions of the ZnO urchin's acicula being controllable. To examine the biocompatibility and behaviour of cells in contact with the ZnO urchin, the Madin-Darby canine kidney (MDCK) epithelial cell line was chosen as an in vitro experimental model. The results of the viability assay indicated that, compared to control, the number of viable cells attached to the surface of the ZnO urchin and its surrounding area were reduced. The measurements of the Zn contents of cell media confirmed ZnO dissolution, which suggests that the ZnO dissolution in cell culture medium could lead to cytotoxicity. A purposeful reduction of ZnO cytotoxicity was achieved by surface coating of the ZnO urchin with poly(vinylidene fluorid-co-hexafluoropropylene) (PVDF-HFP), which changed the material matrix to slow the Zn ion release and consequently reduce the cytotoxicity of the ZnO urchin without reducing its functionality.

  17. ZnO quantum dots-decorated ZnO nanowires for the enhancement of antibacterial and photocatalytic performances

    NASA Astrophysics Data System (ADS)

    Wu, Jyh Ming; Tsay, Li-Yi

    2015-10-01

    We demonstrate highly antibacterial activities for killing off Staphylococcus aureus and Escherichia coli using ZnO nanowires decorated with ZnO quantum dots (so-called ZnO QDs/NWs) under visible-light irradiation and dark conditions. The average size of the ZnO QDs is in the range of 3-5 nm; these were uniformly dispersed on the ZnO nanowires’ surface to form the ZnO QDs/NWs. A significant blue-shift effect was observed using photoluminescence (PL) spectra. The size of the ZnO QDs is strongly dependent on the material’s synthesis time. The ZnO QDs/NWs exhibited an excellent photocatalytic activity under visible-light irradiation. The ZnO QDs’ active sites (i.e. the O-H bond and Zn2+) accelerate the photogenerated-carrier migration from the QDs to the NWs. As a consequence, the electrons reacted with the dissolved oxygen to form oxygen ions and produced hydroperoxyl radicals to enhance photocatalytic activity. The antibacterial activities (as indicated by R-factor-inhibiting activity) of the ZnO QDs/NWs for killing off Staphylococcus aureus and Escherichia coli is around 4.9 and 5.5 under visible-light irradiation and dark conditions, respectively. The hydroxyl radicals served as an efficient oxidized agent for decomposing the organic dye and microorganism species. The antibacterial activities of the ZnO QDs/NWs in the dark may be attributed to the Zn2+ ions that were released from the ZnO QDs and infused into the microbial solution against the growth of bacteria thus disrupting the microorganism. The highly antibacterial and photocatalytic activity of the ZnO QDs/NWs can be well implanted on a screen window, thus offering a promising solution to inhibit the spread of germs under visible-light and dark conditions.

  18. Green emission in carbon doped ZnO films

    SciTech Connect

    Tseng, L. T.; Yi, J. B. Zhang, X. Y.; Xing, G. Z.; Luo, X.; Li, S.; Fan, H. M.; Herng, T. S.; Ding, J.; Ionescu, M.

    2014-06-15

    The emission behavior of C-doped ZnO films, which were prepared by implantation of carbon into ZnO films, is investigated. Orange/red emission is observed for the films with the thickness of 60–100 nm. However, the film with thickness of 200 nm shows strong green emission. Further investigations by annealing bulk ZnO single crystals under different environments, i.e. Ar, Zn or C vapor, indicated that the complex defects based on Zn interstitials are responsible for the strong green emission. The existence of complex defects was confirmed by electron spin resonance (ESR) and low temperature photoluminescence (PL) measurement.

  19. Cochlear Implants.

    ERIC Educational Resources Information Center

    Clark, Catherine; Scott, Larry

    This brochure explains what a cochlear implant is, lists the types of individuals with deafness who may be helped by a cochlear implant, describes the process of evaluating people for cochlear implants, discusses the surgical process for implanting the aid, traces the path of sound through the cochlear implant to the brain, notes the costs of…

  20. Osteomyelitis complicating fracture: pitfalls of /sup 111/In leukocyte scintigraphy

    SciTech Connect

    Kim, E.E.; Pjura, G.A.; Lowry, P.A.; Gobuty, A.H.; Traina, J.F.

    1987-05-01

    /sup 111/In-labeled leukocyte imaging has shown greater accuracy and specificity than alternative noninvasive methods in the detection of uncomplicated osteomyelitis. Forty patients with suspected osteomyelitis complicating fractures (with and without surgical intervention) were evaluated with /sup 111/In-labeled leukocytes. All five patients with intense focal uptake, but only one of 13 with no uptake, had active osteomyelitis. However, mild to moderate /sup 111/In leukocyte uptake, observed in 22 cases, indicated the presence of osteomyelitis in only four of these; the other false-positive results were observed in noninfected callus formation, heterotopic bone formation, myositis ossificans, and sickle-cell disease. These results suggest that /sup 111/In-labeled leukocyte imaging is useful for the evaluation of suspected osteomyelitis complicating fracture but must be used in conjunction with clinical and radiographic correlation to avoid false-positive results.

  1. Dental Implants.

    PubMed

    Zohrabian, Vahe M; Sonick, Michael; Hwang, Debby; Abrahams, James J

    2015-10-01

    Dental implants restore function to near normal in partially or completely edentulous patients. A root-form implant is the most frequently used type of dental implant today. The basis for dental implants is osseointegration, in which osteoblasts grow and directly integrate with the surface of titanium posts surgically embedded into the jaw. Radiologic assessment is critical in the preoperative evaluation of the dental implant patient, as the exact height, width, and contour of the alveolar ridge must be determined. Moreover, the precise locations of the maxillary sinuses and mandibular canals, as well as their relationships to the site of implant surgery must be ascertained. As such, radiologists must be familiar with implant design and surgical placement, as well as augmentation procedures utilized in those patients with insufficient bone in the maxilla and mandible to support dental implants.

  2. Cochlear Implants

    MedlinePlus

    ... NIDCD A cochlear implant is a small, complex electronic device that can help to provide a sense ... are better able to hear, comprehend sound and music, and speak than their peers who receive implants ...

  3. Cochlear implant

    MedlinePlus

    ... antenna. This part of the implant receives the sound, converts the sound into an electrical signal, and sends it to ... implants allow deaf people to receive and process sounds and speech. However, these devices do not restore ...

  4. Monitoring of cardiac antirejection therapy with /sup 111/In lymphocytes

    SciTech Connect

    Lerch, R.A.; Bergmann, S.R.; Carlson, E.M.; Saffitz, J.E.; Sobel, B.E.

    1982-06-01

    To determine whether lymphocytes labeled with /sup 111/In permit noninvasive assessment of antirejection therapy, we performed 40 allogeneic heterotopic cardiac transplants in rats. Antirejection therapy with azathioprine (30 mg/kg) and sodium salicylate (200 mg/kg) prolonged contractile function of the graft from 7.5 +/- 1.5 (s.d.) days in controls to 19.4 +/- 3.7 days in treated animals. Six to seven days after transplantation, autologous lymphocytes labeled with /sup 111/In were injected intravenously in seven untreated and eight treated rats. Scintigraphy and organ counting were performed 24 hr after administration of labeled cells. At sacrifice all grafts in untreated rats exhibited contractile failure, whereas grafts in all treated rats were beating well. Transplants in untreated recipients exhibited marked accumulation of /sup 111/In lymphocytes detectable scintigraphically, with ratios of 7.7 +/- 1.9 for the activity in the transplant over that in the native heart (HT/HO), as obtained by well counting. In contrast, accumulation was not scintigraphically detectable in transplants of treated rats, with HT/HO ratios of 2.6 +/- 1.8 (p less than 0.005). The results suggested that imaging with /sup 111/In-labeled lymphocytes will permit noninvasive assessment of antirejection therapy.

  5. The sensitivity of gas sensor based on single ZnO nanowire modulated by helium ion radiation

    SciTech Connect

    Liao, L.; Lu, H. B.; Li, J. C.; Liu, C.; Fu, D. J.; Liu, Y. L.

    2007-10-22

    In this letter, we present a gas sensor using a single ZnO nanowire as a sensing unit. This ZnO nanowire-based sensor has quick and high sensitive response to H{sub 2}S in air at room temperature. It has also been found that the gas sensitivity of the ZnO nanowires could be modulated and enhanced by He{sup +} implantation at an appropriate dose. A possible explanation is given based on the modulation model of the depletion layer.

  6. Implantable Microimagers

    PubMed Central

    Ng, David C.; Tokuda, Takashi; Shiosaka, Sadao; Tano, Yasuo; Ohta, Jun

    2008-01-01

    Implantable devices such as cardiac pacemakers, drug-delivery systems, and defibrillators have had a tremendous impact on the quality of live for many disabled people. To date, many devices have been developed for implantation into various parts of the human body. In this paper, we focus on devices implanted in the head. In particular, we describe the technologies necessary to create implantable microimagers. Design, fabrication, and implementation issues are discussed vis-à-vis two examples of implantable microimagers; the retinal prosthesis and in vivo neuro-microimager. Testing of these devices in animals verify the use of the microimagers in the implanted state. We believe that further advancement of these devices will lead to the development of a new method for medical and scientific applications. PMID:27879873

  7. Endodontic implants

    PubMed Central

    Yadav, Rakesh K.; Tikku, A. P.; Chandra, Anil; Wadhwani, K. K.; Ashutosh kr; Singh, Mayank

    2014-01-01

    Endodontic implants were introduced back in 1960. Endodontic implants enjoyed few successes and many failures. Various reasons for failures include improper case selection, improper use of materials and sealers and poor preparation for implants. Proper case selection had given remarkable long-term success. Two different cases are being presented here, which have been treated successfully with endodontic implants and mineral trioxide aggregate Fillapex (Andreaus, Brazil), an MTA based sealer. We suggest that carefully selected cases can give a higher success rate and this method should be considered as one of the treatment modalities. PMID:25298723

  8. Advances in methods to obtain and characterise room temperature magnetic ZnO

    SciTech Connect

    Lorite, I.; Kumar, P.; Esquinazi, P.; Straube, B.; Villafuerte, M.; Ohldag, H.; Rodríguez Torres, C. E.; Perez de Heluani, S.; Antonov, V. N.; Bekenov, L. V.; Ernst, A.; and others

    2015-02-23

    We report the existence of magnetic order at room temperature in Li-doped ZnO microwires after low energy H{sup +} implantation. The microwires with diameters between 0.3 and 10 μm were prepared by a carbothermal process. We combine spectroscopy techniques to elucidate the influence of the electronic structure and local environment of Zn, O, and Li and their vacancies on the magnetic response. Ferromagnetism at room temperature is obtained only after implanting H{sup +} in Li-doped ZnO. The overall results indicate that low-energy proton implantation is an effective method to produce the necessary amount of stable Zn vacancies near the Li ions to trigger the magnetic order.

  9. Breast Implants

    MedlinePlus

    ... sale in the United States: saline-filled and silicone gel-filled. Both types have a silicone outer shell. They vary in size, shell thickness, ... implant them. Provide information on saline-filled and silicone gel-filled breast implants, including data supporting a ...

  10. 16. VIEW LOOKING NORTHEAST AT BUILDING 11 (111) IN 1952. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. VIEW LOOKING NORTHEAST AT BUILDING 11 (111) IN 1952. IN 1952, BUILDINGS 11 (111), 12 (121), 21 (221), 22 (122), 23 (123), AND 42 (442) WERE OCCUPIED. BUILDINGS 91 (991) AND 81 (881) WERE OPERATIONAL. BUILDINGS 44 (444) AND 71 (771) WERE UNDER CONSTRUCTION. THE TOTAL COST FOR CONSTRUCTION BY 1952 WAS $2.5 MILLION. BY SEPTEMBER OF 1953, AUSTIN COMPANY HAD COMPLETED 21 BUILDINGS FOR AN APPROXIMATE COST OF $43.3 MILLION (1952). - Rocky Flats Plant, Bounded by Indiana Street & Routes 93, 128 & 72, Golden, Jefferson County, CO

  11. ZnO nanowire lasers.

    PubMed

    Vanmaekelbergh, Daniël; van Vugt, Lambert K

    2011-07-01

    The pathway towards the realization of optical solid-state lasers was gradual and slow. After Einstein's paper on absorption and stimulated emission of light in 1917 it took until 1960 for the first solid state laser device to see the light. Not much later, the first semiconductor laser was demonstrated and lasing in the near UV spectral range from ZnO was reported as early as 1966. The research on the optical properties of ZnO showed a remarkable revival since 1995 with the demonstration of room temperature lasing, which was further enhanced by the first report of lasing by a single nanowire in 2001. Since then, the research focussed increasingly on one-dimensional nanowires of ZnO. We start this review with a brief description of the opto-electronic properties of ZnO that are related to the wurtzite crystal structure. How these properties are modified by the nanowire geometry is discussed in the subsequent sections, in which we present the confined photon and/or polariton modes and how these can be investigated experimentally. Next, we review experimental studies of laser emission from single ZnO nanowires under different experimental conditions. We emphasize the special features resulting from the sub-wavelength dimensions by presenting our results on single ZnO nanowires lying on a substrate. At present, the mechanism of lasing in ZnO (nanowires) is the subject of a strong debate that is considered at the end of this review.

  12. Investigation of acceptor states in ZnO by junction DLTS

    NASA Astrophysics Data System (ADS)

    von Wenckstern, H.; Pickenhain, R.; Schmidt, H.; Brandt, M.; Biehne, G.; Lorenz, M.; Grundmann, M.; Brauer, G.

    2007-07-01

    We have realized a p-type ZnO surface layer by N + ion implantation of a high quality ZnO wafer and subsequent annealing. The conduction type of this surface layer was revealed by scanning capacitance microscopy. Rectifying current-voltage characteristics for processed devices were coherent with the existence of an internal pn junction. Deep donor- and acceptor-like defects were investigated by junction deep level transient spectroscopy. The donor-like levels correspond to those commonly observed for E1 and E3 defects. The acceptor states resolved have thermal activation energies of about 150 meV and 280 meV, respectively.

  13. Histrelin Implant

    MedlinePlus

    ... implant (Supprelin LA) is used to treat central precocious puberty (CPP; a condition causing children to enter puberty too soon, resulting in faster than normal bone growth and development of sexual characteristics) in girls ...

  14. Penile Implants

    MedlinePlus

    ... placed inside the penis to allow men with erectile dysfunction (ED) to get an erection. Penile implants are ... complications and follow-up care. For most men, erectile dysfunction can be successfully treated with medications or use ...

  15. Cochlear implants.

    PubMed

    Connell, Sarah S; Balkany, Thomas J

    2006-08-01

    Cochlear implants are cost-effective auditory prostheses that safely provide a high-quality sensation of hearing to adults who are severely or profoundly deaf. In the past 5 years, progress has been made in hardware and software design, candidate selection, surgical techniques, device programming, education and rehabilitation,and, most importantly, outcomes. Cochlear implantation in the elderly is well tolerated and provides marked improvement in auditory performance and psychosocial functioning.

  16. Contraceptive implants.

    PubMed

    McDonald-Mosley, Raegan; Burke, Anne E

    2010-03-01

    Implantable contraception has been extensively used worldwide. Implants are one of the most effective and reversible methods of contraception available. These devices may be particularly appropriate for certain populations of women, including women who cannot use estrogen-containing contraception. Implants are safe for use by women with many chronic medical problems. The newest implant, Implanon (Organon International, Oss, The Netherlands), is the only device currently available in the United States and was approved in 2006. It is registered for 3 years of pregnancy prevention. Contraceptive implants have failure rates similar to tubal ligation, and yet they are readily reversible with a return to fertility within days of removal. Moreover, these contraceptive devices can be safely placed in the immediate postpartum period, ensuring good contraceptive coverage for women who may be at risk for an unintended pregnancy. Irregular bleeding is a common side effect for all progestin-only contraceptive implants. Preinsertion counseling should address possible side effects, and treatment may be offered to women who experience prolonged or frequent bleeding.

  17. Investigation on structural aspects of ZnO nano-crystal using radio-active ion beam and PAC

    NASA Astrophysics Data System (ADS)

    Ganguly, Bichitra Nandi; Dutta, Sreetama; Roy, Soma; Röder, Jens; Johnston, Karl; Martin, Manfred

    2015-11-01

    Nano-crystalline ZnO has been studied with perturbed angular correlation using 111mCd, implanted at ISOLDE/CERN and X-ray diffraction using Rietveld analysis. The data show a gradual increase in the crystal size and stress for a sample annealed at 600 °C, and reaching nearly properties of standard ZnO with tempering at 1000 °C. The perturbed angular correlation data show a broad frequency distribution at low annealing temperatures and small particle sizes, whereas at high annealing temperature and larger crystal sizes, results similar to bulk ZnO have been obtained. The ZnO nano-crystalline samples were initially prepared through a wet chemical route, have been examined by Fourier Transform Infrared Spectroscopy (FT-IR) and chemical purity has been confirmed with Energy Dispersive X-ray (EDAX) analysis as well as Transmission Electron Microscopy (TEM).

  18. Determination of secondary ion mass spectrometry relative sensitivity factors for polar and non-polar ZnO

    SciTech Connect

    Laufer, Andreas; Volbers, Niklas; Eisermann, Sebastian; Meyer, Bruno K.; Potzger, Kay; Geburt, Sebastian; Ronning, Carsten

    2011-11-01

    Zinc oxide (ZnO) is regarded as a promising material for optoelectronic devices, due to its electronic properties. Solely, the difficulty in obtaining p-type ZnO impedes further progress. In this connection, the identification and quantification of impurities is a major demand. For quantitative information using secondary ion mass spectrometry (SIMS), so-called relative sensitivity factors (RSF) are mandatory. Such conversion factors did not yet exist for ZnO. In this work, we present the determined RSF values for ZnO using primary (ion implanted) as well as secondary (bulk doped) standards. These RSFs have been applied to commercially available ZnO substrates of different surface termination (a-plane, Zn-face, and O-face) to quantify the contained impurities. Although these ZnO substrates originate from the same single-crystal, we observe discrepancies in the impurity concentrations. These results cannot be attributed to surface termination dependent RSF values for ZnO.

  19. Distribution and dosimetry of 111In-labeled platelets.

    PubMed

    Robertson, J S; Dewanjee, M K; Brown, M L; Fuster, V; Cesebro, J H

    1981-07-01

    The distribution of 111In-labeled platelets was studied in five young, healthy men. The radioactivity in the lungs, heart, liver, spleen, kidneys, and testes was determined from areas-of-interest in computed gamma-camera scans at intervals up to 75 hours after injection. After the first four hours, the activity in each organ studied except the liver and kidney decreased at roughly the physical decay rate. In the liver and kidney, the curves were relatively flat, indicating continued accumulation of the radiotracer. The calculated mean radiation absorbed dose per unit administered activity was 0.60 +/- 0.07 rad/mCi (0.16 +/- 0.02 Gy/GBq) for the total body, and was 34 +/- 6 rad/mCi (9.0 +/- 1.5 Gy/GBq) for the spleen.

  20. /sup 111/In-oxine platelet survivals in thrombocytopenic infants

    SciTech Connect

    Castle, V.; Coates, G.; Kelton, J.G.; Andrew, M.

    1987-09-01

    Thrombocytopenia is a common occurrence (20%) in sick neonates, but the causes have not been well studied. In this report we demonstrate that thrombocytopenia in the neonate is characterized by increased platelet destruction as shown by shortened homologous /sup 111/In-oxine-labeled platelet life spans. Thirty-one prospectively studied thrombocytopenic neonates were investigated by measuring the /sup 111/In-labeled platelet life span, platelet-associated IgG (PAIgG), and coagulation screening tests. In every infant, the thrombocytopenia was shown to have a destructive component since the mean platelet life span was significantly shortened to 65 +/- 6 (mean +/- SEM) hours with a range of one to 128 hours compared with adult values (212 +/- 8; range, 140 to 260; gamma function analysis). The platelet survival was directly related to the lowest platelet count and inversely related to both the highest mean platelet volume and duration of the thrombocytopenia. In 22 infants the percent recovery of the radiolabeled platelets was less than 50%, which suggested that increased sequestration also contributed to the thrombocytopenia. Infants with laboratory evidence of disseminated intravascular coagulation (n = 8) or immune platelet destruction evidenced by elevated levels of PAIgG (n = 13) had even shorter platelet survivals and a more severe thrombocytopenia compared with the ten infants in whom an underlying cause for the thrombocytopenia was not apparent. Full-body scintigraphic images obtained in 11 infants showed an increased uptake in the spleen and liver, with a spleen-to-liver ratio of 3:1. This study indicates that thrombocytopenia in sick neonates is primarily destructive, with a subgroup having evidence of increased platelet sequestration.

  1. Defect study in ZnO related structures—A multi-spectroscopic approach

    NASA Astrophysics Data System (ADS)

    Ling, C. C.; Cheung, C. K.; Gu, Q. L.; Dai, X. M.; Xu, S. J.; Zhu, C. Y.; Luo, J. M.; Zhu, C. Y.; Tam, K. H.; Djurišić, A. B.; Beling, C. D.; Fung, S.; Lu, L. W.; Brauer, G.; Anwand, W.; Skorupa, W.; Ong, H. C.

    2008-10-01

    ZnO has attracted a great deal of attention in recent years because of its potential applications for fabricating optoelectronic devices. Using a multi-spectroscopic approach including positron annihilation spectroscopy (PAS), deep level transient spectroscopy (DLTS), photoluminescence (PL) and X-ray photoelectron spectroscopy (XPS), we have studied the two observed phenomena from ZnO related structures. They namely included the H 2O 2 pre-treatment induced ohmic to rectifying contact conversion on Au/ n-ZnO contact and the p-type doping by nitrogen ion implantation. The aim of the studies was to offering comprehensive views as to how the defects influenced the structures electrical and optical properties of the structures. It was also shown that PAS measurement using the monoenergetic positron beam could offer valuable information of vacancy type defects in the vertical ZnO nanorod array structure.

  2. Cochlear Implants

    MedlinePlus

    ... outside of the body, behind the ear. A second part is surgically placed under the skin. An implant does not restore normal hearing. It can help a person understand speech. Children and adults can benefit from them. National Institute on Deafness and Other Communication Disorders

  3. Electrical properties of ZnO single nanowires.

    PubMed

    Stiller, Markus; Barzola-Quiquia, José; Zoraghi, Mahsa; Esquinazi, Pablo

    2015-10-02

    We have investigated the electrical resistance R(T) of ZnO nanowires of ≈ 400 nm diameter as a function of temperature, between 30 K and 300 K, and frequency in the range 40 Hz to 30 MHz. The measurements were done on the as-prepared and after low-energy proton implantation at room temperature. The temperature dependence of the resistance of the wire, before proton implantation, can be well described by two processes in parallel. One process is the fluctuation induced tunneling conductance (FITC) and the other the usual thermally activated process. The existence of a tunneling conductance was also observed in the current-voltage ([Formula: see text]) results, and can be well described by the FITC model. Impedance spectroscopy measurements in the as-prepared state and at room temperature, indicate and support the idea of two contributions of these two transport processes in the nanowires. Electron backscatter diffraction confirms the existence of different crystalline regions. After the implantation of H(+) a third thermally activated process is found that can be explained by taking into account the impurity band splitting due to proton implantation.

  4. Transient, biocompatible electronics and energy harvesters based on ZnO.

    PubMed

    Dagdeviren, Canan; Hwang, Suk-Won; Su, Yewang; Kim, Stanley; Cheng, Huanyu; Gur, Onur; Haney, Ryan; Omenetto, Fiorenzo G; Huang, Yonggang; Rogers, John A

    2013-10-25

    The combined use of ZnO, Mg, MgO, and silk provides routes to classes of thin-film transistors and mechanical energy harvesters that are soluble in water and biofluids. Experimental and theoretical studies of the operational aspects and dissolution properties of this type of transient electronics technology illustrate its various capabilities. Application opportunities range from resorbable biomedical implants, to environmentally dissolvable sensors, and degradable consumer electronics.

  5. Flexible, transparent and exceptionally high power output nanogenerators based on ultrathin ZnO nanoflakes

    NASA Astrophysics Data System (ADS)

    van Ngoc, Huynh; Kang, Dae Joon

    2016-02-01

    Novel nanogenerator structures composed of ZnO nanoflakes of less than 10 nm thickness were fabricated using a novel method involving a facile synthetic route and a rational design. The fabricated nanogenerators exhibited a short-circuit current density of 67 μA cm-2, a peak-to-peak open-circuit voltage of 110 V, and an overall output power density exceeding 1.2 mW cm-2, and to the best of our knowledge, these are the best values that have been reported so far in the literature on ZnO-based nanogenerators. We demonstrated that our nanogenerator design could instantaneously power 20 commercial green light-emitting diodes without any additional energy storage processes. Both the facile synthetic route for the ZnO nanoflakes and the straightforward device fabrication process present great scaling potential in order to power mobile and personal electronics that can be used in smart wearable systems, transparent and flexible devices, implantable telemetric energy receivers, electronic emergency equipment, and other self-powered nano/micro devices.Novel nanogenerator structures composed of ZnO nanoflakes of less than 10 nm thickness were fabricated using a novel method involving a facile synthetic route and a rational design. The fabricated nanogenerators exhibited a short-circuit current density of 67 μA cm-2, a peak-to-peak open-circuit voltage of 110 V, and an overall output power density exceeding 1.2 mW cm-2, and to the best of our knowledge, these are the best values that have been reported so far in the literature on ZnO-based nanogenerators. We demonstrated that our nanogenerator design could instantaneously power 20 commercial green light-emitting diodes without any additional energy storage processes. Both the facile synthetic route for the ZnO nanoflakes and the straightforward device fabrication process present great scaling potential in order to power mobile and personal electronics that can be used in smart wearable systems, transparent and flexible

  6. A Comparison of ZnO and ZnO(-)

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Partridge, Harry; Arnold, James (Technical Monitor)

    1998-01-01

    Ab initio electronic structure calculations are performed to support and to help interpret the experimental work reported in the proceeding manuscript. The CCSD(T) approach, in conjunction with a large basis set, is used to compute spectroscopic constants for the X(exp 1)Epsilon(+) and (3)II states of ZnO and the X(exp 2)Epsilon(+) state of ZnO(-). The spectroscopic constants, including the electron affinity, are in good agreement with experiment. The ZnO EA is significantly larger than that of O, thus relative to the atomic ground state asymptotes, ZnO(-) has a larger D(sub o) than the (1)Epsilon(+) state, despite the fact that the extra electron goes into an antibonding orbital. The changes in spectroscopic constants can be understood in terms of the X(exp 1)Epsilon(+) formally dissociating to Zn (1)S + O (1)D while the (3)II and (2)Epsilon(+) states dissociate to Zn (1)S + O (3)P and Zn (1) and O(-) (2)P, respectively.

  7. Short Implants: New Horizon in Implant Dentistry.

    PubMed

    Jain, Neha; Gulati, Manisha; Garg, Meenu; Pathak, Chetan

    2016-09-01

    The choice of implant length is an essential factor in deciding the survival rates of these implants and the overall success of the prosthesis. Placing an implant in the posterior part of the maxilla and mandible has always been very critical due to poor bone quality and quantity. Long implants can be placed in association with complex surgical procedures such as sinus lift and bone augmentation. These techniques are associated with higher cost, increased treatment time and greater morbidity. Hence, there is need for a less invasive treatment option in areas of poor bone quantity and quality. Data related to survival rates of short implants, their design and prosthetic considerations has been compiled and structured in this manuscript with emphasis on the indications, advantages of short implants and critical biomechanical factors to be taken into consideration when choosing to place them. Studies have shown that comparable success rates can be achieved with short implants as those with long implants by decreasing the lateral forces to the prosthesis, eliminating cantilevers, increasing implant surface area and improving implant to abutment connection. Short implants can be considered as an effective treatment alternative in resorbed ridges. Short implants can be considered as a viable treatment option in atrophic ridge cases in order to avoid complex surgical procedures required to place long implants. With improvement in the implant surface geometry and surface texture, there is an increase in the bone implant contact area which provides a good primary stability during osseo-integration.

  8. Short Implants: New Horizon in Implant Dentistry

    PubMed Central

    Gulati, Manisha; Garg, Meenu; Pathak, Chetan

    2016-01-01

    The choice of implant length is an essential factor in deciding the survival rates of these implants and the overall success of the prosthesis. Placing an implant in the posterior part of the maxilla and mandible has always been very critical due to poor bone quality and quantity. Long implants can be placed in association with complex surgical procedures such as sinus lift and bone augmentation. These techniques are associated with higher cost, increased treatment time and greater morbidity. Hence, there is need for a less invasive treatment option in areas of poor bone quantity and quality. Data related to survival rates of short implants, their design and prosthetic considerations has been compiled and structured in this manuscript with emphasis on the indications, advantages of short implants and critical biomechanical factors to be taken into consideration when choosing to place them. Studies have shown that comparable success rates can be achieved with short implants as those with long implants by decreasing the lateral forces to the prosthesis, eliminating cantilevers, increasing implant surface area and improving implant to abutment connection. Short implants can be considered as an effective treatment alternative in resorbed ridges. Short implants can be considered as a viable treatment option in atrophic ridge cases in order to avoid complex surgical procedures required to place long implants. With improvement in the implant surface geometry and surface texture, there is an increase in the bone implant contact area which provides a good primary stability during osseo-integration. PMID:27790598

  9. Mechanics of ZnO micro-rod and ZnO nanoparticle reinforcement in ultra-high molecular weight polyethylene biocomposite

    NASA Astrophysics Data System (ADS)

    Sharma, Rajeev K.; Balani, Kantesh

    2014-08-01

    Ultra-high molecular weight polyethylene (UHMWPE) is one of the most promising materials for cartilage replacement as an acetabular cup liner. Implant failure due to infection is a serious issue and ZnO is a well-known antibacterial agent. In the current work, the effect of the morphology of ZnO on the mechanical properties of UHMWPE is studied, where ZnO is incorporated both as nanoparticles (ZnO(NP)) and micro-rods (ZnO(R)) at 5, 10, 15 and 20 wt%. Uniaxial tensile testing of compression-moulded composites elicited a decrease of 8.8% in the Young's modulus in UHMWPE-ZnO(R) (named ZnO(R)-PE), whereas an increase of 21.1% in the Young's modulus was observed for UHMWPE-ZnO(NP) (named ZnO(NP)-PE). This contrasting effect on the Young's modulus arising due to differences in ZnO morphology is discussed and analysed using the rule of mixture and the Halpin-Tsai equation. Even when accounting for inherent porosity, and with similar crystallinity to that of base UHMWPE, these models fail to explain the decrease in the Young's modulus of compression-moulded ZnO-PE composites. Estimation of Young's modulus via a modified geometric factor is followed by proposing an empirical relation to account for interfacial strength and narrow the bounds of the predicted elastic modulus, thus making the Halpin-Tsai estimations reach the actual experimental values.

  10. Acceptors in ZnO

    SciTech Connect

    Mccluskey, Matthew D.; Corolewski, Caleb; Lv, Jinpeng; Tarun, Marianne C.; Teklemichael, Samuel T.; Walter, Eric D.; Norton, M. G.; Harrison, Kale W.; Ha, Su Y.

    2015-03-21

    Zinc oxide (ZnO) has potential for a range of applications in the area of optoelectronics. The quest for p-type ZnO has focused much attention on acceptors. In this paper, Cu, N, and Li acceptor impurities are discussed. Experimental evidence shows that these point defects have acceptor levels 3.2, 1.5, and 0.8 eV above the valence-band maximum, respectively. The levels are deep because the ZnO valence band is quite low compared to conventional, non-oxide semiconductors. Using MoO2 contacts, the electrical resistivity of ZnO:Li was measured and showed behavior consistent with bulk hole conduction for temperatures above 400 K. A photoluminescence peak in ZnO nanocrystals has been attributed to an acceptor, which may involve a zinc vacancy. High field (W-band) electron paramagnetic resonance measurements on the nanocrystals revealed an axial center with g = 2.0033 and g = 2.0075, along with an isotropic center at g = 2.0053.

  11. Acceptors in ZnO

    SciTech Connect

    McCluskey, Matthew D. Corolewski, Caleb D.; Lv, Jinpeng; Tarun, Marianne C.; Teklemichael, Samuel T.; Walter, Eric D.; Norton, M. Grant; Harrison, Kale W.; Ha, Su

    2015-03-21

    Zinc oxide (ZnO) has potential for a range of applications in the area of optoelectronics. The quest for p-type ZnO has focused much attention on acceptors. In this paper, Cu, N, and Li acceptor impurities are discussed. Experimental evidence indicates these point defects have acceptor levels 3.2, 1.4, and 0.8 eV above the valence-band maximum, respectively. The levels are deep because the ZnO valence band is quite low compared to conventional, non-oxide semiconductors. Using MoO{sub 2} contacts, the electrical resistivity of ZnO:Li was measured and showed behavior consistent with bulk hole conduction for temperatures above 400 K. A photoluminescence peak in ZnO nanocrystals is attributed to an acceptor, which may involve a Zn vacancy. High field (W-band) electron paramagnetic resonance measurements on the nanocrystals revealed an axial center with g{sub ⊥} = 2.0015 and g{sub //} = 2.0056, along with an isotropic center at g = 2.0035.

  12. Structure and optical properties of ZnO with silver nanoparticles

    SciTech Connect

    Lyadov, N. M.; Gumarov, A. I.; Kashapov, R. N.; Noskov, A. I.; Valeev, V. F.; Nuzhdin, V. I.; Bazarov, V. V.; Khaibullin, R. I.; Faizrakhmanov, I. A.

    2016-01-15

    Textured nanocrystalline ZnO thin films are synthesized by ion beam assisted deposition. According to X-ray diffraction data, the crystallite size is ∼25 nm. Thin (∼15 nm) ZnO layers containing Ag nanoparticles are formed in a thin surface region of the films by the implantation of Ag ions with an energy of 30 keV and a dose in the range (0.25–1) × 10{sup 17} ion/cm{sup 2}. The structure and optical properties of the layers are studied. Histograms of the size distribution of Ag nanoparticles are obtained. The average size of the Ag nanoparticles varies from 0.5 to 1.5–2 nm depending on the Ag-ion implantation dose. The optical transmittance of the samples in the visible and ultraviolet regions increases, as the implantation dose is increased. The spectra of the absorption coefficient of the implanted films are calculated in the context of the (absorbing film)/(transparent substrate) model. It is found that the main changes in the optical-density spectra occur in the region of ∼380 nm, in which the major contribution to absorption is made by Ag nanoparticles smaller than 0.75 nm in diameter. In this spectral region, absorption gradually decreases, as the Ag-ion irradiation dose is increased. This is attributed to an increase in the average size of the Ag nanoparticles. It is established that the broad surface-plasmon-resonance absorption bands typical of nanocomposite ZnO films with Ag nanoparticles synthesized by ion implantation are defined by the fact that the size of the nanoparticles formed does not exceed 1.5–2 nm.

  13. Homoepitaxial ZnO Film Growth

    NASA Technical Reports Server (NTRS)

    Zhu, Shen; Su, C-H; Lehoczky, S. L.; Harris, M. T.; Callahan, M. J.; McCarty, P.; George, M. A.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    ZnO films have high potential for many applications, such as surface acoustic wave filters, UV detectors, and light emitting devices due to its structural, electrical, and optical properties. High quality epitaxial films are required for these applications. The Al2O3 substrate is commonly used for ZnO heteroepitaxial growth. Recently, high quality ZnO single crystals are available for grow homoepitaxial films. Epitaxial ZnO films were grown on the two polar surfaces (O-face and Zn-face) of (0001) ZnO single crystal substrates using off-axis magnetron sputtering deposition. As a comparison, films were also deposited on (0001) Al2O3 substrates. It was found that the two polar ZnO surfaces have different photoluminescence (PL) spectrum, surface structure and morphology, which strongly influence the epitaxial film growth. The morphology and structure of homoepitaxial films grown on the ZnO substrates were different from heteroepitaxial films grown on the Al2O3. An interesting result shows that high temperature annealing of ZnO single crystals will improve the surface structure on the O-face surface rather than the opposite surface. The measurements of PL, low-angle incident x-ray diffraction, and atomic force microscopy of ZnO films indicate that the O-terminated surface is better for ZnO epitaxial film growth.

  14. Preparation of new morphological ZnO and Ce-doped ZnO

    SciTech Connect

    Chelouche, A.; Djouadi, D.; Aksas, A.

    2013-12-16

    ZnO micro-tori and cerium doped hexangulars ZnO have been prepared by the sol-gel method under methanol hypercritical conditions of temperature and pressure. X-ray diffraction (XRD) measurement has revealed the high crystalline quality and the nanometric size of the samples. Scanning electron microscopy (SEM) has shown that the ZnO powder has a torus-like shape while that of ZnO:Ce has a hexangular-like shape, either standing free or inserted into the cores of ZnO tori. Transmission electron microscopy (TEM) has revealed that the ZnO particles have sizes between 25 and 30 nm while Ce-doped ZnO grains have diameters ranging from 75 nm to 100 nm. Photoluminescence spectra at room temperature of the samples have revealed that the introduction of cerium in ZnO reduces the emission intensity lines, particularly the ZnO red and green ones.

  15. Comparative biodistribution of potential anti-glioblastoma conjugates [111In]DTPA-hEGF and [111In]Bz-DTPA-hEGF in normal mice.

    PubMed

    Tolmachev, Vladimir; Orlova, Anna; Wei, Qichun; Bruskin, Alexander; Carlsson, Jörgen; Gedda, Lars

    2004-08-01

    EGF-receptors (EGFR) are overexpressed in gliomas, as well as in tumors of breast, lung, and urinary bladder. For this reason, EGFR may be an attractive target for both visualization and therapy of malignant tumors using radioactive nuclides. Natural ligand of EGFR, epidermal growth factor (EGF) is a small 53-amino-acid protein. Low molecular weight of EGF may enable better intratumoral penetration in comparison to antibodies. [111In]DTPA-EGF was proposed for the targeting of glioblastoma and breast cancer, and its tumor-seeking properties were confirmed in animal studies. The aim of this study was to evaluate how the substitution of heptadentate DTPA for octadentate benzyl-DTPA (Bz-DTPA) effects the biodistribution of indium-labeled human EGF (hEGF) in normal NMRI mice. [111In]DTPA-hEGF and [111In]Bz-DTPA-hEGF, obtained by the coupling of ITC-benzyl-DTPA to hEGF, were injected into the tail vein. At 0.5, 1, 4, and 24 hours postinjection, the animals were sacrificed, and radioactivity in different organs was measured. The blood clearance of both conjugates was fast. The uptake of both conjugates in the liver, spleen, stomach, pancreas, intestines, and submaxillary gland was most likely receptor-mediated. The uptake in a majority of organs was similar. However, indium uptake in the case of [111In]DTPA-hEGF was significantly higher in the kidneys and bones. In conclusion, [111In]Bz-DTPA-hEGF seems to have more favourable in vivo distribution in comparison to [111In]DTPA-hEGF.

  16. Effect of ZnO morphology on affecting bactericidal property of ultra high molecular weight polyethylene biocomposite.

    PubMed

    Sharma, Rajeev Kumar; Agarwal, Meenakshi; Balani, Kantesh

    2016-05-01

    Bacterial infection of implants can be controlled by selective trapping of bacteria, followed with consequent killing by targeted antibacterial agents. Herein, the role of various ZnO morphologies, viz. micro-rods (R), nanoparticles (NP), and micro-disks (D) on antibacterial efficacy of ZnO via release of Zn(2+) and H2O2 is assessed, both as isolated powders and via incorporating them in cytocompatible ultra high molecular weight polyethylene (UHMWPE). Though ZnO is antibacterial, interestingly, all ZnO morphologies elicited a supportive growth of gram-negative bacteria (Escherichia coli) in culture medium (until 28-35 μg/ml). But, all ZnO morphologies did elicit bactericidal effect on gram positive bacteria (Staphylococcus aureus or Staphylococcus epidermidis) both in culture medium (for 0-2.5 μg/ml) or when incorporated (5-20 wt.%) into UHMWPE. The bactericidal mechanisms were quantified for various ZnO morphologies via: (i) H2O2 production, (ii) Zn(2+) release, and (iii) the presence of surface oxygen vacancies. On one hand, where only ZnO(NP) elicited release of H2O2 in the absence of light, maximum Zn(2+) release was elicited by ZnO(D). Interestingly, when ZnO is incorporated as reinforcement (5-20 wt.%), its antibacterial action against E. coli was vividly observed due to selective proliferation of bacteria only on friendly UHMWPE matrix. Hence, luring bacteria on affable UHMWPE surface can be complemented with their targeted killing by ZnO present in composite.

  17. Investigation of Co-Doped ZnO Nanowires by X-ray Absorption Spectroscopy and Ab Initio Simulation

    NASA Astrophysics Data System (ADS)

    Chu, Manh Hung; Nguyen, Van Duy; Nguyen, Duc Hoa; Nguyen, Van Hieu

    2017-01-01

    The local structure of single room- and high-temperature Co-implanted ZnO nanowires with subsequent thermal annealing has been studied using hard-x-ray techniques in combination with ab initio Zn K-edge x-ray absorption near-edge structure (XANES) simulations. X-ray fluorescence data reveal a homogeneous distribution of Co atoms/ions with concentration of about 0.1 at.% to 0.3 at.% in the nanowires. XANES data indicate substitutional incorporation of Co2+ ions at Zn sites in both types of nanowire. Improved structural order around Co atoms is obtained in nanowires with high-temperature ion implantation followed by thermal annealing. The ab initio Zn K-edge simulations not only confirm recovery of implantation-induced damage in the ZnO host lattice by the thermal annealing process, but also assist in studying the effect of oxygen vacancies in the Zn K-edge XANES spectra. Microphotoluminescence data certify that high-temperature ion implantation with subsequent thermal annealing is an effective approach to achieve the strongest optical activation of Co ions and good energy transfer to Co ions from the ZnO host matrix.

  18. Dental Implant Surgery

    MedlinePlus

    Dental implant surgery Overview By Mayo Clinic Staff Dental implant surgery is a procedure that replaces tooth roots with ... look and function much like real ones. Dental implant surgery can offer a welcome alternative to dentures ...

  19. Hip Implant Systems

    MedlinePlus

    ... Devices Products and Medical Procedures Implants and Prosthetics Metal-on-Metal Hip Implants Hip Implants Share Tweet Linkedin Pin ... devices available with different bearing surfaces. These are: Metal-on-Polyethylene: The ball is made of metal ...

  20. One-dimensional ZnO nanostructures.

    PubMed

    Jayadevan, K P; Tseng, T Y

    2012-06-01

    The wide-gap semiconductor ZnO with nanostructures such as nanoparticle, nanorod, nanowire, nanobelt, nanotube has high potential for a variety of applications. This article reviews the fundamentals of one-dimensional ZnO nanostructures, including processing, structure, property, application and their processing-microstructure-property correlation. Various fabrication methods of the ZnO nanostructures including vapor-liquid-solid process, vapor-solid growth, solution growth, solvothermal growth, template-assisted growth and self-assembly are introduced. The characterization and properties of the ZnO nanostructures are described. The possible applications of these nanostructures are also discussed.

  1. Diagnosis of osteomyelitis of the foot in diabetic patients: Value of 111In-leukocyte scintigraphy

    SciTech Connect

    Larcos, G.; Brown, M.L.; Sutton, R.T. )

    1991-09-01

    The noninvasive diagnosis of osteomyelitis of the foot in diabetic patients with currently available radiologic and radionuclide imaging techniques is often difficult. Recently, 111In-labeled leukocyte scintigraphy has been proposed as an attractive alternative. Accordingly, the authors retrospectively reviewed 51 111In-labeled leukocyte scans, 49 technetium-99m bone scans, and 49 plain radiographs obtained in 51 adults with diabetes in whom osteomyelitis of the foot was suspected. The sensitivity and specificity of these techniques were evaluated in all patients, as well as in a subgroup of 11 patients with neuroarthropathy. Results with 111In-labeled leukocyte scans were also examined in subsets of patients with soft-tissue ulcers (n = 35) and those receiving antibiotics during investigation (n = 20). Confirmation or exclusion of osteomyelitis was made surgically in 28 patients and clinically in 23. Fourteen patients had osteomyelitis. Bone scans were most sensitive (93%) but least specific (43%); plain radiographs were most specific (83%) but least sensitive (43%). 111In-labeled leukocyte scans were both sensitive (79%) and specific (78%), and remained useful in patients with neuroarthropathy, soft-tissue ulcers, and antibiotic treatment. Poor spatial resolution contributed to the false-negative and false-positive 111In-labeled leukocyte scans, suggesting that this technique should not be interpreted independent of other tests. 111In-labeled leukocyte scans are a valuable diagnostic tool for the diagnosis of pedal osteomyelitis in diabetic patients.

  2. Low-energy muon [LEM] study of Zn-phthalocyanine and ZnO thin films

    NASA Astrophysics Data System (ADS)

    Alberto, H. V.; Piroto Duarte, J.; Weidinger, A.; Vilão, R. C.; Gil, J. M.; Ayres de Campos, N.; Fostiropoulos, K.; Prokscha, T.; Suter, A.; Morenzoni, E.

    2009-04-01

    Implantation of low-energy muons in zinc-phthalocyanine (ZnPc) thin-films leads to the formation of muoniated radical states, the fast decaying of the μSR signal at low fields being a clear indication of muonium formation. The formation probability of these paramagnetic states is independent of the implantation depth and amounts, as in the bulk, to approximately 100% of all muons. In these molecular crystals the formation of muonium is a highly local effect and is fairly independent of crystalline structure and defects in the sample. In contrast to that, in vapour-grown ZnO films the paramagnetic signal known from bulk experiments is not observed, even for the deeper implantations. We suggest that in this case muonium is not formed due to the low concentration of free electrons. In these strongly distorted films, electrons are captured at defects and are not available for muonium formation.

  3. [Bilateral cochlear implantation].

    PubMed

    Kronenberg, Jona; Migirov, Lela; Taitelbaum-Swead, Rikey; Hildesheimer, Minka

    2010-06-01

    Cochlear implant surgery became the standard of care in hearing rehabilitation of patients with severe to profound sensorineural hearing loss. This procedure may alter the lives of children and adults enabling them to integrate with the hearing population. In the past, implantation was performed only in one ear, despite the fact that binaural hearing is superior to unilateral, especially in noisy conditions. Cochlear implantation may be performed sequentially or simultaneously. The "sensitive period" of time between hearing loss and implantation and between the two implantations, when performed sequentially, significantly influences the results. Shorter time spans between implantations improve the hearing results after implantation. Hearing success after implantation is highly dependent on the rehabilitation process which includes mapping, implant adjustments and hearing training. Bilateral cochlear implantation in children is recommended as the proposed procedure in spite of the additional financial burden.

  4. Preparation, cytotoxicity, and in vivo antitumor efficacy of 111In-labeled modular nanotransporters

    PubMed Central

    Slastnikova, Tatiana A; Rosenkranz, Andrey A; Morozova, Natalia B; Vorontsova, Maria S; Petriev, Vasiliy M; Lupanova, Tatiana N; Ulasov, Alexey V; Zalutsky, Michael R; Yakubovskaya, Raisa I; Sobolev, Alexander S

    2017-01-01

    Purpose Modular nanotransporters (MNTs) are a polyfunctional platform designed to achieve receptor-specific delivery of short-range therapeutics into the cell nucleus by receptor-mediated endocytosis, endosome escape, and targeted nuclear transport. This study evaluated the potential utility of the MNT platform in tandem with Auger electron emitting 111In for cancer therapy. Methods Three MNTs developed to target either melanocortin receptor-1 (MC1R), folate receptor (FR), or epidermal growth factor receptor (EGFR) that are overexpressed on cancer cells were modified with p-SCN-Bn-NOTA and then labeled with 111In in high specific activity. Cytotoxicity of the 111In-labeled MNTs was evaluated on cancer cell lines bearing the appropriate receptor target (FR: HeLa, SK-OV-3; EGFR: A431, U87MG.wtEGFR; and MC1R: B16-F1). In vivo micro-single-photon emission computed tomography/computed tomography imaging and antitumor efficacy studies were performed with intratumoral injection of MC1R-targeted 111In-labeled MNT in B16-F1 melanoma tumor-bearing mice. Results The three NOTA-MNT conjugates were labeled with a specific activity of 2.7 GBq/mg with nearly 100% yield, allowing use without subsequent purification. The cytotoxicity of 111In delivered by these MNTs was greatly enhanced on receptor-expressing cancer cells compared with 111In nontargeted control. In mice with B16-F1 tumors, prolonged retention of 111In by serial imaging and significant tumor growth delay (82% growth inhibition) were found. Conclusion The specific in vitro cytotoxicity, prolonged tumor retention, and therapeutic efficacy of MC1R-targeted 111In-NOTA–MNT suggest that this Auger electron emitting conjugate warrants further evaluation as a locally delivered radiotherapeutic, such as for ocular melanoma brachytherapy. Moreover, the high cytotoxicity observed with FR- and EGFR-targeted 111In-NOTA–MNT suggests further applications of the MNT delivery strategy should be explored. PMID:28138237

  5. sup 111 In-labeled nonspecific immunoglobulin scanning in the detection of focal infection

    SciTech Connect

    Rubin, R.H.; Fischman, A.J.; Callahan, R.J.; Khaw, B.A.; Keech, F.; Ahmad, M.; Wilkinson, R.; Strauss, H.W. )

    1989-10-05

    We performed radionuclide scanning after the intravenous injection of human IgG labeled with indium-111 in 128 patients with suspected focal sites of inflammation. Localization of 111In-labeled IgG correlated with clinical findings in 51 infected patients (21 with abdominal or pelvic infections, 11 with intravascular infections, 7 with pulmonary infections, and 12 with skeletal infections). Infecting organisms included gram-positive bacteria, gram-negative bacteria, Pneumocystis carinii, Mycoplasma pneumoniae, and Candida albicans. No focal localization of 111In-labeled IgG was observed in 63 patients without infection. There were five false negative results, and nine results were unusable. Serial scans were carried out in eight patients: continued localization correctly predicted relapse in six, and the absence of localization indicated resolution in two. To determine whether 111In-labeled IgG localization was specific for inflammation, we studied 16 patients with cancer. Focal localization occurred in 13 of these patients (5 with melanomas, 5 with gynecologic cancers, and 1 each with lymphoma, prostate cancer, and malignant fibrous histiocytoma). No localization was seen in patients with renal or colon cancer or metastatic medullary carcinoma of the thyroid. We conclude that 111In-labeled IgG imaging is effective for the detection of focal infection and that serial scans may be useful in assessing therapeutic efficacy. This technique may also be helpful in the evaluation of certain cancers.

  6. Distribution of DNA strand breaks produced by iodine-123 and indium-111 in synthetic oligodeoxynucleotides.

    PubMed

    Karamychev, V N; Reed, M W; Neumann, R D; Panyutin, I G

    2000-01-01

    Antigene radiotherapy, a procedure based on delivery of short-range Auger-electron-emitting radioisotopes to target genes via sequence-specific triplex-forming oligonucleotides, has been successfully demonstrated in vitro using the well-studied radionuclide 125I. To proceed with in vivo trials, Auger electron emitters with shorter half-lives than 125I are required. Here we report a study of the efficiency and distribution of sequence-specific DNA strand breaks produced by decay of 123I and mIIn. 123I and 111In were introduced into triplex-and duplex-forming oligodeoxyribonucleotides (ODNs) through carbohydrate linkers of various lengths. Labeling with radioiodine was performed through tributylstannylbenzamide intermediates while 111In was attached via DTPA. The Auger-emitter-labeled ODNs were hybridized to a single-stranded DNA target, to form duplexes. After decay accumulation, the target DNA samples were assayed for strand breaks using a sequencing gel-electrophoresis technique. For the first time, we observed footprints of DNA strand breaks produced by 123I and 111In. Most of the breaks were located within 10 nucleotides from the decay site. The yield of strand breaks per decay varies; decay of 111In breaks DNA almost 10 times more effectively than decay of 123I. Both 123I and 111In are less effective in breaking DNA strands than 121I, which reflects the higher total energy of the Auger decay process of 125I.

  7. Radioimmunodetection of cutaneous T-cell lymphoma with 111In-labeled T101 monoclonal antibody

    SciTech Connect

    Carrasquillo, J.A.; Bunn, P.A. Jr.; Keenan, A.M.; Reynolds, J.C.; Schroff, R.W.; Foon, K.A.; Su, M.H.; Gazdar, A.F.; Mulshine, J.L.; Oldham, R.K.

    1986-09-11

    T101 monoclonal antibody recognizes a pan-T-cell antigen present on normal T cells and also found in high concentrations in cutaneous T-cell lymphoma. We used this antibody, radiolabeled with 111In, in gamma-camera imaging to detect sites of metastatic cutaneous T-cell lymphoma in 11 patients with advanced disease. In all patients, (/sup 111/In)T101 concentrated in pathologically or clinically detected nodes, including those in several previously unsuspected nodal regions. Concentrations (per gram of tissue) ranged from 0.01 to 0.03 percent of the injected dose and were consistently 10 to 100 times higher than previously reported on radioimmunodetection. Focal uptake was seen in skin tumors and heavily infiltrated erythroderma but not in skin plaques. The specificity of tumor targeting was documented by control studies with (/sup 111/In)chloride or (/sup 111/In)9.2.27 (anti-melanoma) monoclonal antibody. Increasing the T101 dose (1 to 50 mg) altered distribution in nontumor tissues. These studies suggest that imaging with (/sup 111/In)T101 may be of value in identifying sites of cutaneous T-cell lymphoma. In contrast to the targeting of solid tumors, the mechanism of localization appears to be related to binding to T cells, which can then carry the radioactivity to involved sites.

  8. N Doping to ZnO Nanorods for Photoelectrochemical Water Splitting under Visible Light: Engineered Impurity Distribution and Terraced Band Structure

    NASA Astrophysics Data System (ADS)

    Wang, Meng; Ren, Feng; Zhou, Jigang; Cai, Guangxu; Cai, Li; Hu, Yongfeng; Wang, Dongniu; Liu, Yichao; Guo, Liejin; Shen, Shaohua

    2015-08-01

    Solution-based ZnO nanorod arrays (NRAs) were modified with controlled N doping by an advanced ion implantation method, and were subsequently utilized as photoanodes for photoelectrochemical (PEC) water splitting under visible light irradiation. A gradient distribution of N dopants along the vertical direction of ZnO nanorods was realized. N doped ZnO NRAs displayed a markedly enhanced visible-light-driven PEC photocurrent density of ~160 μA/cm2 at 1.1 V vs. saturated calomel electrode (SCE), which was about 2 orders of magnitude higher than pristine ZnO NRAs. The gradiently distributed N dopants not only extended the optical absorption edges to visible light region, but also introduced terraced band structure. As a consequence, N gradient-doped ZnO NRAs can not only utilize the visible light irradiation but also efficiently drive photo-induced electron and hole transfer via the terraced band structure. The superior potential of ion implantation technique for creating gradient dopants distribution in host semiconductors will provide novel insights into doped photoelectrode materials for solar water splitting.

  9. N Doping to ZnO Nanorods for Photoelectrochemical Water Splitting under Visible Light: Engineered Impurity Distribution and Terraced Band Structure

    PubMed Central

    Wang, Meng; Ren, Feng; Zhou, Jigang; Cai, Guangxu; Cai, Li; Hu, Yongfeng; Wang, Dongniu; Liu, Yichao; Guo, Liejin; Shen, Shaohua

    2015-01-01

    Solution-based ZnO nanorod arrays (NRAs) were modified with controlled N doping by an advanced ion implantation method, and were subsequently utilized as photoanodes for photoelectrochemical (PEC) water splitting under visible light irradiation. A gradient distribution of N dopants along the vertical direction of ZnO nanorods was realized. N doped ZnO NRAs displayed a markedly enhanced visible-light-driven PEC photocurrent density of ~160 μA/cm2 at 1.1 V vs. saturated calomel electrode (SCE), which was about 2 orders of magnitude higher than pristine ZnO NRAs. The gradiently distributed N dopants not only extended the optical absorption edges to visible light region, but also introduced terraced band structure. As a consequence, N gradient-doped ZnO NRAs can not only utilize the visible light irradiation but also efficiently drive photo-induced electron and hole transfer via the terraced band structure. The superior potential of ion implantation technique for creating gradient dopants distribution in host semiconductors will provide novel insights into doped photoelectrode materials for solar water splitting. PMID:26262752

  10. Evaluation in a Dog Model of Three Antimicrobial Glassy Coatings: Prevention of Bone Loss around Implants and Microbial Assessments

    PubMed Central

    López-Píriz, Roberto; Solá-Linares, Eva; Rodriguez-Portugal, Mercedes; Malpica, Beatriz; Díaz-Güemes, Idoia; Enciso, Silvia; Esteban-Tejeda, Leticia; Cabal, Belén; Granizo, Juan José; Moya, José Serafín; Torrecillas, Ramón

    2015-01-01

    Objectives The aim of the present study is to evaluate, in a ligature-induced peri-implantitis model, the efficacy of three antimicrobial glassy coatings in the prevention of biofilm formation, intrasulcular bacterial growth and the resulting peri-implant bone loss. Methods Mandibular premolars were bilaterally extracted from five beagle dogs. Four dental implants were inserted on each hemiarch. Eight weeks after, one control zirconia abutment and three with different bactericidal coatings (G1n-Ag, ZnO35, G3) were connected. After a plaque control period, bacterial accumulation was allowed and biofilm formation on abutments was observed by Scanning Electron Microscopy (SEM). Peri-implantitis was induced by cotton ligatures. Microbial samples and peri-implant crestal bone levels of all implant sites were obtained before, during and after the breakdown period. Results During experimental induce peri-implantitis: colony forming units counts from intrasulcular microbial samples at implants with G1n-Ag coated abutment remained close to the basal inoculum; G3 and ZnO35 coatings showed similar low counts; and anaerobic bacterias counts at control abutments exhibited a logarithmic increase by more than 2. Bone loss during passive breakdown period was no statistically significant. Additional bone loss occurred during ligature-induce breakdown: 0.71 (SD 0.48) at G3 coating, 0.57 (SD 0.36) at ZnO35 coating, 0.74 (SD 0.47) at G1n-Ag coating, and 1.29 (SD 0.45) at control abutments; and statistically significant differences (p<0.001) were found. The lowest bone loss at the end of the experiment was exhibited by implants dressing G3 coated abutments (mean 2.1; SD 0.42). Significance Antimicrobial glassy coatings could be a useful tool to ward off, diminish or delay peri-implantitis progression. PMID:26489088

  11. Esthesioneuroblastoma (olfactory neuroblastoma) treated with 111In-octreotide and 177Lu-DOTATATE PRRT.

    PubMed

    Makis, William; McCann, Karey; McEwan, Alexander J B

    2015-04-01

    A 51-year-old man with a recurrent metastatic esthesioneuroblastoma (olfactory neuroblastoma) was referred for peptide receptor radionuclide therapy (PRRT). He received 4 treatments of 111In-octreotide over 8 months and 3 treatments of 177Lu-DOTATATE over 4 months, which helped alleviate his symptoms and improved his quality of life; however, the tumor ultimately progressed and he passed away shortly thereafter. PRRT with 111In-octreotide or 177Lu-DOTATATE could play a role in the management of esthesioneuroblastoma.

  12. Diagnosis of arterial prosthetic graft infection by /sup 111/In oxine white blood cell scans

    SciTech Connect

    McKeown, P.P.; Miller, D.C.; Jamieson, S.W.; Mitchell, R.S.; Reitz, B.A.; Olcott, C.; Mehigan, J.T.; Silberstein, R.J.; McDougall, I.R.

    1982-08-01

    Early and accurate diagnosis of infected prosthetic arterial grafts is difficult, despite the application of diverse diagnostic modalities. Delay in making the diagnosis is largely responsible for the high amputation and mortality rates associated with this complication. In nine patients with suspected graft infections, /sup 111/In white blood cell scanning was useful and accurate. Graft infection was proved in five cases and ruled out in three. One false-positive scan was due to a sigmoid diverticular abscess overlying the graft. /sup 111/In white blood cell scans may improve the accuracy of diagnosing infected prosthetic grafts, which may result in better limb and patient salvage rates.

  13. Optimizing stem cell functions and antibacterial properties of TiO2 nanotubes incorporated with ZnO nanoparticles: experiments and modeling.

    PubMed

    Liu, Wenwen; Su, Penglei; Gonzales, Arthur; Chen, Su; Wang, Na; Wang, Jinshu; Li, Hongyi; Zhang, Zhenting; Webster, Thomas J

    2015-01-01

    To optimize mesenchymal stem cell differentiation and antibacterial properties of titanium (Ti), nano-sized zinc oxide (ZnO) particles with tunable concentrations were incorporated into TiO2 nanotubes (TNTs) using a facile hydrothermal strategy. It is revealed here for the first time that the TNTs incorporated with ZnO nanoparticles exhibited better biocompatibility compared with pure Ti samples (controls) and that the amount of ZnO (tailored by the concentration of Zn(NO3)2 in the precursor) introduced into TNTs played a crucial role on their osteogenic properties. Not only was the alkaline phosphatase activity improved to about 13.8 U/g protein, but the osterix, collagen-I, and osteocalcin gene expressions was improved from mesenchymal stem cells compared to controls. To further explore the mechanism of TNTs decorated with ZnO on cell functions, a response surface mathematical model was used to optimize the concentration of ZnO incorporation into the Ti nanotubes for stem cell differentiation and antibacterial properties for the first time. Both experimental and modeling results confirmed (R (2) values of 0.8873-0.9138 and 0.9596-0.9941, respectively) that Ti incorporated with appropriate concentrations (with an initial concentration of Zn(NO3)2 at 0.015 M) of ZnO can provide exceptional osteogenic properties for stem cell differentiation in bone cells with strong antibacterial effects, properties important for improving dental and orthopedic implant efficacy.

  14. [Biomaterials in cochlear implants].

    PubMed

    Stöver, T; Lenarz, T

    2009-05-01

    Cochlear implants (CI) represent the "gold standard" for the treatment of congenitally deaf children and postlingually deafened adults. Thus, cochlear implantation is a success story of new bionic prosthesis development. Owing to routine application of cochlear implants in adults but also in very young children (below the age of one), high demands are placed on the implants. This is especially true for biocompatibility aspects of surface materials of implant parts which are in contact with the human body. In addition, there are various mechanical requirements which certain components of the implants must fulfil, such as flexibility of the electrode array and mechanical resistance of the implant housing. Due to the close contact of the implant to the middle ear mucosa and because the electrode array is positioned in the perilymphatic space via cochleostomy, there is a potential risk of bacterial transferral along the electrode array into the cochlea. Various requirements that have to be fulfilled by cochlear implants, such as biocompatibility, electrode micromechanics, and although a very high level of technical standards has been carried out there is still demand for the improvement of implants as well as of the materials used for manufacturing, ultimately leading to increased implant performance. General considerations of material aspects related to cochlear implants as well as potential future perspectives of implant development will be discussed.

  15. Breast Implants: Saline vs. Silicone

    MedlinePlus

    ... to women of any age for breast reconstruction. Silicone breast implants Silicone implants are pre-filled with ... likely be inserted at the same time. Ruptured silicone implant If a silicone breast implant ruptures, you ...

  16. Hydrogen-related excitons and their excited-state transitions in ZnO

    NASA Astrophysics Data System (ADS)

    Heinhold, R.; Neiman, A.; Kennedy, J. V.; Markwitz, A.; Reeves, R. J.; Allen, M. W.

    2017-02-01

    The role of hydrogen in the photoluminescence (PL) of ZnO was investigated using four different types of bulk ZnO single crystal, with varying concentrations of unintentional hydrogen donor and Group I acceptor impurities. Photoluminescence spectra were measured at 3 K, with emission energies determined to ±50 μeV, before and after separate annealing in O2, N2, and H2 atmospheres. Using this approach, several new hydrogen-related neutral-donor-bound excitons, and their corresponding B exciton, ionized donor, and two electron satellite (TES) excited state transitions were identified and their properties further investigated using hydrogen and deuterium ion implantation. The commonly observed I4 (3.36272 eV) emission due to excitons bound to multicoordinated hydrogen inside an oxygen vacancy (HO), that is present in most ZnO material, was noticeably absent in hydrothermally grown (HT) ZnO and instead was replaced by a doublet of two closely lying recombination lines I4 b ,c (3.36219, 3.36237 eV) due to a hydrogen-related donor with a binding energy (ED) of 47.7 meV. A new and usually dominant recombination line I6 -H (3.36085 eV) due to a different hydrogen-related defect complex with an ED of 49.5 meV was also identified in HT ZnO. Here, I4 b ,c and I6 -H were stable up to approximately 400 and 600 °C, respectively, indicating that they are likely to contribute to the unintentional n -type conductivity of ZnO. Another doublet I5 (3.36137, 3.36148 eV) was identified in hydrogenated HT ZnO single crystals with low Li concentrations, and this was associated with a defect complex with an ED of 49.1 meV. A broad near band edge (NBE) emission centered at 3.366 eV was associated with excitons bound to subsurface hydrogen. We further demonstrate that hydrogen incorporates on different lattice sites for different annealing conditions and show that the new features I4 b ,c, I6 -H, and I5 most likely originate from the lithium-hydrogen defect complexes L iZn-HO , A l

  17. ZnO based light emitting diodes growth and fabrication

    NASA Astrophysics Data System (ADS)

    Pan, M.; Rondon, R.; Cloud, J.; Rengarajan, V.; Nemeth, W.; Valencia, A.; Gomez, J.; Spencer, N.; Nause, J.

    2006-02-01

    ZnO and N-doped ZnO thin films were grown by MOCVD on sapphire and ZnO substrates. Diethyl zinc and O II were used as sources for Zn and O, respectively. A specially designed plasma system was employed to produce atomic N dopant for in-situ doping. Proper disk rotation speeds were found for ZnO growth on different size wafers. High crystal quality N-doped ZnO films were grown based on optimized growth conditions. Wet chemical etch of ZnO was investigated by using NH 4Cl, and etch activation energy was calculated to be 463meV. Ohmic contact on N-doped ZnO film was achieved by using Ni/Au/Al multiple layers. ZnO based p-n junction has demonstrated rectification. Electroluminescence at about 384nm was obtained from ZnO based LED.

  18. Spinel ferrite nanocrystals embedded inside ZnO: magnetic, electronic andmagneto-transport properties

    SciTech Connect

    Zhou, Shengqiang; Potzger, K.; Xu, Qingyu; Kuepper, K.; Talut, G.; Marko, D.; Mucklich, A.; Helm, M.; Fassbender, J.; Arenholz, E.; Schmidt, H.

    2009-08-21

    In this paper we show that spinel ferrite nanocrystals (NiFe{sub 2}O{sub 4}, and CoFe{sub 2}O{sub 4}) can be texturally embedded inside a ZnO matrix by ion implantation and post-annealing. The two kinds of ferrites show different magnetic properties, e.g. coercivity and magnetization. Anomalous Hall effect and positive magnetoresistance have been observed. Our study suggests a ferrimagnet/semiconductor hybrid system for potential applications in magneto-electronics. This hybrid system can be tuned by selecting different transition metal ions (from Mn to Zn) to obtain various magnetic and electronic properties.

  19. Implants for lucky few

    NASA Astrophysics Data System (ADS)

    Brandon, David

    2011-08-01

    In his article "Vision of beauty" (May pp22-27), Richard Taylor points the way to fractal design for retinal implants and makes an enthusiastic case for incorporating such features into the next generation of such implants.

  20. Implantable Heart Aid

    NASA Technical Reports Server (NTRS)

    1984-01-01

    CPI's human-implantable automatic implantable defibrillator (AID) is a heart assist system, derived from NASA's space circuitry technology, that can prevent erratic heart action known as arrhythmias. Implanted AID, consisting of microcomputer power source and two electrodes for sensing heart activity, recognizes onset of ventricular fibrillation (VF) and delivers corrective electrical countershock to restore rhythmic heartbeat.

  1. Optical properties of ZnO nanostructures.

    PubMed

    Djurisić, Aleksandra B; Leung, Yu Hang

    2006-08-01

    We present a review of current research on the optical properties of ZnO nanostructures. We provide a brief introduction to different fabrication methods for various ZnO nanostructures and some general guidelines on how fabrication parameters (temperature, vapor-phase versus solution-phase deposition, etc.) affect their properties. A detailed discussion of photoluminescence, both in the UV region and in the visible spectral range, is provided. In addition, different gain (excitonic versus electron hole plasma) and feedback (random lasing versus individual nanostructures functioning as Fabry-Perot resonators) mechanisms for achieving stimulated emission are described. The factors affecting the achievement of stimulated emission are discussed, and the results of time-resolved studies of stimulated emission are summarized. Then, results of nonlinear optical studies, such as second-harmonic generation, are presented. Optical properties of doped ZnO nanostructures are also discussed, along with a concluding outlook for research into the optical properties of ZnO.

  2. Quantitative simultaneous 111In/99mTc SPECT-CT of osteomyelitis

    PubMed Central

    Cervo, Morgan; Gerbaudo, Victor H.; Park, Mi-Ae; Moore, Stephen C.

    2013-01-01

    Purpose: A well-established approach for diagnostic imaging of osteomyelitis (OM), a bone infection, is simultaneous SPECT-CT of 99mTc sulfur colloid (SC) and 111In white blood cells (WBC). This method provides essentially perfect spatial registration of the tracers within anatomic sites of interest. Currently, diagnosis is based purely on a visual assessment—where relative discordance between 99mTc and 111In uptake in bone, i.e., high 111In and low 99mTc, suggests OM. To achieve more quantitative images, noise, scatter, and crosstalk between radionuclides must be addressed through reconstruction. Here the authors compare their Monte Carlo-based joint OSEM (MC-JOSEM) algorithm, which reconstructs both radionuclides simultaneously, to a more conventional triple-energy window-based reconstruction (TEW-OSEM), and to iterative reconstruction with no compensation for scatter (NC-OSEM). Methods: The authors created numerical phantoms of the foot and torso. Multiple bone-infection sites were modeled using high-count Monte Carlo simulation. Counts per voxel were then scaled to values appropriate for 111In WBC and 99mTc SC imaging. Ten independent noisy projection image sets were generated by drawing random Poisson deviates from these very low-noise images. Data were reconstructed using the two iterative scatter-compensation methods, TEW-OSEM and MC-JOSEM, as well as the uncorrected method (NC-OSEM). Mean counts in volumes of interest (VOIs) were used to evaluate the bias and precision of each method. Data were also acquired using a phantom, approximately the size of an adult ankle, consisting of regions representing infected and normal bone marrow, within a bone-like attenuator and surrounding soft tissue; each compartment contained a mixture of 111In and 99mTc. Low-noise data were acquired during multiple short scans over 29 h on a Siemens Symbia T6 SPECT-CT with medium-energy collimators. Pure 99mTc and 111In projection datasets were derived by fitting the acquired

  3. Sensitivity of 57Fe emission Mössbauer spectroscopy to Ar and C induced defects in ZnO

    NASA Astrophysics Data System (ADS)

    Bharuth-Ram, K.; Mølholt, T. E.; Langouche, G.; Geburt, S.; Ronning, C.; Doyle, T. B.; Gunnlaugsson, H. P.; Johnston, K.; Mantovan, R.; Masenda, H.; Naidoo, D.; Ncube, M.; Gislason, H.; Ólafsson, S.; Weyer, G.

    2016-12-01

    Emission Mössbauer Spectroscopy (eMS) measurements, following low fluence (<1012 cm-2) implantation of 57Mn (t 1/2 = 1.5 min.) into ZnO single crystals pre-implanted with Ar and C ions, has been utilized to test the sensitivity of the 57Fe eMS technique to the different types of defects generated by the different ion species. The dominant feature of the Mössbauer spectrum of the Ar implanted ZnO sample was a magnetic hyperfine field distribution component, attributed to paramagnetic Fe3+, while that of the C implanted sample was a doublet attributed to substitutional Fe2+ forming a complex with the C dopant ions in the 2- state at O vacancies. Magnetization measurements on the two samples, on the other hand, yield practically identical m(H) curves. The distinctly different eMS spectra of the two samples display the sensitivity of the probe nucleus to the defects produced by the different ion species.

  4. Growth of vertically aligned ZnO nanorods using textured ZnO films

    PubMed Central

    2011-01-01

    A hydrothermal method to grow vertical-aligned ZnO nanorod arrays on ZnO films obtained by atomic layer deposition (ALD) is presented. The growth of ZnO nanorods is studied as function of the crystallographic orientation of the ZnO films deposited on silicon (100) substrates. Different thicknesses of ZnO films around 40 to 180 nm were obtained and characterized before carrying out the growth process by hydrothermal methods. A textured ZnO layer with preferential direction in the normal c-axes is formed on substrates by the decomposition of diethylzinc to provide nucleation sites for vertical nanorod growth. Crystallographic orientation of the ZnO nanorods and ZnO-ALD films was determined by X-ray diffraction analysis. Composition, morphologies, length, size, and diameter of the nanorods were studied using a scanning electron microscope and energy dispersed x-ray spectroscopy analyses. In this work, it is demonstrated that crystallinity of the ZnO-ALD films plays an important role in the vertical-aligned ZnO nanorod growth. The nanorod arrays synthesized in solution had a diameter, length, density, and orientation desirable for a potential application as photosensitive materials in the manufacture of semiconductor-polymer solar cells. PACS 61.46.Hk, Nanocrystals; 61.46.Km, Structure of nanowires and nanorods; 81.07.Gf, Nanowires; 81.15.Gh, Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.) PMID:21899743

  5. Extraoral Cementation Technique to Minimize Cement-Associated Peri-implant Marginal Bone Loss: Can a Thin Layer of Zinc Oxide Cement Provide Sufficient Retention?

    PubMed

    Frisch, Eberhard; Ratka-Krüger, Petra; Weigl, Paul; Woelber, Johan

    2016-01-01

    This report describes the use of laboratory-fabricated crown intaglio replicas for extraorally prepared cementation of fixed restorations to implants. This technique minimizes excess cement and may therefore reduce the risk of cement-related marginal peri-implant bone loss. It is unclear whether the remaining thin layer of luting agent provides sufficient retention if low-adhesive zinc oxide (ZnO) cement is used. In 85 consecutive patients, 113 single crowns were cemented to implants using extraoral cementation technique (ECT) and ZnO cement. All patients were followed for 6 months and investigated for decementation. Seven events of decementation (incidence: 6.19%) were found in 7 patients (8.24%). ECT may represent a viable cementation technique for implant-supported single crowns, even using low-adhesion cements.

  6. Trends in Cochlear Implants

    PubMed Central

    Zeng, Fan-Gang

    2004-01-01

    More than 60,000 people worldwide use cochlear implants as a means to restore functional hearing. Although individual performance variability is still high, an average implant user can talk on the phone in a quiet environment. Cochlear-implant research has also matured as a field, as evidenced by the exponential growth in both the patient population and scientific publication. The present report examines current issues related to audiologic, clinical, engineering, anatomic, and physiologic aspects of cochlear implants, focusing on their psychophysical, speech, music, and cognitive performance. This report also forecasts clinical and research trends related to presurgical evaluation, fitting protocols, signal processing, and postsurgical rehabilitation in cochlear implants. Finally, a future landscape in amplification is presented that requires a unique, yet complementary, contribution from hearing aids, middle ear implants, and cochlear implants to achieve a total solution to the entire spectrum of hearing loss treatment and management. PMID:15247993

  7. Evaluation of [111In]-Labeled Zinc-Dipicolylamine Tracers for SPECT Imaging of Bacterial Infection

    PubMed Central

    Rice, Douglas R.; Plaunt, Adam J.; Turkyilmaz, Serhan; Smith, Miles; Wang, Yuzhen; Rusckowski, Mary

    2015-01-01

    Purpose This study prepared three structurally related zinc-dipicolylamine (ZnDPA) tracers with [111In] labels and conducted biodistribution and SPECT/CT imaging studies of a mouse leg infection model. Methods Two monovalent tracers, ZnDPA-[111In]DTPA and ZnDPA-[111In]DOTA, each with a single zinc-dipicolylamine targeting unit, and a divalent tracer, Bis(ZnDPA)-[111In]DTPA,with two zinc-dipicolylamine units were prepared. Organ biodistribution and SPECT/CT imaging studies were performed on living mice with a leg infection created by injection of clinically relevant Gram positive Streptococcus pyogenes. Fluorescent and luminescent Eu3+-labeled versions of these tracers were also prepared and used to measure relative affinity for the exterior membrane surface of bacterial cells and mimics of healthy mammalian cells. Results All three 111In-labeled radiotracers were prepared with radiopurity > 90%. The biodistribution studies showed that the two monovalent tracers were cleared from the body through the liver and kidney, with retained % injected dose for all organs of < 8 % at 20 hours and infected leg T/NT ratio of ≤ 3.0. Clearance of the divalent tracer from the bloodstream was slower and primarily through the liver, with a retained % injected dose for all organs < 37% at 20 hours and T/NT ratio rising to 6.2 after 20 hours. The SPECT/CT imaging indicated the same large difference in tracer pharmacokinetics and higher accumulation of the divalent tracer at the site of infection. Conclusions All three [111In]-ZnDPA tracers selectively targeted the site of a clinically relevant mouse infection model that could not be discerned by visual external inspection of the living animal. The highest target selectivity, observed with a divalent tracer equipped with two zinc-dipicolylamine targeting units, compares quite favorably with the imaging selectivities previously reported for other nuclear tracers that target bacterial cell surfaces. The tracer pharmacokinetics depended

  8. Morphology engineering of ZnO nanostructures for high performance supercapacitors: Enhanced electrochemistry of ZnO nanocones compared to ZnO nanowires.

    PubMed

    He, Xiaoli; Yoo, Joung; Lee, Min; Bae, Joonho

    2017-04-06

    In this work, the morphology of ZnO nanostructures is engineered to demonstrate enhanced supercapacitor characteristics of ZnO nanocones (NCs) compared to ZnO nanowires (NWs). ZnO NCs are obtained by chemically etching ZnO NWs. Electrochemical characteristics of ZnO NCs and NWs are extensively investigated to demonstrate morphology dependent capacitive performance of one dimensional ZnO nanostructures. Cyclic voltammetry measurements on these two kind of electrodes in three electrode cell confirms that ZnO NCs exhibit high specific capacitance of 378.5 F g-1 at a scan rate of 20 mV s-1, which is almost twice that of ZnO NWs (191.5 F g-1). The charge-discharge and EIS measurements also clearly results in enhanced capacitive performance of NCs as evidenced by higher specific capacitances and lower internal resistance. Asymmetric spuercapacitors are fabricated using activated carbon (AC) as negative electrode and ZnO NWs and NCs as positive electrodes. The ZnO NC//AC can deliver a maximum specific capacitance of 126 F g-1 at a current density of 1.33 A g-1 with an energy density of 25.2 W h kg-1 at the power density of 896.44 W kg-1. In contrast, ZnO NW//AC displays 63% of capacitance obtained from ZnO NC//AC supercapacitor. The enhanced performances of NCs are attributed to higher surface area of ZnO nanostructures after the morphology is altered from NWs to NCs.

  9. Antibacterial properties and human gingival fibroblast cell compatibility of TiO2/Ag compound coatings and ZnO films on titanium-based material.

    PubMed

    Chang, Yin-Yu; Lai, Chih-Ho; Hsu, Jui-Ting; Tang, Chih-Hsin; Liao, Wan-Chuen; Huang, Heng-Li

    2012-02-01

    Titanium (Ti)-based materials are widely used in biomedical implant components and are applied successfully in various types of bone-anchored reconstructions. However, in dental implants the Ti materials contact not only bone but also gingival tissues, and are partially exposed to the oral cavity that includes bacteria. This study used titania and silver (TiO(2)/Ag) compound coatings and zinc oxide (ZnO) films to enhance the antibacterial activity of the Ti-based implant. The hydrophobicity of each sample was examined by measuring the contact angle. Streptococcus mutans and human gingival fibroblast (HGF) was cultured on the coated samples, and the antibacterial effects and cell compatibility were determined using a Syto9 fluorescence staining and MTT methods. For the TiO(2)/Ag samples, depositing Ag on the plate at a higher power (which increased the proportion of Ag) increased the contact angle and the hydrophobicity. The bacterial count was lowest for the 50 W TiO(2)/Ag sample, which contained 5.9% Ag. The contact angles of the ZnO samples did not show the same tendency. The antibacterial effect was higher on ZnO-coated samples since bacterial count was threefold lower on ZnO samples as compared to control samples (Ti plate). From the MTT assay test, the mean optical density values for TiO(2)/Ag-coated samples after 72 h of HGF adhesion were similar to the value obtained from the uncoated Ti. However, biocompatibility was lower on ZnO films than in control samples. Conclusively, the antibacterial activity was higher but the cell compatibility was lower on ZnO films than on TiO(2)/Ag coatings.

  10. Doppler-shift attenuation method lifetime measurements of low-lying states in 111In

    NASA Astrophysics Data System (ADS)

    Bucurescu, D.; Căta-Danil, I.; Ilaş, G.; Ivaşcu, M.; Mărginean, N.; Stroe, L.; Ur, C. A.

    1996-11-01

    The lifetimes of nine low-lying excited states in 111In have been measured with the Doppler-shift attenuation method in the 111Cd(p,nγ) reaction. A comparison of experimental quantities with predictions based on the interacting boson-fermion model unravels the states due to the coupling of a g9/2 proton hole to the quadrupole vibrations of the core.

  11. A case of bronchial carcinoid: diagnosis and follow-up with 111In-DTPA-octreotide.

    PubMed

    Orsolon, P; Bagni, B; Basadonna, P; Geatti, O; Talmassons, G; Guerra, U P

    1995-12-01

    Scintigraphy with radiolabelled analogue of somatostatin is highly sensitive in detecting carcinoid tumors especially if performed with Single Photon Computed Tomography (SPECT). In this report we describe our experience with 111In-DTPA-Octreotide in a female patient affected by a small asymptomatic intrabronchial carcinoid demonstrated by CT scan and bronchial endoscopy performed after recurrent left pneumonias. Planar views and SPECT images, using 111In-DTPA-Octreotide, were collected before and four hours after the first endoscopic laser resection. All groups of SPECT images were positive in the left parahilar region but at a different degree. Scans performed after resection showed a low degree of uptake which was considered to be probably secondary to local swelling; CT scan was negative. Follow up endoscopic biopsy repeated at six months, showed a relapse always in the same site; CT scan of the thorax was again negative. 111In-DTPA-Octreotide images obtained at twelve months were positive always in the left parahilar region, CT scan was negative but another biopsy was not possible. Therefore it was suspected a relapse of the carcinoid which was probably growing only through the bronchial wall without spreading towards the bronchial lumen and/or the lung parenchima. In this occasion, it was also thought that images collected four hours after resection could be positive not only for swelling but for a relapse as well. In every scintigraphic session, SPECT images presented higher quality than planar. This case suggests that 111In-DTPA-Octreotide SPECT is a non-invasive diagnostic technique which could be applied as a follow-up tool especially to patients with no-secreting carcinoid neoplasm and/or with negative or doubtful endoscopic and radiological investigations.

  12. [Cochlear implant in adults].

    PubMed

    Bouccara, D; Mosnier, I; Bernardeschi, D; Ferrary, E; Sterkers, O

    2012-03-01

    Cochlear implant in adults is a procedure, dedicated to rehabilitate severe to profound hearing loss. Because of technological progresses and their applications for signal strategies, new devices can improve hearing, even in noise conditions. Binaural stimulation, cochlear implant and hearing aid or bilateral cochlear implants are the best opportunities to access to better level of comprehension in all conditions and space localisation. By now minimally invasive surgery is possible to preserve residual hearing and use a double stimulation modality for the same ear: electrical for high frequencies and acoustic for low frequencies. In several conditions, cochlear implant is not possible due to cochlear nerve tumour or major malformations of the inner ear. In these cases, a brainstem implantation can be considered. Clinical data demonstrate that improvement in daily communication, for both cochlear and brainstem implants, is correlated with cerebral activation of auditory cortex.

  13. Evaluation of the viability of /sup 111/In-abeled DTPA coupled to fibrinogen

    SciTech Connect

    Layne, W.W.; Hnatowich, D.J.; Doherty, P.W.; Childs, R.L.; Lanteigne, D.; Ansell, J.

    1982-07-01

    In earlier work, DTPA has been covalently coupled to albumin via the cyclic anhydride of DTPA. Using fibrinogen, we have studied the effect of such coupling on protein viability by both an in vitro and an in vivo assay. Clotting time remained identical to that of the native protein whether the anhydride-to-protein molar ratio was 1:1 or 5:1. In vivo studies were done in dogs, with human fibrinogen labeled with /sup 125/I and /sup 111/In. Throughout 130 hr, blood clearances for the two tracers agreed whether with 1:1 or 5:1 coupling. In a dog model with a thrombogenic catheter, the clot-to-blood ratios for the two radiotracers agreed within experimental error. Finally, 1:1-coupled canine fibrinogen, labeled with /sup 111/In, was administered to dogs with a catheter in a jugular vein, and scintigrams at 24 hr clearly showed clotting along the length of the catheter. We conclude that fibrinogen, coupled to DTPA, retains its viability, behaving like radioiodinated fibrinogen in vivo, and /sup 111/In labeled fibrinogen looks promising as a clinical diagnostic agent.

  14. Implant treatment planning considerations.

    PubMed

    Kao, Richard T

    2008-04-01

    As dental implants become a more accepted treatment modality, there is a need for all parties involved with implant dentistry to be familiar with various treatment planning issues. Though the success can be highly rewarding, failure to forecast treatment planning issues can result in an increase of surgical needs, surgical cost, and even case failure. In this issue, the focus is on implant treatment planning considerations.

  15. Osseointegrated implant prosthodontics.

    PubMed

    Rogoff, G S

    1992-06-01

    This review covers recent literature on prosthodontic aspects of osseointegrated implants. Long-term prognosis, diagnosis and treatment planning, and clinical impression techniques and fabrication technology are discussed.

  16. TiO2 nanotube composite layers as delivery system for ZnO and Ag nanoparticles - an unexpected overdose effect decreasing their antibacterial efficacy.

    PubMed

    Roguska, A; Belcarz, A; Pisarek, M; Ginalska, G; Lewandowska, M

    2015-06-01

    Enhancement of biocompatibility and antibacterial properties of implant materials is potentially beneficial for their practical value. Therefore, the use of metallic and metallic oxide nanoparticles as antimicrobial coatings components which induce minimized antibacterial resistance receives currently particular attention. In this work, TiO2 nanotubes layers loaded with ZnO and Ag nanoparticles were designed for biomedical coatings and delivery systems and evaluated for antimicrobial activity. TiO2 nanotubes themselves exhibited considerable and diameter-dependent antibacterial activity against planktonic Staphylococcus epidermidis cells but favored bacterial adhesion. Loading of nanotubes with moderate amount of ZnO nanoparticles significantly diminished S. epidermidis cell adhesion and viability just after 1.5h contact with modified surfaces. However, an increase of loaded ZnO amount unexpectedly altered the structure of nanoparticle-nanolayer, caused partial closure of nanotube interior and significantly reduced ZnO solubility and antibacterial efficacy. Co-deposition of Ag nanoparticles enhanced the antibacterial properties of synthesized coatings. However, the increase of ZnO quantity on Ag nanoparticles co-deposited surfaces favored the adhesion of bacterial cells. Thus, ZnO/Ag/TiO2 nanotube composite layers may be promising delivery systems for combating post-operative infections in hard tissue replacement procedures. However, the amount of loaded antibacterial agents must be carefully balanced to avoid the overdose and reduced efficacy.

  17. A comparison of 111In with 52Fe and 99mTc-sulfur colloid for bone marrow scanning.

    PubMed

    Merrick, M V; Gordon-Smith, E C; Lavender, J P; Szur, L

    1975-01-01

    Under most circumstances 52Fe, 111In, and colloid show a similar distribution of marrow. The lesser uptake of 111In by liver and spleen may occasionally be of value in permitting visualization of that portion of the spinal marrow obscured by these organs in the colloid scan. However, in red cell aplasia, when there is dissociation between phagocytic and erythropoietic functions, scanning with 111In gives no information about erythropoietic tissue distribution. Therefore, indium cannot be used as an analog for iron in the study of the hematopoietic system.

  18. Dye-Sensitization Of Nanocrystalline ZnO Thin Films

    SciTech Connect

    Ajimsha, R. S.; Tyagi, M.; Das, A. K.; Misra, P.; Kukreja, L. M.

    2010-12-01

    Nannocrystalline and nanoporus thin films of ZnO were synthesized on glass substrates by using wet chemical drop casting method. X-ray diffraction measurements on these samples confirmed the formation of ZnO nanocrystallites in hexagonal wurtzite phase with mean size of {approx}20 nm. Photo sensitization of these nanostructured ZnO thin films was carried out using three types of dyes Rhodamine 6 G, Chlorophyll and cocktail of Rhodamine 6 G and Chlorophyll in 1:1 ratio. Dye sensitized ZnO thin films showed enhanced optical absorption in visible spectral region compared to the pristine ZnO thin films.

  19. Systematic synthesis of ZnO nanostructures.

    PubMed

    Li, Peng; Wang, Dingsheng; Wei, Zhe; Peng, Qing; Li, Yadong

    2013-03-11

    In this study, we report a simple solution-phase method to prepare ZnO nanostructures with controllable morphologies. By using oleylamine (OAm) and dodecanol (DDL) as solvents, zinc oxide nanocrystals with tunable sizes and diverse shapes (hexagonal pyramids, bulletlike, and pencil-like shapes) have been obtained under mild conditions. At the same time, the introduction of presynthesized gold nanocrystals can also lead to the hybrid nanostructures of gold-zinc oxide hexagonal nanopyramids. In addition, the possible formation mechanism of the as-prepared ZnO nanostructures has been investigated. Notably, the unique optical properties of the ZnO nanostructures with different sizes and shapes have also been discussed. We hope that this strategy will be a general and effective method for fabricating other metal oxide nanocrystals.

  20. Antimicrobial activity of nanoparticulate metal oxides against peri-implantitis pathogens.

    PubMed

    Vargas-Reus, Miguel A; Memarzadeh, Kaveh; Huang, Jie; Ren, Guogang G; Allaker, Robert P

    2012-08-01

    Dental plaque accumulation may result in peri-implantitis, an inflammatory process causing loss of supporting bone that may lead to dental implant failure. The antimicrobial activities of six metal and metal oxide nanoparticles and two of their composites against bacterial pathogens associated with peri-implantitis were examined under anaerobic conditions. The activities of nanoparticles of silver (Ag), cuprous oxide (Cu(2)O), cupric oxide (CuO), zinc oxide (ZnO), titanium dioxide (TiO(2)), tungsten oxide (WO(3)), Ag+CuO composite and Ag+ZnO composite were assessed by minimum inhibitory (bacteriostatic) concentration (MIC) and minimum bactericidal concentration (MBC) determination against Prevotella intermedia, Porphyromonas gingivalis, Fusobacterium nucleatum and Aggregatibacter actinomycetemcomitans. Time-kill assays were carried out to examine the dynamics of the antimicrobial activity with ZnO nanoparticles. MIC and MBC values were in the range of <100 μg/mL to 2500 μg/mL and <100 μg/mL to >2500 μg/mL, respectively. The activity of the nanoparticles tested in descending order was Ag>Ag+CuO>Cu(2)O>CuO>Ag+ZnO>ZnO>TiO(2)>WO(3). Time-kill assays with ZnO demonstrated a significant decrease in growth of all species tested within 4h, reaching 100% within 2h for P. gingivalis and within 3h for F. nucleatum and P. intermedia. Coating titanium surfaces of dental and orthopaedic implants with antimicrobial nanoparticles should lead to an increased rate of implant success.

  1. Nanofabrication on ZnO nanowires

    SciTech Connect

    Zhan Jinhua; Bando, Yoshio; Hu, Junqing; Golberg, Dmitri

    2006-12-11

    ZnO nanowires were subjected to convergent electron beam irradiation in a 300 kV transmission electron microscope. The size of perforated hexagonal pores generated by irradiation can vary with the beam size. An irradiated area is denuded layer by layer via removal of Zn and O atoms. The polar ZnO surfaces have a higher resistance to irradiation than the unpolar ones. Ultrathin nanobridges, {approx}1 nm thick or less, were generated through deliberate removal of Zn and O atomic monolayers.

  2. Magnetic properties of ZnO nanoparticles.

    PubMed

    Garcia, M A; Merino, J M; Fernández Pinel, E; Quesada, A; de la Venta, J; Ruíz González, M L; Castro, G R; Crespo, P; Llopis, J; González-Calbet, J M; Hernando, A

    2007-06-01

    We experimentally show that it is possible to induce room-temperature ferromagnetic-like behavior in ZnO nanoparticles without doping with magnetic impurities but simply inducing an alteration of their electronic configuration. Capping ZnO nanoparticles ( approximately 10 nm size) with different organic molecules produces an alteration of their electronic configuration that depends on the particular molecule, as evidenced by photoluminescence and X-ray absorption spectroscopies and altering their magnetic properties that varies from diamagnetic to ferromagnetic-like behavior.

  3. Superhydrophobicity of Hierarchical and ZNO Nanowire Coatings

    DTIC Science & Technology

    2014-01-01

    constructed by growing various lengths of ZnO nanowires on micro- scale Si pyramids produced by chemical etching. The nano-size effect on wettability of...Chemistry A PAPER Pu bl is he d on 1 8 D ec em be r 20 13 . D ow nl oa de d by A ir F or ce B as e R es ea rc h L ab or at or y (A FR L ) D...The nano-size effect on wettability of nano/micro complex structures has been investigated by adjusting the ZnO nanowire length. As the nanowire

  4. Antibacterial and Antifungal Activity of ZnO Containing Glasses

    PubMed Central

    Esteban-Tejeda, Leticia; Prado, Catuxa; Cabal, Belén; Sanz, Jesús; Torrecillas, Ramón; Moya, José Serafín

    2015-01-01

    A new family of non-toxic biocides based on low melting point (1250°C) transparent glasses with high content of ZnO (15–40wt%) belonging to the miscibility region of the B2O3-SiO2-Na2O-ZnO system has been developed. These glasses have shown an excellent biocide activity (logarithmic reduction >3) against Gram- (E. coli), Gram+ (S. aureus) and yeast (C. krusei); they are chemically stable in different media (distilled water, sea-like water, LB and DMEN media) as well as biocompatible. The cytotoxicity was evaluated by the Neutral Red Uptake using NIH-3T3 (mouse embryonic fibroblast cells) and the cell viability was >80%. These new glasses can be considered in several and important applications in the field of inorganic non-toxic biocide agents such as medical implants, surgical equipment, protective apparels in hospitals, water purifications systems, food packaging, food storages or textiles. PMID:26230940

  5. Teeth and implants.

    PubMed

    Palmer, R

    1999-08-28

    An osseointegrated implant restoration may closely resemble a natural tooth. However, the absence of a periodontal ligament and connective tissue attachment via cementum, results in fundamental differences in the adaptation of the implant to occlusal forces, and the structure of the gingival cuff.

  6. A no bleed implant.

    PubMed

    Ersek, R A; Navarro, J A; Nemeth, D Z; Sas, G

    1993-01-01

    Breast implants have evolved from the original saline-filled, smooth-surfaced silicone rubber bag to silicone gel-filled smooth-walled sacs to a combination of a silicone gel-filled bag within a saline-filled sac, and, most recently, a reversed, double-lumen implant with a saline bag inside of a gel-filled bag. Texture-surfaced implants were first used in 1970 when the standard silicone gel-filled implant was covered with a polyurethane foam. Because of concerns about the degradation products of this foam, they were removed from the market in 1991. In 1975 double-lumen silicone textured implants were developed, followed by silicone gel-filled textured implants. In 1990 a new radiolucent, biocompatible gel was produced that reduced the problem of radioopacity of silicone implants. Because of the gel's sufficiently low coefficient of friction, leakage caused by fold flaw fracture may also be decreased. We present a case where this new biocompatible gel implant was repositioned after four months. The resulting scar capsule in this soft breast was thin [< 0.002 cm (0.008 in.)] and evenly textured as a mirror image of the textured silicone surface. Scanning electron microscopy and x-ray defraction spectrophotometry revealed no silicone bleed.

  7. Smoking and dental implants

    PubMed Central

    Kasat, V.; Ladda, R.

    2012-01-01

    Smoking is a prevalent behaviour in the population. The aim of this review is to bring to light the effects of smoking on dental implants. These facts will assist dental professionals when implants are planned in tobacco users. A search of “PubMed” was made with the key words “dental implant,” “nicotine,” “smoking,” “tobacco,” and “osseointegration.” Also, publications on tobacco control by the Government of India were considered. For review, only those articles published from 1988 onward in English language were selected. Smoking has its influence on general as well as oral health of an individual. Tobacco negatively affects the outcome of almost all therapeutic procedures performed in the oral cavity. The failure rate of implant osseointegration is considerably higher among smokers, and maintenance of oral hygiene around the implants and the risk of peri-implantitis are adversely affected by smoking. To increase implant survival in smokers, various protocols have been recommended. Although osseointegrated dental implants have become the state of the art for tooth replacement, they are not without limitations or complications. In this litigious era, it is extremely important that the practitioner clearly understands and is able and willing to convey the spectrum of possible complications and their frequency to the patients. PMID:24478965

  8. Batteryless implanted echosonometer

    NASA Technical Reports Server (NTRS)

    Kojima, G. K.

    1977-01-01

    Miniature ultrasonic echosonometer implanted within laboratory animals obtains energy from RF power oscillator that is electronically transduced via induction loop to power receiving loop located just under animal's skin. Method of powering device offers significant advantages over those in which battery is part of implanted package.

  9. Implantable CMOS Biomedical Devices

    PubMed Central

    Ohta, Jun; Tokuda, Takashi; Sasagawa, Kiyotaka; Noda, Toshihiko

    2009-01-01

    The results of recent research on our implantable CMOS biomedical devices are reviewed. Topics include retinal prosthesis devices and deep-brain implantation devices for small animals. Fundamental device structures and characteristics as well as in vivo experiments are presented. PMID:22291554

  10. Implantable, Ingestible Electronic Thermometer

    NASA Technical Reports Server (NTRS)

    Kleinberg, Leonard

    1987-01-01

    Small quartz-crystal-controlled oscillator swallowed or surgically implanted provides continuous monitoring of patient's internal temperature. Receiver placed near patient measures oscillator frequency, and temperature inferred from previously determined variation of frequency with temperature. Frequency of crystal-controlled oscillator varies with temperature. Circuit made very small and implanted or ingested to measure internal body temperature.

  11. Radiolabeling of equine platelets in plasma with /sup 111/In-(2-mercaptopyridine-N-oxide) and their in vivo survival

    SciTech Connect

    Coyne, C.P.; Kelly, A.B.; Hornof, W.J.; O'Brien, T.R.; Philp, M.S.; Lamb, J.F.

    1987-03-01

    A method is presented for the in vitro isolation and radiolabeling of equine platelets with the isotope indium /sup 111/ (/sup 111/In: half-life = 2.8 days, gamma = 173 keV, 89%; 247 keV, 94%). The technique described involves complexing /sup 111/In with the lipid-soluble chelating agent, 2-mercaptopyridine-N-oxide (merc), in an aqueous medium. /sup 111/In-merc platelet-labeling efficiencies in autologous plasma pretreated with or without ferric citrate reagent were 82 +/- 7% and 24 +/- 12%, respectively. Mean intravascular survivals of /sup 111/In-merc-radiolabeled platelets in 8 healthy horses according to simple linear, exponential, mean, weighted-mean residual sum of squares analysis, and multiple-hit model were 5.5 +/- 0.49, 3.5 +/- 0.53, 4.5 +/- 0.18, 4.3 +/- 0.65, and 3.6 +/- 0.97 days, respectively.

  12. ZnO wide bandgap semiconductors preparation for optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Ramelan, A. H.; Wahyuningsih, S.; Munawaroh, H.; Narayan, R.

    2017-02-01

    ZnO nanoparticles were successfully synthesized by sol-gel method. According to unique structural and optical properties of ZnO semiconductor material, there are many potential important applications based on that material, including as an anti-reflection coating (ARC) in solar cells. Antireflective coatings (ARC) made of ZnO on top to improve the optical properties of the coating. TiO2 layer have been coated on a ZnO nanoparticle layer. ZnO nanoparticle was characterized by X-ray diffraction (XRD), Scanning electron Microscopy (SEM) and UV-Vis spectroscopy. ZnO annealed at a temperature of 600 °C have the greatest crystalinity and crystal size than that at a temperature of 400 °C and 500 °C. SEM images of ZnO shown agglomeration and grain size increases with increasing annealed temperature. While, the optical properties of ZnO increase with increasing annealed temperature. The optical transmittance spectra of the ZnO are shown that the increasing annealing temperature had effectively improved the optical transmittance of the films. While, reflectance (%R) properties shows that, the higher annealing temperature of ZnO preparations can decrease of %R value of ZnO thin layer. The difference properties of ZnO are due to differences of light scattering resulting from the crystal size effect. The ZnO prepared by annealed at 600 °C gain a good performance of the lowest reflectance value and highest size crystal. By the addition of ARC ZnO 600 °C we have been capable improve cell performance so that that cells achieve an efficiency of 0.27%.

  13. Percutaneous and skeletal biocarbon implants

    NASA Technical Reports Server (NTRS)

    Mooney, V.

    1977-01-01

    Review of carbon implants developed by NASA discussed four different types of implants and subsequent improvements. Improvements could be of specific interest to rehabilitation centers and similar organizations.

  14. Intrinsic and extrinsic doping of ZnO and ZnO alloys

    NASA Astrophysics Data System (ADS)

    Ellmer, Klaus; Bikowski, André

    2016-10-01

    In this article the doping of the oxidic compound semiconductor ZnO is reviewed with special emphasis on n-type doping. ZnO naturally exhibits n-type conductivity, which is used in the application of highly doped n-type ZnO as a transparent electrode, for instance in thin film solar cells. For prospective application of ZnO in other electronic devices (LEDs, UV photodetectors or power devices) p-type doping is required, which has been reported only minimally. Highly n-type doped ZnO can be prepared by doping with the group IIIB elements B, Al, Ga, and In, which act as shallow donors according to the simple hydrogen-like substitutional donor model of Bethe (1942 Theory of the Boundary Layer of Crystal Rectifiers (Boston, MA: MIT Rad Lab.)). Group IIIA elements (Sc, Y, La etc) are also known to act as shallow donors in ZnO, similarly explainable by the shallow donor model of Bethe. Some reports showed that even group IVA (Ti, Zr, Hf) and IVB (Si, Ge) elements can be used to prepare highly doped ZnO films—which, however, can no longer be explained by the simple hydrogen-like substitutional donor model. More probably, these elements form defect complexes that act as shallow donors in ZnO. On the other hand, group V elements on oxygen lattice sites (N, P, As, and Sb), which were viewed for a long time as typical shallow acceptors, behave instead as deep acceptors, preventing high hole concentrations in ZnO at room temperature. Also, ‘self’-compensation, i.e. the formation of a large number of intrinsic donors at high acceptor concentrations seems to counteract the p-type doping of ZnO. At donor concentrations above about 1020 cm-3, the electrical activation of the dopant elements is often less than 100%, especially in polycrystalline thin films. Reasons for the electrical deactivation of the dopant atoms are (i) the formation of dopant-defect complexes, (ii) the compensation of the electrons by acceptors (Oi, VZn) or (iii) the formation of secondary phases, for

  15. Graphene for Biomedical Implants

    NASA Astrophysics Data System (ADS)

    Moore, Thomas; Podila, Ramakrishna; Alexis, Frank; Rao, Apparao; Clemson Bioengineering Team; Clemson Physics Team

    2013-03-01

    In this study, we used graphene, a one-atom thick sheet of carbon atoms, to modify the surfaces of existing implant materials to enhance both bio- and hemo-compatibility. This novel effort meets all functional criteria for a biomedical implant coating as it is chemically inert, atomically smooth and highly durable, with the potential for greatly enhancing the effectiveness of such implants. Specifically, graphene coatings on nitinol, a widely used implant and stent material, showed that graphene coated nitinol (Gr-NiTi) supports excellent smooth muscle and endothelial cell growth leading to better cell proliferation. We further determined that the serum albumin adsorption on Gr-NiTi is greater than that of fibrinogen, an important and well understood criterion for promoting a lower thrombosis rate. These hemo-and biocompatible properties and associated charge transfer mechanisms, along with high strength, chemical inertness and durability give graphene an edge over most antithrombogenic coatings for biomedical implants and devices.

  16. Improved activity estimation with MC-JOSEM versus TEW-JOSEM in 111In SPECT.

    PubMed

    Ouyang, Jinsong; El Fakhri, Georges; Moore, Stephen C

    2008-05-01

    We have previously developed a fast Monte Carlo (MC)-based joint ordered-subset expectation maximization (JOSEM) iterative reconstruction algorithm, MC-JOSEM. A phantom study was performed to compare quantitative imaging performance of MC-JOSEM with that of a triple-energy-window approach (TEW) in which estimated scatter was also included additively within JOSEM, TEW-JOSEM. We acquired high-count projections of a 5.5 cm3 sphere of 111In at different locations in the water-filled torso phantom; high-count projections were then obtained with 111In only in the liver or only in the soft-tissue background compartment, so that we could generate synthetic projections for spheres surrounded by various activity distributions. MC scatter estimates used by MC-JOSEM were computed once after five iterations of TEW-JOSEM. Images of different combinations of liver/background and sphere/background activity concentration ratios were reconstructed by both TEW-JOSEM and MC-JOSEM for 40 iterations. For activity estimation in the sphere, MC-JOSEM always produced better relative bias and relative standard deviation than TEW-JOSEM for each sphere location, iteration number, and activity combination. The average relative bias of activity estimates in the sphere for MC-JOSEM after 40 iterations was -6.9%, versus -15.8% for TEW-JOSEM, while the average relative standard deviation of the sphere activity estimates was 16.1% for MC-JOSEM, versus 27.4% for TEW-JOSEM. Additionally, the average relative bias of activity concentration estimates in the liver and the background for MC-JOSEM after 40 iterations was -3.9%, versus -12.2% for TEW-JOSEM, while the average relative standard deviation of these estimates was 2.5% for MC-JOSEM, versus 3.4% for TEW-JOSEM. MC-JOSEM is a promising approach for quantitative activity estimation in 111In SPECT.

  17. Single implant tooth replacement.

    PubMed

    Briley, T F

    1998-01-01

    It has been shown that direct bone anchorage of dental implants will provide long-term predictability for single tooth implants and multi-unit implants. The function of implant-supported restoration is now routinely achieved. The real challenge facing the restorative dentist and laboratory technician is to achieve optimal aesthetics. The learning objective of this article is to review the prosthodontic procedures essential to maximizing natural aesthetics in implant supported restorations. It will provide a review of master impression techniques, prepable titanium abutments and designing the cement on restoration. Particular emphasis is directed to the soft tissue model from which a series of sequenced techniques can be followed to achieve optimal aesthetics. Analysis of the implant alignment with regard to the neighboring teeth will result in having to make a choice of which prepable abutment will maximize the aesthetic result. The following case outlines how to replace a single missing tooth using an externally hexed implant system and a prefabricated titanium abutment on a 26-year-old male patient.

  18. Boron implanted strontium titanate

    NASA Astrophysics Data System (ADS)

    Cooper, C. J. M.

    Single crystals of strontium titanate implanted with boron were found to have highly conductive surface layers. The effects of varying dose from 10 to the 16th power to 10 to the 17th power ions/sq cm, implantation voltage from 50 to 175 keV and annealing conditions on the room temperature surface resistance and Hall mobility are presented. Variation of the implantation voltage did not have a major effect on the sheet resistances obtained by boron implantation of strontium titanate, while dose and annealing conditions have major effects. Doses of 5 x 10 to the 16th power ions/sq cm required annealing on the order of one hour at 500 K for maximum reduction of the room temperature resistance in the implanted layer. Samples implanted with a dose of 1 x 10 to the 17th power ions/sq cm required slightly higher temperatures (approximately 575 K) to obtain a minimum resistance at room temperature. Long term (several weeks) room temperature annealing was found to occur in high dose samples. After one to two months at room temperature followed by an anneal to 575 K, the surface resistances were found to be lower than those produced by the annealing of a freshly implanted sample to 575 K.

  19. Dental Implant Systems

    PubMed Central

    Oshida, Yoshiki; Tuna, Elif B.; Aktören, Oya; Gençay, Koray

    2010-01-01

    Among various dental materials and their successful applications, a dental implant is a good example of the integrated system of science and technology involved in multiple disciplines including surface chemistry and physics, biomechanics, from macro-scale to nano-scale manufacturing technologies and surface engineering. As many other dental materials and devices, there are crucial requirements taken upon on dental implants systems, since surface of dental implants is directly in contact with vital hard/soft tissue and is subjected to chemical as well as mechanical bio-environments. Such requirements should, at least, include biological compatibility, mechanical compatibility, and morphological compatibility to surrounding vital tissues. In this review, based on carefully selected about 500 published articles, these requirements plus MRI compatibility are firstly reviewed, followed by surface texturing methods in details. Normally dental implants are placed to lost tooth/teeth location(s) in adult patients whose skeleton and bony growth have already completed. However, there are some controversial issues for placing dental implants in growing patients. This point has been, in most of dental articles, overlooked. This review, therefore, throws a deliberate sight on this point. Concluding this review, we are proposing a novel implant system that integrates materials science and up-dated surface technology to improve dental implant systems exhibiting bio- and mechano-functionalities. PMID:20480036

  20. Nanotechnology for dental implants.

    PubMed

    Tomsia, Antoni P; Lee, Janice S; Wegst, Ulrike G K; Saiz, Eduardo

    2013-01-01

    With the advent of nanotechnology, an opportunity exists for the engineering of new dental implant materials. Metallic dental implants have been successfully used for decades, but they have shortcomings related to osseointegration and mechanical properties that do not match those of bone. Absent the development of an entirely new class of materials, faster osseointegration of currently available dental implants can be accomplished by various surface modifications. To date, there is no consensus regarding the preferred method(s) of implant surface modification, and further development will be required before the ideal implant surface can be created, let alone become available for clinical use. Current approaches can generally be categorized into three areas: ceramic coatings, surface functionalization, and patterning on the micro- to nanoscale. The distinctions among these are imprecise, as some or all of these approaches can be combined to improve in vivo implant performance. These surface improvements have resulted in durable implants with a high percentage of success and long-term function. Nanotechnology has provided another set of opportunities for the manipulation of implant surfaces in its capacity to mimic the surface topography formed by extracellular matrix components of natural tissue. The possibilities introduced by nanotechnology now permit the tailoring of implant chemistry and structure with an unprecedented degree of control. For the first time, tools are available that can be used to manipulate the physicochemical environment and monitor key cellular events at the molecular level. These new tools and capabilities will result in faster bone formation, reduced healing time, and rapid recovery to function.

  1. Biomedical implantable microelectronics.

    PubMed

    Meindl, J D

    1980-10-17

    Innovative applications of microelectronics in new biomedical implantable instruments offer a singular opportunity for advances in medical research and practice because of two salient factors: (i) beyond all other types of biomedical instruments, implants exploit fully the inherent technical advantages--complex functional capability, high reliability, lower power drain, small size and weight-of microelectronics, and (ii) implants bring microelectronics into intimate association with biological systems. The combination of these two factors enables otherwise impossible new experiments to be conducted and new paostheses developed that will improve the quality of human life.

  2. Hierarchically assembled ZnO nanoparticles on high diffusion coefficient ZnO nanowire arrays for high efficiency dye-sensitized solar cells.

    PubMed

    Chen, Liang-Yih; Yin, Yu-Tung

    2013-03-07

    In this study, ZnO nanoparticles (ZnO NPs) were conformally covered on the surfaces of ZnO nanowires (ZnO NWs) with high diffusion coefficient (1.2 × 10(-2) cm(2) s(-1)) to make a composite photoanode. By using N719 to sensitize the composite photoanode, the conversion efficiency can reach 7.14%.

  3. Highly stable precursor solution containing ZnO nanoparticles for the preparation of ZnO thin film transistors.

    PubMed

    Huang, Heh-Chang; Hsieh, Tsung-Eong

    2010-07-23

    ZnO particles with an average size of about 5 nm were prepared via a sol-gel chemical route and the silane coupling agent, (3-glycidyloxypropyl)-trimethoxysilane (GPTS), was adopted to enhance the dispersion of the ZnO nanoparticles in ethyl glycol (EG) solution. A ZnO surface potential as high as 66 mV was observed and a sedimentation test showed that the ZnO precursor solution remains transparent for six months of storage, elucidating the success of surface modification on ZnO nanoparticles. The ZnO thin films were then prepared by spin coating the precursor solution on a Si wafer and annealing treatments at temperatures up to 500 degrees C were performed for subsequent preparation of ZnO thin film transistors (TFTs). Microstructure characterization revealed that the coalescence of ZnO nanoparticles occurs at temperatures as low as 200 degrees C to result in a highly uniform, nearly pore-free layer. However, annealing at higher temperatures was required to remove organic residues in the ZnO layer for satisfactory device performance. The 500 degrees C-annealed ZnO TFT sample exhibited the best electrical properties with on/off ratio = 10(5), threshold voltage = 17.1 V and mobility (micro) = 0.104 cm(2) V(-1) s(-1).

  4. 111In platelet imaging of left ventricular thrombi. Predictive value for systemic emboli

    SciTech Connect

    Stratton, J.R.; Ritchie, J.L. )

    1990-04-01

    To determine whether a positive indium 111 platelet image for a left ventricular thrombus, which indicates ongoing thrombogenic activity, predicts an increased risk of systemic embolization, we compared the embolic rate in 34 patients with positive {sup 111}In platelet images with that in 69 patients with negative images during a mean follow-up of 38 +/- 31 (+/- SD) months after platelet imaging. The positive and negative image groups were similar with respect to age (59 +/- 11 vs. 62 +/- 10 years), prevalence of previous infarction (94% vs. 78%, p less than 0.05), time from last infarction (28 +/- 51 vs. 33 +/- 47 months), ejection fraction (29 +/- 14 vs. 33 +/- 14), long-term or paroxysmal atrial fibrillation (15% vs. 26%), warfarin therapy during follow-up (26% vs. 20%), platelet-inhibitory therapy during follow-up (50% vs. 33%), injected {sup 111}In dose (330 +/- 92 vs. 344 +/- 118 microCi), and latest imaging time (greater than or equal to 48 hours in all patients). During follow-up, embolic events occurred in 21% (seven of 34) of patients with positive platelet images for left ventricular thrombi as compared with 3% (two of 69) of patients with negative images (p = 0.002). By actuarial methods, at 42 months after platelet imaging, only 86% of patients with positive images were embolus free as compared with 98% of patients with negative images (p less than 0.01).

  5. Radiation protection of staff in 111In radionuclide therapy--is the lead apron shielding effective?

    PubMed

    Lyra, M; Charalambatou, P; Sotiropoulos, M; Diamantopoulos, S

    2011-09-01

    (111)In (Eγ = 171-245 keV, t1/2 = 2.83 d) is used for targeted therapies of endocrine tumours. An average activity of 6.3 GBq is injected into the liver by catheterisation of the hepatic artery. This procedure is time-consuming (4-5 min) and as a result, both the physicians and the technical staff involved are subjected to radiation exposure. In this research, the efficiency of the use of lead apron has been studied as far as the radiation protection of the working staff is concerned. A solution of (111)In in a cylindrical scattering phantom was used as a source. Close to the scattering phantom, an anthropomorphic male Alderson RANDO phantom was positioned. Thermoluminescent dosemeters were located in triplets on the front surface, in the exit and in various depths in the 26th slice of the RANDO phantom. The experiment was repeated by covering the RANDO phantom by a lead apron 0.25 mm Pb equivalent. The unshielded dose rates and the shielded photon dose rates were measured. Calculations of dose rates by Monte Carlo N-particle transport code were compared with this study's measurements. A significant reduction of 65 % on surface dose was observed when using lead apron. A decrease of 30 % in the mean absorbed dose among the different depths of the 26th slice of the RANDO phantom has also been noticed. An accurate correlation of the experimental results with Monte Carlo simulation has been achieved.

  6. Imaging of carbonic anhydrase IX with an 111In-labeled dual-motif inhibitor

    PubMed Central

    Rowe, Steven P.; Banerjee, Sangeeta Ray; Gorin, Michael A.; Brummet, Mary; Lee, Hye Soo; Koo, Soo Min; Sysa-Shah, Polina; Mease, Ronnie C.; Nimmagadda, Sridhar; Allaf, Mohamad E.; Pomper, Martin G.

    2015-01-01

    We developed a new scaffold for radionuclide-based imaging and therapy of clear cell renal cell carcinoma (ccRCC) targeting carbonic anhydrase IX (CAIX). Compound XYIMSR-01, a DOTA-conjugated, bivalent, low-molecular-weight ligand, has two moieties that target two separate sites on CAIX, imparting high affinity. We synthesized [111In]XYIMSR-01 in 73.8–75.8% (n = 3) yield with specific radioactivities ranging from 118 – 1,021 GBq/μmol (3,200–27,600 Ci/mmol). Single photon emission computed tomography of [111In]XYIMSR-01 in immunocompromised mice bearing CAIX-expressing SK-RC-52 tumors revealed radiotracer uptake in tumor as early as 1 h post-injection. Biodistribution studies demonstrated 26% injected dose per gram of radioactivity within tumor at 1 h. Tumor-to-blood, muscle and kidney ratios were 178.1 ± 145.4, 68.4 ± 29.0 and 1.7 ± 1.2, respectively, at 24 h post-injection. Retention of radioactivity was exclusively observed in tumors by 48 h, the latest time point evaluated. The dual targeting strategy to engage CAIX enabled specific detection of ccRCC in this xenograft model, with pharmacokinetics surpassing those of previously described radionuclide-based probes against CAIX. PMID:26418876

  7. Radiolabeled (111)In-FGF-2 Is Suitable for In Vitro/Ex Vivo Evaluations and In Vivo Imaging.

    PubMed

    Moscaroli, Alessandra; Jones, Gabriel; Lühmann, Tessa; Meinel, Lorenz; Wälti, Stephanie; Blanc, Alain; Fischer, Eliane; Hilbert, Manuel; Schibli, Roger; Béhé, Martin

    2017-03-06

    Fibroblast growth factor-2 (FGF-2) is a potent modulator of cell growth and regulation, with improper FGF-2 signaling being involved in impaired responses to injury or even cancer. Therefore, the exploitation of FGF-2 as a therapeutic drives the prerequisite for effective insight into drug disposition kinetics. In this article, we present an (111)In-radiolabeled FGF-2 derivative for noninvasive imaging in small animals deploying single photon emission tomography (SPECT). (111)In-FGF-2 is equally well suitable for in vitro and ex vivo investigations as (125)I-FGF-2. Furthermore, (111)In-FGF-2 permits the performance of in vivo imaging, for example for the analysis of FGF-2 containing pharmaceutical formulations in developmental or preclinical stages. (111)In-FGF-2 had affinity for the low-molecular-weight heparin enoxaparin identical to that of unlabeled FGF-2 (Kd: 0.6 ± 0.07 μM and 0.33 ± 0.03 μM, respectively) as assessed by isothermal titration calorimetry. The binding of (111)In-FGF-2 to heparan sulfate proteoglycans (HPSGs) and the biological activity were comparable to those of unlabeled FGF-2, with EC50 values of 12 ± 2 pM and 25 ± 6 pM, respectively. In vivo biodistribution in healthy nude mice indicated a predominant accumulation of (111)In-FGF-2 in filtering organs and minor uptake in the retina and the salivary and pituitary glands, which was confirmed by SPECT imaging. Therefore, (111)In-FGF-2 is a valid tracer for future noninvasive animal imaging of FGF-2 in pharmaceutical development.

  8. Implantable cardioverter-defibrillator

    MedlinePlus

    ... ncbi.nlm.nih.gov/pubmed/23265327 . Swerdlow CD, Wang PJ, Zipes DP. Pacemakers and implantable cardioverter-defibrillators. ... and lifestyle Controlling your high blood pressure Dietary fats explained Fast food tips Heart attack - discharge Heart ...

  9. Biocompatibility of surgical implants

    NASA Technical Reports Server (NTRS)

    Kaelble, D. H.

    1979-01-01

    Method of selecting biocompatible materials for surgical implants uses fracture mechanic relationships and surface energies of candidate materials in presence of blood plasma. Technique has been used to characterize 190 materials by parameters that reflect their biocompatibility.

  10. Risks of Breast Implants

    MedlinePlus

    ... has traveled to other parts of the body. Connective Tissue Disease The FDA has not detected any association between silicone gel-filled breast implants and connective tissue disease, breast cancer, or reproductive problems. In order ...

  11. Breast Reconstruction with Implants

    MedlinePlus

    ... removes your breast to treat or prevent breast cancer. One type of breast reconstruction uses breast implants — silicone devices filled with silicone gel or salt water (saline) — to reshape your breasts. Breast reconstruction ...

  12. Urinary incontinence - injectable implant

    MedlinePlus

    Intrinsic sphincter deficiency repair; ISD repair; Injectable bulking agents for stress urinary incontinence ... Urine leakage that gets worse Pain where the injection was done Allergic reaction to the material Implant ...

  13. Breast reconstruction - implants

    MedlinePlus

    ... cosmetic surgery after breast cancer can improve your sense of well-being and your quality of life. Alternative Names Breast implants surgery References Roehl KR, Wilhelmi BJ, Phillips LG. Breast reconstruction. ...

  14. Superelastic Orthopedic Implant Coatings

    NASA Astrophysics Data System (ADS)

    Fournier, Eric; Devaney, Robert; Palmer, Matthew; Kramer, Joshua; El Khaja, Ragheb; Fonte, Matthew

    2014-07-01

    The demand for hip and knee replacement surgery is substantial and growing. Unfortunately, most joint replacement surgeries will fail within 10-25 years, thereby requiring an arduous, painful, and expensive revision surgery. To address this issue, a novel orthopedic implant coating material ("eXalt") has been developed. eXalt is comprised of super elastic nitinol wire that is knit into a three-dimensional spacer fabric structure. eXalt expands in vivo to conform to the implantation site and is porous to allow for bone ingrowth. The safety and efficacy of eXalt were evaluated through structural analysis, mechanical testing, and a rabbit implantation model. The results demonstrate that eXalt meets or exceeds the performance of current coating technologies with reduced micromotion, improved osseointegration, and stronger implant fixation in vivo.

  15. Synthesis and characterization of ZnO thin films

    NASA Astrophysics Data System (ADS)

    Anilkumar T., S.; Girija M., L.; Venkatesh, J.

    2016-05-01

    Zinc oxide (ZnO) Thin films were deposited on glass substrate using Spin coating method. Zinc acetate dehydrate, Carbinol and Mono-ethanolamine were used as the precursor, solvent and stabilizer respectively to prepare ZnO Thin-films. The molar ratio of Monoethanolamine to Zinc acetate was maintained as approximately 1. The thickness of the films was determined by Interference technique. The optical properties of the films were studied by UV Vis-Spectrophotometer. From transmittance and absorbance curve, the energy band gap of ZnO is found out. Electrical Conductivity measurements of ZnO are carried out by two probe method and Activation energy for the electrical conductivity of ZnO are found out. The crystal structure and orientation of the films were analyzed by XRD. The XRD patterns show that the ZnO films are polycrystalline with wurtzite hexagonal structure.

  16. Growing ZnO crystals on magnetite nanoparticles.

    PubMed

    Turgeman, Rachel; Tirosh, Shay; Gedanken, Aharon

    2004-04-02

    We report herein on the oriented growth of ZnO crystals on magnetite nanoparticles. The ZnO crystals were grown by hydrolyzing a supersaturated aqueous solution of zinc nitrate. The seeds for the growth were magnetite nanoparticles with a diameter of 5.7 nm and a narrow size distribution. Hollowed ZnO hexagons of 0.15 microm width and 0.5 microm length filled with Fe(3)O(4) particles were obtained. HR-TEM (high-resolution transmission electron microscopy) and selected-area EDS (energy-dispersive spectroscopy) show that the nanoparticles are homogenously spread in the ZnO tubes. Zeta potential measurements were employed to understand the relationship between the nanoparticles and the oriented growth of the ZnO crystals. The results show that the surfactants induced the directional growth of the ZnO crystals.

  17. Feasibility study of ZnO nanowire made accelerometer

    NASA Astrophysics Data System (ADS)

    Kim, Hyun-Chan; Ko, Hyun-U.; Song, Sangho; Yun, Youngmin; Kim, Jaehwan

    2016-04-01

    Vertically aligned arrays of ZnO nanowire can be used for many applications such as energy harvesters, UV sensors and mechanical sensors. Here we report the feasibility of a miniaturized accelerometer made with ZnO nanowire. For improving the sensitivity of miniaturized piezoelectric accelerometer, size of piezoelectric ceramic should be large which results in heavy accelerometer and low resonance frequency. To resolve the problem for the miniaturized accelerometer fabrication, ZnO nanowire is chosen. ZnO nanowire, which has piezoelectric property with Wurtzite structure. Since it has high aspect ratio, the use of ZnO nanowire leads to increase deformation and piezoelectric response output. The vertically ZnO nanowire array is grown on a copper substrate by hydrothermal synthesis process. Detail Fabrication process of the miniaturized accelerometer is illustrated. To prove the feasibility of the fabricated accelerometer, dynamic response test is performed in comparison with a commercial accelerometer.

  18. Simple Implant Augmentation Rhinoplasty

    PubMed Central

    Nguyen, Anh H.; Bartlett, Erica L.; Kania, Katarzyna; Bae, Sang Mo

    2015-01-01

    Augmentation rhinoplasty among Asian patients is often performed to improve the height of the nasal dorsum. As the use of autogenous tissues poses certain limitations, alloplastic materials are a viable alternative with a long history of use in Asia. The superiority of one implant prosthesis over another for augmentation rhinoplasty is a matter of debate, with each material representing varying strengths and weaknesses, indications for use, and precautions to consider in nasal implant placement. An implant prosthesis should be used on a case-by-case basis. Augmentation rhinoplasty requires the consideration of specific anatomical preoperative factors, including the external nose, nasal length, nasofrontal angle, humps, and facial proportions. It is equally important to consider several operative guidelines to appropriately shape implants to minimize the occurrence of adverse effects and postoperative complications. The most common postoperative complications include infection, nasal height change, movement of implant prosthesis, and silicone implant protrusion. In addition, the surgeon should consider the current standards of Asian beauty aesthetics to better understand the patient's desired outcome. PMID:26648804

  19. Biomaterials in cochlear implants

    PubMed Central

    Stöver, Timo; Lenarz, Thomas

    2011-01-01

    The cochlear implant (CI) represents, for almost 25 years now, the gold standard in the treatment of children born deaf and for postlingually deafened adults. These devices thus constitute the greatest success story in the field of ‘neurobionic’ prostheses. Their (now routine) fitting in adults, and especially in young children and even babies, places exacting demands on these implants, particularly with regard to the biocompatibility of a CI’s surface components. Furthermore, certain parts of the implant face considerable mechanical challenges, such as the need for the electrode array to be flexible and resistant to breakage, and for the implant casing to be able to withstand external forces. As these implants are in the immediate vicinity of the middle-ear mucosa and of the junction to the perilymph of the cochlea, the risk exists – at least in principle – that bacteria may spread along the electrode array into the cochlea. The wide-ranging requirements made of the CI in terms of biocompatibility and the electrode mechanism mean that there is still further scope – despite the fact that CIs are already technically highly sophisticated – for ongoing improvements to the properties of these implants and their constituent materials, thus enhancing the effectiveness of these devices. This paper will therefore discuss fundamental material aspects of CIs as well as the potential for their future development. PMID:22073103

  20. Contraceptive implants and lactation.

    PubMed

    Díaz, Soledad

    2002-01-01

    The safety and efficacy of four contraceptive implants, plant, Implanon, Nestorone and Elcometrine, have been evaluated during use in the postpartum period by lactating women. These implants provide highly effective contraceptive protection with no negative effect on breastfeeding or infant growth and development. Breastfeeding women initiating Norplant use in the second postpartum month experience significantly longer periods of amenorrhea than do untreated women or intrauterine device users. After weaning, the bleeding pattern is similar to that observed in non-nursing women. Norplant use does not affect bone turnover and density during lactation. Norplant and Implanon release orally active progestins while Nestorone and Elcometrine implants release an orally inactive progestin, which represents an advantage since the infant should be free of steroidal effects. The infant's daily intake of steroids (estimated from concentrations in maternal milk during the first month of use) range from 90 to 100 ng of levonorgestrel (Norplant), 75-120 ng of etonogestrel (Implanon), and 50 ng and 110 ng of Nestorone (Nestorone and Elcometrine implants, respectively). Nursing women needing contraception may use progestin-only implants when nonhormonal methods are not available or acceptable. Implants that deliver orally active steroids should only be used after 6 weeks postpartum to avoid transferring of steroids to the newborn.

  1. Biocompatible implant surface treatments.

    PubMed

    Pattanaik, Bikash; Pawar, Sudhir; Pattanaik, Seema

    2012-01-01

    Surface plays a crucial role in biological interactions. Surface treatments have been applied to metallic biomaterials in order to improve their wear properties, corrosion resistance, and biocompatibility. A systematic review was performed on studies investigating the effects of implant surface treatments on biocompatibility. We searched the literature using PubMed, electronic databases from 1990 to 2009. Key words such as implant surface topography, surface roughness, surface treatment, surface characteristics, and surface coatings were used. The search was restricted to English language articles published from 1990 to December 2009. Additionally, a manual search in the major dental implant journals was performed. When considering studies, clinical studies were preferred followed by histological human studies, animal studies, and in vitro studies. A total of 115 articles were selected after elimination: clinical studies, 24; human histomorphometric studies, 11; animal histomorphometric studies, 46; in vitro studies, 34. The following observations were made in this review: · The focus has shifted from surface roughness to surface chemistry and a combination of chemical manipulations on the porous structure. More investigations are done regarding surface coatings. · Bone response to almost all the surface treatments was favorable. · Future trend is focused on the development of osteogenic implant surfaces. Limitation of this study is that we tried to give a broader overview related to implant surface treatments. It does not give any conclusion regarding the best biocompatible implant surface treatment investigated till date. Unfortunately, the eventually selected studies were too heterogeneous for inference of data.

  2. [Larynx: implants and stents].

    PubMed

    Sittel, C

    2009-05-01

    There is a wide variety of devices and materials to be implanted into the human larynx. Some are intended to remain only for a period of time, like laryngeal stents. If removal is not intended the device meets the definition for a medical implant. The majority of implants is used for the treatment of unilateral vocal fold immobility. There a 2 types of implants serving this purpose: Implants in a stricter sense are devices of solid material, which are brought into the paraglottic space through a window in the laryngeal framework (medialization thyroplasty). Several different products are presented in this review. In contrast, there are different substances available for endoscopic injection into the paralyzed vocal fold (injection laryngoplasty). Since some of these substances show a corpuscular consistency and a high viscosity they need to be deposited into the lateral paraglottic space. Therefore, the term "injectable implants" has been coined for these materials. The different substances available are discussed in detail in this review. Laryngeal stents are primarily used in the early postoperative phase after open reconstruction of the larynx. The different devices available on the market are described with their specific characteristics and intended use.

  3. H4octapa-Trastuzumab: Versatile Acyclic Chelate System for 111In and 177Lu Imaging and Therapy

    PubMed Central

    Price, Eric W.; Zeglis, Brian M.; Cawthray, Jacqueline F.; Ramogida, Caterina F.; Ramos, Nicholas

    2013-01-01

    A bifunctional derivative of the versatile acyclic chelator H4octapa, p-SCNBn- H4octapa, has been synthesized for the first time. The chelator was conjugated to the HER2/neu-targeting antibody trastuzumab and labeled in high radiochemical purity and specific activity with the radioisotopes 111In and 177Lu. The in vivo behavior of the resulting radioimmunoconjugates was investigated in mice bearing ovarian cancer xenografts and compared to analogous radioimmunoconjugates employing the ubiquitous chelator DOTA. The H4octapa-trastuzumab conjugates displayed faster radiolabeling kinetics with more reproducible yields under milder conditions (15 min, RT, ~94–95%) than those based on DOTA-trastuzumab (60 min, 37 °C ~50–88%). Further, antibody integrity was better preserved in the 111In- and 177Lu-octapatrastuzumab constructs, with immunoreactive fractions of 0.99 for each compared to 0.93–0.95 for 111In- and 177Lu-DOTA-trastuzumab. These results translated to improved in vivo biodistribution profiles and SPECT imaging results for 111In- and 177Lu-octapa-trastuzumab compared to 111In- and 177Lu-DOTA-trastuzumab, with increased tumor uptake and higher tumor-to-tissue activity ratios. PMID:23901833

  4. Substrate Preparations in Epitaxial ZnO Film Growth

    NASA Technical Reports Server (NTRS)

    Zhu, Shen; Su, C.-H.; Lehoczky, S. L.; Harris, M. T.; Callahan, M. J.; George, M. A.

    2000-01-01

    Epitaxial ZnO films were grown on the two polar surfaces (O-face and Zn-face) of (0001) ZnO single crystal substrates using off-axis magnetron sputtering deposition. Annealing-temperature dependence of ZnO substrates was studied. ZnO films grown on sapphire substrates have also been investigated for comparison purposes and the annealing temperature of A1203 substrates is 1000 C. Substrates and films were characterized using photoluminescence (PL) spectrum, x-ray diffraction, atomic force microscope, energy dispersive spectrum, and electric transport measurements. It has been found that the ZnO film properties were different when films were grown on the two polarity surfaces of ZnO substrates and the A1203 substrates. An interesting result shows that high temperature annealing of ZnO single crystals will improve the surface structure on the O-face surface rather than the opposite surface. The measurements of homoepitaxial ZnO films indicate that the O-terminated surface is better for ZnO epitaxial film growth.

  5. Development of latent fingerprint by ZnO deposition.

    PubMed

    Yu, I-Heng; Jou, Shyankay; Chen, Chin-Min; Wang, Kuang-Chuan; Pang, Lei-Jang; Liao, Jeh Shane

    2011-04-15

    Vacuum metal deposition (VMD) utilizing sequential Au and Zn depositions has been an effective technique to develop latent fingerprint on plastic surfaces. A simplified vacuum deposition process was conducted to develop fingerprint in this study. While pure ZnO was thermally evaporated in a vacuum system, ZnO could condense on polyethylene terephthalate (PET) surface. Direct deposition of ZnO, without applying Au seeding, yielded normal development of latent fingerprint. The development of aged fingerprint by ZnO deposition was more effective than that by Au/Zn VMD.

  6. Enhanced thermoelectric performance in graphitic ZnO (0001) nanofilms

    NASA Astrophysics Data System (ADS)

    Li, Yan-Li; Fan, Zheyong; Zheng, Jin-Cheng

    2013-02-01

    We investigate the thermoelectric properties of ultrathin graphitic ZnO (0001) nanofilms based on first-principles calculations and Boltzmann transport theory. Staircase-like densities of states induced by quantum confinement in the nanofilms give rise to improved Seebeck coefficients and electrical conductivities. The optimized figure of merit for the single-layer graphitic ZnO (0001) nanofilm is estimated to be 0.6 at 300 K, which is about 120 times larger than that of bulk ZnO (0.005). Our results suggest that the graphitic ZnO (0001) nanofilms can be designed for high performance thermoelectric applications.

  7. Photophysics and photochemistry of quantized ZnO colloids

    SciTech Connect

    Kamat, P.V.; Patrick, B.

    1992-08-06

    The photophysical and photochemical behavior of quantized ZnO colloids in ethanol has been investigated by time-resolved transient absorption and emission measurements. Trapping of electrons at the ZnO surface resulted in broad absorption in the red region. The green emission of ZnO colloids was readily quenched by hole scavengers such as SCN{sup -} and I{sup -}. The photoinduced charge transfer to these hole scavengers was studied by laser flash photolysis. The yield of oxidized product increased considerably when ZnO colloids were coupled with ZnSe. 36 refs., 11 figs., 1 tab.

  8. Strong circular photogalvanic effect in ZnO epitaxial films

    SciTech Connect

    Zhang, Q.; Wang, X. Q.; Yin, C. M.; Shen, B.; Chen, Y. H.; Chang, K.; Ge, W. K.

    2011-12-23

    A strong circular photogalvanic effect (CPGE) in ZnO epitaxial films was reported under interband excitation. It was observed that CPGE current is as large as 100 nA/W in ZnO, which is about one order in magnitude higher than that in InN film while the CPGE currents in GaN films are not detectable. The possible reasons for the above observations are the strong spin orbit coupling in ZnO or the inversed valence band structure of ZnO.

  9. Strong circular photogalvanic effect in ZnO epitaxial films

    NASA Astrophysics Data System (ADS)

    Zhang, Q.; Wang, X. Q.; Yin, C. M.; Shen, B.; Chen, Y. H.; Chang, K.; Ge, W. K.

    2011-12-01

    A strong circular photogalvanic effect (CPGE) in ZnO epitaxial films was reported under interband excitation. It was observed that CPGE current is as large as 100 nA/W in ZnO, which is about one order in magnitude higher than that in InN film while the CPGE currents in GaN films are not detectable. The possible reasons for the above observations are the strong spin orbit coupling in ZnO or the inversed valence band structure of ZnO.

  10. Strong circular photogalvanic effect in ZnO epitaxial films

    NASA Astrophysics Data System (ADS)

    Zhang, Q.; Wang, X. Q.; Yin, C. M.; Xu, F. J.; Tang, N.; Shen, B.; Chen, Y. H.; Chang, K.; Ge, W. K.; Ishitani, Y.; Yoshikawa, A.

    2010-07-01

    We report a strong circular photogalvanic effect (CPGE) in ZnO epitaxial films under interband excitation. It is observed that CPGE current is as large as 100 nA/W in ZnO, which is about one order in magnitude higher than that in InN film while the CPGE currents in GaN films are not detectable. The possible reasons for the above observations are the strong spin orbit coupling in ZnO or the inversed valence band structure of ZnO.

  11. UV response of cellulose ZnO hybrid nanocomposite

    NASA Astrophysics Data System (ADS)

    Mun, Seongcheol; Ko, Hyun-U.; Min, Seung-Ki; Kim, Hyun-Chan; Kim, Jaehwan

    2016-04-01

    ZnO nanorods grown cellulose film is a fascinating inorganic-organic hybrid nanocomposite in terms of synergistic properties with semiconductive functionality of ZnO and renewability and flexibility of cellulose film. This paper reports the fabrication and evaluation of cellulose ZnO hybrid nanocomposite (CEZOHN). ZnO nanorod is well grown on a cellulose film by simple chemical reaction with direct seeding and hydrothermal growing. CEZOHN has unique electric, electro-mechanical and photo-electrical behaviors. The performance of CEZOHN is estimated by measuring induced photocurrent under UV exposure. Mechanism of UV sensing and its possible applications for flexible and wearable UV sensor are addressed.

  12. Sodium doping in ZnO crystals

    SciTech Connect

    Parmar, N. S. Lynn, K. G.

    2015-01-12

    ZnO bulk single crystals were doped with sodium by thermal diffusion. Positron annihilations spectroscopy confirms the filling of zinc vacancies, to >6 μm deep in the bulk. Secondary-ion mass spectrometry measurement shows the diffusion of sodium up to 8 μm with concentration (1–3.5) × 10{sup 17 }cm{sup −3}. Broad photoluminescence excitation peak at 3.1 eV, with onset appearance at 3.15 eV in Na:ZnO, is attributed to an electronic transition from a Na{sub Zn} level at ∼(220–270) meV to the conduction band. Resistivity in Na doped ZnO crystals increases up to (4–5) orders of magnitude at room temperature.

  13. Preparation, structural and optical characterization of ZnO, ZnO: Al nanopowder

    SciTech Connect

    Mohan, R. Raj; Rajendran, K.; Sambath, K.

    2014-01-28

    In this paper, ZnO and ZnO:Al nanopowders have been synthesized by low cost hydrothermal method. Zinc nitrate, hexamethylenetetramine (HMT) and aluminium nitrate are used as precursors for ZnO and AZO with different molar ratios. The structural and optical characterization of doped and un-doped ZnO powders have been investigated by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Energy dispersive X-ray spectroscopy (EDAX), photoluminescence (PL) and ultra violet visible (UV-Vis) absorption studies. The SEM results show that the hydrothermal synthesis can be used to obtain nanoparticles with different morphology. It is observed that the grain size of the AZO nanoparticles increased with increasing of Al concentration. The PL measurement of AZO shows that broad range of green emission around 550nm with high intensity. The green emission resulted mainly because of intrinsic defects.

  14. Preparation, structural and optical characterization of ZnO, ZnO: Al nanopowder

    NASA Astrophysics Data System (ADS)

    Mohan, R. Raj; Rajendran, K.; Sambath, K.

    2014-01-01

    In this paper, ZnO and ZnO:Al nanopowders have been synthesized by low cost hydrothermal method. Zinc nitrate, hexamethylenetetramine (HMT) and aluminium nitrate are used as precursors for ZnO and AZO with different molar ratios. The structural and optical characterization of doped and un-doped ZnO powders have been investigated by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Energy dispersive X-ray spectroscopy (EDAX), photoluminescence (PL) and ultra violet visible (UV-Vis) absorption studies. The SEM results show that the hydrothermal synthesis can be used to obtain nanoparticles with different morphology. It is observed that the grain size of the AZO nanoparticles increased with increasing of Al concentration. The PL measurement of AZO shows that broad range of green emission around 550nm with high intensity. The green emission resulted mainly because of intrinsic defects.

  15. ZnO ratio-induced photocatalytic behavior of TiO2-ZnO nanocomposite

    NASA Astrophysics Data System (ADS)

    Jlassi, M.; Chorfi, H.; Saadoun, M.; Bessaïs, B.

    2013-10-01

    The aim of this study is to examine the photocatalytic activity of TiO2 (P25)-ZnO nanocomposite. The precursors of the TiO2-ZnO nanocomposite were deposited on a low cost ceramic substrate using the simple roll-coating method. We seek to improve the photocatalytic performance and the mechanical adherence of the TiO2 nanoparticles by adding ZnO. The photocatalytic properties of the nanocomposite were tested through the bleaching of polluted water. These properties were optimized by varying the composition of the nanocomposite precursors, deposition conditions and temperature annealing. A systematic study of the nanocomposites was made using ultraviolet-visible spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). These characterizations allowed us to establish a relationship between the photocatalytic performances and the ZnO ratio using an azo-dye (methyl orange). It was found that the kinetic degradation increases with the increasing of the ZnO ratio. The Photodegradation of the dye using the sole ZnO was found to be more efficient than the P25 TiO2 and the TiO2-ZnO nanocomposite itself. The discussions were based on the mobility and lifetime of the charge carriers generated in the ZnO or in TiO2-ZnO nanocomposite.

  16. Photoluminescence lineshape of ZnO

    NASA Astrophysics Data System (ADS)

    Ullrich, Bruno; Singh, Akhilesh K.; Bhowmick, Mithun; Barik, Puspendu; Ariza-Flores, David; Xi, Haowen; Tomm, Jens W.

    2014-12-01

    The merger of the absorption coefficient dispersion, retrieved from transmission by the modified Urbach rule introduced by Ullrich and Bouchenaki [Jpn. J. Appl. Phys. 30, L1285, 1991], with the extended Roosbroeck-Shockley relation reveals that the optical absorption in ZnO distinctively determines the photoluminescence lineshape. Additionally, the ab initio principles employed enable the accurate determination of the carrier lifetime without further specific probing techniques.

  17. Mixed Zn and O substitution of Co and Mn in ZnO

    SciTech Connect

    Pereira, L. M. C.; Wahl, U.; Correia, J. G.; Decoster, S.; Amorim, L. M.; Vantomme, A.; Silva, M. R. da; Araujo, J. P.

    2011-09-15

    The physical properties of an impurity atom in a semiconductor are primarily determined by the lattice site it occupies. In general, this occupancy can be correctly predicted based on chemical intuition, but not always. We report on one such exception in the dilute magnetic semiconductors Co- and Mn-doped ZnO, experimentally determining the lattice location of Co and Mn using {beta}{sup -}-emission channeling from the decay of radioactive {sup 61}Co and {sup 56}Mn implanted at the ISOLDE facility at CERN. Surprisingly, in addition to the majority substituting for Zn, we find up to 18% (27%) of the Co (Mn) atoms in O sites, which is virtually unaffected by thermal annealing up to 900 deg. C. We discuss how this anion site configuration, which had never been considered before for any transition metal in any metal oxide material, may in fact have a low formation energy. This suggests a change in paradigm regarding transition-metal incorporation in ZnO and possibly other oxides and wide-gap semiconductors.

  18. Cerebrospinal fluid flow abnormalities in patients with neoplastic meningitis. An evaluation using /sup 111/In-DTPA ventriculography

    SciTech Connect

    Grossman, S.A.; Trump, D.L.; Chen, D.C.; Thompson, G.; Camargo, E.E.

    1982-11-01

    Cerebrospinal fluid flow dynamics were evaluated by /sup 111/In-diethylenetriamine pentaacetic acid (/sup 111/In-DTPA) ventriculography in 27 patients with neoplastic meningitis. Nineteen patients (70 percent) had evidence of cerebrospinal fluid flow disturbances. These occurred as ventricular outlet obstructions, abnormalities of flow in the spinal canal, or flow distrubances over the cortical convexities. Tumor histology, physical examination, cerebrospinal fluid analysis, myelograms, and computerized axial tomographic scans were not sufficient to predict cerebrospinal fluid flow patterns. These data indicate that cerebrospinal fluid flow abnormalities are common in patients with neoplastic meningitis and that /sup 111/In-DTPA cerebrospinal fluid flow imaging is useful in characterizing these abnormalities. This technique provides insight into the distribution of intraventricularly administered chemotherapy and may provide explanations for treatment failure and drug-induced neurotoxicity in patients with neoplastic meningitis.

  19. Experimental study of {Delta}I=1 bands in {sup 111}In

    SciTech Connect

    Banerjee, P.; Pradhan, M. K.; Ganguly, S.; Sharma, H. P.; Muralithar, S.; Singh, R. P.; Bhowmik, R. K.

    2011-02-15

    The two {Delta}I=1 bands in {sup 111}In, built upon the 3461.0 and 4931.8 keV states, have been studied. The bands were populated in the reaction {sup 100}Mo({sup 19}F, {alpha}4n{gamma}) at a beam energy of 105 MeV. Mean lifetimes of nine states, four in the first and five in the second band, have been determined for the first time from Doppler shift attenuation data. The deduced B(M1) rates and their behavior as a function of level spin support the interpretation of these bands within the framework of the shears mechanism. The geometrical model of Machiavelli et al. has been used to derive the effective gyromagnetic ratios for the two bands.

  20. Effectiveness of ion implantation of iron garnet films

    SciTech Connect

    Tikhonov, A.N.; Fedichkin, G.M.; Yurchenko, S.E.; Suslin, L.A.; Smirnov, I.S.; Shlenov, Yu.V.

    1986-01-01

    The authors seek to determine experimentally what changes of the magnetic bubble properties and of the iron garnet film characteristics resulting from implantation of Ne/sup +/ ions can be used as criteria for assessing the effectiveness of this process in the production of bubble devices. For the experiments, the authors used (YBi)/sub 3/(FeGa)/sub 5/O/sub 12/; (TmBi)/sub 3/(FeGa)/sub 5/O/sub 12/; and (YSmLuCa)/sub 3/(FeGe)/sub 5/O/sub 12/. The orientation of the Gd/sub 3/Ga/sub 5/O/sub 12/ substrate is (111) in all cases. The current density of the H/sup +/ proton beam did not exceed 0.5 micro-A/cm/sup 2/.

  1. Preclinical evaluation of (111)In-DTPA-INCA-X anti-Ku70/Ku80 monoclonal antibody in prostate cancer.

    PubMed

    Evans-Axelsson, Susan; Vilhelmsson Timmermand, Oskar; Welinder, Charlotte; Borrebaeck, Carl Ak; Strand, Sven-Erik; Tran, Thuy A; Jansson, Bo; Bjartell, Anders

    2014-01-01

    The aim of this investigation was to assess the Ku70/Ku80 complex as a potential target for antibody imaging of prostate cancer. We evaluated the in vivo and ex vivo tumor targeting and biodistribution of the (111)In-labeled human internalizing antibody, INCA-X ((111)In-DTPA-INCA-X antibody), in NMRI-nude mice bearing human PC-3, PC-3M-Lu2 or DU145 xenografts. DTPA-conjugated, non-labeled antibody was pre-administered at different time-points followed by a single intravenous injection of (111)In-DTPA-INCA-X. At 48, 72 and 96 h post-injection, tissues were harvested, and the antibody distribution was determined by measuring radioactivity. Preclinical SPECT/CT imaging of mice with and without the predose was performed at 48 hours post-injection of labeled DTPA-INCA-X. Biodistribution of the labeled antibody showed enriched activity in tumor, spleen and liver. Animals pre-administered with DTPA-INCA-X showed increased tumor uptake and blood content of (111)In-DTPA-INCA-X with reduced splenic and liver uptake. The in vitro and in vivo data presented show that the (111)In-labeled INCA-X antibody is internalized into prostate cancer cells and by pre-administering non-labeled DTPA-INCA-X, we were able to significantly reduce the off target binding and increase the (111)In-DTPA-INCA-X mAb uptake in PC-3, PC-3M-Lu2 and DU145 xenografts. The results are encouraging and identifying the Ku70/Ku80 antigen as a target is worth further investigation for functional imaging of prostate cancer.

  2. Extraoral prostheses using extraoral implants.

    PubMed

    Pekkan, G; Tuna, S H; Oghan, F

    2011-04-01

    The aim of this study was to evaluate extraoral prostheses and the use of extraoral implants in patients with facial defects. 10 cases were treated utilizing maxillofacial prostheses employing extraoral implants in five cases. 16 extraoral implants were installed. Seven implants were placed in irradiated sites in the orbital regions. Six implants were placed in mastoid regions and three in a zygoma region that was irradiated. Two implants failed before initial integration was achieved in irradiated areas. Using 14 extraoral implants as anchors, five extraoral prostheses were set. The other five cases were treated with extraoral prostheses without using extraoral implants due to cost and patient-related factors. The data included age, sex, primary disease, implant length, implant failure, prosthetic attachment, radiation therapy, and peri-implant skin reactions. The use of extraoral implants for the retention of extraoral prostheses has simplified the placement, removal, and cleaning of the prosthesis by the patient. The stability of the prostheses was improved by anchors. Clinical and technical problems are presented with the techniques used for their resolution. Using extraoral implants resulted in a high rate of success in retaining facial prostheses and gave good stability and aesthetic satisfaction.

  3. ZnO - Defects and Doping

    NASA Astrophysics Data System (ADS)

    Hofmann, Detlev M.

    2002-03-01

    Due to its large (3.37 eV) and direct bandgap ZnO is a potential competitor for up to now GaN-based light-emitting devices in the blue spectral range. However, like for other wide bandgap semiconductors controlled p-type doping is a problem, as grown undoped ZnO is n-type conducting. To achieve the desired p-type conduction requires to suppress the residual donors and to avoid any deep level defects which hinder the activity of the potential p-type dopants. On this way a clear atomistic identification of the electrical active species in the material is helpful. In the past Electron Paramagnetic Resonance (EPR) and Electron Nuclear Double Resonance (ENDOR) spectroscopy were used successfully to identify shallow donor dopants such as Indium in ZnO. Our recent investigations show that also unintentionally present Hydrogen forms a shallow donor with a thermal activation energy of 35 meV, i.e. it is smaller than the effective mass value of about 50 meV. Annealing experiments give evidence that the H-donors can be removed from the material in the temperature range from 850 K to 1050 K which is accompanied by a destruction of the I4 excitons at 3.364 eV. The presence of deep level defects in ZnO is evident from broad unstructured emission bands located in the visible spectral range (2.75 eV - 2.25 eV). With the help of the Optically Detected Magnetic Resonance (ODMR) we are able to separate these frequently superimposed recombinations and to distinguish between the bands originating from Cu, Oxygen-vacancies, and Li and Na related defects. As potential p-type dopant Nitrogen is in the discussion. The observation of N-related local vibrational modes by Raman spectroscopy confirms that nitrogen can be incorporated in the lattice of ZnO. However, a strong correlation to unintentionally present Hydrogen is found, which suggests a passivation of the N-acceptors.

  4. Towards biodegradable wireless implants.

    PubMed

    Boutry, Clémentine M; Chandrahalim, Hengky; Streit, Patrick; Schinhammer, Michael; Hänzi, Anja C; Hierold, Christofer

    2012-05-28

    A new generation of partially or even fully biodegradable implants is emerging. The idea of using temporary devices is to avoid a second surgery to remove the implant after its period of use, thereby improving considerably the patient's comfort and safety. This paper provides a state-of-the-art overview and an experimental section that describes the key technological challenges for making biodegradable devices. The general considerations for the design and synthesis of biodegradable components are illustrated with radiofrequency-driven resistor-inductor-capacitor (RLC) resonators made of biodegradable metals (Mg, Mg alloy, Fe, Fe alloys) and biodegradable conductive polymer composites (polycaprolactone-polypyrrole, polylactide-polypyrrole). Two concepts for partially/fully biodegradable wireless implants are discussed, the ultimate goal being to obtain a fully biodegradable sensor for in vivo sensing.

  5. Role of ZnO thin film in the vertically aligned growth of ZnO nanorods by chemical bath deposition

    NASA Astrophysics Data System (ADS)

    Son, Nguyen Thanh; Noh, Jin-Seo; Park, Sungho

    2016-08-01

    The effect of ZnO thin film on the growth of ZnO nanorods was investigated. ZnO thin films were sputter-deposited on Si substrate with varying the thickness. ZnO nanorods were grown on the thin film using a chemical bath deposition (CBD) method at 90 °C. The ZnO thin films showed granular structure and vertical roughness on the surface, which facilitated the vertical growth of ZnO nanorods. The average grain size and the surface roughness of ZnO film increased with an increase in film thickness, and this led to the increase in both the average diameter and the average length of vertically grown ZnO nanorods. In particular, it was found that the average diameter of ZnO nanorods was very close to the average grain size of ZnO thin film, confirming the role of ZnO film as a seed layer for the vertical growth of ZnO nanorods. The CBD growth on ZnO seed layers may provide a facile route to engineering vertically aligned ZnO nanorod arrays.

  6. Damage accumulation and annealing behavior in high fluence implanted MgZnO

    NASA Astrophysics Data System (ADS)

    Azarov, A. Yu.; Hallén, A.; Svensson, B. G.; Du, X. L.; Kuznetsov, A. Yu.

    2012-02-01

    Molecular beam epitaxy grown Mg xZn 1-xO ( x ⩽ 0.3) layers were implanted at room temperature with 150 keV 166Er + ions in a fluence range of 5 × 10 15-3 × 10 16 cm -2. Evolution of ion-induced damage and structural changes were studied by a combination of Rutherford backscattering spectrometry, nuclear reaction analysis and time-of-flight elastic recoil detection analysis. Results show that damage production enhances in both Zn- and O-sublattices with increasing the Mg content in the MgZnO. However, MgZnO as well as pure ZnO exhibits a high degree of dynamic annealing and MgZnO can not be amorphized even at the highest ion fluence used. Annealing of heavily damaged ZnO leads to a strong surface erosion and thinning of the film. Increasing the Mg content suppresses the surface evaporation in high fluence implanted MgZnO but leads to a strong surface decomposition accompanied with a Mg-rich surface layer formation during post-implantation annealing.

  7. Implantable Heart Aid

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Medrad utilized NASA's Apollo technology to develop a new device called the AID implantable automatic pulse generator which monitors the heart continuously, recognizes the onset of ventricular fibrillation and delivers a corrective electrical shock. AID pulse generator is, in effect, a miniaturized version of the defibrillator used by emergency squads and hospitals to restore rhythmic heartbeat after fibrillation, but has the unique advantage of being permanently available to the patient at risk. Once implanted, it needs no specially trained personnel or additional equipment. AID system consists of a microcomputer, a power source and two electrodes which sense heart activity.

  8. Hydroxylapatite Otologic Implants

    SciTech Connect

    McMillan, A.D.; Lauf, R.J.; Beale, B.; Johnson, R.

    2000-01-01

    A Cooperative Research and Development Agreement (CRADA) between Lockheed Martin Energy Research Corporation (LMER) and Smith and Nephew Richards Inc. of Bartlett, TN, was initiated in March 1997. The original completion date for the Agreement was March 25, 1998. The purpose of this work is to develop and commercialize net shape forming methods for directly creating dense hydroxylapatite (HA) ceramic otologic implants. The project includes three tasks: (1) modification of existing gelcasting formulations to accommodate HA slurries; (2) demonstration of gelcasting to fabricate green HA ceramic components of a size and shape appropriate to otologic implants: and (3) sintering and evaluation of the HA components.

  9. Fast synthesize ZnO quantum dots via ultrasonic method.

    PubMed

    Yang, Weimin; Zhang, Bing; Ding, Nan; Ding, Wenhao; Wang, Lixi; Yu, Mingxun; Zhang, Qitu

    2016-05-01

    Green emission ZnO quantum dots were synthesized by an ultrasonic sol-gel method. The ZnO quantum dots were synthesized in various ultrasonic temperature and time. Photoluminescence properties of these ZnO quantum dots were measured. Time-resolved photoluminescence decay spectra were also taken to discover the change of defects amount during the reaction. Both ultrasonic temperature and time could affect the type and amount of defects in ZnO quantum dots. Total defects of ZnO quantum dots decreased with the increasing of ultrasonic temperature and time. The dangling bonds defects disappeared faster than the optical defects. Types of optical defects first changed from oxygen interstitial defects to oxygen vacancy and zinc interstitial defects. Then transformed back to oxygen interstitial defects again. The sizes of ZnO quantum dots would be controlled by both ultrasonic temperature and time as well. That is, with the increasing of ultrasonic temperature and time, the sizes of ZnO quantum dots first decreased then increased. Moreover, concentrated raw materials solution brought larger sizes and more optical defects of ZnO quantum dots.

  10. Magnetism in dopant-free ZnO nanoplates.

    PubMed

    Hong, Jung-Il; Choi, Jiil; Jang, Seung Soon; Gu, Jiyeong; Chang, Yangling; Wortman, Gregory; Snyder, Robert L; Wang, Zhong Lin

    2012-02-08

    It is known that bulk ZnO is a nonmagnetic material. However, the electronic band structure of ZnO is severely distorted when the ZnO is in the shape of a very thin plate with its dimension along the c-axis reduced to a few nanometers while keeping the bulk scale sizes in the other two dimensions. We found that the chemically synthesized ZnO nanoplates exhibit magnetism even at room temperature. First-principles calculations show a growing asymmetry in the spin distribution within the distorted bands formed from Zn (3d) and O (2p) orbitals with the reduction of thickness of the ZnO nanoplates, which is suggested to be responsible for the observed magnetism. In contrast, reducing the dimension along the a- or b-axes of a ZnO crystal does not yield any magnetism for ZnO nanowires that grow along c-axis, suggesting that the internal electric field produced by the large {0001} polar surfaces of the nanoplates may be responsible for the distorted electronic band structures of thin ZnO nanoplates.

  11. Current trends in dental implants

    PubMed Central

    Gaviria, Laura; Salcido, John Paul; Guda, Teja

    2014-01-01

    Tooth loss is very a very common problem; therefore, the use of dental implants is also a common practice. Although research on dental implant designs, materials and techniques has increased in the past few years and is expected to expand in the future, there is still a lot of work involved in the use of better biomaterials, implant design, surface modification and functionalization of surfaces to improve the long-term outcomes of the treatment. This paper provides a brief history and evolution of dental implants. It also describes the types of implants that have been developed, and the parameters that are presently used in the design of dental implants. Finally, it describes the trends that are employed to improve dental implant surfaces, and current technologies used for the analysis and design of the implants. PMID:24868501

  12. Ultrasonic synthesis of fern-like ZnO nanoleaves and their enhanced photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Ma, Qing Lan; Xiong, Rui; Zhai, Bao-gai; Huang, Yuan Ming

    2015-01-01

    Two-dimensional fern-like ZnO nanoleaves were synthesized by ultrasonicating zinc microcrystals in water. The morphology, crystal structure, optical property and photocatalytic activity of the fern-like ZnO nanoleaves were characterized with scanning electron microscopy, X-ray diffraction, transmission electron microscopy, photoluminescence spectroscopy and ultraviolet-visible spectroscopy, respectively. It is found that one fern-like ZnO nanoleaf is composed of one ZnO nanorod as the central trunk and a number of ZnO nanoplates as the side branches in opposite pairs along the central ZnO nanorod. The central ZnO nanorod in the fern-like nanoleaves is about 1 μm long while the side-branching ZnO nanoplates are about 100 nm long and 20 nm wide. Further analysis has revealed that ZnO nanocrystals are the building blocks of the central ZnO nanorod and the side-branching ZnO nanoplates. Under identical conditions, fern-like ZnO nanoleaves exhibit higher photocatalytic activity in photodegrading methyl orange in aqueous solution than spherical ZnO nanocrystals. The first-order photocatalytic rate constant of the fern-like ZnO nanoleaves is about four times as large as that of the ZnO nanoparticles. The branched architecture of the hierarchical nanoleaves is suggested be responsible for the enhanced photocatalytic activity of the fern-like ZnO nanoleaves.

  13. Atomic layer deposition of ZnO: a review

    NASA Astrophysics Data System (ADS)

    Tynell, Tommi; Karppinen, Maarit

    2014-04-01

    Due to the unique set of properties possessed by ZnO, thin films of ZnO have received more and more interest in the last 20 years as a potential material for applications such as thin-film transistors, light-emitting diodes and gas sensors. At the same time, the increasingly stringent requirements of the microelectronics industry, among other factors, have led to a dramatic increase in the use of atomic layer deposition (ALD) technique in various thin-film applications. During this time, the research on ALD-grown ZnO thin films has developed from relatively simple deposition studies to the fabrication of increasingly intricate nanostructures and an understanding of the factors affecting the fundamental properties of the films. In this review, we give an overview of the current state of ZnO ALD research including the applications that are being considered for ZnO thin films.

  14. Humidity sensors based on ZnO Colloidal nanocrystal clusters

    NASA Astrophysics Data System (ADS)

    Si, Shufeng; Li, Shuo; Ming, Zhengqiu; Jin, Linpei

    2010-06-01

    High pure ZnO Colloidal nanocrystal clusters (CNCs) were synthesized by a modified hydrolyzation method. The diameters of as-prepared ZnO crystalline were between 20 and 40 nm, however, the ZnO CNCs arrived at 400-800 nm. The ZnO CNCs sensor were found to have high sensitivity and fast response/recovery time to humidity, and their resistance changed approximately three orders of magnitude from about 1.58 × 10 9 Ω in dry air (10 RH%) to 1.65 × 10 6 Ω in 93 RH% air. Furthermore, the ZnO CNCs sensors were relatively stable to humidity for a long time.

  15. Enhanced photocatalytic activity of ZnO nanotetrapods

    NASA Astrophysics Data System (ADS)

    Wan, Q.; Wang, T. H.; Zhao, J. C.

    2005-08-01

    The photocatalytic characteristics of the tetrapod-branched ZnO nanostructures synthesized by thermal evaporation method are investigated. The fitting of absorbance maximum plot versus time indicates an exponential decay, suggesting the photodegradation of Rhodamine B catalyzed by the ZnO nanotetrapod is a pseudo first-order reaction. These results demonstrate that the photocatalytic activity of ZnO nanotetrapod is much better than that of P25 TiO2 and ZnO powders. The slow electron/hole recombine rate due to the abundant surface states, as well as the high surface-to-volume ratio will effectively enhance the photocatalytic activity of the ZnO nanotetrapod.

  16. Liquid crystal alignment on ZnO nanostructure films

    NASA Astrophysics Data System (ADS)

    Chung, Yueh-Feng; Chen, Mu-Zhe; Yang, Sheng-Hsiung; Jeng, Shie-Chang

    2016-03-01

    The study of liquid crystal (LC) alignment is important for fundamental researches and industrial applications. The tunable pretilt angles of liquid crystal (LC) molecules aligned on the inorganic zinc oxide (ZnO) nanostructure films with controllable surface wettability are demonstrated in this work. The ZnO nanostructure films are deposited on the ITO- glass substrates by the two-steps hydrothermal process, and their wettability can be modified by annealing. Our experimental results show that the pretilt angles of LCs on ZnO nanostructure films can be successfully adjusted over a wide range from ~90° to ~0° as the surface energy on the ZnO nanostructure films changes from ~30 to ~70 mJ/m. Finally we have applied this technique to fabricate a no-bias optically-compensated bend (OCB) LCD with ZnO nanostructure films annealed at 235 °C.

  17. Strain sensor based on cellulose ZnO hybrid nanocomposite

    NASA Astrophysics Data System (ADS)

    Ko, Hyun-U.; Yun, Gyu-Young; Kim, Joo Hyung; Kim, Jaehwan

    2014-04-01

    ZnO is well known semiconductor material with high band gap as well as piezoelectricity. Because of its high performance of electromechanical behavior, ZnO based piezoelectric devices have taken great attention from many research groups. However, ZnO should be grown on a flexible substrate so as to allow its flexibility. Since cellulose is renewable, flexible and biocompatible, ZnO is grown on cellulose by hydrothermal process, then a novel flexible piezoelectric material. We report the fabrication and strain sensor behavior of cellulose ZnO hybrid nanocomposite(CEZOHN) In this research, simple piezoelectric strain sensor based on CEZOHN is made by directly stretching it and by boding it on a cantilever. Its performance is measured in terms of longitudinal and bending strain. This strain sensor shows a good linearity.

  18. Low temperature synthesis of fluorescent ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Khan, Yaqoob; Durrani, S. K.; Mehmood, Mazhar; Ahmad, Jamil; Khan, M. Riaz; Firdous, Shamraz

    2010-12-01

    Fluorescent ZnO nanoparticles have been prepared by mixing aqueous solutions of zinc nitrate and ammonium carbonate in the presence of a non-ionic surfactant, Tween-80. Increased concentrations of the surfactant were found to affect both the morphology and purity of the synthesized ZnO nanoparticles. XRD, SEM, FTIR, TGA and Confocal laser scanning microscopy were employed to characterize the as-prepared samples. ZnO nanoparticles ranging in particle size from 11 to 15 nm were formed at the reaction temperature of 70-80 °C. The results of FTIR and TGA analysis indicate the self assembly of Tween molecules on the surface of ZnO nanoparticles. A bright emission in the visible region from the as-prepared ZnO nanoparticles was recorded using confocal laser scanning microscopy. This property of the as-prepared nanoparticles may find potential application in bio-imaging.

  19. The silicone breast implant controversy.

    PubMed

    Guerette, P H

    1995-02-01

    Feminists call it objectification. Consumer advocates call it victimization. Medical personnel call it augmentation. Women, implantation. Whatever the term, media hype and the increasing number of lawsuits against U.S. manufacturers of silicone breast implants has caused widespread concern among women and raised serious questions about the long term health risks and safety of breast implant devices.

  20. Data Evaluation Acquired Talys 1.0 Code to Produce 111In from Various Accelerator-Based Reactions

    NASA Astrophysics Data System (ADS)

    Alipoor, Zahra; Gholamzadeh, Zohreh; Sadeghi, Mahdi; Seyyedi, Solaleh; Aref, Morteza

    The Indium-111 physical-decay parameters as a β-emitter radionuclide show some potential for radiodiagnostic and radiotherapeutic purposes. Medical investigators have shown that 111In is an important radionuclide for locating and imaging certain tumors, visualization of the lymphatic system and thousands of labeling reactions have been suggested. The TALYS 1.0 code was used here to calculate excitation functions of 112/114-118Sn+p, 110Cd+3He, 109Ag+3He, 111-114Cd+p, 110/111Cd+d, 109Ag+α to produce 111In using low and medium energy accelerators. Calculations were performed up to 200 MeV. Appropriate target thicknesses have been assumed based on energy loss calculations with the SRIM code. Theoretical integral yields for all the latter reactions were calculated. The TALYS 1.0 code predicts that the production of a few curies of 111In is feasible using a target of isotopically highly enriched 112Cd and a proton energy between 12 and 25 MeV with a production rate as 248.97 MBq·μA-1 · h-1. Minimum impurities shall be produced during the proton irradiation of an enriched 111Cd target yielding a production rate for 111In of 67.52 MBq· μA-1 · h-1.

  1. Semiconductor Ion Implanters

    NASA Astrophysics Data System (ADS)

    MacKinnon, Barry A.; Ruffell, John P.

    2011-06-01

    In 1953 the Raytheon CK722 transistor was priced at 7.60. Based upon this, an Intel Xeon Quad Core processor containing 820,000,000 transistors should list at 6.2 billion! Particle accelerator technology plays an important part in the remarkable story of why that Intel product can be purchased today for a few hundred dollars. Most people of the mid twentieth century would be astonished at the ubiquity of semiconductors in the products we now buy and use every day. Though relatively expensive in the nineteen fifties they now exist in a wide range of items from high-end multicore microprocessors like the Intel product to disposable items containing `only' hundreds or thousands like RFID chips and talking greeting cards. This historical development has been fueled by continuous advancement of the several individual technologies involved in the production of semiconductor devices including Ion Implantation and the charged particle beamlines at the heart of implant machines. In the course of its 40 year development, the worldwide implanter industry has reached annual sales levels around 2B, installed thousands of dedicated machines and directly employs thousands of workers. It represents in all these measures, as much and possibly more than any other industrial application of particle accelerator technology. This presentation discusses the history of implanter development. It touches on some of the people involved and on some of the developmental changes and challenges imposed as the requirements of the semiconductor industry evolved.

  2. Semiconductor Ion Implanters

    SciTech Connect

    MacKinnon, Barry A.; Ruffell, John P.

    2011-06-01

    In 1953 the Raytheon CK722 transistor was priced at $7.60. Based upon this, an Intel Xeon Quad Core processor containing 820,000,000 transistors should list at $6.2 billion. Particle accelerator technology plays an important part in the remarkable story of why that Intel product can be purchased today for a few hundred dollars. Most people of the mid twentieth century would be astonished at the ubiquity of semiconductors in the products we now buy and use every day. Though relatively expensive in the nineteen fifties they now exist in a wide range of items from high-end multicore microprocessors like the Intel product to disposable items containing 'only' hundreds or thousands like RFID chips and talking greeting cards. This historical development has been fueled by continuous advancement of the several individual technologies involved in the production of semiconductor devices including Ion Implantation and the charged particle beamlines at the heart of implant machines. In the course of its 40 year development, the worldwide implanter industry has reached annual sales levels around $2B, installed thousands of dedicated machines and directly employs thousands of workers. It represents in all these measures, as much and possibly more than any other industrial application of particle accelerator technology. This presentation discusses the history of implanter development. It touches on some of the people involved and on some of the developmental changes and challenges imposed as the requirements of the semiconductor industry evolved.

  3. Cochlear Implantation in Neurobrucellosis

    PubMed Central

    Bajin, Münir Demir; Savaş, Özden; Aslan, Filiz; Sennaroğlu, Levent

    2016-01-01

    Background: Neurobrucellosis is a disease consisting of a wide spectrum of complications such as peripheral neuropathy, cranial nerve involvement, ataxia, meningeal irritation, paraplegia, seizures, coma, and even death. The vestibulocochlear nerve seems to be the most commonly affected cranial nerve (10%). We present a patient with neurobrucellosis whose auditory perception and speech intelligibility skill performances improved after cochlear implantation. Case Report: A 35 year-old woman was admitted to another hospital 2 years ago with the symptoms of headache, nausea, and altered consciousness, who was finally diagnosed with neurobrucellosis. She developed bilateral profound sensorineural hearing loss during the following 6 months. There was no benefit of using hearing aids. After successful treatment of her illness, she was found to be suitable for cochlear implantation. After the operation, her auditory perception skills improved significantly with a Categories of Auditory Performance (CAP) score of 5. According to clinical observations and her family members’ statements, her Speech Intelligibility Rating (SIR) score was 3. Her speech intelligibility skills are still improving. Conclusion: Our case report represents the second case of hearing rehabilitation with cochlear implantation after neurobrucellosis. Cochlear implantation is a cost-effective and time-proven successful intervention in post-lingual adult patients with sensorineural hearing loss. Early timing of the surgery after appropriate treatment of meningitis helps the patient to achieve better postoperative results. PMID:26966626

  4. Remote actuated valve implant

    DOEpatents

    McKnight, Timothy E; Johnson, Anthony; Moise, Jr., Kenneth J; Ericson, Milton Nance; Baba, Justin S; Wilgen, John B; Evans, III, Boyd McCutchen

    2014-02-25

    Valve implant systems positionable within a flow passage, the systems having an inlet, an outlet, and a remotely activatable valve between the inlet and outlet, with the valves being operable to provide intermittent occlusion of the flow path. A remote field is applied to provide thermal or magnetic activation of the valves.

  5. Implantable Drug Dispenser

    NASA Technical Reports Server (NTRS)

    Collins, E. R. J.

    1983-01-01

    Drugs such as insulin are injected as needed directly into bloodstream by compact implantable dispensing unit. Two vapor cavities produce opposing forces on drug-chamber diaphragm. Heaters in cavities allow control of direction and rate of motion of bellows. Dispensing capsule fitted with coil so batteries can be recharged by induction.

  6. Practicing implant dentistry profitably.

    PubMed

    Stump, G; Adams, M; Alwan, M

    1997-03-01

    The success of dental implants has opened up countless treatment possibilities for restorative dentists to offer to their patients. Just as our clinical paradigms have had to change because of this new technology, so too must our paradigms concerning the way we communicate with our patients change if we are to get them to say "yes" to treatment that we know that they need. Success in clinical treatment using implants requires a systematic approach. A systematic approach to communicating with your patients will allow you to have the same high degree of success with treatment acceptance that is possible with dental implants. The key to the systems we have discussed is Relationship Centered Care. A relationship is fostered and enhanced through a Comprehensive Examination Process, a structured Consultation Process utilizing the influencing process and Financial Arrangements that allow the patient to receive what they want while the office maintains the profitability that it needs. A system for calculating rational fees can be utilized that allows the practice to have control over an area that traditionally was controlled by anecdotal factors. The Pride Institute has developed this material and is presenting it to the profession so that restorative dentists can truly practice implant dentistry profitably.

  7. Effect of implant design on initial stability of tapered implants.

    PubMed

    Chong, Linus; Khocht, Ahmed; Suzuki, Jon B; Gaughan, John

    2009-01-01

    Implant design is one of the parameters for achieving successful primary stability. This study aims to examine the effect of a self-tapping blades implant design on initial stability in tapered implants. Polyurethane blocks of different densities were used to simulate different bone densities. The two different implant designs included one with self-tapping blades and one without self-tapping blades. Implants were placed at 3 different depths: apical third, middle third, and fully inserted at 3 different densities of polyurethane blocks. A resonance frequency (RF) analyzer was then used to measure stability of the implants. Repeated-measures analysis of variance was used to examine the effect of implant design, insertion depth, and block density on RF. Analysis of covariance was used to examine the strength of association between RF and the aforementioned factors. In both medium-density (P = .017) and high-density (P = .002) blocks, fully inserted non-self-tapping implants showed higher initial stability than self-tapping implants. No differences were noted between the 2 implant designs that were not fully inserted. The highest strength of association was with insertion depth (standardized beta [std beta] = -0.60, P = .0001), followed by block density (std beta = -0.15, P = .0002). Implant design showed a weak association (std beta = -0.07, P = .09). In conclusion, fully inserted implants without self-tapping blades have higher initial stability than implants with self-tapping blades. However, the association strength between implant design and initial stability is less relevant than other factors, such as insertion depth and block density. Thus, if bone quality and quantity are optimal, they may compensate for design inadequacy.

  8. Therapeutic efficacy evaluation of 111in-VNB-liposome on human colorectal adenocarcinoma HT-29/ luc mouse xenografts

    NASA Astrophysics Data System (ADS)

    Lee, Wan-Chi; Hwang, Jeng-Jong; Tseng, Yun-Long; Wang, Hsin-Ell; Chang, Ya-Fang; Lu, Yi-Ching; Ting, Gann; Whang-Peng, Jaqueline; Wang, Shyh-Jen

    2006-12-01

    The purpose of this study is to evaluate the therapeutic efficacy of the liposome encaged with vinorelbine (VNB) and 111In-oxine on human colorectal adenocarcinoma (HT-29) using HT-29/ luc mouse xenografts. HT-29 cells stably transfected with plasmid vectors containing luciferase gene ( luc) were transplanted subcutaneously into the male NOD/SCID mice. Biodistribution of the drug was performed when tumor size reached 500-600 mm 3. The uptakes of 111In-VNB-liposome in tumor and normal tissues/organs at various time points postinjection were assayed. Multimodalities, including gamma scintigraphy, bioluminescence imaging (BLI) and whole-body autoradiography (WBAR), were applied for evaluating the therapeutic efficacy when tumor size was about 100 mm 3. The tumor/blood ratios of 111In-VNB-liposome were 0.044, 0.058, 2.690, 20.628 and 24.327, respectively, at 1, 4, 24, 48 and 72 h postinjection. Gamma scinitigraphy showed that the tumor/muscle ratios were 2.04, 2.25 and 4.39, respectively, at 0, 5 and 10 mg/kg VNB. BLI showed that significant tumor control was achieved in the group of 10 mg/kg VNB ( 111In-VNB-liposome). WBAR also confirmed this result. In this study, we have demonstrated a non-invasive imaging technique with a luciferase reporter gene and BLI for evaluation of tumor treatment efficacy in vivo. The SCID mice bearing HT-29/ luc xenografts treated with 111In-VNB-liposome were shown with tumor reduction by this technique.

  9. [Allergic reactions to implant materials].

    PubMed

    Thomas, P

    2003-01-01

    The extent of the immune response upon implantation of metallic devices depends on the individual reactivity and on material characteristics. If specific T-cellular sensitization occurs or an allergy to metal preexists, hypersensitive reactions to implant components may develop. They include eczema, impaired wound healing, and sterile osteomyelitis. The existence of allergy-induced implant loosening is still an open question. Further improvement of clinical allergological diagnostics, better understanding of peri-implantar immune reactions, and interdisciplinary collection of epidemiological data concerning allergy to implants will contribute to a better knowledge about tolerance of implant material in humans.

  10. Prosthodontic management of implant therapy.

    PubMed

    Thalji, Ghadeer; Bryington, Matthew; De Kok, Ingeborg J; Cooper, Lyndon F

    2014-01-01

    Implant-supported dental restorations can be screw-retained, cement-retained, or a combination of both, whereby a metal superstructure is screwed to the implants and crowns are individually cemented to the metal frame. Each treatment modality has advantages and disadvantages. The use of computer-aided design/computer-assisted manufacture technologies for the manufacture of implant superstructures has proved to be advantageous in the quality of materials, precision of the milled superstructures, and passive fit. Maintenance and recall evaluations are an essential component of implant therapy. The longevity of implant restorations is limited by their biological and prosthetic maintenance requirements.

  11. Impression techniques for implant dentistry.

    PubMed

    Chee, W; Jivraj, S

    2006-10-07

    The object of making an impression in implant dentistry is to accurately relate an analogue of the implant or implant abutment to the other structures in the dental arch. This is affected by use of an impression coping which is attached to the implant or implant abutment. This impression coping is incorporated in an impression - much as a metal framework is 'picked up' in a remount impression for fixed prosthodontics. With implant copings the coping is usually attached to the implant or abutment with screws. The impression material used is usually an elastomeric impression material; the two types most widely used and shown to be the most appropriate are polyether and polyvinyl siloxane impression materials.

  12. Engineered porous metals for implants

    NASA Astrophysics Data System (ADS)

    Vamsi Krishna, B.; Xue, Weichang; Bose, Susmita; Bandyopadhyay, Amit

    2008-05-01

    Interest is significant in patient-specific implants with the possibility of guided tissue regeneration, particularly for load-bearing implants. For such implants to succeed, novel design approaches and fabrication technologies that can achieve balanced mechanical and functional performance in the implants are necessary. This article is focused on porous load-bearing implants with tailored micro-as well as macrostructures using laser-engineered net shaping (LENS™), a solid freeform fabrication or rapid prototyping technique that can be used to manufacture patient-specific implants. This review provides an insight into LENS, some properties of porous metals, and the potential applications of this process to fabricate unitized structures which can eliminate longstanding challenges in load-bearing implants to increase their in-vivo lifetime, such as in a total hip prosthesis.

  13. Size dependent biodistribution and SPECT imaging of (111)In-labeled polymersomes.

    PubMed

    Brinkhuis, René P; Stojanov, Katica; Laverman, Peter; Eilander, Jos; Zuhorn, Inge S; Rutjes, Floris P J T; van Hest, Jan C M

    2012-05-16

    Polymersomes, self-assembled from the block copolymer polybutadiene-block-poly(ethylene glycol), were prepared with well-defined diameters between 90 and 250 nm. The presence of ~1% of diethylene triamine penta acetic acid on the polymersome periphery allowed to chelate radioactive (111)In onto the surface and determine the biodistribution in mice as a function of both the polymersome size and poly(ethylene glycol) corona thickness (i.e., PEG molecular weight). Doubling the PEG molecular weight from 1 kg/mol to 2 kg/mol did not change the blood circulation half-life significantly. However, the size of the different polymersome samples did have a drastic effect on the blood circulation times. It was found that polymersomes of 120 nm and larger become mostly cleared from the blood within 4 h, presumably due to recognition by the reticuloendothelial system. In contrast, smaller polymersomes of around 90 nm circulated much longer. After 24 h more than 30% of the injected dose was still present in the blood pool. This sharp transition in blood circulation kinetics due to size is much more abrupt than observed for liposomes and was additionally visualized by SPECT/CT imaging. These findings should be considered in the formulation and design of polymersomes for biomedical applications. Size, much more than for liposomes, will influence the pharmacokinetics, and therefore, long circulating preparations should be well below 100 nm.

  14. Optical reflectance studies of highly specular anisotropic nanoporous (111) InP membrane

    NASA Astrophysics Data System (ADS)

    Steele, J. A.; Lewis, R. A.; Sirbu, L.; Enachi, M.; Tiginyanu, I. M.; Skuratov, V. A.

    2015-04-01

    High-precision optical angular reflectance measurements are reported for a specular anisotropic nanoporous (111) InP membrane prepared by doping-assisted wet-electrochemical etching. The membrane surface morphology was investigated using scanning electron microscope imaging and revealed a quasi-uniform and self-organized nanoporous network consisting of semiconductor ‘islands’ in the sub-wavelength regime. The optical response of the nanoporous InP surface was studied at 405 nm (740 THz; UV), 633 nm (474 THz; VIS) and 1064 nm (282 THz; NIR), and exhibited a retention of basic macro-dielectric properties. Refractive index determinations demonstrate an optical anisotropy for the membrane which is strongly dependent on the wavelength of incident light, and exhibits an interesting inversion (positive anisotropy to negative) between 405 and 633 nm. The inversion of optical anisotropy is attributed to a strongly reduced ‘metallic’ behaviour in the membrane when subject to above-bandgap illumination. For the simplest case of sub-bandgap incident irradiation, the optical properties of the nanoporous InP sample are analysed in terms of an effective refractive index neff and compared to effective media approximations.

  15. Growth of Homoepitaxial ZnO Semiconducting Films

    NASA Technical Reports Server (NTRS)

    Zhu, Shen; Su, Ching-Hua; Lehoczky, S. L.; Harris, M. T.; George, Michael A.; McCarty, P.

    1999-01-01

    As a high temperature semiconductor, ZnO has been used for many applications such as wave-guide, solar cells, and surface acoustic wave devices. Since the ZnO material has an energy gap of 3.3 eV at room temperature and an excitonic binding energy (60 meV) that is possible to make excitonic lasering at room temperature a recent surge of interest is to synthesize ZnO films for electro-optical devices. These applications require films with a smooth surface, good crystal quality, and low defect density. Homoepitaxial films have been studied in terms of morphology, crystal structure, and electrical and optical properties. ZnO single crystals are grown by the hydrothermal method. Substrates are mechanically polished and annealed in air for four hours before deposited films. The annealing temperature-dependence of ZnO substrates is studied. Films are synthesized by the off-axis reactive sputtering deposition. The films have very smooth surface with a roughness ZnO films grown of (0001) ZnO and (0001) sapphire substrates will be also compared and discussed in the presentation.

  16. Self-standing particle-binding ZnO film.

    PubMed

    Masuda, Yoshitake; Kato, Kazumi

    2009-01-01

    Self-standing particle-binding ZnO film was fabricated by combination of crystallization in aqueous solution and annealing on FTO (SnO2:F) coated glass substrate. Multi-needle ZnO particles crystallized in a solution of zinc nitrate hexahydrate and ethylenediamine at 60 degrees C. Crystalline particles having an ultrafine surface relief structure were gradually deposited on the substrate to form thick particulate film. The film was then annealed at 950 degrees C for 1 h in air. The ZnO particles formed necks to connect to each other. The glass substrate deformed into a dome shape generating stress between the ZnO film and substrate; on the other hand, FTO layers retained their uneven surface during annealing. ZnO particulate film was successfully peeled off from the substrate as self-standing film. Deformation of glass substrate and FTO joint-insulating layer supported peeling-off of the film. The connected ZnO particles formed continuous white porous film having many spaces and continuous open pores surrounded by multi-needle ZnO particles. The film can be used as self-standing film and be pasted on substrate such as polymer film, metal or paper for application to flexible lightweight devices.

  17. Superhydrophobic ZnO networks with high water adhesion

    PubMed Central

    2014-01-01

    ZnO structures were deposited using a simple chemical bath deposition technique onto interdigitated electrodes fabricated by a conventional photolithography method on SiO2/Si substrates. The X-ray diffraction studies show that the ZnO samples have a hexagonal wurtzite crystalline structure. The scanning electron microscopy observations prove that the substrates are uniformly covered by ZnO networks formed by monodisperse rods. The ZnO rod average diameter and length were tuned by controlling reactants' concentration and reaction time. Optical spectroscopy measurements demonstrate that all the samples display bandgap values and emission bands typical for ZnO. The electrical measurements reveal percolating networks which are highly sensitive when the samples are exposed to ammonia vapors, a variation in their resistance with the exposure time being evidenced. Other important characteristics are that the ZnO rod networks exhibit superhydrophobicity, with water contact angles exceeding 150° and a high water droplet adhesion. Reproducible, easily scalable, and low-cost chemical bath deposition and photolithography techniques could provide a facile approach to fabricate such ZnO networks and devices based on them for a wide range of applications where multifunctionality, i.e., sensing and superhydrophobicity, properties are required. PACS 81.07.-b; 81.05.Dz; 68.08.Bc PMID:25136286

  18. Determining the minimum number of detectable cardiac-transplanted 111In-tropolone-labelled bone-marrow-derived mesenchymal stem cells by SPECT.

    PubMed

    Jin, Yuan; Kong, Huafu; Stodilka, Rob Z; Wells, R Glenn; Zabel, Pamela; Merrifield, Peter A; Sykes, Jane; Prato, Frank S

    2005-10-07

    In this work, we determined the minimum number of detectable 111In-tropolone-labelled bone-marrow-derived stem cells from the maximum activity per cell which did not affect viability, proliferation and differentiation, and the minimum detectable activity (MDA) of 111In by SPECT. Canine bone marrow mesenchymal cells were isolated, cultured and expanded. A number of samples, each containing 5x10(6) cells, were labelled with 111In-tropolone from 0.1 to 18 MBq, and cell viability was measured afterwards for each sample for 2 weeks. To determine the MDA, the anthropomorphic torso phantom (DataSpectrum Corporation, Hillsborough, NC) was used. A point source of 202 kBq 111In was placed on the surface of the heart compartment, and the phantom and all compartments were then filled with water. Three 111In SPECT scans (duration: 16, 32 and 64 min; parameters: 128x128 matrix with 128 projections over 360 degrees) were acquired every three days until the 111In radioactivity decayed to undetectable quantities. 111In SPECT images were reconstructed using OSEM with and without background, scatter or attenuation corrections. Contrast-to-noise ratio (CNR) in the reconstructed image was calculated, and MDA was set equal to the 111In activity corresponding to a CNR of 4. The cells had 100% viability when incubated with no more than 0.9 MBq of 111In (80% labelling efficiency), which corresponded to 0.14 Bq per cell. Background correction improved the detection limits for 111In-tropolone-labelled cells. The MDAs for 16, 32 and 64 min scans with background correction were observed to be 1.4 kBq, 700 Bq and 400 Bq, which implies that, in the case where the location of the transplantation is known and fixed, as few as 10,000, 5000 and 2900 cells respectively can be detected.

  19. Determining the minimum number of detectable cardiac-transplanted 111In-tropolone-labelled bone-marrow-derived mesenchymal stem cells by SPECT

    NASA Astrophysics Data System (ADS)

    Jin, Yuan; Kong, Huafu; Stodilka, Rob Z.; Wells, R. Glenn; Zabel, Pamela; Merrifield, Peter A.; Sykes, Jane; Prato, Frank S.

    2005-10-01

    In this work, we determined the minimum number of detectable 111In-tropolone-labelled bone-marrow-derived stem cells from the maximum activity per cell which did not affect viability, proliferation and differentiation, and the minimum detectable activity (MDA) of 111In by SPECT. Canine bone marrow mesenchymal cells were isolated, cultured and expanded. A number of samples, each containing 5 × 106 cells, were labelled with 111In-tropolone from 0.1 to 18 MBq, and cell viability was measured afterwards for each sample for 2 weeks. To determine the MDA, the anthropomorphic torso phantom (DataSpectrum Corporation, Hillsborough, NC) was used. A point source of 202 kBq 111In was placed on the surface of the heart compartment, and the phantom and all compartments were then filled with water. Three 111In SPECT scans (duration: 16, 32 and 64 min; parameters: 128 × 128 matrix with 128 projections over 360°) were acquired every three days until the 111In radioactivity decayed to undetectable quantities. 111In SPECT images were reconstructed using OSEM with and without background, scatter or attenuation corrections. Contrast-to-noise ratio (CNR) in the reconstructed image was calculated, and MDA was set equal to the 111In activity corresponding to a CNR of 4. The cells had 100% viability when incubated with no more than 0.9 MBq of 111In (80% labelling efficiency), which corresponded to 0.14 Bq per cell. Background correction improved the detection limits for 111In-tropolone-labelled cells. The MDAs for 16, 32 and 64 min scans with background correction were observed to be 1.4 kBq, 700 Bq and 400 Bq, which implies that, in the case where the location of the transplantation is known and fixed, as few as 10 000, 5000 and 2900 cells respectively can be detected.

  20. Piezosurgery in implant dentistry

    PubMed Central

    Stübinger, Stefan; Stricker, Andres; Berg, Britt-Isabelle

    2015-01-01

    Piezosurgery, or the use of piezoelectric devices, is being applied increasingly in oral and maxillofacial surgery. The main advantages of this technique are precise and selective cuttings, the avoidance of thermal damage, and the preservation of soft-tissue structures. Through the application of piezoelectric surgery, implant-site preparation, bone grafting, sinus-floor elevation, edentulous ridge splitting or the lateralization of the inferior alveolar nerve are very technically feasible. This clinical overview gives a short summary of the current literature and outlines the advantages and disadvantages of piezoelectric bone surgery in implant dentistry. Overall, piezoelectric surgery is superior to other methods that utilize mechanical instruments. Handling of delicate or compromised hard- and soft-tissue conditions can be performed with less risk for the patient. With respect to current and future innovative surgical concepts, piezoelectric surgery offers a wide range of new possibilities to perform customized and minimally invasive osteotomies. PMID:26635486

  1. Scintillation of Un-doped ZnO Single Crystals

    SciTech Connect

    Colosimo, A. M.; Ji, Jianfeng; Stepanov, P. S.; Boatner, L. A.; Selim, F. A.

    2016-01-07

    In this paper, scintillation properties are often studied by photo-luminescence (PL) and scintillation measurements. In this work, we combine X-ray-induced luminescence (XRIL) spectroscopy [Review of Scientific Instruments 83, 103112 (2012)] with PL and standard scintillation measurements to give insight into the scintillation properties of un-doped ZnO single crystals. XRIL revealed that ZnO luminescence proportionally increases with X-ray power and exhibits excellent linearity - indicating the possibility of developing radiation detectors with good energy resolution. Finally, by coupling ZnO crystals to fast photomultiplier tubes and monitoring the anode signal, rise times as fast as 0.9 ns were measured.

  2. High pressure and high temperature behaviour of ZnO

    SciTech Connect

    Thakar, Nilesh A.; Bhatt, Apoorva D.; Pandya, Tushar C.

    2014-04-24

    The thermodynamic properties with the wurtzite (B4) and rocksalt (B1) phases of ZnO under high pressures and high temperatures have been investigated using Tait's Equation of state (EOS). The effects of pressures and temperatures on thermodynamic properties such as bulk modulus, thermal expansivity and thermal pressure are explored for both two structures. It is found that ZnO material gradually softens with increase of temperature while it hardens with the increment of the pressure. Our predicted results of thermodynamics properties for both the phases of ZnO are in overall agreement with the available data in the literature.

  3. Surface-diffusion induced growth of ZnO nanowires

    NASA Astrophysics Data System (ADS)

    Kim, D. S.; Gösele, U.; Zacharias, M.

    2009-05-01

    The growth rate of ZnO nanowires grown epitaxially on GaN/sapphire substrates is studied. An inverse proportional relation between diameter and length of the nanowires is observed, i.e., nanowires with smaller diameters grow faster than larger ones. This unexpected result is attributed to surface diffusion of ZnO admolecules along the sidewalls of the nanowires. In addition, the unique c-axis growth of ZnO nanowires, which does not require a catalytic particle at the tip of the growing nanowires is discussed by taking into account polarity, surface free energy, and ionicity. Activation energies of the nanowire growth are determined as well.

  4. Hierarchical structures of ZnO spherical particles synthesized solvothermally

    PubMed Central

    Saito, Noriko; Haneda, Hajime

    2011-01-01

    We review the solvothermal synthesis, using a mixture of ethylene glycol (EG) and water as the solvent, of zinc oxide (ZnO) particles having spherical and flower-like shapes and hierarchical nanostructures. The preparation conditions of the ZnO particles and the microscopic characterization of the morphology are summarized. We found the following three effects of the ratio of EG to water on the formation of hierarchical structures: (i) EG restricts the growth of ZnO microcrystals, (ii) EG promotes the self-assembly of small crystallites into spheroidal particles and (iii) the high water content of EG results in hollow spheres. PMID:27877457

  5. Hierarchical structures of ZnO spherical particles synthesized solvothermally

    NASA Astrophysics Data System (ADS)

    Saito, Noriko; Haneda, Hajime

    2011-12-01

    We review the solvothermal synthesis, using a mixture of ethylene glycol (EG) and water as the solvent, of zinc oxide (ZnO) particles having spherical and flower-like shapes and hierarchical nanostructures. The preparation conditions of the ZnO particles and the microscopic characterization of the morphology are summarized. We found the following three effects of the ratio of EG to water on the formation of hierarchical structures: (i) EG restricts the growth of ZnO microcrystals, (ii) EG promotes the self-assembly of small crystallites into spheroidal particles and (iii) the high water content of EG results in hollow spheres.

  6. The breast implant controversy.

    PubMed

    Cook, R R; Harrison, M C; LeVier, R R

    1994-02-01

    The breast implant issue is a "bad news/good news" story. For many women with implants, the controversy has caused a fair degree of anxiety which may or may not be resolved as further information becomes available. It has also taken its toll on Dow Corning. Whole lines of medical products have been eliminated or are being phase out. The development of new medical applications has been terminated. As a consequence, employees have lost their jobs. What the effect will be on the biomedical industry as a whole remains to be seen (11). While silicones have been an important component in various medical devices, it is likely that other materials can be used as replacements. However, suppliers of non-silicone materials are also reevaluating their role in this market. For example, Du Pont, the nation's largest chemical company, has determined that the unpredictable and excessive costs of doing business with manufacturers of implantable medical devices no longer justifies the unrestricted sale of standard raw materials into this industry. Other companies are quietly following suit. On the up side, it is possible that the research being driven by this controversy will result in a greater understanding of the immunologic implications of xenobiotics, of the importance of nonbiased observations, of the need for ready access to valid data sets, and of the opportunity for valid scientific information to guide legal decisions. Only time will tell.

  7. [Neurotology and cochlear implants].

    PubMed

    Merchán, Miguel A

    2015-05-01

    In this review we analyse cochlear implantation in terms of the fundamental aspects of the functioning of the auditory system. Concepts concerning neuronal plasticity applied to electrical stimulation in perinatal and adult deep hypoacusis are reviewed, and the latest scientific bases that justify early implantation following screening for congenital deafness are discussed. Finally, this review aims to serve as an example of the importance of fostering the sub-specialty of neurotology in our milieu, with the aim of bridging some of the gaps between specialties and thus improving both the knowledge in the field of research on auditory pathologies and in the screening of patients. The objectives of this review, targeted above all towards specialists in the field of otorhinolaryngology, are to analyse some significant neurological foundations in order to reach a better understanding of the clinical events that condition the indications and the rehabilitation of patients with cochlear implants, as well as to use this means to foster the growth of the sub-specialty of neurotology.

  8. Electronic retinal implant surgery.

    PubMed

    MacLaren, R E

    2017-02-01

    Blindness due to outer retinal degeneration still remains largely untreatable. Photoreceptor loss removes light sensitivity, but the remaining inner retinal layers, the optic nerve, and indeed the physical structure of the eye itself may be unaffected by the degenerative processes. This provides the opportunity to restore some degree of vision with an electronic device in the subretinal space. In this lecture I will provide an overview of our experiences with the first-generation retinal implant Alpha IMS, developed by Retina Implant AG and based on the technology developed by Eberhart Zrenner as part of a multicentre clinical trial (NCT01024803). We are currently in the process of running a second NIHR-funded clinical trial to assess the next-generation device. The positive results from both studies to date indicate that the retinal implant should be included as a potential treatment for patients who are completely blind from retinitis pigmentosa. Evolution of the technology in future may provide further opportunities for earlier intervention or for other diseases.

  9. Tubo-uterine implantation.

    PubMed

    Green-armytage, V G

    1957-02-01

    After characterizing 2 types of patients presenting with tubal infertility (1 that is "as a rule overweight (the uterus is fixed (and there is easily palpable tubo-uterine pathology," and 1 that is "slim, young, intelligent and often beautiful", 12 1-sentence suggestions are made to increase the success of tubo-uterine implantations in the second type of presenting patient (because the first group has, in the author's mind, disappointing prognosis). Figures are the bulk of the document, with 3 figures demonstrating the type of operation, 3 showing the scheme of the operation, 1 figure showing a posterior view of the implanted tube in utero with a polyethylene prosthesis in situ down to the cervix, and 1 figure showing the instruments used in the operation. A few points of experience the author shares are: 1) operate immediately after a menstrual period; 2) give antibiotics prophylactically and after the procedure; 3) use a Bonney Myomectomy Clamp to elevate the uterus; 4) never use a knife or bistoury at the cornua; 5) use polyethylene rods, when available; and 6) caesarean section is the indicated delivery route after tubo-uterine implantation. Out of 38 patients with the requisite history and findings who have been operated on by this author, 14 have gone to full-term, i.e., 36.1%; 2 have aborted, giving a pregnancy rate of 42.2%, and there was 1 ectopic pregnancy.

  10. Bone Substitutes for Peri-Implant Defects of Postextraction Implants

    PubMed Central

    Santos, Pâmela Letícia; Gulinelli, Jéssica Lemos; Telles, Cristino da Silva; Betoni Júnior, Walter; Chiacchio Buchignani, Vivian; Queiroz, Thallita Pereira

    2013-01-01

    Placement of implants in fresh sockets is an alternative to try to reduce physiological resorption of alveolar ridge after tooth extraction. This surgery can be used to preserve the bone architecture and also accelerate the restorative procedure. However, the diastasis observed between bone and implant may influence osseointegration. So, autogenous bone graft and/or biomaterials have been used to fill this gap. Considering the importance of bone repair for treatment with implants placed immediately after tooth extraction, this study aimed to present a literature review about biomaterials surrounding immediate dental implants. The search included 56 articles published from 1969 to 2012. The results were based on data analysis and discussion. It was observed that implant fixation immediately after extraction is a reliable alternative to reduce the treatment length of prosthetic restoration. In general, the biomaterial should be used to increase bone/implant contact and enhance osseointegration. PMID:24454377

  11. Growth of Ga-doped ZnO nanowires by two-step vapor phase method

    SciTech Connect

    Xu, C.; Kim, M.; Chun, J.; Kim, D.

    2005-03-28

    A two-step route is presented to dope Ga into ZnO nanowires and also fabricate heterostructures of Ga-doped ZnO nanowires on ZnO. The content of Ga in ZnO nanowires is about 7 at. % from energy-dispersive x-ray analysis. The single crystal Ga doped ZnO nanowires with the diameter of 40 nm and the length of 300-500 nm are well aligned on the ZnO bulk. The growth direction is along [001]. Raman scattering analysis shows that the doping of Ga into ZnO nanowires depresses Raman E{sub 1L} mode of ZnO, manifesting that Ga sites in ZnO are Zn sites (Ga{sub Zn}). The formation mechanism of Zn{sub 1-x}Ga{sub x}O nanowires/ZnO heterostructures is proposed.

  12. Detection of acute inflammation with /sup 111/In-labeled nonspecific polyclonal IgG

    SciTech Connect

    Fischman, A.J.; Rubin, R.H.; Khaw, B.A.; Callahan, R.J.; Wilkinson, R.; Keech, F.; Nedelman, M.; Dragotakes, S.; Kramer, P.B.; LaMuraglia, G.M.

    1988-10-01

    The detection of focal sites of inflammation is an integral part of the clinical evaluation of the febrile patient. When anatomically distinct abscesses are present, lesion detection can be accomplished by standard radiographic techniques, particularly in patients with normal anatomy. At the phlegmon stage, however, and in patients who have undergone surgery, these techniques are considerably less effective. While radionuclide methods, such as Gallium-67 (67Ga)-citrate and Indium-111 (111In)-labeled WBCs have been relatively successful for the detection of early inflammation, neither approach is ideal. In the course of studies addressing the use of specific organism-directed antibodies for imaging experimental infections in animals, we observed that nonspecific polyclonal immunoglobulin G (IgG) localized as well as specific antibodies. Preliminary experiments suggested that the Fc portion of IgG is necessary for effective inflammation localization. Since polyclonal IgG in gram quantities has been safely used for therapy in patients with immune deficiency states, we decided to test whether milligram quantities of radiolabeled IgG could image focal sites of inflammation in humans. Thus far, we have studied a series of 84 patients with suspected lesions in the abdomen, pelvis, vascular grafts, lungs, or bones/joints. In 48 of 52 patients with focal lesions detected by surgery, computed tomography (CT), magnetic resonance imaging (MRI), or ultrasound (US), the IgG scan correctly localized the site, while 31 patients without focal inflammation had no abnormal focal localization of the radiopharmaceutical. Four patients had false negative scans and one patient had a false positive scan. For this small series, the overall sensitivity and specificity were 92% and 95%, respectively. In this report, we review our experience with this exciting new agent.

  13. Technical considerations in the study of /sup 111/In-oxine labelled platelet survival patterns in dogs

    SciTech Connect

    Sharefkin, J.; Rich, N.M.

    1982-04-01

    A detailed technique for labelling canine platelets with /sup 111/In-oxine for the study of platelet survival patterns in four to six dogs at a time was developed. Useful modifications of earlier methods included splitting of the platelet rich plasma into multiple aliquots to improve pelleting efficiency at low gravity forces, use of saved platelet poor plasma to flush out injection syringes, and prompt use of commercial /sup 111/In-oxine sources 3 to 5 minutes after mixing with Ringer's Citrate Dextrose. Avoidable pitfalls of the method included excessive lengths of incubation time in plasma free medium and loss of labelling efficacy by exposure of the chelate to iron or other metal contaminants in glassware. The method was used to study changes in platelet survival time in dogs with large synthetic arterial prostheses, and gave results in good agreement with earlier studies using /sup 51/Cr labelled platelets.

  14. Spectroscopic studies on photoelectron transfer from 2-(furan-2-yl)-1-phenyl-1H-phenanthro[9,10-d]imidazole to ZnO, Cu-doped ZnO and Ag-doped ZnO.

    PubMed

    Thanikachalam, V; Arunpandiyan, A; Jayabharathi, J; Karunakaran, C; Ramanathan, P

    2014-09-01

    The 2-(furan-2-yl)-1-phenyl-1H-phenanthro[9,10-d]imidazole [FPI] has been designed and synthesized as fluorescent sensor for nanoparticulate ZnO. The present work investigates the photoelectron transfer (PET) from FPI to ZnO, Cu-doped ZnO and Ag- doped ZnO nanoparticles using electronic and life time spectral measurements. Broad absorption along with red shift indicates the formation of charge-transfer complex [FPI-Nanoparticles]. The photophysical studies indicate lowering of HOMO and LUMO energy levels of FPI on adsorption on ZnO due to FPI- ZnO interaction. The obtained binding constant implies that the binding of FPI with nanoparticles was influenced by the surface modification of ZnO nanoparticles with Cu and Ag.

  15. Luminescence and Hall Effect of Ion Implanted Layers in ZnO.

    DTIC Science & Technology

    1976-10-01

    possible a zeolite trap and baffle were installed in the diffusion pump line. Also, the system was always roughed out using a Vac Sorb, rather than a...AÜVcJJLI8<JV)AllSN31NI 135 ...... m .—. itaM—— . • ...... - - -"-’ ’•«•• ’"•• ••• ’ ’" • ••’ • !• --—-•-» nap AFML-TR-75-161 O O in O

  16. Direct observation of voltage barriers in ZnO varistors

    NASA Technical Reports Server (NTRS)

    Krivanek, O. L.; Williams, P.; Lin, Y.-C.

    1979-01-01

    Voltage barriers in a ZnO varistor have been imaged by voltage-contrast scanning electron microscopy. They are due to grain boundaries and are capable of supporting voltage differences of up to about 4 V.

  17. Inverter Circuits using Pentacene and ZnO Transistors

    NASA Astrophysics Data System (ADS)

    Iechi, Hiroyuki; Watanabe, Yasuyuki; Kudo, Kazuhiro

    2007-04-01

    We report two types of integrated circuits based on a pentacene static-induction transistor (SIT), a pentacene thin-film transistor (TFT) and a zinc oxide (ZnO) TFT. The operating characteristics of a p-p inverter using pentacene SITs and a complementary inverter using a p-channel pentacene TFT and an n-channel ZnO TFT are described. The basic operation of logic circuits at a low voltage was achieved for the first time using the pentacene SIT inverter and complementary circuits with hybrid inorganic and organic materials. Furthermore, we describe the electrical properties of the ZnO films depending on sputtering conditions, and the complementary circuits using ZnO and pentacene TFTs.

  18. Synthesis, characterization, and green luminescence in ZnO nanocages.

    PubMed

    Snure, Michael; Tiwari, Ashutosh

    2007-02-01

    In this paper, we report the synthesis, characterization and observation of green luminescence in ZnO nanocages. A novel low temperature solution-based technique has been developed for growing highly porous ZnO nano-cages from coarse ZnO precursor powders. Various samples, prepared in this study, were characterized using several different characterization tools such as X-ray diffraction, Scanning Electron Microscopy, Energy Dispersive X-ray Spectroscopy, Raman, Photoluminescence and Optical Transmission Spectroscopy. It has been shown that ZnO nanocages exhibit green luminescence, with PL data showing a broad green peak at 510 nm. The shift and broadening in the luminescence peaks are understood to arise because of the onset of deep level defects in the system.

  19. Nanowire Array Gratings with ZnO Combs

    SciTech Connect

    Pan, Zhengwei; Mahurin, Shannon Mark; Dai, Sheng; Lowndes, Douglas H

    2005-01-01

    Diffraction gratings are mainly manufactured by mechanical ruling, interference lithography, or resin replication, which generally require expensive equipment, complicated procedures, and a stable environment. We describe the controlled growth of self-organized microscale ZnO comb gratings by a simple one-step thermal evaporation and condensation method. The ZnO combs consist of an array of very uniform, perfectly aligned, evenly spaced and long single-crystalline ZnO nanowires or nanobelts with periods in the range of 0.2 to 2 {mu}m. Diffraction experiments show that the ZnO combs can function as a tiny three-beam divider that may find applications in miniaturized integrated optics such as three-beam optical pickup systems.

  20. Pressure-dependent photoluminescence study of ZnO nanowires

    SciTech Connect

    Shan, W.; Walukiewicz, W.; Ager III, J.W.; Yu, K.M.; Zhang, Y.; Mao, S.S.; Kling, R.

    2004-09-13

    The pressure dependence of the photoluminescence (PL) transition associated with the fundamental band gap of ZnO nanowires has been studied at pressures up to 15 GPa. ZnO nanowires are found to have a higher structural phase transition pressure around 12 GPa as compared to 9.0 GPa for bulk ZnO. The pressure-induced energy shift of the near band-edge luminescence emission yields a linear pressure coefficient of 29.6 meV/GPa with a small sublinear term of -0.43 meV/GPa{sup 2}. An effective hydrostatic deformation potential -3.97 eV for the direct band gap of the ZnO nanowires is derived from the result.

  1. Li doped ZnO thin films for optoelectronic applications

    NASA Astrophysics Data System (ADS)

    Sandeep, K. M.; Bhat, Shreesha; Serrao, F. J.; Dharmaprakash, S. M.

    2016-05-01

    We have prepared undoped (ZnO) and Li doped ZnO (LZO) thin films using cost effective sol gel spin coating method.The structural properties were analyzed by X-ray diffraction, and it showed that Li ions occupied interstitial positions in the LZO film. The optical properties like band bending effect, absorption length, band edge sharpness, which have direct impact on solar cell performance has been calculated. The room temperature photoluminescence spectra of the films showed dominant blue emission with CIE coordinate numbers (0.1384, 0.0836) for ZnO and (0.1356, 0.0910) for LZO. The dominating wavelength of the blue emission is present at 470.9 nm and 472.3 nm for ZnO and LZO films respectively. The structural and optical parameters determined in the present study could be used in LED applications.

  2. Nanostructured ZnO Films for Room Temperature Ammonia Sensing

    NASA Astrophysics Data System (ADS)

    Dhivya Ponnusamy; Sridharan Madanagurusamy

    2014-09-01

    Zinc oxide (ZnO) thin films have been deposited by a reactive dc magnetron sputtering technique onto a thoroughly cleaned glass substrate at room temperature. X-ray diffraction revealed that the deposited film was polycrystalline in nature. The field emission scanning electron micrograph (FE-SEM) showed the uniform formation of a rugby ball-shaped ZnO nanostructure. Energy dispersive x-ray analysis (EDX) confirmed that the film was stoichiometric and the direct band gap of the film, determined using UV-Vis spectroscopy, was 3.29 eV. The ZnO nanostructured film exhibited better sensing towards ammonia (NH3) at room temperature (˜30°C). The fabricated ZnO film based sensor was capable of detecting NH3 at as low as 5 ppm, and its parameters, such as response, selectivity, stability, and response/recovery time, were also investigated.

  3. Direct intralymphatic injection of radiolabeled sup 111 In-T101 in patients with cutaneous T-cell lymphoma

    SciTech Connect

    Mulshine, J.L.; Carrasquillo, J.A.; Weinstein, J.N.; Keenan, A.M.; Reynolds, J.C.; Herdt, J.; Bunn, P.A.; Sausville, E.; Eddy, J.; Cotelingam, J.D. )

    1991-01-15

    Direct intralymphatic administration of radiolabeled monoclonal antibody in targeting antigen-bearing lymphoma cells in regional lymph nodes of patients with cutaneous T-cell lymphoma was evaluated. Seven consecutive patients undergoing staging lymphangiography received intralymphatic infusions of {sup 111}In-T101 to evaluate lymph node involvement. This procedure was accomplished without significant complication. The {sup 111}In-T101 rapidly distributed throughout the regional lymphatic compartment and passed into the systemic circulation. Tumor-bearing sites in the inguinal-femoral lymph nodes retained from 0.42 to 4.8% of the injected dose of radiolabeled antibody. Three patients were upstaged to Stage IVA based on tumor involvement found after radiolymphoscintigraphy-directed biopsy of groin lymph nodes, selected because of intense radioactivity by gamma camera imaging. Compared with previously reported s.c. antibody administration, there was a marked reduction in the radioactive exposure of normal tissues at the injection sites in the lower extremities. Direct intralymphatic delivery of {sup 111}In-T101 appears to be a feasible, efficient method for delivering therapeutic doses of radiolabeled antibody.

  4. [111In-DOTA]Somatostatin-14 analogs as potential pansomatostatin-like radiotracers - first results of a preclinical study

    PubMed Central

    2012-01-01

    Background In this study, we report on the synthesis, radiolabeling, and biological evaluation of two new somatostatin-14 (SS14) analogs, modified with the universal chelator DOTA. We were interested to investigate if and to what extent such radiotracer prototypes may be useful for targeting sst1-5-expressing tumors in man but, most importantly, to outline potential drawbacks and benefits associated with their use. Methods AT1S and AT2S (DOTA-Ala1-Gly2-c[Cys3-Lys4-Asn5-Phe6-Phe7-Trp8/DTrp8-Lys9-Thr10-Phe11-Thr12-Ser13-Cys14-OH], respectively) were synthesized on the solid support and labeled with 111In. The sst1-5 affinity profile of AT1S/AT2S was determined by receptor autoradiography using [Leu8,dTrp22,125I-Tyr25]SS28 as radioligand. The ability of AT2S to stimulate sst2 or sst3 internalization was qualitatively analyzed by an immunofluorescence-based internalization assay using hsst2- or hsst3-expressing HEK293 cells. Furthermore, the internalization of the radioligands [111In]AT1S and [111In]AT2S was studied at 37 °C in AR4-2J cells endogenously expressing sst2. The in vivo stability of [111In]AT1S and [111In]AT2S was tested by high-performance liquid chromatography analysis of mouse blood collected 5 min after radioligand injection, and biodistribution was studied in normal mice. Selectively for [111In]AT2S, biodistribution was further studied in SCID mice bearing AR4-2J, HEK293-hsst2A+, -hsst3+ or -hsst5+ tumors. Results The new SS14-derived analogs were obtained by solid phase peptide synthesis and were easily labeled with 111In. Both SS14 conjugates, AT1S, and its DTrp8 counterpart, AT2S, showed a pansomatostatin affinity profile with the respective hsst1-5 IC50 values in the lower nanomolar range. In addition, AT2S behaved as an agonist for sst2 and sst3 since it stimulated receptor internalization. The 111In radioligands effectively and specifically internalized into rsst2A-expressing AR4-2J cells with [111In]AT2S internalizing faster than [111In]AT1

  5. Vapor Transport of ZnO in Closed Ampoules

    NASA Technical Reports Server (NTRS)

    Palosz, Witold

    2005-01-01

    Vapor transport of ZnO by PVT and CVT using carbon, carbon monoxide, and hydrogen as the transport agents was studied. Theoretical calculations of the mass flux were based on equilibrium thermodynamics and 1-D diffusional mass transport. Experimental results were found to be consistent with theoretical predictions. NO apparent kinetic limitations to sublimation were observed. Slow reaction of carbon with ZnO source was found.

  6. Photoluminescence of sequential infiltration synthesized ZnO nanostructures

    NASA Astrophysics Data System (ADS)

    Ocola, Leonidas E.; Gosztola, David J.; Yanguas-Gil, Angel; Suh, Hyo-Seon; Connolly, Aine

    2016-02-01

    For the past several years there have been ongoing efforts to incorporate zinc oxide (ZnO) inside polymethyl methacrylate (PMMA), in the form of nanoparticles or quantum dots, to combine their optical properties for multiple applications. We have investigated a variation of atomic layer deposition (ALD), called sequential infiltration synthesis (SiS), as an alternate method to incorporate ZnO and other oxides inside the polymer. PMMA is a well-known ebeam resist. We can expose and develop patterns useful for photonics or sensing applications first, and then convert them afterwards into a hybrid oxide material with enhanced photonic, or sensing, properties. This is much easier than micromachining films of ZnO or other similar oxides because they are difficult to etch. The amount of ZnO formed inside the polymer film is magnitudes higher than equivalent amount deposited on a flat 2D surface, and the intensity of the photoemission suggests there is an enhancement created by the polymer-ZnO interaction. Photoemission from thin films exhibit photoemission similar to intrinsic ZnO with oxygen vacancies. These vacancies can be removed by annealing the sample at 500°C in an oxygen rich environment. SiS ZnO exhibits unusual photoemission properties for thick polymer films, emitting at excitations wavelengths not found in bulk or standard ZnO. Finally we have shown that patterning the polymer and then doing SiS ZnO treatment afterwards allows modifying or manipulating the photoemission spectra. This opens the doors to novel photonic applications.

  7. Graphene synthesis by ion implantation

    PubMed Central

    Garaj, Slaven; Hubbard, William; Golovchenko, J. A.

    2010-01-01

    We demonstrate an ion implantation method for large-scale synthesis of high quality graphene films with controllable thickness. Thermally annealing polycrystalline nickel substrates that have been ion implanted with carbon atoms results in the surface growth of graphene films whose average thickness is controlled by implantation dose. The graphene film quality, as probed with Raman and electrical measurements, is comparable to previously reported synthesis methods. The implantation synthesis method can be generalized to a variety of metallic substrates and growth temperatures, since it does not require a decomposition of chemical precursors or a solvation of carbon into the substrate. PMID:21124725

  8. Implant biomaterials: A comprehensive review

    PubMed Central

    Saini, Monika; Singh, Yashpal; Arora, Pooja; Arora, Vipin; Jain, Krati

    2015-01-01

    Appropriate selection of the implant biomaterial is a key factor for long term success of implants. The biologic environment does not accept completely any material so to optimize biologic performance, implants should be selected to reduce the negative biologic response while maintaining adequate function. Every clinician should always gain a thorough knowledge about the different biomaterials used for the dental implants. This article makes an effort to summarize various dental bio-materials which were used in the past and as well as the latest material used now. PMID:25610850

  9. Synthesis, characteristics and antimicrobial activity of ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Janaki, A. Chinnammal; Sailatha, E.; Gunasekaran, S.

    2015-06-01

    The utilization of various plant resources for the bio synthesis of metallic nano particles is called green technology and it does not utilize any harmful protocols. Present study focuses on the green synthesis of ZnO nano particles by Zinc Carbonate and utilizing the bio-components of powder extract of dry ginger rhizome (Zingiber officinale). The ZnO nano crystallites of average size range of 23-26 nm have been synthesized by rapid, simple and eco friendly method. Zinc oxide nano particles were characterized by using X-ray diffraction (XRD), Scanning Electron Microscope (SEM), Energy Dispersive X-ray spectroscopy (EDX). FTIR spectra confirmed the adsorption of surfactant molecules at the surface of ZnO nanoparticles and the presence of ZnO bonding. Antimicrobial activity of ZnO nano particles was done by well diffusion method against pathogenic organisms like Klebsiella pneumonia, Staphylococcus aureus and Candida albicans and Penicillium notatum. It is observed that the ZnO synthesized in the process has the efficient antimicrobial activity.

  10. Synthesis, characteristics and antimicrobial activity of ZnO nanoparticles.

    PubMed

    Janaki, A Chinnammal; Sailatha, E; Gunasekaran, S

    2015-06-05

    The utilization of various plant resources for the bio synthesis of metallic nano particles is called green technology and it does not utilize any harmful protocols. Present study focuses on the green synthesis of ZnO nano particles by Zinc Carbonate and utilizing the bio-components of powder extract of dry ginger rhizome (Zingiber officinale). The ZnO nano crystallites of average size range of 23-26 nm have been synthesized by rapid, simple and eco friendly method. Zinc oxide nano particles were characterized by using X-ray diffraction (XRD), Scanning Electron Microscope (SEM), Energy Dispersive X-ray spectroscopy (EDX). FTIR spectra confirmed the adsorption of surfactant molecules at the surface of ZnO nanoparticles and the presence of ZnO bonding. Antimicrobial activity of ZnO nano particles was done by well diffusion method against pathogenic organisms like Klebsiella pneumonia, Staphylococcus aureus and Candida albicans and Penicillium notatum. It is observed that the ZnO synthesized in the process has the efficient antimicrobial activity.

  11. Applicability check of ZnO crystals for device applications

    NASA Astrophysics Data System (ADS)

    Bhowmick, Mithun; Ullrich, Bruno; Ariza, David; Xi, Haowen

    2014-03-01

    There has always been vital interest in wide-band gap semiconductors for their applicability in short-wavelength photonic devices and in electronic devices operating in high frequency regime. Historically, ZnO was never favored as a potential material for the above applications primarily because of difficulty in growing it. This situation, however, has improved drastically in the past decade thereby renewing the attention on this material system. Hence, ZnO is being proposed for potential light emitting devices in the blue and UV regions of electromagnetic spectrum. ZnO single crystals are also being considered for high power transistors. In this work, we present investigations of optical properties of pure (99.99%) ZnO performing transmittance, reflectance, Raman, and photoluminescence measurements. The ZnO single crystals employed in this work, were obtained commercially. We present detailed analysis of the measured data through theoretical calculations. Our results identify the state-of-the-art application potential of commercially available ZnO, revealing its advantages and limitations when compared to similar materials such as GaN.

  12. High efficient ZnO nanowalnuts photocatalyst: A case study

    SciTech Connect

    Yan, Feng; Zhang, Siwen; Liu, Yang; Liu, Hongfeng; Qu, Fengyu; Cai, Xue; Wu, Xiang

    2014-11-15

    Highlights: • Walnut-like ZnO nanostructures are synthesized through a facile hydrothermal method. • Morphologies and microstructures of the as-obtained ZnO products were investigated. • The photocatalytic results demonstrate that methyl orange (MO) aqueous solution can be degraded over 97% after 45 min under UV light irradiation. - Abstract: Walnut-like ZnO nanostructures are successfully synthesized through a facile hydrothermal method. The structure and morphology of the as-synthesized products were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). The photocatalytic properties of ZnO nanowalnuts are investigated by photodegradating several organic dyes, such as Congo red (CR), methyl orange (MO) and eosin red aqueous solutions under UV irradiation, respectively. The results demonstrate that methyl orange (MO) aqueous solution can be degraded over 97% after 45 min under UV light irradiation. In addition, eosin red and Congo red (CR) aqueous solution degradation experiments are also conducted in the same condition, respectively. It showed that ZnO nanowalnuts represent high photocatalytic activities with a degradation efficiency of 87% for CR with 115 min of irradiation and 97% for eosin red with 55 min of irradiation. The reported ZnO products may be promising candidates as the photocatalysts in waste water treatment.

  13. Cytotoxicity of ZnO Nanowire Arrays on Excitable Cells.

    PubMed

    Wang, Yongchen; Wu, Yu; Quadri, Farhan; Prox, Jordan D; Guo, Liang

    2017-04-07

    Zinc oxide (ZnO) nanowires have been widely studied for their applications in electronics, optics, and catalysts. Their semiconducting, piezoelectric, fluorescent, and antibacterial properties have also attracted broad interest in their biomedical applications. Thus, it is imperative to evaluate the biosafety of ZnO nanowires and their biological effects. In this study, the cellular level biological effects of ZnO nanowire arrays are specifically tested on three types of excitable cells, including NG108-15 neuronal cell line, HL-1 cardiac muscle cell line, and neonatal rat cardiomyocytes. Vertically aligned and densely packed ZnO nanowire arrays are synthesized using a solution-based method and used as a substrate for cell culture. The metabolism levels of all three types of cells cultured on ZnO nanowire arrays are studied using the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assays of a full factorial design. Under the studied settings, the results show statistically significant inhibitory effects of ZnO nanowire arrays on the metabolism of NG108-15 and HL-1 cells in comparison to gold, glass, and polystyrene substrates, and on the metabolism of cardiomyocytes in comparison to gold substrate.

  14. Thermoluminescence properties of sintered ZnO

    NASA Astrophysics Data System (ADS)

    Borbón-Nuñez, H. A.; Cruz-Vázquez, C.; Bernal, R.; Kitis, G.; Furetta, C.; Castaño, V. M.

    2014-11-01

    New pellet-shaped ZnO phosphors were synthesized using a controlled chemical reaction. Some samples were sintered at 1123, 1173 or 1223 K during 24 h in air, and then exposed to beta particle irradiation in the dose range from 25 to 800 Gy to investigate their thermoluminescence (TL) properties. By considering their sensitivity, reproducibility, and fading features, samples sintered at 1173 K exhibit the best dosimetric characteristics. From computerized glow curve deconvolution that was carried out using a general order equation, the kinetics parameters were computed, and it was found that the glow curves are composed by six individual TL peaks with kinetics order ranging from 1.2 to 1.8.

  15. Defect engineering of ZnO

    NASA Astrophysics Data System (ADS)

    Weber, M. H.; Selim, F. A.; Solodovnikov, D.; Lynn, K. G.

    2008-10-01

    The defect responsible for the transparent to red color change of nominally undoped ZnO bulk single crystals is investigated. Upon annealing in the presence of metallic Zn as reported by Halliburton et al. and also Ti and Zr a native defect forms with an energy level about 0.7 eV below the conduction band. This change is reversible upon annealing in oxygen. Optical transmission data along with positron depth profiles and annealing studies are combined to identify the defect as oxygen vacancies. Vacancy clustering occurs at about 500 °C if isolated zinc and oxygen vacancies. In the absence of zinc vacancies, clusters form at about 800 °C.

  16. Defect properties of ZnO nanowires

    NASA Astrophysics Data System (ADS)

    Stehr, J. E.; Devika, M.; Reddy, N. Koteeswara; Tu, C. W.; Chen, W. M.; Buyanova, I. A.

    2014-02-01

    In this work we examined optical and defect properties of as-grown and Ni-coated ZnO nanowires (NWs) grown by rapid thermal chemical vapor deposition by means of optically detected magnetic resonance (ODMR). Several grown-in defects are revealed by monitoring visible photoluminescence (PL) emissions and are attributed to Zn vacancies, O vacancies, a shallow (but not effective mass) donor and exchange-coupled pairs of a Zn vacancy and a Zn interstitial. It is also found that the same ODMR signals are detected in the as-grown and Ni-coated NWs, indicating that metal coatings does not significantly affect formation of the aforementioned defects and that the observed defects are located in the bulk of the NWs.

  17. Implantable medical sensor system

    DOEpatents

    Darrow, Christopher B.; Satcher, Jr., Joe H.; Lane, Stephen M.; Lee, Abraham P.; Wang, Amy W.

    2001-01-01

    An implantable chemical sensor system for medical applications is described which permits selective recognition of an analyte using an expandable biocompatible sensor, such as a polymer, that undergoes a dimensional change in the presence of the analyte. The expandable polymer is incorporated into an electronic circuit component that changes its properties (e.g., frequency) when the polymer changes dimension. As the circuit changes its characteristics, an external interrogator transmits a signal transdermally to the transducer, and the concentration of the analyte is determined from the measured changes in the circuit. This invention may be used for minimally invasive monitoring of blood glucose levels in diabetic patients.

  18. Broad beam ion implanter

    DOEpatents

    Leung, K.N.

    1996-10-08

    An ion implantation device for creating a large diameter, homogeneous, ion beam is described, as well as a method for creating same, wherein the device is characterized by extraction of a diverging ion beam and its conversion by ion beam optics to an essentially parallel ion beam. The device comprises a plasma or ion source, an anode and exit aperture, an extraction electrode, a divergence-limiting electrode and an acceleration electrode, as well as the means for connecting a voltage supply to the electrodes. 6 figs.

  19. Broad beam ion implanter

    DOEpatents

    Leung, Ka-Ngo

    1996-01-01

    An ion implantation device for creating a large diameter, homogeneous, ion beam is described, as well as a method for creating same, wherein the device is characterized by extraction of a diverging ion beam and its conversion by ion beam optics to an essentially parallel ion beam. The device comprises a plasma or ion source, an anode and exit aperture, an extraction electrode, a divergence-limiting electrode and an acceleration electrode, as well as the means for connecting a voltage supply to the electrodes.

  20. Age at implantation and auditory memory in cochlear implanted children.

    PubMed

    Mikic, B; Miric, D; Nikolic-Mikic, M; Ostojic, S; Asanovic, M

    2014-05-01

    Early cochlear implantation, before the age of 3 years, provides the best outcome regarding listening, speech, cognition an memory due to maximal central nervous system plasticity. Intensive postoperative training improves not only auditory performance and language, but affects auditory memory as well. The aim of this study was to discover if the age at implantation affects auditory memory function in cochlear implanted children. A total of 50 cochlear implanted children aged 4 to 8 years were enrolled in this study: early implanted (1-3y) n = 27 and late implanted (4-6y) n = 23. Two types of memory tests were used: Immediate Verbal Memory Test and Forward and Backward Digit Span Test. Early implanted children performed better on both verbal and numeric tasks of auditory memory. The difference was statistically significant, especially on the complex tasks. Early cochlear implantation, before the age of 3 years, significantly improve auditory memory and contribute to better cognitive and education outcomes.

  1. Microwave synthesis and photocatalytic activities of ZnO bipods with different aspect ratios

    SciTech Connect

    Sun, Fazhe; Zhao, Zengdian; Qiao, Xueliang; Tan, Fatang; Wang, Wei

    2016-02-15

    Highlights: • We synthesized linked ZnO nanorods by a facile microwave method. • The effect of reaction parameters on ZnO was investigated. • ZnO bipods with different aspect ratios were prepared. • The photocatalytic performance of ZnO bipods was evaluated. - Abstract: Linked ZnO nanorods have been successfully prepared via a facile microwave method without any post-synthesis treatment. The X-ray diffraction (XRD) patterns indicated the precursor had completely transformed into the pure ZnO crystal. The images of field emitting scanning electron microscope (FESEM) and transmission electron microscope (TEM) showed that linked ZnO nanorods consisted predominantly of ZnO bipods. The formation process of the ZnO bipods was clearly discussed. ZnO bipods with different aspect ratios have been obtained by tuning the concentrations of reagents and microwave power. Moreover, the photocatalytic performance of ZnO bipods with different aspect ratios for degradation of methylene blue was systematically evaluated. The results of photocatalytic experiments showed that the photocatalytic activity increased with the aspect ratios of ZnO bipods increased. The reason is that ZnO bipods with larger aspect ratio have higher surface area, which can absorb more MB molecules to react with ·OH radicals.

  2. Piezoelectric nanogenerators based on ZnO and M13 Bacteriophage nanostructures (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Shin, Dong-Myeong; Kim, Kyujungg; Hong, Suck Won; Oh, Jin-Woo; Kim, Hyung Kook; Hwang, Yoon-Hwae

    2016-09-01

    Recently, the portable and wearable electronic devices, operated in the power range of microwatt to miliwatt, become available thank to the nanotechnology development and become an essential element for a comfortable life. Our recent research interest mainly focuses on the fabrication of piezoelectric nanogenerators based on smart nanomaterials such as zinc oxide novel nanostructure, M13 bacteriophage. In this talk, we present a simple strategy for fabricating the freestanding ZnO nanorods/graphene/ZnO nanorods double sided heterostructures. The characterization of the double sided heterostructures by using SEM, and Raman scattering spectroscopy reveals the key process and working mechanism of a formation of the heterostructure. The mechanism is discussed in detail in term of the decomposed seed layer and the vacancy defect of graphene. The approach consists of a facile one-step fabrication process and could achieve ZnO coverage with a higher number density than that of the epitaxial single heterostructure. The resulting improvement in the number density of nanorods has a direct beneficial effect on the double side heterostructured nanogenerator performance. The total output voltage and current density are improved up to 2 times compared to those of a single heterostructure due to the coupling of the piezoelectric effects from both upward and downward grown nanorods. The facile one-step fabrication process suggests that double sided heterostructures would improve the performance of electrical and optoelectrical device, such as touch pad, pressure sensor, biosensor and dye-sensitized solar cells. Further, ioinspired nanogenerators based on vertically aligned phage nanopillars are inceptively demonstrated. Vertically aligned phage nanopillars enable not only a high piezoelectric response but also a tuneable piezoelectricity. Piezoelectricity is also modulated by tuning of the protein's dipoles in each phage. The sufficient electrical power from phage nanopillars thus

  3. Comparative toxicity of nano ZnO and bulk ZnO towards marine algae Tetraselmis suecica and Phaeodactylum tricornutum.

    PubMed

    Li, Jiji; Schiavo, Simona; Rametta, Gabriella; Miglietta, Maria Lucia; La Ferrara, Vera; Wu, Changwen; Manzo, Sonia

    2017-01-10

    The wide use of ZnO nanoparticles in a number of products implies an increasing release into the marine environment, resulting in the need to evaluate the potential effects upon organisms, and particularly phytoplankton, being at the base of the throphic chain. To this aim, dose-response curves for the green alga Tetraselmis suecica and the diatom Phaeodactylum tricornutum derived from the exposure to nano ZnO (100 nm) were evaluated and compared with those obtained for bulk ZnO (200 nm) and ionic zinc. The toxic effects to both algae species were reported as no observable effect concentration (NOEC) of growth inhibition and as 1, 10, and 50% effect concentrations (EC1, EC10, and EC50). The toxicity decreased in the order nano ZnO > Zn(2+) > bulk ZnO. EC50 values for nano ZnO were 3.91 [3.66-4.14] mg Zn/L towards the green microalgae and 1.09 [0.96-1.57] mg Zn/L towards the diatom, indicating a higher sensitivity of P. tricornutum. The observed diverse effects can be ascribed to the interaction occurring between different algae and ZnO particles. Due to algae motility, ZnO particles were intercepted in different phases of aggregation and sedimentation processes, while algae morphology and size can influence the level of entrapment by NP aggregates.This underlines the need to take into account the peculiarity of the biological system in the assessment of NP toxicity.

  4. [Implant rehabilitation of distal mandibular atrophy using a blade implant].

    PubMed

    Veron, C; Chanavaz, M

    1997-11-01

    After a brief revision of the anatomy of the posterior mandible and its natural resorption pattern, the ramus plate-form implant would be the implant of choice for the rehabilitation of this region. This "site specific" implant is inserted on the top of the crest and superficially impacted within the residual alveolar bone at the distal segment of the horizontal branch and guided to climb parallel to the anterior aspect of the ascending ramus. Its form and specific dimensions are perfectly compatible with the frequently limited quantity of available bone above the nerve canal in patients with advanced atrophy of the posterior mandible. It provides a predictable abutment for the implant-supported or dento-implant-supported prostheses of the posterior mandible.

  5. Self-assembled ZnO nanoparticles on ZnO microsheet: ultrafast synthesis and tunable photoluminescence properties

    NASA Astrophysics Data System (ADS)

    Brahma, Sanjaya; Khatei, Jayakrishna; Sunkara, S.; Lo, K.-Y.; Shivashankar, S. A.

    2015-06-01

    We report on the tunable photoluminescence characteristics of porous ZnO microsheets fabricated within 1-5 min of microwave irradiation in the presence of a capping agent such as citric acid, and mixture of citric acid with polyvinylpyrrolidone (PVP). The UV emission intensity reduces to 60% and visible emission increases tenfold when the molar concentration of citric acid is doubled. Further diminution of the intensity of UV emission (25%) is observed when PVP is mixed with citric acid. The addition of nitrogen donor ligands to the parent precursor leads to a red shift in the visible luminescence. The deep level emission covers the entire visible spectrum and gives an impression of white light emission from these ZnO samples. The detailed luminescence mechanism of our ZnO samples is described with the help of a band diagram constructed by using the theoretical models that describe the formation energy of the defect energy levels within the energy band structure. Oxygen vacancies play the key role in the variation of the green luminescence in the ZnO microsheets. Our research findings provide an insight that it is possible to retain the microstructure and simultaneously introduce defects into ZnO. The growth of the ZnO microsheets may be due to the self assembly of the fine sheets formed during the initial stage of nucleation.

  6. Piezoelectric and semiconducting coupled power generating process of a single ZnO belt/wire. A technology for harvesting electricity from the environment.

    PubMed

    Song, Jinhui; Zhou, Jun; Wang, Zhong Lin

    2006-08-01

    This paper presents the experimental observation of piezoelectric generation from a single ZnO wire/belt for illustrating a fundamental process of converting mechanical energy into electricity at nanoscale. By deflecting a wire/belt using a conductive atomic force microscope tip in contact mode, the energy is first created by the deflection force and stored by piezoelectric potential, and later converts into piezoelectric energy. The mechanism of the generator is a result of coupled semiconducting and piezoelectric properties of ZnO. A piezoelectric effect is required to create electric potential of ionic charges from elastic deformation; semiconducting property is necessary to separate and maintain the charges and then release the potential via the rectifying behavior of the Schottky barrier at the metal-ZnO interface, which serves as a switch in the entire process. The good conductivity of ZnO is rather unique because it makes the current flow possible. This paper demonstrates a principle for harvesting energy from the environment. The technology has the potential of converting mechanical movement energy (such as body movement, muscle stretching, blood pressure), vibration energy (such as acoustic/ultrasonic wave), and hydraulic energy (such as flow of body fluid, blood flow, contraction of blood vessels) into electric energy that may be sufficient for self-powering nanodevices and nanosystems in applications such as in situ, real-time, and implantable biosensing, biomedical monitoring, and biodetection.

  7. Synergistic toxicity of zno nanoparticles and dimethoate in mice: Enhancing their biodistribution by synergistic binding of serum albumin and dimethoate to zno nanoparticles.

    PubMed

    Yan, Xincheng; Xu, Xiaolong; Guo, Mingchun; Wang, Shasha; Gao, Shang; Zhu, Shanshan; Rong, Rui

    2017-04-01

    The extensive applications of ZnO nanoparticles (nano ZnO) and dimethoate (DM) have increased the risk of humans' co-exposure to nano ZnO and DM. Here, we report the synergistic effect of nano ZnO and DM on their biodistribution and subacute toxicity in mice. Nano ZnO and DM had a synergistic toxicity in mice. In contrast, bulk ZnO and DM did not cause an obvious synergistic toxicity in mice. Although nano ZnO was low toxic to mice, coexposure to nano ZnO and DM significantly enhanced DM-induced oxidative damage in the liver. Coadministration of nano ZnO with DM significantly increased Zn accumulation by 30.9 ± 1.9% and DM accumulation by 45.6 ± 2.2% in the liver, respectively. The increased accumulations of DM and Zn in the liver reduced its cholinesterase activity from 5.65 ± 0.32 to 4.37 ± 0.49 U/mg protein and induced hepatic oxidative stress. Nano ZnO had 3-fold or 2.4-fold higher binding capability for serum albumin or DM, respectively, than bulk ZnO. In addition, serum albumin significantly increased the binding capability of nano ZnO for DM by approximately four times via the interaction of serum albumin and DM. The uptake of serum albumin- and DM-bound nano ZnO by the macrophages significantly increased DM accumulation in mice. Serum albumins play an important role in the synergistic toxicity of nano ZnO and DM. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1202-1212, 2017.

  8. Implant Maintenance: A Clinical Update

    PubMed Central

    Gulati, Minkle; Govila, Vivek; Anand, Vishal; Anand, Bhargavi

    2014-01-01

    Introduction. The differences in the supporting structure of the implant make them more susceptible to inflammation and bone loss when plaque accumulates as compared to the teeth. Therefore, a comprehensive maintenance protocol should be followed to ensure the longevity of the implant. Material and Method. A research to provide scientific evidence supporting the feasibility of various implant care methods was carried out using various online resources to retrieve relevant studies published since 1985. Results. The electronic search yielded 708 titles, out of which a total of 42 articles were considered appropriate and finally included for the preparation of this review article. Discussion. A typical maintenance visit for patients with dental implants should last 1 hour and should be scheduled every 3 months to evaluate any changes in their oral and general history. It is essential to have a proper instrument selection to prevent damage to the implant surface and trauma to the peri-implant tissues. Conclusion. As the number of patients opting for dental implants is increasing, it becomes increasingly essential to know the differences between natural teeth and implant care and accept the challenges of maintaining these restorations. PMID:27437506

  9. Electrochemical Sensing, Photocatalytic and Biological Activities of ZnO Nanoparticles: Synthesis via Green Chemistry Route

    NASA Astrophysics Data System (ADS)

    Yadav, L. S. Reddy; Archana, B.; Lingaraju, K.; Kavitha, C.; Suresh, D.; Nagabhushana, H.; Nagaraju, G.

    2016-05-01

    In this paper, we have successfully synthesized ZnO nanoparticles (Nps) via solution combustion method using sugarcane juice as the novel fuel. The structure and morphology of the synthesized ZnO Nps have been analyzed using various analytical tools. The synthesized ZnO Nps exhibit excellent photocatalytic activity for the degradation of methylene blue dye, indicating that the ZnO Nps are potential photocatalytic semiconductor materials. The synthesized ZnO Nps also show good electrochemical sensing of dopamine. ZnO Nps exhibit significant bactericidal activity against Klebsiella aerogenes, Pseudomonas aeruginosa, Eschesichia coli and Staphylococcus aureus using agar well diffusion method. Furthermore, the ZnO Nps show good antioxidant activity by potentially scavenging 1-diphenyl-2-picrylhydrazyl (DPPH) radicals. The above studies clearly demonstrate versatile applications of ZnO synthesized by simple eco-friendly route.

  10. Luminance behavior of lithium-doped ZnO nanowires with p-type conduction characteristics.

    PubMed

    Ko, Won Bae; Lee, Jun Seok; Lee, Sang Hyo; Cha, Seung Nam; Sohn, Jung Inn; Kim, Jong Min; Park, Young Jun; Kim, Hyun Jung; Hong, Jin Pyo

    2013-09-01

    The present study describes the room-temperature cathodeluminescence (CL) and temperature-dependent photoluminescence (PL) properties of p-type lithium (Li)-doped zinc oxide (ZnO) nanowires (NWs) grown by hydrothermal doping and post-annealing processes. A ZnO thin film was used as a seed layer in NW growth. The emission wavelengths and intensities of undoped ZnO NWs and p-type Li-doped ZnO NWs were analyzed for comparison. CL and PL observations of post-annealed p-type Li-doped ZnO NWs clearly exhibited a dominant sharp band-edge emission. Finally, a n-type ZnO thin film/p-type annealed Li-doped ZnO NW homojunction diode was prepared to confirm the p-type conduction of annealed Li-doped ZnO NWs as well as the structural properties measured by transmission electron microscopy.

  11. Size-controllable growth of ZnO nanorods on Si substrate

    NASA Astrophysics Data System (ADS)

    Yu, Zhentao; Li, Hui; Qiu, Yining; Yang, Xu; Zhang, Wu; Xu, Ning; Sun, Jian; Wu, Jiada

    2017-01-01

    Here we report a simple two-step chemical-solution-based method to grow highly oriented and size-controllable ZnO nanorods on ZnO-seeded Si substrate. The morphology of the grown ZnO nanorods was examined by field emission scanning electron microscopy. The structure was characterized by X-ray diffraction and Raman scattering spectrum. Photoluminescence spectra were measured at room temperature and low temperatures to evaluate the photoluminescence properties of the ZnO nanorods. The grown ZnO nanorods are structured with hexagonal wurtzite. The diameter and length of ZnO nanorods can be controlled by varying the crystal quality of the underlying ZnO seed layers. The crystal quality of the seed layers gets improved as the deposition time and annealing temperature for ZnO seed layers are increased. The effects of annealing on the ZnO nanorods were also studied.

  12. Fabrication and photovoltaic properties of ZnO nanorods/perovskite solar cells

    SciTech Connect

    Shirahata, Yasuhiro; Tanaike, Kohei; Akiyama, Tsuyoshi; Fujimoto, Kazuya; Suzuki, Atsushi; Balachandran, Jeyadevan; Oku, Takeo

    2016-02-01

    ZnO nanorods/perovskite solar cells with different lengths of ZnO nanorods were fabricated. The ZnO nanorods were prepared by chemical bath deposition and directly confirmed to be hexagon-shaped nanorods. The lengths of the ZnO nanorads were controlled by deposition condition of ZnO seed layer. Photovoltaic properties of the ZnO nanorods/CH{sub 3}NH{sub 3}PbI{sub 3} solar cells were investigated by measuring current density-voltage characteristics and incident photon to current conversion efficiency. The highest conversion efficiency was obtained in ZnO nanorods/CH{sub 3}NH{sub 3}PbI{sub 3} with the longest ZnO nanorods.

  13. Regenerative Surgical Treatment of Peri-implantitis

    ClinicalTrials.gov

    2016-08-31

    Failure of Dental Implant Due to Infection; Infection; Inflammation; Peri-implantitis; Bacterial Infections; Bleeding of Subgingival Space; Molecular Sequence Variation; Periodontal Diseases; Mouth Diseases

  14. Progestin implants for female contraception.

    PubMed

    Croxatt, Horacio B

    2002-01-01

    Four different implants, in the form of capsules or covered rods, that release one of the synthetic progestins levonorgestrel, etonogestrel, Nestorone, or Elcometrine and nomegestrol acetate were reviewed. Biocompatible polymers or copolymers of polydimethyl/polymethylvinyl-siloxanes or ethylvinylacetate are used to hold the steroid crystals and to control the rate of release. Once inserted under the skin, these implants release the corresponding steroid continuously over prolonged periods, a process that can be readily interrupted by implant removal. During long-term use of the implant, the released steroid circulates in blood at a fairly stable level. The physical characteristics of the implants, including drug contents and rate of release, serum levels of the progestin during use, and the duration of their effective life are described. Total steroid loads vary in the range of 50 mg to 216 mg; average release rates are in the range of 30-100 ug/day, and effective lives from 6 months to 7 years.

  15. Bimodal fitting or bilateral implantation?

    PubMed

    Ching, Teresa Y C; Massie, Robyn; Van Wanrooy, Emma; Rushbrooke, Emma; Psarros, Colleen

    2009-01-01

    This paper summarises findings from studies that evaluated the benefits of bimodal fitting (combining a hearing aid and a cochlear implant in opposite ears) or bilateral cochlear implantation, relative to unilateral implantation, for children (Ching et al., 2007). On average, the size of binaural speech intelligibility advantages due to redundancy and head shadow was similar for the two bilateral conditions. An added advantage of bimodal fitting was that the low-frequency cues provided by acoustic hearing complemented the high-frequency cues conveyed by electric hearing in perception of voice and music. Some children with bilateral cochlear implants were able to use spatial separation between speech and noise to improve speech perception in noise. This is possibly a combined effect of the directional microphones in their implant systems and their ability to use spatial cues. The evidence to date supports the provision of hearing in two ears as the standard of care.

  16. Cochlear implantation following cerebellar surgery.

    PubMed

    Saeed, Shahad; Mawman, Deborah; Green, Kevin

    2011-08-01

    Cochlear implantation in patients with known central nervous system conditions can result in wide-ranging outcomes. The aim of this study is to report two cases of cochlear implantation outcomes in patients with acquired cerebellar ataxia following cerebellar surgery. The first is a female implanted with the Nucleus 24 implant in September 2000 and the second is a male implanted with a MED-EL Sonata Flexsoft electro-acoustic stimulation in July 2009. Programming these patients resulted in significant non-auditory stimulation which resulted in less than optimum map fittings. The patients did not gain any open set speech perception benefit although both of them gained an awareness of sound with the device. However, patient 2 elected to become a non-user because of the limited benefit.

  17. In vitro evaluation of bioactivity of SiO2-CaO-P2O5-Na2O-CaF2-ZnO glass-ceramics

    NASA Astrophysics Data System (ADS)

    Riaz, Madeeha; Zia, Rehana; Saleemi, Farhat; Bashir, Farooq; Hossain, Tousif; Kayani, Zohra

    2014-09-01

    Zinc is an essential trace element that stimulates bone formation but it is also known as an inhibitor of apatite crystal growth. In this work addition of ZnO to SiO2-CaO-P2O5-Na2O-CaF2 glass-ceramic system was made by conventional melt-quenching technique. DSC curves showed that the addition of ZnO moved the endothermic and exothermic peaks to lower temperatures. X-ray diffraction analysis did not reveal any additional phase caused by ZnO addition and showed the presence of wollastonite and hydroxyapatite crystalline phases only in all the glass-ceramic samples. As bio-implant apatite forming ability is an essential condition, the surface reactivity of the prepared glass-ceramic specimens was studied in vitro in Kokubo's simulated body fluid (SBF) [1] with ion concentration nearly equal to human blood plasma for 30 days at 37 °C under static condition. Atomic absorption spectroscopy (AAS) was used to study the changes in element concentrations in soaking solutions and XRD, FT-IR and SEM were used to elucidate surface properties of prepared glass-ceramics, which confirmed the formation of HCAp on the surface of all glass-ceramics. It was found that the addition of ZnO had a positive effect on bioactivity of glass-ceramics and made it a potential candidate for restoration of damaged bones.

  18. Multimodality Molecular Imaging of [18F]-Fluorinated Carboplatin Derivative Encapsulated in [111In]-Labeled Liposomes

    NASA Astrophysics Data System (ADS)

    Lamichhane, Narottam

    -(5-fluoro-pentyl)-2-methyl malonic acid as the labeling agent to coordinate with the cisplatin aqua complex. It was then used to treat various cell lines and compared with cisplatin and carboplatin at different concentrations ranging from 0.001 microM to 100 microM for 72 hrs and 96 hrs. IC50 values calculated from cell viability indicated that 19F-FCP is a more potent drug than Carboplatin. Manual radiosynthesis and characterization of [18F]-FCP was performed using [18F]-2-(5-fluoro-pentyl)-2-methyl malonic acid with coordination with cisplatin aqua complex. Automated radiosynthesis of [18F]-FCP was optimized using the manual synthetic procedures and using them as macros for the radiosynthesizer. [18F]-FCP was evaluated in vivo with detailed biodistribution studies and PET imaging in normal and KB 3-1 and KB 8-5 tumor xenograft bearing nude mice. The biodistribution studies and PET imaging of [18F]-FCP showed major uptake in kidneys which attributes to the renal clearance of radiotracer. In vivo plasma and urine stability demonstrated intact [18F]-FCP. [ 111In]-Labeled Liposomes was synthesized and physiochemical properties were assessed with DLS. [111In]-Labeled Liposome was evaluated in vivo with detailed pharmacokinetic studies and SPECT imaging. The biodistribution and ROI analysis from SPECT imaging showed the spleen and liver uptake of [111In]-Labeled Liposome and subsequent clearance of activity with time. [18F]-FCP encapsulated [111In]-Labeled Liposome was developed and physiochemical properties were characterized with DLS. [18F]-FCP encapsulated [111In]-Labeled Liposome was used for in vivo dual tracer PET and SPECT imaging from the same nanoconstruct in KB 3-1 (sensitive) and COLO 205 (resistant) tumor xenograft bearing nude mice. PET imaging of [18F]-FCP in KB 3-1 (sensitive) and COLO 205 (resistant) tumor xenograft bearing nude mice was performed. Naked [18F]-FCP and [18F]-FCP encapsulated [ 111In]-Labeled Liposome showed different pharmacokinetic profiles. PET

  19. Hydrogen Implants for Layer Exfoliation

    NASA Astrophysics Data System (ADS)

    Cherekdjian, S.; Couillard, J. G.; Wilcox, C.

    2011-01-01

    Researchers at Corning Incorporated have developed a process whereby single crystal silicon thin films are transferred onto a flat panel display glass substrate using hydrogen ion implantation. The energy of the implant controls the effective exfoliation thickness, agreeing well with SRIM calculations, while the hydrogen ion dose controls the size of the platelets formed. The ion dose was found to influence the final void defect count in exfoliated films. Finally, the ion beam and ion implant end-station cooling characteristics were investigated. These parameters control the effective implant heat load generated during ion beam processing. The temperature at which exfoliation occurs during an exfoliation heat cycle was found to be inversely proportional to the hydrogen ion dose when the temperature during ion implantation is <100 °C. The most sensitive exfoliation temperature to ion dose dependence was observed for cooler implants, i.e. <35 °C. Data indicates that at the minimum exfoliation dose the exfoliation temperature is reduced significantly by increasing the implant heat generated during ion beam processing. Higher hydrogen doses than the minimum required for exfoliation exhibit only a small exfoliation temperature variation with ion dose. By optimizing the implant heat load generated during ion beam processing it is observed that the efficiency of the exfoliation process is also enhanced. Implant temperatures of 150 to 160 °C were found to further reduce the minimum implant dose required for exfoliation by an additional 5%, as verified by calorimetric measurements. These results enable us to further conclude that hydrogen out-diffusion is not significant in this process.

  20. Sulfur-Doped Zinc Oxide (ZnO) Nanostars: Synthesis and Simulation of Growth Mechanism

    DTIC Science & Technology

    2011-10-01

    characterization, and ab initio simulations of star-shaped hexagonal zinc oxide ( ZnO ) nanowires . The ZnO nanostructures were synthesized by a low...temperature hydrothermal growth method. The cross-section of the ZnO nanowires transformed from a hexagon to a hexagram when sulfur dopants from thiourea...emission of multiple longitudinal-optical (LO) phonons [1, 2, 4, 5]. Variously shaped ZnO nanowires and nanoparticles are routinely synthesized, and their

  1. Effects of Chromium Dopant on Ultraviolet Photoresponsivity of ZnO Nanorods

    NASA Astrophysics Data System (ADS)

    Mokhtari, S.; Safa, S.; Khayatian, A.; Azimirad, R.

    2017-02-01

    Structural and optical properties of bare ZnO nanorods, ZnO-encapsulated ZnO nanorods, and Cr-doped ZnO-encapsulated ZnO nanorods have been investigated. Encapsulated ZnO nanorods were grown using a simple two-stage method in which ZnO nanorods were first grown on a glass substrate directly from a hydrothermal bath, then encapsulated with a thin layer of Cr-doped ZnO by dip coating. Comparative study of x-ray diffraction patterns showed that Cr was successfully incorporated into the shell layer of ZnO nanorods. Moreover, energy-dispersive x-ray spectroscopy confirmed presence of Cr in this sample. It was observed that the thickness of the shell layer around the core of the ZnO nanorods was at least about 20 nm. Transmission electron microscopy of bare ZnO nanorods revealed single-crystalline structure. Based on optical results, both the encapsulation process and addition of Cr dopant decreased the optical bandgap of the samples. Indeed, the optical bandgap values of Cr-doped ZnO-encapsulated ZnO nanorods, ZnO-encapsulated ZnO nanorods, and bare ZnO nanorods were 2.89 eV, 3.15 eV, and 3.34 eV, respectively. The ultraviolet (UV) parameters demonstrated that incorporation of Cr dopant into the shell layer of ZnO nanorods considerably facilitated formation and transportation of photogenerated carriers, optimizing their performance as a practical UV detector. As a result, the photocurrent of the Cr-doped ZnO-encapsulated ZnO nanorods was the highest (0.6 mA), compared with ZnO-encapsulated ZnO nanorods and bare ZnO nanorods (0.21 mA and 0.06 mA, respectively).

  2. Hierarchical Carbon Fibers with ZnO Nanowires for Volatile Sensing in Composite Curing (Postprint)

    DTIC Science & Technology

    2014-07-01

    AFRL-RX-WP-JA-2014-0171 HIERARCHICAL CARBON FIBERS WITH ZnO NANOWIRES FOR VOLATILE SENSING IN COMPOSITE CURING (POSTPRINT) Gregory...REPORT TYPE Interim 3. DATES COVERED (From – To) 16 April 2012 – 02 June 2014 4. TITLE AND SUBTITLE HIERARCHICAL CARBON FIBERS WITH ZnO NANOWIRES ...needed to demonstrate the use of Zinc Oxide (ZnO) nanowire coated carbon fibers as a volatile sensor. ZnO nanowires are demonstrated to function as

  3. Heteroepitaxial Growth and Doping of ZnO for Optoelectronic Applications

    DTIC Science & Technology

    2005-08-19

    synthesis and characterization of highly monodisperse transition metal doped ZnO nanoparticles," S.P. Singh, 0. Prealez...presented in MRS fall meeting, Nov.29-Dec.3, (2004). 9. " Synthesis and characterization of ZnO and Mn- ZnO nanocrystals for spintronic applications... synthesis of Mn doped ZnO was performed by a solution process at room temperature. This route is based on dehydration properties of

  4. Growth of Homoepitaxial ZnO Semiconducting Films

    NASA Technical Reports Server (NTRS)

    Zhu, Shen; Su, C.-H.; Lehoczky, S. L.; Harris, M. T.; George, M. A.; McCarty, P.

    1999-01-01

    As a high temperature wide-band-gap (3.3 eV at room temperature) semiconductor, ZnO has been used for many applications such as wave-guides, solar cells, and surface acoustic wave devices, Since ZnO has a 60 meV excitonic binding energy that makes it possible to produce excitonic lasing at room temperature, a recent surge of interest is to synthesize ZnO films for UV/blue/green laser diodes. These applications require films with a smooth surface, good crystal quality, and low defect density. Thus, homoepitaxial film growth is the best choice. Homoepitaxial films have been studied in terms of morphology, crystal structure, and electrical and optical properties. ZnO single crystal substrates grown by the hydrothermal method are mechanically polished and annealed in air for four hours before the films are deposited. The annealing temperature-dependence on ZnO substrate morphology and electrical properties is investigated. Films are synthesized by off-axis reactive sputtering deposition. This produces films that have very smooth surfaces with roughness less than or equal to 5 nm on a 5 microns x 5 microns area. The full width at half maximum of film theta rocking curves measured by the x-ray diffraction is slightly larger than that of the crystal substrate. Films are also characterized by measuring resistivity, optical transmittance, and photoluminescence. The properties of ZnO films grown on (0001) ZnO and (0001) sapphire substrates will also be compared and discussed.

  5. Tuning magnetism by biaxial strain in native ZnO.

    PubMed

    Peng, Chengxiao; Wang, Yuanxu; Cheng, Zhenxiang; Zhang, Guangbiao; Wang, Chao; Yang, Gui

    2015-07-07

    Magnetic ZnO, one of the most important diluted magnetic semiconductors (DMS), has attracted great scientific interest because of its possible technological applications in optomagnetic devices. Magnetism in this material is usually delicately tuned by the doping level, dislocations, and local structures. The rational control of magnetism in ZnO is a highly attractive approach for practical applications. Here, the tuning effect of biaxial strain on the d(0) magnetism of native imperfect ZnO is demonstrated through first-principles calculations. Our calculation results show that strain conditions have little effect on the defect formation energy of Zn and O vacancies in ZnO, but they do affect the magnetism significantly. For a cation vacancy, increasing the compressive strain will obviously decrease its magnetic moment, while tensile strain cannot change the moment, which remains constant at 2 μB. For a singly charged anion vacancy, however, the dependence of the magnetic moment on strain is opposite to that of the Zn vacancy. Furthermore, the ferromagnetic state is always present, irrespective of the strain type, for ZnO with two zinc vacancies, 2VZns. A large tensile strain is favorable for improving the Curie temperature and realizing room temperature ferromagnetism for ZnO-based native semiconductors. For ZnO with two singly charged oxygen vacancies, 2Vs, no ferromagnetic ordering can be observed. Our work points the way to the rational design of materials beyond ZnO with novel non-intrinsic functionality by simply tuning the strain in a thin film form.

  6. Quantitative in situ Assessment of the Somatostatin Receptor in Breast Cancer to Assess Response to Targeted Therapy with 111-in-Pentetreotide

    DTIC Science & Technology

    2007-05-01

    Somatostatin Receptor in Breast Cancer to Assess Response to Targeted Therapy with 111-in-Pentetreotide PRINCIPAL INVESTIGATOR: Gina G...Quantitative in situ Assessment of the Somatostatin Receptor in Breast Cancer to Assess Response to Targeted Therapy with 111-in-Pentetreotide 5b. GRANT NUMBER...Somatostatin (SST) is a peptide hormone implicated in the growth and progression of cancers and SSTR2 is the predominant receptor subtype expressed in

  7. Tribological properties of nitrogen implanted and boron implanted steels

    SciTech Connect

    Kern, K.T.; Walter, K.C.; Griffin, A.J. Jr.; Kung, H.; Lu, Y.; Nastasi, M.; Tesmer, J.R.; Fayeulle, S.

    1996-06-01

    Samples of a steel with high chrome content was implanted separately with 75 keV nitrogen ions and with 75 keV boron ions. Implanted doses of each ion species were 2-, 4-, and 8 {times} 10{sup 17}/cm{sup 2}. Retained doses were measured using resonant non-Rutherford Backscattering Spectrometry. Tribological properties were determined using a pin-on-disk test with a 6-mm diameter ruby pin with a velocity of 0.94 m/min. Testing was done at 10% humidity with a load of 377 g. Wear rate and coefficient of friction were determined from these tests. While reduction in the wear rate for nitrogen implanted materials was observed, greater reduction (more than an order of magnitude) was observed for boron implanted materials. In addition, reduction in the coefficient of friction for high-dose boron implanted materials was observed. Nano-indentation revealed a hardened layer near the surface of the material. Results from grazing incidence x-ray diffraction suggest the formation of Fe{sub 2}N and Fe{sub 3}N in the nitrogen implanted materials and Fe{sub 3}B in the boron implanted materials. Results from transmission electron microscopy will be presented.

  8. Double valve Implantation

    PubMed Central

    Stassano, Paolo; Mannacio, Vito; Musumeci, Antonino; Golino, Alessandro; Maida, Piero; Ferrigno, Vincenzo; Buonocore, Gaetano; Spampinato, Nicola

    1991-01-01

    From January 1976 through December 1987, 194 patients with a mean age of 43.3 ± 13.7 years (range, 11 to 74 years) underwent double (mitral and aortic) replacement of native valves with 8 types of bioprostheses: Carpentier-Edwards, 127 valves; Hancock, 76 valves; Liotta-Bioimplant, 57 valves; Ionescu-Shiley, 53 valves; Vascor, 27 valves; Carpentier-Edwards Pericardial, 22 valves; Angell-Shiley, 20 valves; and Implamedic, 6 valves. Concomitant cardiac procedures were performed in 25 patients (12.8%). There were 18 operative deaths (9.27%). Our retrospective analysis was restricted to 352 bioprostheses implanted in the 176 patients who survived surgery and were considered at risk for valve tissue failure. The overall cumulative duration of follow-up was 1,174.1 patient-years (range, 1 to 13 years). The durations of follow-up for specific valves were: Carpentier-Edwards, 920.2 valve-years; Hancock, 383.8 valve-years; Liotta-Bioimplant, 310.2 valve-years; Ionescu-Shiley, 357.7 valve-years; Vascor, 131.2 valve-years; Carpentier-Edwards Pericardial, 52.0 valve-years; Angell-Shiley, 167.0 valve-years; and Implamedic, 31.0 valve-years. Thirty patients had thromboembolic accidents, for a linearized incidence of 2.5% per patient-year. At 13 years, the actuarial freedom from thromboembolic accidents was 85.8% ± 10.7%. Nine patients had endocarditis, for a linearized incidence of 0.7% per patient-year. At 13 years, the actuarial freedom from endocarditis was 92.0% ± 1.5%. Twenty-four patients had valve tissue failure, for a cumulative linearized incidence of 1.87% per valve-year. The cumulative actuarial probability of freedom from valve tissue failure was 78.6% ± 3.7% at 10 years and 51.2% ± 10.7% at 13 years. The 24 patients with valve tissue failure all underwent reoperation: 20 of these had double valve replacement, 3 had aortic valve replacement alone, and 1 had mitral valve replacement alone. The mean interval between initial valve implantation and reoperation was

  9. Platelet turnover and kinetics in immune thrombocytopenic purpura: results with autologous 111In-labeled platelets and homologous 51Cr-labeled platelets differ

    SciTech Connect

    Heyns A du, P.; Badenhorst, P.N.; Loetter, M.G.P.; Pieters, H.; Wessels, P.; Kotze, H.F.

    1986-01-01

    Mean platelet survival and turnover were simultaneously determined with autologous 111In-labeled platelets (111In-AP) and homologous 51Cr-labeled platelets (51Cr-HP) in ten patients with chronic immune thrombocytopenic purpura (ITP). In vivo redistribution of the 111In-AP was quantitated with a scintillation camera and computer-assisted image analysis. The patients were divided into two groups: those with splenic platelet sequestration (spleen-liver 111In activity ratio greater than 1.4), and those with diffuse sequestration in the reticuloendothelial system. The latter patients had more severe ITP reflected by pronounced thrombocytopenia, decreased platelet turnover, and prominent early hepatic platelet sequestration. Mean platelet life span estimated with 51Cr-HP was consistently shorter than that of 111In-AP. Platelet turnover determined with 51Cr-HP was thus over-estimated. The difference in results with the two isotope labels was apparently due to greater in vivo elution of 51Cr. Although the limitations of the techniques should be taken into account, these findings indicate that platelet turnover is not always normal or increased in ITP, but is low in severe disease. We suggest that this may be ascribed to damage to megakaryocytes by antiplatelet antibody. The physical characteristics in 111In clearly make this radionuclide superior to 51Cr for the study of platelet kinetics in ITP.

  10. SiO2 and ZnO Dopants in 3D Printed TCP Scaffolds Enhances Osteogenesis and Angiogenesis in vivo

    PubMed Central

    Fielding, Gary; Bose, Susmita

    2013-01-01

    Calcium phosphate (CaP) scaffolds with three dimensionally (3D) interconnected pores play an important role in mechanical interlocking and biological fixation in bone implant applications. CaPs alone, however, are only osteoconductive (ability to guide bone growth). Much attention has been given to the incorporation of biologics and pharmacologics to add osteoinductive (ability to cause new bone growth) properties to CaP materials. Because biologics and pharmacologics are generally delicate compounds and also subject to increased regulatory scrutiny, there is a need to investigate alternative methods to introduce osteoinductivity to CaP materials. In this study silica (SiO2) and zinc oxide (ZnO) have been incorporated in to 3D printed β-tricalcium phosphate (TCP) scaffolds to investigate their potential to trigger osteoinduction in vivo. Silicon and zinc are trace elements that are common to bone and have also been shown to have many beneficial properties from increased bone regeneration to angiogenesis. Implants were placed in bicortical femur defects introduced to a murine model for up to 16 weeks. Addition of dopants into TCP increased the capacity for new early bone formation by modulating collagen I production and osteocalcin production. Neovascularization was found to be up to three times more than the pure TCP control group. The findings from this study indicate that the combination of SiO2 and ZnO dopants in TCP may be a viable alternative to introduce osteoinductive properties to CaPs. PMID:23871941

  11. ZnO nanoflowers: novel biogenic synthesis and enhanced photocatalytic activity.

    PubMed

    Tripathi, R M; Bhadwal, Akhshay Singh; Gupta, Rohit Kumar; Singh, Priti; Shrivastav, Archana; Shrivastav, B R

    2014-12-01

    We demonstrate a novel, unprecedented and eco-friendly mode for the biosynthesis of zinc oxide (ZnO) nanoflowers at ambient room temperature using Bacillus licheniformis MTCC 9555 and assessed their photocatalytic activity. The photocatalytic degradation of methylene blue (MB) dye was analyzed under UV-irradiation. An enhanced photocatalytic activity of ZnO nanoflowers was obtained compared to the earlier reports on ZnO nanostructures and other photocatalytic materials. The mechanism behind the enhanced photocatalytic activity was illustrated with diagrammatic representation. It is assumed that due to larger content of oxygen vacancy ZnO nanoflowers shows enhanced photocatalytic activity. Photostability of ZnO nanoflowers was analyzed for consecutive 3 cycles. The size and morphology of ZnO nanoflowers have been characterized by SEM, TEM and found to be in the size range of 250 nm to 1 μm with flower like morphology. It was found that ZnO nanoflowers was formed by agglomeration of ZnO nanorods. Further the EDX established the presence of the elemental signal of the Zn and O. XRD spectrum of ZnO nanoflowers confirmed 2θ values analogous to the ZnO nanocrystal. FTIR analysis was carried to determine the probable biomolecules responsible for stabilization of ZnO nanoflowers. The plausible mechanism behind the synthesis of ZnO nanoflowers by Bacillus licheniformis MTCC 9555 was also discussed with diagram representation.

  12. Gd{sup 3+} incorporated ZnO nanoparticles: A versatile material

    SciTech Connect

    Kumar, Surender Sahare, P.D.

    2014-03-01

    Graphical abstract: - Highlights: • Chemically synthesized Gd{sup 3+} doped ZnO nanoparticles. • The broad visible emission of the ZnO is dependent on the surface defects and can be tailored by Gd{sup 3+} doing. • PL and magnetic properties are modified by Gd{sup 3+} doping. • Photocatalysis experiment reveals that the ZnO: Gd{sup 3+} degrades the Rh B dye faster than the undoped ZnO. - Abstract: Gd{sup 3+} doped ZnO nanoparticles are synthesized by wet chemical route method and investigated through structural, optical, magnetic and photocatalytic properties. Transmission Electron Microscopy technique has been performed on undoped and Gd{sup 3+} doped ZnO nanoparticles. X-ray diffraction, X-ray photoelectron spectroscopy and Raman analyses are carried out in order to examine the desired phase formation and substitution of Gd{sup 3+} in the ZnO matrix. Gd{sup 3+} doped ZnO nanoparticles show enhanced photoluminescent and ferromagnetic properties as compared to undoped ZnO. The broad visible emission of ZnO is found to be largely dependent on the surface defects and these surface defects can be tailored by Gd{sup 3+} doping concentration. Furthermore, Gd{sup 3+} doped ZnO nanoparticles also show improved photocatalytic properties as compared with undoped ZnO nanoparticles under ultraviolet irradiation.

  13. Preparation of electron buffer layer with crystalline ZnO nanoparticles in inverted organic photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Lee, Donghwan; Kang, Taeho; Choi, Yoon-Young; Oh, Seong-Geun

    2017-06-01

    Zinc oxide (ZnO) nanoparticles synthesized through sol-gel method were used to fabricate the electron buffer layer in inverted organic photovoltaic cells (OPVs) after thermal treatment. To investigate the effect of thermal treatment on the formation of crystalline ZnO nanoparticles, the amorphous ZnO nanoparticles were treated via hydrothermal method. The crystalline phase of ZnO with well-ordered structure could be obtained when the amorphous phase of ZnO was processed under hydrothermal treatment at 170 °C. The crystalline structure of ZnO thin film in inverted organic solar cell could be obtained under relatively low annealing temperature by using thermally treated ZnO nanoparticles. The OPVs fabricated by using crystalline ZnO nanoparticles for electron buffer layer exhibited higher efficiency than the conventional ZnO nanoparticles. The best power conversion efficiency (PCE) was achieved for 7.16% through the ZnO film using the crystalline ZnO nanoparticles. The proposed method to prepared ZnO nanoparticles (NPs) could effectively reduce energy consumption during the fabrication of OPVs, which would greatly contribute to advantages such as lower manufacturing costs, higher productivity and application on flexible substrates.

  14. Management of fluocinolone implant dissociation during implant exchange.

    PubMed

    Yeh, Steven; Cebulla, Colleen M; Witherspoon, S Robert; Emerson, Geoffrey G; Emerson, M Vaughn; Suhler, Eric B; Albini, Thomas A; Flaxel, Christina J

    2009-09-01

    Three patients with chronic, noninfectious uveitis requiring immunosuppressive therapy underwent fluocinolone acetonide (FA) implant exchange complicated by dissociation of the medication reservoir from its anchoring strut. In 2 patients, the medication reservoir descended into the vitreous cavity and required pars plana vitrectomy with intraocular foreign body removal techniques for its retrieval. The use of viscoelastic or perfluorocarbon to elevate the device was helpful in the safe removal of the FA implant device. Surgeons performing FA implant exchange should be aware of this potential complication and anticipate the possible need for vitreoretinal instrumentation and personnel. Patients undergoing FA explantation or exchange should be counseled regarding this potential complication prior to surgery.

  15. Implantable, multifunctional, bioresorbable optics

    PubMed Central

    Tao, Hu; Kainerstorfer, Jana M.; Siebert, Sean M.; Pritchard, Eleanor M.; Sassaroli, Angelo; Panilaitis, Bruce J. B.; Brenckle, Mark A.; Amsden, Jason J.; Levitt, Jonathan; Fantini, Sergio; Kaplan, David L.; Omenetto, Fiorenzo G.

    2012-01-01

    Advances in personalized medicine are symbiotic with the development of novel technologies for biomedical devices. We present an approach that combines enhanced imaging of malignancies, therapeutics, and feedback about therapeutics in a single implantable, biocompatible, and resorbable device. This confluence of form and function is accomplished by capitalizing on the unique properties of silk proteins as a mechanically robust, biocompatible, optically clear biomaterial matrix that can house, stabilize, and retain the function of therapeutic components. By developing a form of high-quality microstructured optical elements, improved imaging of malignancies and of treatment monitoring can be achieved. The results demonstrate a unique family of devices for in vitro and in vivo use that provide functional biomaterials with built-in optical signal and contrast enhancement, demonstrated here with simultaneous drug delivery and feedback about drug delivery with no adverse biological effects, all while slowly degrading to regenerate native tissue. PMID:23150544

  16. Underpotential deposition of hydrogen on benzene-modified Pt(111) in aqueous H2SO4.

    PubMed

    Jerkiewicz, Gregory; DeBlois, Martin; Radovic-Hrapovic, Zorana; Tessier, Jean-Pierre; Perreault, Frédéric; Lessard, Jean

    2005-04-12

    The Pt(111) electrode is modified by an overlayer of C6H6 (ads) upon its cycling in the 0.05-0.80 V range in aq H2SO4 + 1 mM C6H6. The C6H6 (ads) overlayer significantly changes the underpotential-deposited H (H(UPD)) and anion adsorption, and cyclic-voltammetry (CV) profiles show a sharp cathodic peak and an asymmetric anodic one in the 0.05-0.80 V potential range. The C6H6 (ads) layer blocks the (bi)sulfate adsorption but facilitates the adsorption of one monolayer of H(UPD). Cycling of the benzene-modified Pt(111) in benzene-free aq 0.05 H2SO4 from 0.05 to 0.80 V results in a partial desorption of C6H6 (ads) and in a partial recovery of the CV profile characteristic of an unmodified Pt(111). The peak potential of the cathodic and anodic feature is independent of the scan rate, s (10 < or = s < or = 100 mV s(-1)), and the peak current density increases linearly with an increase of the scan rate. Temperature variation modifies the peak potential and current density but does not affect the charge density of the cathodic or anodic feature. Temperature-dependent studies allow us to determine the thermodynamic state function for the H(UPD) adsorption and desorption. Delta G degrees(ads)(H(UPD))assumes values from -4 to -12 kJ mol(-1), while has values from 9 to 14 kJ mol(-1). The values of delta Delta G degrees (delta Delta G degrees = delat Delta G degrees(ads) + delta Delta D degrees(des)) decrease almost linearly from 6 kJ mol(-1) at theta(H(UPD) --> 0 to 0 kJ mol(-1) at theta(H(UPD) --> 1. The nonzero values of delta Delta G degrees testify that the adsorbing and desorbing H(UPD) adatoms interact with an energetically different substrate. The lateral interactions changed from repulsive (omega = 29 kJ mol(-1) at theta(H(UPD) --> 0) to attractive (omega = -28 kJ mol(-1) at theta(H(UPD) --> 1) as the H(UPD) coverage increases. The values of delta S degrees(ads)(H(UPD)) increase from 19 to 56 J K(-1) mol(-1), while those of delta S degrees(des)(H(UPD)) decrease from

  17. ZnO films grown by pulsed-laser deposition on soda lime glass substrates for the ultraviolet inactivation of Staphylococcus epidermidis biofilms

    PubMed Central

    Mosnier, Jean-Paul; O’Haire, Richard J; McGlynn, Enda; Henry, Martin O; McDonnell, Stephen J; Boyle, Maria A; McGuigan, Kevin G

    2009-01-01

    We found that a ZnO film of 2 μm thickness which was laser-deposited at room temperature onto a plain soda lime glass substrate, exhibits notable antibacterial activity against a biofilm of Staphylococcus epidermidis when back-illuminated by a UVA light source with a peak emission wavelength of about 365 nm. X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), UV-visible absorption spectroscopy, Raman spectroscopy and x-ray photoemission spectroscopy (XPS) were used to characterize the ZnO films before and after the interactions with the biofilm and the ultraviolet light, respectively. The as-deposited film was highly textured with the wurtzite (0002) in-plane orientation (c-axis perpendicular to ZnO surface) and had a surface rms roughness of 49.7 nm. In the as-deposited film, the Zn to O ratio was 1 to 0.95. After the UV and biofilm treatments, the ZnO film surface had become rougher (rms roughness 68.1 nm) and presented uniform micron-sized pitting randomly distributed, while the zinc to oxygen ratio had become 1 to 2.2. In this case, both the UV-visible and Raman spectra pointed to degradation of the structural quality of the material. On the strength of these data, we propose a model for the mediation of the bactericidal activity in which the photogeneration of highly oxidizing species and the presence of active surface defect sites both play an important role. This study is of particular interest for the acute problem of disinfection of pathogenic biofilms which form on medical device/implant surfaces. PMID:27877303

  18. Al-doped ZnO seed layer-dependent crystallographic control of ZnO nanorods by using electrochemical deposition

    SciTech Connect

    Son, Hyo-Soo; Choi, Nak-Jung; Kim, Kyoung-Bo; Kim, Moojin; Lee, Sung-Nam

    2016-10-15

    Highlights: • Polar and semipolar ZnO NRs were successfully achieved by hydrothermal synthesis. • Semipolar and polar ZnO NRs were grown on ZnO and AZO/m-sapphire, respectively. • Al % of AZO/m-sapphire enhanced the lateral growth rate of polar ZnO NRs. - Abstract: We investigated the effect of an Al-doped ZnO film on the crystallographic direction of ZnO nanorods (NRs) using electrochemical deposition. From high-solution X-ray diffraction measurements, the crystallographic plane of ZnO NRs grown on (1 0 0) ZnO/m-plane sapphire was (1 0 1). The surface grain size of the (100) Al-doped ZnO (AZO) film decreased with increasing Al content in the ZnO seed layer, implying that the Al dopant accelerated the three-dimensional (3D) growth of the AZO film. In addition, it was found that with increasing Al doping concentration of the AZO seed layer, the crystal orientation of the ZnO NRs grown on the AZO seed layer changed from [1 0 1] to [0 0 1]. With increasing Al content of the nonpolar (1 0 0) AZO seed layer, the small surface grains with a few crystallographic planes of the AZO film changed from semipolar (1 0 1) ZnO NRs to polar (0 0 1) ZnO NRs due to the increase of the vertical [0 0 1] growth rate of the ZnO NRs owing to excellent electrical properties.

  19. ZnO Thin Film Electronics for More than Displays

    NASA Astrophysics Data System (ADS)

    Ramirez, Jose Israel

    Zinc oxide thin film transistors (TFTs) are investigated in this work for large-area electronic applications outside of display technology. A constant pressure, constant flow, showerhead, plasma-enhanced atomic layer deposition (PEALD) process has been developed to fabricate high mobility TFTs and circuits on rigid and flexible substrates at 200 °C. ZnO films and resulting devices prepared by PEALD and pulsed laser deposition (PLD) have been compared. Both PEALD and PLD ZnO films result in densely packed, polycrystalline ZnO thin films that were used to make high performance devices. PEALD ZnO TFTs deposited at 300 °C have a field-effect mobility of ˜ 40 cm2/V-s (and > 20 cm2/V-S deposited at 200 °C). PLD ZnO TFTs, annealed at 400 °C, have a field-effect mobility of > 60 cm2/V-s (and up to 100 cm2/V-s). Devices, prepared by either technique, show high gamma-ray radiation tolerance of up to 100 Mrad(SiO2) with only a small radiation-induced threshold voltage shift (VT ˜ -1.5 V). Electrical biasing during irradiation showed no enhanced radiation-induced effects. The study of the radiation effects as a function of material stack thicknesses revealed the majority of the radiation-induced charge collection happens at the semiconductor-passivation interface. A simple sheet-charge model at that interface can describe the radiation-induced charge in ZnO TFTs. By taking advantage of the substrate-agnostic process provided by PEALD, due to its low-temperature and excellent conformal coatings, ZnO electronics were monolithically integrated with thin-film complex oxides. Application-based examples where ZnO electronics provide added functionality to complex oxide-based devices are presented. In particular, the integration of arrayed lead zirconate titanate (Pb(Zr, Ti)O3 or PZT) thin films with ZnO electronics for microelectromechanical systems (MEMs) and deformable mirrors is demonstrated. ZnO switches can provide voltage to PZT capacitors with fast charging and slow

  20. Controlling Au Photodeposition on Large ZnO Nanoparticles.

    PubMed

    Fernando, Joseph F S; Shortell, Matthew P; Noble, Christopher J; Harmer, Jeffrey R; Jaatinen, Esa A; Waclawik, Eric R

    2016-06-08

    This study investigated how to control the rate of photoreduction of metastable AuCl2(-) at the solid-solution interface of large ZnO nanoparticles (NPs) (50-100 nm size). Band-gap photoexcitation of electronic charge in ZnO by 370 nm UV light yielded Au NP deposition and the formation of ZnO-Au NP hybrids. Au NP growth was observed to be nonepitaxial, and the patterns of Au photodeposition onto ZnO NPs observed by high-resolution transmission electron microscopy were consistent with reduction of AuCl2(-) at ZnO facet edges and corner sites. Au NP photodeposition was effective in the presence of labile oleylamine ligands attached to the ZnO surface; however, when a strong-binding dodecanethiol ligand coated the surface, photodeposition was quenched. Rates of interfacial electron transfer at the ZnO-solution interface were adjusted by changing the solvent, and these rates were observed to strongly depend on the solvent's permittivity (ε) and viscosity. From measurements of electron transfer from ZnO to the organic dye toluidine blue at the ZnO-solution interface, it was confirmed that low ε solvent mixtures (ε ≈ 9.5) possessed markedly higher rates of photocatalytic interfacial electron transfer (∼3.2 × 10(4) electrons·particle(-1)·s(-1)) compared to solvent mixtures with high ε (ε = 29.9, ∼1.9 × 10(4) electrons·particle(-1)·s(-1)). Dissolved oxygen content in the solvent and the exposure time of ZnO to band-gap, near-UV photoexcitation were also identified as factors that strongly affected Au photodeposition behavior. Production of Au clusters was favored under conditions that caused electron accumulation in the ZnO-Au NP hybrid. Under conditions where electron discharge was rapid (such as in low ε solvents), AuCl2(-) precursor ions photoreduced at ZnO surfaces in less than 5 s, leading to deposition of several small, isolated ∼6 nm Au NP on the ZnO host instead.

  1. Comparative study of ZnO optical dispersion laws

    NASA Astrophysics Data System (ADS)

    Bouzourâa, M.-B.; Battie, Y.; Dalmasso, S.; Zaïbi, M.-A.; Oueslati, M.; Naciri, A. En

    2017-04-01

    We report a comparative study between Forouhi-Bloomer, Tauc-Lorentz and Tanguy dispersion laws for determining the reliable dielectric function of crystallized ZnO. ZnO layers were prepared by sol-gel method and deposited on crystalline silicon (c-Si) by spin coating. Spectroscopic ellipsometry (SE) was performed on ZnO/c-Si and each dispersion law was considered in the physical model for fitting SE experimental data. A best agreement was found between measurements and model. This applies in particular to the Tanguy dispersion. The physical parameters such as excitonic energy, optical gap, damping factor, real and imaginary parts of dielectric function were determined and analyzed. The temperature-dependent photoluminescence spectroscopy (PL) measurements were also used to approve the adequate dispersion law for ZnO material. We found by SE and PL measurements that Tanguy law dispersion can be considered as the most appropriate one for a correct description of ZnO optical dielectric function and for the interpretation of the absorption tail band and for the excitonic band of crystallized ZnO. The band-gap energy, excitonic energy and damping factor parameter are determined and analyzed. Their values (3.37 eV, 48 meV and 39 meV, respectively) extracted from ellipsometry are in good agreement with those obtained by PL measurements.

  2. EPR, thermo and photoluminescence properties of ZnO nanopowders.

    PubMed

    Jagannatha Reddy, A; Kokila, M K; Nagabhushana, H; Rao, J L; Shivakumara, C; Nagabhushana, B M; Chakradhar, R P S

    2011-10-15

    Nanocrystalline ZnO powders have been synthesized by a low temperature solution combustion method. The photoluminescence (PL) spectrum of as-formed and heat treated ZnO shows strong violet (402, 421, 437, 485 nm) and weak green (520 nm) emission peaks respectively. The PL intensities of defect related emission bands decrease with calcinations temperature indicating the decrease of Zn(i) and V(o)(+) caused by the chemisorptions of oxygen. The results are correlated with the electron paramagnetic resonance (EPR) studies. Thermoluminescence (TL) glow curves of gamma irradiated ZnO nanoparticles exhibit a single broad glow peak at ∼343°C. This can be attributed to the recombination of charge carriers released from the surface states associated with oxygen defects, mainly interstitial oxygen ion centers. The trapping parameters of ZnO irradiated with various γ-doses are calculated using peak shape method. It is observed that the glow peak intensity increases with increase of gamma dose without changing glow curve shape. These two characteristic properties such as TL intensity increases with gamma dose and simple glow curve structure is an indication that the synthesized ZnO nanoparticles might be used as good TL dosimeter for high temperature application.

  3. EPR, thermo and photoluminescence properties of ZnO nanopowders

    NASA Astrophysics Data System (ADS)

    Jagannatha Reddy, A.; Kokila, M. K.; Nagabhushana, H.; Rao, J. L.; Shivakumara, C.; Nagabhushana, B. M.; Chakradhar, R. P. S.

    2011-10-01

    Nanocrystalline ZnO powders have been synthesized by a low temperature solution combustion method. The photoluminescence (PL) spectrum of as-formed and heat treated ZnO shows strong violet (402, 421, 437, 485 nm) and weak green (520 nm) emission peaks respectively. The PL intensities of defect related emission bands decrease with calcinations temperature indicating the decrease of Zn i and V o+ caused by the chemisorptions of oxygen. The results are correlated with the electron paramagnetic resonance (EPR) studies. Thermoluminescence (TL) glow curves of gamma irradiated ZnO nanoparticles exhibit a single broad glow peak at ˜343 °C. This can be attributed to the recombination of charge carriers released from the surface states associated with oxygen defects, mainly interstitial oxygen ion centers. The trapping parameters of ZnO irradiated with various γ-doses are calculated using peak shape method. It is observed that the glow peak intensity increases with increase of gamma dose without changing glow curve shape. These two characteristic properties such as TL intensity increases with gamma dose and simple glow curve structure is an indication that the synthesized ZnO nanoparticles might be used as good TL dosimeter for high temperature application.

  4. The sprayed ZnO films: nanostructures and physical parameters

    NASA Astrophysics Data System (ADS)

    Benhaliliba, M.; Tiburcio-Silver, A.; Avila-Garcia, A.; Tavira, A.; Ocak, Y. S.; Aida, M. S.; Benouis, C. E.

    2015-08-01

    We synthesized the pure and indium-doped (IZO) ZnO films with a facile composition control spray pyrolysis route. The substrate temperature (Ts) and In-doping effects on the properties of as-grown films are investigated. The X-ray pattern confirms that the as-synthesized ZnO phase is grown along a (002) preferential plane. It is revealed that the crystalline structure is improved with a substrate temperature of 350 °C. Moreover, the morphology of as-grown films, analyzed by AFM, shows nanostructures that have grown along the c-axis. The (3 × 3 μm2) area scanned AFM surface studies give the smooth film surface RMS < 40 nm. The UV-VIS-IR measurements reveal that the sprayed films are highly transparent in the visible and IR bands. The photoluminescence analysis shows that the strong blue and yellow luminescences of 2.11 and 2.81 eV are emitted from ZnO and IZO films with a slight shift in photon energy caused by In-doping. The band gap is a bit widened by In-doping, 3.21 eV (ZnO) and 3.31 eV (IZO) and the resistivity is reduced from 385 to 8 Ω·m. An interesting result is the resistivity linear dependence on the substrate temperature of pure ZnO films.

  5. Efficient nitrogen incorporation in ZnO nanowires

    PubMed Central

    Stehr, Jan E.; Chen, Weimin M.; Reddy, Nandanapalli Koteeswara; Tu, Charles W.; Buyanova, Irina A.

    2015-01-01

    One-dimensional ZnO nanowires (NWs) are a promising materials system for a variety of applications. Utilization of ZnO, however, requires a good understanding and control of material properties that are largely affected by intrinsic defects and contaminants. In this work we provide experimental evidence for unintentional incorporation of nitrogen in ZnO NWs grown by rapid thermal chemical vapor deposition, from electron paramagnetic resonance spectroscopy. The incorporated nitrogen atoms are concluded to mainly reside at oxygen sites (NO). The NO centers are suggested to be located in proximity to the NW surface, based on their reduced optical ionization energy as compared with that in bulk. This implies a lower defect formation energy at the NW surface as compared with its bulk value, consistent with theoretical predictions. The revealed facilitated incorporation of nitrogen in ZnO nanostructures may be advantageous for realizing p-type conducting ZnO via N doping. The awareness of this process can also help to prevent such unintentional doping in structures with desired n-type conductivity. PMID:26299157

  6. Theoretical investigation of ZnO and its doping clusters.

    PubMed

    Wang, Chunlei; Xu, Shuhong; Ye, Lihua; Lei, Wei; Cui, Yiping

    2011-05-01

    Four clusters of ZnO, O-Zn-SR (-SR = ligand) and doping ZnO structures (with Cr, Cu, Al atoms) were investigated using density functional theory at theB3LYP/Lanl2dz level. The characteristics of Zn(3)O(3) and Zn(4)O(4) structures, which are the units of experimental wurtzite and zinc blende structures, were found to be similar to those of experimental ZnO nanocrystals. Moreover, the calculated Raman and IR spectra of ZnO clusters were almost consistent with experimental results. Raman spectra were observed to shift to higher frequencies with decreasing numbers of atoms. Both ligands and solvent make the wavelength of absorption peaks shift to blue. All transitions of absorption peaks for these pure clusters were from d to p orbitals. Finally, doping clusters and experimental doping nanocrystals were similar in character. The doping of metal changed the orbital of ZnO nanocrystals. The transitions in doping clusters (Cr-ZnO, Cu-ZnO) are from d to d orbitals, while Al-ZnO clusters have s-p transitions.

  7. Patient-Specific Orthopaedic Implants.

    PubMed

    Haglin, Jack M; Eltorai, Adam E M; Gil, Joseph A; Marcaccio, Stephen E; Botero-Hincapie, Juliana; Daniels, Alan H

    2016-11-01

    Patient-specific orthopaedic implants are emerging as a clinically promising treatment option for a growing number of conditions to better match an individual's anatomy. Patient-specific implant (PSI) technology aims to reduce overall procedural costs, minimize surgical time, and maximize patient outcomes by achieving better biomechanical implant fit. With this commercially-available technology, computed tomography or magnetic resonance images can be used in conjunction with specialized computer programs to create preoperative patient-specific surgical plans and to develop custom cutting guides from 3-D reconstructed images of patient anatomy. Surgeons can then place these temporary guides or "jigs" during the procedure, allowing them to better recreate the exact resections of the computer-generated surgical plan. Over the past decade, patient-specific implants have seen increased use in orthopaedics and they have been widely indicated in total knee arthroplasty, total hip arthroplasty, and corrective osteotomies. Patient-specific implants have also been explored for use in total shoulder arthroplasty and spinal surgery. Despite their increasing popularity, significant support for PSI use in orthopaedics has been lacking in the literature and it is currently uncertain whether the theoretical biomechanical advantages of patient-specific orthopaedic implants carry true advantages in surgical outcomes when compared to standard procedures. The purpose of this review was to assess the current status of patient-specific orthopaedic implants, to explore their future direction, and to summarize any comparative published studies that measure definitive surgical characteristics of patient-specific orthopaedic implant use such as patient outcomes, biomechanical implant alignment, surgical cost, patient blood loss, or patient recovery.

  8. Microsystems Technology for Retinal Implants

    NASA Astrophysics Data System (ADS)

    Weiland, James

    2005-03-01

    The retinal prosthesis is targeted to treat age-related macular degeneration, retinitis pigmentosa, and other outer retinal degenerations. Simulations of artificial vision have predicted that 600-1000 individual pixels will be needed if a retinal prosthesis is to restore function such as reading large print and face recognition. An implantable device with this many electrode contacts will require microsystems technology as part of its design. An implantable retinal prosthesis will consist of several subsystems including an electrode array and hermetic packaging. Microsystems and microtechnology approaches are being investigated as possible solutions for these design problems. Flexible polydimethylsiloxane (PDMS) substrate electrode arrays and silicon micromachined electrode arrays are under development. Inactive PDMS electrodes have been implanted in 3 dogs to assess mechanical biocompatibility. 3 dogs were followed for 6 months. The implanted was securely fastened to the retina with a single retinal tack. No post-operative complications were evident. The array remained within 100 microns of the retinal surface. Histological evaluation showed a well preserved retina underneath the electrode array. A silicon device with electrodes suspended on micromachined springs has been implanted in 4 dogs (2 acute implants, 2 chronic implants). The device, though large, could be inserted into the eye and positioned on the retina. Histological analysis of the retina from the spring electrode implants showed that spring mounted posts penetrated the retina, thus the device will be redesigned to reduce the strength of the springs. These initial implants will provide information for the designers to make the next generation silicon device. We conclude that microsystems technology has the potential to make possible a retinal prosthesis with 1000 individual contacts in close proximity to the retina.

  9. Correlation between defect and magnetism of low energy Ar+9 implanted and un-implanted Zn0.95Mn0.05O thin films suitable for electronic application

    NASA Astrophysics Data System (ADS)

    Neogi, S. K.; Midya, N.; Pramanik, P.; Banerjee, A.; Bhattacharyya, A.; Taki, G. S.; Krishna, J. B. M.; Bandyopadhyay, S.

    2016-06-01

    The structural, morphological, optical and magnetic properties of Ar+9 implanted 5 at% Mn doped ZnO films have been investigated to detect the correlation between ferromagnetism (FM) and defect. Sol-gel derived films were implanted with fluences 0 (un-implanted), 5×1014 (low), 1015 (intermediate) and 1016 (high) ions/cm2. Rutherford back scattering (RBS), X-ray diffraction (XRD), atomic force microscope (AFM) and magnetic force microscope (MFM), UV-visible, photoluminescence and X-ray absorption spectroscopy (XAS) and superconducting quantum interference device vibrating sample magnetometer (SQUID VSM) were employed for investigation. XRD indicated single phase nature of the films. Absence of impurity phase has been confirmed from several other measurements also. Ion implantation induces a large concentration of point defects into the films as identified from optical study. All films exhibit intrinsic FM at room temperature (RT). The magnetization attains the maximum for the film implanted with fluence 1016 ions/cm2 with saturation magnetization (MS) value 0.69 emu/gm at RT. Magnetic properties of the films were interpreted using bound magnetic polaron (BMP). BMP generated from the intrinsic exchange interaction of Mn2+ ions and VZn related defects actually controls the FM. The practical utility of these films in transparent spin electronic device has also been exhibited.

  10. Male chest enhancement: pectoral implants.

    PubMed

    Benito-Ruiz, J; Raigosa, J M; Manzano-Surroca, M; Salvador, L

    2008-01-01

    The authors present their experience with the pectoral muscle implant for male chest enhancement in 21 patients. The markings and technique are thoroughly described. The implants used were manufactured and custom made. The candidates for implants comprised three groups: group 1 (18 patients seeking chest enhancement), group 2 (1 patient with muscular atrophy), and group 3 (2 patients with muscular injuries). Because of the satisfying results obtained, including significant enhancement of the chest contour and no major complications, this technique is used for an increasing number of male cosmetic surgeries.

  11. [Considerations for optimizing joint implants].

    PubMed

    Tensi, H M; Orloff, S; Gese, H; Hooputra, H

    1994-09-01

    Despite the increasing use of orthopaedic implants, there is still a lack of adequate testing procedures and legal guidelines. Examples of the consequences of this neglect are given. Modern techniques for the calculation of stresses (finite element method [FEM]) and the prediction of life cycle duration are presented. Such methods, applied in the development and manufacturing phases of standard and special implants, may ensure an adequate prosthetic life cycle, with particular emphasis being placed on the biomedical optimization of the implant/bone interface and surrounding bone.

  12. Accidental Implant Screwdriver Ingestion: A Rare Complication during Implant Placement

    PubMed Central

    Jain, Anshul; Baliga, Shridhar D

    2014-01-01

    One of the complications during a routine dental implant placement is accidental ingestion of the implant instruments, which can happen when proper precautions are not taken. Appropriate radiographs should be taken to locate the correct position of foreign body; usually the foreign body passes asymptomatically from gastrointestinal tract but sometimes it may lead to intestinal obstruction, perforations and impactions. The aim of this article is to report accidental ingestion of 19 mm long screw driver by a senile patient. PMID:25628702

  13. Occlusion on oral implants: current clinical guidelines.

    PubMed

    Koyano, K; Esaki, D

    2015-02-01

    Proper implant occlusion is essential for adequate oral function and the prevention of adverse consequences, such as implant overloading. Dental implants are thought to be more prone to occlusal overloading than natural teeth because of the loss of the periodontal ligament, which provides shock absorption and periodontal mechanoreceptors, which provide tactile sensitivity and proprioceptive motion feedback. Although many guidelines and theories on implant occlusion have been proposed, few have provided strong supportive evidence. Thus, we performed a narrative literature review to ascertain the influence of implant occlusion on the occurrence of complications of implant treatment and discuss the clinical considerations focused on the overloading factors at present. The search terms were 'dental implant', 'dental implantation', 'dental occlusion' and 'dental prosthesis'. The inclusion criteria were literature published in English up to September 2013. Randomised controlled trials (RCTs), prospective cohort studies and case-control studies with at least 20 cases and 12 months follow-up interval were included. Based on the selected literature, this review explores factors related to the implant prosthesis (cantilever, crown/implant ratio, premature contact, occlusal scheme, implant-abutment connection, splinting implants and tooth-implant connection) and other considerations, such as the number, diameter, length and angulation of implants. Over 700 abstracts were reviewed, from which more than 30 manuscripts were included. We found insufficient evidence to establish firm clinical guidelines for implant occlusion. To discuss the ideal occlusion for implants, further well-designed RCTs are required in the future.

  14. Fabrication of ZnO and doped ZnO waveguides deposited by Spin Coating

    NASA Astrophysics Data System (ADS)

    Mohan, Rosmin Elsa; R, Neha P.; T, Shalu; C, Darshana K.; Sreelatha, K. S.

    2015-02-01

    In this paper, the synthesis of ZnO and doped Zn1-xAgxO (where x=0.03) nanoparticles by co- precipitation is reported. The precursors used were Zinc Nitrate and Potassium hydroxide pellets. For doping, 3% AgNO3 in ZnNO3 was considered as a separate buffer solution. The prepared nanoparticles were subsequently spin coated onto silica glass substrates at a constant chuck rate of 3000 rpm. The substrate acts as the lower cladding of a waveguide structure. The upper cladding is assumed to be air in the present investigation. The nanostructures of the ZnO powders in the doped and undoped cases were studied using X-ray Diffraction patterns. There was a decrease in the grain size with doping which increase the tunability of the powders to be used as photoluminescent devices. The optical characteristics of the sample were also investigated using UV-Visible spectrophotometer at 200-900 nm wavelengths. The photoluminescence peaks also report a dramatic increase in intensity at the same wavelength for the doped case compared to the undoped one.

  15. Rehabilitation of malpositioned implants with a CAD/CAM milled implant overdenture: a clinical report.

    PubMed

    Moeller, Mauricio S; Duff, Renee E; Razzoog, Michael E

    2011-03-01

    Dentists may be faced with the challenge of restoring unfavorably placed implants. In some instances, previously integrated implants may be from different manufacturers. This clinical report describes the rehabilitation of a patient with a maxillary CAD/CAM implant bar-supported overdenture that presented with malpositioned implants, from different manufacturers, including one from a discontinued implant system.

  16. Preparation, characterization and photocatalytic properties of Ho doped ZnO nanostructures synthesized by sonochemical method

    NASA Astrophysics Data System (ADS)

    Phuruangrat, Anukorn; Yayapao, Oranuch; Thongtem, Titipun; Thongtem, Somchai

    2014-03-01

    The three-dimensional flowerlike undoped and Ho doped ZnO microstructure was successfully synthesized by a sonochemical method. The morphologies and structures of the phase were characterized by the analyses of XRD, SEM and TEM. The flower-like structure composed of numerous one-dimensional hexagonal nanoprisms ZnO and Ho doped ZnO were revealed as hexagonal crystal structure with exposure (0 0 1) facet. The Ho doped ZnO exhibited a relatively higher photocatalytic activity than the pure ZnO in the degradation of methylene blue under UV light.

  17. Structural and electrical properties of electric field assisted spray deposited pea structured ZnO film

    NASA Astrophysics Data System (ADS)

    Chaturvedi, Neha; Swami, Sanjay Kumar; Dutta, Viresh

    2016-05-01

    Spray deposition of ZnO film was carried out. The uneven growth of ZnO nanostructures is resulted for spray deposited ZnO film. Application of DC voltage (1000V) during spray deposition provides formation of pea like structures with uniform coverage over the substrate. Electric field assisted spray deposition provides increased crystallinity with reduced resistivity and improved mobility of the ZnO film as compared to spray deposited ZnO film without electric field. This with large area deposition makes the process more efficient than other techniques.

  18. Effect of gamma irradiation on DC electrical conductivity of ZnO nanoparticles

    SciTech Connect

    Swaroop, K.; Somashekarappa, H. M.; Naveen, C. S.; Jayanna, H. S.

    2015-06-24

    The temperature dependent dc electrical conductivity of gamma irradiated Zinc oxide (ZnO) nanoparticles is presented in this paper. The X-ray diffraction (XRD) pattern shows hexagonal wurtzite structure of ZnO. Fourier Transform Infrared Spectroscopy (FTIR) confirms Zn-O stretching vibrations. UV-Visible spectroscopy studies show that the energy band gap (E{sub g}) of the prepared ZnO nanoparticles increases with respect to gamma irradiation dose, which can be related to room temperature dc electrical conductivity. The result shows significant variation in the high temperature dc electrical conductivity of ZnO nanoparticles due to gamma irradiation.

  19. Growth and characterization of periodically polarity-inverted ZnO structures on sapphire substrates

    SciTech Connect

    Park, Jinsub; Yao, Takafumi

    2012-10-15

    We report on the fabrication and characterization of periodically polarity inverted (PPI) ZnO heterostructures on (0 0 0 1) Al{sub 2}O{sub 3} substrates. For the periodically inverted array of ZnO polarity, CrN and Cr{sub 2}O{sub 3} polarity selection buffer layers are used for the Zn- and O-polar ZnO films, respectively. The change of polarity and period in fabricated ZnO structures is evaluated by diffraction patterns and polarity sensitive piezo-response microscopy. Finally, PPI ZnO structures with subnanometer scale period are demonstrated by using holographic lithography and regrowth techniques.

  20. Structural defects and photoluminescence studies of sol-gel prepared ZnO and Al-doped ZnO films

    NASA Astrophysics Data System (ADS)

    Sandeep, K. M.; Bhat, Shreesha; Dharmaprakash, S. M.

    2016-11-01

    ZnO and Al-doped ZnO (AZO) films were synthesized using sol-gel spin-coating method. The powder XRD analysis revealed the stress relaxation mechanism upon Al doping in ZnO film. The reduction in the imaginary part of the dielectric constant and suppression of deep level acceptor type octahedral oxygen interstitial defects account for the reduction in carrier concentration in AZO with respect to ZnO. Electrical conductivity measurements and grain boundary conduction model are used to quantify the carrier concentration. From the Commission Internationale d'Eclairge diagram of ZnO and AZO, color parameters like dominant wavelength, color purity and luminosity are determined and reported for the first time. The prepared ZnO and AZO films show considerable blue emission. These films can be used for white light generation.

  1. Mobility of indium on the ZnO(0001) surface

    SciTech Connect

    Heinhold, R.; Reeves, R. J.; Allen, M. W.; Williams, G. T.; Evans, D. A.

    2015-02-02

    The mobility of indium on the Zn-polar (0001) surface of single crystal ZnO wafers was investigated using real-time x-ray photoelectron spectroscopy. A sudden transition in the wettability of the ZnO(0001) surface was observed at ∼520 °C, with indium migrating from the (0001{sup ¯}) underside of the wafer, around the non-polar (11{sup ¯}00) and (112{sup ¯}0) sidewalls, to form a uniform self-organized (∼20 Å) adlayer. The In adlayer was oxidized, in agreement with the first principles calculations of Northrup and Neugebauer that In{sub 2}O{sub 3} precipitation can only be avoided under a combination of In-rich and Zn-rich conditions. These findings suggest that unintentional In adlayers may form during the epitaxial growth of ZnO on indium-bonded substrates.

  2. Indirect excitons in hydrogen-doped ZnO

    NASA Astrophysics Data System (ADS)

    Zhu, Liangchen; Lem, Laurent L. C.; Nguyen, Thien-Phap; Fair, Kit; Ali, Sajid; Ford, Michael J.; Phillips, Matthew R.; Ton-That, Cuong

    2017-03-01

    We present a correlative experimental and theoretical study of bound excitons in hydrogen-doped ZnO, with a particular focus on the dynamics of their metastable state confined in the sub-surface region, using a combination of surface-sensitive characterisation techniques and density functional theory calculations. A metastable sub-surface emission at 3.31 eV found in H-doped ZnO is attributed to the radiative recombination of indirect excitons localised at basal plane stacking faults (BSFs) where the excitonic transition involves electrons bound to bond-centre hydrogen donors in the potential well of the BSF. Additionally, our work shows the electrical transport of ZnO Schottky junctions is dominated by electrons confined at BSFs in the near-surface region.

  3. Thermal Conductivity of ZnO Single Nanowire.

    PubMed

    Yuldashev, Sh U; Yalishev, V Sh; Cho, H D; Kang, T W

    2016-02-01

    The thermal conductivity of a single ZnO nanowire with diameter of ~150 nm was measured using a four-point-probe 3omega method over a temperature range of 140-300 K. The measured ther- mal conductivity of ZnO nanowire is strongly reduced compared to bulk ZnO crystal due to the enhanced phonon-boundary and impurity (isotope) scattering. The maximum of the thermal conductivity is shifted to a higher temperature than that of bulk counterpart. Temperature dependent measurements show that beyond the low-temperature maximum, the thermal conductivity decreases with temperature as T(-1.5) indicating strong impurity (isotope) scattering at intermediate and high temperatures.

  4. Doped ZnO nanowires obtained by thermal annealing.

    PubMed

    Shan, C X; Liu, Z; Wong, C C; Hark, S K

    2007-02-01

    Doped ZnO nanowires were prepared in a very simple and inexpensive thermal annealing method using ZnSe nanowires as a precursor. As doped, P doped, and As/P codoped ZnO nanowires were obtained in this method. X-ray diffraction shows that the zincblende ZnSe nanowires were converted to doped wurtzite ZnO nanowires. The incorporation of the dopants was confirmed by energy dispersive X-ray spectroscopy. The doping concentration could be adjusted by changing the annealing temperature and duration. Scanning electron microscopy indicated that the morphology of the ZnSe nanowires was essentially retained after the annealing and doping process. Photoluminescence spectroscopy also verified the incorporation of the dopants into the nanowires.

  5. High mobility ZnO nanowires for terahertz detection applications

    SciTech Connect

    Liu, Huiqiang; Peng, Rufang E-mail: chusheng@mail.sysu.edu.cn; Chu, Shijin; Chu, Sheng E-mail: chusheng@mail.sysu.edu.cn

    2014-07-28

    An oxide nanowire material was utilized for terahertz detection purpose. High quality ZnO nanowires were synthesized and field-effect transistors were fabricated. Electrical transport measurements demonstrated the nanowire with good transfer characteristics and fairly high electron mobility. It is shown that ZnO nanowires can be used as building blocks for the realization of terahertz detectors based on a one-dimensional plasmon detection configuration. Clear terahertz wave (∼0.3 THz) induced photovoltages were obtained at room temperature with varying incidence intensities. Further analysis showed that the terahertz photoresponse is closely related to the high electron mobility of the ZnO nanowire sample, which suggests that oxide nanoelectronics may find useful terahertz applications.

  6. Quantum Efficiency of ZnO Nanowire Nanolasers

    SciTech Connect

    Zhang, Yanfeng; Russo, Richard E.; Mao, Samuel S.

    2005-03-28

    Crystalline ZnO nanowires were grown on sapphire and silicon substrates using pulsed-laser deposition. The optical properties of nanowire nanolasers, including their absolute light emission intensity and external and internal quantum efficiencies were experimentally determined. The external differential quantum efficiency was measured to be as high as 60% for lasing ZnO nanowires of 7.5 {micro}m in length, compared to a value of approximately 10% for photoluminescence. The absolute light emission intensity for individual nanowires was found to be in the vicinity of 0.1 mW. By measuring the dependence of external differential quantum efficiency on the cavity length, the internal quantum efficiency of ZnO nanowire nanolasers was determined to be about 85%.

  7. Nitrogen is a deep acceptor in ZnO

    SciTech Connect

    Tarun, M. C.; Iqbal, M. Zafar; McCluskey, M. D.

    2011-04-14

    Zinc oxide is a promising material for blue and UV solid-state lighting devices, among other applications. Nitrogen has been regarded as a potential p-type dopant for ZnO. However, recent calculations indicate that nitrogen is a deep acceptor. This paper presents experimental evidence that nitrogen is, in fact, a deep acceptor and therefore cannot produce p-type ZnO. A broad photoluminescence (PL) emission band near 1.7 eV, with an excitation onset of ~2.2 eV, was observed, in agreement with the deep-acceptor model of the nitrogen defect. Thus the deep-acceptor behavior can be explained by the low energy of the ZnO valence band relative to the vacuum level.

  8. Identification of hydrogen molecules in ZnO.

    PubMed

    Lavrov, E V; Herklotz, F; Weber, J

    2009-05-08

    Hydrogen molecules in ZnO are identified by their local vibrational modes. In a Raman study, interstitial H2, HD, and D2 species were found to exhibit local vibrational modes at frequencies 4145, 3628, and 2985 cm-1, respectively. After thermal treatment of vapor phase grown ZnO samples in hydrogen atmosphere, most hydrogen forms shallow donors at the bond-centered site (HBC). Subsequently, HBC migrates through the crystal and forms electrically inactive H2. These results imply that the "hidden" hydrogen in ZnO [G. A. Shi et al., Appl. Phys. Lett. 85, 5601 (2004)10.1063/1.1832736] occurs in the form of interstitial H2.

  9. Nitrogen is a deep acceptor in ZnO

    DOE PAGES

    Tarun, M. C.; Iqbal, M. Zafar; McCluskey, M. D.

    2011-04-14

    Zinc oxide is a promising material for blue and UV solid-state lighting devices, among other applications. Nitrogen has been regarded as a potential p-type dopant for ZnO. However, recent calculations indicate that nitrogen is a deep acceptor. This paper presents experimental evidence that nitrogen is, in fact, a deep acceptor and therefore cannot produce p-type ZnO. A broad photoluminescence (PL) emission band near 1.7 eV, with an excitation onset of ~2.2 eV, was observed, in agreement with the deep-acceptor model of the nitrogen defect. Thus the deep-acceptor behavior can be explained by the low energy of the ZnO valence bandmore » relative to the vacuum level.« less

  10. Electrical Property of Conventionally Sintered ZnO

    NASA Astrophysics Data System (ADS)

    Tak, S. K.; Shekhwat, M. S.; Mangal, R.

    ZnO powder was synthesized by solid state reaction method. The synthesized powder was granulated and pressed using uni-axial press for preparing the pallets. The prepared pellets were sintered in conventional furnace at different temperatures (900-1300° C). The phase study was done by powder X-ray diffraction and it was found that the there is no other phase present in the synthesized material but the peak intensity is increasing with temperature. The crystallite size of the synthesized ZnO powder was found to be increase with temperature. The effect of sintering on grain growth is investigated by scanning electron microscopy (SEM). SEM revels that the average grain size is increases with increase in sintering temperature. AC impedance of these samples was decreased markedly with increased sintering temperature. In present work the effect of sintering temperatures and hold time on micro structural and electrical properties of ZnO ceramics is carried out.

  11. Enhanced Photoluminescence in Acetylene-Treated ZnO Nanorods.

    PubMed

    Jäppinen, Luke; Jalkanen, Tero; Sieber, Brigitte; Addad, Ahmed; Heinonen, Markku; Kukk, Edwin; Radevici, Ivan; Paturi, Petriina; Peurla, Markus; Shahbazi, Mohammad-Ali; Santos, Hélder A; Boukherroub, Rabah; Santos, Hellen; Lastusaari, Mika; Salonen, Jarno

    2016-12-01

    Zinc oxide (ZnO) nanorods were manufactured using the aqueous chemical growth (ACG) method, and the effect of thermal acetylene treatment on their morphology, chemical composition, and optical properties was investigated. Changes in the elemental content of the treated rods were found to be different than in previous reports, possibly due to the different defect concentrations in the samples, highlighting the importance of synthesis method selection for the process. Acetylene treatment resulted in a significant improvement of the ultraviolet photoluminescence of the rods. The greatest increase in emission intensity was recorded on ZnO rods treated at the temperature of 825 °C. The findings imply that the changes brought on by the treatment are limited to the surface of the ZnO rods.

  12. Effect of Water on Ethanol Conversion over ZnO

    SciTech Connect

    Rahman, Muhammad Mahfuzur; Davidson, Stephen D.; Sun, Junming; Wang, Yong

    2015-10-01

    This work focuses on understanding the role of water on ethanol conversion over zinc oxide (ZnO). It was found that a competitive adsorption between ethanol and water occurs on ZnO, which leads to the blockage of the strong Lewis acid site by water on ZnO. As a result, both dehydration and dehydrogenation reactions are inhibited. However, the extent of inhibition for dehydration is orders of magnitude higher than that for dehydrogenation, leading to the shift of reaction pathway from ethanol dehydration to dehydrogenation. In the secondary reactions for acetaldehyde conversion, water inhibits the acetaldehyde aldol-condensation to crotonaldehyde, favoring the oxidation of acetaldehyde to acetic acid, and then to acetone via ketonization at high temperature (i.e., 400 °C).

  13. Novel Devices Using Multifunctional ZnO and Its Nanostructures

    DTIC Science & Technology

    2008-12-01

    Army CERDEC Fort Monmouth, NJ 07703 ABTRACT Zinc oxide (ZnO) is a promising wide band gap semiconductor. It has a direct energy band gap, Eg...of 3.3eV at room temperature. ZnO can be alloyed with CdO and MgO to form the ternaries CdxZn1-xO and MgxZn1-xO, extending the direct energy band...as it has a direct energy band gap (Eg) of approximately 3.3eV at room temperature, and also a free exciton binding energy of ≈60 meV. ZnO is more

  14. Room-temperature ferromagnetism in pure ZnO nanoflowers

    NASA Astrophysics Data System (ADS)

    Bie, Xiaofei; Wang, Chunzhong; Ehrenberg, H.; Wei, Yingjin; Chen, Gang; Meng, Xing; Zou, Guangtian; Du, Fei

    2010-08-01

    ZnO nanoflowers are synthesized by hydrothermal method. The morphology of ZnO is captured by SEM, TEM and HRTEM, which is composed of closely packed nanorods of about 100 nm in diameter and 1 μm in length. The ZFC/FC curves show superparamagnetic features. The abnormal increase in magnetization curves below 14 K comes from the isolated vacancy clusters with no interaction. The magnetic hysteresis at 300 K displays saturation state and confirms room-temperature ferromagnetism. While the magnetic hysteresis at 5 K shows nonsaturation state due to the enhanced effects of vacancy clusters. The O 1s XPS results can be fitted to three Gaussian peaks. The existence of medium-binding energy located at 531.16 eV confirms the deficiency of O ions at the surface of ZnO nanoflowers.

  15. Hydrothermal growth of ZnO nanoparticles under different conditions

    NASA Astrophysics Data System (ADS)

    Yilmaz, Mehmet; Bozkurt Cirak, Burcu; Cirak, Cagri; Aydogan, Sakir

    2016-02-01

    In this study, a simple low-temperature hydrothermal method was used to synthesize ZnO nanoparticles. The structural, morphological and optical characterizations of the nanoparticles were evaluated with regard to the zinc content. To achieve this, the molar ratios of the precursors were changed from 0.05 to 0.1 M. The structural and morphological analyses showed that all samples had a polycrystalline hexangular wurtzite crystal structure and the shape of the ZnO nanoparticles changed with increasing zinc content. A possible growth mechanism of the ZnO nanoparticles is explained in terms of the zinc content. Optical measurement revealed that the shape of the nanoparticles affects the position of the band-edge emission as well as the shape of the luminescence spectrum.

  16. Optical characterization of Eu3+ doped ZnO nanocomposites.

    PubMed

    Grandhe, Bhaskar Kumar; Bandi, Vengala Rao; Jang, Kiwan; Lee, Ho-Sueb; Shin, Dong-Soo; Yi, Soung-Soo; Jeong, Jung-Hyun

    2013-11-01

    A rare-earth metal ion (Eu3+) doped ZnO nanocomposites have been successfully synthesized by employing wet chemical procedure using multi-wall carbon nanotubes (MWCNT's) as removable template. The preparation was carried out by immersing empty and dried MWCNT's in a stoichiometric composition of zinc nitrate and europium nitrate solution followed by filtration and sintering. The synthesized Eu3+ doped ZnO nanocomposites were characterized by means of different characterization techniques namely XRD, SEM, EDS, FT-IR and Raman spectroscopy. The XRD profile of the Eu3+ doped ZnO nanocomposites indicated its hexagonal nature while the photoluminescent analysis reveals that the prepared nanocomposite exhibits a strong red emission peak at 619 nm due to 5D0 --> 7F2 forced electric dipole transition of Eu3+ ions. Such luminescent materials are expected to find potential applications in display devices.

  17. Miniscrew implant applications in contemporary orthodontics.

    PubMed

    Chang, Hong-Po; Tseng, Yu-Chuan

    2014-03-01

    The need for orthodontic treatment modalities that provide maximal anchorage control but with minimal patient compliance requirements has led to the development of implant-assisted orthodontics and dentofacial orthopedics. Skeletal anchorage with miniscrew implants has no patient compliance requirements and has been widely incorporated in orthodontic practice. Miniscrew implants are now routinely used as anchorage devices in orthodontic treatment. This review summarizes recent data regarding the interpretation of bone data (i.e., bone quantity and quality) obtained by preoperative diagnostic computed tomography (CT) or by cone-beam computed tomography (CBCT) prior to miniscrew implant placement. Such data are essential when selecting appropriate sites for miniscrew implant placement. Bone characteristics that are indications and contraindications for treatment with miniscrew implants are discussed. Additionally, bicortical orthodontic skeletal anchorage, risks associated with miniscrew implant failure, and miniscrew implants for nonsurgical correction of occlusal cant or vertical excess are reviewed. Finally, implant stability is compared between titanium alloy and stainless steel miniscrew implants.

  18. Advances in lens implant technology

    PubMed Central

    Kampik, Anselm; Dexl, Alois K.; Zimmermann, Nicole; Glasser, Adrian; Baumeister, Martin; Kohnen, Thomas

    2013-01-01

    Cataract surgery is one of the oldest and the most frequent outpatient clinic operations in medicine performed worldwide. The clouded human crystalline lens is replaced by an artificial intraocular lens implanted into the capsular bag. During the last six decades, cataract surgery has undergone rapid development from a traumatic, manual surgical procedure with implantation of a simple lens to a minimally invasive intervention increasingly assisted by high technology and a broad variety of implants customized for each patient’s individual requirements. This review discusses the major advances in this field and focuses on the main challenge remaining – the treatment of presbyopia. The demand for correction of presbyopia is increasing, reflecting the global growth of the ageing population. Pearls and pitfalls of currently applied methods to correct presbyopia and different approaches under investigation, both in lens implant technology and in surgical technology, are discussed. PMID:23413369

  19. Implants for draining neovascular glaucoma.

    PubMed Central

    Molteno, A C; Van Rooyen, M M; Bartholomew, R S

    1977-01-01

    The implant design, surgical technique, and pharmacological methods of controlling bleb fibrosis, used to treat neovascular glaucoma, are described, together with the results of 14 operations performed on 12 eyes. Images PMID:843508

  20. Structural Stability and Phase Transitions of Octanethiol Self-Assembled Monolayers on Au(111) in Ultrahigh Vacuum.

    PubMed

    Lee, Nam-Suk; Cho, Gyoujin; Shin, Hoon-Kyu; Noh, Jaegeun

    2016-06-01

    To understand the structural stability of as-prepared octanethiol (OT) self-assembled monolayers (SAMs) with a fully covered c(4 x 2) phase on Au(111) in ultrahigh vacuum (UHV) conditions of 3 x 10(-7) Pa at room temperature, we examined OT SAM samples obtained as a function of storage period using scanning tunneling microscopy (STM). STM imaging revealed that phase transition of OT SAMs after storage in UHV for 3 days occurs from the c(4 x 2) phase to the mixed phase containing ordered c(4 x 2) and disordered phases. It was also observed that the disordered phase was mainly located at around vacancy islands and near step edges of Au(111) terraces, implying that desorption of OT molecules chemisorbed on Au(111) in UHV occurs more quickly in these regions compared with in the closely packed and ordered domains. After a longer storage in UHV for 6 days, OT SAMs with the c(4 x 2) phase were changed to the disordered phase containing a partially ordered domain with a row structure. From this study, we clearly demonstrated that OT molecules in SAMs on Au(111) are desorbed spontaneously in UHV at room temperature, resulting in the formation of disordered and row phases.

  1. Detection of primary breast cancer presenting as metastatic carcinoma of unknown primary origin by 111In-pentetreotide scan.

    PubMed

    Lenzi, R; Kim, E E; Raber, M N; Abbruzzese, J L

    1998-02-01

    Women with isolated metastatic carcinoma or adenocarcinoma involving axillary lymph nodes are a well-recognized group of unknown primary carcinoma (UPC) patients with a favorable prognosis. This group of patients are generally treated based on the assumption that they have occult breast cancer. However, to facilitate patient access to the whole spectrum of therapies available for patients with breast cancer, including strategies involving the use of high-dose chemotherapy, a precise diagnosis is increasingly important. In this clinical case we report the detection of a primary breast cancer by 111In-pentetreotide scanning in a woman who presented with metastatic carcinoma in axillary nodes, no palpable breast lesion, a nondiagnostic mammogram, and negative breast ultrasonography. Previous outcomes analysis of patients with UPC have emphasized the value of identifying women with breast cancer. This report suggests that the 111In-pentetreotide scan can contribute specific, clinically useful information in the evaluation of women presenting with metastatic carcinoma in axillary nodes and an occult primary and deserves prospective study in women with UPC presenting with isolated axillary metastases.

  2. The effect of ibuprofen on accumulation of /sup 111/In-labeled platelets and leukocytes in experimental myocardial infarction

    SciTech Connect

    Romson, J.L.; Hook, B.G.; Rigot, V.H.; Schork, M.A.; Swanson, D.P.; Lucchesi, B.R.

    1982-11-01

    To assess the ability of ibuprofen to influence the extent of platelet aggregation and leukocyte infiltration during acute myocardial infarction, autologous indium-111 (/sup 111/In)-labeled platelets or leukocytes were injected before 60 minutes of left circumflex coronary artery (LCx) occlusion, followed by 24 hours of reperfusion in the canine heart. Myocardial infarct size, as a percent of the area at risk, was reduced in the ibuprofen-treated group (12.5 mg/kg i.v. every 4 hours beginning 30 minutes before LCx occlusion) by 40%, from 48 +/- 4% in control animals to 29 +/- 4% in ibuprofen-treated dogs (p . 0.005). Quantification of the platelet-associated /sup 111/In radioactivity in irreversibly injured myocardium indicated that ibuprofen did not alter the accumulation of platelets in infarcted myocardium. In contrast, leukocyte accumulation in infarcted tissue was reduced significantly. In tissue samples with 0.41-0.60 gram infarct, the infarcted/normal ratio of leukocyte radioactivity was 12 +/- 2 in control dogs and 4 +/- 1 in ibuprofen-treated dogs, which represents a 67% reduction in leukocyte accumulation in ibuprofen-treated compared with control dogs. Similar reductions were found in other gram-infarct-weight categories. Although both platelets and leukocytes accumulate in infarcted canine myocardium, ibuprofen may exert its beneficial effect on ischemic myocardium by suppressing the inflammatory response associated with myocardial ischemia and infarction.

  3. Description of a multicompartmental model of the biodistribution of 111In-DTPA-D-Phe-1-octreotide in human.

    PubMed

    D'addabbo, A; Simeone, G; Rubini, G; Nitti, L

    1995-12-01

    The aim of this study was to use compartmental analysis as a theoretical tool to provide quantitative and unitary data for a more precise determination of 111In-OCT concentrations in a tumour site and various body organs. Five subjects (3 male and 2 female) with neoplasias were studied. Structural and parametric identification of the model was based on the plasma, urine, total body and ROI (soft tissue, spleen, kidney and tumour) activity values. The model was of the mammillary type with 5 compartments (blood, soft tissue, spleen, kidneys and urine) for the 4 patients with a negative scintiscan and 6 (blood, soft tissue, spleen, kidneys, urine and tumour) for the adenocarcinoma patient. Numerical constants were determined by running a best-fit procedure with the MINUIT minimisation program (CERN library) using a microVAX 3800 computer. The reliability of the models was also tested. 111In-OCT accumulates in the kidneys and spleen, from which it is slowly released into the blood. Elimination is via the urine at first rapidly, then more slowly. The maximum concentration in the tumour compartment is reached at 12-14 hours and remains almost constant.

  4. Growth of ZnO nanowires on nonwoven polyethylene fibers

    NASA Astrophysics Data System (ADS)

    Baruah, Sunandan; Thanachayanont, Chanchana; Dutta, Joydeep

    2008-04-01

    We report the growth of ZnO nanowires on nonwoven polyethylene fibers using a simple hydrothermal method at a temperature below the boiling point of water. The ZnO nanowires were grown from seed ZnO nanoparticles affixed onto the fibers. The seed ZnO nanoparticles, with diameters of about 6-7 nm, were synthesized in isopropanol by reducing zinc acetate hydrate with sodium hydroxide. The growth process was carried out in a sealed chemical bath containing an equimolar solution of zinc nitrate hexahydrate and hexamethylene tetramine at a temperature of 95 °C over a period of up to 20 h. The thickness and length of the nanowires can be controlled by using different concentrations of the starting reactants and growth durations. A 0.5 mM chemical bath yielded nanowires with an average diameter of around 50 nm, while a 25 mM bath resulted in wires with a thickness of up to about 1 μm. The length of the wires depends both on the concentration of the precursor solution as well as the growth duration, and in 20 h, nanowires as long as 10 μm can be grown. The nonwoven mesh of polyethylene fibers covered with ZnO nanowires can be used for novel applications such as water treatment by degrading pollutants by photocatalysis. Photocatalysis tests carried out on standard test contaminants revealed that the polyethylene fibers with ZnO nanowires grown on them could accelerate the photocatalytic degradation process by a factor of 3.

  5. A high power ZnO thin film piezoelectric generator

    NASA Astrophysics Data System (ADS)

    Qin, Weiwei; Li, Tao; Li, Yutong; Qiu, Junwen; Ma, Xianjun; Chen, Xiaoqiang; Hu, Xuefeng; Zhang, Wei

    2016-02-01

    A highly efficient and large area piezoelectric ZnO thin film nanogenerator (NG) was fabricated. The ZnO thin film was deposited onto a Si substrate by pulsed laser ablation at a substrate temperature of 500 °C. The deposited ZnO film exhibited a preferred c-axis orientation and a high piezoelectric value of 49.7 pm/V characterized using Piezoelectric Force Microscopy (PFM). Thin films of ZnO were patterned into rectangular power sources with dimensions of 0.5 × 0.5 cm2 with metallic top and bottom electrodes constructed via conventional semiconductor lithographic patterning processes. The NG units were subjected to periodic bending/unbending motions produced by mechanical impingement at a fixed frequency of 100 Hz at a pressure of 0.4 kg/cm2. The output electrical voltage, current density, and power density generated by one ZnO NG were recorded. Values of ∼95 mV, 35 μA cm-2 and 5.1 mW cm-2 were recorded. The level of power density is typical to that produced by a PZT NG on a flexible substrate. Higher energy NG sources can be easily created by adding more power units either in parallel or in series. The thin film ZnO NG technique is highly adaptable with current semiconductor processes, and as such, is easily integrated with signal collecting circuits that are compatible with mass production. A typical application would be using the power harvested from irregular human foot motions to either to operate blue LEDs directly or to drive a sensor network node in mille-power level without any external electric source and circuits.

  6. Surgical Tooth Implants, Combat and Field.

    DTIC Science & Technology

    1984-07-15

    and identify by block number) --- This Annual Report summarizes progress to date on a long-term implant study of a serrated ceramic dental implant...upper two parts of the implant, post and core and crown, are conventional metaT materials. A series of graded dental implants have been produced to...throughout the experimental period. Periodic radio- graphic analyses of dental implants verify this observation. Gross and microscopic patho- logic analyses

  7. Surgical Tooth Implants, Combat and Field.

    DTIC Science & Technology

    1985-11-15

    development of dental implantology must not be overlooked. The early stages of this project clearly defined that rigid fixation of an implant device...block number) .-... This report summarizes progress on a long-ter implant study of a serrated ceramic dental implant designed for fresh extraction...implant, post and core and crown, are conventional metal materials, A series of graded dental implants have been produced to provide an interference fit

  8. Comparative study of ZnO nanorods and thin films for chemical and biosensing applications and the development of ZnO nanorods based potentiometric strontium ion sensor

    NASA Astrophysics Data System (ADS)

    Khun, K.; Ibupoto, Z. H.; Chey, C. O.; Lu, Jun.; Nur, O.; Willander, M.

    2013-03-01

    In this study, the comparative study of ZnO nanorods and ZnO thin films were performed regarding the chemical and biosensing properties and also ZnO nanorods based strontium ion sensor is proposed. ZnO nanorods were grown on gold coated glass substrates by the hydrothermal growth method and the ZnO thin films were deposited by electro deposition technique. ZnO nanorods and thin films were characterised by field emission electron microscopy [FESEM] and X-ray diffraction [XRD] techniques and this study has shown that the grown nanostructures are highly dense, uniform and exhibited good crystal quality. Moreover, transmission electron microscopy [TEM] was used to investigate the quality of ZnO thin film and we observed that ZnO thin film was comprised of nano clusters. ZnO nanorods and thin films were functionalised with selective strontium ionophore salicylaldehyde thiosemicarbazone [ST] membrane, galactose oxidase, and lactate oxidase for the detection of strontium ion, galactose and L-lactic acid, respectively. The electrochemical response of both ZnO nanorods and thin films sensor devices was measured by using the potentiometric method. The strontium ion sensor has exhibited good characteristics with a sensitivity of 28.65 ± 0.52 mV/decade, for a wide range of concentrations from 1.00 × 10-6 to 5.00 × 10-2 M, selectivity, reproducibility, stability and fast response time of 10.00 s. The proposed strontium ion sensor was used as indicator electrode in the potentiometric titration of strontium ion versus ethylenediamine tetra acetic acid [EDTA]. This comparative study has shown that ZnO nanorods possessed better performance with high sensitivity and low limit of detection due to high surface area to volume ratio as compared to the flat surface of ZnO thin films.

  9. [Guidelines for nursing methodology implantation].

    PubMed

    Alberdi Castell, Rosamaría; Artigas Lelong, Berta; Cuxart Ainaud, Núria; Agüera Ponce, Ana

    2003-09-01

    The authors introduce three guidelines as part of the process to implant the nursing methodology based on the Virginia Henderson Conceptual Model; they propose to help nurses adopt the aforementioned method in their daily practice. These three guidelines shall be published in successive articles: Guidelines to identify attitudes and aptitudes related to the nursing profession; Guidelines to implant the nursing methodology based on the Virginia Henderson Conceptual Model; and Guidelines to plan areas for improvement.

  10. Nanostructured ZnO films on stainless steel are highly safe and effective for antimicrobial applications.

    PubMed

    Shim, Kyudae; Abdellatif, Mohamed; Choi, Eunsoo; Kim, Dongkyun

    2017-04-01

    The safety and effectiveness of antimicrobial ZnO films must be established for general applications. In this study, the antimicrobial activity, skin irritation, elution behavior, and mechanical properties of nanostructured ZnO films on stainless steel were evaluated. ZnO nanoparticle (NP) and ZnO nanowall (NW) structures were prepared with different surface roughnesses, wettability, and concentrations using an RF magnetron sputtering system. The thicknesses of ZnO NP and ZnO NW were approximately 300 and 620 nm, respectively, and ZnO NW had two diffraction directions of [0002] and [01-10] based on high-resolution transmission electron microscopy. The ZnO NW structure demonstrated 99.9% antimicrobial inhibition against Escherichia coli, Staphylococcus aureus, and Penicillium funiculosum, and no skin irritation was detected using experimental rabbits. Approximately 27.2 ± 3.0 μg L(-1) Zn ions were eluted from the ZnO NW film at 100 °C for 24 h, which satisfies the WHO guidelines for drinking water quality. Furthermore, the Vickers hardness and fracture toughness of ZnO NW films on stainless steel were enhanced by 11 and 14% compared to those of the parent stainless steel. Based on these results, ZnO NW films on STS316L sheets are useful for household supplies, such as water pipes, faucets, and stainless steel containers.

  11. CdSe quantum dot sensitized solar cell based hierarchical branched ZnO nanoarrays

    NASA Astrophysics Data System (ADS)

    Xu, Gang; Deng, Jianping

    2015-05-01

    The hierarchical branched ZnO nanoarrays (NAs) photoanode was prepared by a two-step hydrothermal method. Vertically aligned long ZnO NWs were first synthesized using as the backbone of hierarchical branched ZnO NAs structure and high quality ZnO NAs branches were grown on the surface of backbone ZnO NAs. The structured films enhance the optical path length through the light scatting effect of branched ZnO NAs and prove the larger internal surface area in NAs film to increase quantum dots (QDs) sensitizer loadings, so the light absorption has an optimization. Compared with the cell based conventional 1D ZnO NAs, the efficiency of the new cells has a great improvement due to the increase of the short circuit current density.

  12. Opto-electrical properties of Sb-doped p-type ZnO nanowires

    SciTech Connect

    Kao, Tzu-Hsuan; Chen, Jui-Yuan; Chiu, Chung-Hua; Huang, Chun-Wei; Wu, Wen-Wei

    2014-03-17

    P-type ZnO nanowires (NWs) have attracted much attention in the past years due to the potential applications for optoelectronics and piezotronics. In this study, we have synthesized Sb-doped p-type ZnO NWs on Si (100) substrates by chemical vapor deposition with Aucatalyst. The Sb-doped ZnO NWs are single crystalline with high density, grown along [1-1-2] direction. The doping percentage of Sb is about 2.49%, which has been confirmed by X-ray photoelectron spectroscopy. The ZnO NW field effect transistor demonstrated its p-type characteristics. A high responsivity to ultraviolet photodetection was also observed. In addition, compared to intrinsic ZnO NWs, the conductivity of the Sb-doped ZnO NWs exhibited ∼2 orders of magnitude higher. These properties make the p-type ZnO NWs a promising candidate for electronic and optoelectronic devices.

  13. Fluorescence property of ZnO nanoparticles and the interaction with bromothymol blue.

    PubMed

    Yue, Qiaoli; Cheng, Jinmei; Li, Guang; Zhang, Ke; Zhai, Yanling; Wang, Lei; Liu, Jifeng

    2011-05-01

    We synthesized ZnO quantum dots (QDs) simply in alcoholic solution, and investigated the interaction between ZnO QDs and bromothymol blue. The structural, morphological, size and spectral properties of ZnO QDs were studied. It was found that ZnO QDs were spherical nanoparticles in the crystal structure, and the average diameter of ZnO QDs was about 4.8 nm. The excitation and emission peaks were located at 346 nm and 520 nm, respectively, which were obtained on a common fluorophotometer. The quantum yield of ZnO QDs was obtained by using quinine sulfate as a reference reagent. In addition, the fluorescence of ZnO QDs can be quenched by bromothymol blue, and the quenching mechanism was proposed in a dynamic quenching mode.

  14. Transparent conductivity modulation of ZnO by group-IVA doping

    NASA Astrophysics Data System (ADS)

    Liu, J.; Fan, X. F.; Sun, C. Q.; Zhu, W.

    2016-04-01

    We examined the effect of group-IVA doping on the electronic structure and transmittance of ZnO using first-principle calculations. All these doped ZnO materials are found to perform n-type conductive behavior. Si-doped ZnO and Pb-doped ZnO are found to have larger optical band gap than those of Ge-doped ZnO and Sn-doped ZnO. The transmittance of Si-doped ZnO is found to be high in both UV and visible region. The enhancement of UV region transmittance can be attributed to the enhanced optical band gap, while the reduction of visible region transmittance is due to the intraband optical transition.

  15. Seed-mediated growth of ZnO nanorods on multiwalled carbon nanotubes.

    PubMed

    Li, Changqing; Jin, Zhong; Chu, Haibin; Li, Yan

    2008-09-01

    The heterostructures of ZnO nanorods on multiwalled carbon nanotubes (MWNTs) were fabricated by a seed-mediated growth method. First, the surfaces of the carbon nanotubes (CNTs) were coated in situ with mono-dispersed ZnO nanocrystals of about 7 nm by the reaction of zinc acetate and sodium hydroxide. These nanocrystals were then served as the seeds for further growth of ZnO nanorods. In the second step, ZnO nanorods were grown on MWNTs coated with ZnO nanocrystals in an aqueous solution of zinc nitrate and equimolar hexamethylenetetramine at 85 degrees C. Typically, the ZnO nanorods had the length of 300-600 nm and the diameter of 40-140 nm and took a random direction on the outside walls of MWNTs. The morphology of the ZnO nanorods was dependent on pH, reactant concentration, and growing time.

  16. Nanostructured ZnO - its challenging properties and potential for device applications

    NASA Astrophysics Data System (ADS)

    Dimova-Malinovska, D.

    2017-01-01

    Nanostructured ZnO possessing interesting structural and optical properties offers challenging opportunities for innovative applications. In this lecture the review of the optical and structural properties of ZnO nanostructured layers is presented. It is shown that they have a direct impact on the parameters of devices involving ZnO. An analysis of current trends in the photovoltaic (PV) field shows that improved light harvesting and efficiency of solar cells can be obtained by implementing nanostructured ZnO layers to process advanced solar cell structures. Because of amenability to doping, high chemical stability, sensitivity to different adsorbed gases, nontoxicity and low cost ZnO attracted much attention for application as gas sensors. The sensitivity of nano-grain ZnO gas elements is comparatively high because of the grain-size effect. Application of nanostructured ZnO for gas sensors and for increasing of light harvesting in solar cells is demonstrated.

  17. Characterization of undoped and Co doped ZnO nanoparticles synthesized by DC thermal plasma method

    NASA Astrophysics Data System (ADS)

    Nirmala, M.; Anukaliani, A.

    2011-02-01

    ZnO nanopowders doped with 5 and 10 at% cobalt were synthesized and their antibacterial activity was studied. Cobalt doped ZnO powders were prepared using dc thermal plasma method. Crystal structure and grain size of the particles were characterized by X-ray diffractometry and optical properties were studied using UV-vis spectroscopy. The particle size and morphology was observed by SEM and HRTEM, revealing rod like morphology. The antibacterial activity of undoped ZnO and cobalt doped ZnO nanoparticles against a Gram-negative bacterium Escherichia coli and a Gram-positive bacterium Bacillus atrophaeus was investigated. Undoped ZnO and cobalt doped ZnO exhibited antibacterial activity against both E. coli and Staphylococcus aureus but it was considerably more effective in the cobalt doped ZnO.

  18. Free-standing ZnO nanorods and nanowalls by aqueous solution method.

    PubMed

    Kim, Dae-Hee; Lee, Sam-Dong; Kim, Kyoung-Kook; Park, Gyeong-Su; Lee, Ji-Myon; Kim, Sang-Woo

    2008-09-01

    Large quantity of free-standing ZnO nanorods and nanowalls were synthesized at low temperature of below 100 degrees C using zinc acetate, zinc nitrate hexahydrate, and hexamethylenetetramine by using a simple aqueous solution method. The general morphology of the grown ZnO nanostructures which include nanorods and nanowalls was strongly influenced by growth conditions. It was found that the grown ZnO nanorods are of a single-crystalline hexagonal structure and preferred c-axis growth orientation. ZnO nanorods were of better crystallinity than ZnO nanowalls, due to the higher growth temperature used to grow ZnO nanorods. Strong free exciton emission bands with relatively weak deep level emission were clearly observed from ZnO nanorods and nanowalls, indicating their good optical properties.

  19. Transition Metal Doped ZnO for Spintronics

    DTIC Science & Technology

    2007-07-01

    34 Heo, Y. W.; Ip, K.; Pearton, S. J.; Norton, D. P.; Budai, J. D., Applied Surface Science (2006), 252(20), 7442-7448. 14. "ZnO spintronics and nanowire ...Ren, F., Applied Physics Letters, Volume 87, Issue 21,, 2005, Pages 212106-212101-3. 28. "Cubic (MgZn)O nanowire growth using catalyst-driven...Ren, S. Shojah-Ardalan, and R. Wilkins, J.Electron. Mater. 34 395 (2005). 40. "Fabrication Approaches to ZnO Nanowire Devices," J.R. LaRoche, Y.W. Heo

  20. Improved Response of ZnO Films for Pyroelectric Devices

    PubMed Central

    Hsiao, Chun-Ching; Yu, Shih-Yuan

    2012-01-01

    Increasing the temperature variation rate is a useful method for enhancing the response of pyroelectric devices. A three-dimensional ZnO film was fabricated by the aerosol deposition (AD) rapid process using the shadow mask method, which induces lateral temperature gradients on the sidewalls of the responsive element, thereby increasing the temperature variation rate. To enhance the quality of the film and reduce the concentration of defects, the film was further treated by laser annealing, and the integration of a comb-like top electrode enhanced the voltage response and reduced the response time of the resulting ZnO pyroelectric devices. PMID:23235444

  1. Multipod znO nanoforms: low temperature synthesis and characterization.

    PubMed

    Ghoshal, Tandra; Kar, Soumitra; Biswas, Subhajit; Majumdar, Gautam; Chaudhuri, Subhadra

    2007-02-01

    ZnO nanotetrapods were synthesized by a simple thermal evaporation of Zn powder at a relatively low temperature approximately 600 degrees C. The tetrapods have four legs with hexagonal cross-section. Interpenetrating growth was observed in some of these nanotetrapods. Multipod ZnO nanoforms were produced at higher temperature. The optical characterizations such as optical absorbance, photoluminescence and Raman spectroscopy reveal excellent crystal qualities of these nanoforms. The field emission studies indicated that these nanoforms could be utilized in field emission based devices.

  2. Oxygen sensing characteristics of individual ZnO nanowire transistors

    SciTech Connect

    Li, Q.H.; Liang, Y.X.; Wan, Q.; Wang, T.H.

    2004-12-27

    Individual ZnO nanowire transistors are fabricated, and their sensing properties are investigated. The transistors show a carrier density of 2300 {mu}m{sup -1} and mobility up to 6.4 cm{sup 2}/V s, which are obtained from the I{sub SD}-V{sub G} curves. The threshold voltage shifts in the positive direction and the source-drain current decreases as ambient oxygen concentration increases. However, the opposite occurs when the transistors are under illumination. Surface adsorbates on the ZnO nanowires affect both the mobility and the carrier density. Our data are helpful in understanding the sensing mechanism of the gas sensors.

  3. Growth modes of ZnO nanostructures from laser ablation

    SciTech Connect

    Amarilio-Burshtein, I.; Tamir, S.; Lifshitz, Y.

    2010-03-08

    ZnO nanowires (NWs) and other nanostructures were grown by laser ablation of a ZnO containing target onto different substrates with and without the presence of an Au catalyst. The morphology and structure of the NWs were studied using high resolution scanning and transmission electron microscopes [including imaging, selected area electron diffraction (SAED), and energy dispersive x-ray spectroscopy (EDS)]. The different growth modes obtainable could be tuned by varying the Zn concentration in the vapor phase keeping other growth parameters intact. Possible growth mechanisms of these nanowires are suggested and discussed.

  4. Electron-hole quantum physics in ZnO

    NASA Astrophysics Data System (ADS)

    Versteegh, M. A. M.

    2011-09-01

    This dissertation describes several new aspects of the quantum physics of electrons and holes in zinc oxide (ZnO), including a few possible applications. Zinc oxide is a II-VI semiconductor with a direct band gap in the ultraviolet. Experimental and theoretical studies have been performed, both on bulk ZnO and on ZnO nanowires. Chapter 2 presents a new technique for an ultrafast all-optical shutter, based on two-photon absorption in a ZnO crystal. This shutter can be used for luminescence experiments requiring extremely high time-resolution. Chapter 3 describes a time-resolved study on the electron-hole many-body effects in highly excited ZnO at room temperature, in particular band-filling, band-gap renormalization, and the disappearance of the exciton resonance due to screening. In Chapter 4, the quantum many-body theory developed and experimentally verified in Chapter 3, is used to explain laser action in ZnO nanowires, and compared with experimental results. In contrast to current opinion, the results indicate that excitons are not involved in the laser action. The measured emission wavelength, the laser threshold, and the spectral distance between the laser modes are shown to be excellently explained by our quantum many-body theory. Multiple scattering of light in a forest of nanowires can be employed to enhance light absorption in solar cells. Optimization of this technique requires better understanding of light diffusion in such a nanowire forest. In Chapter 5 we demonstrate a method, based on two-photon absorption, to directly measure the residence time of light in a nanowire forest, and we show that scanning electron microscope (SEM) images can be used to predict the photon mean free path. In Chapter 6 we present a new ultrafast all-optical transistor, consisting of a forest of ZnO nanowires. After excitation, laser action in this forest causes rapid recombination of the majority of the electrons and holes, limiting the amplification to 1.2 picoseconds only

  5. Structure of graphene oxide dispersed with ZnO nanoparticles

    SciTech Connect

    Yadav, Rishikesh Pandey, Devendra K.; Khare, P. S.

    2014-10-15

    Graphene has been proposed as a promising two-dimensional nanomaterial with outstanding electronic, optical, thermal and mechanical properties for many applications. In present work a process of dispersion of graphene oxide with ZnO nanoparticles in ethanol solution with different pH values, have been studied. Samples have been characterized by XRD, SEM, PL, UV-visible spectroscopy and particles size measurement. The results analysis indicates overall improved emission spectrum. It has been observed that the average diameter of RGO (Reduced Graphene Oxide) decreases in presence of ZnO nanoparticles from 3.8μm to 0.41μm.

  6. Stabilization Mechanism of ZnO Nanoparticles by Fe Doping

    NASA Astrophysics Data System (ADS)

    Xiao, Jianping; Kuc, Agnieszka; Frauenheim, Thomas; Heine, Thomas

    2014-03-01

    Surprisingly low solubility and toxicity of Fe-doped ZnO nanoparticles is elucidated on the basis of first-principles calculations. Various ZnO surfaces that could be present in nanoparticles are subject to substitutional Fe doping. We show that Fe stabilizes polar instable surfaces, while nonpolar surfaces, namely (101_0) and (112_0), remain intact. Polar surfaces can be stabilized indirectly through Fe2+-Fe3+ pair-assisted charge transfer, which reduces surface polarity and therefore, the solubility in polar solvents.

  7. Kinetics of Congruent Vaporization of ZnO Islands

    SciTech Connect

    Kim, B.J.; Stach, E.; Garcia, R.E.

    2011-09-28

    We examine the congruent vaporization of ZnO islands using in situ transmission electron microscopy. Correlating quantitative measurements with a theoretical model offers a comprehensive understanding of the equilibrium conditions of the system, including equilibrium vapor pressure and surface free energy. Interestingly, the surface energy depends on temperature, presumably due to a charged surface at our specific condition of low P and high T. We find that the vaporization temperature decreases with decreasing system size, a trend that is more pronounced at higher T. Applying our results of island decay towards the growth of the ZnO provides new insights into the cooperative facet growth of anisotropic nanocrystals.

  8. Reducing ZnO nanoparticle cytotoxicity by surface modification

    NASA Astrophysics Data System (ADS)

    Luo, Mingdeng; Shen, Cenchao; Feltis, Bryce N.; Martin, Lisandra L.; Hughes, Anthony E.; Wright, Paul F. A.; Turney, Terence W.

    2014-05-01

    Nanoparticulate zinc oxide (ZnO) is one of the most widely used engineered nanomaterials and its toxicology has gained considerable recent attention. A key aspect for controlling biological interactions at the nanoscale is understanding the relevant nanoparticle surface chemistry. In this study, we have determined the disposition of ZnO nanoparticles within human immune cells by measurement of total Zn, as well as the proportions of extra- and intracellular dissolved Zn as a function of dose and surface coating. From this mass balance, the intracellular soluble Zn levels showed little difference in regard to dose above a certain minimal level or to different surface coatings. PEGylation of ZnO NPs reduced their cytotoxicity as a result of decreased cellular uptake arising from a minimal protein corona. We conclude that the key role of the surface properties of ZnO NPs in controlling cytotoxicity is to regulate cellular nanoparticle uptake rather than altering either intracellular or extracellular Zn dissolution.Nanoparticulate zinc oxide (ZnO) is one of the most widely used engineered nanomaterials and its toxicology has gained considerable recent attention. A key aspect for controlling biological interactions at the nanoscale is understanding the relevant nanoparticle surface chemistry. In this study, we have determined the disposition of ZnO nanoparticles within human immune cells by measurement of total Zn, as well as the proportions of extra- and intracellular dissolved Zn as a function of dose and surface coating. From this mass balance, the intracellular soluble Zn levels showed little difference in regard to dose above a certain minimal level or to different surface coatings. PEGylation of ZnO NPs reduced their cytotoxicity as a result of decreased cellular uptake arising from a minimal protein corona. We conclude that the key role of the surface properties of ZnO NPs in controlling cytotoxicity is to regulate cellular nanoparticle uptake rather than

  9. Single photon emission from ZnO nanoparticles

    SciTech Connect

    Choi, Sumin; Ton-That, Cuong; Phillips, Matthew R.; Aharonovich, Igor; Johnson, Brett C.; Castelletto, Stefania

    2014-06-30

    Room temperature single photon emitters are very important resources for photonics and emerging quantum technologies. In this work, we study single photon emission from defect centers in 20 nm zinc oxide (ZnO) nanoparticles. The emitters exhibit bright broadband fluorescence in the red spectral range centered at 640 nm with polarized excitation and emission. The studied emitters showed continuous blinking; however, bleaching can be suppressed using a polymethyl methacrylate coating. Furthermore, hydrogen termination increased the density of single photon emitters. Our results will contribute to the identification of quantum systems in ZnO.

  10. ZnO nanotube based dye-sensitized solar cells.

    PubMed

    Martinson, Alex B F; Elam, Jeffrey W; Hupp, Joseph T; Pellin, Michael J

    2007-08-01

    We introduce high surface area ZnO nanotube photoanodes templated by anodic aluminum oxide for use in dye-sensitized solar cells (DSSCs). Atomic layer deposition is utilized to coat pores conformally, providing a direct path for charge collection over tens of micrometers thickness. Compared to similar ZnO-based devices, ZnO nanotube cells show exceptional photovoltage and fill factors, in addition to power efficiencies up to 1.6%. The novel fabrication technique provides a facile, metal-oxide general route to well-defined DSSC photoanodes.

  11. Permanent bending and alignment of ZnO nanowires.

    PubMed

    Borschel, Christian; Spindler, Susann; Lerose, Damiana; Bochmann, Arne; Christiansen, Silke H; Nietzsche, Sandor; Oertel, Michael; Ronning, Carsten

    2011-05-06

    Ion beams can be used to permanently bend and re-align nanowires after growth. We have irradiated ZnO nanowires with energetic ions, achieving bending and alignment in different directions. Not only the bending of single nanowires is studied in detail, but also the simultaneous alignment of large ensembles of ZnO nanowires. Computer simulations reveal how the bending is initiated by ion beam induced damage. Detailed structural characterization identifies dislocations to relax stresses and make the bending and alignment permanent, even surviving annealing procedures.

  12. Auditory Midbrain Implant: A Review

    PubMed Central

    Lim, Hubert H.; Lenarz, Minoo; Lenarz, Thomas

    2009-01-01

    The auditory midbrain implant (AMI) is a new hearing prosthesis designed for stimulation of the inferior colliculus in deaf patients who cannot sufficiently benefit from cochlear implants. The authors have begun clinical trials in which five patients have been implanted with a single shank AMI array (20 electrodes). The goal of this review is to summarize the development and research that has led to the translation of the AMI from a concept into the first patients. This study presents the rationale and design concept for the AMI as well a summary of the animal safety and feasibility studies that were required for clinical approval. The authors also present the initial surgical, psychophysical, and speech results from the first three implanted patients. Overall, the results have been encouraging in terms of the safety and functionality of the implant. All patients obtain improvements in hearing capabilities on a daily basis. However, performance varies dramatically across patients depending on the implant location within the midbrain with the best performer still not able to achieve open set speech perception without lip-reading cues. Stimulation of the auditory midbrain provides a wide range of level, spectral, and temporal cues, all of which are important for speech understanding, but they do not appear to sufficiently fuse together to enable open set speech perception with the currently used stimulation strategies. Finally, several issues and hypotheses for why current patients obtain limited speech perception along with several feasible solutions for improving AMI implementation are presented. PMID:19762428

  13. Biomechanics of Corneal Ring Implants

    PubMed Central

    2015-01-01

    Purpose: To evaluate the biomechanics of corneal ring implants by providing a related mathematical theory and biomechanical model for the treatment of myopia and keratoconus. Methods: The spherical dome model considers the inhomogeneity of the tunica of the eye, dimensions of the cornea, lamellar structure of the corneal stroma, and asphericity of the cornea. It is used in this study for calculating a strengthening factor sf for the characterization of different ring-shaped corneal implant designs. The strengthening factor is a measure of the amount of strengthening of the cornea induced by the implant. Results: For ring segments and incomplete rings, sf = 1.0, which indicates that these implants are not able to strengthen the cornea. The intracorneal continuous complete ring (MyoRing) has a strengthening factor of up to sf = 3.2. The MyoRing is, therefore, able to strengthen the cornea significantly. Conclusions: The result of the presented biomechanical analysis of different ring-shaped corneal implant designs can explain the different postoperative clinical results of different implant types in myopia and keratoconus. PMID:26312619

  14. Retinal implants: a systematic review.

    PubMed

    Chuang, Alice T; Margo, Curtis E; Greenberg, Paul B

    2014-07-01

    Retinal implants present an innovative way of restoring sight in degenerative retinal diseases. Previous reviews of research progress were written by groups developing their own devices. This systematic review objectively compares selected models by examining publications describing five representative retinal prostheses: Argus II, Boston Retinal Implant Project, Epi-Ret 3, Intelligent Medical Implants (IMI) and Alpha-IMS (Retina Implant AG). Publications were analysed using three criteria for interim success: clinical availability, vision restoration potential and long-term biocompatibility. Clinical availability: Argus II is the only device with FDA approval. Argus II and Alpha-IMS have both received the European CE Marking. All others are in clinical trials, except the Boston Retinal Implant, which is in animal studies. Vision restoration: resolution theoretically correlates with electrode number. Among devices with external cameras, the Boston Retinal Implant leads with 100 electrodes, followed by Argus II with 60 electrodes and visual acuity of 20/1262. Instead of an external camera, Alpha-IMS uses a photodiode system dependent on natural eye movements and can deliver visual acuity up to 20/546. Long-term compatibility: IMI offers iterative learning; Epi-Ret 3 is a fully intraocular device; Alpha-IMS uses intraocular photosensitive elements. Merging the results of these three criteria, Alpha-IMS is the most likely to achieve long-term success decades later, beyond current clinical availability.

  15. Ion implanted dielectric elastomer circuits

    NASA Astrophysics Data System (ADS)

    O'Brien, Benjamin M.; Rosset, Samuel; Anderson, Iain A.; Shea, Herbert R.

    2013-06-01

    Starfish and octopuses control their infinite degree-of-freedom arms with panache—capabilities typical of nature where the distribution of reflex-like intelligence throughout soft muscular networks greatly outperforms anything hard, heavy, and man-made. Dielectric elastomer actuators show great promise for soft artificial muscle networks. One way to make them smart is with piezo-resistive Dielectric Elastomer Switches (DES) that can be combined with artificial muscles to create arbitrary digital logic circuits. Unfortunately there are currently no reliable materials or fabrication process. Thus devices typically fail within a few thousand cycles. As a first step in the search for better materials we present a preliminary exploration of piezo-resistors made with filtered cathodic vacuum arc metal ion implantation. DES were formed on polydimethylsiloxane silicone membranes out of ion implanted gold nano-clusters. We propose that there are four distinct regimes (high dose, above percolation, on percolation, low dose) in which gold ion implanted piezo-resistors can operate and present experimental results on implanted piezo-resistors switching high voltages as well as a simple artificial muscle inverter. While gold ion implanted DES are limited by high hysteresis and low sensitivity, they already show promise for a range of applications including hysteretic oscillators and soft generators. With improvements to implanter process control the promise of artificial muscle circuitry for soft smart actuator networks could become a reality.

  16. Therapy using implanted organic bioelectronics

    PubMed Central

    Jonsson, Amanda; Song, Zhiyang; Nilsson, David; Meyerson, Björn A.; Simon, Daniel T.; Linderoth, Bengt; Berggren, Magnus

    2015-01-01

    Many drugs provide their therapeutic action only at specific sites in the body, but are administered in ways that cause the drug’s spread throughout the organism. This can lead to serious side effects. Local delivery from an implanted device may avoid these issues, especially if the delivery rate can be tuned according to the need of the patient. We turned to electronically and ionically conducting polymers to design a device that could be implanted and used for local electrically controlled delivery of therapeutics. The conducting polymers in our device allow electronic pulses to be transduced into biological signals, in the form of ionic and molecular fluxes, which provide a way of interfacing biology with electronics. Devices based on conducting polymers and polyelectrolytes have been demonstrated in controlled substance delivery to neural tissue, biosensing, and neural recording and stimulation. While providing proof of principle of bioelectronic integration, such demonstrations have been performed in vitro or in anesthetized animals. Here, we demonstrate the efficacy of an implantable organic electronic delivery device for the treatment of neuropathic pain in an animal model. Devices were implanted onto the spinal cord of rats, and 2 days after implantation, local delivery of the inhibitory neurotransmitter γ-aminobutyric acid (GABA) was initiated. Highly localized delivery resulted in a significant decrease in pain response with low dosage and no observable side effects. This demonstration of organic bioelectronics-based therapy in awake animals illustrates a viable alternative to existing pain treatments, paving the way for future implantable bioelectronic therapeutics. PMID:26601181

  17. Built-in electric field in ZnO based semipolar quantum wells grown on (1012) ZnO substrates

    SciTech Connect

    Chauveau, J.-M.; Xia, Y.; Roland, B.; Vinter, B.; Ben Taazaet-Belgacem, I.; Teisseire, M.; Nemoz, M.; Brault, J.; Damilano, B.; Leroux, M.

    2013-12-23

    We report on the properties of semipolar (Zn,Mg)O/ZnO quantum wells homoepitaxially grown by molecular beam epitaxy on (1012) R-plane ZnO substrates. We demonstrate that atomically flat interfaces can be achieved with fully relaxed quantum wells because the mismatch between (Zn,Mg)O and ZnO is minimal for this growth orientation. The photoluminescence properties evidence a quantum confined Stark effect with an internal electric field estimated to 430 kV/cm for a 17% Mg content in the barriers. The quantum well emission is strongly polarized along the 1210 direction and a comparison with the semipolar bulk ZnO luminescence polarization points to the effect of the confinement.

  18. Study of ZnO and Mg doped ZnO nanoparticles by sol-gel process

    SciTech Connect

    Ansari, Mohd Meenhaz Arshad, Mohd; Tripathi, Pushpendra

    2015-06-24

    Nano-crystalline undoped and Mg doped ZnO (Mg-ZnO) nanoparticles with compositional formula Mg{sub x}Zn{sub 1-x}O (x=0,1,3,5,7,10 and 12 %) were synthesized using sol-gel process. The XRD diffraction peaks match with the pattern of the standard hexagonal structure of ZnO that reveals the formation of hexagonal wurtzite structure in all samples. SEM images demonstrates clearly the formation of spherical ZnO nanoparticles, and change of the morphology of the nanoparticles with the concentration of the magnesium, which is in close agreement with that estimated by Scherer formula based on the XRD pattern. To investigate the doping effect on optical properties, the UV–VIS absorption spectra was obtained and the band gap of the samples calculated.

  19. In vitro antibacterial activity of ZnO and Nd doped ZnO nanoparticles against ESBL producing Escherichia coli and Klebsiella pneumoniae

    NASA Astrophysics Data System (ADS)

    Hameed, Abdulrahman Syedahamed Haja; Karthikeyan, Chandrasekaran; Ahamed, Abdulazees Parveez; Thajuddin, Nooruddin; Alharbi, Naiyf S.; Alharbi, Sulaiman Ali; Ravi, Ganasan

    2016-04-01

    Pure ZnO and Neodymium (Nd) doped ZnO nanoparticles (NPs) were synthesized by the co-precipitation method. The synthesized nanoparticles retained the wurtzite hexagonal structure. From FESEM studies, ZnO and Nd doped ZnO NPs showed nanorod and nanoflower like morphology respectively. The FT-IR spectra confirmed the Zn-O stretching bands at 422 and 451 cm‑1 for ZnO and Nd doped ZnO NPs respectively. From the UV-VIS spectroscopic measurement, the excitonic peaks were found around 373 nm and 380 nm for the respective samples. The photoluminescence measurements revealed that the broad emission was composed of ten different bands due to zinc vacancies, oxygen vacancies and surface defects. The antibacterial studies performed against extended spectrum β-lactamases (ESBLs) producing strains of Escherichia coli and Klebsiella pneumoniae showed that the Nd doped ZnO NPs possessed a greater antibacterial effect than the pure ZnO NPs. From confocal laser scanning microscopic (CLSM) analysis, the apoptotic nature of the cells was confirmed by the cell shrinkage, disorganization of cell wall and cell membrane and dead cell of the bacteria. SEM analysis revealed the existence of bacterial loss of viability due to an impairment of cell membrane integrity, which was highly consistent with the damage of cell walls.

  20. In vitro antibacterial activity of ZnO and Nd doped ZnO nanoparticles against ESBL producing Escherichia coli and Klebsiella pneumoniae

    PubMed Central

    Hameed, Abdulrahman Syedahamed Haja; Karthikeyan, Chandrasekaran; Ahamed, Abdulazees Parveez; Thajuddin, Nooruddin; Alharbi, Naiyf S.; Alharbi, Sulaiman Ali; Ravi, Ganasan

    2016-01-01

    Pure ZnO and Neodymium (Nd) doped ZnO nanoparticles (NPs) were synthesized by the co-precipitation method. The synthesized nanoparticles retained the wurtzite hexagonal structure. From FESEM studies, ZnO and Nd doped ZnO NPs showed nanorod and nanoflower like morphology respectively. The FT-IR spectra confirmed the Zn-O stretching bands at 422 and 451 cm−1 for ZnO and Nd doped ZnO NPs respectively. From the UV-VIS spectroscopic measurement, the excitonic peaks were found around 373 nm and 380 nm for the respective samples. The photoluminescence measurements revealed that the broad emission was composed of ten different bands due to zinc vacancies, oxygen vacancies and surface defects. The antibacterial studies performed against extended spectrum β-lactamases (ESBLs) producing strains of Escherichia coli and Klebsiella pneumoniae showed that the Nd doped ZnO NPs possessed a greater antibacterial effect than the pure ZnO NPs. From confocal laser scanning microscopic (CLSM) analysis, the apoptotic nature of the cells was confirmed by the cell shrinkage, disorganization of cell wall and cell membrane and dead cell of the bacteria. SEM analysis revealed the existence of bacterial loss of viability due to an impairment of cell membrane integrity, which was highly consistent with the damage of cell walls. PMID:27071382

  1. In vitro antibacterial activity of ZnO and Nd doped ZnO nanoparticles against ESBL producing Escherichia coli and Klebsiella pneumoniae.

    PubMed

    Hameed, Abdulrahman Syedahamed Haja; Karthikeyan, Chandrasekaran; Ahamed, Abdulazees Parveez; Thajuddin, Nooruddin; Alharbi, Naiyf S; Alharbi, Sulaiman Ali; Ravi, Ganasan

    2016-04-13

    Pure ZnO and Neodymium (Nd) doped ZnO nanoparticles (NPs) were synthesized by the co-precipitation method. The synthesized nanoparticles retained the wurtzite hexagonal structure. From FESEM studies, ZnO and Nd doped ZnO NPs showed nanorod and nanoflower like morphology respectively. The FT-IR spectra confirmed the Zn-O stretching bands at 422 and 451 cm(-1) for ZnO and Nd doped ZnO NPs respectively. From the UV-VIS spectroscopic measurement, the excitonic peaks were found around 373 nm and 380 nm for the respective samples. The photoluminescence measurements revealed that the broad emission was composed of ten different bands due to zinc vacancies, oxygen vacancies and surface defects. The antibacterial studies performed against extended spectrum β-lactamases (ESBLs) producing strains of Escherichia coli and Klebsiella pneumoniae showed that the Nd doped ZnO NPs possessed a greater antibacterial effect than the pure ZnO NPs. From confocal laser scanning microscopic (CLSM) analysis, the apoptotic nature of the cells was confirmed by the cell shrinkage, disorganization of cell wall and cell membrane and dead cell of the bacteria. SEM analysis revealed the existence of bacterial loss of viability due to an impairment of cell membrane integrity, which was highly consistent with the damage of cell walls.

  2. Why are mini-implants lost: the value of the implantation technique!

    PubMed

    Romano, Fabio Lourenço; Consolaro, Alberto

    2015-01-01

    The use of mini-implants have made a major contribution to orthodontic treatment. Demand has aroused scientific curiosity about implant placement procedures and techniques. However, the reasons for instability have not yet been made totally clear. The aim of this article is to establish a relationship between implant placement technique and mini-implant success rates by means of examining the following hypotheses: 1) Sites of poor alveolar bone and little space between roots lead to inadequate implant placement; 2) Different sites require mini-implants of different sizes! Implant size should respect alveolar bone diameter; 3) Properly determining mini-implant placement site provides ease for implant placement and contributes to stability; 4) The more precise the lancing procedures, the better the implant placement technique; 5) Self-drilling does not mean higher pressures; 6) Knowing where implant placement should end decreases the risk of complications and mini-implant loss.

  3. Why are mini-implants lost: The value of the implantation technique!

    PubMed Central

    Romano, Fabio Lourenço; Consolaro, Alberto

    2015-01-01

    The use of mini-implants have made a major contribution to orthodontic treatment. Demand has aroused scientific curiosity about implant placement procedures and techniques. However, the reasons for instability have not yet been made totally clear. The aim of this article is to establish a relationship between implant placement technique and mini-implant success rates by means of examining the following hypotheses: 1) Sites of poor alveolar bone and little space between roots lead to inadequate implant placement; 2) Different sites require mini-implants of different sizes! Implant size should respect alveolar bone diameter; 3) Properly determining mini-implant placement site provides ease for implant placement and contributes to stability; 4) The more precise the lancing procedures, the better the implant placement technique; 5) Self-drilling does not mean higher pressures; 6) Knowing where implant placement should end decreases the risk of complications and mini-implant loss. PMID:25741821

  4. Imaging of common breast implants and implant-related complications: A pictorial essay.

    PubMed

    Shah, Amisha T; Jankharia, Bijal B

    2016-01-01

    The number of women undergoing breast implant procedures is increasing exponentially. It is, therefore, imperative for a radiologist to be familiar with the normal and abnormal imaging appearances of common breast implants. Diagnostic imaging studies such as mammography, ultrasonography, and magnetic resonance imaging are used to evaluate implant integrity, detect abnormalities of the implant and its surrounding capsule, and detect breast conditions unrelated to implants. Magnetic resonance imaging of silicone breast implants, with its high sensitivity and specificity for detecting implant rupture, is the most reliable modality to asses implant integrity. Whichever imaging modality is used, the overall aim of imaging breast implants is to provide the pertinent information about implant integrity, detect implant failures, and to detect breast conditions unrelated to the implants, such as cancer.

  5. Reasons for failures of oral implants.

    PubMed

    Chrcanovic, B R; Albrektsson, T; Wennerberg, A

    2014-06-01

    This study reviews the literature regarding the factors contributing to failures of dental implants. An electronic search was undertaken including papers from 2004 onwards. The titles and abstracts from these results were read to identify studies within the selection criteria. All reference lists of the selected studies were then hand-searched, this time without time restrictions. A narrative review discussed some findings from the first two parts where separate data from non-comparative studies may have indicated conclusions different from those possible to draw in the systematic analysis. It may be suggested that the following situations are correlated to increase the implant failure rate: a low insertion torque of implants that are planned to be immediately or early loaded, inexperienced surgeons inserting the implants, implant insertion in the maxilla, implant insertion in the posterior region of the jaws, implants in heavy smokers, implant insertion in bone qualities type III and IV, implant insertion in places with small bone volumes, use of shorter length implants, greater number of implants placed per patient, lack of initial implant stability, use of cylindrical (non-threaded) implants and prosthetic rehabilitation with implant-supported overdentures. Moreover, it may be suggested that the following situations may be correlated with an increase in the implant failure rate: use of the non-submerged technique, immediate loading, implant insertion in fresh extraction sockets, smaller diameter implants. Some recently published studies suggest that modern, moderately rough implants may present with similar results irrespective if placed in maxillas, in smoking patients or using only short implants.

  6. Implant maintenance treatment and peri-implant health.

    PubMed

    Howe, Mark-Steven

    2017-03-01

    Data sourcesMedline (PubMed), Embase, Cochrane Central Register of Controlled Trials and Cochrane Oral Health Group Trials Register databases and a manual search of the Journal of Dental Research, Journal of Clinical Periodontology, Journal of Periodontology and the International Journal of Periodontics and Restorative Dentistry from January 2014 to February 2015.Study selectionProspective, retrospective, randomised or not, case-controlled or case series trials showing the incidence or recurrence of peri-implant disease plus or minus PIMT over more than six months.Data extraction and synthesisThree reviewers independently selected studies and abstracted data with two reviewers assessing study quality using the Newcastle-Ottawa Scale (NOS). A multivariate binomial regression was used to examine the data.ResultsThirteen studies were included with ten contributing to the meta-analysis. The average quality assessment score (NOS) was 5.3 out of a possible nine, only one paper achieved eight. At patient level mucositis ranged from 18.5-74.2% and peri-implantitis from 8-28%, with significant effects being seen for treatment (z= -14.36, p<0.001). Mucositis was affected by history of periodontitis and mean PIMT at implant and patient levels, respectively. For peri-implantitis there were also significant effects of treatment (z = -16.63, p<0.001). Increased peri-implantitis was observed for patients with a history of periodontal disease. (z=3.76, p<0.001). Implants under PIMT have 0.958 the incident event compared to those with no PIMT.ConclusionsWithin the limitations of the present systematic review it can be concluded that implant therapy must not be limited to placement and restoration of dental implants, but to the implementation of PIMT to potentially prevent biological complications and heighten the long-term success rate. Although it must be tailored to a patients risk profiling, our findings suggest reason to claim a minimum recall PIMT interval of five to six

  7. Deuterium implantation in magnetic garnets

    SciTech Connect

    Wilts, C.H.; Urai, A.

    1988-11-01

    The magnetic effects of deuterium implantation and subsequent annealing were measured in Gd, Tm, and Ga-substituted yttrium iron garnet films for comparison with measurements made earlier with hydrogen implantation. Implantation energy was 60 keV and the dose ranged from 0.5 to 3 x 10/sup 16/ ions/cm/sup 2/ for D/sup +//sub 2/ ions, as compared to an energy of 120 keV and a dose from 0.3 to 4 x 10/sup 16/ ions/cm/sup 2/ for H/sup +//sub 2/ in the earlier study. Measurements made included x-ray rocking curves and ferromagnetic resonance spectra measured at 9.5 GHz. For all doses the implanted layer remained crystalline. Implanted layer thickness was about 4200 A and peak strain occured at a depth of 2600 A. Peak strain increased monotonically, but departed from a linear relation with dose. For the highest dose, the peak strain was 2.5%. Relaxation of strain with annealing was intermediate between that found earlier for hydrogen and neon implantation. As compared to all other implant elements, both deuterium and hydrogen show a large anomalous magnetic anisotropy which can exceed 10 000 Oe for either ion. The absence of this effect for He, Ne, and other ions supports the conjecture that the effect is chemical and related to electronic bonding rather than strain or disorder. The anomalous anisotropy for deuterium decreases and shifts location with annealing. It has largely disappeared at temperatures of 300--350 /sup 0/C. The shape of the profile is consistent with the hypothesis that the shift in anisotropy is associated with diffusion of the deuterium atoms to the surface of the garnet film. At the highest dose, crystalline damage in the region of highest strain is sufficient to radically alter magnetic properties and in particular reduces even the excess anisotropy so that a two-peak profile results until modified by annealing.

  8. Multicomponent Implant Releasing Dexamethasone

    NASA Astrophysics Data System (ADS)

    Nikkola, L.; Vapalahti, K.; Ashammakhi, N.

    2008-02-01

    Several inflammatory conditions are usually treated with corticosteroids. There are various problems like side effects with traditional applications of steroids, e.g. topical, or systemic routes. Local drug delivery systems have been studied and developed to gain more efficient administration with fewer side effects. Earlier, we reported on developing Dexamethasone (DX) releasing biodegradable fibers. However, their drug release properties were not satisfactory in terms of onset of drug release. Thus, we assessed the development of multicomponent (MC) implant to enhance earlier drug release from such biodegradable fibers. Poly (lactide-co-glycolide) (PLGA) and 2 wt-% and 8 wt-% DX were compounded and extruded with twin-screw extruder to form of fibers. Some of the fibers were sterilized to obtain a change in drug release properties. Four different fiber classes were studied: 2 wt-%, 8 wt-%, sterilized 2 wt-%, and sterilized 8 wt-%. 3×4 different DX-releasing fibers were then heat-pressed to form one multicomponent rod. Half of the rods where sterilized. Drug release was measured from initial fibers and multicomponent rods using a UV/VIS spectrometer. Shear strength and changes in viscosity were also measured. Drug release studies showed that drug release commenced earlier from multicomponent rods than from component fibers. Drug release from multicomponent rods lasted from day 30 to day 70. The release period of sterilized rods extended from day 23 to day 57. When compared to the original component fibers, the drug release from MC rods commenced earlier. The initial shear strength of MC rods was 135 MPa and decreased to 105 MPa during four weeks of immersion in phosphate buffer solution. Accordingly, heat pressing has a positive effect on drug release. After four weeks in hydrolysis, no disintegration was observed.

  9. The Phenomenology of Ion Implantation-Induced Blistering and Thin-Layer Splitting in Compound Semiconductors

    NASA Astrophysics Data System (ADS)

    Singh, R.; Christiansen, S. H.; Moutanabbir, O.; Gösele, U.

    2010-10-01

    Hydrogen and/or helium implantation-induced surface blistering and layer splitting in compound semiconductors such as InP, GaAs, GaN, AlN, and ZnO are discussed. The blistering phenomenon depends on many parameters such as the semiconductor material, ion fluence, ion energy, and implantation temperature. The optimum values of these parameters for compound semiconductors are presented. The blistering and splitting processes in silicon have been studied in detail, motivated by the fabrication of the widely used silicon-on-insulator wafers. Hence, a comparison of the blistering process in Si and compound semiconductors is also presented. This comparative study is technologically relevant since ion implantation-induced layer splitting combined with direct wafer bonding in principle allows the transfer of any type of semiconductor layer onto any foreign substrate of choice—the technique is known as the ion-cut or Smart-Cut™ method. For the aforementioned compound semiconductors, investigations regarding layer transfer using the ion-cut method are still in their infancy. We report feasibility studies of layer transfer by the ion-cut method for some of the most important and widely used compound semiconductors. The importance of characteristic values for successful wafer bonding such as wafer bow and surface flatness as well as roughness are discussed, and difficulties in achieving some of these values are pointed out.

  10. Medical implants and methods of making medical implants

    DOEpatents

    Shaw, Wendy J; Yonker, Clement R; Fulton, John L; Tarasevich, Barbara J; McClain, James B; Taylor, Doug

    2014-09-16

    A medical implant device having a substrate with an oxidized surface and a silane derivative coating covalently bonded to the oxidized surface. A bioactive agent is covalently bonded to the silane derivative coating. An implantable stent device including a stent core having an oxidized surface with a layer of silane derivative covalently bonded thereto. A spacer layer comprising polyethylene glycol (PEG) is covalently bonded to the layer of silane derivative and a protein is covalently bonded to the PEG. A method of making a medical implant device including providing a substrate having a surface, oxidizing the surface and reacting with derivitized silane to form a silane coating covalently bonded to the surface. A bioactive agent is then covalently bonded to the silane coating. In particular instances, an additional coating of bio-absorbable polymer and/or pharmaceutical agent is deposited over the bioactive agent.

  11. Ferromagnetism in ZnO doped with alkaline elements

    NASA Astrophysics Data System (ADS)

    Wang, Yiren; Piao, Jingyuan; Xin, Guozhong; Lu, Yunhao; Ao, Zhimin; Bao, Nina; Ding, Jun; Li, Sean; Yi, Jiabao

    We have observed room temperature ferromagnetism (RTFM) in ZnO doped with alkaline elements Using first-principles calculations we found the magnetization in these systems is originated from the O2p hole states around Zn vacancies. Calculations indicate that the formation energy of Zn vacancies alone is rather high while further investigation indicates the formation can be much stabilized by the alkaline dopants in the form of defect complexes. By calculating the formation energy of concerned defects and complexes, we found the role of the dopants that under a certain doping concentration: Zn vacancy, substitutional and interstitial dopants can form a defect complex, which can lower formation energy, therefore stabilizing Zn vacancies. Moreover K dopants have shown unique functions on the ferromagnetism since the substitutional K can induce magnetic moments to the system by forming partial zinc vacancy via lattice distortion. Hence K doped ZnO can be magnetic at low doping concentrations. Experimentally, Li, Na doped ZnO films and K doped ZnO nanorods with different doping levels are synthesized, RTFM can be observed in all these systems. The magnetization is found to be greatly influenced by the doping concentrations. The experimental results have shown good consistence with our theoretical calculations. Our studies can inspire the defect induced ferromagnetism as a new route for the fabrication of new diluted magnetic semiconductors.

  12. Growth Kinetics and Modeling of ZnO Nanoparticles

    ERIC Educational Resources Information Center

    Hale, Penny S.; Maddox, Leone M.; Shapter, Joe G.; Voelcker, Nico H.; Ford, Michael J.; Waclawik, Eric R.

    2005-01-01

    The technique for producing quantum-sized zinc oxide (ZnO) particles is much safer than a technique that used hydrogen sulfide gas to produce cadmium sulfide and zinc sulfide nanoparticles. A further advantage of this method is the ability to sample the solution over time and hence determine the growth kinetics.

  13. Co doped ZnO nanowires as visible light photocatalysts

    NASA Astrophysics Data System (ADS)

    Šutka, Andris; Käämbre, Tanel; Pärna, Rainer; Juhnevica, Inna; Maiorov, Mihael; Joost, Urmas; Kisand, Vambola

    2016-06-01

    High aspect ratio cobalt doped ZnO nanowires showing strong photocatalytic activity and moderate ferromagnetic behaviour were successfully synthesized using a solvothermal method and characterized by scanning electron microscopy (SEM), X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS), vibrating sample magnetometry (VSM) and UV-visible absorption spectroscopy. The photocatalytic activities evaluated for visible light driven degradation of an aqueous methylene orange (MO) solution were higher than for Co doped ZnO nanoparticles at the same doping level and synthesized by the same synthesis route. The rate constant for MO visible light photocatalytic degradation was 1.9·10-3 min-1 in case of nanoparticles and 4.2·10-3 min-1 in case of nanowires. We observe strongly enhanced visible light photocatalytic activity for moderate Co doping levels, with an optimum at a composition of Zn0.95Co0.05O. The enhanced photocatalytic activities of Co doped ZnO nanowires were attributed to the combined effects of enhanced visible light absorption at the Co sites in ZnO nanowires, and improved separation efficiency of photogenerated charge carriers at optimal Co doping.

  14. Temperature Dependence of Raman Scattering in ZnO

    DTIC Science & Technology

    2007-04-06

    Callahan 5e. TASK NUMBER HC 5f. WORK UNIT NUMBER 01 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) * Consell Superior d’Investigacions...dependence of Raman scattering in ZnO Ramon Cuscó, Esther Alarcón-Lladó, Jordi Ibáñez, and Luis Artús Institut Jaume Almera, Consell Superior

  15. Photoluminescence of spray pyrolysis deposited ZnO nanorods

    PubMed Central

    2011-01-01

    Photoluminescence of highly structured ZnO layers comprising well-shaped hexagonal rods is presented. The ZnO rods (length 500-1,000 nm, diameter 100-300 nm) were grown in air onto a preheated soda-lime glass (SGL) or ITO/SGL substrate by low-cost chemical spray pyrolysis method using zinc chloride precursor solutions and growth temperatures in the range of 450-550°C. We report the effect of the variation in deposition parameters (substrate type, growth temperature, spray rate, solvent type) on the photoluminescence properties of the spray-deposited ZnO nanorods. A dominant near band edge (NBE) emission is observed at 300 K and at 10 K. High-resolution photoluminescence measurements at 10 K reveal fine structure of the NBE band with the dominant peaks related to the bound exciton transitions. It is found that all studied technological parameters affect the excitonic photoluminescence in ZnO nanorods. PACS: 78.55.Et, 81.15.Rs, 61.46.Km PMID:21711895

  16. Ecotoxicity of Manufactured ZnO Nanoparticles - A Review

    EPA Science Inventory

    This report presents an exhaustive literature review on the toxicity of manufactured ZnO nanoparticles (NPs) to ecological receptors across different phylum: bacteria, algae and plants, aquatic and terrestrial invertebrates and freshwater fish. Results show that the majority of s...

  17. ZnO nanowire-based CO sensor

    NASA Astrophysics Data System (ADS)

    Ho, Mon-Shu; Chen, Wei-Hao; Chen, Yu-Lin; Chang, Meng-Fan

    This study applied ZnO nanowires to the fabrication of a CO gas sensor operable at room temperature. Following the deposition of a seed layer by spin coating, an aqueous solution method was used to grow ZnO nanowires. This was followed by the self-assembly of an electrode array via dielectrophoresis prior to the fabrication of the CO sensing device. The material characteristics were analyzed using FE-SEM, EDS, GIXRD, FE-TEM, and the measurement of photoluminescence (PL). Our results identified the ZnO nanowires as a single crystalline wurtzite structure. Extending the growth period from 30 min to 360 min led to an increase in the length and diameter of the nanowires. After two hours, the ZnO presented a preferred crystal orientation of [002]. Sensor chips were assembled using 60 pairs of electrodes with gaps of 2 μm, over which were lain nanowires to complete the sensing devices. The average sensing response was 48.37 s and the average recovery time was 65.61 s, with a sensing response magnitude of approximately 6.8% at room temperature.

  18. Photoluminescence of spray pyrolysis deposited ZnO nanorods

    NASA Astrophysics Data System (ADS)

    Kärber, Erki; Raadik, Taavi; Dedova, Tatjana; Krustok, Jüri; Mere, Arvo; Mikli, Valdek; Krunks, Malle

    2011-04-01

    Photoluminescence of highly structured ZnO layers comprising well-shaped hexagonal rods is presented. The ZnO rods (length 500-1,000 nm, diameter 100-300 nm) were grown in air onto a preheated soda-lime glass (SGL) or ITO/SGL substrate by low-cost chemical spray pyrolysis method using zinc chloride precursor solutions and growth temperatures in the range of 450-550°C. We report the effect of the variation in deposition parameters (substrate type, growth temperature, spray rate, solvent type) on the photoluminescence properties of the spray-deposited ZnO nanorods. A dominant near band edge (NBE) emission is observed at 300 K and at 10 K. High-resolution photoluminescence measurements at 10 K reveal fine structure of the NBE band with the dominant peaks related to the bound exciton transitions. It is found that all studied technological parameters affect the excitonic photoluminescence in ZnO nanorods. PACS: 78.55.Et, 81.15.Rs, 61.46.Km

  19. Photoluminescence of spray pyrolysis deposited ZnO nanorods.

    PubMed

    Kärber, Erki; Raadik, Taavi; Dedova, Tatjana; Krustok, Jüri; Mere, Arvo; Mikli, Valdek; Krunks, Malle

    2011-04-21

    Photoluminescence of highly structured ZnO layers comprising well-shaped hexagonal rods is presented. The ZnO rods (length 500-1,000 nm, diameter 100-300 nm) were grown in air onto a preheated soda-lime glass (SGL) or ITO/SGL substrate by low-cost chemical spray pyrolysis method using zinc chloride precursor solutions and growth temperatures in the range of 450-550°C. We report the effect of the variation in deposition parameters (substrate type, growth temperature, spray rate, solvent type) on the photoluminescence properties of the spray-deposited ZnO nanorods. A dominant near band edge (NBE) emission is observed at 300 K and at 10 K. High-resolution photoluminescence measurements at 10 K reveal fine structure of the NBE band with the dominant peaks related to the bound exciton transitions. It is found that all studied technological parameters affect the excitonic photoluminescence in ZnO nanorods.PACS: 78.55.Et, 81.15.Rs, 61.46.Km.

  20. Memristive switching of ZnO nanorod mesh

    NASA Astrophysics Data System (ADS)

    Yevgeniy, Puzyrev; Shen, Xiao; Ni, Kai; Zhang, Xuan; Hachtel, Jordan; Choi, Bo; Chisholm, Matthew; Fleetwood, Daniel; Schrimpf, Ronald; Pantelides, Sokrates

    We present a combined experimental and theoretical study of memristive switching in a self-assembled mesh of ZnO nanorods. A ZnO nanorod mesh spans the area between Ag contacts in a device that exhibits hysteresis with large ON/OFF ratio, reaching ION/IOFF values of 104. We show that switching behavior depends critically on the geometry of the nanorod mesh. We employ density functional theory (DFT) calculations to deduce the mechanism for resistive switching for the nanorod mesh. Redistribution of Ag atoms, driven by an electrical field, leads to the formation and evolution of a conducting path through nanorods. Field-induced migration of Ag atoms changes the doping level of nanorods and modulates their conductivity. Using static DFT and nudged-elastic-band calculations, we investigate the energy of interaction between Ag clusters and a ZnO surface, including migration barriers of Ag atoms. Current-voltage (I-V) characteristics are modeled using percolation theory in a nanorod mesh. To describe the dynamics of SET/RESET phenomena, model parameters include the experimentally observed nanorod geometry and the energetics of Ag on ZnO surfaces, obtained from DFT calculations. This work was supported by NSF Grant DMR-1207241, DOE Grant DE-FG02-09ER46554, and the McMinn Endowment at Vanderbilt University. Computational support was provided by the NSF XSEDE under Grant #DMR TG-DMR130121.

  1. Perovskite enhanced solid state ZnO solar cells

    NASA Astrophysics Data System (ADS)

    Loh, L.; Briscoe, J.; Dunn, S.

    2013-12-01

    This paper will report on the design, fabrication and testing of a solid-state perovskite enhanced ZnO solar cell. The p-type perovskite material used is bismuth ferrite (BFO) which has an absorption range within the blue range of the visible light spectrum. The solid state solar cell, was sensitized with N719 dye and used a CuSCN hole conductor. A disadvantage of ZnO is its poor chemical stability in acidic and corrosive environments. As chemical solution techniques were used in depositing BFO, a buffer method using an aminosilane ((3-aminopropyltrimethoxysilane or H2N(CH2)3Si(OCH3)3)) coating was used to provide a protective coating on the ZnO nanorods before the BFO film was spin coated onto the ZnO nanorods. The photovoltaic performance of the solar cells were tested using a Keithley 2400 source meter under 100mW/cm2, AM 1.5G simulated sunlight, where improvements in Jsc and efficiency were observed. The BFO was able to harness more electrons and also acted as a buffer from electron recombination.

  2. Rapid synthesis of flower-like ZnO nanostructures.

    PubMed

    Movahedi, Maryam; Mahjoub, Ali Reza; Yavari, Issa; Kowsari, Elaheh

    2010-09-01

    Flower-like ZnO nanostructures were prepared via microwave assisted heating in the presence and absence of ionic liquid (IL). X-ray diffraction analysis (XRD), Scanning electron microscopy SEM and room temperature photoluminescence (PL) spectra have been employed for characterization of the products. The SEM image illustrates the surface of flower-like ZnO prepared in the presence of IL is not smooth and consists of nanoparticles with grain size of about 48 nm. PL spectra of flower-like ZnO in absence and presence IL reveal similar photoluminescence features: a strong UV, weak blue and green-yellow emissions peak at a bout 393 nm, 448 nm and 583 nm respectively. The strong UV photoluminescence and the weak green emission indicate the good crystallization quality of the flower-like nanostructure. The results show that imidazolium-based IL can be used as template for achieving very high level control over the size and shape of nanostructures. The approach developed in this work can potentially be used as a viable method for making various other uniform nanostructures in the presence of IL. This method is simple, fast, low-cost and suitable for large-scale production of ZnO nanostructures.

  3. Somatostatin receptor imaging with (111)In-pentetreotide in gastro-intestinal tract and lung neuroendocrine tumors-Impact on targeted treatment.

    PubMed

    Gerasimou, George; Moralidis, Efstratios; Gotzamani-Psarrakou, Anna

    2010-01-01

    Somatostatin is a neuropeptide that confers a wide range of pharmacological properties. Indium-111-tagged pentetreotide ((111)In-P) is a radiolabeled analogue of somatostatin indicated for the in vivo scintigraphic localization of neuroendocrine tumors (NET). In cases of NET of the gastro-intestinal tract we describe the sensitivity compared to conventional anatomical imaging modalities and especially the possibility that (111)In-P may change therapeutic management into up one fourth of the patients. In cases of small cell lung carcinoma it has been used for the evaluation of somatostatin receptor status and a substantial tool for differentiation between limited and extensive disease, especially when combined with anatomical imaging methods. We also describe the radiolabeled with yttrium-90 or lutetium-177 somatostatin analogue peptides in the treatment of NET and also the use of (111)In-P for the selection of patients for targeted treatment.

  4. Feasibility of an implanted microphone for cochlear implant listening.

    PubMed

    Gérard, Jean-Marc; Demanez, Laurent; Salmon, Caroline; Vanpoucke, Filiep; Walraevens, Joris; Plasmans, Anke; De Siati, Daniele; Lefèbvre, Philippe

    2017-03-01

    This study aimed at evaluating the feasibility of an implanted microphone for cochlear implants (CI) by comparison of hearing outcomes, sound quality and patient satisfaction of a subcutaneous microphone to a standard external microphone of a behind-the-ear sound processor. In this prospective feasibility study with a within-subject repeated measures design comparing the microphone modalities, ten experienced adult unilateral CI users received an implantable contralateral subcutaneous microphone attached to a percutaneous plug. The signal was pre-processed and fed into their CI sound processor. Subjects compared listening modes at home for a period of up to 4 months. At the end of the study the microphone was explanted. Aided audiometric thresholds, speech understanding in quiet, and sound quality questionnaires were assessed. On average thresholds (250, 500, 750, 1k, 2k, 3k, 4k and 6 kHz) with the subcutaneous microphone were 44.9 dB, compared to 36.4 dB for the external mode. Speech understanding on sentences in quiet was high, within approximately 90% of performance levels compared to hearing with an external microphone. Body sounds were audible but not annoying to almost all subjects. This feasibility study with a research device shows significantly better results than previous studies with implanted microphones. This is attributed to technology enhancements and careful fitting. Listening effort was somewhat increased with an implanted microphone. Under good sound conditions, speech performance is nearly similar to that of external microphones demonstrating that an implanted microphone is feasible in a range of normal listening conditions.

  5. Implantable biomedical devices on bioresorbable substrates

    SciTech Connect

    Rogers, John A; Kim, Dae-Hyeong; Omenetto, Fiorenzo; Kaplan, David L; Litt, Brian; Viventi, Jonathan; Huang, Yonggang; Amsden, Jason

    2014-03-04

    Provided herein are implantable biomedical devices, methods of administering implantable biomedical devices, methods of making implantable biomedical devices, and methods of using implantable biomedical devices to actuate a target tissue or sense a parameter associated with the target tissue in a biological environment. Each implantable biomedical device comprises a bioresorbable substrate, an electronic device having a plurality of inorganic semiconductor components supported by the bioresorbable substrate, and a barrier layer encapsulating at least a portion of the inorganic semiconductor components. Upon contact with a biological environment the bioresorbable substrate is at least partially resorbed, thereby establishing conformal contact between the implantable biomedical device and the target tissue in the biological environment.

  6. Nasal dorsal augmentation with silicone implants.

    PubMed

    Erlich, Mark A; Parhiscar, Afshin

    2003-11-01

    Silicone rubber has been used safely and effectively for facial augmentation for nearly 5 decades in eastern Asia. We have used silicone rubber nasal implants in primary ethnic rhinoplasty and have found consistent and long-lasting results with low complication rates. Silicone dorsal nasal augmentation in primary rhinoplasty avoids donor site morbidity and implant resorption as seen with autogenous implants. Silicone nasal implants have a low extrusion and infection rate. In the appropriate patient with proper placement, silicone nasal implant is nearly the ideal implant material.

  7. Implantable drug-delivery systems.

    PubMed

    Blackshear, P J

    1979-12-01

    Implantable drug-delivery systems are being developed to release drugs to the bloodstream continuously as well as free patients from being hospitalized to receive intravenous infusions or frequent injections. One technique is implantation of a pellet in the subcutaneous tissue so the pellet may be released by erosion. Drugs are also diffused through silicone rubber capsules but only polyacrylamide is able to release large molecules. Contraceptive rings containing progesterone and placed in the uterus or vagina and implanted silicone-rubber capsules use these principles. Disadvantages to the subcutaneous delivery of drugs include: 1) release of the drug in subcutaneous tissue rather than in the bloodstream directly; 2) entry into the circulatory system is controlled by surrounding blood supplies which vary with fat; 3) diffusion may be difficult due to dense layers of fibrous tissue; and 4) drug amounts cannot be readily regulated. The Ommaya reservoir uses a container with a self-sealing membrane implanted in the scalp and connected to a cerebral ventricle to treat forms of leukemia and fungal meningitis. Another development is an implantable disk-shaped infusion pump with 2 compartments, the outer one containing a propellant and the inner chamber containing the drug, holds 45 milliliters and releases about 1 milliliter/day. In the future these systems may release drugs in response to biochemical feedback or deliver a drug to 1 specific area.

  8. Capacitive Feedthroughs for Medical Implants

    PubMed Central

    Grob, Sven; Tass, Peter A.; Hauptmann, Christian

    2016-01-01

    Important technological advances in the last decades paved the road to a great success story for electrically stimulating medical implants, including cochlear implants or implants for deep brain stimulation. However, there are still many challenges in reducing side effects and improving functionality and comfort for the patient. Two of the main challenges are the wish for smaller implants on one hand, and the demand for more stimulation channels on the other hand. But these two aims lead to a conflict of interests. This paper presents a novel design for an electrical feedthrough, the so called capacitive feedthrough, which allows both reducing the size, and increasing the number of included channels. Capacitive feedthroughs combine the functionality of a coupling capacitor and an electrical feedthrough within one and the same structure. The paper also discusses the progress and the challenges of the first produced demonstrators. The concept bears a high potential in improving current feedthrough technology, and could be applied on all kinds of electrical medical implants, even if its implementation might be challenging. PMID:27660602

  9. SURFACE CHEMISTRY INFLUENCE IMPLANT BIOCOMPATIBILITY

    PubMed Central

    Thevenot, Paul; Hu, Wenjing; Tang, Liping

    2011-01-01

    Implantable medical devices are increasingly important in the practice of modern medicine. Unfortunately, almost all medical devices suffer to a different extent from adverse reactions, including inflammation, fibrosis, thrombosis and infection. To improve the safety and function of many types of medical implants, a major need exists for development of materials that evoked desired tissue responses. Because implant-associated protein adsorption and conformational changes thereafter have been shown to promote immune reactions, rigorous research efforts have been emphasized on the engineering of surface property (physical and chemical characteristics) to reduce protein adsorption and cell interactions and subsequently improve implant biocompatibility. This brief review is aimed to summarize the past efforts and our recent knowledge about the influence of surface functionality on protein:cell:biomaterial interactions. It is our belief that detailed understandings of bioactivity of surface functionality provide an easy, economic, and specific approach for the future rational design of implantable medical devices with desired tissue reactivity and, hopefully, wound healing capability. PMID:18393890

  10. Effects of polyphosphates and orthophosphate on the dissolution and transformation of ZnO nanoparticles.

    PubMed

    Wan, Biao; Yan, Yupeng; Tang, Yuanzhi; Bai, Yuge; Liu, Fan; Tan, Wenfeng; Huang, Qiaoyun; Feng, Xionghan

    2017-02-27

    The fate and toxicity of zinc oxide nanoparticles (ZnO NPs) in nature are affected by solution chemistry such as pH, anions, and natural organic matter (NOM). Inorganic polyphosphates are environmentally ubiquitous phosphorus (P) species that may change the speciation and environmental fate of ZnO NPs. In this study, the interactions of polyphosphates with ZnO NPs and the impacts on ZnO NP dissolution and transformation were investigated and compared with orthophosphate (P1). The results revealed that pyrophosphate (P2), tripolyphosphate (P3), and hexametaphosphate (P6) enhanced whereas P1 inhibited the dissolution of ZnO NPs. In addition, P1, P2, and P3 promoted the transformation of ZnO NPs into zinc phosphate (Zn-P) precipitates via interactions with dissolved Zn(2+). However, P6-promoted ZnO NP dissolution was through the formation of soluble Zn-P complexes due to the strong capability of P6 to chelate with Zn(2+). The transformation of ZnO NPs in the presence of P3 was affected by reaction time, pH, and P/Zn molar ratio. P3 first formed inner-sphere surface complexes on ZnO NPs, which gradually transformed into crystalline Zn2HP3O10(H2O)6 precipitates. This study provided a new perspective for understanding the reactivity of various forms of inorganic phosphate species with ZnO NPs in the natural environment.

  11. Long-term effect of ZnO nanoparticles on waste activated sludge anaerobic digestion.

    PubMed

    Mu, Hui; Chen, Yinguang

    2011-11-01

    The increasing use of zinc oxide nanoparticles (ZnO NPs) raises concerns about their environmental impacts, but the potential effect of ZnO NPs on sludge anaerobic digestion remains unknown. In this paper, long-term exposure experiments were carried out to investigate the influence of ZnO NPs on methane production during waste activated sludge (WAS) anaerobic digestion. The presence of 1 mg/g-TSS of ZnO NPs did not affect methane production, but 30 and 150 mg/g-TSS of ZnO NPs induced 18.3% and 75.1% of inhibition respectively, which showed that the impact of ZnO NPs on methane production was dosage dependant. Then, the mechanisms of ZnO NPs affecting sludge anaerobic digestion were investigated. It was found that the toxic effect of ZnO NPs on methane production was mainly due to the release of Zn(2+) from ZnO NPs, which may cause the inhibitory effects on the hydrolysis and methanation steps of sludge anaerobic digestion. Further investigations with enzyme and fluorescence in situ hybridization (FISH) assays indicated that higher concentration of ZnO NPs decreased the activities of protease and coenzyme F(420), and the abundance of methanogenesis Archaea.

  12. Catalytic effects of ZnO nanorods grown by sonochemical decomposition of zinc acetate dihydrate.

    PubMed

    Cho, Seok Cheol; Lee, Ho Suk; Sohn, Sang Ho

    2012-07-01

    In this study, we prepared ZnO nanorods by a sonochemical method using a zinc acetate dihydrate as a new precursor. Well-aligned high-quality ZnO nanorods were synthesized on FTO glass by the sonochemical decomposition of zinc acetate dihydrate using a ZnO thin-film as the catalytic layer. The ZnO thin-films were deposited on the FTO glass by a sputtering method. To investigate their catalytic effects on the ZnO nanorods, catalytic ZnO thin-films of 20 nm, 40 nm, and 60 nm thickness were prepared by adjusting the sputtering time. The ZnO nanorods grown on catalytic layers with different thicknesses were characterized by SEM, XRD, and PL. The ZnO nanorods grown on the catalytic layer of 40 nm thickness show the best crystal and spatial orientation and as a result display the best optical properties. It was found that a catalytic ZnO thin-film of 40 nm in thickness yields well-aligned high-quality ZnO nanorods, due to its small surface roughness and structural strain.

  13. Effect of nanocomposite packaging containing ZnO on growth of Bacillus subtilis and Enterobacter aerogenes.

    PubMed

    Esmailzadeh, Hakimeh; Sangpour, Parvaneh; Shahraz, Farzaneh; Hejazi, Jalal; Khaksar, Ramin

    2016-01-01

    Recent advances in nanotechnology have opened new windows in active food packaging. Nano-sized ZnO is an inexpensive material with potential antimicrobial properties. The aim of the present study is to evaluate the antibacterial effect of low density Polyethylene (LDPE) containing ZnO nanoparticles on Bacillus subtilis and Enterobacter aerogenes. ZnO nanoparticles have been synthesized by facil molten salt method and have been characterized by X-ray diffraction (XRD), and scanning electron microscopy (SEM). Nanocomposite films containing 2 and 4 wt.% ZnO nanoparticles were prepared by melt mixing in a twin-screw extruder. The growth of both microorganisms has decreased in the presence of ZnO containing nanocomposites compared with controls. Nanocomposites with 4 wt.% ZnO nanoparticles had stronger antibacterial effect against both bacteria in comparison with the 2 wt.% ZnO containing nanocomposites. B. subtilis as Gram-positive bacteria were more sensitive to ZnO containing nanocomposite films compared with E. aerogenes as Gram-negative bacteria. There were no significant differences between the migration of Zn ions from 2 and 4 wt.% ZnO containing nanocomposites and the released Zn ions were not significantly increased in both groups after 14 days compared with the first. Regarding the considerable antibacterial effects of ZnO nanoparticles, their application in active food packaging can be a suitable solution for extending the shelf life of food.

  14. Development of nanostructured ZnO thin film via electrohydrodynamic atomization technique and its photoconductivity characteristics.

    PubMed

    Duraisamy, Navaneethan; Kwon, Ki Rin; Jo, Jeongdai; Choi, Kyung-Hyun

    2014-08-01

    This article presents the non-vacuum technique for the preparation of nanostructured zinc oxide (ZnO) thin film on glass substrate through electrohydrodynamic atomization (EHDA) technique. The detailed process parameters for achieving homogeneous ZnO thin films are clearly discussed. The crystallinity and surface morphology of ZnO thin film are investigated by X-ray diffraction and field emission scanning electron microscopy. The result shows that the deposited ZnO thin film is oriented in the wurtzite phase with void free surface morphology. The surface roughness of deposited ZnO thin film is found to be ~17.8 nm. The optical properties of nanostructured ZnO thin films show the average transmittance is about 90% in the visible region and the energy band gap is found to be 3.17 eV. The surface chemistry and purity of deposited ZnO thin films are analyzed by fourier transform infrared and X-ray photoelectron spectroscopy, conforming the presence of Zn-O in the deposited thin films without any organic moiety. The photocurrent measurement of nanostructured ZnO thin film is examined in the presence of UV light illumination with wavelength of 365 nm. These results suggest that the deposited nanostructured ZnO thin film through EHDA technique possess promising applications in the near future.

  15. Selective area growth of well-ordered ZnO nanowire arrays with controllable polarity.

    PubMed

    Consonni, Vincent; Sarigiannidou, Eirini; Appert, Estelle; Bocheux, Amandine; Guillemin, Sophie; Donatini, Fabrice; Robin, Ivan-Christophe; Kioseoglou, Joseph; Robaut, Florence

    2014-05-27

    Controlling the polarity of ZnO nanowires in addition to the uniformity of their structural morphology in terms of position, vertical alignment, length, diameter, and period is still a technological and fundamental challenge for real-world device integration. In order to tackle this issue, we specifically combine the selective area growth on prepatterned polar c-plane ZnO single crystals using electron-beam lithography, with the chemical bath deposition. The formation of ZnO nanowires with a highly controlled structural morphology and a high optical quality is demonstrated over large surface areas on both polar c-plane ZnO single crystals. Importantly, the polarity of ZnO nanowires can be switched from O- to Zn-polar, depending on the polarity of prepatterned ZnO single crystals. This indicates that no fundamental limitations prevent ZnO nanowires from being O- or Zn-polar. In contrast to their catalyst-free growth by vapor-phase deposition techniques, the possibility to control the polarity of ZnO nanowires grown in solution is remarkable, further showing the strong interest in the chemical bath deposition and hydrothermal techniques. The single O- and Zn-polar ZnO nanowires additionally exhibit distinctive cathodoluminescence spectra. To a broader extent, these findings open the way to the ultimate fabrication of well-organized heterostructures made from ZnO nanowires, which can act as building blocks in a large number of electronic, optoelectronic, and photovoltaic devices.

  16. Influence of defects on electrical properties of electrodeposited co-doped ZnO nanocoatings

    NASA Astrophysics Data System (ADS)

    Simimol, A.; Anappara, Aji A.; Barshilia, Harish C.

    2017-01-01

    We present a systematic investigation of the electrical properties of undoped and Co-doped ZnO nanostructures at room temperature as an extensive study of the role of defects in ZnO. The ZnO nanostructures were fabricated by the electrodeposition method at low bath temperature (80 °C) and the Co concentration was varied from 0.01 to 0.2 mM. Electrical properties of the undoped and Co-doped ZnO nanostructures were studied in detail. The carrier concentration increases while the mobility reduces with increase in Co-concentration. The resistivity increases with an increase in Co-concentration and the reason is correlated with the defects in ZnO. In order to understand more details of the role of defects in the present I-V characteristic behavior of the Co-doped ZnO, high temperature vacuum annealing of ZnO sample was carried out. Electrical, optical and magnetic properties of the high temperature vacuum annealed ZnO were studied in detail. Photoluminescence spectroscopy (PL) results revealed more information of the defect levels which act as scattering centers for the carriers. Co-doping as well as annealing at high temperature in vacuum environment tunes the defects in ZnO and which influence the optical, magnetic and electrical behavior of the ZnO nanostructures.

  17. /sup 111/In-platelet and /sup 125/I-fibrinogen deposition in the lungs in experimental acute pancreatitis

    SciTech Connect

    Goulbourne, I.A.; Watson, H.; Davies, G.C.

    1987-12-01

    An experimental model of acute pancreatitis in rats has been used to study intrapulmonary /sup 125/I-fibrinogen and /sup 111/In-platelet deposition. Pancreatitis caused a significant increase in wet lung weight compared to normal, and this could be abolished by heparin or aspirin pretreatment. /sup 125/I-fibrinogen was deposited in the lungs of animals to a significantly greater degree than in controls (P less than 0.01). /sup 125/I-fibrinogen deposition was reduced to control levels by pretreatment with aspirin or heparin (P less than 0.05). The uptake of radiolabeled platelets was greater in pancreatitis than in controls (P less than 0.001). Pancreatitis appears to be responsible for platelet entrapment in the lungs. Platelet uptake was reduced by heparin treatment but unaffected by aspirin therapy.

  18. A comprehensive review of ZnO materials and devices

    NASA Astrophysics Data System (ADS)

    Özgür, Ü.; Alivov, Ya. I.; Liu, C.; Teke, A.; Reshchikov, M. A.; Doǧan, S.; Avrutin, V.; Cho, S.-J.; Morkoç, H.

    2005-08-01

    The semiconductor ZnO has gained substantial interest in the research community in part because of its large exciton binding energy (60meV) which could lead to lasing action based on exciton recombination even above room temperature. Even though research focusing on ZnO goes back many decades, the renewed interest is fueled by availability of high-quality substrates and reports of p-type conduction and ferromagnetic behavior when doped with transitions metals, both of which remain controversial. It is this renewed interest in ZnO which forms the basis of this review. As mentioned already, ZnO is not new to the semiconductor field, with studies of its lattice parameter dating back to 1935 by Bunn [Proc. Phys. Soc. London 47, 836 (1935)], studies of its vibrational properties with Raman scattering in 1966 by Damen et al. [Phys. Rev. 142, 570 (1966)], detailed optical studies in 1954 by Mollwo [Z. Angew. Phys. 6, 257 (1954)], and its growth by chemical-vapor transport in 1970 by Galli and Coker [Appl. Phys. Lett. 16, 439 (1970)]. In terms of devices, Au Schottky barriers in 1965 by Mead [Phys. Lett. 18, 218 (1965)], demonstration of light-emitting diodes (1967) by Drapak [Semiconductors 2, 624 (1968)], in which Cu2O was used as the p-type material, metal-insulator-semiconductor structures (1974) by Minami et al. [Jpn. J. Appl. Phys. 13, 1475 (1974)], ZnO /ZnSe n-p junctions (1975) by Tsurkan et al. [Semiconductors 6, 1183 (1975)], and Al /Au Ohmic contacts by Brillson [J. Vac. Sci. Technol. 15, 1378 (1978)] were attained. The main obstacle to the development of ZnO has been the lack of reproducible and low-resistivity p-type ZnO, as recently discussed by Look and Claflin [Phys. Status Solidi B 241, 624 (2004)]. While ZnO already has many industrial applications owing to its piezoelectric properties and band gap in the near ultraviolet, its applications to optoelectronic devices has not yet materialized due chiefly to the lack of p-type epitaxial layers. Very high

  19. Highly efficient excitonic emission of CBD grown ZnO micropods (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Aad, Roy; Gokarna, Anisha; Nomenyo, Komla; Miska, Patrice; Geng, Wei; Couteau, Christophe; Lérondel, Gilles

    2015-10-01

    Due to its wide direct band gap and large exciton binding energy allowing for efficient excitonic emission at room temperature, ZnO has attracted attention as a luminescent material in various applications such as UV-light emitting diodes, chemical sensors and solar cells. While low-cost growth techniques, such as chemical bath deposition (CBD), of ZnO thin films and nanostructures have been already reported; nevertheless, ZnO thin films and nanostructures grown by costly techniques, such as metalorganic vapour phase epitaxy, still present the most interesting properties in terms of crystallinity and internal quantum efficiency. In this work, we report on highly efficient and highly crystalline ZnO micropods grown by CBD at a low temperature (< 90°C). XRD and low-temperature photoluminescence (PL) investigations on as-grown ZnO micropods revealed a highly crystalline ZnO structure and a strong UV excitonic emission with internal quantum efficiency (IQE) of 10% at room temperature. Thermal annealing at 900°C of the as-grown ZnO micropods leads to further enhancement in their structural and optical properties. Low-temperature PL measurements on annealed ZnO micropods showed the presence of phonon replicas, which was not the case for as-grown samples. The appearance of phonon replicas provides a strong proof of the improved crystal quality of annealed ZnO micropods. Most importantly, low-temperature PL reveals an improved IQE of 15% in the excitonic emission of ZnO micropods. The ZnO micropods IQE reported here are comparable to IQEs reported on ZnO structures obtained by costly and more complex growth techniques. These results are of great interest demonstrating that high quality ZnO microstructures can be obtained at low temperatures using a low-cost CBD growth technique.

  20. The Antibacterial Activity of Ta-doped ZnO Nanoparticles.

    PubMed

    Guo, Bing-Lei; Han, Ping; Guo, Li-Chuan; Cao, Yan-Qiang; Li, Ai-Dong; Kong, Ji-Zhou; Zhai, Hai-Fa; Wu, Di

    2015-12-01

    A novel photocatalyst of Ta-doped ZnO nanoparticles was prepared by a modified Pechini-type method. The antimicrobial study of Ta-doped ZnO nanoparticles on several bacteria of Gram-positive Bacillus subtilis (B. subtilis) and Staphylococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli) and Pseudomonas aeruginosa (P. aeruginosa) were performed using a standard microbial method. The Ta-doping concentration effect on the minimum inhibitory concentration (MIC) of various bacteria under dark ambient has been evaluated. The photocatalytical inactivation of Ta-doped ZnO nanoparticles under visible light irradiation was examined. The MIC results indicate that the incorporation of Ta(5+) ions into ZnO significantly improve the bacteriostasis effect of ZnO nanoparticles on E. coli, S. aureus, and B. subtilis in the absence of light. Compared to MIC results without light irradiation, Ta-doped ZnO and pure ZnO nanoparticles show much stronger bactericidal efficacy on P. aeruginosa, E. coli, and S. aureus under visible light illumination. The possible antimicrobial mechanisms in Ta-doped ZnO systems under visible light and dark conditions were also proposed. Ta-doped ZnO nanoparticles exhibit more effective bactericidal efficacy than pure ZnO in dark ambient, which can be attributed to the synergistic effect of enhanced surface bioactivity and increased electrostatic force due to the incorporation of Ta(5+) ions into ZnO. Based on the antibacterial tests, 5 % Ta-doped ZnO is a more effective antimicrobial agent than pure ZnO.

  1. The Antibacterial Activity of Ta-doped ZnO Nanoparticles

    NASA Astrophysics Data System (ADS)

    Guo, Bing-Lei; Han, Ping; Guo, Li-Chuan; Cao, Yan-Qiang; Li, Ai-Dong; Kong, Ji-Zhou; Zhai, Hai-Fa; Wu, Di

    2015-08-01

    A novel photocatalyst of Ta-doped ZnO nanoparticles was prepared by a modified Pechini-type method. The antimicrobial study of Ta-doped ZnO nanoparticles on several bacteria of Gram-positive Bacillus subtilis ( B. subtilis) and Staphylococcus aureus ( S. aureus) and Gram-negative Escherichia coli ( E. coli) and Pseudomonas aeruginosa ( P. aeruginosa) were performed using a standard microbial method. The Ta-doping concentration effect on the minimum inhibitory concentration (MIC) of various bacteria under dark ambient has been evaluated. The photocatalytical inactivation of Ta-doped ZnO nanoparticles under visible light irradiation was examined. The MIC results indicate that the incorporation of Ta5+ ions into ZnO significantly improve the bacteriostasis effect of ZnO nanoparticles on E. coli, S. aureus, and B. subtilis in the absence of light. Compared to MIC results without light irradiation, Ta-doped ZnO and pure ZnO nanoparticles show much stronger bactericidal efficacy on P. aeruginosa, E. coli, and S. aureus under visible light illumination. The possible antimicrobial mechanisms in Ta-doped ZnO systems under visible light and dark conditions were also proposed. Ta-doped ZnO nanoparticles exhibit more effective bactericidal efficacy than pure ZnO in dark ambient, which can be attributed to the synergistic effect of enhanced surface bioactivity and increased electrostatic force due to the incorporation of Ta5+ ions into ZnO. Based on the antibacterial tests, 5 % Ta-doped ZnO is a more effective antimicrobial agent than pure ZnO.

  2. CMOS Alcohol Sensor Employing ZnO Nanowire Sensing Films

    NASA Astrophysics Data System (ADS)

    Santra, S.; Ali, S. Z.; Guha, P. K.; Hiralal, P.; Unalan, H. E.; Dalal, S. H.; Covington, J. A.; Milne, W. I.; Gardner, J. W.; Udrea, F.

    2009-05-01

    This paper reports on the utilization of zinc oxide nanowires (ZnO NWs) on a silicon on insulator (SOI) CMOS micro-hotplate for use as an alcohol sensor. The device was designed in Cadence and fabricated in a 1.0 μm SOI CMOS process at XFAB (Germany). The basic resistive gas sensor comprises of a metal micro-heater (made of aluminum) embedded in an ultra-thin membrane. Gold plated aluminum electrodes, formed of the top metal, are used for contacting with the sensing material. This design allows high operating temperatures with low power consumption. The membrane was formed by using deep reactive ion etching. ZnO NWs were grown on SOI CMOS substrates by a simple and low-cost hydrothermal method. A few nanometer of ZnO seed layer was first sputtered on the chips, using a metal mask, and then the chips were dipped in a zinc nitrate hexahydrate and hexamethylenetramine solution at 90° C to grow ZnO NWs. The chemical sensitivity of the on-chip NWs were studied in the presence of ethanol (C2H5OH) vapour (with 10% relative humidity) at two different temperatures: 200 and 250° C (the corresponding power consumptions are only 18 and 22 mW). The concentrations of ethanol vapour were varied from 175-1484 ppm (pers per million) and the maximum response was observed 40% (change in resistance in %) at 786 ppm at 250° C. These preliminary measurements showed that the on-chip deposited ZnO NWs could be a promising material for a CMOS based ethanol sensor.

  3. Electronic structure of Co-doped ZnO nanorods

    NASA Astrophysics Data System (ADS)

    Neffati, Ahmed; Souissi, Hajer; Kammoun, Souha

    2012-10-01

    The optical transmission spectra, the photoluminescence (PL), and the photoluminescence excitation (PLE) spectra of the cobalt doped zinc oxide nanorods Zn1-xCoxO (x = 0.01, 0.10) were measured by Loan et al. [J. Phys. D: Appl. Phys. 42, 065412 (2009)] in the region 1.5-4 eV. These spectra exhibit a group of ultraviolet narrow lines in the region of 3.0-3.4 eV related to the near-band-edge emission of the host ZnO materials and a group of emission lines in the red region of 1.8-1.9 eV assigned to the radiative transitions within the tetrahedral Co2+ ions in the ZnO host crystal. The group of lines in the visible region provides important information about the electronic structure of the cobalt doped zinc oxide nanorods. This work investigates a theoretical crystal-field analysis of the visible lines associated to the Co2+ ion transition occupying a Td site symmetry in ZnO host crystal. A satisfactory correlations were obtained between experimental and calculated energy levels. The electronic structure was compared with the reported for cobalt transition ion doped in ZnO nanoparticles and bulk crystals [Volbers et al., Appl. Phys. A 88, 153 (2007) and H. J. Schulz and M. Thiede, Phys. Rev. B 35, 18 (1987)]. In order to explain the existence of excitation peaks observed near the band edge of the ZnO host, an energy transfer mechanism is proposed.

  4. Implant rehabilitation in bruxism patient

    PubMed Central

    Goiato, Marcelo Coelho; Sonego, Mariana Vilela; dos Santos, Daniela Micheline; da Silva, Emily Vivianne Freitas

    2014-01-01

    A white female patient presented to the university clinic to obtain implant retained prostheses. She had an edentulous maxillary jaw and presented three teeth with poor prognosis (33, 34 and 43). The alveolar bone and the surrounding tissues were healthy. The patient did not report any relevant medical history contraindicating routine dental treatment or implant surgery, but self-reported a dental history of asymptomatic nocturnal bruxism. The treatment plan was set and two Branemark protocols supported by six implants in each arch were installed after a 6-month healing period. A soft occlusal splint was made due to the patient's history of bruxism, and the lack of its use by the patient resulted in an acrylic fracture. The prosthesis was repaired and the importance of using the occlusal splint was restated. In the 4-year follow-up no fractures were reported. PMID:24907215

  5. Implant rehabilitation in bruxism patient.

    PubMed

    Goiato, Marcelo Coelho; Sonego, Mariana Vilela; dos Santos, Daniela Micheline; da Silva, Emily Vivianne Freitas

    2014-06-06

    A white female patient presented to the university clinic to obtain implant retained prostheses. She had an edentulous maxillary jaw and presented three teeth with poor prognosis (33, 34 and 43). The alveolar bone and the surrounding tissues were healthy. The patient did not report any relevant medical history contraindicating routine dental treatment or implant surgery, but self-reported a dental history of asymptomatic nocturnal bruxism. The treatment plan was set and two Branemark protocols supported by six implants in each arch were installed after a 6-month healing period. A soft occlusal splint was made due to the patient's history of bruxism, and the lack of its use by the patient resulted in an acrylic fracture. The prosthesis was repaired and the importance of using the occlusal splint was restated. In the 4-year follow-up no fractures were reported.

  6. Oral Implant Imaging: A Review

    PubMed Central

    GUPTA, Sarika; PATIL, Neelkant; SOLANKI, Jitender; SINGH, Ravinder; LALLER, Sanjeev

    2015-01-01

    Selecting an appropriate implant imaging technique has become a challenging task since the advent of advanced imaging modalities, and many of these are used for implant imaging. On imaging, the modality should not only consider the anatomy but should also provide dimensional accuracy. Many dentists use the conventional method, mostly orthopantograph (OPG), in their routine practice of implant placement. However, because of the drawbacks associated with OPG, higher technologies, such as computed tomography (CT) and cone beam computed tomography (CBCT), are better accepted. These help improve image sharpness and reduce distortion. These techniques are not used widely due to the cost effect. Therefore, to decide on the type of imaging technique, all associated advantages and disadvantages should be considered, which will be broadly discussed in this review. PMID:26715891

  7. Study on synthesis of ZnO nanorods and its UV-blocking properties on cotton fabrics coated with the ZnO quantum dot

    NASA Astrophysics Data System (ADS)

    Li, Rong; Che, Jiangning; Zhang, Heng; He, Jinsong; Bahi, Addie; Ko, Frank

    2014-09-01

    Crystalline ZnO quantum dots have been synthesized by hydrolysis of zinc acetate dihydrate with lithium hydroxide in ethanolic solution. The effects of different synthesis parameters on the structure and optical properties of ZnO QDs were investigated in detail. The UV-Vis optical spectra showed that the particle size is highly dependent on the precursor concentration and temperature, while the luminescence properties of as-prepared ZnO QDs depend on the both size and surface properties of particles. UV-blocking cotton fabrics were prepared by coated with ZnO nanorods. The preparation process was conducted in mild conditions, which involved the dip-coating ZnO QDs as crystal seeds, the dissolution-recrystallization of ZnO nanorods, and the hydrothermal growth of ZnO nanorods. The ZnO nanorods covered the cotton fibers uniformly and densely. The treated cotton textile exhibited an excellent UV-blocking property with an ultrahigh UPF value of 118.12.

  8. Ohmic-Rectifying Conversion of Ni Contacts on ZnO and the Possible Determination of ZnO Thin Film Surface Polarity

    PubMed Central

    Saw, Kim Guan; Tneh, Sau Siong; Tan, Gaik Leng; Yam, Fong Kwong; Ng, Sha Shiong; Hassan, Zainuriah

    2014-01-01

    The current-voltage characteristics of Ni contacts with the surfaces of ZnO thin films as well as single crystal (0001) ZnO substrate are investigated. The ZnO thin film shows a conversion from Ohmic to rectifying behavior when annealed at 800°C. Similar findings are also found on the Zn-polar surface of (0001) ZnO. The O-polar surface, however, only shows Ohmic behavior before and after annealing. The rectifying behavior observed on the Zn-polar and ZnO thin film surfaces is associated with the formation of nickel zinc oxide (Ni1-xZnxO, where x = 0.1, 0.2). The current-voltage characteristics suggest that a p-n junction is formed by Ni1-xZnxO (which is believed to be p-type) and ZnO (which is intrinsically n-type). The rectifying behavior for the ZnO thin film as a result of annealing suggests that its surface is Zn-terminated. Current-voltage measurements could possibly be used to determine the surface polarity of ZnO thin films. PMID:24466144

  9. ZnO nanowire arrays synthesized on ZnO and GaN films for photovoltaic and light-emitting devices

    NASA Astrophysics Data System (ADS)

    Janfeshan, Bita; Sadeghimakki, Bahareh; Sadeghi Jahed, Navid Mohammad; Sivoththaman, Siva

    2014-01-01

    The wide bandgap, one-dimensional zinc oxide (ZnO) nanowires (NWs) and their heterostructures with other materials provide excellent pathways for efficient photovoltaic (PV) and light-emitting devices. ZnO NWs sensitized with quantum dots (QDs) provide high-surface area and tunable bandgap absorbers with a directional path for carriers in advanced PV devices, while ZnO heterojunctions with other p-type wide bandgap materials lead to light-emitting diodes (LEDs) with better emission and waveguiding properties compared with the homojunction counterparts. Synthesis of the structures with the desired morphology is a key to device applications. In this work, ZnO NW arrays were synthesized using hydrothermal method on ZnO and GaN thin films. Highly crystalline, upright, and ordered arrays of ZnO NWs in the 50 to 250-nm diameter range and 1 μm in length were obtained. The morphology and optical properties of the NWs were studied. Energy dispersive x-ray spectroscopy (EDX) analysis revealed nonstoichiometric oxygen content in the grown ZnO NWs. Photoluminescence (PL) studies depicted the presence of oxygen vacancy and interstitial zinc defects in the grown ZnO NWs, underlining the potential for LEDs. Further, hydrophobically ligated CdSe/ZnS QDs were successfully incorporated to the NW arrays. PL analysis indicated the injection of electrons from photoexcited QDs to the NWs, showing the potential for quantum dot-sensitized solar cells.

  10. Using the hydrothermal method to grow p-type ZnO nanowires on Al-doped ZnO thin film to fabricate a homojunction diode.

    PubMed

    Tseng, Yung-Kuan; Hung, Meng-Chun; Su, Shun-Lung; Li, Sheng-Kai

    2014-10-01

    In this study, the hydrothermal method is used to grow phosphorus-doped ZnO nanowires on Si/SiO2 substrates deposited with Al-doped ZnO thin film. This structure forms a homogeneous p-n junction. In this study, we are the pioneers to use ammonium hypophosphite (NH4H2PO2) as a source of phosphorus to prepare the precursor solution. Ammonium hypophosphite of different concentration levels is used to observe its effects on the growth of nanowires. The results show that the precursor solution prepared from ammonium hypophosphite can produce good crystalline ZnO nanowires while there is no linear relationship between the amounts and concentration levels of phosphorus doped into the nanowires. Whether the phosphorus-doped ZnO nanowires have the characteristics of a p-type semiconductor is indirectly verified by measuring whether the p-n junction made up of Al-doped ZnO thin film and phosphorus-doped ZnO nanowires shows rectifying behavior. I-V measurements are made on the specimens. The results show good rectifying behavior, proving that the phosphorus-doped ZnO nanowires and Al-doped AZO films have p-type and n-type semiconductor properties, constituting a good p-n junction. This result also proves that ammonium hypophosphite is a better source of phosphorus in the hydrothermal method to synthesize phosphorus-doped ZnO nanowires.

  11. Comparative in vitro genotoxicity study of ZnO nanoparticles, ZnO macroparticles and ZnCl2 to MDCK kidney cells: Size matters.

    PubMed

    Kononenko, Veno; Repar, Neža; Marušič, Nika; Drašler, Barbara; Romih, Tea; Hočevar, Samo; Drobne, Damjana

    2017-04-01

    In the present study, we evaluated the roles that ZnO particle size and Zn ion release have on cyto- and genotoxicity in vitro. The Madin-Darby canine kidney (MDCK) cells were treated with ZnO nanoparticles (NPs), ZnO macroparticles (MPs), and ZnCl2 as a source of free Zn ions. We first tested cytotoxicity to define sub-cytotoxic exposure concentrations and afterwards we performed alkaline comet and cytokinesis-block micronucleus assays. Additionally, the activities of both catalase (CAT) and glutathione S-transferase (GST) were evaluated in order to examine the potential impairment of cellular stress-defence capacity. The amount of dissolved Zn ions from ZnO NPs in the cell culture medium was evaluated by an optimized voltammetric method. The results showed that all the tested zinc compounds induced similar concentration-dependent cytotoxicity, but only ZnO NPs significantly elevated DNA and chromosomal damage, which was accompanied by a reduction of GST and CAT activity. Although Zn ion release from ZnO NPs in cell culture medium was significant, our results show that this reason alone cannot explain the ZnO genotoxicity seen in this experiment. We discuss that genotoxicity of ZnO NPs depends on the particle size, which determines the physical principles of their dissolution and cellular internalisation.

  12. Effect of ZnO seed layer on the morphology and optical properties of ZnO nanorods grown on GaN buffer layers

    SciTech Connect

    Nandi, R. Mohan, S. Major, S. S.; Srinivasa, R. S.

    2014-04-24

    ZnO nanorods were grown by chemical bath deposition on sputtered, polycrystalline GaN buffer layers with and without ZnO seed layer. Scanning electron microscopy and X-ray diffraction show that the ZnO nanorods on GaN buffer layers are not vertically well aligned. Photoluminescence spectrum of ZnO nanorods grown on GaN buffer layer, however exhibits a much stronger near-band-edge emission and negligible defect emission, compared to the nanorods grown on ZnO buffer layer. These features are attributed to gallium incorporation at the ZnO-GaN interface. The introduction of a thin (25 nm) ZnO seed layer on GaN buffer layer significantly improves the morphology and vertical alignment of ZnO-NRs without sacrificing the high optical quality of ZnO nanorods on GaN buffer layer. The presence of a thick (200 nm) ZnO seed layer completely masks the effect of the underlying GaN buffer layer on the morphology and optical properties of nanorods.

  13. Synthesis, structural and optical properties of pure ZnO and Co doped ZnO nanoparticles prepared by the co-precipitation method

    NASA Astrophysics Data System (ADS)

    Devi, P. Geetha; Velu, A. Sakthi

    2016-09-01

    Pure ZnO and Cobalt (Co) doped ZnO nanoparticles (NPs) were synthesized by the co-precipitation method. The synthesized nanoparticles retained the wurtzite hexagonal structure, which was confirmed by X-ray diffraction studies. From FESEM studies, ZnO and Co doped ZnO NPs showed Spherical and nanorod mixed phase and Spherical like morphology, respectively. The amount of dopant (Co2+) incorporated into ZnO sample was determined by EDAX. The FT-IR spectra confirmed the Zn-O stretching bands at 438 and 427 cm-1 for ZnO and Co doped ZnO NPs. From the UV-VIS spectroscopic measurements, the excitonic pecks were found around 376 and 370 nm for the respective samples. The photoluminescence measurements revealed that the broad emission was composed of seven different bands due to zinc vacancies, oxygen vacancies and surface defects. The dynamic light scattering (DLS) and Zeta potential measurements were used to find out the size and surface charges.

  14. Carbon Fiber Biocompatibility for Implants

    PubMed Central

    Petersen, Richard

    2016-01-01

    Carbon fibers have multiple potential advantages in developing high-strength biomaterials with a density close to bone for better stress transfer and electrical properties that enhance tissue formation. As a breakthrough example in biomaterials, a 1.5 mm diameter bisphenol-epoxy/carbon-fiber-reinforced composite rod was compared for two weeks in a rat tibia model with a similar 1.5 mm diameter titanium-6-4 alloy screw manufactured to retain bone implants. Results showed that carbon-fiber-reinforced composite stimulated osseointegration inside the tibia bone marrow measured as percent bone area (PBA) to a great extent when compared to the titanium-6-4 alloy at statistically significant levels. PBA increased significantly with the carbon-fiber composite over the titanium-6-4 alloy for distances from the implant surfaces of 0.1 mm at 77.7% vs. 19.3% (p < 10−8) and 0.8 mm at 41.6% vs. 19.5% (p < 10−4), respectively. The review focuses on carbon fiber properties that increased PBA for enhanced implant osseointegration. Carbon fibers acting as polymer coated electrically conducting micro-biocircuits appear to provide a biocompatible semi-antioxidant property to remove damaging electron free radicals from the surrounding implant surface. Further, carbon fibers by removing excess electrons produced from the cellular mitochondrial electron transport chain during periods of hypoxia perhaps stimulate bone cell recruitment by free-radical chemotactic influences. In addition, well-studied bioorganic cell actin carbon fiber growth would appear to interface in close contact with the carbon-fiber-reinforced composite implant. Resulting subsequent actin carbon fiber/implant carbon fiber contacts then could help in discharging the electron biological overloads through electrochemical gradients to lower negative charges and lower concentration. PMID:26966555

  15. Carbon Fiber Biocompatibility for Implants.

    PubMed

    Petersen, Richard

    Carbon fibers have multiple potential advantages in developing high-strength biomaterials with a density close to bone for better stress transfer and electrical properties that enhance tissue formation. As a breakthrough example in biomaterials, a 1.5 mm diameter bisphenol-epoxy/carbon-fiber-reinforced composite rod was compared for two weeks in a rat tibia model with a similar 1.5 mm diameter titanium-6-4 alloy screw manufactured to retain bone implants. Results showed that carbon-fiber-reinforced composite stimulated osseointegration inside the tibia bone marrow measured as percent bone area (PBA) to a great extent when compared to the titanium-6-4 alloy at statistically significant levels. PBA increased significantly with the carbon-fiber composite over the titanium-6-4 alloy for distances from the implant surfaces of 0.1 mm at 77.7% vs. 19.3% (p < 10(-8)) and 0.8 mm at 41.6% vs. 19.5% (p < 10(-4)), respectively. The review focuses on carbon fiber properties that increased PBA for enhanced implant osseointegration. Carbon fibers acting as polymer coated electrically conducting micro-biocircuits appear to provide a biocompatible semi-antioxidant property to remove damaging electron free radicals from the surrounding implant surface. Further, carbon fibers by removing excess electrons produced from the cellular mitochondrial electron transport chain during periods of hypoxia perhaps stimulate bone cell recruitment by free-radical chemotactic influences. In addition, well-studied bioorganic cell actin carbon fiber growth would appear to interface in close contact with the carbon-fiber-reinforced composite implant. Resulting subsequent actin carbon fiber/implant carbon fiber contacts then could help in discharging the electron biological overloads through electrochemical gradients to lower negative charges and lower concentration.

  16. Fundamental understanding of the growth, doping and characterization of aligned ZnO nanowires

    NASA Astrophysics Data System (ADS)

    Shen, Gang

    Zinc oxide (ZnO) is a II-VI semiconductor whose wide direct bandgap (3.37 eV) and large exciton binding energy (60 meV) make it compelling for optoelectronic devices such as light emitting diodes, lasers, photodetectors, solar cells, and mechanical energy harvesting devices. One dimensional structures of ZnO (nanowires) have become significant due to their unique physical properties arising from quantum confinement, and they are ideal for studying transport mechanisms in one-dimensional systems. In this doctoral research work, ZnO nanowire (NW) arrays were synthesized on sapphire substrates through carbo-thermal reduction of ZnO powders, and the effects of growth parameters on the properties of ZnO NW arrays were studied by scanning and transmission electron microscopy, X-ray diffraction, photoluminescence and Raman spectroscopy. Based on the phonon mode selection rules in wurtzite ZnO, confocal Raman spectroscopy was used to assess the alignment of ZnO NWs in an array, thereby complementing X-ray diffraction. Al doped ZnO NW arrays were achieved by mixing Al powder into the ZnO and graphite source mixture, and the presence of Al was confirmed by Energy-dispersive X-ray spectroscopy. The incorporation of Al had the effects of lowering the electrical resistivity, slightly deteriorating crystal quality and suppressing defect related green emission. Two models of ZnO NW growth were developed by establishing the relationship between NW length and diameter for undoped and Al doped ZnO NWs separately. The growth of undoped ZnO NWs followed the diffusion-induced model which was characterized by thin wires being longer than thick wires, while the growth of Al doped ZnO was controlled by Gibbs-Thomson effect which was characterized by thin wires being shorter than thin wires. Local electrode atom probe analysis of ZnO NWs was carried out to study the crystal stoichiometry and Al incorporation. Undoped ZnO NWs were found to be high purity with no detectable impurities

  17. Mutation breeding by ion implantation

    NASA Astrophysics Data System (ADS)

    Yu, Zengliang; Deng, Jianguo; He, Jianjun; Huo, Yuping; Wu, Yuejin; Wang, Xuedong; Lui, Guifu

    1991-07-01

    Ion implantation as a new mutagenic method has been used in the rice breeding program since 1986, and for mutation breeding of other crops later. It has been shown, in principle and in practice, that this method has many outstanding advantages: lower damage rate; higher mutation rate and wider mutational spectrum. Many new lines of rice with higher yield rate; broader disease resistance; shorter growing period but higher quality have been bred from ion beam induced mutants. Some of these lines have been utilized for the intersubspecies hybridization. Several new lines of cotton, wheat and other crops are now in breeding. Some biophysical effects of ion implantation for crop seeds have been studied.

  18. A Percutaneously Implantable Fetal Pacemaker

    PubMed Central

    Zhou, Li; Vest, Adriana N.; Chmait, Ramen H.; Bar-Cohen, Yaniv; Pruetz, Jay; Silka, Michael; Zheng, Kaihui; Peck, Ray; Loeb, Gerald E.

    2015-01-01

    A miniaturized, self-contained pacemaker that could be implanted with a minimally invasive technique would dramatically improve the survival rate for fetuses that develop hydrops fetalis as a result of congenital heart block. We are currently validating a device that we developed to address this bradyarrhythmia. Preclinical studies in a fetal sheep model are underway to demonstrate that the device can be implanted via a minimally invasive approach, can mechanically withstand the harsh bodily environment, can induce effective contractions of the heart muscle with an adequate safety factor, and can successfully operate for the required device lifetime of three months using the previously-developed closed loop transcutaneous recharging system. PMID:25570982

  19. A reconnectable multiway implantable connector.

    PubMed

    Rushton, D N; Tromans, A M; Donaldson, N de N

    2002-12-01

    A well-tried plug-and-socket connector system designed for connecting multichannel implanted cables was adapted so as to allow disconnection and reconnection during surgery. Five different sealing techniques were tested in vitro, and it was found that only one of them had the required qualities of high leakage path impedance (taken as more than one megaohm for the worst sample) after three months of saline soak, together with demountability under surgical conditions. The system has subsequently been successfully implemented in a patient in whom reconnection was required two years after implantation.

  20. "Spontaneous Growth of ZnCO3 Nanowires on ZnO Nanostructures in Normal Ambient Environment: Unstable ZnO Nanostructures:

    SciTech Connect

    Pan, Zhengwei; Tao, Jing; Zhu, Yimei; Huang, Jing-Fang; Paranthaman, Mariappan Parans

    2010-01-01

    ZnO nanowires, one of the most investigated nanostructures that promise numerous applications in nanophotonics, opto-electronics, and energy, are generally thought to be highly stable under ambient conditions because of their oxide nature. Here, we report that ZnO nanowires are actually extremely unstable even in normal ambient environment (70% RH, and 350 ppm CO2) because of atmospheric corrosion.When placed on an oxide substrate (e.g., glass slide) and exposed in air, ZnO nanowires tend to react with airborne moisture and CO2 to form amorphous ZnCO3 thin films and nanowires. The factors that specially affect the corrosion of ZnO nanowires in a laboratory environment include CO2, humidity, and substrates. Our results suggest that a CO2- and/or moisture-free environment are required in order for optimal applications of ZnO nanowires.

  1. Spontaneous Growth of ZnCO3 Nanowires on ZnO Nanostructures in Normal Ambient Environment: Unstable ZnO Nanostructures

    SciTech Connect

    Pan, Z.; Tao, J.; Zhu, Y.; Huang, J.-F.; Paranthaman, M.P.

    2009-12-09

    ZnO nanowires, one of the most investigated nanostructures that promise numerous applications in nanophotonics, opto-electronics, and energy, are generally thought to be highly stable under ambient conditions because of their oxide nature. Here, we report that ZnO nanowires are actually extremely unstable even in normal ambient environment (70% RH, and {approx}350 ppm CO{sub 2}) because of atmospheric corrosion. When placed on an oxide substrate (e.g., glass slide) and exposed in air, ZnO nanowires tend to react with airborne moisture and CO{sub 2} to form amorphous ZnCO{sub 3} thin films and nanowires. The factors that specially affect the corrosion of ZnO nanowires in a laboratory environment include CO{sub 2}, humidity, and substrates. Our results suggest that a CO{sub 2}{sup -} and/or moisture-free environment are required in order for optimal applications of ZnO nanowires.

  2. Synthesis of nano-dimensional ZnO and Ga doped ZnO thin films by vapor phase transport and study as transparent conducting oxide.

    PubMed

    Ghosh, S; Saurav, M; Pandey, B; Srivastava, P

    2008-05-01

    We report synthesis of polycrystalline ZnO and Ga doped ZnO (ZnO:Ga) thin films (approximately 80 nm) on Si and quartz substrates in a non-vacuum muffle furnace, a simple and cost-effective route, without any catalyst/reactive carrier gases, at relatively low processing temperature of 550 degrees C. The crystalline phases of the films are identified by grazing angle X-ray diffraction (GAXRD). The growth of ZnO films is examined with scanning electron microscope (SEM) as a function of deposition time. An optical transmission of approximately 90% is observed for pure ZnO film having a resistivity of approximately 2.1 Omega-cm as measured by van der Pauw technique. Doping with Ga results in single phase ZnO:Ga films, retaining an optical transmission of about 80% and three orders of magnitude decrease in resistivity as compared to pure ZnO film.

  3. Thermodynamic Study of Interactions Between ZnO and ZnO Binding Peptides Using Isothermal Titration Calorimetry.

    PubMed

    Limo, Marion J; Perry, Carole C

    2015-06-23

    While material-specific peptide binding sequences have been identified using a combination of combinatorial methods and computational modeling tools, a deep molecular level understanding of the fundamental principles through which these interactions occur and in some instances modify the morphology of inorganic materials is far from being fully realized. Understanding the thermodynamic changes that occur during peptide-inorganic interactions and correlating these to structural modifications of the inorganic materials could be the key to achieving and mastering control over material formation processes. This study is a detailed investigation applying isothermal titration calorimetry (ITC) to directly probe thermodynamic changes that occur during interaction of ZnO binding peptides (ZnO-BPs) and ZnO. The ZnO-BPs used are reported sequences G-12 (GLHVMHKVAPPR), GT-16 (GLHVMHKVAPPR-GGGC), and alanine mutants of G-12 (G-12A6, G-12A11, and G-12A12) whose interaction with ZnO during solution synthesis studies have been extensively investigated. The interactions of the ZnO-BPs with ZnO yielded biphasic isotherms comprising both an endothermic and an exothermic event. Qualitative differences were observed in the isothermal profiles of the different peptides and ZnO particles studied. Measured ΔG values were between -6 and -8.5 kcal/mol, and high adsorption affinity values indicated the occurrence of favorable ZnO-BP-ZnO interactions. ITC has great potential in its use to understand peptide-inorganic interactions, and with continued development, the knowledge gained may be instrumental for simplification of selection processes of organic molecules for the advancement of material synthesis and design.

  4. Implants and Ethnocide: Learning from the Cochlear Implant Controversy

    ERIC Educational Resources Information Center

    Sparrow, Robert

    2010-01-01

    This paper uses the fictional case of the "Babel fish" to explore and illustrate the issues involved in the controversy about the use of cochlear implants in prelinguistically deaf children. Analysis of this controversy suggests that the development of genetic tests for deafness poses a serious threat to the continued flourishing of Deaf…

  5. Educational Challenges for Children with Cochlear Implants.

    ERIC Educational Resources Information Center

    Chute, Patricia M.; Nevins, Mary Ellen

    2003-01-01

    This article addresses educational challenges for children with severe to profound hearing loss who receive cochlear implants. Despite the implants, these children face acoustic challenges, academic challenges, attention challenges, associative challenges, and adjustment challenges. (Contains references.) (Author/DB)

  6. Scientists Design Heat-Activated Penis Implant

    MedlinePlus

    ... implant, Le used a heat-activated exoskeleton of nitinol, a metal known for its elasticity. A urologist could do a simplified operation to insert the nitinol implant, which would remain flaccid at body temperature ...

  7. Benefits and Risks of Cochlear Implants

    MedlinePlus

    ... systems Will have to be careful of static electricity. Static electricity may temporarily or permanently damage a cochlear implant. ... more details regarding how to deal with static electricity, contact the manufacturer or implant center. Have less ...

  8. Physiological and molecular determinants of embryo implantation

    PubMed Central

    Zhang, Shuang; Lin, Haiyan; Kong, Shuangbo; Wang, Shumin; Wang, Hongmei; Wang, Haibin; Armant, D. Randall

    2014-01-01

    Embryo implantation involves the intimate interaction between an implantation-competent blastocyst and a receptive uterus, which occurs in a limited time period known as the window of implantation. Emerging evidence shows that defects originating during embryo implantation induce ripple effects with adverse consequences on later gestation events, highlighting the significance of this event for pregnancy success. Although a multitude of cellular events and molecular pathways involved in embryo-uterine crosstalk during implantation have been identified through gene expression studies and genetically engineered mouse models, a comprehensive understanding of the nature of embryo implantation is still missing. This review focuses on recent progress with particular attention to physiological and molecular determinants of blastocyst activation, uterine receptivity, blastocyst attachment and uterine decidualization. A better understanding of underlying mechanisms governing embryo implantation should generate new strategies to rectify implantation failure and improve pregnancy rates in women. PMID:23290997

  9. Microwave absorption properties and mechanism of cagelike ZnO /SiO2 nanocomposites

    NASA Astrophysics Data System (ADS)

    Cao, Mao-Sheng; Shi, Xiao-Ling; Fang, Xiao-Yong; Jin, Hai-Bo; Hou, Zhi-Ling; Zhou, Wei; Chen, Yu-Jin

    2007-11-01

    In this paper, cagelike ZnO /SiO2 nanocomposites were prepared and their microwave absorption properties were investigated in detail. Dielectric constants and losses of the pure cagelike ZnO nanostructures were measured in a frequency range of 8.2-12.4GHz. The measured results indicate that the cagelike ZnO nanostructures are low-loss material for microwave absorption in X band. However, the cagelike ZnO /SiO2 nanocomposites exhibit a relatively strong attenuation to microwave in X band. Such strong absorption is related to the unique geometrical morphology of the cagelike ZnO nanostructures in the composites. The microcurrent network can be produced in the cagelike ZnO nanostructures, which contributes to the conductive loss.

  10. Effect of potassium on structural, photocatalytic and antibacterial activities of ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Bhaviya Raj, R.; Umadevi, M.; Poornima Parvathi, V.; Parimaladevi, R.

    2016-12-01

    ZnO and potassium doped ZnO nanoparticles were synthesized through wet chemical method. The samples were characterized by UV, XRD, SEM, TEM and EDAX. XRD analysis reveals that the prepared nanoparticles exhibit hexagonal wurtzite structure. TEM and SEM analyses disclose that synthesized samples were porous structure with needle shape. It also confirms that potassium was dispersed on ZnO surface. The influence of potassium on ZnO surface modulates the degradation of textile dyeing wastewater by improving its rate of decomposition to 0.007 min-1 with decoloration. A better zone of inhibition of about 20 mm against Staphylococci aureus and Pseudomonas aernginosa by ZnO and potassium doped ZnO nanoparticles were measured. The findings suggest that these nanoparticles have the potential to be a good photocatalyst and applied in water treatment to inhibit the bacterial growth.

  11. Preparation and structural properties of pure and codoped (Mg, Ag) ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Reddy, B. Sankara; Reddy, S. Venkatramana; Reddy, N. Koteeswara

    2013-06-01

    Pure and co-doped (Mg, Ag) ZnO nanoparticles (Zn0.90Mg0.05Ag0.05O) are synthesized by chemical co-precipitation method in the presence of capping agent Polyethylene glycol 600 (PEG 600) and annealed at 500°C in air ambient for 1h. The XRD measurements reveals that the pure and co-doped ZnO samples have hexagonal structure without any change and the size of ZnO nanoparicles were decreased from 17 nm to 13 nm. FESEM images indicates that they are flake like structures of the ZnO and co-doped ZnO samples and ED AX spectra reveals that the successful doping concentration of Mg and Ag. From the TEM results, the size of the ZnO nanoparticles which are in good agreement with the XRD results.

  12. Anomalous capacitance change in low-temperature grown ZnO thin-film transistors

    NASA Astrophysics Data System (ADS)

    Seo, O.; Kim, H.; Jo, J.

    2010-10-01

    We studied capacitance-voltage characteristics of ZnO thin-film transistors (TFT's), grown by metalorganic chemical vapor deposition (MOCVD). We compared two ZnO TFT's: one grown at 450 °C and the other at 350 °C. ZnO grown at 450 °C showed smooth capacitance profile with electron density of 1.5×1020 cm-3. In contrast, ZnO grown at 350 °C showed a capacitance jump when gate voltage was changed to negative voltages. Current-voltage characteristics measured in the two samples did not show much difference. We explain that the capacitance jump is related to p-type ZnO layer formed at the SiO2 interface. Current-voltage and capacitance-voltage data support that our ZnO films have anisotropic conductivity.

  13. The effect of nanosize ZnO on the properties of the selected polymer blend composites

    NASA Astrophysics Data System (ADS)

    Grigalovica, A.; Bochkov, I.; Merijs Meri, R.; Zicans, J.; Grabis, J.; Kotsilkova, R.; Borovanska, I.

    2012-08-01

    In the current research the effect of ZnO nanoparticles on the structure and properties of common thermoplastic polymers (polyoxymethylene (POM), polypropylene (PP), ethylene-α-octene copolymers (EOC)) and their binary blends is investigated. EOC content in the composites varies from 0 to 50 wt. %. The amount of nanostructured ZnO filler in the composites is changed in the interval from 0 to 5 wt. %. Tensile and frictional properties of ZnO modified nanocomposites are investigated. Results of the investigation show that ZnO additions cause increment in stiffness and strength as well as coefficient of friction of the investigated nanocomposites. The effect of ZnO modifier is the highest at low EOC content. The effect of ZnO is strongly dependent on the compatibility and crystallinity of the investigated nanocomposites.

  14. Synthesis and characterization of ZnO nanowires for nanosensor applications

    SciTech Connect

    Lupan, O.; Emelchenko, G.A.; Ursaki, V.V.; Chai, G.; Redkin, A.N.; Gruzintsev, A.N.; Tiginyanu, I.M.; Chow, L.; Ono, L.K.; and others

    2010-08-15

    In this paper we report the synthesis of ZnO nanowires via chemical vapor deposition (CVD) at 650 {sup o}C. It will be shown that these nanowires are suitable for sensing applications. ZnO nanowires were grown with diameters ranging from 50 to 200 nm depending on the substrate position in a CVD synthesis reactor and the growth regimes. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), photoluminescence (PL), and Raman spectroscopy (RS) have been used to characterize the ZnO nanowires. To investigate the suitability of the CVD synthesized ZnO nanowires for gas sensing applications, a single ZnO nanowire device (50 nm in diameter) was fabricated using a focused ion beam (FIB). The response to H{sub 2} of a gas nanosensor based on an individual ZnO nanowire is also reported.

  15. Controllable Growth of Ultrathin P-doped ZnO Nanosheets.

    PubMed

    Zhu, Yuankun; Yang, Hengyan; Sun, Feng; Wang, Xianying

    2016-12-01

    Ultrathin phosphor (P)-doped ZnO nanosheets with branched nanowires were controllably synthesized, and the effects of oxygen and phosphor doping on the structural and optical properties were systematically studied. The grown ZnO nanosheet exhibits an ultrathin nanoribbon backbone with one-side-aligned nanoteeth. For the growth of ultrathin ZnO nanosheets, both oxygen flow rate and P doping are essential, by which the morphologies and microstructures can be finely tuned. P doping induces strain relaxation to change the growth direction of ZnO nanoribbons, and oxygen flow rate promotes the high supersaturation degree to facilitate the growth of nanoteeth and widens the nanoribbons. The growth of P-doped ZnO in this work provides a new progress towards the rational control of the morphologies for ZnO nanostructures.

  16. Effect of intrinsic point defect on the magnetic properties of ZnO nanowire.

    PubMed

    Yun, Jiangni; Zhang, Zhiyong; Yin, Tieen

    2013-01-01

    The effect of intrinsic point defect on the magnetic properties of ZnO nanowire is investigated by the first-principles calculation based on the density functional theory (DFT). The calculated results reveal that the pure ZnO nanowire without intrinsic point defect is nonmagnetic and ZnO nanowire with V(O), Zn(i), O(i), O(Zn), or Zn(O) point defect also is nonmagnetic. However, a strong spin splitting phenomenon is observed in ZnO nanowire with V(Zn) defect sitting on the surface site. The Mulliken population analysis reveals that the oxygen atoms which are close to the V(Zn) defect do major contribution to the magnetic moment. Partial density states calculation further suggests that the appearance of the half-metallic ferromagnetism in ZnO nanorod with V(Zn) originates from the hybridization of the O2p states with Zn 3d states.

  17. Surface Defects Control for ZnO Nanorods Synthesized Through a Gas-Assisted Hydrothermal Process

    NASA Astrophysics Data System (ADS)

    Zhao, Limin; Shu, Changhua; Jia, Zhengfeng; Wang, Changzheng

    2017-01-01

    Oxygen vacancies in crystal have an important impact on the electronic properties of zinc oxide (ZnO). In this paper, ZnO nanorods with rich oxygen vacancies were prepared through a novel gas-assisted hydrothermal growth process. X-ray diffraction data showed that single-phase ZnO with the wurtzite crystal structure was obtained and the crystallite size decreased as the reaction atmosphere pressure increased. The oxygen vacancies of ZnO were confirmed using x-ray photoelectron spectroscopy and photoluminescence spectroscopy. The results showed that the concentration of oxygen vacancies could be regulated by both the atmosphere pressure and the atmosphere properties. The oxygen vacancies in ZnO samples were reduced when the pressure increase in the hydrogen reaction environment (reducing atmosphere) and the oxygen vacancies in ZnO samples were increased when the pressure increased in the oxygen reaction environment (oxidizing atmosphere).

  18. Hybrid material based on plasmonic nanodisks decorated ZnO and its application on nanoscale lasers

    NASA Astrophysics Data System (ADS)

    Chen, Zuxin; Lai, Boya; Zhang, Junming; Wang, Guoping; Chu, Sheng

    2014-07-01

    Plasmonic noble metal nanodisks with regular (triangular or hexagonal) shapes have been epitaxially formed on ZnO nanorods’ (0002) surfaces. The composite material’s crystal structures, epitaxial relationships between metal nanodisks, and ZnO host crystals were fully investigated. The effects from metal nanodisks on lasing characteristics of two types of ZnO nanoscale cavities (Fabry-Perot and Whispering Gallery Mode cavity) were studied. The results suggest that metal nanodisks can effectively enhance the lasing performance by lowering the lasing threshold in the ZnO Whispering Gallery Mode nanoplate laser, whereas the Fabry-Perot ZnO nanorods lasers were much less affected by the metal decoration. The plasmonic enhancement mechanism for the ZnO nanoplate cavities was further studied using numerical simulations as well as spatially resolved photoluminescence measurement.

  19. Catalyst free growth of ZnO nanorods by thermal evaporation method

    SciTech Connect

    Somvanshi, Divya; Jit, S.

    2013-06-03

    In this work, we report catalyst free growth of ZnO nanorods on n-Si substrate by a low cost thermal evaporation method. The surface morphology, chemical composition and crystalline structure of ZnO nanorods have been determined by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) spectroscopy respectively. It is found that, the as -deposited ZnO seed layer reduces lattice mismatching between ZnO and Si from 40.3 to 0.28%, therefore enhances the subsequent growth and crystalline quality of ZnO nanorods on Si substrate. The present methodology is simple, cost effective and highly applicable for synthesis of ZnO nanorods for optoelectronics applications.

  20. Rapid synthesis of Co, Ni co-doped ZnO nanoparticles: Optical and electrochemical properties

    NASA Astrophysics Data System (ADS)

    Romeiro, Fernanda C.; Marinho, Juliane Z.; Lemos, Samantha C. S.; de Moura, Ana P.; Freire, Poliana G.; da Silva, Luis F.; Longo, Elson; Munoz, Rodrigo A. A.; Lima, Renata C.

    2015-10-01

    We report for the first time a rapid preparation of Zn1-2xCoxNixO nanoparticles via a versatile and environmentally friendly route, microwave-assisted hydrothermal (MAH) method. The Co, Ni co-doped ZnO nanoparticles present an effect on photoluminescence and electrochemical properties, exhibiting excellent electrocatalytic performance compared to undoped ZnO sample. Photoluminescence spectroscopy measurements indicated the reduction of the green-orange-red visible emission region after adding Co and Ni ions, revealing the formation of alternative pathways for the generated recombination. The presence of these metallic ions into ZnO creates different defects, contributing to a local structural disorder, as revealed by Raman spectra. Electrochemical experiments revealed that the electrocatalytic oxidation of dopamine on ZnO attached to multi-walled carbon nanotubes improved significantly in the Co, Ni co-doped ZnO samples when compared to pure ZnO.

  1. Synthesis and characterization of Mn-doped ZnO column arrays

    NASA Astrophysics Data System (ADS)

    Yang, Mei; Guo, Zhixing; Qiu, Kehui; Long, Jianping; Yin, Guangfu; Guan, Denggao; Liu, Sutian; Zhou, Shijie

    2010-04-01

    Mn-doped ZnO column arrays were successfully synthesized by conventional sol-gel process. Effect of Mn/Zn atomic ratio and reaction time were investigated, and the morphology, tropism and optical properties of Mn-doped ZnO column arrays were characterized by SEM, XRD and photoluminescence (PL) spectroscopy. The result shows that a Mn/Zn atomic ratio of 0.1 and growth time of 12 h are the optimal condition for the preparation of densely distributed ZnO column arrays. XRD analysis shows that Mn-doped ZnO column arrays are highly c-axis oriented. As for Mn-doped ZnO column arrays, obvious increase of photoluminescence intensity is observed at the wavelength of ˜395 nm and ˜413 nm, compared to pure ZnO column arrays.

  2. Single-walled carbon nanotubes coated with ZnO by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Pal, Partha P.; Gilshteyn, Evgenia; Jiang, Hua; Timmermans, Marina; Kaskela, Antti; Tolochko, Oleg V.; Kurochkin, Alexey V.; Karppinen, Maarit; Nisula, Mikko; Kauppinen, Esko I.; Nasibulin, Albert G.

    2016-12-01

    The possibility of ZnO deposition on the surface of single-walled carbon nanotubes (SWCNTs) with the help of an atomic layer deposition (ALD) technique was successfully demonstrated. The utilization of pristine SWCNTs as a support resulted in a non-uniform deposition of ZnO in the form of nanoparticles. To achieve uniform ZnO coating, the SWCNTs first needed to be functionalized by treating the samples in a controlled ozone atmosphere. The uniformly ZnO coated SWCNTs were used to fabricate UV sensing devices. An UV irradiation of the ZnO coated samples turned them from hydrophobic to hydrophilic behaviour. Furthermore, thin films of the ZnO coated SWCNTs allowed us switch p-type field effect transistors made of pristine SWCNTs to have ambipolar characteristics.

  3. g-C3N4 decorated ZnO nanorod arrays for enhanced photoelectrocatalytic performance

    NASA Astrophysics Data System (ADS)

    Kuang, Pan-Yong; Su, Yu-Zhi; Chen, Gao-Feng; Luo, Zhuo; Xing, Shu-Yang; Li, Nan; Liu, Zhao-Qing

    2015-12-01

    Heterojunction can not only offer a wide range of solar light absorption but also facilitate the separation of photoinduced charge carriers, and thereby lead to enhanced photoelectrochemical efficiency. Herein, we report the heterostructured g-C3N4/ZnO nanorod arrays (NRAs) for enhanced photoelectrocatalytic performance. The g-C3N4 shell layer of about 20-30 nm was coated on the surface of ZnO nanorod uniformly through thermal annealing the melamine precursor. Compared to the pristine ZnO and g-C3N4, the as-prepared g-C3N4/ZnO NRAs exhibit enhanced photoelectrocatalytic activity for methylene blue (MB) decolorization under visible light illumination. This enhancement of photoelectrocatalytic performance may be mainly attributed to improved separation efficiency of charge carriers from photoexcited g-C3N4 to ZnO across the g-C3N4/ZnO interfaces.

  4. Structural and optical characterization of ZnO doped PC/PS blend nanocomposites

    NASA Astrophysics Data System (ADS)

    Agarwal, Shalini; Saraswat, Vibhav K.

    2015-04-01

    PC50%/PS50% polymer blend nanocomposites, undoped and doped with different concentration of ZnO nanoparticles (1, 2, 3 wt%), have been prepared using solution casting method. Structural and optical studies have been performed using X-ray Diffraction (XRD), Scanning Electron Microscope (SEM) and Ultraviolet-Visible spectroscopy (UV-Vis). ZnO nanoparticles have been synthesized by chemical route method. The nanostructure of the ZnO nanoparticles has been ascertained through X-ray Diffraction (XRD) and Transmission Electron Microscopy (TEM). Optical Absorption Spectra has been used to study optical constants of prepared blend nanocomposites. Energy band gap of PC/PS - ZnO blend nanocomposites have been calculated by using Tauc relation. The band gap of the nanocomposites decreases as ZnO wt% increases. Extinction coefficient, refractive index and real & imaginary part of dielectric constants increase with increase in ZnO nanoparticles wt%.

  5. Controllable Growth of Ultrathin P-doped ZnO Nanosheets

    NASA Astrophysics Data System (ADS)

    Zhu, Yuankun; Yang, Hengyan; Sun, Feng; Wang, Xianying

    2016-04-01

    Ultrathin phosphor (P)-doped ZnO nanosheets with branched nanowires were controllably synthesized, and the effects of oxygen and phosphor doping on the structural and optical properties were systematically studied. The grown ZnO nanosheet exhibits an ultrathin nanoribbon backbone with one-side-aligned nanoteeth. For the growth of ultrathin ZnO nanosheets, both oxygen flow rate and P doping are essential, by which the morphologies and microstructures can be finely tuned. P doping induces strain relaxation to change the growth direction of ZnO nanoribbons, and oxygen flow rate promotes the high supersaturation degree to facilitate the growth of nanoteeth and widens the nanoribbons. The growth of P-doped ZnO in this work provides a new progress towards the rational control of the morphologies for ZnO nanostructures.

  6. Effect of solution concentration on the functional properties of ZnO nanostructures: Role of Hexamethylenetetramine

    NASA Astrophysics Data System (ADS)

    Heo, Si Nae; Park, Keun Young; Seo, Yong Jun; Ahmed, Faheem; Anwar, M. S.; Koo, Bon Heun

    2013-05-01

    In this research, ZnO nanorods have been successfully synthesized via wet chemical method. XRD results revealed the single phase nature with the wurtzite structure of the as prepared ZnO nanorods. By only varying the concentration of Hexamethylenetetramine (HMT) in the solution, morphology of ZnO changed from hexagonal facet nanorods to pencil like nanorods and size of nanorods also changed. The band gap of as-synthesized ZnO nanorods was found to increase with increasing the concentration of HMT in the solution. The narrow full-width at half-maximum (FWHM) of the UV emission of PL spectra indicated that the grown ZnO nanorods have high crystal quality and is well matched with the obtained XRD results. These results revealed that the concentration of Hexamethylenetetramine plays a vital role to control the properties of ZnO nanorods.

  7. A simplified impression technique for dental implants.

    PubMed

    Vogel, Robert E

    2002-03-01

    Dental implants have been considered an acceptable form of dental treatment since the early 1980s. A number of studies have been published describing impression techniques for dental implants. Many of the techniques described are so complex that they may seem daunting to the average restorative dentist. Most general practitioners do not wish to attempt to restore dental implants. This article describes a very simple, yet extremely accurate, technique for making impressions of dental implant fixtures.

  8. Surgical Tooth Implants, Combat and Field.

    DTIC Science & Technology

    1983-07-15

    The upper two parts of the implant (post and core and crown) are conventional dental materials, usually gold. EX) 1473 MrION Of" I POV GS IS O&SOLETE...10 Clinical Examples of Baboon Dental Implants . . . . . . . . . . . 12 Histologic Analysis of the Bone-Implant Interface . . . . . . . . 16...Aluminum Oxide Dental Implant . . . . . . . . . . 2 Figure 2. Clinical Photograph of A29 and A30 in Baboon 469 at Necropsy

  9. Corrosion and fatigue of surgical implants

    NASA Technical Reports Server (NTRS)

    Lisagor, W. B.

    1975-01-01

    Implants for the treatment of femoral fractures, mechanisms leading to the failure or degradation of such structures, and current perspectives on surgical implants are discussed. Under the first heading, general usage, materials and procedures, environmental conditions, and laboratory analyses of implants after service are considered. Corrosion, crevice corrosion, stress corrosion cracking, intergranular corrosion, pitting corrosion, fatigue, and corrosion fatigue are the principal degradation mechanisms described. The need for improvement in the reliability of implants is emphasized.

  10. Positron annihilation study of P implanted Si

    SciTech Connect

    Asoka-Kumar, P.; Au, H.L.; Lynn, K.G. ); Sferlazzo, P. . SED Division)

    1992-01-01

    High-energy ion implantation (above 200 keV) is now commonly used in a variety of VLSI processes. The high energy required for these implants is often achieved by implanting multiply charged ions, which inevitably brings in the problem of low-energy ion contamination. The low-energy contamination is difficult to diagnose and detect. Positron annihilation spectroscopy is used to examine the defect distributions in these high energy implants with varying degrees of contamination.

  11. Positron annihilation study of P implanted Si

    SciTech Connect

    Asoka-Kumar, P.; Au, H.L.; Lynn, K.G.; Sferlazzo, P.

    1992-12-01

    High-energy ion implantation (above 200 keV) is now commonly used in a variety of VLSI processes. The high energy required for these implants is often achieved by implanting multiply charged ions, which inevitably brings in the problem of low-energy ion contamination. The low-energy contamination is difficult to diagnose and detect. Positron annihilation spectroscopy is used to examine the defect distributions in these high energy implants with varying degrees of contamination.

  12. Comparative phytotoxicity of ZnO NPs, bulk ZnO, and ionic zinc onto the alfalfa plants symbiotically associated with Sinorhizobium meliloti in soil.

    PubMed

    Bandyopadhyay, Susmita; Plascencia-Villa, Germán; Mukherjee, Arnab; Rico, Cyren M; José-Yacamán, Miguel; Peralta-Videa, Jose R; Gardea-Torresdey, Jorge L

    2015-05-15

    ZnO nanoparticles (NPs) are reported as potentially phytotoxic in hydroponic and soil media. However, studies on ZnO NPs toxicity in a plant inoculated with bacterium in soil are limited. In this study, ZnO NPs, bulk ZnO, and ZnCl₂ were exposed to the symbiotic alfalfa (Medicago sativa L.)-Sinorhizobium meliloti association at concentrations ranging from 0 to 750 mg/kg soil. Plant growth, Zn bioaccumulation, dry biomass, leaf area, total protein, and catalase (CAT) activity were measured in 30 day-old plants. Results showed 50% germination reduction by bulk ZnO at 500 and 750 mg/kg and all ZnCl₂ concentrations. ZnO NPs and ionic Zn reduced root and shoot biomass by 80% and 25%, respectively. Conversely, bulk ZnO at 750 mg/kg increased shoot and root biomass by 225% and 10%, respectively, compared to control. At 500 and 750 mg/kg, ZnCl₂ reduced CAT activity in stems and leaves. Total leaf protein significantly decreased as external ZnCl₂ concentration increased. STEM-EDX imaging revealed the presence of ZnO particles in the root, stem, leaf, and nodule tissues. ZnO NPs showed less toxicity compared to ZnCl₂ and bulk ZnO found to be growth enhancing on measured traits. These findings are significant to reveal the toxicity effects of different Zn species (NPs, bulk, and ionic Zn) into environmentally important plant-bacterial system in soil.

  13. 21 CFR 522.1350 - Melatonin implant.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Melatonin implant. 522.1350 Section 522.1350 Food... Melatonin implant. (a) Specifications. The drug is a silicone rubber elastomer implant containing 2.7 milligrams of melatonin. (b) Sponsor. See No. 053923 in § 510.600(c) of this chapter. (c) Conditions of...

  14. 21 CFR 522.1350 - Melatonin implant.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Melatonin implant. 522.1350 Section 522.1350 Food... Melatonin implant. (a) Specifications. The drug is a silicone rubber elastomer implant containing 2.7 milligrams of melatonin. (b) Sponsor. See No. 053923 in § 510.600(c) of this chapter. (c) Conditions of...

  15. Rescuing failed oral implants via Wnt activation

    PubMed Central

    Yin, Xing; Li, Jingtao; Chen, Tao; Mouraret, Sylvain; Dhamdhere, Girija; Brunski, John B.; Zou, Shujuan; Helms, Jill A.

    2016-01-01

    Aim Implant osseointegration is not always guaranteed and once fibrous encapsulation occurs clinicians have few options other than implant removal. Our goal was to test whether a WNT protein therapeutic could rescue such failed implants. Material and Methods Titanium implants were placed in over-sized murine oral osteotomies. A lack of primary stability was verified by mechanical testing. Interfacial strains were estimated by finite element modelling and histology coupled with histomorphometry confirmed the lack of peri-implant bone. After fibrous encapsulation was established peri-implant injections of a liposomal formulation of WNT3A protein (L-WNT3A) or liposomal PBS (L-PBS) were then initiated. Quantitative assays were employed to analyse the effects of L-WNT3A treatment. Results Implants in gap-type interfaces exhibited high interfacial strains and no primary stability. After verification of implant failure, L-WNT3A or L-PBS injections were initiated. L-WNT3A induced a rapid, significant increase in Wnt responsiveness in the peri-implant environment, cell proliferation and osteogenic protein expression. The amount of peri-implant bone and bone in contact with the implant were significantly higher in L-WNT3A cases. Conclusions These data demonstrate L-WNT3A can induce peri-implant bone formation even in cases where fibrous encapsulation predominates. PMID:26718012

  16. Using Aerospace Technology To Design Orthopedic Implants

    NASA Technical Reports Server (NTRS)

    Saravanos, D. A.; Mraz, P. J.; Davy, D. T.

    1996-01-01

    Technology originally developed to optimize designs of composite-material aerospace structural components used to develop method for optimizing designs of orthopedic implants. Development effort focused on designing knee implants, long-term goal to develop method for optimizing designs of orthopedic implants in general.

  17. Penile prosthesis implantation: past, present and future.

    PubMed

    Simmons, M; Montague, D K

    2008-01-01

    Penile prosthesis implantation is the oldest effective treatment for erectile dysfunction. This review examines the past, present and future of penile prosthesis implantation. Advances in prosthetic design and implantation techniques have resulted today in devices that produce nearly normal flaccid and erect states, and have remarkable freedom from mechanical failure. The future of prosthetic design holds promises for even more improvements.

  18. [The elementary discussion on digital implant dentistry].

    PubMed

    Su, Y C

    2016-04-09

    It is a digital age today. Exposed to all kinds of digital products in many fields. Certainly, implant dentistry is not exception. Digitalization could improve the outcomes and could decrease the complications of implant dentistry. This paper introduces the concepts, definitions, advantages, disadvantages, limitations and errors of digital implant dentistry.

  19. 21 CFR 522.1350 - Melatonin implant.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Melatonin implant. 522.1350 Section 522.1350 Food... Melatonin implant. (a) Specifications. The drug is a silicone rubber elastomer implant containing 2.7 milligrams of melatonin. (b) Sponsor. See No. 053923 in § 510.600(c) of this chapter. (c) Conditions of...

  20. 21 CFR 522.1350 - Melatonin implant.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Melatonin implant. 522.1350 Section 522.1350 Food... Melatonin implant. (a) Specifications. The drug is a silicone rubber elastomer implant containing 2.7 milligrams of melatonin. (b) Sponsor. See No. 053923 in § 510.600(c) of this chapter. (c) Conditions of...