Science.gov

Sample records for 111in-labelled cholecystokinin-8 cck8

  1. Cholecystokinin-8 inhibits methamphetamine-induced neurotoxicity via an anti-oxidative stress pathway.

    PubMed

    Wen, Di; An, Meiling; Gou, Hongyan; Liu, Xia; Liu, Li; Ma, Chunling; Cong, Bin

    2016-12-01

    As a powerful addictive psychostimulant drug, coupled with its neurotoxicity, methamphetamine (METH) abuse may lead to long-lasting abnormalities in brain structure and function. We found that pretreatment of cholecystokinin-8 (CCK-8) inhibited METH-induced brain cellular dopaminergic (DA) damage in the striatum and substantia nigra, and related behavioural deficits and hyperthermia. However, the mechanism of CCK-8 action on METH-induced toxicity is not clear. The aim of this study was to explore whether the possible protective effect of CCK-8 on METH-induced neurotoxicity involved anti-oxidative stress mechanisms. The subtypes of CCK receptors mediating the regulatory action of CCK-8 were also investigated. The present results revealed that CCK-8 dose-dependently inhibited METH-induced cytotoxic effect by activating the CCK2 receptor subtype in PC12 cells and CCK2 receptor stable transfected-HEK293 cells. Pre-treatment of CCK-8 before METH stimulation significantly attenuated the generation of reactive oxygen species and NADPH oxidase activation in PC12 cells. In conclusion, our study demonstrated a protective effect of CCK-8 on METH-induced neurotoxicity in vitro and suggested that a possible mechanism of this action was dependent on the activation of the CCK2 receptor to reduce the neurotoxicity and oxidative stress induced by METH stimulation.

  2. Protective effects of cholecystokinin-8 on methamphetamine-induced behavioral changes and dopaminergic neurodegeneration in mice.

    PubMed

    Gou, Hongyan; Wen, Di; Ma, Chunling; Li, Ming; Li, Yingmin; Zhang, Wenfang; Liu, Li; Cong, Bin

    2015-04-15

    We investigated whether pretreatment with the neuropeptide cholecystokinin-8 affected methamphetamine (METH)-induced behavioral changes and dopaminergic neurodegeneration in male C57/BL6 mice. CCK-8 pretreatment alone had no effect on locomotion and stereotypic behavior and could not induce behavioral sensitization; however, it attenuated, in a dose-dependent manner, hyperlocomotion and behavioral sensitization induced by a low dose of METH (1mg/kg). CCK-8 attenuated METH-induced stereotypic behavior at a dose of 3mg/kg but not at 10mg/kg. CCK-8 pretreatment attenuated METH (10mg/kg)-induced hyperthermia, the decrease of tyrosine hydroxylase (TH) and dopamine transporter (DAT) in the striatum, and TH in the substantia nigra. CCK-8 alone had no effect on rectal temperature, TH and DAT expression in the nigrostriatal region. In conclusion, our study demonstrated that pretreatment with CCK-8 inhibited changes typically induced by repeated exposure to METH, such as hyperlocomotion, behavioral sensitization, stereotypic behavior, and dopaminergic neurotoxicity. These findings make CCK-8 a potential therapeutic agent for the treatment of multiple symptoms associated with METH abuse.

  3. Effect of Heweianshen Decoction on Orexin-A and Cholecystokinin-8 Expression in Rat Models of Insomnia

    PubMed Central

    Liu, Yi; Cao, Ke; Yang, Minghui

    2016-01-01

    Objective. To study the effect of Heweianshen decoction (HAD) on orexin-A and cholecystokinin-8 (CCK-8) expression in rat models of insomnia caused by injecting parachlorophenylalanine (PCPA) intraperitoneally. Methods. Fifty male Wistar rats were randomly divided into five groups (10 rats in each group): blank group, model group, and low-, medium-, and high-dose HAD-treated groups. A rat model of insomnia was established by injecting intraperitoneally with PCPA (300 mg/kg body weight). Rats were given normal saline (10 mL/kg) or 5.25, 10.5, and 21 g/kg HAD by intragastric administration once a day for 6 days. After that, the rats were sacrificed to collect the hypothalamus for tests, using radioimmunoassay to detect the expression of orexin-A and CCK-8. Results. Heweianshen decoction reduced the expression of orexin-A and increased the expression of CCK-8 in the hypothalamus of rat model of insomnia. Conclusion. The therapeutic effect of HAD on insomnia is partially attributed to the decreased expression of orexin-A and increased expression of CCK-8. PMID:27688792

  4. A1-adenosine acute withdrawal response and cholecystokinin-8 induced contractures are regulated by Ca(2+)- and ATP-activated K(+) channels.

    PubMed

    Cascio, Maria Grazia; Valeri, Daniela; Tucker, Steven J; Marini, Pietro

    2015-01-01

    In isolated guinea-pig ileum (GPI), the A1-adenosine acute withdrawal response is under the control of several neuronal signalling systems, including the μ/κ-opioid and the cannabinoid CB1 systems. It is now well established that after the stimulation of the A1-adenosine system, the indirect activation of both μ/κ-opioid and CB1 systems is prevented by the peptide cholecystokinin-8 (CCk-8). In the present study, we have investigated the involvement of the Ca(2+)/ATP-activated K(+) channels in the regulation of both acute A1-withdrawal and CCk-8-induced contractures in the GPI preparation. Interestingly, we found that: (a) the A1-withdrawal contracture is inhibited by voltage dependent Ca(2+)-activated K(+) channels, Kv, while it is enhanced by the voltage independent Ca(2+)-activated K(+) channels, SKCa; (b) in the presence of CCk-8, the inhibitory effect of the A1 agonist, CPA, on the peptide induced contracture is significantly enhanced by the voltage independent Ca(2+)-activated K(+) channel, SKCa; and (c) the A1-withdrawal contracture precipitated in the presence of CCk-8 is controlled by the ATP-sensitive potassium channels, KATP. Our data suggest, for the first time, that both Ca(2+)- and ATP-activated K(+) channels are involved in the regulation of both A1-withdrawal precipitated and CCk-8 induced contractures.

  5. Mercuric chloride-induced gastrin/cholecystokinin 8 immunoreactivity in the central nervous system of the terrestrial slug Semperula maculata: an immunohistochemical study.

    PubMed

    Londhe, Sunil; Kamble, Nitin

    2013-12-01

    We measured the immunoreactivity of the neuropeptide gastrin cholecystokinin 8 (gastrin/CCK 8) in neurons of the terrestrial slug Semperula maculata following acute treatment with mercuric chloride (HgCl2). The distribution of gastrin/CCK 8 was analyzed in neurons of different regions, specifically from cerebral ganglia (procerebrum (pro-c), mesocerebrum (meso-c) and metacerebrum (meta-c). In the control group, neurons of pedal, pleural, parietal and visceral ganglia showed positive immunoreactivity using vertebrate antiserum against gastrin/CCK 8. Gastrin/CCK 8 immunoreactivity was also seen in the fibers and neuropil region of all ganglia. In the cerebral ganglion, 10, 12 and 8 % of the neurons from pro-c, meso-c and meta-c, respectively, were stained with the antibody. The immunostaining was increased in neurons (giant, large, medium and small) after HgCl2 treatment. The treatment greatly increased the mucin content within the neurons. Exposure to HgCl2 enhanced gastrin immunoreactivity in the neurons and this increased with time. Results are discussed in the context of neuropathology in cerebral ganglia associated with the feeding behavior of Semperula maculata.

  6. Antidiabetogenic action of cholecystokinin-8 in type 2 diabetes.

    PubMed

    Ahrén, B; Holst, J J; Efendic, S

    2000-03-01

    Cholecystokinin (CCK) is a gut hormone and a neuropeptide that has the capacity to stimulate insulin secretion. As insulin secretion is impaired in type 2 diabetes, we explored whether exogenous administration of this peptide exerts antidiabetogenic action. The C-terminal octapeptide of CCK (CCK-8) was therefore infused i.v. (24 pmol/kg x h) for 90 min in six healthy postmenopausal women and in six postmenopausal women with type 2 diabetes. At 15 min after start of infusion, a meal was served and ingested during 10 min. On a separate day, saline was infused instead of CCK-8. In both healthy subjects and subjects with type 2 diabetes, CCK-8 reduced the increase in circulating glucose after meal ingestion and potentiated the increase in circulating insulin. The ratio between the area under the curves for serum insulin and plasma glucose during the 15- to 75-min period after meal ingestion was increased by CCK-8 by 198 +/- 18% in healthy subjects (P = 0.002) and by 474 +/- 151% (P = 0.038) in subjects with type 2 diabetes. In contrast, the increase in the circulating levels of gastric inhibitory polypeptide (GIP), glucagon-like peptide-1 (GLP-1), or glucagon after meal ingestion was not significantly affected by CCK-8. The study therefore shows that CCK-8 exerts an antidiabetogenic action in both healthy subjects and type 2 diabetes through an insulinotropic action that most likely is exerted trough a direct islet effect. As at the same time, CCK-8 was infused without any adverse effects, the study suggests that CCK is a potential treatment for type 2 diabetes.

  7. Distribution and dosimetry of 111In-labeled platelets.

    PubMed

    Robertson, J S; Dewanjee, M K; Brown, M L; Fuster, V; Cesebro, J H

    1981-07-01

    The distribution of 111In-labeled platelets was studied in five young, healthy men. The radioactivity in the lungs, heart, liver, spleen, kidneys, and testes was determined from areas-of-interest in computed gamma-camera scans at intervals up to 75 hours after injection. After the first four hours, the activity in each organ studied except the liver and kidney decreased at roughly the physical decay rate. In the liver and kidney, the curves were relatively flat, indicating continued accumulation of the radiotracer. The calculated mean radiation absorbed dose per unit administered activity was 0.60 +/- 0.07 rad/mCi (0.16 +/- 0.02 Gy/GBq) for the total body, and was 34 +/- 6 rad/mCi (9.0 +/- 1.5 Gy/GBq) for the spleen.

  8. CCK-58 Elicits Both Satiety and Satiation in Rats while CCK-8 Elicits Only Satiation

    PubMed Central

    Overduin, Joost; Gibbs, James; Cummings, David E.; Reeve, Joseph R.

    2014-01-01

    Reduction of food intake by exogenous cholecystokinin (CCK) has been demonstrated primarily for its short molecular form, CCK-8. Mounting evidence, however, implicates CCK-58 as a major physiologically active CCK form, with different neural and exocrine response profiles than CCK-8. In three studies, we compared meal-pattern effects of intraperitoneal injections CCK-8 vs. CCK-58 in undeprived male Sprague-Dawley rats consuming sweetened condensed milk. In study one, rats (N=10) received CCK-8, CCK-58 (0.45, 0.9, 1.8 and 3.6 nmole/kg) or vehicle before a 4-hour test-food presentation. At most doses, both CCK-8 and CCK-58 reduced meal size relative to vehicle. Meal-size reduction prompted a compensatory shortening of the intermeal interval (IMI) after CCK-8, but not after CCK-58, which uniquely increased the satiety ratio (IMI/size of the preceding meal). In the second study, lick patterns were monitored after administration of 0.9nmole/kg CCK-58, CCK-8 or vehicle. Lick cluster size, lick efficiency and interlick-interval distribution remained unaltered compared to vehicle, implying natural satiation, rather than illness, following both CCK forms. In study 3, threshold satiating doses of the two CCK forms were given at 5 and 30 minutes after meal termination, respectively. CCK 58, but not CCK-8 increased the intermeal interval and satiety ratio compared to vehicle. In conclusion, while CCK 58 and CCK-8 both stimulate satiation, thereby reducing meal size, CCK-58 consistently exerts a satiety effect, prolonging IMI. Given the physiological prominence of CCK-58, these results suggest that CCK’s role in food intake regulation may require reexamination. PMID:24468546

  9. CCK-58 elicits both satiety and satiation in rats while CCK-8 elicits only satiation.

    PubMed

    Overduin, Joost; Gibbs, James; Cummings, David E; Reeve, Joseph R

    2014-04-01

    Reduction of food intake by exogenous cholecystokinin (CCK) has been demonstrated primarily for its short molecular form, CCK-8. Mounting evidence, however, implicates CCK-58 as a major physiologically active CCK form, with different neural and exocrine response profiles than CCK-8. In three studies, we compared meal-pattern effects of intraperitoneal injections CCK-8 vs. CCK-58 in undeprived male Sprague-Dawley rats consuming sweetened condensed milk. In study 1, rats (N=10) received CCK-8, CCK-58 (0.45, 0.9, 1.8 and 3.6 nmol/kg) or vehicle before a 4-h test-food presentation. At most doses, both CCK-8 and CCK-58 similarly reduced meal size relative to vehicle. Meal-size reduction prompted a compensatory shortening of the intermeal interval (IMI) after CCK-8, but not after CCK-58, which uniquely increased the satiety ratio (IMI/size of the preceding meal). In the second study, lick patterns were monitored after administration of 0.9 nmol/kg CCK-58, CCK-8 or vehicle. Lick cluster size, lick efficiency and interlick-interval distribution remained unaltered compared to vehicle, implying natural satiation, rather than illness, following both CCK forms. In study 3, threshold satiating doses of the two CCK forms were given at 5 and 30 min after meal termination, respectively. CCK 58, but not CCK-8 increased the intermeal interval and satiety ratio compared to vehicle. In conclusion, while CCK 58 and CCK-8 both stimulate satiation, thereby reducing meal size, CCK-58 consistently exerts a satiety effect, prolonging IMI. Given the physiological prominence of CCK-58, these results suggest that CCK's role in food intake regulation may require re-examination.

  10. Biphasic regulation of the acute μ-withdrawal and CCk-8 contracture responses by the ORL-1 system in guinea pig ileum.

    PubMed

    Marini, Pietro; Romanelli, Luca; Valeri, Daniela; Cascio, Maria Grazia; Tucci, Paolo; Valeri, Pacifico; Palmery, Maura

    2012-01-01

    The cloning of the opioid-receptor-like receptor (ORL-1) and the identification of the orphaninFQ/nociceptin (OFQ/N) as its endogenous agonist has revealed a new G-protein-coupled receptor signalling system. The structural and functional homology of ORL-1 to the opioid receptor systems has posed a number of challenges in the understanding the often competing physiological responses elicited by these G-protein-coupled receptors. We had previously shown that in guinea pig ileum (GPI), the acute μ-withdrawal response is under the inhibitory control of several systems. Specifically, we found that the exposure to a μ-opioid receptor agonist activates indirectly the κ-opioid, the A(1)-adenosine and the cannabinoid CB(1) systems, that in turn inhibit the withdrawal response. The indirect activation of these systems is prevented by the peptide cholecystokinin-8 (CCk-8). In the present study, we have investigated whether the ORL-1 system is also involved in the regulation of the acute μ-withdrawal response. Interestingly, we found that in GPI preparation, the ORL-1 system is not indirectly activated by the μ-opioid receptor stimulation, but instead the system is able by itself to directly regulate the acute μ-withdrawal response. Moreover, we have demonstrated that the ORL-1 system behaves both as anti-opioid or opioid-like system based on the level of activation. The same behaviour has also been observed in presence of CCk-8. Furthermore, in GPI, the existence of an endogenous tone of the ORL-1 system has been demonstrated. We concluded that the ORL-1 system acts as a neuromodulatory system, whose action is strictly related to the modulation of excitatory neurotrasmitters released in GPI enteric nervous system.

  11. Peripherally injected CCK-8S activates CART positive neurons of the paraventricular nucleus in rats

    PubMed Central

    Noetzel, Steffen; Inhoff, Tobias; Goebel, Miriam; Taché, Yvette; Veh, Rüdiger W.; Bannert, Norbert; Grötzinger, Carsten; Wiedenmann, Bertram; Klapp, Burghard F.; Mönnikes, Hubert; Kobelt, Peter

    2014-01-01

    Cholecystokinin (CCK) plays a role in the short-term inhibition of food intake. Cocaine- and amphetamine-regulated transcript (CART) peptide has been observed in neurons of the paraventricular nucleus (PVN). It has been reported that intracerebroventricular injection of CART peptide inhibits food intake in rodents. The aim of the study was to determine whether intraperitoneally (ip) injected CCK-8S affects neuronal activity of PVN-CART neurons. Ad libitum fed male Sprague-Dawley rats received 6 or 10 μg/kg CCK-8S or 0.15 M NaCl ip (n = 4/group). The number of c-Fos-immunoreactive neurons was determined in the PVN, arcuate nucleus (ARC), and the nucleus of the solitary tract (NTS). CCK-8S dose-dependently increased the number of c-Fos-immunoreactive neurons in the PVN (mean ± SEM: 102 ± 6 vs. 150 ± 5 neurons/section, p < 0.05) and compared to vehicle treated rats (18 ± 7, p < 0.05 vs. 6 and 10 μg/kg CCK-8S). CCK-8S at both doses induced an increase in the number of c-Fos-immunoreactive neurons in the NTS (65 ± 13, p < 0.05, and 182 ± 16, p < 0.05). No effect on the number of c-Fos neurons was observed in the ARC. Immunostaining for CART and c-Fos revealed a dose-dependent increase of activated CART neurons (19 ± 3 vs. 29 ± 7; p < 0.05), only few activated CART neuron were observed in the vehicle group (1 ± 0). The present observation shows that CCK-8S injected ip induces an increase in neuronal activity in PVN-CART neurons and suggests that CART neurons in the PVN may play a role in the mediation of peripheral CCK-8S's anorexigenic effects. PMID:20307613

  12. Ethanol exerts dual effects on calcium homeostasis in CCK-8-stimulated mouse pancreatic acinar cells

    PubMed Central

    Fernández-Sánchez, Marcela; del Castillo-Vaquero, Angel; Salido, Ginés M; González, Antonio

    2009-01-01

    Background A significant percentage of patients with pancreatitis often presents a history of excessive alcohol consumption. Nevertheless, the patho-physiological effect of ethanol on pancreatitis remains poorly understood. In the present study, we have investigated the early effects of acute ethanol exposure on CCK-8-evoked Ca2+ signals in mouse pancreatic acinar cells. Changes in [Ca2+]i and ROS production were analyzed employing fluorescence techniques after loading cells with fura-2 or CM-H2DCFDA, respectively. Results Ethanol, in the concentration range from 1 to 50 mM, evoked an oscillatory pattern in [Ca2+]i. In addition, ethanol evoked reactive oxygen species generation (ROS) production. Stimulation of cells with 1 nM or 20 pM CCK-8, respectively led to a transient change and oscillations in [Ca2+]i. In the presence of ethanol a transformation of 20 pM CCK-8-evoked physiological oscillations into a single transient increase in [Ca2+]i in the majority of cells was observed. Whereas, in response to 1 nM CCK-8, the total Ca2+ mobilization was significantly increased by ethanol pre-treatment. Preincubation of cells with 1 mM 4-MP, an inhibitor of alcohol dehydrogenase, or 10 μM of the antioxidant cinnamtannin B-1, reverted the effect of ethanol on total Ca2+ mobilization evoked by 1 nM CCK-8. Cinnamtannin B-1 blocked ethanol-evoked ROS production. Conclusion ethanol may lead, either directly or through ROS generation, to an over stimulation of pancreatic acinar cells in response to CCK-8, resulting in a higher Ca2+ mobilization compared to normal conditions. The actions of ethanol on CCK-8-stimulation of cells create a situation potentially leading to Ca2+ overload, which is a common pathological precursor that mediates pancreatitis. PMID:19878551

  13. sup 111 In-labeled nonspecific immunoglobulin scanning in the detection of focal infection

    SciTech Connect

    Rubin, R.H.; Fischman, A.J.; Callahan, R.J.; Khaw, B.A.; Keech, F.; Ahmad, M.; Wilkinson, R.; Strauss, H.W. )

    1989-10-05

    We performed radionuclide scanning after the intravenous injection of human IgG labeled with indium-111 in 128 patients with suspected focal sites of inflammation. Localization of 111In-labeled IgG correlated with clinical findings in 51 infected patients (21 with abdominal or pelvic infections, 11 with intravascular infections, 7 with pulmonary infections, and 12 with skeletal infections). Infecting organisms included gram-positive bacteria, gram-negative bacteria, Pneumocystis carinii, Mycoplasma pneumoniae, and Candida albicans. No focal localization of 111In-labeled IgG was observed in 63 patients without infection. There were five false negative results, and nine results were unusable. Serial scans were carried out in eight patients: continued localization correctly predicted relapse in six, and the absence of localization indicated resolution in two. To determine whether 111In-labeled IgG localization was specific for inflammation, we studied 16 patients with cancer. Focal localization occurred in 13 of these patients (5 with melanomas, 5 with gynecologic cancers, and 1 each with lymphoma, prostate cancer, and malignant fibrous histiocytoma). No localization was seen in patients with renal or colon cancer or metastatic medullary carcinoma of the thyroid. We conclude that 111In-labeled IgG imaging is effective for the detection of focal infection and that serial scans may be useful in assessing therapeutic efficacy. This technique may also be helpful in the evaluation of certain cancers.

  14. Effects of cholecystokinin-8 on morphine-induced spatial reference memory impairment in mice.

    PubMed

    Yang, Shengchang; Wen, Di; Dong, Mei; Li, Dong; Sun, Donglei; Ma, Chunling; Cong, Bin

    2013-11-01

    Acute and chronic exposure to opiate drugs impaired various types of memory processes. To date, there is no preventive treatment for opiate-induced memory impairment and the related mechanism is still unclear. CCK-8 is the most potent endogenous anti-opioid peptide and has been shown to exert memory-enhancing effect, but the effect of CCK-8 on morphine-induced memory impairment has not been reported. By using Morris water maze, we found that escape latency to the hidden platform in navigation test was not influenced, but performance in the probe test was seriously poor in morphine dependency mice. Amnesia induced by chronic morphine treatment was significantly alleviated by pre-treatment with CCK-8 (0.01, 0.1 and 1 μg, i.c.v.), and CCK-8 (0.1 and 1 μg, i.c.v.) treatment alone could improve performance in either navigation or probe test. Furthermore, Golgi-Cox staining analysis revealed that pre-treatment with CCK-8 (1 μg, i.c.v.) reversed spine density decreased in CA1 region of hippocampus in morphine dependency mice, and CCK-8 (1 μg, i.c.v.) alone obviously increased spine density in CA1. Our findings conclude spine density change in CA1 region of hippocampus may be the structural plasticity mechanism which is responsible for enhancing effect of CCK-8 on spatial reference memory. Therefore, CCK-8 could effectively improve memory impairment in morphine dependency mice.

  15. Facilitation of amphetamine-induced hypothermia in mice by GABA agonists and CCK-8.

    PubMed

    Boschi, G; Launay, N; Rips, R

    1991-04-01

    1. Amphetamine-induced hypothermia in mice is facilitated by dopaminergic stimulation and 5-hydroxytryptaminergic inhibition. The present study was designed to investigate: (a) the involvement of other neuronal systems, such as the gamma-aminobutyric acid (GABA), the opioid and the cholecystokinin (CCK-8) systems; (b) the possible contribution of hydroxylated metabolites of amphetamine to the hypothermia; (c) the capacity of dopamine itself to induce hypothermia and its mechanisms, in order to clarify the resistance of amphetamine-induced hypothermia to certain neuroleptics. 2. Pretreatment with the GABA antagonists, bicuculline and picrotoxin, did not inhibit amphetamine-induced hypothermia. The GABAB agonist, baclofen (2.5 mg kg-1, i.p.) potentiated this hypothermia, whereas the GABAA agonist, muscimol, did not. gamma-Butyrolactone (GBL) (40 mg kg-1, i.p.) and the neuropeptide CCK-8 (0.04 mg kg-1, i.p.) also induced potentiation. The opioid antagonist, naloxone, was without effect. 3. Dopamine itself (3, 9, 16 and 27 micrograms, i.c.v.) induced less hypothermia than the same doses of amphetamine. Sulpiride did not block dopamine-induced hypothermia, but pimozide (4 mg kg-1, i.p.), cis(z)flupentixol (0.25 mg kg-1, i.p.) and haloperidol (5 micrograms, i.c.v.) did. The direct dopamine receptor agonist, apomorphine, did not alter the hypothermia. Neither the 5-hydroxytryptamine (5-HT) receptor blocker, cyproheptadine, nor the inhibitor of 5-HT synthesis, p-chlorophenylalanine (PCPA), modified dopamine-induced hypothermia. Fluoxetine, an inhibitor of 5-HT reuptake, had no effect, whereas quipazine (6 mg kg-1, i.p.), a 5-HT agonist, totally prevented the hypothermia. Hypothermia was unaffected by pretreatment with CCK-8. 4. These data indicate that the hypothermia induced by amphetamine involves not only dopaminergic and 5-hydroxytryptaminergic systems which are functionally antagonistic, but is also facilitated by direct or indirect GABA and CCK-8 receptor stimulation

  16. CCK-58 prolongs the intermeal interval, whereas CCK-8 reduces this interval: not all forms of cholecystokinin have equal bioactivity.

    PubMed

    Sayegh, Ayman I; Washington, Martha C; Raboin, Shannon J; Aglan, Amnah H; Reeve, Joseph R

    2014-05-01

    It has been accepted for decades that "all forms of cholecystokinin (CCK) have equal bioactivity," despite accumulating evidence to the contrary. To challenge this concept, we compared two feeding responses, meal size (MS, 10% sucrose) and intermeal interval (IMI), in response to CCK-58, which is the major endocrine form of CCK, and CCK-8, which is the most abundantly utilized form. Doses (0, 0.1, 0.5, 0.75, 1, 3 and 5 nmol/kg) were administered intraperitoneally over a 210-min test to Sprague Dawley rats that had been food-deprived overnight. We found that (1) all doses of CCK-58, except the lowest dose, and all doses of CCK-8, except the lowest two doses, reduced food intake more than vehicle did; (2) at two doses, 0.75 and 3 nmol/kg, CCK-58 increased the IMI, while CCK-8 failed to alter this feeding response; and (3) CCK-58, at all but the lowest two doses, increased the satiety ratio (IMI between first and second meals (min) divided by first MS (ml)) relative to vehicle, while CCK-8 did not affect this value. These findings demonstrate that the only circulating form of CCK in rats, CCK-58, prolongs the IMI more than CCK-8, the peptide generally utilized in feeding studies. Taken together, these results add to a growing list of functions where CCK-8 and CCK-58 express qualitatively different bioactivities. In conclusion, the hypothesis that "all forms of cholecystokinin (CCK) have equal bioactivity" is not supported.

  17. Sulfated cholecystokinin-8 activates phospho-mTOR immunoreactive neurons of the paraventricular nucleus in rats

    PubMed Central

    Frommelt, Lisa; Inhoff, Tobias; Lommel, Reinhardt; Stengel, Andreas; Taché, Yvette; Grötzinger, Carsten; Bannert, Norbert; Wiedenmann, Bertram; Klapp, Burghard F.; Kobelt, Peter

    2014-01-01

    The serin/threonin-kinase, mammalian target of rapamycin (mTOR) was detected in the arcuate nucleus (ARC) and paraventricular nucleus of the hypothalamus (PVN) and suggested to play a role in the integration of satiety signals. Since cholecystokinin (CCK) plays a role in the short-term inhibition of food intake and induces c-Fos in PVN neurons, the aim was to determine whether intraperitoneally injected CCK-8S affects the neuronal activity in cells immunoreactive for phospho-mTOR in the PVN. Ad libitum fed male Sprague-Dawley rats received 6 or 10 μg/kg CCK-8S or 0.15 M NaCl ip (n=4/group). The number of c-Fosimmunoreactive (ir) neurons was assessed in the PVN, ARC and in the nucleus of the solitary tract (NTS). CCK-8S increased the number of c-Fos-ir neurons in the PVN (6 μg: 103 ± 13 vs. 10 μg: 165 ± 14 neurons/section; p<0.05) compared to vehicle treated rats (4 ± 1, p<0.05), but not in the ARC. CCK-8S also dose-dependently increased the number of c-Fos neurons in the NTS. Staining for phospho-mTOR and c-Fos in the PVN showed a dose-dependent increase of activated phospho-mTOR neurons (17 ± 3 vs. 38 ± 2 neurons/section; p<0.05), while no activated phospho-mTOR neurons were observed in the vehicle group. Triple staining in the PVN showed activation of phospho-mTOR neurons co-localized with oxytocin, corresponding to 9.8 ± 3.6% and 19.5 ± 3.3% of oxytocin neurons respectively. Our observations indicate that peripheral CCK-8S activates phospho-mTOR neurons in the PVN and suggest that phospho-mTOR plays a role in the mediation of CCK-8S's anorexigenic effects. PMID:20933028

  18. Ileal interposition attenuates the satiety responses evoked by cholecystokinin-8 and -33.

    PubMed

    Metcalf, Shannon A; Washington, Martha C; Brown, Thelma A L; Williams, Carol S; Strader, April D; Sayegh, Ayman I

    2011-06-01

    One of the possible mechanisms by which the weight-reducing surgical procedure ileal interposition (II) works is by increasing circulating levels of lower gut peptides that reduce food intake, such as glucagon like peptide-1 and peptide YY. However, since this surgery involves both lower and upper gut segments, we tested the hypothesis that II alters the satiety responses evoked by the classic upper gut peptide cholecystokinin (CCK). To test this hypothesis, we determined meal size (MS), intermeal interval (IMI) and satiety ratio (SR) evoked by CCK-8 and -33 (0, 1, 3, 5nmol/kg, i.p.) in two groups of rats, II and sham-operated. CCK-8 and -33 reduced MS more in the sham group than in the II group; CCK-33 prolonged IMI in the sham group and increased SR in both groups. Reduction of cumulative food intake by CCK-8 in II rats was blocked by devazepide, a CCK(1) receptor antagonist. In addition, as previously reported, we found that II resulted in a slight reduction in body weight compared to sham-operated rats. Based on these observations, we conclude that ileal interposition attenuates the satiety responses of CCK. Therefore, it is unlikely that this peptide plays a significant role in reduction of body weight by this surgery.

  19. Presynaptically mediated effects of cholecystokinin-8 on the excitability of area postrema neurons in rat brain slices.

    PubMed

    Sugeta, Shingo; Hirai, Yoshiyuki; Maezawa, Hitoshi; Inoue, Nobuo; Yamazaki, Yutaka; Funahashi, Makoto

    2015-08-27

    Cholecystokinin (CCK) is a well-known gut hormone that shows anorexigenic effects via action at peripheral and central receptors. CCK is also widely distributed throughout the mammalian brain and appears to function as a neurotransmitter and neuromodulator. The area postrema is one of the circumventricular organs, located on the dorsal surface of the medulla oblongata at the caudal end of the fourth ventricle. Blood vessels in the area postrema lack a blood brain barrier, offering specific central neural elements unique access to circulating substances. Immunohistochemical studies show CCK-A receptors in the area postrema, and we reported CCK-sensitive area postrema neurons. However, the receptive mechanism of CCK in area postrema neurons still remains unexplained. We investigated the responses of area postrema neurons to agonists and antagonists of CCK receptors using whole cell and perforated patch-clamp recordings in rat brain slices. The application of CCK-8 elicited excitatory responses, such as increases in the frequency of mEPSCs (miniature excitatory postsynaptic currents), a shift toward larger amplitude mEPSCs, and increases in the frequency of action potentials. These changes were found mostly in cells not displaying the hyperpolarization-activated cation current (Ih), except for small excitatory changes in a minority of Ih-positive neurons. Tonic inward currents or an inhibitory response to CCK-8 were never seen. Analysis of the amplitude of mEPSCs before and after the administration of CCK-8 indicated the responses mediated via the presynaptic receptors. The effect of CCK-8 was abolished in the presence of CNQX (AMPA type glutamate receptor antagonist). In the presence of lorglumide (a selective CCK-A receptor antagonist), CCK-8-induced excitatory responses were inhibited. No cells responded to the administration of non-sulfated CCK-8 (CCK-8NS, a selective CCK-B receptor agonist). We conclude that CCK-8 exerts its action via presynaptic CCK-A receptors

  20. Studies on the influence of CCK-8 on the ability of obestatin to reduce food intake, gain in body weight and related lipid parameters.

    PubMed

    Nagaraj, ShreeRanga; Manjappara, Uma V

    2016-06-01

    In an effort to mimic in part the redundancy of satiety peptides involved in energy homeostasis, the combined benefits of the well-established satiety peptide CCK8 and an apparently anorectic peptide obestatin were studied in Swiss albino mice. The optimal dose of obestatin that was required to give the most pronounced effect with CCK8 was worked out by varying the concentration of obestatin while keeping CCK8 concentration constant at 200 nmol/KgBW. Mice administered 160 nmol obestatin and 200 nmol CCK8 per kilogram body weight showed the most drastic reduction in food intake. Gain in body weight was arrested after day four during the eight day experiment. These studies reemphasize the beneficial effects imparted by co-administration of obestatin and CCK8 and their potential use towards countering obesity.

  1. Preparation, cytotoxicity, and in vivo antitumor efficacy of 111In-labeled modular nanotransporters

    PubMed Central

    Slastnikova, Tatiana A; Rosenkranz, Andrey A; Morozova, Natalia B; Vorontsova, Maria S; Petriev, Vasiliy M; Lupanova, Tatiana N; Ulasov, Alexey V; Zalutsky, Michael R; Yakubovskaya, Raisa I; Sobolev, Alexander S

    2017-01-01

    Purpose Modular nanotransporters (MNTs) are a polyfunctional platform designed to achieve receptor-specific delivery of short-range therapeutics into the cell nucleus by receptor-mediated endocytosis, endosome escape, and targeted nuclear transport. This study evaluated the potential utility of the MNT platform in tandem with Auger electron emitting 111In for cancer therapy. Methods Three MNTs developed to target either melanocortin receptor-1 (MC1R), folate receptor (FR), or epidermal growth factor receptor (EGFR) that are overexpressed on cancer cells were modified with p-SCN-Bn-NOTA and then labeled with 111In in high specific activity. Cytotoxicity of the 111In-labeled MNTs was evaluated on cancer cell lines bearing the appropriate receptor target (FR: HeLa, SK-OV-3; EGFR: A431, U87MG.wtEGFR; and MC1R: B16-F1). In vivo micro-single-photon emission computed tomography/computed tomography imaging and antitumor efficacy studies were performed with intratumoral injection of MC1R-targeted 111In-labeled MNT in B16-F1 melanoma tumor-bearing mice. Results The three NOTA-MNT conjugates were labeled with a specific activity of 2.7 GBq/mg with nearly 100% yield, allowing use without subsequent purification. The cytotoxicity of 111In delivered by these MNTs was greatly enhanced on receptor-expressing cancer cells compared with 111In nontargeted control. In mice with B16-F1 tumors, prolonged retention of 111In by serial imaging and significant tumor growth delay (82% growth inhibition) were found. Conclusion The specific in vitro cytotoxicity, prolonged tumor retention, and therapeutic efficacy of MC1R-targeted 111In-NOTA–MNT suggest that this Auger electron emitting conjugate warrants further evaluation as a locally delivered radiotherapeutic, such as for ocular melanoma brachytherapy. Moreover, the high cytotoxicity observed with FR- and EGFR-targeted 111In-NOTA–MNT suggests further applications of the MNT delivery strategy should be explored. PMID:28138237

  2. Evaluation of [111In]-Labeled Zinc-Dipicolylamine Tracers for SPECT Imaging of Bacterial Infection

    PubMed Central

    Rice, Douglas R.; Plaunt, Adam J.; Turkyilmaz, Serhan; Smith, Miles; Wang, Yuzhen; Rusckowski, Mary

    2015-01-01

    Purpose This study prepared three structurally related zinc-dipicolylamine (ZnDPA) tracers with [111In] labels and conducted biodistribution and SPECT/CT imaging studies of a mouse leg infection model. Methods Two monovalent tracers, ZnDPA-[111In]DTPA and ZnDPA-[111In]DOTA, each with a single zinc-dipicolylamine targeting unit, and a divalent tracer, Bis(ZnDPA)-[111In]DTPA,with two zinc-dipicolylamine units were prepared. Organ biodistribution and SPECT/CT imaging studies were performed on living mice with a leg infection created by injection of clinically relevant Gram positive Streptococcus pyogenes. Fluorescent and luminescent Eu3+-labeled versions of these tracers were also prepared and used to measure relative affinity for the exterior membrane surface of bacterial cells and mimics of healthy mammalian cells. Results All three 111In-labeled radiotracers were prepared with radiopurity > 90%. The biodistribution studies showed that the two monovalent tracers were cleared from the body through the liver and kidney, with retained % injected dose for all organs of < 8 % at 20 hours and infected leg T/NT ratio of ≤ 3.0. Clearance of the divalent tracer from the bloodstream was slower and primarily through the liver, with a retained % injected dose for all organs < 37% at 20 hours and T/NT ratio rising to 6.2 after 20 hours. The SPECT/CT imaging indicated the same large difference in tracer pharmacokinetics and higher accumulation of the divalent tracer at the site of infection. Conclusions All three [111In]-ZnDPA tracers selectively targeted the site of a clinically relevant mouse infection model that could not be discerned by visual external inspection of the living animal. The highest target selectivity, observed with a divalent tracer equipped with two zinc-dipicolylamine targeting units, compares quite favorably with the imaging selectivities previously reported for other nuclear tracers that target bacterial cell surfaces. The tracer pharmacokinetics depended

  3. Relative distribution of gastrin-, CCK-8-, NPY- and CGRP-immunoreactive cells in the digestive tract of dorado (Salminus brasiliensis).

    PubMed

    Pereira, R T; Costa, L S; Oliveira, I R C; Araújo, J C; Aerts, M; Vigliano, F A; Rosa, P V

    2015-04-01

    The endocrine cells (ECs) of the gastrointestinal mucosa form the largest endocrine system in the body, not only in terms of cell numbers but also in terms of the different produced substances. Data describing the association between the relative distributions of the peptide-specific ECs in relation to feeding habits can be useful tools that enable the creation of a general expected pattern of EC distribution. We aimed to investigate the distribution of ECs immunoreactive for the peptides gastrin (GAS), cholecystokinin (CCK-8), neuropeptide Y (NPY), and calcitonin gene-related peptide (CGRP) in different segments of the digestive tract of carnivorous fish dorado (Salminus brasiliensis) by using immunohistochemistry procedures. The distribution of endocrine cells immunoreactive for gastrin (GAS), cholecystokinin (CCK-8), neuropeptide Y (NPY), and calcitonin gene-related peptide (CGRP) in digestive tract of dorado S. brasiliensis was examined by immunohistochemistry. The results describe the association between the distribution of the peptide-specific endocrine cells and feeding habits in different carnivorous fish. The largest number of endocrine cells immunoreactive for GAS, CCK-8, and CGRP were found in the pyloric stomach region and the pyloric caeca. However, NPY-immunoreactive endocrine cells were markedly restricted to the midgut. The distribution pattern of endocrine cells identified in S. brasiliensis is similar to that found in other carnivorous fishes.

  4. Detection of acute inflammation with /sup 111/In-labeled nonspecific polyclonal IgG

    SciTech Connect

    Fischman, A.J.; Rubin, R.H.; Khaw, B.A.; Callahan, R.J.; Wilkinson, R.; Keech, F.; Nedelman, M.; Dragotakes, S.; Kramer, P.B.; LaMuraglia, G.M.

    1988-10-01

    The detection of focal sites of inflammation is an integral part of the clinical evaluation of the febrile patient. When anatomically distinct abscesses are present, lesion detection can be accomplished by standard radiographic techniques, particularly in patients with normal anatomy. At the phlegmon stage, however, and in patients who have undergone surgery, these techniques are considerably less effective. While radionuclide methods, such as Gallium-67 (67Ga)-citrate and Indium-111 (111In)-labeled WBCs have been relatively successful for the detection of early inflammation, neither approach is ideal. In the course of studies addressing the use of specific organism-directed antibodies for imaging experimental infections in animals, we observed that nonspecific polyclonal immunoglobulin G (IgG) localized as well as specific antibodies. Preliminary experiments suggested that the Fc portion of IgG is necessary for effective inflammation localization. Since polyclonal IgG in gram quantities has been safely used for therapy in patients with immune deficiency states, we decided to test whether milligram quantities of radiolabeled IgG could image focal sites of inflammation in humans. Thus far, we have studied a series of 84 patients with suspected lesions in the abdomen, pelvis, vascular grafts, lungs, or bones/joints. In 48 of 52 patients with focal lesions detected by surgery, computed tomography (CT), magnetic resonance imaging (MRI), or ultrasound (US), the IgG scan correctly localized the site, while 31 patients without focal inflammation had no abnormal focal localization of the radiopharmaceutical. Four patients had false negative scans and one patient had a false positive scan. For this small series, the overall sensitivity and specificity were 92% and 95%, respectively. In this report, we review our experience with this exciting new agent.

  5. Cholecystokinin-8 activates myenteric neurons in 21- and 35-day old but not 4- and 14-day old rats.

    PubMed

    Washington, Martha C; Murry, Candace R; Raboin, Shannon J; Roberson, Allison E; Mansour, Mahmoud M; Williams, Carol S; Sayegh, Ayman I

    2011-02-01

    Cholecystokinin (CCK) activates the myenteric neurons of adult rats. The goal of this work is to determine the ontogeny of this activation by CCK-8 in the myenteric plexus of the duodenum (2cm immediately following the pyloric sphincter aborally) and compare it with that of the dorsal vagal complex (DVC) - which occurs in 1-day old pups. Despite the existence of both of the CCK receptors, CCK(1) and CCK(2), in 4, 14, 21 and 35 day old rats, CCK-8 (0, 5, 10, 20 and 40μg/kg, i.p.) increased Fos-like immunoreactivity (Fos-LI, a marker for neuronal activation) in the myenteric neurons of 21- and 35-day old rats but in the DVC of all age groups. As such, this belated activation of myenteric neurons by CCK-8 compared to the DVC may reflect a delayed role for these neurons in CCK-related functions.

  6. Cholecystokinin B-type receptors mediate a G-protein-dependent depolarizing action of sulphated cholecystokinin ocatapeptide (CCK-8s) on rodent neonatal spinal ventral horn neurons.

    PubMed

    Oz, Murat; Yang, Keun-Hang; Shippenberg, Toni S; Renaud, Leo P; O'Donovan, Michael J

    2007-09-01

    Reports of cholecystokinin (CCK) binding and expression of CCK receptors in neonatal rodent spinal cord suggest that CCK may influence neuronal excitability. In patch-clamp recordings from 19/21 ventral horn motoneurons in neonatal (PN 5-12 days) rat spinal cord slices, we noted a slowly rising and prolonged membrane depolarization induced by bath-applied sulfated CCK octapeptide (CCK-8s; 1 microM), blockable by the CCK B receptor antagonist L-365,260 (1 microM). Responses to nonsulfated CCK-8 or CCK-4 were significantly weaker. Under voltage clamp (V H -65 mV), 22/24 motoneurons displayed a CCK-8s-induced tetrodotoxin-resistant inward current [peak: -136 +/- 28 pA] with a similar time course, mediated via reduction in a potassium conductance. In 29/31 unidentified neurons, CCK-8s induced a significantly smaller inward current (peak: -42.8 +/- 5.6 pA), and I-V plots revealed either membrane conductance decrease with net inward current reversal at 101.3 +/- 4.4 mV (n = 16), membrane conductance increase with net current reversing at 36.1 +/- 3.8 mV (n = 4), or parallel shift (n = 9). Intracellular GTP-gamma-S significantly prolonged the effect of CCK-8s (n = 6), whereas GDP-beta-S significantly reduced the CCK-8s response (n = 6). Peak inward currents were significantly reduced after 5-min perfusion with N-ethylmaleimide. In isolated neonatal mouse spinal cord preparations, CCK-8s (30-300 nM) increased the amplitude and discharge of spontaneous depolarizations recorded from lumbosacral ventral roots. These observations imply functional postsynaptic G-protein-coupled CCK B receptors are prevalent in neonatal rodent spinal cord.

  7. Multimodality Molecular Imaging of [18F]-Fluorinated Carboplatin Derivative Encapsulated in [111In]-Labeled Liposomes

    NASA Astrophysics Data System (ADS)

    Lamichhane, Narottam

    -(5-fluoro-pentyl)-2-methyl malonic acid as the labeling agent to coordinate with the cisplatin aqua complex. It was then used to treat various cell lines and compared with cisplatin and carboplatin at different concentrations ranging from 0.001 microM to 100 microM for 72 hrs and 96 hrs. IC50 values calculated from cell viability indicated that 19F-FCP is a more potent drug than Carboplatin. Manual radiosynthesis and characterization of [18F]-FCP was performed using [18F]-2-(5-fluoro-pentyl)-2-methyl malonic acid with coordination with cisplatin aqua complex. Automated radiosynthesis of [18F]-FCP was optimized using the manual synthetic procedures and using them as macros for the radiosynthesizer. [18F]-FCP was evaluated in vivo with detailed biodistribution studies and PET imaging in normal and KB 3-1 and KB 8-5 tumor xenograft bearing nude mice. The biodistribution studies and PET imaging of [18F]-FCP showed major uptake in kidneys which attributes to the renal clearance of radiotracer. In vivo plasma and urine stability demonstrated intact [18F]-FCP. [ 111In]-Labeled Liposomes was synthesized and physiochemical properties were assessed with DLS. [111In]-Labeled Liposome was evaluated in vivo with detailed pharmacokinetic studies and SPECT imaging. The biodistribution and ROI analysis from SPECT imaging showed the spleen and liver uptake of [111In]-Labeled Liposome and subsequent clearance of activity with time. [18F]-FCP encapsulated [111In]-Labeled Liposome was developed and physiochemical properties were characterized with DLS. [18F]-FCP encapsulated [111In]-Labeled Liposome was used for in vivo dual tracer PET and SPECT imaging from the same nanoconstruct in KB 3-1 (sensitive) and COLO 205 (resistant) tumor xenograft bearing nude mice. PET imaging of [18F]-FCP in KB 3-1 (sensitive) and COLO 205 (resistant) tumor xenograft bearing nude mice was performed. Naked [18F]-FCP and [18F]-FCP encapsulated [ 111In]-Labeled Liposome showed different pharmacokinetic profiles. PET

  8. Peripheral injected cholecystokinin-8S modulates the concentration of serotonin in nerve fibers of the rat brainstem.

    PubMed

    Engster, Kim-Marie; Frommelt, Lisa; Hofmann, Tobias; Nolte, Sandra; Fischer, Felix; Rose, Matthias; Stengel, Andreas; Kobelt, Peter

    2014-09-01

    Serotonin and cholecystokinin (CCK) play a role in the short-term inhibition of food intake. It is known that peripheral injection of CCK increases c-Fos-immunoreactivity (Fos-IR) in the nucleus of the solitary tract (NTS) in rats, and injection of the serotonin antagonist ondansetron decreases the number of c-Fos-IR cells in the NTS. This supports the idea of serotonin contributing to the effects of CCK. The aim of the present study was to elucidate whether peripherally injected CCK-8S modulates the concentration of serotonin in brain feeding-regulatory nuclei. Ad libitum fed male Sprague-Dawley rats received 5.2 and 8.7 nmol/kg CCK-8S (n=3/group) or 0.15M NaCl (n=3-5/group) injected intraperitoneally (ip). The number of c-Fos-IR neurons, and the fluorescence intensity of serotonin in nerve fibers were assessed in the paraventricular nucleus (PVN), arcuate nucleus (ARC), NTS and dorsal motor nucleus of the vagus (DMV). CCK-8S increased the number of c-Fos-ir neurons in the NTS (mean±SEM: 72±4, and 112±5 neurons/section, respectively) compared to vehicle-treated rats (7±2 neurons/section, P<0.05), but did not modulate c-Fos expression in the DMV or ARC. Additionally, CCK-8S dose-dependently increased the number of c-Fos-positive neurons in the PVN (218±15 and 128±14, respectively vs. 19±5, P<0.05). In the NTS and DMV we observed a decrease of serotonin-immunoreactivity 90 min after injection of CCK-8S (46±2 and 49±8 pixel/section, respectively) compared to vehicle (81±8 pixel/section, P<0.05). No changes of serotonin-immunoreactivity were observed in the PVN and ARC. Our results suggest that serotonin is involved in the mediation of CCK-8's effects in the brainstem.

  9. Administration of cholecystokinin sulphated octapeptide (CCK-8S) induces changes on rat amino acid tissue levels and on a behavioral test for anxiety.

    PubMed

    Acosta, G B

    1998-10-01

    1. The effect of the intraperitoneal administration of cholecystokinin sulphated octapeptide (CCK-8S) (10 nmol/kg i.p.) on endogenous levels of several amino acids in five areas of the rat brain was analyzed. The olfactory bulb, hypothalamus, hippocampus, cerebral frontal cortex, and corpus striatum were evaluated. In addition, the effects of CCK-8S and PD 135,158 (1 mg/kg), a selective CCK(B) antagonist, on the performance of rats submitted to a dark/light transition test were also studied. 2. Upon administration of CCK-8S, the concentration of glutamate was reduced (27%) in the olfactory bulb. The same was observed when the levels of glycine (31%) or alanine (43%) were determined. No significant effects were produced by CCK-8S on cortical and hypothalamic levels. In the hippocampus, the concentration of both glutamate (27%) and taurine (29%) were reduced, whereas the levels of GABA in the striatum (29%) were increased. 3. After a single injection of CCK-8S, the time spent by the rats in the illuminated site of the dark/light transition test box, was not changed. On the contrary, the administration of PD 135,158 increased the time spent in the lighted compartment. 4. These results show that systemic administration of CCK-8S produced regional specific changes in brain amino acids, without producing any significant behavioral modification in the rat exposed to a dark/light box. In contrast, the selective CCKB receptor antagonist, PD 135,158, induces anxiolytic-like action in an animal model of anxiety.

  10. Effects of peripherally administered cholecystokinin-8 and secretin on feeding/drinking and oxytocin-mRFP1 fluorescence in transgenic rats.

    PubMed

    Motojima, Yasuhito; Kawasaki, Makoto; Matsuura, Takanori; Saito, Reiko; Yoshimura, Mitsuhiro; Hashimoto, Hirofumi; Ueno, Hiromichi; Maruyama, Takashi; Suzuki, Hitoshi; Ohnishi, Hideo; Sakai, Akinori; Ueta, Yoichi

    2016-08-01

    Peripheral administration of cholecystokinin (CCK)-8 or secretin activates oxytocin (OXT)-secreting neurons in the hypothalamus. Although OXT is involved in the regulation of feeding behavior, detailed mechanism remains unclear. In the present study, we examined the central OXTergic pathways after intraperitoneally (i.p.) administration of CCK-8 and secretin using male OXT-monomeric red fluorescent protein 1 (mRFP1) transgenic rats and male Wistar rats. I.p. administration of CCK-8 (50μg/kg) and secretin (100μg/kg) decreased food intake in these rats. While i.p. administration of CCK-8 decreased water intake, i.p. administration of secretin increased water intake. Immunohistochemical study revealed that Fos-Like-Immunoreactive cells were observed abundantly in the brainstem and in the OXT neurons in the dorsal division of the parvocellular paraventricular nucleus (dpPVN). We could observe marked increase of mRFP1 fluorescence, as an indicator for OXT, in the dpPVN and mRFP1-positive granules in axon terminals of the dpPVN OXT neurons in the nucleus tractus solitarius (NTS) after i.p. administration of CCK-8 and secretin. These results provide us the evidence that, at least in part, i.p. administration of CCK-8 or secretin might be involved in the regulation of feeding/drinking via a OXTergic pathway from the dpPVN to the NTS.

  11. Anxiogenic-like action of caerulein, a CCK-8 receptor agonist, in the mouse: influence of acute and subchronic diazepam treatment.

    PubMed

    Harro, J; Põld, M; Vasar, E

    1990-01-01

    Effects of caerulein, a cholecystokinin octapeptide (CCK-8) receptor agonist, on exploratory activity of mice were investigated. Exploratory and locomotor activity of animals were measured using elevated plus-maze and open field tests. The systemic administration of caerulein at non-sedative doses (100 ng/kg-1 micrograms/kg i.p.) resulted in a significant decrease in the exploratory activity of mice. This effect was completely blocked by proglumide, a CCK-8 receptor. Acute treatment with low doses (0.1-0.75 mg/kg i.p.) of diazepam did not attenuate the anxiogenic-like effect of caerulein, but at more high doses of diazepam the coadministration depressed locomotor activity in mice. After subchronic diazepam treatment (2.5 mg/kg once a day, 10 days, i.p.) tolerance was developed toward the sedative effect of diazepam, and 72 h after withdrawal of the drug the animals showed increased anxiety in the plus-maze test. 30 min after the last injection procedure the anxiogenic-like effect of caerulein (500 ng/kg i.p.) on exploration was absent in both diazepam or vehicle groups. However, 72 h after the last pretreatment injection caerulein (500 ng/kg i.p.) reduced significantly the exploratory activity in control group, whereas it was inactive after diazepam withdrawal. The results obtained in this study support the hypothesis that endogenous CCK-8 an CCK-8 receptors are involved in the neurochemistry of anxiety and the anxiolytic action of benzodiazepine tranquillizers.

  12. The effect of ibuprofen on accumulation of /sup 111/In-labeled platelets and leukocytes in experimental myocardial infarction

    SciTech Connect

    Romson, J.L.; Hook, B.G.; Rigot, V.H.; Schork, M.A.; Swanson, D.P.; Lucchesi, B.R.

    1982-11-01

    To assess the ability of ibuprofen to influence the extent of platelet aggregation and leukocyte infiltration during acute myocardial infarction, autologous indium-111 (/sup 111/In)-labeled platelets or leukocytes were injected before 60 minutes of left circumflex coronary artery (LCx) occlusion, followed by 24 hours of reperfusion in the canine heart. Myocardial infarct size, as a percent of the area at risk, was reduced in the ibuprofen-treated group (12.5 mg/kg i.v. every 4 hours beginning 30 minutes before LCx occlusion) by 40%, from 48 +/- 4% in control animals to 29 +/- 4% in ibuprofen-treated dogs (p . 0.005). Quantification of the platelet-associated /sup 111/In radioactivity in irreversibly injured myocardium indicated that ibuprofen did not alter the accumulation of platelets in infarcted myocardium. In contrast, leukocyte accumulation in infarcted tissue was reduced significantly. In tissue samples with 0.41-0.60 gram infarct, the infarcted/normal ratio of leukocyte radioactivity was 12 +/- 2 in control dogs and 4 +/- 1 in ibuprofen-treated dogs, which represents a 67% reduction in leukocyte accumulation in ibuprofen-treated compared with control dogs. Similar reductions were found in other gram-infarct-weight categories. Although both platelets and leukocytes accumulate in infarcted canine myocardium, ibuprofen may exert its beneficial effect on ischemic myocardium by suppressing the inflammatory response associated with myocardial ischemia and infarction.

  13. Synthesis and opioid receptor binding of indium (III) and [(111)In]-labeled macrocyclic conjugates of diprenorphine: novel ligands designed for imaging studies of peripheral opioid receptors.

    PubMed

    Srivastava, Shefali; Fergason-Cantrell, Emily A; Nahas, Roger I; Lever, John R

    2016-10-06

    Radiolabeled diprenorphine (DPN) and analogs are widely used ligands for non-invasive brain imaging of opioid receptors. To develop complementary radioligands optimized for studies of the peripheral opioid receptors, we prepared a pair of hydrophilic DPN derivatives, conjugated to the macrocyclic chelator DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid), for complexation with trivalent metals. The non-radioactive indium (III) complexes, tethered to the C6-oxygen position of the DPN scaffold by 6- to 9-atom spacers, displayed high affinities for binding to μ, δ and κ opioid receptors in vitro. Use of the 9-atom linker conferred picomolar affinities equipotent to those of the parent ligand DPN. The [(111)In]-labeled complexes were prepared in good yield (>70%), with high radiochemical purity (~99%) and high specific radioactivity (>4000 mCi/μmol). Their log D7.4 values were -2.21 to -1.66. In comparison, DPN is lipophilic, with a log D7.4 of +2.25. Further study in vivo is warranted to assess the suitability of these [(111)In]-labeled DPN-DOTA conjugates for imaging trials.

  14. Satiety enhancement by selective orexin-1 receptor antagonist SB-334867: influence of test context and profile comparison with CCK-8S.

    PubMed

    Ishii, Y; Blundell, J E; Halford, J C G; Upton, N; Porter, R; Johns, A; Rodgers, R J

    2005-05-07

    Acute systemic treatment with the selective orexin-1 (OX1R) antagonist SB-334867 reduces food intake in rats, an effect associated with an acceleration in behavioural satiety and unrelated to gross behavioural disruption, alterations in palatability, or toxicity. However, as enhanced satiety is behaviourally indexed by an earlier-than-normal transition from eating to resting, and since orexin-A has been implicated in mechanisms of arousal, it remains possible that sedation contributes to the anorectic effect of acute OX1R blockade. Previous work has shown that, when treated with SB-334867 (30 mg/kg, i.p.) 30 min before a 1h test with palatable food, rats begin to show appreciable levels of resting 10-15 min earlier than under control conditions (i.e. around 20 min versus 30-35 min into the session). The present results demonstrate that a 20 min increase in the injection-test interval (i.e. 50 min) had no significant impact on the anorectic, behavioural or weight gain effects of SB-334867 in non-deprived male rats. Most importantly, this altered treatment regimen led to a temporal profile of resting virtually identical to that previously observed with the more conventional 30 min injection-test interval. Although parallel studies indicated that the OX1R antagonist accelerated the onset of resting (and suppressed most active behaviours) even in the absence of food, an equianorectic dose of the natural satiety-related signal cholescystokinin octapeptide (CCK-8S; 5 microg/kg, i.p.) also produced very similar behavioural effects regardless of the presence of food. Together with evidence that SB-334867 preserves the structural integrity of natural feeding behaviour, does not induce nausea/illness or alter taste/palatability and fails to influence EEG measures of arousal/sleep, the present findings are consistent with the view that acute OX1R antagonism selectively enhances satiety. However, unlike the immediate short-circuiting of the satiety sequence induced by CCK-8S

  15. Platelet turnover and kinetics in immune thrombocytopenic purpura: results with autologous 111In-labeled platelets and homologous 51Cr-labeled platelets differ

    SciTech Connect

    Heyns A du, P.; Badenhorst, P.N.; Loetter, M.G.P.; Pieters, H.; Wessels, P.; Kotze, H.F.

    1986-01-01

    Mean platelet survival and turnover were simultaneously determined with autologous 111In-labeled platelets (111In-AP) and homologous 51Cr-labeled platelets (51Cr-HP) in ten patients with chronic immune thrombocytopenic purpura (ITP). In vivo redistribution of the 111In-AP was quantitated with a scintillation camera and computer-assisted image analysis. The patients were divided into two groups: those with splenic platelet sequestration (spleen-liver 111In activity ratio greater than 1.4), and those with diffuse sequestration in the reticuloendothelial system. The latter patients had more severe ITP reflected by pronounced thrombocytopenia, decreased platelet turnover, and prominent early hepatic platelet sequestration. Mean platelet life span estimated with 51Cr-HP was consistently shorter than that of 111In-AP. Platelet turnover determined with 51Cr-HP was thus over-estimated. The difference in results with the two isotope labels was apparently due to greater in vivo elution of 51Cr. Although the limitations of the techniques should be taken into account, these findings indicate that platelet turnover is not always normal or increased in ITP, but is low in severe disease. We suggest that this may be ascribed to damage to megakaryocytes by antiplatelet antibody. The physical characteristics in 111In clearly make this radionuclide superior to 51Cr for the study of platelet kinetics in ITP.

  16. A high-fat diet raises fasting plasma CCK but does not affect upper gut motility, PYY, and ghrelin, or energy intake during CCK-8 infusion in lean men.

    PubMed

    Little, Tanya J; Feltrin, Kate L; Horowitz, Michael; Meyer, James H; Wishart, Judith; Chapman, Ian M; Feinle-Bisset, Christine

    2008-01-01

    There is evidence from studies in animals that the effects of both fat and CCK on gastrointestinal function and energy intake are attenuated by consumption of a high-fat diet. In humans, the effects of exogenous CCK-8 on antropyloroduodenal motility, plasma CCK, peptide YY (PYY), and ghrelin concentrations, appetite, and energy intake are attenuated by a high-fat diet. Ten healthy lean males consumed isocaloric diets (~15,400 kJ per day), containing either 44% (high-fat, HF) or 9% (low-fat, LF) fat, for 21 days in single-blind, randomized, cross-over fashion. Immediately following each diet (i.e., on day 22), subjects received a 45-min intravenous infusion of CCK-8 (2 ng.kg(-1).min(-1)), and effects on antropyloroduodenal motility, plasma CCK, PYY, ghrelin concentrations, hunger, and fullness were determined. Thirty minutes after commencement of the infusion, subjects were offered a buffet-style meal, from which energy intake (in kilojoules) was quantified. Body weight was unaffected by the diets. Fasting CCK (P < 0.05), but not PYY and ghrelin, concentrations were greater following the HF, compared with the LF, diet. Infusion of CCK-8 stimulated pyloric pressures (P < 0.01) and suppressed antral and duodenal pressures (P < 0.05), with no difference between the diets. Energy intake also did not differ between the diets. Short-term consumption of a HF diet increases fasting plasma CCK concentrations but does not affect upper gut motility, PYY and ghrelin, or energy intake during CCK-8 infusion, in a dose of 2 ng.kg(-1).min(-1), in healthy males.

  17. /sup 111/In-labeled platelets: effects of heparin on uptake by venous thrombi and relationship to the activated partial thromboplastin time

    SciTech Connect

    Fedullo, P.F.; Moser, K.M.; Moser, K.S.; Konopka, R.; Hartman, M.T.

    1982-09-01

    The goal of heparin therapy in deep vein thrombosis is to prevent thrombus extension. The relationship between thrombus extension and the results of coagulation tests used to monitor heparin therapy is unclear. To explore this relationship, we studied the effect of several heparin regimens on the accretion of /sup 111/In-labeled platelets on fresh venous thrombi, as detected by gamma imaging, and monitored the activated partial thromboplastin time (APTT). Six dogs were treated with a 300-U/kg bolus of heparin followed by a 90-U/kg/hour heparin infusion, a dose of heparin sufficient to increase the APTT to levels greater than eight times baseline (APTT ratio); platelet accretion (thrombus imaging) occurred only after the heparin effect was reversed with protamine sulfate. Nineteen dogs were treated with a 150-U/kg bolus of heparin followed by a 4-hour, 45-U/kg/hour heparin infusion; a thrombus was demonstrated only after protamine injection in 12 (mean APTT ratio 1.3 +/- 0.19) and before protamine injection in seven. In thirteen of these 19 dogs, 30 minutes separated the platelet injection from heparin therapy, while in six this duration was less than 30 minutes. In four of these six dogs, thrombi were demonstrated before protamine therapy and at APTT ratios greater than 3.0. Finally, 10 dogs were treated with a 100-U/kg bolus followed by a 3-hour, 50-U/kg/hour heparin infusion, after which the APTT was allowed to return to baseline values spontaneously. In all 10 dogs, a thrombus was demonstrated only after cessation of the heparin infusion, and at a mean APTT ratio of 1.4 +/- 0.15 times baseline. These results suggest that, except with very early platelet injection, platelet accretion by thrombi is consistently inhibited by heparin at APTT ratios greater than 2.5. Platelet accretion by venous thrombi occurs within narrow limits of heparin effect as reflected by the APTT.

  18. Optimization of IGF-1R SPECT/CT imaging using 111In-labeled F(ab')2 and Fab fragments of the monoclonal antibody R1507.

    PubMed

    Heskamp, Sandra; van Laarhoven, Hanneke W M; Molkenboer-Kuenen, Janneke D M; Bouwman, Wilbert H; van der Graaf, Winette T A; Oyen, Wim J G; Boerman, Otto C

    2012-08-06

    The insulin-like growth factor 1 receptor (IGF-1R) is a potential new target for the treatment of breast cancer. Patients with breast cancer lesions that express IGF-1R may benefit from treatment with anti-IGF-1R antibodies. IGF-1R expression can be visualized using radiolabeled R1507, a monoclonal antibody directed against IGF-1R. However, antibodies clear slowly from the circulation, resulting in low tumor-to-background ratios early after injection. Therefore, we aimed to accelerate targeting of IGF-1R using radiolabeled R1507 F(ab')2 and Fab fragments. In vitro, immunoreactivity, binding affinity and internalization of R1507 IgG, F(ab')2 and Fab were determined using the triple negative IGF-1R-expressing breast cancer cell line SUM149. In vivo, pharmacokinetics of (111)In-labeled R1507 IgG, F(ab')2 and Fab were studied in mice bearing subcutaneous SUM149 xenografts. SPECT/CT images were acquired and the biodistribution was measured ex vivo. The in vitro binding characteristics of radiolabeled R1507 IgG and F(ab')2 were comparable, whereas the affinity of Fab fragments was significantly lower (Kd: 0.6 nM, 0.7 nM and 3.0 nM for R1507 IgG, F(ab')2 and Fab, respectively). Biodistribution studies showed that the maximum tumor uptake of (111)In-R1507 IgG, F(ab')2 and Fab was 31.8% ID/g (72 h p.i.), 10.0% ID/g (6 h p.i.), and 1.8% ID/g (1 h p.i.), respectively. However, maximal tumor-to-blood ratios for F(ab')2 (24 h p.i.: 7.5) were more than twice as high as those obtained with R1507 (72 h p.i.: 2.8) and Fab (6 h p.i.: 2.8). Injection of an excess of unlabeled R1507 significantly reduced tumor uptake, suggesting that the uptake of R1507 IgG and F(ab')2 was specific for IGF-1R, while the major fraction of the tumor uptake of Fab was nonspecific. IGF-1R-expressing xenografts were visualized with (111)In-F(ab')2 SPECT/CT as early as 6 h p.i., while with R1507 IgG, the tumor could be visualized after 24 h. No specific targeting was observed with (111)In-Fab. (111)In

  19. Influence of macrocyclic chelators on the targeting properties of (68)Ga-labeled synthetic affibody molecules: comparison with (111)In-labeled counterparts.

    PubMed

    Strand, Joanna; Honarvar, Hadis; Perols, Anna; Orlova, Anna; Selvaraju, Ram Kumar; Karlström, Amelie Eriksson; Tolmachev, Vladimir

    2013-01-01

    Affibody molecules are a class of small (7 kDa) non-immunoglobulin scaffold-based affinity proteins, which have demonstrated substantial potential as probes for radionuclide molecular imaging. The use of positron emission tomography (PET) would further increase the resolution and quantification accuracy of Affibody-based imaging. The rapid in vivo kinetics of Affibody molecules permit the use of the generator-produced radionuclide (68)Ga (T1/2=67.6 min). Earlier studies have demonstrated that the chemical nature of chelators has a substantial influence on the biodistribution properties of Affibody molecules. To determine an optimal labeling approach, the macrocyclic chelators 1,4,7,10-tetraazacylododecane-1,4,7,10-tetraacetic acid (DOTA), 1,4,7-triazacyclononane-N,N,N-triacetic acid (NOTA) and 1-(1,3-carboxypropyl)-1,4,7- triazacyclononane-4,7-diacetic acid (NODAGA) were conjugated to the N-terminus of the synthetic Affibody molecule ZHER2:S1 targeting HER2. Affibody molecules were labeled with (68)Ga, and their binding specificity and cellular processing were evaluated. The biodistribution of (68)Ga-DOTA-ZHER2:S1, (68)Ga-NOTA-ZHER2:S1 and (68)Ga-NODAGA-ZHER2:S1, as well as that of their (111)In-labeled counterparts, was evaluated in BALB/C nu/nu mice bearing HER2-expressing SKOV3 xenografts. The tumor uptake for (68)Ga-DOTA-ZHER2:S1 (17.9 ± 0.7%IA/g) was significantly higher than for both (68)Ga-NODAGA-ZHER2:S1 (16.13 ± 0.67%IA/g) and (68)Ga-NOTA-ZHER2:S1 (13 ± 3%IA/g) at 2 h after injection. (68)Ga-NODAGA-ZHER2:S1 had the highest tumor-to-blood ratio (60 ± 10) in comparison with both (68)Ga-DOTA-ZHER2:S1 (28 ± 4) and (68)Ga-NOTA-ZHER2:S1 (42 ± 11). The tumor-to-liver ratio was also higher for (68)Ga-NODAGA-ZHER2:S1 (7 ± 2) than the DOTA and NOTA conjugates (5.5 ± 0.6 vs.3.3 ± 0.6). The influence of chelator on the biodistribution and targeting properties was less pronounced for (68)Ga than for (111)In. The results of this study demonstrate that

  20. Fluorescent visualisation of the hypothalamic oxytocin neurones activated by cholecystokinin-8 in rats expressing c-fos-enhanced green fluorescent protein and oxytocin-monomeric red fluorescent protein 1 fusion transgenes.

    PubMed

    Katoh, A; Shoguchi, K; Matsuoka, H; Yoshimura, M; Ohkubo, J-I; Matsuura, T; Maruyama, T; Ishikura, T; Aritomi, T; Fujihara, H; Hashimoto, H; Suzuki, H; Murphy, D; Ueta, Y

    2014-05-01

    The up-regulation of c-fos gene expression is widely used as a marker of neuronal activation elicited by various stimuli. Anatomically precise observation of c-fos gene products can be achieved at the RNA level by in situ hybridisation or at the protein level by immunocytochemistry. Both of these methods are time and labour intensive. We have developed a novel transgenic rat system that enables the trivial visualisation of c-fos expression using an enhanced green fluorescent protein (eGFP) tag. These rats express a transgene consisting of c-fos gene regulatory sequences that drive the expression of a c-fos-eGFP fusion protein. In c-fos-eGFP transgenic rats, robust nuclear eGFP fluorescence was observed in osmosensitive brain regions 90 min after i.p. administration of hypertonic saline. Nuclear eGFP fluorescence was also observed in the supraoptic nucleus (SON) and paraventricular nucleus (PVN) 90 min after i.p. administration of cholecystokinin (CCK)-8, which selectively activates oxytocin (OXT)-secreting neurones in the hypothalamus. In double transgenic rats that express c-fos-eGFP and an OXT-monomeric red fluorescent protein 1 (mRFP1) fusion gene, almost all mRFP1-positive neurones in the SON and PVN expressed nuclear eGFP fluorescence 90 min after i.p. administration of CCK-8. It is possible that not only a plane image, but also three-dimensional reconstruction image may identify cytoplasmic vesicles in an activated neurone at the same time.

  1. Targeting human prostate cancer with 111In-labeled D2B IgG, F(ab')2 and Fab fragments in nude mice with PSMA-expressing xenografts.

    PubMed

    Lütje, Susanne; van Rij, Catharina M; Franssen, Gerben M; Fracasso, Giulio; Helfrich, Wijnand; Eek, Annemarie; Oyen, Wim J; Colombatti, Marco; Boerman, Otto C

    2015-01-01

    D2B is a new monoclonal antibody directed against an extracellular domain of prostate-specific membrane antigen (PSMA), which is overexpressed in prostate cancer. The potential of D2B IgG, and F(ab')2 and Fab fragments of this antibody for targeting prostate cancer was determined in mice bearing subcutaneous prostate cancer xenografts. The optimal time point for imaging was determined in biodistribution and microSPECT imaging studies with (111)In-D2B IgG, (111)In-capromab pendetide, (111)In-D2B F(ab')2 and (111)In-D2B Fab fragments in mice with PSMA-expressing LNCaP and PSMA-negative PC3 tumors at several time points after injection. All (111)In-labeled antibody formats specifically accumulated in the LNCaP tumors, with highest uptake of (111)In-D2B IgG and (111)In-capromab pendetide at 168 h p.i. (94.8 ± 19.2% injected dose per gram (ID/g) and 16.7 ± 2.2% ID/g, respectively), whereas uptake of (111)In-D2B F(ab')2 and (111)In-D2B Fab fragments peaked at 24 h p.i. (12.1 ± 3.0% ID/g and 15.1 ± 2.9% ID/g, respectively). Maximum LNCaP tumor-to-blood ratios were 13.0 ± 2.3 (168 h p.i.), 6.2 ± 0.7 (24 h p.i.), 23.0 ± 4.0 (24 h p.i.) and 4.5 ± 0.6 (168 h p.i.) for (111)In-D2B IgG, (111)In-F(ab')2, (111)In-Fab and (111)In-capromab pendetide, respectively. LNCaP tumors were clearly visualized with microSPECT with all antibody formats. This study demonstrates the feasibility of D2B IgG, F(ab')2 and Fab fragments for targeting PSMA-expressing prostate cancer xenografts.

  2. Utility of 11C-methionine and 11C-donepezil for imaging of Staphylococcus aureus induced osteomyelitis in a juvenile porcine model: comparison to autologous 111In-labelled leukocytes, 99mTc-DPD, and 18F-FDG

    PubMed Central

    Afzelius, Pia; Alstrup, Aage KO; Schønheyder, Henrik C; Borghammer, Per; Jensen, Svend B; Bender, Dirk; Nielsen, Ole L

    2016-01-01

    The aim of this study was to compare 11C-methionine and 11C-donepezil positron emission tomography (PET) with 111In-labeled leukocyte and 99mTc-DPD (Tc-99m 3,3-diphosphono-1,2-propanedicarboxylic acid) single-photon emission computed tomography (SPECT), and 18F-fluorodeoxyglucose (18F-FDG) PET to improve detection of osteomyelitis. The tracers’ diagnostic utility where tested in a juvenile porcine hematogenously induced osteomyelitis model comparable to osteomyelitis in children. Five 8-9 weeks old female domestic pigs were scanned seven days after intra-arterial inoculation in the right femoral artery with a porcine strain of Staphylococcus aureus. The sequential scan protocol included Computed Tomography, 11C-methionine and 11C-donepezil PET, 99mTc-DPD and 111In-labelled leukocytes scintigraphy, and 18F-FDG PET. This was followed by necropsy of the pigs and gross pathology, histopathology, and microbial examination. The pigs developed a total of 24 osteomyelitic lesions, 4 lesions characterized as contiguous abscesses and pulmonary abscesses (in two pigs). By comparing the 24 osteomyelitic lesions, 18F-FDG accumulated in 100%, 111In-leukocytes in 79%, 11C-methionine in 79%, 11C-donepezil in 58%, and 99mTc-DPD in none. Overall, 18F-FDG PET was superior to 111In-leukocyte SPECT and 11C-methionine in marking infectious lesions. PMID:28078182

  3. Utility of (11)C-methionine and (11)C-donepezil for imaging of Staphylococcus aureus induced osteomyelitis in a juvenile porcine model: comparison to autologous (111)In-labelled leukocytes, (99m) Tc-DPD, and (18)F-FDG.

    PubMed

    Afzelius, Pia; Alstrup, Aage Ko; Schønheyder, Henrik C; Borghammer, Per; Jensen, Svend B; Bender, Dirk; Nielsen, Ole L

    2016-01-01

    The aim of this study was to compare (11)C-methionine and (11)C-donepezil positron emission tomography (PET) with (111)In-labeled leukocyte and (99m) Tc-DPD (Tc-99m 3,3-diphosphono-1,2-propanedicarboxylic acid) single-photon emission computed tomography (SPECT), and (18)F-fluorodeoxyglucose ((18)F-FDG) PET to improve detection of osteomyelitis. The tracers' diagnostic utility where tested in a juvenile porcine hematogenously induced osteomyelitis model comparable to osteomyelitis in children. Five 8-9 weeks old female domestic pigs were scanned seven days after intra-arterial inoculation in the right femoral artery with a porcine strain of Staphylococcus aureus. The sequential scan protocol included Computed Tomography, (11)C-methionine and (11)C-donepezil PET, (99m) Tc-DPD and (111)In-labelled leukocytes scintigraphy, and (18)F-FDG PET. This was followed by necropsy of the pigs and gross pathology, histopathology, and microbial examination. The pigs developed a total of 24 osteomyelitic lesions, 4 lesions characterized as contiguous abscesses and pulmonary abscesses (in two pigs). By comparing the 24 osteomyelitic lesions, (18)F-FDG accumulated in 100%, (111)In-leukocytes in 79%, (11)C-methionine in 79%, (11)C-donepezil in 58%, and (99m) Tc-DPD in none. Overall, (18)F-FDG PET was superior to (111)In-leukocyte SPECT and (11)C-methionine in marking infectious lesions.

  4. 111 In-labeled leukocytes in the detection of prosthetic vascular graft infections

    SciTech Connect

    Williamson, M.R.; Boyd, C.M.; Read, R.C.; Thompson, B.W.; Barnes, R.W.; Shah, H.R.; Balachandran, S.; Ferris, E.J.

    1986-07-01

    Making a clinical diagnosis of infection in prosthetic vascular grafts is difficult but when undiagnosed, this condition has a high mortality rate. Using Indium-111-labeled white-blood cells, 30 scans were performed in 21 patients suspected of having a prosthetic graft infection. The diagnosis of infected graft was confirmed by surgery in all cases, and lack of infection was established by resolution of symptoms with conservative therapy. Twenty-four hour scans of autologous Indium-111 leukocytes were obtained, and correlative CT studies were done in 11 cases. There were 13 infected grafts at surgery (purulent material present), and scans were positive in all (100% sensitivity); of 17 scans, there were 15 true negatives and two false positives (88% specificity). Using the criteria of gas or fluid around the graft, the sensitivity of CT was only 37% in a small subset of these patients. One-half of the cases in which infection was suspected clinically had no infection and had negative scans. Various types of grafts and graft materials were used, and there was no correlation with presence or absence of infection on the basis of the type of graft. Extragraft infection sites were found in five patients. In conclusion, use of Indium-111 leukocytes has been found to be an accurate and valuable diagnostic method for evaluation of suspected prosthetic vascular graft infection, and to have higher diagnostic accuracy than CT.

  5. Size dependent biodistribution and SPECT imaging of (111)In-labeled polymersomes.

    PubMed

    Brinkhuis, René P; Stojanov, Katica; Laverman, Peter; Eilander, Jos; Zuhorn, Inge S; Rutjes, Floris P J T; van Hest, Jan C M

    2012-05-16

    Polymersomes, self-assembled from the block copolymer polybutadiene-block-poly(ethylene glycol), were prepared with well-defined diameters between 90 and 250 nm. The presence of ~1% of diethylene triamine penta acetic acid on the polymersome periphery allowed to chelate radioactive (111)In onto the surface and determine the biodistribution in mice as a function of both the polymersome size and poly(ethylene glycol) corona thickness (i.e., PEG molecular weight). Doubling the PEG molecular weight from 1 kg/mol to 2 kg/mol did not change the blood circulation half-life significantly. However, the size of the different polymersome samples did have a drastic effect on the blood circulation times. It was found that polymersomes of 120 nm and larger become mostly cleared from the blood within 4 h, presumably due to recognition by the reticuloendothelial system. In contrast, smaller polymersomes of around 90 nm circulated much longer. After 24 h more than 30% of the injected dose was still present in the blood pool. This sharp transition in blood circulation kinetics due to size is much more abrupt than observed for liposomes and was additionally visualized by SPECT/CT imaging. These findings should be considered in the formulation and design of polymersomes for biomedical applications. Size, much more than for liposomes, will influence the pharmacokinetics, and therefore, long circulating preparations should be well below 100 nm.

  6. Imaging of carbonic anhydrase IX with an 111In-labeled dual-motif inhibitor

    PubMed Central

    Rowe, Steven P.; Banerjee, Sangeeta Ray; Gorin, Michael A.; Brummet, Mary; Lee, Hye Soo; Koo, Soo Min; Sysa-Shah, Polina; Mease, Ronnie C.; Nimmagadda, Sridhar; Allaf, Mohamad E.; Pomper, Martin G.

    2015-01-01

    We developed a new scaffold for radionuclide-based imaging and therapy of clear cell renal cell carcinoma (ccRCC) targeting carbonic anhydrase IX (CAIX). Compound XYIMSR-01, a DOTA-conjugated, bivalent, low-molecular-weight ligand, has two moieties that target two separate sites on CAIX, imparting high affinity. We synthesized [111In]XYIMSR-01 in 73.8–75.8% (n = 3) yield with specific radioactivities ranging from 118 – 1,021 GBq/μmol (3,200–27,600 Ci/mmol). Single photon emission computed tomography of [111In]XYIMSR-01 in immunocompromised mice bearing CAIX-expressing SK-RC-52 tumors revealed radiotracer uptake in tumor as early as 1 h post-injection. Biodistribution studies demonstrated 26% injected dose per gram of radioactivity within tumor at 1 h. Tumor-to-blood, muscle and kidney ratios were 178.1 ± 145.4, 68.4 ± 29.0 and 1.7 ± 1.2, respectively, at 24 h post-injection. Retention of radioactivity was exclusively observed in tumors by 48 h, the latest time point evaluated. The dual targeting strategy to engage CAIX enabled specific detection of ccRCC in this xenograft model, with pharmacokinetics surpassing those of previously described radionuclide-based probes against CAIX. PMID:26418876

  7. Radioimmunodetection of cutaneous T-cell lymphoma with 111In-labeled T101 monoclonal antibody

    SciTech Connect

    Carrasquillo, J.A.; Bunn, P.A. Jr.; Keenan, A.M.; Reynolds, J.C.; Schroff, R.W.; Foon, K.A.; Su, M.H.; Gazdar, A.F.; Mulshine, J.L.; Oldham, R.K.

    1986-09-11

    T101 monoclonal antibody recognizes a pan-T-cell antigen present on normal T cells and also found in high concentrations in cutaneous T-cell lymphoma. We used this antibody, radiolabeled with 111In, in gamma-camera imaging to detect sites of metastatic cutaneous T-cell lymphoma in 11 patients with advanced disease. In all patients, (/sup 111/In)T101 concentrated in pathologically or clinically detected nodes, including those in several previously unsuspected nodal regions. Concentrations (per gram of tissue) ranged from 0.01 to 0.03 percent of the injected dose and were consistently 10 to 100 times higher than previously reported on radioimmunodetection. Focal uptake was seen in skin tumors and heavily infiltrated erythroderma but not in skin plaques. The specificity of tumor targeting was documented by control studies with (/sup 111/In)chloride or (/sup 111/In)9.2.27 (anti-melanoma) monoclonal antibody. Increasing the T101 dose (1 to 50 mg) altered distribution in nontumor tissues. These studies suggest that imaging with (/sup 111/In)T101 may be of value in identifying sites of cutaneous T-cell lymphoma. In contrast to the targeting of solid tumors, the mechanism of localization appears to be related to binding to T cells, which can then carry the radioactivity to involved sites.

  8. Quantification of the Sulfated Cholecystokinin CCK8 in Hamster Plasma Using Immunoprecipitation-Liquid Chromatography-Mass Spectrometry/Mass Spectrometry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cholecystokinin (CCK) and the different molecular forms of CCK are well established as biomarkers for satiety. CCK hormone and the different biologically active and inactive molecular forms have been shown to influence food intake associated with satiety and are predominately secreted from the gut....

  9. Autoradiographical detection of cholecystokinin-A receptors in primate brain using sup 125 I-Bolton Hunter CCK-8 and 3H-MK-329

    SciTech Connect

    Hill, D.R.; Shaw, T.M.; Graham, W.; Woodruff, G.N. )

    1990-04-01

    In vitro autoradiography was performed in order to visualize cholecystokinin-A (CCK-A) receptors in sections of Cynomolgus monkey brain. CCK-A receptors were defined as those which displayed high affinity for the selective non-peptide antagonist MK-329 (L-364,718) and were detected in several regions by selective inhibition of 125I-Bolton Hunter CCK using MK-329 or direct labeling with 3H-MK-329. In the caudal medulla, high densities of CCK-A sites were present in the nucleus tractus solitarius, especially the caudal and medial aspects, and also the dorsal motor nucleus of the vagus. CCK-A sites were localized to a number of hypothalamic nuclei such as the supraoptic and paraventricular nuclei, the dorsomedial and infundibular nuclei as well as the neurohypophysis. The mammillary bodies and supramammillary nuclei also contained CCK-A receptor sites. High concentrations of CCK-A receptors were present in the substantia nigra zona compacta and also the ventral tegmental area and may be associated with dopamine cell bodies. Binding of 3H-MK-329 was also detected in parts of the caudate nucleus and ventral putamen. The detection, by autoradiographical means, of CCK-A receptors throughout the Cynomolgus monkey brain contrasts with similar studies performed using rodents and suggests differences in the density and, perhaps, the importance of CCK-A receptors in the primate as opposed to the rodent. The data suggest the possibility that CCK-A receptors may be involved in a number of important brain functions as diverse as the processing of sensory information from the gut, the regulation of hormone secretion, and the activity of dopamine cell activity.

  10. Uptake of 111In-labeled fully human monoclonal antibody TSP-A18 reflects transferrin receptor expression in normal organs and tissues of mice.

    PubMed

    Sugyo, Aya; Tsuji, Atsushi B; Sudo, Hitomi; Nomura, Fumiko; Satoh, Hirokazu; Koizumi, Mitsuru; Kurosawa, Gene; Kurosawa, Yoshikazu; Saga, Tsuneo

    2017-03-01

    Transferrin receptor (TfR) is an attractive molecule for targeted therapy of cancer. Various TfR-targeted therapeutic agents such as anti-TfR antibodies conjugated with anticancer agents have been developed. An antibody that recognizes both human and murine TfR is needed to predict the toxicity of antibody-based agents before clinical trials, there is no such antibody to date. In this study, a new fully human monoclonal antibody TSP-A18 that recognizes both human and murine TfR was developed and the correlation analysis of the radiolabeled antibody uptake and TfR expression in two murine strains was conducted. TSP-A18 was selected using extracellular portions of human and murine TfR from a human antibody library. The cross-reactivity of TSP-A18 with human and murine cells was confirmed by flow cytometry. Cell binding and competitive inhibition assays with [111In]TSP-A18 showed that TSP-A18 bound highly to TfR-expressing MIAPaCa-2 cells with high affinity. Biodistribution studies of [111In]TSP-A18 and [67Ga]citrate (a transferrin-mediated imaging probe) were conducted in C57BL/6J and BALB/c-nu/nu mice. [111In]TSP-A18 was accumulated highly in the spleen and bone containing marrow component of both strains, whereas high [67Ga]citrate uptake was only observed in bone containing marrow component and not in the spleen. Western blotting indicated the spleen showed the strongest TfR expression compared with other organs in both strains. There was significant correlation between [111In]TSP-A18 uptake and TfR protein expression in both strains, whereas there was significant correlation of [67Ga]citrate uptake with TfR expression only in C57BL/6J. These findings suggest that the difference in TfR expression between murine strains should be carefully considered when testing for the toxicity of anti-TfR antibody in mice and the uptake of anti-TfR antibody could reflect tissue TfR expression more accurately compared with that of transferrin-mediated imaging probe such as [67Ga]citrate.

  11. Pancreas-specific aquaporin 12 null mice showed increased susceptibility to caerulein-induced acute pancreatitis.

    PubMed

    Ohta, Eriko; Itoh, Tomohiro; Nemoto, Tomomi; Kumagai, Jiro; Ko, Shigeru B H; Ishibashi, Kenichi; Ohno, Mayuko; Uchida, Keiko; Ohta, Akihito; Sohara, Eisei; Uchida, Shinichi; Sasaki, Sei; Rai, Tatemitsu

    2009-12-01

    Aquaporin 12 (AQP12) is the most recently identified member of the mammalian AQP family and is specifically expressed in pancreatic acinar cells. In vitro expression studies have revealed that AQP12 is localized at intracellular sites. To determine the physiological roles of AQP12 in the pancreas, we generated knockout mice for this gene (AQP12-KO). No obvious differences were observed under normal conditions between wild-type (WT) and AQP12-KO mice in terms of growth, blood chemistry, pancreatic fluid content, or histology. However, when we induced pancreatitis through the administration of a cholecystokinin-8 (CCK-8) analog, the AQP12-KO mice showed more severe pathological damage to this organ than WT mice. Furthermore, when we analyzed exocytosis in the pancreatic acini using a two-photon excitation imaging method, the results revealed larger exocytotic vesicles (vacuoles) in the acini of AQP12-KO mice at a high CCK-8 dose (100 nM). From these results, we conclude that AQP12 may function in the mechanisms that control the proper secretion of pancreatic fluid following rapid and intense stimulation.

  12. Existence of serotonin and neuropeptides-immunoreactive endocrine cells in the small and large intestines of the mole-rats (Spalax leucodon).

    PubMed

    Yaman, M; Bayrakdar, A; Tarakçı, B G

    2012-08-01

    The present study was conducted to clarify the regional distribution and relative frequency of endocrine cells secreting serotonin, substance P (SP), cholecystokinin-8 (CCK-8), vasoactive intestinal polypeptide (VIP) and neurotensin in the small and large intestine of the mole-rats (Spalax leucodon), by specific immunohistochemical methods. In the small and large intestine of mole-rats (Spalax leucodon), serotonin, SP and VIP were identified with various frequencies, but CCK-8 and neurotensin were not observed. Most of the IR cells in the small and large intestine were located in the intestinal crypt and epithelium however, they were more frequency in the intestinal crypt. Serotonin-IR cells were detected throughout the whole intestinal tract, predominantly in the duodenum and colon. SP-IR cells were demonstrated throughout the whole intestinal tract except for the ileum and rectum with highest frequencies in the cecum. VIP-IR cells were found in all parts of the small intestine except for the large intestine. In conclusion, the general distribution patterns and relative frequency of intestinal endocrine cells of the mole-rats (Spalax leucodon) was similar to those of some rodent species. However, some species-dependent unique distributions and frequencies characteristics of endocrine cells were also observed in the present study.

  13. Cholecystokinin and morphine pharmacological intervention during 99mTc-HIDA cholescintigraphy: a rational approach.

    PubMed

    Krishnamurthy, S; Krishnamurthy, G T

    1996-01-01

    Pharmacological intervention with either cholecystokinin-8 (CCK-8) or morphine during 99mTc- hepatoiminodiacetic acid (HIDA) cholescintigraphy is required primarily for the assessment of the diseases affecting the gallbladder, the common bile duct, or the sphincter of Oddi. For imaging, the patient should be prepared by an overnight fast, or with 4 hours of minimum fast. Pre-emptying with CCK-8 is probably undesirable and should either be avoided or one should wait for at least 4 hours after CCK-8 to begin the 99mTc-HIDA study to achieve higher specificity of the test for acute cholecystitis. When he gallbladder is not observed by 60 mins in a clinical setting of acute cholecystitis, a dose of 0.04 mg/kg of morphine is administered intravenously and imaging continued for an additional 30 mins. Nonvisualization of the gallbladder by 90 mins with morphine in an appropriate clinical setting is diagnostic for acute cholecystitis. When the gallbladder is not observed by 60 min but is seen with morphine administered after 60 mins, a positive diagnosis of abnormal gallbladder function can be made. When the gallbladder is observed in a clinical setting of biliary pain or chronic calculous or acalculous cholecystitis, CCK-8 at a dose rate of 3.3 ng/kg/min is infused intravenously for 3 mins (10 ng/kg/3 min) for the measurement of the ejection fraction. An ejection fraction value of less than 35% is indicative of calculous or acalculous chronic cholecystitis. The gallbladder emptying is directly related to the total number of cholecystokinin receptors in the smooth muscle. The ejection fraction can be controlled to any desired level simply by controlling the dose rate or the duration of infusion of CCK-8. Morphine and other opiate metabolites circulate for many hours in blood and act on the sphincter of Oddi and decrease the gallbladder ejection fraction. Careful drug history, especially that of opiates, is very critical in all subjects with a low ejection fraction before

  14. A Monte Carlo approach to small-scale dosimetry of solid tumour microvasculature for nuclear medicine therapies with (223)Ra-, (131)I-, (177)Lu- and (111)In-labelled radiopharmaceuticals.

    PubMed

    Amato, Ernesto; Leotta, Salvatore; Italiano, Antonio; Baldari, Sergio

    2015-07-01

    The small-scale dosimetry of radionuclides in solid-tumours is directly related to the intra-tumoral distribution of the administered radiopharmaceutical, which is affected by its egress from the vasculature and dispersion within the tumour. The aim of the present study was to evaluate the combined dosimetric effects of radiopharmaceutical distribution and range of the emitted radiation in a model of tumour microvasculature. We developed a computational model of solid-tumour microenvironment around a blood capillary vessel, and we simulated the transport of radiation emitted by (223)Ra, (111)In, (131)I and (177)Lu using the GEANT4 Monte Carlo. For each nuclide, several models of radiopharmaceutical dispersion throughout the capillary vessel were considered. Radial dose profiles around the capillary vessel, the Initial Radioactivity (IR) necessary to deposit 100 Gy of dose at the edge of the viable tumour-cell region, the Endothelial Cell Mean Dose (ECMD) and the Tumour Edge Mean Dose (TEMD), i.e. the mean dose imparted at the 250-μm layer of tissue, were computed. The results for beta and Auger emitters demonstrate that the photon dose is about three to four orders of magnitude lower than that deposited by electrons. For (223)Ra, the beta emissions of its progeny deliver a dose about three orders of magnitude lower than that delivered by the alpha emissions. Such results may help to characterize the dose inhomogeneities in solid tumour therapies with radiopharmaceuticals, taking into account the interplay between drug distribution from vasculature and range of ionizing radiations.

  15. Sedative action of cholecystokinin octapeptide on behavioral excitation by thyrotropin releasing hormone and methamphetamine in the rat.

    PubMed

    Katsuura, G; Itoh, S

    1982-01-01

    Intracerebroventricular (i.c.v.) injection of C-terminal octapeptide of cholecystokinin (CCK-8) in rats prolonged pentobarbital- and ethanol-induced sleeping time, but non-sulfated CCD-8 (CCK-8-NS) had no effect and caerulein showed a tendency to prolong the pentobarbital narcosis. On the other hand, i.c.v. injection of thyrotropin releasing hormone (TRH) shortened the sleeping time and the effect of CCK-8 was apparently antagonized by combined administration of TRH. Spontaneous locomotor activity in the late morning and early afternoon was not affected by CCK-8, but it increased following i.c.v. injection of CCK-8-NS. Hyperactivity produced by TRH and methamphetamine was suppressed by i.c.v. injection of CCK-8, while CCK-8-NS showed a tendency to enhance the methamphetamine-induced hyperactivity and caerulein had no effect. These results indicate that CCK-8 has a sedative action and antagonizes the behavioral excitation caused by TRH and methamphetamine, but that the effects of CCK-8-NS and caerulein were rather the opposite of those of CCK-8. In an additional experiment the TRH-induced body shaking response was not affected by combined administration of CCK-8.

  16. Effects of phorbol ester on cholecystokinin octapeptide-evoked exocrine pancreatic secretion in the rat.

    PubMed Central

    Francis, L P; Camello, P J; Singh, J; Salido, G M; Madrid, J A

    1990-01-01

    1. A comparative study was made of the effect of the phorbol ester, 12-O-tetradecanoylphorbol-13-acetate (TPA) on cholecystokinin octapeptide-evoked exocrine pancreatic secretion in the anaesthetized rat and isolated permeabilized pancreatic acinar cells. 2. Cholecystokinin octapeptide (CCK8; 0.10-6.40 nmol (kg body weight)-1) induced dose-dependent increases in pancreatic juice flow, total protein output and amylase release in the anaesthetized rat. 3. Administration of TPA (10(-8) mol (kg body weight)-1) in combination with CCK8 resulted in marked attenuation of the CCK8-evoked secretory response. 4. Simultaneous injection of polymyxin B (10(-8) mol (kg body weight)-1), an inhibitor of protein kinase C, with TPA and CCK8 reversed the inhibitory effect of the phorbol ester on CCK8-induced pancreatic juice flow, total protein output and amylase release. 5. In permeabilized rat pancreatic acini CCK8 (10(-13)-10(-9) M) elicited dose-dependent increases in [3H]leucine-labelled protein secretion (3H-labelled protein release). Combining TPA (10(-8) M) with CCK8 resulted in an inhibition of the CCK8-induced 3H-labelled protein release especially at lower concentrations of CCK8. At higher concentrations of CCK8, TPA was unable to inhibit the CCK8-evoked 3H-labelled protein release. Again, polymyxin B reversed the TPA-induced inhibition of CCK8-evoked 3H-labelled protein output. 6. The results indicate that protein kinase C activation may play an important physiological role in modulating the CCK8-evoked secretory response in rat pancreas in vivo and in vitro. PMID:1712842

  17. Effects of Exogenous Cholecystokinin Octapeptide on Acquisition of Naloxone Precipitated Withdrawal Induced Conditioned Place Aversion in Rats

    PubMed Central

    Ma, Chunling; Meng, Yanxin; Li, Shujin; Ni, Zhiyu; Cong, Bin

    2012-01-01

    Cholecystokinin octapeptide (CCK-8), a gut-brain peptide, regulates a variety of physiological behavioral processes. Previously, we reported that exogenous CCK-8 attenuated morphine-induced conditioned place preference, but the possible effects of CCK-8 on aversively motivated drug seeking remained unclear. To investigate the effects of endogenous and exogenous CCK on negative components of morphine withdrawal, we evaluated the effects of CCK receptor antagonists and CCK-8 on the naloxone-precipitated withdrawal-induced conditioned place aversion (CPA). The results showed that CCK2 receptor antagonist (LY-288,513, 10 µg, i.c.v.), but not CCK1 receptor antagonist (L-364,718, 10 µg, i.c.v.), inhibited the acquisition of CPA when given prior to naloxone (0.3 mg/kg) administration in morphine-dependent rats. Similarly, CCK-8 (0.1–1 µg, i.c.v.) significantly attenuated naloxone-precipitated withdrawal-induced CPA, and this inhibitory function was blocked by co-injection with L-364,718. Microinjection of L-364,718, LY-288,513 or CCK-8 to saline pretreated rats produced neither a conditioned preference nor aversion, and the induction of CPA by CCK-8 itself after morphine pretreatments was not significant. Our study identifies a different role of CCK1 and CCK2 receptors in negative affective components of morphine abstinence and an inhibitory effect of exogenous CCK-8 on naloxone-precipitated withdrawal-induced CPA via CCK1 receptor. PMID:22848639

  18. Cholecystokinin octapeptide exerts its therapeutic effects on collagen-induced arthritis by suppressing both inflammatory and Th17 responses.

    PubMed

    Li, Qiaoxia; Cong, Bin; Shan, Baoen; Zhang, Jingge; Chen, Haiying; Wang, Tao; Ma, Chunling; Qin, Jin; Wen, Di; Yu, Feng

    2011-10-01

    The purpose of this study was to evaluate the potential therapeutic effect of cholecystokinin octapeptide (CCK-8) on collagen-induced arthritis (CIA), an accepted murine experimental disease model with diverse histopathological features similar to human rheumatoid arthritis (RA). CIA was induced in DBA/1J mice by immunization with chicken collagen type II (CII). CCK-8 at different doses was intraperitoneally administered daily for 1 week. Mice treated with CCK-8 at doses of 5 and 10 nmol but not 1 nmol displayed much delayed onset of CIA and significantly lower incidence and decreased severity of arthritis. CCK-8 treatment significantly reduced the production of cytokines (IL-17, IL-23, IL-6 and TNF-α) and chemokines monocyte chemoattractant protein 1 in the joints of arthritic mice or in synovial cell culture supernatant, and increased the levels of IFN-γ and TGF-β. T cells from CCK-8 treated mice proliferated much less, produced low level of IL-17 and high levels of IFN-γ and TGF-β. Moreover, CCK-8 treated mice showed lower levels of CII-specific IgG, particularly that of IgG2a, in sera than those from control mice. These results indicate that CCK-8 is effective in suppressing both inflammatory and Th17 responses in CIA. CCK-8 may represent a new therapeutic modality for rheumatoid arthritis.

  19. Lupus myocarditis: case report

    SciTech Connect

    LaManna, M.M.; Lumia, F.J.; Gordon, C.I.; Sumathisena; Maranhao, V.

    1988-03-01

    Although gallium-67 (/sup 67/Ga) accumulates in both neoplastic and inflammatory tissues, indium-111 (/sup 111/In) labeled leukocytes are seen only in inflammatory cells. Indium-111-labeled leukocytes therefore are a useful agent in the noninvasive differentiation of inflammatory tissue from neoplastic tissue. This case is an interesting example of the use of /sup 111/In-labeled leukocytes to make that differentiation.

  20. Diagnosis of osteomyelitis of the foot in diabetic patients: Value of 111In-leukocyte scintigraphy

    SciTech Connect

    Larcos, G.; Brown, M.L.; Sutton, R.T. )

    1991-09-01

    The noninvasive diagnosis of osteomyelitis of the foot in diabetic patients with currently available radiologic and radionuclide imaging techniques is often difficult. Recently, 111In-labeled leukocyte scintigraphy has been proposed as an attractive alternative. Accordingly, the authors retrospectively reviewed 51 111In-labeled leukocyte scans, 49 technetium-99m bone scans, and 49 plain radiographs obtained in 51 adults with diabetes in whom osteomyelitis of the foot was suspected. The sensitivity and specificity of these techniques were evaluated in all patients, as well as in a subgroup of 11 patients with neuroarthropathy. Results with 111In-labeled leukocyte scans were also examined in subsets of patients with soft-tissue ulcers (n = 35) and those receiving antibiotics during investigation (n = 20). Confirmation or exclusion of osteomyelitis was made surgically in 28 patients and clinically in 23. Fourteen patients had osteomyelitis. Bone scans were most sensitive (93%) but least specific (43%); plain radiographs were most specific (83%) but least sensitive (43%). 111In-labeled leukocyte scans were both sensitive (79%) and specific (78%), and remained useful in patients with neuroarthropathy, soft-tissue ulcers, and antibiotic treatment. Poor spatial resolution contributed to the false-negative and false-positive 111In-labeled leukocyte scans, suggesting that this technique should not be interpreted independent of other tests. 111In-labeled leukocyte scans are a valuable diagnostic tool for the diagnosis of pedal osteomyelitis in diabetic patients.

  1. Cholecystokinin-octapeptide restored morphine-induced hippocampal long-term potentiation impairment in rats.

    PubMed

    Wen, Di; Zang, Guoqing; Sun, DongLei; Yu, Feng; Mei, Dong; Ma, Chunling; Cong, Bin

    2014-01-24

    Cholecystokinin-octapeptide (CCK-8), which is a typical brain-gut peptide, exerts a wide range of biological activities on the central nervous system. We have previously reported that CCK-8 significantly alleviated morphine-induced amnesia and reversed spine density decreases in the CA1 region of the hippocampus in morphine-treated animals. Here, we investigated the effects of CCK-8 on long-term potentiation (LTP) in the lateral perforant path (LPP)-granule cell synapse of rat dentate gyrus (DG) in acute saline or morphine-treated rats. Population spikes (PS), which were evoked by stimulation of the LPP, were recorded in the DG region. Acute morphine (30mg/kg, s.c.) treatment significantly attenuated hippocampal LTP and CCK-8 (1μg, i.c.v.) restored the amplitude of PS that was attenuated by morphine injection. Furthermore, microinjection of CCK-8 (0.1 and 1μg, i.c.v.) also significantly augmented hippocampal LTP in saline-treated (1ml/kg, s.c.) rats. Pre-treatment of the CCK2 receptor antagonist L-365,260 (10μg, i.c.v) reversed the effects of CCK-8, but the CCK1 receptor antagonist L-364,718 (10μg, i.c.v) did not. The present results demonstrate that CCK-8 attenuates the effect of morphine on hippocampal LTP through CCK2 receptors and suggest an ameliorative function of CCK-8 on morphine-induced memory impairment.

  2. CI-988 Inhibits EGFR Transactivation and Proliferation Caused by Addition of CCK/Gastrin to Lung Cancer Cells.

    PubMed

    Moody, Terry W; Nuche-Berenguer, Bernardo; Moreno, Paola; Jensen, Robert T

    2015-07-01

    Cholecystokinin (CCK) receptors are G-protein coupled receptors (GPCR) which are present on lung cancer cells. CCK-8 stimulates the proliferation of lung cancer cells, whereas the CCK2R receptor antagonist CI-988 inhibits proliferation. GPCR for some gastrointestinal hormones/neurotransmitters mediate lung cancer growth by causing epidermal growth factor receptor (EGFR) transactivation. Here, the role of CCK/gastrin and CI-988 on EGFR transactivation and lung cancer proliferation was investigated. Addition of CCK-8 or gastrin-17 (100 nM) to NCI-H727 human lung cancer cells increased EGFR Tyr(1068) phosphorylation after 2 min. The ability of CCK-8 to cause EGFR tyrosine phosphorylation was blocked by CI-988, gefitinib (EGFR tyrosine kinase inhibitor), PP2 (Src inhibitor), GM6001 (matrix metalloprotease inhibitor), and tiron (superoxide scavenger). CCK-8 nonsulfated and gastrin-17 caused EGFR transactivation and bound with high affinity to NCI-H727 cells, suggesting that the CCK2R is present. CI-988 inhibited the ability of CCK-8 to cause ERK phosphorylation and elevate cytosolic Ca(2+). CI-988 or gefitinib inhibited the basal growth of NCI-H727 cells or that stimulated by CCK-8. The results indicate that CCK/gastrin may increase lung cancer proliferation in an EGFR-dependent manner.

  3. Murine eosinophils labeled with indium-111 oxine: localization to delayed hypersensitivity reactions against a schistosomal antigen and to lymphokine in vivo

    SciTech Connect

    Rand, T.H.; Clanton, J.A.; Runge, V.; English, D.; Colley, D.G.

    1983-04-01

    We have evaluated a method for quantitation of eosinophil migration to stimuli in vivo. Upon transfusion into normal syngeneic mice, 111In-labeled eosinophils had an intravascular half-life of 9.5 hr and distributed predominantly into spleen, bone marrow, and liver. In either Schistosoma mansoni-infected mice or recipients of lymphoid cells from infected mice, intradermal (ear pinna) injection of the schistosomal egg antigenic preparation (SEA) elicited time-dependent accumulation of 111In-labeled eosinophils detectable by either gamma scintillation counting of tissue samples or by nuclear medicine external imaging. Intradermal administration of a lymphokine fraction (containing eosinophil stimulation promoter activity) similarly caused accumulation of 111In-labeled eosinophils. Both reactions depended on the concentration of stimulus (SEA or lymphokine). 111In-labeled neutrophils or macrophages or 125I-albumin did not preferentially accumulate at the reactions examined to the extent found with 111In-labeled eosinophils, indicating that localization of label depends on an active process and is due to eosinophils rather than a contaminating cell type. The method was used to estimate how long eosinotactic lymphokine remained at dermal sites: 60% of initial activity was present 12 hr after injection. The model is discussed with regard to the role of lymphokines in hypersensitivity reactions with eosinophil involvement, such as the granulomatous response to S. mansoni eggs.

  4. Osteomyelitis complicating fracture: pitfalls of /sup 111/In leukocyte scintigraphy

    SciTech Connect

    Kim, E.E.; Pjura, G.A.; Lowry, P.A.; Gobuty, A.H.; Traina, J.F.

    1987-05-01

    /sup 111/In-labeled leukocyte imaging has shown greater accuracy and specificity than alternative noninvasive methods in the detection of uncomplicated osteomyelitis. Forty patients with suspected osteomyelitis complicating fractures (with and without surgical intervention) were evaluated with /sup 111/In-labeled leukocytes. All five patients with intense focal uptake, but only one of 13 with no uptake, had active osteomyelitis. However, mild to moderate /sup 111/In leukocyte uptake, observed in 22 cases, indicated the presence of osteomyelitis in only four of these; the other false-positive results were observed in noninfected callus formation, heterotopic bone formation, myositis ossificans, and sickle-cell disease. These results suggest that /sup 111/In-labeled leukocyte imaging is useful for the evaluation of suspected osteomyelitis complicating fracture but must be used in conjunction with clinical and radiographic correlation to avoid false-positive results.

  5. Visualization of a prosthetic vascular graft due to platelet contamination during /sup 111/Indium-labeled leukocyte scintigraphy

    SciTech Connect

    Oates, E.; Ramberg, K.

    1988-09-01

    A prosthetic axillo-femoral bypass graft was visualized during /sup 111/In-labeled leukocyte scintigraphy in a patient referred for possible abdominal abscess. The presence of significant cardiac blood-pool activity raised the possibility that this uptake was due to deposition of contaminating labeled platelets rather than labeled leukocytes. An analysis of a small sample of the patient's blood confirmed that the circulating activity was due to labeled platelets. Increased activity along prosthetic vascular grafts in patients undergoing /sup 111/In-labeled leukocyte scintigraphy may be due to adherent platelet, and not indicative of infection.

  6. Topical cholecystokinin depresses itch-associated scratching behavior in mice.

    PubMed

    Fukamachi, Shoko; Mori, Tomoko; Sakabe, Jun-Ichi; Shiraishi, Noriko; Kuroda, Etsushi; Kobayashi, Miwa; Bito, Toshinori; Kabashima, Kenji; Nakamura, Motonobu; Tokura, Yoshiki

    2011-04-01

    Cholecystokinin (CCK) serves as a gastrointestinal hormone and also functions as a neuropeptide in the central nervous system (CNS). CCK may be a downregulator in the CNS, as represented by its anti-opioid properties. The existence of CCK in the peripheral nervous system has also been reported. We investigated the suppressive effects of various CCKs on peripheral pruritus in mice. The clipped backs of ICR mice were painted with CCK synthetic peptides and injected intradermally with substance P (SP). The frequency of SP-induced scratching was reduced significantly by topical application of sulfated CCK8 (CCK8S) and CCK7 (CCK7S), but not by nonsulfated CCK8, CCK7, or CCK6. Dermal injection of CCK8S also suppressed the scratching frequency, suggesting that dermal cells as well as epidermal keratinocytes (KCs) are the targets of CCKs. As determined using real-time PCR, mRNA for CCK2R, one of the two types of CCK receptors, was expressed highly in mouse fetal skin-derived mast cells (FSMCs) and moderately in ICR mouse KCs. CCK8S decreased in vitro compound 48/80-promoted degranulation of FSMCs with a transient elevation of the intracellular calcium concentration. These findings suggest that CCK may exert an antipruritic effect via mast cells and that topical CCK may be clinically useful for pruritic skin disorders.

  7. Copper ions interfere with the reduction of the water-soluble tetrazolium salt-8.

    PubMed

    Semisch, Annetta; Hartwig, Andrea

    2014-02-17

    Metabolic activity as a measure of cell viability is frequently determined using the water-soluble tetrazolium salt 2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium monosodium salt (WST-8), commercially available as CCK-8 reagent. In this study, CCK-8 was investigated with respect to its suitability for investigating nano- and microscale copper oxide (CuO NP and CuO MP) as well as water-soluble copper chloride (CuCl2). The results were compared to cell number and colony forming ability. Our data demonstrate that the CCK-8 assay overestimates the loss of metabolic activity by CuCl2 and CuO NP, because of interference by copper ions with the reduction of the dye.

  8. Activation of enteric nerve pathways in the guinea-pig duodenum by cholecystokinin octapeptide and pentagastrin.

    PubMed Central

    Ngu, M C

    1985-01-01

    The action and mechanism of action of cholecystokinin octapeptide (CCK-8) and pentagastrin on isolated segments of guinea-pig duodenum were examined using contractility studies and by intracellular recordings made from smooth muscle cells. Both CCK-8 and pentagastrin caused an excitatory contractile response. The threshold concentration ranged from 5 X 10(-11) to 10(-9) M for CCK-8 and 5 X 10(-10) to 10(-8) M for pentagastrin. The excitatory response was abolished by tetrodotoxin (3.1 X 10(-6) M) and atropine (1.5 X 10(-6) M) and inhibited by d-tubocurarine (up to 2.9 X 10(-5) M). In the presence of atropine a proportion of preparations relaxed in response to CCK-8 (nineteen of thirty-one) and pentagastrin (thirteen of seventeen). This response was only seen at high concentrations of the peptides (10(-8)-10(-7) M) and was abolished by tetrodotoxin (3 X 10(-6) M). Intracellular recordings from duodenal smooth muscle revealed multiple excitatory junction potentials (e.j.p.s) in response to CCK-8 and to pentagastrin. These e.j.p.s were identical to those evoked by transmural nerve stimulation and were abolished by atropine (1.5 X 10(-7) M) and by tetrodotoxin (3 X 10(-6) M). Inhibitory junction potentials (i.j.p.s) were not recorded in response to the peptides except on one occasion. It is suggested that CCK-8 and pentagastrin cause an increase in duodenal motility by the selective activation of excitatory pathways in the enteric nervous system. PMID:4032301

  9. Effects of fasting and refeeding on the digestive tract of zebrafish (Danio rerio) fed with Spirulina (Arthrospira platensis), a high protein feed source.

    PubMed

    Lo Cascio, Patrizia; Calabrò, Concetta; Bertuccio, Clara; Paterniti, Irene; Palombieri, Deborah; Calò, Margherita; Albergamo, Ambrogina; Salvo, Andrea; Gabriella Denaro, Maria

    2017-01-03

    In the present work, morphological and molecular effects of short-term feed deprivation and refeeding with Spirulina (Arthrospira platensis) on zebrafish digestive tract were determined. Once elucidated the proximate composition of Spirulina feed, immunohistochemical and western blot analyses of peptide transporter (PepT1) and cholecystokinin (CCK8) were carried out in the gastrointestinal tract of zebrafish, previously morphologically investigated. Two and five fasting days caused not only morphostructural alterations, but also the downregulation of PepT1 and CCK8 proteins. Conversely, the recovery of normal morphological conditions, along with an increased PepT1 and CCK8 expression, were observed after refeeding with Spirulina. The increase of PepT1 expression in zebrafish may be responsible for the enhanced CCK8 secretion, so that both proteins may contribute to an improved digestion process during refeeding. These observations could be supported not only by compensatory mechanisms induced by fasting and refeeding but also by an higher protein quality of Spirulina-based diet.

  10. Distribution of neuroendocrine cells in the small and large intestines of the one-humped camel (Camelus dromedarius).

    PubMed

    Ali, M Al Haj; Nyberg, Fred; Chandranath, S I; Dhanasekaran, S; Tariq, Saeed; Petroianu, G; Hasan, M Y; Adeghate, Ernest A; Adem, A

    2007-10-01

    The distribution and relative frequency of neuroendocrine cells in the small and large intestines of one-humped camel were studied using antisera against 5-hydroxytryptamine (5-HT), cholecystokinin (CCK-8), somatostatin (SOM), peptide tyrosine tyrosine (PYY), gastric inhibitory polypeptide (GIP), neuronal nitric oxide synthase (nNOS), gastrin releasing peptide (GRP), substance P (SP), and neurokinin A (NKA). Among these cell types, CCK-8 immunoreactive (IR) cells were uniformly distributed in the mucosa, while others showed varied distribution in the villi or crypts of the small intestine. Immunoreactive cells like 5HT, CCK-8, and SOM showed peak density in the villi and crypts of the small intestine and in the colonic glands of the large intestine, while cells containing SP were discerned predominately in the crypts. 5-HT, CCK-8 and SOM cells were mainly flask-shaped and of the open-variety, while PYY and SP immunoreactive cells were mainly rounded or basket-shaped and of the closed variety. Basically the distribution pattern of the endocrine cells in the duodenum, jejunum and colon of the one-humped camel is similar to that of other mammals. Finally, the distribution of these bioactive agents may give clues as to how these agents aid in the function of the intestinal tract of this desert animal.

  11. Protein kinase C-mediated inhibition of transmembrane signalling through CCK(A) and CCK(B) receptors.

    PubMed

    Smeets, R L; Fouraux, M A; van Emst-de Vries, S E; De Pont, J J; Willems, P H

    1998-03-01

    1. The rat CCK(A) and CCK(B) receptors were stably expressed in Chinese hamster ovary (CHO-09) cells in order to compare modes of signal transduction and effects of protein kinase C (PKC) thereupon. 2. Spectrofluorophotometry of Fura-2-loaded cells revealed that both receptors retained their pharmacological characteristics following expression in CHO cells. Sulphated cholecystokinin-(26-33)-peptide amide (CCK-8-S) increased the cytosolic Ca2+ concentration ([Ca2+]i) in CCK(A) cells, measured as an increase in Fura-2 fluorescence emission ratio, 1000 fold more potently than its non-sulphated form (CCK-8-NS) (EC50 values of 0.19 nM and 0.18 microM, respectively). By contrast, CCK-8-S and CCK-8-NS were equally potent in CCK(B) cells (EC50 values of 0.86 nM and 1.18 nM, respectively). The CCK(A) receptor agonist JMV-180 increased [Ca2+]i only in CCK(A) cells. Likewise, pentagastrin increased [Ca2+]i only in CCK(B) cells. Finally, CCK-8-S-induced Ca2+ signalling through the CCK(A) receptor was most potently inhibited by the CCK(A) receptor antagonist L364,718, whereas the CCK(B) receptor antagonist L365,260 was more potent in CCK(B) cells. 3. Receptor-mediated activation of adenylyl cyclase was measured in the presence of the inhibitor of cyclic nucleotide phosphodiesterase activity, 3-isobutyl-1-methylxanthine. CCK-8-S and, to a lesser extent, CCK-8-NS, but not JMV-180 or pentagastrin, stimulated the accumulation of cyclicAMP in CCK(A) cells. By contrast, none of these agonists increased cyclicAMP in CCK(B) cells. 4. Short-term (3 min) pretreatment with the PKC activator 12-O-tetradecanoylphorbol 13-acetate (TPA) evoked a rightward shift of the dose-response curve for the Ca2+ mobilizing effect of CCK-8-S in both cell lines. In addition, short-term TPA pretreatment markedly reduced CCK-8-S-induced cyclicAMP accumulation in CCK(A) cells. In both cases, the inhibitory effect of TPA was abolished by the PKC inhibitors, GF-109203X and staurosporine, whereas no inhibition

  12. Intracellular mediators of Na -K pump activity in guinea pig pancreatic acinar cells

    SciTech Connect

    Hootman, S.R.; Ochs, D.L.; Williams, J.A.

    1985-10-01

    The involvement of CaS and cyclic nucleotides in neurohormonal regulation of Na -K -ATPase (Na -K pump) activity in guinea pig pancreatic acinar cells was investigated. Changes in Na+-K+ pump activity elicited by secretagogues were assessed by (3H)ouabain binding and by ouabain-sensitive YWRb uptake. Carbachol (CCh) and cholecystokinin octapeptide (CCK-8) each stimulated both ouabain-sensitive 86Rb+ uptake and equilibrium binding of (TH)ouabain by approximately 60%. Secretin increased both indicators of Na+-K+ pump activity by approximately 40% as did forskolin, 8-bromo- and dibutyryl cAMP, theophylline, and isobutylmethylxanthine. Incubation of acinar cells in CaS -free HEPES-buffered Ringer (HR) with 0.5 mM EGTA reduced the stimulatory effects of CCh and CCK-8 by up to 90% but caused only a small reduction in the effects of secretin, forskolin, and cAMP analogues. In addition, CCh, CCK-8, secretin, and forskolin each stimulated ouabain-insensitive 86Rb+ uptake by acinar cells. The increase elicited by CCh and CCK-8 was greatly reduced in the absence of extracellular CaS , while that caused by the latter two agents was not substantially altered. The effects of secretagogues on free CaS levels in pancreatic acinar cells also were investigated with quin-2, a fluorescent CaS chelator. Basal intracellular CaS concentration ((CaS )i) was 161 nM in resting cells and increased to 713 and 803 nM within 15 s after addition of 100 microM CCh or 10 nM CCK-8, respectively.

  13. Cholecystokinin but not ghrelin stimulates mucosal bicarbonate secretion in rat duodenum: independence of feeding status and cholinergic stimuli.

    PubMed

    Sjöblom, Markus; Lindqvist, Ramin; Bengtsson, Magnus W; Jedstedt, Gunilla; Flemström, Gunnar

    2013-05-10

    Cholecystokinin (CCK) is an important regulator of food digestion but its influence on small intestinal secretion has received little attention. We characterized effects of CCK-8, ghrelin and some related peptides on duodenal HCO3(-) secretion in vivo and demonstrated CCK-induced calcium signaling in acutely isolated enterocytes. A segment of proximal duodenum with intact blood supply was cannulated in situ in anaesthetized rats. Mucosal HCO3(-) secretion was continuously recorded (pH-stat). Peptides were administrated to the duodenum by close intra-arterial infusion. Clusters of duodenal enterocytes were attached to the bottom of a perfusion chamber. The intracellular calcium concentration ([Ca(2+)]i) was examined by dual-wavelength imaging. CCK-8 (3.0, 15 and 60 pmol/kg,h) caused dose-dependent increases (p<0.01) in duodenal alkaline secretion in both overnight fasted and continuously fed animals. The CCK1R-antagonist devazepide but neither the CCK2R-antagonist YMM022 nor the melatonin MT2-selective antagonist luzindole inhibited the rise in secretion. Atropine decreased sensitivity to CCK-8. The appetite-related peptide ghrelin was without effect on the duodenal secretion in fasted as well as fed animals. Superfusion with CCK-8 (1.0-50 nM) induced [Ca(2+)]i signaling in acutely isolated duodenal enterocytes. After an initial peak response, [Ca(2+)]i returned to near basal values within 3-5min. Devazepide but not YMM022 inhibited this [Ca(2+)]i response. Low doses of CCK-8 stimulate duodenal alkaline secretion and induce enterocyte [Ca(2+)]i signaling by an action at CCK1 receptors. The results point to importance of CCK in the rapid postprandial rise in mucosa-protective duodenal secretion.

  14. Effect of peripheral administration of cholecystokinin on food intake in apolipoprotein AIV knockout mice.

    PubMed

    Yoshimichi, Go; Lo, Chunmin C; Tamashiro, Kellie L K; Ma, Liyun; Lee, Dana M; Begg, Denovan P; Liu, Min; Sakai, Randall R; Woods, Stephen C; Yoshimatsu, Hironobu; Tso, Patrick

    2012-06-01

    Apolipoprotein AIV (apo AIV) and cholecystokinin (CCK) are satiation factors secreted by the small intestine in response to lipid meals. Apo AIV and CCK-8 has an additive effect to suppress food intake relative to apo AIV or CCK-8 alone. In this study, we determined whether CCK-8 (1, 3, or 5 μg/kg ip) reduces food intake in fasted apo AIV knockout (KO) mice as effectively as in fasted wild-type (WT) mice. Food intake was monitored by the DietMax food system. Apo AIV KO mice had significantly reduced 30-min food intake following all doses of CCK-8, whereas WT mice had reduced food intake only at doses of 3 μg/kg and above. Post hoc analysis revealed that the reduction of 10-min and 30-min food intake elicited by each dose of CCK-8 was significantly larger in the apo AIV KO mice than in the WT mice. Peripheral CCK 1 receptor (CCK1R) gene expression (mRNA) in the duodenum and gallbladder of the fasted apo AIV KO mice was comparable to that in WT mice. In contrast, CCK1R mRNA in nodose ganglia of the apo AIV KO mice was upregulated relative to WT animals. Similarly, upregulated CCK1R gene expression was found in the brain stem of apo AIV KO mice by in situ hybridization. Although it is possible that the increased satiating potency of CCK in apo AIV KO mice is mediated by upregulation of CCK 1R in the nodose ganglia and nucleus tractus solitarius, additional experiments are required to confirm such a mechanism.

  15. Biomedical research with cyclotron produced radionuclides. Progress report, February 1, 1981-December 31, 1981

    SciTech Connect

    Laughlin, J.S.

    1981-09-01

    Progress is reported in the following areas: evaluation of chemotherapeutic regimens in solid tumors using /sup 13/N-labelled amino acids; organ imaging with /sup 13/N-labelled L-amino acids; imaging with /sup 111/In-labelled-autologous platelets; synthesis and biological studies of /sup 111/In-labelled ammonia and L-amino acids; synthesis and evaluation for pancreatic imaging of /sup 11/C-labelled amino acides; radioisotope monitoring of myocardiol function; synthesis of /sup 11/C-labelled precursor compounds; reduction of radiation exposure through automation and remote control; development of an anhydrous /sup 18/F target; evaluation of radiolabelled 5-fluorouracils for scintigraphy; and methods of data analysis, modeling, and unproving instrumentation for positron-emission tomography. (EDB)

  16. Pharmacokinetics of internally labeled monoclonal antibodies as a gold standard: comparison of biodistribution of /sup 75/Se-, /sup 111/In-, and /sup 125/I-labeled monoclonal antibodies in osteogenic sarcoma xenografts in nude mice

    SciTech Connect

    Koizumi, M.; Endo, K.; Watanabe, Y.; Saga, T.; Sakahara, H.; Konishi, J.; Yamamuro, T.; Toyama, S.

    1989-04-01

    In order to know the true biodistribution of anti-tumor monoclonal antibodies, three monoclonal antibodies (OST6, OST7, and OST15) against human osteosarcoma and control antibody were internally labeled with 75Se by incubating (75Se)methionine and hybridoma cells. 75Se-labeled monoclonal antibodies were evaluated both in vitro and in vivo using the human osteogenic sarcoma cell line KT005, and the results were compared with those of 125I- and 111In-labeled antibodies. 75Se-, 125I- and 111In-labeled monoclonal antibodies had identical binding activities to KT005 cells, and the immunoreactivity was in the decreasing order of OST6, OST7, and OST15. On the contrary, in vivo tumor uptake (% injected dose/g) of 75Se- and 125I-labeled antibodies assessed using nude mice bearing human osteosarcoma KT005 was in the order of OST7, OST6, and OST15. In the case of 111In, the order was OST6, OST7, and OST15. High liver uptake was similarly seen with 75Se- and 111In-labeled antibodies, whereas 125I-labeled antibodies showed the lowest tumor and liver uptake. These data indicate that tumor targeting of antibody conjugates are not always predictable from cell binding studies due to the difference of blood clearance of labeled antibodies. Furthermore, biodistribution of both 111In- and 125I-labeled antibodies are not identical with internally labeled antibody. Admitting that internally labeled antibody is a ''gold standard'' of biodistribution of monoclonal antibody, high liver uptake of 111In-radiolabeled antibodies may be inherent to antibodies. Little, if any, increase in tumor-to-normal tissue ratios of antibody conjugates will be expected compared to those of 111In-labeled antibodies if stably coupled conjugates are administered i.v.

  17. Targeting of indium 111-labeled bivalent hapten to human melanoma mediated by bispecific monoclonal antibody conjugates: Imaging of tumors hosted in nude mice

    SciTech Connect

    Le Doussal, J.M.; Gruaz-Guyon, A.; Martin, M.; Gautherot, E.; Delaage, M.; Barbet, J. )

    1990-06-01

    Antibody conjugates were prepared by coupling F(ab')2 or Fab' fragments of an antibody specific for the human high molecular weight-melanoma associated antigen to Fab' fragments of an antibody specific for indium-diethylenetriaminepentaacetate complexes. Monovalent and bivalent haptens were synthesized by reacting the dipeptide tyrosyl-lysine with diethylenetriaminepentaacetic cyclic anhydride. In vitro, the antibody conjugate mediated binding of the 111In-labeled haptens to melanoma cells. In vivo, it allowed specific localization of the haptens in A375 tumors. The bivalent hapten exhibited much higher efficiency at targeting 111In onto cells, both in vitro and in vivo. Antibody conjugate and hapten doses (2 micrograms and 1 pmol, respectively) and the delay between antibody conjugate and tracer injections (24 h) were adjusted to maximize tumor uptake (4% injected dose/g) and tumor to normal tissue contrast (greater than 3) obtained 3 h after injection of the 111In-labeled bivalent hapten. This two-step technique, when compared to direct targeting of 111In-labeled F(ab')2 fragments, provided lower localization of injected activity into the tumor (x 0.25), but higher tumor/tissue ratios, especially with respect to liver (x 7), spleen (x 8), and kidneys (x 10). In addition, high contrast images were obtained within 3 hours, instead of days. Thus, antibody conjugate-mediated targeting of small bivalent haptens, labeled with short half-life isotopes, is proposed as a general method for improving tumor radioimmunolocalization.

  18. Indium 111-labeled platelet kinetic studies and platelet-associated IgG in hairy cell leukemia

    SciTech Connect

    Panzer, S.; Lechner, K.; Neumann, E.; Meryn, S.; Haubenstock, A.

    1986-07-15

    In order to study the pathogenesis of thrombocytopenia in patients with hairy cell leukemia (HCL), levels of platelet-associated IgG (PAIgG), platelet life span (MLS), and the sequestration site of autologous /sup 111/In-labeled platelets were measured in nine patients with HCL. Splenectomized patients (n = 4) had a higher platelet count (x = 122.5 X 10(9)/l; range, 80-190 X 10(9)/l) as well as higher levels of PAIgG (x = 10.7%; range, 5.8-16.9%), than nonsplenectomized patients (platelets x = 76 X 10(9)/l, range 40-100 X 10(9)/l; PAIgG x = 3.2%, range 2.2-4.2%). A normal recovery of /sup 111/In-labeled platelets was found in splenectomized patients, whereas a very low recovery was observed in the nonsplenectomized group (x = 70.2%, range, 50-82.5%, versus x = 22.4%, range, 15-28.2%). The MLS was borderline normal in all patients. The site of sequestration was the spleen in nonsplenectomized patients. The low recovery of /sup 111/In-labeled platelets in nonsplenectomized patients suggests hypersplenism with pooling as a major cause of thrombocytopenia, in addition to impaired thrombocytopoiesis and possible immune-mediated platelet destruction.

  19. Multiple sources of 1,2-diacylglycerol in isolated rat pancreatic acini stimulated by cholecystokinin. Involvement of phosphatidylinositol bisphosphate and phosphatidylcholine hydrolysis.

    PubMed

    Matozaki, T; Williams, J A

    1989-09-05

    Changes in the cellular content of 1,2-diacylglycerol (DAG) in isolated rat pancreatic acini in response to agonist stimulation were studied using a sensitive mass assay. When acini were stimulated by 10 nM COOH-terminal cholecystokinin-octapeptide (CCK8), the increase in DAG was biphasic, consisting of an early peak at 5 s and a second, larger, gradual increase that was maximal by 15 min. The basal level of DAG in acini was 1.04 nmol/mg of protein, which was increased to 1.24 nmol/mg of protein at 5 s and 2.76 nmol/mg of protein at 30 min. In comparison, the increase in DAG stimulated by 30 pM CCK8, a submaximal concentration for amylase release, was monophasic, increasing without an early peak but sustained to 60 min. Other Ca2+-mobilizing secretagogues such as carbamylcholine and bombesin increased DAG in acini, whereas vasoactive intestinal peptide, which acts to increase cAMP, had no effect. Phorbol ester and Ca2+ ionophore also stimulated DAG production. Analysis of the mass level of inositol 1,4,5-trisphosphate (1,4,5-IP3) showed that the generation of 1,4,5-IP3 stimulated by 10 nM CCK8 peaked at 5 s, a finding consistent with the early peak of DAG. The basal level was 4.7 pmol/mg of protein, which was increased to 144.6 pmol/mg of protein at 5 s by 10 nM CCK8. The levels of 1,4,5-IP3 then returned toward basal in contrast to the gradual and sustained increase of DAG. The dose dependencies of 1,4,5-IP3 and DAG formation at 5 s with respect to CCK8 were almost identical. This suggests that phosphatidylinositol 4,5-bisphosphate hydrolysis is a major source of the early increase in DAG but not of the sustained increase in DAG. Therefore, a possible contribution of phosphatidylcholine hydrolysis to DAG formation was examined utilizing acini prelabeled with [3H]choline. CCK8 (1 nM) maximally increased [3H]choline metabolite release by 133% of control at 30 min. Separation of these metabolites by thin layer chromatography showed that the products of CCK8

  20. Peripheral obestatin has no effect on feeding behavior and brain Fos expression in rodents

    PubMed Central

    Kobelt, Peter; Wisser, Anna-Sophia; Stengel, Andreas; Goebel, Miriam; Bannert, Norbert; Gourcerol, Guillaume; Inhoff, Tobias; Noetzel, Steffen; Wiedenmann, Bertram; Klapp, Burghard F.; Taché, Yvette; Mönnikes, Hubert

    2009-01-01

    Obestatin is produced in the stomach from proghrelin by post-translational cleavage. The initial report claimed anorexigenic effects of obestatin in mice. Contrasting studies indicated no effect of obestatin on food intake (FI). We investigated influences of metabolic state (fed/fasted), environmental factors (dark/light phase) and brain Fos response to intraperitoneal (ip) obestatin in rats, and used the protocol from the original study assessing obestatin effects in mice. FI was determined in male rats injected ip before onset of dark or light phase, with obestatin (1 or 5 μmol/kg), CCK8S (3.5 nmol/kg) or 0.15 M NaCl, after fasting (16 h, n = 8/group) or ad libitum (n = 10-14/group) food intake. Fos expression in hypothalamic and brainstem nuclei was examined in freely fed rats 90 min after obestatin (5 μmol/kg), CCK8S (1.75 nmol/kg) or 0.15 M NaCl (n = 4/group). Additionally, fasted mice were injected ip with obestatin (1 μmol/kg) or urocortin 1 (2 nmol/kg) 15 min before food presentation. No effect on FI was observed after obestatin administration during the light and dark phase under both metabolic conditions while CCK8S reduced FI irrespectively of the conditions. The number of Fos positive neurons was not modified by obestatin while CCK8S increased Fos expression in selective brain nuclei. Obestatin did not influence the refeeding response to a fast in mice, while urocortin was effective. Therefore, peripheral obestatin has no effect on FI under various experimental conditions and did not induce Fos in relevant central neuronal circuitries modulating feeding in rodents. PMID:18342400

  1. Effect of cholecystokinin on experimental neuronal aging

    PubMed Central

    Sun, Xiao-Jiang; Lu, Qin-Chi; Cai, Yan

    2005-01-01

    AIM: To observe the effect of cholecystokinin (CCK) on lipofusin value, neuronal dendrite and spine ultrastructure, and total cellular protein during the process of experimental neuronal aging. METHODS: Experimental neuronal aging study model was established by NBA2 cellular serum-free culture method. By using single intracellular lipofusin value from microspectrophotometry, morphology of neuronal dendrites and spines from the scanner electron microscopy, and total cellular protein as the indexes of experimental neuronal aging, we observed the effect of CCK8 on the process of experimental neuronal aging. RESULTS: Under the condition of serum-free culture, intracellular fluorescence value (%) increased with the extension of culture time (1 d 8.51±3.43; 5 d 10.12±3.03; 10 d 20.54±10.3; 15 d 36.88±10.49; bP<0.01). When CCK was added to serum-free culture medium, intracellular lipofusin value (%) decreased remarkably after consecutive CCK reaction for 10 and 15 d (control 36.88±10.49; 5 d 32.03±10.01; 10 d 14.37±5.55; 15 d 17.31±4.80; bP<0.01). As the time of serum-free culturing was prolonged, the number of neuronal dendrite and spine cells decreased. The later increased in number when CCK8 was added. CCK8 could improve the total cellular protein in the process of experimental neuronal aging. CONCLUSION: CCK8 may prolong the process of experimental neuronal aging by maintaining the structure and the number of neuronal dendrite and spine cells and changing the total cellular protein. PMID:15641144

  2. In vitro transport and satiety of a beta-lactoglobulin dipeptide and beta-casomorphin-7 and its metabolites.

    PubMed

    Osborne, Simone; Chen, Wei; Addepalli, Rama; Colgrave, Michelle; Singh, Tanoj; Tran, Cuong; Day, Li

    2014-11-01

    Understanding the digestive behaviour and biological activities of dairy proteins may help to develop model dairy products with targeted health outcomes including increased satiety and healthy weight maintenance. Caseins and whey proteins constitute over 95% of milk proteins with consumption of these proteins associated with increased satiety and a decreased prevalence of metabolic disorders. To investigate the in vitro digestive behaviour and satiety of dairy proteins at the intestinal epithelium, the in vitro transport and hydrolysis of 500-2000 μM β-casomorphin-7 (YPFPGPI or β-CM7) and a β-lactoglobulin (β-Lg) dipeptide (YL) was measured using Caco-2 cell monolayers grown on transwells as a model of the intestinal epithelium. Transport of YL was concentration dependent and ranged from 0.37-5.26 × 10(-6) cm s(-1), whereas transport of β-CM7 was only detected at 2000 μM and was significantly lower at 0.13 × 10(-6) cm s(-1). Rapid hydrolysis of β-CM7 in the apical chamber by the Caco-2 cells produced three peptide metabolites: YP, GPI and FPGPI. All of these metabolites were detected in the basolateral chamber after 30 min with both the YP and GPI peptides transporting at a higher rate than intact β-CM7. In vitro satiety was indicated by the secretion of cholecystokinin [26-33] (CCK-8) and glucagon-like peptide 1 (GLP-17-36NH2) in the STC-1 enteroendocrine cell model. CCK-8 secretion was highest in response to β-CM7 followed by the β-CM7 metabolite FPGPI. CCK-8 secretion however was not significantly stimulated by the tri- or dipeptides. Secretion of GLP-1 was not significantly stimulated by β-CM7 or YL. These in vitro results suggest that dairy peptide size enhances CCK-8 secretion, whilst limiting transport across Caco-2 monolayers.

  3. Dual effects of chlorobutanol on secretory response and intracellular Ca2+ dynamics in isolated pancreatic acini of the rat.

    PubMed Central

    Habara, Y.; Kanno, T.

    1993-01-01

    1. The effects of chlorobutanol, a widely used drug preservative, on exocrine response and intracellular Ca2+ dynamics were examined in isolated pancreatic acini of the rat. 2. Chlorobutanol (1 mg ml-1) markedly inhibited the secretory response to cholecystokinin octapeptide (CCK-8), carbamylcholine chloride (carbachol), or sodium fluoride, a direct G-protein activator. However, chlorobutanol itself induced a maximal release of amylase when the dose was increased to 4 mg ml-1. 3. An oscillatory fluctuation of cytoplasmic Ca2+ concentration, [Ca2+]c, induced by 5 pM CCK-8 or 0.3 microM carbachol was totally abolished in the presence of 1 mg ml-1 chlorobutanol. 4. A biphasic change in [Ca2+]c induced by 100 pM CCK-8, a rapid rise followed by a gradual decay, was transformed to an oscillatory fluctuation by the preservative. 5. Chlorobutanol inhibited 13 pM [125I]-CCK-8 or 0.5 nM [3H]-methylscopolamine chloride binding to the acinar cells in a dose-dependent manner. 6. These results indicate that chlorobutanol produces discernible pharmacological effects on the secretory response in rat pancreatic acinar cells through changes in the Ca2+ dynamics. Possible sites of action could be at a binding process of secretagogues to their receptors, at an activation process of a G-protein located in the plasma membrane, or at the processes following G-protein activation. However, the possibility that the preservative may distort the Ca(2+)-transport function of the plasma membrane or the membrane of intracellular organella, especially Ca(2+)-sequestering pools, cannot be excluded. PMID:7689400

  4. Ex Vivo Human Pancreatic Slice Preparations Offer a Valuable Model for Studying Pancreatic Exocrine Biology.

    PubMed

    Liang, Tao; Dolai, Subhankar; Xie, Li; Winter, Erin; Orabi, Abrahim I; Karimian, Negar; Cosen-Binker, Laura I; Huang, Ya-Chi; Thorn, Peter; Cattral, Mark; Gaisano, Herbert Y

    2017-02-27

    A genuine understanding of human exocrine pancreas biology and pathobiology has been hampered by a lack of suitable preparations and reliance on rodent models employing dispersed acini preparations. We have developed an organotypic slice preparation of the normal portions of human pancreas obtained from cancer resections. The preparation was assessed for physiologic and pathological responses to the cholinergic agonist carbachol (Cch) and cholecystokinin (CCK-8), including 1) amylase secretion, 2) exocytosis, 3) intracellular Ca2+ responses, 4) cytoplasmic autophagic vacuole formation, and 5) protease activation. Cch and CCK-8 both dose-dependently stimulated secretory responses from human pancreas slices similar to those previously observed in dispersed rodent acini. Confocal microscopy imaging showed that these responses were accounted for by efficient apical exocytosis at physiologic doses of both agonists and by apical blockade and redirection of exocytosis to the basolateral plasma membrane at supramaximal doses. The secretory responses and exocytotic events evoked by CCK-8 were mediated by CCK-A and not CCK-B receptors. Physiologic agonist doses evoked oscillatory Ca2+ increases across the acini. Supraphysiologic doses induced formation of cytoplasmic autophagic vacuoles and activation of proteases (trypsin, chymotrypsin). Maximal atropine pretreatment that completely blocked all the Cch-evoked responses did not affect any of the CCK-8-evoked responses, indicating that rather than acting on the nerves within the pancreas slice, CCK cellular actions directly affected human acinar cells. Human pancreas slices represent excellent preparations to examine pancreatic cell biology and pathobiology and could help screen for potential treatments for human pancreatitis.

  5. Role of capsaicin-sensitive peripheral sensory neurons in anorexic responses to intravenous infusions of cholecystokinin, peptide YY-(3-36), and glucagon-like peptide-1 in rats.

    PubMed

    Reidelberger, Roger; Haver, Alvin; Anders, Krista; Apenteng, Bettye

    2014-10-15

    Cholecystokinin (CCK)-induced suppression of feeding is mediated by vagal sensory neurons that are destroyed by the neurotoxin capsaicin (CAP). Here we determined whether CAP-sensitive neurons mediate anorexic responses to intravenous infusions of gut hormones peptide YY-(3-36) [PYY-(3-36)] and glucagon-like peptide-1 (GLP-1). Rats received three intraperitoneal injections of CAP or vehicle (VEH) in 24 h. After recovery, non-food-deprived rats received at dark onset a 3-h intravenous infusion of CCK-8 (5, 17 pmol·kg⁻¹·min⁻¹), PYY-(3-36) (5, 17, 50 pmol·kg⁻¹·min⁻¹), or GLP-1 (17, 50 pmol·kg⁻¹·min⁻¹). CCK-8 was much less effective in reducing food intake in CAP vs. VEH rats. CCK-8 at 5 and 17 pmol·kg⁻¹·min⁻¹ reduced food intake during the 3-h infusion period by 39 and 71% in VEH rats and 7 and 18% in CAP rats. In contrast, PYY-(3-36) and GLP-1 were similarly effective in reducing food intake in VEH and CAP rats. PYY-(3-36) at 5, 17, and 50 pmol·kg⁻¹·min⁻¹ reduced food intake during the 3-h infusion period by 15, 33, and 70% in VEH rats and 13, 30, and 33% in CAP rats. GLP-1 at 17 and 50 pmol·kg⁻¹·min⁻¹ reduced food intake during the 3-h infusion period by 48 and 60% in VEH rats and 30 and 52% in CAP rats. These results suggest that anorexic responses to PYY-(3-36) and GLP-1 are not primarily mediated by the CAP-sensitive peripheral sensory neurons (presumably vagal) that mediate CCK-8-induced anorexia.

  6. Cholecystokinin action on layer 6b neurons in somatosensory cortex

    PubMed Central

    Chung, Leeyup; Moore, Scott D.; Cox, Charles L.

    2009-01-01

    Layer 6b in neocortex is a distinct sublamina at the ventral portion of layer 6. Corticothalamic projections arise from 6b neurons, but few studies have examined the functional properties of these cells. In the present study we examined the actions of cholecystokinin (CCK) on layer 6b neocortical neurons using whole-cell patch clamp recording techniques. We found that the general CCK receptor agonist CCK8S (sulfated CCK octapeptide) strongly depolarized the neurons, and this action persisted in the presence of tetrodotoxin, suggesting a postsynaptic site of action. The excitatory actions of CCK8S were mimicked by the selective CCKB receptor agonist CCK4, and attenuated by the selective CCKB receptor antagonist L365260, indicating a role for CCKB receptors. Voltage clamp recordings revealed that CCK8S produced a slow inward current associated with a decreased conductance with a reversal potential near the K+ equilibrium potential. In addition, intracellular cesium also blocked the inward current, suggesting the involvement of a K+ conductance, likely Kleak. Our data indicate that CCK, acting via CCKB receptors, produces a long-lasting excitation of layer 6b neocortical neurons, and this action may play a critical role in modulation of corticothalamic circuit activity. PMID:19497313

  7. Duodenal myotomy blocks reduction of meal size and prolongation of intermeal interval by cholecystokinin.

    PubMed

    Lateef, Dalya M; Washington, Martha C; Raboin, Shannon J; Roberson, Allison E; Mansour, Mahmoud M; Williams, Carol S; Sayegh, Ayman I

    2012-02-01

    We have shown that vagotomy (VGX) attenuates the reduction of meal size (MS) produced by cholecystokinin (CCK) -8 and -33 and that celiaco-mesenteric ganglionectomy (CMGX) attenuates the prolongation of the intermeal interval (IMI) produced by CCK-33. Here, we report the following novel data. First, by determining the distribution of CCK(1) receptor messenger RNA, which mediates reduction of MS and prolongation of IMI by CCK, in seven regions of the gastrointestinal tract in the adult rat we found that the duodenum contains the highest concentration of this receptor in the gut. Second, based on the previous finding we performed a unique surgical technique known as duodenal myotomy (MYO), which severs all the nerves of the gut wall in the duodenum including vagus, splanchnic and enteric nerves. Third, we determined MS and IMI in duodenal MYO rats in responses to endogenous CCK-58 released by the non-nutrient, trypsin inhibitor, camostat and CCK-8 to test the possibility that the duodenum is the site of action for reduction of MS and prolongation of IMI. We found that, similar to the previous work reported by using CCK-8 and MS, duodenal MYO also blocked reduction of MS by camostat. Forth, duodenal MYO blocked prolongation of IMI by camostat. As such, our current results suggest that the duodenum is the gut site that communicates both feeding signals of endogenous CCK, MS and IMI, with the brain through vagal and splanchnic afferents.

  8. The effect of Korean pine nut oil on in vitro CCK release, on appetite sensations and on gut hormones in post-menopausal overweight women.

    PubMed

    Pasman, Wilrike J; Heimerikx, Jos; Rubingh, Carina M; van den Berg, Robin; O'Shea, Marianne; Gambelli, Luisa; Hendriks, Henk F J; Einerhand, Alexandra W C; Scott, Corey; Keizer, Hiskias G; Mennen, Louise I

    2008-03-20

    Appetite suppressants may be one strategy in the fight against obesity. This study evaluated whether Korean pine nut free fatty acids (FFA) and triglycerides (TG) work as an appetite suppressant. Korean pine nut FFA were evaluated in STC-1 cell culture for their ability to increase cholecystokinin (CCK-8) secretion vs. several other dietary fatty acids from Italian stone pine nut fatty acids, oleic acid, linoleic acid, alpha-linolenic acid, and capric acid used as a control. At 50 muM concentration, Korean pine nut FFA produced the greatest amount of CCK-8 release (493 pg/ml) relative to the other fatty acids and control (46 pg/ml). A randomized, placebo-controlled, double-blind cross-over trial including 18 overweight post-menopausal women was performed. Subjects received capsules with 3 g Korean pine (Pinus koraiensis) nut FFA, 3 g pine nut TG or 3 g placebo (olive oil) in combination with a light breakfast. At 0, 30, 60, 90, 120, 180 and 240 minutes the gut hormones cholecystokinin (CCK-8), glucagon like peptide-1 (GLP-1), peptide YY (PYY) and ghrelin, and appetite sensations were measured. A wash-out period of one week separated each intervention day.CCK-8 was higher 30 min after pine nut FFA and 60 min after pine nut TG when compared to placebo (p < 0.01). GLP-1 was higher 60 min after pine nut FFA compared to placebo (p < 0.01). Over a period of 4 hours the total amount of plasma CCK-8 was 60% higher after pine nut FFA and 22% higher after pine nut TG than after placebo (p < 0.01). For GLP-1 this difference was 25% after pine nut FFA (P < 0.05). Ghrelin and PYY levels were not different between groups. The appetite sensation "prospective food intake" was 36% lower after pine nut FFA relative to placebo (P < 0.05). This study suggests that Korean pine nut may work as an appetite suppressant through an increasing effect on satiety hormones and a reduced prospective food intake.

  9. Relation of platelet density to platelet age: survival of low- and high-density 111indium-labeled platelets in baboons

    SciTech Connect

    Savage, B.; McFadden, P.R.; Hanson, S.R.; Harker, L.A.

    1986-08-01

    The relationship between platelet density and platelet age has been studied using continuous linear Percoll density gradients and 111In-labeling of autologous platelets in baboons. To investigate changes in platelet density during senescence in the circulation, baboons were infused with 111In-labeled autologous platelets, and blood was collected at one hour postinfusion and twice daily thereafter for six days. Platelets were isolated from these samples in high yield (greater than 95%) and separated in continuous linear Percoll density gradients following density equilibrium centrifugation. Although at one hour postinfusion the density distribution of radiolabeled platelets coincided closely with the distribution of the total platelet population, a detectable symmetrical shift toward higher densities was observed after five days. The relative specific radioactivity (RSR) of high-density platelets (1.064 to 1.067 g/mL) decreased at a slower rate than that of the total platelet population (platelets of all densities), whereas the RSR of low-density platelets (1.053 to 1.056 g/mL) showed a more immediate and rapid decrease. These results give rise to one of two interpretations: (1) low-density platelets have a shorter survival time than more dense platelets and are therefore cleared from the circulation at a faster rate, or (2) platelets of all densities increase in density upon aging in the circulation. To determine the explanation for changing RSR of different density fractions we studied the in vivo disappearance characteristics of low- and high-density 111In-labeled platelets. There were no significant differences between the mean survival times of low-density platelets (5.0 +/- 0.49 days, +/- 1 SD, n = 6), high-density platelets (4.9 +/- 0.56 days, n = 6), or control platelets representing platelets of all densities (4.9 +/- 0.38 days, n = 6).

  10. Radionuclide evaluation of renal transplants

    SciTech Connect

    Dubovsky, E.V.; Russell, C.D.

    1988-07-01

    In this review article, the following topics are treated: the radiopharmaceuticals /sup 99m/Tc-diethylenetriaminepentaacetic acid (DTPA), /sup 131/I-orthoiodohippurate (OIH), /sup 99m/Tc-mercaptoacetyltriglycine (MAG3), /sup 67/Ga-citrate, radioiodinated fibrinogen, /sup 99m/Tc-sulfur colloid, 111In-labelled white cells and platelets; gamma camera methods based on images, on first pass and on tubular transit; blood clearance methods; and the diagnosis of surgical complications, acute rejection (AR), acute tubular necrosis (ATN), chronic rejection (CR), and cyclosporine-A (CYA) toxicity. 94 references.

  11. Early diagnosis of acute postoperative renal transplant rejection by indium-111-labeled platelet scintigraphy

    SciTech Connect

    Tisdale, P.L.; Collier, B.D.; Kauffman, H.M.; Adams, M.B.; Isitman, A.T.; Hellman, R.S.; Hoffmann, R.G.; Rao, S.A.; Joestgen, T.; Krohn, L.

    1986-08-01

    A prospective evaluation of /sup 111/In-labeled platelet scintigraphy (IPS) for the early diagnosis of acute postoperative renal transplant rejection (TR) was undertaken. The results of IPS were compared with in vitro biochemical tests, the clinical finding of graft tenderness, and combined (/sup 99m/Tc)DTPA and (/sup 131/I)orthoiodohippurate scintigraphy. With a sensitivity of 0.93 and a specificity of 0.95, IPS provided otherwise unavailable diagnostic information. Furthermore, postoperative IPS was a good predictor of long-term allograft survival.

  12. Alloimmunization prevents the migration of transfused indium-111-labeled granulocytes to sites of infection

    SciTech Connect

    Dutcher, J.P.; Schiffer, C.A.; Johnston, G.S.; Papenburg, D.; Daly, P.A.; Aisner, J.; Wiernik, P.H.

    1983-08-01

    111In-labeled granulocytes were used to study the effects of histocompatibility factors on the migration of transfused granulocytes to infected sites. Fourteen alloimmunized and 20 nonalloimmunized patients received approximately 10(8) 111In-labeled granulocytes from ABO-compatible, non-HLA-matched donors, and scans were performed over known infected sites. All 14 alloimmunized patients had lymphocytotoxic antibody (LCTAb) and required HLA-matched platelet transfusions. Of the nonalloimmunized patients, 20/20 had positive scans at sites of infection. None of the 20 had LCTAb, 0/17 had a positive lymphocytotoxic crossmatch (LCTXM) with the donor, and 3/18 had a positive leukoagglutinin crossmatch (LAXM). Thus, histocompatibility testing was not found to be important in nonalloimmunized patients. In contrast, only 3/14 alloimmunized patients had positive scans at sites of infection (p . 0.00001 compared to nonalloimmunized patients). One of 3 had a positive LCTXM and 2/3 had a positive LAXM. Of the alloimmunized patients, 10/11 with negative scans had a positive LCTXM and 8/11 had a positive LAXM. Labeled granulocytes failed to reach sites of infection in 11/14 (78%) alloimmunized patients, demonstrating that histocompatibility factors can be of major importance in affecting the outcome of granulocyte transfusions. Granulocytes from random donors are unlikely to be effective in alloimmunized patients. The lack of an adequate crossmatching technique is a major problem limiting the ability to provide granulocyte transfusions for alloimmunized patients.

  13. Methods of assessment of thrombosis in vivo

    SciTech Connect

    Dewanjee, M.K.

    1987-01-01

    The contributions of platelets and clotting factors in thrombosis on injured vessel and cardiovascular prostheses have been quantified with several tracers. Thrombus formation in vivo could be measured semiquantitatively in animal models and humans with /sup 111/In-labeled platelets, /sup 123/I- and /sup 131/I-labeled fibrinogen, /sup 111/In-labeled antibody to the fibrinogen receptor on the platelet membrane and to fibrin. Thrombus localization by imaging was possible for large thrombus in vessel with deep injury of thrombogenic surface in the acute phase. A single layer of adherent platelets could not be imaged, due to the high background radioactivity present in blood. Thrombogenicity of grafts was compared with that of contralateral vessel. The dynamic process of platelet deposition could be followed accurately using the in vivo imaging technique. In addition, in vitro quantification permits determination of platelet and fibrin density and of the number of fibrin monomers per platelet in thrombus. The roles of prostacyclin, thromboxane inhibitors, and nonsteroidal antiinflammatory drugs have also been evaluated in animals models and humans. The tracer techniques thus provide invaluable information about platelet-fibrin deposition, its organization and dissolution, and for development of less thrombogenic surfaces for use in cardiovascular prostheses. 53 references.

  14. Low density lipoprotein receptor-independent hepatic uptake of a synthetic, cholesterol-scavenging lipoprotein: implications for the treatment of receptor-deficient atherosclerosis

    SciTech Connect

    Williams, K.J.; Vallabhajosula, S.; Rahman, I.U.; Donnelly, T.M.; Parker, T.S.; Weinrauch, M.; Goldsmith, S.J.

    1988-01-01

    The metabolism of infused /sup 111/In-labeled phospholipid liposomes was examined in Watanabe heritable hyperlipidemic (WHHL) rabbits, which lack low density lipoprotein (LDL) receptors, and in normal control rabbits. The half-times (t/sub 1/2/) for clearance of /sup 111/In and excess phospholipid from plasma were 20.8 +/- 0.9 hr and 20.3 +/- 4.6 hr in WHHL and 20.0 +/- 0.8 hr and 19.6 +/- 2.2 hr in the normal rabbits. By 6 hr postinfusion, the plasma concentration of unesterified cholesterol increased by 2.2 +/- 0.23 mmol/liter in WHHL and 2.1 +/- 0.04 mmol/liter in normal rabbits, presumably reflecting mobilization of tissue sores. Disappearance of excess plasma cholesterol was > 90% complete in both groups of rabbits by 70 hr postinfusion. By quantitative ..gamma.. camera imaging, hepatic trapping of /sup 111/In-labeled liposomes over time was indistinguishable between the two groups. At autopsy, the liver was the major organ of clearance. Aortic uptake of /sup 111/In was < 0.02%. Thus, mobilization of cholesterol and hepatic uptake of phospholipid liposomes do not require LDL receptors. Because phospholipid infusions produce rapid substantial regression of atherosclerosis in genetically normal animals, the results suggest that phospholipid liposomes or triglyceride phospholipid emulsions (e.g., Intralipid) might reduce atherosclerosis in WHHL rabbits and in humans with familial hypercholesterolemia.

  15. Noninvasive radioisotopic technique for detection of platelet deposition on bovine pericardial mitral-valve prosthesis and in vitro quantification of visceral microembolism in dogs

    SciTech Connect

    Dewanjee, M.K.; Trastek, V.F.; Tago, M.; Torianni, M.; Kaye, M.P.

    1983-01-01

    Platelet deposition on bovine pericardial-tissue mitral-valve prostheses in dogs was observed noninvasively by use of /sup 111/In-labeled platelets and quantified after sacrifice at one, 14 and 30 days postimplantation (300-400 microCi of labeled platelets having been injected 24 hrs previously). Thrombosis on the sewing ring and pericardial leaflets at one and 14 days and on the leaflets at 30 days was delineated in scintiphotos. In vitro quantification (% injected dose) indicated that the sewing ring and perivalvular tissue retained 0.75% of labeled platelets at one day postimplantation, 0.084% at 14 days, and 0.0042% at 30 days. Platelet survival was reduced to 38 hrs at 21 days postimplantation but returned toward the normal (50 hrs) with endothelial covering of the sewing ring. Microemboli in lung and kidney, as measured by tissue/blood radioactivity ratio, decreased significantly at 30 days. /sup 111/In-labeled platelets thus provide a sensitive marker for noninvasive imaging and in vitro quantification of platelet deposition on valvular prostheses and microemboli trapped in viscera.

  16. Fate of gamma-interferon-activated killer blood monocytes adoptively transferred into the abdominal cavity of patients with peritoneal carcinomatosis

    SciTech Connect

    Stevenson, H.C.; Keenan, A.M.; Woodhouse, C.; Ottow, R.T.; Miller, P.; Steller, E.P.; Foon, K.A.; Abrams, P.G.; Beman, J.; Larson, S.M.

    1987-11-15

    Five patients with colorectal cancer widely metastatic to peritoneal surfaces have been treated i.p. with infusions of autologous blood monocytes made cytotoxic by in vitro incubation with human gamma-interferon. The monocytes were purified by a combination of cytapheresis and counter-current centrifugal elutriation procedures; each week approximately 350 million activated monocytes were given to patients as adoptive immunotherapy by a single i.p. instillation. On the eighth cycle of treatment the trafficking of i.p. infused blood monocytes was studied in two patients by prelabeling the cells with /sup 111/In. These activated cells became distributed widely within the peritoneal cavity. Two and 5 days after infusion their position within the peritoneum had not changed. When peritoneal specimens were obtained 36 h after /sup 111/In-labeled monocyte infusion, labeled monocytes were demonstrated to be associated with the serosal surfaces by autoradiographic analysis. Scintiscanning structures outside the abdominal cavity revealed that /sup 111/In-labeled monocytes infused i.p. did not traffic to other organs during the 5 days of the study. We conclude that i.p. adoptive transfer of autologous killer blood monocytes is an effective way of delivering these cytotoxic cells to sites of tumor burden on peritoneal surfaces in these cancer patients.

  17. Evaluation of myosin light chain phosphorylation in isolated pancreatic acini

    SciTech Connect

    Burnham, D.B.; Soeling, H.D.; Williams, J.A. Universitaet Goettingen )

    1988-01-01

    The role of contractile proteins in secretory granule exocytosis was evaluated by determining whether myosin light chain phosphorylation was altered during stimulation of secretion in mouse pancreatic acini. Acinar myosin was purified by extraction into isosmotic sucrose solution containing 40 mM pyrophosphate followed by ammonium sulfate precipitation and Sepharose 4B-CL chromatography. Myosin was eluted as a single peak of K{sup +}-EDTA ATPase activity and was purified over 2,000-fold to a final ATPase specific activity of 0.96 {mu}mol{center dot}min{sup {minus}1}{center dot}mg protein {sup {minus}1}. Three major myosin subunits of apparent M{sub r} of 200,000, 20,000, and 17,000 were present in the purified myosin preparation. A fourth protein of M{sub r} 21,000 was also present. Purification of myosin from {sup 32}P-labeled acini revealed that M{sub r} 200,000, 21,000, and 20,000 proteins to be heavily labeled. The effect of cholecystokinin octapeptide (CCK-8) on myosin phosphorylation was studied after isolation of myosin from {sup 32}P-labeled acinar lysates by immunoprecipitation. Treatment of acini for 1-10 min with a concentration of CCK-8 that gives a maximal secretory response caused a 25-40% increase in light chain labeling. Treatment with a supramaximal CCK-8 concentration produced a 50-80% increase in light chain labeling. Phosphorylation of myosin heavy chain was not significantly affected by secretagogue treatment. These results indicate that stimulation of pancreatic acinar secretion is accompanied by an increase in myosin light chain phosphorylation.

  18. Evaluation of the effects of Cimicifugae Rhizoma on the morphology and viability of mesenchymal stem cells

    PubMed Central

    JEONG, SU-HYEON; LEE, JI-EUN; KIM, BO-BAE; KO, YOUNGKYUNG; PARK, JUN-BEOM

    2015-01-01

    Cimicifugae Rhizoma is a traditional herbal medicine used to treat various diseases in Korea, China and Japan. Cimicifugae Rhizoma is primarily derived from Cimicifuga heracleifolia Komarov or Cimicifuga foetida Linnaeus. Cimicifugae Rhizoma has been used as an anti-inflammatory, analgesic and antipyretic remedy. The present study was performed to evaluate the extracts of Cimicifugae Rhizoma on the morphology and viability of human stem cells derived from gingiva. Stem cells derived from gingiva were grown in the presence of Cimicifugae Rhizoma at final concentrations that ranged from 0.001 to 1,000 µg/ml. The morphology of the cells was viewed under an inverted microscope and the analysis of cell proliferation was performed using a Cell Counting kit-8 (CCK-8) assay on days 1, 3, 5 and 7. Under an optical microscope, the control cells exhibited a spindle-shaped, fibroblast-like morphology. The shapes of the cells in the groups treated with 0.001, 0.01, 0.1, 1 and 10 µg/ml Cimicifugae Rhizoma were similar to the shapes in the control group. Significant alterations in morphology were noted in the 100 and 1,000 µg/ml groups when compared with the control group. The cells in the 100 and 1,000 µg/ml groups were rounder, and fewer cells were present. The cultures that were grown in the presence of Cimicifugae Rhizoma at a concentration of 0.001 µg/ml on day 1 had an increased CCK-8 value. The cultures grown in the presence of Cimicifugae Rhizoma at a concentration of 10 µg/ml on day 7 had a reduced CCK-8 value. Within the limits of this study, Cimicifugae Rhizoma influenced the viability of stem cells derived from the gingiva, and its direct application onto oral tissues may have adverse effects at high concentrations. The concentration and application time of Cimicifugae Rhizoma should be meticulously controlled to obtain optimal results. PMID:26622366

  19. Cyclic cholecystokinin analogues with high selectivity for central receptors.

    PubMed Central

    Charpentier, B; Pelaprat, D; Durieux, C; Dor, A; Reibaud, M; Blanchard, J C; Roques, B P

    1988-01-01

    Taking as a model the N-terminal folding of the cholecystokinin tyrosine-sulfated octapeptide [CCK-8; Asp-Tyr(SO3H)-Met-Gly-Trp-Met-Asp-Phe-NH2] deduced from conformational studies, two cyclic cholecystokinin (CCK) analogues were synthesized by conventional peptide synthesis: Boc-D-Asp-Tyr(SO3H)-Ahx-D-Lys-Trp-Ahx-Asp-Phe-NH2 [compound I (Ahx, 2-aminohexanoic acid)] and Boc-gamma-D-Glu-Tyr(SO3H)-Ahx-D-Lys-Trp-Ahx-Asp-Phe-NH2 (compound II). The binding characteristics of these peptides were investigated on brain cortex membranes and pancreatic acini of guinea pig. Compounds I and II were competitive inhibitors of [3H]Boc[Ahx28,31]CCK-(27-33) binding to central CCK receptors and showed a high degree of selectivity for these binding sites (compound I: Ki for pancreas/Ki for brain, 179; compound II: Ki for pancreas/Ki for brain, 1979). This high selectivity was associated with a high affinity for central CCK receptors (compound I: Ki, 5.1 nM; compound II: Ki, 0.49 nM). Similar affinities and selectivities were found when 125I Bolton-Hunter-labeled CCK-8 was used as a ligand. Moreover, these compounds were only weakly active in the stimulation of amylase release from guinea pig pancreatic acini (EC50 greater than 10,000 nM) and were unable to induce contractions in the guinea pig ileum (to 10(-6) M). The two cyclic CCK analogues, therefore, appear to be synthetic ligands exhibiting both high affinity and high selectivity for central CCK binding sites. These compounds could help clarify the respective role of central and peripheral receptors for various CCK-8-induced pharmacological effects. PMID:3162318

  20. Cholecystokinin actions in the parabrachial nucleus: effects on thirst and salt appetite

    NASA Technical Reports Server (NTRS)

    Menani, J. V.; Johnson, A. K.

    1998-01-01

    The present study investigated the effects of bilateral injections of the nonselective CCK receptor antagonist proglumide or CCK-8 into the lateral parabrachial nuclei (LPBN) on the ingestion of 0.3 M NaCl and water induced by intracerebroventricular injection of ANG II or by a combined treatment with subcutaneous furosemide (Furo) + captopril (Cap). Compared with the injection of saline (vehicle), bilateral LPBN injections of proglumide (50 micrograms . 200 nl-1 . site-1) increased the intake of 0.3 M NaCl induced by intracerebroventricular ANG II (50 ng/1 microliter). Bilateral injections of proglumide into the LPBN also increased ANG II-induced water intake when NaCl was simultaneously available, but not when only water was present. Similarly, the ingestion of 0.3 M NaCl and water induced by the treatment with Furo (10 mg/kg) + Cap (5 mg/kg) was increased by bilateral LPBN proglumide pretreatment. Bilateral CCK-8 (0.5 microgram . 200 nl-1 . site-1) injections into the LPBN did not change Furo + Cap-induced 0.3 M NaCl intake but reduced water consumption. When only water was available after intracerebroventricular ANG II, bilateral LPBN injections of proglumide or CCK-8 had no effect or significantly reduced water intake compared with LPBN vehicle-treated rats. Taken together, these results suggest that CCK actions in the LPBN play a modulatory role on the control of NaCl and water intake induced by experimental treatments that induce hypovolemia and/or hypotension or that mimic those states.

  1. Roles of sphincter of Oddi motility and serum vasoactive intestinal peptide, gastrin and cholecystokinin octapeptide

    PubMed Central

    Zhang, Zhen-Hai; Qin, Cheng-Kun; Wu, Shuo-Dong; Xu, Jian; Cui, Xian-Ping; Wang, Zhi-Yi; Xian, Guo-Zhe

    2014-01-01

    AIM: To investigate roles of sphincter of Oddi (SO) motility played in pigment gallbladder stone formation in model of guinea pigs. METHODS: Thirty-four adult male Hartley guinea pigs were divided randomly into two groups: the control group and pigment stone group. The pigment stone group was divided into 4 subgroups with 6 guinea pigs each according to time of sacrifice, and were fed a pigment lithogenic diet and sacrificed after 3, 6, 9 and 12 wk. SO manometry and recording of myoelectric activity of the guinea pigs were obtained by multifunctional physiograph at each stage. Serum vasoactive intestinal peptide (VIP), gastrin and cholecystokinin octapeptide (CCK-8) were detected at each stage in the process of pigment gallbladder stone formation by enzyme-linked immunosorbent assay. RESULTS: The incidence of pigment gallstone formation was 0%, 0%, 16.7% and 66.7% in the 3-, 6-, 9- and 12-wk group, respectively. The frequency of myoelectric activity decreased in the 3-wk group. The amplitude of myoelectric activity had a tendency to decrease but not significantly. The frequency of the SO decreased significantly in the 9-wk group. The SO basal pressure and common bile duct pressure increased in the 12-wk group (25.19 ± 7.77 mmHg vs 40.56 ± 11.81 mmHg, 22.35 ± 7.60 mmHg vs 38.51 ± 11.57 mmHg, P < 0.05). Serum VIP was significantly elevated in the 6- and 12-wk groups and serum CCK-8 was decreased significantly in the 12-wk group. CONCLUSION: Pigment gallstone-causing diet may induce SO dysfunction. The tension of the SO increased. The disturbance in SO motility may play a role in pigment gallstone formation, and changes in serum VIP and CCK-8 may be important causes of SO dysfunction. PMID:24782626

  2. Comparison of the effects of dietary sunflower oil and virgin olive oil on rat exocrine pancreatic secretion in vivo.

    PubMed

    Díaz, Ricardo J; Yago, María D; Martínez-Victoria, Emilio; Naranjo, José A; Martínez, María A; Mañas, Mariano

    2003-11-01

    The aim of this study was to investigate the functional consequences in vivo of adapting the rat exocrine pancreas to different dietary fats. Weanling rats were fed diets containing 10 wt% virgin olive oil or sunflower oil for 8 wk. We then examined resting and cholecystokinin-octapeptide (CCK-8)-stimulated pancreatic secretion in the anesthetized animals. To confirm a direct influence of the type of fat upon the gland, the FA composition of pancreatic membranes as well as tissue protein and amylase content were determined in separate rats. The membrane FA profile was profoundly altered by the diets, reflecting the type of dietary fat given, although this was not paralleled by variations in the pancreatic content of protein or amylase. Nevertheless, dietary intake of oils evoked different effects on in vivo secretory activity. Resting flow rate and amylase output were significantly (P < 0.05) enhanced by sunflower oil feeding. Time course changes in response to CCK-8 infusion also showed a different pattern in each group. Secretion of fluid, protein, and amylase increased markedly in all animals, reaching a maximum within 20-40 min of infusion that was followed by a dramatic decline in both groups. In the sunflower oil group, this resulted in values reaching the resting level as soon as 60 min after CCK-8 infusion was begun. However, after the initial decline, olive oil group values showed a prolonged plateau elevation above the baseline (P < 0.05) that was maintained for at least the infusion time. In addition, a positive correlation between flow rate and both protein concentration and amylase activity existed in the olive oil group, but not in the sunflower oil group. The precise mechanism by which these effects are produced remains to be elucidated.

  3. Pharmacological evaluation of IQM-95,333, a highly selective CCKA receptor antagonist with anxiolytic-like activity in animal models

    PubMed Central

    Ballaz, Santiago; Barber, Ana; Fortuño, Ana; Del Río, Joaquín; Martín-Martínez, Mercedes; Gómez-Monterrey, Isabel; Herranz, Rosario; González-Muñiz, Rosario; García-López, Maria-Teresa

    1997-01-01

    The pyridopyrimidine derivative IQM-95,333 ((4aS,5R)-2-benzyl-5-[Nα-tert-butoxicarbonyl)L-tryptophyl]amino-1,3dioxoperhydropyrido[1,2-c]pyrimidine), a new non-peptide antagonist of cholecystokinin type A (CCKA) receptors, has been evaluated in vitro and in vivo in comparison with typical CCKA and CCKB receptor antagonists, such as devazepide, lorglumide, L-365,260 and PD-135,158. IQM-95,333 displaced [3H]-CCK-8S binding to CCKA receptors from rat pancreas with a high potency in the nanomolar range. Conversely, the affinity of this new compound at brain CCKB receptors was negligible (IC50>10 μM). IQM-95,333 was a more selective CCKA receptor ligand than devazepide and other CCKA receptor antagonists. Like devazepide, IQM-95,333 was a more potent antagonist of CCK-8S- than of CCK-4-induced contraction of the longitudinal muscle from guinea-pig ileum, suggesting selective antagonism at CCKA receptors. IQM-95,333 and devazepide were also potent inhibitors of CCK-8S-stimulated amylase release from isolated pancreatic acini, a CCKA receptor-mediated effect. The drug concentrations required (IC50s around 20 nM) were higher than in binding studies to pancreas homogenates. Low doses (50–100 μg kg−1, i.p.) of IQM-95,333 and devazepide, without any intrinsic effect on food intake or locomotion, blocked the hypophagia and the hypolocomotion induced by systemic administration of CCK-8S, two effects associated with stimulation of peripheral CCKA receptors. IQM-95,333 showed an anxiolytic-like profile in the light/dark exploration test in mice over a wide dose range (10–5,000 μg kg−1). Typical CCKA and CCKB antagonists, devazepide and L-365,260 respectively, were only effective within a more limited dose range. In a classical conflict paradigm for the study of anxiolytic drugs, the punished-drinking test, IQM-95,333, devazepide and L-365,260 were effective within a narrow dose range. The dose-response curve for the three drugs was biphasic, suggesting that

  4. Taste matters - effects of bypassing oral stimulation on hormone and appetite responses.

    PubMed

    Spetter, Maartje S; Mars, Monica; Viergever, Max A; de Graaf, Cees; Smeets, Paul A M

    2014-10-01

    The interaction between oral and gastric signals is an important part of food intake regulation. Previous studies suggest that bypassing oral stimulation diminishes the suppression of hunger and increases gastric emptying rate. However, the role of appetite hormones, like cholecystokinin-8 and ghrelin, in this process is still unclear. Our objective was to determine the contributions of gastric and oral stimulation to subsequent appetite and hormone responses and their effect on ad libitum intake. Fourteen healthy male subjects (age 24.6±3.8y, BMI 22.3±1.6kg/m(2)) completed a randomized, single-blinded, cross-over experiment with 3 treatment-sessions: 1) Stomach distention: naso-gastric infusion of 500mL/0kJ water, 2) Stomach distention with caloric content: naso-gastric infusion of 500mL/1770kJ chocolate milk, and 3) Stomach distention with caloric content and oral exposure: oral administration of 500mL/1770kJ chocolate milk. Changes in appetite ratings and plasma glucose, insulin, cholecystokinin-8, and active and total ghrelin concentrations were measured at fixed time-points up to 30min after infusion or oral administration. Subsequently, subjects consumed an ad libitum buffet meal. Oral administration reduced appetite ratings more than both naso-gastric infusions (P<0.0001). Gastric infusion of a caloric load increased insulin and cholecystokinin-8 and decreased total ghrelin concentrations more than ingestion (all P<0.0001). No differences in active ghrelin response were observed between conditions. Ad libitum intake did not differ between oral and gastric administration of chocolate milk (P>0.05). Thus, gastric infusion of nutrients induces greater appetite hormone responses than ingestion does. These data provide novel and additional evidence that bypassing oral stimulation not only affects the appetite profile but also increases anorexigenic hormone responses, probably driven in part by faster gastric emptying. This confirms the idea that learned

  5. Immunohistochemical study on the neuroendocrine system of the digestive tract of turbot, Scophthalmus maximus (L.), infected by Enteromyxum scophthalmi (Myxozoa).

    PubMed

    Bermúdez, R; Vigliano, F; Quiroga, M I; Nieto, J M; Bosi, G; Domeneghini, C

    2007-03-01

    In recent years a new parasite, causing severe losses, has been detected in farmed turbot, Scophthalmus maximus (L.), in Northwestern Spain. Dead fish showed emaciation and cachexia caused by severe necrotizing enteritis, which affected all areas of the digestive tract. The parasite was classified as a myxosporean and named Enteromyxum scophthalmi. This study was designed to assess the response of the turbot neuroendocrine system against E. scophthalmi infection. Immunohistochemical tests were applied to sections of the gastrointestinal tract of uninfected and E. scophthalmi-infected turbot, and the presence of cholecystokinin (CCK-8), serotonin (5-HT), substance P (SP), calcitonin gene-related peptide (CGRP) and vasoactive intestinal peptide (VIP) were documented. A higher abundance of both endocrine epithelial cells (ECs) and nerve cell bodies and fibres for CCK-8, 5-HT and SP were recorded in the gastrointestinal tract of infected turbot, whereas VIP-like substance decreased. The results indicate that E. scophthalmi infection in turbot induced changes in the neuroendocrine system, which may cause alterations in gut motility, electrolyte and fluid secretion, and vascular and immune functions.

  6. Myricetin inhibits proliferation and induces apoptosis and cell cycle arrest in gastric cancer cells.

    PubMed

    Feng, Jianfang; Chen, Xiaonan; Wang, Yuanyuan; Du, Yuwen; Sun, Qianqian; Zang, Wenqiao; Zhao, Guoqiang

    2015-10-01

    Myricetin is a flavonoid that is abundant in fruits and vegetables and has protective effects against cancer and diabetes. However, the mechanism of action of myricetin against gastric cancer (GC) is not fully understood. We researched myricetin on the proliferation, apoptosis, and cell cycle in GC HGC-27 and SGC7901 cells, to explore the underlying mechanism of action. Cell Counting Kit (CCK)-8 assay, Western blotting, cell cycle analysis, and apoptosis assay were used to evaluate the effects of myricetin on cell proliferation, apoptosis, and the cell cycle. To analyze the binding properties of ribosomal S6 kinase 2 (RSK2) with myricetin, surface plasmon resonance (SPR) analysis was performed. CCK8 assay showed that myricetin inhibited GC cell proliferation. Flow cytometry analysis showed that myricetin induces apoptosis and cell cycle arrest in GC cells. Western blotting indicated that myricetin influenced apoptosis and cell cycle arrest of GC cells by regulating related proteins. SPR analysis showed strong binding affinity of RSK2 and myricetin. Myricetin bound to RSK2, leading to increased expression of Mad1, and contributed to inhibition of HGC-27 and SGC7901 cell proliferation. Our results suggest the therapeutic potential of myricetin in GC.

  7. Analysis of caspase-3 in ASTC-a-1 cells treated with mitomycin C using acceptor photobleaching techniques

    NASA Astrophysics Data System (ADS)

    Wang, Huiying; Chen, Tongsheng; Sun, Lei

    2008-02-01

    Caspase-3 is a key activated death protease, which catalyzes the specific cleavage of many cellular proteins and induces DNA cleavage eventually. In this report, cells were treated with mitomycin C (MMC) at different concentration and its activity was detected by cell counting kit (CCK-8). Based on results of CCK-8, cells were treated with 10μg/mL MMC and Hoechst 33258 has been used to observe cell apoptosis. Fluorescence resonance energy transfer (FRET) and confocal microscopy have been used to the effect of MMC on the caspase3 activation in living cells. Human lung adenocarcinoma cells (ASTC-a-1) was transfected with plasmid SCAT3 (pSCAT3)/CKAR FRET receptor. Acceptor photobleaching techniques of FRET plasmid has been used to destruct fluorophore of cells stably expressing SCAT3 reporter on a fluorescence confocal microscope. The activity of caspase3 can be analyzed by FRET dynamics of SCAT3 in living cells. Our results show that MM C can induce ASTC-a-1 cell apoptosis through activation of caspase3.

  8. Promotion of Astragaloside IV for EA-hy926 Cell Proliferation and Angiogenic Activity via ERK1/2 Pathway.

    PubMed

    Wang, Shi; Chen, Jiandong; Fu, Yuxuan; Chen, Xiaohu

    2015-06-01

    The aim of this study was to determine the pro-angiogenic effects of Astragaloside IV (AS-IV) in vitro and reveal the potential mechanisms. A kind of human umbilical vein endothelial cells (HUVECs), named EA-hy926 cells, were treated with various dosages of AS-IV. We then utilized Cell Counting Kit-8 (CCK-8), real-time PCR and Western blot to detect EA-hy926 cells' proliferation and proangiogenic effect from AS-IV. Data showed that AS-IV promoted EA-hy926 cells proliferation, as assessed by CCK-8. The AS-IV was also associated with an increased tube formation and upregulation of vascular endothelial growth factor (VEGF) mRNA and protein in a dose-dependent manner. Interestingly, the influence of AS-IV on cell proliferation and angiogenisis could be abolished by inhibitor PD98059 through suppressed extracellular signal regulated protein kinases1/2 (ERK1/2) phosphorylation. These data demonstrated that the AS-IV activated the ERK1/2 pathway to control VEGF synthesis. Our findings conclude that the AS-IV promotes EA-hy926 cells proliferation and angiogenesis through ERK1/2 pathway, and it is also a regulator of VEGF.

  9. Effects of TGF-β1 on the Proliferation and Apoptosis of Human Cervical Cancer Hela Cells In Vitro.

    PubMed

    Tao, Ming-Zhu; Gao, Xia; Zhou, Tie-Jun; Guo, Qing-Xi; Zhang, Qiang; Yang, Cheng-Wan

    2015-12-01

    To investigate the effects of TGF-β1 on the proliferation and apoptosis of cervical cancer Hela cells in vitro. Human cervical cancer Hela cells were cultured in vitro and divided into the experimental and control groups. In the experimental groups, Hela cells were stimulated with different concentrations of TGF-β1 (0.01, 0.1, 1, and 10 ng/mL), while Hela cells cultured in serum-free medium without TGF-β1 were used as controls. The CCK8 method was adopted to detect the effect of TGF-β1 on Hela cell proliferation, and flow cytometry was used to determine cell apoptosis 72 h after TGF-β1 treatment. Compared with the control group, the CCK-8 tests showed that different concentrations of TGF-β1 had no obvious effect on Hela cell proliferation 24 h after treatment (P > 0.05). However, upon 48 or 72 h of treatment, TGF-β1 significantly inhibited the proliferation of Hela cells in a time- and dose-dependent manner (P < 0.05). The flow cytometry results indicated that TGF-β1 influenced the apoptosis of human cervical cancer Hela cells in a dose-dependent manner after 72 h of treatment (P < 0.05). TGF-β1 significantly inhibited the growth and induced the apoptosis of human cervical Hela cells in vitro.

  10. Effect of the lectins wheat germ agglutinin (WGA) and Ulex europaeus agglutinin (UEA-I) on the alpha-amylase secretion of rat pancreas in vitro and in vivo.

    PubMed

    Mikkat, U; Damm, I; Schröder, G; Schmidt, K; Wirth, C; Weber, H; Jonas, L

    1998-05-01

    Lectins are able to bind to cholecystokinin (CCK) receptors and other glycosylated membrane proteins. The lectins wheat germ agglutinin (WGA) and Ulex europaeus agglutinin (UEA-I) are used for affinity chromatography to isolate the highly glycosylated CCK-A receptor of pancreatic acinar cells. According to the working hypothesis that lectin binding to the CCK receptor should alter the ligand-receptor interaction, the effect of WGA and UEA-I on CCK-8-induced enzyme secretion was studied on isolated rat pancreatic acini in vitro. In vitro both lectins showed a dosage-dependent inhibition of CCK-8-induced alpha-amylase secretion of acini over 60 min. WGA showed a strong inhibitory effect on amylase secretion, approximately 40%, in vitro. UEA-I caused a smaller, but significant decrease, approximately 20%, in enzyme secretion of isolated acini. Additionally, both lectins inhibited cerulein/secretin- or cerulein-induced pancreatic secretion of rats in vivo, but not after secretin alone. The results are discussed with respect to a possible influence of both lectins on the interaction of CCK or cerulein with the CCK-A receptor.

  11. [Effect of overexpression of CAV1 mediated by lentivirus on proliferation and apoptosis of HL-60 cells].

    PubMed

    Ma, Wei; Wang, Di-Di; Wang, Zhao; Zhu, Gui-Ming; Zhang, Peng-Xia

    2013-08-01

    This study was purposed to explore the effect of lentivirus-mediated CAV1 overexpression on proliferation and apoptosis in HL-60 cells. Recombinant lentiviral expression vector pcDNA-EF1-CAV1 was constructed, and cotransfected the 293TN cells with a mixture of pPACK packaging plasmids. Then collecting virus suspension infects the HL-60 cells, which make CAV1 gene stable transfection and high expression in the cells. The CAV1 protein expression status in HL-60 cells transfected was evaluated through Western blot method. Proliferative activity and apoptosis of HL-60 cells before and after transfection were detected by CCK-8 method and flow cytometry, respectively. The results showed that the PCR-positive clone screening and results of nucleotide sequencing confirmed that the CAV1 gene inserted into the expression vector pcDNA-EF1-GFP correctly, recombinant lentiviral particles Lv-CAV1 transfected HL-60 cells successfully and with transfection rate up to 90%. The result of Western blot showed that CAV1 protein expression in HL-60 cells significantly increased at 48 hours after transfection. CCK-8 result indicated that cell proliferation activity increased at 48 h after transfection (P < 0.05), flow cytometry testing results displayed that apoptosis rate of HL-60 cells obviously decreased after transfection (P < 0.01). It is concluded that the overexpression of CAV1 in HL-60 cells can inhibit cell proliferation activity and promote cell apoptosis.

  12. Inhibitory effects of ethanol on phosphatidylinositol breakdown in pancreatic acini

    SciTech Connect

    Towner, S.J.; Peppin, J.F.; Tsukamoto, H.

    1986-03-01

    Recently the physiological relationship between the phospholipid effect and secretagogue-induced cellular function has begun to be understood. In this study, the authors investigated acute and chronic effects of ethanol on phosphatidylinositol (PI) synthesis and breakdown in pancreatic acini. Five pairs of male Wistar rats were intragastrically infused for 30 days with high fat diet (25% total calories) plus ethanol or isocaloric dextrose. After intoxication, isolated in HEPES media, followed by 30 min incubation with CCK-8 (0, 100, 300 or 600 pM) and ethanol (0 or 100 mM). Acinar lipids were extracted and counted for labeled PI. Incorporation of /sup 3/H-inositol into alcoholic acinar PI was reduced to 38.2% of that in controls. A percent maximal PI break down by CCK-8 was similar in the two groups (13-24% of basal). However, the magnitude of PI breakdown was markedly lower in alcoholic acini (482 vs 1081 dpm) due to the decreased PI synthesis rate. The presence of 100 mM ethanol in the media further inhibited the breakdown by 50% in this group. These results strongly indicate that chronic ethanol intoxication inhibits PI synthesis and breakdown in pancreatic acini, and that this inhibition can be potentiated by acute ethanol administration.

  13. Characterization of cholecystokinin receptors on guinea pig gastric chief cell membranes

    SciTech Connect

    Matozaki, T.; Sakamoto, C.; Nagao, M.; Nishisaki, H.; Konda, Y.; Nakano, O.; Matsuda, K.; Wada, K.; Suzuki, T.; Kasuga, M. )

    1991-02-14

    The binding of cholecystokinin (CCK) to its receptors on guinea pig gastric chief cell membranes were characterized by the use of {sup 125}I-CCK-octapeptide (CCK8). At 30{degrees}C optimal binding was obtained at acidic pH in the presence of Mg2+, while Na+ reduced the binding. In contrast to reports on pancreatic and brain CCK receptors, scatchard analysis of CCK binding to chief cell membranes revealed two classes of binding sites. Whereas, in the presence of a non-hydrolyzable GTP analog, GTP gamma S, only a low affinity site of CCK binding was observed. Chief cell receptors recognized CCK analogs, with an order of potency of: CCK8 greater than gastrin-I greater than CCK4. Although all CCK receptor antagonists tested (dibutyryl cyclic GMP, L-364718 and CR1409) inhibited labeled CCK binding to chief cell membranes, the relative potencies of these antagonists in terms of inhibiting labeled CCK binding were different from those observed in either pancreatic membranes or brain membranes. The results indicate, therefore, that on gastric chief cell membranes there exist specific CCK receptors, which are coupled to G protein. Furthermore, chief cell CCK receptors may be distinct from pancreatic or brain type CCK receptors.

  14. Biological behaviour of human umbilical artery smooth muscle cell grown on nickel-free and nickel-containing stainless steel for stent implantation

    NASA Astrophysics Data System (ADS)

    Li, Liming; An, Liwen; Zhou, Xiaohang; Pan, Shuang; Meng, Xin; Ren, Yibin; Yang, Ke; Guan, Yifu

    2016-01-01

    To evaluate the clinical potential of high nitrogen nickel-free austenitic stainless steel (HNNF SS), we have compared the cellular and molecular responses of human umbilical artery smooth muscle cells (HUASMCs) to HNNF SS and 316L SS (nickel-containing austenitic 316L stainless steel). CCK-8 analysis and flow cytometric analysis were used to assess the cellular responses (proliferation, apoptosis, and cell cycle), and quantitative real-time PCR (qRT-PCR) was used to analyze the gene expression profiles of HUASMCs exposed to HNNF SS and 316L SS, respectively. CCK-8 analysis demonstrated that HUASMCs cultured on HNNF SS proliferated more slowly than those on 316L SS. Flow cytometric analysis revealed that HNNF SS could activate more cellular apoptosis. The qRT-PCR results showed that the genes regulating cell apoptosis and autophagy were up-regulated on HNNF SS. Thus, HNNF SS could reduce the HUASMC proliferation in comparison to 316L SS. The findings furnish valuable information for developing new biomedical materials for stent implantation.

  15. Preparation and preliminary in vitro evaluation of a bFGF-releasing heparin-conjugated poly(ε-caprolactone) membrane for guided bone regeneration.

    PubMed

    Cao, Cong; Song, Ying; Yao, Qianqian; Yao, Yang; Wang, Tianlu; Huang, Bo; Gong, Ping

    2015-01-01

    In an effort to improve guided bone regeneration (GBR), we successfully fabricated a novel basic fibroblast growth factor (bFGF)-releasing heparin-conjugated poly(ε-caprolactone) membrane (hep-PCL/bFGF). This material has a porous microstructure with smooth and rough pore walls before and after heparinization, respectively. Our FTIR analyses indicated that chemical bonds were formed between PCL and heparin with a new amide C=O band at 1660 cm(-1) and a band at 3400 cm(-1) that can be attributed to -OH stretching in cross-linked heparin. We showed that bFGF was released from hep-PCL/bFGF in a continuous pattern, which remained for 3 weeks. We evaluated MG63 cell proliferation and biocompatibility of GBR membrane by a CCK-8 assay and a live/dead assay. The CCK-8 results revealed that the hep-PCL/bFGF group had superiority compared to other groups. Furthermore, cell morphology of hep-PCL membrane exhibited larger projected areas than those of PCL surfaces based on scanning electron microscopy analysis and immunofluorescent staining of cell cytoskeleton and vinculin expression. Our alkaline phosphatase activity assay also confirmed better performance of the hep-PCL/bFGF group. These results suggested that this novel hep-PCL/bFGF membrane is suitable for osteoblast-like cells to attach, proliferate, and differentiate. Therefore, the hep-PCL/bFGF membrane has potential to be a biodegradable membrane for GBR and warrants further investigation.

  16. Biological behaviour of human umbilical artery smooth muscle cell grown on nickel-free and nickel-containing stainless steel for stent implantation

    PubMed Central

    Li, Liming; An, Liwen; Zhou, Xiaohang; Pan, Shuang; Meng, Xin; Ren, Yibin; Yang, Ke; Guan, Yifu

    2016-01-01

    To evaluate the clinical potential of high nitrogen nickel-free austenitic stainless steel (HNNF SS), we have compared the cellular and molecular responses of human umbilical artery smooth muscle cells (HUASMCs) to HNNF SS and 316L SS (nickel-containing austenitic 316L stainless steel). CCK-8 analysis and flow cytometric analysis were used to assess the cellular responses (proliferation, apoptosis, and cell cycle), and quantitative real-time PCR (qRT-PCR) was used to analyze the gene expression profiles of HUASMCs exposed to HNNF SS and 316L SS, respectively. CCK-8 analysis demonstrated that HUASMCs cultured on HNNF SS proliferated more slowly than those on 316L SS. Flow cytometric analysis revealed that HNNF SS could activate more cellular apoptosis. The qRT-PCR results showed that the genes regulating cell apoptosis and autophagy were up-regulated on HNNF SS. Thus, HNNF SS could reduce the HUASMC proliferation in comparison to 316L SS. The findings furnish valuable information for developing new biomedical materials for stent implantation. PMID:26727026

  17. Novel porous graphene oxide and hydroxyapatite nanosheets-reinforced sodium alginate hybrid nanocomposites for medical applications

    SciTech Connect

    Xiong, Guangyao; Luo, Honglin; Zuo, Guifu; Ren, Kaijing; Wan, Yizao

    2015-09-15

    Graphene oxide (GO) and hydroxyapatite (HAp) are frequently used as reinforcements in polymers to improve mechanical and biological properties. In this work, novel porous hybrid nanocomposites consisting of GO, HAp, and sodium alginate (SA) have been prepared by facile solution mixing and freeze drying in an attempt to obtain a scaffold with desirable mechanical and biological properties. The as-prepared porous GO/HAp/SA hybrid nanocomposites were characterized by SEM, XRD, FTIR, TGA, and mechanical testing. In addition, preliminary cell behavior was assessed by CCK8 assay. It is found that the GO/HAp/SA nanocomposites show improved compressive strength and modulus over neat SA and HAp/SA nanocomposites. CCK8 results reveal that the GO/HAp/SA nanocomposites show enhanced cell proliferation over neat SA and GO/SA nanocomposite. It has been demonstrated that GO/HAp20/SA holds promise in bone tissue engineering. - Graphical abstract: Display Omitted - Highlights: • Graphene oxide (GO), hydroxyapatite (HAp), and alginate (SA) nanocomposites were fabricated. • The novel porous composites were prepared by solution mixture and freeze drying. • The GO/HAp/SA had porous structure with porosity > 85% and pore size > 150 μm. • The GO/HAp/SA exhibited improved mechanical properties over HAp/SA counterparts. • The GO/HAp/SA showed enhanced cell proliferation over GO/SA counterparts.

  18. Cholecystokinin plays a novel protective role in diabetic kidney through anti-inflammatory actions on macrophage: anti-inflammatory effect of cholecystokinin.

    PubMed

    Miyamoto, Satoshi; Shikata, Kenichi; Miyasaka, Kyoko; Okada, Shinichi; Sasaki, Motofumi; Kodera, Ryo; Hirota, Daisho; Kajitani, Nobuo; Takatsuka, Tetsuharu; Kataoka, Hitomi Usui; Nishishita, Shingo; Sato, Chikage; Funakoshi, Akihiro; Nishimori, Hisakazu; Uchida, Haruhito Adam; Ogawa, Daisuke; Makino, Hirofumi

    2012-04-01

    Inflammatory process is involved in the pathogenesis of diabetic nephropathy. In this article, we show that cholecystokinin (CCK) is expressed in the kidney and exerts renoprotective effects through its anti-inflammatory actions. DNA microarray showed that CCK was upregulated in the kidney of diabetic wild-type (WT) mice but not in diabetic intracellular adhesion molecule-1 knockout mice. We induced diabetes in CCK-1 receptor (CCK-1R) and CCK-2R double-knockout (CCK-1R(-/-),-2R(-/-)) mice, and furthermore, we performed a bone marrow transplantation study using CCK-1R(-/-) mice to determine the role of CCK-1R on macrophages in the diabetic kidney. Diabetic CCK-1R(-/-),-2R(-/-) mice revealed enhanced albuminuria and inflammation in the kidney compared with diabetic WT mice. In addition, diabetic WT mice with CCK-1R(-/-) bone marrow-derived cells developed more albuminuria than diabetic CCK-1R(-/-) mice with WT bone marrow-derived cells. Administration of sulfated cholecystokinin octapeptide (CCK-8S) ameliorated albuminuria, podocyte loss, expression of proinflammatory genes, and infiltration of macrophages in the kidneys of diabetic rats. Furthermore, CCK-8S inhibited both expression of tumor necrosis factor-α and chemotaxis in cultured THP-1 cells. These results suggest that CCK suppresses the activation of macrophage and expression of proinflammatory genes in diabetic kidney. Our findings may provide a novel strategy of therapy for the early stage of diabetic nephropathy.

  19. Possible degradative process of cholecystokinin analogs in rabbit jejunum brush-border membrane vesicles.

    PubMed

    Su, Sheng-Fang; Amidon, Gordon L; Lee, Hye J

    2002-11-22

    Our recent work on the intestinal metabolism and absorption of cholecystokinin analogs, sulfated C-terminal octapeptide (CCK8; Asp-Tyr(SO(3)H)-Met-Gly-Trp-Met-Asp-Phe(NH(2)) = DY(SO(3)H)MGWMDF(NH(2))) and tetrapeptide (CCK4; Trp-Met-Asp-Phe(NH(2)) = WMDF(NH(2))), was extended to investigate the degradative process of these analogs using rabbit jejunum brush-border membrane vesicles and to find a better enzyme-inhibitor system for intestinal absorption of peptide drugs. Various enzyme inhibitors and a lower pH buffer were applied to discover the major enzyme(s) involved in each process. Metabolic pathways showing degradative processes were proposed for both analogs. The major cleavage site occurs at the W(1)-M(2) for CCK4. At least three metabolic pathways occur independently for CCK8 and appear at peptides bonds between G(4)-W(5), M(6)-D(7), and D(7)-F(NH(2))(8). Many different enzymes of aminopeptidase, endopeptidase, angiotensin-converting enzyme, metalloenzyme, and others were involved in each process. Identification of more specific yet safe enzyme inhibitors and co-administration of various these inhibitors may lead to further enhancement in intestinal peptide absorption when administered orally.

  20. Development and preclinical studies of (64)Cu-NOTA-pertuzumab F(ab')2 for imaging changes in tumor HER2 expression associated with response to trastuzumab by PET/CT.

    PubMed

    Lam, Karen; Chan, Conrad; Reilly, Raymond M

    2017-01-01

    We previously reported that microSPECT/CT imaging with (111)In-labeled pertuzumab detected decreased HER2 expression in human breast cancer (BC) xenografts in athymic mice associated with response to treatment with trastuzumab (Herceptin). Our aim was to extend these results to PET/CT by constructing F(ab')2 of pertuzumab modified with NOTA chelators for complexing (64)Cu. The effect of the administered mass (5-200 µg) of (64)Cu-NOTA-pertuzumab F(ab')2 was studied in NOD/SCID mice engrafted with HER2-positive SK-OV-3 human ovarian cancer xenografts. Biodistribution studies were performed in non-tumor bearing Balb/c mice to predict radiation doses to normal organs in humans. Serial PET/CT imaging was conducted on mice engrafted with HER2-positive and trastuzumab-sensitive BT-474 or trastuzumab-insensitive SK-OV-3 xenografted mice treated with weekly doses of trastuzumab. There were no significant effects of the administered mass of (64)Cu-NOTA-pertuzumab F(ab')2 on tumor or normal tissue uptake. The predicted total body dose in humans was 0.015 mSv/MBq, a 3.3-fold reduction compared to (111)In-labeled pertuzumab. MicroPET/CT images revealed specific tumor uptake of (64)Cu-NOTA-pertuzumab F(ab')2 at 24 or 48 h post-injection in mice with SK-OV-3 tumors. Image analysis of mice treated with trastuzumab showed 2-fold reduced uptake of (64)Cu-NOTA-pertuzumab F(ab')2 in BT-474 tumors after 1 week of trastuzumab normalized to baseline, and 1.9-fold increased uptake in SK-OV-3 tumors after 3 weeks of trastuzumab, consistent with tumor response and resistance, respectively. We conclude that PET/CT imaging with (64)Cu-NOTA-pertuzumab F(ab')2 detected changes in HER2 expression in response to trastuzumab while delivering a lower total body radiation dose compared to (111)In-labeled pertuzumab.

  1. Targeted actinium-225 in vivo generators for therapy of ovarian cancer.

    PubMed

    Borchardt, Paul E; Yuan, Rui R; Miederer, Matthias; McDevitt, Michael R; Scheinberg, David A

    2003-08-15

    Advanced ovarian cancer is largely incurable, but initially it is frequently confined to the i.p. space. We explored i.p. radioimmunotherapy in a mouse model of human ovarian cancer. Use of a targeted actinium-225 ((225)Ac) in vivo generator of alpha particles exploits the extreme, selective cytotoxicity of alpha particles, while providing a feasible half-life to enable delivery to tumor. (225)Ac chelated with 2-(p-isothiocyanatobenzyl)-1,4,7,10-tetraazacyclododecane-1,4,7,10 tetraacetic acid was conjugated to trastuzumab, an anti-HER-2/neu antibody. The radioimmunoconjugate was tested for immunoreactivity, internalization, and cytotoxicity using a human ovarian carcinoma cell line, SKOV3. (225)Ac-labeled trastuzumab retained immunoreactivity (50-90%), rapidly internalized into cells (50% at 2 h), and had an ED(50) of 1.3 nCi/ml after 4 days of incubation in vitro. i.p. administered (225)Ac- or (111)In-labeled trastuzumab behaved similarly with high tumor uptake [56-60% injected dose per gram (% ID/g) at 4 h, which increased to 65-70% ID/g at 24 h]. Tumor uptake was 3-5-fold higher than liver and spleen, the normal organs with the highest uptake. i.v. administration of (111)In-labeled trastuzumab produced slightly higher normal organ uptake compared with i.p.-administered (111)In-labeled trastuzumab. However, tumor uptake was low, 5%-26% ID/g. Therapy was examined with native trastuzumab and 220, 330, and 450 nCi of (225)Ac-labeled trastuzumab or (225)Ac-labeled control antibody at different dosing schedules. Therapy was initiated 9 days after tumor seeding. Groups of control mice and those administered native trastuzumab had median survivals of 33 and 37 or 44 days, respectively. Median survival was 52-126 days with (225)Ac-labeled trastuzumab at various doses and schedules, and 48-64 days for (225)Ac-labeled control the same schedules. Deaths from toxicity occurred with the highest activity levels. In conclusion, i.p. administration with a (225)Ac

  2. Roles of interleukin-9 in the growth and cholecystokinin-induced intracellular calcium signaling of cultured interstitial cells of Cajal.

    PubMed

    Gong, Yaoyao; Huang, Lei; Cheng, Wenfang; Li, Xueliang; Lu, Jia; Lin, Lin; Si, Xinmin

    2014-01-01

    Interstitial cells of Cajal (ICC) are pacemaker cells in the gastrointestinal (GI) tract and loss of ICC is associated with many GI motility disorders. Previous studies have shown that ICC have the capacity to regenerate or restore, and several growth factors are critical to their growth, maintenance or regeneration. The present study aimed to investigate the roles of interleukin-9 (IL-9) in the growth, maintenance and pacemaker functions of cultured ICC. Here, we report that IL-9 promotes proliferation of ICC, and culturing ICC with IL-9 enhances cholecystokinin-8-induced Ca²⁺ transients, which is probably caused by facilitating maintenance of ICC functions under culture condition. We also show co-localizations of cholecystokinin-1 receptor and IL-9 receptor with c-kit by double-immunohistochemical labeling. In conclusion, IL-9 can promote ICC growth and help maintain ICC functions; IL-9 probably performs its functions via IL-9 receptors on ICC.

  3. ECL-cell histamine mobilization in conscious rats: effects of locally applied regulatory peptides, candidate neurotransmitters and inflammatory mediators.

    PubMed

    Norlén, P; Bernsand, M; Konagaya, T; Håkanson, R

    2001-12-01

    1. The ECL cells control gastric acid secretion by mobilizing histamine in response to circulating gastrin. In addition, the ECL cells are thought to operate under nervous control and to be influenced by local inflammatory processes. 2. The purpose of the present study was to monitor histamine mobilization from ECL cells in conscious rats in response to locally applied regulatory peptides, candidate neurotransmitters and inflammatory mediators. 3. Microdialysis probes were implanted in the submucosa of the acid-producing part of the rat stomach. Three days later, the agents to be tested were administered via the microdialysis probe and their effects on basal (48 h fast) and stimulated (intravenous infusion of gastrin-17, 3 nmol kg(-1) h(-1)) mobilization of ECL-cell histamine was monitored by continuous measurement of histamine in the perfusate (radioimmunoassay). 4. Locally administered gastrin-17 and sulfated cholecystokinin-8 mobilized histamine as did pituitary adenylate cyclase-activating peptide-27, vasoactive intestinal peptide, peptide YY, met-enkephalin, endothelin and noradrenaline, adrenaline and isoprenaline. 5. While gastrin, sulfated-cholecystokinin-8, met-enkephalin and isoprenaline induced a sustained elevation of the submucosal histamine concentration, endothelin, peptide YY, pituitary adenylate cyclase activating peptide, vasoactive intestinal peptide, noradrenaline and adrenaline induced a transient elevation. 6. Calcitonin gene-related peptide, galanin, somatostatin and the prostanoid misoprostol inhibited gastrin-stimulated histamine mobilization. 7. The gut hormones neurotensin and secretin and the neuropeptides gastrin-releasing peptide, neuropeptide Y and substance P failed to affect ECL-cell histamine mobilization, while motilin and neuromedin U-25 had weak stimulatory effects. Also acetylcholine, carbachol, serotonin and the amino acid neurotransmitters aspartate, gamma-aminobutyric acid, glutamate and glycine were inactive or weakly

  4. Spinal dural enhancement on magnetic resonance imaging associated with spontaneous intracranial hypotension. Report of three cases and review of the literature.

    PubMed

    Moayeri, N N; Henson, J W; Schaefer, P W; Zervas, N T

    1998-05-01

    This report offers a description of typical changes seen on gadolinium-enhanced magnetic resonance (MR) imaging of the entire spine that indicate spontaneous intracranial hypotension (SIH). To the authors' knowledge, this is the first report of its kind. They describe three cases of SIH that were accompanied by dural enhancement throughout the neuraxis on imaging, with the evolution of associated subdural and epidural fluid collections in the spine. Recognition of this disorder is important to be able to distinguish it from an infectious or neoplastic process in which surgical intervention might be warranted. Evaluation using gadolinium-enhanced cranial and spinal MR imaging in patients with postural headaches and an (111)In-labeled cerebrospinal fluid leak study are discussed. Treatment with an epidural blood patch is shown to be particularly effective, with resolution of the radiological and clinical findings.

  5. Role of ProstaScint for brachytherapy in localized prostate adenocarcinoma.

    PubMed

    Ellis, Rodney J; Kim, Edward; Foor, Ryan

    2004-07-01

    ProstaScint (CYT-356 or capromab pendetide, Cytogen) is an 111In-labeled monoclonal mouse antibody specific for prostate-specific membrane antigen, a prostate transmembrane glycoprotein that is upregulated in prostate adenocarcinoma. ProstaScint scans are US Food and Drug Administration approved for pretreatment evaluation of metastatic disease in high-risk patients. They are also approved for post-prostatectomy assessment of recurrent disease in patients with a rising prostate-specific antigen level. This review explores the literature on ProstaScint and its use in guiding the treatment of prostate cancer. A novel technique for identifying areas of cancer within the prostate using ProstaScint images fused with pelvic computed tomography scans is also described. The identification of areas of high antibody signal provides targets for radiotherapeutic dose escalation, with the overall goals of improving treatment outcome while preserving adjacent tissue structures and decreasing treatment morbidity.

  6. In vivo dissolution measurement with indium-111 summation peak ratios

    SciTech Connect

    Jay, M.; Woodward, M.A.; Brouwer, K.R.

    1985-10-01

    Dissolution of (/sup 111/In)labeled tablets was measured in vivo in a totally noninvasive manner by using a modification of the perturbed angular correlation technique known as the summation peak ratio method. This method, which requires the incorporation of only 10-12 microCi into the dosage form, provided reliable dissolution data after oral administration of (/sup 111/In)lactose tablets. These results were supported by in vitro experiments which demonstrated that the dissolution rate as measured by the summation peak ratio method was in close agreement with the dissolution rate of salicylic acid in a (/sup 111/In)salicylic acid tablet. The method has the advantages of using only one detector, thereby avoiding the need for complex coincidence counting systems, requiring less radioactivity, and being potentially applicable to a gamma camera imaging system.

  7. Effect of acetylation on monoclonal antibody ZCE-025 Fab': Distribution in normal and tumor-bearing mice

    SciTech Connect

    Tarburton, J.P.; Halpern, S.E.; Hagan, P.L.; Sudora, E.; Chen, A.; Fridman, D.M.; Pfaff, A.E. )

    1990-04-01

    Studies were performed to determine in vitro and in vivo effects of acetylation on Fab' fragments of ZCE-025, a monoclonal anti-CEA antibody. Isoelectric focusing revealed a drop in isoelectric point of 1.7 pI units following acetylation. Biodistribution studies of acetylated and nonacetylated (111In)Fab' were performed in normal BALB/c mice and in nude mice bearing the T-380 CEA-producing human colon tumor. The acetylated fragments remained in the vascular compartment longer and had significantly diminished renal uptake of 111In compared to controls. While acetylation itself effected a 50% drop in immunoreactivity, tumor uptake of the acetylated and nonacetylated 111In-labeled Fab' fragments was comparable, with the exception of one data point, through 72 h.

  8. The Cyclotron radionuclide program at King Faisal Specialist Hospital and Research Centre

    NASA Astrophysics Data System (ADS)

    Hupf, Homer B.; Tischer, Stephen D.; Al-Watban, Farouk

    1985-05-01

    The King Faisal Specialist Hospital and Research Centre Cyclotron is being used to produce radionuclides for nuclear medicine, short-lived positron emitters for positron emission tomography (PET) studies, neutrons for therapy and biological research. Radiopharmaceuticals for planar imaging at King Faisal Specialist Hospital and other hospitals in Saudi Arabia include thallous-201 chloride, gallium-67 citrate, sodium iodide 123I capsules, 123I orthoiodohippurate and 81mKr generators. Products from short-lived positron emitters such as 18F fluordeoxyglucose, 11C methionine, 15O carbon dioxide and 63Zn hematoporphyrin are prepared and used on site for physiological studies in a PET program. Several patients have been treated with neutron therapy and a program for studying neutron radiation effects on cells is underway. Radiopharmaceutical products under development include 111In-labelled monoclonal antibodies for specific tumor detection, 11C methylglucose for metabolic studies and 11C putrescine for tumor localization.

  9. Imaging of platelets in right-sided extracardiac conduits in humans

    SciTech Connect

    Agarwal, K.C.; Wahner, H.W.; Dewanjee, M.K.; Fuster, V.; Puga, F.J.; Danielson, G.K.; Chesebro, J.H.; Feldt, R.H.

    1982-04-01

    As a connection between the systemic venous ventricle and the pulmonary artery, valved Dacron extracardiac conduits have remarkably influenced the surgical approach to many complex congenital heart defects. Obstruction of the conduit, however, can reduce the long-term effectiveness of this corrective procedure. In addition to stenosis of the porcine valve, formation of thick fibrous neointima plays a major role in the pathogenesis of conduit obstruction. The purpose of this study was to determine whether platelet deposition could be demonstrated in these conduits by external imaging with /sup 111/In-labeled autologous platelets. After injection of labeled platelets either immediately after operation or on the fifth to eighth postoperative day, imaging was performed by standard procedures. Eight of nine patients had platelet accumulation in the conduit, and treatment with aspirin and dipyridamole caused no recognizable change in platelet deposition. This study demonstrates the feasibility of imaging platelet deposition in Dacron conduits and shows that the pattern of deposition varies with time.

  10. An in vitro method for assessing biomaterial-associated platelet activation.

    PubMed

    LaFayette, Nathan G; Skrzypchak, Amy M; Merz, Scott; Bartlett, Robert H; Annich, Gail M

    2007-01-01

    The development of a nonthrombogenic artificial surface for use with indwelling sensors or catheters remains an elusive goal despite decades of ongoing research. In vivo studies are both labor intensive and costly, and are therefore an inefficient way to rapidly screen possible surface materials. The following in vitro model used glass, polyvinyl chloride (PVC), and polypropylene test tubes incubated with 111In-labeled rabbit platelets and illustrated that, despite equivalent platelet count and function, platelet adhesion was greatest on glass (n = 13), with PVC (n = 17) at 67 +/- 8% and polypropylene (n = 13) at 43 +/- 5% when compared with glass. Extrapolating this method by coating test tubes with new, nonthrombogenic materials is a quick and reliable way to screen material before embarking upon more lengthy in vivo animal studies.

  11. Synthesis of DOTA-conjugated multimeric [Tyr3]octreotide peptides via a combination of Cu(I)-catalyzed "click" cycloaddition and thio acid/sulfonyl azide "sulfo-click" amidation and their in vivo evaluation.

    PubMed

    Yim, Cheng-Bin; Dijkgraaf, Ingrid; Merkx, Remco; Versluis, Cees; Eek, Annemarie; Mulder, Gwenn E; Rijkers, Dirk T S; Boerman, Otto C; Liskamp, Rob M J

    2010-05-27

    Herein, we describe the design, synthesis, and biological evaluation of a series of DOTA-conjugated monomeric, dimeric, and tetrameric [Tyr(3)]octreotide-based analogues as a tool for tumor imaging and/or radionuclide therapy. These compounds were synthesized using a Cu(I)-catalyzed 1,3-dipolar cycloaddition ("click" reaction) between peptidic azides and dendrimer-derived alkynes and a subsequent metal-free introduction of DOTA via the thio acid/sulfonyl azide amidation ("sulfo-click" reaction). In a competitive binding assay using rat pancreatic AR42J tumor cells, the monomeric [Tyr(3)]octreotide conjugate displayed the highest binding affinity (IC(50) = 1.32 nM) followed by dimeric [Tyr(3)]octreotide (2.45 nM), [DOTA(0),Tyr(3)]octreotide (2.45 nM), and tetrameric [Tyr(3)]octreotide (14.0 nM). Biodistribution studies with BALB/c nude mice with subcutaneous AR42J tumors showed that the (111)In-labeled monomeric [Tyr(3)]octreotide conjugate had the highest tumor uptake (42.3 +/- 2.8 %ID/g) at 2 h p.i., which was better than [(111)In-DOTA(0),Tyr(3)]octreotide (19.5 +/- 4.8 %ID/g). The (111)In-labeled dimeric [Tyr(3)]octreotide conjugate showed a long tumor retention (25.3 +/- 5.9 %ID/g at 2 h p.i. and 12.1 +/- 1.3 %ID/g at 24 h p.i.). These promising results can be exploited for therapeutic applications.

  12. Triple Therapy of HER2(+) Cancer Using Radiolabeled Multifunctional Iron Oxide Nanoparticles and Alternating Magnetic Field.

    PubMed

    Zolata, Hamidreza; Afarideh, Hossein; Davani, Fereydoun Abbasi

    2016-11-01

    By using radio-labeled multifunctional superparamagnetic iron oxide nanoparticles (SPIONs) and an alternating magnetic field (AMF), we carried out targeted hyperthermia, drug delivery, radio-immunotherapy (RIT), and controlled chemotherapy of cancer tumors. We synthesized and characterized Indium-111-labeled, Trastuzumab and Doxorubicin (DOX)-conjugated APTES-PEG-coated SPIONs in our previous work. Then, we evaluated their capability in SPECT/MRI (single photon emission computed tomography/magnetic resonance imaging) dual modal molecular imaging, targeting, and controlled release. In this research, AMF was introduced to evaluate therapeutic effects of magnetic hyperthermia on radionuclide-chemo therapy of HER2(+) cells and tumor (HER2(+))-bearing mice. In vitro and in vivo experiments using synthesized complex were repeated under an AMF (f: 100 KHz, H: 280 Gs). Instead of an intra-tumor injection in most hyperthermia experiments, SPIONs were injected to the tail vein, based on our delivery strategies. For magnetic delivery, we held a permanent Nd-B-Fe magnet near the tumor region. The results showed that simultaneous magnetic hyperthermia enhanced SKBR3 cancer cells, killing by 24%, 28%, 33%, and 80% at 48 hours post-treatment for treated cells with (1) bare SPIONs; (2) antibody-conjugated, DOX-free, surface-modified SPIONs; (3) (111)In-labeled, antibody-conjugated surface-modified SPIONs; and (4) (111)In-labeled, antibody- and DOX-conjugated surface-modified SPIONs, respectively. Moreover, tumor volume inhibitory rate was 85% after a 28 day period of treatment. By using this method, multimodal imaging-guided, targeted hyperthermia, RIT, and controlled chemotherapy could be achievable in the near future.

  13. Sequential assessment of pulmonary epithelial diethylene triamine penta-acetate clearance and intrapulmonary transferrin accumulation during Escherichia coli peritonitis

    SciTech Connect

    Ishizaka, A.; Stephens, K.E.; Segall, G.M.; Hatherill, J.R.; McDougall, I.R.; Wu, Z.; Raffin, T.A. )

    1990-03-01

    The individual roles of pulmonary capillary endothelial and alveolar epithelial permeability in the pathogenesis of the adult respiratory distress syndrome (ARDS) are unclear. We developed a method for the sequential assessment of pulmonary macromolecule accumulation and small solute clearance in vivo using a gamma camera. We measured the exponential clearance coefficient of 111In-labeled diethylene triamine penta-acetate (111In-DTPA) to assess airway clearance of small solutes. We also calculated the exponential equilibration coefficient of 111In-labeled transferrin (111In-TF) to assess intrapulmonary accumulation of transferrin. We determined these parameters in guinea pigs with Escherichia coli peritonitis and compared them with a saline-treated control group, oleic-acid-treated groups, and a group treated with low molecular weight dextran Ringer solution. The pulmonary DTPA clearance and the intrapulmonary transferrin accumulation were significantly increased in the peritonitis group (29.4 +/- 8.2 x 10(-3) min-1, p less than 0.02, and 15.1 +/- 3.1 x 10(-3) min-1, p less than 0.02) when compared with the control group (3.1 +/- 0.8 x 10(-3) min-1 and 4.5 +/- 0.5 x 10(-3) min-1). These changes developed within 5.5 h of the initial insult. Neither increased extravascular lung water nor elevated pulmonary artery and left atrial pressures were detected in the peritonitis group. The low molecular weight dextran Ringer group did not show a significant increase in the pulmonary DTPA clearance and the intrapulmonary transferrin accumulation.

  14. Preclinical evaluation of (111)In-DTPA-INCA-X anti-Ku70/Ku80 monoclonal antibody in prostate cancer.

    PubMed

    Evans-Axelsson, Susan; Vilhelmsson Timmermand, Oskar; Welinder, Charlotte; Borrebaeck, Carl Ak; Strand, Sven-Erik; Tran, Thuy A; Jansson, Bo; Bjartell, Anders

    2014-01-01

    The aim of this investigation was to assess the Ku70/Ku80 complex as a potential target for antibody imaging of prostate cancer. We evaluated the in vivo and ex vivo tumor targeting and biodistribution of the (111)In-labeled human internalizing antibody, INCA-X ((111)In-DTPA-INCA-X antibody), in NMRI-nude mice bearing human PC-3, PC-3M-Lu2 or DU145 xenografts. DTPA-conjugated, non-labeled antibody was pre-administered at different time-points followed by a single intravenous injection of (111)In-DTPA-INCA-X. At 48, 72 and 96 h post-injection, tissues were harvested, and the antibody distribution was determined by measuring radioactivity. Preclinical SPECT/CT imaging of mice with and without the predose was performed at 48 hours post-injection of labeled DTPA-INCA-X. Biodistribution of the labeled antibody showed enriched activity in tumor, spleen and liver. Animals pre-administered with DTPA-INCA-X showed increased tumor uptake and blood content of (111)In-DTPA-INCA-X with reduced splenic and liver uptake. The in vitro and in vivo data presented show that the (111)In-labeled INCA-X antibody is internalized into prostate cancer cells and by pre-administering non-labeled DTPA-INCA-X, we were able to significantly reduce the off target binding and increase the (111)In-DTPA-INCA-X mAb uptake in PC-3, PC-3M-Lu2 and DU145 xenografts. The results are encouraging and identifying the Ku70/Ku80 antigen as a target is worth further investigation for functional imaging of prostate cancer.

  15. Prevention of ischemia-induced myocardial platelet deposition by exogenous prostacyclin

    SciTech Connect

    Aherne, T.; Price, D.C.; Yee, E.S.; Hsieh, W.R.; Ebert, P.A.

    1986-07-01

    The antithrombotic effects of prostacyclin infusion on myocardial platelet deposition were studied in a canine model during and after global ischemia. Eleven isolated heart preparations were subjected to 1 hour of cardioplegic arrest under moderate hypothermia (27 to 28/sup 0/C), including a control group (n = 7) and a prostacyclin-treated group (n = 4). The hearts of four other dogs were continuously perfused for 180 minutes. Platelet deposition was measured at 15 minute intervals throughout the 3 hour study. Serial full-thickness myocardial biopsy specimens were analyzed for activity of /sup 111/In-labeled platelets with /sup 99m/Tc-labeled erythrocyte correction for tissue blood content. The pattern of platelet distribution was determined by scintiscans of each heart, taken with a gamma camera at the end of the 60 minute reperfusion period. Substantial myocardial platelet deposition was found in the control hearts after ischemia but not in the prostacyclin-treated group (p less than 0.05). Furthermore, prostacyclin infusion had a significant disaggregatory effect on intracoronary platelet deposits when the precardioplegic and postcardioplegic biopsy specimens were analyzed (p less than 0.05). Three hours of continuous perfusion did not increase tissue /sup 111/In-labeled platelet activity. Ex vivo images showed platelet deposition to be a diffuse patchy process with significantly more /sup 111/In activity in the endocardium than in the epicardium after global ischemia (p less than 0.05). These data show the potent antithrombotic properties of prostacyclin in preventing and disaggregating ischemia-induced intracoronary platelet deposition during and after cardioplegic arrest.

  16. Indium-111-labeled autologous leukocyte imaging and fecal excretion. Comparison with conventional methods of assessment of inflammatory bowel disease

    SciTech Connect

    Leddin, D.J.; Paterson, W.G.; DaCosta, L.R.; Dinda, P.K.; Depew, W.T.; Markotich, J.; McKaigney, J.P.; Groll, A.; Beck, I.T.

    1987-04-01

    This study was designed to evaluate the role of /sup 111/In-labeled leukocyte imaging and fecal excretion in the assessment of inflammatory bowel disease. We compared these tests to various indices of disease activity in Crohn's disease, to Truelove's grading in ulcerative colitis, and to endoscopy, x-ray, and pathology in both diseases. Eleven controls, 16 patients with Crohn's disease, 13 with ulcerative colitis, and 3 with other types of acute bowel inflammation were studied (positive controls). Indium scanning was performed at 1, 4, and 24 hr. Fourteen of 16 patients with active Crohn's disease had positive scans but in only five was localization accurate. One patient had inactive ulcerative colitis, and the scan was negative. Of 12 patients with active ulcerative colitis, 10 had positive scans but disease localization was accurate in only four. Disease extent was correctly defined in 1 of the 3 Positive Controls. There was no significant difference in the accuracy of scanning at 1, 4, or 24 hr. /sup 111/In fecal excretion was significantly higher in patients with inflammatory bowel disease than in controls, and there was correlation between /sup 111/In fecal excretion and most of the indices of disease activity in Crohn's disease. In ulcerative colitis, /sup 111/In fecal excretion did not correlate with Truelove's grading but reflected colonoscopic assessment of severity. In conclusion, /sup 111/In-labeled leukocyte scanning lacks sensitivity with respect to disease extent, but fecal excretion of /sup 111/In correlates well with disease severity as determined by other methods.

  17. Low density lipoprotein receptor-independent hepatic uptake of a synthetic, cholesterol-scavenging lipoprotein: implications for the treatment of receptor-deficient atherosclerosis.

    PubMed Central

    Williams, K J; Vallabhajosula, S; Rahman, I U; Donnelly, T M; Parker, T S; Weinrauch, M; Goldsmith, S J

    1988-01-01

    The metabolism of infused 111In-labeled phospholipid liposomes was examined in Watanabe heritable hyperlipidemic (WHHL) rabbits, which lack low density lipoprotein (LDL) receptors, and in normal control rabbits. The half-times (t1/2) for clearance of 111In and excess phospholipid from plasma were 20.8 +/- 0.9 hr and 20.3 +/- 4.6 hr in WHHL and 20.0 +/- 0.8 hr and 19.6 +/- 2.2 hr in the normal rabbits (means +/- SEM; n = 4). By 6 hr postinfusion, the plasma concentration of unesterified cholesterol increased by 2.2 +/- 0.23 mmol/liter in WHHL and 2.1 +/- 0.04 mmol/liter in normal rabbits, presumably reflecting mobilization of tissue stores. Disappearance of excess plasma cholesterol was greater than 90% complete in both groups of rabbits by 70 hr postinfusion. By quantitative gamma camera imaging, hepatic trapping of 111In-labeled liposomes over time was indistinguishable between the two groups. At autopsy, the liver was the major organ of clearance, acquiring 22.0% +/- 1.7% (WHHL) and 16.8% +/- 1.0% (normal of total 111In. Aortic uptake of 111In was less than 0.02%. Thus, mobilization of cholesterol and hepatic uptake of phospholipid liposomes do not require LDL receptors. Because phospholipid infusions produce rapid substantial regression of atherosclerosis in genetically normal animals, our results suggest that phospholipid liposomes or triglyceride phospholipid emulsions (e.g., Intralipid) might reduce atherosclerosis in WHHL rabbits and in humans with familial hypercholesterolemia. PMID:3422421

  18. Comparison of autologous 111In-leukocytes, 18F-FDG, 11C-methionine, 11C-PK11195 and 68Ga-citrate for diagnostic nuclear imaging in a juvenile porcine haematogenous staphylococcus aureus osteomyelitis model

    PubMed Central

    Nielsen, Ole L; Afzelius, Pia; Bender, Dirk; Schønheyder, Henrik C; Leifsson, Páll S; Nielsen, Karin M; Larsen, Jytte O; Jensen, Svend B; Alstrup, Aage KO

    2015-01-01

    The aim of this study was to compare 111In-labeled leukocyte single-photon emission computed tomography (SPECT) and 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) to PET with tracers that potentially could improve detection of osteomyelitis. We chose 11C-methionine, 11C-PK11195 and 68Ga-citrate and validated their diagnostic utility in a porcine haematogenous osteomyelitis model. Four juvenile 14-15 weeks old female pigs were scanned seven days after intra-arterial inoculation in the right femoral artery with a porcine strain of Staphylococcus aureus using a sequential scan protocol with 18F-FDG, 68Ga-citrate, 11C-methionine, 11C-PK11195, 99mTc-Nanocoll and 111In-labelled autologous leukocytes. This was followed by necropsy of the pigs and gross pathology, histopathology and microbial examination. The pigs developed a total of five osteomyelitis lesions, five lesions characterized as abscesses/cellulitis, arthritis in three joints and five enlarged lymph nodes. None of the tracers accumulated in joints with arthritis. By comparing the 10 infectious lesions, 18F-FDG accumulated in nine, 111In-leukocytes in eight, 11C-methionine in six, 68Ga-citrate in four and 11C-PK11195 accumulated in only one lesion. Overall, 18F-FDG PET was superior to 111In-leukocyte SPECT in marking infectious and proliferative, i.e. hyperplastic, lesions. However, leukocyte SPECT was performed as early scans, approximately 6 h after injection of the leukocytes, to match the requirements of the 18 h long scan protocol. 11C-methionine and possibly 68Ga-citrate may be useful for diagnosis of soft issue lesions. PMID:25973338

  19. 90Y-Labeled Anti-ROBO1 Monoclonal Antibody Exhibits Antitumor Activity against Small Cell Lung Cancer Xenografts

    PubMed Central

    Fujiwara, Kentaro; Koyama, Keitaro; Suga, Kosuke; Ikemura, Masako; Saito, Yasutaka; Hino, Akihiro; Iwanari, Hiroko; Kusano-Arai, Osamu; Mitsui, Kenichi; Kasahara, Hiroyuki; Fukayama, Masashi; Kodama, Tatsuhiko; Hamakubo, Takao; Momose, Toshimitsu

    2015-01-01

    Introduction ROBO1 is a membrane protein that contributes to tumor metastasis and angiogenesis. We previously reported that 90Y-labeled anti-ROBO1 monoclonal antibody (90Y-anti-ROBO1 IgG) showed an antitumor effect against ROBO1-positive tumors. In this study, we performed a biodistribution study and radioimmunotherapy (RIT) against ROBO1-positive small cell lung cancer (SCLC) models. Methods For the biodistribution study, 111In-labeled anti-ROBO1 monoclonal antibody (111In-anti-ROBO1 IgG) was injected into ROBO1-positive SCLC xenograft mice via the tail vein. To evaluate antitumor effects, an RIT study was performed, and SCLC xenograft mice were treated with 90Y-anti-ROBO1 IgG. Tumor volume and body weight were periodically measured throughout the experiments. The tumors and organs of mice were then collected, and a pathological analysis was carried out. Results As a result of the biodistribution study, we observed tumor uptake of 111In-anti-ROBO1 IgG. The liver, kidney, spleen, and lung showed comparably high accumulation of 111In-labeled anti-ROBO1. In the RIT study, 90Y-anti-ROBO1 IgG significantly reduced tumor volume compared with baseline. Pathological analyses of tumors revealed coagulation necrosis and fatal degeneration of tumor cells, significant reduction in the number of Ki-67-positive cells, and an increase in the number of apoptotic cells. A transient reduction of hematopoietic cells was observed in the spleen, sternum, and femur. Conclusions These results suggest that RIT with 90Y-anti-ROBO1 IgG is a promising treatment for ROBO1-positive SCLC. PMID:26017283

  20. Role of platelet-activating factor in polymorphonuclear neutrophil recruitment in reperfused ischemic rabbit heart.

    PubMed Central

    Montrucchio, G.; Alloatti, G.; Mariano, F.; Comino, A.; Cacace, G.; Polloni, R.; De Filippi, P. G.; Emanuelli, G.; Camussi, G.

    1993-01-01

    This study investigated the role of platelet-activating factor in the recruitment of polymorphonuclear neutrophils (PMN) in a rabbit model of cardiac ischemia and reperfusion. The accumulation of PMN was evaluated 2 and 24 hours after removal of 40 minutes of coronary occlusion by morphometric analysis and 111In-labeled PMN infiltration. The administration of two structurally unrelated platelet-activating factor-receptor antagonists (SDZ 63-675, 5 mg/kg body weight, and WEB 2170, 5 mg/kg body weight) before reperfusion significantly reduced the accumulation of PMN, as well as the hemodynamic alterations and the size of necrotic area. Two hours after reperfusion, the percentage of increase of 111In-labeled PMN in transmural central ischemic zone was significantly reduced in rabbits pretreated with SDZ 63-675 (51.4 +/- 7.9) or WEB 2170 (32.4 +/- 8.8) with respect to untreated rabbits (107.6 +/- 13.5). The morphometric analysis of myocardial sections confirmed the reduction of PMN infiltration at 2 hours and demonstrated that at 24 hours the phenomenon was even more significant. In addition, SDZ 63-675 and WEB 2170 prevented early transient bradycardia and hypotension and reduced the infarct size, judged by staining with tetrazolium at 2 and 24 hours after reperfusion, and by histological examination at 24 hours. These results suggest that platelet-activating factor is involved in the accumulation of PMN in the reperfused ischemic myocardium and contributes to the evolution of myocardial injury. Images Figure 5 Figure 6 PMID:8434642

  1. Effects of sphincter of Oddi motility on the formation of cholesterol gallstones

    PubMed Central

    Rong, Zhong-Hou; Chen, Hong-Yuan; Wang, Xin-Xing; Wang, Zhi-Yi; Xian, Guo-Zhe; Ma, Bang-Zhen; Qin, Cheng-Kun; Zhang, Zhen-Hai

    2016-01-01

    AIM: To investigate the mechanisms and effects of sphincter of Oddi (SO) motility on cholesterol gallbladder stone formation in guinea pigs. METHODS: Thirty-four adult male Hartley guinea pigs were divided randomly into two groups, the control group (n = 10) and the cholesterol gallstone group (n = 24), which was sequentially divided into four subgroups with six guinea pigs each according to time of sacrifice. The guinea pigs in the cholesterol gallstone group were fed a cholesterol lithogenic diet and sacrificed after 3, 6, 9, and 12 wk. SO manometry and recording of myoelectric activity were obtained by a multifunctional physiograph at each stage. Cholecystokinin-A receptor (CCKAR) expression levels in SO smooth muscle were detected by quantitative real-time PCR (qRT-PCR) and serum vasoactive intestinal peptide (VIP), gastrin, and cholecystokinin octapeptide (CCK-8) were detected by enzyme-linked immunosorbent assay at each stage in the process of cholesterol gallstone formation. RESULTS: The gallstone formation rate was 0%, 0%, 16.7%, and 83.3% in the 3, 6, 9, and 12 wk groups, respectively. The frequency of myoelectric activity in the 9 wk group, the amplitude of myoelectric activity in the 9 and 12 wk groups, and the amplitude and the frequency of SO in the 9 wk group were all significantly decreased compared to the control group. The SO basal pressure and common bile duct pressure increased markedly in the 12 wk group, and the CCKAR expression levels increased in the 6 and 12 wk groups compared to the control group. Serum VIP was elevated significantly in the 9 and 12 wk groups and gastrin decreased significantly in the 3 and 9 wk groups. There was no difference in serum CCK-8 between the groups. CONCLUSION: A cholesterol gallstone-causing diet can induce SO dysfunction. The increasing tension of the SO along with its decreasing activity may play an important role in cholesterol gallstone formation. Expression changes of CCKAR in SO smooth muscle and serum

  2. Bax translocation into mitochondria during dihydroartemisinin(DHA)-induced apoptosis in human lung adenocarcinoma cells

    NASA Astrophysics Data System (ADS)

    Lu, Ying-ying; Chen, Tong-sheng; Qu, Jun-Le

    2009-02-01

    Dihydroartemisinin (DHA), a semi-synthetic derivative of artemisinin, isolated from the traditional Chinese herb Artemisia annua, has been shown to possess promising anticancer activities and induce cancer cell death through apoptotic pathways. However, the molecular mechanisms are not well understood. This study was investigated in human lung adenocarconoma ASTC-a-1 cell line and aimed to determine whether the apoptotic process was mediated by Bax activation and translocation during DHA-induced apoptosis. In this study, DHA induced a time-dependent apoptotic cell death, which was assayed by Cell Counting Kit (CCK-8) and Hoechst 33258 staining. Detection of Bax aggregation and translocation to mitochondria was observed in living cells which were co-transfected with GFP-Bax and Dsred-mito plasmid using confocal fluorescence microscope technique. Overall, these results demonstrated that Bax activation and translocation to mitochondria occurred during DHA-induced apoptosis.

  3. USP21 promotes cell proliferation and metastasis through suppressing EZH2 ubiquitination in bladder carcinoma

    PubMed Central

    Chen, Yong; Zhou, Bo; Chen, Daihui

    2017-01-01

    Bladder cancer (BC) is the second most common malignant tumor of the urinary tract in the world. In this study, we found that ubiquitin-specific protease (USP21) was upregulated in BC and the ectopic expression of USP21 was closely associated with tumor size and metastasis. Moreover, patients with higher levels of USP21 had poorer survival rate. Multiple function analysis such as CCK-8, colony formation, wound healing, and transwell analysis indicated that USP21 regulated cell proliferation and metastasis in bladder carcinoma cell lines. We also found that USP21 could facilitate epithelial–mesenchymal transition. As EZH2 has been reported to promote cell metastasis in BC, our work identified that USP21 deubiquitinated EZH2 and stabilized it. Our data demonstrated that USP21 might play a crucial role in regulating BC progression and could provide a potential therapeutic strategy for BC. PMID:28223825

  4. Analysis on the Alpinia katsumadai components of Zingiberaceae plants and their functions on myeloma resistance.

    PubMed

    Wang, Jue; Qiu, Rubiao; Yuan, Lianjing; Meng, Fei; Tang, Qian

    2015-05-01

    Generally speaking, zingiberaceae plants with sweet fragrance are commonly seen as perennial herbs that contains numerous well-known crude drugs and fragrant plants like Amomum villosum, Amomumtsao-ko, Ginger, Alpinia katsumadai and Radix curcumae, which are widely used in daily life. This paper analyzed chemical components of Alpinia katsumadai of zingiberaceae and applied several laminar analysis to further develop its active ingredients, aiming to make sure its function on tumor assistance. Actually, cardamomin contained in Alpinia katsumadai has been recorded to act notably in myeloma resistance, which was verified by cholecystokinin-octopeptide (CCK-8) in this paper. Cardamom in is proved to have multiple anti-myeloma effects, including myeloma cell activity and proliferation control, cell cycle retardant and apoptosis induction, which indicates its value in the field of medical pharmacy.

  5. Exploration for the multi-effect of cardamom in's resistance to multiple myeloma.

    PubMed

    Zhihua, Zhao; Jianping, Yang; Miaomiao, Sun; Kuisheng, Chen

    2014-11-01

    This paper aimed to probe the cardamom in effect on the viability, proliferation, apoptosis and periodic function of the multiple myeloma, and explore its mechanism. We used CCK-8 method to evaluate the effect of cardamom in on the viability of PBMNCs (Persom Blood Mononuclear Normal Cells). EdU can test the influence of small cell proliferation. We used the method of PI single-staining flow cytometry, in order to test the influence of tumor cell cycle. AO (Acridine Orange), EB (Ethidium Bromide) double staining fluorescene microscope was applied to observe the influence of tumor apoptotic morphology. It can be concluded that cardamom in can inhibit the viability and proliferation of MM (Multiple Myeloma) cells and cardamom in is the anti-myeloma drug with strong viability.

  6. Overexpression of Dishevelled-2 contributes to proliferation and migration of human esophageal squamous cell carcinoma.

    PubMed

    Zhou, Guoren; Ye, Jinjun; Sun, Lei; Zhang, Zhi; Feng, Jifeng

    2016-06-01

    Dishevelled-2 (Dvl2) was associated with tumor cell proliferation and migration. We aimed to examine the mechanism of Dvl2 in esophageal squamous cell carcinoma (ESCC). Dvl2 was overexpressed in human ESCC tissues and cell lines ECA109 and TE1 cells. CCK-8 and colony formation assay was performed to evaluate the proliferation in ECA109 cells transfected with Dvl2-shRNA. Wound-healing assay and transwell assay were used to examine the activities of migration and invasion in Dvl2-silenced ESCC cells. Knockdown of Dvl2 significantly reduced ECA109 cell proliferation and migration. Moreover, we demonstrated that the proliferation and migration ability of Dvl2 might through the activation of Wnt pathway by targeting the Cyclin D1 and MMP-9. We came to the conclusion that the proliferation and migration effects of Dvl2 might contribute to malignant development of human ESCC.

  7. Bax is not involved in the resveratrol-induced apoptosis in human lung adenocarcinoma cells

    NASA Astrophysics Data System (ADS)

    Zhang, Wei-wei; Wang, Zhi-ping; Chen, Tong-sheng

    2010-02-01

    Resveratrol (RV) is a natural plant polyphenol widely present in foods such as grapes, wine, and peanuts. Previous studies indicate that RV has an ability to inhibit various stages of carcinogenesis and eliminate preneoplastic cells in vitro and in vivo. However, little is known about the molecular mechanism of RV-induced apoptosis in human lung adenocarcinoma (ASTC-a-1) cell. In this report, we analyzed whether Bax translocation from cytoplasm to mitochondria during RV-induced apoptosis in single living cell using onfocal microscopey. Cells were transfected with GFP-Bax plasmid. Cell counting kit (CCK-8) assay was used to assess the inhibition of RV on the cells viability. Apoptotic activity of RV was detected by Hoechst 33258 and propidium iodide (PI) staining. Our results showed that RV induced a dose-dependent apoptosis in which Bax did not translocate to mitochondrias.

  8. Effect of radiation on cytotoxicity, apoptosis and cell cycle arrest of human osteosarcoma MG-63 induced by a ruthenium(II) complex.

    PubMed

    Liu, Si-Hong; Zhao, Jian-Hua; Deng, Kun-Kang; Wu, Yong; Zhu, Jian-Wei; Liu, Qing-Hua; Xu, Hui-Hua; Wu, Hai-Feng; Li, Xin-Yan; Wang, Jian-Wei; Guo, Qi-Feng

    2015-04-05

    Radiation has large influence on the cytotoxicity, apoptosis and cell cycle arrest. The bioactivity of ruthenium(II) complex [Ru(dmb)2(DBHIP)](ClO4)2 (Ru1) (DBHIP=2-(3,5-dibromo-4-hydroxylphenyl)imidazo[4,5-f][1,10]phenanthroline) was investigated in the absence and presence of radiation. The cytotoxicity of Ru1 against MG-63 cells was evaluated by CCK-8 method. Ru1 shows high cytotoxicity upon radiation. Radiation can enhance the cytotoxicity of Ru1 on MG-63 cells. The apoptosis was studied by Hoechst 33258 staining method and flow cytometry. The reactive oxygen species, mitochondrial membrane potential, cell cycle arrest and western blot analysis were investigated in detail. The complex induces the apoptosis in MG-63 cells through ROS-mediated mitochondrial dysfunction pathway.

  9. Spy1 participates in the proliferation and apoptosis of epithelial ovarian cancer.

    PubMed

    Lu, Shumin; Liu, Rong; Su, Min; Wei, Yingze; Yang, Shuyun; He, Song; Wang, Xia; Qiang, Fulin; Chen, Chen; Zhao, Shuyang; Zhang, Weiwei; Xu, Pan; Mao, Guoxin

    2016-02-01

    This study focused on determining the role of Spy1 in human epithelial ovarian cancer (EOC). Speedy is a novel cell cycle protein capable of promoting cell proliferation. In this study, western blot and immunohistochemistrical analyses were performed to detect the expression of Spy1 in ovarian cancer. Spy1 protein levels increased with ovarian cancer grade, and Kaplan-Meier curve showed that overexpression of Spy1 was significantly correlated with reduced patient survival. In vitro, Spy1 depletion in ovarian cell lines led to reduced proliferation according to CCK8 and plate colony assays. The expression of Spy1 was positively related to pThr187-p27. Flow cytometry revealed that the reduced expression of Spy1 induced the apoptosis of the EOC cells. In summary, our findings suggested that Spy1 may be a novel independent prognostic predictor of survival for ovarian patients.

  10. New Alkaloids from Green Vegetable Soybeans and Their Inhibitory Activities on the Proliferation of Concanavalin A-Activated Lymphocytes.

    PubMed

    Wang, Taoyun; Zhao, Jianping; Li, Xiaoran; Xu, Qiongming; Liu, Yanli; Khan, Ikhlas A; Yang, Shilin

    2016-03-02

    A comprehensive phytochemical study of the chemical constituents of green vegetable soybeans resulted in the isolation of two new alkaloids, soyalkaloid A, 1, and isoginsenine, 2, together with four known ones, ginsenine, 3, (1S,3S)-1-methyl-1,2,3,4-tetrahydro-β-carboline-3-carboxylic acid, 4, (1R,3S)-1-methyl-1,2,3,4-tetrahydro-β-carboline-3-carboxylic acid, 5, and indole-3-carboxylic acid, 6. The structures of compounds 1-6 were elucidated on the basis of spectroscopic and chemical analyses. All of the alkaloids were isolated from soybeans for the first time, and compound 1 was a new indole-type alkaloid with a novel carbocyclic skeleton. Their inhibitory activities on the proliferation of concanalin A-activated lymphocytes were assessed by CCK8 assay.

  11. Cholecystokinin-gated currents in neurons of the rat solitary complex in vitro.

    PubMed

    Branchereau, P; Champagnat, J; Denavit-Saubié, M

    1993-12-01

    1. Ionic conductances controlled by type A and type B cholecystokinin (CCK) receptors were studied in neurons of the rat nucleus tractus solitarius (NTS) and dorsal motor nucleus of the vagus (DMNV), using intracellular and whole-cell patch clamp recordings in current or voltage clamp configuration during bath application of agonists (CCK8, CCK4, BC 264) and antagonists. 2. CCKA receptor-related inhibition was associated with a membrane hyperpolarization and a decrease in input resistance that developed 2-6 min after the arrival of drug into the extracellular medium. These effects were induced by 5 nM CCK8 but not BC 264 and they were blocked by the CCKA antagonist, L-364,718, but not by the CCKB antagonist, L-365,260. 3. CCKA receptor-related inhibition was generated by a potassium current that reversed at a reversal potential E(rev) of -73 +/- 1 (mean +/- SE) mV with bathing potassium concentration [K+]o = 6 mM and at -88 +/- 1 with [K+]o = 3 mM, in agreement with the Nernst equation for potassium ions. 4. CCKB receptor-related excitation was associated with a membrane depolarization and an increase of the input resistance induced by the following agonists at threshold concentrations: CCK8 (0.2 nM) > or = BC 264 (0.4 nM) > CCK4 (10.9 nM). The increase of input resistance was abolished by L-365,260 and was maintained after blockade of the CCKA current by L-364,718. 5. CCKB receptor-related excitation, in the neurons (30% of cases) in which clear response reversal was observed, appeared to be generated by a decrease of a potassium conductance. Responses showed a reversal potential E(rev) of -68 +/- 4 mV with [K+]o = 6 mM and -89 +/- 1 mV with [K+]o = 3 mM, verifying predictions from the Nernst equation applied to potassium ions. However, in 70% of cases, clear reversal was not observed at membrane potentials negative to the theoretical potassium equilibrium potential EK. 6. In voltage clamp studies, CCK8 induced a 181 +/- 17 pA inward current associated with a 26

  12. Cholecystokinin-33 acutely attenuates food foraging, hoarding and intake in Siberian hamsters

    PubMed Central

    Teubner, Brett J.W.; Bartness, Timothy J.

    2009-01-01

    Neurochemicals that stimulate food foraging and hoarding in Siberian hamsters are becoming more apparent, but we do not know if cessation of these behaviors is due to waning of excitatory stimuli and/or the advent of inhibitory factors. Cholecystokinin (CCK) may be such an inhibitory factor as it is the prototypic gastrointestinal satiety peptide and is physiologically important in decreasing food intake in several species including Siberian hamsters. Systemic injection of CCK-33 in laboratory rats decreases food intake, doing so to a greater extent than CCK-8. We found minimal effects of CCK-8 on food foraging and hoarding previously in Siberian hamsters, but have not tested CCK-33. Therefore, we asked: Does CCK-33 decrease normal levels or food deprivation-induced increases in food foraging, hoarding and intake? Hamsters were housed in a wheel running-based foraging system with simulated burrows to test the effects of peripheral injections of CCK-33 (13.2, 26.4, or 52.8 μg/kg body mass), with or without a preceding 56 h food deprivation. The highest dose of CCK-33 caused large baseline reductions in all three behaviors for the 1st h post injection compared with saline; in addition, the intermediate CCK-33 dose was sufficient to curtail food intake and foraging during the 1st h. In food deprived hamsters, we used a 52.8 μg/kg body mass dose of CCK-33 which decreased food intake, hoarding, and foraging almost completely compared with saline controls for 1 h. Therefore, CCK-33 appears to be a potent inhibitor of food intake, hoarding, and foraging in Siberian hamsters. PMID:20025915

  13. Tumor necrosis factor alpha promotes the proliferation of human nucleus pulposus cells via nuclear factor-κB, c-Jun N-terminal kinase, and p38 mitogen-activated protein kinase.

    PubMed

    Wang, Xiao-Hu; Hong, Xin; Zhu, Lei; Wang, Yun-Tao; Bao, Jun-Ping; Liu, Lei; Wang, Feng; Wu, Xiao-Tao

    2015-04-01

    Although tumor necrosis factor alpha (TNF-α) is known to play a critical role in intervertebral disc (IVD) degeneration, the effect of TNF-α on nucleus pulposus (NP) cells has not yet been elucidated. The aim of this study was to explore the effect of TNF-α on proliferation of human NP cells. NP cells were treated with different concentrations of TNF-α. Cell proliferation was determined by cell counting kit-8 (CCK-8) analysis and Ki67 immunofluorescence staining, and expression of cyclin B1 was studied by quantitative real-time RT-PCR. Cell cycle was measured by flow cytometry and cell apoptosis was analyzed using an Annexin V-fluorescein isothiocyanate (FITC) & propidium iodide (PI) apoptosis detection kit. To identify the mechanism by which TNF-α induced proliferation of NP cells, selective inhibitors of major signaling pathways were used and Western blotting was carried out. Treatment with TNF-α increased cell viability (as determined by CCK-8 analysis) and expression of cyclin B1 and the number of Ki67-positive and S-phase NP cells, indicating enhancement of proliferation. Consistent with this, NP cell apoptosis was suppressed by TNF-α treatment. Moreover, inhibition of NF-κB, c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinase (MAPK) blocked TNF-α-stimulated proliferation of NP cells. In conclusion, the current findings suggest that the effect of TNF-α on IVD degeneration involves promotion of the proliferation of human NP cells via the NF-κB, JNK, and p38 MAPK pathways.

  14. Activation of ALDH2 with Low Concentration of Ethanol Attenuates Myocardial Ischemia/Reperfusion Injury in Diabetes Rat Model.

    PubMed

    Kang, Pin-Fang; Wu, Wen-Juan; Tang, Yang; Xuan, Ling; Guan, Su-Dong; Tang, Bi; Zhang, Heng; Gao, Qin; Wang, Hong-Ju

    2016-01-01

    The aim of this paper is to observe the change of mitochondrial aldehyde dehydrogenase 2 (ALDH2) when diabetes mellitus (DM) rat heart was subjected to ischemia/reperfusion (I/R) intervention and analyze its underlying mechanisms. DM rat hearts were subjected to 30 min regional ischemia and 120 min reperfusion in vitro and pretreated with ALDH2 activator ethanol (EtOH); cardiomyocyte in high glucose (HG) condition was pretreated with ALDH2 activator Alda-1. In control I/R group, myocardial tissue structure collapse appeared. Compared with control I/R group, left ventricular parameters, SOD activity, the level of Bcl-2/Bax mRNA, ALDH2 mRNA, and protein expressions were decreased and LDH and MDA contents were increased, meanwhile the aggravation of myocardial structure injury in DM I/R group. When DM I/R rats were pretreated with EtOH, left ventricular parameters, SOD, Bcl-2/Bax, and ALDH2 expression were increased; LDH, MDA, and myocardial structure injury were attenuated. Compared with DM + EtOH I/R group, cyanamide (ALDH2 nonspecific blocker), atractyloside (mitoPTP opener), and wortmannin (PI3K inhibitor) groups all decreased left ventricular parameters, SOD, Bcl-2/Bax, and ALDH2 and increased LDH, MDA, and myocardial injury. When cardiomyocyte was under HG condition, CCK-8 activity and ALDH2 protein expression were decreased. Alda-1 increased CCK-8 and ALDH2. Our findings suggested enhanced ALDH2 expression in diabetic I/R rats played the cardioprotective role, maybe through activating PI3K and inhibiting mitoPTP opening.

  15. Regulation of muscarinic acetylcholine receptors in cultured guinea pig pancreatic acini

    SciTech Connect

    Hootman, S.R.; Brown, M.E.; Williams, J.A.; Logsdon, C.D.

    1986-07-01

    Regulation of muscarinic receptors in cultured guinea pig pancreatic acini was investigated by assessing the effects of cholinergic agonists on binding of (N-methyl-TH)scopolamine ((TH)NMS) and on amylase release. Freshly dispersed acini bound (TH)NMS with a K/sub d/ of 74 pM and a maximal binding level (B/sub max/) of 908 fmol/mg DNA. Carbachol (CCh) stimulated amylase secretion and inhibited (TH)NMS binding. Incubation of acini for 30 min with 0.1 mM CCh decreased the subsequent efficacy of CCh in stimulating amylase release by threefold but had no effect on its potency. In contrast, amylase release in response to cholecystokinin octapeptide (CCK-8) was not altered by CCh preincubation. (TH)NMS binding to acini was decreased only 15-20% after 30-min incubation with CCh. However, culture of acini with 0.1 mM CCh decreased (TH)NMS binding by 50% at 3-4 h and by 85-90% at 24 h. This decrease was attributable primarily to a reduction in B/sub max/ (TH)NMS binding also was decreased to a similar extent by the cholinergic agonists bethanechol and methacholine but not by other secretagogues. The decrease in antagonist binding induced by CCh was dose dependent, with the IC50, 5.8 M, approximating the EC50 for amylase release, 4.3 M. Cultured of acini for 24 h with CCh abolished subsequent amylase release in response to CCh but not to CCK-8. The results indicate that muscarinic receptor turnover in the pancreatic acinus is regulated by receptor activation and that both a decease in receptor numbers and sensitivity to agonists follows prolonged cholinergic agonist exposure.

  16. Activation of ALDH2 with Low Concentration of Ethanol Attenuates Myocardial Ischemia/Reperfusion Injury in Diabetes Rat Model

    PubMed Central

    Kang, Pin-Fang; Wu, Wen-Juan; Tang, Yang; Xuan, Ling; Guan, Su-Dong; Tang, Bi; Zhang, Heng

    2016-01-01

    The aim of this paper is to observe the change of mitochondrial aldehyde dehydrogenase 2 (ALDH2) when diabetes mellitus (DM) rat heart was subjected to ischemia/reperfusion (I/R) intervention and analyze its underlying mechanisms. DM rat hearts were subjected to 30 min regional ischemia and 120 min reperfusion in vitro and pretreated with ALDH2 activator ethanol (EtOH); cardiomyocyte in high glucose (HG) condition was pretreated with ALDH2 activator Alda-1. In control I/R group, myocardial tissue structure collapse appeared. Compared with control I/R group, left ventricular parameters, SOD activity, the level of Bcl-2/Bax mRNA, ALDH2 mRNA, and protein expressions were decreased and LDH and MDA contents were increased, meanwhile the aggravation of myocardial structure injury in DM I/R group. When DM I/R rats were pretreated with EtOH, left ventricular parameters, SOD, Bcl-2/Bax, and ALDH2 expression were increased; LDH, MDA, and myocardial structure injury were attenuated. Compared with DM + EtOH I/R group, cyanamide (ALDH2 nonspecific blocker), atractyloside (mitoPTP opener), and wortmannin (PI3K inhibitor) groups all decreased left ventricular parameters, SOD, Bcl-2/Bax, and ALDH2 and increased LDH, MDA, and myocardial injury. When cardiomyocyte was under HG condition, CCK-8 activity and ALDH2 protein expression were decreased. Alda-1 increased CCK-8 and ALDH2. Our findings suggested enhanced ALDH2 expression in diabetic I/R rats played the cardioprotective role, maybe through activating PI3K and inhibiting mitoPTP opening. PMID:27829984

  17. Distribution of cholecystokinin receptor binding sites in the human brain: an autoradiographic study

    SciTech Connect

    Dietl, M.M.; Probst, A.; Palacios, J.M.

    1987-01-01

    Cholecystokinin (CCK) binding sites were localized by in vitro autoradiography in human postmortem brain materials from 12 patients without reported neurological diseases using (125I)Bolton-Hunter CCK octapeptide (BHCCK-8) as a ligand. The pharmacological characteristics of BHCCK-8 binding to mounted tissue sections were comparable to those previously reported in the rat. CCK-8 being the most potent displacer, followed by caerulein, CCK-4, and gastrin I. The distribution of BHCCK-8 binding sites was heterogeneous. These sites were highly concentrated in a limited number of gray matter areas and nuclei. The highest binding densities were seen in the glomerular and external plexiform layers of the olfactory bulb. BHCCK-8 binding sites were also enriched in the neocortex, where they presented a laminar distribution with low levels in lamina I, moderate concentration in laminae II to IV, high density in lamina V, and low levels in lamina VI. A different laminar distribution was seen in the visual cortex, where a low receptor density was observed in lamina IV but higher density in laminae II and VI. In the basal ganglia the nucleus accumbens, caudatus, and the putamen presented moderate to high densities of binding sites, while the globus pallidus lacked sites of BHCCK-8 binding. In the limbic system the only area presenting moderate to high density was the amygdaloid complex, particularly in the granular nucleus, while most of the thalamic nuclei were extremely poor or lacked BHCCK-8 binding. The hippocampal formation showed low (CA1-3) to moderate (subiculum) densities. Midbrain areas generally disclosed very low levels of BHCCK-8 binding sites. The pontine gray and the nucleus reticularis tegmenti pontis showed a relatively high density of CCK-8 receptor specific binding.

  18. Metformin Inhibits TGF-β1-Induced Epithelial-to-Mesenchymal Transition via PKM2 Relative-mTOR/p70s6k Signaling Pathway in Cervical Carcinoma Cells

    PubMed Central

    Cheng, Keyan; Hao, Min

    2016-01-01

    Background: Epithelial-to-mesenchymal transition (EMT) plays a prominent role in tumorigenesis. Metformin exerts antitumorigenic effects in various cancers. This study investigated the mechanisms of metformin in TGF-β1-induced Epithelial-to-mesenchymal transition (EMT) in cervical carcinoma cells. Methods: cells were cultured with 10 ng/mL TGF-β1 to induce EMT and treated with or without metformin. Cell viability was evaluated by CCK-8 (Cell Counting Kit 8, CCK-8) assay; apoptosis were analyzed by flow cytometry; cell migration was evaluated by wound-healing assay. Western blotting was performed to detect E-cadherin, vimentin, signal transducer and activator of transcription 3 (STAT3), snail family transcriptional repressor 2 (SNAIL2), phosphorylation of p70s6k (p-p70s6k) and -Pyruvate kinase M2 (PKM2) Results: TGF-β1 promoted proliferation and migration, and it attenuated apoptosis compared with cells treated with metformin with or without TGF-β1 in cervical carcinoma cells. Moreover, metformin partially abolished TGF-β1-induced EMT cell proliferation and reversed TGF-β1-induced EMT. In addition, the anti-EMT effects of metformin could be partially in accord with rapamycin, a specific mTOR inhibitor. Metformin decreased the p-p70s6k expression and the blockade of mTOR/p70s6k signaling decreased PKM2 expression. Conclusion: Metformin abolishes TGF-β1-induced EMT in cervical carcinoma cells by inhibiting mTOR/p70s6k signaling to down-regulate PKM2 expression. Our study provides a novel mechanistic insight into the anti-tumor effects of metformin. PMID:27916907

  19. Uvangoletin induces mitochondria-mediated apoptosis in HL-60 cells in vitro and in vivo without adverse reactions of myelosuppression, leucopenia and gastrointestinal tract disturbances.

    PubMed

    Zheng, Zhuanzhen; Qiao, Zhenhua; Gong, Rong; Wang, Yalin; Zhang, Yiqun; Ma, Yanping; Zhang, Li; Lu, Yujin; Jiang, Bo; Li, Guoxia; Dong, Chunxia; Chen, Wenliang

    2016-02-01

    This study investigated the cytotoxic effect of uvangoletin on HL-60 cells, and the effects of uvangoletin on myelosuppression, leucopenia, gastrointestinal tract disturbances and the possible cytotoxic mechanisms by using CCK-8, flow cytometry, western blot, xenograft, cyclophosphamide-induced leucopenia, copper sulfate-induced emesis and ethanol-induced gastric mucosal lesions assays. The results of CCK-8, flow cytometry and western blot assays indicated that uvangoletin showed the cytotoxic effect on HL-60 cells and induced the apoptosis of HL-60 cells by downregulating the expression levels of anti-apoptotic proteins (Survivin, Bcl-xl and Bcl-2), upregulating the expression levels of pro-apoptotic proteins (Smac, Bax, Bad, c-caspase-3 and c-caspase-9), and promoting the release of cytochrome c from mitochondria to cytoplasm. Further, the results of xenograft assay suggested that uvangoletin inhibited the HL-60-induced tumor growth without adverse effect on body weight of nude mice in vivo by regulating the expression levels of above apoptotic proteins. The results indicated that the reductions of WBCs count and thighbone marrow granulocytes percentage in cyclophosphamide-induced leucopenia assay, the incubation period and number of emesis in copper sulfate-induced emesis assay and the gastric mucosal lesions in ethanol-induced gastric mucosal lesions assay were not exacerbated or reversed by uvangoletin. In conclusion, the research preliminarily indicated that uvangoletin induced apoptosis of HL-60 cells in vitro and in vivo without adverse reactions of myelosuppression, leucopenia and gastrointestinal tract disturbances, and the pro-apoptotic mechanisms may be related to mitochondria-mediated apoptotic pathway.

  20. [Mechanism of HL-60 cells apoptosis induced by proteasome inhibitor MG132].

    PubMed

    Zhou, Yong-Ming; Yu, Mei-Xia; Qiu, Yu-Zhen; Xing, Xiao-Lei; Yao, Chun-Hong; Bai, Ru-Jun

    2013-08-01

    The purpose of this study was to elucidate the apoptosis, apoptotic pathway of HL-60 cells induced by proteasome inhibitor MG132 and its effect on allogeneic mixed lymphocyte reaction. Apoptosis of HL-60 cells was detected by flow cytometry, the expression of P21, P27 and P53 proteins in HL-60 cells treated with MG132 was assayed by Western blot. The HL-60 cells were treated with 1 µmol/L MG132 for 48 h, and irradiated by 75 Gy of (60)Co γ-ray, but their antigenicity was preserved. The effect of irradiated HL-60 cells treated with MG132 on proliferation of peripheral blood mononuclear cells (PBMNC) was measured by CCK-8 method. The results showed that the apoptotic rate of MG132-treated HL-60 cells increased in dose-and time-dependent manner. No significant changes in MG132-induced apoptosis were observed after inhibiting caspase-8 and caspase-9 pathway. The expression of P21 and P27 protein increased after treatment of HL-60 cells with MG132. CCK-8 test showed that HL-60 cells induced with low-dose of MG132 displayed the enhancing effect on proliferation of PBMNC. It is concluded that high dose of MG132 can induce the apoptosis of HL-60 cells, and has direct killing effect on HL-60 cells, but this inducing apoptotic effect on HL-60 cells can not be realized through caspase-8 and caspase-9 pathway. The P21 and P27 protein may be involved in MG132 induced HL-60 cell apoptosis. Low dose of MG132 promotes the proliferation of PBMNC in healthy individuals and enhance the immunity of organism.

  1. A Comparative Study on the Biological Characteristics of Human Adipose-Derived Stem Cells from Lipectomy and Liposuction

    PubMed Central

    Li, Wangzhou; Lei, Zhanjun; Li, Yuejun; Li, Xueyong

    2016-01-01

    Purposes To compare the biological behaviors of human adipose-derived stem cells (ADSCs) isolated from adipose tissue by lipectomy and liposuction, with the purpose of providing the basis for clinical application. Methods The proliferation and apoptosis of ADSCs were analyzed by CCK-8 assay and flow cytometry. Cell migration was measured by a wound healing assay. An ELISA assay was used to evaluate paracrine functions. SOD and MDA were tested by xanthine oxidase and thiobarbituric acid reactions, respectively. In addition, we used a CCK-8, LDH assay and flow cytometry to analyze the proliferation and apoptosis of ADSCs treated with lidocaine or adrenaline. Results The viable ADSCs yield from liposuction was significantly lower than that from lipectomy, while the apoptosis of cells from liposuction was significantly higher than from lipectomy. The paracrine secretion of the two sources of ADSCs was highest when treated with 10−7 mol/L insulin and 10 ng/mL TGF-α, but there were no significant differences in VEGF, IL-6, IL-8 or HGF levels. The ADSCs from lipectomy migrated faster than those from liposuction, and SOD in the lipectomy group was higher than in the liposuction group, whereas MDA of the lipectomy group was lower than that of the liposuction group. The proliferation ADSCs treated with lidocaine or adrenaline was greatly decreased, while apoptosis was significantly increased, and cytotoxicity of lidocaine or adrenaline to ADSCs was dose-dependent. Conclusions Compared with ADSCs from liposuction, the ADSCs from lipectomy have better biological characteristics. Lidocaine and adrenaline decreased the viability of ADSCs, and their cytotoxicity to ADSCs was dose-dependent. PMID:27610618

  2. Effects of Cx43 gene modification on the proliferation and migration of the human lung squamous carcinoma cell line NCI-H226.

    PubMed

    Zang, J-P; Wei, R

    2015-10-27

    In this study, the human lung squamous carcinoma cell line NCI-H226 was transfected with the recombinant plasmid pBudCE4.1_Cx43 to explore the role of the Cx43 gene in cell growth, cell cycle, and tumor migration. pBudCE4.1-Cx43 was transfected into human lung squamous carcinoma NCI-H226 cells using Lipofectamine TM2000. The mRNA and protein expressions of Cx43 in the transfected cells were detected by reverse transcriptase polymerase chain reaction and western blot analysis. The cell-cell communication was detected using the scratch dye tracer method and the cell cycle was detected by flow cytometry. The CCK-8 proliferation, scratch healing, and cell invasion assays were performed to evaluate the effect of the Cx43 gene transfection on the proliferation, migration, and invasive abilities of NCI-H226 cells. Cx43 mRNA and protein expressions and the fluorescence intensity in the scratch healing test were significantly higher in the experimental group than those in the control and blank groups (P < 0.05 and < 0.01, respectively). The CCK-8 proliferation assay and the scratch healing experiment revealed significantly inhibited NCI-H226 cell proliferation (especially 72 h after incubation) and cell migration, respectively, in the experimental group, compared to the control and blank groups (P < 0.001 and <0.05, respectively). The transwell chamber test showed a statistically significant decrease in the invasive ability of NCI-H226 cells in the experimental group (P < 0.05). Therefore, Cx43 gene transfection could inhibit the migration of human lung squamous carcinoma cell line NCI-H226, thereby inhibiting tumor cell proliferation.

  3. Effects of silencing the ATP-binding cassette protein E1 gene by electroporation on the proliferation and migration of EC109 human esophageal cancer cells.

    PubMed

    Li, Xiao-Rui; Yang, Liu-Zhong; Huo, Xiao-Qing; Wang, Ying; Yang, Qing-Hui; Zhang, Qing-Qin

    2015-07-01

    In the present study, the gene expression of ATP-binding cassette protein E1 (ABCE1) in the EC109 human esophageal cancer cell line was silenced using electroporation to examine the effect if the ABCE1 gene on the growth migration and cell cycle of cancer cells. The small interference (si)RNA sequence of ABCE1 was designed and synthesized to transfect the EC109 cells by electroporation. The mRNA and protein expression levels of ABCE1 were then detected by reverse transcription quantitative polymerase chain reaction (RT-qPCR) and western blot analysis. The analysis of the cell cycle and apoptosis was performed using flow cytometry. The effect of silencing the ABCE1 gene on the proliferation, migration and invasive ability of the EC109 human esophageal cancer cells were assessed using a Cell counting kit-8 (CCK-8) and with proliferation, wound-healing and cell invasion assays. The mRNA and protein expression levels of ABCE1 were significantly lower in the experimental group compared with the control group (P<0.05). The apoptotic rate of the experimental group was markedly higher than the control group and blank group (P<0.01). The CCK-8 proliferation assay revealed that, compared with the control and blank groups, the proliferation of the EC109 cells in the experimental group was significantly inhibited (P<0.05). The wound healing assay revealed that the migration capacity of the cells in the experimental group was significantly decreased (P<0.05). The Transwell chamber assay demonstrated that the invasive ability of the EC109 cells in the experimental group was significantly decreased (P<0.01). These results revealed that ABCE1 is closely associated with cell proliferation, invasion and migration in esophageal cancer and silencing the ABCE1 gene by electroporation can significantly reduce the proliferation, invasion and migration capacity of EC109 cells in vitro.

  4. Influence of Cu content on the cell biocompatibility of Ti-Cu sintered alloys.

    PubMed

    Zhang, Erlin; Zheng, Lanlan; Liu, Jie; Bai, Bing; Liu, Cong

    2015-01-01

    The cell toxicity and the cell function of Ti-Cu sintered alloys with different Cu contents (2, 5, 10 and 25 wt.%, respectively) have been investigated in comparison with commercial pure titanium in order to assess the influence of Cu content on the cell biocompatibility of the Ti-Cu alloys. The cytotoxicity was studied by examining the MG63 cell response by CCK8 assessment. The cell morphology was evaluated by acridine orange/ethidium bromide (AO/EB) fluorescence and observed under scanning electronic microscopy (SEM). The cell function was monitored by measuring the AKP activity. It has been shown by the AO/EB morphology results that the cell death on both cp-Ti sample and Ti-Cu samples is due to apoptosis rather than necrosis. Although more apoptotic cells were found on the Ti-2Cu and Ti-5Cu samples, no evidence of Cu content dependent manner of apoptosis has been found. SEM observation indicated very good cell adhesion and spread on the cp-Ti sample and the Ti-Cu samples with different Cu contents. CCK8 results displayed that increase in the Cu content in Ti-Cu alloys does not bring about any difference in the cell viability. In addition, AKP test results indicated that no difference in the differentiation of MG63 was found between the cp-Ti and the Ti-Cu samples and among the Ti-Cu samples. All results indicated that Ti-Cu alloys exhibit very good cell biocompatibility and the Cu content up to 25 wt.% in the Ti-Cu alloys has no influence on the cell proliferation and differentiation.

  5. [Evaluation of biocompatibility of Ti-6Al-4V scaffolds fabricated by electron beam melting].

    PubMed

    Wang, H; Zhao, B J; Yan, R Z; Wang, C; Luo, C C; Hu, M

    2016-11-09

    Objective: To investigate the biocompatibility of Ti-6Al-4V scaffolds fabricated by electron beam melting(EBM). Methods: Bone marrow mesenchymal stem cells(BMSC) co-cultured with Ti-6Al-4V specimens fabricated with EBM was prepared as experimental group and the regular cells culture was employed as control. The biocompatibility was detected using CCK-8 and cytoskeleton staining. The osteogenic differentiation ability was assessed using mineralization nodule formation. A 24 mm defect was created on the right mandibular body in 12 beagles. The mandibular defects were repaired with Ti-6Al-4V scaffolds mesh fabricated by EBM. General observation, CT and histology examination was carried out to evaluated the biocompatibility of Ti-6Al-4V scaffolds in vivo. Results: CCK-8 result showed the A values of the two groups had no significant difference(P >0.05). There was no significant difference between the two groups (P>0.05). Cytoskeletal staining showed that cells were fully stretched out and grew well on T-i6Al-4V specimen. The actin fibers were arranged in parallel and stained uniformly with fluorescent. After osteogenic culture, the quantity of the nodule formation of the experimental group and control group were 5.7±0.7 and 5.1 ± 0.6, respectively(P>0.05). All animals had tolerated the surgery and healed well. CT examination showed that Ti-6Al-4V scaffolds mesh had good retention with surrounding bone and the continuity of mandible was restored. Histological examination showed that no inflammation reaction or toxity was caused in the soft tissue surrounding the scaffolds and in the liver and kidney after implantation. Ti-6Al-4V scaffolds had good retention with surrounding bone. Conclusions: Ti-6Al-4V fabricated with electron beam melting has good biocompatibility.

  6. Cholecystokinin-33 acutely attenuates food foraging, hoarding and intake in Siberian hamsters.

    PubMed

    Teubner, Brett J W; Bartness, Timothy J

    2010-04-01

    Neurochemicals that stimulate food foraging and hoarding in Siberian hamsters are becoming more apparent, but we do not know if cessation of these behaviors is due to waning of excitatory stimuli and/or the advent of inhibitory factors. Cholecystokinin (CCK) may be such an inhibitory factor as it is the prototypic gastrointestinal satiety peptide and is physiologically important in decreasing food intake in several species including Siberian hamsters. Systemic injection of CCK-33 in laboratory rats decreases food intake, doing so to a greater extent than CCK-8. We found minimal effects of CCK-8 on food foraging and hoarding previously in Siberian hamsters, but have not tested CCK-33. Therefore, we asked: Does CCK-33 decrease normal levels or food deprivation-induced increases in food foraging, hoarding and intake? Hamsters were housed in a wheel running-based foraging system with simulated burrows to test the effects of peripheral injections of CCK-33 (13.2, 26.4, or 52.8 microg/kg body mass), with or without a preceding 56 h food deprivation. The highest dose of CCK-33 caused large baseline reductions in all three behaviors for the 1st hour post-injection compared with saline; in addition, the intermediate CCK-33 dose was sufficient to curtail food intake and foraging during the 1st hour. In food-deprived hamsters, we used a 52.8 microg/kg body mass dose of CCK-33 which decreased food intake, hoarding, and foraging almost completely compared with saline controls for 1h. Therefore, CCK-33 appears to be a potent inhibitor of food intake, hoarding, and foraging in Siberian hamsters.

  7. Effects of tacrolimus on morphology, proliferation and differentiation of mesenchymal stem cells derived from gingiva tissue

    PubMed Central

    HA, DONG-HO; YONG, CHUL SOON; KIM, JONG OH; JEONG, JEE-HEON; PARK, JUN-BEOM

    2016-01-01

    Tacrolimus is a 23-membered macrolide lactone with potent immunosuppressive activity that is effective in the prophylaxis of organ rejection following kidney, heart and liver transplantation. Tacrolimus also exerts a variety of actions on bone metabolism. The aim of the present study was to evaluate the effects of different concentrations of tacrolimus on the morphology and viability of human stem cells derived from the gingiva. Gingival-derived stem cells were grown in the presence of tacrolimus at final concentrations ranging from 0.001 to 100 µg/ml. The morphology of the cells was viewed under an inverted microscope and the cell viability was analyzed using Cell Counting kit-8 (CCK-8) on days 1, 3, 5 and 7. Alizarin Red S staining was used to assess mineralization of treated cells. The control group showed spindle-shaped, fibroblast-like morphology and the shapes of the cells in 0.001, 0.01, 0.1, 1 and 10 µg/ml tacrolimus were similar to those of the control group. All groups except the 100 µg/ml group showed increased cell proliferation over time. Cultures grown in the presence of tacrolimus at 0.001, 0.01, 0.1, 1 and 10 µg/ml were not identified to be significantly different compared with the control at days 1, 3 and 5 using the CCK-8 assays. Increased mineralized deposits were noted with increased incubation time. Treatment with tacrolimus from 0.001 to 1 µg/ml led to an increase in mineralization compared with the control group. Within the limits of this study, tacrolimus at the tested concentrations (ranging from 0.001 to 10 µg/ml) did not result in differences in the viability of stem cells derived from gingiva; however it did enhance osteogenic differentiation of the stem cells. PMID:27177273

  8. Sustained-release genistein from nanostructured lipid carrier suppresses human lens epithelial cell growth

    PubMed Central

    Liu, Jin-Lu; Zhang, Wen-Ji; Li, Xue-Dong; Yang, Na; Pan, Wei-San; Kong, Jun; Zhang, Jin-Song

    2016-01-01

    AIM To design and investigate the efficacy of a modified nanostructured lipid carrier loaded with genistein (Gen-NLC) to inhibit human lens epithelial cells (HLECs) proliferation. METHODS Gen-NLC was made by melt emulsification method. The morphology, particle size (PS), zeta potentials (ZP), encapsulation efficiency (EE) and in vitro release were characterized. The inhibition effect of nanostructured lipid carrier (NLC), genistein (Gen) and Gen-NLC on HLECs proliferation was evaluated by cell counting kit-8 (CCK-8) assay, gene and protein expression of the proliferation marker Ki67 were evaluated with real-time quantitative polymerase chain reaction (RT-qPCR) and immunofluorescence analyses. RESULTS The mean PS of Gen-NLC was 80.12±1.55 nm with a mean polydispersity index of 0.11±0.02. The mean ZP was -7.14±0.38 mV and the EE of Gen in the nanoparticles was 92.3%±0.73%. Transmission electron microscopy showed that Gen-NLC displayed spherical-shaped particles covered by an outer-layer structure. In vitro release experiments demonstrated a prolonged drug release for 72h. The CCK-8 assay results showed the NLC had no inhibitory effect on HLECs and Gen-NLC displayed a much more prominent inhibitory effect on cellular growth compared to Gen of the same concentration. The mRNA and protein expression of Ki67 in LECs decreased significantly in Gen-NLC group. CONCLUSION Sustained drug release by Gen-NLCs may impede HLEC growth. PMID:27275415

  9. Regulation of feeding behavior and food intake by appetite-regulating peptides in wild-type and growth hormone-transgenic coho salmon.

    PubMed

    White, Samantha L; Volkoff, Helene; Devlin, Robert H

    2016-08-01

    Survival, competition, growth and reproductive success in fishes are highly dependent on food intake, food availability and feeding behavior and are all influenced by a complex set of metabolic and neuroendocrine mechanisms. Overexpression of growth hormone (GH) in transgenic fish can result in greatly enhanced growth rates, feed conversion, feeding motivation and food intake. The objectives of this study were to compare seasonal feeding behavior of non-transgenic wild-type (NT) and GH-transgenic (T) coho salmon (Oncorhynchus kisutch), and to examine the effects of intraperitoneal injections of the appetite-regulating peptides cholecystokinin (CCK-8), bombesin (BBS), glucagon-like peptide-1 (GLP-1), and alpha-melanocyte-stimulating hormone (α-MSH) on feeding behavior. T salmon fed consistently across all seasons, whereas NT dramatically reduced their food intake in winter, indicating the seasonal regulation of appetite can be altered by overexpression of GH in T fish. Intraperitoneal injections of CCK-8 and BBS caused a significant and rapid decrease in food intake for both genotypes. Treatment with either GLP-1 or α-MSH resulted in a significant suppression of food intake for NT but had no effect in T coho salmon. The differential response of T and NT fish to α-MSH is consistent with the melanocortin-4 receptor system being a significant pathway by which GH acts to stimulate appetite. Taken together, these results suggest that chronically increased levels of GH alter feeding regulatory pathways to different extents for individual peptides, and that altered feeding behavior in transgenic coho salmon may arise, in part, from changes in sensitivity to peripheral appetite-regulating signals.

  10. Histone demethylase JMJD1C regulates esophageal cancer proliferation Via YAP1 signaling

    PubMed Central

    Cai, Yixin; Fu, Xiangning; Deng, Yu

    2017-01-01

    Esophageal cancer (EC) is the most lethal cancer, and it is of significant concern worldwide, particularly in China. However, there are no effective treatments to cure it, such as chemotherapy, surgery, or radiotherapy. This is attributed to the lack of understanding of the molecular mechanisms of EC. Recently, the superfamily of Jmj-containing KDMs has been shown to play an important role in tumorigenesis in various cancers, including EC. In this study, we demonstrated that JMJD1C was upregulated in patient EC tissues and different EC cell lines. Furthermore, JMJD1C levels were positively correlated with the TNM stage. Moreover, the colony formation assay, CCK8, and cell number count assay showed that the knockdown of JMJD1C inhibited EC cell proliferation. Western blot analysis and the quantitative real-time polymerase chain reaction assay showed that the knockdown of JMJD1C repressed the protein and mRNA levels of YAP1 via regulating the H3K9me2 activity, but not the H3K9me1 activity. The colony formation assay, CCK8 analysis, and cell number count assay revealed that inhibition of EC cell proliferation by the knockdown of JMJD1C was rescued by overexpression of YAP1. Taken together, our results demonstrated that JMJD1C controls the proliferation of EC via modulation of H3K9me2 activity, targeting the YAP1 gene expression and functions as a tumor suppressor in EC. This novel pathway may serve as a therapeutic target for EC patients. PMID:28123852

  11. Three-dimensional Printed Scaffolds with Gelatin and Platelets Enhance In vitro Preosteoblast Growth Behavior and the Sustained-release Effect of Growth Factors

    PubMed Central

    Zhu, Wei; Xu, Chi; Ma, Bu-Peng; Zheng, Zhi-Bo; Li, Yu-Long; Ma, Qi; Wu, Guo-Liang; Weng, Xi-Sheng

    2016-01-01

    Background: Three-dimensional (3D) printing technology holds great promise for treating diseases or injuries that affect human bones with enhanced performance over traditional techniques. Different patterns of design can lead to various mechanical properties and biocompatibility to various degrees. However, there is still a long way to go before we can fully take advantage of 3D printing technologies. Methods: This study tailored 3D printed scaffolds with gelatin and platelets to maximize bone regeneration. The scaffolds were designed with special internal porous structures that can allow bone tissue and large molecules to infiltrate better into the scaffolds. They were then treated with gelatin and platelets via thermo-crosslinking and freeze-drying, respectively. Vascular endothelial growth factor (VEGF) and transforming growth factor (TGF)-β1 were measured at different time points after the scaffolds had been made. Cell proliferation and cytotoxicity were determined via cell counting kit-8 (CCK-8) assay. Results: There was a massive boost in the level of VEGF and TGF-β1 released by the scaffolds with gelatin and platelets compared to that of scaffolds with only gelatin. After 21 days of culture, the CCK-8 cell counts of the control group and treated group were significantly higher than that of the blank group (P < 0.05). The cytotoxicity test also indicated the safety of the scaffolds. Conclusions: Our experiments confirmed that the 3D printed scaffolds we had designed could provide a sustained-release effect for growth factors and improve the proliferation of preosteoblasts with little cytotoxicity in vitro. They may hold promise as bone graft substitute materials in the future. PMID:27779164

  12. Neuroendocrine system of the digestive tract in Rhamdia quelen juvenile: an immunohistochemical study.

    PubMed

    Hernández, D R; Vigliano, F A; Sánchez, S; Bermúdez, R; Domitrovic, H A; Quiroga, M I

    2012-08-01

    In this work, an immunohistochemical study was performed to determine the distribution and relative frequencies of some neuromodulators of the digestive tract of silver catfish (Rhamdia quelen). The digestive tract of silver catfish was divided into six portions; the oesophagus, stomach, intestine (ascendant, descendant and convoluted segments), and rectum. Immunohistochemical method using a pool of specific antisera against-gastrin, -cholecystokinin-8, -leu-enkephalin, -neuropeptide Y, -calcitonin gene-related peptide (CGRP), and -vasoactive intestinal peptide (VIP) was employed. Immunoreactivity to all antisera was identified in neuroendocrine cells (NECs) localized in the gut epithelium, although no reaction was observed in the oesophagus or stomach. The morphology of NECs immunopositive to each antibody was similar. They were slender in shape, with basally located nucleus, and their main axis perpendicular to the basement membrane. The number of NECs immunoreactive to all antisera was higher in the ascendant and descendant intestine, exhibiting a decreasing trend toward distal segments of the gut. In addition, immunoreactivity to CGRP and VIP was observed in the myenteric plexus and nerve fibers distributed in the mucosal, submucosal and muscular layers. The higher number of immunopositive NECs in the ascendant and descendant intestine may indicate the primary role of these segments in the control of food intake by means of orexigenic and anorexigenic peripheral signals.

  13. Chronic CNS oxytocin signaling preferentially induces fat loss in high-fat diet-fed rats by enhancing satiety responses and increasing lipid utilization.

    PubMed

    Blevins, James E; Thompson, Benjamin W; Anekonda, Vishwanath T; Ho, Jacqueline M; Graham, James L; Roberts, Zachary S; Hwang, Bang H; Ogimoto, Kayoko; Wolden-Hanson, Tami; Nelson, Jarrell; Kaiyala, Karl J; Havel, Peter J; Bales, Karen L; Morton, Gregory J; Schwartz, Michael W; Baskin, Denis G

    2016-04-01

    Based largely on a number of short-term administration studies, growing evidence suggests that central oxytocin is important in the regulation of energy balance. The goal of the current work is to determine whether long-term third ventricular (3V) infusion of oxytocin into the central nervous system (CNS) is effective for obesity prevention and/or treatment in rat models. We found that chronic 3V oxytocin infusion between 21 and 26 days by osmotic minipumps both reduced weight gain associated with the progression of high-fat diet (HFD)-induced obesity and elicited a sustained reduction of fat mass with no decrease of lean mass in rats with established diet-induced obesity. We further demonstrated that these chronic oxytocin effects result from 1) maintenance of energy expenditure at preintervention levels despite ongoing weight loss, 2) a reduction in respiratory quotient, consistent with increased fat oxidation, and 3) an enhanced satiety response to cholecystokinin-8 and associated decrease of meal size. These weight-reducing effects persisted for approximately 10 days after termination of 3V oxytocin administration and occurred independently of whether sucrose was added to the HFD. We conclude that long-term 3V administration of oxytocin to rats can both prevent and treat diet-induced obesity.

  14. The role of Ca2+ influx in endocytic vacuole formation in pancreatic acinar cells

    PubMed Central

    Voronina, Svetlana; Collier, David; Chvanov, Michael; Middlehurst, Ben; Beckett, Alison J.; Prior, Ian A.; Criddle, David N.; Begg, Malcolm; Mikoshiba, Katsuhiko; Sutton, Robert; Tepikin, Alexei V.

    2014-01-01

    The inducers of acute pancreatitis trigger a prolonged increase in the cytosolic Ca2+ concentration ([Ca2+]c), which is responsible for the damage to and eventual death of pancreatic acinar cells. Vacuolization is an important indicator of pancreatic acinar cell damage. Furthermore, activation of trypsinogen occurs in the endocytic vacuoles; therefore the vacuoles can be considered as ‘initiating’ organelles in the development of the cell injury. In the present study, we investigated the relationship between the formation of endocytic vacuoles and Ca2+ influx developed in response to the inducers of acute pancreatitis [bile acid taurolithocholic acid 3-sulfate (TLC-S) and supramaximal concentration of cholecystokinin-8 (CCK)]. We found that the inhibitor of STIM (stromal interaction molecule)/Orai channels, GSK-7975A, effectively suppressed both the Ca2+ influx (stimulated by inducers of pancreatitis) and the formation of endocytic vacuoles. Cell death induced by TLC-S or CCK was also inhibited by GSK-7975A. We documented the formation of endocytic vacuoles in response to store-operated Ca2+ entry (SOCE) induced by thapsigargin [TG; inhibitor of sarcoplasmic/endoplasmic reticulum (ER) Ca2+ pumps] and observed strong inhibition of TG-induced vacuole formation by GSK-7975A. Finally, we found that structurally-unrelated inhibitors of calpain suppress formation of endocytic vacuoles, suggesting that this Ca2+-dependent protease is a mediator between Ca2+ elevation and endocytic vacuole formation. PMID:25370603

  15. Beneficial effect of the bioflavonoid quercetin on cholecystokinin-induced mitochondrial dysfunction in isolated rat pancreatic acinar cells.

    PubMed

    Weber, Heike; Jonas, Ludwig; Wakileh, Michael; Krüger, Burkhard

    2014-03-01

    The pathogenesis of acute pancreatitis (AP) is still poorly understood. Thus, a reliable pharmacological therapy is currently lacking. In recent years, an impairment of the energy metabolism of pancreatic acinar cells, caused by Ca(2+)-mediated depolarization of the inner mitochondrial membrane and a decreased ATP supply, has been implicated as an important pathological event. In this study, we investigated whether quercetin exerts protection against mitochondrial dysfunction. Following treatment with or without quercetin, rat pancreatic acinar cells were stimulated with supramaximal cholecystokinin-8 (CCK). CCK caused a decrease in the mitochondrial membrane potential (MMP) and ATP concentration, whereas the mitochondrial dehydrogenase activity was significantly increased. Quercetin treatment before CCK application exerted no protection on MMP but increased ATP to a normal level, leading to a continuous decrease in the dehydrogenase activity. The protective effect of quercetin on mitochondrial function was accompanied by a reduction in CCK-induced changes to the cell membrane. Concerning the molecular mechanism underlying the protective effect of quercetin, an increased AMP/ATP ratio suggests that the AMP-activated protein kinase system may be activated. In addition, quercetin strongly inhibited CCK-induced trypsin activity. The results indicate that the use of quercetin may be a therapeutic strategy for reducing the severity of AP.

  16. Extraction, radiolabeling, and in vivo catabolism of autologous-origin equine fibrinogen and platelets in the healthy and exercise-stressed horse

    SciTech Connect

    Coyne, C.P.

    1986-01-01

    Three separate techniques were evaluated for the extraction of autologous-origin fibrinogen from whole equine plasma. Rapid extraction of equine fibrinogen with ammonium sulfate-sodium phosphate buffer, in combination with saturated glycine buffer, provided the most practical means of obtaining a protein extract with the highest degree of biological activity and sufficiently high iodine-125 (/sup 125/I) radiolabeling efficiencies using monochloroiodine reagent (ICI). A technique was developed for the in vitro radiolabeling of equine platelets suspended in plasma. This entailed the use of the isotope, indium-111 (/sup 111/In), together with the lipophilic ligand, 2-(mercaptopyridine-N-oxide). This labeling technique achieved labeling efficiencies between 75% and 96%, and in vitro aggregability of /sup 111/In-merc radiolabeled platelets was comparable to that of unlabeled cell isolates. In the final phase of the investigation, autologous-origin /sup 125/I-labeled fibrinogen and /sup 111/In-labeled platelets were applied in a series of equine exercise physiology studies. Elimination of these two radiobiologicals was evaluated in the resting and exercise-stressed horse. Results from these investigations revealed no long-term influence of exercise conditioning on the in vivo kinetics of radiolabeled fibrinogen or platelets.

  17. Ultraviolet irradiation of platelet concentrates: Feasibility in transfusion practice

    SciTech Connect

    Andreu, G.; Boccaccio, C.; Lecrubier, C.; Fretault, J.; Coursaget, J.; LeGuen, J.P.; Oleggini, M.; Fournel, J.J.; Samama, M. )

    1990-06-01

    Ultraviolet (UV)-B irradiation abolishes lymphocyte functions (the ability to respond and to stimulate) in mixed lymphocyte culture (MLC). This effect may have practical application in the prevention or reduction of transfusion-induced alloimmunization against HLA class I antigens. To study this, platelet concentrates (PCs) were obtained with a cell separator, suspended in autologous plasma in a final volume of 400 mL, and transferred into a large (22 X 30 cm) cell culture bag. This plastic showed a good transmittance of UV-B rays at 310 nm (54%). PCs were placed between two quartz plates (surface of irradiation = 25 X 37 cm), and the two sides were irradiated simultaneously. Energy delivered to the surface of the plastic bag was automatically monitored. The ability to respond (in MLC and to phytohemagglutinin) and to stimulate allogeneic lymphocytes was completely abolished with energy of 0.75 J per cm2 (irradiation time less than 3 min). The temperature increase during irradiation was negligible. Platelet aggregation (collagen, adrenalin, ADP, arachidonic acid, ristocetin) was not impaired if UV-B energy was below 3 J per cm2. Recovery and survival of autologous 111In-labeled platelets were studied in four volunteers; no differences were found between UV-B-treated (1.5 J/cm2) platelets and untreated platelets. These results show that a large-scale clinical trial using UV-B-irradiated PCs to prevent HLA alloimmunization is feasible.

  18. Mechanisms and kinetics for platelet and neutrophil localization in immune complex nephritis

    SciTech Connect

    Johnson, R.J.; Alpers, C.E.; Pruchno, C.; Schulze, M.; Baker, P.J.; Pritzl, P.; Couser, W.G. )

    1989-11-01

    We have previously reported that both neutrophils (PMNs) and platelets mediate proteinuria in a model of subendothelial immune complex (IC) nephritis (GN) in the rat. In order to understand the interaction of PMNs and platelets in this model, we quantitated the uptake of {sup 111}In-labelled platelets in glomeruli and correlated this with the number of PMNs observed histologically at 10 and 30 minutes, 1, 4 and 24 hours following induction of GN. Platelet accumulation was biphasic with a major peak at 10 minutes and a minor peak at four hours. Early platelet accumulation was complement dependent, and PMN-independent. PMN accumulation occurred after the initial platelet influx, peaking at one and four hours, was complement dependent, but was not affected by platelet depletion. Complement depletion significantly reduced proteinuria. This is the first documentation that platelet accumulation in glomeruli in IC GN is complement dependent. In addition, the enhancement of PMN-mediated injury by the platelet in this model does not involve effects of platelets on PMN localization, thus implying a functional interaction between these cells within the glomerulus.

  19. Splenic microenvironment and self recognition as factors in allograft rejection in rats. A study using indium-111-labeled cells

    SciTech Connect

    Pollak, R.; Blanchard, J.M.; Lazda, V.A.

    1986-11-01

    Splenectomy facilitates organ allograft survival in some rat strains, and in weak donor-recipient histoincompatible pairs. We have found using a heart spleen twin graft model, using ACI rats as recipients and Lewis rats as donors, that the transplanted heart will survive in most recipients after delayed host splenectomy. The presence of a viable mass of splenic tissue will allow rejection to proceed only when the transplanted spleen is of host origin, and not when it comes from the donor (i.e., when it is allogeneic). The use of 111In-labeled cells has allowed us to show that lymphocyte traffic and trapping is markedly altered in the transplanted allogeneic spleens, when compared with control transplanted syngeneic spleens. Thus, despite the presence of the splenic ''microenvironment,'' cardiac allograft rejection does not occur in the absence of syngeneic splenic tissue. We conclude that the role of the spleen in the immune response is to facilitate the recognition of self and the acquisition of alloreactivity in weak responder rat strains and donor-recipient pairs.

  20. Evaluation of the viability of /sup 111/In-abeled DTPA coupled to fibrinogen

    SciTech Connect

    Layne, W.W.; Hnatowich, D.J.; Doherty, P.W.; Childs, R.L.; Lanteigne, D.; Ansell, J.

    1982-07-01

    In earlier work, DTPA has been covalently coupled to albumin via the cyclic anhydride of DTPA. Using fibrinogen, we have studied the effect of such coupling on protein viability by both an in vitro and an in vivo assay. Clotting time remained identical to that of the native protein whether the anhydride-to-protein molar ratio was 1:1 or 5:1. In vivo studies were done in dogs, with human fibrinogen labeled with /sup 125/I and /sup 111/In. Throughout 130 hr, blood clearances for the two tracers agreed whether with 1:1 or 5:1 coupling. In a dog model with a thrombogenic catheter, the clot-to-blood ratios for the two radiotracers agreed within experimental error. Finally, 1:1-coupled canine fibrinogen, labeled with /sup 111/In, was administered to dogs with a catheter in a jugular vein, and scintigrams at 24 hr clearly showed clotting along the length of the catheter. We conclude that fibrinogen, coupled to DTPA, retains its viability, behaving like radioiodinated fibrinogen in vivo, and /sup 111/In labeled fibrinogen looks promising as a clinical diagnostic agent.

  1. Monitoring of cardiac antirejection therapy with /sup 111/In lymphocytes

    SciTech Connect

    Lerch, R.A.; Bergmann, S.R.; Carlson, E.M.; Saffitz, J.E.; Sobel, B.E.

    1982-06-01

    To determine whether lymphocytes labeled with /sup 111/In permit noninvasive assessment of antirejection therapy, we performed 40 allogeneic heterotopic cardiac transplants in rats. Antirejection therapy with azathioprine (30 mg/kg) and sodium salicylate (200 mg/kg) prolonged contractile function of the graft from 7.5 +/- 1.5 (s.d.) days in controls to 19.4 +/- 3.7 days in treated animals. Six to seven days after transplantation, autologous lymphocytes labeled with /sup 111/In were injected intravenously in seven untreated and eight treated rats. Scintigraphy and organ counting were performed 24 hr after administration of labeled cells. At sacrifice all grafts in untreated rats exhibited contractile failure, whereas grafts in all treated rats were beating well. Transplants in untreated recipients exhibited marked accumulation of /sup 111/In lymphocytes detectable scintigraphically, with ratios of 7.7 +/- 1.9 for the activity in the transplant over that in the native heart (HT/HO), as obtained by well counting. In contrast, accumulation was not scintigraphically detectable in transplants of treated rats, with HT/HO ratios of 2.6 +/- 1.8 (p less than 0.005). The results suggested that imaging with /sup 111/In-labeled lymphocytes will permit noninvasive assessment of antirejection therapy.

  2. Disordered macrophage cytokine secretion underlies impaired acute inflammation and bacterial clearance in Crohn's disease.

    PubMed

    Smith, Andrew M; Rahman, Farooq Z; Hayee, Bu'Hussain; Graham, Simon J; Marks, Daniel J B; Sewell, Gavin W; Palmer, Christine D; Wilde, Jonathan; Foxwell, Brian M J; Gloger, Israel S; Sweeting, Trevor; Marsh, Mark; Walker, Ann P; Bloom, Stuart L; Segal, Anthony W

    2009-08-31

    The cause of Crohn's disease (CD) remains poorly understood. Counterintuitively, these patients possess an impaired acute inflammatory response, which could result in delayed clearance of bacteria penetrating the lining of the bowel and predispose to granuloma formation and chronicity. We tested this hypothesis in human subjects by monitoring responses to killed Escherichia coli injected subcutaneously into the forearm. Accumulation of (111)In-labeled neutrophils at these sites and clearance of (32)P-labeled bacteria from them were markedly impaired in CD. Locally increased blood flow and bacterial clearance were dependent on the numbers of bacteria injected. Secretion of proinflammatory cytokines by CD macrophages was grossly impaired in response to E. coli or specific Toll-like receptor agonists. Despite normal levels and stability of cytokine messenger RNA, intracellular levels of tumor necrosis factor (TNF) were abnormally low in CD macrophages. Coupled with reduced secretion, these findings indicate accelerated intracellular breakdown. Differential transcription profiles identified disease-specific genes, notably including those encoding proteins involved in vesicle trafficking. Intracellular destruction of TNF was decreased by inhibitors of lysosomal function. Together, our findings suggest that in CD macrophages, an abnormal proportion of cytokines are routed to lysosomes and degraded rather than being released through the normal secretory pathway.

  3. Synthesis, pharmacokinetics, and biological use of lysine-modified single-walled carbon nanotubes

    PubMed Central

    Mulvey, J Justin; Feinberg, Evan N; Alidori, Simone; McDevitt, Michael R; Heller, Daniel A; Scheinberg, David A

    2014-01-01

    We aimed to create a more robust and more accessible standard for amine-modifying single-walled carbon nanotubes (SWCNTs). A 1,3-cycloaddition was developed using an azomethine ylide, generated by reacting paraformaldehyde and a side-chain-Boc (tert-Butyloxycarbonyl)-protected, lysine-derived alpha-amino acid, H-Lys(Boc)-OH, with purified SWCNT or C60. This cycloaddition and its lysine adduct provides the benefits of dense, covalent modification, ease of purification, commercial availability of reagents, and pH-dependent solubility of the product. Subsequently, SWCNTs functionalized with lysine amine handles were covalently conjugated to a radiometalated chelator, 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA). The 111In-labeled construct showed rapid renal clearance in a murine model and a favorable biodistribution, permitting utility in biomedical applications. Functionalized SWCNTs strongly wrapped small interfering RNA (siRNA). In the first disclosed deployment of thermophoresis with carbon nanotubes, the lysine-modified tubes showed a desirable, weak SWCNT-albumin binding constant. Thus, lysine-modified nanotubes are a favorable candidate for medicinal work. PMID:25228803

  4. Kinetic study of platelets and fibrinogen in Lassa virus-infected monkeys and early pathologic events in Mopeia virus-infected monkeys.

    PubMed

    Lange, J V; Mitchell, S W; McCormick, J B; Walker, D H; Evatt, B L; Ramsey, R R

    1985-09-01

    The rhesus monkey, an established model of Lassa fever, was used to study hematologic and hemostatic aspects of Lassa fever and whether Mopeia (also known as Mozambique) virus induces any cellular damage in this model. Six days after subcutaneous injection of 10(3.48) plaque forming units (PFU) of Lassa virus (Josiah strain) one group of monkeys received an intravenous injection of 111In-labeled allogeneic platelets and another group received 125I-labeled alogeneic fibrinogen. Lassa virus-infected monkeys developed a severe clinical illness with high viremia and typical pathology. Lassa antigen was found in most tissues using a Lassa nucleocapsid-specific monoclonal antibody. Platelet counts remained within normal limits. Platelet and fibrinogen kinetics were similar in infected and control animals. Hematologic and hemostatic changes indicate that disseminated intravascular coagulation plays no role in this model of Lassa fever. Levels of plasma fibronectin were reduced in Lassa-infected monkeys. Mopeia virus-infected monkeys were normothemic, aviremic, and there was no detection of Mopeia antigen in any tissues using polyclonal or monoclonal antibodies. Mopeia virus was recovered from the spleen of one monkey. Mopeia virus was associated with hepatocellular and renal tubular damage.

  5. Indium-111-labeled LDL: A potential agent for imaging atherosclerotic disease and lipoprotein biodistribution

    SciTech Connect

    Rosen, J.M.; Butler, S.P.; Meinken, G.E.; Wang, T.S.; Ramakrishnan, R.; Srivastava, S.C.; Alderson, P.O.; Ginsberg, H.N. )

    1990-03-01

    Radiolabeling of low-density lipoprotein (LDL) and external imaging with a gamma camera would offer a means of taking advantage of the metabolic activity of developing atherosclerotic lesions in order to noninvasively detect and determine the extent of atherosclerotic cardiovascular disease. Indium-111-({sup 111}In) labeled LDL was prepared and its purity demonstrated by agarose electrophoresis and ultracentrifugation. In vitro studies with cultured human fibroblasts demonstrated significant inhibition of iodine-125-({sup 125}I) LDL binding to LDL receptors by {sup 111}In-LDL, although this was less than the inhibition produced by unlabeled LDL. Adrenal gland uptake of {sup 111}In-LDL by hypercholesterolemic rabbits was reduced by 86% compared to the level of uptake observed in normal rabbits. These results were compatible with downregulation of adrenal LDL receptors in the hypercholesterolemic rabbits. Uptake of {sup 111}In-LDL in the atherosclerotic proximal aorta of hypercholesterolemic rabbits was 2.5 times higher than in normal rabbits. These results suggest that {sup 111}In-LDL has the potential to be a useful agent for external imaging of atherosclerotic lesions and lipoprotein biodistribution.

  6. Modulation of acute immune complex-mediated tissue injury by the presence of polyionic substances.

    PubMed Central

    Warren, J. S.; Ward, P. A.; Johnson, K. J.; Ginsburg, I.

    1987-01-01

    Considerable attention has been focused on the role of electrostatic charge in the pathogenesis of immune complex-mediated tissue injury. The authors have examined the ability of cationic (histone, polyhistidine, polyarginine) and anionic (polyanetholsulfonate) polyelectrolytes to modulate acute immune complex-mediated tissue injury. Tissue injury elicited in rats by the reversed dermal Arthus reaction was increased 26-43% by addition of polyelectrolytes to antibody prior to its intradermal injection. Kinetic studies using 111In-labeled neutrophils indicated that the enhanced tissue injury was not the result of increased influx of neutrophils. Infusion of polyethylene glycol-conjugated superoxide dismutase prior to induction of the Arthus reaction resulted in 40-68% suppression of tissue injury. Concomitant in vitro functional studies (enzyme secretion, O-2 and H2O2 generation, and chemiluminescence) of rat neutrophils demonstrated that addition of polyelectrolytes to preformed immune complexes (IgG-bovine serum albumin) resulted in marked increases in O-2, H2O2, and chemiluminescence, but no increases in enzyme secretion, compared with neutrophils stimulated with immune complexes alone. The cationic polyelectrolytes did not alter the capacity of preformed immune complexes to activate complement in vitro. These studies suggest that both cationic and anionic polyelectrolytes can increase the pathogenic potential of immune complexes and that this modulation is, at least in part, mediated by enhanced generation of toxic oxygen-derived metabolites by neutrophils. PMID:3037912

  7. Role of indium-111 white blood cells in inflammatory bowel disease

    SciTech Connect

    Froelich, J.W.; Field, S.A.

    1988-10-01

    Inflammatory bowel disease in patients may be difficult to diagnose because of the complex problems associated with this disease. Radionuclides are able to provide a rapid and effective method of imaging the bowel in patients with active inflammatory bowel disease. In the past, clinical work-ups have included barium x-ray studies and endoscopy. Scarring and fistula formation have made it difficult to determine between the active disease and abscesses that may occur. Gallium-67 (67Ga) has been very useful in imaging patients with inflammatory bowel disease, but the multiple-day imaging procedure has been a limitation for the clinicians when achieving a diagnosis. Recent results with Indium-111 (111In)--labeled WBCs have provided excellent correlation between clinical symptoms and colonoscopy findings in patients with inflammatory bowel disease. This technique has also allowed the differentiation between reoccurring inflammatory bowel disease and abscesses that accompany the disease within a 24-hour time period. The use of intravenous (IV) glucagon has increased the clarity of the images in the small bowel. Technetium 99m (99mTc) diethylenetriaminepentaacetic acid (DTPA) has been used in patients with inflammatory bowel disease demonstrating promising results. Investigators feel labelling 99mTc with WBCs will be improved, therefore yielding a greater efficiency, which will have a major impact on imaging patients with inflammatory bowel disease. Imaging patients with inflammatory bowel disease using radionuclides has yielded promising results. This is a significant advancement over barium radiography and endoscopy exams.24 references.

  8. Three-phase bone scan and indium white blood cell scintigraphy following porous coated hip arthroplasty: A prospective study of the prosthetic tip

    SciTech Connect

    Oswald, S.G.; Van Nostrand, D.; Savory, C.G.; Callaghan, J.J. )

    1989-08-01

    Although few reports address the use of three-phase bone scanning (TPBS) and {sup 111}In-labeled white blood cell (In-WBC) scintigraphy in hip arthroplasty utilizing a porous coated prosthesis, the literature suggests that scintigraphic patterns in the uncomplicated patient may differ from that seen in the cemented prosthesis. In an attempt to determine the scintigraphic natural history, 25 uncomplicated porous coated hip arthroplasties in 21 patients were prospectively studied with serial TPBS and In-WBC at approximately 7 days, and at 3, 6, 12, 18, and 24 mo postoperatively. This report deals with findings related to the prosthetic tip. Only one of 136 flow studies were abnormal and only two of 136 blood-pool images demonstrated focally increased activity. All 25 prostheses (120 of 143 scans) demonstrated increased uptake on the bone phase images. The area about the tip was divided into three segments; increased uptake at 24 mo was noted in the medial, distal, and lateral segments in 16%, 72%, and 56% of prostheses, respectively. Twenty of 25 prostheses (82 of 142 scans) showed uptake on In-WBC scintigraphy, being noted in 48% of prostheses at 24 mo. We conclude that scintigraphic patterns in the uncomplicated patient with a porous coated prosthesis appear to differ from patterns described in cemented prostheses.

  9. Scintigraphic detection of bone and joint infections with indium-111-labeled nonspecific polyclonal human immunoglobulin G

    SciTech Connect

    Oyen, W.J.; Claessens, R.A.; van Horn, J.R.; van der Meer, J.W.; Corstens, F.H. )

    1990-04-01

    The utility of indium-111-({sup 111}In) labeled immunoglobulin G (IgG) to detect infection of bone and adjacent tissues was investigated. Proof of infection was obtained by cultures taken at surgery. All 32 patients showed focally increased uptake on the technetium-99m- (99mTc) methylene diphosphonate (MDP) skeletal scintigraphies. Labeled immunoglobulin correctly identified presence, location, extent and soft-tissue involvement of the suspected inflammatory site. In these patients, focally increasing accumulation was noted over 48 hr. Discrimination between infection and sterile inflammatory lesions was not possible. Two fractures, 6-mo-old, and an aseptic loosening of a total-hip prosthesis were not visualized. Side effects after the immunoglobulin administration were not observed. Radiolabeled immunoglobulin is a new and safe radiopharmaceutical for the investigation of infectious bone and joint disease. The sensitivity of this agent appears at least as high as that of labeled leukocytes. However, labeled immunoglobulin can easily be prepared in every nuclear medicine department.

  10. Effects of radiolabelled monoclonal antibody infusion on blood leukocytes in cancer patients

    SciTech Connect

    Gridley, D.S.; Slater, J.M.; Stickney, D.R. )

    1990-01-01

    This study was undertaken to investigate the effects of a single infusion of radiolabelled murine monoclonal antibody (MAb) on peripheral blood leukocytes in cancer patients. Eleven patients with disseminated colon cancer, malignant melanoma, or lung adenocarcinoma were infused with 111In-labelled anti-ZCE 025, anti-p97 type 96.5c, or LA 20207 MAb, respectively. Blood samples were obtained before infusion, immediately after infusion (1 hr), and at 4 and 7 days postinfusion. Flow cytometry analysis of CD3+, CD4+, CD8+, CD16+, and CD19+ lymphocytes showed increasing CD4:CD8 ratios in seven patients after infusion. This phenomenon was not restricted to antibody subclass or to type of cancer. Two of the remaining patients exhibited a marked post-infusion increase in CD8+ cells. In all three patients with malignant melanoma, decreasing levels of CD16+ lymphocytes were noted after infusion and natural killer cell cytotoxicity showed fluctuations which paralleled the changes in the CD16+ subpopulation. Oxygen radical production by phagocytic cells was markedly affected in three subjects. These results suggest that a single infusion of radiolabelled murine MAb may alter the balance of critical lymphocyte subpopulations and modulate other leukocyte responses in cancer patients.

  11. Histogram analysis of pharmacokinetic parameters by bootstrap resampling from one-point sampling data in animal experiments.

    PubMed

    Takemoto, Seiji; Yamaoka, Kiyoshi; Nishikawa, Makiya; Takakura, Yoshinobu

    2006-12-01

    A bootstrap method is proposed for assessing statistical histograms of pharmacokinetic parameters (AUC, MRT, CL and V(ss)) from one-point sampling data in animal experiments. A computer program, MOMENT(BS), written in Visual Basic on Microsoft Excel, was developed for the bootstrap calculation and the construction of histograms. MOMENT(BS) was applied to one-point sampling data of the blood concentration of three physiologically active proteins ((111)In labeled Hsp70, Suc(20)-BSA and Suc(40)-BSA) administered in different doses to mice. The histograms of AUC, MRT, CL and V(ss) were close to a normal (Gaussian) distribution with the bootstrap resampling number (200), or more, considering the skewness and kurtosis of the histograms. A good agreement of means and SD was obtained between the bootstrap and Bailer's approaches. The hypothesis test based on the normal distribution clearly demonstrated that the disposition of (111)In-Hsp70 and Suc(20)-BSA was almost independent of dose, whereas that of (111)In-Suc(40)-BSA was definitely dose-dependent. In conclusion, the bootstrap method was found to be an efficient method for assessing the histogram of pharmacokinetic parameters of blood or tissue disposition data by one-point sampling.

  12. Value of blood-pool subtraction in cardiac indium-111-labeled platelet imaging

    SciTech Connect

    Machac, J.; Vallabhajosula, S.; Goldman, M.E.; Goldsmith, S.J.; Palestro, C.; Strashun, A.; Vaquer, R.; Phillips, R.A.; Fuster, V. )

    1989-09-01

    Blood-pool subtraction has been proposed to enhance {sup 111}In-labeled platelet imaging of intracardiac thrombi. We tested the accuracy of labeled platelet imaging, with and without blood-pool subtraction, in ten subjects with cardiac thrombi of varying age, eight with endocarditis being treated with antimicrobial therapy and ten normal controls. Imaging was performed early after labeled platelet injection (24 hr or less) and late (48 hr or more). Blood-pool subtraction was carried out. All images were graded subjectively by four experienced, blinded readers. Detection accuracy was measured by the sensitivity at three fixed levels of specificity estimated from receiver operator characteristic curve analysis and tested by three-way analysis of variance. Detection accuracy was generally improved on delayed images. Blood-pool subtraction did not improve accuracy. Although blood-pool subtraction increased detection sensitivity, this was offset by decreased specificity. For this population studied, blood-pool subtraction did not improve subjective detection of abnormal platelet deposition by 111In platelet imaging.

  13. 111-Indium labelled autologous leucocytes in diagnosis of inflammatory bowel disease

    SciTech Connect

    Wandall, J.H.; Edeling, C.J.; Jensen, J.T.; Lund, J.O.; Bonnevie, O.; Haxholdt, H.; Jensen, H.C.; Matzen, P.; Myschetsky, P.S.; Nielsen, A.M.

    1984-01-01

    111-Indium labelled leucocytes have been used to visualize inflammatory lesions in ulcerative colitis (CU) and in Crohn's disease (CD). The aim of this study was to compare findings by scintigraphy, radiology and endoscopy. Material: Twelve patients with CU and 15 patients with CD were studied. All patients were non-febrile. Two patients received prednisolone 5 mg/daily, 8 sulphasalazine. Methods: Autologous leucocytes were labelled with 111-In-Oxine and given i.v. Scintigrams were obtained 3 and 24 hrs. p.i. Double contrast x-ray studies were done of the colon and small intestine after 2 and 14 days respectively. Colonscopy with biopsy was done after 4 days. Results: Active lesions were found in 24 and 27 patients. Scintigrams 24 hrs.p.i. did not give and additional information compared with scintigrams 3 hrs.p.i. Intraluminal activity masked the location and extension of lesions after 24 hrs. Excretion in the stool was 2.4-25.8% of administered activity. Compared with scintigraphy a corresponding extension and location was found by colonscopy. In 4 patients x-ray of the colon was normal but scintigraphy and colonscopy showed active inflammation. Conclusion: Scintigraphy after injection of 111-In labelled leucocytes is a atraumatic method for visualization of inflammatory lesions in UC and CD. Furthermore, it appears to be more sensitive than conventional x-ray studies.

  14. Imaging Lung Clearance of Radiolabeled Tumor Cells to Study Mice with Normal, Activated or Depleted Natural Killer (NK) Cells

    NASA Astrophysics Data System (ADS)

    Kulkarni, P. V.; Bennett, M.; Constantinescu, A.; Arora, V.; Viguet, M.; Antich, P.; Parkey, R. W.; Mathews, D.; Mason, R. P.; Oz, O. K.

    2003-08-01

    Lung clearance of 51CR and 125I iododeoxyuridine (IUDR) labeled cancer cells assess NK cell activity. It is desirable to develop noninvasive imaging technique to assess NK activity in mice. We labeled target YAC-1 tumor cells with 125I, 111In, 99mTc, or 67Ga and injected I.V. into three groups of BALB/c mice. Animals were treated with medium (group I), 300mg/kg cyclophosmamide (CY) to kill NK cell (group II), or anti-LY49C/1) (ab')2 mAb to augment NK function (group III). Lungs were removed 15 min or 2 h later for tissue counting. Control and treated mice were imaged every 5 min with a scintillating camera for 1 h after 15 min of infusion of the 111In labeled cells. Lung clearance increased after 15 min (lodging: 60-80%) and (2 h retention: 3-7%). Similar results were obtained with all the isotopes studied. Images distinguished the control and treated mice for lung activity. Cells labeled with 111In, 99mTc or 67Ga are cleared similar to those labeled with 51Cr or 125I. NK cell destruction of tumor cells may be assessed by noninvasive imaging method either by SPECT (99mTc, 111In, 67Ga) or by PET (68Ga).

  15. Tumor immunoscintigraphy by means of radiolabeled monoclonal antibodies: Multicenter studies of the Italian National Research Council--Special Project Biomedical Engineering

    SciTech Connect

    Siccardi, A.G. )

    1990-02-01

    Four radioimmunopharmaceuticals ({sup 99m}Tc- and 111In-labeled anti-melanoma and {sup 111}In- and {sup 131}I-labeled anti-carcinoembryonic antigen F(ab')2 fragments derived from monoclonal antibodies 225.28S and F023C5) were developed by means of a collaborative effort coordinated by the Italian National Research Council, Special Project Biomedical Engineering. After appropriate pilot studies, the radioimmunopharmaceuticals, prepared by Sorin Biomedica (Saluggia, Italy), were distributed to 31 Nuclear Medicine departments in Italy and in 10 other European countries within the framework of three immunoscintigraphy multicenter studies. A total of 1245 patients were studied, 898 of whom carried 1725 documented tumor lesions; 1596 of 2193 tumor lesions (468 of which were previously unknown) were imaged by immunoscintigraphy in 785 of 990 lesion-bearing patients. Among the occult lesions, 173 were imaged in 92 patients admitted to the study as lesion-free patients. The results have been analyzed in terms of the reliability, reproducibility, and diagnostic usefulness of the method and of each immunoradiopharmaceutical.

  16. Pretargeted immunoscintigraphy in patients with medullary thyroid carcinoma.

    PubMed Central

    Magnani, P.; Paganelli, G.; Songini, C.; Samuel, A.; Sudati, F.; Siccardi, A. G.; Fazio, F.

    1996-01-01

    To evaluate the use of pretargeted immunoscintigraphy (ISG) in the diagnosis and follow-up of patients with medullary thyroid carcinoma (MTC), we studied 25 patients with histologically proven disease; ISG was repeated after surgery in two patients. The antibody, either an anticarcinoembryonic antigen (CEA) or an antichromogranin A (CgA) biotinylated monoclonal antibody (MAb) or a cocktail of the two biotinylated MAbs was first injected. After 24 h, avidin was administrated i.v., followed by 111In-labelled biotin 24 h later. Fifty-two lesions were visualised. Six primary tumours, diagnosed by increased calcitonin levels, were all correctly diagnosed; 47 recurrences, also suspected by blood tumour markers, were detected and confirmed by cytology or histology. In one case, single photon emission tomography allowed the detection of small lymph nodes with a diameter of 4-7 mm. These lesions, not judged neoplastic by ultrasound, were confirmed to be neoplastic by fine needle aspiration. Pretargeted ISG correctly localises primary tumours and recurrences in MTC patients, when the only marker of relapse is serum elevation of calcitonin. With this three-step pretargeting method, cocktails of potentially useful MAbs can be used, avoiding false-negative studies that may occur when CEA or CgA are not expressed. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:8795589

  17. Faecal alpha-1-antitrypsin and excretion of 111indium granulocytes in assessment of disease activity in chronic inflammatory bowel diseases.

    PubMed Central

    Fischbach, W; Becker, W; Mössner, J; Koch, W; Reiners, C

    1987-01-01

    Intestinal protein loss in chronic inflammatory bowel diseases may be easily determined by measurement of alpha-1-antitrypsin (alpha 1-AT) stool concentration and alpha 1-AT clearance. Both parameters were significantly raised in 36 and 34 patients respectively with chronic inflammatory bowel diseases, compared with eight patients with non-inflammatory bowel diseases, or 19 healthy volunteers. There was wide range of overlap between active and inactive inflammatory disease. Contrary to serum alpha 1-AT, faecal excretion and clearance of alpha 1-AT did not correlate with ESR, serum-albumin, orosomucoid, and two indices of disease activity. A comparison of alpha 1-AT faecal excretion and clearance with the faecal excretion of 111In labelled granulocytes in 27 patients with chronic inflammatory bowel diseases, showed no correlation between the intestinal protein loss and this highly specific marker of intestinal inflammation. Enteric protein loss expressed by faecal excretion and clearance of alpha 1-AT does not depend on mucosal inflammation only, but may be influenced by other factors. PMID:3495470

  18. The effect of ibuprofen on accumulation of indium-111-labeled platelets and leukocytes in experimental myocardial infarction

    SciTech Connect

    Romson, J.L.; Hook, B.G.; Rigot, V.H.; Schark, M.A.; Swanson, D.P.; Lucchesi, B.R.

    1982-11-01

    To assess the ability of ibuprofen to influence the extent of platelet aggregation and leukocyte infiltration during acute myocardial infarction, autologous indium-111 (/sup 111/In)-labeled platelets or leukocytes were injected before 60 minutes of left circumflex coronary artery (LCx) occlusion, followed by 24 hours of reperfusion in the canine heart. Myocardial infarct size, as a percent of the area at risk, was reduced in the ibuprofen-treated group (12.5 mg/kg i.v. every 4 hours beginning 30 minutes before LCx occulsion) by 40%, from 48 +/- 4% in control animals to 29 +/- 4% in ibuprofen-treated dogs (p=0.005). Quantification of the platelet-associated /sup 111/In radioactivity in irreversibly injured myocardium indicated that ibuprofen did not alter the accumulation of platelets in infarcted myocardium. In contrast, leukocyte accumulation in infarcted tissue was reduced significantly. In tissue samples with 0.41-0.60 gram infarct, the infarcted/normal ratio of leukocyte radioactivity was 12 +/- 2 in control dogs and 4 +/- 1 in ibuprofen-treated dogs, which represents a 67% reduction in leukocyte accumulation in ibuprofen-treated compared with control dogs. Similar reductions were found in other gram-infarct-weight categories. Although both platelets and leukocytes acumulate in infarcted canine myocardium, ibuprofen may exert its beneficial effect on ischemic myocardium by suppressing the inflammatory response associated with myocardial ischemia and infarction.

  19. Dual isotope study of iodine-125 and indium-111-labeled antibody in athymic mice

    SciTech Connect

    Carney, P.L.; Rogers, P.E.; Johnson, D.K. )

    1989-03-01

    Monoclonal antibody B72.3 was coupled to a benzylisothiocyanate derivative of diethylenetriaminepentaacetic acid (DTPA). The maximum substitution achievable without loss of immunoreactivity was three DTPA groups per immunoglobulin molecule. The resulting conjugate was labeled with {sup 111}In by brief incubation with {sup 111}InCl{sub 3}, giving a mean radiochemical yield of {sup 111}In-labeled antibody of 96%. The ({sup 111}In)B72.3 preparation was mixed with an ({sup 125}I) B72.3 preparation, obtained by the chloramine-T method, and the mixture administered to athymic mice bearing subcutaneous LS174T colon carcinoma xenografts. There were no significant differences (p greater than 0.1) in the biodistributions of the two labels at 1, 2, 5, and 7 days postinjection. These results are contrasted with prior studies showing elevated levels of {sup 111}In in liver, spleen, and kidneys using B72.3-DTPA conjugates prepared via the bicyclic anhydride. It is concluded that protein cross-linking and/or the formation of unstable chelate sites in anhydride coupled conjugates underlie these disparities.

  20. Amino acid infusion blocks renal tubular uptake of an indium-labelled somatostatin analogue.

    PubMed Central

    Hammond, P. J.; Wade, A. F.; Gwilliam, M. E.; Peters, A. M.; Myers, M. J.; Gilbey, S. G.; Bloom, S. R.; Calam, J.

    1993-01-01

    The Indium-labelled somatostatin analogue pentetreotide has been successfully developed for imaging of somatostatin receptor positive tumours. However there is significant renal tubular uptake of the radiolabelled peptide, which can obscure upper abdominal tumours and would preclude its use for targeted radiotherapy. The aim of this study was to determine whether amino acid infusion, which has been shown to block renal tubular peptide reabsorption, diminishes renal parenchymal uptake of this radiolabelled analogue. Eight patients being scanned with the 111In-labelled somatostatin analogue, pentetreotide, for localisation of gastroenteropancreatic tumours received an infusion of synthetic amino acids. The ratio of isotope uptake in kidney to that in spleen was assessed, and compared to the ratio for matched control patients, to determine if amino acid infusion reduced renal parenchymal uptake of the radiopharmaceutical. The amount of isotope in the urine was determined to ensure that any effect of the amino acid infusion was unrelated to changes in clearance. Infusion of amino acids significantly reduced renal parenchymal uptake of isotope at 4 h. There was a non-significant increase in urinary clearance of isotope over the 4 h, consistent with reduced reuptake and a lack of effect on glomerular filtration rate. This technique, by preventing renal damage, may allow the use of this somatostatin analogue for local radiotherapy, and could be of wider value in blocking tubular re-uptake of potentially nephrotoxic agents, such as radiolabelled Fab fragments. Images Figure 1 PMID:8099808

  1. Synthesis, pharmacokinetics, and biological use of lysine-modified single-walled carbon nanotubes.

    PubMed

    Mulvey, J Justin; Feinberg, Evan N; Alidori, Simone; McDevitt, Michael R; Heller, Daniel A; Scheinberg, David A

    2014-01-01

    We aimed to create a more robust and more accessible standard for amine-modifying single-walled carbon nanotubes (SWCNTs). A 1,3-cycloaddition was developed using an azomethine ylide, generated by reacting paraformaldehyde and a side-chain-Boc (tert-Butyloxycarbonyl)-protected, lysine-derived alpha-amino acid, H-Lys(Boc)-OH, with purified SWCNT or C60. This cycloaddition and its lysine adduct provides the benefits of dense, covalent modification, ease of purification, commercial availability of reagents, and pH-dependent solubility of the product. Subsequently, SWCNTs functionalized with lysine amine handles were covalently conjugated to a radiometalated chelator, 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA). The (111)In-labeled construct showed rapid renal clearance in a murine model and a favorable biodistribution, permitting utility in biomedical applications. Functionalized SWCNTs strongly wrapped small interfering RNA (siRNA). In the first disclosed deployment of thermophoresis with carbon nanotubes, the lysine-modified tubes showed a desirable, weak SWCNT-albumin binding constant. Thus, lysine-modified nanotubes are a favorable candidate for medicinal work.

  2. Disordered macrophage cytokine secretion underlies impaired acute inflammation and bacterial clearance in Crohn's disease

    PubMed Central

    Smith, Andrew M.; Rahman, Farooq Z.; Hayee, Bu'Hussain; Graham, Simon J.; Marks, Daniel J.B.; Sewell, Gavin W.; Palmer, Christine D.; Wilde, Jonathan; Foxwell, Brian M.J.; Gloger, Israel S.; Sweeting, Trevor; Marsh, Mark; Walker, Ann P.; Bloom, Stuart L.

    2009-01-01

    The cause of Crohn's disease (CD) remains poorly understood. Counterintuitively, these patients possess an impaired acute inflammatory response, which could result in delayed clearance of bacteria penetrating the lining of the bowel and predispose to granuloma formation and chronicity. We tested this hypothesis in human subjects by monitoring responses to killed Escherichia coli injected subcutaneously into the forearm. Accumulation of 111In-labeled neutrophils at these sites and clearance of 32P-labeled bacteria from them were markedly impaired in CD. Locally increased blood flow and bacterial clearance were dependent on the numbers of bacteria injected. Secretion of proinflammatory cytokines by CD macrophages was grossly impaired in response to E. coli or specific Toll-like receptor agonists. Despite normal levels and stability of cytokine messenger RNA, intracellular levels of tumor necrosis factor (TNF) were abnormally low in CD macrophages. Coupled with reduced secretion, these findings indicate accelerated intracellular breakdown. Differential transcription profiles identified disease-specific genes, notably including those encoding proteins involved in vesicle trafficking. Intracellular destruction of TNF was decreased by inhibitors of lysosomal function. Together, our findings suggest that in CD macrophages, an abnormal proportion of cytokines are routed to lysosomes and degraded rather than being released through the normal secretory pathway. PMID:19652016

  3. Metabolic imaging with gallium-68- and indium-111-labeled low-density lipoprotein

    SciTech Connect

    Moerlein, S.M.; Daugherty, A.; Sobel, B.E.; Welch, M.J. )

    1991-02-01

    Low-density lipoprotein (LDL) labeled with either gallium-68 ({sup 68}Ga) or indium-111 ({sup 111}In) was evaluated as a potential PET or SPECT radiopharmaceutical for determination of hepatic lipoprotein metabolism in rabbits. Gallium-68 or {sup 111}In was linked to LDL via diethylenetriaminepentaacetic acid (DTPA) with a 25-70% radiochemical yield. Studies in vivo that compared {sup 68}Ga- or {sup 111}In-DTPA-LDL with dilactitol-({sup 125}I)-tyramine LDL and 131I-LDL showed that both {sup 68}Ga- and {sup 111}In-labeled LDL behaved as residualizing radiotracers. Localization of radioactivity within the liver of normal rabbits was visualized clearly with ({sup 68}Ga)DTPA-LDL by PET and with ({sup 111}In)DTPA-LDL by gamma scintigraphy. Significant differences were observed in hepatic uptake of normal compared with hypercholesterolemic rabbits in which low-capacity LDL receptor-mediated catabolism was saturated. Gallium-68 and {sup 111}In-DTPA-LDL are attractive radiopharmaceuticals for noninvasive delineation of tissue LDL metabolism under normal and pathophysiologic conditions.

  4. The use of indium-111 oxine platelet scintigraphy and survival studies in pediatric patients with thrombocytopenia

    SciTech Connect

    Castle, V.P.; Shulkin, B.L.; Coates, G.; Andrew, M. )

    1989-11-01

    We have utilized {sup 111}In-labeled heterologous platelets to investigate the mechanism of thrombocytopenia in ten children. From the scintigraphic findings, platelet survival times, and clinical information, thrombocytopenia was ascribed to decreased production or to increased destruction. Two patients were found to have bone marrow production defects. Two patients with hemangiomas were studied. In one, the hemangioma was shown not to be the cause of thrombocytopenia. In the second, the hemangioma was proven the source of platelet destruction, but was much more extensive than clinically evident. In both, surgical manipulation of the hemangioma was avoided. Six additional patients had thrombocytopenia due to accelerated destruction. In four, the spleen was shown responsible. In two, however, the spleen was shown not to be responsible for the low platelet counts, and splenectomy was avoided. Thus, {sup 111}In-platelet scintigraphy and survival studies are valuable in the classification and management of childhood thrombocytopenia. We believe that this study should be performed, when possible, in any child with thrombocytopenia where the mechanism is unclear or the therapeutic intervention involves splenectomy or resection of a hemangioma.

  5. Imaging Lung Clearance of Radiolabeled Tumor Cells to Study Mice with Normal, Activated or Depleted Natural Killer (NK) Cells

    SciTech Connect

    Kulkarni, P.V.; Bennett, M.; Constantinescu, A.; Arora, V.; Viguet, M.; Antich, P.; Parkey, R.W.; Mathews, D.; Mason, R.P.; Oz, O.K.

    2003-08-26

    Lung clearance of 51CR and 125I iododeoxyuridine (IUDR) labeled cancer cells assess NK cell activity. It is desirable to develop noninvasive imaging technique to assess NK activity in mice. We labeled target YAC-1 tumor cells with 125I, 111In, 99mTc, or 67Ga and injected I.V. into three groups of BALB/c mice. Animals were treated with medium (group I), 300mg/kg cyclophosmamide (CY) to kill NK cell (group II), or anti-LY49C/1) (ab')2 mAb to augment NK function (group III). Lungs were removed 15 min or 2 h later for tissue counting. Control and treated mice were imaged every 5 min with a scintillating camera for 1 h after 15 min of infusion of the 111In labeled cells. Lung clearance increased after 15 min (lodging: 60-80%) and (2 h retention: 3-7%). Similar results were obtained with all the isotopes studied. Images distinguished the control and treated mice for lung activity. Cells labeled with 111In, 99mTc or 67Ga are cleared similar to those labeled with 51Cr or 125I. NK cell destruction of tumor cells may be assessed by noninvasive imaging method either by SPECT (99mTc, 111In, 67Ga) or by PET (68Ga)

  6. Selective inhibition by a synthetic hirudin peptide of fibrin-dependent thrombosis in baboons

    SciTech Connect

    Cadroy, Y.; Hanson, S.R.; Harker, L.A. ); Maraganore, J.M. )

    1991-02-15

    To determine the importance of the thrombin substrate recognition exosite for fibrinogen binding in the formation of both arterial and venous thrombi the authors evaluated the antithrombotic effects of the tyrosine-sulfated dodecapeptide from residues 53-64 of hirudin (H peptide) in a nonhuman primate model. This peptide was studied because it inhibits thrombin cleavages of fibrinogen by simple competition without blocking enzyme catalytic-site function. When an exteriorized arteriovenous access shunt model was used in baboons (Papio anubis), thrombus formation was induced by placing a thrombogenic device made of (i) a segment of tubing coated covalently with type I collagen, which generated platelet-rich thrombi under arterial flow conditions, and (ii) two subsequent annular regions of flow expansion that produced fibrin-rich thrombi typically associated with venous valves and veins. Thrombus formation was quantified by measurements of {sup 111}In-labeled platelet and {sup 125}I-labeled fibrinogen deposition in both arterial-flow and venous-flow portions of the device. These finding suggest that, by competitive inhibition of fibrinogen binding to thrombin, fibrin-rich venous-type thrombus formation may be selectively prevented. This strategy may be therapeutically attractive for preserving normal platelet function when conventional anticoagulant therapy is contraindicated.

  7. Graft revascularization is essential for non-invasive monitoring of transplanted islets with radiolabeled exendin

    PubMed Central

    Eter, Wael A.; Bos, Desirée; Frielink, Cathelijne; Boerman, Otto C.; Brom, Maarten; Gotthardt, Martin

    2015-01-01

    Islet transplantation is a novel promising strategy to cure type 1 diabetes. However, the long-term outcome is still poor, because both function and survival of the transplant decline over-time. Non-invasive imaging methods have the potential to enable monitoring of islet survival after transplantation and the effects of immunosuppressive drugs on transplantation outcome. 111In-labeled exendin-3 is a promising tracer to visualize native and transplanted islets by SPECT (Single Photon Emission Computed Tomography). In the present study, we hypothesized that islet microvasculature plays an important role determining the uptake of exendin-3 in islets when monitoring transplant survival. We observed 111In-exendin-3 accumulation in the transplant as early as three days after transplantation and an increase in the uptake up to three weeks post-transplantation. Islet-revascularization correlated with the increase in 111In-exendin-3 uptake, whereas fully re-established islet vasculature coincided with a stabilized uptake of the radiotracer in the transplant. Here, we demonstrate the importance of islet vasculature for in vivo delivery of radiotracers to transplanted islets and we demonstrate that optimal and stable uptake of exendin four weeks after transplantation opens the possibility for long-term monitoring of islet survival by SPECT imaging. PMID:26490110

  8. Graft revascularization is essential for non-invasive monitoring of transplanted islets with radiolabeled exendin.

    PubMed

    Eter, Wael A; Bos, Desirée; Frielink, Cathelijne; Boerman, Otto C; Brom, Maarten; Gotthardt, Martin

    2015-10-22

    Islet transplantation is a novel promising strategy to cure type 1 diabetes. However, the long-term outcome is still poor, because both function and survival of the transplant decline over-time. Non-invasive imaging methods have the potential to enable monitoring of islet survival after transplantation and the effects of immunosuppressive drugs on transplantation outcome. (111)In-labeled exendin-3 is a promising tracer to visualize native and transplanted islets by SPECT (Single Photon Emission Computed Tomography). In the present study, we hypothesized that islet microvasculature plays an important role determining the uptake of exendin-3 in islets when monitoring transplant survival. We observed (111)In-exendin-3 accumulation in the transplant as early as three days after transplantation and an increase in the uptake up to three weeks post-transplantation. Islet-revascularization correlated with the increase in (111)In-exendin-3 uptake, whereas fully re-established islet vasculature coincided with a stabilized uptake of the radiotracer in the transplant. Here, we demonstrate the importance of islet vasculature for in vivo delivery of radiotracers to transplanted islets and we demonstrate that optimal and stable uptake of exendin four weeks after transplantation opens the possibility for long-term monitoring of islet survival by SPECT imaging.

  9. [Effects of component formula of Salviae Miltiorrhizae Radix et Rhizoma and Ginseng Radix et Rhizoma on cell proliferation, apoptosis and skeleton in lung cancer A549 cells].

    PubMed

    Yan, Xiao-jing; Yang, Ye; Bi, Lei; Chen, Shan-shan; Zhu, Jing-jing; Chen, Wei-ping

    2014-11-01

    This study aims to optimize the most effective component formula of Salviae Miltiorrhizae Radix et Rhizoma and Ginseng Radix et Rhizoma on lung cancer A549 using the orthogonal design method, and to investigate its effects of the component formula on cell proliferation, apoptosis and cytoskeleton in lung cancer A549 cells. The orthogonal design method was introduced to optimize the most effective component formula of Salviae Miltiorrhizae Radix et Rhizoma and Ginseng Radix et Rhizoma on lung cancer A549 cells. CCK-8 assay and Real-time cell analysis were adapted to analyze the effect of component formula of Salviae Miltiorrhizae Radix et Rhizoma and Ginseng Radix et Rhizoma on A549 cells viability at different time and dose. Cell apoptosis was measured by Annexin V- FITC/PI double staining and flow cytometry. Cell skeleton protein F-actin was detected by high content screening (HCS). The optimizing component formula of Salviae Miltiorrhizae Radix et Rhizoma and Ginseng Radix et Rhizoma for total salvianolic acid, total saponins of panax ginseng and ginseng polysaccharide doses were 5, 10, 5 mg L(-1). CCK-8 assay and real-time cell analysis demonstrated that the component formula of Salviae Miltiorrhizae Radix et Rhizoma and Ginseng Radix et Rhizoma treatment could significantly decrease the A549 cell viability in both dose- and time-dependent manner compared with control group (P < 0.01). Moreover, the increase of cell apoptosis was detected by Annexin V-FITC/PI double staining and flow cytometry when cells treated with the component formula, which indicating that the component formula of Salviae Miltiorrhizae Radix et Rhizoma and Ginseng Radix et Rhizoma could induce A549 cell apoptosis in a time-dependent manner compared with control group (P < 0.01). Furthermore, compared with control group, a significant decrease in A549 cell skeleton area was found in the component formula-exposed cells in the dose-dependent manner (P < 0.01). In summary, the component formula

  10. 17β-Estradiol Inhibites Tumor Necrosis Factor-α Induced Apoptosis of Human Nucleus Pulposus Cells via the PI3K/Akt Pathway

    PubMed Central

    Wang, Tao; Yang, Si-Dong; Liu, Sen; Wang, Hui; Liu, Huan; Ding, Wen-Yuan

    2016-01-01

    Background Tumor necrosis factor-α (TNF-α) has been widely known to induce degeneration of nucleus pulposus cells (NPCs). 17β-estradiol (17β-E2) has been broadly proven for its function of suppressing cell apoptosis. The aim of this study is to explore whether 17β-E2 protects apoptosis of human NPCs induced by TNF-α via the PI3K/AKT pathway. Material/Methods NPCs were divided into four groups: control, TNF-α (100 ng/mL), TNF-α (100 ng/mL) with pretreated 17β-E2 (10 um/L), TNF-α (100 ng/mL) with pretreated 17β-E2 (10 um/L) and MK2206 (10 um/L, inhibitor of the PI3K/AKT pathway). Flow cytometry was used to measure the apoptotic incidence. Inverted phase-contrast microscopy was used to accomplish the morphological observation for apoptosis of treated cells. Additionally, Cell Counting Kit 8 (CCK-8) assay was used to detected cell proliferation. Western blot and quantitative real-time PCR (qRT-PCR) were applied to explore the expression of pro-caspase-3, caspase-3/p17, cleaved PARP, PARP, Akt, and phospho-Akt (p-Akt). Results First, inverted phase-contrast microscopy, CCK-8, and flow cytometry showed that TNF-α induced marked apoptosis, which was abolished by 17β-E2. Furthermore, Western blot and qRT-PCR showed that 17β-E2 protects TNF-α which can induced apoptosis by upregulating p-Akt, whereas Akt was essentially constant. Our data revealed that p-Akt expression peaked at 24 hours in a time-dependent manner (0–48 hours) after treating with TNF-α; and the p-Akt expression generally increased in a time-dependent manner (0–48 hours) after treating with TNF-α and 17β-E2. Conclusions 17β-E2 is shown to protect NPCs against TNF-α induced apoptosis by upregulating p-Akt in the PI3K/AKT pathway. 17β-E2 generally increases expression of p-Akt. PMID:27847386

  11. Effects of Low-dose Triamcinolone Acetonide on Rat Retinal Progenitor Cells under Hypoxia Condition

    PubMed Central

    Xing, Yao; Cui, Li-Jun; Kang, Qian-Yan

    2016-01-01

    Background: Retinal degenerative diseases are the leading causes of blindness in developed world. Retinal progenitor cells (RPCs) play a key role in retina restoration. Triamcinolone acetonide (TA) is widely used for the treatment of retinal degenerative diseases. In this study, we investigated the role of TA on RPCs in hypoxia condition. Methods: RPCs were primary cultured and identified by immunofluorescence staining. Cells were cultured under normoxia, hypoxia 6 h, and hypoxia 6 h with TA treatment conditions. For the TA treatment groups, after being cultured under hypoxia condition for 6 h, RPCs were treated with different concentrations of TA for 48–72 h. Cell viability was measured by cell counting kit-8 (CCK-8) assay. Cell cycle was detected by flow cytometry. Western blotting was employed to examine the expression of cyclin D1, Akt, p-Akt, nuclear factor (NF)-κB p65, and caspase-3. Results: CCK-8 assays indicated that the viability of RPCs treated with 0.01 mg/ml TA in hypoxia group was improved after 48 h, comparing with control group (P < 0.05). After 72 h, the cell viability was enhanced in both 0.01 mg/ml and 0.02 mg/ml TA groups compared with control group (all P < 0.05). Flow cytometry revealed that there were more cells in S-phase in hypoxia 6 h group than in normoxia control group (P < 0.05). RPCs in S and G2/M phases decreased in groups given TA, comparing with other groups (all P < 0.05). There was no significant difference in the total Akt protein expression among different groups, whereas upregulation of p-Akt and NF-κB p65 protein expression and downregulation of caspase-3 and cyclin D1 protein expression were observed in 0.01 mg/ml TA group, comparing with hypoxia 6 h group and control group (all P < 0.05). Conclusion: Low-dose TA has anti-apoptosis effect on RPCs while it has no stimulatory effect on cell proliferation. PMID:27364798

  12. RNA interference for epidermal growth factor receptor enhances the radiosensitivity of esophageal squamous cell carcinoma cell line Eca109.

    PubMed

    Zhang, Heping; Li, Jiancheng; Cheng, Wenfang; Liu, D I; Chen, Cheng; Wang, Xiaoying; Lu, Xujing; Zhou, Xifa

    2015-09-01

    The present study investigated the effects of small interfering RNAs (siRNAs) specific to the epidermal growth factor receptor (EGFR) gene, on the radiosensitivity of esophageal squamous cell carcinoma cells. EGFR gene siRNAs (EGFR-siRNA) were introduced into esophageal cancer Eca109 cells using Lipofectamine® 2000. The EGFR messenger (m)RNA expression levels, EGFR protein expression and cell growth were assessed using reverse transcription-polymerase chain reaction analysis, western blot analysis and a Cell Counting Kit-8 (CCK-8), respectively. In addition, colony assays were used to determine the inhibitory effects of X-ray radiation on EGFR-silenced cells. EGFR mRNA and protein levels were reduced in the Eca109 cells transfected with EGFR-siRNA. The relative EGFR mRNA expression levels were reduced to 26.74, 9.52 and 4.61% in Eca109 cells transfected with EGFR-siRNA1, 2 and 3, respectively. These mRNA levels were significantly reduced compared with the those of the control group (42.44%; P<0.0001). Transfection with siRNA3 resulted in the greatest reduction in EGFR mRNA expression, with an inhibition rate of 85%. The relative EGFR protein expression levels were reduced to 24.05, 34.91 and 34.14% in Eca109 cells transfected with EGFR-siRNA1, 2 and 3, respectively. These protein levels were significantly reduced compared with those of the control group (78.57%; P<0.0001). Transfection with siRNA1 resulted in the greatest reduction in EGFR protein expression, with an inhibition rate of 72.84%. This reduction in EGFR expression inhibited the proliferation of Eca109 cells, which was identified using the CCK-8 assay. The proliferation inhibition ratio was 28.2%. The cells treated with irradiation in addition to EGFR-siRNA, demonstrated reduced radiobiological parameters (D0, Dq and SF2) compared with those of cells treated with irradiation only, with a sensitization enhancing ratio of 1.5. In conclusion, suppression of EGFR expression may enhance the radiosensitivity

  13. TFP5 prevents 1-methyl-4-phenyl pyridine ion-induced neurotoxicity in mouse cortical neurons

    PubMed Central

    Zhang, Qi-Shan; Liao, Yuan-Gao; Ji, Zhong; Gu, Yong; Jiang, Hai-Shan; Xie, Zuo-Shan; Pan, Su-Yue; Hu, Ya-Fang

    2016-01-01

    The present study aimed to investigate the protective effect of a modified p5 peptide, TFP5, on 1-methyl-4-phenyl pyridine ion (MPP+)-induced neurotoxicity in cortical neurons and explore the therapeutic effect of TFP5 on Parkinson's disease (PD). MPP+ was applied to a primary culture of mouse cortical neurons to establish the cell model of PD. Neurons were divided into four groups: Control, model (MPP+), scrambled peptide (Scb) (Scb + MPP+) and TFP5 (TFP5 + MPP+) groups. Pretreatment with Scb or TFP5 was applied to the latter two groups, respectively, for 3 h, while phosphate-buffered saline was applied to the control and model groups. MPP+ was then applied to all groups, with the exception of the control group, and neurons were cultured for an additional 24 h. Neuron viability was evaluated using a Cell Counting kit-8 (CCK8) assay. To explore the mechanism underlying the protective effects of TFP5, the expression levels of p35, p25 and phosphorylated myocyte enhancer factor 2 (p-MEF2D) were determined by western blotting. Fluorescence microscopy showed that TFP5 was able to pass through cell membranes and distribute around the nucleus. CCK8 assay showed that neuronal apoptosis was dependent on MPP+ concentration and exposure time. Cell viability decreased significantly in the model group compared with the control group (55±7 vs. 100±0%; P<0.01), and increased significantly in the TFP5 group compared with the model group (98±2 vs. 55±5%; P<0.01) and Scb group (98±2 vs. 54±4%; P<0.01). Scb exhibited no protective effect. Western blotting results showed that MPP+ induced p25 and p-MEF2D expression, TFP5 and Scb did not affect MPP+-induced p25 expression, but TFP5 reduced MPP+-induced p-MEF2D expression. In summary, TFP5 protects against MPP+-induced neurotoxicity in mouse cortical neurons, possibly through inhibiting the MPP+-induced formation and elevated kinase activity of a cyclin-dependent kinase 5/p25 complex. PMID:27698762

  14. Preliminary screening of differentially expressed genes involved in methyl-CpG-binding protein 2 gene-mediated proliferation in human osteosarcoma cells.

    PubMed

    Meng, Gang; Li, Yi; Lv, YangFan; Dai, Huanzi; Zhang, Xi; Guo, Qiao-Nan

    2015-04-01

    Methyl-CpG-binding protein 2 (MeCP2) is essential in human brain development and has been linked to several cancer types and neuro-developmental disorders. This study aims to screen the MeCP2 related differentially expressed genes and discover the therapeutic targets for osteosarcoma. CCK8 assay was used to detect the proliferation and SaOS2 and U2OS cells. Apoptosis of cells was detected by flow cytometry analysis that monitored Annexin V-APC/7-DD binding and 7-ADD uptake simultaneously. Denaturing formaldehyde agarose gel electrophoresis was employed to examine the quality of total RNA 18S and 28S units. Gene chip technique was utilized to discover the differentially expressed genes correlated with MeCP2 gene. Differential gene screening criteria were used to screen the changed genes. The gene up-regulation or down-regulation more than 1.5 times was regarded as significant differential expression genes. The CCK8 results indicated that the cell proliferation of MeCP2 silencing cells (LV-MeCP2-RNAi) was significantly decreased compared to non-silenced cells (LV-MeCP2-RNAi-CN) (P < 0.05). MeCP2 silencing could also induce significant apoptosis compared to non-silenced cells (P < 0.05); 107 expression changed genes were screened from a total of 49,395 transcripts. Among the total 107 transcripts, 34 transcripts were up-regulated and 73 transcripts were down-regulated. There were five significant differentially expressed genes, including IGFBP4, HOXC8, LMO4, MDK, and CTGF, which correlated with the MeCP2 gene. The methylation frequency of CpG in IGFBP4 gene could achieve 55%. In conclusion, the differentially expressed IGFBP4, HOXC8, LMO4, MDK, and CTGF genes may be involved in MeCP2 gene-mediated proliferation and apoptosis in osteosarcoma cells.

  15. Cationorm shows good tolerability on human HCE-2 corneal epithelial cell cultures.

    PubMed

    Kinnunen, Kati; Kauppinen, Anu; Piippo, Niina; Koistinen, Arto; Toropainen, Elisa; Kaarniranta, Kai

    2014-03-01

    Preservatives have been for a long time known to cause detrimental effects on ocular surface. Cationorm, a preservative-free compound with electrostatic properties is a novel way to solve the problems encountered with traditional benzalkonium chloride (BAK)-containing eye drops. The aim of this study was to evaluate tolerability of the preservative-free cationic emulsion Cationorm in vitro on corneal epithelial cells. The human corneal epithelial cell (HCE-2) culture line was used to study cellular morphology, cytotoxicity and inflammatory responses after Cationorm diluted 1/10 exposure for 5, 15 and 30 min. Exposures to Systane diluted 1/10 with polyquaternium-1/polidronium chloride 0.001% as preservative, BAK 0.001% or C16 (0.0002%) and normal cell culture medium served as positive and negative references. Cell viability was determined by measuring the release of lactate dehydrogenase (LDH) and mitochondrial dehydrogenase activity was evaluated using 3-(4,5-dimethyldiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The possible induction of apoptosis was analyzed by measuring the activity of caspase-3, and Cell Counting Kit-8 (CCK-8) was used to evaluate the number of viable cells after the exposure to test compounds. Furthermore, the tendency of the test compounds to produce inflammatory reaction was determined by analyzing the production of proinflammatory cytokines IL-6 and IL-8, and DNA binding of the p65 subunit of transcription factor NF-κB was measured from cell lysates. HCE-2 cells showed no morphological changes after the exposure to Cationorm, but in cells exposed to BAK, clear cytoplasm vacuolization and loose cell-cell contacts were observed in transmission (TEM) or scanning (SEM) electron microscopic analyses. Cell viability, as measured with the release of LDH, indicated a time dependent increase in LDH expression after exposure to all test compounds but especially with BAK. Moreover, Cationorm and BAK time-dependently decreased the

  16. CdSe/ZnS quantum dots induce photodynamic effects and cytotoxicity in pancreatic cancer cells

    PubMed Central

    He, Si-Jia; Cao, Jia; Li, Yong-Sheng; Yang, Jia-Chun; Zhou, Min; Qu, Chun-Ying; Zhang, Yi; Shen, Feng; Chen, Ying; Li, Ming-Ming; Xu, Lei-Ming

    2016-01-01

    AIM: To investigate the photodynamic effect of CdSe/ZnS quantum dots (QDs) on pancreatic cancer cells and elucidate the probable mechanisms. METHODS: The pancreatic cancer cell line SW1990 was treated with different concentrations of CdSe/ZnS QDs (0, 0.5, 1.0, 1.5, 2.0, 2.5 μmol/L), with or without illumination. The viability of SW1990 cells was tested using the Cell Counting Kit-8 (CCK-8) assay. The ultrastructural changes of SW1990 cells were observed by transmission electron microscopy. Apoptosis was detected by nuclear staining and flow cytometry (FCM). Reactive oxygen species (ROS) were measured by dichlorofluorescein diacetate via fluorescence microscopy. Expression of Bax, Bcl-2 and caspase-3 was measured by real-time polymerase chain reaction (PCR) and protein immunoblotting 24 h after SW1990 cells were treated with CdSe/ZnS QDs and illuminated. RESULTS: The CCK-8 assay results showed that both CdSe/ZnS QDs with and without illumination suppressed SW1990 cell proliferation. Cell viability was significantly lower when illuminated or with a longer incubation time and a higher light dose. CdSe/ZnS QDs with illumination caused ultrastructural changes in SW1990 cells, such as organelle degeneration and chromatin condensation and aggregation at the periphery of the nucleus. Fluorescence microscopy and FCM showed that CdSe/ZnS QDs (1.5 μmol/L) with illumination increased SW1990 cell apoptosis (53.2%) and ROS generation compared with no illumination. Real-time PCR showed that expression of Bax and caspase-3 was upregulated and Bcl-2 was downregulated. Immunoblotting results were consistent with real-time PCR results. Inhibition of ROS and apoptosis both attenuated QD-photodynamic-therapy-induced cell death. CONCLUSION: CdSe/ZnS QDs can be used as a photosensitizer to inhibit SW1990 cell proliferation through ROS generation and apoptotic protein expression regulation. PMID:27275093

  17. Gold nanorods as a theranostic platform for in vitro and in vivo imaging and photothermal therapy of inflammatory macrophages

    NASA Astrophysics Data System (ADS)

    Qin, Jinbao; Peng, Zhiyou; Li, Bo; Ye, Kaichuang; Zhang, Yuxin; Yuan, Fukang; Yang, Xinrui; Huang, Lijia; Hu, Junqing; Lu, Xinwu

    2015-08-01

    Inflammatory macrophages play pivotal roles in the development of atherosclerosis. Theranostics, a promising approach for local imaging and photothermal therapy of inflammatory macrophages, has drawn increasing attention in biomedical research. In this study, gold nanorods (Au NRs) were synthesized, and their in vitro photothermal effects on the macrophage cell line (Ana-1 cells) under 808 nm near infrared reflection (NIR) were investigated by the CCK8 assay, calcein AM/PI staining, flow cytometry, transmission electron microscopy (TEM), silver staining and in vitro micro-computed tomography (CT) imaging. These Au NRs were then applied to an apolipoprotein E knockout (Apo E) mouse model to evaluate their effects on in vivo CT imaging and their effectiveness as for the subsequent photothermal therapy of macrophages in femoral artery restenosis under 808 nm laser irradiation. In vitro photothermal ablation treatment using Au NRs exhibited a significant cell-killing efficacy of macrophages, even at relatively low concentrations of Au NRs and low NIR powers. In addition, the in vivo results demonstrated that the Au NRs are effective for in vivo imaging and photothermal therapy of inflammatory macrophages in femoral artery restenosis. This study shows that Au nanorods are a promising theranostic platform for the diagnosis and photothermal therapy of inflammation-associated diseases.Inflammatory macrophages play pivotal roles in the development of atherosclerosis. Theranostics, a promising approach for local imaging and photothermal therapy of inflammatory macrophages, has drawn increasing attention in biomedical research. In this study, gold nanorods (Au NRs) were synthesized, and their in vitro photothermal effects on the macrophage cell line (Ana-1 cells) under 808 nm near infrared reflection (NIR) were investigated by the CCK8 assay, calcein AM/PI staining, flow cytometry, transmission electron microscopy (TEM), silver staining and in vitro micro-computed tomography

  18. Reversion of trichostatin A resistance via inhibition of the Wnt signaling pathway in human pancreatic cancer cells.

    PubMed

    Wang, Benquan; Zou, Qian; Sun, Meng; Chen, Jingfeng; Wang, Tianyang; Bai, Yongheng; Chen, Zongjing; Chen, Bicheng; Zhou, Mengtao

    2014-11-01

    Drug resistance is a major impediment to successful chemotherapy in pancreatic cancer (PC) patients. We investigated the effect of Wnt/β-catenin signaling inhibition by wnt-c59 on chemoresistance in a trichostatin A-resistant Panc-1 cell line (Panc-1/TSA). Panc-1/TSA cells were treated with the Wnt/β‑catenin signaling inhibitor wnt-c59 (10 µmol · l-1) and/or trichostatin A (TSA; 10 µmol · l-1) for 24 h. CCK-8 assay was utilized to analyze the interactive effect of TSA and wnt-c59 on induction of apoptosis of the Panc-1/TSA cells. Cell apoptosis was measured by flow cytometry. Real-time PCR and western blotting were used to assess Wnt/β-catenin signaling, epithelial-mesenchymal transition (EMT) and multidrug resistance (MDR). Real-time cell analysis (RTCA) was used to detect the cell migration ability. After wnt-c59 treatment for 24 h, relative genes and transcriptional targets of Wnt/β-catenin signaling were downregulated (P<0.05). CCK-8 assay indicated that the combination of TSA and wnt-c59 had a synergistic effect on induction of Panc-1/TSA cell apoptosis. As detected by FACS, cell apoptosis rates increased significantly (P<0.05). The results of RTCA showed that the cell indices of the control group, wnt-c59 group, TSA group and TSA+wnt-c59 combination group were 1.2842±0.0257, 1.2155±0.0282, 1.2533±0.0194 and 0.8541±0.0250, respectively. In accordance, MMP-9 protein in the wnt-c59 treatment groups was decreased compared to the non-wnt-c59 treatment groups. Meanwhile, E-cadherin protein was upregulated and vimentin protein was downregulated, both of which are characteristic markers of EMT. Chemoresistant gene MDR1 and P-glycoprotein (P-gp) in the wnt-c59 treatment groups had a reduced expression compared to the non-wnt-c59 treatment groups. This study revealed that TSA sensitivity, migration ability, and the EMT phenotype in Panc-1/TSA cells were reversed following Wnt/β-catenin signaling inhibition.

  19. [IL-12 induces autophagy via AKT/mTOR/STAT3 signaling pathway in human hepatoma cells].

    PubMed

    Liu, Cuiying; Xie, Changli; Lin, Yan; Wu, Bitao; Wang, Qin; Li, Ziwei; Tu, Zhiguang

    2016-07-01

    Objective To investigate the effect of IL-12 on autophagy and the relative possible mechanism in HepG2 and SMMC-7721 human hepatoma cells. Methods The hepatoma cells were treated with IL-12 (10 ng/mL) for 6 hours. Western blotting was applied to detect the expressions of microtubule-associated protein 1 light chain 3 (LC-3), Beclin 1 and the phosphorylated levels of protein kinase B (AKT), mammalian target of rapamycin (mTOR), signal transducer and activator of transcription 3 (STAT3); immunofluorescence assay (IFA) and transmission electron microscopy (TEM) were used to observe the formation of autophagosome. After STAT3 was inhibited by STATTIC or siSTAT3 and AKT was activated by insulin-like growth factor (IGF-1), Western blotting and IFA were performed again to analyze the change of IL-12-induced autophagy. After the cells were treated with IL-12 (10 ng/mL) for 1, 2, 3, 4, 5 days, CCK-8 assay was used to determine the growth ability. After the hepatoma cells were treated with IL-12 (10 ng/mL) for 48 hours, trypan blue staining was used to detect the death rate of the cells. After cell autophagy was inhibit by siBeclin 1, CCK-8 assay and trypan blue staining were performed again to study the effect of IL-12 on the proliferation and death of human hepatoma cells. Results IL-12 induced autophagy and inhibited cell growth in the hepatoma cells. Silencing Beclin 1 gene enhanced IL-12-mediated growth inhibition and cell death. Furthermore, IL-12 treatment also decreased the expressions of p-AKT, p-mTOR and p-STAT3. The pretreatment of siSTAT3 or STATTIC inhibited STAT3-enhanced IL-12-induced autophagy. Accordingly, activation of AKT with IGF-1 decreased IL-12-induced autophagy. Conclusion IL-12 could induce autophagy through AKT/mTOR/STAT3 signaling pathways and the induction of autophagy attenuates the growth-inhibitory effect of IL-12 on hepatoma cells.

  20. [Reversal of adriamycin resistance by digoxin in human breast cancer cell line MCF-7/adriamycin and its mechanism].

    PubMed

    Li, Bai-He; Yuan, Lei; Shi, Ran-Ran; Wang, Jian-Guo

    2015-12-25

    The aim of this study was to investigate the effects of digoxin on the chemoresistance of human breast cancer cell line MCF-7/adriamycin (ADR) and its underlying mechanism. MCF-7 and MCF-7/ADR cells were designated as control and ADR groups, respectively. MCF-7/ADR cells in ADR + digoxin group received 48 h of digoxin (10 nmol/L) treatment; MCF-7/ADR cells transfected with pLKO.1-shHIF-1α and pLKO.1-shcontrol plasmids were named shHIF-1α and shcontrol groups, respectively. CCK-8 assay was employed to detect the cytotoxic effect of ADR on MCF-7/ADR cells, and IC50 value and resistance index were calculated according to CCK-8. RT-PCR was used to measure the mRNA levels of hypoxia inducible factor-1α (HIF-1α) and multidrug resistance-1 (MDR1). Western blot was used to analyze the protein levels of HIF-1α and MDR1. Flow cytometry was used to determine the apoptosis. The result showed that the resistance index of MCF-7/ADR cells was 115.6, and it was reduced to 47.2 under the action of digoxin (P < 0.05). In comparison with control group, ADR groups showed increased protein and mRNA levels of HIF-1α and MDR1 (P < 0.05). Digoxin reduced the protein levels of HIF-1α and MDR1, as well as the mRNA level of MDR1, but did not affect the mRNA level of HIF-1α. After HIF-1α gene was silenced, the protein levels of HIF-1α and MDR1 were down-regulated (P < 0.05), and the pro-apoptotic effect of ADR on MCF-7/ADR cells was enhanced. Although it was also observed that digoxin promoted cell apoptosis in both shcontrol and shHIF-1α groups, the difference between the two groups was not significant. In conclusion, the results suggest that digoxin may partially reverse the ADR resistance in human breast cancer cell line MCF-7/ADR by means of down-regulating the expression levels of HIF-1α and MDR1 and promoting apoptosis via HIF-1α-independent pathway.

  1. CD147 promotes the proliferation, invasiveness, migration and angiogenesis of human lung carcinoma cells

    PubMed Central

    Yang, Shaoxing; Qi, Fei; Tang, Chuanhao; Wang, Hong; Qin, Haifeng; Li, Xiaoyan; Li, Jianjie; Wang, Weixia; Zhao, Changyun; Gao, Hongjun

    2017-01-01

    Cluster of differentiation (CD) 147 is a transmembrane glycoprotein that is highly expressed at the tumor cell surface, which stimulates fibroblasts to produce a large number of matrix metalloproteinases and promotes tumor invasion and metastasis and tumor-induced angiogenesis. The present study investigated the functions and the role of CD147 in the human lung carcinoma A549 cell line. The present study constructed expression and interference [small interfering (si) RNA] lentiviral vectors of CD147, which established stable overexpression and low expression of CD147 in the A549 cell line, named A549-CD147 and A549-siCD147, respectively. The differences in biological features between various levels of CD147 expression in A549 cells was investigated by cell counting kit-8 (CCK-8), Transwell, scratch and lumen formation assays. The results of the CCK-8 assay revealed that A549-CD147 cell proliferation was significantly increased and A549-siCD147 cell proliferation was decreased compared with the control groups. The A549-CD147 cells had the largest number of cells penetrating the Matrigel in the Transwell assay, which indicates that upregulation of CD147 expression increases the infiltration capacity of cells. The scratch assay revealed that A549-CD147 cells have the highest capacity for migration, while A549-siCD147 cells have the lowest. Quantitative polymerase chain reaction and western blot analysis demonstrated that vascular endothelial growth factor (VEGF) expression was proportional to the expression level of CD147 at the mRNA and protein level. The lumen formation assay revealed that the number of vessel lumens that human umbilical vein endothelial cells formed in the A549-CD147 cell supernatant was increased compared with the A549-siCD147 cells. Collectively, the present results suggest that CD147 is important in the promotion of lung carcinoma cell proliferation, invasion and metastasis and the upregulation of VEGF, which stimulates the angiogenesis of lung

  2. Sauchinone augments cardiomyocyte viability by enhancing autophagy proteins -PI3K, ERK(1/2), AMPK and Beclin-1 during early ischemia-reperfusion injury in vitro

    PubMed Central

    Thapalia, Bisharad Anil; Zhou, Zhen; Lin, Xianhe

    2016-01-01

    Background. Sauchinone has proved its anti-oxidant and anti-inflammatory properties in various animal tissues. This study sought to illustrate its regulatory nature on autophagy associated proteins (PI3K, ERK1/2, AMPK, and Beclin-1) during early cardiomyocyte ischemia and subsequent reperfusion. Methods. Cultured cardiomyocytes were subjected to simulated Ischemia/reperfusion with and without Sauchinone pretreatment and also in the presence of autophagy inhibitor (3-MA). Colorimetric analysis of CCK-8, LDH antibody assay as well as Western blot analysis were performed to observe the expressions of LC3B (II) and Beclin-1 protein (markers of autophagy), autophagy proteins (PI3K, ERK1/2 and AMPK) and apoptotic proteins (Bax and Bcl-2) and the results were quantified into their grey values and subjected to statistical analysis. Results. Sauchinone demonstrated cell survival enhancing properties with increase in CCK-8 (SD = 0.553±0.012) and decrease in LDH (SD = 0.183±0.054) expressions, both of which were best observed at test dose of 20 µmol/L. At this dose, there was increment in cellular autophagy as demonstrated by peaking of autophagy markers LC3B-II (p<0.05) and Beclin-1 (p<0.05) with strong correlations (r = 0.99). Similarly, the autophagy proteins, compared to control and I/R model, also showed a significant increased level with PI3K (p<0.0001), total p-ERK1/2 (p<0.0001) and p-AMPKα (p<0.0001). Simultaneously, a decrease in expressions of pro-apoptotic molecules Bax (r = 0.989, p<0.0001) with increment of in the anti-apoptotic protein Bcl-2 (r = 0.996, p<0.0001) was observed. The observed effects on cell density, viability and autophagy was abrogated in presence of 3-MA. Conclusions. Sauchinone enhances cell survival by promoting autophagy and inhibiting apoptosis in cardiomyocytes during early stages of Ischemia/reperfusion injury. PMID:27508047

  3. B7-H3 silencing inhibits tumor progression of mantle cell lymphoma and enhances chemosensitivity.

    PubMed

    Zhang, Wei; Wang, Yanfang; Wang, Jing; Dong, Fei; Zhu, Mingxia; Wan, Wenli; Li, Haishen; Wu, Feifei; Yan, Xinxing; Ke, Xiaoyan

    2015-01-01

    B7-H3 (CD276), known as a member of B7 immunoregulatory family, is a type I transmembrane glycoprotein aberrantly expressed in numerous types of cancer and associated with poor prognosis. However, the role of B7-H3 in oncogenesis and chemosensitivity of mantle cell lymphoma (MCL) remains unknown. We determined the effects of downregulating B7-H3 expression on tumor progression and the sensitivity of chemotherapeutic drug in mantle cell lymphoma. B7-H3 knockdown was performed using lentivirus transduction in the Maver and Z138 mantle cell lymphoma cell lines, respectively. The effects of B7-H3 on cell proliferation, cycle, migration and invasion were investigated by CCK-8 assay, methyl cellulose colony forming assay, PI staining, and Transwell assays in vitro. By establishing Maver and Z138 xenograft models, the effects of B7-H3 on tumorigenicity were observed, and Ki-67 and PCNA was detected by immunohistochemistry. The downregulation of B7-H3 significantly decreased tumor proliferation in MCL in vitro and in vivo. In the B7-H3 knockdown groups of Maver and Z138 xenograft models, the mean inhibition rate of tumor growth was 59.1 and 65.0% (p=0.010 and 0.003), and the expression of both Ki-67 and PCNA were significantly lower, respectively. After B7-H3 silencing, the cell cycles of Maver and Z138 were both arrested at G0/G1 phase, and the cell migration rates and invasion capacity were decreased as well. Moreover, the impacts of B7-H3 RNAi on the antitumor effect of chemotherapy drugs were determined with CCK-8 and Annexin V-FITC/PI assays in vitro and with xenograft models in vivo. The silencing of B7-H3 increased the sensitivity of Maver and Z138 cells to rituximab and bendamustine and enhanced the drug-induced apoptosis, respectively. Our study demonstrates for the first time that B7-H3 promotes mantle cell lymphoma progression and B7-H3 knockdown significantly enhances the chemosensitivity. This may provide a new therapeutic approach to mantle cell lymphoma.

  4. Nuclear transcription factor Nrf2 suppresses prostate cancer cells growth and migration through upregulating ferroportin.

    PubMed

    Xue, Dong; Zhou, Cuixing; Shi, Yunbo; Lu, Hao; Xu, Renfang; He, Xiaozhou

    2016-11-29

    VTo investigate the effect of nuclear transcription factor Nrf2 on the transcription of Ferroportin (FPN) in prostate cancer cells, and the regulation mechanisms of FPN on cell viability, migration and apoptosis of prostate cancer cells.Empty vectors, pEGFPC1-Nrf2, pEGFPC1-FPN, Si-FPN and Si-Nrf2 were transfected into prostate cancer cell line PC3. The expression of mRNA and protein were measured by real time-PCR (RT-PCR) and western blot. Cell viability, migration, cycle and apoptosis were tested by CCK-8 assay, wound healing and flow cytometry, respectively. The interaction between FPN and Nrf2 was confirmed by chromatin immunoprecipitation (CHIP) assay.The viability, migration and mitosis of PC3 cells could be repressed by over-expressed FPN, with decreased intracellular ferritin. The CHIP assay demonstrated that Nrf2 is one transcription factor of FPN and promotes its transcription. With the increase of Nrf2 in PC3 cells, the viability, migration ability and concentration of ferritin were suppressed, while the apoptosis rate was increased. The above effects were counteracted by down-regulating FPN.FPN could inhibit the prostate cancer cell viability, migration and mitosis, which is also related to a decrease of intracellular ferritin content. In conclusion, Nrf2 suppresses prostate cancer cells viability, migration, and mitosis through upregulating FPN.

  5. Synthesis and anti-tumor activity evaluation of gallic acid-mangiferin hybrid molecule.

    PubMed

    Hu, Xiang-yu; Deng, Jia-gang; Wang, Lin; Yuan, Ye-fei

    2013-12-01

    To improve the anti-tumor effects of gallic acid and mangiferin, a gallic acid-mangiferin hybrid molecule (GAMA) was synthesized from gallic acid with mangiferin in the presence of ionic liquid ChC1(choline chloride)·2SnC12. Chemical and spectroscopic methods, such as (1)H and (13)C NMR spectroscopy, and HR-ESIMS were used for the structure identification of GA-MA. Using the cell counting kit-8 (CCK-8) assay, the in vitro anti-tumor effects were compared between GA-MA, gallic acid and mangiferin on human hepatoma HepG2, human nasopharyngeal carcinoma CNE, human lung cancer NCI-H460, human ovarian cancer SK-OV-3, and human cervical cancer Hela cells. The results showed that the half inhibitory concentration (IC50) of GA-MA on HepG2, CNE, NCI-H460, SK-OV-3, and Hela cells was significantly lower than that of gallic acid or mangiferin. This showed that GA-MA has a better in vitro anti-tumor effect than gallic acid and mangi-ferin.

  6. Synthesis, structure, antitumor activity of novel pharmaceutical co-crystals based on bispyridyl-substituted α, β-unsaturated ketones with gallic acid

    NASA Astrophysics Data System (ADS)

    Liu, Lian-Dong; Liu, Shu-Lian; Liu, Zhi-Xian; Hou, Gui-Ge

    2016-05-01

    Three novel pharmaceutical co-crystals, (A)·(gallic acid) (1), (B)·(gallic acid) (2), and (C)·(gallic acid) (3) were generated based on 2,6-bis((pyridin-4-yl)methylene)cyclohexanone (A), N-methyl-3,5-bis((pyridin-3-yl)methylene)-4-piperidone (B), N-methyl-3,5-bis((pyridin-4-yl)methylene)-4-piperidone (C) with gallic acid, respectively. They are characterized by elemental analysis, FTIR spectroscopy, 1H NMR and single-crystal X-ray diffraction. Structural analysis reveals that two pharmaceutical ingredients link each other into H-bonding-driven 3D network in 1, 2, or 2D plane in 3. In addition, their antitumor activities against human neoplastic cell lines A549, SGC-7901, MCF-7, OVCA-433, HePG2 and cytotoxicity for HUVEC cell lines by CCK-8 method were evaluated primarily. Compared with gallic acid and free A, B and C, their antitumor activities have improved distinctly, while cytotoxicities have reduced markedly, especially for co-crystal 1. This is mainly because of the synergistic effect between pharmaceutical ingredients A, B, and C and gallic acid.

  7. BMP7 can promote osteogenic differentiation of human periosteal cells in vitro.

    PubMed

    Bei, Kangsheng; Du, Zhipo; Xiong, Yinghui; Liao, Jiacheng; Su, Baojin; Wu, Liyang

    2012-09-01

    To study and evaluate BMP7s functions in osteogenic differentiation of human periosteal cells in vitro. Human periosteal cells from adult tibia were collected and cultured as experimental samples. BMP7 was used to induce periosteal cells in the experiment group with common osteogenic medium. The proliferative activity of periosteal cells was detected by CCK-8. The potentials of osteogenic differentiation were demonstrated as follows: (1) realtime-PCR and ELISA to confirm the expression of the OC, ALP and OPN, (2) Colorimetry, ALP staining and Von Kossa staining were performed to identify ALP activity, ALP expression and calcium nodules, respectively. Based on the significant different expression of OC, ALP and OPN, BMP7 ability of osteogenic differentiation can be identified. ALP activity detection, calcium nodules staining and toluidine staining also provide the power evidence to support BMP7 can promote osteogenic differentiation of human periosteal cells in vitro. To human periosteal cells, BMP7 is a good inducer for osteogenic differentiation. Therefore, it's maybe a potential tool for clinical application.

  8. Pterostilbene Inhibits Human Multiple Myeloma Cells via ERK1/2 and JNK Pathway In Vitro and In Vivo

    PubMed Central

    Xie, Bingqian; Xu, Zhijian; Hu, Liangning; Chen, Gege; Wei, Rong; Yang, Guang; Li, Bo; Chang, Gaomei; Sun, Xi; Wu, Huiqun; Zhang, Yong; Dai, Bojie; Tao, Yi; Shi, Jumei; Zhu, Weiliang

    2016-01-01

    Multiple myeloma (MM) is the second most common malignancy in the hematologic system, which is characterized by accumulation of plasma cells in bone marrow. Pterostilbene (PTE) is a natural dimethylated analog of resveratrol, which has anti-oxidant, anti-inflammatory and anti-tumor properties. In the present study, we examined the anti-tumor effect of PTE on MM cell lines both in vitro and in vivo using the cell counting kit (CCK)-8, apoptosis assays, cell cycle analysis, reactive oxygen species (ROS) generation, JC-1 mitochondrial membrane potential assay, Western blotting and tumor xenograft models. The results demonstrated that PTE induces apoptosis in the H929 cell line and causes cell cycle arrest at G0/G1 phase by enhancing ROS generation and reducing mitochondrial membrane potential. The anti-tumor effect of PTE may be caused by the activation of the extracellular regulated protein kinases (ERK) 1/2 and c-Jun N-terminal kinase (JNK) signaling pathways. Additionally, mice treated with PTE by intraperitoneal injection demonstrated reduced tumor volume. Taken together, the results of this study indicate that the anti-tumor effect of PTE on MM cells may provide a new therapeutic option for MM patients. PMID:27869675

  9. Transcriptome analysis of phycocyanin inhibitory effects on SKOV-3 cell proliferation.

    PubMed

    Ying, Jun; Wang, Jian; Ji, Huijuan; Lin, Chaoqing; Pan, Ruowang; Zhou, Li; Song, Yulong; Zhang, Enyong; Ren, Ping; Chen, Jishun; Liu, Qian; Xu, Teng; Yi, Huiguang; Li, Jinsong; Bao, Qiyu; Hu, Yunliang; Li, Peizhen

    2016-07-01

    Phycocyanin (PC) from Spirulina platensis has inhibitory effects on tumor cell growth. In this research, the transcriptome study was designed to investigate the underlying molecular mechanisms of PC inhibition on human ovarian cancer cell SKOV-3 proliferation. The PC IC50 was 216.6μM and 163.8μM for 24h and 48h exposure, respectively, as determined by CCK-8 assay. The morphological changes of SKOV-3 cells after PC exposure were recorded using HE staining. Cells arrested in G2/M stages as determined by flow cytometry. The transcriptome analysis showed that 2031 genes (with > three-fold differences) were differentially expressed between the untreated and the PC-treated cells, including 1065 up-regulated and 966 down-regulated genes. Gene ontology and KEGG pathway analysis identified 18 classical pathways that were remarkably enriched, such as neurotrophin signaling pathway, VEGF signaling pathway and P53 signaling pathway. qPCR results further showed that PTPN12, S100A2, RPL26, and LAMA3 increased while HNRNPA1P10 decreased in PC-treated cells. Molecules and genes in those pathways may be potential targets to develop treatments for ovarian cancer.

  10. Centrosomal Protein of 55 Regulates Glucose Metabolism, Proliferation and Apoptosis of Glioma Cells via the Akt/mTOR Signaling Pathway

    PubMed Central

    Wang, Guangzhi; Liu, Mingna; Wang, Hongjun; Yu, Shan; Jiang, Zhenfeng; Sun, Jiahang; Han, Ke; Shen, Jia; Zhu, Minwei; Lin, Zhiguo; Jiang, Chuanlu; Guo, Mian

    2016-01-01

    Introduction: Glioma is one of the most common and most aggressive brain tumors in humans. The molecular and cellular mechanisms responsible for the onset and the progression of glioma are elusive and controversial. Centrosomal protein of 55 (CEP55) was initially described as a highly coiled-coil protein that plays critical roles in cell division, but was recently identified as being overexpressed in many human cancers. The function of CEP55 has not previously been characterized in glioma. We aim to discover the effect and mechanism of CEP55 in glioma development. Method: qRT-PCR and immunohistochemistry were used to analyze CEP55 expression. Glucose uptake, western blot, MTS, CCK-8, Caspase-3 activity and TUNEL staining assays were performed to investigate the role and mechanism of CEP55 on glioma cell process. Results: We found that the levels of CEP55 expression were upregulated in glioma. In addition, CEP55 appeared to regulate glucose metabolism of glioma cells. Furthermore, knockdown of CEP55 inhibited cell proliferation and induced cell apoptosis in glioma. Finally, we provided preliminary evidence that knockdown of CEP55 inhibited glioma development via suppressing the activity of Akt/mTOR signaling. Conclusions: Our results demonstrated that CEP55 regulates glucose metabolism, proliferation and apoptosis of glioma cells via the Akt/mTOR signaling pathway, and its promotive effect on glioma tumorigenesis can be a potential target for glioma therapy in the future. PMID:27471559

  11. Baicalin attenuates lipopolysaccharide induced inflammation and apoptosis of cow mammary epithelial cells by regulating NF-κB and HSP72.

    PubMed

    Yang, Wenhao; Li, Huatao; Cong, Xia; Wang, Xin; Jiang, Zhongling; Zhang, Qian; Qi, Xiaonan; Gao, Shansong; Cao, Rongfeng; Tian, Wenru

    2016-11-01

    Baicalin is the main ingredient of traditional Chinese herbal medicine, Scutellaria baicalensis, which has been widely used clinically as an anti-inflammatory agent. However, molecular mechanism of action of this drug is not yet clear. In the present study, the protective mechanism of baicalin against lipopolysaccharide (LPS) induced inflammatory injury in cow mammary epithelial cells (CMECs) was explored. For this purpose, in vitro cultured CMECs were treated with baicalin (10μg/mL) and LPS (10μg/mL) for 24 and 12h, respectively, and the cell viability was measured by using cell counting kit-8 (CCK-8). The results revealed that LPS induced inflammatory responses, as p-p65/p65 and p-IκBα/IκBα ratios and TNF-α and IL-1β production was increased in the CMECs. Both Bcl-2/Bax ratio and cell viability were decreased and caspase-3 cleaved following LPS treatment, indicating apoptosis of CMECs. Moreover, both LPS and baicalin increased HSP72 expression of the CMECs. However, cellular inflammatory responses and apoptosis were significantly reduced in baicalin treated CMECs. In conclusion, baicalin ameliorated inflammation and apoptosis of the CMECs induced by LPS via inhibiting NF-κB activation and up regulation of HSP72.

  12. High-sensitive and high-efficient biochemical analysis method using a bionic electronic eye in combination with a smartphone-based colorimetric reader system.

    PubMed

    Kaiqi Su; Quchao Zou; Ning Hu; Ping Wang

    2015-01-01

    Bionic electronic eye (Bionic e-Eye), a developed smartphone-based colorimetric reader system, consists of smartphone or pad (iPhone 4s or iPad 3) as detection instrument and portable accessory as illumination provider, integrating with a wide-angle lens, a piece of lowest-power electro luminescent and a custom-made dark hood. A 96-well microtiter plate (MTP) was positioned on the electro luminescent and Bionic e-Eye captures the detection images by the back camera of smartphone. Being similar to human visual system, the hue, saturation and value (HSV, also called hex cone model) color model was employed in image processing algorithm of Bionic e-Eye. Optimized system dimension was determined by the system steadiness experiment of different photograph distances. Moreover, the commercially available BCA protein assay and CCK8 cell number assay were carried out to evaluate this Bionic e-Eye. Analytical performance of Bionic e-Eye had the better precision, higher sensitivity than microtiter plate reader (MTPR) and previous smartphone-based colorimetric reader for both two assays. Also, Bionic e-Eye using optical image detection had simultaneous and synchronous working mode, while MPTR using machine moving detection had asynchronous working mode in high throughput detection. Therefore, Bionic e-Eye will be an ideal point-of-care (POC) colorimetric detection device in the field of clinical application, industrial quality control, environment monitoring, and food assessment.

  13. Diethylstilbestrol induces oxidative DNA damage, resulting in apoptosis of spermatogonial stem cells in vitro.

    PubMed

    Habas, Khaled; Brinkworth, Martin H; Anderson, Diana

    2017-03-14

    The spermatogonial stem cells (SSCs) are the only germline stem cells in adults that are responsible for the transmission of genetic information from mammals to the next generation. SSCs play a very important role in the maintenance of progression of spermatogenesis and help provide an understanding of the reproductive biology of future gametes and a strategy for diagnosis and treatment of infertility and male reproductive toxicity. Androgens/oestrogens are very important for the suitable maintenance of male germ cells. There is also evidence confirming the damaging effects of oestrogen-like compounds on male reproductive health. We investigated the effects in vitro, of diethylstilbestrol (DES) on mouse spermatogonial stem cells separated using Staput unit-gravity velocity sedimentation, evaluating any DNA damage using the Comet assay and apoptotic cells in the TUNEL assay. Immunocytochemistry assays showed that the purity of isolated mouse spermatogonial cells was 90%, and the viability of these isolated cells was over 96%. Intracellular superoxide anion production (O2(-)) in SSCs was detected using p-Nitro Blue Tetrazolium (NBT) assay. The viability of cells after DES treatment was examined in the CCK8 (cell counting kit-8) cytotoxicity assay. The results showed that DES-induced DNA damage causes an increase in intracellular superoxide anions which are reduced by the flavonoid, quercetin. Investigating the molecular mechanisms and biology of SSCs provides a better understanding of spermatogonial stem cell regulation in the testis.

  14. Neurotoxicity Comparison of Two Types of Local Anaesthetics: Amide-Bupivacaine versus Ester-Procaine

    PubMed Central

    Yu, Xu-jiao; Zhao, Wei; Li, Yu-jie; Li, Feng-xian; Liu, Zhong-jie; Xu, Hua-li; Lai, Lu-ying; Xu, Rui; Xu, Shi-yuan

    2017-01-01

    Local anaesthetics (LAs) may lead to neurological complications, but the underlying mechanism is still unclear. Many neurotoxicity research studies have examined different LAs, but none have comprehensively explored the distinct mechanisms of neurotoxicity caused by amide- (bupivacaine) and ester- (procaine) type LAs. Here, based on a CCK8 assay, LDH assay, Rhod-2-AM and JC-1 staining, 2′,7′-dichlorohy-drofluorescein diacetate and dihydroethidium probes, an alkaline comet assay, and apoptosis assay, we show that both bupivacaine and procaine significantly induce mitochondrial calcium overload and a decline in the mitochondrial membrane potential as well as overproduction of ROS, DNA damage and apoptosis (P < 0.05). There were no significant differences in mitochondrial injury and apoptosis between the bupivacaine and procaine subgroups (P > 0.05). However, to our surprise, the superoxide anionic level after treatment with bupivacaine, which leads to more severe DNA damage, was higher than the level after treatment with procaine, while procaine produced more peroxidation than bupivacaine. Some of these results were also affirmed in dorsal root ganglia neurons of C57 mice. The differences in the superoxidation and peroxidation induced by these agents suggest that different types of LAs may cause neurotoxicity via different pathways. We can target more accurate treatment based on their different mechanisms of neurotoxicity. PMID:28338089

  15. Reversal of P-gp-mediated multidrug resistance in colon cancer by cinobufagin.

    PubMed

    Yuan, Zeting; Shi, Xiaojing; Qiu, Yanyan; Jia, Tingting; Yuan, Xia; Zou, Yu; Liu, Cheng; Yu, Hui; Yuan, Yuxia; He, Xue; Xu, Ke; Yin, Peihao

    2017-03-01

    Cinobufagin (CBF) is isolated from the skin and posterior auricular glands of the Asiatic toad (Bufo gargarizans). This study investigated the reversal effect of CBF on P-glycoprotein (P-gp)-mediated multidrug resistance (MDR) in colon cancer. The effect of CBF on the cytotoxicity of anticancer drugs in P-gp overexpressing LoVo/ADR, HCT116/L, Cao-2/ADR cells and their parental cells was determined using CCK-8 assay. Apoptosis of anti-cancer drugs and accumulation of doxorubicin (DOX) and Rhodamine 123 (Rho123) in P-gp overexpressing cells were evaluated by flow cytometry. Results indicated that CBF significantly enhanced the sensitivity of P-gp substrate drugs on P-gp overexpressing cells, but had no effect on their parental cells. CBF enhanced the effect of DOX against P-gp-overexpressing LoVo/ADR cell xenografts in nude mice. Moreover, CBF also increased cell apoptosis of chemotherapy agents and intracellular accumulation of DOX and Rho123 in the MDR cells. Further research on the mechanisms revealed non-competitive inhibition of P-gp ATPase activity, but without altering the expression of P-gp. These findings demonstrated that CBF could be further developed into a safe and potent P-gp modulator for combination use with anticancer drugs in cancer chemotherapy.

  16. Effect of multidrug resistance 1/P-glycoprotein on the hypoxia-induced multidrug resistance of human laryngeal cancer cells.

    PubMed

    Li, Dawei; Zhou, Liang; Huang, Jiameng; Xiao, Xiyan

    2016-08-01

    In a previous study, it was demonstrated that hypoxia upregulated the multidrug resistance (MDR) of laryngeal cancer cells to chemotherapeutic drugs, with multidrug resistance 1 (MDR1)/P-glycoprotein (P-gp) expression also being upregulated. The present study aimed to investigate the role and mechanism of MDR1/P-gp on hypoxia-induced MDR in human laryngeal carcinoma cells. The sensitivity of laryngeal cancer cells to multiple drugs and cisplatin-induced apoptosis was determined by CCK-8 assay and Annexin-V/propidium iodide staining analysis, respectively. The accumulation of rhodamine 123 (Rh123) in the cells served as an estimate of drug accumulation and was evaluated by flow cytometry (FCM). MDR1/P-gp expression was inhibited using interference RNA, and the expression of the MDR1 gene was analyzed using reverse transcription-quantitative polymerase chain reaction and western blotting. As a result, the sensitivity to multiple chemotherapeutic agents and the apoptosis rate of the hypoxic laryngeal carcinoma cells increased following a decrease in MDR1/P-gp expression (P<0.05). Additionally, FCM analysis of fluorescence intensity indicated that the downregulated expression of MDR1/P-gp markedly increased intracellular Rh123 accumulation (P<0.05). Such results suggest that MDR1/P-gp serves an important role in regulating hypoxia-induced MDR in human laryngeal carcinoma cells through a decrease in intracellular drug accumulation.

  17. Protective effects of quercetin and taraxasterol against H2O2-induced human umbilical vein endothelial cell injury in vitro

    PubMed Central

    YANG, DONGWEI; LIU, XINYE; LIU, MIN; CHI, HAO; LIU, JIRONG; HAN, HUAMIN

    2015-01-01

    Due to the association between inflammation and endothelial dysfunction in atherosclerosis, the blockage of the inflammatory process that occurs on the endothelial cells may be a useful way of preventing atherosclerosis. In the present study, human umbilical vein endothelial cells (HUVECs) were used to investigate the protective effects of quercetin and taraxasterol against H2O2-induced oxidative damage and inflammation. HUVECs were pretreated with quercetin or taraxasterol at concentrations ranging between 0 and 210 µM for 12 h, prior to being administered different concentrations of H2O2 for 4 h. Cell viability and levels of apoptosis were assessed through cell counting kit-8 (CCK-8) and terminal deoxynucleotidyl transferase dUTP nick end labeling assays, respectively, to determine the injury to the HUVECs. The viability loss in the H2O2-induced HUVECs was markedly restored in a concentration-dependent manner by pretreatment with quercetin or taraxasterol. This effect was accompanied by significantly decreased expression of vascular cell adhesion molecule 1 (VCAM-1) and cluster of differentiation (CD)80 for taraxasterol and that of CD80 for quercetin. In conclusion, the present study showed the protective effects of quercetin and taraxasterol against cell injury and inflammation in HUVECs and indicated that the effects were mediated via the downregulation of VCAM-1 and CD80 expression. This study has therefore served as a preliminary investigation on the anti-atherosclerotic and cardiovascular protective effects of quercetin and taraxasterol as dietary supplements. PMID:26622474

  18. Treatment of steroid-induced osteonecrosis of the femoral head using porous Se@SiO2 nanocomposites to suppress reactive oxygen species.

    PubMed

    Deng, Guoying; Niu, Kerun; Zhou, Feng; Li, Buxiao; Kang, Yingjie; Liu, Xijian; Hu, Junqing; Li, Bo; Wang, Qiugen; Yi, Chengqing; Wang, Qian

    2017-03-03

    Reducing oxidative stress (ROS) have been demonstrated effective for steroid-induced osteonecrosis of the femoral head (steroid-induced ONFH). Selenium (Se) plays an important role in suppressing oxidative stress and has huge potential in ONFH treatments. However the Se has a narrow margin between beneficial and toxic effects which make it hard for therapy use in vivo. In order to make the deficiency up, a control release of Se (Se@SiO2) were realized by nanotechnology modification. Porous Se@SiO2 nanocomposites have favorable biocompatibility and can reduced the ROS damage effectively. In vitro, the cck-8 analysis, terminal dexynucleotidyl transferase (TdT)-mediated dUTP nick end labeling (TUNEL) stain and flow cytometry analysis showed rare negative influence by porous Se@SiO2 nanocomposites but significantly protective effect against H2O2 by reducing ROS level (detected by DCFH-DA). In vivo, the biosafety of porous Se@SiO2 nanocomposites were confirmed by the serum biochemistry, the ROS level in serum were significantly reduced and the curative effect were confirmed by Micro CT scan, serum Elisa assay (inflammatory factors), Western blotting (quantitative measurement of ONFH) and HE staining. It is expected that the porous Se@SiO2 nanocomposites may prevent steroid-induced ONFH by reducing oxidative stress.

  19. Resveratrol inhibits canonical Wnt signaling in human MG-63 osteosarcoma cells

    PubMed Central

    ZOU, YONGGEN; YANG, JIEXIANG; JIANG, DIANMING

    2015-01-01

    In the last 30 years, the 5-year-survival rate of patients with osteosarcoma has not improved as a result of the low prevalence and large tumor heterogeneity. Therefore, the development of novel drugs for the treatment of osteosarcoma is urgently required. The present study aimed to identify potential novel drugs for the treatment of osteosarcoma, thus used β-catenin as a target and performed high content screening. In a total of 14 botanical extracts assessed, resveratrol markedly downregulated the expression of β-catenin and significantly inhibited MG-63 cell proliferation. CCK-8 assay was used to confirm the anti-osteosarcoma effect of resveratrol and flow cytometry and western blotting were performed to analyze the underlying mechanisms of the proapoptotic effects of resveratrol. β-catenin is a vital member of the canonical Wnt signaling pathway and, therefore, the target genes of this pathway were further analyzed. The results of this analysis demonstrated that resveratrol suppressed the MG-63 cells by inhibiting the canonical Wnt signaling pathway. PMID:26398440

  20. Rapamycin, a mTOR inhibitor, induced growth inhibition in retinoblastoma Y79 cell via down-regulation of Bmi-1.

    PubMed

    Wang, Yan-Dong; Su, Yong-Jing; Li, Jian-Ying; Yao, Xiang-Chao; Liang, Guang-Jiang

    2015-01-01

    Rapamycin is useful in the treatment of certain cancers by inhibiting mTOR(mammalian target of rapamycin) pathway. Here, anticancer activity and its acting mechanisms of rapamycin were investigated in human retinoblastoma Y79 cells. CCK-8 assay showed that the IC50 value of rapamycin against human retinoblastoma Y79 cells was 0.122±0.026 μmol/L. Flow cytometry analysis indicated that rapamycin induced G1 cell cycle arrest. Western blot assay demonstrated that the mTOR pathway in Y79 cells was blocked by rapamycin. Western blot and RT-PCR assay showed that Bmi-1 was downregulated in protein and mRNA level by rapamycin treatment. Further Western blot and RNA interference assays showed that rapamycin-mediated downregulation of Bmi-1 induced decreases of cyclin E1, which accounted for rapamycin-mediated G1 cell cycle arrest in human retinoblastoma cells. Together, all these results illustrated that rapamycin induced growth inhibition of human retinoblastoma cells, and inactive of mTOR pathway and downregulation of Bmi-1 was involved in its action mechanism.

  1. Effects of Free Anthraquinones Extract from the Rhubarb on Cell Proliferation and Accumulation of Extracellular Matrix in High Glucose Cultured-Mesangial Cells

    PubMed Central

    Wang, Jianyun; Fang, Hui; Dong, Bingzheng; Wang, Dongdong; Li, Yan; Chen, Xiao; Chen, Lijuan; Wei, Tong

    2015-01-01

    Diabetic nephropathy (DN) is the leading cause of end-stage failure of the kidney, but the efficacy of currently available strategies for the prevention of DN remains unsatisfactory. In this study, we investigated the effects of free anthraquinones (FARs) extract, which was extracted from the rhubarb and purified by macroporous resin DM130 with gradient mixtures of ethanol/water as the lelution solvents, in high glucose-cultured glomerular mesangial cells (MCs). The cell proliferation was determined by CCK-8 assay, the levels of TGF-β1, CTGF, ColIV and FN proteins in the supernatant of MCs were measured by ELISA assays, and the mRNA levels of these four genes were detected by RT-PCR. The results showed that the increased proliferation of MCs, the mRNA levels and protein expression of TGF-β1, CTGF, ColIV and FN induced by high glucose were inhibited after the treatment with the FARs extract. This indicated that FARs extract could inhibit cell proliferation and the expression of main extracellular matrix induced by high glucose in MCs. The FARs extract exhibited potential values for prophylaxis and therapy of DN. PMID:26557014

  2. Low Expression of CAPON in Glioma Contributes to Cell Proliferation via the Akt Signaling Pathway

    PubMed Central

    Gao, Shangfeng; Wang, Jie; Zhang, Tong; Liu, Guangping; Jin, Lei; Ji, Daofei; Wang, Peng; Meng, Qingming; Zhu, Yufu; Yu, Rutong

    2016-01-01

    CAPON is an adapter protein for nitric oxide synthase 1 (NOS1). CAPON has two isoforms in the human brain: CAPON-L (long form of CAPON) and CAPON-S (short form of CAPON). Recent studies have indicated the involvement of CAPON in tumorigenesis beyond its classical role in NOS1 activity regulation. In this study, we found that the protein levels of CAPON-S, but not than CAPON-L, were significantly decreased in glioma tissues. Therefore, we established lentivirus-mediated stable cell lines with CAPON-S overexpression or down-regulation, and investigated the role of CAPON-S in the proliferation of glioma cells by using CCK8, EdU, and flow cytometry assays. Overexpression of CAPON-S reduced the cell variability and the percentage of EdU-positive cells, and arrested the cells in the G1 phase in glioma cells. Silencing of CAPON by short-hairpin RNA showed the opposite effects. Furthermore, an intracellular signaling array revealed that overexpression of CAPON-S resulted in a remarkable reduction in the phosphorylation of Akt and S6 ribosomal protein in glioma cells, which was further confirmed by Western blot. These findings suggest that CAPON may function as a tumor suppressor in human brain glioma and that the inactivation of the Akt signaling pathway caused by CAPON-S overexpression may provide insight into the underlying mechanism of CAPON in glioma cell proliferation. PMID:27869735

  3. Evaluation of synovium-derived mesenchymal stem cells and 3D printed nanocomposite scaffolds for tissue engineering

    PubMed Central

    Pan, Jian-Feng; Li, Shuo; Guo, Chang-An; Xu, Du-Liang; Zhang, Feng; Yan, Zuo-Qin; Mo, Xiu-Mei

    2015-01-01

    Stem cells and scaffolds play a very important role in tissue engineering. Here, we isolated synovium-derived mesenchymal stem cells (SMSCs) from synovial membrane tissue and characterized stem-cell properties. Gelatin nanoparticles (NP) were prepared using a two-step desolvation method and then pre-mixed into different host matrix (silk fibroin (SF), gelatin (Gel), or SF–Gel mixture) to generate various 3D printed nanocomposite scaffolds (NP/SF, NP/SF–Gel, NP/Gel-1, and NP/Gel-2). The microstructure was examined by scanning electron microscopy. Biocompatibility assessment was performed through CCK-8 assay by coculturing with SMSCs at 1, 3, 7 and 14 days. According to the results, SMSCs are similar to other MSCs in their surface epitope expression, which are negative for CD45 and positive for CD44, CD90, and CD105. After incubation in lineage-specific medium, SMSCs could differentiate into chondrocytes, osteocytes and adipocytes. 3D printed nanocomposite scaffolds exhibited a good biocompatibility in the process of coculturing with SMSCs and had no negative effect on cell behavior. The study provides a strategy to obtain SMSCs and fabricate 3D printed nanocomposite scaffolds, the combination of which could be used for practical applications in tissue engineering. PMID:27877821

  4. Artemisinin induces caspase-8/9-mediated and Bax/Bak-independent apoptosis in human lung adenocarcinoma (ASTC-a-1) cells.

    PubMed

    Xiao, Feng-Lian; Gao, Wei-Jie; Liu, Cheng-Yi; Wang, Xiao-Ping; Chen, Tong-Sheng

    2011-01-01

    Artemisinin (ARTE), an antimalarial phytochemical component from the sweet wormwood plant, has been shown a potential anticancer activity by inducing cell apoptosis. The aim of this report is to explore the mechanism of ARTE-induced human lung adenocarcinoma (ASTC-a-1) cell apoptosis. Cell counting kit (CCK-8) assay showed that ARTE induced cytotoxcity in a dose- and time-dependent manner. Confocal microscopy fluorescence imaging of cells stained with Hoechst 33258 and flow cytometry (FCM) analysis of cells stained with Annexin V-FITC/propidium iodide (PI) showed that ARTE induced reactive oxygen species (ROS)-dependent apoptosis. Confocal fluorescence resonance energy transfer (FRET) imaging of single living cells expressing SCAT3, SCAT9 or CFP-Bid-YFP and fluorometic substrate assay showed that ARTE induced the activation of caspase-3, -8 and -9. Moreover, inhibition of caspase-8 or -9 completely blocked ARTE-induced apoptosis which was only partially attenuated by caspase-3 inhibitor. Interestingly, silencing Bax and Bak by RNA interference (RNAi) did not attenuate ARTE-induced apoptosis. Collectively, ARTE induces caspase-dependent but Bax/Bak-independent apoptosis in ASTC-a-1 cells.

  5. Artemisinin induces ROS-mediated caspase3 activation in ASTC-a-1 cells

    NASA Astrophysics Data System (ADS)

    Xiao, Feng-Lian; Chen, Tong-Sheng; Qu, Jun-Le; Liu, Cheng-Yi

    2010-02-01

    Artemisinin (ART), an antimalarial phytochemical from the sweet wormwood plant or a naturally occurring component of Artemisia annua, has been shown a potential anticancer activity by apoptotic pathways. In our report, cell counting kit (CCK-8) assay showed that treatment of human lung adenocarcinoma (ASTC-a-1) cells with ART effectively increase cell death by inducing apoptosis in a time- and dose-dependent fashion. Hoechst 33258 staining was used to detect apoptosis as well. Reactive oxygen species (ROS) generation was observed in cells exposed to ART at concentrations of 400 μM for 48 h. N-acetyl-L-cysteine (NAC), an oxygen radical scavenger, suppressed the rate of ROS generation and inhibited the ART-induced apoptosis. Moreover, AFC assay (Fluorometric assay for Caspase3 activity) showed that ROS was involved in ART-induced caspase3 acitvation. Taken together, our data indicate that ART induces ROS-mediated caspase3 activation in a time-and dose-dependent way in ASCT-a-1 cells.

  6. Intramyocardial Injection of Recombinant Adeno-Associated Viral Vector Coexpressing PR39/Adrenomedullin Enhances Angiogenesis and Reduces Apoptosis in a Rat Myocardial Infarction Model

    PubMed Central

    An, Rui; Xi, Cong; Xu, Jian; Liu, Ying; Zhang, Shumiao; Wang, Yuemin

    2017-01-01

    Cotransfer of angiogenic and antiapoptotic genes could be the basis of new gene therapy strategies for myocardial infarction. In this study, rAAV-PR39-ADM, coexpressing antimicrobial peptide (PR39) and adrenomedullin (ADM), was designed with the mediation of recombinant adeno-associated virus. In vitro, CRL-1730 cells were divided into four groups, namely, the sham group, the AAV-null group, the NS (normal saline) group, and the PR39-ADM group. Immunocytochemistry analysis, CCK-8 assays, Matrigel assays, and apoptotic analysis were performed; in vivo, myocardial infarction model was established through ligation of the left coronary artery on rats, and treatment groups corresponded to those used in vitro. Myocardial injury, cardiac performance, and the extent of myocardial apoptosis were assessed. Results suggested that rAAV-PR39-ADM administration after myocardial infarction improved cell viability and cardiac function, attenuated apoptosis and myocardial injury, and promoted angiogenesis. Subsequently, levels of 6×His, HIF-1α, VEGF, p-Akt, Akt, ADM, Bcl-2, and Bax were measured by western blot. rAAV-PR39-ADM increased p-Akt, HIF-1α, and VEGF levels and induced higher Bcl-2 expression and lower Bax expression. In conclusion, our results demonstrate that rAAV-PR39-ADM mitigates myocardial injury by promoting angiogenesis and reducing apoptosis. This study suggests a potential novel gene therapy-based method that could be used clinically for myocardial infarction. PMID:28348718

  7. AMP-activated protein kinase supports the NGF-induced viability of human HeLa cells to glucose starvation.

    PubMed

    Ting, Luo; Bo, Wan; Li, Ruwei; Chen, Xinya; Wang, Yingli; Jun, Zhou; Yu, Long

    2010-07-01

    As an important cellular energy regulation kinase, AMP-activated protein kinase (AMPK) has been demonstrated as a key molecule in the development of tolerance to nutrient starvation. Activation of AMPK includes the phosphorylation of Thr172 of the alpha-subunit. Nerve growth factor (NGF) was originally isolated for its ability to stimulate both survival and differentiation in peripheral neurons, but many investigations have shown that the NGF also plays an important role in survival, growth and invasion of many human cancers. In this study, we used CCK-8 cell viability assay to find that NGF could facilitate the viability of HeLa cells following glucose deprivation while not in glucose-normal control groups. This effect of NGF-induced viability promotion to glucose starvation can be suppressed by Compound C, a specific inhibitor of AMPK. Meanwhile, western blot analysis showed that AMPKalpha1/alpha2 Thr172 phosphorylation level in HeLa cells was up-regulated after NGF treatment under glucose starvation, and Compound C was able to reduce the AMPKalpha1/alpha2 Thr172 phosphorylation level which was up-regulated by NGF in HeLa cells. Taken together, these results indicate that AMP-activated protein kinase supports the NGF-induced viability of human HeLa cells to glucose starvation.

  8. C-terminal calcitonin gene-related peptide fragments and vasopressin but not somatostatin-28 induce miosis in monkeys.

    PubMed

    Almegård, B; Bill, A

    1993-11-30

    The miotic effects of C-terminal calcitonin gene-related peptide (CGRP) fragments, somatostatin-28 and vasopressin have been evaluated with special attention being paid to possible interactions with cholecystokinin (CCK)A receptors. The peptides were injected intracamerally to anesthetized monkeys pretreated with indomethacin and atropine. CGRP-(32-37) induced a miosis with a potency 1000 times lower than that previously found with sulphated CCK-8. Two other fragments, CGRP-(30-37) and CGRP-(31-37), also had miotic properties. The CGRP-(32-37)-induced miosis was antagonized by the CCKA receptor antagonist loxiglumide. No contractile effect was elicited by 67 pmol-7.4 nmol somatostatin-28. Vasopressin (360 pmol) caused a small reduction in pupil size. Loxiglumide pretreatment did not affect the reduction in pupil size but a vasopressin receptor antagonist partly inhibited the response. The results indicate that CGRP-(32-37) is a miotic with low potency but high efficacy in the monkey eye, probably interacting with CCKA receptors, and that vasopressin is a mitotic with low potency and efficacy, probably acting via vasopressin receptors.

  9. Cholecystokinin impact on rainbow trout glucose homeostasis: possible involvement of central glucosensors.

    PubMed

    Polakof, Sergio; Míguez, Jesus M; Soengas, José L

    2011-12-10

    Although the role of cholecystokinin (CCK) on fish appetite regulation has been widely studied, its involvement in the regulation of glucose metabolism had been little explored to date. In the present study we have carried out different experimental approaches to study CCK effects in rainbow trout (a so-called 'glucose intolerant' fish species) glucose homeostasis. We have found that for the first time in a vertebrate species, systemic or central CCK administration causes hyperglycemia, which is at least in part related to the presence of an ancestral gut-brain axis in which CCK is involved. By using capsaicin we have found that part of the action of CCK on glucose homeostasis is mediated by vagal and splanchnic afferents. Changes in hepatic metabolism after systemic CCK administration suggest that the effects are not directly taking place on the liver, but probably in other tissues, while after the central CCK administration, the glycogenolytic response observed in liver could be mediated by the activation of the sympathetic system. In hypothalamus and hindbrain changes elicited by CCK-8 treatment are likely related to the glucosensor response to the increased glycemia and/or vagal/splanchnic afferences whereas in hindbrain a possible action through specific CCK-1 receptors cannot be excluded. All these processes result in changes in metabolic parameters related with glucose homeostasis control. Further studies are needed to fully understand the role of this peptide on glucose homeostasis control in fish.

  10. MiR-15a-5p regulates viability and matrix degradation of human osteoarthritis chondrocytes via targeting VEGFA.

    PubMed

    Chen, Hongwei; Tian, Yun

    2017-01-16

    Previous studies demonstrated that miR-15a-5p was probably associated with human hepatocellular carcinoma, while the function of miR-15a-5p in OA (Osteoarthritis) still remains unknown. Here, we uncovered the potential role of miR-15a-5p on OA pathogenesis and confirmed its predicted target VEGFA (Vascular Endothelial Growth Factor A). Measured by RT-PCR, miR-15a-5p expression increased remarkably while VEGFA expression was significantly decreased in OA chondrocytes compared with normal conditions. According to Luciferase activity assay, miR-15a-5p directly targeted the 3'-UTR of VEGFA to inhibit its expression. Functional analysis including CCK-8 assay and flow cytometry revealed that overexpression of VEGFA or inhibition of miR-15a-5p promoted cell proliferation, suppressed cell apoptosis and reduced matrix degradation in OA chondrocytes. Moreover, rescue assays carried out with both expression of VEGFA and miR-15a-5p demonstrated that miR-15a-5p contributes to cell apoptosis and matrix degradation via inhibiting VEGFA. We further provided evidence that multiple proteins related to matrix synthesis were regulated by miR-15a-5p and VEGFA using Western blot and ELISA assays. Taken together, our findings elucidated an underlying mechanism by which miR-15a-5p regulates viability and matrix degradation of OA and indicated a new target for OA diagnosis and therapy.

  11. [Transfection of HL-60 cells by Venus lentiviral vector].

    PubMed

    Li, Zheng; Hu, Shao-Yan; Cen, Jian-Nong; Chen, Zi-Xing

    2013-06-01

    In order to study the potential of Venus, lentiviral vector, applied to acute myeloid leukemia, the recombinant vector Venus-C3aR was transfected into 293T packing cells by DNA-calcium phosphate coprecipitation. All virus stocks were collected and transfected into HL-60, the GFP expression in HL-60 cells was measured by flow cytometry. The expression level of C3aR1 in transfected HL-60 cells was identified by RT-PCR and flow cytometry. The lentiviral toxicity on HL-60 was measured by using CCK-8 method and the ability of cell differentiation was observed. The results indicated that the transfection efficacy of lentiviral vector on HL-60 cells was more than 95%, which meets the needs for further study. C3aR1 expression on HL-60 cells increased after being transfected with recombinant lentiviral vector. Before and after transfection, the proliferation and differentiation of cells were not changed much. It is concluded that the lentiviral vector showed a high efficacy to transfect AML cells and can be integrated in genome of HL-60 cells to realize the stable expression of interest gene. Meanwhile, lentiviral vector can not affect HL-60 cell ability to proliferate and differentiate.

  12. PKG II reverses HGF-triggered cellular activities by phosphorylating serine 985 of c-Met in gastric cancer cells

    PubMed Central

    Zhu, Miaolin; Qian, Hai; Jiang, Lu; Lan, Ting; Wu, Min; Pang, Ji; Chen, Yongchang

    2016-01-01

    Previous studies showed that type II cGMP-dependent protein kinase G (PKG II) could inhibit the activation of epidermal growth factor receptor (EGFR). Both c-Met and EGFR belong to family of receptor tyrosine kinases (RTKs) and have high molecular analogy. However, the effect of PKG II on c-Met activation is unclear. This study was designed to investigate the inhibitory effect of PKG II on the activation of c-Met and consequent biological activities. The results from CCK8 assay, Transwell assay and TUNEL assay showed that HGF enhanced cell proliferation and migration, and decreased cell apoptosis. Activated PKG II reversed the above changes caused by HGF. Immunoprecipitation and Western blotting results showed that PKG II could bind with c-Met and phosphorylate its Ser985, and thereby inhibited HGF-induced activation of c-Met and MAPK/ERK and PI3K/Akt/mTOR mediated signal transduction. When Ser985 of c-Met was mutated to Alanine for preventing phosphorylation of this site, the blocking effect of PKG II on c-Met activation was annulled. When Ser985 of c-Met was mutated to Aspartic acid for mimicking phosphorylation of this site, HGF-induced activation of c-Met was prevented. In conclusion, the results indicated that PKG II could block c-Met activation via phosphorylating Ser985 of this RTK. PMID:27147579

  13. Detection, localization and quantitation of partial obstruction of common bile duct (CBD) by scintigraphy: Correlation with cholangiogram

    SciTech Connect

    Krishnamurthy, G.T.; Lieberman, D.; Brar, H.

    1984-01-01

    Recent literature in medical journals does not show any major role for scintigraphy in the evaluation of jaundice. A project was undertaken to test critically the role for scintigraphy in the detection, localization and quantification of partial obstruction of CBD using Tc-99m-IDA and the results are correlated with cholangiogram. After 4 to 5 hours of fast, each of 12 patients with documented CBD obstruction was given 3 to 8 mCi of Tc-99m-IDA and serial hepatobiliary images at 2 minute intervals were taken for 90 minutes using gamma camera and the data were collected on computer for quantitation. At 70 minutes 10 ng/kg of CCK-8 was infused over a 3 minute period (n=8). Liver excretion half time, GB ejection fraction (EF) and ejection rate (ER) were obtained. The results were compared with established values in normal subjects. The location of CBD obstruction was made from analogue images. Partial CBD obstruction was characterized in all but one by prolonged liver excretion half time, reduced GB EF and ER (less than 3.5%/min) and intrahepatic bile pooling with excellent CHD and CBD delineation proximal to obstruction thus aiding in the exact anatomic location which correlated well with cholangiogram. The degree of obstruction (ER) correlated well with dilitation of CBD on cholangiogram. These preliminary results show a promise for scintigraphy in the evaluation of CBD obstruction and offer a great potential for non-invasive quantitation of the degree of CBD obstruction.

  14. PACE4 regulates apoptosis in human prostate cancer cells via endoplasmic reticulum stress and mitochondrial signaling pathways

    PubMed Central

    Yao, Zhiyong; Sun, Bin; Hong, Quan; Yan, Jingmin; Mu, Dawei; Li, Jianye; Sheng, Haibo; Guo, Heqing

    2015-01-01

    Background PACE4 is a proprotein convertase capable of processing numerous substrates involved in tumor growth, invasion, and metastasis. However, the precise role of PACE4 during prostate cancer cell apoptosis has not been reported. Methods In the present study, human prostate cancer cell lines DU145, LNCaP, and PC3 were transfected with PACE4 small interfering (si)RNA to investigate the underlying mechanisms of apoptosis. Results We revealed that PACE4 siRNA exhibited antitumor activity by inducing apoptosis, as determined by Cell Counting Kit-8 (CCK-8), 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltet-razolium bromide (MTT) assay, cell cycle analysis, Hoechst staining, caspase-3/7 activity, and western blot analysis. In addition, PACE4 siRNA significantly increased the ratio of Bax/Bcl-2, which led to the release of cytochrome c. Moreover, PACE4 siRNA also induced endoplasmic reticulum stress by increasing the expression of GRP78, GRP94, p-PERK, and p-eIF2α. The ratio of Bax/Bcl-2 and GRP78 were also increased in PACE4 gene knockdown prostate cancer cells compared with the control cells. Conclusion These data demonstrate that PACE4 siRNA may exert its antitumor activity through mitochondrial and endoplasmic reticulum stress signaling pathways, indicating it may be a novel therapeutic target for prostate cancer. PMID:26604689

  15. Facile and green fabrication of electrospun poly(vinyl alcohol) nanofibrous mats doped with narrowly dispersed silver nanoparticles

    PubMed Central

    Lin, Song; Wang, Run-Ze; Yi, Ying; Wang, Zheng; Hao, Li-Mei; Wu, Jin-Hui; Hu, Guo-Han; He, Hua

    2014-01-01

    Submicrometer-scale poly(vinyl alcohol) (PVA) nanofibrous mats loaded with aligned and narrowly dispersed silver nanoparticles (AgNPs) are obtained via the electrospinning process from pure water. This facile and green procedure did not need any other chemicals or organic solvents. The doped AgNPs are narrowly distributed, 4.3±0.7 nm and their contents on the nanofabric mats can be easily tuned via in situ ultraviolet light irradiation or under preheating conditions, but with different particle sizes and size distributions. The morphology, loading concentrations, and dispersities of AgNPs embedded within PVA nanofiber mats are characterized by transmission electron microscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy, ultraviolet-visible spectra, X-ray photoelectron spectroscopy, and X-ray diffraction, respectively. Moreover, the biocidal activities and cytotoxicity of the electrospun nanofiber mats are determined by zone of inhibition, dynamic shaking method, and cell counting kit (CCK)-8 assay tests. PMID:25170264

  16. [Effect of mPGES-1 inhibitor MK886 on apoptosis and drug resistance of HL-60/A cells].

    PubMed

    Li, Yi-Qing; Yin, Song-Mei; Nie, Da-Nian; Xie, Shuang-Feng; Ma, Li-Ping; Wang, Xiu-Ju; Wu, Yu-Dan

    2012-08-01

    This study was aimed to investigate the effect of MK886, a mPGES-1 inhibitor, on apoptosis and drug resistance of leukemia HL-60/A cell line. Expression of mPGES-1 was assayed by QT-PCR and Western blot. The effect of MK886 on HL-60/A cell proliferation was assayed by CCK-8 method, and flow cytometry was used to detect cell apoptosis. The expression of Akt and P-Akt was detected by Western blot. PGE2 was measured by ELISA. Effect of MK886 (10 µmol/L) on the chemotherapeutic sensitivity of HL-60/A cells and expression of mdr-1 mRNA and P170 protein were investigated too. The results indicated the expression of mPGES-1 was higher in HL-60/A cells. MK886 inhibited HL-60/A cell proliferation and induced apoptosis in a time- and concentration-dependent manner. Expression of mPGES-1 and P-Akt and synthesis of PGE2 decreased significantly. MK886 reduced expression of mdr-1 and P170 protein and enhanced the sensitivity of HL-60/A cells to chemotherapeutic drugs. It is concluded that MK886 can inhibit HL-60/A cell proliferation, induce apoptosis and enhance sensitivity to chemotherapeutic drugs, the mechanism of which possibly associates to down-regulation of mPGES-1/PGE2 synthesis, reduction P-Akt expression and decreasing mdr-1 and P170 protein expression.

  17. [Effect of COX-2 inhibitor celecoxib on proliferation, apoptosis of HL-60 cells and its mechanism].

    PubMed

    Xie, Xia; Li, Jie; Wang, Rui-Cang; Geng, Rui-Li; Wang, Su-Yun; Wang, Chao; Zhao, Xiao-Yun; Hao, Hong-Ling

    2014-06-01

    This study was aimed to investigate the effect of COX-2 inhibitor celecoxib on proliferation, apoptosis of human acute myeloid leukemia cell line HL-60 and its mechanism. HL-60 cells were cultured with different concentrations of celecoxib for 24 h. Cell proliferation was analyzed by CCK-8 assay, cell apoptosis and cell cycle distribution were detected by flow cytometry. Cyclin D1, cyclin E1 and COX-2 mRNA expressions were determined by RT-PCR. The results showed that after the HL-60 cells were treated with different concentrations of celecoxib for 24 h, the cell growth was significantly inhibited in a dose-dependent manner(r = 0.955), IC50 was 63.037 µmol/L of celecoxib. Celecoxib could effectively induce apoptosis in HL-60 cells also in dose-dependent manner(r = 0.988), blocked the HL-60 cells in the G0/G1 phase. The expression of cyclin D1, cyclin E1 and COX-2 mRNA were downregulated. It is concluded that celecoxib can inhibit the proliferation of HL-60 cells in dose-dependent manner, celecoxib causes cell G0/G1 arrest and induces cell apoptosis possibly through down-regulation of the cyclin D1 and cyclin E1 expression, and down-regulation of COX-2 expression respectively.

  18. Nuclear transcription factor Nrf2 suppresses prostate cancer cells growth and migration through upregulating ferroportin

    PubMed Central

    Xue, Dong; Zhou, Cuixing; Shi, Yunbo; Lu, Hao; Xu, Renfang; He, Xiaozhou

    2016-01-01

    VTo investigate the effect of nuclear transcription factor Nrf2 on the transcription of Ferroportin (FPN) in prostate cancer cells, and the regulation mechanisms of FPN on cell viability, migration and apoptosis of prostate cancer cells. Empty vectors, pEGFPC1-Nrf2, pEGFPC1-FPN, Si-FPN and Si-Nrf2 were transfected into prostate cancer cell line PC3. The expression of mRNA and protein were measured by real time-PCR (RT-PCR) and western blot. Cell viability, migration, cycle and apoptosis were tested by CCK-8 assay, wound healing and flow cytometry, respectively. The interaction between FPN and Nrf2 was confirmed by chromatin immunoprecipitation (CHIP) assay. The viability, migration and mitosis of PC3 cells could be repressed by over-expressed FPN, with decreased intracellular ferritin. The CHIP assay demonstrated that Nrf2 is one transcription factor of FPN and promotes its transcription. With the increase of Nrf2 in PC3 cells, the viability, migration ability and concentration of ferritin were suppressed, while the apoptosis rate was increased. The above effects were counteracted by down-regulating FPN. FPN could inhibit the prostate cancer cell viability, migration and mitosis, which is also related to a decrease of intracellular ferritin content. In conclusion, Nrf2 suppresses prostate cancer cells viability, migration, and mitosis through upregulating FPN. PMID:27788496

  19. [Effect of aurora inhibitor VX-680 on proliferation and apoptosis of CML cells].

    PubMed

    Yin, Yue; Sun, Hui-Yan; Li, Xiao-Lin; Xiao, Feng-Jun; Wang, Li-Sheng

    2014-12-01

    This study was aimed to explore the effect of VX-680, an aurora inhibitor, on proliferation and apoptosis of K562, KCL22 cell lines and CD34⁺ cells from chronic myeloid leukemia (CML) patients in vitro. The proliferation of K562 and KCL22 cell was detected by CCK-8 method. Apoptosis of cells was detected by Annexin V-PI labeling and flow cytometry. The colony forming ability of bone marrow CD34⁺ cells derived from CML patients and donors was determined by the colony forming test. The results showed that the treatment of K562, KCL22 and CML CD34⁺ cells with VX-680 of 20-100 nmol/L for 3 days could obviously inhibit the cell proliferation in a concentration-dependent manner (P < 0.01). VX-680 treatment significantly induced apoptosis of K562 and KCL22 cells. Compared to bone marrow CD34⁺ cells derived from the healthy donors, the colony forming ability of CML CD34⁺ cells derived from bone marrow of CML patients was remarkably reduced (P < 0.01). It is concluded that VX-680, an aurora inhibitor, can inhibit the proliferation and induce apoptosis of CML cells in vitro.

  20. The Effect of Estradiol on the Growth Plate Chondrocytes of Limb and Spine from Postnatal Mice in vitro: The Role of Estrogen-Receptor and Estradiol Concentration

    PubMed Central

    Shi, Sheng; Zheng, Shuang; Li, Xin-Feng; Liu, Zu-De

    2017-01-01

    Objectives: Skeletal development is a complex process. Little is known about the different response of limb or spine growth plate chondrocytes (LGP or SGP) to the estrogen level and the role of estrogen receptor (ER) during postnatal stage. Methods: LGP and SGP chondrocytes were isolated from 50 one-week mice and treated with different concentrations of 17β-estradiol. Cell viability was measured by cell counting kit-8 (CCK-8). The expression of collagen II and X were evaluated by real-time PCR and Western blotting. Then, the response of LGP or SGP chondrocyte after with or without estradiol and specific ER antagonists to block the effect of ERs were also measured by Western blotting and immunofluorescence. Results: Estradiol promoted the chondrogensis of the chondrocytes in vitro and achieved the maximal expression of type II collagen at the dose of 10-7 M. Additionally, the regulatory effect of estradiol on the chondrogenesis can be mainly relied on ERα. The LGP chondrocytes were more sensitive to the estradiol treatment than SGP in the expression of type II collagen. Conclusions: Estrogen at a pharmacological concentration (10-7 M) could stimulate the maximal production of type II collagen in the growth plate chondrocytes in vitro, which exerts its activity mainly through ERα in the chondrogenesis. Furthermore, the LGP chondrocytes were more sensitive to the estradiol treatment than SGP in the chondrogenesis. PMID:28123350

  1. The downregulation of thioredoxin accelerated Neuro2a cell apoptosis induced by advanced glycation end product via activating several pathways.

    PubMed

    Ren, Xiang; Ma, Haiying; Qiu, Yuanyuan; Liu, Bo; Qi, Hui; Li, Zeyu; Kong, Hui; Kong, Li

    2015-08-01

    Thioredoxin (Trx), a 12 kDa protein, has different functions in different cellular environments, playing important anti-oxidative and anti-apoptotic roles and regulating the expression of transcription factors. Advanced glycation end products (AGEs) are a heterogeneous group of irreversible adducts from glucose-protein condensation reactions and are considered crucial to the development of diabetic nephropathy, retinopathy, neurodegeneration and atherosclerosis. The aim of this study was to use a Trx inhibitor to investigate the effects and mechanism of Trx down-regulation on AGE-induced Neuro2a cell apoptosis. Neuro2a cells were cultured in vitro and treated with different conditions. The apoptosis and proliferation of Neuro2a cells were detected using flow cytometry, DNA-Ladder and CCK8 assays. Rho 123 was used to detect the mitochondrial membrane potential. ROS generation and caspase3 activity were detected using a DCFH-DA probe and micro-plate reader. Western blotting and real-time PCR were used to detect the expression of proteins and genes. We found that the down-regulation of thioredoxin could accelerate AGE-induced apoptosis in Neuro2a cells. A possible underlying mechanism is that the down-regulation of thioredoxin stimulated the up-regulation of ASK1, p-JNK, PTEN, and Txnip, as well as the down-regulation of p-AKT, ultimately increasing ROS levels and caspase3 activity.

  2. Surface chemical functionalities affect the behavior of human adipose-derived stem cells in vitro

    NASA Astrophysics Data System (ADS)

    Liu, Xujie; Feng, Qingling; Bachhuka, Akash; Vasilev, Krasimir

    2013-04-01

    This study examines the effect of surface chemical functionalities on the behavior of human adipose-derived stem cells (hASCs) in vitro. Plasma polymerized films rich in amine (sbnd NH2), carboxyl (sbnd COOH) and methyl (sbnd CH3), were generated on hydroxyapatite (HAp) substrates. The surface chemical functionalities were characterized by X-ray photoelectron spectroscopy (XPS). The ability of different substrates to absorb proteins was evaluated. The results showed that substrates modified with hydrophilic functional group (sbnd COOH and sbnd NH2) can absorb more proteins than these modified with more hydrophobic functional group (sbnd CH3). The behavior of human adipose-derived stem cells (hASCs) cultured on different substrates was investigated in vitro: cell counting kit-8 (CCK-8) analysis was used to characterize cell proliferation, scanning electronic microscopy (SEM) analysis was used to characterize cell morphology and alkaline phosphatase (ALP) activity analysis was used to account for differentiation. The results of this study demonstrated that the sbnd NH2 modified surfaces encourage osteogenic differentiation; the sbnd COOH modified surfaces promote cell adhesion and spreading and the sbnd CH3 modified surfaces have the lowest ability to induce osteogenic differentiation. These findings confirmed that the surface chemical states of biomaterials can affect the behavior of hASCs in vitro.

  3. B7-H3 Promotes the Migration and Invasion of Human Bladder Cancer Cells via the PI3K/Akt/STAT3 Signaling Pathway

    PubMed Central

    Li, Yuchao; Guo, Guoning; Song, Jie; Cai, Zhiping; Yang, Jin; Chen, Zhiwen; Wang, Yun; Huang, Yaqin; Gao, Qiangguo

    2017-01-01

    Bladder cancer is one of most common malignant cancer. Although previous studies have found abnormal expression of B7-H3 in human bladder cancer tissues, the exact role and molecular mechanism of B7-H3 in bladder cancer remain unknown. In this study, we first detected the expression of B7-H3 in human bladder cancer samples and cell lines, and analyzed its correlations with clinicopathological pathological parameters. Next, siRNAs or overexpression plasmids of B7-H3 were transfected into T24 or 5637 cells, and cell proliferation, apoptosis, migration and invasion were analyzed via CCK-8, colony formation, flow cytometry and transwell assays, protein expression levels were determined by western blotting. The results presented here showed B7-H3 was upregulated in bladder cancer samples compared with normal tissues, and the expression level was correlated with local invasion status. B7-H3 did not affect cell proliferation and apoptosis, but cell migration and invasion were changed through the regulation of matrix metalloproteinase (MMP) 2/9. Knockdown of B7-H3 resulted in decreased activity of the STAT3 and PI3K/Akt pathways, and the Akt served as an upstream regulator of the STAT3. Our results suggest that the overexpression of B7-H3 promotes the migration and invasion of human bladder cancer cells through the PI3K/Akt/STAT3 signaling pathway. PMID:28382144

  4. miR-613 inhibits bladder cancer proliferation and migration through targeting SphK1

    PubMed Central

    Yu, Haifeng; Duan, Ping; Zhu, Haibo; Rao, Dapang

    2017-01-01

    Objectives: Increasing evidence has suggested that microRNA (miRNA) dysregulation may contribute to tumor progression and metastasis. However, the role of miR-613 in bladder cancer was still unknown. Materials and methods: qRT-PCR and Western blotting were performed to detect the expression of miR-613 and its direct target gene. CCK-8 analysis, qRT-PCR and cell invasion were performed to measure the cell function. Results: We demonstrated that the expression of miR-613 was downregulated in the bladder cancer cell lines. In addition, miR-613 expression was downregulated in the bladder cancer tissues compared to the adjacent normal tissues. Out of 35 bladder cancer tissues, miR-613 was downregulated in 27 cases compared to the adjacent tissues. Ectopic expression of miR-613 suppressed the bladder cancer cell proliferation and invasion. Moreover, miR-613 overexpression enhanced the expression of epithelial biomarker, Ecadherin, and suppressed the expression of mesenchymal biomarker, Vimentin, Snail and N-cadherin. Furthermore, we identified the Sphingosine kinase 1 (SphK1) as the direct target gene of miR-613 in the bladder cancer cell. Restoration of Sphk1 partially rescued miR-613-inhibited bladder cancer cell proliferation, invasion and EMT. Conclusions: These data suggested that miR-613 acted a tumor suppressive role in bladder cancer through targeting SphK1 in bladder. PMID:28386347

  5. The effect of exogenous apelin on the secretion of pancreatic juice in anaesthetized rats.

    PubMed

    Kapica, M; Jankowska, A; Antushevich, H; Pietrzak, P; Bierla, J B; Dembinski, A; Zabielski, R

    2012-02-01

    Apelin is known to stimulate cholecystokinin (CCK) and inhibit insulin release, however the mechanisms on pancreatic secretion remain unclear. The present study aimed to determine the expression of apelin and apelin receptor in the pancreas by immunofluorescence studies and the effect of exogenous apelin on the secretion of pancreatic juice in anesthetized rats. Pancreatic-biliary juice (P-BJ) was collected from Wistar rats treated with apelin (10, 20 and 50 nmol/kg b.w., boluses given every 30 min intravenously or intraduodenaly). The same apelin doses were administered to rats subjected to intraduodenal tarazapide, capsaicin or vagotomy. Pancreatic blood flow was measured by a laser doppler flowmeter. Direct effects of apelin were tested on dispersed acinar cells. Apelin receptor was expressed on acinar cells, pancreatic duct and islets cells, whereas apelin in pancreatic acini, but not in the islets. Intravenous apelin decreased P-BJ volume, protein and trypsin outputs in a dose-dependent manner. In contrast, intraduodenal apelin stimulated P-BJ secretion. Pharmacological block of mucosal CCK(1) receptor by tarazepide, vagotomy and capsaicin pretreatment abolished the effects of intravenous and intraduodenal apelin on P-BJ volume, protein and tryspin outputs. Apelin decreased the pancreatic blood flow. Apelin at 10(-6) M increased the release of amylase from non-stimulated and CCK-8-stimulated acinar cells. In conclusion, apelin can affect the exocrine pancreas through a complex mechanism involving local blood flow regulation and is driven by vagal nerves.

  6. The cytological effects of HBCDs on human hepatocyte L02 and the potential molecular mechanism.

    PubMed

    An, Jing; Zou, Wen; Chen, Cen; Zhong, Fang Y; Yu, Qiang Z; Wang, Qi J

    2013-01-01

    The concentration of hexabromocyclododecanes (HBCDs) in the environment media and organism samples are gradually rising with the increase of HBCDs usage. This study is designed to investigate the cytological effects of HBCDs on human hepatocyte L02 and explore the potential molecular mechanism. The results of CCK-8 assay showed that high concentration of HBCDs (>20 μM) significantly suppressed cell survival, while comparatively lower dose of HBCDs (10(-13)-10(-7)M) slightly stimulated cell proliferation (P < 0.05). In the mean time, high concentration HBCDs markedly induced cell apoptosis and DNA damage, accompanying with increase of intracellular Ca(2+)level and decrease of mitochondrial membrane potential (P < 0.05). ROS level induced by low concentration of HBCDs was comparatively lower than that by high concentration of HBCDs. In addition, low concentration HBCDs exposure (10(-13)-10(-7)M) resulted in up-regulation of PCNA protein expression level in a time-dependent manner. However, high concentration HBCDs exposure led to increase of Apaf-1 expression level. In conclusion, loss of mitochondrial membrane potential and activation of Apaf-1 mediated pathway involve the L02 cell apoptosis induced by high concentration HBCDs exposure. However, low concentration HBCDs exposure could stimulate cell proliferation of L02 cells, which might be associated with enhancement of PCNA expression.

  7. Amelioration of Inflammatory Cytokines Mix Stimulation: A Pretreatment of CD137 Signaling Study on VSMC

    PubMed Central

    Zhong, Wei; Li, Xiao Yang; Wang, Zhong Qun; Shao, Chen; Wang, Cui Ping; Chen, Rui

    2017-01-01

    Previous studies showed little CD137 expressed in normal vascular smooth muscle cells (VSMCs) and it is important to find a valid way to elevate it before studying its function. The level of CD137 was detected by RT-PCR, western blot, and flow cytometry, respectively. CD137 signaling activation was activated by agonist antibody and measured through phenotype transformation indicators and cell functions. Proteins in supernatants were detected by ELISA. The total CD137 elevates under different concentrations of CM treatment. Among these, 25 ng/ml CM treatment increases the CD137 expression mostly. However, flow cytometry demonstrates that 10 ng/ml CM elevates surface CD137 more significantly than other concentrations and reaches the peak at 36 h. At 10 ng/ml, but not 25 ng/ml CM pretreatment, the levels of phenotype related proteins such as SM-MHC, α-SMA, and calponin decrease while vimentin and NFATc1 increase, suggesting that VSMCs undergo phenotype transformation. Transwell, CCK-8 assay, and ELISA showed that the ability of VSMCs viability, migration, and IL-2 and IL-6 secretion induced by CD137 signaling was significantly enhanced by the pretreatment of 10 ng/ml CM. This research suggested that 10 ng/ml CM pretreatment is more reasonable than other concentrations when exploring CD137 function in VSMCs. PMID:28280290

  8. Alternating block polyurethanes based on PCL and PEG as potential nerve regeneration materials.

    PubMed

    Li, Guangyao; Li, Dandan; Niu, Yuqing; He, Tao; Chen, Kevin C; Xu, Kaitian

    2014-03-01

    Polyurethanes with regular and controlled block arrangement, i.e., alternating block polyurethanes (abbreviated as PUCL-alt-PEG) based on poly(ε-caprolactone) (PCL-diol) and poly(ethylene glycol) (PEG) was prepared via selectively coupling reaction between PCL-diol and diisocyanate end-capped PEG. Chemical structure, molecular weight, distribution, and thermal properties were systematically characterized by FTIR, (1)H NMR, GPC, DSC, and TGA. Hydrophilicity was studied by static contact angle of H2O and CH2I2. Film surface was observed by scanning electron microscope (SEM) and atomic force microscopy, and mechanical properties were assessed by universal test machine. Results show that alternating block polyurethanes give higher crystal degree, higher mechanical properties, and more hydrophilic and rougher (deep ravine) surface than their random counterpart, due to regular and controlled structure. Platelet adhesion illustrated that PUCL-alt-PEG has better hemocompatibility and the hemacompatibility was affected significantly by PEG content. Excellent hemocompatibility was obtained with high PEG content. CCK-8 assay and SEM observation revealed much better cell compatibility of fibroblast L929 and rat glial cells on the alternating block polyurethanes than that on random counterpart. Alternating block polyurethane PUC20-a-E4 with optimized composition, mechanical, surface properties, hemacompatibility, and highest cell growth and proliferation was achieved for potential use in nerve regeneration.

  9. miR-4295 promotes cell proliferation and invasion in anaplastic thyroid carcinoma via CDKN1A

    SciTech Connect

    Shao, Mingchen; Geng, Yiwei; Lu, Peng; Xi, Ying; Wei, Sidong; Wang, Liuxing; Fan, Qingxia; Ma, Wang

    2015-09-04

    MicroRNAs (miRNAs) play important roles in the pathogenesis of many types of cancers by negatively regulating gene expression at posttranscriptional level. However, the role of microRNAs in anaplastic thyroid carcinoma (ATC), has remained elusive. Here, we identified that miR-4295 promotes ATC cell proliferation by negatively regulates its target gene CDKN1A. In ATC cell lines, CCK-8 proliferation assay indicated that the cell proliferation was promoted by miR-4295, while miR-4295 inhibitor significantly inhibited the cell proliferation. Transwell assay showed that miR-4295 mimics significantly promoted the migration and invasion of ATC cells, whereas miR-4295 inhibitors significantly reduced cell migration and invasion. luciferase assays confirmed that miR-4295 directly bound to the 3'untranslated region of CDKN1A, and western blotting showed that miR-4295 suppressed the expression of CDKN1A at the protein levels. This study indicated that miR-4295 negatively regulates CDKN1A and promotes proliferation and invasion of ATC cell lines. Thus, miR-4295 may represent a potential therapeutic target for ATC intervention. - Highlights: • miR-4295 mimics promote the proliferation and invasion of ATC cells. • miR-4295 inhibitors inhibit the proliferation and invasion of ATC cells. • miR-4295 targets 3′UTR of CDKN1A in ATC cells. • miR-4295 negatively regulates CDKN1A in ATC cells.

  10. Porous niobium coatings fabricated with selective laser melting on titanium substrates: Preparation, characterization, and cell behavior.

    PubMed

    Zhang, Sheng; Cheng, Xian; Yao, Yao; Wei, Yehui; Han, Changjun; Shi, Yusheng; Wei, Qingsong; Zhang, Zhen

    2015-08-01

    Nb, an expensive and refractory element with good wear resistance and biocompatibility, is gaining more attention as a new metallic biomaterial. However, the high price of the raw material, as well as the high manufacturing costs because of Nb's strong oxygen affinity and high melting point have limited the widespread use of Nb and its compounds. To overcome these disadvantages, porous Nb coatings of various thicknesses were fabricated on Ti substrate via selective laser melting (SLM), which is a 3D printing technique that uses computer-controlled high-power laser to melt the metal. The morphology and microstructure of the porous Nb coatings, which had pores ranging from 15 to 50 μm in size, were characterized with scanning electron microscopy (SEM). The average hardness of the coating, which was measured with the linear intercept method, was 392±37 HV. In vitro tests of the porous Nb coating which was monitored with SEM, immunofluorescence, and CCK-8 counts of cells, exhibited excellent cell morphology, attachment, and growth. The simulated body fluid test also proved the bioactivity of the Nb coating. Therefore, these new porous Nb coatings could potentially be used for enhanced early biological fixation to bone tissue. In addition, this study has shown that SLM technique could be used to fabricate coatings with individually tailored shapes and/or porosities from group IVB and VB biomedical metals and their alloys on stainless steel, Co-Cr, and other traditional biomedical materials without wasting raw materials.

  11. Adhesion and metabolic activity of human corneal cells on PCL based nanofiber matrices.

    PubMed

    Stafiej, Piotr; Küng, Florian; Thieme, Daniel; Czugala, Marta; Kruse, Friedrich E; Schubert, Dirk W; Fuchsluger, Thomas A

    2017-02-01

    In this work, polycaprolactone (PCL) was used as a basic polymer for electrospinning of random and aligned nanofiber matrices. Our aim was to develop a biocompatible substrate for ophthalmological application to improve wound closure in defects of the cornea as replacement for human amniotic membrane. We investigated whether blending the hydrophobic PCL with poly (glycerol sebacate) (PGS) or chitosan (CHI) improves the biocompatibility of the matrices for cell expansion. Human corneal epithelial cells (HCEp) and human corneal keratocytes (HCK) were used for in vitro biocompatibility studies. After optimization of the electrospinning parameters for all blends, scanning electron microscopy (SEM), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), and water contact angle were used to characterize the different matrices. Fluorescence staining of the F-actin cytoskeleton of the cells was performed to analyze the adherence of the cells to the different matrices. Metabolic activity of the cells was measured by cell counting kit-8 (CCK-8) for 20days to compare the biocompatibility of the materials. Our results show the feasibility of producing uniform nanofiber matrices with and without orientation for the used blends. All materials support adherence and proliferation of human corneal cell lines with oriented growth on aligned matrices. Although hydrophobicity of the materials was lowered by blending PCL, no increase in biocompatibility or proliferation, as was expected, could be measured. All tested matrices supported the expansion of human corneal cells, confirming their potential as substrates for biomedical applications.

  12. Extraction, purification and anti-radiation activity of persimmon tannin from Diospyros kaki L.f.

    PubMed

    Zhou, Zhide; Huang, Yong; Liang, Jintao; Ou, Minglin; Chen, Jiejing; Li, Guiyin

    2016-10-01

    In this study, persimmon tannin was extracted from Diospyros kaki L.f. using ultrasound-assisted extraction and purified by D101 macroporous resin column chromatography and polysulfone ultrafiltration membrane. The tannin content of the final persimmon tannin extracts was attained to 39.56% calculated as catechin equivalents. Also, the radioprotective effects of persimmon tannin for HEK 293T cells proliferation and apoptosis after Gamma irradiation were investigated by CCK-8, Hoechst 33258 staining, flow cytometry assay and intracellular reactive oxygen species assay (ROS). Persimmon tannin was pre-incubated with HEK 293T cells for 12 h prior to Gamma irradiation. It was found that pretreatment with persimmon tannin increased cell viability and inhibited generation of Gamma-radiation induced ROS in HEK 293T cells exposed to 8 Gy Gamma-radiation. The percentage of apoptotic cells were only 6.7% when the radiation dose was 8 Gy and pretreated with 200 μg/ml of persimmon tannin. All these results indicated that persimmon tannin offered a potent radioprotective effect on cell vitality and cell apoptosis of Gamma-radiation exposure in HEK 293T cells. This study would serve as a pre-clinical evaluation of persimmon tannin for use in people with radiation protection.

  13. [Isolation, culture and identification of adipose-derived stem cells from SD rat adipose tissues subjected to long-term cryopreservation].

    PubMed

    Liu, Qin; Wang, Liping; Chen, Fang; Zhang, Yi

    2017-02-01

    Objective To study the feasibility of isolation and culture of adipose-derived stem cells (ADSCs) from SD rat adipose tissues subjected to long-term cryopreservation. Methods We took inguinal fat pads from healthy SD rats. Adipose tissues were stored with 100 mL/L dimethyl sulfoxide (DMSO) combined with 900 mL/L fetal bovine serum (FBS) in liquid nitrogen. Three months later, the adipose tissues were resuscitated for the isolation and culture of ADSCs. The growth status and morphology were observed. The growth curve and cell surface markers CD29, CD45, CD90 of the 3rd passage cells were analyzed respectively by CCK-8 assay and immunocytochemistry. The 3rd passage cells were induced towards adipogenic lineages and osteogenic lineages by different inducers, and the resulting cells were examined separately by oil red O staining and alizarin red staining. Results The ADSCs obtained from SD rat adipose tissues subjected to long-term cryopreservation showed a spindle-shape appearance and had a good proliferation ability. The cell growth curve was typical "S" curve. Immunocytochemistry showed that the 3rd passage cells were positive for CD29 and CD90, while negative for CD45. The cells were positive for oil red O staining after adipogenic induction, and also positive for alizarin red staining after osteogenic induction. Conclusion The ADSCs can be isolated from SD rat adipose tissues subjected to long-term cryopreservation.

  14. Enhancing anticoagulation and endothelial cell proliferation of titanium surface by sequential immobilization of poly(ethylene glycol) and collagen

    NASA Astrophysics Data System (ADS)

    Pan, Chang-Jiang; Hou, Yan-Hua; Ding, Hong-Yan; Dong, Yun-Xiao

    2013-12-01

    In the present study, poly(ethylene glycol) (PEG) and collagen I were sequentially immobilized on the titanium surface to simultaneously improve the anticoagulation and endothelial cell proliferation. Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy analysis confirmed that PEG and collagen I were successfully immobilized on the titanium surface. Water contact angle results suggested the excellent hydrophilic surface after the immobilization. The anticoagulation experiments demonstrated that the immobilized PEG and collagen I on the titanium surface could not only obviously prevent platelet adhesion and aggregation but also prolong activated partial thromboplastin time (APTT), leading to the improved blood compatibility. Furthermore, immobilization of collagen to the end of PEG chain did not abate the anticoagulation. As compared to those on the pristine and PEG-modified titanium surfaces, endothelial cells exhibited improved proliferative profiles on the surface modified by the sequential immobilization of PEG and collagen in terms of CCK-8 assay, implying that the modified titanium may promote endothelialization without abating the blood compatibility. Our method may be used to modify the surface of blood-contacting biomaterials such as titanium to promote endothelialization and improve the anticoagulation, it may be helpful for development of the biomedical devices such as coronary stents, where endothelializaton and excellent anticoagulation are required.

  15. Evaluation of synovium-derived mesenchymal stem cells and 3D printed nanocomposite scaffolds for tissue engineering

    NASA Astrophysics Data System (ADS)

    Pan, Jian-Feng; Li, Shuo; Guo, Chang-An; Xu, Du-Liang; Zhang, Feng; Yan, Zuo-Qin; Mo, Xiu-Mei

    2015-08-01

    Stem cells and scaffolds play a very important role in tissue engineering. Here, we isolated synovium-derived mesenchymal stem cells (SMSCs) from synovial membrane tissue and characterized stem-cell properties. Gelatin nanoparticles (NP) were prepared using a two-step desolvation method and then pre-mixed into different host matrix (silk fibroin (SF), gelatin (Gel), or SF-Gel mixture) to generate various 3D printed nanocomposite scaffolds (NP/SF, NP/SF-Gel, NP/Gel-1, and NP/Gel-2). The microstructure was examined by scanning electron microscopy. Biocompatibility assessment was performed through CCK-8 assay by coculturing with SMSCs at 1, 3, 7 and 14 days. According to the results, SMSCs are similar to other MSCs in their surface epitope expression, which are negative for CD45 and positive for CD44, CD90, and CD105. After incubation in lineage-specific medium, SMSCs could differentiate into chondrocytes, osteocytes and adipocytes. 3D printed nanocomposite scaffolds exhibited a good biocompatibility in the process of coculturing with SMSCs and had no negative effect on cell behavior. The study provides a strategy to obtain SMSCs and fabricate 3D printed nanocomposite scaffolds, the combination of which could be used for practical applications in tissue engineering.

  16. Gemcitabine Conjugated Chitosan and Double Antibodies (Abc-GC-Gemcitabine Nanoparticles) Enhanced Cytoplasmic Uptake of Gemcitabine and Inhibit Proliferation and Metastasis In Human SW1990 Pancreatic Cancer Cells

    PubMed Central

    Xiao, Jun; Yu, Haibo

    2017-01-01

    Background Pancreatic cancer is considered a chemoresistant neoplasm with extremely dismal prognosis and gemcitabine treatment is associated with many side effects and poor overall survival. The study aimed at developing a new nanobioconjugate, which specifically delivered gemcitabine and anti-EGFR antibody into pancreatic cancer cells. Material/Methods The novel nanodrug is based on chitosan platform, which is non-toxic, biocompatibility and biodegradable. We measured the effects of proliferation and metastasis on SW1990 by CCK-8 assay, colony formation assay, wound healing assay and Transwell assay. The expression of related proteins were evaluated by Western blot. Results We synthesized Abc-GC-gemcitabine nanoparticles successfully with the encapsulation rate of nanobioconjugates was 91.63% and the drug loadings was 9.97%. Both GC-gemcitabine microspheres solution (GC group) and Abc-GC-gemcitabine microspheres solution (Abc group) inhibited cells proliferation, colony formation, migration and invasion in SW1990 cells dramatically. Moreover, Abc-GC-gemcitabine microspheres expressed more significant inhibited action than GC-gemcitabine microspheres efficiently Conclusions Our data suggested that Abc-GC-gemcitabine nanoparticles could have promising potential in treating metastasized and chemoresistant pancreatic cancer by enhancing the drug efficacy and minimizing off target effects. PMID:28366930

  17. NVM-1 predicts prognosis and contributes to growth and metastasis in hepatocellular carcinoma

    PubMed Central

    Ou, Huohui; Liu, Xincheng; Xiang, Leyang; Li, Xianghong; Huang, Yu; Yang, Dinghua

    2017-01-01

    Novel metastasis-promoting gene 1 (NVM-1) has a significantly elevated protein level in a variety of tumor tissues and is involved in metastasis. However, its functions in hepatocellular carcinoma (HCC) are not clear. The current study aimed to investigate the functions of NVM-1 in cell proliferation, apoptosis, and epithelial-mesenchymal transition in HCC. NVM-1 protein expression in HCC was assessed by immunohistochemical staining. In vitro, cell proliferation, apoptosis, and aggressiveness were determined by CCK-8, fluorescence-assisted cell sorting, TdT-UTP nick-end labeling, and transwell assays, respectively. For in vivo studies, NVM-1 knockdown HCC cells were transplanted into BALB/c nude mice. NVM-1 was frequently upregulated in HCC tissues and positive NVM-1 expression was linked with poor prognosis. NVM-1 depletion significantly inhibited cell proliferation, migration, and invasion abilities in vitro and in vivo. Apoptosis was induced after NVM-1 knockdown. In conclusion, positive NVM-1 expression confers poor prognosis to HCC patients and the NVM-1 protein level correlates with HCC cell proliferation, apoptosis, and EMT.

  18. Gemcitabine Conjugated Chitosan and Double Antibodies (Abc-GC-Gemcitabine Nanoparticles) Enhanced Cytoplasmic Uptake of Gemcitabine and Inhibit Proliferation and Metastasis In Human SW1990 Pancreatic Cancer Cells.

    PubMed

    Xiao, Jun; Yu, Haibo

    2017-04-03

    BACKGROUND Pancreatic cancer is considered a chemoresistant neoplasm with extremely dismal prognosis and gemcitabine treatment is associated with many side effects and poor overall survival. The study aimed at developing a new nanobioconjugate, which specifically delivered gemcitabine and anti-EGFR antibody into pancreatic cancer cells. MATERIAL AND METHODS The novel nanodrug is based on chitosan platform, which is non-toxic, biocompatibility and biodegradable. We measured the effects of proliferation and metastasis on SW1990 by CCK-8 assay, colony formation assay, wound healing assay and Transwell assay. The expression of related proteins were evaluated by Western blot. RESULTS We synthesized Abc-GC-gemcitabine nanoparticles successfully with the encapsulation rate of nanobioconjugates was 91.63% and the drug loadings was 9.97%. Both GC-gemcitabine microspheres solution (GC group) and Abc-GC-gemcitabine microspheres solution (Abc group) inhibited cells proliferation, colony formation, migration and invasion in SW1990 cells dramatically. Moreover, Abc-GC-gemcitabine microspheres expressed more significant inhibited action than GC-gemcitabine microspheres efficiently CONCLUSIONS Our data suggested that Abc-GC-gemcitabine nanoparticles could have promising potential in treating metastasized and chemoresistant pancreatic cancer by enhancing the drug efficacy and minimizing off target effects.

  19. Treatment for intranasal synechiae by CO2 laser under endoscopic visualization

    NASA Astrophysics Data System (ADS)

    Feng, Yunhai; Yin, Shankai

    2005-07-01

    Endonasal low intensity laser therapy (ELILT) began in China in 1998. Now in China it is widely applied to treat hyperlipidemia and brain diseases such as Alzheimer's disease, Parkinson's disease, insomnia, poststroke depression, intractable headache, ache in head or face, cerebral thrombosis, acute ischemic cerebrovascular disease, migraine, brain lesion and mild cognitive impairment. There are four pathways mediating EILILT, Yangming channel, autonomic nervous systems and blood cells. Two unhealth acupoints of Yangming channal inside nose might mediate the one as is low intensity laser acupuncture. Unbalance autonomic nervous systems might be modulated. Blood cells might mediate the one as is intravascular low intensity laser therapy. These three pathways are integrated in ELILT so that serum amyloid β protein, malformation rate of erythrocyte, CCK-8, the level of viscosity at lower shear rates and hematocrit, or serum lipid might decrease, and melanin production/SOD activity or β endorphin might increase after ELILT treatment. These results indicate ELILT might work, but it need to be verified by randomized placebo-controlled trial.

  20. Advances in endonasal low intensity laser irradiation therapy

    NASA Astrophysics Data System (ADS)

    Jiao, Jian-Ling; Liu, Timon C.; Liu, Jiang; Cui, Li-Ping; Liu, Song-hao

    2005-07-01

    Endonasal low intensity laser therapy (ELILT) began in China in 1998. Now in China it is widely applied to treat hyperlipidemia and brain diseases such as Alzheimer's disease, Parkinson's disease, insomnia, poststroke depression, intractable headache, ache in head or face, cerebral thrombosis, acute ischemic cerebrovascular disease, migraine, brain lesion and mild cognitive impairment. There are four pathways mediating EILILT, Yangming channel, autonomic nervous systems and blood cells. Two unhealth acupoints of Yangming channal inside nose might mediate the one as is low intensity laser acupuncture. Unbalance autonomic nervous systems might be modulated. Blood cells might mediate the one as is intravascular low intensity laser therapy. These three pathways are integrated in ELILT so that serum amyloid β protein, malformation rate of erythrocyte, CCK-8, the level of viscosity at lower shear rates and hematocrit, or serum lipid might decrease, and melanin production/SOD activity or β endorphin might increase after ELILT treatment. These results indicate ELILT might work, but it need to be verified by randomized placebo-controlled trial.

  1. PFTK1 Promotes Gastric Cancer Progression by Regulating Proliferation, Migration and Invasion.

    PubMed

    Yang, Lei; Zhu, Jia; Huang, Hua; Yang, Qichang; Cai, Jing; Wang, Qiuhong; Zhu, Junya; Shao, Mengting; Xiao, Jinzhang; Cao, Jie; Gu, Xiaodan; Zhang, Shusen; Wang, Yingying

    2015-01-01

    PFTK1, also known as PFTAIRE1, CDK14, is a novel member of Cdc2-related serine/threonine protein kinases. Recent studies show that PFTK1 is highly expressed in several malignant tumors such as hepatocellular carcinoma, esophageal cancer, breast cancer, and involved in regulation of cell cycle, tumors proliferation, migration, and invasion that further influence the prognosis of tumors. However, the expression and physiological significance of PFTK1 in gastric cancer remain unclear. In this study, we analyzed the expression and clinical significance of PFTK1 by Western blot in 8 paired fresh gastric cancer tissues, nontumorous gastric mucosal tissues and immunohistochemistry on 161 paraffinembedded slices. High PFTK1 expression was correlated with the tumor grade, lymph node invasion as well as Ki-67. Through Cell Counting Kit (CCK)-8 assay, flow cytometry, colony formation, wound healing and transwell assays, the vitro studies demonstrated that PFTK1 overexpression promoted proliferation, migration and invasion of gastric cancer cells, while PFTK1 knockdown led to the opposite results. Our findings for the first time supported that PFTK1 might play an important role in the regulation of gastric cancer proliferation, migration and would provide a novel promising therapeutic strategy against human gastric cancer.

  2. Inhibiting PI3K-AKt signaling pathway is involved in antitumor effects of ginsenoside Rg3 in lung cancer cell.

    PubMed

    Xie, Qipeng; Wen, Huaikai; Zhang, Qiong; Zhou, Weihe; Lin, Xiaoming; Xie, Deyao; Liu, Yu

    2017-01-01

    Lung cancer is recognized as the most prevalent type of cancer with high death rate. Ginsenoside Rg3 isolated from Traditional Chinese Medicine Panax Ginseng has significant anticancer effects on many tumors. In this study, the effects of ginsenoside Rg3 on cells viability, apoptosis and PI3K/Akt signaling pathway in lung cancer cells were investigated in vitro and in vivo. In vitro, the viability of lung cancer cell lines A549,H23 was examined by CCK-8 kits; The proportion of cell apoptosis was measured by flow cytometry. The expression of p-PI3K/PI3K and p-Akt/Akt was evaluated with Western blot. In vivo, A549,H23 cells were subcutaneously injected into the nude mice. Histopathological analysis was stained with HE, and TUNEL assay was used to detect cell apoptosis. The results showed that Rg3 obviously inhibited cell viability, induced apoptosis and inhibited PI3K/Akt signalling pathway on A549, H23 cells in vitro and in vivo. Rg3 effectively inhibited the volume and weight of tumor in xenografts model, which may be related with inhibiting PI3K/Akt signaling pathways.

  3. Glutamine deprivation plus BPTES alters etoposide- and cisplatin-induced apoptosis in triple negative breast cancer cells

    PubMed Central

    Chen, Lian; Cui, Hengmin; Fang, Jing; Deng, Huidan; Kuang, Ping; Guo, Hongrui; Wang, Xun; Zhao, Ling

    2016-01-01

    Glutamine provides cancer cells with the energy required to synthesize macromolecules. Methods which block glutamine metabolism in treatment of breast cancer inhibit oncogenic transformation and tumor growth. We investigated whether inhibiting glutamine metabolism produces effects that are synergistic with those produced by drugs which damage DNA in triple-negative breast cancer cells. HCC1937 and BT-549 breast cancer cells were co-treated with either cisplatin or etoposide in combination with BPTES (a specific inhibitor of glutaminase 1) or exposure to a glutamine-free medium, and the cell proliferation and cell apoptosis were measured by flow cytometry, immunoblotting studies, and CCK-8 assays. The results showed that both glutamine deprivation and BPTES pretreatments increased the toxic effects of cisplatin and etoposide on HCC1937 cells, as demonstrated by their reduced proliferation, increased expression of apoptosis-related proteins (cleaved-PARP, cleaved-caspase 9, and cleaved-caspase 3) and decreased Bcl-2/BAX ratio. However, in BT-549 cells, glutamine deprivation and BPTES treatment increased etoposide-induced apoptosis only when used with higher concentrations of etoposide, and the effect on cisplatin-induced apoptosis was minimal. These results suggest that the anti-cancer effects produced by a combined approach of inhibiting glutamine metabolism and administering common chemotherapeutic agents correlate with the tumor cell type and specific drugs being administered. PMID:27419628

  4. MiRNA-21 mediates the antiangiogenic activity of metformin through targeting PTEN and SMAD7 expression and PI3K/AKT pathway

    PubMed Central

    Luo, Mao; Tan, Xiaoyong; Mu, Lin; Luo, Yulin; Li, Rong; Deng, Xin; Chen, Ni; Ren, Meiping; Li, Yongjie; Wang, Liqun; Wu, Jianbo; Wan, Qin

    2017-01-01

    Metformin, an anti-diabetic drug commonly used for type 2 diabetes therapy, is associated with anti-angiogenic effects in conditions beyond diabetes. miR-21 has been reported to be involved in the process of angiogenesis. However, the precise regulatory mechanisms by which the metformin-induced endothelial suppression and its effects on miR-21-dependent pathways are still unclear. Bioinformatic analysis and identification of miR-21 and its targets and their effects on metformin-induced antiangiogenic activity were assessed using luciferase assays, quantitative real-time PCR, western blots, scratch assays, CCK-8 assays and tubule formation assays. In this study, miR-21 was strikingly downregulated by metformin in a time- and dose-dependent manner. miR-21 directly targeted the 3′-UTR of PTEN and SMAD7, and negatively regulated their expression. Overexpression of miR-21 abrogated the metformin-mediated inhibition of endothelial cells proliferation, migration, tubule formation and the TGF-β-induced AKT, SMAD- and ERK-dependent phosphorylations, and conversely, down-regulation of miR-21 aggravated metformin’s action and revealed significant promotion effects. Our study broadens our understanding of the regulatory mechanism of miR-21 mediating metformin-induced anti-angiogenic effects, providing important implications regarding the design of novel miRNA-based therapeutic strategies against angiogenesis. PMID:28230206

  5. Bioactive apatite incorporated alginate microspheres with sustained drug-delivery for bone regeneration application.

    PubMed

    Li, Haibin; Jiang, Fei; Ye, Song; Wu, Yingying; Zhu, Kaiping; Wang, Deping

    2016-05-01

    The strontium-substituted hydroxyapatite microspheres (SrHA) incorporated alginate composite microspheres (SrHA/Alginate) were prepared via adding SrHA/alginate suspension dropwise into calcium chloride solution, in which the gel beads were formed by means of crosslinking reaction. The structure, morphology and in vitro bioactivity of the composite microspheres were studied by using XRD, SEM and EDS methods. The biological behaviors were characterized and analyzed through inductively coupled plasma optical emission spectroscopy (ICP-OES), CCK-8, confocal laser microscope and ALP activity evaluations. The experimental results indicated that the synthetic SrHA/Alginate showed similar morphology to the well-known alginate microspheres (Alginate) and both of them possessed a great in vitro bioactivity. Compared with the control Alginate, the SrHA/Alginate enhanced MC3T3-E1 cell proliferation and ALP activity by releasing osteoinductive and osteogenic Sr ions. Furthermore, vancomycin was used as a model drug to investigate the drug release behaviors of the SrHA/Alginate, Alginate and SrHA. The results suggested that the SrHA/Alginate had a highest drug-loading efficiency and best controlled drug release properties. Additionally, the SrHA/Alginate was demonstrated to be pH-sensitive as well. The increase of the pH value in phosphate buffer solution (PBS) accelerated the vancomycin release. Accordingly, the multifunctional SrHA/Alginate can be applied in the field of bioactive drug carriers and bone filling materials.

  6. Emodin Inhibits the Epithelial to Mesenchymal Transition of Epithelial Ovarian Cancer Cells via ILK/GSK-3β/Slug Signaling Pathway

    PubMed Central

    Lu, Jingjing; Xu, Ying; Wei, Xuan; Zhao, Zhe; Xue, Jing

    2016-01-01

    Epithelial ovarian cancer (EOC) is the most lethal gynecologic malignancy. Despite the anticancer capabilities of emodin observed in many cancers, including EOC, the underlying molecular mechanism remains to be elucidated. A crucial link has been discovered between the acquisition of metastatic traits and the epithelial-mesenchymal transition (EMT). The present study aimed to determine whether emodin could inhibit the EMT of EOC cells and explore the underlying mechanism. The CCK-8 assay and transwell assay showed that emodin effectively repressed the abilities of proliferation, invasion, and migration in A2780 and SK-OV-3 cells. The Western blot showed that emodin upregulated epithelial markers (E-cadherin and Claudin) while it downregulated mesenchymal markers (N-cadherin and Vimentin) and transcription factor (Slug) in a dose-dependent fashion. After transfection of siRNA-Slug, both Slug and N-cadherin were downregulated in EOC cells while E-cadherin was upregulated, which was intensified by emodin. Besides, emodin decreased the expression of ILK, p-GSK-3β, β-catenin, and Slug. Transfection of siRNA-ILK also achieved the same effects, which was further strengthened by following emodin treatment. Nevertheless, SB216763, an inhibitor of GSK-3β, could reverse the effects of emodin except for ILK expression. These findings suggest that emodin inhibited the EMT of EOC cells via ILK/GSK-3β/Slug signaling pathway. PMID:28097141

  7. Synthesis and anti-tumor activity evaluation of rhein-aloe emodin hybrid molecule.

    PubMed

    Yuan, Ye-Fei; Hu, Xiang-Yu; He, Ying; Deng, Jia-Gang

    2012-02-01

    To improve the anti-tumor effects of rhein and aloe-emodin, a rhein-aloe-emodin hybrid molecule (RH-AE) was synthesized from rhein and aloe-emodin in the presence of dicyclohexylcarbodiimide (DCC) and 4-dimethylaminopyridine (DMAP). Chemical and spectroscopic methods, such as 1H and 13C NMR spectroscopy, and HR-ESIMS were used for the structure identification of RH-AE. Using the cell counting kit-8 (CCK-8) assay, the in vitro anti-tumor effects were compared between RH-AE, rhein and aloe-emodin on human hepatoma HepG2, human nasopharyngeal carcinoma CNE, human lung cancer NCI-H460, human ovarian cancer SK-OV-3, and human cervical cancer Hela cells. The results showed that the half inhibitory concentration (IC50) of RH-AE on HepG2, CNE, NCI-H460, SK-OV-3, and Hela cells were significantly lower than those of rhein and aloe-emodin. This showed that RH-AE has a better in vitro anti-tumor effect than rhein and aloe-emodin.

  8. Preparation and application of a novel molecularly imprinted solid-phase microextraction monolith for selective enrichment of cholecystokinin neuropeptides in human cerebrospinal fluid.

    PubMed

    Ji, Xiang; Li, Dan; Li, Hua

    2015-08-01

    A novel molecularly imprinted polymer (MIP) monolith for highly selective extraction of cholecystokinin (CCK) neuropeptides was prepared in a micropipette tip. The MIPs were synthesized by epitope imprinting technique and the polymerization conditions were investigated and optimized. The synthesized MIPs were characterized by infrared spectroscopy, elemental analyzer and scanning electron microscope. A molecularly imprinted solid-phase microextraction (MI-μ-SPE) method was developed for the extraction of CCK neuropeptides in aqueous solutions. The parameters affecting MI-μ-SPE were optimized. The results indicated that this MIP monolith exhibited specific recognition capability and high enrichment efficiency for CCK neuropeptides. In addition, it showed excellent reusability. This MIP monolith was used for desalting and enrichment of CCK4, CCK5 and CCK8 from human cerebrospinal fluid prior to matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis, and the results show that this MIP monolith can be a useful tool for effective purification and highly selective enrichment of multiple homologous CCK neuropeptides in cerebrospinal fluid simultaneously. By employing MI-μ-SPE combined with HPLC-ESI-MS/MS analysis, endogenous CCK4 in human cerebrospinal fluid was quantified.

  9. Effects of white light-emitting diode (LED) light exposure with different correlated color temperatures (CCTs) on human lens epithelial cells in culture.

    PubMed

    Xie, Chen; Li, Xiuyi; Tong, Jianping; Gu, Yangshun; Shen, Ye

    2014-01-01

    Cataract is the major cause for legal blindness in the world. Oxidative stress on the lens epithelial cells (hLECs) is the most important factor in cataract formation. Cumulative light-exposure from widely used light-emitting diodes (LEDs) may pose a potential oxidative threat to the lens epithelium, due to the high-energy blue light component in the white-light emission from diodes. In the interest of perfecting biosafety standards for LED domestic lighting, this study analyzed the photobiological effect of white LED light with different correlated color temperatures (CCTs) on cultured hLECs. The hLECs were cultured and cumulatively exposed to multichromatic white LED light with CCTs of 2954, 5624, and 7378 K. Cell viability of hLECs was measured by Cell Counting Kit-8 (CCK-8) assay. DNA damage was determined by alkaline comet assay. Intracellular reactive oxygen species (ROS) generation, cell cycle, and apoptosis were quantified by flow cytometry. Compared with 2954 and 5624 K LED light, LED light having a CCT of 7378 K caused overproduction of intracellular ROS and severe DNA damage, which triggered G2 /M arrest and apoptosis. These results indicate that white LEDs with a high CCT could cause significant photobiological damage to hLECs.

  10. Effects of lentiviral short hairpin RNA silencing of Toll-like receptor 4 on the lens epithelial cell line HLEC.

    PubMed

    Yu, H T; Lu, P R

    2016-06-03

    The aim of this study was to observe the proliferation of, and cell-cycle changes in, the human lens epithelial cell line HLEC after Toll-like receptor 4 (TLR4) gene silencing. HLEC cells were transfected with four TLR4-short hairpin RNA (shRNA) lentiviral vectors or the control lentivirus (pGCL-GFP-shRP-1, -2, -3, -4, NC). TLR4 silencing was verified in these cells 96 h post-transfection using real-time polymerase chain reaction and western blot. We also observed the change in number of pGCL-GFP-shRP-4-transfected HLEC cells with silenced TLR4 (multiplicity of infection = 10). Cell proliferation was analyzed 48 h after transfection by a standard Cell Counting Kit-8 (CCK-8) assay, and the cell cycle changes were detected by flow cytometry. The number of cells with silenced TLR4 decreased with time. The decrease in TLR4 expression led to decelerated cell proliferation. Cells with silenced TLR4 (for 48 h) were arrested in the G1 phase; that is, the cell cycle was prolonged and cell division was decelerated. Lentivirus-mediated RNA interference effectively silenced TLR4 expression in HLEC cells, which decelerated their proliferation rate and extended the cell cycle.

  11. Efficacy of low-power laser irradiation in the prevention of D-galactose-induced senescence in human dermal fibroblasts

    NASA Astrophysics Data System (ADS)

    Meng, Chengbo; Wu, Shengnan; Xing, Da

    2011-03-01

    Low-power laser (He-Ne) irradiation (LPLI) has been found to modulate various biological effects, especially those involved in promoting cell proliferation and metabolic regulation. However, the underlying mechanisms that LPLI prevents human cell senescence remain undefined. Herein, we devised a model enabling cell senescence using D-galactose for two days then treat with or without LPLI(< 15J/cm2), and investigated whether LPLI delays cell senescent in human dermal fibroblasts cells (HDF-a). First in this study, using SA-β-gal staining, compared with control cell we detected a lower frequency of SA-β-gal staining under the treatment of LPLI. Moreover, we found the growth rates of cell with LPLI was higher using CCK-8 analysis. Additionally, we also found LPLI induced HDF-a entered the irreversible G1 arrest measured by flow cytometry system. Therefore, LPLI may promote cell proliferation by stimulating cell-cycle progression and delay human cell senescence. Taken together, Low-power laser irradiation delay HDF-a cells senescence provides new information for the mechanisms of biological effects of LPLI.

  12. [Effects of miR-382 on cell migration, invasion and proliferation of gastric cancer cell lines MGC-803].

    PubMed

    Wang, Y; Bu, P; Li, F; Liu, X L; Xu, J

    2017-02-28

    Objective: To investigate the effects of miR-382 on cell migration, invasion and proliferation of gastric cancer cell lines MGC-803. Methods: The level of miR-382 expression was detected by real-time RT-PCR in 50 paired gastric cancer tissues and their adjacent normal tissues. miR-382 overexpression was achieved by transfection of construct pcDNA-miR-382 into MGC-803 cells. The migration, invasion and proliferation of MGC-803 cells were detected by the scratch wound assay, Transwell and CCK-8, respectively. Results: miR-382 was decreased in 41 cases (82%) of gastric cancer tissues compared to their control. Furthermore, overexpression of miR-382 effectively inhibited the migration, invasion and proliferation of MGC-803 cells(P<0.05). Conclusion: Down-regulation of miR-382 has a correlation with the progression of gastric cancer. Up-regulation of miR-382 can inhibit the migration, invasion and proliferation of MGC-803 cells.

  13. Salinomycin radiosensitizes human nasopharyngeal carcinoma cell line CNE-2 to radiation.

    PubMed

    Zhang, Yongqin; Zuo, Yun; Guan, Zhifeng; Lu, Weidong; Xu, Zheng; Zhang, Hao; Yang, Yan; Yang, Meilin; Zhu, Hongcheng; Chen, Xiaochen

    2016-01-01

    Nasopharyngeal carcinoma (NPC) is primarily treated by chemoradiation. However, how to promote radiation sensitivity in NPC remains a challenge. Salinomycin is potentially useful for the treatment of cancer. This study aimed to explore the radiosensitivity of salinomycin on human nasopharyngeal carcinoma cell line CNE-2. CNE-2 were treated with salinomycin or irradiation, alone or in combination. The cytotoxicity effects of salinomycin were measured using CCK-8 assay. Clonogenic survival assay was used to evaluate the effects of salinomycin on the radiosensitivity of CNE-2. The changes of cell cycle distribution and apoptosis were assayed using flow cytometry. The expression of Caspase3/Bax/Bal-2 was detected by Western blotting. DNA damage was detected via γ-H2AX foci counting. The results showed that salinomycin induced apoptosis and G2/M arrest, increased Bax and cleaved Caspase3, decreased Bcl-2 expression, and increased the formation of γ-H2AX nuclear foci. These data suggest that salinomycin may be a radiosensitizer for NPC radiotherapy.

  14. CMTM8 inhibits the carcinogenesis and progression of bladder cancer

    PubMed Central

    GAO, DENGHUI; HU, HAO; WANG, YING; YU, WEIDONG; ZHOU, JIANHUA; WANG, XIAOFENG; WANG, WEIPING; ZHOU, CHUNYAN; XU, KEXIN

    2015-01-01

    Bladder cancer is the most common tumor of the urinary tract. The incidence of bladder cancer has increased in the last few decades, thus novel molecular markers for early diagnosis and more efficacious treatment are urgently needed. Chemokine-like factor (CKLF)-like MARVEL transmembrane domain containing 8 (CMTM8) is downregulated in several types of cancers and is associated with tumor progression. However, CMTM8 expression has been unexplored in bladder cancer to date. Our results revealed that the expression of CMTM8 was negative in 46 of 74 (62.2%) bladder cancer samples via immunohistochemistry assay. CMTM8 downregulation was associated with advancing tumor stage and tumor grade. CMTM8 was successfully overexpressed by lentivirus in EJ and T24 cells, and the CCK-8 and Transwell assays showed that CMTM8 overexpression decreased cell proliferation, migration and invasion in vitro. In tumor xenografts upregulation of CMTM8 inhibited tumor growth and lymph node metastasis in vivo. In conclusion, overexpression of CMTM8 in bladder cancer results in reduced malignant cell growth, migration and invasion, which could make it a potential therapeutic target in the treatment of bladder cancer. PMID:26503336

  15. Fabrication of 3D porous silk scaffolds by particulate (salt/sucrose) leaching for bone tissue reconstruction.

    PubMed

    Park, Hyun Jung; Lee, Ok Joo; Lee, Min Chae; Moon, Bo Mi; Ju, Hyung Woo; Lee, Jung min; Kim, Jung-Ho; Kim, Dong Wook; Park, Chan Hum

    2015-01-01

    Silk fibroin is a biomaterial being actively studied in the field of bone tissue engineering. In this study, we aimed to select the best strategy for bone reconstruction on scaffolds by changing various conditions. We compared the characteristics of each scaffold via structural analysis using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), the swelling ratio, water uptake, porosity, compressive strength, cell infiltration and cell viability (CCK-8). The scaffolds had high porosity with good inter pore connectivity and showed high compressive strength and modulus. In addition, to confirm bone reconstruction, animal studies were conducted in which samples were implanted in rat calvaria and investigated by micro-CT scans. In conclusion, the presented study indicates that using sucrose produces scaffolds showing better pore interconnectivity and cell infiltration than scaffolds made by using a salt process. In addition, in vivo experiments showed that hydroxyapatite accelerates bone reconstruction on implanted scaffolds. Accordingly, our scaffold will be expected to have a useful application in bone reconstruction.

  16. Synthesis, characterization, and biocompatible properties of alanine-grafted chitosan copolymers.

    PubMed

    Park, Gyu Han; Kang, Min-Sil; Knowles, Jonathan C; Gong, Myoung-Seon

    2016-04-01

    In order to overcome major problems regarding the lack of affinity to solvents and limited reactivity of the free amines of chitosan, introduction of appropriate spacer arms having terminal amine function is considered of interest. L-Alanine-N-carboxyanhydride was grafted onto chitosan via anionic ring-opening polymerization. The chemical and structural characterizations of L-alanine-grafted chitosan (Ala-g-Cts) were confirmed through Fourier transform infrared spectroscopy and proton nuclear magnetic resonance spectroscopy ((1)H NMR). In addition, the viscoelastic properties of Ala-g-Cts were examined by means of a rotational viscometer, and thermal analysis was carried out with a thermogravimetric analyzer and differential scanning calorimetry. Morphological changes in the chitosan L-alanine moiety were determined by x-ray diffraction. To determine the feasibility of using these films as biomedical materials, we investigated the effects of their L-alanine content on physical and mechanical properties. The biodegradation results of crosslinked Ala-g-Cts films were evaluated in phosphate-buffered solution containing lysozyme at 37℃. Proliferation of MC3T3-E1 cells on crosslinked Ala-g-Cts films was also investigated with use of the CCK-8 assay.

  17. In vitro growth of bioactive nanostructured apatites via agar-gelatin hybrid hydrogel.

    PubMed

    Deng, Yi; Zhao, Xianghui; Zhou, Yongsheng; Zhu, Peizhi; Zhang, Li; Wei, Shicheng

    2013-12-01

    Biomimetic synthesis of bone-like carbonated apatite with good biocompatibility is a promising strategy for the development of novel biomaterials for bone engineering applications. Most research efforts have been focused on only protein-based or only polysaccharide-based template for synthesis of apatite minerals. To understand the cooperative roles of gelatin and polysaccharide playing in the biomineralization, agar hydrogel, gelatin and agar-gelatin hybrid hydrogel were respectively introduced as mineralization matrix for the in vitro growth of apatite in the study. It was shown that bundle-like carbonated apatite was successfully prepared in agar-gelatin hybrid hydrogel for the first time, through the interaction between apatite and matrix macromolecule under physiological temperature. Moreover, the in vitro biocompatibility of the prepared nanostructured apatite crystals was investigated using CCK-8 assay and alkaline phosphatase activity of osteoblast-like MC3T3-E1. Compared with HA synthesized by traditional method, the obtained apatite in agar-gelatin hybrid hydrogel could provide significantly higher cell viability and alkaline phosphatase activity. Through the study, we could better understand the role of gelatin and polysaccharide in bone formation process, and the product is a promising candidate to be used in bone tissue engineering.

  18. Hydrogen sulfide promotes cell proliferation of oral cancer through activation of the COX2/AKT/ERK1/2 axis.

    PubMed

    Zhang, Shuai; Bian, Huan; Li, Xiaoxu; Wu, Huanhuan; Bi, Qingwei; Yan, Yingbin; Wang, Yixiang

    2016-05-01

    Hydrogen sulfide, the third gaseous transmitter, is one of the main causes of halitosis in the oral cavity. It is generally considered as playing a deleterious role in many oral diseases including oral cancer. However, the regulatory mechanisms involved in the effects of hydrogen sulfide on oral cancer growth remain largely unknown. In the present study, we investigated the underlying mechanisms through CCK-8 assay, EdU incorporation, real-time PCR, western blot and pathway blockade assays. Our results showed that hydrogen sulfide promoted oral cancer cell proliferation through activation of the COX2, AKT and ERK1/2 pathways in a dose-dependent manner. Blocking any of the three above pathways inhibited hydrogen sulfide-induced oral cancer cell proliferation. Meanwhile, blockade of COX2 by niflumic acid downregulated NaHS-induced p-ERK and p-AKT expression. Inactivation of the AKT pathway by GSK690693 significantly decreased NaHS‑induced p-ERK1/2 expression, and inhibition of the ERK1/2 pathway by U0126 markedly increased NaHS-induced p-AKT expression. Either the AKT or ERK1/2 inhibitor did not significantly alter the COX2 expression level. Our data revealed, for the first time, that hydrogen sulfide promotes oral cancer cell proliferation through activation of the COX2/AKT/ERK1/2 axis, suggesting new potential targets to eliminate the effect of hydrogen sulfide on the development of oral cancer.

  19. PCM and TAT co-modified liposome with improved myocardium delivery: in vitro and in vivo evaluations.

    PubMed

    Wang, Xin; Huang, Hua; Zhang, Liangke; Bai, Yan; Chen, Huali

    2017-11-01

    In this study, PCM and TAT co-modified liposome was developed as a novel drug carrier for myocardium delivery with evaluation of its in vitro and in vivo properties. Liposomes containing fluorescent probe coumarin-6 were prepared by thin-film hydration. The PCM ligands specifically bind to the PCM receptors in the extracellular connective tissue of primary myocardium cells (MCs), while the TAT ligands functioned as a classical cell penetrating peptide to make liposomes internalized by MCs. The unmodified liposome (L), PCM-modified liposome (PL), TAT-modified liposome (TL) and PCM and TAT co-modified liposome (PTL) were prepared and characterized. The cellular uptake and intracellular distribution of various liposomes by MCs demonstrated that PTL had the best delivery capability. Peptide inhibition assay indicated that the uptake of PL could be inhibited by PCM. However, TAT could almost not suppress the uptake of TL. In addition, the CCK-8 experiments showed that liposomes had low cytotoxicity. In vivo fluorescent images of frozen sections and HPLC-fluorescence analysis further demonstrated that PTL had highest myocardium distribution. The results of this study demonstrated that PCM and TAT co-modifying could improve the myocardial targeting ability of liposome.

  20. SB203580 enhances the RV-induced loss of mitochondrial membrane potential and apoptosis in A549 cells

    NASA Astrophysics Data System (ADS)

    Li, Hai-yang; Zhuang, Cai-ping; Wang, Xiao-ping; Chen, Tong-sheng

    2012-03-01

    Resveratrol (RV), a naturally occurring phytoalexin, is known to possess a wide spectrum of chemopreventive and chemotherapeutic effects in various stages of human tumors. p38, a member of the mitogen-activated protein kinase (MAPK) superfamily, is always activated by some extracellular stimulus to regulate many cellular signal transduction pathways, such as apoptosis, proliferation, and inflammation and so on. In this report, we assessed the effect of SB203580, a specific inhibitor of p38 MAPK signaling pathway, on the RV-induced apoptosis in human lung adenocarcinoma (A549) cells. CCK-8 assay showed that pretreatment with SB203580 significantly enhanced the cytotoxicity of RV, which was further verified by analyzing the phosphatidylserine externalization using flow cytometry. In order to further confirm whether SB203580 accelerated apoptosis via the intrinsic apoptosis pathway, we analyzed the dysfunction of mitochondrial membrane potential (Δψm) of cells stained with rhodamine 123 by using flow cytometry after treatment with RV in the absence and presence of SB203580. Our data for the first time reported that p38 inhibitor SB203580 enhanced the RV-induced apoptosis via a mitochondrial pathway.

  1. Lycium barbarum polysaccharides protected human retinal pigment epithelial cells against oxidative stress-induced apoptosis

    PubMed Central

    Liu, Lian; Lao, Wei; Ji, Qing-Shan; Yang, Zhi-Hao; Yu, Guo-Cheng; Zhong, Jing-Xiang

    2015-01-01

    AIM To investigate the protective effect and its mechanism of lycium barbarum polysaccharides (LBP) against oxidative stress-induced apoptosis in human retinal pigment epithelial cells. METHODS ARPE-19 cells, a human retinal pigment epithelial cell lines, were exposed to different concentrations of H2O2 for 24h, then cell viability was measured by Cell Counting Kit-8 (CCK-8) assay to get the properly concentration of H2O2 which can induce half apoptosis of APRE-19. With different concentrations of LBP pretreatment, the ARPE-19 cells were then exposed to appropriate concentration of H2O2, cell apoptosis was detected by flow cytometric analysis. Expression levels of Bcl-2 and Bax were measured by real time quantitative polymerase chain reaction (RT-PCR) technique. RSULTS LBP significantly reduced the H2O2-induced ARPE-19 cells' apoptosis. LBP inhibited the H2O2-induced down-regulation of Bcl-2 and up-regulation of Bax. CONCLUSION LBP could protect ARPE-19 cells from H2O2-induced apoptosis. The Bcl-2 family had relationship with the protective effects of LBP. PMID:25709900

  2. Evaluation of UVA-induced oxidative stress using a highly sensitive chemiluminescence method

    NASA Astrophysics Data System (ADS)

    Gao, Bo; Xing, Da; Zhu, Debin

    2005-02-01

    Oxidative stress is mainly mediated by reactive oxygen species (ROS). Evaluation of oxidative stress is helpful for choosing an appropriate method to protect the organism from the oxidative damage. In this study, a highly sensitive and simple chemiluminescence method is presented for the evaluation of radiation-induced oxidative stress in human peripheral lymphocytes. The lymphocytes were irradiated by ultraviolet radiation (320-400nm, UVA) with different doses. The ROS generated by the lymphocytes was detected by chemiluminescence method, using a highly sensitive chemiluminescence probe 2-methyl-6-(p-methoxyphenyl)-3,7-dihydroimidazo[1,2-α] pyrazin-3-one (MCLA). The cell viability was detected with Cell Counting Kit-8 (CCK-8). The malondialdehyde (MDA), a marker of lipid peroxidation and oxidative stress, and the total antioxidant capacity (TAC), a parameter that is taken as evidence of oxidative stress, were measured too. The results show that both chemiluminescence intensity, cell mortality and MDA concentration of lymphocytes grow with the increase of UVA dose range from 0.5 to 8 J/cm2, while the TAC decreases. There exists a positive relationship between cell oxidative damage degree and the chemiluminescence intensity of lymphocytes. This highly sensitive chemiluminescence method would potentially provide an easy way to evaluate the level of UVA-induced oxidative stress readily, sensitively and rapidly

  3. Astaxanthin Inhibits Proliferation and Induces Apoptosis of Human Hepatocellular Carcinoma Cells via Inhibition of Nf-Κb P65 and Wnt/Β-Catenin in Vitro

    PubMed Central

    Li, Jingjing; Dai, Weiqi; Xia, Yujing; Chen, Kan; Li, Sainan; Liu, Tong; Zhang, Rong; Wang, Jianrong; Lu, Wenxia; Zhou, Yuqing; Yin, Qin; Abudumijiti, Huerxidan; Chen, Rongxia; Zheng, Yuanyuan; Wang, Fan; Lu, Jie; Zhou, Yingqun; Guo, Chuanyong

    2015-01-01

    Hepatocellular carcinoma (HCC) is a malignant tumor that can cause systemic invasion; however, the exact etiology and molecular mechanism are unknown. Astaxanthin (ASX), a powerful antioxidant, has efficient anti-oxidant, anti-inflammatory, and other activities, and has great research prospects in cancer therapy. We selected the human hepatoma cell lines, LM3 and SMMC-7721, to study the anti-tumor effect and related mechanisms of ASX. The cell lines were treated with different concentrations of ASX, and its solvent DMSO as a control, for different time periods and the results were determined using CCK8, qRT-PCR, WB, apoptotic staining, and flow cytometry. ASX induced significant apoptosis of HCC cells, and its effect may have been caused by NF-κB p65 and Wnt/β-catenin down-regulation via negative activation of PI3K/Akt and ERK. Antitumor research on ASX has provided us with a potential therapy for patients with hepatomas. PMID:26404320

  4. Evaluation of synovium-derived mesenchymal stem cells and 3D printed nanocomposite scaffolds for tissue engineering.

    PubMed

    Pan, Jian-Feng; Li, Shuo; Guo, Chang-An; Xu, Du-Liang; Zhang, Feng; Yan, Zuo-Qin; Mo, Xiu-Mei

    2015-08-01

    Stem cells and scaffolds play a very important role in tissue engineering. Here, we isolated synovium-derived mesenchymal stem cells (SMSCs) from synovial membrane tissue and characterized stem-cell properties. Gelatin nanoparticles (NP) were prepared using a two-step desolvation method and then pre-mixed into different host matrix (silk fibroin (SF), gelatin (Gel), or SF-Gel mixture) to generate various 3D printed nanocomposite scaffolds (NP/SF, NP/SF-Gel, NP/Gel-1, and NP/Gel-2). The microstructure was examined by scanning electron microscopy. Biocompatibility assessment was performed through CCK-8 assay by coculturing with SMSCs at 1, 3, 7 and 14 days. According to the results, SMSCs are similar to other MSCs in their surface epitope expression, which are negative for CD45 and positive for CD44, CD90, and CD105. After incubation in lineage-specific medium, SMSCs could differentiate into chondrocytes, osteocytes and adipocytes. 3D printed nanocomposite scaffolds exhibited a good biocompatibility in the process of coculturing with SMSCs and had no negative effect on cell behavior. The study provides a strategy to obtain SMSCs and fabricate 3D printed nanocomposite scaffolds, the combination of which could be used for practical applications in tissue engineering.

  5. SIRT4 overexpression protects against diabetic nephropathy by inhibiting podocyte apoptosis

    PubMed Central

    Shi, Jian-Xia; Wang, Qi-Jin; Li, Hui; Huang, Qin

    2017-01-01

    Diabetic nephropathy is a diabetic complication associated with capillary damage and increased mortality. Sirtuin 4 (SIRT4) plays an important role in mitochondrial function and the pathogenesis of metabolic diseases, including aging kidneys. The aim of the present study was to investigate the association between SIRT4 and diabetic nephropathy in a glucose-induced mouse podocyte model. A CCK-8 assay showed that glucose simulation significantly inhibited podocyte proliferation in a time- and concentration-dependent manner. Reverse transcription-quantitative polymerase chain reaction and western blot analysis showed that the mRNA and protein levels of SIRT4 were notably decreased in a concentration-dependent manner in glucose-simulated podocytes. However, SIRT4 overexpression increased proliferation and suppressed apoptosis, which was accompanied by increases in mitochondrial membrane potential and reduced production of reactive oxygen species (ROS). Notably, SIRT4 overexpression downregulated the expression of apoptosis-related proteins NOX1, Bax and phosphorylated p38 and upregulated the expression of Bcl-2 in glucose-simulated podocytes. In addition, SIRT4 overexpression significantly attenuated the inflammatory response, indicated by reductions in the levels of TNF-α, IL-1β and IL-6. These results demonstrate for the first time that the overexpression of SIRT4 prevents glucose-induced podocyte apoptosis and ROS production and suggest that podocyte apoptosis represents an early pathological mechanism leading to diabetic nephropathy. PMID:28123512

  6. S-allylcysteine, a garlic derivative, suppresses proliferation and induces apoptosis in human ovarian cancer cells in vitro

    PubMed Central

    Xu, Ya-si; Feng, Jian-guo; Zhang, Dan; Zhang, Bo; Luo, Min; Su, Dan; Lin, Neng-ming

    2014-01-01

    Aim: To investigate the effects of S-allylcysteine (SAC), a water-soluble garlic derivative, on human ovarian cancer cells in vitro. Methods: Human epithelial ovarian cancer cell line A2780 was tested. Cell proliferation was examined with CCK-8 and colony formation assays. Cell cycle was analyzed with flow cytometry. Cell apoptosis was studied using Hoechst 33258 staining and Annexin V/PI staining with flow cytometry. The migration and invasion of A2780 cells were examined with transwell and wound healing assays. The expression of relevant proteins was detected with Western blot assays. Results: SAC (1−100 mmol/L) inhibited the proliferation of A2780 cells in dose- and time-dependent manners (the IC50 value was approximately 25 mmol/L at 48 h, and less than 6.25 mmol/L at 96 h). Furthermore, SAC dose-dependently inhibited the colony formation of A2780 cells. Treatment of A2780 cells with SAC resulted in G1/S phase arrest and induced apoptosis, accompanied by decreased expression of pro-caspase-3, Parp-1 and Bcl-2, and increased expression of active caspase-3 and Bax. SAC treatment significantly reduced the migration of A2780 cells, and markedly decreased the protein expression of Wnt5a, p-AKT and c-Jun, which were the key proteins involved in proliferation and metastasis. Conclusion: SAC suppresses proliferation and induces apoptosis in A2780 ovarian cancer cells in vitro. PMID:24362328

  7. Prognostic and diagnostic potential of isocitrate dehydrogenase 1 in esophageal squamous cell carcinoma

    PubMed Central

    Chen, Xuan; Li, Qingbao; Wang, Cong; Xu, Wenzhe; Han, Lihui; Liu, Yuan; Liu, Bowen; Guan, Shanghui; Tan, Bingxu; Wang, Jianbo; Wang, Nana; Song, Qingxu; Jia, Yibin; Wang, Jianzhen; Zhao, Linli; Cheng, Yufeng

    2016-01-01

    We aimed to investigate the pattern of expression and clinical significance of isocitrate dehydrogenase 1(IDH1) in esophageal squamous cell carcinoma (ESCC). The IDH1 expression was determined by quantitative real-time polymerase chain reaction, immunohistochemistry, and Western blot analysis using 38 pairs of frozen tissues. Enzyme-linked immunosorbent assay was employed to measure 67 pairs of serum samples from patients and their controls to evaluate its diagnostic value. Immunohistochemistry analysis of 111 formalin-fixed paraffin embedded tissue samples was conducted for explaining its prognostic value. After shRNA transfection, CCK8 and clonal efficiency assays were carried on for verifying the function of IDH1 in vitro. Increased expression at mRNA (P < 0.001) and protein levels (immunohistochemistry: P < 0.001, Western blot analysis: P < 0.001) were observed. Similarly, the IDH1 expression in serum from patients with ESCC was significantly upregulated relative to that from healthy controls (P < 0.001). Kaplan–Meier curve indicated that IDH1 upregulation predicted worse overall survival (OS) and progression-free survival (PFS). Univariate and multivariate analyses identified IDH1 expression as an independent prognostic factor for OS and PFS. Furthermore, OD450 values and colony numbers were decreased in sh-IDH1 groups (all P < 0.05). In conclusion, IDH1 is upregulated in patients with ESCC and can be used as a good potential biomarker for diagnosis and prognosis. PMID:27863386

  8. Low-power laser irradiation inhibits amyloid beta-induced cell apoptosis

    NASA Astrophysics Data System (ADS)

    Zhang, Heng; Wu, Shengnan

    2011-03-01

    The deposition and accumulation of amyloid-β-peptide (Aβ) in the brain are considered a pathological hallmark of Alzheimer's disease(AD). Apoptosis is a contributing pathophysiological mechanism of AD. Low-power laser irradiation (LPLI), a non-damage physical therapy, which has been used clinically for decades of years, is shown to promote cell proliferation and prevent apoptosis. Recently, low-power laser irradiation (LPLI) has been applied to moderate AD. In this study, Rat pheochromocytoma (PC12) cells were treated with amyloid beta 25-35 (Aβ25-35) for induction of apoptosis before LPLI treatment. We measured cell viability with CCK-8 according to the manufacture's protocol, the cell viability assays show that low fluence of LPLI (2 J/cm2 ) could inhibit the cells apoptosis. Then using statistical analysis of proportion of apoptotic cells by flow cytometry based on Annexin V-FITC/PI, the assays also reveal that low fluence of LPLI (2 J/cm2 ) could inhibit the Aβ-induced cell apoptosis. Taken together, we demonstrated that low fluence of LPLI (2 J/cm2 ) could inhibit the Aβ-induced cell apoptosis, these results directly point to a therapeutic strategy for the treatment of AD through LPLI.

  9. Overexpression of DJ-1 reduces oxidative stress and attenuates hypoxia/reoxygenation injury in NRK-52E cells exposed to high glucose

    PubMed Central

    Shen, Zi-Ying; Sun, Qian; Xia, Zhong-Yuan; Meng, Qing-Tao; Lei, Shao-Qing; Zhao, Bo; Tang, Ling-Hua; Xue, Rui; Chen, Rong

    2016-01-01

    Patients with diabetes are more vulnerable to renal ischemia/reperfusion (I/R) injury, which is implicated in hyperglycemia-induced oxidative stress. We previously reported that the hyperglycemia-induced inhibition of DJ-1, a novel oncogene that exhibits potent antioxidant activity, is implicated in the severity of myocardial I/R injury. In the present study, we aimed to explore the role of DJ-1 in hypoxia/reoxygenation (H/R) injury in renal cells exposed to high glucose (HG). For this purpose, NRK-52E cells were exposed to HG (30 mM) for 48 h and then exposed to hypoxia for 4 h and reoxygenation for 2 h, which significantly decreased cell viability and superoxide dismutase (SOD) activity, and increased the malondialdehyde (MDA) content, accompanied by a decrease in DJ-1 protein expression. The overexpression of DJ-1 by transfection with a DJ-1 overexpression plasmid exerted protective effects against HG-induced H/R injury, as evidenced by increased CCK-8 levels and SOD activity, the decreased release of lactate dehydrogenase (LDH) and the decreased MDA content, and increased nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and heme oxygenase-1 (HO-1) expression. Similar effects were observed following treatment with the antioxidant, N-acetylcysteine. These results suggest that the overexpression of DJ-1 reduces oxidative stress and attenuates H/R injury in NRK-52E cells exposed to HG. PMID:27430285

  10. Treatment of steroid-induced osteonecrosis of the femoral head using porous Se@SiO2 nanocomposites to suppress reactive oxygen species

    NASA Astrophysics Data System (ADS)

    Deng, Guoying; Niu, Kerun; Zhou, Feng; Li, Buxiao; Kang, Yingjie; Liu, Xijian; Hu, Junqing; Li, Bo; Wang, Qiugen; Yi, Chengqing; Wang, Qian

    2017-03-01

    Reducing oxidative stress (ROS) have been demonstrated effective for steroid-induced osteonecrosis of the femoral head (steroid-induced ONFH). Selenium (Se) plays an important role in suppressing oxidative stress and has huge potential in ONFH treatments. However the Se has a narrow margin between beneficial and toxic effects which make it hard for therapy use in vivo. In order to make the deficiency up, a control release of Se (Se@SiO2) were realized by nanotechnology modification. Porous Se@SiO2 nanocomposites have favorable biocompatibility and can reduced the ROS damage effectively. In vitro, the cck-8 analysis, terminal dexynucleotidyl transferase (TdT)-mediated dUTP nick end labeling (TUNEL) stain and flow cytometry analysis showed rare negative influence by porous Se@SiO2 nanocomposites but significantly protective effect against H2O2 by reducing ROS level (detected by DCFH-DA). In vivo, the biosafety of porous Se@SiO2 nanocomposites were confirmed by the serum biochemistry, the ROS level in serum were significantly reduced and the curative effect were confirmed by Micro CT scan, serum Elisa assay (inflammatory factors), Western blotting (quantitative measurement of ONFH) and HE staining. It is expected that the porous Se@SiO2 nanocomposites may prevent steroid-induced ONFH by reducing oxidative stress.

  11. FNC efficiently inhibits mantle cell lymphoma growth.

    PubMed

    Zhang, Yan; Zhang, Rong; Ding, Xixi; Peng, Bangan; Wang, Ning; Ma, Fang; Peng, Youmei; Wang, Qingduan; Chang, Junbiao

    2017-01-01

    FNC, 2'-deoxy-2'-β-fluoro-4'-azidocytidine, is a novel cytidine analogue, that has shown strong antiproliferative activity in human lymphoma, lung adenocarcinoma and acute myeloid leukemia. In this study, we investigated the effects of FNC on mantle cell lymphoma (MCL) and the underlying mechanisms. In in vitro experiments, cell viability was detected by the CCK8 assay, and cell cycle progression and apoptosis were assessed by flow cytometry, and the expression of relative apoptosis proteins were detected by Western Blot. The in vivo antitumor effect of FNC was investigated in a SCID xenograft model. Finally, the mechanisms of action of FNC were assessed using a whole human genome expression profile chip. The data showed that FNC inhibited cell growth in a dose- and time-dependent manner, and FNC could induce apoptosis by the death recepter pathways in JeKo-1 cells and arrest the cell cycle in the G1/S or G2/M phase. Notably, FNC showed in vivo efficacy in mice bearing JeKo-1 xenograft tumors. Gene expression profile analysis revealed that the differentially expressed genes were mainly focused on the immune system process, cellular process and death. These findings implied that FNC may be a valuable therapeutic in mantle cell lymphoma and provided an experimental basis for the early clinical application of FNC.

  12. Long Non-Coding RNA (lncRNA) Urothelial Carcinoma-Associated 1 (UCA1) Enhances Tamoxifen Resistance in Breast Cancer Cells via Inhibiting mTOR Signaling Pathway

    PubMed Central

    Wu, Chihua; Luo, Jing

    2016-01-01

    Background Long non-coding RNA (lncRNA) UCA1 is an oncogene in breast cancer. The purpose of this study was to investigate the role of UCA1 in tamoxifen resistance of estrogen receptor positive breast cancer cells. Material/Methods Tamoxifen sensitive MCF-7 cells were transfected for UCA1 overexpression, while tamoxifen resistant LCC2 and LCC9 cells were transfected with UCA siRNA for UCA1 knockdown. qRT-PCR was performed to analyze UCA1 expression. CCK-8 assay, immunofluorescence staining of cleaved caspase-9, and flow cytometric analysis of Annexin V/PI staining were used to assess tamoxifen sensitivity. Western blot analysis was performed to detect p-AKT and p-mTOR expression. Results LncRNA UCA1 was significantly upregulated in tamoxifen resistant breast cancer cells compared to tamoxifen sensitive cells. LCC2 and LCC9 cells transfected with UCA1 siRNA had significantly higher ratio of apoptosis after tamoxifen treatment. UCA1 siRNA significantly decreased the protein levels of p-AKT and p-mTOR in LCC2 and LCC9 cells. Enforced UCA1 expression substantially reduced tamoxifen induced apoptosis in MCF-7 cells, while rapamycin treatment abrogated the protective effect of UCA1. Conclusions UCA1 upregulation was associated with tamoxifen resistance in breast cancer. Mechanistically, UCA1 confers tamoxifen resistance to breast cancer cells partly via activating the mTOR signaling pathway. PMID:27765938

  13. Inhibition of Calcium-Activated Chloride Channel ANO1/TMEM16A Suppresses Tumor Growth and Invasion in Human Lung Cancer

    PubMed Central

    Jia, Linghan; Liu, Wen; Guan, Lizhao; Lu, Min; Wang, KeWei

    2015-01-01

    Lung cancer or pulmonary carcinoma is primarily derived from epithelial cells that are thin and line on the alveolar surfaces of the lung for gas exchange. ANO1/TMEM16A, initially identified from airway epithelial cells, is a member of Ca2+-activated Cl- channels (CaCCs) that function to regulate epithelial secretion and cell volume for maintenance of ion and tissue homeostasis. ANO1/TMEM16A has recently been shown to be highly expressed in several epithelium originated carcinomas. However, the role of ANO1 in lung cancer remains unknown. In this study, we show that inhibition of calcium-activated chloride channel ANO1/TMEM16A suppresses tumor growth and invasion in human lung cancer. ANO1 is upregulated in different human lung cancer cell lines. Knocking-down ANO1 by small hairpin RNAs inhibited proliferation, migration and invasion of GLC82 and NCI-H520 cancel cells evaluated by CCK-8, would-healing, transwell and 3D soft agar assays. ANO1 protein is overexpressed in 77.3% cases of human lung adenocarcinoma tissues detected by immunohistochemistry. Furthermore, the tumor growth in nude mice implanted with GLC82 cells was significantly suppressed by ANO1 silencing. Taken together, our findings provide evidence that ANO1 overexpression contributes to tumor growth and invasion of lung cancer; and suppressing ANO1 overexpression may have therapeutic potential in lung cancer therapy. PMID:26305547

  14. Inhibition of Calcium-Activated Chloride Channel ANO1/TMEM16A Suppresses Tumor Growth and Invasion in Human Lung Cancer.

    PubMed

    Jia, Linghan; Liu, Wen; Guan, Lizhao; Lu, Min; Wang, KeWei

    2015-01-01

    Lung cancer or pulmonary carcinoma is primarily derived from epithelial cells that are thin and line on the alveolar surfaces of the lung for gas exchange. ANO1/TMEM16A, initially identified from airway epithelial cells, is a member of Ca2+-activated Cl- channels (CaCCs) that function to regulate epithelial secretion and cell volume for maintenance of ion and tissue homeostasis. ANO1/TMEM16A has recently been shown to be highly expressed in several epithelium originated carcinomas. However, the role of ANO1 in lung cancer remains unknown. In this study, we show that inhibition of calcium-activated chloride channel ANO1/TMEM16A suppresses tumor growth and invasion in human lung cancer. ANO1 is upregulated in different human lung cancer cell lines. Knocking-down ANO1 by small hairpin RNAs inhibited proliferation, migration and invasion of GLC82 and NCI-H520 cancel cells evaluated by CCK-8, would-healing, transwell and 3D soft agar assays. ANO1 protein is overexpressed in 77.3% cases of human lung adenocarcinoma tissues detected by immunohistochemistry. Furthermore, the tumor growth in nude mice implanted with GLC82 cells was significantly suppressed by ANO1 silencing. Taken together, our findings provide evidence that ANO1 overexpression contributes to tumor growth and invasion of lung cancer; and suppressing ANO1 overexpression may have therapeutic potential in lung cancer therapy.

  15. Effect of epigenetic modification of maspin on extravillous trophoblastic function.

    PubMed

    Shi, Xinwei; Wu, Yuanyuan; Liu, Haiyi; Gong, Xun; Du, Hui; Li, Yuqi; Zhao, Jun; Chen, Ping; Tang, Guiju; Qiao, Fuyuan

    2012-12-01

    This study investigated the effect of epigenetic modification of maspin on extravillous trophoblastic function. The mRNA expression of maspin in placentae from normotensive and preeclamptic pregnant women was detected by RT-PCR. TEV-1 cells, a human first-trimester extravillous trophoblast cell line, were cultured and treated with CoCl(2) (300 μmol/L) to induce chemical hypoxia and with 5-aza (500 nmol/L) to induce demethylation. The mRNA expression of maspin in TEV-1 cells subjected to different treatments was determined by RT-PCR, and the proliferative and migratory abilities of TEV-1 cells were assessed by cell counting kit-8 (CCK-8) and Transwell assays. Our results showed that the maspin mRNA expression level in placentae from preeclamptic women was much higher than that from normotensive women. CoCl(2) or 5-aza could up-regulate the mRNA expression of maspin and significantly suppress the proliferation and migration of TEV-1 cells. It was concluded that the epigenetic modification in promoter region of maspin contributes to incomplete trophoblast invasion, which offers a novel approach for predicting and treating placental dysfunction.

  16. Apoptosis-inducing effect of ginsenoside Rg6 on human lymphocytoma JK cells.

    PubMed

    Chen, Bin; Jia, Xiao-Bin

    2013-07-09

    In this communication our aim was to study the JK cell growth inhibitory and apoptosis-inducing effects of ginsenoside Rg6 (GRg6) from steamed notoginseng on human lymphocytoma. The CCK-8 method was used to observe the anti-proliferative effect of GRg6 on human lymphocytoma JK cells. Flow cytometry was performed to analyze the influence of GRg6 on cell cycle. The Annexin-V FITC/PI double-staining method was used to detect the ratio of apoptotic cells. JC-1 staining was undertaken to observe the influence of GRg6 on intracellular mitochondrial membrane potential. Finally, western blots were conducted to detect the expression level of apoptosis-related Bax and the Bcl-2 proteins. The results suggested that GRg6 can inhibit the proliferation of human lymphocytoma JK cells. GRg6 blocks an S arrest in the cell cycle. With the increase in GRg6 concentration, the potential in the cell decreased in a dose dependent manner, and Bax protein expression gradually increased, whereas Bcl-2 protein expression gradually decreased. In conclusion, GRg6 can inhibit JK cell proliferation in human lymphocytoma and induce its apoptosis. The mechanism of action may be related to mitochondrial dysfunction and an increase of Bax expression and decrease of Bcl-2 expression caused by GRg6.

  17. Design, synthesis and bioevaluation of novel N-substituted-3,5-bis(arylidene)-4-piperidone derivatives as cytotoxic and antitumor agents with fluorescent properties.

    PubMed

    Sun, Jufeng; Zhang, Shuping; Yu, Chen; Hou, Guige; Zhang, Xiaofan; Li, Keke; Zhao, Feng

    2014-04-01

    Ten new N-substituted-3,5-bis(arylidene)-4-piperidone derivatives (series 1 and 2) were synthesized and subsequently evaluated against human carcinoma cell lines SW1990, MIA PaCa-2, PG-BE1, NCI-H460, and SK-BR-3 for cytotoxic activity by the CCK-8 method, and their fluorescent properties were investigated as well. The compounds were confirmed to display greater cytotoxic activity to the neoplastic cells, and approximately 50% of the IC50 values were lower than 5 μm. In particular, compounds 1a, 1c, 1d, and 1e bearing 3-bromophenyl groups were revealed as the most active antitumor drug candidates and had the average IC50 values of 1.94, 1.11, 1.16, and 0.817 μm, respectively. Furthermore, their fluorescent properties were interesting and might contribute to the visualization of their distribution in tumor cells. Some possible reasons for the disparity between cytotoxic activity and fluorescent properties in the two series of compounds were explored. This study revealed high potential of these molecules for further development as fluorescent cytotoxic and antitumor agents.

  18. Design, synthesis and cytotoxic activities of novel 2,5-diketopiperazine derivatives.

    PubMed

    Liao, Sheng-Rong; Qin, Xiao-Chu; Wang, Zhen; Li, Ding; Xu, Liang; Li, Jin-Sheng; Tu, Zheng-Chao; Liu, Yonghong

    2016-10-04

    A series of novel N-1-monoallylated 2,5-diketopiperazine derivatives were designed, synthesized, and evaluated as cytotoxic agents against eight cancer cell lines by using CCK8 assay. These derivatives were substituted with methoxyphenyl groups at C-6 position, and various long alkyl side chains at C-3-position of the 2,5-diketopiperazine ring. The cytotoxic results showed that 4-methoxyphenyl group was better than 2-methoxyphenyl group as optimal substitutive group, while 3-methoxyphenyl group was not a suitable one. When the number (n value) of the methylene groups for the long alkyl side chain was 3 (compounds 1c and 3c), the derivatives had the strongest cytotoxicities. Compound 3c substituted with 4-methoxyphenyl group and pentylidene side chain exhibited strong activity (IC50 = 0.36-1.9 μM) against all cancer cell lines, and could obviously induce apoptosis of cancer cell line U937 at 1.0 μM after 48 h treatment.

  19. Analysis of caspase3 activation in ChanSu-induced apoptosis of ASTC-a-1 cells by fluorescence techniques

    NASA Astrophysics Data System (ADS)

    Sun, Lei; Chen, Tongsheng; Wang, Longxiang; Wang, Huiying

    2008-02-01

    ChanSu(CS), a traditional Chinese medicine, is composed of many chemical compoments. It is isolated from the dried white secretion of the auricular and skin glands of toads, and it has been widely used for treating the heart diseases and other systemic illnesses. However, it is difficult to judge antitumor effect of agents derived from ChanSu and the underlying mechanism of ChanSu inducing cell apoptosis is still unclear. This report was performed to explore the inhibitory effect and mechanism of ChanSu on human lung adenocarcinoma cells (ASTC-a-1). Fluorescence emission spectra and fluorescence resonance energy transfer (FRET) were used to study the caspase-3 activation during the ChanSu-induced human lung adenocarcinoma (ASTC-a-1) cell apoptosis. CCK-8 was used to assay the inhibition of ChanSu on the cell viability. The cells expressing stably with SCAT3 was used to examine if caspase-3 was activated by ChanSu using acceptor photobleaching technique. Our data showed that treatment of ASTC-a-1 cell with ChanSu resulted in the inhibition of viability and induction of apoptosis in a dose-dependent manner and the SCAT3 was almost cleaved 24 h after ChanSu treatment, implying that ChanSu induced cell apoptosis via a caspase-3-dependent death pathway. Our findings extend the knowledge about the cellular signaling mechanisms mediating ChanSu-induced apoptosis.

  20. Lobaplatin for the treatment of SK-MES-1 lung squamous cell line in vitro and in vivo

    PubMed Central

    Zhang, Hongming; Chen, Runzhe; Yang, Shaoxing; Liu, Wenjing; Li, Ke; Zhang, Haijun; Zhu, Xiaoli; Chen, Baoan

    2016-01-01

    Lung squamous cell carcinoma is the second-largest histological subtype of lung cancer, which is the leading cause of cancer-related death worldwide. Lobaplatin, one of the third-generation platinum compounds, has shown encouraging anticancer activity in a variety of tumors. The aim of this study was to determine the therapeutic efficacy of lobaplatin on p53-mutant lung squamous cancer cells SK-MES-1. In order to evaluate the antitumor effect of lobaplatin, several in vitro and in vivo analyses were carried out, including Cell Counting Kit-8 (CCK-8), fluorescence-activated cell sorter, Western blot, and terminal deoxynucleotidyl transferase dUTP nick end labeling. Findings showed that lobaplatin could inhibit cell proliferation and induce apoptosis of SK-MES-1 cells in vitro through both intrinsic and extrinsic apoptotic pathways in a time- and dose-dependent manner. In addition, lobaplatin could arrest cell cycle at S phase in SK-MES-1. Lobaplatin has obvious antitumor efficacy in human SK-MES-1 xenograft models; therefore, it seems to be a promising candidate in lung squamous cancer therapy. PMID:27471396

  1. [Effect of Kv1.3 and KCa3.1 potassium ion channels on the proliferation and migration of monocytes/macrophages].

    PubMed

    Zhang, Shuang-Xia; Wang, Xian-Pei; Gao, Chuan-Yu; Ju, Chen-Hui; Zhu, Li-Jie; DU, Yi-Mei

    2015-10-25

    This study was aimed to investigate the effects of blockade of Ca(2+) activated channel KCa3.1 and voltage-gated potassium channel Kv1.3 of the monocytes/macrophages on inflammatory monocyte chemotaxis. Chemotaxis assay was used to test the inflammatory Ly-6C(hi) monocyte chemotaxis caused by the monocytes/macrophages. The proliferation of monocytes/macrophages was detected by cell counting kit-8 (CCK8). Enzyme-linked immunosorbent assay (ELISA) was applied to detect the C-C motif ligand 7 (CCL7) in cultured media. The results showed that the recruitment of Ly-6C(hi) monocyte induced by monocytes/macrophages was suppressed by the potent Kv1.3 blocker Stichodactyla helianthus neurotoxin (ShK) or the specific KCa3.1 inhibitor TRAM-34. Meanwhile, the proliferation of monocytes/macrophages was significantly inhibited by ShK. The response of Ly-6C(hi) monocyte pretreated with ShK or TRAM-34 to CCL2 was declined. These results suggest that KCa3.1 and Kv1.3 may play an important role in monocytes/macrophages' proliferation and migration.

  2. Antrodia camphorata Grown on Germinated Brown Rice Suppresses Melanoma Cell Proliferation by Inducing Apoptosis and Cell Differentiation and Tumor Growth

    PubMed Central

    Song, Minjung; Park, Dong Ki; Park, Hye-Jin

    2013-01-01

    Antrodia camphorata grown on germinated brown rice (CBR) was prepared to suppress melanoma development. CBR extracts were divided into hexane, EtOAc, BuOH, and water fractions. Among all the fractions, EtOAc fraction showed the best suppressive effect on B16F10 melanoma cell proliferation by CCK-8 assay. It also showed the increased cell death and the changed cellular morphology after CBR treatment. Annexin V-FITC/PI, flow cytometry, and western blotting were performed to elucidate anticancer activity of CBR. The results showed that CBR induced p53-mediated apoptotic cell death of B16F10. CBR EtOAc treatment increased melanin content and melanogenesis-related proteins of MITF and TRP-1 expressions, which supports its anticancer activity. Its potential as an anticancer agent was further investigated in tumor-xenografted mouse model. In melanoma-xenografted mouse model, melanoma tumor growth was significantly suppressed under CBR EtOAc fraction treatment. HPLC analysis of CBR extract showed peak of adenosine. In conclusion, CBR extracts notably inhibited B16F10 melanoma cell proliferation through the p53-mediated apoptosis induction and increased melanogenesis. These findings suggest that CBR EtOAc fraction can act as an effective anticancer agent to treat melanoma. PMID:23533475

  3. Autophagy regulates resistance of non-small cell lung cancer cells to paclitaxel.

    PubMed

    Chen, Kan; Shi, Wenjun

    2016-08-01

    Paclitaxel is a chemotherapeutic drug that is effective for treating non-small cell lung cancer (NSCLC). However, some NSCLCs are not sensitive to paclitaxel treatment with undetermined underlying molecular mechanisms. In this study, we found that paclitaxel dose-dependently activated Beclin-1 in 2 NSCLC cell lines, A549 and Calu-3. Inhibition of autophagy significantly increased the paclitaxel-induced NSCLC cell death in a cell counting kit-8 (CCK-8) assay. Moreover, microRNA (miR)-216b levels were significantly downregulated in paclitaxel-treated NSCLC cells. Bioinformatics study showed that miR-216b targeted the 3'-UTR of Beclin-1 mRNA to inhibit its translation, which was confirmed by luciferase reporter assay. Together, these data suggest that paclitaxel may decrease miR-216b levels in NSCLC cells, which subsequently upregulates Beclin-1 to increase NSCLC cell autophagy to antagonize paclitaxel-induced cell death. Strategies that increase miR-216b levels or inhibit cell autophagy may improve the outcome of paclitaxel treatment in NSCLC therapy.

  4. Controlling mesenchymal stem cells differentiate into contractile smooth muscle cells on a TiO2 micro/nano interface: Towards benign pericytes environment for endothelialization.

    PubMed

    Li, Jingan; Qin, Wei; Zhang, Kun; Wu, Feng; Yang, Ping; He, Zikun; Zhao, Ansha; Huang, Nan

    2016-09-01

    Building healthy and oriented smooth muscle cells (SMCs) environment is an effective method for improving the surface endothelialization of the cardiovascular implants. However, a long-term and stable source of SMCs for implantation without immune rejection and inflammation has not been solved, and mesenchymal stem cells (MSCs) differentiation may be a good choice. In this work, two types of TiO2 micro/nano interfaces were fabricated on titanium surface by photolithography and anodic oxidation. These TiO2 micro/nano interfaces were used to regulate the differentiation of the MSCs. The X-ray diffraction (XRD) detection showed that the TiO2 micro/nano interfaces possessed the anatase crystal structure, suggesting good cytocompatibility. The CCK-8 results indicated the TiO2 micro/nano interfaces improved MSC proliferation, further immunofluorescence staining and calculation of the cell morphology index proved the micro/nano surfaces also elongated MSCs and regulated MSCs oriented growth. The specific staining of α-SMA, CNN-1, vWF, CD44 and CD133 markers revealed that the micro/nano surfaces induced MSCs differentiation to contractile SMCs, and the endothelial cells (ECs) culture experiment indicated that the MSCs induced by micro/nano interfaces contributed to the ECs attachment and proliferation. This method will be further studied and applied for the surface modification of the cardiovascular implants.

  5. In vitro and in vivo evaluations of nano-hydroxyapatite/polyamide 66/glass fibre (n-HA/PA66/GF) as a novel bioactive bone screw.

    PubMed

    Su, Bao; Peng, Xiaohua; Jiang, Dianming; Wu, Jun; Qiao, Bo; Li, Weichao; Qi, Xiaotong

    2013-01-01

    In this study, we prepared nano-hydroxyapatite/polyamide 66/glass fibre (n-HA/PA66/GF) bioactive bone screws. The microstructure, morphology and coating of the screws were characterised, and the adhesion, proliferation and viability of MC3T3-E1 cells on n-HA/PA66/GF scaffolds were determined using scanning electron microscope, CCK-8 assays and cellular immunofluorescence analysis. The results confirmed that n-HA/PA66/GF scaffolds were biocompatible and had no negative effect on MC3T3-E1 cells in vitro. To investigate the in vivo biocompatibility, internal fixation properties and osteogenesis of the bioactive screws, both n-HA/PA66/GF screws and metallic screws were used to repair intercondylar femur fractures in dogs. General photography, CT examination, micro-CT examination, histological staining and biomechanical assays were performed at 4, 8, 12 and 24 weeks after operation. The n-HA/PA66/GF screws exhibited good biocompatibility, high mechanical strength and extensive osteogenesis in the host bone. Moreover, 24 weeks after implantation, the maximum push-out load of the bioactive screws was greater than that of the metallic screws. As shown by their good cytocompatibility, excellent biomechanical strength and fast formation and ingrowth of new bone, n-HA/PA66/GF screws are thus suitable for orthopaedic clinical applications.

  6. Construction and characteristics of an E-cadherin-related three-dimensional suspension growth model of ovarian cancer

    PubMed Central

    Xu, Shan; Yang, Ya'nan; Dong, Lingling; Qiu, Wenlong; Yang, Lu; Wang, Xiuwen; Liu, Lian

    2014-01-01

    Ovarian cancer is the deadliest of all gynecologic malignancies. Metastatic ovarian cancer cells exist mainly in the form of multi-cellular spheroids (MCSs) in the ascites of patients with advanced ovarian cancer. We hypothesized that E-cadherin, as an important cell-adhesion molecule, might play an important role in the formation and survival of MCSs. Therefore, we established a three-dimensional suspension culture model of ovarian cancer cells that express high levels of E-cadherin to investigate their growth, proliferation, and resistance to chemotherapeutic drugs by CCK-8 assays. Compared to the cell suspension masses formed by cells with low or absent E-cadherin expression, the MCSs of high E-cadherin SKOV-3 cells had larger volumes, tighter cellular connections, and longer survival times. Although the suspension cell masses of all three cell lines were proliferatively stagnant, possibly due to cell cycle arrest at G1/S, cell mortality at 72 h after cisplatin treatment was significantly decreased in the high E-cadherin SKOV-3 cells compared to SKOV-3 cells without E-cadherin expression and to OVCAR-3 cells with low E-cadherin expression. We conclude, therefore, E-cadherin plays a vital role in MCS formation, maintenance, and drug resistance in ovarian cancer and could be a potential target for late-stage ovarian cancer treatment. PMID:25008268

  7. Treatment of steroid-induced osteonecrosis of the femoral head using porous Se@SiO2 nanocomposites to suppress reactive oxygen species

    PubMed Central

    Deng, Guoying; Niu, Kerun; Zhou, Feng; Li, Buxiao; Kang, Yingjie; Liu, Xijian; Hu, Junqing; Li, Bo; Wang, Qiugen; Yi, Chengqing; Wang, Qian

    2017-01-01

    Reducing oxidative stress (ROS) have been demonstrated effective for steroid-induced osteonecrosis of the femoral head (steroid-induced ONFH). Selenium (Se) plays an important role in suppressing oxidative stress and has huge potential in ONFH treatments. However the Se has a narrow margin between beneficial and toxic effects which make it hard for therapy use in vivo. In order to make the deficiency up, a control release of Se (Se@SiO2) were realized by nanotechnology modification. Porous Se@SiO2 nanocomposites have favorable biocompatibility and can reduced the ROS damage effectively. In vitro, the cck-8 analysis, terminal dexynucleotidyl transferase (TdT)-mediated dUTP nick end labeling (TUNEL) stain and flow cytometry analysis showed rare negative influence by porous Se@SiO2 nanocomposites but significantly protective effect against H2O2 by reducing ROS level (detected by DCFH-DA). In vivo, the biosafety of porous Se@SiO2 nanocomposites were confirmed by the serum biochemistry, the ROS level in serum were significantly reduced and the curative effect were confirmed by Micro CT scan, serum Elisa assay (inflammatory factors), Western blotting (quantitative measurement of ONFH) and HE staining. It is expected that the porous Se@SiO2 nanocomposites may prevent steroid-induced ONFH by reducing oxidative stress. PMID:28256626

  8. Upregulation of PTEN suppresses invasion in Tca8113 tongue cancer cells through repression of epithelial-mesenchymal transition (EMT).

    PubMed

    Xie, Siming; Lu, Zhiyuan; Lin, Yanzhu; Shen, Lijia; Yin, Cao

    2016-05-01

    We previously discovered that the expression of the tumor suppressor phosphatase and tensin homolog (PTEN) was downregulated in the majority patients with tongue squamous cell carcinoma (TSCC). The aim of this study was to investigate the role of PTEN overexpression in the regulation of epithelial-mesenchymal transition (EMT) of the tongue squamous carcinoma cell line Tca8113 as well as explore the underlying mechanism. GV230 (containing the PTEN gene) and empty vectors were transfected into Tca8113 cells. After stable transfection, the messenger RNA (mRNA) and protein levels of PTEN were validated using quantitative real-time PCR (qPCR) and Western blot analysis. The growth and cell cycle were analyzed using Cell Counting Kit-8 (CCK-8) and flow cytometry, respectively. The invasion ability was measured with a transwell assay. The effects of PTEN overexpression on EMT and Hedgehog signaling were assessed by comparing Tca8113-PTEN cells with control and negative control cell groups. We found that PTEN expression was significantly upregulated after transfection. Meanwhile, upregulated PTEN inhibited the proliferation and invasion of Tca8113 cells. In addition, we observed changes in the EMT- and Hedgehog-associated proteins. These data demonstrated that PTEN upregulation could reduce invasion by inhibiting the process of EMT in Tca8113 cells, which might be related to the Hedgehog signaling pathway.

  9. [8-hydroxy-dihydroberberine ameliorated insulin resistance induced by high FFA and high glucose in 3T3-L1 adipocytes].

    PubMed

    Xu, Li-jun; Lu, Fu-er; Yi, Ping; Wang, Zeng-si; Wei, Shi-chao; Chen, Guang; Dong, Hui; Zou, Xin

    2009-11-01

    The purpose of the study is to investigate the effect of 8-hydroxy-dihydroberberine on insulin resistance induced by high free fatty acid (FFA) and high glucose in 3T3-L1 adipocytes and its possible molecular mechanism. Palmic acid or glucose in combination with insulin was used to induce insulin resistance in 3T3-L1 adipocytes. 8-Hydroxy-dihydroberberine and berberine were added to the cultured medium separately, which were considered as treated group and positive control group. The rate of glucose uptake was determined by 2-deoxy-[3H]-D-glucose method. The amount of glucose consumption in the medium was measured by glucose oxidase method. Cell growth and proliferation of 3T3-L1 adipocytes were detected with Cell Counting Kit-8 (CCK-8) assay. After incubated with palmic acid for 24 hours or glucose with insulin for 18 hours, the rate of glucose transport in 3T3-L1 adipocytes was inhibited by 67% and 58%, respectively. The amount of glucose consumption in 3T3-L1 adipose cells was decreased by 41% after cells were incubated with palmic acid for 24 h. However, the above changes were reversed by pretreatment with 8-hydroxy-dihydroberberine for 24 and 48 h. Significant difference existed between groups. Insulin resistance in 3T3-L1 adipocytes, which is induced by high FFA and high glucose, could be ameliorated by 8-hydroxy-dihydroberberine.

  10. Isoflurane Promotes Non-Small Cell Lung Cancer Malignancy by Activating the Akt-Mammalian Target of Rapamycin (mTOR) Signaling Pathway

    PubMed Central

    Zhang, Wenhua; Shao, Xueqian

    2016-01-01

    Background Lung cancer is one of the leading causes of cancer mortalities worldwide, and non-small cell lung cancer (NSCLC) accounts for the majority of all lung cancer cases. Surgery remains one of the front-line treatment options for NSCLC, but events within the perioperative period were found to affect cancer prognosis, such as anesthesia procedures. Isoflurane, a commonly used volatile anesthetic, enhances the malignant potential of renal, prostate, and ovarian cancer cells, but its effects on NSCLC development have not been previously reported. Material/Methods CCK-8 and MTT cell proliferation assays were used to analyze NSCLC cell proliferation. Metastatic ability was examined by wound healing and transwell assays. We used Western blot analysis to study the mechanism of effect of Isoflurane in NSCLC development. Results We demonstrated that isoflurane promotes proliferation, migration and invasiveness of NSCLC cells, as well as upregulation of the Akt-mTOR signaling pathway in NSCLC cells. Pharmacological inhibition of Akt-mTOR signaling abolished the ability of isoflurane to promote proliferation, migration, and invasion of NSCLC cells, indicating that isoflurane promotes NSCLC cell malignancy by activating the Akt-mTOR signaling pathway. Conclusions Isoflurane promotes NSCLC proliferation, migration and invasion by activating the Akt-mTOR signaling pathway. PMID:27897153

  11. Hyperglycemia magnifies bupivacaine-induced cell apoptosis triggered by mitochondria dysfunction and endoplasmic reticulum stress.

    PubMed

    Li, Le; Ye, Xiao-ping; Lu, Ai-zhu; Zhou, Shu-qin; Liu, Hui; Liu, Zhong-jie; Jiang, Shan; Xu, Shi-yuan

    2013-06-01

    Nerve cell injury associated with apoptosis plays an important role in the development of diabetic peripheral neuropathy (DPN). However, it remains unclear whether preexisting or potential neurocyte damage induced by hyperglycemia increases sensitivity to local anesthetics. SH-SY5Y cells were pretreated with a high concentration of glucose in vitro, to imitate DPN prior to administration of bupivacaine or placebo. Cell viability and apoptosis were investigated with a CCK-8 assay and flow cytometry, respectively. In addition, mitochondrial membrane potential, reactive oxygen species (ROS), mitochondrially generated ROS, and activity of mitochondrial complexes I and III were studied to explore the molecular mechanism of bupivacaine-induced mitochondrial injury. Grp78 and caspase-12 expression were measured by qRT-PCR and Western blot, representing endoplasmic reticulum (ER) stress. Cell structure was also assessed via transmission electron microscopy. Incubation with bupivacaine decreased the activity of mitochondrial complexes I and III; increased ROS production at cell and mitochondrial levels, mitochondrial potential depolarization, and Grp78 and caspase-12 expression at both transcription and translation levels; and affected cell structure, which could be enhanced by glucose pretreatment. These findings indicate that mitochondrial dysfunction and ER stress related to ROS are involved in bupivacaine-induced apoptosis and may be enhanced by glucose administration.

  12. Silk fibroin immobilization on poly(ethylene terephthalate) films: comparison of two surface modification methods and their effect on mesenchymal stem cells culture.

    PubMed

    Liang, Meini; Yao, Jinrong; Chen, Xin; Huang, Lei; Shao, Zhengzhong

    2013-04-01

    Silk fibroin (SF) has played a curial role for the surface modification of conventional materials to improve the biocompatibility, and SF modified poly(ethylene terephthalate) (PET) materials have potential applications on tissue engineering such as artificial ligament, artificial vessel, artificial heart valve sewing cuffs dacron and surgical mesh engineering. In this work, SF was immobilized onto PET film via two different methods: 1) plasma pretreatment followed by SF dip coating (PET-SF) and 2) plasma-induce acrylic acid graft polymerization and subsequent covalent immobilization of SF on PET film (PET-PAA-SF). It could be found that plasma treatment provided higher surface roughness which was suitable for further SF dip coating, while grafted poly(acrylic acid) (PAA) promised the covalent bonding between SF and PAA. ATR-FTIR adsorption band at 3284 cm(-1), 1623 cm(-1) and 1520 cm(-1) suggested the successful introduction of SF onto PET surface, while the amount of immobilized SF of PET-SF was higher than PET-PAA-SF according to XPS investigation (0.29 vs 0.23 for N/C ratio). Surface modified PET film was used as substrate for mesenchymal stem cells (MSCs) culture, the cells on PET-SF surface exhibited optimum density compared to PET-PAA-SF according to CCK-8 assays, which indicated that plasma pretreatment followed by SF dip coating was a simple and effective way to prepare biocompatible PET surface.

  13. Protective effect of atmospheric pressure plasma on oxidative stress-induced neuronal injuries: an in vitro study

    NASA Astrophysics Data System (ADS)

    Yan, Xu; Qiao, Yajun; Ouyang, Jiting; Jia, Mei; Li, Jiaxin; Yuan, Fang

    2017-03-01

    Atmospheric pressure plasma jet (APPJ) can produce biological active species for biomedical applications. This work proves direct evidence of the protective effects of APPJ against oxidative stress. SH-SY5Y cells, a commonly used cell model for the study of neurotoxicity and neuroprotection, were treated with APPJ for different durations. Then, cells were exposed to 200 µM H2O2 for 24 h and cell viability was measured using a CCK-8 kit. Changes in cell apoptosis were further confirmed by calcein-AM fluorescence imaging and flow cytometry. Extracellular NO production was detected using the Griess method. The results showed that APPJ protected SH-SY5Y from H2O2-induced apoptosis in a time-dependent manner. Moreover, extracellular NO production was significantly increased with the APPJ treatment. The results show in vitro that APPJ treatment could protect SH-SY5Y cells from oxidative stress by reducing cell apoptosis, which might be related to the reactive nitrogen species induced by the APPJ treatment. Our results indicate that the APPJ may have therapeutic potential as a novel ‘NO donor drug’ in neuroprotection and in the treatment of neurodegenerative diseases.

  14. Salinomycin repressed the epithelial–mesenchymal transition of epithelial ovarian cancer cells via downregulating Wnt/β-catenin pathway

    PubMed Central

    Li, Rui; Dong, Taotao; Hu, Chen; Lu, Jingjing; Dai, Jun; Liu, Peishu

    2017-01-01

    Epithelial ovarian cancer (EOC) is the leading cause of death among all gynecological malignancies. Most patients are diagnosed in the advanced stage and have distant metastasis ultimately. Salinomycin has been demonstrated to reduce invasive capacity of multiple tumor cells. The objective of this study was to investigate the effects of salinomycin on EOC cells. The cell counting kit 8 (CCK-8) and Boyden chamber assays showed that salinomycin could effectively reduce the abilities of proliferation, migration and invasion in EOC cells. The western blot assay showed that salinomycin could increase the expression of epithelial markers (E-cadherin and Keratin) while decrease the expression of mesenchymal markers (N-cadherin and vimentin) in a dose-dependent manner. These results were ascertained by reverse transcription polymerase chain reaction (RT-PCR). Besides, salinomycin could downregulate the expression of proteins associated with the Wnt/β-catenin pathway and repress the nuclear translocation of β-catenin. It was also shown that salinomycin could reverse the aberrant activation of the canonical Wnt pathway induced by GSK-3β inhibitor (SB216763). Our results revealed that salinomycin could inhibit the proliferation, migration and invasion in EOC cells. In addition, the inhibitive effect of salinomycin on the invasive ability was mediated by repressing the epithelial–mesenchymal transition (EMT) program, which may be achieved through its inhibition of the Wnt/β-catenin pathway. PMID:28280366

  15. Enantiopure copper(II) complex of natural product rosin derivative: DNA binding, DNA cleavage and cytotoxicity.

    PubMed

    Fei, Bao-Li; Yin, Bin; Li, Dong-Dong; Xu, Wu-Shuang; Lu, Yang

    2016-12-01

    To develop chiral anticancer drug candidates for molecular target DNA, the synthesis and characterization of a novel enantiomerically pure copper(II) complex [Cu 1 Cl 2 ] (2) of an optically pure ligand N-(pyridin-2-ylmethylene) dehydroabietylamine (1) was carried out. The coordination geometry of the copper center is a distorted square-planar arrangement. The interactions of 1 and 2 with salmon sperm DNA were investigated by viscosity measurements, UV, fluorescence and circular dichroism (CD) spectroscopic techniques. All the results reveal that 1 and 2 interacted with DNA through intercalation and 2 exhibited a higher DNA binding ability. Further, 1 and 2 could cleave supercoiled pBR322 DNA by single strand and 2 displayed stronger cleavage ability in the presence of ascorbic acid. In vitro cytotoxicity of 1 and 2 against HeLa, SiHa, HepG-2 and A431 cancer cell lines was studied using CCK-8 assay. The results indicate that 2 had a superior cytotoxicity than 1 and the widely used drug cisplatin under identical conditions. Flow cytometry analysis demonstrates 2 produced death of HeLa cancer cells through an apoptotic pathway. Cell cycle analysis shows that 2 mainly arrested HeLa cells at the S phase. A novel enantiomerically pure copper(II) complex [Cu 1 Cl 2 ] (2) of an optically pure ligand N-(pyridin-2-ylmethylene) dehydroabietylamine (1), based on natural product rosin has been synthesized. 2 has the potential to act as effective anticancer drug.

  16. Farnesoid X receptor ligand CDCA suppresses human prostate cancer cells growth by inhibiting lipid metabolism via targeting sterol response element binding protein 1

    PubMed Central

    Liu, Nian; Zhao, Jun; Wang, Jinguo; Teng, Haolin; Fu, Yaowen; Yuan, Hang

    2016-01-01

    Aim: A wealth of studies have demonstrated that abnormal cellular lipid metabolism plays an important role in prostate cancer (PCa) development. Therefore, manipulating lipid metabolism is a potential PCa therapy strategy. In this study, our goal is to investigate the role of farnesoid X receptor (FXR) in regulating the proliferation and lipid metabolism of human PCa cells following its ligand chenodexycholic acid (CDCA) treatment. Methods: Oil Red O was used to stain lipid contents in PCa cells, and siRNA knockdown was performed to deplete FXR expression. To study the cell proliferation when treated by CDCA or FXR knockdown, cell counting kit 8 (CCK8) was adopted to evaluate tumor cell growth. Western blot was used for protein analysis. Results: Our data suggest that activation of FXR by CDCA reduces lipid accumulation and significantly inhibits cells proliferation in prostate tumor cells. Instead, CDCA treatment doesn’t affect normal prostate epithelial RWPE-1 cells growth in vitro. FXR activation decreases mRNA and protein levels of sterol regulatory element binding protein 1 (SREBP1) and some other key regulators involved in lipid metabolism. Depletion of FXR by siRNA attenuates the inhibitory effects. Conclusion: Our study indicates that activation of FXR inhibits lipid metabolism via SREBP1 pathway and further suppresses prostate tumor growth in vitro. PMID:27904713

  17. Sodium nitroprusside induces apoptosis of rabbit chondrocytes

    NASA Astrophysics Data System (ADS)

    Liang, Qian; Wang, Xiao-Ping; Chen, Tong-Sheng

    2013-02-01

    Osteoarthritis (OA) is characterized by a slowly progressing degradation of the matrix and destruction of articular cartilage. Apoptosis of chondrocyte is accounted for the mechanism of OA. Nitric oxide (NO), as a stimulus, has been shown to induce chondrocyte apoptosis by activating the matrix metalloproteinases (MMPs), increasing the expression of cyclooxygenase 2 (COX-2) and the level of prostaglandin E2 (PGE2), inhibiting the proteoglycan synthesis and type II collagen expression. In this study, sodium nitroprusside (SNP) was administered to be the NO donor to explore the mechanism of NO-induced apoptosis of rabbit chondrocytes obtained from six weeks old New Zealand rabbits. CCK-8 assay revealed the inhibitory effect of SNP on cell viability. We used flow cytometry (FCM) to assess the form of cell death by Annexin-V/propidium iodide (PI) double staining, and evaluate the change of mitochondrial membrane potential (ΔΨm). We found that the SNP induced chondrocyte apoptosis in a dose- and time-dependent manner and an observable reduction of ΔΨm. In conclusion, our findings indicate that SNP induces apoptosis of rabbit chondrocytes via a mitochondria-mediated pathway.

  18. Structural mediation on polycation nanoparticles by sulfadiazine to enhance DNA transfection efficiency and reduce toxicity.

    PubMed

    Long, Xingwen; Zhang, Zhihui; Han, Shangcong; Tang, Minjie; Zhou, Junhui; Zhang, Jianhua; Xue, Zhenyi; Li, Yan; Zhang, Rongxin; Deng, Liandong; Dong, Anjie

    2015-04-15

    Reducing the toxicity while maintaining high transfection efficiency is an important issue for cationic polymers as gene carriers in clinical application. In this paper, a new zwitterionic copolymer, polycaprolactone-g-poly(dimethylaminoethyl methyacrylate-co-sulfadiazine methacrylate) (PC-SDZ) with unique pH-sensitivity, was designed and prepared. The incorporation of sulfadiazine into poly(dimethylaminoethyl methacrylate) (PDMAEMA) chains successfully mediates the surface properties including compacter shell structure, lower density of positive charges, stronger proton buffer capability, and enhanced hydrophobicity, which lead to reduction in toxicity and enhancements in stability, cellular uptake, endosome escape, and transfection efficiency for the PC-SDZ2 nanoparticles (NPs)/DNA complexes. Excellent transfection efficiency at the optimal N/P ratio of 10 was observed for PC-SDZ2 NPs/DNA complexes, which was higher than that of the commercial reagent-branched polyethylenimine (PEI). The cytotoxicity was evaluated by CCK8 measurement, and the results showed significant reduction in cytotoxicity even at high concentration of complexes after sulfadiazine modification. Therefore, this work may demonstrate a new way of structural mediation of cationic polymer carriers for gene delivery with high efficiency and low toxicity.

  19. The miR-599 promotes non-small cell lung cancer cell invasion via SATB2.

    PubMed

    Tian, Wenjun; Wang, Guanghai; Liu, Yiqing; Huang, Zhenglan; Zhang, Caiqing; Ning, Kang; Yu, Cuixiang; Shen, Yajuan; Wang, Minghui; Li, Yuantang; Wang, Yong; Zhang, Bingchang; Zhao, Yaoran

    2017-03-25

    MicroRNAs (miRNAs) play important roles in the pathogenesis of many types of cancers by negatively regulating gene expression at posttranscriptional level. Here, we identified that miR-599 is up-regulated in non-small cell lung cancer (NSCLC) patients. It promoted NSCLC cell proliferation by negatively regulating SATB2. In NSCLC cell lines, CCK-8 proliferation assay indicated that the cell proliferation is promoted by miR-599 mimics. Transwell assay showed that miR-599 mimics promoted the invasion and migration of NSCLC cells. Luciferase assays confirmed that miR-599 directly binds to the 3'untranslated region of SATB2, and western blotting showed that miR-599 suppresses the expression of SATB2 at the protein level. This study indicates that miR-599 promotes proliferation and invasion of NSCLC cell lines via SATB2. The miR-599 may represent a potential therapeutic target for NSCLC treatment.

  20. Ethyl Acetate Extracts of Semen Impatientis Inhibit Proliferation and Induce Apoptosis of Human Prostate Cancer Cell Lines through AKT/ERK Pathways.

    PubMed

    Wang, Tao; Cai, Yang; Song, Wen; Chen, Ruibao; Hu, Dunmei; Ye, Jianhan; Liu, Lu; Peng, Wei; Zhang, Junfeng; Wang, Shaogang; Yang, Weiming; Liu, Jihong; Ding, Yufeng

    2017-01-01

    Objective. To investigate the inhibitory effect of ethyl acetate extracts of Impatiens balsamina L. on prostate cancer cells. Methods. Impatiens balsamina L. was extracted to get water, ethanol, oil ether, ethyl acetate, and butanol extracts. CCK-8 assay was used to detect the inhibitory effect. Apoptosis rates and cell cycle distribution were detected by flow cytometry. Transwell assay was performed to test the ability of migration. The expressions of Bcl-2, Bax, cleaved-caspase-3, p-ERK, ERK, p-AKT, AKT, cyclin D1, cyclin E, and MMP2 were detected by Western blot. Results. Ethyl acetate extracts had the strongest inhibitory effect. After being treated with different concentrations of ethyl acetate extracts, the percentage of G0/G1 phase increased significantly, cyclin D1 and cyclin E expression decreased, apoptosis rate was significantly higher, and the ability of migration of PC-3 and RV1 was inhibited significantly. Western blot showed that the expressions of Bcl-2, p-ERK, and p-AKT were significantly decreased, but the expressions of Bax and caspase-3 cleavage were increased. Conclusions. Impatiens balsamina L. inhibited the proliferation of human prostate cancer cells; ethyl acetate extracts have the strongest effect. It could inhibit cell proliferation and migration, cause G1 phase arrest, and induce apoptosis probably through inhibition of the AKT and ERK pathways.

  1. (-)-Epigallocatechingallate induces apoptosis in B lymphoma cells via caspase-dependent pathway and Bcl-2 family protein modulation.

    PubMed

    Wang, Jiangyan; Xie, Yu'an; Feng, Yan; Zhang, Litu; Huang, Xinping; Shen, Xiaoyun; Luo, Xiaoling

    2015-04-01

    (-)-Epigallocatechingallate (EGCG) as a representative polyphenol has attracted increasing attention due to its diversified effects, especially its potential as an agent for the prevention or treatment of certain cancers. However, the molecular mechanisms of EGCG-induced apoptosis in B lymphoma cells are unclear. The aim of this study was to investigate the effect of EGCG on proliferation and apoptosis in the B lymphoma cell lines Jeko-1 and Raji, and determine the underlying mechanisms. Cell proliferation and cytotoxicity were determined by the cell counting kit (CCK-8) assay; apoptosis was assessed by flow cytometry using the Annexin V-PE/7AAD double staining; Fas, Bcl-2 and Bax mRNA expression levels were determined by real-time PCR; caspase activity was measured by the caspase activity assay kit; the expression levels of apoptosis-associated proteins were determined by western blot analysis. We demonstrated that EGCG induced growth inhibition and apoptosis in a dose- and time-dependent manner. In agreement, EGCG upregulated the mRNA expression of Fas and Bax while downregulating Bcl-2. Protein expression levels of Bax, activated caspase-3, -7, -8, and -9, and PARP were increased, while Bcl-2 protein levels were reduced by EGCG treatment. Taken together, EGCG induces B lymphoma cell apoptosis by triggering caspase-dependent intrinsic (mitochondrial) and extrinsic (death receptor) pathways. These findings suggest that EGCG may be a potential agent for the treatment of B lymphoma.

  2. Development of a novel aluminum-free glass ionomer cement based on magnesium/strontium-silicate glasses.

    PubMed

    Kim, Dong-Ae; Abo-Mosallam, Hany A; Lee, Hye-Young; Kim, Gyu-Ri; Kim, Hae-Won; Lee, Hae-Hyoung

    2014-09-01

    The effects of strontium substitution for magnesium in a novel aluminum-free multicomponent glass composition for glass ionomer cements (GICs) were investigated. A series of glass compositions were prepared based on SiO2-P2O5-CaO-ZnO-MgO(1-X)-SrOX-CaF2 (X=0, 0.25, 0.5 and 0.75). The mechanical properties of GICs prepared were characterized by compressive strength, flexural strength, flexural modules, and microhardness. Cell proliferation was evaluated indirectly by CCK-8 assay using various dilutions of the cement and rat mesenchyme stem cells. Incorporation of strontium instead of magnesium in the glasses has a significant influence on setting time of the cements and the properties. All mechanical properties of the GICs with SrO substitution at X=0.25 were significantly increased, then gradually decreased with further increase of the amount of strontium substitution in the glass. The GIC at X=0.25, also, showed an improved cell viability at low doses of the cement extracts in comparison with other groups or control without extracts. The results of this study demonstrate that the glass compositions with strontium substitution at low levels can be successfully used to prepare aluminum-free glass ionomer cements for repair and regeneration of hard tissues.

  3. HIF-1α-induced microRNA-210 reduces hypoxia-induced osteoblast MG-63 cell apoptosis.

    PubMed

    Sun, Guanwen; Peng, Hao

    2015-01-01

    To better understand the ischemic-hypoxia-induced fracture healing impairment, we determined in this study the microRNA-210 expression in broken bone specimens and in osteoblasts under hypoxia and then determined the influence of microRNA-210 overexpression on the osteoblast cell proliferation and apoptosis. Results demonstrated that microRNA-210 expression was upregulated with an association with HIF-1α overexpression in clinical human catagmatic tissues and was upregulated HIF-1α-dependently in response to hypoxia in osteoblast MG-63 cells. CCK-8 assay indicated that microRNA-210 upregulation by microRNA-210 mimics reduced the chemotherapeutic 5-FU-induced osteoblast cell death, and colony formation assay demonstrated that microRNA-210 mimics promoted osteoblast cells growth. Moreover, the microRNA-210 mimics transfection inhibited the hypoxia-induced MG-63 cell apoptosis via inhibiting the activation of caspase 3 and caspase 9. Therefore, our research indicated a protective role of microRNA-210 in response to hypoxia. And microRNA-210 might serve as a protective role in bone fracture healing.

  4. hIgD promotes human Burkitt lymphoma Daudi cell proliferation by accelerated G1/S transition via IgD receptor activity.

    PubMed

    Dai, Xing; Wu, YuJing; Jia, XiaoYi; Chang, Yan; Wu, HuaXun; Wang, Chun; Chen, HengShi; Chen, WenSheng; Huang, Qiong; Wei, Wei

    2016-08-01

    The aim of the present study was to investigate the role and molecular mechanism of human IgD (hIgD) on the proliferation of human Burkitt lymphoma Daudi cells in vitro. Logarithmically growing Daudi cells were treated with hIgD for different time periods, and cell proliferation was evaluated by cell counting kit-8 (CCK-8) assay. The expressions of Daudi surface markers and IgD receptor (IgDR) as well as cell cycle and apoptosis were measured by flow cytometry analysis. Our results showed that hIgD stimulation induced proliferation and IgDR expression and reduced the apoptosis of Daudi cells. Treatment with hIgD promoted progression of the cell cycle at the G1/S transition, and this was accompanied by upregulation of c-myc, cyclin D3, and CDK6 as well as downregulation of p16 mRNA and protein levels. Moreover, hIgD treatment also upregulated the expression of tyrosine phosphorylation of 70 kDa protein (IgDR) and p-Lyn. Taken together, these results indicate that hIgD can induce Daudi cell proliferation through activating IgDR to initiate the tyrosine phosphorylation signaling cascade to accelerate the G1/S transition.

  5. Smoc2 potentiates proliferation of hepatocellular carcinoma cells via promotion of cell cycle progression

    PubMed Central

    Su, Jing-Ran; Kuai, Jing-Hua; Li, Yan-Qing

    2016-01-01

    AIM To determine the influence of Smoc2 on hepatocellular carcinoma (HCC) cell proliferation and to find a possible new therapeutic target for preventing HCC progression. METHODS We detected expression of Smoc2 in HCC tissues and corresponding non-tumor liver (CNL) tissues using PCR, western blot, and immunohistochemistry methods. Subsequently, we down-regulated and up-regulated Smoc2 expression using siRNA and lentivirus transfection assay, respectively. Then, we identified the effect of Smoc2 on cell proliferation and cell cycle using CCK-8 and flow cytometry, respectively. The common cell growth signaling influenced by Smoc2 was detected by western blot assay. RESULTS The expression of Smoc2 was significantly higher in HCC tissues compared with CNL tissues. Overexpression of Smoc2 promoted HCC cell proliferation and cell cycle progression. Down-regulation of Smoc2 led to inhibition of cell proliferation and cell cycle progression. Smoc2 had positive effect on ERK and AKT signaling. CONCLUSION Smoc2 promotes the proliferation of HCC cells through accelerating cell cycle progression and might act as an anti-cancer therapeutic target in the future. PMID:28018113

  6. BMP6 Regulates Proliferation and Apoptosis of Human Sertoli Cells Via Smad2/3 and Cyclin D1 Pathway and DACH1 and TFAP2A Activation

    PubMed Central

    Wang, Hong; Yuan, Qingqing; Sun, Min; Niu, Minghui; Wen, Liping; Fu, Hongyong; Zhou, Fan; Chen, Zheng; Yao, Chencheng; Hou, Jingmei; Shen, Ruinan; Lin, Qisheng; Liu, Wenjie; Jia, Ruobing; Li, Zheng; He, Zuping

    2017-01-01

    Sertoli cells are essential for regulating normal spermatogenesis. However, the mechanisms underlying human Sertoli cell development remain largely elusive. Here we examined the function and signaling pathways of BMP6 in regulating human Sertoli cells. RT-PCR, immunocytochemistry and Western blots revealed that BMP6 and its multiple receptors were expressed in human Sertoli cells. CCK-8 and EDU assays showed that BMP6 promoted the proliferation of Sertoli cells. Conversely, BMP6 siRNAs inhibited the division of these cells. Annexin V/PI assay indicated that BMP6 reduced the apoptosis in human Sertoli cells, whereas BMP6 knockdown assumed reverse effects. BMP6 enhanced the expression levels of ZO1, SCF, GDNF and AR in human Sertoli cells, and ELISA assay showed an increase of SCF by BMP6 and a reduction by BMP6 siRNAs. Notably, Smad2/3 phosphorylation and cyclin D1 were enhanced by BMP6 and decreased by BMP6 siRNAs in human Sertoli cells. The levels of DACH1 and TFAP2A were increased by BMP6 and reduced by BMP6 siRNAs, and the growth of human Sertoli cells was inhibited by these siRNAs. Collectively, these results suggest that BMP6 regulates the proliferation and apoptosis of human Sertoli cells via activating the Smad2/3/cyclin D1 and DACH1 and TFAP2A pathway. PMID:28387750

  7. Effect of DAPK1 gene on proliferation, migration, and invasion of carcinoma of pancreas BxPC-3 cell line.

    PubMed

    Qin, Yong; Ye, Guan-Xiong; Wu, Cheng-Jun; Wang, Shi; Pan, De-Biao; Jiang, Jin-Yan; Fu, Jing; Xu, Sheng-Qian

    2014-01-01

    DAPK1 can induce apoptosis in several cells; to determine the effect of DAPK1 would provide a new potential therapeutic strategy for treating pancreatic cancer. The aim of the present study was to investigate the effect of DAPK1 gene on proliferation, migration, and invasion of carcinoma of pancreas BxPC-3 cell line and explore the possible mechanisms. In our study, DAPK1 over-expressed cells were established by using the lentiviral transfection method, and DAPK1 obviously increased in BxPC-3 cells after transient transfection. Cell Counting Kit-8 (CCK-8) assay was used to determine the BxPC-3 cells proliferation after transfection. Apoptosis of the BxPC-3 cells was determined by using flow cytometry analysis. In addition, cell adhesion assay and in vitro invasion assay were performed. Western blotting was used to determine the protein expressions of caspase-3, DAPK1, VEGF, PEDF, MMP2, AKT, P-AKT, P-ERK, Bcl2, and Bax. Our results demonstrated that DAPK1 gene over-expression can suppress the proliferation, migration, and invasion of carcinoma of pancreas BxPC-3 cell line, and the possible mechanisms may be correlated to induction of mitochondria-mediated apoptosis, down-regulations of MMP-2 and VEGF, up-regulations of PEDF, through the PI3K/Akt and ERK pathways.

  8. AR-42 induces apoptosis in human hepatocellular carcinoma cells via HDAC5 inhibition.

    PubMed

    Zhang, Mingming; Pan, Yida; Dorfman, Robert G; Chen, Zhaogui; Liu, Fuchen; Zhou, Qian; Huang, Shan; Zhang, Jun; Yang, Dongqin; Liu, Jie

    2016-04-19

    Histone deacetylases (HDACs) play critical roles in apoptosis and contribute to the proliferation of cancer cells. AR-42 is a novel Class I and II HDAC inhibitor that shows cytotoxicity against various human cancer cell lines. The present study aims to identify the target of AR-42 in hepatocellular carcinoma (HCC) as well as evaluate its therapeutic efficacy. We found that HDAC5 was upregulated in HCC tissues compared to adjacent normal tissues, and this was correlated with reduced patient survival. CCK8 and colony-formation assays showed that HDAC5 overexpression promotes proliferation in HCC cell lines. Treatment with AR-42 decreased HCC cell growth and increased caspase-dependent apoptosis, and this was rescued by HDAC5 overexpression. We demonstrated that AR-42 can inhibit the deacetylation activity of HDAC5 and its downstream targets in vitro and in vivo. Taken together, these results demonstrate for the first time that AR-42 targets HDAC5 and induces apoptosis in human hepatocellular carcinoma cells. AR-42 therefore shows potential as a new drug candidate for HCC therapy.

  9. Silencing Livin induces apoptotic and autophagic cell death, increasing chemotherapeutic sensitivity to cisplatin of renal carcinoma cells.

    PubMed

    Wang, Zhiyang; Liu, Shuai; Ding, Kejia; Ding, Sentai; Li, Chensheng; Lu, Jiaju; Gao, Dexuan; Zhang, Tong; Bi, Dongbin

    2016-11-01

    Renal cell carcinoma (RCC) accounts for 3 % of all adult malignancies and is the most lethal urological cancer. Livin is a member of the inhibitor of apoptosis protein (IAP) family, which is associated with tumor resistance to radiotherapy and chemotherapy. Clinical data also showed that patients with high tumor grades and stages have higher expression levels of Livin in RCC cells. Autophagy is a survival mechanism activated in response to nutrient deprivation. A possible role of Livin in the autophagy of RCC cells has not been investigated; therefore, this pioneer study was carried out. Livin was silenced in RCC cells (slow virus infection [SVI]-shLivin cells) by lentiviral transfection. Then, mRNA and protein expression levels in the transfected cells were assessed by quantitative fluorescence PCR and Western blotting, respectively. In addition, acridine orange staining and electron microscopy were used to assess autophagy in SVI-shLivin cells. The cisplatin IC50 values for RCC cells were measured by the CCK8 assay. Potent antitumor activities were observed in xenograft mouse models generated with Livin-silenced RCC cells in terms of delayed tumor onset and suppressed tumor growth. These results suggested that Livin silencing could increase the chemotherapeutic sensitivity of RCC cells to cisplatin and induce autophagic cell death. A possible mechanism of Bcl-2 and Akt pathway involvement was discussed specifically in this study. Overall, Livin silencing induces apoptotic and autophagic cell death and increases chemotherapeutic sensitivity of RCC cells to cisplatin.

  10. Downregulation of cancer stem cell properties via mTOR signaling pathway inhibition by rapamycin in nasopharyngeal carcinoma

    PubMed Central

    YANG, CHUNGUANG; ZHANG, YUE; ZHANG, YU; ZHANG, ZIHENG; PENG, JIANHUA; LI, ZHI; HAN, LIANG; YOU, QUANJIE; CHEN, XIAOYU; RAO, XINGWANG; ZHU, YI; LIAO, ZHISU

    2015-01-01

    Rapamycin, a mammalian target of rapamycin (mTOR) signaling inhibitor, inhibits cancer cell proliferation and tumor formation, including in nasopharyngeal carcinoma (NPC), which we proved in a previous study. However, whether rapamycin affects cancer stem cells (CSCs) is unclear. In examining samples of NPCs, we found regions of CD44-positive cancer cells co-expressing the stem cell biomarker OCT4, suggesting the presence of CSCs. Following this, we used double-label immunohistochemistry to identify whether the mTOR signaling pathway was activated in CD44-positive CSCs in NPCs. We used a CCK-8 assay and western blotting to explore whether the stem cell biomarkers CD44 and SOX2 and the invasion protein MMP-2 could be suppressed by treatment with rapamycin in cultured primary NPC cells and secondary tumors in BALB/c nude mice. Interestingly, we found that rapamycin inhibited mTOR signaling in addition to simultaneously downregulating the expression of CD44, SOX2 and MMP-2 and that it affected cell growth and tumor size and weight both in vitro and in vivo. Collectively, we confirmed for the first time that CSC properties are reduced and invasion potential is restrained in response to mTOR signaling inhibition in NPC. This evidence indicates that the targeted inhibition of CSC properties may provide a novel strategy to treat cancer. PMID:26202311

  11. Synthesis and antitumor activities of novel hybrid molecules containing 1,3,4-oxadiazole and 1,3,4-thiadiazole bearing Schiff base moiety.

    PubMed

    Zhang, Kai; Wang, Peng; Xuan, Li-Na; Fu, Xiao-Yun; Jing, Fen; Li, Sha; Liu, Yu-Ming; Chen, Bao-Quan

    2014-11-15

    A series of novel hybrid molecules containing 1,3,4-oxadiazole and 1,3,4-thiadiazole bearing Schiff base moiety were designed, synthesized and evaluated for their in vitro antitumor activities against SMMC-7721, MCF-7 and A549 human tumor cell lines by CCK-8 assay. The bioassay results demonstrated that most of the tested compounds showed potent antitumor activities, and some compounds exhibited stronger effects than positive control 5-fluorouracil (5-FU) against various cell lines. Among these compounds, compound 8d showed the best inhibitory effect against SMMC-7721 cells, with IC50 value of 2.84 μM. Compounds 8k and 8 n displayed highly effective antitumor activities against MCF-7 cells, with IC50 values of 4.56 and 4.25 μM, respectively. Compounds 8a and 8 n exhibited significant antiproliferative activity against A549 cells, with IC50 values of 4.11 and 4.13 μM, respectively. The pharmacological results suggest that the substituents of phenyl ring on the 1,3,4-oxadiazole are vital for modulating antiproliferative activities against various tumor cell lines.

  12. TiNi shape memory alloy coated with tungsten: a novel approach for biomedical applications.

    PubMed

    Li, Huafang; Zheng, Yufeng; Pei, Y T; De Hosson, J Th M

    2014-05-01

    This study explores the use of DC magnetron sputtering tungsten thin films for surface modification of TiNi shape memory alloy (SMA) targeting for biomedical applications. SEM, AFM and automatic contact angle meter instrument were used to determine the surface characteristics of the tungsten thin films. The hardness of the TiNi SMA with and without tungsten thin films was measured by nanoindentation tests. It is demonstrated that the tungsten thin films deposited at different magnetron sputtering conditions are characterized by a columnar microstructure and exhibit different surface morphology and roughness. The hardness of the TiNi SMA was improved significantly by tungsten thin films. The ion release, hemolysis rate, cell adhesion and cell proliferation have been investigated by inductively coupled plasma atomic emission spectrometry, CCK-8 assay and alkaline phosphatase activity test. The experimental findings indicate that TiNi SMA coated with tungsten thin film shows a substantial reduction in the release of nickel. Therefore, it has a better in vitro biocompatibility, in particular, reduced hemolysis rate, enhanced cell adhesion and differentiation due to the hydrophilic properties of the tungsten films.

  13. Effects of phycoerythrin from Gracilaria lemaneiformis in proliferation and apoptosis of SW480 cells.

    PubMed

    Li, Peizhen; Ying, Jun; Chang, Qingli; Zhu, Wen; Yang, Guangjian; Xu, Teng; Yi, Huiguang; Pan, Ruowang; Zhang, Enyong; Zeng, Xiaofeng; Yan, Chunxia; Bao, Qiyu; Li, Shengbin

    2016-12-01

    We studied phycoerythrin (PE) in human SW480 tumor cells and the underlying molecular mechanisms of action. PE inhibited cell proliferation as evidenced by CCK-8 assay. The IC50 values of phycoerythrin were 48.2 and 27.4 µg/ml for 24 and 48 h of exposure, respectively. PE induced apoptosis and cell cycle arrest in SW480 cells as observed under electron microscopy and with flow cytometry. Apoptosis increased from 5.1 (controls) to 39.0% in 80.0 µg/ml PE-treated cells. Differences in protein expression were identified using proteomic techniques. Protein spots (1018±60 and 1010±60) were resolved in PE-treated and untreated group. Forty differential protein spots were analyzed with MALDI-TOF-MS, including GRP78 and NPM1. The expression as measured by qPCR and western blotting agreed with data from two-dimensional electrophoresis. GRP78, NPM1, MTHSP75, Ezrin and Annexin A2 were decreased and HSP60 was increased after PE treatment, indicating that PE may target multiple proteins to induce apoptosis.

  14. Biocompatibility and osteogenesis of calcium phosphate composite scaffolds containing simvastatin-loaded PLGA microspheres for bone tissue engineering.

    PubMed

    Zhang, Hao-Xuan; Xiao, Gui-Yong; Wang, Xia; Dong, Zhao-Gang; Ma, Zhi-Yong; Li, Lei; Li, Yu-Hua; Pan, Xin; Nie, Lin

    2015-10-01

    By utilizing a modified solid/oil/water (s/o/w) emulsion solvent evaporation technique, calcium phosphate composite scaffolds containing simvastatin-loaded PLGA microspheres (SIM-PLGA-CPC) were prepared in this study. We characterized the morphology, encapsulation efficiency and in vitro drug release of SIM-loaded PLGA microspheres as well as the macrostructure, pore size, porosity and mechanical strength of the scaffolds. Rabbit bone mesenchymal stem cells (BMSCs) were seeded onto SIM-PLGA-CPC scaffolds, and the proliferation, morphology, cell cycle and differentiation of BMSCs were investigated using the cell counting kit-8 (CCK-8) assay, scanning electron microscopy (SEM), flow cytometry, alkaline phosphatase (ALP) activity and alizarin red S staining, respectively. The results revealed that SIM-PLGA-CPC scaffolds were biocompatible and osteogenic in vitro. To determine the in vivo biocompatibility and osteogenesis of the scaffolds, both pure PLGA-CPC scaffolds and SIM-PLGA-CPC scaffolds were implanted in rabbit femoral condyles and microradiographically and histologically investigated. SIM-PLGA-CPC scaffolds exhibited good biocompatibility and could improve the efficiency of new bone formation. All these results suggested that the SIM-PLGA-CPC scaffolds fulfilled the basic requirements of bone tissue engineering scaffold and possessed application potentials in orthopedic surgery.

  15. Silencing of SIAH1 in SH-SY5Y affects α-synuclein degradation pathway

    PubMed Central

    Xu, Jing; Zhang, Xin-Zhi; Zhang, Yong-Jin; Li, Xiu-Ming; Cai, Zeng-Lin; Li, Xiao-Min

    2015-01-01

    Seven in absentia homolog (SIAH) is a ubiquitin ligase that monoubiquitinates α-synuclein. Lewy bodies are characteristically rich in monoubiquitinated α-synuclein. We aimed to determine the effect of siRNA-SIAH1 on α-synuclein autophagy and UPS degradation in SH-SY5Y. SIAH1 expression was measured with real-time quantitative PCR and Western Blot. Cell proliferation was measured by CCK-8 assay; cell apoptosis assayed by flow cytometry. Relative protein expressions were measured by Western Blot. mRNA levels of relative protein were measured by real-time quantitative PCR. The expression of α-synuclein, LC3-II and SIAH1 were observed by confocal microscopy. We found: (1) Transfection efficiency of SIAH1-siRNA into SH-SY5 measured approximately 89% by flow cytometry. (2) siRNA silencing of SIAH1 promoted cellular proliferation and suppressed apoptosis. (3) Protein and mRNA expression of α-synuclein, LC3-II and p53 decreased after SIAH1 knockdown. E1 protein and mRNA levels increased after SIAH1 siRNA. These data show silencing SIAH1 increased cell proliferation and inhibited apoptosis in SH-SY5Y neuroblastoma cells. SIAH1 knockdown enhanced the clearance of non-aggregated α-synuclein by UPS. SIAH1 is a potential target for treatment of Parkinson’s disease. PMID:26722480

  16. Thermoresponsive Polymers with Lower Critical Solution Temperature- or Upper Critical Solution Temperature-Type Phase Behaviour Do Not Induce Toxicity to Human Endothelial Cells.

    PubMed

    Ji, Yuejia; Zhu, Mengxiang; Gong, Yu; Tang, Haoyu; Li, Juan; Cao, Yi

    2017-01-01

    Thermoresponsive polymers have gained extensive attention as biomedical materials especially for targeted drug delivery systems. We have recently developed water-soluble polypeptide-based thermoresponsive polymers that exhibit lower critical solution temperature (LCST)- or upper critical solution temperature (UCST)-type phase behaviours. In this study, the toxicity of these polymers to human umbilical vein endothelial cells (HUVECs) was investigated to assess the safety and biocompatibility. Up to 100 μg/ml, thermoresponsive polymers did not induce cytotoxicity to HUVECs, showing as unaltered mitochondrial viability assessed as cell counting kit-8 (CCK-8) assay and membrane integrity assessed as lactate dehydrogenase (LDH) assay. Inflammatory response, assessed as the release of chemokine-soluble monocyte chemotactic protein 1 (sMCP-1) and interleukin-8 (IL-8) as well as cytokine IL-6, was not significantly affected by the polymers. In addition, 1 μM thapsigargin (TG), an endoplasmic reticulum (ER) stress inducer, significantly decreased mitochondrial viability, but did not affect membrane integrity or inflammatory response. The presence of thermoresponsive polymers with LCST-type phase behaviour did not further affect the effects of TG. In conclusion, the thermoresponsive polymers used in this study are not toxic to endothelial cells and therefore could be further considered as safe materials for biomedical applications.

  17. Klf4 inhibits tumor growth and metastasis by targeting microRNA-31 in human hepatocellular carcinoma

    PubMed Central

    Tian, Chuan; Yao, Shanshan; Liu, Li; Ding, Youcheng; Ye, Qingwang; Dong, Xiao; Gao, Yong; Yang, Ning; Li, Qi

    2017-01-01

    MicroRNAs (miRNAs or miRs) are short, endogenous non-coding RNA molecules, demonstrating abnormal expression in cancer initiation and progression. In this study, we profiled 18 differentially regulated miRNAs, including miRNA-31, using miRNA array. Kruppel (or Krüppel)-like factor 4 (Klf4) is a transcription factor and putative tumor suppressor. Both were found to be significantly downregulated in liver cancer tissues and cells. However, little is known about the correlation between Klf4 and miRNA-31 in hepatocellular carcinoma (HCC). The mRNA expression of Klf4 was decreased and inversely associated with the clinical stage, T classification and hepatitis B in patients with HCC, while the expression of miR-31 was lower (r=0.326, P=0.018). Using cell counting kit 8 (CCK8) and Transwell migration assays, we found that Klf4 and miR-31 inhibited the proliferation and metastasis of liver cancer cells. Moreover, we demonstrated that Klf4 directly binds to the promoter of miR-31 and activates its transcription. In vitro experiments confirmed that Klf4 regulated miR-31 and thereby inhibited HCC cell growth and metastasis. Taken together, our findings indicate that Klf4 directly regulates miR-31 in HCC. Thus, miR-31 may serve as a potential diagnostic marker and therapeutic target in HCC. PMID:27909734

  18. Allyl Isothiocyanate Inhibits the Proliferation of Renal Carcinoma Cell Line GRC-1 by Inducing an Imbalance Between Bcl2 and Bax

    PubMed Central

    Jiang, Zhongyong; Liu, Xi; Chang, Kai; Liu, Xia; Xiong, Jie

    2016-01-01

    Background Because of the insensitivity of renal cell carcinoma (RCC) to both chemotherapy and radiotherapy, surgery remains the primary approach for anticancer treatment. However, patients who do not receive timely diagnoses may not be suitable for surgery, especially in the late phase of tumor development. Thus, the discovery of novel effective treatment is of great importance. Allyl isothiocyanate (AITC) can inhibit the proliferation and induce apoptosis in many cancer cells. In this paper, we report on an in vitro study to determine the effect of AITC on proliferation and apoptosis of RCC line GRC-1. Material/Methods CCK8 assay was used to detect cell proliferation under gradient concentrations of AITC. Flow cytometry was employed to evaluate cell apoptosis. Real-time fluorescent polymerase chain reaction quantified mRNA levels of Bax and Bcl-2 genes. Western blotting was further employed for protein expression assay. Results AITC inhibited GRC-1 cell proliferation and induced cell apoptosis in a dose-dependent manner; it also elevated Bax while suppressing Bcl-2 gene expression at both mRNA and protein levels. In general, increasing concentration of AITC decreased Bcl-2/Bax ratio. Conclusions The inhibitory effect of AITC on GRC-1 cells is exerted via cell apoptosis, in which the imbalance of Bcl-2/Bax plays a significant role. PMID:27834342

  19. Intermediate frequency magnetic field generated by a wireless power transmission device does not cause genotoxicity in vitro.

    PubMed

    Shi, Dejing; Zhu, Chunbo; Lu, Rengui; Mao, Shitong; Qi, Yanhua

    2014-10-01

    The aim of this study was to evaluate effects of intermediate frequency magnetic fields (IFMF) generated by a wireless power transmission (WPT) based on magnetic resonance from the perspective of cellular genotoxicity on cultured human lens epithelial cells (HLECs). We evaluated the effects of exposure to 90 kHz magnetic fields at 93.36 µT on cellular genotoxicity in vitro for 2 and 4 h. The magnetic flux density is approximately 3.5 times higher than the reference level recommended by the International Commission on Non-Ionizing Radiation Protection (ICNIRP) guidelines. For assessment of genotoxicity, we studied cellular proliferation, apoptosis and DNA damage by Cell Counting Kit-8 (CCK-8) assay, flow cytometry analysis, alkaline comet assay and phosphorylated histone H2AX (γH2AX) foci formation test. We did not detect any effect of a 90 kHz IFMF generated by WPT based on magnetic resonance on cell proliferation, apoptosis, comet assay, and γH2AX foci formation test. Our results indicated that exposure to 90 kHz IFMF generated by WPT based on magnetic resonance at 93.36 µT for 2 and 4 h does not cause detectable cellular genotoxicity.

  20. Enhanced bioreduction-responsive biodegradable diselenide-containing poly(ester urethane) nanocarriers.

    PubMed

    Wei, Chao; Zhang, Yan; Song, Zhongchen; Xia, Yiru; Xu, Heng; Lang, Meidong

    2017-02-03

    Stimuli-responsive nanocarriers have been limited for bench-to-bedside translation mainly because the stimuli sensitivity and responsive rate are not high enough to ensure sufficient drug concentration at the target sites for superior therapeutic benefits. Herein, we reported an enhanced bioreduction-responsive and biodegradable nanocarrier based on the amphiphilic poly(ester urethane) copolymers (PAUR-SeSe) bearing multiple diselenide groups on the backbone. The copolymer could spontaneously self-assemble into stable micelles in aqueous medium with an average diameter of 68 nm, which could be rapidly disassembled in a reductive environment as a result of the reduction-triggered cleavage of diselenide groups. Furthermore, the PAUR-SeSe micelles showed an enhanced drug release profile and cellular uptake compared with the disulfide-containing analogue (PAUR-SS). CCK8 assays revealed that the antitumor activity of DOX-loaded PAUR-SeSe micelles was much higher than that of DOX-loaded PAUR-SS micelles. Besides, the blank micelles and degradation products were nontoxic up to a tested concentration of 50 μg mL(-1). Therefore, the enhanced therapeutic efficacy and good biocompatibility demonstrated that this drug nanocarrier had great potential for smart antitumor drug delivery applications.

  1. Involvement of endogenous opiates in regulation of gastric emptying of fat test meals in mice

    SciTech Connect

    Fioramonti, J.; Fargeas, M.J.; Bueno, L.

    1988-08-01

    The role of endogenous opioids and cholecystokinin (CCK) in gastric emptying was investigated in mice killed 30 min after gavage with /sup 51/Cr-radiolabeled liquid meals. The meals consisted of 0.5 ml of milk or one of five synthetic meals containing arabic gum, glucose and/or arachis oil and/or casein. Naloxone (0.1 mg/kg sc) significantly (P less than 0.01) accelerated gastric emptying of milk and meals containing fat but did not modify gastric emptying of nonfat meals. The CCK antagonist asperlicin (0.1 mg/kg ip) increased by 25% gastric emptying of milk. The gastric emptying of meals containing glucose and casein but not fat was reduced after administration of the COOH-terminal octapeptide of cholecystokinin (CCK-8, 4 micrograms/kg ip). This decrease was antagonized by both asperlicin (10 mg/kg ip) and naloxone (0.1 mg/kg sc). Intracerebroventricular (icv) administration of an opiate antagonist that poorly crosses the blood-brain barrier, methyl levallorphan (10 micrograms/kg), did not modify gastric emptying of milk but accelerated it when peripherally administered (0.1 mg/kg sc). Similarly, asperlicin (icv) administered at a dose of 1 mg/kg did not affect milk emptying. These results indicate that endogenous opiates are involved at peripheral levels in the regulation of gastric emptying of fat meals only and that such regulation involves release of CCK.

  2. Silencing of LncRNA HULC Enhances Chemotherapy Induced Apoptosis in Human Gastric Cancer

    PubMed Central

    Zhang, Yifei; Song, Xiaojing; Wang, Xixun; Hu, Jinchen

    2016-01-01

    Summary Background Gastric cancer (GC) is one of the most common cancers in the world; however, chemoresistance greatly decreases the efficacy of therapy in gastric cancer. Long noncoding RNAs (IncRNAs) participate in a variety of biological processes, and we hypothesize that lncRNA HULC regulates the multidrug resistance in GC treatment. Methods We obtained GC tissue samples from 42 GC patients and detected the expression level of HULC in the plasma and tissues via qRT-PCR. The relationship between HULC expression and survival rate was confirmed by Kaplan-Meier survival analysis. We verified the expression of HULC in GC cell lines via qRT-PCR, and the function of HULC was detected via flow cytometry assay and CCK-8 assay. Results HULC was highly expressed in the plasma and tissues of the GC patients compared with controls, with HULC high expression indicating lower survival rate. HULC knockdown enhanced cisplatin-induced apoptosis in GC cells. Conclusions Our results suggest that silencing lncRNA HULC could enhance chemotherapy induced apoptosis in GC cells, which could provide a novel approach for therapeutic strategies. PMID:28356873

  3. Systemic cholecystokinin amplifies vago-vagal reflex responses recorded in vagal motor neurones.

    PubMed

    Viard, Edouard; Rogers, Richard C; Hermann, Gerlinda E

    2012-02-01

    Cholecystokinin (CCK) is a potent regulator of visceral functions as a consequence of its actions on vago-vagal reflex circuit elements. This paper addresses three current controversies regarding the role of CCK to control gastric function via vago-vagal reflexes. Specifically: (a) whether CNS vs. peripheral (vagal afferent) receptors are dominant, (b) whether the long (58) vs. short (8) isoform is more potent and (c) whether nutritional status impacts the gain or even the direction of vago-vagal reflexes. Our in vivo recordings of physiologically identified gastric vagal motor neurones (gastric-DMN) involved in the gastric accommodation reflex (GAR) show unequivocally that: (a) receptors in the coeliac-portal circulation are more sensitive in amplifying gastric vagal reflexes; (b) in the periphery, CCK8 is more potent than CCK58; and (c) the nutritional status has a marginal effect on gastric reflex control. While the GAR reflex is more sensitive in the fasted rat, CCK amplifies this sensitivity. Thus, our results are in stark contrast to recent reports which have suggested that vago-vagal reflexes are inverted by the metabolic status of the animal and that this inversion could be mediated by CCK within the CNS.

  4. Effects of the extract of Ginkgo biloba on the differentiation of bone marrow mesenchymal stem cells in vitro

    PubMed Central

    Wu, Zhe; Zhang, Jiadi; Gu, Xu; Zhang, Xiaoxiao; Shi, Shuman; Liu, Chang

    2016-01-01

    The balance of osteogenesis and adipogenesis in bone marrow mesenchymal stem cells (BMSCs) is disrupted in osteoporosis. This study was designed to investigate the effects of extract of Ginkgo biloba (EGB) on proliferation, osteogenic and adipogenic differentiation of bone marrow mesenchymal stem cells in vitro. The effect of EGB on proliferation was evaluated by CCK-8 assay and flow cytometry. Osteogenic differentiation was evaluated by Alizarin Red S staining and Alkaline phosphatase assay. Adipogenic differentiation was evaluated by Oil Red O staining. Quantitative real-time polymerase chain reaction (Real-time PCR) was used to detect the expression of osteogenic specific genes (BMP-2, Runx2 and Colla1) and adipogenic specific genes (ap2, PPARγ). EGB did not significantly affect proliferation of BMSCs. However, it increased the calcium accumulation and significantly promoted the activity of alkaline phosphatase, especially when the concentration of EGB reached 150 µg/mL. EGB dose-dependently inhibited the adipogenic ability of BMSCs. The osteogenic-related genes (BMP-2, Runx2, Colla1) were overexpressed while the expression of genes involved in adipogenesis, such as PPAR-γ and ap2, was decreasing with the increase of EGB concentration. Our data proves that EGB inhibited adipocyte differentiation and enhanced osteogenic differentiation in BMSCs, but had no effect on the proliferation of BMSCs. PMID:27508023

  5. Mechanistic Study of the Inhibitory Effect of Kaempferol on Uterine Fibroids In Vitro.

    PubMed

    Li, Yanxia; Ding, Zhaoxia; Wu, Chuanzhong

    2016-12-08

    BACKGROUND This study examined the effect of kaempferol on uterine fibroids in vitro and the underlying mechanism, and investigated the potential of kaempferol as a clinical drug for the treatment of uterine fibroids. MATERIAL AND METHODS Uterine fibroid tissue and surrounding smooth muscle tissue were collected for primary culture. Different concentrations of kaempferol (12 μM, 24 μM, and 48 μM) were used to treat the cells for 24, 48, and 72 hours. Ethanol was used in the control group. A CCK-8 colorimetric assay was used to detect cell proliferation. Real-time PCR and immunoblot were used to detect estrogen receptor (ER), insulin-like growth factor-1 (IGF-1), and vascular endothelial growth factor (VEGF) levels in mRNA and protein. RESULTS The differences in proliferation at different time points and concentrations of kaempferol were statistically significant. The inhibitory effect of kaempferol on mRNA levels of ER and IGF, and protein levels of ER, VEGF, and IGF-1 were positively correlated with kaempferol concentration. Changes in kaempferol concentration showed no effect on VEGF mRNA expression. Treatment with kaempferol significantly lowered myocardin levels in uterine fibroid tissue compared to normal uterine smooth muscle (P<0.05). CONCLUSIONS Kaempferol might be used for clinical treatment of uterine fibroids due to its inhibitory effect on the proliferation of uterine fibroids cells.

  6. Kaempferol inhibited VEGF and PGF expression and in vitro angiogenesis of HRECs under diabetic-like environment.

    PubMed

    Xu, X H; Zhao, C; Peng, Q; Xie, P; Liu, Q H

    2017-03-02

    Diabetic retinopathy (DR) is one of the common and specific microvascular complications of diabetes. This study aimed to investigate the anti-angiogenic effect of kaempferol and explore its underlying molecular mechanisms. The mRNA expression level of vascular endothelial growth factor (VEGF) and placenta growth factor (PGF) and the concentrations of secreted VEGF and PGF were measured by qTR-PCR and ELISA assay, respectively. Human retinal endothelial cells (HRECs) proliferation, migration, and sprouting were measured by CCK-8 and transwell, scratching wound, and tube formation assays, respectively. Protein levels were determined by western blot. High glucose (25 mM) increased the mRNA expression levels of VEGF and PGF as well as the concentrations of secreted VEGF and PGF in HRECs, which can be antagonized by kaempferol (25 µM). Kaempferol (5-25 µM) significantly suppressed cell proliferation, migration, migration distance and sprouting of HRECs under high glucose condition. The anti-angiogenic effect of kaempferol was mediated via downregulating the expression of PI3K and inhibiting the activation of Erk1/2, Src, and Akt1. This study indicates that kaempferol suppressed angiogenesis of HRECs via targeting VEGF and PGF to inhibit the activation of Src-Akt1-Erk1/2 signaling pathway. The results suggest that kaempferol may be a potential drug for better management of DR.

  7. Gold nanorods as a theranostic platform for in vitro and in vivo imaging and photothermal therapy of inflammatory macrophages.

    PubMed

    Qin, Jinbao; Peng, Zhiyou; Li, Bo; Ye, Kaichuang; Zhang, Yuxin; Yuan, Fukang; Yang, Xinrui; Huang, Lijia; Hu, Junqing; Lu, Xinwu

    2015-09-07

    Inflammatory macrophages play pivotal roles in the development of atherosclerosis. Theranostics, a promising approach for local imaging and photothermal therapy of inflammatory macrophages, has drawn increasing attention in biomedical research. In this study, gold nanorods (Au NRs) were synthesized, and their in vitro photothermal effects on the macrophage cell line (Ana-1 cells) under 808 nm near infrared reflection (NIR) were investigated by the CCK8 assay, calcein AM/PI staining, flow cytometry, transmission electron microscopy (TEM), silver staining and in vitro micro-computed tomography (CT) imaging. These Au NRs were then applied to an apolipoprotein E knockout (Apo E) mouse model to evaluate their effects on in vivo CT imaging and their effectiveness as for the subsequent photothermal therapy of macrophages in femoral artery restenosis under 808 nm laser irradiation. In vitro photothermal ablation treatment using Au NRs exhibited a significant cell-killing efficacy of macrophages, even at relatively low concentrations of Au NRs and low NIR powers. In addition, the in vivo results demonstrated that the Au NRs are effective for in vivo imaging and photothermal therapy of inflammatory macrophages in femoral artery restenosis. This study shows that Au nanorods are a promising theranostic platform for the diagnosis and photothermal therapy of inflammation-associated diseases.

  8. Transcriptomic and metabolomic approaches to investigate the molecular responses of human cell lines exposed to the flame retardant hexabromocyclododecane (HBCD).

    PubMed

    Zhang, Jinkang; Williams, Timothy D; Abdallah, Mohamed Abou-Elwafa; Harrad, Stuart; Chipman, James K; Viant, Mark R

    2015-12-01

    The potential for human exposure to the brominated flame retardant, hexabromocyclododecane (HBCD) has given rise to health concerns, yet there is relatively limited knowledge about its possible toxic effects and the underlying molecular mechanisms that may mediate any impacts on health. In this study, unbiased transcriptomic and metabolomic approaches were employed to investigate the potential molecular changes that could lead to the toxicity of HBCD under concentrations relevant to human exposure conditions using in vitro models. A concentration-dependent cytotoxic effect of HBCD to A549 and HepG2/C3A cells was observed based on MTT assays or CCK-8 assays with EC50 values of 27.4 μM and 63.0 μM, respectively. Microarray-based transcriptomics and mass spectrometry-based metabolomics revealed few molecular changes in A549 cells or HepG2/C3A cells following a 24-hour exposure to several sub-lethal concentrations (2 to 4000 nM) of HBCD. Quantification of the level of HBCD in the HepG2/C3A exposed cells suggested that the flame retardant was present at concentrations several orders of magnitude higher than those reported to occur in human tissues. We conclude that at the concentrations known to be achievable following exposure in humans, HBCD exhibits no detectable acute toxicity in A549 cells, representative of the lung, or in HepG2/C3A cells, that are hepatocytes with some xenobiotic metabolic capacity.

  9. Kruppel-like factor 2 inhibit the angiogenesis of cultured human liver sinusoidal endothelial cells through the ERK1/2 signaling pathway

    SciTech Connect

    Zeng, Xiao-Qing; Li, Na; Pan, Du-Yi; Miao, Qing; Ma, Gui-Fen; Liu, Yi-Mei; Tseng, Yu-Jen; Li, Feng; Xu, Li-Li; Chen, Shi-Yao

    2015-09-04

    Kruppel-like factor 2 (KLF2) is a crucial anti-angiogenic factor. However, its precise role in hepatic angiogenesis induced by liver sinusoidal endothelial cells (LSECs) remain unclear. This study was aimed to evaluate the effect of KLF2 on angiogenesis of LSECs and to explore the corresponding mechanism. Cultured human LSECs were infected with different lentiviruses to overexpress or suppress KLF2 expression. The CCK-8 assay, transwell migration assay and tube formation test, were used to investigate the roles of KLF2 in the proliferation, migration and vessel tube formation of LSECs, respectively. The expression and phosphorylation of ERK1/2 were detected by western blot. We discovered that the up-regulation of KLF2 expression dramatically inhibited proliferation, migration and tube formation in treated LSECs. Correspondingly, down-regulation of KLF2 expression significantly promoted proliferation, migration and tube formation in treated LSECs. Additionally, KLF2 inhibited the phosphorylation of ERK1/2 pathway, followed by the function of KLF2 in the angiogenesis of LSECs disrupted. In conclusion, KLF2 suppressed the angiogenesis of LSECs through inhibition of cell proliferation, migration, and vessel tube formation. These functions of KLF2 may be mediated through the ERK1/2 signaling pathway. - Highlights: • Overexpression of KLF2 inhibits the proliferation and migration of LSECs. • Overexpression of KLF2 inhibits the angiogenesis of LSECs. • ERK1/2 signaling pathway involved in the anti-angiogenic process of KLF2 on LSECs.

  10. Synthesis and wound healing of alternating block polyurethanes based on poly(lactic acid) (PLA) and poly(ethylene glycol) (PEG).

    PubMed

    Li, Linjing; Liu, Xiangyu; Niu, Yuqing; Ye, Jianfu; Huang, Shuiwen; Liu, Chao; Xu, Kaitian

    2016-04-05

    Alternating block polyurethanes (abbreviated as PULA-alt-PEG) and random block polyurethanes (abbreviated as PULA-ran-PEG) based on biodegradable poly(lactic acid) (PLA) and poly(ethylene glycol) (PEG) were prepared. Results showed that alternating block polyurethane gives higher crystal degree, higher mechanical properties, more patterned and rougher surface than the random counterpart, due to the regular and controlled structure. Water absorptions of the polyurethanes were in the range of 620 to 780%. Cytocompatibility of the amphiphilic block polyurethanes (PU) (water static angle 41.4°-61.8°) was assessed by CCK-8 assay using human embryonic kidney (HEK293) cells. Wound healing evaluation of the PU foam scaffolds was carried out by full-thickness SD rat model experiment, with medical gauze as control. It was found that the skin of rat in PU groups was fully covered with new epithelium without any significant adverse reactions and PU dressings give much rapid and better healing than medical gauze. Histological examination revealed that PU dressings suppress the infiltration of inflammatory cells and accelerate fibroblast proliferation. It was also demonstrated that PULA-alt-PEG exhibits obvious better healing effect than PULA-ran-PEG does. This study has demonstrated that without further modification, plain alternating block polyurethane scaffold would help wound recovery efficiently. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2016.

  11. Laminar organization of peptide-like immunoreactivity in the anuran optic tectum.

    PubMed

    Kuljis, R O; Karten, H J

    1982-12-01

    Peptide, 5-hydroxytryptamine (5-HT)-, tyrosine hydroxylase (TOH)-, and glial fibrillary acidic protein (GFAP)-like immunoreactivity was studied in the optic tectum of Rana pipiens. Peroxidase-antiperoxidase and indirect immunofluorescence single- and double-labeling methods were used to compare differential laminar distribution of each of these substances. Substance P (SP), leucine-enkephalin (LENK), cholecystokinin octapeptide (CCK8), bombesin (BOM), avian pancreatic polypeptide (APP), and possibly neurotensin display unique individual patterns of laminar distribution of processes and cell bodies throughout the tectum. A correlative analysis of the topographical distribution of SP, LENK, BOM, and APP on the basis of double-labeled sections shows a precise laminar segregation of these substances. Vasoactive intestinal peptide-, beta-endorphin-, and ranatensinlike immunoreactivity is consistently absent from our material. 5HT- and TOH-like immunoreactivity discloses a reticular array of fibers without clear evidence of laminar organization. This peptide-like laminar organization is particularly elaborate throughout the superficial neuropil of the optic tectum, the major retinorecipient zone. The pattern of lamination demonstrated in the present study differs in several important features from that previously described on the basis of several histological methods. The cells of origin of processes (axons and/or dendrites) in the superficial tectal neuropil may be either intrinsic or extrinsic to the tectum. Special reference is made to conflicting evidence regarding the possibility of a retinal contribution to peptide-like tectal lamination.

  12. [Role of BCL-2, caspase-3 and NF-κB in astragaloside inducing apoptosis of human NB4 cells].

    PubMed

    Ni, Jing; Xie, Xi; Xie, Jing; Hu, Xue-Ying; Huang, Zhen-Qi; Xia, Rui-Xiang

    2014-06-01

    This study was purposed to investigate the apoptosis-inducing effect of astragalosides on acute promyelocytic leukemia(APL) cell line NB4 and its mechanism. NB4 cells were treated with different concentrations (200, 300, 400 µg /ml) of astragalosides for 48 h. The cell proliferation was assayed by using CCK-8 method; the cell apoptosis was analyzed by flow cytometry with Annexin V-FITE/PI double staining. The mRNA expression of BCL-2 and the relative activity of BCL-2, NF-κB and caspase-3 were detected by RT-PCR and Western blot, respectively. The results showed that after treated with astragalosides for 48 h, astragalosides inhibited NB4 cell proliferation in concentration-dependent way, the apoptosis rate of NB4 cells gradually elevated from 4.69% to 40.85% with the increasing of astragalosides concentration. Simultaneously, the mRNA expression of BCL-2 was down-regulated, Western blot analysis showed that the protein expression levels of BCL-2 and NF-κB decreased after astragalosides treatment, while caspase-3 protein expression level increased. It is concluded that the molecular mechanism of the astragalosides-induced apoptosis in NB4 cells may be associated with down-regulation of the expression of BCL-2 and NF-κB, finally the relative activity of caspase-3 activated.

  13. Asperosaponin VI promotes bone marrow stromal cell osteogenic differentiation through the PI3K/AKT signaling pathway in an osteoporosis model

    PubMed Central

    Ke, Ke; Li, Qi; Yang, Xiaofeng; Xie, Zhijian; Wang, Yu; Shi, Jue; Chi, Linfeng; Xu, Weijian; Hu, Lingling; Shi, Huali

    2016-01-01

    Asperosaponin VI (ASA VI), a natural compound isolated from the well-known traditional Chinese herb Radix Dipsaci, has an important role in promoting osteoblast formation. However, its effects on osteoblasts in the context of osteoporosis is unknown. This study aimed to investigate the effects and mechanism of ASA VI action on the proliferation and osteogenic differentiation of bone marrow stromal cells isolated from the ovariectomized rats (OVX rBMSCs). The toxicity of ASA VI and its effects on the proliferation of OVX rBMSCs were measured using a CCK-8 assay. Various osteogenic differentiation markers were also analyzed, such as ALP activity, calcified nodule formation, and the expression of osteogenic genes, i.e., ALP, OCN, COL 1 and RUNX2. The results indicated that ASA VI promoted the proliferation of OVX rBMSCs and enhanced ALP activity and calcified nodule formation. In addition, while ASA VI enhanced the expression of ALP, OCN, Col 1 and RUNX2, treatment with LY294002 reduced all of these osteogenic effects and reduced the p-AKT levels induced by ASA VI. These results suggest that ASA VI promotes the osteogenic differentiation of OVX rBMSCs by acting on the phosphatidylinositol—3 kinase/AKT signaling pathway. PMID:27756897

  14. High Expression of XRCC6 Promotes Human Osteosarcoma Cell Proliferation through the β-Catenin/Wnt Signaling Pathway and Is Associated with Poor Prognosis

    PubMed Central

    Zhu, Bin; Cheng, Dongdong; Li, Shijie; Zhou, Shumin; Yang, Qingcheng

    2016-01-01

    Increasing evidences show that XRCC6 (X-ray repair complementing defective repair in Chinese hamster cells 6) was upregulated and involved in tumor growth in several tumor types. However, the correlation of XRCC6 and human osteosarcoma (OS) is still unknown. This study was conducted with the aim to reveal the expression and biological function of XRCC6 in OS and elucidate the potential mechanism. The mRNA expression level of XRCC6 was measured in osteosarcoma cells and OS samples by quantitative transcription-PCR (qRT-PCR). The expression of XRCC6 protein was measured using Western blot and immunohistochemical staining in osteosarcoma cell lines and patient samples. Cell Counting Kit 8 (CCK8), colony-forming and cell cycle assays were used to test cell survival capacity. We found that XRCC6 was overexpressed in OS cells and OS samples compared with the adjacent non-tumorous samples. High expression of XRCC6 was correlated with clinical stage and tumor size in OS. Reduced expression of XRCC6 inhibits OS cell proliferation through G2/M phase arrest. Most importantly, further experiments demonstrated that XRCC6 might regulate OS growth through the β-catenin/Wnt signaling pathway. In conclusion, these findings indicate that XRCC6 exerts tumor-promoting effects for OS through β-catenin/Wnt signaling pathway. XRCC6 may serve as a novel therapeutic target for OS patients. PMID:27455247

  15. Comparative effects of chlorhexidine and essential oils containing mouth rinse on stem cells cultured on a titanium surface.

    PubMed

    Park, Jun-Beom; Lee, Gil; Yun, Byeong Gon; Kim, Chang-Hyen; Ko, Youngkyung

    2014-04-01

    Chlorhexidine (CHX) and Listerine (LIS), an essential oil compound, are the two commonly used adjunctive agents for mechanical debridement, for reducing the bacterial load in the treatment of peri-implant inflammation. However, antimicrobial agents have been reported to be cytotoxic to the alveolar bone cells and gingival epithelial cells. The present study was performed to examine the effects of antiseptics CHX and LIS, on the morphology and proliferation of stem cells. Stem cells derived from the buccal fat pad were grown on machined titanium discs. Each disc was immersed in CHX or LIS for 30 sec, 1.5 min or 4.5 min. Cell morphology was evaluated with a confocal laser microscope and the viability of the cells was quantitatively analyzed with the cell counting kit-8 (CCK-8). The untreated cells attached to the titanium discs demonstrated well-organized actin cytoskeletons. No marked alterations in the cytoskeletal organization were observed in any of the treated groups. The treatment with CHX and LIS of the titanium discs decreased the viability of the cells grown on the treated discs (P<0.05). The stem cells derived from the buccal fat pad were sensitive to CHX and LIS, and a reduction in cellular viability was observed when these agents were applied to the discs for 30 sec. Further studies are required to determine the optimal application time and concentration of this antimicrobial agent for maximizing the reduction of the bacterial load and minimizing the cytotoxicity to the surrounding cells.

  16. Triggering of apoptosis in osteosarcoma cells by graphene/single-walled carbon nanotube hybrids via the ROS-mediated mitochondrial pathway.

    PubMed

    Yan, Xinxin; Yang, Wen; Shao, Zengwu; Yang, Shuhua; Liu, Xianzhe

    2017-02-01

    Carbon nanomaterials are increasingly significant in the biological and medical fields, especially becoming promising candidates in treating difficult and complicated disease. Graphene/single-walled carbon nanotubes (G/SWCNT) hybrids is 3D structure which has been constructed by combining 1D single-walled carbon nanotubes (SWCNTs) and 2D graphene. However, the effects of the nanomaterial on biological systems are limited. In this study, we report a systematic investigation of the cytotoxicity and in vivo biodistribution of G/SWCNT hybrids on osteosarcoma cells (HOS and U2OS). The CCK-8, neutral red, and lactic dehydrogenase assays demonstrated that the cytotoxicity of G/SWCNT hybrids exhibits a dose-dependent behavior on osteosarcoma cells. In our conditions, the hybrids were less cytotoxic than graphene and single-walled carbon nanotubes. The results also showed the apoptosis of osteosarcoma cells induced by G/SWCNT hybrids was through the increase of intracellular reactive oxygen species, the decrease of mitochondrial membrane potential, the alternation of apoptosis-related proteins, and then triggered the ROS-mediated mitochondrial pathway. Moreover, the in vivo biodistribution of G/SWCNT hybrids was observed by histological analysis of major organs in mice, and showed that organs were neither damaged nor inflammatory. This study demonstrated that G/SWCNT hybrids could serve as a potential platform in anticancer therapy. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 443-453, 2017.

  17. Amino Nitrogen Quantum Dots-Based Nanoprobe for Fluorescence Detection and Imaging of Cysteine in Biological Samples.

    PubMed

    Tang, Zhijiao; Lin, Zhenhua; Li, Gongke; Hu, Yuling

    2017-03-20

    Fluorescent amino nitrogen quantum dots (aN-dots) were synthesized by microwave-assisted method using 2-azidoimidazole and aqueous ammonia. The aN-dots have a nitrogen component up to 40%, which exhibit high fluorescence quantum yield, good photostability, and excellent biocompatibility. We further explored the use of the aN-dots combined with AuNPs as a nanoprobe for detecting fluorescently and imaging of cysteine (Cys) in complex biological samples. In this sensing system, the fluorescence of aN-dots was quenched significantly by gold nanoparticles (AuNPs), while the addition of Cys can lead to the fluorescence signal recovery. Furthermore, we have demonstrated that this strategy can offer a rapid and selective detection of Cys with a good linear relationship in the range of 0.3-3.0 μmol/L. As expected, this assay was successfully applied to the detection of Cys in human serum and plasma samples with recoveries ranging from 90.0% to 106.7%. Especially, the nanoprobe exhibits good cell membrane permeability and excellent biocompatibility by CCK-8 assay, which is favorable for bioimaging applications. Therefore, this fluorescent probe ensemble was further used for imaging of Cys in living cells, which suggests our proposed method has strong potential for clinical diagnosis. As a novel member of the quantum-dot family, the aN-dots hold great promise to broaden applications in biological systems.

  18. Protective Effects of Green Tea Polyphenol Against Renal Injury Through ROS-Mediated JNK-MAPK Pathway in Lead Exposed Rats.

    PubMed

    Wang, Haidong; Li, Deyuan; Hu, Zhongze; Zhao, Siming; Zheng, Zhejun; Li, Wei

    2016-06-30

    To investigate the potential therapeutic effects of polyphenols in treating Pb induced renal dysfunction and intoxication and to explore the detailed underlying mechanisms. Wistar rats were divided into four groups: control groups (CT), Pb exposure groups (Pb), Pb plus Polyphenols groups (Pb+PP) and Polyphenols groups (PP). Animals were kept for 60 days and sacrificed for tests of urea, serum blood urea nitrogen (BUN) and creatinine. Histological evaluations were then performed. In vitro studies were performed using primary kidney mesangial cells to reveal detailed mechanisms. Cell counting kit-8 (CCK-8) was used to evaluate cell viability. Pb induced cell apoptosis was measured by flow cytometry. Reactive oxygen species (ROS) generation and scavenging were tested by DCFH-DA. Expression level of tumor necrosis factor-α (TNF-α), interleukin-1-β (IL-1-β) and IL-6 were assayed by ELISA. Western blot and qPCR were used to measure the expression of ERK1/2, JNK1/2 and p38. Polyphenols have obvious protective effects on Pb induced renal dysfunction and intoxication both in vivo and in vitro. Polyphenols reduced Pb concentration and accumulation in kidney. Polyphenols also protected kidney mesangial cells from Pb induced apoptosis. Polyphenols scavenged Pb induced ROS generation and suppressed ROS-mediated ERK/JNK/p38 pathway. Downstream pro-inflammatory cytokines were inhibited in consistency. Polyphenol is protective in Pb induced renal intoxication and inflammatory responses. The underlying mechanisms lie on the antioxidant activity and ROS scavenging activity of polyphenols.

  19. Caveolin-1 knockdown is associated with the metastasis and proliferation of human lung cancer cell line NCI-H460.

    PubMed

    Song, Yang; Xue, Liyan; Du, Sha; Sun, Mingzhong; Hu, Jun; Hao, Lihong; Gong, Linlin; Yeh, Dongmei; Xiong, Hai; Shao, Shujuan

    2012-09-01

    Caveolin-1 (CAV-1), one component of caveolae, involves in multiple cellular processes and signal transductions. We previously showed that the expression of CAV-1 gene in NCI-H446 cells inhibited cell proliferation and promoted cell metastasis. Here we explore the function of CAV-1 on tumor growth and metastasis by using NCI-H460 in vitro. First, we established NCI-H460 cell line, which CAV-1 was stably knockdown. Then we investigated the effects of CAV-1 on the morphology, proliferation, cell cycle and metastasis potential for NCI-H460 cell by crystal violet stains, CCK-8, colony formation, flow cytometry, scratch-wound assay and transwell assay. Western blot was used to examine the expression changes of cyclin D1, PCNA, E-cadherin and β-catenin. Our results showed stable knockdown of CAV-1 inhibited the proliferation of NCI-H460 cells. Cell cycle of the transfected cells was arrested in G1/S phase and the expressions of cyclin D1 and PCNA protein were downregulated. Downregulation of CAV-1 promoted the migration and invasion abilities of NCI-H460 cells in vitro. The expression of β-catenin increased and the level of E-cadherin decreased. In summary, our findings provide experimental evidence that CAV-1 may function as a proproliferative and antimetastatic gene in NCI-H460 cell line.

  20. MicroRNA-221 promotes human non-small cell lung cancer cell H460 growth.

    PubMed

    Xu, Yiming; Zhong, Chongjun; Ding, Shengguang; Huang, Haitao; Shen, Zhenya

    2015-01-01

    MicroRNA (miRNA-221) has been reported to be a regulator of cell proliferation. Here we intended to investigate the role of miRNA-221 in regulating the growth of human non-small cell lung cancer cell line H460. H460 cells were transfected with miRNA-221 mimics/inhibitors or their respective negative controls. Real-time quantitative PCRs (qRT-PCRs) were used to confirm the effects of miRNA-221 mimics and inhibitors in H460 cells while Cell Counting Kit 8 (CCK-8) and 5-Ethynyl-2'-deoxyuridine (EdU) assay were used to access the cell viability and proliferation. P27 and P57, as putative targets of miRNA-221, were determined by qRT-PCRs in H460 cells. We found that overexpression of miRNA-221 led to increased proliferative rate and cell viability in H460 cells while down-regulation of miRNA-221 decreased those effects. P27 but not P57 was identified as a potential target gene of miRNA-221 in H460 as P27 was negatively regulated by miRNA-221 in the protein level. In conclusion, this study suggests that miRNA-221 controls human non-small cell lung cancer cell H460 growth potentially by targeting P57. Inhibition of miRNA-221 represents a novel potential treatment for human non-small cell lung cancer.

  1. Downregulation of miR-222 Induces Apoptosis and Cellular Migration in Adenoid Cystic Carcinoma Cells.

    PubMed

    Zhou, Ziliang; Zhou, Lijie; Jiang, Fangfang; Zeng, Binghui; Wei, Changbo; Zhao, Wei; Yu, Dongsheng

    2017-01-26

    Previous studies have shown that miR-222 targets the p53 upregulated modulator of apoptosis (PUMA) to regulate cell biological behavior in some human malignancies. We hypothesized that there was a negative regulation, which might induce apoptosis, between miR-222 and PUMA in adenoid cystic carcinoma (ACC). In this study, the expression levels of miR-222 and the PUMA gene after transfection with antisense miR-222 (As-miR-222) were evaluated by RT-PCR and Western blot assays. Cell proliferation and migratory abilities were detected by CCK-8 and Transwell assays. Cell cycle and apoptosis were analyzed by flow cytometry. Our results showed that, when compared with the control and scramble-transfected groups, the expression of miR-222 in the As-miR-222 group was downregulated, while the expression of PUMA at both mRNA and protein levels was upregulated, cell proliferation and migratory abilities were inhibited, and apoptosis was increased. Our results suggested that As-miR-222 transfection could upregulate the expression of PUMA to induce apoptosis in ACC, providing a new concept for the treatment of ACC.

  2. Plasminogen activator inhibitor (PAI)-1 suppresses inhibition of gastric emptying by cholecystokinin (CCK) in mice.

    PubMed

    Gamble, Joanne; Kenny, Susan; Dockray, Graham J

    2013-08-10

    The intestinal hormone cholecystokinin (CCK) delays gastric emptying and inhibits food intake by actions on vagal afferent neurons. Recent studies suggest plasminogen activator inhibitor (PAI)-1 suppresses the effect of CCK on food intake. In this study we asked whether PAI-1 also modulated CCK effects on gastric emptying. Five minute gastric emptying of liquid test meals was studied in conscious wild type mice (C57BL/6) and in transgenic mice over-expressing PAI-1 in gastric parietal cells (PAI-1H/Kβ mice), or null for PAI-1. The effects of exogenous PAI-1 and CCK8s on gastric emptying were studied after ip administration. Intragastric peptone delayed gastric emptying in C57BL/6 mice by a mechanism sensitive to the CCK-1 receptor antagonist lorglumide. Peptone did not delay gastric emptying in PAI-1-H/Kβ mice. Exogenous CCK delayed gastric emptying of a control test meal in C57BL/6 mice and this was attenuated by administration of PAI-1; exogenous CCK had no effect on emptying in PAI-1-H/Kβ mice. Prior administration of gastrin to increase gastric PAI-1 inhibited CCK-dependent effects on gastric emptying in C57BL/6 mice but not in PAI-1 null mice. Thus, both endogenous and exogenous PAI-1 inhibit the effects of CCK (whether exogenous or endogenous) on gastric emptying. The data are compatible with emerging evidence that gastric PAI-1 modulates vagal effects of CCK.

  3. Relationship between vulnerability to reinforcing effects of morphine and activity of the endogenous cholecystokinin system in Lewis and Fischer rats.

    PubMed

    Noble, Florence; Benturquia, Nadia; Crete, Dominique; Canestrelli, Corinne; Mas Nieto, Magdalena; Wilson, Jodie; Roques, Bernard P

    2012-05-01

    A great number of studies have shown the presence of physiological interactions between brain neurotransmitter systems in behavioural responses. This is the case for opioid, cholecystokinin (CCK) and dopamine systems. However, so far the role that the CCK system may play in vulnerability to consumption of drugs of abuse is not clear. This was investigated in this study using Lewis rats that are more sensitive to the reinforcing properties of drugs of abuse than Fischer rats. The extraneuronal CCK(8) levels and brain CCK(2) receptors were found higher in Fischer than in Lewis rats in the nucleus accumbens, one of the most important structures involved in drug consumption. Moreover, pharmacological modulation of the CCK system by administration of a selective CCK(2) agonist blocked, in the conditioned place preference, the reinforcing effects of morphine in Lewis rats, whereas a selective CCK(2) antagonist revealed reinforcing effects of the alkaloid in Fischer rats. These results obtained following systemic administrations of the CCK ligands were confirmed following microinjection into the nucleus accumbens. Thus, a low level of CCK efflux in the nucleus accumbens could be one of the many factors involved in drug reinforcing effects, whereas a high level of CCK efflux could attenuate it.

  4. Ethyl Acetate Extracts of Semen Impatientis Inhibit Proliferation and Induce Apoptosis of Human Prostate Cancer Cell Lines through AKT/ERK Pathways

    PubMed Central

    Wang, Tao; Cai, Yang; Song, Wen; Chen, Ruibao; Hu, Dunmei; Ye, Jianhan; Liu, Lu; Peng, Wei; Zhang, Junfeng; Yang, Weiming; Liu, Jihong

    2017-01-01

    Objective. To investigate the inhibitory effect of ethyl acetate extracts of Impatiens balsamina L. on prostate cancer cells. Methods. Impatiens balsamina L. was extracted to get water, ethanol, oil ether, ethyl acetate, and butanol extracts. CCK-8 assay was used to detect the inhibitory effect. Apoptosis rates and cell cycle distribution were detected by flow cytometry. Transwell assay was performed to test the ability of migration. The expressions of Bcl-2, Bax, cleaved-caspase-3, p-ERK, ERK, p-AKT, AKT, cyclin D1, cyclin E, and MMP2 were detected by Western blot. Results. Ethyl acetate extracts had the strongest inhibitory effect. After being treated with different concentrations of ethyl acetate extracts, the percentage of G0/G1 phase increased significantly, cyclin D1 and cyclin E expression decreased, apoptosis rate was significantly higher, and the ability of migration of PC-3 and RV1 was inhibited significantly. Western blot showed that the expressions of Bcl-2, p-ERK, and p-AKT were significantly decreased, but the expressions of Bax and caspase-3 cleavage were increased. Conclusions. Impatiens balsamina L. inhibited the proliferation of human prostate cancer cells; ethyl acetate extracts have the strongest effect. It could inhibit cell proliferation and migration, cause G1 phase arrest, and induce apoptosis probably through inhibition of the AKT and ERK pathways. PMID:28386546

  5. Anthelmintic drug albendazole arrests human gastric cancer cells at the mitotic phase and induces apoptosis

    PubMed Central

    Zhang, Xuan; Zhao, Jing; Gao, Xiangyang; Pei, Dongsheng; Gao, Chao

    2017-01-01

    As microtubules have a vital function in the cell cycle, oncologists have developed microtubule inhibitors capable of preventing uncontrolled cell division, as in the case of cancer. The anthelmintic drug albendazole (ABZ) has been demonstrated to inhibit hepatocellular, ovarian and prostate cancer cells via microtubule targeting. However, its activity against human gastric cancer (GC) cells has remained to be determined. In the present study, ABZ was used to treat GC cells (MKN-45, SGC-7901 and MKN-28). A a CCK-8 cell proliferation assay was performed to assess the effects of ABZ on cell viability and cell cycle changes were assessed using flow cytometry. SGC-7901 cells were selected for further study, and flow cytometry was employed to determine the apoptotic rate, immunofluorescence analysis was employed to show changes of the microtubule structure as well as the subcellular localization and expression levels of cyclin B1, and western blot analysis was used to identify the dynamics of microtubule assembly. The expression levels of relevant proteins, including cyclin B1 and Cdc2, the two subunits of mitosis-promoting factor as well as apoptosis-asociated proteins were also assessed by western blot analysis. The results showed that ABZ exerted its anti-cancer activity in GC cell lines by disrupting microtubule formation and function to cause mitotic arrest, which is also associated with the accumulation of cyclin B1, and consequently induces apoptosis. PMID:28352336

  6. Effects of S100A6 gene silencing on the biological features of eutopic endometrial stromal cells and β-catenin expression

    PubMed Central

    Zhang, Xiaoling; Liu, Zequn; Chen, Meihong; Cao, Qing; Huang, Donghua

    2017-01-01

    Protein expression levels of S100 calcium binding protein A6 (S100A6) are increased in various malignancies and are associated with tumor behavior; however, the association between S100A6 and endometriosis remains to be elucidated. In order to investigate the influence of S100A6 protein, recombinant lentivirus siS100A6 was used to transfect the eutopic endometrial stromal cells. CCK-8 assay was performed to identify the proliferation ability of cell and the cell migration was detected by Transwell assay. Flow cytometry was performed to detect cell apoptosis, and western blotting and reverse transcription-quantitative polymerase chain reaction were performed to identify the expression of β-catenin. The present study investigated the role of S100A6 in endometriosis and its interaction with β-catenin by transfecting eutopic endometrial stromal cells with a recombinant lentivirus containing S100A6-specific small interfering RNA. Inhibition of S100A6 expression had a significant antiproliferative effect and reduced the migratory ability of eutopic endometrial stromal cells, and induced their apoptosis. In addition, inhibition of S100A6 expression suppressed β-catenin expression. These results suggested that inhibition of S100A6 may represent a promising novel approach for the targeted therapy of endometriosis. PMID:28075439

  7. DNMT1 regulates human endometrial carcinoma cell proliferation

    PubMed Central

    Wang, Xinjing; Li, Bilan

    2017-01-01

    Endometrial carcinoma (EC) is the most common gynecologic malignancy, but the molecular events involved in the development and progression of EC remain unclear. This study aimed to investigate the role of DNA methyltransferase 1 (DNMT1), a member of DNA methyltransferases, in EC. AN3CA cells were transfected with DNMT1 siRNA. The proliferation, cell cycle, and apoptosis of AN3CA cells were evaluated by Cell Counting Kit-8 (CCK-8) assay and flow cytometry. The expression of related genes was detected by polymerase chain reaction and Western blot analysis. Knockdown of DNMT1 inhibited the proliferation, induced apoptosis, and G0/G1 phase arrest of AN3CA cells. Furthermore, knockdown of DNMT1 upregulated the expression of nuclear factor kappa-B-inhibitor alpha (NF-κBIA) and Bax and downregulated the expression of Bcl-2 and CCND1/2 in AN3CA cells. In conclusion, this study provides the first evidence that knockdown of DNMT1 affects the expression of cell cycle- and apoptosis-associated proteins in EC cells, suggesting the potential of DNMT1 in EC therapy.

  8. FNC efficiently inhibits mantle cell lymphoma growth

    PubMed Central

    Ding, Xixi; Peng, Bangan; Wang, Ning; Ma, Fang; Peng, Youmei; Wang, Qingduan; Chang, Junbiao

    2017-01-01

    FNC, 2'-deoxy-2'-β-fluoro-4'-azidocytidine, is a novel cytidine analogue, that has shown strong antiproliferative activity in human lymphoma, lung adenocarcinoma and acute myeloid leukemia. In this study, we investigated the effects of FNC on mantle cell lymphoma (MCL) and the underlying mechanisms. In in vitro experiments, cell viability was detected by the CCK8 assay, and cell cycle progression and apoptosis were assessed by flow cytometry, and the expression of relative apoptosis proteins were detected by Western Blot. The in vivo antitumor effect of FNC was investigated in a SCID xenograft model. Finally, the mechanisms of action of FNC were assessed using a whole human genome expression profile chip. The data showed that FNC inhibited cell growth in a dose- and time-dependent manner, and FNC could induce apoptosis by the death recepter pathways in JeKo-1 cells and arrest the cell cycle in the G1/S or G2/M phase. Notably, FNC showed in vivo efficacy in mice bearing JeKo-1 xenograft tumors. Gene expression profile analysis revealed that the differentially expressed genes were mainly focused on the immune system process, cellular process and death. These findings implied that FNC may be a valuable therapeutic in mantle cell lymphoma and provided an experimental basis for the early clinical application of FNC. PMID:28333959

  9. In Vitro and In Vivo Evaluations of Nano-Hydroxyapatite/Polyamide 66/Glass Fibre (n-HA/PA66/GF) as a Novel Bioactive Bone Screw

    PubMed Central

    Su, Bao; Peng, Xiaohua; Jiang, Dianming; Wu, Jun; Qiao, Bo; Li, Weichao; Qi, Xiaotong

    2013-01-01

    In this study, we prepared nano-hydroxyapatite/polyamide 66/glass fibre (n-HA/PA66/GF) bioactive bone screws. The microstructure, morphology and coating of the screws were characterised, and the adhesion, proliferation and viability of MC3T3-E1 cells on n-HA/PA66/GF scaffolds were determined using scanning electron microscope, CCK-8 assays and cellular immunofluorescence analysis. The results confirmed that n-HA/PA66/GF scaffolds were biocompatible and had no negative effect on MC3T3-E1 cells in vitro. To investigate the in vivo biocompatibility, internal fixation properties and osteogenesis of the bioactive screws, both n-HA/PA66/GF screws and metallic screws were used to repair intercondylar femur fractures in dogs. General photography, CT examination, micro-CT examination, histological staining and biomechanical assays were performed at 4, 8, 12 and 24 weeks after operation. The n-HA/PA66/GF screws exhibited good biocompatibility, high mechanical strength and extensive osteogenesis in the host bone. Moreover, 24 weeks after implantation, the maximum push-out load of the bioactive screws was greater than that of the metallic screws. As shown by their good cytocompatibility, excellent biomechanical strength and fast formation and ingrowth of new bone, n-HA/PA66/GF screws are thus suitable for orthopaedic clinical applications. PMID:23861888

  10. Differential Pharmacological Regulation of Sensorimotor Gating Deficit in CB1 Knockout Mice and Associated Neurochemical and Histological Alterations

    PubMed Central

    Ortega-Álvaro, Antonio; Navarrete, Francisco; Aracil-Fernández, Auxiliadora; Navarro, Daniela; Berbel, Pere; Manzanares, Jorge

    2015-01-01

    The endocannabinoid system has been widely involved in the pathophysiology of sensorimotor gating deficits. This study aimed to evaluate the pharmacological modulation of the sensorimotor gating impairment induced by cannabinoid CB1 receptor (CB1r) deletion. For this purpose, the prepulse inhibition (PPI) paradigm was used to evaluate the effect of two antipsychotics drugs (risperidone and haloperidol) and a psychostimulant (methylphenidate) on the preattentional deficit presented by CB1KO mice. Furthermore, the effects of the CB1r antagonist AM251 on PPI were evaluated in WT mice. Real-time PCR and immunohistochemical studies were carried out to analyze dopamine transporter (DAT) and α-2C adrenergic receptor (ADRA2C) gene expressions and the distribution of parvalbumin (PV) and cholecystokinin-8 (CCK) immunoreactive (ir) cortical neurons, respectively. Neither risperidone nor haloperidol significantly modified the PPI of WT and CB1KO mice, whereas methylphenidate improved the preattentional deficit of CB1KO mice. In addition, treatment with AM251 (3 mg/kg; i.p.) significantly decreased the PPI of WT animals. The administration of methylphenidate increased DAT and ADRA2C gene expressions in CB1KO mice without producing any effect in WT animals. Immunohistochemical studies revealed that there were no significant changes in CCK immunolabeling between WT and CB1KO mice, whereas the radial distribution of PV-ir neurons was abnormal in CB1KO mice. These data further support the important role of CB1r in sensorimotor gating regulation and the therapeutic usefulness of methylphenidate for the treatment of psychiatric disorders with associated preattentional deficits. PMID:25895455

  11. Novel Lipophilic Probe for Detecting Near-Membrane Reactive Oxygen Species Responses and Its Application for Studies of Pancreatic Acinar Cells: Effects of Pyocyanin and L-Ornithine

    PubMed Central

    Chvanov, Michael; Huang, Wei; Jin, Tao; Wen, Li; Armstrong, Jane; Elliot, Vicky; Alston, Ben; Burdyga, Alex; Criddle, David N.; Sutton, Robert

    2015-01-01

    Abstract Aims: The aim of this study was to develop a fluorescent reactive oxygen species (ROS) probe, which is preferentially localized in cellular membranes and displays a strong change in fluorescence upon oxidation. We also aimed to test the performance of this probe for detecting pathophysiologically relevant ROS responses in isolated cells. Results: We introduced a novel lipophilic ROS probe dihydrorhodamine B octadecyl ester (H2RB-C18). We then applied the new probe to characterize the ROS changes triggered by inducers of acute pancreatitis in pancreatic acinar cells. We resolved ROS changes produced by L-ornithine, L-arginine, cholecystokinin-8, acetylcholine, taurolithocholic acid 3-sulfate, palmitoleic acid ethyl ester, and the bacterial toxin pyocyanin. Particularly prominent ROS responses were induced by pyocyanin and L-ornithine. These ROS responses were accompanied by changes in cytosolic Ca2+concentration ([Ca2+]i), mitochondrial membrane potential (ΔΨ), and NAD(P)H concentration. Innovation: The study describes a novel sensitive lipophilic ROS probe. The probe is particularly suitable for detecting ROS in near-membrane regions and therefore for reporting the ROS environment of plasma membrane channels and pumps. Conclusions: In our experimental conditions, the novel probe was more sensitive than 5-(and-6)-chloromethyl-2′,7′-dichlorodihydrofluorescein (CM-H2DCF) and dihydrorhodamine123 (H2R123) and allowed us to resolve ROS responses to secretagogues, pyocyanin, and L-ornithine. Changes in the fluorescence of the new probe were particularly prominent in the peripheral plasma membrane-associated regions. Our findings suggest that the new probe will be a useful tool in studies of the contribution of ROS to the pathophysiology of exocrine pancreas and other organs/tissues. Antioxid. Redox Signal. 22, 451–464. PMID:24635199

  12. Evaluation of three novel cholecystokinin-B/gastrin receptor antagonists: a study of their effects on rat stomach enterochromaffin-like cell activity.

    PubMed

    Ding, X Q; Lindström, E; Håkanson, R

    1997-11-01

    Gastrin stimulates rat stomach enterochromaffin-like (ECL) cells via activation of cholecystokinin-B/gastrin receptors. The stimulation is manifested in the activation of the histamine-forming enzyme histidine decarboxylase and in the secretion of histamine and pancreastatin, a chromogranin A-derived peptide. We have examined the short-term effects of three novel cholecystokinin-B/gastrin receptor antagonists (YF476, JB93182 and AG041R) on the ECL cells in intact fasted rats. The drugs and/or gastrin were infused intravenously for 3 hr and the oxyntic mucosal histidine decarboxylase activity and the serum pancreastatin concentration were measured. We also studied the effects of the three drugs on gastric emptying in mice, a cholecystokinin-A receptor-mediated response. YF476, JB93182 and AG041R antagonized the gastrin-evoked histidine decarboxylase activation in a dose-dependent manner. YF476, JB93182 and AG041R induced maximal inhibition at 0.03, 0.1 and 0.1 mumol kg-1 hr-1, respectively; the corresponding ID50 values were 0.002, 0.008, and 0.01 mumol kg-1 hr-1. YF476 was selected for further analysis. It produced a rightward shift of the gastrin dose-response curve, consistent with competitive inhibition. Moreover, it antagonized the omeprazole-evoked histidine decarboxylase activation and the gastrin- and omeprazole-induced rise in the circulating pancreastatin concentration. None of the three drugs tested inhibited gastric emptying or prevented the cholecystokinin-8s-induced inhibition of gastric emptying at the doses tested. The results show that YF476, JB93182 and AG041R are potent and selective cholecystokinin-B/ gastrin receptor antagonists, and that YF476 is 4-5 times more potent than JB93182 and AG041R.

  13. The M1 family of vertebrate aminopeptidases: role of evolutionarily conserved tyrosines in the enzymatic mechanism of aminopeptidase B.

    PubMed

    Cadel, Sandrine; Darmon, Cécile; Pernier, Julien; Hervé, Guy; Foulon, Thierry

    2015-02-01

    Aminopeptidase B (Ap-B), a member of the M1 family of Zn(2+)-aminopeptidases, removes basic residues at the NH2-terminus of peptides and is involved in the in vivo proteolytic processing of miniglucagon and cholecystokinin-8. M1 enzymes hydrolyze numerous different peptides and are implicated in many physiological functions. As these enzymes have similar catalytic mechanisms, their respective substrate specificity and/or catalytic efficiency must be based on subtle structural differences at or near the catalytic site. This leads to the hypothesis that each primary structure contains a consensus structural template, strictly necessary for aminopeptidase activity, and a specific amino acid environment localized in or outside the catalytic pocket that finely tunes the substrate specificity and catalytic efficiency of each enzyme. A multiple sequence alignment of M1 peptidases from vertebrates allowed to identify conserved tyrosine amino acids, which are members of this catalytic backbone. In the present work, site-directed mutagenesis and 3D molecular modeling of Ap-B were used to specify the role of four fully (Y281, Y229, Y414, and Y441) and one partially (Y409) conserved residues. Tyrosine to phenylalanine mutations allowed confirming the influence of the hydroxyl groups on the enzyme activity. These groups are implicated in the reaction mechanism (Y414), in substrate specificity and/or catalytic efficiency (Y409), in stabilization of essential amino acids of the active site (Y229, Y409) and potentially in the maintenance of its structural integrity (Y281, Y441). The importance of hydrogen bonds is verified by the Y229H substitution, which preserves the enzyme activity. These data provide new insights into the catalytic mechanism of Ap-B in the M1 family of aminopeptidases.

  14. Effects of Oxidative Alcohol Metabolism on the Mitochondrial Permeability Transition Pore and Necrosis in a Mouse Model of Alcoholic Pancreatitis

    PubMed Central

    SHALBUEVA, NATALIA; MARENINOVA, OLGA A.; GERLOFF, ANDREAS; YUAN, JINGZHEN; WALDRON, RICHARD T.; PANDOL, STEPHEN J.; GUKOVSKAYA, ANNA S.

    2013-01-01

    BACKGROUND & AIMS Opening of the mitochondrial permeability transition pore (MPTP) causes loss of the mitochondrial membrane potential (ΔΨm) and, ultimately, adenosine triphosphate depletion and necrosis. Cells deficient in cyclophilin D (CypD), a component of the MPTP, are resistant to MPTP opening, loss of ΔΨm, and necrosis. Alcohol abuse is a major risk factor for pancreatitis and is believed to sensitize the pancreas to stressors, by poorly understood mechanisms. We investigated the effects of ethanol on the pancreatic MPTP, the mechanisms of these effects, and their role in pancreatitis. METHODS We measured ΔΨm in mouse pancreatic acinar cells incubated with ethanol alone and in combination with physiologic and pathologic concentrations of cholecystokinin-8 (CCK). To examine the role of MPTP, we used ex vivo and in vivo models of pancreatitis, induced in wild-type and CypD−/− mice by a combination of ethanol and CCK. RESULTS Ethanol reduced basal ΔΨm and converted a transient depolarization, induced by physiologic concentrations of CCK, into a sustained decrease in ΔΨm, resulting in reduced cellular adenosine triphosphate and increased necrosis. The effects of ethanol and CCK were mediated by MPTP because they were not observed in CypD−/− acinar cells. Ethanol and CCK activated MPTP through different mechanisms— ethanol by reducing the ratio of oxidized nicotinamide adenine dinucleotide to reduced nicotinamide adenine dinucleotide, as a result of oxidative metabolism, and CCK by increasing cytosolic Ca2+. CypD−/− mice developed a less-severe form of pancreatitis after administration of ethanol and CCK. CONCLUSIONS Oxidative metabolism of ethanol sensitizes pancreatic mitochondria to activate MPTP, leading to mitochondrial failure; this makes the pancreas susceptible to necrotizing pancreatitis. PMID:23103769

  15. Viability and functional integrity of washed platelets

    SciTech Connect

    Pineda, A.A.; Zylstra, V.W.; Clare, D.E.; Dewanjee, M.K.; Forstrom, L.A.

    1989-07-01

    The viability and functional integrity of saline- and ACD-saline-washed platelets were compared with those of unwashed platelets. After template bleeding time (TBT) was measured, 15 healthy volunteers underwent plateletpheresis and ingested 600 mg of aspirin. Autologous /sup 111/In-labeled platelets were transfused: unwashed (n = 5), washed with 0.9 percent saline solution (SS) (n = 5), and washed with a buffered 12.6 percent solution of ACD-A in 0.9 percent saline solution (n = 5). After transfusion, we measured TBT at 1, 4, and 24 hours; platelet survival at 10 minutes and 1, 4, and 24 hours and daily for 6 days; and the percentage of uptake in liver and spleen by quantitative whole-body radionuclide scintigraphy at 24 and 190 hours. We found that saline washing affected platelet recovery, 23.47 +/- 12 percent (p less than 0.001) as compared to 52.43 +/- 17 percent (p less than 0.002) for ACD-saline and 73.17 +/- 8 percent for control; that saline washing resulted in a greater liver uptake than control and ACD-saline-washed platelets (31.9 +/- 8% (p less than 0.001) vs 17.7 +/- 4.1 and 19.3 +/- 2.1% (p greater than 0.1), respectively); that, unlike control and ACD-saline-washed platelets, saline-washed platelets did not shorten bleeding time; and that neither type of washing affected survival. Although ACD-saline washing affects recovery, it also results in intact function, normal survival, higher recovery than SS platelets, and no significant liver uptake.

  16. Site-specific conjugation of chain-terminal chelating polymers to Fab' fragments of anti-CEA mAb: effect of linkage type and polymer size on conjugate biodistribution in nude mice bearing human colorectal carcinoma.

    PubMed

    Slinkin, M A; Curtet, C; Sai-Maurel, C; Gestin, J F; Torchilin, V P; Chatal, J F

    1992-01-01

    Polylysine-based chelating polymers were used for site-specific modification of anti-CEA mAb Fab' fragments via their SH group distal to the antigen-binding site of the antibody molecule. Conjugation was performed using chain-terminal (pyridyldithio)propionate or 4-(p-maleimidophenyl)butyrate moieties to form reducible (S-S) or stable (S-C) bonds between a polymer and Fab' molecule, respectively. One S-S conjugate (S-S9) and two different S-C conjugates (S-C3 and S-C9) were prepared using 3- and 9-kDa molecular weight polymers. No significant loss of immunoreactivity was observed in solid-phase immunoassay, 90-95% of 111In-labeled conjugates being bound to CEA-coated Sepharose beads. After labeling with 111In, the conjugates had a specific radioactivity of 90-120 microCi/micrograms. Injected in nude mice bearing LS 174T carcinoma, the conjugates produced different biodistribution patterns. S-S9 was practically unable to accumulate in tumor and produced very rapid blood clearance of radioactivity and high uptake of radioactivity in liver, spleen, and especially kidneys (225% ID/g 24 h postinjection). S-C3 and S-C9 produced practically the same blood clearances (much slower than that of S-S9) and significant tumor uptake (9-10% ID/g at 24 h). S-C3 gave significantly lower radioactivity in spleen, skin, and bones, and cleared more rapidly from liver and kidneys. Renal uptake for S-C3 and S-C9 was rather high (45% ID/g at 24 h), but much lower than for S-S9.

  17. Color Doppler ultrasound and gamma imaging of intratumorally injected 500 nm iron-silica nanoshells.

    PubMed

    Liberman, Alexander; Wu, Zhe; Barback, Christopher V; Viveros, Robert; Blair, Sarah L; Ellies, Lesley G; Vera, David R; Mattrey, Robert F; Kummel, Andrew C; Trogler, William C

    2013-07-23

    Perfluoropentane gas filled iron-silica nanoshells have been developed as stationary ultrasound contrast agents for marking tumors to guide surgical resection. It is critical to establish their long-term imaging efficacy, as well as biodistribution. This work shows that 500 nm Fe-SiO2 nanoshells can be imaged by color Doppler ultrasound over the course of 10 days in Py8119 tumor bearing mice. The 500 nm nonbiodegradable SiO2 and biodegradable Fe-SiO2 nanoshells were functionalized with diethylenetriamine pentaacetic acid (DTPA) ligand and radiolabeled with (111)In(3+) for biodistribution studies in nu/nu mice. The majority of radioactivity was detected in the liver and kidneys following intravenous (IV) administration of nanoshells to healthy animals. By contrast, after nanoshells were injected intratumorally, most of the radioactivity remained at the injection site; however, some nanoshells escaped into circulation and were distributed similarly as those given intravenously. For intratumoral delivery of nanoshells and IV delivery to healthy animals, little difference was seen between the biodistribution of SiO2 and biodegradable Fe-SiO2 nanoshells. However, when nanoshells were administered IV to tumor bearing mice, a significant increase was observed in liver accumulation of SiO2 nanoshells relative to biodegradable Fe-SiO2 nanoshells. Both SiO2 and Fe-SiO2 nanoshells accumulate passively in proportion to tumor mass, during intravenous delivery of nanoshells. This is the first report of the biodistribution following intratumoral injection of any biodegradable silica particle, as well as the first report demonstrating the utility of DTPA-(111)In labeling for studying silica nanoparticle biodistributions.

  18. Neutrophil accumulation in experimental myocardial infarcts: relation with extent of injury and effect of reperfusion

    SciTech Connect

    Chatelain, P.; Latour, J.G.; Tran, D.; de Lorgeril, M.; Dupras, G.; Bourassa, M.

    1987-05-01

    The effects of reperfusion on the myocardial accumulation of neutrophils and their role in the extent of injury were investigated in a canine preparation with a 3 hr coronary occlusion followed by 21 hr of reperfusion. The left anterior descending coronary artery (LAD) was permanently occluded in group 1 and reperfused after 3 hr in four others (groups 2 to 5). All but group 5 received lidocaine (1 mg/min over 8 hr). A critical stenosis was produced and left in place at reperfusion only in group 2. In groups 1 and 2, /sup 111/In-labeled autologous neutrophils were injected at the time of coronary occlusion. Group 4 animals were rendered leukopenic 2 hr before the coronary ligature and throughout the experiment by injection of an antineutrophil rabbit serum. Quantification of the radioactivity by digitized scintigraphy of the heart slices revealed an 80% increase in neutrophil accumulation in the infarct region after reperfusion (group 2) as compared with permanent occlusion (group 1). Gamma counting of myocardial tissue samples showed that the neutrophil accumulation ratio in the subendocardial central zone of the infarct was increased five times by reperfusion, whereas no difference was evident in the subepicardium. Infarct size and myocardial area at risk were not statistically different among the five groups. However LAD flow in the leukopenic group (group 4) was significantly higher 30 min after reperfusion (40.0 +/- 5 ml/min) when compared with the preocclusion value (21.7 +/- 4 ml/min). In contrast, in a parallel experiment without leukopenia (group 3), LAD flow after reperfusion did not differ from the preocclusion value.

  19. Effect of intravascular neutrophil chemotactic factors on blood neutrophil and platelet kinetics

    SciTech Connect

    Issekutz, A.C.; Ripley, M.

    1986-02-01

    Intravenous infusion of an analogue (f-met-leu-phe (FMLP)) of a bacterial-derived polymorphonuclear leukocyte (PMNL) chemotactic factor, or of the complement-derived chemotactic stimulus, zymosan-activated plasma (ZAP, containing C5ades Arg) into rabbits induces acute PMNL margination in the pulmonary vasculature. The pulmonary PMNL sequestration is accompanied by thrombocytopenia. Because of the role platelets and PMNLs play in hemostasis and defense against infection, we studied the fate of these blood elements following sequestration induced by chemotactic factors. By employing 111In-labelled platelets and external radioisotope scanning, platelets were found to sequester in the pulmonary vasculature during FMLP infusion. Simultaneous 51Cr PMNL and 111In-platelet studies showed that following sequestration, PMNLs returned to the circulation and disappeared with a normal half-life (T1/2) whereas the T1/2 of the platelets was markedly shortened (T1/2 of control = 49 +/- 3.0 hr; FMLP or ZAP infused T1/2 = 27 +/- 2.7 hr). Infusion of platelet-activating factor (PAF) induced PMN and platelet sequestration with similar abnormalities in platelet kinetics. Studies with 51Cr- and 14C-serotonin-labelled platelets showed that platelets did not release serotonin during FMLP, ZAP, or low dose PAF-induced sequestration. In contrast to platelet survival, platelet size, platelet aggregation responses, and platelet glycoproteins were not affected by transient sequestration. These results indicate that during PMNL margination induced by relatively pure PMNL stimuli such as FMLP, platelets may reversibly marginate and subsequently be cleared at an accelerated rate. The reason for accelerated platelet clearance is not a result of circulating platelet aggregates or detectable proteolytic modification of membrane glycoproteins.

  20. Detection of rejection of canine orthotopic cardiac allografts with indium-111 lymphocytes and gamma scintigraphy

    SciTech Connect

    Eisen, H.J.; Rosenbloom, M.; Laschinger, J.C.; Saffitz, J.E.; Cox, J.L.; Sobel, B.E.; Bolman, R.M. III; Bergmann, S.R.

    1988-07-01

    Previous studies have demonstrated the feasibility of detecting canine heterotopic cardiac allograft rejection scintigraphically after administration of 111In lymphocytes. To determine whether the approach is capable of detecting rejection in orthotopic cardiac transplants in which labeled lymphocytes circulating in the blood pool may reduce sensitivity, the present study was performed in which canine orthotopic cardiac transplants were evaluated in vivo. Immunosuppression was maintained with cyclosporine A (10-20 mg/kg/day) and prednisone (1 mg/kg/day) for 2 wk after transplantation. Subsequently, therapy was tapered. Five successful allografts were evaluated scintigraphically every 3 days after administration of 100-350 microCi 111In autologous lymphocytes. Correction for labeled lymphocytes circulating in the blood pool, but not actively sequestered in the allografts was accomplished by administering 3-6 mCi 99mTc autologous erythrocytes and employing a previously validated blood-pool activity correction technique. Cardiac infiltration of labeled lymphocytes was quantified as percent indium excess (%IE), scintigraphically detectable 111In in the transplant compared with that in blood, and results were compared with those of concomitantly performed endomyocardial biopsy. Scintigraphic %IE for hearts not undergoing rejection manifest histologically was 0.7 +/- 0.4. Percent IE for rejecting hearts was 6.8 +/- 4.0 (p less than 0.05). Scintigraphy detected each episode of rejection detected by biopsy. Scintigraphic criteria for rejection (%IE greater than 2 s.d. above normal) were not manifest in any study in which biopsies did not show rejection. Since scintigraphic results with 111In-labeled lymphocytes were concordant with biopsy results in orthotopic cardiac transplants, noninvasive detection of graft rejection in patients should be attainable with the approach developed.

  1. Noninvasive detection of rejection of transplanted hearts with indium-111-labeled lymphocytes

    SciTech Connect

    Eisen, H.J.; Eisenberg, S.B.; Saffitz, J.E.; Bolman, R.M. 3d.; Sobel, B.E.; Bergmann, S.R.

    1987-04-01

    To determine whether cardiac transplant rejection can be detected noninvasively with indium-111 (/sup 111/In)-labeled lymphocytes, we studied 11 dogs with thoracic heterotopic cardiac transplants without immunosuppression and five dogs with transplants treated with cyclosporine (10 mg/kg/day) and prednisone (1 mg/kg/day). All were evaluated sequentially with gamma scintigraphy after administration of 150 to 350 muCi of autologous /sup 111/In-lymphocytes. Technetium-99m-labeled red blood cells (1 to 3 mCi) were used for correction of radioactivity in the blood pool attributable to circulating labeled lymphocytes. Lymphocyte infiltration was quantified as the ratio of indium in the myocardium of the transplant or native heart compared with that in blood (indium excess, IE). Results were correlated with mechanical and electrical activity of allografts and with histologic findings in sequential biopsy specimens. In untreated dogs (n = 11), IE was 15.5 +/- 7.0 (SD) in transplanted hearts undergoing rejection and 0.4 +/- 1.1 in native hearts on the day before animals were killed. In dogs treated with cyclosporine and prednisone (n = 5), IE was minimal in allografts during the course of immunosuppression (0.8 +/- 0.4) and increased to 22.9 +/- 11.1 after immunosuppression was stopped. Scintigraphic criteria of rejection (IE greater than 2 SD above that in native hearts) correlated with results of biopsies indicative of rejection and appeared before electrophysiologic or mechanical manifestations of dysfunction. Thus infiltration of labeled lymphocytes in allografts, indicative of rejection, is detectable noninvasively by gamma scintigraphy and provides a sensitive approach potentially applicable to clinical monitoring for early detection of rejection and guidance for titration of immunosuppressive measures.

  2. Use of indium-111-labeled cells in measurement of cellular dynamics of experimental cardiac allograft rejection

    SciTech Connect

    Oluwole, S.; Wang, T.; Fawwaz, R.; Satake, K.; Nowygrod, R.; Reemtsma, K.; Hardy, M.A.

    1981-01-01

    This study evaluates the kinetics and utility of infused indium-111-labeled cells in detecting rejection in ACI to Lewis rat heart allografts. Syngeneic leukocytes, lymph node lymphocytes, and platelets were isolated and labeled with indium-111 (/sup 111/In) oxine, respectively, and were infused i.v. into Lewis rats carrying beating ACI or syngeneic hearts from post-transplant days 0 to 6. Recipients were imaged serially at 24 hr after infusion of labeled cells followed by excision of both native and transplanted hearts for direct isotope count. Labeled leukocytes accumulative progressively in the allograft with the scan becoming positive by post-transplant day 4. The ratio of allograft to native heart isotope counts rose from 1.25 on day 1 to 10.07 (P less than 0.0001) on day 7. The Lewis recipients infused with labeled lymphocytes showed a positive scan on days 6 and 7 whereas the allograft to native heart isotope count ratio rose from 0.97 on day 1 to 5.33 (P less than 0.001) on day 7. Recipients infused with /sup 111/In-labeled platelets showed a positive scan on days 5 to 7 and the allograft to native heart isotope count ratio rose sharply from 2.56 on day 4 to 16.98 (P less than 0.005) on day 7. Syngeneic heart grafts failed to demonstrate significant accumulation of any of the labeled cell population. These studies confirm the importance of nonlymphocytic cells in cellular rejection, evaluate the kinetics of graft invasion by the various cell types, and suggest that the techniques used afford a method for a safe and an early detection of allograft rejection.

  3. Development of Molecular Probes Based on Iron Oxide Nanoparticles for in Vivo Magnetic Resonance/Photoacoustic Dual Imaging of Target Molecules in Tumors.

    PubMed

    Sano, Kohei

    2017-01-01

     Molecular imaging probes that enable seamless diagnoses of tumors in the preoperative and intraoperative stages could lead to surgical resection of tumors based on highly accurate diagnoses. Because iron oxide nanoparticles (IONPs) have high proton relaxivity and high molar extinction coefficients suitable for magnetic resonance imaging (MRI) and photoacoustic imaging, respectively, we planned to develop molecular imaging probes applicable to the pre- (MRI) and intraoperative (photoacoustic imaging) stages. Human epidermal growth factor receptor 2 (EGFR2; HER2) was selected as a target molecule, and we designed IONPs (20, 50, and 100 nm) conjugated with anti-HER2 moieties [whole IgG (trastuzumab), single-chain fragment variable (scFv), and peptide] for HER2-targeted tumor imaging. Among the probes tested, scFv-conjugated IONPs (scFv-IONPs) (20 nm) exhibited the highest binding affinity to HER2 (Kd=0.01 nM). An in vivo biodistribution study using (111)In-labeled probes demonstrated that more scFv-IONPs (20 nm) accumulated in HER2-positive than in HER2-negative tumors, suggesting that the uptake of scFv-IONPs is HER2 specific. The scFv-IONPs (20 nm) showed high proton relaxivity and a probe concentration-dependent photoacoustic signal. In vivo MR/photoacoustic imaging studies using scFv-IONPs (20 nm) facilitated HER2-specific visualization of tumors. Furthermore, an iron-staining study demonstrated that the uptake of scFv-IONPs was notable only in HER2-positive tumors. These results suggest that scFv-IONPs (20 nm) may be useful for MR/photoacoustic dual imaging, which could achieve seamless diagnoses in the preoperative and intraoperative stages.

  4. Thromboembolic potential of synthetic vascular grafts in baboons

    SciTech Connect

    Schneider, P.A.; Kotze, H.F.; Heyns, A.D.; Hanson, S.R.

    1989-07-01

    We have compared in baboons the capacity of two types of synthetic vascular grafts to accumulate thrombus, activate circulating platelets, and generate occlusive platelet microemboli. Grafts were incorporated into femoral arterial-arterial shunts placed unilaterally in 10 baboons; the unoperated contralateral limbs served as controls. The accumulation of indium 111 (111In)-labeled platelets onto the grafts (expanded polytetrafluoroethylene (ePTFE) or knitted Dacron, 4 mm inner diameter) and the appearance of 111In radioactivity in distal microcirculatory beds (calf and foot) were quantified by dynamic scintillation camera imaging. After 1 hour total platelet deposition per graft was higher with Dacron (49.0 +/- 8.0 x 10(9) platelets) than with ePTFE (3.7 +/- 0.6 x 10(9) platelets, p less than 0.01). Platelet counts decreased and beta-thromboglobulin levels increased with Dacron graft placement but were unaffected by ePTFE graft placement (p less than 0.05 and p less than 0.01, respectively). Emboli shed from Dacron grafts were detected as multifocal, irregular, and changing deposits in the calves and feet. Indium 111 platelet activity in the feet distal to the Dacron grafts increased 81.1% +/- 21.4% from baseline values over 1 hour, whereas the activities in the feet distal to the ePTFE grafts were unchanged (p less than 0.05). The increase 111In-platelet radioactivity above the control limb values (excess radioactivity) was higher for the Dacron graft group than for the ePTFE group in both the feet (139.6% +/- 46.9% vs 6.2%, p less than 0.05) and the calves (86.7% +/- 21.7% vs 7.3% +/- 3.6%, p less than 0.05).

  5. Imaging focal sites of bacterial infection in rats with indium-111-labeled chemotactic peptide analogs

    SciTech Connect

    Fischman, A.J.; Pike, M.C.; Kroon, D.; Fucello, A.J.; Rexinger, D.; ten Kate, C.; Wilkinson, R.; Rubin, R.H.; Strauss, H.W. )

    1991-03-01

    Four DTPA-derivatized chemotactic peptide analogs: ForNleLFNleYK-DTPA (P1), ForMLFNH(CH2)6NH-DTPA (P2), ForNleLFK(NH2)-DTPA (P3), and ForNleLFK-DTPA (P4), were synthesized and evaluated for in vitro bioactivity and receptor binding. The peptides were radiolabeled with 111In by transchelation and their biodistribution determined in rats at 5, 30, 60 and 120 min after injection. Localization at sites of infection was determined by scintillation camera imaging in animals with deep-thigh infection due to Escherichia coli. Images were recorded from 5 min to 2 hr after injection. All peptides maintained biologic activity (EC50 for O2-production by human PMN's: 3-150 nM) and the ability to bind to the oligopeptide chemoattractant receptor on human PMN's (EC50 for binding: 7.5-50 nM); biologic activity and receptor binding were highly correlated (r = 0.99). For all the peptides, blood clearance was rapid (half-lives: 21.5, 33.1, 31.6, and 28.7 min for P1, P2, P3, and P4, respectively). Biodistributions of the individual peptides were similar with low levels of accumulation in the heart, lung, liver, spleen, and gastrointestinal tract. In the kidney, P1 had much greater accumulation than other organs. All peptides yielded high quality images of the infection sites within 1 hr of injection. This study demonstrates that 111In-labeled chemotactic peptide analogs were effective agents for the external imaging of focal sites of infection.

  6. Treatment of Severe Chronic Graft-Versus-Host Disease with Decidual Stromal Cells and Tracing with 111Indium Radiolabeling

    PubMed Central

    Kaipe, Helen; Nava, Silvia; Molldén, Pia; Gustafsson, Britt; Axelsson, Rimma; Ringdén, Olle

    2015-01-01

    Decidual stromal cells (DSCs) isolated from fetal membranes of term placentas are easily expanded and are highly immunosuppressive in vitro. These cells express high levels of integrins that are of importance in homing to inflamed tissues. In this study, we investigated DSCs as a cellular therapy for chronic graft-versus-host disease (cGvHD), a severe complication after allogeneic hematopoietic stem cell transplantation. Subsequent to transplantation, three patients developed severe extensive cGvHD and were treated with DSCs (1–2.8×106 cells/kg). One-third of the DSCs administered to two patients were labeled with 111Indium, and the in vivo distribution was tracked for 48 h. The 111In-labeled DSCs were initially located in the lungs, followed by dissemination to the liver and spleen. The DSCs induced a partial response in two of the patients. Blood samples from the patients were extensively evaluated by flow cytometry, luminex, and enzyme-linked immunosorbent assay. The nonresponder had the highest proportion of T-cells with Th17 and Th2 phenotypes and the highest median plasma concentrations of IL-17 and IL-4. The same patient also had high frequencies of HLA-DR+ T-cells and regulatory T-cells. To conclude, DSCs are safe to infuse with no adverse effects. We determined how stromal cells are distributed in vivo after infusion in a cGvHD setting. The methods established for analysis of blood samples will be useful in determining the effect of DSCs in a study comprising a larger patient material. This pilot study may provide a basis for further controlled investigations with DSCs in a clinical setting. PMID:25162829

  7. Spacial and temporal profiles of neutrophil accumulation in the reperfused ischemic myocardium.

    PubMed

    de Lorgeril, M; Rousseau, G; Basmadjian, A; St-Jean, G; Tran, D C; Latour, J G

    1990-01-01

    To elucidate further the pathogenic role of neutrophils in evolving reperfused myocardial infarction, we investigated the dynamics of their accumulation and distribution in the ischemic myocardium. The left anterior descending coronary artery was occluded in dogs for 2 hours followed by reperfusion for 0, 3, 6, or 24 hours. 111In-labeled neutrophils were injected at the time of occlusion or after 16 hours of reperfusion. The area at risk was similar among groups. Infarct size expressed in percent of the area at risk was identical between groups reperfused for 6 (35.2 +/- 4.4%) or 24 (32.3 +/- 3.9%) hours but smaller (22.0 +/- 4.4%; p less than 0.05) after 3 hours of reperfusion. 111In-neutrophils accumulation quantified by scintigraphy correlated positively with infarct size (r = 0.64, p less than 0.005); accumulation rates (cells/h/cm2MI) were high during the first 3 (2288 +/- 754) and 6 hours (1953 +/- 463) but low (490 +/- 192) between 16 and 24 hours of reperfusion. Cells accumulating during reperfusion (12,566 +/- 2307 cells/g at 3 hours) were found within the borders of the necrotic area, and the cell counts (2420 +/- 724 cells/g, p less than 0.05) in the live tissue located within the area at risk after 3 hours of reperfusion were similar to those found in the subepicardium at the onset of reperfusion: (2240 +/- 571 cells/g). Only a few cells were detected in the normally perfused myocardium (67 +/- 33 cells/g). We conclude that reperfusion accumulation in the ischemic myocardium; the reaction takes place within 3-6 hours of reperfusion, a period of time where infarct size is growing by about 40%. These results support the concept that leukocytes may play a pathogenic role on infarct size in models with brief ischemia followed by reperfusion.

  8. Roles of thrombin and platelet membrane glycoprotein IIb/IIIa in platelet-subendothelial deposition after angioplasty in an ex vivo whole artery model

    SciTech Connect

    Kaplan, A.V.; Leung, L.L.; Leung, W.H.; Grant, G.W.; McDougall, I.R.; Fischell, T.A. )

    1991-09-01

    Platelet deposition at the site of injury caused by balloon angioplasty is associated with acute closure and restenosis. In a new ex vivo whole artery angioplasty model, the authors examined the roles of thrombin inhibition with D-Phe-Pro-ArgCH2Cl (PPACK) and inhibition of the platelet membrane fibrinogen receptor glycoprotein IIb/IIIa (GPIIb/IIIa) with monoclonal antibody 7E3 on platelet deposition at the site of balloon injury. Fresh rabbit aortas were mounted in a perfusion chamber. One half of the mounted arterial segment was dilated with a standard angioplasty balloon catheter and the uninjured half served as the control segment. The vessels were perfused with human blood at physiological pressure and shear rates of 180-250 second-1 for 30 minutes. Platelet deposition was measured using 111In-labeled platelets and scanning electron microscopy. With heparin (2 units/ml) anticoagulation, 8.2 {plus minus} 2.2 {times} 10(6) platelets/cm2 were deposited at the site of balloon injury compared with 0.7 {plus minus} 0.2 {times} 10(6) platelets/cm2 on uninjured segments (p less than 0.02, n = 7). PPACK was tested at a concentration (10 microM) that totally inhibited platelet aggregation in response to thrombin. 7E3 was tested at a concentration (10 micrograms/ml) that totally inhibited platelet aggregation. Platelet deposition at the site of balloon injury was reduced 47% by PPACK and 70% by 7E3 compared with heparin. At shear rates seen in nonstenotic coronary arteries, PPACK and 7E3 are more effective than heparin in reducing platelet deposition at the site of balloon injury. The significant inhibition of platelet deposition by PPACK demonstrates the importance of heparin-resistant thrombin in platelet thrombus formation.

  9. Suppression by intradermal administration of heparin of eosinophil accumulation but not oedema formation in inflammatory reactions in guinea-pig skin.

    PubMed Central

    Teixeira, M. M.; Hellewell, P. G.

    1993-01-01

    1. Heparin is widely used in the treatment of thrombotic disorders and as an aid in surgery. Anti-inflammatory effects of heparin have also been described. In this study, we have investigated the effects of locally-injected heparin on the oedema formation and eosinophil accumulation induced by various inflammatory stimuli in guinea-pig skin. 2. Heparin dose-dependently suppressed the accumulation of 111In-labelled eosinophils induced by i.d. injection of zymosan-activated plasma (ZAP). The 111In-eosinophil accumulation induced by other inflammatory stimuli (compound 48/80, platelet activating factor, interleukin-8 and in a passive cutaneous anaphylaxis reaction) was also suppressed by locally-injected heparin. 3. Oedema formation in response to these same stimuli was not altered by the local injection of heparin. 4. Fucoidin, a negatively-charged sulphated algal polymer, had no effect on the 111In-eosinophil accumulation or oedema formation induced by ZAP. Nevertheless, fucoidin significantly suppressed the oedema formation induced by i.d. injection of cationic protein-containing extracts of Schistosoma mansoni larvae. Heparin also inhibited oedema induced by the extracts, suggesting that both fucoidin and heparin were effectively neutralizing the cationic protein of the extracts to inhibit their oedema-inducing activity. 5. Thus, heparin significantly inhibited the accumulation of 111In-eosinophils, but not oedema formation, induced by various inflammatory stimuli. This, taken together with the lack of effect of fucoidin, suggests that heparin interferes with the process of eosinophil trafficking by a mechanism that does not depend on neutralisation of the charge of the stimulatory molecules. PMID:8306092

  10. Combination of External Beam Radiotherapy (EBRT) With Intratumoral Injection of Dendritic Cells as Neo-Adjuvant Treatment of High-Risk Soft Tissue Sarcoma Patients

    SciTech Connect

    Finkelstein, Steven E.; Iclozan, Cristina; Bui, Marilyn M.; Cotter, Matthew J.; Ramakrishnan, Rupal; Ahmed, Jamil; Noyes, David R.; Cheong, David; Gonzalez, Ricardo J.; Heysek, Randy V.; Berman, Claudia; Lenox, Brianna C.; Janssen, William; Zager, Jonathan S.; Sondak, Vernon K.; Letson, G. Douglas; Antonia, Scott J.; Gabrilovich, Dmitry I.

    2012-02-01

    Purpose: The goal of this study was to determine the effect of combination of intratumoral administration of dendritic cells (DC) and fractionated external beam radiation (EBRT) on tumor-specific immune responses in patients with soft-tissue sarcoma (STS). Methods and Material: Seventeen patients with large (>5 cm) high-grade STS were enrolled in the study. They were treated in the neoadjuvant setting with 5,040 cGy of EBRT, split into 28 fractions and delivered 5 days per week, combined with intratumoral injection of 10{sup 7} DCs followed by complete resection. DCs were injected on the second, third, and fourth Friday of the treatment cycle. Clinical evaluation and immunological assessments were performed. Results: The treatment was well tolerated. No patient had tumor-specific immune responses before combined EBRT/DC therapy; 9 patients (52.9%) developed tumor-specific immune responses, which lasted from 11 to 42 weeks. Twelve of 17 patients (70.6%) were progression free after 1 year. Treatment caused a dramatic accumulation of T cells in the tumor. The presence of CD4{sup +} T cells in the tumor positively correlated with tumor-specific immune responses that developed following combined therapy. Accumulation of myeloid-derived suppressor cells but not regulatory T cells negatively correlated with the development of tumor-specific immune responses. Experiments with {sup 111}In labeled DCs demonstrated that these antigen presenting cells need at least 48 h to start migrating from tumor site. Conclusions: Combination of intratumoral DC administration with EBRT was safe and resulted in induction of antitumor immune responses. This suggests that this therapy is promising and needs further testing in clinical trials design to assess clinical efficacy.

  11. EGF-coated gold nanoparticles provide an efficient nano-scale delivery system for the molecular radiotherapy of EGFR-positive cancer

    PubMed Central

    Song, Lei; Falzone, Nadia; Vallis, Katherine A.

    2016-01-01

    Abstract Purpose Radiolabeled antibodies and peptides hold promise for molecular radiotherapy but are often limited by a low payload resulting in inadequate delivery of radioactivity to tumour tissue and, therefore, modest therapeutic effect. We developed a facile synthetic method of radiolabeling indium-111 (111In) to epidermal growth factor (EGF)-gold nanoparticles (111In-EGF-Au NP) with a high payload. Materials and methods EGF-Au NP were prepared via an interaction between gold and the disulphide bonds of EGF and radiolabeled using 111InCl3. Targeting efficiency was investigated by quantitating internalized radioactivity and by confocal imaging following exposure of MDA-MB-468 (1.3 × 106 EGFR/cell) and MCF-7 (104 EGFR/cell) cells to Cy3-EGF-Au NP. Cytotoxicity was evaluated in clonogenic assays. Results The proportion of total administered radioactivity that was internalized by MDA-MB-468 and MCF-7 cells was 15% and 1.3%, respectively (mixing ratio of EGF:Au of 160). This differential uptake in the two cell lines was confirmed using confocal microscopy. 111In-EGF-Au NP were significantly more radiotoxic to MDA-MB-468 than MCF-7 cells with a surviving fraction of 17.1 ± 4.4% versus 89.8 ± 1.4% (p < 0.001) after exposure for 4 h. Conclusions An 111In-labeled EGF-Au nanosystem was developed. It enabled targeted delivery of a high 111In payload specifically to EGFR-positive cancer cells leading to radiotoxicity that can be exploited for molecularly targeted radiotherapy. PMID:26999580

  12. The effect of alpha-interferon on bone marrow megakaryocytes and platelet production rate in essential thrombocythemia

    SciTech Connect

    Wadenvik, H.; Kutti, J.; Ridell, B.; Revesz, P.; Jacobsson, S.; Magnusson, B.; Westin, J.; Vilen, L. )

    1991-05-15

    In 10 patients with previously untreated essential thrombocythemia (ET), by using {sup 111}In-labeled platelets and megakaryocyte morphometry, the relation between platelet production rate and bone marrow megakaryocytes was evaluated before and during alpha-2b-interferon (IFN) therapy. A highly significant decrease in platelet count occurred during IFN therapy; the platelet counts, at baseline and after 2 and 6 months of IFN therapy, were 1,102 +/- 345 x 10(9)/L, 524 +/- 169 x 10(9)/L (P less than .0001), and 476 +/- 139 x 10(9)/L (P less than .0001), respectively. The decrement in platelet count was mainly a result of diminished platelet production rate, which at baseline and after 2 and 6 months of IFN therapy was 89 +/- 30 x 10(10) platelets/d, 53 +/- 18 x 10(10) platelets/d (P = .0033), and 45 +/- 20 x 10(10) platelets/d (P less than .0001), respectively. Also, a slight shortening of platelet mean life-span (MLS) was observed in response to IFN treatment; platelet MLS was 7.96 +/- 0.69 days at baseline and 6.68 +/- 1.30 days (P = .012) after 6 months of IFN therapy. IFN induced a significant decrease in bone marrow megakaryocyte volume; both megakaryocyte nuclear and cytoplasmatic volumes were affected. The mean megakaryocyte volume was 372 +/- 126 x 10(2) pL/microL at baseline and 278 +/- 147 x 10(2) pL/microL (P = .049) after 6 months of IFN therapy. However, the number of megakaryocytes did not show any significant change in response to IFN. It is concluded that alpha-IFN reduces platelet production rate and the peripheral platelet count in ET mainly through an anti-proliferative action on the megakaryocytes and to a considerably lesser degree by a shortening of platelet MLS.

  13. Adhesion of leucocytes onto polytetrafluoroethylene (PTFE) vascular grafts and the effect of low molecular weight dextran (LMWD).

    PubMed

    al-Huneidi, W; Owunwanne, A; Christenson, J T

    1990-01-01

    Platelets are known to interact with the surface of synthetic grafts. In the present study we have investigated another blood constituent, the white blood cell, to evaluate the contribution of leucocyte adhesion onto synthetic vascular graft surfaces. Furthermore the effect of low molecular weight dextran (LMWD) was evaluated in vivo. Polytetrafluoroethylene (PTFE) grafts were interpositioned in the femoral circulation in 12 healthy adult sheep. Autologous leucocytes were labelled with Indium-111-oxine and re-injected i.v. after purity and functional evaluation. Graft uptake of 111In-labelled leucocytes were studied continuously for 2.5 hours and two consecutive days using a gamma camera. Six animals received LMWD, 15 ml/h, i.v. infusion during the first day while the other six animals were infused with normal saline in the same amount and rate (controls). The labelled leucocytes showed normal phagocytosis of bacterias and the leucocyte purity was 74 +/- 6%. There was a rapid increase in graft activity initially. In control animals a continuous increase of graft activity was observed throughout the experiment. In the LMWD-treated animals graft activity remained on a steady level after the initial built up of activity and after 2.5 hours there was a highly significant difference between the groups, p less than 0.001. These differences were confirmed by in vitro activity measurement, autoradiography and histological examination of the grafts at the end of the experiment. It was concluded that leucocyte adhesion onto the surface of PTFE grafts occur during the early period after implantation and could therefore be a contributing factor in the thrombogenesis. Administration of LMWD seems to have a beneficial effect since less leucocyte adhesion occurred in those animals treated with LMWD.

  14. Uptake of indium-111-labeled platelets and indium-111 oxine by murine kidneys after total-body irradiation

    SciTech Connect

    Ebbe, S.; Taylor, S.; Maurer, H.; Kullgren, B.

    1996-08-01

    Radiation nephropathy is a well-known late manifestation of renal irradiation in human beings and experimental animals. Its pathogenesis is unclear, but vascular injury may play a role. Endothelial cells have been demonstrated to manifest a variety of abnormalities within hours of exposure to radiation. In the present experiments mice were exposed to lethal doses of whole-body radiation, and the distribution of {sup 111}In-labeled platelets was evaluated during the first week after irradiation. The purpose was to determine if early abnormalities of endothelial cells would be manifested by altered sequestration of platelets in kidneys and other organs. It was found that the indium accumulated in the kidneys of irradiated mice to a greater extent than in nonirradiated mice, but the pattern of accumulation differed from that seen after injection of radiolabeled platelets. Renal hyperemia was not demonstrable with {sup 51}Cr-labeled red cells, renal vascular permeability was not detected with {sup 125}I-labeled albumin, and the pattern of renal uptake of plasma proteins labeled albumin, and the pattern of renal uptake of plasma proteins labeled with {sup 59}Fe {sup 111}In did not coincide with that seen from {sup 111}In administered as labeled platelets or oxine. Renal uptake of {sup 111}In-oxine was not associated with alterations in urinary or fecal excretion or an increase in total-body retention of the radioisotope. The findings are consistent with the notion that renal vascular injury at the time of irradiation results in accumulation of platelets or platelet constituents during the first week after total-body irradiation of mice. 29 refs., 5 figs., 3 tabs.

  15. The effect of cigarette smoking on neutrophil kinetics in human lungs (see comments

    SciTech Connect

    MacNee, W.; Wiggs, B.; Belzberg, A.S.; Hogg, J.C. )

    1989-10-05

    Neutrophils may play a part in the pathogenesis of the centrilobular emphysema associated with cigarette smoking. The capillary bed of the lungs concentrates neutrophils approximately 100-fold with respect to erythrocytes, producing a large pool of marginated cells. We examined the effect of cigarette smoking on the kinetics of this pool of cells, using 99mTc-labeled erythrocytes to measure regional blood velocity and 111In-labeled neutrophils to measure the removal of neutrophils during the first passage through the pulmonary circulation, their subsequent washout from the lungs, and the effect of local blood velocity on the number of neutrophils retained in each lung region. We observed no difference in these measurements between subjects who had never smoked (n = 6) and smokers who did not smoke during the study (n = 12). However, subjects who did smoke during the study (n = 12) had a significantly slower rate of washout of radiolabeled neutrophils from the lung (0.08 +/- 0.04 of the total per minute, as compared with 0.13 +/- 0.06 in smokers who did not smoke during the experiment and 0.14 +/- 0.08 in non-smokers) (P = 0.02). We also observed an increase in the regional retention of labeled neutrophils with respect to blood velocity in 5 of the 12 subjects who smoked during the study, but in none of the other subjects. We conclude that the presence of cigarette smoke in the lungs of some subjects increases the local concentration of neutrophils, and suggest that the lesions that characterize emphysema may be a result of the destruction of lung tissue by neutrophils that remain within pulmonary microvessels.

  16. Evaluation of ¹¹¹In-Labelled Exendin-4 Derivatives Containing Different Meprin β-Specific Cleavable Linkers

    PubMed Central

    Jodal, Andreas; Pape, Fabienne; Becker-Pauly, Christoph; Maas, Ole; Schibli, Roger; Béhé, Martin

    2015-01-01

    Background Cleavable linkers, which are specifically cleaved by defined conditions or enzymes, are powerful tools that can be used for various purposes. Amongst other things, they have been successfully used to deliver toxic payloads as prodrugs into target tissues. In this work novel linker sequences targeting meprin β, a metalloprotease expressed in the kidney brush-border membrane, were designed and included in the sequence of three radiolabelled exendin-4 derivatives. As radiolabelled exendin-4 derivatives strongly accumulate in the kidneys, we hypothesised that specific cleavage of the radiolabelled moiety at the kidney brush-border membrane would allow easier excretion of the activity into the urine and therefore improve the pharmacological properties of the peptide. Results The insertion of a cleavable linker did not negatively influence the in vitro properties of the peptides. They showed a good affinity to the GLP-1 receptor expressed in CHL cells, a high internalisation and sufficiently high stability in fresh human blood plasma. In vitro digestion with recombinant meprin β rapidly metabolised the corresponding linker sequences. After 60 min the majority of the corresponding peptides were digested and at the same time the anticipated fragments were formed. The peptides were also quickly metabolised in CD1 nu/nu mouse kidney homogenates. Immunofluorescence staining of meprin β in kidney sections confirmed the expression of the protease in the kidney brush-border membrane. Biodistribution in GLP-1 receptor positive tumour-xenograft bearing mice revealed high specific uptake of the 111In-labelled tracers in receptor positive tissue. Accumulation in the kidneys, however, was still high and comparable to the lead compound 111In-Ex4NOD40. Conclusion In conclusion, we show that the concept of cleavable linkers specific for meprin β is feasible, as the peptides are rapidly cleaved by the enzyme while retaining their biological properties. PMID:25855967

  17. In vivo characterization of the novel CD44v6-targeting Fab fragment AbD15179 for molecular imaging of squamous cell carcinoma: a dual-isotope study

    PubMed Central

    2014-01-01

    Background Patients with squamous cell carcinoma in the head and neck region (HNSCC) offer a diagnostic challenge due to difficulties to detect small tumours and metastases. Imaging methods available are not sufficient, and radio-immunodiagnostics could increase specificity and sensitivity of diagnostics. The objective of this study was to evaluate, for the first time, the in vivo properties of the radiolabelled CD44v6-targeting fragment AbD15179 and to assess its utility as a targeting agent for radio-immunodiagnostics of CD44v6-expressing tumours. Methods The fully human CD44v6-targeting Fab fragment AbD15179 was labelled with 111In or 125I, as models for radionuclides suitable for imaging with SPECT or PET. Species specificity, antigen specificity and internalization properties were first assessed in vitro. In vivo specificity and biodistribution were then evaluated in tumour-bearing mice using a dual-tumour and dual-isotope setup. Results Both species-specific and antigen-specific binding of the conjugates were demonstrated in vitro, with no detectable internalization. The in vivo studies demonstrated specific tumour binding and favourable tumour targeting properties for both conjugates, albeit with higher tumour uptake, slower tumour dissociation, higher tumour-to-blood ratio and higher CD44v6 sensitivity for the 111In-labelled fragment. In contrast, the 125I-Fab demonstrated more favourable tumour-to-organ ratios for liver, spleen and kidneys. Conclusions We conclude that AbD15179 efficiently targets CD44v6-expressing squamous cell carcinoma xenografts, and particularly, the 111In-Fab displayed high and specific tumour uptake. CD44v6 emerges as a suitable target for radio-immunodiagnostics, and a fully human antibody fragment such as AbD15179 can enable further clinical imaging studies. PMID:24598405

  18. Choice of labeling and cell line influences interactions between the Fab fragment AbD15179 and its target antigen CD44v6.

    PubMed

    Stenberg, Jonas; Spiegelberg, Diana; Karlsson, Hampus; Nestor, Marika

    2014-02-01

    Medical imaging by use of immunotargeting generally relies on a labeled molecule binding to a specific target on the cell surface. It is important to utilize both cell-based and time-resolved binding assays in order to understand the properties of such molecular interactions in a relevant setting. In this report we describe the detailed characterization of the interaction properties for AbD15179, a promising CD44v6-targeting antibody fragment for radio-immunotargeting. Influence of labeling and cell-line model on the protein interaction kinetics was assessed using three different labeling approaches ((111)In, (125)I and FITC) on three different squamous carcinoma cell lines. Interactions were measured using time-resolved assays on living cells, and further analyzed with Interaction Map®. Results demonstrated a general biphasic appearance of a high- and a low-affinity binding event in all cases. The relative contribution from these two interactions differed between conjugates. For (125)I-Fab, the population of low-affinity binders could be significantly increased by extending the chloramine T exposure during labeling, whereas the (111)In-labeling predominantly resulted in a high-affinity interaction. Interactions were also shown to be cell line dependent, with e.g. SCC-25 cells generally mediating a faster dissociation of conjugates compared to the other cell lines. In conclusion, we report both cell line dependent and labeling associated variations in interaction kinetics for AbD15179 binding to CD44v6. This has implications for cell-based kinetic assays and applications based on labeled conjugates in general, as well as in a clinical setting, where each individual tumor may create different kinetic profiles for the same conjugate.

  19. Influence of Histidine-Containing Tags on the Biodistribution of ADAPT Scaffold Proteins.

    PubMed

    Lindbo, Sarah; Garousi, Javad; Åstrand, Mikael; Honarvar, Hadis; Orlova, Anna; Hober, Sophia; Tolmachev, Vladimir

    2016-03-16

    Engineered scaffold proteins (ESP) are high-affinity binders that can be used as probes for radionuclide imaging. Histidine-containing tags enable both efficient purification of ESP and radiolabeling with (99m)Tc(CO)3. Earlier studies demonstrated that the use of a histidine-glutamate-histidine-glutamate-histidine-glutamate (HE)3-tag instead of the commonly used hexahistidine (H6)-tag reduces hepatic uptake of radiolabeled ESP and short peptides. Here, we investigated the influence of histidine-containing tags on the biodistribution of a novel type of ESP, ADAPTs. A series of anti-HER2 ADAPT probes having H6- or (HE)3-tags in the N-termini were prepared. The constructs, (HE)3-ADAPT6 and H6-ADAPT6, were labeled with two different nuclides, (99m)Tc or (111)In. The labeling with (99m)Tc(CO)3 utilized the histidine-containing tags, while (111)In was attached through a maleimido derivative of DOTA conjugated to the N-terminus. For (111)In-labeled ADAPTs, the use of (HE)3 provided a significantly (p < 0.05) lower hepatic uptake at 1 h after injection, but there was no significant difference in hepatic uptake of (111)In-(HE)3-ADAPT6 and H6-ADAPT6 at later time points. Interestingly, in the case of (99m)Tc, (99m)Tc(CO)3-H6-ADAPT6 provided significantly (p < 0.05) lower uptake in a number of normal tissues and was more suitable as an imaging probe. Thus, the influence of histidine-containing tags on the biodistribution of the novel ADAPT scaffold proteins was different compared to its influence on other ESPs studied so far. Apparently, the effect of a histidine-containing tag on the biodistribution is highly dependent on the scaffold composition of the ESP.

  20. Ectopic jejunal pacemakers and gastric emptying after Roux gastrectomy: Effect of intestinal pacing

    SciTech Connect

    Karlstrom, L.; Kelly, K.A. )

    1989-11-01

    The aims of this study were to determine whether ectopic pacemakers are present after meals in the Roux limbs of dogs after vagotomy and Roux gastrectomy, whether these pacemakers slow gastric emptying of liquids or solids, and whether abolishing the pacemakers with electric pacing might speed any slow emptying that occurs. In six dogs that underwent vagotomy and Roux gastrectomy and in four dogs that underwent vagotomy and Billroth gastrectomy (controls), myoelectric activity of the Roux limb or duodenum was measured during gastric emptying of a 500 kcal mixed meal of 99mTc-labeled cooked egg and 111In-labeled milk. Roux dogs were tested with and without pacing of the Roux limb. Roux dogs showed ectopic pacemaker in the Roux limb that drove the pacesetter potentials of the limb in a reverse, or orad, direction during 57% of the postprandial recordings. Billroth dogs had no ectopic pacemakers (p less than 0.05). Liquids emptied more slowly in Roux dogs (half-life (t1/2) = 121 +/- 15 minutes) than in Billroth dogs (t1/2 = 43 +/- 9 minutes; p less than 0.05), but solids emptied similarly in both groups of dogs (t1/2 approximately 8 hours). Pacing the Roux limb abolished the ectopic pacemakers, restored the slow emptying of liquids to the more rapid rate found in the Billroth dogs (t1/2: paced Roux, 72 +/- 15 minutes; Billroth, 43 +/- 9 minutes; p greater than 0.05) and did not change emptying of solids. The conclusion was that ectopic pacemakers present in the Roux limb after vagotomy and Roux gastrectomy drove the limb in a reverse direction and slowed emptying of liquids after the operation. The defect was corrected by pacing the Roux limb in a forward direction.

  1. Identification and Tumour-Binding Properties of a Peptide with High Affinity to the Disialoganglioside GD2

    PubMed Central

    Müller, Jan; Reichel, Robin; Vogt, Sebastian; Müller, Stefan P.; Sauerwein, Wolfgang; Brandau, Wolfgang; Eggert, Angelika

    2016-01-01

    Neuroectodermal tumours are characterized by aberrant processing of disialogangliosides concomitant with high expression of GD2 or GD3 on cell surfaces. Antibodies targeting GD2 are already in clinical use for therapy of neuroblastoma, a solid tumour of early childhood. Here, we set out to identify peptides with high affinity to human disialoganglioside GD2. To this end, we performed a combined in vivo and in vitro screen using a recombinant phage displayed peptide library. We isolated a phage displaying the peptide sequence WHWRLPS that specifically binds to the human disialoganglioside GD2. Binding specificity was confirmed by mutational scanning and by comparative analyses using structurally related disialogangliosides. In vivo, significant enrichment of phage binding to xenografts of human neuroblastoma cells in mice was observed. Tumour-specific phage accumulation could be blocked by intravenous coinjection of the corresponding peptide. Comparative pharmacokinetic analyses revealed higher specific accumulation of 68Ga-labelled GD2-binding peptide compared to 111In-labelled peptide in xenografts of human neuroblastoma. In contrast to 124I-MIBG, which is currently evaluated as a neuroblastoma marker in PET/CT, 68Ga-labelled GD2-specific peptide spared the thyroid but was enriched in the kidneys, which could be partially blocked by infusion of amino acids.In summary, we here report on a novel tumour-homing peptide that specifically binds to the disialoganglioside GD2, accumulates in xenografts of neuroblastoma cells in mice and bears the potential for tumour detection using PET/CT. Thus, this peptide may serve as a new scaffold for diagnosing GD2-positive tumours of neuroectodermal origin. PMID:27716771

  2. Coregistration of magnetic resonance and single photon emission computed tomography images for noninvasive localization of stem cells grafted in the infarcted rat myocardium.

    PubMed

    Shen, Dinggang; Liu, Dengfeng; Cao, Zixiong; Acton, Paul D; Zhou, Rong

    2007-01-01

    This paper demonstrates the application of mutual information based coregistration of radionuclide and magnetic resonance imaging (MRI) in an effort to use multimodality imaging for noninvasive localization of stem cells grafted in the infarcted myocardium in rats. Radionuclide imaging such as single photon emission computed tomography (SPECT) or positron emission tomography (PET) inherently has high sensitivity and is suitable for tracking of labeled stem cells, while high-resolution MRI is able to provide detailed anatomical and functional information of myocardium. Thus, coregistration of PET or SPECT images with MRI will map the location and distribution of stem cells on detailed myocardium structures. To validate this coregistration method, SPECT data were simulated by using a Monte Carlo-based projector that modeled the pinhole-imaging physics assuming nonzero diameter and photon penetration at the edge. Translational and rotational errors of the coregistration were examined with respect to various SPECT activities, and they are on average about 0.50 mm and 0.82 degrees , respectively. Only the rotational error is dependent on activity of SPECT data. Stem cells were labeled with (111)Indium oxyquinoline and grafted in the ischemic myocardium of a rat model. Dual-tracer small-animal SPECT images were acquired, which allowed simultaneous detection of (111)In-labeled stem cells and of [(99m)Tc]sestamibi to assess myocardial perfusion deficit. The same animals were subjected to cardiac MRI. A mutual-information-based coregistration method was then applied to the SPECT and MRIs. By coregistration, the (111)In signal from labeled cells was mapped into the akinetic region identified on cine MRIs; the regional perfusion deficit on the SPECT images also coincided with the akinetic region on the MR image.

  3. Tumor-Targeted Nanomedicines

    PubMed Central

    ElBayoumi, Tamer A.; Torchilin, Vladimir P.

    2009-01-01

    Purpose The efficacy of drug delivery systems can be enhanced by making them target-specific via the attachment of various ligands. We attempted to enhance tumor accumulation and therapeutic effect of doxorubicin-loaded long-circulating PEGylated liposomes (Doxil®, ALZA Corp.) by coupling to their surface the anti-cancer monoclonal antibody 2C5 (mAb 2C5) with nuclesome (NS)-restricted activity, that can recognize the surface of various tumor but not normal cells and specifically targets pharmaceutical carriers to tumor cells in vitro and in vivo. Following earlier in vitro results with various cancer cell lines, the mAb 2C5-liposomes were studied in vivo vs. plain and non-specific IgG-liposomes. Experimental design Antibody coupling to Doxil® was performed via the “post-insertion” technique. Using 111In-labeled liposomes, the tissue biodistribution and pharmacokinetic profile were studied, as well as their accumulation in tumors in mice was followed by the whole-body γ-scintigraphic imaging. Therapeutic efficacy of mAb 2C5-targeted Doxil® vs. non-specific IgG-modified and original Doxil® controls was followed by registering live tumor growth and determining tumor weights upon mice sacrifice. Results mAb2C5 antibody-targeted liposomes demonstrate enhanced accumulation in tumors, and the in vivo therapeutic activity of the mAb 2C5-Doxil® treatment was found to be significantly superior, resulting in final tumor weights of only 25-40% compared to all Doxil® control treatments, when tested against the subcutaneous primary murine tumors of 4T1 and C26 and human PC3 tumor in nude mice. Conclusions Our results demonstrate the remarkable capability of 2C5-targeted Doxil® to specifically deliver its cargo into various tumors significantly increasing the efficacy of therapy. PMID:19276264

  4. /sup 111/In-oxine platelet survivals in thrombocytopenic infants

    SciTech Connect

    Castle, V.; Coates, G.; Kelton, J.G.; Andrew, M.

    1987-09-01

    Thrombocytopenia is a common occurrence (20%) in sick neonates, but the causes have not been well studied. In this report we demonstrate that thrombocytopenia in the neonate is characterized by increased platelet destruction as shown by shortened homologous /sup 111/In-oxine-labeled platelet life spans. Thirty-one prospectively studied thrombocytopenic neonates were investigated by measuring the /sup 111/In-labeled platelet life span, platelet-associated IgG (PAIgG), and coagulation screening tests. In every infant, the thrombocytopenia was shown to have a destructive component since the mean platelet life span was significantly shortened to 65 +/- 6 (mean +/- SEM) hours with a range of one to 128 hours compared with adult values (212 +/- 8; range, 140 to 260; gamma function analysis). The platelet survival was directly related to the lowest platelet count and inversely related to both the highest mean platelet volume and duration of the thrombocytopenia. In 22 infants the percent recovery of the radiolabeled platelets was less than 50%, which suggested that increased sequestration also contributed to the thrombocytopenia. Infants with laboratory evidence of disseminated intravascular coagulation (n = 8) or immune platelet destruction evidenced by elevated levels of PAIgG (n = 13) had even shorter platelet survivals and a more severe thrombocytopenia compared with the ten infants in whom an underlying cause for the thrombocytopenia was not apparent. Full-body scintigraphic images obtained in 11 infants showed an increased uptake in the spleen and liver, with a spleen-to-liver ratio of 3:1. This study indicates that thrombocytopenia in sick neonates is primarily destructive, with a subgroup having evidence of increased platelet sequestration.

  5. Nuclear oncology, a fast growing field of nuclear medicine

    NASA Astrophysics Data System (ADS)

    Olivier, Pierre

    2004-07-01

    Nuclear Medicine in oncology has been for a long time synonymous with bone scintigraphy, the first ever whole body imaging modality, and with treatment of thyroid cancer with iodine-131. More recently, somatostatin receptor scintigraphy (SRS) using peptides such as 111In-labelled octreotide became a reference imaging method in the detection and staging of neuroendocrine tumors while 131I- and 123I-MIBG remain the tracers of reference for pheochromocytomas and neuroblastomas. Lymphoscintigraphic imaging based on peritumoral injection of 99mTc-labelled colloids supports, in combination with per operative detection, the procedure of sentinel node identification in breast cancers and melanomas. Positron Emission Tomography (PET) is currently experiencing a considerable growth in oncology based on the use of 18F-FDG (fluorodeoxyglucose), a very sensitive, although non-specific, tumor tracer. Development of instrumentation is crucial in this expansion of PET imaging with new crystals being more sensitive and hybrid imagers that permit to reduce the acquisition time and offer fused PET-CT images. Current developments in therapy can be classified into three categories. Radioimmunotherapy (RIT) based on monoclonal antibodies (or fragments) labelled with beta-emitters. This technique has recently made its entrance in clinical practice with a 90Y-labelled anti-CD20 antibody ( 90Y-ibritumomab tiuxetan (Zevalin ®)) approved in US for the treatment of some subtypes of non-Hodgkin's lymphoma. Radionuclide-bone pain palliation has experienced developments with 153Sm-EDTMP, 186Re-HEDP or 89Sr, efficient in patients with widespread disease. Last, the same peptides, as those used in SRS, are being developed for therapy, labelled with 90Y, 111In or 177Lu in patients who failed to respond to other treatments. Overall, nuclear oncology is currently a fast growing field thanks to the combined developments of radiopharmaceuticals and instrumentation.

  6. Miniaturized antibodies for imaging membrane type-1 matrix metalloproteinase in cancers.

    PubMed

    Kondo, Naoya; Temma, Takashi; Shimizu, Yoichi; Watanabe, Hiroyuki; Higano, Keiichi; Takagi, Yoko; Ono, Masahiro; Saji, Hideo

    2013-04-01

    Since membrane type-1 matrix metalloproteinase (MT1-MMP) plays pivotal roles in tumor progression and metastasis and holds great promise as an early biomarker for malignant tumors, a method of evaluating MT1-MMP expression levels would be valuable for molecular biological and clinical studies. Although we have previously developed a (99m) Tc-labeled anti-MT1-MMP monoclonal IgG ((99m) Tc-MT1-mAb) as an MT1-MMP imaging probe by nuclear medical techniques for this purpose, slow pharmacokinetics were a problem due to its large molecular size. Thus, in this study, our aim was to develop miniaturized antibodies, a single chain antibody fragment (MT1-scFv) and a dimer of two molecules of scFv (MT1-diabody), as the basic structures of MT1-MMP imaging probes followed by in vitro and in vivo evaluation with an (111) In radiolabel. Phage display screening successfully provided MT1-scFv and MT1-diabody, which had sufficiently high affinity for MT1-MMP (KD  = 29.8 and 17.1 nM). Both (111) In labeled miniaturized antibodies showed higher uptake in MT1-MMP expressing HT1080 cells than in non-expressing MCF7 cells. An in vivo biodistribution study showed rapid pharmacokinetics for both probes, which exhibited >20-fold higher tumor to blood radioactivity ratios (T/B ratio), an index for in vivo imaging, than (99m) Tc-MT1-mAb 6 h post-administration, and significantly higher tumor accumulation in HT1080 than MCF7 cells. SPECT images showed heterogeneous distribution and ex vivo autoradiographic analysis revealed that the radioactivity distribution profiles in tumors corresponded to MT1-MMP-positive areas. These findings suggest that the newly developed miniaturized antibodies are promising probes for detection of MT1-MMP in cancer cells.

  7. Expression of costimulatory molecule CD86 in HL-60 cells induced by MG132 and its effect on allogeneic mixed lymphocyte reaction.

    PubMed

    Yu, Mei-Xia; Liu, Xun; Zhou, Yong-Ming; Cheng, Yan-Xiang; Cheng, Jing; Qiu, Yu-Zhen; Xing, Xiao-Lei; Yao, Chun-Hong; Bai, Ru-Jun

    2014-10-01

    This study was aimed to elucidate the expression of costimulatory molecule CD80 and CD86 in HL-60 cells induced by proteasome inhibitor MG132 and its effect on allogeneic mixed lymphocyte reaction. Acute myelocytic leukemia cell line HL-60 and chronic myelocytic leukemia cell line K562 were cultured. The viability of the cells was measured by flow cytometry. Proteasome inhibitor MG132 at the concentrations of 2 or 3 µmol/L was used to stimulate the HL-60 cell cultured for 24 h and 48 h respectively, and the Annexin V/7-AAD staining and flow cytomotry were used to detect the apoptosis of the HL-60 cells. HL-60 and K562 cells were treated with 1 µmol/L MG132 for 24 h and 48 h respectively, then CD80 and CD86 antibodies were added, finally the expression of CD80 and CD86 was analysed by flow cytomery. The mRNA expression of CD86 in the HL-60 cells treated with 1 µmol/L MG132 was detected by RT-PCR. HL-60 and K562 cells were treated by 1 µmol/L MG132 and then underwent irradiation of 75 Gy (60)Co to kill the cells with their antigenicity preserved. Peripheral blood mononuclear cells (PBMNCs) of healthy volunteers, as reactive cells, were isolated and inoculated into the (60)Co irradiated HL-60 cells of different concentrations, as stimulating cells, CCK-8 was added and then the A value of absorbance was measured at the wave length of 450 nm in an enzyme labeling instrument. The results showed that the cell viability of the HL-60 cells treated with 1 µmol/L MG132 for 24 h an d 48 h was 92.95% and 85.87% respectively. The apoptotic rates of the HL-60 cells treated with MG132 increased in dose-and time-dependent manner. High-concentration of MG132 directly killed HL-60 cells. Before MG132 treatment K562 cells did not express CD86, but the CD86 expression of the HL-60 cells was up-regulated time-dependently after MG132 treatment (P < 0.01). The mRNA expression of CD86 in the HL-60 treated with MG132 was up-regulated time-dependently (P < 0.01). CCK-8 test showed that

  8. Simultaneous realization of Hg2+ sensing, magnetic resonance imaging and upconversion luminescence in vitro and in vivo bioimaging based on hollow mesoporous silica coated UCNPs and ruthenium complex

    NASA Astrophysics Data System (ADS)

    Ge, Xiaoqian; Sun, Lining; Ma, Binbin; Jin, Di; Dong, Liang; Shi, Liyi; Li, Nan; Chen, Haige; Huang, Wei

    2015-08-01

    We have constructed a multifunctional nanoprobe with sensing and imaging properties by using hollow mesoporous silica coated upconversion nanoparticles (UCNPs) and Hg2+ responsive ruthenium (Ru) complex. The Ru complex was loaded into the hollow mesoporous silica and the UCNPs acted as an energy donor, transferring luminescence energy to the Ru complex. Furthermore, polyethylenimine (PEI) was assembled on the surface of mesoporous silica to achieve better hydrophilic and bio-compatibility. Upon addition of Hg2+, a blue shift of the absorption peak of the Ru complex is observed and the energy transfer process between the UCNPs and the Ru complex was blocked, resulting in an increase of the green emission intensity of the UCNPs. The un-changed 801 nm emission of the nanoprobe was used as an internal standard reference and the detection limit of Hg2+ was determined to be 0.16 μM for this nanoprobe in aqueous solution. In addition, based on the low cytotoxicity as studied by CCK-8 assay, the nanoprobe was successfully applied for cell imaging and small animal imaging. Furthermore, when doped with Gd3+ ions, the nanoprobe was successfully applied to in vivo magnetic resonance imaging (MRI) of Kunming mice, which demonstrates its potential as a MRI positive-contrast agent. Therefore, the method and results may provide more exciting opportunities to afford nanoprobes with multimodal bioimaging and multifunctional applications.We have constructed a multifunctional nanoprobe with sensing and imaging properties by using hollow mesoporous silica coated upconversion nanoparticles (UCNPs) and Hg2+ responsive ruthenium (Ru) complex. The Ru complex was loaded into the hollow mesoporous silica and the UCNPs acted as an energy donor, transferring luminescence energy to the Ru complex. Furthermore, polyethylenimine (PEI) was assembled on the surface of mesoporous silica to achieve better hydrophilic and bio-compatibility. Upon addition of Hg2+, a blue shift of the absorption peak

  9. Hydrophilic CeO2 nanocubes protect pancreatic β-cell line INS-1 from H2O2-induced oxidative stress

    NASA Astrophysics Data System (ADS)

    Lyu, Guang-Ming; Wang, Yan-Jie; Huang, Xue; Zhang, Huai-Yuan; Sun, Ling-Dong; Liu, Yan-Jun; Yan, Chun-Hua

    2016-04-01

    Oxidative stress plays a key role in the occurrence and development of diabetes. With their unique redox properties, CeO2 nanoparticles (nanoceria) exhibit promising potential for the treatment of diabetes resulting from oxidative stress. Here, we develop a novel preparation of hydrophilic CeO2 nanocubes (NCs) with two different sizes (5 nm and 25 nm) via an acetate assisted hydrothermal method. Dynamic light scattering, zeta potential measurements and thermogravimetric analyses were utilized to investigate the changes in the physico-chemical characteristics of CeO2 NCs when exposed to in vitro cell culture conditions. CCK-8 assays revealed that the CeO2 NCs did not impair cell proliferation in the pancreatic β-cell line INS-1 at the highest dose of 200 μg mL-1 over the time scale of 72 h, while being able to protect INS-1 cells from H2O2-induced cytotoxicity even after protein adsorption. It is also noteworthy that nanoceria with a smaller hydrodynamic radius exhibit stronger antioxidant and anti-apoptotic effects, which is consistent with their H2O2 quenching capability in biological systems. These findings suggest that nanoceria can be used as an excellent antioxidant for controlling oxidative stress-induced pancreatic β-cell damage.Oxidative stress plays a key role in the occurrence and development of diabetes. With their unique redox properties, CeO2 nanoparticles (nanoceria) exhibit promising potential for the treatment of diabetes resulting from oxidative stress. Here, we develop a novel preparation of hydrophilic CeO2 nanocubes (NCs) with two different sizes (5 nm and 25 nm) via an acetate assisted hydrothermal method. Dynamic light scattering, zeta potential measurements and thermogravimetric analyses were utilized to investigate the changes in the physico-chemical characteristics of CeO2 NCs when exposed to in vitro cell culture conditions. CCK-8 assays revealed that the CeO2 NCs did not impair cell proliferation in the pancreatic β-cell line INS-1 at

  10. Specific adaptation of gastric emptying to diets with differing protein content in the rat: is endogenous cholecystokinin implicated?

    PubMed Central

    Shi, G; Leray, V; Scarpignato, C; Bentouimou, N; Varannes, S; Cherbut, C; Galmiche, J

    1997-01-01

    Background—Recent studies indicate that gastric emptying may be influenced by patterns of previous nutrient intake. Endogenous cholecystokinin (CCK), whose synthesis and release can be affected by dietary intake, has a major role in the regulation of gastric emptying. 
Aims—To evaluate the influence of diets with differing protein content on gastric emptying of differing liquid test meals and plasma CCK levels in the rat and to check whether the inhibitory effect of exogenous CCK on gastric emptying is modified after long term intake of diets with differing protein content. 
Methods—Rats were fed for three weeks with high protein, medium protein (regular), or low protein diet. On day 22 gastric emptying of a peptone meal was studied. In addition, basal and postprandial CCK levels after the different dietary regimens were measured by bioassay. The time course of dietary adaptation was studied and its specificity assessed through the use of different (peptone, glucose, and methylcellulose) test meals. The effect of exogenous CCK-8 on gastric emptying was studied at the end of the adaptation period (three weeks).
Results—Feeding the animals with a high protein diet for three weeks resulted in a significant (p<0.05) acceleration (by 21.2(8.2)%) of gastric emptying while feeding with a low protein diet was followed by a significant (p<0.05) delay (by 24.0 (6.2)%) in the emptying rate. When the time course of the effect of dietary adaptation on gastric emptying was studied, it appeared that at least two weeks are required for dietary protein to be effective. The regulatory effect of dietary protein on gastric emptying proved to be dependent on meal composition. Only the emptying rate of a protein containing meal (40% peptone) was significantly modified by previous dietary intake. No significant (p>0.05) changes were observed with glucose and methylcellulose meals whose emptying rates were similar in rats receiving a high protein or low protein diet. A

  11. Upregulation of the long non-coding RNA SPRY4-IT1 indicates a poor prognosis and promotes tumorigenesis in ovarian cancer.

    PubMed

    Li, Hongxia; Liu, Chunhua; Lu, Zhanbin; Chen, Li; Wang, Juan; Li, Yindi; Ma, Huiping

    2017-04-01

    Long non-coding RNAs (lncRNAs) have been identified to be critical mediators in various tumors associated with cancer progression. LncRNA SPRY4-IT1 serves as a novel prognostic biomarker for hepatocellular carcinoma. However, the biological role and clinical significance of lncRNA SPRY4-IT1 in human ovarian cancer (OC) need to be completely elucidated. The aim of the present study was to explore the lncRNA SPRY4-IT1 expression in human OC patients and its role in OC cells. We show that lncRNA SPRY4-IT1 expression is significantly upregulated in ovarian tumor tissues and OC cell lines in comparison with adjacent non-tumor control tissues and the human ovarian immortalized nontumorigenic ovarian surface epithelial (IOSE), respectively. Further analysis by Kaplan-Meier survival analysis and multivariate analysis indicated that high lncRNA SPRY4-IT1 expression may be an independent prognostic factor for progression-free survival (PFS) and overall survival (OS) in OC patients. Furthermore, the area under the receiver operating characteristic (ROC) curve of lncRNA SPRY4-IT1 was up to 0.8512, indicating lncRNA SPRY4-IT1 has diagnostic values to discriminate tumor tissues from nontumorous tissues. Also, knockdown of lncRNA SPRY4-IT1 inhibited the proliferation of OC cells by CCK-8 assay and clonogenic assay and arrested cell cycle at a G0/G1 stage in OC cells. In conclusion, these results suggest that lncRNA SPRY4-IT1 may be considered as a new predictor in the clinical prognosis of OC patients.

  12. The antitumor activity study of ginsenosides and metabolites in lung cancer cell

    PubMed Central

    Xu, Feng-Yuan; Shang, Wen-Qing; Yu, Jia-Jun; Sun, Qian; Li, Ming-Qing; Sun, Jian-Song

    2016-01-01

    Ginseng and its components exert various biological effects, including antioxidant, anti-carcinogenic, anti-mutagenic, and antitumor activity. Ginsenosides are the main biological components of ginseng. Protopanaxadiol (PPD) and protopanaxatriol (PPT) are two metabolites of ginsenosides. However, the difference between these compounds in anti-lung cancer is unclear. The present study aimed to evaluate the antitumor activity of PPD, PPT, Ginsenosides-Rg3 (G-Rg3) and Ginsenosides-Rh2 (G-Rh2) in lung cancer cell. After treatment with cisplatin, PPD, PPT, G-Rg3 or G-Rh2, the viability, apoptosis level and invasiveness of lung cell lines (A549 cell, a lung adenocarcinoma cell line and SK-MES-1 cell, a lung squamous cell line) in vitro were analyzed by Cell Counting Kit-8 (CCK8), Annexin V/PI apoptosis and Matrigel invasion assays, respectively. Here we found that all these compounds led to significant decreases of viability and invasiveness and an obvious increase of apoptosis of A549 and SK-MES-1 cells. Among these, the viability of SK-MES-1 cell treated with PPT was decreased to 66.8%, and this effect was closest to Cisplatin. G-Rg3 had the highest stimulatory effect on apoptosis, and PTT had the highest inhibitory effect on cell invasiveness in A549 and SK-MES-1 cells. These results indicate that both ginsenosides and two metabolites have antitumor activity on lung cancer cell in vitro. However, PPT is more powerful for inhibiting the viability and invasiveness of lung cancer cell, especially lung squamous cell. G-Rg3 has the best pro-apoptosis effects. This study provides a scientific basis for potential therapeutic strategies targeted to lung cancer by further structure modification. PMID:27186294

  13. Gambogenic acid synergistically potentiates bortezomib-induced apoptosis in multiple myeloma

    PubMed Central

    Chen, Runzhe; Zhang, Hongming; Liu, Ping; Wu, Xue; Chen, Baoan

    2017-01-01

    Background: Although the introduction of protease inhibitor bortezomib (BTZ) and immunomodulatory agent lenalidomide has led to improved outcomes in patients with multiple myeloma (MM), the disease remains incurable. Gambogenic acid (GNA), a polyprenylated xanthone isolated from the traditional Chinese medicine gamboge, has been reported to have potent antitumor activity and can effectively inhibit the survival and proliferation of cancer. In this study, we hypothesized that GNA could synergistically potentiate BTZ-induced apoptosis of MM cells and that combining BTZ and GNA may provide a more effective approach to treat MM. Hence, we investigate the in vitro and in vivo effects of BTZ and GNA, alone or in combination, against myeloma MM.1S cells. Methods: Cell counting kit-8 (CCK-8) assay, combination index (CI) isobologram, flow cytometry, western blot, xenograft tumor models, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and immunochemistry were used in this study. Results: The results showed that BTZ and GNA combination treatment resulted in a strong synergistic action against the MM.1S cell line. Increased G2/M phase cells were triggered by BTZ, GNA and the combined treatment. The combined treatment could induce more markedly apoptosis of MM.1S cells via the activation of PARP cleavage, P53, Caspase-3 cleavage and Bax and inhibition of Bcl-2 expression. An increased antitumor effects of combination therapy of BTZ and GNA on MM.1S xenograft models were observed, and combining BTZ and GNA was found to be superior to a single agent. Conclusions: Our data support that a synergistic antitumor activity exists between BTZ and GNA, and provide a rationale for successful utilization of dual BTZ and GNA in MM chemotherapy in the future. PMID:28382147

  14. Protein O-fucosyltransferase 1 promotes trophoblast cell proliferation through activation of MAPK and PI3K/Akt signaling pathways.

    PubMed

    Liu, Chang; Liang, Xiaohua; Wang, Jiao; Zheng, Qin; Zhao, Yue; Khan, Muhammad Noman; Liu, Shuai; Yan, Qiu

    2017-04-01

    Protein O-fucosylation is an important glycosylation modification and plays an important role in embryonic development. Protein O-fucosyltransferase 1 (poFUT1) is an essential enzyme that catalyzes the synthesis of protein O-fucosylation. Our previous studies showed that poFUT1 promoted trophoblast cell migration and invasion at the fetal-maternal interface, but the role of poFUT1 in trophoblast cells proliferation remains unclear. Here, immunohistochemistry data showed that poFUT1 and PCNA levels were decreased in abortion patient's trophoblasts compared with women with normal pregnancies. Our results also showed that poFUT1 promoted trophoblast cell proliferation by CCK-8 assay and cell cycle analysis. PoFUT1 increased the phosphorylation of ERK1/2, p38 MAPK, and PI3K/Akt, while inhibitors of ERK1/2(PD98059), p38 MAPK(SB203580), and PI3K (LY294002) prevented ERK1/2, p38 MAPK, and Akt phosphorylation. Moreover, poFUT1 stimulation of trophoblast cells proliferation correlated with increased cell cycle progression by promoting cells into S-phase. The underlying mechanism involved increased cyclin D1, cyclin E, CDK 2, CDK 4, and pRb expression and decreased levels of the cyclin-dependent kinase inhibitors p21 and p27, which were blocked by inhibitors of the upstream signaling molecules MAPK and PI3K/Akt. In conclusion, poFUT1 promotes trophoblast cell proliferation by activating MAPK and PI3K/Akt signaling pathways.

  15. The Effects of Guizhi Fuling Capsule Drug Serum on Uterine Leiomyoma Cells and Its Mechanism

    PubMed Central

    Shen, Qi; Ye, Weijing; Hu, Xiaoli; Zhao, Chuchu; Zhou, Lulu

    2016-01-01

    Aims. To observe the effects of Guizhi Fuling Capsule (GZFLC) drug serum on uterine leiomyoma cells and explore its mechanism. Main Methods. Sixty Sprague Dawley rats were randomly divided into two groups (normal saline lavage group and GZFLC lavage group), then, respectively, blank serum and GZFLC drug serum were collected, and finally human uterine leiomyoma cells were treated. Human leiomyoma tissues were collected from 20 patients who underwent uterine leiomyomas operations, and leiomyoma cells were primary cultured. The leiomyoma cells were treated by GZFLC drug serum in different concentrations (10%, 20%, and 30%) and variable treatment time (12 h, 24 h, 36 h, 48 h, and 72 h). Cell proliferation was observed using CCK8 assay. Flow cytometry and Annexin V/PI were used to assay the effects of GZFLC drug serum on cell apoptosis. Western blot analysis was used to assay the effects of GZFLC drug serum on TSC2, FOXO, and 14-3-3γ expression in uterine leiomyoma cells. Key Findings. In the concentrations of 10%~30%, GZFLC drug serum could inhibit proliferation of leiomyoma cells in dose-dependent manner; at the time of 36 h, cell inhibition rate was at the peak; GZFLC drug serum could induce apoptosis of leiomyoma also in a dose-dependent manner, and apoptosis rate quickly achieved maximum at 12 h time points, and then second apoptosis peak appeared at 36 h. Compared to nontreatment group, TSC2, FOXO, and 14-3-3γ expressions in drug serum group were significantly changed after 12 h treatment. Significance. GZFLC drug serum can efficiently inhibit the proliferation and induce apoptosis of leiomyoma cells, which is related to the 14-3-3γ pathway. PMID:27895695

  16. Inhibition of gap junction intercellular communication is involved in silica nanoparticles-induced H9c2 cardiomyocytes apoptosis via the mitochondrial pathway

    PubMed Central

    Du, Zhong-jun; Cui, Guan-qun; Zhang, Juan; Liu, Xiao-mei; Zhang, Zhi-hu; Jia, Qiang; Ng, Jack C; Peng, Cheng; Bo, Cun-xiang; Shao, Hua

    2017-01-01

    Gap junction intercellular communication (GJIC) between cardiomyocytes is essential for synchronous heart contraction and relies on connexin-containing channels. Connexin 43 (Cx43) is a major component involved in GJIC in heart tissue, and its abnormal expression is closely associated with various cardiac diseases. Silica nanoparticles (SNPs) are known to induce cardiovascular toxicity. However, the mechanisms through which GJIC plays a role in cardiomyocytes apoptosis induced by SNPs remain unknown. The aim of the present study is to determine whether SNPs-decreased GJIC promotes apoptosis in rat cardiomyocytes cell line (H9c2 cells) via the mitochondrial pathway using CCK-8 Kit, scrape-loading dye transfer technique, Annexin V/PI double-staining assays, and Western blot analysis. The results showed that SNPs elicited cytotoxicity in H9c2 cells in a time- and concentration-dependent manner. SNPs also reduced GJIC in H9c2 cells in a concentration-dependent manner through downregulation of Cx43 and upregulation of P-Cx43. Inhibition of gap junctions by gap junction blocker carbenoxolone disodium resulted in decreased survival and increased apoptosis, whereas enhancement of the gap junctions by retinoic acid led to enhanced survival but decreased apoptosis. Furthermore, SNPs-induced apoptosis through the disrupted functional gap junction was correlated with abnormal expressions of the proteins involved in the mitochondrial pathway-related apoptosis such as Bcl-2/Bax, cytochrome C, Caspase-9, and Caspase-3. Taken together, our results provide the first evidence that SNPs-decreased GJIC promotes apoptosis in cardiomyocytes via the mitochondrial pathway. In addition, downregulation of GJIC by SNPs in cardiomyocytes is mediated through downregulation of Cx43 and upregulation of P-Cx43. These results suggest that in rat cardiomyocytes cell line, GJIC plays a protective role in SNPs-induced apoptosis and that GJIC may be one of the targets for SNPs-induced biological

  17. MicroRNA-125b-5p inhibits proliferation and promotes adipogenic differentiation in 3T3-L1 preadipocytes.

    PubMed

    Ouyang, Dan; Ye, Yaqiong; Guo, Dongguang; Yu, Xiaofang; Chen, Jian; Qi, Junjie; Tan, Xiaotong; Zhang, Yuan; Ma, Yongjiang; Li, Yugu

    2015-05-01

    Previous evidence has indicated that the microRNA-125b (miR-125b) family plays important roles in the regulation of cancer cell growth, development, differentiation, and apoptosis. However, whether they contribute to the process of adipocyte differentiation remains unclear. In the present study, we revealed that the expression level of miR-125b-5p, a member of miR-125b family, was dramatically up-regulated during differentiation of 3T3-L1 preadipocyte into mature adipocyte. Supplement of miR-125b-5p into 3T3-L1 cells promoted adipogenic differentiation as evidenced by increased lipid droplets and mRNA levels of adipocyte-specific molecular markers, including peroxisome proliferators-activated receptor γ, CCAAT/enhancer-binding protein α, fatty acid-binding protein 4, and lipoprotein lipase, and by triglyceride accumulation. CCK-8 assay showed that miR-125b-5p supplementation significantly inhibited cell proliferation. Flow cytometry analysis showed that miR-125b-5p impaired G1/S phase transition as well as the mRNA and protein expression of G1/S-related genes, such as Cyclin D2, Cyclin D3, and CDK4. Nevertheless, it had no effect on apoptosis. Additionally, by target gene prediction, we demonstrated that smad4 may be a potential target of miR-125b-5p in mouse 3T3-L1 preadipocytes, accounting for some of miR-125b-5p's functions. Taken together, these data indicated that miR-125b-5p may serve as an important positive regulator in adipocyte differentiation, at least partially through down-regulating smad4.

  18. The novel anthraquinone derivative IMP1338 induces death of human cancer cells by p53-independent S and G2/M cell cycle arrest.

    PubMed

    Choi, Hyun Kyung; Ryu, Hwani; Son, A-Rang; Seo, Bitna; Hwang, Sang-Gu; Song, Jie-Young; Ahn, Jiyeon

    2016-04-01

    To identify novel small molecules that induce selective cancer cell death, we screened a chemical library containing 1040 compounds in HT29 colon cancer and CCD18-Co normal colon cells, using a phenotypic cell-based viability assay system with the Cell Counting Kit-8 (CCK-8). We discovered a novel anthraquinone derivative, N-(4-[{(9,10-dioxo-9,10-dihydro-1-anthracenyl)sulfonyl}amino]phenyl)-N-methylacetamide (IMP1338), which was cytotoxic against the human colon cancer cells tested. The MTT cell viability assay showed that treatment with IMP1338 selectively inhibited HCT116, HCT116 p53(-/-), HT29, and A549 cancer cell proliferation compared to that of Beas2B normal epithelial cells. To elucidate the cellular mechanism underlying the cytotoxicity of IMP1338, we examined the effect of IMP1338 on the cell cycle distribution and death of cancer cells. IMP1338 treatment significantly arrested the cell cycle at S and G2/M phases by DNA damage and led to apoptotic cell death, which was determined using FACS analysis with Annexin V/PI double staining. Furthermore, IMP1338 increased caspase-3 cleavage in wild-type p53, p53 knockout HCT116, and HT29 cells as determined using immunoblotting. In addition, IMP1338 markedly induced the phosphorylation of histone H2AX and Chk1 in both cell lines while the combination of 5-fluorouracil (5-FU) and radiation inhibited the viability of HCT116, HCT116 p53(-/-), and HT29 cells compared to 5-FU or radiation alone. Our findings indicated that IMP1338 induced p53-independent cell death through S and G2/M phase arrest as well as DNA damage. These results provide a basis for future investigations assessing the promising anticancer properties of IMP1338.

  19. Hsa-let-7a functions as a tumor suppressor in renal cell carcinoma cell lines by targeting c-myc

    SciTech Connect

    Liu, Yongchao; Yin, Bingde; Zhang, Changcun; Zhou, Libin; Fan, Jie

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer This study is the first to test the let-7a/c-myc loop in renal cell carcinoma cell lines. Black-Right-Pointing-Pointer Let-7a down-regulated c-myc in three renal cell carcinoma cell lines. Black-Right-Pointing-Pointer c-myc target genes were down-regulated because of the let-7a-mediated down-regulation of c-myc. Black-Right-Pointing-Pointer The let-7a/c-myc loop has a significant function in renal cell carcinoma cell lines. -- Abstract: Widespread functions of the c-myc pathway play a crucial role in renal cell carcinoma (RCC) carcinogenesis. Thus, we evaluated the connection between proto-oncogenic c-myc and anti-neoplastic hsa-let-7a (let-7a) in RCC cell lines. The levels of c-myc and let-7a in 3 RCC cell lines (769P, Caki-1 and 786O) were measured after transfecting the cells with let-7a mimics or a negative control. The change in c-myc protein level was confirmed by Western blot. The anti-neoplastic function of let-7a was evaluated using cell counting kit-8 (CCK-8) for proliferation analysis and cell flow cytometry for cell cycle analysis. The changes of downstream targets of c-myc were measured using reverse transcription quantitative real-time PCR (qRT-PCR). Our results suggest for the first time that let-7a acts as a tumor suppressor in RCC cell lines by down-regulating c-myc and c-myc target genes such as proliferating cell nuclear antigen (PCNA), cyclin D1 (CCND1) and the miR17-92 cluster, which is accompanied by proliferation inhibition and cell cycle arrest.

  20. Comparison of high-intensity ultraviolet and NB-UVB on the maturation of melanocytes derived from hair follicle neural crest stem cells.

    PubMed

    Dong, Dake; Chen, Shujun; Zhang, Xiaoli; Jin, Cheng; Zheng, Yuan; Yang, Lijia

    2014-09-01

    Both high-intensity ultraviolet and narrowband ultraviolet B (NB-UVB) are important therapeutic options for vitiligo management, but high-intensity ultraviolet is more effective than NB-UVB. However, the underlying mechanisms have not been well investigated. Herein, we compare the effects of high-intensity ultraviolet and NB-UVB on the pigmentation of melanocytes derived from hair follicle-derived neural crest stem cells (HF-NCSCs) in vitro and study the underlying mechanisms. The HF-NCSCs were isolated from mouse whisker follicles. After radiation with high-intensity ultraviolet and NB-UVB, respectively, the cell viability by the CCK-8 assay showed gradual inhibitory effects in a dose-dependent manner, which has no apparent difference between the two modalities. The mRNA for melanogenesis factors such as tyrosinase and tyrp1 of the differentiated melanocytes increased significantly with high-intensity ultraviolet compared to the same dose of NB-UVB exposure. Furthermore, the expression of Mc1r was significantly increased by high-intensity ultraviolet in contrast to NB-UVB at the dosage of 0.5 J. By and large, these data suggest that high-intensity ultraviolet exhibited greater efficiency on the maturation of the melanocyte lineage differentiated from HF-NCSCs compared to NB-UVB with the same dose, which was probably due to the stronger stimulatory action of Mc1r. This may provide new insights into the different efficacies of high-intensity ultraviolet and NB-UVB in the treatment of vitiligo repigmentation.

  1. A novel sphingosine kinase 1 inhibitor (SKI-5C) induces cell death of Wilms' tumor cells in vitro and in vivo.

    PubMed

    Li, Zhi-Heng; Tao, Yan-Fang; Xu, Li-Xiao; Zhao, He; Li, Xiao-Lu; Fang, Fang; Wu, Yi; Lu, Jun; Li, Yan-Hong; Du, Wei-Wei; Ren, Jun-Li; Li, Yi-Ping; Xu, Yun-Yun; Feng, Xing; Wang, Jian; He, Wei-Qi; Pan, Jian

    2016-01-01

    Sphingosine kinase 1 (SphK1) is over-expressed in many cancers and therefore serves as a biomarker for cancer prognosis. SKI-5C is a new SphK1 inhibitor, and until now its molecular function in Wilms' tumor cells remained unknown. Here, using CCK-8 and nude mice experiments we assessed cell growth in Wilms' tumor cell lines (SK-NEP-1 and G401) in vitro and in vivo. We demonstrated that SphK1 is highly expressed in SK-NEP-1 and G401 cells, and through annexin V/propidium iodide staining and flow cytometry analysis, we detected cell apoptosis. Treatment with SKI-5C inhibited proliferation and induced apoptosis of SK-NEP-1 and G401 cells in a dose-dependent manner. Moreover, SKI-5C treatment inhibited the growth of SK-NEP-1 xenograft tumors in nude mice, with few side effects. Our microarray analysis revealed that SKI-5C-treated SK-NEP-1 cells mostly downregulated PRKACA and significantly inhibited phosphorylation of ERK1/2 and NF-κB p65. These results imply that SKI-5C induces apoptosis of SK-NEP-1 cells through the PRKACA/MAPK/NF-κB pathway. While, further research is required to determine the underlying details, these results provide new clues for the molecular mechanism of cell death induced by SKI-5C and suggest that SKI-5C may act as new candidate drug for Wilms' tumor.

  2. A novel sphingosine kinase 1 inhibitor (SKI-5C) induces cell death of Wilms’ tumor cells in vitro and in vivo

    PubMed Central

    Li, Zhi-Heng; Tao, Yan-Fang; Xu, Li-Xiao; Zhao, He; Li, Xiao-Lu; Fang, Fang; Wu, Yi; Lu, Jun; Li, Yan-Hong; Du, Wei-Wei; Ren, Jun-Li; Li, Yi-Ping; Xu, Yun-Yun; Feng, Xing; Wang, Jian; He, Wei-Qi; Pan, Jian

    2016-01-01

    Sphingosine kinase 1 (SphK1) is over-expressed in many cancers and therefore serves as a biomarker for cancer prognosis. SKI-5C is a new SphK1 inhibitor, and until now its molecular function in Wilms’ tumor cells remained unknown. Here, using CCK-8 and nude mice experiments we assessed cell growth in Wilms’ tumor cell lines (SK-NEP-1 and G401) in vitro and in vivo. We demonstrated that SphK1 is highly expressed in SK-NEP-1 and G401 cells, and through annexin V/propidium iodide staining and flow cytometry analysis, we detected cell apoptosis. Treatment with SKI-5C inhibited proliferation and induced apoptosis of SK-NEP-1 and G401 cells in a dose-dependent manner. Moreover, SKI-5C treatment inhibited the growth of SK-NEP-1 xenograft tumors in nude mice, with few side effects. Our microarray analysis revealed that SKI-5C-treated SK-NEP-1 cells mostly downregulated PRKACA and significantly inhibited phosphorylation of ERK1/2 and NF-κB p65. These results imply that SKI-5C induces apoptosis of SK-NEP-1 cells through the PRKACA/MAPK/NF-κB pathway. While, further research is required to determine the underlying details, these results provide new clues for the molecular mechanism of cell death induced by SKI-5C and suggest that SKI-5C may act as new candidate drug for Wilms’ tumor. PMID:27904661

  3. In vitro investigation on the magnetic thermochemotherapy mediated by magnetic nanoparticles combined with methotrexate for breast cancer treatment.

    PubMed

    Zhao, Lingyun; Huo, Meijun; Liu, Jiayi; Yao, Zhu; Li, Danye; Zhao, Zhiwei; Tang, Jintian

    2013-02-01

    Cancer comprehensive treatment has been fully recognized as it can provide an effective multimodality approach for fighting cancers. In therapeutic oncology, hyperthermic adjuvant chemotherapy termed as thermochemotherapy plays an increasing role in multimodality cancer treatment. Currently, targeted nanothermotherapy is one of the effective hyperthermia approach based on magnetic nanoparticles (MNPs), which can be achieved by applying biocompatible nanoscaled metallic particles that convert electromagnetic energy into heat, for instance, magnetic fluid hyperthermia (MFH) mediated by superparamagnetic iron oxide nanoparticles (SPIONs). Upon exposure under alternative magnetic field (AMF), SPIONs can generate heat through oscillation of their magnetic moment. Nowadays, clinical trials at phase II are now under investigations for MFH on patients in Germany and Japan and demonstrate very inspiring for cancer therapy. In this work we explore the feasibility and effectiveness of magnetic thermochemotherapy mediated by magnetic nanoparticles combined with methotrexate, an anti-cancer drug, for breast cancer comprehensive treatment. Amino silane coated MNPs as agent of MFH were prepared by the chemical precipitation method. Physiochemical characterizations on MNPs have been systematically carried out by various instrumental analyses. Inductive heating property of the MNPs was evaluated by monitoring the temperature increase of the MNPs suspension under AMF. The in-vitro cytotoxicity results on human breast cancer cell MCF-7 by CCK-8 assay indicated the bi-modal cancer treatment approach for combined MFH and chemotherapy is more effective than mono-modal treatment, indicating a thermal enhancement effect of hyperthermia on drug cytocoxicity. The magnetic thermochemotherapy mediated by MNPs combined with methotrexate can realize cancer comprehensive treatment thus has great potential in clinical application.

  4. Rationally Separating the Corona and Membrane Functions of Polymer Vesicles for Enhanced T₂ MRI and Drug Delivery.

    PubMed

    Qin, Jingya; Liu, Qiuming; Zhang, Junxue; Chen, Jing; Chen, Shuai; Zhao, Yao; Du, Jianzhong

    2015-07-01

    It is an important challenge to in situ grow ultrafine super-paramagnetic iron oxide nanoparticles (SPIONs) in drug carriers such as polymer vesicles (also called polymersomes) while keeping their biodegradability for enhanced T2-weighted magnetic resonance imaging (MRI) and drug delivery. Herein, we present a new strategy by rationally separating the corona and membrane functions of polymer vesicles to solve the above problem. We designed a poly(ethylene oxide)-block-poly(ε-caprolactone)-block-poly(acrylic acid) (PEO43-b-PCL98-b-PAA25) triblock copolymer and self-assembled it into polymer vesicle. The PAA chains in the vesicle coronas are responsible for the in situ nanoprecipitation of ultrafine SPIONs, while the vesicle membrane composed of PCL is biodegradable. The SPIONs-decorated vesicle is water-dispersible, biocompatible, and slightly cytotoxic to normal human cells. Dynamic light scattering, transmission electron microscopy, energy disperse spectroscopy, and vibrating sample magnetometer revealed the formation of ultrafine super-paramagnetic Fe3O4 nanoparticles (1.9 ± 0.3 nm) in the coronas of polymer vesicles. Furthermore, the CCK-8 assay revealed low cytotoxicity of vesicles against normal L02 liver cells without and with Fe3O4 nanoparticles. The in vitro and in vivo MRI experiments confirmed the enhanced T2-weighted MRI sensitivity and excellent metastasis in mice. The loading and release experiments of an anticancer drug, doxorubicin hydrochloride (DOX·HCl), indicated that the Fe3O4-decorated magnetic vesicles have potential applications as a nanocarrier for anticancer drug delivery. Moreover, the polymer vesicle is degradable in the presence of enzyme such as Pseudomonas lipases, and the ultrafine Fe3O4 nanoparticles in the vesicle coronas are confirmed to be degradable under weakly acidic conditions. Overall, this decoration-in-vesicle-coronas strategy provides us with a new insight for preparing water-dispersible ultrafine super-paramagnetic Fe3O

  5. Hyperbaric oxygen protects mandibular condylar chondrocytes from interleukin-1β-induced apoptosis via the PI3K/AKT signaling pathway

    PubMed Central

    Chen, Hang; Wu, Gaoyi; Sun, Qi; Dong, Yabing; Zhao, Huaqiang

    2016-01-01

    Objectives: Mandibular condylar chondrocyte apoptosis is mainly responsible for the development and progression of temporomandibular joint osteoarthritis (TMJ-OA). Interleukin-1β (IL-1β) generally serves an agent that induces chondrocyte apoptosis. Hyperbaric oxygen (HBO) treatment increases proteoglycan synthesis in vivo. We explore the protective effect of HBO on IL-1β-induced mandibular condylar chondrocyte apoptosis in rats and the potential molecular mechanisms. Methods: Chondrocytes were isolated from the TMJ of 3-4-week old Sprague-Dawley rats. The Cell Counting Kit-8 (CCK-8) assay was used to determine cell viability. The phosphorylated phosphoinositide-3 kinase (p-PI3K), phosphorylated AKT (p-Akt), type II collagen (COL2), and aggrecan (AGG) content was detected by immunofluorescence, immunocytochemistry and western blotting. The expression of Pi3k, Akt, Col2 and Agg mRNA was measured using real-time quantitative polymerase chain reaction (RT-qPCR). Results: HBO inhibited the cytotoxicity and apoptosis induced by IL-1β (10 ng/mL) in the mandibular condylar chondrocytes. HBO also decreased the IL-1β activity that decreased p-PI3K and p-AKT levels, and increased COL2 and AGG expression, with the net effect of suppressing extracellular matrix degradation. Conclusions: These data suggest that HBO may protect mandibular condylar chondrocytes against IL-1β-induced apoptosis via the PI3K/AKT signaling pathway, and that it may promote the expression of mandibular condylar chondrocyte extracellular matrix through the PI3K/AKT signaling pathway. PMID:27904712

  6. miR-223 increases gallbladder cancer cell sensitivity to docetaxel by downregulating STMN1

    PubMed Central

    Zhou, Linzhu; Jiang, Lin; Li, Zhizhen; Zhao, Shuai; Xu, Yuzhen; Shi, Weibin; Li, Sheng; Liu, Yingbin

    2016-01-01

    Background MicroRNAs (miRs) are involved in cancer carcinogenesis, and certain regulatory miRs could provide promising therapeutic methods for refractory malignancies, such as gallbladder cancer (GBC). miR-223 was found to play a pivotal role in enhancing chemotherapeutic effects, therefore evoking interest in the role of miR-223 in GBC. Results miR-223 was decreased in GBC tissues and cell lines, and ectopic miR- 223 expression exhibited multiple anti-tumorigenic effects in GBC cells, including decreased proliferation, migration and invasion in vitro. However, treatment with a miR-223 inhibitor increased cell viability. We determined that STMN1 was negatively correlated with and regulated by miR-223 in GBC. miR-223 increased GBC sensitivity to docetaxel in vitro and in vivo, and the induced sensitivity to docetaxel was suppressed by the restoration of STMN1 expression. Methods We examined miR-223 expression in GBC tissue and GBC cell lines using qRT-PCR. The effects of modulated miR-223 expression in GBC cells were assayed using Cell Counting Kit-8 (CCK8), flow cytometry, and wound-healing and invasion assays. Susceptibility to docetaxel was evaluated in miR-223/STMN1-modulated GBC cells and xenograft tumor models. The protein expression of relevant genes was examined by Western blotting. Conclusions These findings indicated that miR-223 might serve as an onco-suppressor that enhances susceptibility to docetaxel by downregulating STMN1 in GBC, highlighting its promising therapeutic value. PMID:27577078

  7. Curcumin inhibits cell growth and induces cell apoptosis through upregulation of miR-33b in gastric cancer.

    PubMed

    Sun, Qianqian; Zhang, Wenjing; Guo, Yanjie; Li, Zhuyao; Chen, Xiaonan; Wang, Yuanyuan; Du, Yuwen; Zang, Wenqiao; Zhao, Guoqiang

    2016-10-01

    In this work, the in vitro experiments about biological mechanisms of curcumin were conducted using the gastric cancer cell lines SGC-7901 and BGC-823. After 24-h exposure to curcumin at the concentrations of 5, 10, 15, 20, and 40 μmol/L, two cells showed the decreased proliferation and increased apoptosis abilities. Real-time PCR, Cell Counting Kit-8 (CCK-8) assay, western blotting, and cell apoptosis assay were used to further study the underlying mechanisms of curcumin. The first stage of our studies showed that curcumin affected the expression of miR-33b, which, in turn, affected the expression of the X-linked inhibitor of apoptosis protein (XIAP) messenger RNA (mRNA). Next, curcumin was also identified to regulate the proliferation and apoptosis of SGC-7901 and BGC-823 cells. Further bioinformatics analysis and luciferase reporter assays proved that XIAP was one of the target genes of miR-33b. In the next stage, SGC-7901 and BGC-823 cells were treated with 20 μL curcumin, miR-33b mimics, and small interfering RNA (siRNA) of XIAP, respectively. The results showed that curcumin had similar effects on cell growth and apoptosis as the upregulation of miR-33b and the upregulation of the siRNA of XIAP. The results that followed from the restore experiments showed that curcumin affected cell growth and apoptosis presumably by upregulating the XIAP targeting in gastric cancer. Collectively, our results indicate that curcumin-miR-33b-XIAP coupling might be an important mechanism by which curcumin induces the apoptosis of SGC-7901 and BGC-823 cells.

  8. miR-455 inhibits neuronal cell death by targeting TRAF3 in cerebral ischemic stroke

    PubMed Central

    Yao, Shengtao; Tang, Bo; Li, Gang; Fan, Ruiming; Cao, Fang

    2016-01-01

    Ischemic stroke is one of the leading causes of brain disease, with high morbidity, disability, and mortality. MicroRNAs (miRNAs) have been identified as vital gene regulators in various types of human diseases. Accumulating evidence has suggested that aberrant expression of miRNAs play critical roles in the pathologies of ischemic stroke. Yet, the precise mechanism by which miRNAs control cerebral ischemic stroke remains unclear. In the present study, we explored whether miR-455 suppresses neuronal death by targeting TRAF3 in cerebral ischemic stroke. The expression levels of miR-455 and TRAF3 were detected by quantitative real-time polymerase chain reaction and Western blot. The role of miR-455 in cell death caused by oxygen–glucose deprivation (OGD) was assessed using Cell Counting Kit-8 (CCK-8) assay. The influence of miR-455 on infarct volume was evaluated in mouse brain after middle cerebral artery occlusion (MCAO). Bioinformatics softwares and luciferase analysis were used to find and confirm the targets of miR-455. The results showed that the expression levels of miR-455 significantly decreased in primary neuronal cells subjected to OGD and mouse brain subjected to MCAO. In addition, forced expression of miR-455 inhibited neuronal death and weakened ischemic brain infarction in focal ischemia-stroked mice. Furthermore, TRAF3 was proved to be a direct target of miR-455, and miR-455 could negatively suppress TRAF3 expression. Biological function analysis showed that TRAF3 silencing displayed the neuroprotective effect in ischemic stroke and could enhance miR-455-induced positive impact on ischemic injury both in vitro and in vivo. Taken together, miR-455 played a vital role in protecting neu