Science.gov

Sample records for 12 day mission

  1. STS-109 Mission Highlights Resource Tape. Part 4 of 4; Flight Days 8 - 12

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This video, Part 4 of 4, shows footage of crew activities from flight days 8 through 12 of STS-109. The crew included: Scott Altman, Commander; Duane Carey, Pilot; John Grunsfeld, Payload Commander; Nancy Currie, Richard Linnehan, James Newman, Michael Massimino, Mission Speicalists. The activities from other flights days can be seen on 'STS-109 Mission Highlights Resource Tape' Part 1 of 4 (internal ID 2002139471), 'STS-109 Mission Highlights Resource Tape' Part 2 of 4 (internal ID 2002137664), and 'STS-109 Mission Highlights Resource Tape' Part 3 of 4 (internal ID 2002139476). The primary activity on flight day 8 was an EVA (extravehicular activity) by Grunsfeld and Linnehan to install a cryocooler and radiator for the NICMOS (Near Infrared Camera and Multi-Object Spectrometer) on the HST (Hubble Space Telescope). Before returning to Columbia's airlock, the astronauts, with a cloudy background, hold onto the orbiter and offer their thoughts on the significance of their mission, the HST, and spaceflight. Footage from flight day 9 includes the grappling, unbearthing, and deployment of the HST from Columbia, and the crew coordinating and videotaping Columbia's departure. Flight day 10 was a relatively inactive day, and flight day 11 includes a checkout of Columbia's aerodynamic surfaces. Columbia landed on flight day 12, which is covered by footage of the crew members speaking during reentry, and their night landing, primarily shown through the orbiter's head-up display. The video includes numerous views of the HST, as well as views of the the Galapagos Islands, Madagascar, and Southern Africa with parts of the Atlantic, Indian, and Pacific Oceans, and part of the coast of Chile. The pistol grip space tool is shown in use, and the crew answers two messages from the public, including a message to Massimino from the Fire Department of New York.

  2. Apollo Soyuz Mission: 5-Day Report

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The Apollo Soyuz Test Project mission objectives and technical investigations are summarized. Topics discussed include: spacecraft and crew systems performance; joint flight activities; scientific and applications experiments; in-flight demonstrations; biomedical considerations; and mission support performance.

  3. STS-107 Flight Day 12 Highlights

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This video shows the activities of the STS-107 crew (Rick Husband, Commander; William McCool, Pilot; Kalpana Chawla, David Brown, Michael Anderson, Laurel Clark, Mission Specialists; Ilan Ramon, Payload Specialist) during flight day 12 of the Columbia orbiter's final mission. The primary activities are spaceborne experiments in the SpaceHab RDM (Research Double Module). Experiments shown in the video include SOFBALL (Structure of Flame Balls at Low Lewis-Number), an experiment to grow cancer cells in microgravity, and the STARS (Space Technology and Research Students) experiments, including bees, ants, chemical gardens, fish, and spiders. Crew Members are shown working on MIST (Water Mist Fire Suppression), a commercial experiment. Red Team crew members (Husband, Chawla, Clark, Ramon) are shown conversing through a handset with the Expedition 6 crew (Kenneth Bowersox, Commander; Donald Pettit, Nikolai Budarin; Flight Engineers) of the ISS (International Space Station).

  4. 12. Photocopy of 18611885 painting by Oriana Day in de ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. Photocopy of 1861-1885 painting by Oriana Day in de Young Museum, San Francisco. VIEW OF COMPLEX FROM THE EAST - Mission Santa Clara de Asis, Franklin & Grant Streets, Santa Clara, Santa Clara County, CA

  5. Respiratory mechanics after 180 days space mission (EUROMIR'95)

    NASA Astrophysics Data System (ADS)

    Venturoli, Daniele; Semino, Paola; Negrini, Daniela; Miserocchi, Giuseppe

    The present study reports data on respiratory function of lung and chest wall following the 180 days long European — Russian EuroMir '95 space mission. Data reported refer to two subjects studied before the mission, on day 9 and 175 in flight and on days 1, 10, 12, 27 and 120 after return. In-flight vital capacity (VC) and expiratory reserve volume (ERV) were similar to those in supine posture, namely ~ 5% and ~ 30% less than in sitting posture. On day 1 after return, VC was reduced by ~30 % in both postures. This reflected a decrease in ERV (~0.5 L) and in IC (inspiratory capacity, ~ 1.7 L) that could be attributed to a marked weakening of the respiratory muscles. Regain of normal preflight values barely occurred 120 days after return. Post-flight pressure-volume curves of the lung, chest wall and total respiratory system are equal to preflight ones. The pressure-volume curve of the lung in supine posture is displaced to the right relative to sitting posture and shows a lower compliance. As far as the lung in-flight condition resembles that occurring in supine posture, this implies a lower compliance, a greater amount of blood in the pulmonary microvascular bed, a more homogeneous lung perfusion and therefore a greater microvascular filtration rate towards lung interstitium.

  6. STS-1: the first space shuttle mission, April 12, 1981

    NASA Video Gallery

    Space shuttle Columbia launched on the first space shuttle mission on April 12, 1981, a two-day demonstration of the first reusable, piloted spacecraft's ability to go into orbit and return safely ...

  7. Day 4 activities in the MOCR during STS-5 mission

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Day 4 activities in the mission operations control room (MOCR) during STS-5 mission. Scott Thomas, a freshman at Utah State University, watches the television monitor in front of him in the mission operations control room (MOCR) at JSC's mission control center. Astronaut Joseph P. Allen, STS-5 mission specialist, conducts an experiment - a study of convection in zero gravity - onboard the Columbia. The experiment is part of the student experiments program and was conceived by Thomas. Also at the payloads console with Thomas is Robert M. Kelso, of the Flight Operations Directorate. The stuffed mascot for the payloads team, a kangaroo, sits atop the payloads team console.

  8. MOCR activity during Day 4 of STS-3 mission

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Major General J.A. Abrahamson, right, talks to JSC Director Christopher C. Kraft, Jr., (seated left) and Space Shuttle Program Manager Glynn S. Lunney on the back row of consoles in the mission operations control room (MOCR) in the Johnson Space Center mission control center. The reflection behind the men is a window for the MOCR viewing room (28772,28775); Abrahamson, second right, talks to JSC's Aaron Cohen, right, as Kraft (seated left) and Lunney listen in mission control (28773); Flight controller J.E. Connor monitors a television transmission from the Space Shuttle Columbia during day 4 of the STS-3 mission. Conner is seated at his INCO console (28774).

  9. NASA 14 Day Undersea Missions: A Short-Duration Spaceflight Analog for Immune System Dysregulation?

    NASA Technical Reports Server (NTRS)

    Crucian, B. E.; Stowe, R. P.; Mehta, S. K.; Chouker, A.; Feuerecker, M.; Quiriarte, H.; Pierson, D. L.; Sams, C. F.

    2011-01-01

    This poster paper reviews the use of 14 day undersea missions as a possible analog for short duration spaceflight for the study of immune system dysregulation. Sixteen subjects from the the NASA Extreme Enviro nment Mission Operations (NEEMO) 12, 13 and 14 missions were studied for immune system dysregulation. The assays that are presented in this poster are the Virleukocyte subsets, the T Cell functions, and the intracellular/secreted cytokine profiles. Other assays were performed, but are not included in this presntation.

  10. 12 CFR 940.2 - Mission of the Banks.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 7 2010-01-01 2010-01-01 false Mission of the Banks. 940.2 Section 940.2 Banks and Banking FEDERAL HOUSING FINANCE BOARD FEDERAL HOME LOAN BANK MISSION CORE MISSION ACTIVITIES § 940.2 Mission of the Banks. The mission of the Banks is to provide to their members' and...

  11. 12 CFR 940.3 - Core mission activities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 7 2010-01-01 2010-01-01 false Core mission activities. 940.3 Section 940.3 Banks and Banking FEDERAL HOUSING FINANCE BOARD FEDERAL HOME LOAN BANK MISSION CORE MISSION ACTIVITIES § 940.3 Core mission activities. The following Bank activities qualify as core mission activities:...

  12. Activity in Mission Control Center during Apollo 12 lunar landing mission

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Overal view of activity in the Mission Operations Control Room in the Mission Control Center, bldg 30, during the Apollo 12 lunar landing mission. When this picture was made the first Apollo 12 extravehicular activity was being televised from the surface of the Moon.

  13. STS-114: Discovery Day 9 Mission Status Briefing

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Paul Hill, STS-114 Lead Shuttle Flight Director, Mark Ferring, STS-114 Lead ISS Flight Director and Cindy Begley, STS-114 Lead EVA Officer is shown during this 9th day of the Space Shuttle Mission to the International Space Station. Paul Hill talks about the status of the transfers of critical items to the International Space Station and transfers back from the International Space Station into the Multi-Purpose Logistics Module (MPLM). Hill also presents footage of the crew cabin blanket survey procedure. Mark Ferring talks in detail about the primary International Space Station task on the External Stowage Platform (ESP). The status of the external stowage platform installation, removal of grapple fixture, gap filler removal task, and Materials International Space Station Experiment (MISSE) 5 payload installation is discussed by Cindy Begley. She also presents footage of Steve Robinson's spacewalk before the gap filler task and during the removal of the gap filler. The Capture of ESP-2 is also presented. The presentation ends with a question and answer period from the news media

  14. NASA 14 Day Undersea Missions: A Short-Duration Spaceflight Analog for Immune System Dysregulation

    NASA Technical Reports Server (NTRS)

    Crucian, B. E.; Stowe, R. P.; Mehta, S. K.; Quiriarte, H.; Pierson, D. L.; Sams, C. F.

    2010-01-01

    BACKGROUND Spaceflight-associated immune dysregulation (SAID) occurs during spaceflight and may represent specific clinical risks for exploration-class missions. An appropriate ground analog for spaceflight-associated immune dysregulation would offer a platform for ground-evaluation of various potential countermeasures. This study evaluated the NASA Undersea Mission Operations ( NEEMO ), consisting of 14 day undersea deployment at the Aquarius station, as an analog for SAID. Sixteen Aquanauts from missions NEEMO-12, 13 and 14 participated in the study. RESULTS Mid-mission alterations leukocyte distribution occurred, including granulocytosis and elevations in central-memory CD8+ T-cells. General T cell function was reduced during NEEMO missions in roughly 50% of subjects. Secreted cytokines profiles were evaluated following whole blood stimulation with CD3/CD28 (T cells) or LPS (monocytes). T cell production of IFNg, IL-5, IL-10, IL-2, TNFa and IL-6 were all reduced before and during the mission. Conversely, monocyte production of TNFa, IL-10, IL-6, IL-1b and IL-8 were elevated during mission, moreso at the MD-14 timepoint. Antibodies to Epstein-Barr virus (EBV) viral capsid antigen and early antigen were increased in approximately 40% of the subjects. Changes in EBV tetramer-positive CD8+ T-cells exhibited a variable pattern. Antibodies against Cytomegalovirus (CMV) were marginally increased during the mission. Herpesvirus reactivation was determined by PCR. EBV viral load was generally elevated at L-6. Higher levels of salivary EBV were found during the NEEMO mission than before and after as well as than the healthy controls. No VZV or CMV was found in any pre, during and after NEEMO mission or control samples. Plasma cortisol was elevated at L-6. CONCLUSION Unfortunately, L-6 may be too near to mission start to be an appropriate baseline measurement. The general immune changes in leukocyte distribution, T cell function, cytokine production, virus specific

  15. MOCR activity during Day 1 of STS-3 mission

    NASA Technical Reports Server (NTRS)

    1982-01-01

    JSC Director Christopher C. Kraft, Jr., and Eugene F. Kranz Deputy Director of Flight Operations, look at a flight plan at the flight operations director (FOD) console in the mission operations control room (MOCR) of JSC's mission control center. Thomas L. Moser of the Structures and Mechanics Division looks on at left (28713); Flight director Tommy W. Holloway looks at a monitor at a console in the MOCR. Space Shuttle orbiter Columbia's spotter symbol can be seen in the background, indicating her location in space over the northern part of Africa (28714).

  16. VIew of Mission Control on first day of ASTP docking in Earth orbit

    NASA Technical Reports Server (NTRS)

    1975-01-01

    An overall view of the Mission Operations Control Room in the Mission Control Center on the first day of the Apollo Soyuz Test Project (ASTP) docking in Earth orbit mission. The American ASTP flight controllers at JSC were monitoring the progress of the Soviet ASTP launch when this photograph was taken. The television monitor shows Cosmonaut Yuri V. Romanenko at his spacecraft communicator's console in the ASTP mission control center in the Soviet Union.

  17. Sleep and cognitive function of crewmembers and mission controllers working 24-h shifts during a simulated 105-day spaceflight mission

    NASA Astrophysics Data System (ADS)

    Barger, Laura K.; Wright, Kenneth P.; Burke, Tina M.; Chinoy, Evan D.; Ronda, Joseph M.; Lockley, Steven W.; Czeisler, Charles A.

    2014-01-01

    The success of long-duration space missions depends on the ability of crewmembers and mission support specialists to be alert and maintain high levels of cognitive function while operating complex, technical equipment. We examined sleep, nocturnal melatonin levels and cognitive function of crewmembers and the sleep and cognitive function of mission controllers who participated in a high-fidelity 105-day simulated spaceflight mission at the Institute of Biomedical Problems (Moscow). Crewmembers were required to perform daily mission duties and work one 24-h extended duration work shift every sixth day. Mission controllers nominally worked 24-h extended duration shifts. Supplemental lighting was provided to crewmembers and mission controllers. Participants' sleep was estimated by wrist-actigraphy recordings. Overall, results show that crewmembers and mission controllers obtained inadequate sleep and exhibited impaired cognitive function, despite countermeasure use, while working extended duration shifts. Crewmembers averaged 7.04±0.92 h (mean±SD) and 6.94±1.08 h (mean±SD) in the two workdays prior to the extended duration shifts, 1.88±0.40 h (mean±SD) during the 24-h work shift, and then slept 10.18±0.96 h (mean±SD) the day after the night shift. Although supplemental light was provided, crewmembers' average nocturnal melatonin levels remained elevated during extended 24-h work shifts. Naps and caffeine use were reported by crewmembers during ˜86% and 45% of extended night work shifts, respectively. Even with reported use of wake-promoting countermeasures, significant impairments in cognitive function were observed. Mission controllers slept 5.63±0.95 h (mean±SD) the night prior to their extended duration work shift. On an average, 89% of night shifts included naps with mission controllers sleeping an average of 3.4±1.0 h (mean±SD) during the 24-h extended duration work shift. Mission controllers also showed impaired cognitive function during extended

  18. Registration of Heat Capacity Mapping Mission day and night images

    NASA Technical Reports Server (NTRS)

    Watson, K.; Hummer-Miller, S.; Sawatzky, D. L. (Principal Investigator)

    1982-01-01

    Neither iterative registration, using drainage intersection maps for control, nor cross correlation techniques were satisfactory in registering day and night HCMM imagery. A procedure was developed which registers the image pairs by selecting control points and mapping the night thermal image to the daytime thermal and reflectance images using an affine transformation on a 1300 by 1100 pixel image. The resulting image registration is accurate to better than two pixels (RMS) and does not exhibit the significant misregistration that was noted in the temperature-difference and thermal-inertia products supplied by NASA. The affine transformation was determined using simple matrix arithmetic, a step that can be performed rapidly on a minicomputer.

  19. Activities in the MOCR last day after the landing of the STS-5 mission

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Activities in the mission operations control room (MOCR) during the last day after the landing of the STS-5 mission. The former and present director of JSC share congratulations at the successful landing of the STS-5 mission. The two men are former Director Christopher C. Kraft, Jr., left, and Gerald D. Griffin, present director. Most of the men to serve the STS-5 mission as flight directors are in the background (39787); Director Griffin applauds the successful completion of the STS-5 mission near the Flight Director's console in the mission operations control room (MOCR) at JSC's mission control center. Personnel from the spacecraft communicators console, flight operations directorate and other stations in the MOCR are seen celebrating in the background (39788); Spacecraft communicators (CAPCOM) in the MOCR view landing of the Columbia on a large screen. Seated at the CAPCOM console is Astronaut Robert L. Stewart. Astronaut Roy D. Bridges is standing (39789).

  20. STS-114: Discovery Day 13 Mission Status Briefing

    NASA Technical Reports Server (NTRS)

    2005-01-01

    LeRoy Cain, STS-114 Ascent/Entry Flight Director, takes a solo stand with the Press in this briefing. He reports that the vehicle is in good shape, consumable status is excellent, and the shuttle crew is in high spirits and preparing for de-orbit and landing. LeRoy and his team have completed the entry system check up, flight control check up, reactor control system check up, and noted that all are at nominal performance; weather forecast is very good, the Entry team is ready and looking forward to de-orbit and landing at the Kennedy Space Center on Monday, August 8th. Re-entry, personal feelings, Columbia accident, data gathering, consumable situation, back up sites, weather, communication block out, night and day landing, and Commander Collin's piloting skills during night flight are some of the topics covered with the News media.

  1. 12 CFR 329.104 - Ten-day grace period.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 12 Banks and Banking 4 2011-01-01 2011-01-01 false Ten-day grace period. 329.104 Section 329.104... INTEREST ON DEPOSITS § 329.104 Ten-day grace period. This interpretive rule provides for 10-day grace... calendar days following the maturity of a time deposit, the bank may continue to pay interest on...

  2. 12 CFR 229.10 - Next-day availability.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 12 Banks and Banking 3 2012-01-01 2012-01-01 false Next-day availability. 229.10 Section 229.10... Availability Policies § 229.10 Next-day availability. (a) Cash deposits. (1) A bank shall make funds deposited in an account by cash available for withdrawal not later than the business day after the banking...

  3. 12 CFR 229.10 - Next-day availability.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 12 Banks and Banking 3 2011-01-01 2011-01-01 false Next-day availability. 229.10 Section 229.10... Availability Policies § 229.10 Next-day availability. (a) Cash deposits. (1) A bank shall make funds deposited in an account by cash available for withdrawal not later than the business day after the banking...

  4. Radish plant exposed to lunar material collected on the Apollo 12 mission

    NASA Technical Reports Server (NTRS)

    1970-01-01

    The leaves of this radish plant were rubbed with lunar material colleted on the Apollo 12 lunar landing mission in experiments conducted in the Manned Spacecraft Center's Lunar Receiving Laboratory. The plant was exposed to the material 30 days before this photograph was made. Evidently no ill effects resulted from contact with the lunar soil.

  5. Merging Ocean Color Data from Multiple Missions. Chapter 12

    NASA Technical Reports Server (NTRS)

    Gregg, Watson W.

    2001-01-01

    Oceanic phytoplankton may play an important role in the cycling of carbon on the Earth, through the uptake of carbon dioxide in the process of photosynthesis. Although they are ubiquitous in the global oceans, their abundances and dynamics are difficult to estimate, primarily due to the vast spatial extent of the oceans and the short time scales over which their abundances can change. Consequently, the effects of oceanic phytoplankton on biogeochemical cycling, climate change, and fisheries are not well known. In response to the potential importance of phytoplankton in the global carbon cycle and the lack of comprehensive data, the National Aeronautics and Space Administration (NASA) and the international community have established high priority satellite missions designed to acquire and produce high quality ocean color data. Seven of the missions are routine global observational missions: the Ocean Color and Temperature Sensor (OCTS), the Polarization and Directionality of the Earth's Reflectances sensor (POLDER), Sea-viewing Wide Field-of-view Sensor (SeaWiFS), Moderate Resolution Imaging Spectrometer-AM (MODIS-AM), Medium Resolution Imaging Spectrometer (MERIS), Global Imager (GLI), and MODIS-PM. In addition, there are several other missions capable of providing ocean color data on smaller scales. Most of these missions contain the spectral band complement considered necessary to derive oceanic pigment concentrations (i.e., phytoplankton abundance) and other related parameters. Many contain additional bands that can provide important ancillary information about the optical and biological state of the oceans. Any individual ocean color mission is limited in ocean coverage due to sun glint and clouds. For example, one of the first proposed missions, the SeaWiFS, can provide about 45% coverage of the global ocean in four days and only about 15% in one day.

  6. View of Mission Control on first day of ASTP docking in Earth orbit

    NASA Technical Reports Server (NTRS)

    1975-01-01

    An overall view of the Mission Operations Control Room in the Mission Control Center, bldg 30, JSC, on the first day of the Apollo Soyuz Test Project (ASTP) docking in Earth orbit. This photograph was taken shortly before the American ASTP launch from the Kennedy Space Center. The television monitor in the center background shows the ASTP Apollo-Saturn 1B space vehicle on Pad B at KSC's Launch Complex 39.

  7. Psychological and behavioral changes during confinement in a 520-day simulated interplanetary mission to mars.

    PubMed

    Basner, Mathias; Dinges, David F; Mollicone, Daniel J; Savelev, Igor; Ecker, Adrian J; Di Antonio, Adrian; Jones, Christopher W; Hyder, Eric C; Kan, Kevin; Morukov, Boris V; Sutton, Jeffrey P

    2014-01-01

    Behavioral health risks are among the most serious and difficult to mitigate risks of confinement in space craft during long-duration space exploration missions. We report on behavioral and psychological reactions of a multinational crew of 6 healthy males confined in a 550 m(3) chamber for 520 days during the first Earth-based, high-fidelity simulated mission to Mars. Rest-activity of crewmembers was objectively measured throughout the mission with wrist-worn actigraphs. Once weekly throughout the mission crewmembers completed the Beck Depression Inventory-II (BDI-II), Profile of Moods State short form (POMS), conflict questionnaire, the Psychomotor Vigilance Test (PVT-B), and series of visual analogue scales on stress and fatigue. We observed substantial inter-individual differences in the behavioral responses of crewmembers to the prolonged mission confinement and isolation. The crewmember with the highest average POMS total mood disturbance score throughout the mission also reported symptoms of depression in 93% of mission weeks, which reached mild-to-moderate levels in >10% of mission weeks. Conflicts with mission control were reported five times more often than conflicts among crewmembers. Two crewmembers who had the highest ratings of stress and physical exhaustion accounted for 85% of the perceived conflicts. One of them developed a persistent sleep onset insomnia with ratings of poor sleep quality, which resulted in chronic partial sleep deprivation, elevated ratings of daytime tiredness, and frequent deficits in behavioral alertness. Sleep-wake timing was altered in two other crewmembers, beginning in the first few months of the mission and persisting throughout. Two crewmembers showed neither behavioral disturbances nor reports of psychological distress during the 17-month period of mission confinement. These results highlight the importance of identifying behavioral, psychological, and biological markers of characteristics that predispose prospective

  8. Psychological and Behavioral Changes during Confinement in a 520-Day Simulated Interplanetary Mission to Mars

    PubMed Central

    Basner, Mathias; Dinges, David F.; Mollicone, Daniel J.; Savelev, Igor; Ecker, Adrian J.; Di Antonio, Adrian; Jones, Christopher W.; Hyder, Eric C.; Kan, Kevin; Morukov, Boris V.; Sutton, Jeffrey P.

    2014-01-01

    Behavioral health risks are among the most serious and difficult to mitigate risks of confinement in space craft during long-duration space exploration missions. We report on behavioral and psychological reactions of a multinational crew of 6 healthy males confined in a 550 m3 chamber for 520 days during the first Earth-based, high-fidelity simulated mission to Mars. Rest-activity of crewmembers was objectively measured throughout the mission with wrist-worn actigraphs. Once weekly throughout the mission crewmembers completed the Beck Depression Inventory-II (BDI-II), Profile of Moods State short form (POMS), conflict questionnaire, the Psychomotor Vigilance Test (PVT-B), and series of visual analogue scales on stress and fatigue. We observed substantial inter-individual differences in the behavioral responses of crewmembers to the prolonged mission confinement and isolation. The crewmember with the highest average POMS total mood disturbance score throughout the mission also reported symptoms of depression in 93% of mission weeks, which reached mild-to-moderate levels in >10% of mission weeks. Conflicts with mission control were reported five times more often than conflicts among crewmembers. Two crewmembers who had the highest ratings of stress and physical exhaustion accounted for 85% of the perceived conflicts. One of them developed a persistent sleep onset insomnia with ratings of poor sleep quality, which resulted in chronic partial sleep deprivation, elevated ratings of daytime tiredness, and frequent deficits in behavioral alertness. Sleep-wake timing was altered in two other crewmembers, beginning in the first few months of the mission and persisting throughout. Two crewmembers showed neither behavioral disturbances nor reports of psychological distress during the 17-month period of mission confinement. These results highlight the importance of identifying behavioral, psychological, and biological markers of characteristics that predispose prospective

  9. STS-105 Mission Highlights Resource Tape: Flight Days 1-3. Part 1 of 4

    NASA Technical Reports Server (NTRS)

    2002-01-01

    An overview of the STS-105 mission is given through footage of each flight day. Scenes from flight days one through three show activities such as astronaut prelaunch procedures (breakfast, suit-up, and boarding Discovery), the launch from multiple vantage points, and various on-orbit activities. Expedition 3 (E3) Commander Frank Culbertson, Jr. and Flight Engineer Mikhail Turin perform the H-Reflex Experiment, an experiment to test the effects of microgravity on the human spinal cord. As Discovery approaches the International Space Station (ISS), the Expedition 2 (E2) crew, Commander Yuriy Usachev and Flight Engineers James Voss and Susan Helms, are seen working in the Destiny Laboratory Module aboard ISS. Discovery docks to the space station and the three crews (STS-105, E2, and E3) greet each other after the hatches between the orbiter and ISS are opened. As Discovery passes over the United States, Utah, Wyoming, South Dakota, and Minnesota are seen through patchy clouds. Footage from flight days 4-13 can be found on 'STS-105 Mission Highlights Resource Tape: Flight Days 4-6' (internal ID 2002046549), 'STS-105 Mission Highlights Resource Tape: Flight Days 7-9' (internal ID 2002046552), and 'STS-105 Mission Highlights Resource Tape: Flight Days 10-13' (internal ID 2002046551).

  10. Flight Day 12 Wake Up Song and Greeting

    NASA Video Gallery

    The Flight Day 12 wakeup music was "Don't Panic" by Coldplay, which was played for Pilot Doug Hurley. This was the last wakeup song played for a shuttle crew while docked to the International Space...

  11. 12. LOOKING WEST AT THE LINDE 400 TONS PER DAY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. LOOKING WEST AT THE LINDE 400 TONS PER DAY LOW PURITY OXYGEN MAKING PLANT IN THE LOW PURITY BULK OXYGEN BUILDING. - U.S. Steel Duquesne Works, Fuel & Utilities Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  12. 12 CFR 229.10 - Next-day availability.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 3 2014-01-01 2014-01-01 false Next-day availability. 229.10 Section 229.10... Disclosure of Funds Availability Policies § 229.10 Next-day availability. (a) Cash deposits. (1) A bank shall make funds deposited in an account by cash available for withdrawal not later than the business...

  13. 12 CFR 229.10 - Next-day availability.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 12 Banks and Banking 3 2013-01-01 2013-01-01 false Next-day availability. 229.10 Section 229.10... Disclosure of Funds Availability Policies § 229.10 Next-day availability. (a) Cash deposits. (1) A bank shall make funds deposited in an account by cash available for withdrawal not later than the business...

  14. 12 CFR 329.104 - Ten-day grace period.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 4 2010-01-01 2010-01-01 false Ten-day grace period. 329.104 Section 329.104... INTEREST ON DEPOSITS § 329.104 Ten-day grace period. This interpretive rule provides for 10-day grace periods during which interest may be paid on a deposit without violating § 329.2. (a) During the...

  15. Continuous metabolic and cardiovascular measurements on a monkey subject during a simulated 6-day Spacelab mission

    NASA Technical Reports Server (NTRS)

    Pace, N.; Rahlmann, D. F.; Mains, R. C.; Kodama, A. M.; Mccutcheon, E. P.

    1978-01-01

    An adult male pig-tailed monkey (Macaca nemestrina) with surgically implanted biotelemetry unit was inserted into a fiberglass pod system which was installed in a Spacelab mock-up to simulate a 6-day mission during which extensive physiological measurements were obtained. The purpose of the pod was to make possible the study of respiratory gas exchange. Body temperature and selected cardiovascular parameters were recorded continuously for 2.6 days prior to 'launch', 6.3 days during 'flight', and 1.8 days after 'landing'. The results are surveyed, and it is concluded that it is feasible to perform sound physiological experiments on nonhuman primates in the Spacelab environment

  16. STS-111 Mission Highlights Resource Tape. Part 1 of 4; Flight Days 1 - 4

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This video, Part 1 of 4, shows the activities of the STS-111 crew (Kenneth Cockrell, Commander; Paul Lockhart, Pilot; Franklin Chang-Diaz, Phillipe Perrin, Mission Specialists) during flight days 1 through 4. Also shown are the incoming Expedition 5 (Valeri Korzun, Commander; Peggy Whitson, NASA ISS Science Officer; Sergei Treschev, Flight Engineer) and outgoing Expedition 4 (Yuri Onufriyenko, Commander; Carl Walz, Daniel Bursch, Flight Engineers) crews of the ISS (International Space Station). The activities from other flight days can be seen on 'STS-111 Mission Highlights Resource Tape' Part 2 of 4 (internal ID 2002139469), 'STS-111 Mission Highlights Resource Tape' Part 3 of 4 (internal ID 2002139468), and 'STS-111 Mission Highlights Resource Tape' Part 4 of 4 (internal ID 2002139474). The primary activity of flight day 1 is the launch of Space Shuttle Endeavour. The crew is seen before the launch at a meal and suit-up, and some pre-flight procedures are shown. Perrin holds a sign with a personalized message. The astronauts communicate with Mission Control extensively after launch, and an inside view of the shuttle cabin is shown. The replays of the launch include close-ups of the nozzles at liftoff, and the fall of the solid rocket boosters and the external fuel tank. Flight day 2 shows footage of mainland Asia at night, and daytime views of the eastern United States and Lake Michigan. Flight day three shows the Endeavour orbiter approaching and docking with the ISS. After the night docking, the crews exchange greetings, and a view of the Nile river and Egypt at night is shown. On flight day 4, the MPLM (Multi-Purpose Logistics Module) Leonardo was temporarily transferred from Endeavour's payload bay to the ISS.

  17. STS-109 Mission Highlights Resource Tape. Part 2 of 4; Flight Days 4 & 5

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This video, Part 2 of 4, shows the activities of the STS-109 crew (Scott Altman, Commander; Duane Carey, Pilot; John Grunsfeld, Payload Commander; Nancy Currie, James Newman, Richard Linnehan, Michael Massimino, Mission Specialists) during flight days 4 and 5. The activities from other flights days can be seen on 'STS-109 Mission Highlights Resource Tape' Part 1 of 4 (internal ID 2002139471), 'STS-109 Mission Highlights Resource Tape' Part 3 of 4 (internal ID 2002139476), and 'STS-109 Mission Highlights Resource Tape' Part 4 of 4 (internal ID 2002137577). The primary activities during these days were EVAs (extravehicular activities) to replace two solar arrays on the HST (Hubble Space Telescope). Footage from flight day 4 records an EVA by Grunsfeld and Linnehan, including their exit from Columbia's payload bay airlock, their stowing of the old HST starboard rigid array on the rigid array carrier in Columbia's payload bay, their attachment of the new array on HST, the installation of a new starboard diode box, and the unfolding of the new array. The pistol grip space tool used to fasten the old array in its new location is shown in use. The video also includes several shots of the HST with Earth in the background. On flight day 5 Newman and Massimino conduct an EVA to change the port side array and diode box on HST. This EVA is very similar to the one on flight day 4, and is covered similarly in the video. A hand operated ratchet is shown in use. In addition to a repeat of the previous tasks, the astronauts change HST's reaction wheel assembly, and because they are ahead of schedule, install installation and lubricate an instrument door on the telescope. The Earth views include a view of Egypt and Israel, with the Nile River, Red Sea, and Mediterranean Sea.

  18. MOCR activity during Day One of the STS-2 mission scrub

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Mission Operations Control Room (MOCR) activity during Day One of the STS-2 mission scrub. Photos include Astronaut Robert L. Crippen, STS-1 pilot, talking with Edgar L. harkelroad of NASA headquarters launch and landing systems group at the NASA-Headquarters console in Mission Control Center while awaiting final word on launch reschedule (39400); Johnson Space Center Director Dr. Christopher C. Kraft, Jr., far left, discusses launch delay with flight controllers on the first row of consoles in mission operations control room for STS-2 (39401); Dr. Hans Mark, Deputy Adminstrator for the NASA, listens to audio feed from the Kennedy Space Center for the latest information on the status of STS-2. Also pictured are John B. MacLeod of the Operational Planning Office in the Space Shuttle Program Office and Arnold D. Aldrich, Manager of the Orbiter Avionics Systems Office for JSC (39402); Flight Director Neil D. Hutchinson is pictured at his console in Mission Control just prior to an Officia

  19. 12 CFR 229.10 - Next-day availability.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 3 2010-01-01 2010-01-01 false Next-day availability. 229.10 Section 229.10 Banks and Banking FEDERAL RESERVE SYSTEM (CONTINUED) BOARD OF GOVERNORS OF THE FEDERAL RESERVE SYSTEM AVAILABILITY OF FUNDS AND COLLECTION OF CHECKS (REGULATION CC) Availability of Funds and Disclosure of...

  20. Testing Crew Responses to Varied Higher Plant Presentations in the MARS-500 Day Mission Simulation

    NASA Astrophysics Data System (ADS)

    Marquit, J. D.; Bates, S. C.; Gushin, V. I.; Synchev, V. N.; Levinskikh, M. A.; Podolsky, I. G.; Marchant, C. C.; Bingham, G. E.

    2008-06-01

    Maintaining psychological and behavioral health of humans during long-duration space missions is of great importance for the future success of space exploration as the hostile space environment adversely impacts the psychological, social, and physiological well-being of humans in space. Growing and tending plants has been proposed as a countermeasures for the negative impacts of long-duration space missions[3] as interactions with plant life on earth have been found to be beneficial to humans in other settings. Preliminary results from a pilot 14-day chamber study appear to support the notion that interactions with plant life may act as a countermeasure for the negative impacts of life in space. Additional data will be collected during the Mars 500-day Chamber Study at Institute of Biomedical Problems (IMBP).

  1. Learning to Live on a Mars Day: Fatigue Countermeasures during the Phoenix Mars Lander Mission

    PubMed Central

    Barger, Laura K.; Sullivan, Jason P.; Vincent, Andrea S.; Fiedler, Edna R.; McKenna, Laurence M.; Flynn-Evans, Erin E.; Gilliland, Kirby; Sipes, Walter E.; Smith, Peter H.; Brainard, George C.; Lockley, Steven W.

    2012-01-01

    Study Objectives: To interact with the robotic Phoenix Mars Lander (PML) spacecraft, mission personnel were required to work on a Mars day (24.65 h) for 78 days. This alien schedule presents a challenge to Earth-bound circadian physiology and a potential risk to workplace performance and safety. We evaluated the acceptability, feasibility, and effectiveness of a fatigue management program to facilitate synchronization with the Mars day and alleviate circadian misalignment, sleep loss, and fatigue. Design: Operational field study. Setting: PML Science Operations Center. Participants: Scientific and technical personnel supporting PML mission. Interventions: Sleep and fatigue education was offered to all support personnel. A subset (n = 19) were offered a short-wavelength (blue) light panel to aid alertness and mitigate/reduce circadian desynchrony. They were assessed using a daily sleep/work diary, continuous wrist actigraphy, and regular performance tests. Subjects also completed 48-h urine collections biweekly for assessment of the circadian 6-sulphatoxymelatonin rhythm. Measurements and Results: Most participants (87%) exhibited a circadian period consistent with adaptation to a Mars day. When synchronized, main sleep duration was 5.98 ± 0.94 h, but fell to 4.91 ± 1.22 h when misaligned (P < 0.001). Self-reported levels of fatigue and sleepiness also significantly increased when work was scheduled at an inappropriate circadian phase (P < 0.001). Prolonged wakefulness (≥ 21 h) was associated with a decline in performance and alertness (P < 0.03 and P < 0.0001, respectively). Conclusions: The ability of the participants to adapt successfully to the Mars day suggests that future missions should utilize a similar circadian rhythm and fatigue management program to reduce the risk of sleepiness-related errors that jeopardize personnel safety and health during critical missions. Citation: Barger LK; Sullivan JP; Vincent AS; Fiedler ER; McKenna LM; Flynn-Evans EE

  2. Evaluation of a 12-hour/day shift schedule

    SciTech Connect

    Lewis, P.M.; Swaim, D.J.

    1986-06-01

    In April 1985, the operating crews at the Fast Flux Test Facility near Richland, Washington, changed their rotating shift schedule from an 8- to a 12-hour/day work schedule. The primary purpose of the change was to reduce the attrition of operators by increasing their job satisfaction. Eighty-four percent of the operators favored the change. A program was established to evaluate the effects on plant performance, operator alertness, attrition, sleep, health, job satisfaction, and off-the-job satisfaction. Preliminary results from that evaluation program indicate that the 12-hour shift schedule is a reasonable alternative to an 8-hour schedule at this facility.

  3. Personal values and crew compatibility: Results from a 105 days simulated space mission

    NASA Astrophysics Data System (ADS)

    Sandal, Gro M.; Bye, Hege H.; van de Vijver, Fons J. R.

    2011-08-01

    On a mission to Mars the crew will experience high autonomy and inter-dependence. "Groupthink", known as a tendency to strive for consensus at the cost of considering alternative courses of action, represents a potential safety hazard. This paper addresses two aspects of "groupthink": the extent to which confined crewmembers perceive increasing convergence in personal values, and whether they attribute less tension to individual differences over time. It further examines the impact of personal values for interpersonal compatibility. These questions were investigated in a 105-day confinement study in which a multinational crew ( N=6) simulated a Mars mission. The Portrait of Crew Values Questionnaire was administered regularly to assess personal values, perceived value homogeneity, and tension attributed to value disparities. Interviews were conducted before and after the confinement. Multiple regression analysis revealed no significant changes in value homogeneity over time; rather the opposite tendency was indicated. More tension was attributed to differences in hedonism, benevolence and tradition in the last 35 days when the crew was allowed greater autonomy. Three subgroups, distinct in terms of personal values, were identified. No evidence for "groupthink" was found. The results suggest that personal values should be considered in composition of crews for long duration missions.

  4. STS-113 Mission Highlights Resource Tape Flight Days 7-11. Tape: 3 of 4

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This video, part 3 of 4, shows the activities of the crew of Space Shuttle Envdeavour and the Expedition 5 and 6 crews of the International Space Station (ISS) during flight days 7 through 11 of STS-113. Endeavour's crew consists of Commander Jim Wetherbee, Pilot Paul Lockhart, and Mission Specialists Michael Lopez-Alegria and John Herrington. Footage of flight day 7 includes a change of command ceremony on board the ISS, and Endeavour dumping supply water through a nozzle. On flight day 8 the Space Station Mobile Transporter jams while traveling on the P1 truss of the ISS, and Herrington attempts to free it as part of a lengthy extravehicular activity (EVA) with Lopez-Alegria. Flight day 9 is the last full day the three crews spend together. Expedition 5 NASA ISS Science Officer Peggy Whitsun troubleshoots the Microgravity Glovebox on board the ISS with her successor Don Pettit. The undocking of Endeavour and the ISS is the main activity of flight day 10. Endeavour also deploys a pair of experimental tethered microsatellites for the Department of Defense. The footage from flight day 11 shows the Expedition 5 crew exercising, laying in recumbant seats to help them adjust to the gravity on Earth, and sleeping. The video includes numerous views of the earth, some with the ISS and Endeavour in the foreground. There are close-ups of Italy, Spain and Portugal, Tierra del Fuego, and Baja California, and a night view of Chicago and the Great Lakes.

  5. Culturing immobilized plant cells for the TUBUL space experiments on the DELTA and 12S Missions

    NASA Astrophysics Data System (ADS)

    Sieberer, Björn J.; Emons, Anne Mie C.; Vos, Jan W.

    2007-09-01

    For the TUBUL experiments during the DELTA mission in April 2004 and 12S mission in March/April 2006 on board the Soyuz capsule and the International Space Station we developed a method to culture and chemically fix plant suspension culture cells. The aim of the ten day experiment was to investigate the effect of microgravity on single plant cells. Fully automated experiment cassettes (Plunger Box Units) were developed by Centre for Concepts in Mechatronics (Nuenen, the Netherlands). Tobacco BY- 2 cells were immobilized in a semi- solid agarose matrix that was reinforced by a nylon mesh. This assembly allowed liquid medium refreshment, oxygen supply and chemical fixation, including a post- fixative wash. The method was optimized for post- flight analysis of cell structure, shape and size, cell division, and the microtubule cytoskeleton. The viability of cells in the agarose matrix was similar to cells grown in liquid medium under laboratory conditions, only the stationary growth phase was reached six days later.

  6. Human performance profiles for planetary analog extra-vehicular activities: 120 day and 30 day analog missions

    NASA Astrophysics Data System (ADS)

    Swarmer, Tiffany M.

    Understanding performance factors for future planetary missions is critical for ensuring safe and successful planetary extra-vehicular activities (EVAs). The goal of this study was to gain operational knowledge of analog EVAs and develop biometric profiles for specific EVA types. Data was collected for a 120 and 30 day analog planetary exploration simulation focusing on EVA type, pre and post EVA conditions, and performance ratings. From this five main types of EVAs were performed: maintenance, science, survey/exploratory, public relations, and emergency. Each EVA type has unique characteristics and performance ratings showing specific factors in chronological components, environmental conditions, and EVA systems that have an impact on performance. Pre and post biometrics were collected to heart rate, blood pressure, and SpO2. Additional data about issues and specific EVA difficulties provide some EVA trends illustrating how tasks and suit comfort can negatively affect performance ratings. Performance decreases were noted for 1st quarter and 3rd quarter EVAs, survey/exploratory type EVAs, and EVAs requiring increased fine and gross motor function. Stress during the simulation is typically higher before the EVA and decreases once the crew has returned to the habitat. Stress also decreases as the simulation nears the end with the 3rd and 4th quarters showing a decrease in stress levels. Operational components and studies have numerous variable and components that effect overall performance, by increasing the knowledge available we may be able to better prepare future crews for the extreme environments and exploration of another planet.

  7. One thousand days non-stop at sea - Lessons for a mission to Mars

    NASA Astrophysics Data System (ADS)

    Stowe, W. R.; Harrison, Albert A.

    1992-08-01

    During the fall of 1992 the schooner Anne, bearing a crew of six to eight members, will undertake a 1000-day voyage without touching land or receiving supplies from other craft. The goals of this expedition include the evaluation of equipment, supplies, and humans under conditions of isolation and confinement that will resemble some of those of the initial Mars voyage. This paper describes some of the psychological support and research activities planned for Anne's mission and the schooner's potential value as a laboratory for life in space.

  8. Psychosocial interaction during a 105-day isolated mission in Lunar Palace 1

    NASA Astrophysics Data System (ADS)

    Wu, Ruilin; Wang, Ya

    2015-08-01

    As they are the most important and critical group in space missions, the crewmembers' emotions and interpersonal interactions have gained attention. The crewmembers are confined in an isolated environment, have limited communication with the outside world, and often undergo unpredictable risks, which may lead to the aggravation and acceleration of depression, displacement, and even interpersonal conflicts. These psychological factors could deteriorate the astronauts' effectiveness and safety. Therefore, the aim of the study is to identify the possible patterns over time regarding changes in the emotional states, cohesion and other group dynamics during a 105-day isolation period. The experiment was conducted in an analogue space station at Beihang University, referred to as Lunar Palace 1, which is the first crew made up of all Chinese members. In the experiment, all the crewmembers completed a profile of mood states (POMS) questionnaire every week, along with the group's environment scale (GES) and work environment scale (WES) every two weeks. Following the experiment's isolation period, semi-structured interviews were also conducted as qualitative data. As a result, the following observations were determined: 1) there was no 3rd quarter phenomenon observed during 80 days isolated experiment for Group 3; and the average positive emotions and cohesion of crew were gradually increased with the process. 2) Significant individual differences were identified; and crewmembers possessed different change patterns on psychological state. 3) Crew structure with 1 male and 2 female, less pre-mission team building, and collectivist culture might influence the psychosocial interaction of crew. In summary, the results from Lunar Palace 1 demonstrated that the emotions and climate of Group 3 was in a good state for a successful mission.

  9. Effects of radiobiological uncertainty on shield design for a 60-day lunar mission

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Nealy, John E.; Schimmerling, Walter

    1993-01-01

    Some consequences of uncertainties in radiobiological risk due to galactic cosmic ray exposure are analyzed to determine their effect on engineering designs for a first lunar outpost - a 60-day mission. Quantitative estimates of shield mass requirements as a function of a radiobiological uncertainty factor are given for a simplified vehicle structure. The additional shield mass required for compensation is calculated as a function of the uncertainty in galactic cosmic ray exposure, and this mass is found to be as large as a factor of 3 for a lunar transfer vehicle. The additional cost resulting from this mass is also calculated. These cost estimates are then used to exemplify the cost-effectiveness of research.

  10. 7 CFR 226.12 - Administrative payments to sponsoring organizations for day care homes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... for day care homes. 226.12 Section 226.12 Agriculture Regulations of the Department of Agriculture... day care homes. (a) General. Sponsoring organizations for day care homes shall receive payments for... organization's: (i) Initial 50 day care homes by 42 dollars; (ii) Next 150 day care homes by 32 dollars;...

  11. 7 CFR 226.12 - Administrative payments to sponsoring organizations for day care homes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... for day care homes. 226.12 Section 226.12 Agriculture Regulations of the Department of Agriculture... day care homes. (a) General. Sponsoring organizations for day care homes shall receive payments for... organization's: (i) Initial 50 day care homes by 42 dollars; (ii) Next 150 day care homes by 32 dollars;...

  12. Apollo 12 mission report: Descent, propulsion system final flight evaluation (supplement 5)

    NASA Technical Reports Server (NTRS)

    Seto, R. K. M.; Barrows, R. L.

    1972-01-01

    The results are presented of the postflight analysis of the Descent propulsion system (DPS) performance during the Apollo 12 Mission. The primary objective of the analysis was to determine the steady-state performance of the DPS during the descent phase of the manned lunar landing. This is a supplement ot the Apollo 12 Mission Report. In addition to further analysis of the DPS, this report brings together information from other reports and memorandums analyzing specific anomalies and performance in order to present a comprehensive description of the DPS operation during the Apollo 12 Mission.

  13. Columbia undergoes final shakedown during seven-day STS-4 mission

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The launch preparations for the Space Transportation System 4 flight of the space shuttle Columbia are described. The details of the spacecraft's mission profile are given. Several experiments and payloads are described. An account of the remote manipulator system is given. Studies of long-term thermal extremes on the orbiter subsystems and a survey of orbiter induced contamination of the payload bay are identified as mission priorities.

  14. 9 CFR 96.12 - Uncertified casings not disinfected in 30 days; disposition.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 30 days; disposition. 96.12 Section 96.12 Animals and Animal Products ANIMAL AND PLANT HEALTH... STATES § 96.12 Uncertified casings not disinfected in 30 days; disposition. Foreign animal casings... period of 30 days after arrival in the United States, subject to the ability of Division inspectors...

  15. 9 CFR 96.12 - Uncertified casings not disinfected in 30 days; disposition.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 30 days; disposition. 96.12 Section 96.12 Animals and Animal Products ANIMAL AND PLANT HEALTH... STATES § 96.12 Uncertified casings not disinfected in 30 days; disposition. Foreign animal casings... period of 30 days after arrival in the United States, subject to the ability of Division inspectors...

  16. 9 CFR 96.12 - Uncertified casings not disinfected in 30 days; disposition.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 30 days; disposition. 96.12 Section 96.12 Animals and Animal Products ANIMAL AND PLANT HEALTH... STATES § 96.12 Uncertified casings not disinfected in 30 days; disposition. Foreign animal casings... period of 30 days after arrival in the United States, subject to the ability of Division inspectors...

  17. 9 CFR 96.12 - Uncertified casings not disinfected in 30 days; disposition.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 30 days; disposition. 96.12 Section 96.12 Animals and Animal Products ANIMAL AND PLANT HEALTH... STATES § 96.12 Uncertified casings not disinfected in 30 days; disposition. Foreign animal casings... period of 30 days after arrival in the United States, subject to the ability of Division inspectors...

  18. A space maintainability experiment aboard the Ben Franklin submersible during the 30-day Gulf Stream drift mission.

    NASA Technical Reports Server (NTRS)

    Kappler, J. R.; May, C. B.

    1972-01-01

    In the summer of 1969, a deep submersible drifted for 30 days below the surface of the Gulf Stream, while operated by a six man crew. The main purpose of the mission was oceanographic research. The crew's activities and completely self-contained environment resembled those of a space station such as Skylab. Because of these similarities aspects of onboard vehicle maintenance during the actual conduct of a scientific mission were investigated. The maintainability study was accomplished in six distinct phases. Two useful plots of manpower distribution were developed. A maintenance action summary is presented in a table.

  19. Modeling of Present-Day Atmosphere and Ocean Non-Tidal De-Aliasing Errors for Future Gravity Mission Simulations

    NASA Astrophysics Data System (ADS)

    Bergmann-Wolf, I.; Dobslaw, H.; Mayer-Gürr, T.

    2015-12-01

    A realistically perturbed synthetic de-aliasing model consistent with the updated Earth System Model of the European Space Agency (Dobslaw et al., 2015) is now available for the years 1995 -- 2006. The data-set contains realizations of (i) errors at large spatial scales assessed individually for periods between 10 -- 30, 3 -- 10, and 1 -- 3 days, the S1 atmospheric tide, and sub-diurnal periods; (ii) errors at small spatial scales typically not covered by global models of atmosphere and ocean variability; and (iii) errors due to physical processes not represented in currently available de-aliasing products. The error magnitudes for each of the different frequency bands are derived from a small ensemble of four atmospheric and oceanic models. In order to demonstrate the plausibility of the error magnitudes chosen, we perform a variance component estimation based on daily GRACE normal equations from the ITSG-Grace2014 global gravity field series recently published by the University of Graz. All 12 years of the error model are used to calculate empirical error variance-covariance matrices describing the systematic dependencies of the errors both in time and in space individually for five continental and four oceanic regions, and daily GRACE normal equations are subsequently employed to obtain pre-factors for each of those matrices. For the largest spatial scales up to d/o = 40 and periods longer than 24 h, errors prepared for the updated ESM are found to be largely consistent with noise of a similar stochastic character contained in present-day GRACE solutions. Differences and similarities identified for all of the nine regions considered will be discussed in detail during the presentation.Dobslaw, H., I. Bergmann-Wolf, R. Dill, E. Forootan, V. Klemann, J. Kusche, and I. Sasgen (2015), The updated ESA Earth System Model for future gravity mission simulation studies, J. Geod., doi:10.1007/s00190-014-0787-8.

  20. Active Sensing of CO2 Emissions over Nights, Days and Seasons (ASCENDS) Mission Studies

    NASA Astrophysics Data System (ADS)

    Jones, C.; Hyon, J.; Anderson, K.; Rodriguez-Alvaraz, O.; DiJoseph, M.; Dempsey, J.; Andrew, G.

    2012-12-01

    ASCENDS is one of the National Research Council's Decadal Survey Tier II missions. It will provide improved ability to predict/model long-term changes in the climate cycle based on the understanding of the natural processes driving the variability of natural carbon sources and sink, and the transport of carbon through the atmosphere. NASA's GSFC, LaRC and JPL are conducting mission studies to determine spacecraft and launch vehicle accommodations. These mission studies will determine the feasibility of flying the ASCENDS instrument on a commercially available spacecraft bus and launch vehicle. Conceptual instrument parameters include a mass of 500 kilograms, power of 1100 Watts and volume of 2.5 meters by 2 meters by 2 meters. Preliminary results have shown that the Falcon 9 and the Atlas V are compatible launch vehicles. Multiple commercially available spacecraft buses on the Rapid Spacecraft Development Office's (RSDO) catalogue also appear to be compatible with the instruments parameters. In this paper, we present the details of the ASCENDS instrument and mission constraints and the results of our mission studies.

  1. La Chalupa-30: Lessons learned from a 30-day subsea mission analogue

    NASA Technical Reports Server (NTRS)

    Vanderark, Steve; Wood, Joanna; Holland, Albert W.

    1994-01-01

    The Behavior and Performance Laboratory (BPL) utilizes space mission analogs to study issues such as the psychological health and well-being, team characteristics, and task performance of crew members on long-duration missions. The analog used in this investigation was an underwater habitat named La Chalupa, which was selected for its similar features to a space station environment. The primary objectives of the La Chalupa-30 investigation were to evaluate the efficiency of several methods for collecting data in remote environments and to assess aspects of living and working under isolated and confined conditions.

  2. 17 CFR 41.12 - Indexes underlying futures contracts trading for fewer than 30 days.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... contracts trading for fewer than 30 days. 41.12 Section 41.12 Commodity and Securities Exchanges COMMODITY... underlying futures contracts trading for fewer than 30 days. (a) An index on which a contract of sale for... U.S.C. 1a(25)) for the first 30 days of trading, if: (1) Such index would not have been a...

  3. 17 CFR 41.12 - Indexes underlying futures contracts trading for fewer than 30 days.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... contracts trading for fewer than 30 days. 41.12 Section 41.12 Commodity and Securities Exchanges COMMODITY... Indexes underlying futures contracts trading for fewer than 30 days. (a) An index on which a contract of... narrow-based security index under section 1a(35) of the Act (7 U.S.C. 1a(35)) for the first 30 days...

  4. 17 CFR 41.12 - Indexes underlying futures contracts trading for fewer than 30 days.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... contracts trading for fewer than 30 days. 41.12 Section 41.12 Commodity and Securities Exchanges COMMODITY... underlying futures contracts trading for fewer than 30 days. (a) An index on which a contract of sale for... U.S.C. 1a(25)) for the first 30 days of trading, if: (1) Such index would not have been a...

  5. 29 CFR 790.12 - “Portion of the day.”

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 3 2014-07-01 2014-07-01 false âPortion of the day.â 790.12 Section 790.12 Labor... Activities Engaged in by Employees on Or After May 14, 1947 § 790.12 “Portion of the day.” A “preliminary” or... the day with respect to which it is so made compensable.” 84 This provision in no way affects...

  6. 29 CFR 790.12 - “Portion of the day.”

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 3 2011-07-01 2011-07-01 false âPortion of the day.â 790.12 Section 790.12 Labor... Activities Engaged in by Employees on Or After May 14, 1947 § 790.12 “Portion of the day.” A “preliminary” or... the day with respect to which it is so made compensable.” 84 This provision in no way affects...

  7. 29 CFR 790.12 - “Portion of the day.”

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 3 2012-07-01 2012-07-01 false âPortion of the day.â 790.12 Section 790.12 Labor... Activities Engaged in by Employees on Or After May 14, 1947 § 790.12 “Portion of the day.” A “preliminary” or... the day with respect to which it is so made compensable.” 84 This provision in no way affects...

  8. 29 CFR 790.12 - “Portion of the day.”

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 3 2013-07-01 2013-07-01 false âPortion of the day.â 790.12 Section 790.12 Labor... Activities Engaged in by Employees on Or After May 14, 1947 § 790.12 “Portion of the day.” A “preliminary” or... the day with respect to which it is so made compensable.” 84 This provision in no way affects...

  9. Continuous metabolic and cardiovascular measurements on a monkey subject during a simulated 6-day Spacelab mission

    NASA Technical Reports Server (NTRS)

    Pace, N.; Rahlmann, D. F.; Mains, R. C.; Kodama, A. M.; Mccutcheon, E. P.

    1979-01-01

    A 10-kg male pig-tailed monkey (Macaca nemestrina) was selected as an optimal species for spaceflight studies on weightlessness. Three days before the simulated launch, the animal was placed in a fiberglass pod system to provide continuous measurement of respiratory gas exchange. Attention is given to examining the effects of weightlessness on several basic parameters of metabolic and cardiovascular function in an adult nonhuman primate. The 10.7-day total simulated-experiment period consisted of preflight 2.6 days, inflight 6.3 days, and postflight 1.8 days. Statistically significant diurnal variation was noted in oxygen consumption and CO2 production rates, body temperature and HR, but not in respiratory quotient or blood pressure. The high quality of the continuous data obtained demonstrates the feasibility of performing sound physiological experimentation on nonhuman primates in the Spacelab environment.

  10. 12 CFR 313.163 - Notification of debts of 180 days or less.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 4 2010-01-01 2010-01-01 false Notification of debts of 180 days or less. 313... Notification of debts of 180 days or less. The Director, in his discretion, may also notify the Secretary of the Treasury of debts that have been delinquent for 180 days or less, including debts the FDIC...

  11. 12 CFR 313.163 - Notification of debts of 180 days or less.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 5 2014-01-01 2014-01-01 false Notification of debts of 180 days or less. 313... Notification of debts of 180 days or less. The Director, in his discretion, may also notify the Secretary of the Treasury of debts that have been delinquent for 180 days or less, including debts the FDIC...

  12. 12 CFR 313.163 - Notification of debts of 180 days or less.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 12 Banks and Banking 5 2013-01-01 2013-01-01 false Notification of debts of 180 days or less. 313... Notification of debts of 180 days or less. The Director, in his discretion, may also notify the Secretary of the Treasury of debts that have been delinquent for 180 days or less, including debts the FDIC...

  13. 12 CFR 313.163 - Notification of debts of 180 days or less.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 12 Banks and Banking 4 2011-01-01 2011-01-01 false Notification of debts of 180 days or less. 313... Notification of debts of 180 days or less. The Director, in his discretion, may also notify the Secretary of the Treasury of debts that have been delinquent for 180 days or less, including debts the FDIC...

  14. 12 CFR 313.163 - Notification of debts of 180 days or less.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 12 Banks and Banking 5 2012-01-01 2012-01-01 false Notification of debts of 180 days or less. 313... Notification of debts of 180 days or less. The Director, in his discretion, may also notify the Secretary of the Treasury of debts that have been delinquent for 180 days or less, including debts the FDIC...

  15. Mineral and nitrogen balance study - Results of metabolic observations on Skylab II 28-day orbital mission

    NASA Technical Reports Server (NTRS)

    Whedon, G. D.; Lutwak, L.; Reid, J.; Rambaut, P.; Whittle, M.; Smith, M.; Leach, C.

    1975-01-01

    The prediction that various stresses of flight, particularly weightlessness, would bring about significant derangements in the metabolism of the musculoskeletal system has been based on various balance-study observations of long-term immobilized or inactive bed rest. The three astronauts of Skylab II consumed a planned dietary intake of major metabolic elements in mixed foods and beverages and provided virtually complete collections of excreta for 31 days preflight, 28 days inflight, and 17 days postflight. Analyses showed that, in varying degree among the crewmen, urinary calcium increased gradually during flight in a pattern similar to that observed in bed-rest studies. Fecal calcium excretion did not change significantly, but calcium balance, owing to the urinary calcium rise, became either negative or less positive than in preflight measurement. Increased excretion and negative nitrogen and phosphorus balances inflight indicated appreciable loss of muscle tissue in all three crewmen. Significant losses also occurred inflight in potassium, sodium, and magnesium. Based on the similarity in pattern and degree between these observations of calcium, phosphorus, and nitrogen loss, musculoskeletal integrity would not be threatened in space flights of up to at least 3 months. However, if similar changes occur in the planed Skylab flights for considerably more than 28 days, concern for capable musculoskeletal function should be serious for flights of very many months' duration.

  16. Rescue missions for totally buried avalanche victims: conclusions from 12 years of experience.

    PubMed

    Hohlrieder, Matthias; Thaler, Stephanie; Wuertl, Walter; Voelckel, Wolfgang; Ulmer, Hanno; Brugger, Hermann; Mair, Peter

    2008-01-01

    The planning and execution of avalanche rescue missions to search for totally buried avalanche victims are mostly based on personal experience and preference, as evidence-based information from literature is almost completely missing. Hence, the aim of this study was to identify major factors determining the survival probability of totally buried victims during avalanche rescue missions carried out by organized rescue teams (Austrian Mountain Rescue Service, Tyrol). During the 12-year period studied, 109 totally buried persons (56 off-piste, 53 backcountry), were rescued or recovered; 18.3% survived to hospital discharge. Median depth of burial was 1.25 m; median duration of burial was 85 min. The majority (61.6%) of the rescue missions were conducted under considerably dangerous avalanche conditions. The probability of survival was highest when located visually and lowest for those located by avalanche transceiver; survival did not significantly differ between those found by rescue dogs and those located with avalanche probes. Multivariate analysis revealed short duration of burial and off-piste terrain to be the two independent predictors of survival. Whenever companion rescue fails, snow burial in an avalanche is associated with extraordinarily high mortality. Searching the avalanche debris with probe lines seems to be equally effective as compared to searching with rescue dogs. The potential hazard for rescuers during avalanche rescue missions comes mainly from self-triggered avalanches, hence thorough mission planning and critical risk-benefit assessment are of utmost importance for risk reduction.

  17. Electromyographic analysis of skeletal muscle changes arising from 9 days of weightlessness in the Apollo-Soyuz space mission

    NASA Technical Reports Server (NTRS)

    Lafevers, E. V.; Nicogossian, A. E.; Hursta, W. N.

    1976-01-01

    Both integration and frequency analyses of the electromyograms from voluntary contractions were performed in one crewman of the Apollo-Soyuz Test Project mission. Of particular interest were changes in excitability, electrical efficiency, and fatigability. As a result of 9 days of weightlessness, muscle excitability was shown to increase; muscle electrical efficiency was found to decrease in calf muscles and to increase in arm muscles; and fatigability was found to increase significantly, as shown by spectral power shifts into lower frequencies. It was concluded from this study that skeletal muscles are affected by the disuse of weightlessness early in the period of weightlessness, antigravity muscles seem most affected by weightlessness, and exercise may abrogate the weightlessness effect. It was further concluded that electromyography is a sensitive tool for measuring spaceflight muscle effects.

  18. NASA Extreme Environment Mission Operation (NEEMO) 12: Collaborative Accelerated Medical Technology Development

    DTIC Science & Technology

    2007-12-01

    research is indicated to help save the lives and limbs of our injured warfighters. 15. SUBJECT TERMS NEEMO 12, Telesurgery, Robotic Surgery , Military... robotic surgery “competition” at UC’s Center for Surgical Innovation (CSI). These children had a great time with “hands on” learning that was focused...grant. CONCLUSIONS TATRC-led robotic surgery development has continued with this research. During this mission, two surgical robotic systems, the

  19. U.S.S. Hornet crewmen greeted by crew of Apollo 12 lunar landing mission

    NASA Technical Reports Server (NTRS)

    1969-01-01

    U.S.S. Hornet crewmen are greeted by the crew of the Apollo 12 lunar landing mission as the three astronauts are transfered from a U.S. Navy helicopter to a Mobile Quarantine Facility (MQF) aboard the prime recovery vessel. Charles Conrad Jr., right, commander; Richard F. Gordon Jr., command module pilot, left front; and Alan L. Bean, lunar module pilot splashed down safely at 2:58 p.m., November 24, 1969.

  20. Evolution of the 155 day periodicity in sunspot areas during solar cycles 12 to 21

    SciTech Connect

    Lean, J. )

    1990-11-01

    Sunspot area data during solar cycles 12-21 are examined with both periodogram and evolutionary spectral analysis techniques for evidence of a periodicity near 155 days. This periodicity is found to be present only during epochs of maxium activity, when it modulates the sunspot areas by as much as 15-20 percent of the amplitude of the 11 yr cycle. The 155 day periodicity typically occurs in episodes of from 1 to 3 yr, with sequential episodes often in opposite solar hemispheres; the strengths of these episodes appear to track the general level of solar activity. Comparing the phases of sinusoids fitted to the sunspot area data within individual solar cycles provides evidence for coherency within + or - 8 days of a period at 155 days between solar cycles 19, 20, and 21. However, within any one episode the actual period of the 155 day cycle may drift from 130 to 185 days. 31 refs.

  1. [Medicine on mission: The international health reform of Seventh-Day Adventists and their health care facilities in Sweden].

    PubMed

    Eklöf, Motzi

    2008-01-01

    The international non-conformist denomination, Seventh-day Adventists, have since their foundation in 1863, had a distinctive health care model for their members. The life-style has included vegetarian diet, abstinence from alcohol, tobacco and other drugs and the observance of a day of rest once a week. The health policy has striven to care for God's creation in the hope of resurrection at the Day of Judgment and to reform the conventional medical practice. The Adventists have pursued an extensive international health care system--from the start based on dietary and physical treatment methods, such as hydrotherapy, massage and physiotherapy--in line with the Christian mission. Health care establishments have been inaugurated around the world as a vehicle for enabling the Christian health care message to reach the upper classes. With Adventist and Doctor, John Harvey Kellogg's Battle Creek Sanatorium in Michigan as both inspirational source and educational institution, the health care mission--including a vegetarian health food industry, following in the footsteps of cornflakes--spread to the Nordic countries by the turn of the century, 1900. Skodsborgs Badesanatorium near Copenhagen became the model institution for several health care establishments in Sweden during the 1900's, such as Hultafors Sanatorium. The American-Nordic link has manifested itself through co-publication of papers, exchange of health care personnel and reporting to the central Adventist church. The American non-conformist domain as well as a private sphere of activity, aiming mainly from the outset at society's upper classes, has encountered certain difficulties in maintaining this distinction in Sweden's officially increasing secularised society, and in relation to a state health insurance and a publicly financed health care system. With the passing of time, the socioeconomic composition of patients at Hultafors became more heterogeneous, and conventional medical procedures were increasingly

  2. Organophosphate poisoning in a 12-day-old infant: case report.

    PubMed

    O'Reilly, D A; Heikens, G T

    2011-01-01

    A 12-day-old infant girl was admitted with increasing lethargy and respiratory distress. Initial treatment was for pneumonia but deterioration despite appropriate treatment prompted review of her diagnosis and consideration of organophosphate poisoning. There was a brisk response to atropine. To our knowledge, this is the youngest infant reported to have been exposed to poisoning by organophosphates.

  3. Effect of embryonic development on the chicken egg yolk plasma proteome after 12 days of incubation.

    PubMed

    Réhault-Godbert, Sophie; Mann, Karlheinz; Bourin, Marie; Brionne, Aurélien; Nys, Yves

    2014-03-26

    To better appreciate the dynamics of yolk proteins during embryonic development, we analyzed the protein quantitative changes occurring in the yolk plasma at the day of lay and after 12 days of incubation, by comparing unfertilized and fertilized chicken eggs. Of the 127 identified proteins, 69 showed relative abundance differences among conditions. Alpha-fetoprotein and two uncharacterized proteins (F1NHB8 and F1NMM2) were identified for the first time in the egg. After 12 days of incubation, five proteins (vitronectin, α-fetoprotein, similar to thrombin, apolipoprotein B, and apovitellenin-1) showed a major increase in relative abundance, whereas 15 proteins showed a significant decrease in the yolks of fertilized eggs. In unfertilized/table eggs, we observed an accumulation of proteins likely to originate from other egg compartments during incubation. This study provides basic knowledge on the utilization of egg yolk proteins by the embryo and gives some insight into how storage can affect egg quality.

  4. Overview of the Development of the Solar Electric Propulsion Technology Demonstration Mission 12.5-kW Hall Thruster

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Huang, Wensheng; Haag, Thomas; Yim, John; Chang, Li; Clayman, Lauren; Herman, Daniel; Shastry, Rohit; Thomas, Robert; Verhey, Timothy; Griffith, Christopher; Myers, James; Williams, George; Mikellides, Ioannis; Hofer, Richard; Polk, James; Goebel, Dan

    2014-01-01

    NASA is developing mission concepts for a solar electric propulsion technology demonstration mission. A number of mission concepts are being evaluated including ambitious missions to near Earth objects. The demonstration of a high-power solar electric propulsion capability is one of the objectives of the candidate missions under consideration. In support of NASA's exploration goals, a number of projects are developing extensible technologies to support NASA's near and long term mission needs. Specifically, the Space Technology Mission Directorate Solar Electric Propulsion Technology Demonstration Mission project is funding the development of a 12.5-kilowatt magnetically shielded Hall thruster system to support future NASA missions. This paper presents the design attributes of the thruster that was collaboratively developed by the NASA Glenn Research Center and the Jet Propulsion Laboratory. The paper provides an overview of the magnetic, plasma, thermal, and structural modeling activities that were carried out in support of the thruster design. The paper also summarizes the results of the functional tests that have been carried out to date. The planned thruster performance, plasma diagnostics (internal and in the plume), thermal, wear, and mechanical tests are outlined.

  5. Overview of the Development of the Solar Electric Propulsion Technology Demonstration Mission 12.5-kW Hall Thruster

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Huang, Wensheng; Haag, Thomas; Yim, John; Chang, Li; Clayman, Lauren; Herman, Daniel; Shastry, Rohit; Thomas, Robert; Verhey, Timothy; Griffith, Christopher; Myers, James; Williams, George; Mikellides, Ioannis; Hofer, Richard; Polk, James; Goebel, Dan

    2014-01-01

    NASA is developing mission concepts for a solar electric propulsion technology demonstration mission. A number of mission concepts are being evaluated including ambitious missions to near Earth objects. The demonstration of a high-power solar electric propulsion capability is one of the objectives of the candidate missions under consideration. In support of NASAs exploration goals, a number of projects are developing extensible technologies to support NASAs near and long term mission needs. Specifically, the Space Technology Mission Directorate Solar Electric Propulsion Technology Demonstration Mission project is funding the development of a 12.5-kW magnetically shielded Hall thruster system to support future NASA missions. This paper presents the design attributes of the thruster that was collaboratively developed by the NASA Glenn Research Center and the Jet Propulsion Laboratory. The paper provides an overview of the magnetic, plasma, thermal, and structural modeling activities that were carried out in support of the thruster design. The paper also summarizes the results of the functional tests that have been carried out to date. The planned thruster performance, plasma diagnostics (internal and in the plume), thermal, wear, and mechanical tests are outlined.

  6. 76 FR 18614 - Bureau of Diplomatic Security, Office of Foreign Missions; 60-Day Notice of Proposed Information...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-04

    ... Afterhours Contact for Foreign Diplomatic Services Applications, OMB Collection Number 1405-0105 ACTION... retain a benefit. Title of Information Collection: Foreign Mission Emergency Afterhours Contact. OMB... collection title, and OMB control number in any correspondence. FOR FURTHER INFORMATION CONTACT:...

  7. DETECTION OF POTENTIAL TRANSIT SIGNALS IN THE FIRST 12 QUARTERS OF KEPLER MISSION DATA

    SciTech Connect

    Tenenbaum, Peter; Jenkins, Jon M.; Seader, Shawn; Burke, Christopher J.; Christiansen, Jessie L.; Rowe, Jason F.; Caldwell, Douglas A.; Clarke, Bruce D.; Li, Jie; Quintana, Elisa V.; Smith, Jeffrey C.; Thompson, Susan E.; Twicken, Joseph D.; Girouard, Forrest R. [Orbital Sciences Corporation and others

    2013-05-01

    We present the results of a search for potential transit signals in the first three years of photometry data acquired by the Kepler mission. The targets of the search include 112,321 targets that were observed over the full interval and an additional 79,992 targets that were observed for a subset of the full interval. From this set of targets we find a total of 11,087 targets that contain at least one signal that meets the Kepler detection criteria: periodicity of the signal, an acceptable signal-to-noise ratio, and three tests that reject false positives. Each target containing at least one detected signal is then searched repeatedly for additional signals, which represent multi-planet systems of transiting planets. When targets with multiple detections are considered, a total of 18,406 potential transiting planet signals are found in the Kepler mission data set. The detected signals are dominated by events with relatively low signal-to-noise ratios and by events with relatively short periods. The distribution of estimated transit depths appears to peak in the range between 20 and 30 parts per million, with a few detections down to fewer than 10 parts per million. The detections exhibit signal-to-noise ratios from 7.1{sigma}, which is the lower cutoff for detections, to over 10,000{sigma}, and periods ranging from 0.5 days, which is the shortest period searched, to 525 days, which is the upper limit of achievable periods given the length of the data set and the requirement that all detections include at least three transits. The detected signals are compared to a set of known transit events in the Kepler field of view, many of which were identified by alternative methods; the comparison shows that the current search recovery rate for targets with known transit events is 98.3%.

  8. Catecholamine response during 12 days of high-altitude exposure (4, 300 m) in women.

    PubMed

    Mazzeo, R S; Child, A; Butterfield, G E; Mawson, J T; Zamudio, S; Moore, L G

    1998-04-01

    We have previously demonstrated that acclimatization to high altitude elicits increased sympathetic nerve activity in men. The purpose of this investigation was to determine 1) whether women respond in a similar manner as found previously in men and 2) the extent to which menstrual cycle phase influences this response. Sixteen eumenorrheic women (age, 23.6 +/- 1.2 yr; weight, 56.2 +/- 4. 3 kg) were studied at sea level and during 12 days of high-altitude exposure (4,300 m) in either their follicular (F; n = 11) or luteal (L; n = 5) phase. Twenty-four-hour urine samples were collected at sea level and during each day at altitude. Catecholamines were determined by high-performance liquid chromatography with electrochemical detection. Compared with sea-level values, urinary norepinephrine excretion increased significantly during altitude exposure, peaking on days 4-6. Thereafter, levels remained constant throughout the duration of altitude exposure. The magnitude of this increase was similar between the F (138%) and L (93%) phase. Urinary epinephrine levels were elevated on day 2 of altitude exposure compared with sea-level values for both F and L subjects (93%). Thereafter, urinary epinephrine excretion returned to sea-level values, and no differences were found between F and L subjects. Plasma catecholamine content was consistent with urinary values and supports the concept of an elevation in sympathetic activity over time at altitude. Mean and diastolic blood pressure as well as heart rate adjustments to high altitude correlated significantly with urinary norepinephrine excretion rates. It was concluded that 1) urinary and plasma catecholamine responses to 12 days of high-altitude exposure in women are similar to those previously documented to occur for men; 2) whereas no differences in catecholamine levels were observed between F- and L-phase assignments, for a given urinary norepinephrine excretion rate, blood pressure and heart rates were lower for F vs. L

  9. Bio-energetic changes in human gastrocnemius muscle 1-2 days after strenuous exercise.

    PubMed

    Kemp, G J; Taylor, D J; Radda, G K; Rajagopalan, B

    1992-09-01

    [31P]magnetic resonance spectroscopy was used to study the metabolic sequelae of intense muscular activity in gastrocnemius of seven subjects 1-2 days after a 67-mile bicycle ride. The muscle was examined at rest, during a test exercise and during recovery from test exercise. Post-ride and pre-ride results were compared. At rest, the ratio of phosphocreatine to ATP (PCr/ATP) was increased post-ride; during test exercise PCr/(PCr+Pi) was lower post-ride; and the recoveries of PCr, Pi and PCr/(PCr+Pi) after test exercise were delayed, with decreased 'overshoot' of PCr/(PCr+Pi) (which is due to recovery of Pi to below its resting value). Mild mitochondrial damage (perhaps due to exposure to high cytosolic [Pi] during the bicycle ride) may explain some of these results. In contrast to reports of largely eccentric exercise there was no increase in resting Pi/ATP. We have thus demonstrated perturbations of muscle bio-energetics 1-2 days after strenuous exercise, in the absence of convincing enzymological evidence of muscle damage.

  10. Preosteoblast production 55 hours after a 12.5-day spaceflight on Cosmos 1887.

    PubMed

    Garetto, L P; Gonsalves, M R; Morey, E R; Durnova, G; Roberts, W E

    1990-01-01

    The influence of 12.5 days of spaceflight and a 55 h stressful recovery period (at 1 g) on fibroblastlike osteoblast precursor cells was assessed in the periodontal ligament (PDL) of rats that were 91 days old at launch. Nuclear morphometry was used as a marker for precursor cell differentiation in 3 microns sections cut in the midsagittal plane from the maxillary first molar. According to nuclear volume, cells were classified as preosteoblasts (C + D cells, greater than or equal to 120 microns 3) and less differentiated progenitor cells (A + A' cells, 40-79 microns 3). Compared with synchronous controls (simulated flight conditions), the 55 h postflight recovery period at 1 g resulted in a 40% decrease in the A + A' cell population, a 42% increase in the C + D cells, and a 39% increase in the number of PDL fibroblastlike cells near the bone surface. These results are consistent with a postflight osteogenic response in PDL. This recovery response occurred despite physiological stress in the flight animals that resulted in a highly significant (P less than or equal to 0.001) increase in adrenal weight. The data suggest that after spaceflight there is a strong and rapid recovery mechanism for osteoblast differentiation that is not suppressed by physiological stress.

  11. Preosteoblast production 55 hours after a 12.5-day spaceflight on Cosmos 1887

    NASA Technical Reports Server (NTRS)

    Garetto, L. P.; Gonsalves, M. R.; Morey, E. R.; Durnova, G.; Roberts, W. E.; Morey-Holton, E. (Principal Investigator)

    1990-01-01

    The influence of 12.5 days of spaceflight and a 55 h stressful recovery period (at 1 g) on fibroblastlike osteoblast precursor cells was assessed in the periodontal ligament (PDL) of rats that were 91 days old at launch. Nuclear morphometry was used as a marker for precursor cell differentiation in 3 microns sections cut in the midsagittal plane from the maxillary first molar. According to nuclear volume, cells were classified as preosteoblasts (C + D cells, greater than or equal to 120 microns 3) and less differentiated progenitor cells (A + A' cells, 40-79 microns 3). Compared with synchronous controls (simulated flight conditions), the 55 h postflight recovery period at 1 g resulted in a 40% decrease in the A + A' cell population, a 42% increase in the C + D cells, and a 39% increase in the number of PDL fibroblastlike cells near the bone surface. These results are consistent with a postflight osteogenic response in PDL. This recovery response occurred despite physiological stress in the flight animals that resulted in a highly significant (P less than or equal to 0.001) increase in adrenal weight. The data suggest that after spaceflight there is a strong and rapid recovery mechanism for osteoblast differentiation that is not suppressed by physiological stress.

  12. Effects of 12 days exposure to simulated microgravity on central circulatory hemodynamics in the rhesus monkey

    NASA Technical Reports Server (NTRS)

    Convertino, V. A.; Koenig, S. C.; Krotov, V. P.; Fanton, J. W.; Korolkov, V. I.; Trambovetsky, E. V.; Ewert, D. L.; Truzhennikov, A.; Latham, R. D.

    1998-01-01

    Central circulatory hemodynamic responses were measured before and during the initial 9 days of a 12-day 10 degrees head-down tilt (HDT) in 4 flight-sized juvenile rhesus monkeys who were surgically instrumented with a variety of intrathoracic catheters and blood flow sensors to assess the effects of simulated microgravity on central circulatory hemodynamics. Each subject underwent measurements of aortic and left ventricular pressures, and aortic flow before and during HDT as well as during a passive head-up postural test before and after HDT. Heart rate, stroke volume, cardiac output, and left ventricular end-diastolic pressure were measured, and dP/dt and left ventricular elastance was calculated from hemodynamic measurements. The postural test consisted of 5 min of supine baseline control followed by 5 minutes of 90 degrees upright tilt (HUT). Heart rate, stroke volume, cardiac output, and left ventricular end-diastolic pressure showed no consistent alterations during HDT. Left ventricular elastance was reduced in all animals throughout HDT, indicating that cardiac compliance was increased. HDT did not consistently alter left ventricular +dP/dt, indicating no change in cardiac contractility. Heart rate during the post-HDT HUT postural test was elevated compared to pre-HDT while post-HDT cardiac output was decreased by 52% as a result of a 54% reduction in stroke volume throughout HUT. Results from this study using an instrumented rhesus monkey suggest that exposure to microgravity may increase ventricular compliance without alternating cardiac contractility. Our project supported the notion that an invasively-instrumented animal model should be viable for use in spaceflight cardiovascular experiments to assess potential changes in myocardial function and cardiac compliance.

  13. The 12-day thermoregulatory metamorphosis of Red-winged Blackbirds (Agelaius phoeniceus).

    PubMed

    Sirsat, Sarah K Goy; Sirsat, Tushar S; Crossley, Janna L; Sotherland, Paul R; Dzialowski, Edward M

    2016-07-01

    We examined development of endothermy in altricial Red-winged Blackbirds (Agelaius phoeniceus) by measuring oxygen consumption [Formula: see text], body temperature and ventilation at ambient temperatures from 35 to 15 °C. Mitochondrial respiration of permeabilized skeletal muscle was also measured from breast (pectoralis) and thigh (femorotibialis) muscles. Animals were studied from the first day of hatching through fledging (12 days post-hatch, dph). Nestling whole-body metabolic rate began to show an endothermic response to cold temperature midway between hatching and fledging. Nestlings less than 5 dph were unable to maintain elevated [Formula: see text] and body temperature when exposed to gradually decreasing temperature, whereas 7 dph nestlings maintained [Formula: see text] until ~25 °C, after which [Formula: see text] decreased. From 10 dph to fledging, animals maintained elevated [Formula: see text] and body temperature when exposed to gradual cooling; full endothermic capacity was achieved. Ventilation followed a similar developmental trend to that of [Formula: see text], with increases in 10 dph fledglings occurring in tidal volume rather than ventilation frequency. LEAK respiration and oxidative phosphorylation (OXPHOS) through complex I of breast muscle mitochondria increased significantly after 3 dph. Expression of avUCP and PCG-1α mRNA increased significantly at 3 dph and remained elevated in both skeletal muscle types. Increased metabolic capacity at the cellular level occurred prior to that of the whole animal. This change in whole animal metabolic capacity increased steadily upon hatching as evidenced by the shift of metabolic rate from an ectothermic to endothermic phenotype and the increase of mitochondrial OXPHOS activity of the shivering muscles of this altricial avian species.

  14. Enabling data science in the Gaia mission archive: The present-day mass function and age distribution

    NASA Astrophysics Data System (ADS)

    Tapiador, D.; Berihuete, A.; Sarro, L. M.; Julbe, F.; Huedo, E.

    2017-04-01

    Recent advances in large scale computing architectures enable new opportunities to extract value out of the vast amounts of data being currently generated. However, their successful adoption is not straightforward in areas like science, as there are still some barriers that need to be overcome. Those comprise (i) the existence of legacy code that needs to be ported, (ii) the lack of high-level and use case specific frameworks that facilitate a smoother transition, or (iii) the scarcity of profiles with the balanced skill sets between the technological and scientific domains. The European Space Agency's Gaia mission will create the largest and most precise three dimensional chart of our galaxy (the Milky Way), providing unprecedented position, parallax and proper motion measurements for about one billion stars. The successful exploitation of this data archive will depend on the ability to offer the proper infrastructure upon which scientists will be able to do exploration and modelling with this huge data set. In this paper, we present and contextualize these challenges by building two probabilistic models using Hierarchical Bayesian Modelling. These models represent a key challenge in astronomy and are of paramount importance for the Gaia mission itself. Moreover, we approach the implementation by leveraging a generic distributed processing engine through an existing software package for Markov chain Monte Carlo sampling. The two computationally intensive models are then validated with simulated data in different scenarios under specific restrictions, and their performance is assessed to prove their scalability. We argue that this approach will not only serve for the models in hand but also for exemplifying how to address similar problems in science, which may need to both scale to bigger data sets and reuse existing software as much as possible. This will lead to shorter time to science in massive data archives.

  15. Day Hospital Treatment for Anorexia Nervosa: A 12-Month Follow-up Study.

    PubMed

    Abbate-Daga, Giovanni; Marzola, Enrica; De-Bacco, Carlotta; Buzzichelli, Sara; Brustolin, Annalisa; Campisi, Stefania; Amianto, Federico; Migliaretti, Giuseppe; Fassino, Secondo

    2015-09-01

    Day hospitals (DHs) represent a treatment option for anorexia nervosa (AN), a mental disorder that is difficult to treat and has no evidence-based treatments available. We aimed to determine the effectiveness of a DH treatment that was specifically focused on the emotions of severe AN patients. Body mass index and eating psychopathology were the primary outcome measures. Fifty-six adult patients with AN were assessed upon admission, at the end of treatment (EOT) and at a 12-month follow-up evaluation (T18) using Eating Disorders Inventory-2, Beck Depression Inventory, Hamilton Rating Scale for Anxiety and Brief Social Phobia Scale. All participants received a multidisciplinary treatment programme that focused on psychodynamic psychotherapy. Seventy-eight per cent of participants reported positive outcomes at EOT and 68% at T18. Moreover, 82.1% and 65.4% of long-standing patients showed positive outcomes at EOT and T18, respectively. All measures of psychopathology were significantly improved at EOT and were maintained at follow-up. Our DH was effective at treating severe AN patients; however, further investigations of the processes of change are warranted.

  16. Distribution of rest days in 12 hour shift systems: impacts on health, wellbeing, and on shift alertness

    PubMed Central

    Tucker, P.; Smith, L.; Macdonald, I.; Folkard, S.

    1999-01-01

    OBJECTIVES: To investigate of the effects of distribution of rest days in 12 hour shift systems. Although several studies have examined the effects of compressing work schedules by comparing 8 and 12 hour shift systems, there is little published research examining the various forms of 12 hour shift system. METHODS: An abridged version of the standard shiftwork index which included retrospective alertness ratings was completed by a large sample of industrial shiftworkers. The respondents worked 12 hour shift systems that either did or did not incorporate breaks of > 24 hours between the blocks of day and night shifts. For the purposes of the analysis, each of these two groups were further subdivided into those who started their morning shift at 0600 and those who started at 0700. RESULTS: Systems which incorporated rest days between the day and night shifts were associated with slightly higher levels of on shift alertness, slightly lower levels of chronic fatigue, along with longer sleep durations when working night shifts and between rest days. Early changeovers were associated with shorter night sleeps between successive day shifts, but longer and less disturbed day sleeps between night shifts. These effects of changeover time were broadly in agreement with previous research findings. CONCLUSIONS: The distribution of rest days in 12 hour shift systems had only limited effects on the outcome measures, although the few modest differences that were found favoured systems which incorporated rest days between the day and night shifts. It is conceded that the design of the study may have obscured some subtle differences between the shift systems. Nevertheless, it is concluded that the impact of distribution of rest days seems to be minor relative to previously found effects of other features of shift systems--for example, shift duration.   PMID:10448331

  17. Nutritional status changes in humans during a 14-day saturation dive: the NASA Extreme Environment Mission Operations V project.

    PubMed

    Smith, Scott M; Davis-Street, Janis E; Fesperman, J Vernell; Smith, Myra D; Rice, Barbara L; Zwart, Sara R

    2004-07-01

    Ground-based analogs of spaceflight are an important means of studying physiologic and nutritional changes associated with space travel, and the NASA Extreme Environment Mission Operations V (NEEMO) is such an analog. To determine whether saturation diving has nutrition-related effects similar to those of spaceflight, we conducted a clinical nutritional assessment of the NEEMO crew (4 men, 2 women) before, during, and after their 14-d saturation dive. Blood and urine samples were collected before, during, and after the dive. The foods consumed by the crew were typical of the spaceflight food system. A number of physiologic changes were observed, during and after the dive, that are also commonly observed during spaceflight. Hemoglobin and hematocrit were lower (P < 0.05) after the dive. Transferrin receptors were significantly lower immediately after the dive. Serum ferritin increased significantly during the dive. There was also evidence indicating that oxidative damage and stress increased during the dive. Glutathione peroxidase and superoxide dismutase decreased during and after the dive (P < 0.05). Decreased leptin during the dive (P < 0.05) may have been related to the increased stress. Subjects had decreased energy intake and weight loss during the dive, similar to what is observed during spaceflight. Together, these similarities to spaceflight provide a model to use in further defining the physiologic effects of spaceflight and investigating potential countermeasures.

  18. Nutritional status changes in humans during a 14-day saturation dive: the NASA Extreme Environment Mission Operations V project

    NASA Technical Reports Server (NTRS)

    Smith, Scott M.; Davis-Street, Janis E.; Fesperman, J. Vernell; Smith, Myra D.; Rice, Barbara L.; Zwart, Sara R.

    2004-01-01

    Ground-based analogs of spaceflight are an important means of studying physiologic and nutritional changes associated with space travel, and the NASA Extreme Environment Mission Operations V (NEEMO) is such an analog. To determine whether saturation diving has nutrition-related effects similar to those of spaceflight, we conducted a clinical nutritional assessment of the NEEMO crew (4 men, 2 women) before, during, and after their 14-d saturation dive. Blood and urine samples were collected before, during, and after the dive. The foods consumed by the crew were typical of the spaceflight food system. A number of physiologic changes were observed, during and after the dive, that are also commonly observed during spaceflight. Hemoglobin and hematocrit were lower (P < 0.05) after the dive. Transferrin receptors were significantly lower immediately after the dive. Serum ferritin increased significantly during the dive. There was also evidence indicating that oxidative damage and stress increased during the dive. Glutathione peroxidase and superoxide dismutase decreased during and after the dive (P < 0.05). Decreased leptin during the dive (P < 0.05) may have been related to the increased stress. Subjects had decreased energy intake and weight loss during the dive, similar to what is observed during spaceflight. Together, these similarities to spaceflight provide a model to use in further defining the physiologic effects of spaceflight and investigating potential countermeasures.

  19. 12 CFR 220.117 - Exception to 90-day rule in special cash account.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... follows: Customer purchased stock in a special cash account with a member firm on Day 1. On Day 3 customer sold the same stock at a profit. On Day 8 customer delivered his check for the cost of the purchase to... of a security in a customer's special cash account if any security has been purchased in that...

  20. 12 CFR 220.117 - Exception to 90-day rule in special cash account.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... follows: Customer purchased stock in a special cash account with a member firm on Day 1. On Day 3 customer sold the same stock at a profit. On Day 8 customer delivered his check for the cost of the purchase to... of a security in a customer's special cash account if any security has been purchased in that...

  1. Visual-motor response of crewmen during a simulated 90-day space mission as measured by the critical task battery

    NASA Technical Reports Server (NTRS)

    Allen, R. W.; Jex, H. R.

    1973-01-01

    In order to test various components of a regenerative life support system and to obtain data on the physiological and psychological effects of long duration exposure to confinement in a space station atmosphere, four carefully screened young men were sealed in a space station simulator for 90 days and administered a tracking test battery. The battery included a clinical test (Critical Instability Task) designed to measure a subject's dynamic time delay, and a more conventional steady tracking task, during which dynamic response (describing functions) and performance measures were obtained. Good correlation was noted between the clinical critical instability scores and more detailed tracking parameters such as dynamic time delay and gain-crossover frequency. The levels of each parameter span the range observed with professional pilots and astronaut candidates tested previously. The chamber environment caused no significant decrement on the average crewman's dynamic response behavior, and the subjects continued to improve slightly in their tracking skills during the 90-day confinement period.

  2. 12 CFR 220.105 - Ninety-day rule in special cash account.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... dealer.” The limitation is that during the succeeding 90 days the customer may not purchase a security in... an account subject to the 90-day disqualification: A customer purchases registered security ABC in a... greater than the cost of security ABC. After both sale and purchase have been made, the customer...

  3. 12 CFR 220.105 - Ninety-day rule in special cash account.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... or dealer.” The limitation is that during the succeeding 90 days the customer may not purchase a... makes an account subject to the 90-day disqualification: A customer purchases registered security ABC in... greater than the cost of security ABC. After both sale and purchase have been made, the customer...

  4. 12 CFR 220.105 - Ninety-day rule in special cash account.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... dealer.” The limitation is that during the succeeding 90 days the customer may not purchase a security in... an account subject to the 90-day disqualification: A customer purchases registered security ABC in a... greater than the cost of security ABC. After both sale and purchase have been made, the customer...

  5. 12 CFR 220.105 - Ninety-day rule in special cash account.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... or dealer.” The limitation is that during the succeeding 90 days the customer may not purchase a... makes an account subject to the 90-day disqualification: A customer purchases registered security ABC in... greater than the cost of security ABC. After both sale and purchase have been made, the customer...

  6. 12 CFR 220.105 - Ninety-day rule in special cash account.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... dealer.” The limitation is that during the succeeding 90 days the customer may not purchase a security in... an account subject to the 90-day disqualification: A customer purchases registered security ABC in a... greater than the cost of security ABC. After both sale and purchase have been made, the customer...

  7. 12 CFR 900.2 - Terms relating to Bank operations, mission and supervision.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... supervision. 900.2 Section 900.2 Banks and Banking FEDERAL HOUSING FINANCE BOARD GENERAL DEFINITIONS GENERAL DEFINITIONS APPLYING TO ALL FINANCE BOARD REGULATIONS § 900.2 Terms relating to Bank operations, mission and... U.S.C. 1426(b)), and part 933 of this chapter, as approved by the Finance Board, unless the...

  8. 12 CFR 900.2 - Terms relating to Bank operations, mission and supervision.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... supervision. 900.2 Section 900.2 Banks and Banking FEDERAL HOUSING FINANCE BOARD GENERAL DEFINITIONS GENERAL DEFINITIONS APPLYING TO ALL FINANCE BOARD REGULATIONS § 900.2 Terms relating to Bank operations, mission and... U.S.C. 1426(b)), and part 933 of this chapter, as approved by the Finance Board, unless the...

  9. Trade Space Specification Tool (TSST) for Rapid Mission Architecture (Version 1.2)

    NASA Technical Reports Server (NTRS)

    Wang, Yeou-Fang; Schrock, Mitchell; Borden, Chester S.; Moeller, Robert C.

    2013-01-01

    Trade Space Specification Tool (TSST) is designed to capture quickly ideas in the early spacecraft and mission architecture design and categorize them into trade space dimensions and options for later analysis. It is implemented as an Eclipse RCP Application, which can be run as a standalone program. Users rapidly create concept items with single clicks on a graphical canvas, and can organize and create linkages between the ideas using drag-and-drop actions within the same graphical view. Various views such as a trade view, rules view, and architecture view are provided to help users to visualize the trade space. This software can identify, explore, and assess aspects of the mission trade space, as well as capture and organize linkages/dependencies between trade space components. The tool supports a user-in-the-loop preliminary logical examination and filtering of trade space options to help identify which paths in the trade space are feasible (and preferred) and what analyses need to be done later with executable models. This tool provides multiple user views of the trade space to guide the analyst/team to facilitate interpretation and communication of the trade space components and linkages, identify gaps in combining and selecting trade space options, and guide user decision-making for which combinations of architectural options should be pursued for further evaluation. This software provides an environment to capture mission trade space elements rapidly and assist users for their architecture analysis. This is primarily focused on mission and spacecraft architecture design, rather than general-purpose design application. In addition, it provides more flexibility to create concepts and organize the ideas. The software is developed as an Eclipse plug-in and potentially can be integrated with other Eclipse-based tools.

  10. 7 CFR 226.12 - Administrative payments to sponsoring organizations for day care homes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... amount of administrative payments and food service payments for day care home operations. (b) Start-up... section shall be entitled to receive start-up payments to develop or expand successful Program operations... start-up payments only once for any eligible sponsoring organization, but may approve expansion...

  11. 12 CFR 220.117 - Exception to 90-day rule in special cash account.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... purchase. (b) The specific factual situation presented may be summarized as follows: Customer purchased... profit. On Day 8 customer delivered his check for the cost of the purchase to the creditor (member firm...(c)(8) prohibits a creditor, as a general rule, from effecting a purchase of a security in a...

  12. 12 CFR 220.117 - Exception to 90-day rule in special cash account.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... purchase. (b) The specific factual situation presented may be summarized as follows: Customer purchased... profit. On Day 8 customer delivered his check for the cost of the purchase to the creditor (member firm...(c)(8) prohibits a creditor, as a general rule, from effecting a purchase of a security in a...

  13. 12 CFR 220.117 - Exception to 90-day rule in special cash account.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... purchase. (b) The specific factual situation presented may be summarized as follows: Customer purchased... profit. On Day 8 customer delivered his check for the cost of the purchase to the creditor (member firm...(c)(8) prohibits a creditor, as a general rule, from effecting a purchase of a security in a...

  14. 12 CFR Appendix A to Part 229 - Routing Number Guide to Next-Day Availability Checks and Local Checks

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 3 2010-01-01 2010-01-01 false Routing Number Guide to Next-Day Availability Checks and Local Checks A Appendix A to Part 229 Banks and Banking FEDERAL RESERVE SYSTEM (CONTINUED) BOARD OF GOVERNORS OF THE FEDERAL RESERVE SYSTEM AVAILABILITY OF FUNDS AND COLLECTION OF...

  15. A resolution designating December 12, 2009, as "Wreaths Across America Day".

    THOMAS, 111th Congress

    Sen. Collins, Susan M. [R-ME

    2009-11-20

    12/01/2009 Resolution agreed to in Senate without amendment and with a preamble by Unanimous Consent. (text: CR S12089) (All Actions) Tracker: This bill has the status Passed SenateHere are the steps for Status of Legislation:

  16. P2Y12-ADP receptor antagonists: Days of future and past

    PubMed Central

    Laine, Marc; Paganelli, Franck; Bonello, Laurent

    2016-01-01

    Antiplatelet therapy is the cornerstone of the therapeutic arsenal in coronary artery disease. Thanks to a better understanding in physiology, pharmacology and pharmacogenomics huge progress were made in the field of platelet reactivity inhibition thus allowing the expansion of percutaneous coronary intervention. Stent implantation requires the combination of two antiplatelet agents acting in a synergistic way. Asprin inhibit the cyclo-oxygenase pathway of platelet activation while clopidogrel is a P2Y12 adenosine diphosphate (ADP)-receptor antagonist. This dual antiplatelet therapy has dramatically improved the prognosis of stented patients. However, due to pharmacological limitations of clopidogrel (interindividual variability in its biological efficacy, slow onset of action, mild platelet reactivity inhibition) ischemic recurrences remained high following stent implantation especially in acute coronary syndrome patients. Thus, more potent P2Y12-ADP receptor inhibitors were developped including prasugrel, ticagrelor and more recently cangrelor to overcome these pitfalls. These new agents reduced the rate of thrombotic events in acute coronary syndrome patients at the cost of an increased bleeding risk. The abundance in antiplatelet agents allow us to tailor our strategy based on the thrombotic/bleeding profile of each patient. Recently, the ACCOAST trial cast a doubt on the benefit of pre treatment in non-ST segment elevation acute coronary syndrome. The aim of the present review is to summarize the results of the main studies dealing with antiplatelet therapy in stented/acute coronary syndromes patients. PMID:27231519

  17. DAY-SIDE z'-BAND EMISSION AND ECCENTRICITY OF WASP-12b

    SciTech Connect

    Lopez-Morales, Mercedes; Rogers, Justin C.; Coughlin, Jeffrey L.; Sing, David K.; Burrows, Adam; Spiegel, David S.; Apai, Daniel; Adams, Elisabeth R.

    2010-06-10

    We report the detection of the eclipse of the very hot Jupiter WASP-12b via z'-band time-series photometry obtained with the 3.5 m Astrophysical Research Consortium telescope at Apache Point Observatory. We measure a decrease in flux of 0.082% {+-} 0.015% during the passage of the planet behind the star. That planetary flux is equally well reproduced by atmospheric models with and without extra absorbers, and blackbody models with f {>=} 0.585 {+-} 0.080. It is therefore necessary to measure the planet at other wavelengths to further constrain its atmospheric properties. The eclipse appears centered at phase {phi} = 0.5100{sup +0.0072}{sub -0.0061}, consistent with an orbital eccentricity of |ecos {omega}| = 0.016{sup +0.011}{sub -0.009} (see note at the end of Section 4). If the orbit of the planet is indeed eccentric, the large radius of WASP-12b can be explained by tidal heating.

  18. Thin section of rock brought back to earth by Apollo 12 mission

    NASA Technical Reports Server (NTRS)

    1970-01-01

    An idea of the mineralogy and texture of a lunar sample can be achieved by use of color microphotos. This thin section is Apollo 12 lunar sample number 12057.27, under polarized light. The lavender minerals are pyrexene; the black mineral is ilmenite; the white and brown, feldspar; and the remainder, olivine.

  19. Thermal property measurements on lunar material returned by Apollo 11 and 12 missions.

    NASA Technical Reports Server (NTRS)

    Horai, K.-I.; Simmons, G.

    1972-01-01

    Measurement of thermal diffusivity on Apollo 11 type A and type C samples in the temperature range between 150 and 440 K under atmospheric pressure. Thermal diffusivity of type C material is lower and less temperature-dependent than type A material. Both types of samples exhibit lower thermal diffusivities than nonporous terrestrial basalt. The rate of heat generation of Apollo 11 and 12 samples was calculated from the concentrations of radioactive elements: potassium, thorium, and uranium. Apollo 11 crystalline rocks show an average rate of heat generation which is not significantly different from terrestrial basalt. The Th/U ratio does not differ greatly from chondritic and terrestrial averages.

  20. Isolation of hemopoietic stem cell subsets from murine bone marrow: I. Radioprotective ability of purified cell suspensions differing in the proportion of day-7 and day-12 CFU-S

    SciTech Connect

    Ploemacher, R.E.; Brons, N.H.

    1988-01-01

    We have studied the ability of bone marrow cell suspensions greatly differing in the relative proportion of day-7 and day-12 spleen colony-forming units (CFU-S) to rescue mice from radiation-inflicted death, and to repopulate the irradiated bone marrow and spleen with nucleated cells. Counterflow centrifugal elutriation in combination with removal of adherent cells and fluorescence-activated cell sorting on differences in wheat germ agglutinin (WGA)-fluorescein isothiocyanate (FITC) affinity and light scatter properties were used consecutively to enrich large numbers of hemopoietic stem cells from mouse bone marrow. Enrichments of 50- to 200-fold have been achieved for day-12 CFU-S and radioprotective ability (RPA), permitting 50% of lethally irradiated mice to survive over a period of 30 days with as few as 50-80 donor cells. The ratio of day-7 and day-12 CFU-S in the various suspensions could be significantly modulated on the basis of their WGA binding and perpendicular light scatter characteristics. This finding enabled us to investigate the properties of day-7 and day-12 CFU-S with respect to their RPA. We found a highly significant log/log relationship between enrichment factors for (1) RPA, (2) the number of day-12 CFU-S, and (3) spleen cellularity as measured on day 13. In addition, similar numbers of sorted and unfractionated day-12 CFU-S were required to obtain the same level of protection. Enrichment for RPA was significantly less related to either the number of day-7 CFU-S injected, or the bone marrow cellularity of the irradiated mice on day 13.

  1. 12 Daghem: Beskrivning av uppfostringsklimat och sociala relationer (Twelve Day Care Centers: A Multisite Comparison of Day-Care Climate and Social Relations).

    ERIC Educational Resources Information Center

    Ekholm, Bodil; Hedin, Anna

    Twelve day care centers in a Swedish commune were systematically observed. Centers were selected on the basis of responses to a questionnaire on attitudes about upbringing which was answered by all the personnel at the 104 day care centers in the commune. Four of the selected centers represented a so-called "present-focused" upbringing…

  2. Geological Mapping of the Ac-H-12 Toharu Quadrangle of Ceres from NASA Dawn Mission

    NASA Astrophysics Data System (ADS)

    Mest, Scott; Williams, David; Crown, David; Yingst, Aileen; Buczkowski, Debra; Scully, Jennifer; Jaumann, Ralf; Roatsch, Thomas; Preusker, Frank; Nathues, Andres; Hoffmann, Martin; Schaefer, Michael; Raymond, Carol; Russell, Christopher

    2016-04-01

    The Dawn Science Team is conducting a geologic mapping campaign for Ceres similar to that done for Vesta [1,2], including production of a Survey- and High Altitude Mapping Orbit (HAMO)-based global map and a series of 15 Low Altitude Mapping Orbit (LAMO)-based quadrangle maps. In this abstract we discuss the surface geology and geologic evolution of the Ac-H-12 Toharu Quadrangle (21-66°S, 90-180°E). At the time of this writing LAMO images (35 m/pixel) are just becoming available. The current geologic map of Ac-H-12 was produced using ArcGIS software, and is based on HAMO images (140 m/pixel) and Survey (400 m/pixel) digital terrain models (for topographic information). Dawn Framing Camera (FC) color images were also used to provide context for map unit identification. The map (to be presented as a poster) will be updated from analyses of LAMO images. The Toharu Quadrangle is named after crater Toharu (86 km diameter; 48.3°S, 156°E), and is dominated by smooth terrain in the north, and more heavily cratered terrain in the south. The quad exhibits ~9 km of relief, with the highest elevations (~3.5-4.6 km) found among the western plateau and eastern crater rims, and the lowest elevation found on the floor of crater Chaminuka. Preliminary geologic mapping has defined three regional units (smooth material, smooth Kerwan floor material, and cratered terrain) that dominate the quadrangle, as well as a series of impact crater material units. Smooth materials form nearly flat-lying plains in the northwest part of the quad, and overlies hummocky materials in some areas. These smooth materials extend over a much broader area outside of the quad, and appear to contain some of the lowest crater densities on Ceres. Cratered terrain forms much of the map area and contains rugged surfaces formed largely by the structures and deposits of impact features. In addition to geologic units, a number of geologic features - including crater rims, furrows, scarps, troughs, and impact

  3. 12 days of altitude exposure at 1800m does not increase resting metabolic rate in elite rowers.

    PubMed

    Woods, Amy L; Garvican-Lewis, Laura A; Rice, Anthony; Thompson, Kevin Grant

    2017-03-09

    Four elite rowers completed a twelve-day altitude training camp living at 1800m, and training at 1800m and 915m, to assess changes in resting metabolic rate (RMR). RMR and body composition were assessed PRE and POST-camp. Downward trends in RMR and body composition were observed post-altitude: absolute RMR (percent change: -5.2%), relative RMR (-4.6%), body mass (-1.2%), and fat mass (-4.1%), likely related to the hypoxic stimulus and an imbalance between training load and energy intake.

  4. Effects of a 12-day maximal shuttle-run shock microcycle in hypoxia on soccer specific performance and oxidative stress.

    PubMed

    Gatterer, Hannes; Klarod, Kultida; Heinrich, Dieter; Schlemmer, Philipp; Dilitz, Stefan; Burtscher, Martin

    2015-08-01

    The purpose of this study was to investigate the effect of a maximal shuttle-run shock microcycle in hypoxia on repeated sprint ability (RSA, 6 × 40-m (6 × 20 m back and forth, 20" rest in between)), Yo-Yo-intermittent-recovery (YYIR) test performance, and redox-status. Fourteen soccer players (age: 23.9 ± 2.1 years), randomly assigned to hypoxia (∼ 3300 m) or normoxia training, performed 8 maximal shuttle-run training sessions within 12 days. YYIR test performance and RSA fatigue-slope improved independently of the hypoxia stimulus (p < 0.05). Training reduced the oxidative stress level (-7.9%, p < 0.05), and the reduction was associated with performance improvements (r = 0.761, ΔRSA; r = -0.575, ΔYYIR, p < 0.05).

  5. 25 CFR 293.12 - What happens if the Secretary does not act on the compact or amendment within the 45-day review...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false What happens if the Secretary does not act on the compact or amendment within the 45-day review period? 293.12 Section 293.12 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ECONOMIC ENTERPRISES CLASS III TRIBAL STATE GAMING COMPACT PROCESS § 293.12...

  6. Postmission plasma volume and red-cell mass changes in the crews of the first two Skylab missions

    NASA Technical Reports Server (NTRS)

    Johnson, P. C.; Kimzey, S. L.; Driscoll, T. B.

    1975-01-01

    Red-cell mass determinations were performed before and after the first two Skylab missions. The data showed a 14% mean decrease in red-cell mass after the 28-day mission and a 12% mean decrease after the 59-day mission. The red-cell mass returned to premission levels more slowly after the shorter (28-day) than after the longer mission. Plasma volume decreases were found after each mission, with the crew from the longer mission showing the greater change (13% vs 8.4%). Postmission decreases in red-cell mass and plasma volume have been a general finding in crewmen who return from short or long spaceflight.

  7. KELT-12b: A P ∼ 5 day, Highly Inflated Hot Jupiter Transiting a Mildly Evolved Hot Star

    NASA Astrophysics Data System (ADS)

    Stevens, Daniel J.; Collins, Karen A.; Gaudi, B. Scott; Beatty, Thomas G.; Siverd, Robert J.; Bieryla, Allyson; Fulton, Benjamin J.; Crepp, Justin R.; Gonzales, Erica J.; Coker, Carl T.; Penev, Kaloyan; Stassun, Keivan G.; Jensen, Eric L. N.; Howard, Andrew W.; Latham, David W.; Rodriguez, Joseph E.; Zambelli, Roberto; Bozza, Valerio; Reed, Phillip A.; Gregorio, Joao; Buchhave, Lars A.; Penny, Matthew T.; Pepper, Joshua; Berlind, Perry; Calchi Novati, Sebastiano; Calkins, Michael L.; D’Ago, Giuseppe; Eastman, Jason D.; Bayliss, D.; Colón, Knicole D.; Curtis, Ivan A.; DePoy, D. L.; Esquerdo, Gilbert A.; Gould, Andrew; Joner, Michael D.; Kielkopf, John F.; Labadie-Bartz, Jonathan; Lund, Michael B.; Manner, Mark; Marshall, Jennifer L.; McLeod, Kim K.; Oberst, Thomas E.; Pogge, Richard W.; Scarpetta, Gaetano; Stephens, Denise C.; Stockdale, Christopher; Tan, T. G.; Trueblood, Mark; Trueblood, Patricia

    2017-04-01

    We announce the discovery of KELT-12b, a highly inflated Jupiter-mass planet transiting the mildly evolved, V = 10.64 host star TYC 2619-1057-1. We followed up the initial transit signal in the KELT-North survey data with precise ground-based photometry, high-resolution spectroscopy, precise radial velocity measurements, and high-resolution adaptive optics imaging. Our preferred best-fit model indicates that the host star has {T}{eff} = 6279 ± 51 K, {log}{g}\\star = 3.89 ± 0.05, [Fe/H] = {0.19}-0.09+0.08, {M}* = {1.59}-0.09+0.07 {M}ȯ , and {R}* = 2.37 ± 0.17 {R}ȯ . The planetary companion has {M}{{P}} = 0.95 ± 0.14 {M}{{J}}, {R}{{P}} = {1.78}-0.16+0.17 {R}{{J}}, {log}{g}{{P}} = {2.87}-0.10+0.09, and density {ρ }{{P}} = {0.21}-0.05+0.07 g cm‑3, making it one of the most inflated giant planets known. Furthermore, for future follow-up, we report a high-precision time of inferior conjunction in {{BJD}}{TDB} of 2,457,083.660459 ± 0.000894 and period of P=5.0316216+/- 0.000032 days. Despite the relatively large separation of ∼0.07 au implied by its ∼5.03-day orbital period, KELT-12b receives significant flux of {2.38}-0.29+0.32× {10}9 erg s‑1 cm‑2 from its host. We compare the radii and insolations of transiting gas giant planets around hot ({T}{eff}≥slant 6250 K) and cool stars, noting that the observed paucity of known transiting giants around hot stars with low insolation is likely due to selection effects. We underscore the significance of long-term ground-based monitoring of hot stars and space-based targeting of hot stars with the Transiting Exoplanet Survey Satellite to search for inflated gas giants in longer-period orbits.

  8. Pre-Natal Exposure to Mouse Parvovirus at Day 5 and 12 Gestation Does Not Induce Immune Tolerance

    PubMed Central

    Allaband, Celeste; Henderson, Kenneth S.

    2016-01-01

    Parvoviruses have a predilection for rapidly dividing cells such as occurs during embryonic development. Potentially, in utero exposure could lead to immune tolerance in progeny mice. To determine if MPV infection in utero results in immune tolerance, pregnant mice were inoculated by oral gavage with 50 ID50 MPV1e or sham inoculated with phosphate buffered saline at day 5 and 12 gestation. Offspring were fostered to MPV-negative recipient dams prior to development of a milk spot. After confirming the offspring were seronegative for MPV by serology and not shedding by fecal PCR, they were challenged with 50 ID50 MPV1e by oral gavage at weaning or sham inoculated. At 4 weeks post inoculation, all weanlings exposed in utero developed antibodies to MPV, and MPV was detected by fecal PCR. Similarly, all weanlings from sham-inoculated dams challenged with MPV developed antibodies and MPV was detected by fecal PCR. None of the sham inoculated weanling mice from MPV infected dams or sham infected dams developed antibodies to MPV nor was MPV detected by fecal PCR. These results demonstrate that in utero exposure to MPV1e via oral gavage was insufficient to induce immune tolerance and provides greater confidence that rederivation techniques may successfully eliminate colonies of MPV. Furthermore, our findings do not provide evidence that MPV tolerance may contribute to hidden infections in mouse colonies. PMID:27219540

  9. Signal transduction in primary human T lymphocytes in altered gravity - results of the MASER-12 suborbital space flight mission.

    PubMed

    Tauber, Svantje; Hauschild, Swantje; Crescio, Claudia; Secchi, Christian; Paulsen, Katrin; Pantaleo, Antonella; Saba, Angela; Buttron, Isabell; Thiel, Cora Sandra; Cogoli, Augusto; Pippia, Proto; Ullrich, Oliver

    2013-05-07

    We investigated the influence of altered gravity on key proteins of T cell activation during the MASER-12 ballistic suborbital rocket mission of the European Space Agency (ESA) and the Swedish Space Cooperation (SSC) at ESRANGE Space Center (Kiruna, Sweden). We quantified components of the T cell receptor, the membrane proximal signaling, MAPK-signaling, IL-2R, histone modifications and the cytoskeleton in non-activated and in ConA/CD28-activated primary human T lymphocytes. The hypergravity phase during the launch resulted in a downregulation of the IL-2 and CD3 receptor and reduction of tyrosine phosphorylation, p44/42-MAPK phosphorylation and histone H3 acetylation, whereas LAT phosphorylation was increased. Compared to the baseline situation at the point of entry into the microgravity phase, CD3 and IL-2 receptor expression at the surface of non-activated T cells were reduced after 6 min microgravity. Importantly, p44/42-MAPK-phosphorylation was also reduced after 6 min microgravity compared to the 1g ground controls, but also in direct comparison between the in-flight μg and the 1g group. In activated T cells, the reduced CD3 and IL-2 receptor expression at the baseline situation recovered significantly during in-flight 1g conditions, but not during microgravity conditions. Beta-tubulin increased significantly after onset of microgravity until the end of the microgravity phase, but not in the in-flight 1g condition. This study suggests that key proteins of T cell signal modules are not severely disturbed in microgravity. Instead, it can be supposed that the strong T cell inhibiting signal occurs downstream from membrane proximal signaling, such as at the transcriptional level as described recently. However, the MASER-12 experiment could identify signal molecules, which are sensitive to altered gravity, and indicates that gravity is obviously not only a requirement for transcriptional processes as described before, but also for specific phosphorylation

  10. Signal transduction in primary human T lymphocytes in altered gravity – results of the MASER-12 suborbital space flight mission

    PubMed Central

    2013-01-01

    We investigated the influence of altered gravity on key proteins of T cell activation during the MASER-12 ballistic suborbital rocket mission of the European Space Agency (ESA) and the Swedish Space Cooperation (SSC) at ESRANGE Space Center (Kiruna, Sweden). We quantified components of the T cell receptor, the membrane proximal signaling, MAPK-signaling, IL-2R, histone modifications and the cytoskeleton in non-activated and in ConA/CD28-activated primary human T lymphocytes. The hypergravity phase during the launch resulted in a downregulation of the IL-2 and CD3 receptor and reduction of tyrosine phosphorylation, p44/42-MAPK phosphorylation and histone H3 acetylation, whereas LAT phosphorylation was increased. Compared to the baseline situation at the point of entry into the microgravity phase, CD3 and IL-2 receptor expression at the surface of non-activated T cells were reduced after 6 min microgravity. Importantly, p44/42-MAPK-phosphorylation was also reduced after 6 min microgravity compared to the 1g ground controls, but also in direct comparison between the in-flight μg and the 1g group. In activated T cells, the reduced CD3 and IL-2 receptor expression at the baseline situation recovered significantly during in-flight 1g conditions, but not during microgravity conditions. Beta-tubulin increased significantly after onset of microgravity until the end of the microgravity phase, but not in the in-flight 1g condition. This study suggests that key proteins of T cell signal modules are not severely disturbed in microgravity. Instead, it can be supposed that the strong T cell inhibiting signal occurs downstream from membrane proximal signaling, such as at the transcriptional level as described recently. However, the MASER-12 experiment could identify signal molecules, which are sensitive to altered gravity, and indicates that gravity is obviously not only a requirement for transcriptional processes as described before, but also for specific phosphorylation

  11. Isolation of hemopoietic stem cell subsets from murine bone marrow: II. Evidence for an early precursor of day-12 CFU-S and cells associated with radioprotective ability

    SciTech Connect

    Ploemacher, R.E.; Brons, N.H.

    1988-01-01

    Counterflow centrifugal elutriation (CCE) in combination with plastic adherence and fluorescence-activated cell sorting were used consecutively to enrich functionally different subpopulations of pluripotent hemopoietic stem cells (HSC) from mouse bone marrow. The nonadherent CCE fractions were labeled with wheat germ agglutinin (WGA)-fluorescein isothiocyanate (FITC) and sorted according to differences in fluorescence within various windows on the basis of forward (FLS) and perpendicular (PLS) light scatter. The sorted cells were then assayed for their (1) in vivo colony-forming ability (day-7 and day-12 spleen colony-forming units (CFU-S)), (2) radioprotective ability (RPA; 30-day survival), and (3) their ability to repopulate the bone marrow or spleen over a 13-day period with day-12 CFU-S, granulocyte-macrophage colony-forming units (CFU-GM), nucleated cells, or cells associated with RPA. The highest incidence of day-12 CFU-S and cells with RPA was obtained by sorting the most WGA-positive cells with relatively high PLS (enrichment, 50- to 200-fold), lowering the effective dose (ED 50/30) to an average of 80 cells. The separative procedure enabled hemopoietic stem cells that repopulate both bone marrow and spleen with secondary RPA cells, CFU-S-12, and CFU-GM to be enriched and separated from part of the RPA cells, CFU-S-12, and cells that reconstitute the cellularity of bone marrow and spleen. These data suggest that cells generating both day-12 CFU-S and RPA cells differ from day-12 CFU-S and RPA cells themselves on the basis of PLS characteristics and affinity for WGA. Such early stem cells have also been detected in sorted fractions meeting the FLS/PLS characteristics of lymphocytes.

  12. STS-99 Mission Highlights Resource Tape, Part 1 of 2

    NASA Technical Reports Server (NTRS)

    2000-01-01

    An overview of the STS-99 Endeavour mission is given through footage of each flight day. Scenes from flight days one through ten show activities such as astronaut prelaunch procedures (breakfast, suit-up, and boarding Endeavour), launch, and on-orbit activities such as the deployment of the Shuttle Radar Topography Mission (SRTM) instrument. Crewmembers are seeing during such everyday activities as brushing their teeth, exercising (bicycle), and emerging from their sleeping bunks. One of the crewmembers shows the contents of the onboard medical kit. See 'STS-99 Mission Highlights Resource Tape, Part 2 of 2' for the activities of flight days 11-12 and the landing of Endeavour.

  13. 78 FR 15346 - Secretarial Infrastructure Business Development Mission to Brazil, Colombia and Panama; May 12-18...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-11

    ... Appointments. Amcham or other Luncheon Speech. Panama City, Panama Commercial Opportunity Overview. Panama.... Commercial Setting Brazil The Federative Republic of Brazil is Latin America's biggest economy and is the..., Business development mission Orientation. Brazil. U.S Government Trade Finance Briefing. Brazil...

  14. Myeloid Precursors in the Bone Marrow of Mice after a 30-Day Space Mission on a Bion-M1 Biosatellite.

    PubMed

    Sotnezova, E V; Markina, E A; Andreeva, E R; Buravkova, L B

    2017-02-01

    The content of myeloid stem CFU in bone marrow karyocytes from the tibial bone of C57Bl/6 mice was evaluated after a 30-day Bion-M1 pace flight/ground control experiment and subsequent 7-day recovery period. After the space flight, we observed a significant decrease in the number of erythroid progenitors in the bone marrow, including common myeloid precursor - granulocyte, erythrocyte, monocyte/macrophage, megakaryocyte CFU. After 7-day readaptation, CFU level in flight animals did not recover completely. In the ground control, the count of erythroid burst-forming units was higher than in vivarium animals. Comparison of the changes observed in fight and ground experiments demonstrated effects associated space flight factors and manifesting in suppression of the bone marrow erythropoiesis.

  15. Comparative Studies of the Thick-Toed Geckos after the 16 and 12 Days Spaceflight in <> Experiments

    NASA Astrophysics Data System (ADS)

    Nikitin, V. B.; Proshchina, A. E.; Kharlamova, A. S.; Barabanov, V. M.; Krivova, J. S.; Godovalova, O. S.; Savelieva, E. S.; Makarov, A. N.; Gulimova, V. I.; Okshtein, I. L.; Naidenko, S. V.; Souza, K. A.; Almeida, E. A. C.; Ilyin, E. A.; Saveliev, S. V.

    2008-06-01

    In our study we compare the data from analysis of thick-toed geckoes Pachydactylus turneri from 16 and 12 days spaceflights onboard «Foton-M2» (M2) and «Foton-M3» (M3) satellites respectively. These studies were realized in the frames of Russian-American joint experiments. In M2 they were performed on 4 females and 1 male in each of the following groups: flight (F), basal (BC) and delayed synchronous (SC) controls. In M3 there were 5 females in each group. The animals were euthanized and examined using traditional histology, immunohistochemistry and X-ray microtomography. Mallory, Nissl and hematoxylin-eosin staining were used to compare the condition of brain, heart, liver, pancreas, spleen and small intestine. Brain and pancreas were also studied immunohistochemically. Behavior was registered by video camera in F and SC (M3). Thus we confirm the previous assumption that geckoes can preserve in weightlessness their ability to fi x themselves to the surfaces by their toe pads. We did not reveal in liver, pancreas, spleen and small intestine of F-M3 geckoes such evident changes like in F-M2 group. Glial destruction was detected immunohistochemically in the brains of F-M3 geckoes, especially in the cortical structures and epithalamus. Gluckocorticoids level for geckoes' feces in F-M2 was 4 times higher than in SC-M2 whereas the results for M3 were almost the same. Microtomografi c analysis of the femur bones showed some redistribution of the trabeculae in F-M3 group which occured in the direction from the outer compact bone to the bone center. Thus we conclude that in most structures of F-M3 animals the changes were less then in F-M2 ones. It can be explaned by shorter duration of M3 flight, higer temperature and the presence of water source. More prolonged experiments with larger groups of geckoes are necessary to verify the obtained data. Probably geckoes are well preadapted to conditions of spaceflight due to their specific biology.

  16. Analysis of nuclear abnormalities in erythrocytes of rainbow trout (Oncorhynchus mykiss) treated with Cu and Zn and after 4-, 8-, and 12-day depuration (post-treatment recovery).

    PubMed

    Stankevičiūtė, Milda; Butrimavičienė, Laura; Valskienė, Roberta; Greiciūnaitė, Janina; Baršienė, Janina; Vosylienė, Milda Zita; Svecevičius, Gintaras

    2016-02-01

    The induction of micronuclei (MN), nuclear buds (NB), bi-nucleated erythrocytes with nucleoplasmic bridge (BNb), vacuolated (VacNuc), blebbed (BL), 8-shaped nuclei, bi-nucleated (BN) and fragmented-apoptotic (FA) erythrocytes was analysed in the peripheral blood, cephalic kidney and liver of rainbow trout Oncorhynchus mykiss after 4-day treatment with copper (Cu) and zinc (Zn) mixture solutions and in 4-, 8- and 12-day depuration process. Fish (three treatment and one control group, N=40) were exposed to 0.0625, 0.125 and 0.25 fractions of 96-h LC50, respectively under semi-static conditions. Exposure of O. mykiss to Cu and Zn induced significant increase of MN (in blood in all test groups; in liver 0.125, 0.25 and in kidney 0.25 groups, respectively), NB and BL (in blood and kidney 0.25 group), 8-shaped (in blood 0.25; in liver 0.125, 0.25 and in kidney all test groups, respectively) and VacNuc (in liver and kidney 0.0625 and 0.125 groups). After 4-day recovery, significantly elevated levels of MN (in blood 0.0625, 0.125; in liver and kidney 0.125 group, respectively) and 8-shaped (in kidney-0.0625 group) were observed in fish. Significant recovery was observed in 0.0625 group after 12-day depuration, estimating the formation of MN in erythrocytes of blood, of 8-shaped nuclei erythrocytes in liver and kidney (after 8-, 12-day and 8-day recovery, respectively). Significant decrease of MN in blood (after 8- and 12-day recovery), in liver (after 8-day recovery), of NB in blood and kidney (after 8-day recovery) and of 8-shaped nuclei erythrocytes in blood (after 8 and 12-day recovery), kidney and liver (after 8-day recovery) was determined in 0.25 group. Changes in gross morphometric indices and biological parameters were observed. The binary metal mixture did not induce FA erythrocytes in any tissue at any test concentration.

  17. STS-88 Mission Specialists Currie and Ross inside Endeavour

    NASA Technical Reports Server (NTRS)

    1998-01-01

    STS-88 Mission Specialists Nancy J. Currie, Ph.D., (back) and Jerry L. Ross (front) check over equipment inside orbiter Endeavour during Terminal Countdown Demonstration Activities (TCDT). The TCDT includes mission familiarization activities, emergency egress training, and the simulated main engine cut-off exercise. Mission STS-88 is targeted for launch on Dec. 3, 1998. It is the first U.S. flight for the assembly of the International Space Station and will carry the Unity connecting module. Unity will be mated with the already orbiting Russian-built Zarya control module. The 12-day mission includes three planned spacewalks to connect power, data and utility lines and install exterior equipment.

  18. STS-109 Mission Highlights Resource Tape

    NASA Astrophysics Data System (ADS)

    2002-05-01

    This video, Part 4 of 4, shows footage of crew activities from flight days 8 through 12 of STS-109. The crew included: Scott Altman, Commander; Duane Carey, Pilot; John Grunsfeld, Payload Commander; Nancy Currie, Richard Linnehan, James Newman, Michael Massimino, Mission Speicalists. The activities from other flights days can be seen on 'STS-109 Mission Highlights Resource Tape' Part 1 of 4 (internal ID 2002139471), 'STS-109 Mission Highlights Resource Tape' Part 2 of 4 (internal ID 2002137664), and 'STS-109 Mission Highlights Resource Tape' Part 3 of 4 (internal ID 2002139476). The primary activity on flight day 8 was an EVA (extravehicular activity) by Grunsfeld and Linnehan to install a cryocooler and radiator for the NICMOS (Near Infrared Camera and Multi-Object Spectrometer) on the HST (Hubble Space Telescope). Before returning to Columbia's airlock, the astronauts, with a cloudy background, hold onto the orbiter and offer their thoughts on the significance of their mission, the HST, and spaceflight. Footage from flight day 9 includes the grappling, unbearthing, and deployment of the HST from Columbia, and the crew coordinating and videotaping Columbia's departure. Flight day 10 was a relatively inactive day, and flight day 11 includes a checkout of Columbia's aerodynamic surfaces. Columbia landed on flight day 12, which is covered by footage of the crew members speaking during reentry, and their night landing, primarily shown through the orbiter's head-up display. The video includes numerous views of the HST, as well as views of the the Galapagos Islands, Madagascar, and Southern Africa with parts of the Atlantic, Indian, and Pacific Oceans, and part of the coast of Chile. The pistol grip space tool is shown in use, and the crew answers two messages from the public, including a message to Massimino from the Fire Department of New York.

  19. Screen Media Time Usage of 12-16 Year-Old Spanish School Adolescents: Effects of Personal and Socioeconomic Factors, Season and Type of Day

    ERIC Educational Resources Information Center

    Devis-Devis, Jose; Peiro-Velert, Carmen; Beltran-Carrillo, Vicente J.; Tomas, Jose Manuel

    2009-01-01

    This study examined screen media time usage (SMTU) and its association with personal and socioeconomic factors, as well as the effect of season and type of day, in a Spanish sample of 12-16 year-old school adolescents (N=323). The research design was a cross-sectional survey, in which an interviewer-administered recall questionnaire was used.…

  20. A Guide to Celebrating Martin Luther King Jr. Day. Elementary Grades (4-6). Secondary Grades (7-12).

    ERIC Educational Resources Information Center

    New York City Board of Education, Brooklyn, NY. Div. of Curriculum and Instruction.

    This guide presents strategies and worksheets for helping students in grades 4 through 12 learn about the important contributions of Dr. Martin Luther King, Jr. to the achievement of civil rights. The guide is presented in two parallel parts, the first for the elementary and the second for the secondary grades, and both parts are divided into…

  1. Day to Day

    ERIC Educational Resources Information Center

    Jurecki, Dennis

    2006-01-01

    A clean, healthy and safe school provides students, faculty and staff with an environment conducive to learning and working. However, budget and staff reductions can lead to substandard cleaning practices and unsanitary conditions. Some school facility managers have been making the switch to a day-schedule to reduce security and energy costs, and…

  2. [Morphological changes in gastric wall of mongolian gerbils following the 12-day orbital flight aboard Foton-M3].

    PubMed

    Atiashkin, D A; Bykov, É G

    2012-01-01

    Gastric wall of Meriones unguiculatus is distinguished by species-specific properties arising from the peculiar proportion of interstitium, muscle and epithelial tissues. Exposure to the factors of the 12-d Foton-M3 flight led to microfocal lesions of the mucous coat, dystrophic developments in the acid glands, dissociation of the mucous barrier function and deterioration of its biosynthetic function. Modifications of the tinctorial properties of the interstitium reticulum in every stomach layer progressed concurrently with reductions in prismatic epithelium height, as well as in mucous and muscular layer thickness. It is assumed that existence in the low gravity aboard the Biosat stimulated involutory processes in the gastric wall. Animals of the ground synchronous control conducted in the flight equipment mockup (Kontur-L) exhibited though similar yet less pronounced changes.

  3. Discovery touches down after successful mission STS-95

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Orbiter Discovery touches down on runway 33 at the Shuttle Landing Facility after a successful mission of nearly nine days and 3.6 million miles. Main gear touchdown was at 12:04 p.m. EST, landing on orbit 135. The STS-95 crew consists of Mission Commander Curtis L. Brown Jr.; Pilot Steven W. Lindsey; Mission Specialist Scott E. Parazynski; Mission Specialist Stephen K. Robinson; Payload Specialist John H. Glenn Jr., a senator from Ohio; Mission Specialist Pedro Duque, with the European Space Agency (ESA); and Payload Specialist Chiaki Mukai, M.D., with the National Space Development Agency of Japan (NASDA). The mission included research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.

  4. Discovery touches down after successful mission STS-95

    NASA Technical Reports Server (NTRS)

    1998-01-01

    After a successful mission of nearly nine days and 3.6 million miles, the orbiter Discovery glides to Earth on runway 33 at the Shuttle Landing Facility. Main gear touchdown was at 12:04 p.m. EST, landing on orbit 135. The STS-95 mission included research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process. The crew consisted of Mission Commander Curtis L. Brown Jr.; Pilot Steven W. Lindsey; Mission Specialist Scott E. Parazynski; Mission Specialist Stephen K. Robinson; Payload Specialist John H. Glenn Jr., a senator from Ohio; Mission Specialist Pedro Duque, with the European Space Agency (ESA); and Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA).

  5. Discovery prepares to land after successful mission STS-95

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Seen from across the creek bordering runway 33 at the Shuttle Landing Facility, orbiter Discovery touches down after a successful mission of nine days and 3.6 million miles. Flying above it (left) is the Shuttle Training Aircraft. Main gear touchdown was at 12:04 p.m. EST, landing on orbit 135. The STS-95 crew consists of Mission Commander Curtis L. Brown Jr.; Pilot Steven W. Lindsey; Mission Specialist Scott E. Parazynski; Mission Specialist Stephen K. Robinson; Payload Specialist John H. Glenn Jr., senator from Ohio; Mission Specialist Pedro Duque, with the European Space Agency (ESA); and Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA). The mission included research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.

  6. Discovery prepares to land after successful mission STS-95

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Viewed across the creek bordering runway 33, orbiter Discovery touches down at the Shuttle Landing Facility after a successful mission of nearly nine days and 3.6 million miles. Main gear touchdown was at 12:04 p.m. EST, landing on orbit 135. In the background, right, is the Vehicle Assembly Building. The STS-95 crew consists of Mission Commander Curtis L. Brown Jr.; Pilot Steven W. Lindsey; Mission Specialist Scott E. Parazynski; Mission Specialist Stephen K. Robinson; Payload Specialist John H. Glenn Jr., senator from Ohio; Mission Specialist Pedro Duque, with the European Space Agency (ESA); and Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA). The mission included research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.

  7. 76 FR 40697 - Water and Wastewater Trade Mission to Australia Taking Place September 12-15, 2011; Now Opened to...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-11

    ... September 12-15, 2011, to help U.S. firms find business partners and sell equipment and services in Sydney... Australia through one-on-one meetings with potential partners, and through establishing long-term business... Department of Commerce official and will include business- to-business matchmaking with local...

  8. Mission engineering

    NASA Technical Reports Server (NTRS)

    Ondrus, Paul; Fatig, Michael

    1993-01-01

    Goddard Space Flight Center's projects are facing new challenges with respect to the cost effective development and operation of spaceflight missions. Challenges, such as cost limits, compression of schedules, rapidly changing technology, and increasing mission complexity are making the mission development process more dynamic. A concept of 'Mission Engineering' as a means of addressing these challenges is proposed. It is an end-to-end, multimission development methodology that seeks to integrate the development processes between the space, ground, science, and operations segments of a mission. It thereby promotes more mission-oriented system solutions, within and across missions.

  9. STS 110 Mission Highlights Resource Tape. Part 4 of 4

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A continuation of 'STS 110 Mission Highlights Resource Tape'. This video, Part 4 of 4, shows footage from flight days 10 through 12 of STS-110. The spacecrew includes Michael J. Bloomfield, Commander; Stephen N. Frick, Pilot; Jerry L. Ross, Mission Specialist; Steven L. Smith, Mission Specialist; Ellen Ochoa, Mission Specialist; Lee M.E. Morin, Mission Specialist; Rex J. Walheim, Mission Specialist. Flight day 10 includes an exchange of farewells with the Expedition 4 crew (Yury I. Onufrienko, Commander; Daniel W. Bursch, Flight Engineer; Carl E. Walz, Flight Engineer) of the International Space Station (ISS), and undocking. The video includes many views of the ISS as Atlantis departs, including cloud cover and the Earth's limb as backgrounds. There is also a view of Atlantis with its payload bay open. On flight day 11, in preparation for landing, the crew conducts a checkout of flight controls and a test firing. A spaceborne wheat plant experiment onboard the ISS is briefly shown. Flight day 12 includes closing the payload bay, suit-up, and landing. Kennedy Space Center is seen from the air, and the video shows landing replays, as well as a heads-up display view of the landing. Earth views include clear views of Western Sahara, Morocco, Mauritania, and Algeria, with the Atlantic Ocean, a cloud obstructed view of Newfoundland and the Atlantic, Pacific Ocean sun glint, and an excellent view of the Chicago area and Lake Michigan at night. The activities from other flights days can be seen on "STS 110 Mission Highlights Resource Tape" Part 1 of 4 (internal ID 2002137575), "STS 110 Mission Highlights Resource Tape" Part 2 of 4 (internal ID 2002137573), and "STS 110 Mission Highlights Resource Tape" Part 3 of 4 (internal ID 2002137574).

  10. MARSnet: Mission-aware Autonomous Radar Sensor Network for Future Combat Systems 12/8/06 to 12/31/09

    DTIC Science & Technology

    2010-01-01

    appears willful and voluntary? There is consensus that it depends on the prefrontal cortex (PFC). Many PFC areas receive converging inputs from at least two...PFC is depicted in Fig. 1 [14]. Many PFC areas receive converging inputs from at least two sensory modalities [3][9]. For example, the dorsolateral...PFC is connected with other cortical regions that are themselves sites of multimodal convergence . Many PFC areas (9, 12, 46, and 45) receive 3 79 of

  11. Effects of 12-month, 2000IU/day vitamin D supplementation on treatment naïve and vitamin D deficient Saudi type 2 diabetic patients

    PubMed Central

    Al-Shahwan, May A.; Al-Othman, Abdulaziz M.; Al-Daghri, Nasser M.; Sabico, Shaun B.

    2015-01-01

    Objectives: To determine whether 12-month, 2000IU/day vitamin D supplementation cardiometabolically improves treatment naïve type 2 diabetes mellitus (T2DM) Saudi patients with vitamin D deficiency. Methods: This 12-month interventional study was conducted at primary health centers in 5 different residential areas in Riyadh, Saudi Arabia between January 2013 and January 2014. Forty-five Saudi T2DM patients were enrolled. Baseline anthropometrics, glycemic, and lipid profiles were measured and repeated after 6 and 12 months. All subjects were provided with 2000IU vitamin D supplements for one year. Results: Vitamin D deficiency at baseline was 46.7%, 31.8% after 6 months, and 35.6% after 12 months, indicating an overall improvement in the vitamin D status in the entire cohort. Insulin and homeostatic model assessment-insulin resistance (HOMA-IR) after 12 months were significantly lower than a 6 months (p<0.05), but comparable to baseline values. Mean levels of triglycerides increased overtime from baseline (1.9±0.01 mmol/l) to 12 months (2.1±0.2 mmol). This modest increase in serum triglycerides was parallel to the insignificant decrease in circulating high-density lipoprotein -cholesterol levels. Conclusion: Twelve-month vitamin D supplementation of 2000IU per day in a cohort of treatment naïve Saudi patients with T2DM resulted in improvement of several cardiometabolic parameters including systolic blood pressure, insulin, and HOMA-IR. Further studies that include a placebo group are suggested to reinforce findings. PMID:26620985

  12. X-Ray Radiographic Observation of Directional Solidification Under Microgravity: XRMON-GF Experiments on MASER12 Sounding Rocket Mission

    NASA Technical Reports Server (NTRS)

    Reinhart, G.; NguyenThi, H.; Bogno, A.; Billia, B.; Houltz, Y.; Loth, K.; Voss, D.; Verga, A.; dePascale, F.; Mathiesen, R. H.; Zimmermann, G.

    2012-01-01

    The European Space Agency (ESA) - Microgravity Application Promotion (MAP) programme entitled XRMON (In situ X-Ray MONitoring of advanced metallurgical processes under microgravity and terrestrial conditions) aims to develop and perform in situ X-ray radiography observations of metallurgical processes in microgravity and terrestrial environments. The use of X-ray imaging methods makes it possible to study alloy solidification processes with spatio-temporal resolutions at the scales of relevance for microstructure formation. XRMON has been selected for MASER 12 sounding rocket experiment, scheduled in autumn 2011. Although the microgravity duration is typically six minutes, this short time is sufficient to investigate a solidification experiment with X-ray radiography. This communication will report on the preliminary results obtained with the experimental set-up developed by SSC (Swedish Space Corporation). Presented results dealing with directional solidification of Al-Cu confirm the great interest of performing in situ characterization to analyse dynamical phenomena during solidification processes.

  13. Role of Public Outreach in the University Science Mission: Publishing K-12 Curriculum, Organizing Tours, and Other Methods of Engagement

    NASA Astrophysics Data System (ADS)

    Dittrich, T. M.

    2015-12-01

    Much attention has been devoted in recent years to the importance of Science, Technology, Engineering, and Math (STEM) education in K-12 curriculum for developing a capable workforce. Equally important is the role of the voting public in understanding STEM-related issues that impact public policy debates such as the potential impacts of climate change, hydraulic fracturing in oil and gas exploration, mining impacts on water quality, and science funding. Since voted officials have a major impact on the future of these policies, it is imperative that the general public have an understanding of the basic science behind these issues. By engaging with the public in a more fundamental way, university students can play an important role in educating the public while at the same time enhancing their communication skills and gaining valuable teaching experience. I will talk about my own experiences in (1) evaluating and publishing water chemistry and hazardous waste cleanup curriculum on the K-12 engineering platform TeachEngineering.org, (2) organizing public tours of water and energy sites (e.g., abandoned mine sites, coal power plants, wastewater treatment plants, hazardous waste treatment facilities), and (3) other outreach and communication activities including public education of environmental issues through consultations with customers of a landscaping/lawn mowing company. The main focus of this presentation will be the role that graduate students can play in engaging and educating their local community and lessons learned from community projects (Dittrich, 2014; 2012; 2011). References: Dittrich, T.M. 2014. Adventures in STEM: Lessons in water chemistry from elementary school to graduate school. Abstract ED13E-07 presented at 2014 Fall Meeting, AGU, San Francisco, Calif., 15-19 Dec. Dittrich, T.M. 2012. Collaboration between environmental water chemistry students and hazardous waste treatment specialists on the University of Colorado-Boulder campus. Abstract ED53C

  14. Space Shuttle mission extension capability

    NASA Technical Reports Server (NTRS)

    Fraser, W. M., Jr.

    1984-01-01

    Space Shuttle missions are currently limited to 11 days, primarily due to depletion of the power reactants (hydrogen and oxygen). A power system Mission Extension Kit (MEK) is described which could provide the capability to stay on orbit 10 additional days. These extra days would benefit Space Station construction and missions such as materials processing, earth and celestial observation, and life science studies (Spacelab). Other constraints to longer missions which may dictate minor Orbiter modifications will be discussed. The power system MEK is particularly desirable because of its existing flight qualified hardware which can be delivered within 3 to 4 years.

  15. STS-88 Mission Specialist Ross prepares to enter Endeavour

    NASA Technical Reports Server (NTRS)

    1998-01-01

    STS-88 Mission Specialist Jerry L. Ross is assisted with his ascent and re-entry flight suit in the white room at Launch Pad 39A before entering Space Shuttle Endeavour for launch. During the nearly 12-day mission, the six-member crew will mate the first two elements of the International Space Station -- the already-orbiting Zarya control module with the Unity connecting module carried by Endeavour. He is making his sixth spaceflight and is one of two extravehicular activity crew members on this mission.

  16. Screen media time usage of 12-16 year-old Spanish school adolescents: Effects of personal and socioeconomic factors, season and type of day.

    PubMed

    Devís-Devís, José; Peiró-Velert, Carmen; Beltrán-Carrillo, Vicente J; Tomás, José Manuel

    2009-04-01

    This study examined screen media time usage (SMTU) and its association with personal and socioeconomic factors, as well as the effect of season and type of day, in a Spanish sample of 12-16 year-old school adolescents (N=323). The research design was a cross-sectional survey, in which an interviewer-administered recall questionnaire was used. Statistical analyses included repeated measures analyses of variance, analysis of covariance and structural equation models. Results showed an average of 2.52h per day of total SMTU and partial times of 1.73h per day in TV viewing, 0.27h per day in computer/videogames, and 0.52h per day in mobile use. Four significant predictors of SMTU emerged. Firstly, the type of school was associated with the three media of our study, particularly students from state/public school spent more time on them than their private schools counterparts. Secondly, older adolescents (14-16 years old) were more likely to use computer/videogame and mobile phone than younger adolescents. Thirdly, the more accessibility to household technology the more probable computer/videogames and mobile phone were used. Finally, boys spent significantly more time in mobile phone than girls. Additionally, results revealed that adolescents seemed to consume more TV and computer/videogames in autumn than in winter, and more TV and mobile phones on weekends than on weekdays, especially among state school students. Findings from this study contribute to the existing knowledge on adolescents' SMTU patterns that can be transferred to families and policies.

  17. Mariner Missions

    NASA Astrophysics Data System (ADS)

    Snyder, C.; Murdin, P.

    2000-11-01

    Mariner was the name given to the earliest set of American space missions to explore the planets and to the spacecraft developed to carry them out. The missions were planned and executed by the JET PROPULSION LABORATORY (JPL) of the California Institute of Technology, which had been designated by the National Aeronautics and Space Administration (NASA) as its lead center for planetary missions....

  18. Effect of a 12-Week Summer Break on School Day Physical Activity and Health-Related Fitness in Low-Income Children from CSPAP Schools

    PubMed Central

    2017-01-01

    Background. The purpose of this study was to examine the effect of a 12-week summer break on school day physical activity and health-related fitness (HRF) in children from schools receiving a Comprehensive School Physical Activity Program (CSPAP). Methods. Participants were school-aged children (N = 1,232; 624 girls and 608 boys; mean age = 9.5 ± 1.8 years) recruited from three low-income schools receiving a CSPAP. Physical activity and HRF levels were collected during the end of spring semester 2015 and again during the beginning of fall semester 2015. Physical activity was assessed using the Yamax DigiWalker CW600 pedometer. HRF measures consisted of body mass index (BMI) and the Progressive Aerobic Cardiovascular Endurance Run (PACER). Results. Results from a doubly MANCOVA analysis indicated that pedometer step counts decreased from 4,929 steps in the spring to 4,445 steps in the fall (mean difference = 484 steps; P < 0.001; Cohen's d = 0.30) and PACER laps decreased from 31.2 laps in the spring to 25.8 laps in the fall (mean difference = 5.4 laps; P < 0.001; Cohen's d = 0.33). Conclusions. Children from schools receiving a CSPAP intervention had lower levels of school day physical activity and cardiorespiratory endurance following a 12-week summer break. PMID:28377791

  19. Effect of a 12-Week Summer Break on School Day Physical Activity and Health-Related Fitness in Low-Income Children from CSPAP Schools.

    PubMed

    Fu, You; Brusseau, Timothy A; Hannon, James C; Burns, Ryan D

    2017-01-01

    Background. The purpose of this study was to examine the effect of a 12-week summer break on school day physical activity and health-related fitness (HRF) in children from schools receiving a Comprehensive School Physical Activity Program (CSPAP). Methods. Participants were school-aged children (N = 1,232; 624 girls and 608 boys; mean age = 9.5 ± 1.8 years) recruited from three low-income schools receiving a CSPAP. Physical activity and HRF levels were collected during the end of spring semester 2015 and again during the beginning of fall semester 2015. Physical activity was assessed using the Yamax DigiWalker CW600 pedometer. HRF measures consisted of body mass index (BMI) and the Progressive Aerobic Cardiovascular Endurance Run (PACER). Results. Results from a doubly MANCOVA analysis indicated that pedometer step counts decreased from 4,929 steps in the spring to 4,445 steps in the fall (mean difference = 484 steps; P < 0.001; Cohen's d = 0.30) and PACER laps decreased from 31.2 laps in the spring to 25.8 laps in the fall (mean difference = 5.4 laps; P < 0.001; Cohen's d = 0.33). Conclusions. Children from schools receiving a CSPAP intervention had lower levels of school day physical activity and cardiorespiratory endurance following a 12-week summer break.

  20. A 12-month clinical investigation with a 24-day regimen containing 15 microg ethinylestradiol plus 60 microg gestodene with respect to hemostasis and cycle control.

    PubMed

    Fruzzetti, F; Genazzani, A R; Ricci, C; De Negri, F; Bersi, C; Carmassi, F

    2001-06-01

    The effects of a 24-day regimen containing 15 microg ethinyl estradiol (EE) plus 60 microg gestodene on cycle control and on hemostasis, were evaluated in 58 healthy women (age 19-47 years). All women received the pill for 12 months. Withdrawal bleeding at every cycle during the tablet-free interval was experienced by 84.5% of the women. The overall incidence of irregular bleedings was 19.3%. Hemostasis was evaluated in 20 women. No changes in plasma fibrinogen concentrations, nor in prothrombin fragment F1+2 were observed. A slight increase in thrombin-antithrombin III complexes was observed after 6 and 12 months of oral contraceptive use. Antithrombin III activity significantly increased after one-year of pill intake. The concentrations of tissue plasminogen activator and plasminogen activator inhibitor, both antigen and activity, did not change. These results show that very low doses of EE, such as 15 microg, do not impair hemostasis in healthy females. However, the reduction for the EE dose is responsible of some of the effects on cycle control.

  1. A phase I study of 1,2-diamminomethyl-cyclobutane-platinum (II)-lactate (D-19466; lobaplatin) administered daily for 5 days.

    PubMed Central

    Gietema, J. A.; de Vries, E. G.; Sleijfer, D. T.; Willemse, P. H.; Guchelaar, H. J.; Uges, D. R.; Aulenbacher, P.; Voegeli, R.; Mulder, N. H.

    1993-01-01

    A phase I trial was conducted with lobaplatin (D-19466; 1,2-diamminomethyl-cyclobutane-platinum (II)-lactate) i.v. bolus daily for 5 days every 4 weeks. After entering five patients toxicity appeared to be related to renal function, therefore the individual dose (total dose 20-100 mg m-2 over 5 days) of lobaplatin was modified according to creatinine clearance (CRCL) and escalated in patients. Twenty-seven patients with refractory solid tumours received 72 courses. Thrombocytopenia was dose-limiting, its degree was related to dose and CRCL at time of drug administration. With a CRCL of 60-80 ml min-1 the maximum tolerated dose was 40 mg m-2, with a CRCL of 81-100 ml min-1 70 mg m-2, and with a CRCL > 100 ml min-1 it was 85 mg m-2. Platelet and leukocyte nadirs were observed around day 21. The percentual platelet nadir (percentage of day 1 platelet count) correlated with CRCL at different dose levels and could be described by 0.76 x CRCL (ml min-1) - (1.45 x dose (mg m-2) + 43.38. This equation tested in 20 patients (28 courses) produced a correlation between observed and predicted percentual platelet nadir (r = 0.82, P < 0.001). No renal function impairment occurred. Urinary excretion of platinum (by A.A.S) was estimated in six patients and revealed that 91.5% (s.e. +/- 7.9) of the platinum dose was excreted within 4 h. Responses (one PR, one CR) occurred in two patients with ovarian cancer (both pretreated with carboplatin and cisplatin). The recommended dose of lobaplatin i.v. bolus daily for 5 days for phase II studies depends on renal function, namely 30 mg m-2 at CRCL 60-80 ml min-1; 55 mg m-2 at CRCL 81-100 ml min-1; 70 mg m-2 at CRCL > 100 ml min-1. PMID:8431374

  2. [Population characteristics of mucous tissue basocytes in the Mongolian gerbil's jejunum following the 12-day orbital flight onboard space platform "Foton-M3"].

    PubMed

    Atyakshin, D A; Bykov, E G

    2013-01-01

    Optical (light) microscopy and histochemical techniques were used for the first-ever studies of the population characteristics of tissue basocytes in the jejunum mucous membrane in three groups of gerbils Meriones unguiculatus: flown over 12 days aboard space platform Foton-M3, subjected to spaceflight factors simulation (SFS) in dedicated system Kontur-L (2) and maintained in standard vivarium conditions (control). Space flight was shown to induce quantitative and qualitative changes in the population of jejunum mucus labrocytes. Reduction of the basocytes population, alterations in age composition and ratio of the morphofunctional cell types in microgravity were indicative of cytoplasmic aggregation intensity, paths of biosynthesis products release into the intersticium, and their tinctorial properties. Also, heparin maturation and liberalization into the extracellular space in support of the jejunum mucus adaptive functions progressed with greater intensity. SFS did not affect size of the basocytes population significantly although it did cause qualitative rearrangements in the population structure.

  3. The Rosetta mission

    NASA Astrophysics Data System (ADS)

    Taylor, Matt; Altobelli, Nicolas; Martin, Patrick; Buratti, Bonnie J.; Choukroun, Mathieu

    2016-10-01

    The Rosetta Mission is the third cornerstone mission the ESA programme Horizon 2000. The aim of the mission is to map the comet 67-P/Churyumov-Gerasimenko by remote sensing, to examine its environment insitu and its evolution in the inner solar system. The lander Philae is the first device to land on a comet and perform in-situ science on the surface. Following its launch in March 2004, Rosetta underwent 3 Earth and 1 Mars flybys to achieve the correct trajectory to capture the comet, including flybys of asteroid on 2867 Steins and 21 Lutetia. For June 2011- January 2014 the spacecraft passed through a period of hibernation, due to lack of available power for full payload operation and following successful instrument commissioning, successfully rendezvoused with the comet in August 2014. Following an intense period of mapping and characterisation, a landing site for Philae was selected and on 12 November 2014, Philae was successfully deployed. Rosetta then embarked on the main phase of the mission, observing the comet on its way into and away from perihelion in August 2015. At the time of writing the mission is planned to terminate with the Rosetta orbiter impacting the comet surface on 30 September 2016. This presentation will provide a brief overview of the mission and its science. The first author is honoured to give this talk on behalf of all Rosetta mission science, instrument and operations teams, for it is they who have worked tirelessly to make this mission the success it is.

  4. Cassini Mission

    SciTech Connect

    Mitchell, Robert

    2005-08-10

    The Cassini/Huygens mission is a joint NASA/European Space Agency/Italian Space Agency project which has a spacecraft currently in orbit about Saturn, and has successfully sent an atmospheric probe through the atmosphere of Saturn's largest moon Titan and down to its previously hidden surface. This presentation will describe the overall mission, how it got a rather massive spacecraft to Saturn, and will cover some of the scientific results of the mission to date.

  5. Measuring and modelling the intra-day variability of the 13CO2 & 12CO2 vertical soil profile production in a Scots pine forest

    NASA Astrophysics Data System (ADS)

    Longdoz, Bernard; Goffin, Stéphanie; Parent, Florian; Plain, Caroline; Epron, Daniel; Wylock, Christophe; Haut, Benoit; Aubinet, Marc; Maier, Martin

    2015-04-01

    Vertical profile of CO2 production (Ps) and transport, as well as their isotopic discrimination (13CO2/12CO2) should be considered to improve the soil CO2 efflux (Fs) mechanistic understanding and especially its short-term temporal variations. In this context, we propose a new methodology able to measure continuously and simultaneously Fs, the vertical soil CO2 concentration ([CO2]) profile and their respective isotopic signature (δFs and δCO2) [1]. The Ps of the different soil layers and their isotopic signature (δPs) can then be determined from these measurements by an approach considering diffusion as the only gas transport. A field campaign was conducted with this device at the Scots Pine Hartheim forest (Germany). The results [2] show (i) a Ps dependence on local temperature specific for each layer, (ii) an enrichment of δPs with soil drought, (iii) Fs and [CO2] large intra-day fluctuations non explained by the soil temperature and moisture. These fluctuations can be generated by other processes creating Ps and/or transport variability. To investigate about the nature of these processes, some sensitivity analyses have been performed with a soil CO2 model simulating both production and transport. The impacts of the introduction of advection, dispersion and phloem pressure concentration wave (through dependence of Ps on vapour pressure deficit) on intra-day Fs and [CO2] variations have been quantified. We conclude that these variations are significantly better represented when the phloem pressure wave expression is included in the simulations. The study of the processes related to CO2 production seems to be a better option than an investigation about transport to explain the intra-day Fs variability.

  6. STS-111 Mission Insignia

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Pictured here is the Space Shuttle Orbiter Endeavour, STS-111 mission insignia. The International Space Station (ISS) recieved a new crew, Expedition Five, replacing Expedition Four after a record-setting 196 days in space, when STS-111 visited in June 2002. Three spacewalks enabled the STS-111 crew to accomplish additional mission objectives: the delivery and installation of a new platform for the ISS robotic arm, the Mobile Base System (MBS) which is an important part of the Station's Mobile Servicing System allowing the robotic arm to travel the length of the Station; the replacement of a wrist roll joint on the Station's robotic arm; and unloading supplies and science experiments from the Leonardo Multi-Purpose Logistics Module, which made its third trip to the orbital outpost. The STS-111 mission, the 14th Shuttle mission to visit the ISS, was launched on June 5, 2002 and landed June 19, 2002.

  7. IMP mission

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The program requirements and operations requirements for the IMP mission are presented. The satellite configuration is described and the missions are analyzed. The support equipment, logistics, range facilities, and responsibilities of the launching organizations are defined. The systems for telemetry, communications, satellite tracking, and satellite control are identified.

  8. Life sciences experiments mission development test program

    NASA Technical Reports Server (NTRS)

    Bush, W. H., Jr.; White, R. C.

    1978-01-01

    The development, goals, and experimental programs of the three Spacelab Mission Developmental tests are described. The tests were structured as a total simulation of a dedicated mission commencing with experiment solicitation; continuing with experiment development, integration, and mission planning; and ending with the actual conduct of a seven-day 24-hour per day mission in mockup facilities. Topics such as test payload management; payload integration, training, and testing; test operations and program facilities are discussed.

  9. Pioneer 12 (PN-12)

    NASA Technical Reports Server (NTRS)

    Lozier, D.; Fimmel, R.

    1991-01-01

    The DSN (Deep Space Network) mission support requirements for Pioneer 12 are summarized. The Pioneer 12 spacecraft is in a 24-hour elliptical orbit around Venus. Atmospheric and altimetry data are obtained mainly around periapsis, and planetary imaging is normally performed around apoapsis. The Pioneer 12 mission objectives are outlined and the DSN support requirements are defined through the presentation of tables and narratives describing the spacecraft flight profile; DSN support coverage; frequency assignments; support parameters for telemetry, command and support systems; and tracking support responsibility.

  10. Geospace Missions

    NASA Technical Reports Server (NTRS)

    Spann, James

    2005-01-01

    Geospace Missions - Understanding and being able to predict the behavior of the Earth's near space environment, called Geospace, is important for several reasons. These include the fact that most of the space-based commercial, military, and space research assets are exposed to this environment and that investigating fundamental plasma processes at work through out the solar system can most readily be accomplished in Geospace, the only place we can access the processes. NASA missions that are directed toward understanding, characterizing, and predicting the Geospace environment are described in this presentation. Emphasis is placed on those missions that investigate those phenomena that most affect life and society. The significance of investigating ionospheric irregularities, the radiation belt dynamics with the LWS Geospace Mission will be discussed.

  11. Mission scheduling

    NASA Technical Reports Server (NTRS)

    Gaspin, Christine

    1989-01-01

    How a neural network can work, compared to a hybrid system based on an operations research and artificial intelligence approach, is investigated through a mission scheduling problem. The characteristic features of each system are discussed.

  12. NEAR Shoemaker spacecraft mission operations

    NASA Astrophysics Data System (ADS)

    Holdridge, Mark E.

    2002-01-01

    On 12 February 2001, Near Earth Asteroid Rendezvous (NEAR) Shoemaker became the first spacecraft to land on a small body, 433 Eros. Prior to that historic event, NEAR was the first-ever orbital mission about an asteroid. The mission presented general challenges associated with other planetary space missions as well as challenges unique to an inaugural mission around a small body. The NEAR team performed this operations feat with processes and tools developed during the 4-year-long cruise to Eros. Adding to the success of this historic mission was the cooperation among the NEAR science, navigation, guidance and control, mission design, and software teams. With clearly defined team roles, overlaps in responsibilities were minimized, as were the associated costs. This article discusses the processes and systems developed at APL that enabled the success of NEAR mission operations.

  13. STS-99 Mission Specialist Kavandi arrives for launch

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-99 Mission Specialist Janet Lynn Kavandi (Ph.D.) looks surprised and happy after landing at KSC aboard a T-38 jet aircraft to prepare for launch of Endeavour Jan. 31 at 12:47 p.m. EST. Over the next few days, the crew will review mission procedures, conduct test flights in the Shuttle Training Aircraft and undergo routine preflight medical exams. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station- derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety.

  14. STS-99 Mission Specialist Voss arrives for launch

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-99 Mission Specialist Janice Voss (Ph.D.) looks happy after landing at KSC aboard a T-38 jet aircraft to prepare for launch of Endeavour Jan. 31 at 12:47 p.m. EST. Over the next few days, the crew will review mission procedures, conduct test flights in the Shuttle Training Aircraft and undergo routine preflight medical exams. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot- long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety.

  15. STS-99 Mission Specialist Thiele arrives for launch

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-99 Mission Specialist Gerhard P.J. Thiele (Ph.D.), with the European Space Agency, arrives at KSC aboard a T-38 jet aircraft to prepare for launch of Endeavour Jan. 31 at 12:47 p.m. EST. Over the next few days, the crew will review mission procedures, conduct test flights in the Shuttle Training Aircraft and undergo routine preflight medical exams. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety.

  16. Flight Day 2 Highlights

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The STS-107 second flight day begins with a shot of the Spacehab Research Double Module. Live presentations of experiments underway inside of the Spacehab Module are presented. Six experiments are shown. As part of the Space Technology and Research Student Payload, students from Australia, China, Israel, Japan, New York, and Liechtenstein are studying the effect that microgravity has on ants, spiders, silkworms, fish, bees, granular materials, and crystals. Mission Specialist Kalpana Chawla is seen working with the zeolite crystal growth experiment.

  17. Accompanied by the Shuttle Training Aircraft, Discovery touches down after successful mission STS-95

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Shuttle Training Aircraft (top) seems to chase orbiter Discovery as it touches down at the Shuttle Landing Facility after a successful mission of nearly nine days and 3.6 million miles. Main gear touchdown was at 12:04 p.m. EST, landing on orbit 135. In the background, right, is the Vehicle Assembly Building. The STS-95 crew consists of Mission Commander Curtis L. Brown Jr.; Pilot Steven W. Lindsey; Mission Specialist Scott E. Parazynski; Mission Specialist Stephen K. Robinson; Payload Specialist John H. Glenn Jr., senator from Ohio; Mission Specialist Pedro Duque, with the European Space Agency (ESA); and Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA). The mission included research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.

  18. Tracking and data system support for the Mariner Mars 1971 mission. Volume 3: Orbit insertion through end of primary mission

    NASA Technical Reports Server (NTRS)

    Barnum, P. W.; Renzetti, N. A.; Textor, G. P.; Kelly, L. B.

    1973-01-01

    The Tracking and Data System (TDS) Support for the Mariner Mars 1971 Mission final report contains the deep space tracking and data acquisition activities in support of orbital operations. During this period a major NASA objective was accomplished: completion of the 180th revolution and 90th day of data gathering with the spacecraft about the planet Mars. Included are presentations of the TDS flight support pass chronology data for each of the Deep Space Stations used, and performance evaluation for the Deep Space Network Telemetry, Tracking, Command, and Monitor Systems. With the loss of Mariner 8 at launch, Mariner 9 assumed the mission plan of Mariner 8, which included the TV mapping cycles and a 12-hr orbital period. The mission plan was modified as a result of a severe dust storm on the surface of Mars, which delayed the start of the TV mapping cycles. Thus, the end of primary mission date was extended to complete the TV mapping cycles.

  19. Dinosaur Day!

    ERIC Educational Resources Information Center

    Nakamura, Sandra; Baptiste, H. Prentice

    2006-01-01

    In this article, the authors describe how they capitalized on their first-grade students' love of dinosaurs by hosting a fun-filled Dinosaur Day in their classroom. On Dinosaur Day, students rotated through four dinosaur-related learning stations that integrated science content with art, language arts, math, and history in a fun and time-efficient…

  20. CEMI Days

    SciTech Connect

    2015-07-01

    CEMI Days are an important channel of engagement between DOE and the manufacturing industry to identify challenges and opportunities for increasing U.S. manufacturing competitiveness. CEMI Days that are held at manufacturing companies’ facilities can include tours of R&D operations or other points of interest determined by the host company.

  1. STS-74 flight day 1

    NASA Astrophysics Data System (ADS)

    1995-11-01

    On this first day of the STS-74 mission, the flight crew, Cmdr. Kenneth Cameron, Pilot James Halsell, and Mission Specialists William McArthur, Jerry Ross, and Chris Hatfield, are shown in prelaunch and launch activities. This mission is the second of seven Mir-Space Shuttle hook-ups. Major objectives of this mission are to include a docking between Mir and the Space Shuttle and the transfer of a Russian docking module, water, supplies, and two solar arrays to the Mir space station. This mission highlights the first time that astronauts from Canada, Russia, the U.S. and the European Space Agency (ESA) will be onboard a single spacecraft in space at the same time. Additional experimental payloads onboard the shuttle are the GLO-4 PASDE Payload (GPP) experiment and the Photogrammetric Appendage Structural Dynamics Experiment (PASDE).

  2. STS-90 Day 09 Highlights

    NASA Technical Reports Server (NTRS)

    1998-01-01

    On this ninth day of the STS-90 mission, the sleep period of the flight crew, Cmdr. Richard A. Searfoss, Pilot Scott D. Altman, and Mission Specialists Richard M. Linnehan, Dafydd Rhys Williams and Kathryn P. Hire, and Payload Specialists Jay C. Buckey and James A. Pawelczyk, is interrupted due to problems with equipment that removes carbon dioxide from the cabin atmosphere. Because of this, Columbia's crew went to bed about two hours later than scheduled.

  3. Career Day

    NASA Video Gallery

    NASA's 2013 Career Days was a joint collaboration between NASA Langley and the Newport News Shipbuilding where 600 high school students from Virginia took on two design challenges -- designing a ca...

  4. Autonomous mission operations

    NASA Astrophysics Data System (ADS)

    Frank, J.; Spirkovska, L.; McCann, R.; Wang, Lui; Pohlkamp, K.; Morin, L.

    NASA's Advanced Exploration Systems Autonomous Mission Operations (AMO) project conducted an empirical investigation of the impact of time delay on today's mission operations, and of the effect of processes and mission support tools designed to mitigate time-delay related impacts. Mission operation scenarios were designed for NASA's Deep Space Habitat (DSH), an analog spacecraft habitat, covering a range of activities including nominal objectives, DSH system failures, and crew medical emergencies. The scenarios were simulated at time delay values representative of Lunar (1.2-5 sec), Near Earth Object (NEO) (50 sec) and Mars (300 sec) missions. Each combination of operational scenario and time delay was tested in a Baseline configuration, designed to reflect present-day operations of the International Space Station, and a Mitigation configuration in which a variety of software tools, information displays, and crew-ground communications protocols were employed to assist both crews and Flight Control Team (FCT) members with the long-delay conditions. Preliminary findings indicate: 1) Workload of both crewmembers and FCT members generally increased along with increasing time delay. 2) Advanced procedure execution viewers, caution and warning tools, and communications protocols such as text messaging decreased the workload of both flight controllers and crew, and decreased the difficulty of coordinating activities. 3) Whereas crew workload ratings increased between 50 sec and 300 sec of time delay in the Baseline configuration, workload ratings decreased (or remained flat) in the Mitigation configuration.

  5. STS-95 Day 02 Highlights

    NASA Technical Reports Server (NTRS)

    1998-01-01

    On this second day of the STS-95 mission, the flight crew, Cmdr. Curtis L. Brown, Pilot Steven W. Lindsey, Mission Specialists Scott E. Parazynski, Stephen K. Robinson, and Pedro Duque, and Payload Specialists Chiaki Mukai and John H. Glenn, are seen preparing a glovebox device in the middeck area of Discovery, an enclosed research facility that will support numerous science investigations throughout the mission. Payload Specialist John Glenn, activates the Microgravity Encapsulation Process experiment (MEPS). This experiment will study the formation of capsules containing two kinds of anti-tumor drugs that could be delivered directly to solid tumors with applications for future chemotherapy treatments and the pharmaceutical industry.

  6. STS-91 Day 03 Highlights

    NASA Technical Reports Server (NTRS)

    1998-01-01

    On this third day of the STS-91 mission, the flight crew, Cmdr. Charles J. Precourt, Pilot Dominic L. Pudwill Gorie and Mission Specialists Wendy B. Lawrence, Franklin R. Chang-Diaz, Janet L. Kavandi, and Valery Victorovitch Ryumin prepare for docking with the Mir Space Station and a reunion with U.S. Astronaut Andy Thomas, who is about to conclude his more-than-four-month mission to the Russian outpost. After the docking the two crews open the entry hatch and greet each other. The astronauts and cosmonauts transfer supplies from the shuttle to Mir.

  7. Ulysses, the end of an extraordinary mission

    NASA Astrophysics Data System (ADS)

    2008-06-01

    Ulysses, a pioneering ESA/NASA mission, was launched in October 1990 to explore uncharted territories - the regions above and below the Sun’s poles - and study our star’s sphere of influence, or heliosphere, in the four dimensions of space and time. Originally designed for a lifetime of five years, the mission has surpassed all expectations. The reams of data Ulysses has returned have forever changed the way scientists view the Sun and its effect on the space surrounding it. Media representatives interested in attending the press conference are invited to register using the attached form. Those not able to attend will have the opportunity to follow the press conference using the following phone number: +33 1 56785733 (listening-mode only). The programme of the event is as follows: The Ulysses Legacy Press Conference 12 June 2008, 15:30, Room 137, ESA Headquarters, 8-10 rue Mario-Nikis, Paris Event programme 15:30 Welcome, by David Southwood, ESA Director of Science and Robotic Exploration (with a joint ESA/NASA statement) 15:40 Ulysses: a modern-day Odyssey, by Richard Marsden, ESA Ulysses Project Scientist and Mission Manager 15:50 The Ulysses scientific legacy: Inside the heliosphere, by Richard Marsden,ESA Ulysses Project Scientist and Mission Manager 16:00 The Ulysses scientific legacy: Outside the heliosphere, by Ed Smith, NASA Ulysses Project Scientist 16:10 Ulysses, the over-achiever: challenges and successes of a 17-year-old mission, by Nigel Angold, ESA Ulysses Mission Operations Manager 16:20 Questions and Answers, Panelists: David Southwood, Richard Marsden, Ed Smith, Nigel Angold and Ed Massey (NASA Ulysses Project Manager) 16:40 Interview opportunities 17:30 End of event

  8. STS-99 Flight Day 04 Highlights and Crew Activities Report

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The primary objective of the STS-99 mission was to complete high resolution mapping of large sections of the Earth's surface using the Shuttle Radar Topography Mission (SRTM), a specially modified radar system. This radar system produced unrivaled 3-D images of the Earth's Surface. The mission was launched at 12:31 on February 11, 2000 onboard the space shuttle Endeavour. and led by Commander Kevin Kregel. The crew was Pilot Dominic L. Pudwill Gorie and Mission Specialists Janet L. Kavandi, Janice E. Voss, Mamoru Mohri from the National Space Development Agency (Japanese Space Agency), and Gerhard P. J. Thiele from DARA (German Space Agency).On the fourth day of the mission the blue team's Dominic Gorie led off the day's tape with a brief memorial to Charles Schultz, as he spoke of some of the vessels that were named for characters in Peanuts, and called to mind the Silver Snoopy, one of the highest awards NASA bestows. Janice Voss answered a couple of questions sent over the internet about a problem with a small thruster on the end of the 200 foot long mast. Mamoru Mohri talks about the EarthKam. Gerhard Thiele and Janet Kavandi describe the process of achieving the digital map of the entire world. At the end of the videotape some of the recently released views from the SRTM are shown. These include shots of the South Island of New Zealand.

  9. 2016 SPD: Day 1

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-06-01

    Editors note: This week were in Boulder, Colorado at the 47th meeting of the AAS Solar Physics Division (SPD). Follow along to catch some of the latest news from the field of solar physics!The 2016 SPD meeting was launched this morning from the University of Colorado Boulder campus. Two of the hot topics at this years meeting include celebration of the recent move of the National Solar Observatorys headquarters to Boulder, and discussion of the future Daniel K. Inouye Solar Telescope (DKIST, formerly the Advanced Technology Solar Telescope, ATST). DKIST, planned for a 2019 completion in Hawaii, is the next big telescope on the horizon for solar physics.Todays press conference had an interesting focus: instruments providing new high-energy observations of the Sun. Representatives from four different instruments were here to talk about some of the latest X-ray solar observations.GRIPSThe GRIPS payload flew at 130,000 ft over Antarctica on a giant balloon in January 2016. [NASA/Albert Shih]First up, Albert Shih (NASA Goddard) described the Gamma-Ray Imager/Polarimeter for Solar flares, or GRIPS. GRIPS is a balloon-borne instrument designed to detect X-rays and gamma rays emitted during solar flares. Up to tens of a percent of the energy in solar flares is emitted in the form of accelerated particles, but the physics behind this process is not well understood. GRIPS observes where the highest-energy particles are accelerated, in an effort to learn more about the process.GRIPS was launched on 19 January, 2016 and flew for roughly 12 days gathering ~1 million seconds of data! The logistics of this instruments flight are especially interesting, since it was launched from Antarctica and carried by a balloon at a whopping elevation of 130,000 ft (to get high enough that the atmosphere doesnt absorb all the photons GRIPS is trying to observe). Though the data from the mission has been retrieved, the bulk of the hardware remains where it landed at the end of January. It must

  10. Heat Capacity Mapping Mission

    NASA Technical Reports Server (NTRS)

    Nilsson, C. S.; Andrews, J. C.; Scully-Power, P.; Ball, S.; Speechley, G.; Latham, A. R. (Principal Investigator)

    1980-01-01

    The Tasman Front was delineated by airborne expendable bathythermograph survey; and an Heat Capacity Mapping Mission (HCMM) IR image on the same day shows the same principal features as determined from ground-truth. It is clear that digital enhancement of HCMM images is necessary to map ocean surface temperatures and when done, the Tasman Front and other oceanographic features can be mapped by this method, even through considerable scattered cloud cover.

  11. The Mission Accessibility of Near-Earth Asteroids

    NASA Technical Reports Server (NTRS)

    Barbee, Brent W.; Abell, Paul A.; Adamo, Daniel R.; Mazanek, Daniel D.; Johnson, Lindley N.; Yeomans, Donald K.; Chodas, Paul W.; Chamberlin, Alan B.; Benner, Lance A. M.; Taylor, Patrick; Friedensen, Victoria P.

    2015-01-01

    Astrodynamical Earth departure dates; mission v; mission duration; stay time; etc. Physical I NEO size(?); rotation rate; dust satellites environment; chemistry; etc. Architectural Launch vehicle(s); crew vehicle(s); habitat module(s); budget; etc. Operational Operations experience; abort options profiles; etc. Astrodynamical Accessibility is the starting point for understanding the options and opportunities available to us. Here we shall focus on. Astrodynamical Accessibility.2 Earth departure date between 2015-01-01 and 2040-12-31 Earth departure C3 60 km2s2. Total mission v 12 kms. The total v includes (1) the Earth departure maneuver from a 400 km altitude circular parking orbit, (2) the maneuver to match the NEAs velocity at arrival, (3) the maneuver to depart the NEA and, (4) if necessary, a maneuver to control the atmospheric re-entry speed during Earth return. Total round trip mission duration 450 days. Stay time at the NEA 8 days Earth atmospheric entry speed 12 kms at an altitude of 125 km. A near-Earth asteroid (NEA) that offers at least one trajectory solution meeting those criteria is classified as NHATS-compliant.

  12. Rosetta Mission Status update

    NASA Astrophysics Data System (ADS)

    Taylor, Matthew

    2015-04-01

    The Rosetta Mission is the third cornerstone mission the ESA programme Horizon 2000. The aim of the mission is to map the comet 67-P/Churyumov-Gerasimenko by remote sensing, to ex-amine its environment insitu and its evolution in the inner solar system. The lander Philae is the first device to land on a comet and perform in-situ science on the surface. Nearly 10 years after launch in 2004, on 20th January 2014 at 10:00 UTC the spacecraft woke up from hibernation. Following successful instrument commissioning, Rosetta successfully rendezvoused with the comet. Following an intense period of map-ping and characterisation, a landing site for Philae was selected and on 12 November 2014, Philae was suc-cessfully deployed. This presentation will provide a brief overview of the mission up to date and where we stand in main science phase, which began with Philae's separation. It will also provide a look forward. IT is given on behalf of ALL Rosetta mission science, in-strument and operations teams.

  13. The DUNE Mission

    NASA Astrophysics Data System (ADS)

    Castander, F. J.

    The Dark UNiverse Explorer (DUNE) is a wide-field imaging mission concept whose primary goal is the study of dark energy and dark matter with unprecedented precision. To this end, DUNE is optimised for weak gravitational lensing, and also uses complementary cosmological probes, such as baryonic oscillations, the integrated Sachs-Wolf effect, and cluster counts. Besides its observational cosmology goals, the mission capabilities of DUNE allow the study of galaxy evolution, galactic structure and the demographics of Earth-mass planets. DUNE is a medium class mission consisting of a 1.2m telescope designed to carry out an all-sky survey in one visible and three NIR bands. The final data of the DUNE mission will form a unique legacy for the astronomy community. DUNE has been selected jointly with SPACE for an ESA Assessment phase which has led to the Euclid merged mission concept which combines wide-field deep imaging with low resolution multi-object spectroscopy.

  14. Enabling the human mission

    NASA Astrophysics Data System (ADS)

    Bosley, John

    The duplication of earth conditions aboard a spacecraft or planetary surface habitat requires 60 lb/day/person of food, potable and hygiene water, and oxygen. A 1000-day mission to Mars would therefore require 30 tons of such supplies per crew member in the absence of a closed-cycle, or regenerative, life-support system. An account is given of the development status of regenerative life-support systems, as well as of the requisite radiation protection and EVA systems, the health-maintenance and medical care facilities, zero-gravity deconditioning measures, and planetary surface conditions protection.

  15. Capitol Day

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Stennis Space Center Director Gene Goldman visits with Mississippi Gov. Haley Barbour during NASA Day at the Capitol activities on Feb. 19. During the visit, Goldman presented the governor with a model of the J-2X rocket engine currently in development. Stennis engineers did early component testing for the new engine.

  16. Inspire Day

    ERIC Educational Resources Information Center

    Bohach, Barbara M.; Meade, Birgitta

    2014-01-01

    The authors collaborated on hosting a "Spring Inspire Day." planned and delivered by preservice elementary teachers as a social studies/science methods project. Projects that have authentic application opportunities can make learning meaningful for prospective teachers as well as elementary students. With the impetus for an integrated…

  17. SEQUOIA mission

    NASA Astrophysics Data System (ADS)

    Welsh, Barry Y.; Carone, Timothy; Siegmund, Oswald H.; Jelinsky, Patrick N.; Polidan, Ronald S.

    1995-06-01

    We describe a mission concept for the SEQUOIA instrument, which would carry out the first wide-field, far ultraviolet, photometric all-sky survey. SEQUOIA will image the astronomical sky in the 912-1050 angstrom spectral region to a limiting magnitude of 19.5(superscript m) over a one degree field of view with a spatial resolution of less than 30 arc seconds. This mission was proposed to the USRA STEDI program in late 1994, and has been designed as a low cost, fast-track program for launch within 3 years. The spacecraft bus is being provided by Orbital Sciences Corporation (Dulles) and since the entire payload weighs less than 100kg, it can be launched using either a Minuteman or Pegasus rocket.

  18. Sun-Earth Days

    NASA Astrophysics Data System (ADS)

    Thieman, J.; Ng, C.; Lewis, E.; Cline, T.

    2010-08-01

    Sun-Earth Day is a well-coordinated series of programs, resources and events under a unique yearly theme highlighting the fundamentals of heliophysics research and missions. A menu of activities, conducted throughout the year, inspire and educate participants. Sun-Earth Day itself can vary in date, but usually is identified by a celebration on or near the spring equinox. Through the Sun-Earth Day framework we have been able to offer a series of coordinated events that promote and highlight the Sun, its connection to Earth and the other planets. Sun-Earth Day events are hosted by educators, museums, amateur astronomers and scientists and occur at schools, community groups, parks, planetaria and science centers around the globe. Sun-Earth Day raises the awareness and knowledge of formal and informal education audiences concerning space weather and heliophysics. By building on the success of Sun-Earth Day yearly celebrations, we seek to affect people of all backgrounds and ages with the wonders of heliophysics science, discovery, and exploration in ways that are both tangible and meaningful to their lives.

  19. 34 CFR 300.11 - Day; business day; school day.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 34 Education 2 2012-07-01 2012-07-01 false Day; business day; school day. 300.11 Section 300.11... CHILDREN WITH DISABILITIES General Definitions Used in This Part § 300.11 Day; business day; school day. (a) Day means calendar day unless otherwise indicated as business day or school day. (b) Business...

  20. 34 CFR 300.11 - Day; business day; school day.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 34 Education 2 2011-07-01 2010-07-01 true Day; business day; school day. 300.11 Section 300.11... CHILDREN WITH DISABILITIES General Definitions Used in This Part § 300.11 Day; business day; school day. (a) Day means calendar day unless otherwise indicated as business day or school day. (b) Business...

  1. The Asteroid Redirect Mission (ARM)

    NASA Technical Reports Server (NTRS)

    Abell, P. A.; Mazanek, D. D.; Reeves, D. M.; Chodas, P. W.; Gates, M. M.; Johnson, L. N.; Ticker, R. L.

    2016-01-01

    To achieve its long-term goal of sending humans to Mars, the National Aeronautics and Space Administration (NASA) plans to proceed in a series of incrementally more complex human spaceflight missions. Today, human flight experience extends only to Low-Earth Orbit (LEO), and should problems arise during a mission, the crew can return to Earth in a matter of minutes to hours. The next logical step for human spaceflight is to gain flight experience in the vicinity of the Moon. These cis-lunar missions provide a "proving ground" for the testing of systems and operations while still accommodating an emergency return path to the Earth that would last only several days. Cis-lunar mission experience will be essential for more ambitious human missions beyond the Earth- Moon system, which will require weeks, months, or even years of transit time.

  2. Tracking and data system support for the Pioneer project. Pioneers 6-9, extended missions: 1 July 1972 - 1 July 1973, volume 12

    NASA Technical Reports Server (NTRS)

    Miller, R. B.

    1974-01-01

    The Tracking and Data System supported the deep space phases of the Pioneer 6, 7, 8, and 9 missions, with two spacecraft in an inward trajectory and two spacecraft in an outward trajectory from the earth in heliocentric orbits. During the period of this report, scientific instruments aboard each of the spacecraft continued to register information relative to interplanetary particles and fields, and radiometric data generated by the network continued to contribute to knowledge of the celestial mechanics of the solar system. In addition, to network support activity detail, network performance and special support activities are covered.

  3. Report of the Two-Day National Seminar on New Directions in Higher Education, Organized by the Kerala State Higher Education Council on 12th and 13th July 2010

    ERIC Educational Resources Information Center

    Praveen, C.

    2010-01-01

    This is a report of the Two-Day National Seminar on New Directions in Higher Education, organized by the Kerala State Higher Education Council on 12th and 13th July 2010. The objective of the seminar was to deliberate upon the reforms being undertaken by the Government of India in Higher Education. Reputed scholars from within and outside the…

  4. Earth Day 1990: Lesson Plan and Home Survey--7-12. Energy, Solid Waste/Recycling, Toxics, Transportation, and Water with Fact Sheets and Action Guide.

    ERIC Educational Resources Information Center

    Holm-Shuett, Amy; Shuett, Greg

    The purpose of this 7-12 curriculum is to provide teachers and other educators with classroom lessons and home surveys that are a starting point for understanding five significant environmental issues - water, toxics, energy, transportation, and solid waste/recycling. While each of these environmental issues is complex and has far-reaching…

  5. STS-79 Flight Day 5

    NASA Technical Reports Server (NTRS)

    1996-01-01

    On this fifth day of the STS-79 mission, the flight crew, Cmdr. William F. Readdy, Pilot Terrence W. Wilcutt, Mission Specialists, Thomas D. Akers, Shannon Lucid, Jay Apt, and Carl E. Walz, in the first full day of joint Shuttle/Mir operations begin in with the transfer of a biotechnology investigation and logistical supplies from Atlantis to Mir. The Biotechnology System, an investigation that will study the long-term development of cartilage cells in microgravity, was transported to Mir early this morning. During his planned four-month stay on Mir, John Blaha will take weekly samples of the culture which may provide researchers with information on engineering cartilage cells for possible use in transplantation. They also took time out of their schedules to talk with Good Morning America's Elizabeth Vargas in a brief interview. Prior to beginning the day's transfer activities, all nine astronauts and cosmonauts participated in a joint planning session to outline the day's schedule.

  6. Effects of a 12-week aerobic exercise intervention on eating behaviour, food cravings, and 7-day energy intake and energy expenditure in inactive men.

    PubMed

    Rocha, Joel; Paxman, Jenny; Dalton, Caroline; Winter, Edward; Broom, David R

    2016-11-01

    This study examined effects of 12 weeks of moderate-intensity aerobic exercise on eating behaviour, food cravings, and weekly energy intake and expenditure in inactive men. Eleven healthy men (mean ± SD: age, 26 ± 5 years; body mass index, 24.6 ± 3.8 kg·m(-2); maximum oxygen uptake, 43.1 ± 7.4 mL·kg(-1)·min(-1)) completed the 12-week supervised exercise programme. Body composition, health markers (e.g., blood pressure), eating behaviour, food cravings, and weekly energy intake and expenditure were assessed before and after the exercise intervention. There were no intervention effects on weekly free-living energy intake (p = 0.326, d = -0.12) and expenditure (p = 0.799, d = 0.04) or uncontrolled eating and emotional eating scores (p > 0.05). However, there was a trend with a medium effect size (p = 0.058, d = 0.68) for cognitive restraint to be greater after the exercise intervention. Total food cravings (p = 0.009, d = -1.19) and specific cravings of high-fat foods (p = 0.023, d = -0.90), fast-food fats (p = 0.009, d = -0.71), and carbohydrates/starches (p = 0.009, d = -0.56) decreased from baseline to 12 weeks. Moreover, there was a trend with a large effect size for cravings of sweets (p = 0.052, d = -0.86) to be lower after the exercise intervention. In summary, 12 weeks of moderate-intensity aerobic exercise reduced food cravings and increased cognitive restraint, but these changes were not accompanied by changes in other eating behaviours or weekly energy intake and expenditure. The results indicate the importance of exercising for health improvements even when reductions in body mass are modest.

  7. Liftoff of Space Shuttle Columbia on mission STS-93

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The fiery launch of Space Shuttle Columbia casts ghost-like shadows on the clouds of smoke and steam surrounding it. Liftoff occurred at 12:31 a.m. EDT. STS-93 is a five-day mission primarily to release the Chandra X-ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. The crew numbers five: Commander Eileen M. Collins, Pilot Jeffrey S. Ashby, and Mission Specialists Stephen A. Hawley (Ph.D.), Catherine G. Coleman (Ph.D.) and Michel Tognini of France, with the Centre National d'Etudes Spatiales (CNES). Collins is the first woman to serve as commander of a Shuttle mission. The target landing date is July 27, 1999, at 11:20 p.m. EDT.

  8. Kepler Mission

    NASA Technical Reports Server (NTRS)

    Borucki, William J.; DeVincenzi, D. (Technical Monitor)

    2002-01-01

    The first step in discovering, the extent of life in our galaxy is to determine the number of terrestrial planets in the habitable zone (HZ). The Kepler Mission is a 0.95 m aperture photometer scheduled to be launched in 2006. It is designed to continuously monitor the brightness of 100,000 solar-like stars to detect the transits of Earth-size and larger planets. The depth and repetition time of transits provide the size of the planet relative to the star and its orbital period. When combined with ground-based spectroscopy of these stars to fix the stellar parameters, the true planet radius and orbit scale, hence the relation to the HZ are determined. These spectra are also used to discover the relationships between the characteristics of planets and the stars they orbit. In particular, the association of planet size and occurrence frequency with stellar mass and metallicity will be investigated. Based on the results of the current Doppler - velocity discoveries, over a thousand giant planets will be found. Information on the albedos and densities of those giants showing transits will be obtained. At the end of the four year mission, hundreds of terrestrial planets should be discovered in and near the HZ of their stars if such planets are common. A null result would imply that terrestrial planets in the HZ occur in less than 1% of the stars and that life might be quite rare.

  9. The Pioneer Missions

    NASA Technical Reports Server (NTRS)

    Lasher, Larry E.; Hogan, Robert (Technical Monitor)

    1999-01-01

    This article describes the major achievements of the Pioneer Missions and gives information about mission objectives, spacecraft, and launches of the Pioneers. Pioneer was the United States' longest running space program. The Pioneer Missions began forty years ago. Pioneer 1 was launched shortly after Sputnik startled the world in 1957 as Earth's first artificial satellite at the start of the space age. The Pioneer Missions can be broken down into four distinct groups: Pioneer (PN's) 1 through 5, which comprise the first group - the "First Pioneers" - were launched from 1958 through 1960. These Pioneers made the first thrusts into space toward the Moon and into interplanetary orbit. The next group - the "Interplanetary Pioneers" - consists of PN's 6 through 9, with the initial launch being in 1965 (through 1968); this group explored inward and outward from Earth's orbit and travel in a heliocentric orbit around the Sun just as the Earth. The Pioneer group consisting of 10 and 11 - the "Outer Solar System Pioneers" - blazed a trail through the asteroid belt and was the first to explore Jupiter, Saturn and the outer Solar System and is seeking the borders of the heliosphere and will ultimately journey to the distant stars. The final group of Pioneer 12 and 13 the "Planetary Pioneers" - traveled to Earth's mysterious twin, Venus, to study this planet.

  10. Melas Chasma, Day and Night.

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This image is a mosaic of day and night infrared images of Melas Chasma taken by the camera system on NASA's Mars Odyssey spacecraft. The daytime temperature images are shown in black and white, superimposed on the martian topography. A single nighttime temperature image is superimposed in color. The daytime temperatures range from approximately -35 degrees Celsius (-31 degrees Fahrenheit) in black to -5 degrees Celsius (23 degrees Fahrenheit) in white. Overlapping landslides and individual layers in the walls of Melas Chasma can be seen in this image. The landslides flowed over 100 kilometers (62 miles) across the floor of Melas Chasma, producing deposits with ridges and grooves of alternating warm and cold materials that can still be seen. The temperature differences in the daytime images are due primarily to lighting effects, where sunlit slopes are warm (bright) and shadowed slopes are cool (dark). The nighttime temperature differences are due to differences in the abundance of rocky materials that retain their heat at night and stay relatively warm (red). Fine grained dust and sand (blue) cools off more rapidly at night. These images were acquired using the thermal infrared imaging system infrared Band 9, centered at 12.6 micrometers.

    Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the 2001 Mars Odyssey mission for NASA's Office of Space Science in Washington, D.C. Investigators at Arizona State University in Tempe, the University of Arizona in Tucson and NASA's Johnson Space Center, Houston, operate the science instruments. Additional science partners are located at the Russian Aviation and Space Agency and at Los Alamos National Laboratories, New Mexico. Lockheed Martin Astronautics, Denver, is the prime contractor for the project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL. Aviation and Space Agency and at Los Alamos National

  11. Mars integrated transportation system multistage Mars mission

    NASA Technical Reports Server (NTRS)

    1991-01-01

    In accordance with the objective of the Mars Integrated Transport System (MITS) program, the Multistage Mars Mission (MSMM) design team developed a profile for a manned mission to Mars. The purpose of the multistage mission is to send a crew of five astronauts to the martian surface by the year 2019. The mission continues man's eternal quest for exploration of new frontiers. This mission has a scheduled duration of 426 days that includes experimentation en route as well as surface exploration and experimentation. The MSMM is also designed as a foundation for a continuing program leading to the colonization of the planet Mars.

  12. Mission specification for three generic mission classes

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Mission specifications for three generic mission classes are generated to provide a baseline for definition and analysis of data acquisition platform system concepts. The mission specifications define compatible groupings of sensors that satisfy specific earth resources and environmental mission objectives. The driving force behind the definition of sensor groupings is mission need; platform and space transportation system constraints are of secondary importance. The three generic mission classes are: (1) low earth orbit sun-synchronous; (2) geosynchronous; and (3) non-sun-synchronous, nongeosynchronous. These missions are chosen to provide a variety of sensor complements and implementation concepts. Each mission specification relates mission categories, mission objectives, measured parameters, and candidate sensors to orbits and coverage, operations compatibility, and platform fleet size.

  13. Single-stage Mars mission

    NASA Technical Reports Server (NTRS)

    1991-01-01

    President Bush established a three phase Space Exploration Initiative for the future of space exploration. The first phase is the design and construction of Space Station Freedom. The second phase is permanent lunar base. The last phase of the Initiative is the construction of a Mars outpost. The design presented is the concept of a single-stage Mars mission developed by the University of Minnesota Aerospace Design Course. The mission will last approximately 500 days including a 30-60 day stay on Mars.

  14. STS-99 Crew Activities Report / Flight Day 09 Highlights

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The primary objective of the STS-99 mission was to complete high resolution mapping of large sections of the Earth's surface using the Shuttle Radar Topography Mission (SRTM), a specially modified radar system. This radar system produced unrivaled 3-D images of the Earth's Surface. The mission was launched at 12:31 on February 11, 2000 onboard the space shuttle Endeavour, and led by Commander Kevin Kregel. The crew was Pilot Dominic L. Pudwill Gorie and Mission Specialists Janet L. Kavandi, Janice E. Voss, Mamoru Mohri from the National Space Development Agency (Japanese Space Agency), and Gerhard P. J. Thiele from DARA (German Space Agency). This tape shows the activities of the ninth day of the mission. The announcement of the decision to extend the SRTM for 9 hours is made to the crew. This means that almost all (i.e., 99.9 %) of the target area of the Earth will be imaged, at least once. Some shots of the 200 foot long mast where the outboard antennas are located are shown. Mamoru Mohri is shown changing a data tape, while he explains the rationale for recording rather than transmitting the data. Gerhard Thiele speaks to the German press. At the end of this tape are images generated from the SRTM. There are views of Oahu, Molokai, Lanai and west Maui, Hawaii; Dallas, Texas; Salalah, Oman; and Tasmania, Australia. Animations showing the topography around Hokkaido, Japan and Brazil are also shown.

  15. Mars mission

    NASA Astrophysics Data System (ADS)

    Katzoff, Judith A.

    To mark the 10th anniversary of the Apollo-Soyuz joint space mission, a recent conference examined the prospects for human exploration of Mars and for international cooperation in space. Most of the participants at the conference, which was jointly sponsored by the American Institute of Aeronautics and Astronautics and The Planetary Society, seemed to agree that some sort of collaboration like that between the United States and Soviet Union a decade ago would be desirable, and probably necessary, if humans are ever to reach Mars. Sen. Spark Matsunaga (D-Hawaii) extended the idea by saying that to gain the support of Congress, plans for future space exploration should be tied to international cooperation.

  16. Feeding corn during the last 12 days of gestation improved colostrum production and neonatal activity in goats grazing subtropical semi-arid rangeland.

    PubMed

    Ramírez-Vera, S; Terrazas, A; Delgadillo, J A; Serafín, N; Flores, J A; Elizundia, J M; Hernández, H

    2012-07-01

    The objectives were to investigate if partial substitution of a grazing diet with a supplemental high-starch feed during the last 12 d of gestation improved colostrum yield and neonatal activity in goat does grazing semi-arid rangeland. For the first objective, 25 pregnant does were randomly assigned to 1 of 2 treatments: 1) grazing only (control; n = 11), and 2) grazing plus 0.6 kg/d of supplemental corn (as fed), a high starch feed, during the last 12 ± 1.0 d before parturition (SC; n = 14). Colostrum was collected at parturition and again at 1, 3, 6, and 10 h postpartum for yield and composition. In all goats, blood concentrations of glucose and plasma progesterone were determined. Total colostrum yield/10 h was greater (P = 0.002) in the SC does (1,102 ± 144 g) than in control does (405 ± 50 g). From 6 to 10 h postpartum, contents of colostrum protein and solids not fat were less (P ≤ 0.012) whereas lactose contents were greater (P = 0.035) in the SC does than in control does. Concentration of glucose in the blood at parturition was greater (P = 0.037) in the SC does (160 ± 13 mg/dL) than in control does (115 ± 12 mg/dL). A significant decrease (P = 0.001) in plasma progesterone concentrations occurred 1 d before parturition in control does, whereas the decrease (P = 0.008) occurred 3 d before parturition in SC does. For the second objective, 20 does (10 per group) and their single kids were randomly assigned to the same treatments as above for evaluation of dietary treatment on neonatal activity. Kid activity was assessed using videos recorded during the first 90 min after birth. Frequency of low-pitched bleats was greater (P < 0.001) in kids of SC does than in kids of controls. Frequencies and durations of teat seeking from 30 to 90 min after birth and of suckling activity were greater (P ≤ 0.015) in kids of SC does than in kids of controls. Duration of parturition was longer (P = 0.001) in control does (58 ± 10.2 min) than in SC does (21 ± 2.8 min

  17. The ARTEMIS Mission

    NASA Astrophysics Data System (ADS)

    Angelopoulos, V.

    2011-12-01

    The Acceleration, Reconnection, Turbulence, and Electrodynamics of the Moon's Interaction with the Sun (ARTEMIS) mission is a spin-off from NASA's Medium-class Explorer (MIDEX) mission THEMIS, a five identical micro-satellite (hereafter termed "probe") constellation in high altitude Earth-orbit since 17 February 2007. By repositioning two of the five THEMIS probes (P1 and P2) in coordinated, lunar equatorial orbits, at distances of ˜55-65 R E geocentric (˜1.1-12 R L selenocentric), ARTEMIS will perform the first systematic, two-point observations of the distant magnetotail, the solar wind, and the lunar space and planetary environment. The primary heliophysics science objectives of the mission are to study from such unprecedented vantage points and inter-probe separations how particles are accelerated at reconnection sites and shocks, and how turbulence develops and evolves in Earth's magnetotail and in the solar wind. Additionally, the mission will determine the structure, formation, refilling, and downstream evolution of the lunar wake and explore particle acceleration processes within it. ARTEMIS's orbits and instrumentation will also address key lunar planetary science objectives: the evolution of lunar exospheric and sputtered ions, the origin of electric fields contributing to dust charging and circulation, the structure of the lunar interior as inferred by electromagnetic sounding, and the lunar surface properties as revealed by studies of crustal magnetism. ARTEMIS is synergistic with concurrent NASA missions LRO and LADEE and the anticipated deployment of the International Lunar Network. It is expected to be a key element in the NASA Heliophysics Great Observatory and to play an important role in international plans for lunar exploration.

  18. Toxicologic effects of 28-day dietary exposure to the flame retardant 1,2-dibromo-4-(1,2-dibromoethyl)-cyclohexane (TBECH) in F344 rats.

    PubMed

    Curran, Ivan H A; Liston, Virginia; Nunnikhoven, Andrée; Caldwell, Don; Scuby, Matthew J S; Pantazopoulos, Peter; Rawn, Dorothea F K; Coady, Laurie; Armstrong, Cheryl; Lefebvre, David E; Bondy, Genevieve S

    2017-02-15

    The brominated flame retardant TBECH is used as an additive to delay ignition and inhibit fires in construction materials and consumer goods. Trends in human exposure are not clear, although humans may be exposed to TBECH via indoor dust and air. In birds and fish there is some evidence of disruption in endocrine and reproductive parameters due to TBECH. In vitro studies indicate that TBECH is an androgen receptor agonist. In this study rats were exposed to 0, 10, 50, 250, 1250 or 5000mg/kg technical TBECH for 28days in diet, corresponding to 0, 0.9, 4.2, 21.3, 98.0 or 328.9mg TBECH/kg bw/d in males and 0, 0.8, 3.9, 19.4, 91.7 or 321.4mg TBECH/kg bw/d in females. Dose-dependent increases in α- and β- TBECH were detected in serum, liver and adipose. Rats in the 5000mg/kg group lost weight rapidly and were euthanized after 15-18days. At study termination rats displayed dose-dependent clinical and histopathological changes consistent with mild hepatic and renal inflammation. In male rats, evidence of gender-specific alpha2u-globulin nephropathy was not considered predictive of renal toxicity in humans. Frank immunosuppression or inappropriate immunostimulation were not apparent, nor was there a primary effect of TBECH on adaptive immunity. Some evidence of hormone disruption was observed, including changes in serum testosterone levels in males and changes in serum T3 and T4 levels in females. Apparent increases in thyroid follicular cell hypertrophy and hyperplasia in male and female rats were not statistically significant. Benchmark dose (BMD) modelling indicated that clinical changes indicative of mild nephrotoxicity and increased blood monocyte numbers indicative of inflammation and tissue damage were the most sensitive outcomes of TBECH exposure that could be modelled. Preliminary evidence of hormone disruption supports the need for rodent studies using more sensitive models of growth, development and reproduction.

  19. Day Fire in Ventura County

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Annotated Version

    The Day fire has been burning in Ventura County in Southern California since Labor Day, and has consumed more than 160,000 acres. As of September 29, it was 63 percent contained. The Advanced Spaceborne Thermal Emission and Reflection Radiometer on NASA's Terra satellite flew over the fire at 10 p.m. Pacific Time on September 28, and imaged the fire with its infrared camera. The hottest areas of active burning appear as red spots on the image. The blue-green background is a daytime image acquired in June, used as a background to allow firefighters to localize the hot spots.

    With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products.

    The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission directorate.

    Size: 22.5 by 31.0 kilometers (12.6 by 15.2 miles) Location: 34

  20. Jim Lovell Recalls Apollo 8 Launch Day

    NASA Video Gallery

    Astronaut Jim Lovell, veteran of two Gemini flights as well as the legendary missions of Apollo 8 and Apollo 13, recalls his thoughts on launch day of Apollo 8 in 1968, when humans first left the E...

  1. K-12 Science Education Linked to Mars and the MER Mission: A New Curriculum Entitled Making Tracks on Mars Teacher Resource and Activity Guide

    NASA Astrophysics Data System (ADS)

    Aubele, J. C.; Stanley, J.; Grochowski, A.; Jones, K.; Aragon, J.

    2006-03-01

    Students' interest in Mars can be used as a "hook" to teach a wide range of topics. Mars-related science is used as the basis of a new K-12 integrated curriculum created by the New Mexico Museum of Natural History and classroom educators.

  2. The Kepler Project: Mission Update

    NASA Technical Reports Server (NTRS)

    Borucki, William J.; Koch, David G.

    2009-01-01

    Kepler is a Discovery-class mission designed to determine the frequency of Earth-size planets in and near the habitable zone of solar-like stars. The instrument consists of a 0.95 m aperture photometer designed to obtain high precision photometric measurement of > 100,000 stars to search for patterns of transits. The focal plane of the Schmidt-telescope contains 42 CCDs with at total of 95 mega pixels that cover 116 square degrees of sky. The photometer was launched into an Earth-trailing heliocentric orbit on March 6, 2009, finished its commissioning on May 12, and is now in the science operations mode. During the commissioning of the Kepler photometer, data were obtained at a 30 minute cadence for 53,000 stars for 9.7 days. Although the data have not yet been corrected for the presence of systematic errors and artifacts, the data show the presence of hundreds of eclipsing binary stars and variable stars of amazing variety. To provide some estimate of the capability of the photometer, a quick analysis of the photometric precision was made. Analysis of the commissioning data also show transits, occultations and light emitted from the known exoplanet HAT-P7b. The data show a smooth rise and fall of light: from the planet as it orbits its star, punctuated by a drop of 130 +/- 11 ppm in flux when the planet passes behind its star. We interpret this as the phase variation of the dayside thermal emission plus reflected light from the planet as it orbits its star and is occulted. The depth of the occultation is similar in amplitude to that expected from a transiting Earth-size planet and demonstrates that the Mission has the precision necessary to detect such planets.

  3. Mars Exploration Rover mission

    NASA Astrophysics Data System (ADS)

    Crisp, Joy A.; Adler, Mark; Matijevic, Jacob R.; Squyres, Steven W.; Arvidson, Raymond E.; Kass, David M.

    2003-10-01

    In January 2004 the Mars Exploration Rover mission will land two rovers at two different landing sites that show possible evidence for past liquid-water activity. The spacecraft design is based on the Mars Pathfinder configuration for cruise and entry, descent, and landing. Each of the identical rovers is equipped with a science payload of two remote-sensing instruments that will view the surrounding terrain from the top of a mast, a robotic arm that can place three instruments and a rock abrasion tool on selected rock and soil samples, and several onboard magnets and calibration targets. Engineering sensors and components useful for science investigations include stereo navigation cameras, stereo hazard cameras in front and rear, wheel motors, wheel motor current and voltage, the wheels themselves for digging, gyros, accelerometers, and reference solar cell readings. Mission operations will allow commanding of the rover each Martian day, or sol, on the basis of the previous sol's data. Over a 90-sol mission lifetime, the rovers are expected to drive hundreds of meters while carrying out field geology investigations, exploration, and atmospheric characterization. The data products will be delivered to the Planetary Data System as integrated batch archives.

  4. Day Care: Nutrition.

    ERIC Educational Resources Information Center

    Foster, Florence P.; And Others

    This collection of 12 short, bilingual papers on nutrition and preschool children is part of a series of papers on various aspects of day care published by the Canadian Department of Health and Welfare. Each paper is presented in both English and French. Topics dealt with include an overview of children's nutritional needs; development of…

  5. STS-112 Flight Day 7 Highlights

    NASA Technical Reports Server (NTRS)

    2002-01-01

    On this seventh day of STS-112 mission members of the crew (Commander Jeff Ashby; Pilot Pam Melroy; Mission Specialist Sandy Magnus, Piers Sellers, Dave Wolf, and Fyodor Yurchikhin) along with the Expedition Five crew (Commander Valery Korzun; Flight Engineer Peggy Whitson, and Sergei Treschev) are seen answering questions during the mission's press interview and photo opportunity. They answered various questions regarding the mission's objectives, the onboard science experiments, the extravehicular activities (EVAs) and the effects of living in space. Shots of the test deployment of the S1 truss radiator and Canadarm rotor joint are also shown.

  6. Low Cost Mission Operations Workshop. [Space Missions

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The presentations given at the Low Cost (Space) Mission Operations (LCMO) Workshop are outlined. The LCMO concepts are covered in four introductory sections: Definition of Mission Operations (OPS); Mission Operations (MOS) Elements; The Operations Concept; and Mission Operations for Two Classes of Missions (operationally simple and complex). Individual presentations cover the following topics: Science Data Processing and Analysis; Mis sion Design, Planning, and Sequencing; Data Transport and Delivery, and Mission Coordination and Engineering Analysis. A list of panelists who participated in the conference is included along with a listing of the contact persons for obtaining more information concerning LCMO at JPL. The presentation of this document is in outline and graphic form.

  7. Sentinel-2 Mission status

    NASA Astrophysics Data System (ADS)

    Hoersch, Bianca; Colin, Olivier; Gascon, Ferran; Arino, Olivier; Spoto, Francois; Marchese, Franco; Krassenburg, Mike; Koetz, Benjamin

    2016-04-01

    Copernicus is a joint initiative of the European Commission (EC) and the European Space Agency (ESA), designed to establish a European capacity for the provision and use of operational monitoring information for environment and security applications. Within the Copernicus programme, ESA is responsible for the development of the Space Component, a fully operational space-based capability to supply earth-observation data to sustain environmental information Services in Europe. The Sentinel missions are Copernicus dedicated Earth Observation missions composing the essential elements of the Space Component. In the global Copernicus framework, they are complemented by other satellites made available by third-parties or by ESA and coordinated in the synergistic system through the Copernicus Data-Access system versus the Copernicus Services. The Copernicus Sentinel-2 mission provides continuity to services relying on multi-spectral high-resolution optical observations over global terrestrial surfaces. Sentinel-2 capitalizes on the technology and the vast experience acquired in Europe and the US to sustain the operational supply of data for services such as forest monitoring, land cover changes detection or natural disasters management. The Sentinel-2 mission offers an unprecedented combination of the following capabilities: ○ Systematic global coverage of land surfaces: from 56°South to 84°North, coastal waters and Mediterranean sea; ○ High revisit: every 5 days at equator under the same viewing conditions with 2 satellites; ○ High spatial resolution: 10m, 20m and 60m; ○ Multi-spectral information with 13 bands in the visible, near infra-red and short wave infra-red part of the spectrum; ○ Wide field of view: 290 km. The data from the Sentinel-2 mission are available openly and freely for all users with online easy access since December 2015. The presentation will give a status report on the Sentinel-2 mission, and outlook for the remaining ramp-up Phase, the

  8. A proteinuria cut-off level of 0.7 g/day after 12 months of treatment best predicts long-term renal outcome in lupus nephritis: data from the MAINTAIN Nephritis Trial

    PubMed Central

    Tamirou, Farah; Lauwerys, Bernard R; Dall'Era, Maria; Mackay, Meggan; Rovin, Brad; Cervera, Ricard; Houssiau, Frédéric A

    2015-01-01

    Background Although an early decrease in proteinuria has been correlated with good long-term renal outcome in lupus nephritis (LN), studies aimed at defining a cut-off proteinuria value are missing, except a recent analysis performed on patients randomised in the Euro-Lupus Nephritis Trial, demonstrating that a target value of 0.8 g/day at month 12 optimised sensitivity and specificity for the prediction of good renal outcome. The objective of the current work is to validate this target in another LN study, namely the MAINTAIN Nephritis Trial (MNT). Methods Long-term (at least 7 years) renal function data were available for 90 patients randomised in the MNT. Receiver operating characteristic curves were built to test the performance of proteinuria measured within the 1st year as short-term predictor of long-term renal outcome. We calculated the positive and negative predictive values (PPV, NPV). Results After 12 months of treatment, achievement of a proteinuria <0.7 g/day best predicted good renal outcome, with a sensitivity and a specificity of 71% and 75%, respectively. The PPV was high (94%) but the NPV low (29%). Addition of the requirement of urine red blood cells ≤5/hpf as response criteria at month 12 reduced sensitivity from 71% to 41%. Conclusions In this cohort of mainly Caucasian patients suffering from a first episode of LN in most cases, achievement of a proteinuria <0.7 g/day at month 12 best predicts good outcome at 7 years and inclusion of haematuria in the set of criteria at month 12 undermines the sensitivity of early proteinuria decrease for the prediction of good outcome. The robustness of these conclusions stems from the very similar results obtained in two distinct LN cohorts. Trial registration number: NCT00204022. PMID:26629352

  9. STS-107 Mission INSIGNIA

    NASA Technical Reports Server (NTRS)

    2001-01-01

    JOHNSON SPACE CENTER, HOUSON, TEXAS -- STS-107 INSIGNIA -- This is the insignia for STS-107, which is a multi-discipline microgravity and Earth science research mission with a multitude of international scientific investigations conducted continuously during the planned 16 days on orbit. The central element of the patch is the microgravity symbol flowing into the rays of the astronaut symbol. The mission inclination is portrayed by the 39-degree angle of the astronaut symbol to the Earth's horizon. The sunrise is representative of the numerous experiments that are the dawn of a new era for continued microgravity research on the International Space Station and beyond. The breadth of science conducted on this mission will have widespread benefits to life on Earth and our continued exploration of space, illustrated by the Earth and stars. The constellation Columba (the dove) was chosen to symbolize peace on Earth and the Space Shuttle Columbia. The seven stars also represent the mission crew members and honor the original astronauts who paved the way to make research in space possible. The Israeli flag is adjacent to the name of the payload specialist who is the first person from that country to fly on the Space Shuttle. The NASA insignia design for Space Shuttle flights is reserved for use by the astronauts and for other official use as the NASA Administrator may authorize. Public availability has been approved only in the form of illustrations by the various news media. When and if there is any change in this policy, which we do not anticipate, it will be publicly announced.

  10. STS-91 Day 07 Highlights

    NASA Technical Reports Server (NTRS)

    1998-01-01

    On this seventh day of the STS-91 mission, the flight crew, Cmdr. Charles J. Precourt, Pilot Dominic L. Pudwill Gorie and Mission Specialists Wendy B. Lawrence, Franklin R. Chang-Diaz, Janet L. Kavandi, and Valery Victorovitch Ryumin awaken to 'Manic Monday' performed by The Bangles, played the crew by Mission Control in honor of an historic Monday for the U.S. and Russian space programs. Today's schedule includes television feed from the Mir of a final crew farewell and hatch closing. After undocking, the shuttle backs away from the Mir until it reaches a distance of approximately 240 feet below the station. Pilot Dom Gorie then performs a nose forward flyaround of Mir.

  11. Mission safety evaluation report for STS-48, postflight edition

    NASA Technical Reports Server (NTRS)

    Clatterbuck, Guy E.; Hill, William C.

    1991-01-01

    Space Shuttle Discovery was launched into a 57 deg inclination orbit from the Kennedy Space Center (KSC) Launch Complex 39A at 7:11 p.m. EDT on 12 Sep. 1991. STS-48 was the second mission since return-to-flight to have KSC as the planned end-of-mission landing site, and the first mission to have a planned night landing at KSC. However, due to weather conditions at KSC, Discovery flew one extra orbit and landed at Edwards AFB, Calif. at 3:38 a.m. EDT on 18 Sep. 1991. Operation of all systems was generally satisfactory during the 5 day mission. On flight day 3, the Upper Atmospheric Research Satellite (UARS) was deployed from Discovery's payload bay 350 statute miles above Earth. This orbiting observatory will study mankind's effects on the planet's atmosphere and its shielding ozone layer. STS-48 safety risk factors are addressed that represent a change from previous flights, factors from previous flights that had an impact on this flight, and factors that are unique to this flight.

  12. The INTEGRAL Mission

    NASA Astrophysics Data System (ADS)

    Hermsen, W.; Winkler, C.

    The International Gamma-Ray Astrophysics Laboratory (INTEGRAL) is dedicated to the fine spectroscopy (E/delta E = 500) and fine imaging (angular resolution: 12') of celestial gamma-ray sources in the energy range 15 keV to 10 MeV. The scientific payload consists of two gamma-ray instruments and two monitors: The Ge spectrometer SPI and the CdTe/CsI imager IBIS, the X-ray monitor JEM-X and the optical monitor OMC. INTEGRAL was selected by the ESA Science Programme Committee in 1993 as an ESA medium-size scientific mission (M2) to be launched in 2001. The mission is conceived as an observatory led by ESA with contributions from Russia (PROTON launcher) and NASA (Deep Space Network ground stations). The INTEGRAL observatory will provide the science community at large an unprecedented combination of imaging and spectroscopy over a wide range of X-ray and gamma-ray energies including optical monitoring. Most of the observing time will be open to the scientific community interfacing with the INTEGRAL Science Data Centre (ISDC). This paper summarizes the key scientific goals of the mission, the current status of the payload, the spacecraft and the ISDC.

  13. 3. Historic American Buildings Survey deYoung Museum, San Francisco MISSION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Historic American Buildings Survey deYoung Museum, San Francisco MISSION BEFORE 1835 (ORIANA DAY PAINTINGS - (1861 - 1885) - Mission San Francisco de Asis, Mission & Sixteenth Streets, San Francisco, San Francisco County, CA

  14. Mars Telecom Orbiter mission operations concepts

    NASA Technical Reports Server (NTRS)

    Deutsch, Marie-Jose; Komarek, Tom; Lopez, Saturnino; Townes, Steve; Synnott, Steve; Austin, Richard; Guinn, Joe; Varghese, Phil; Edwards, Bernard; Bondurant, Roy; De Paula, Ramon

    2004-01-01

    The Mars Telecom Orbiter (MTO) relay capability enables next decadal missions at Mars, collecting gigabits of data a day to be relayed back at speeds exceeding 4 Mbps and it facilitates small missions whose limited resources do not permit them to have a direct link to Earth.

  15. Interplanetary mission planning

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A long range plan for solar system exploration is presented. The subjects discussed are: (1) science payload for first Jupiter orbiters, (2) Mercury orbiter mission study, (3) preliminary analysis of Uranus/Neptune entry probes for Grand Tour Missions, (4) comet rendezvous mission study, (5) a survey of interstellar missions, (6) a survey of candidate missions to explore rings of Saturn, and (7) preliminary analysis of Venus orbit radar missions.

  16. National Aeronautics and Space Administration and the Indian Space Research Organisation Synthetic Aperture Radar Mission Concept

    NASA Astrophysics Data System (ADS)

    Bawden, G. W.; Rosen, P. A.; Dubayah, R.; Hager, B. H.; Joughin, I. R.

    2014-12-01

    The U.S. National Aeronautics and Space Administration and the Indian Space Research Organisation are planning a synthetic aperture radar (currently named NISAR) mission for launch in 2020. The mission is a dual L- and S-band polarimetric SAR satellite with a 12-day interferometric orbit and 240 km wide ground swath. The 3-year mission will have a circular sun synchronous orbit (6 am and 6 pm) with a 98° inclination and 747 km altitude that will provide systematic global coverage. Its primary science objectives are to: measure solid Earth surface deformation (earthquakes, volcanic unrest, land subsidence/uplift, landslides); track and understand cryosphere dynamics (glaciers, ice sheets, sea ice, and permafrost); characterize and track changes in vegetation structure and wetlands for understanding ecosystem dynamics and carbon cycle; and support global disaster response. We will describe the current mission concept: the satellite design/capabilities, spacecraft, launch vehicle, and data flow.

  17. Astronauts Train for Final Shuttle Mission

    NASA Video Gallery

    The crew of STS-135, the final space shuttle mission, rehearsed their launch day process at NASA's Kennedy Space Center in Florida during a Terminal Countdown Demonstration Test that took place Jun...

  18. STS-79 Flight Day 8

    NASA Technical Reports Server (NTRS)

    1996-01-01

    On this eighth day of the STS-79 mission, the flight crew, Cmdr. William F. Readdy, Pilot Terrence W. Wilcutt, Mission Specialists, Thomas D. Akers, Shannon Lucid, Jay Apt, and Carl E. Walz, are seen bidding the crew of Mir farewell and then closing the hatches between their two spacecraft in preparation for undocking. The nine astronauts and cosmonauts gathered in the Core Module of the Russian space station for a formal goodbye. With the official ceremony complete, the crewmembers shared a final meal together and exchanged private farewells as Shannon Lucid prepared to return home in Atlantis and her replacement on Mir, John Blaha, began a four month stay on the station. Walz and Apt and Mir 22 Commander Valery Korzun with assistance from Flight Engineer 2 John Blaha, swung the hatches between their spacecraft closed concluding five days of joint operations. The vestibule between Atlantis and Mir was depressurized and leak checks were performed in readiness for undocking.

  19. Gastric preloads of corn oil and mineral oil produce different patterns of increases of c-Fos-like immunoreacitve cells in the brain of 9-12 day-old rats.

    PubMed

    Blumberg, Sara; Schroeder, Mariana; Malkesman, Oz; Torregrossa, Ann Marie; Smith, Gerard P; Weller, Aron

    2007-02-23

    Equivolumetric gastric preloads of corn oil and mineral oil administered to rats on postnatal day 12 (P12) inhibited intake equally during a 30-min test of independent ingestion (II), but preloads of corn oil inhibited intake significantly more than preloads of mineral oil on P15 and P18 [Weller, A., Gispan, I.H., Armony-Sivan, R., Ritter, R.C., Smith, G.P., 1997. Preloads of corn oil inhibit independent ingestion on postnatal day 15 in rats. Physiol. Behav. 62, 871-874]. It is possible that the equivalent inhibition of intake by the oil preloads on P12 resulted from the failure of the preabsorptive sensory properties of the preloads to be discriminated by peripheral or central sensory mechanisms. To investigate this possibility, we administered equivolumetric gastric preloads of 25% corn oil and 25% mineral oil to pups on P9-12 and counted the number of c-Fos-like immunoreactive (CFLI) cells in central sites that are activated by food intake and postingestive preabsortive mechanisms in adult rats and in pups on P10-11. The major result was that preloads of 25% corn oil and 25% mineral oil that produced equivalent inhibition of II intake produced differential increases of CFLI cells in the forebrain and hindbrain. Specifically, preloads of corn oil increased the number of CFLI cells in the caudal Nucleus Tractus Solitarius significantly more than preloads of mineral oil. Furthermore, preloads of corn oil increased the number of CFLI cells in the Paraventricular and Supraoptic nuclei, but preloads of mineral oil did not. This differential pattern of increases of CFLI cells is evidence that the brain discriminates the preabsorptive sensory properties of preloads of corn oil and mineral oil on P9-12.

  20. U-2 Pilot Post-Mission Fatigue Questionnaire

    DTIC Science & Technology

    2014-10-01

    prolonged mission duration of up to 12 hours. This research investigates factors that contribute to subjective fatigue and explores fatigue countermeasure...an average of 3.07 (± 0.75) hours prior to takeoff and an average mission duration of 9.81 (± 0.48 hours), resulting in a total time awake at landing...strategies are in place to prevent increases in fatigue in prolonged U-2 missions; however, changes in mission duration , mission frequency, and/or

  1. Cryogenic propulsion for lunar and Mars missions

    NASA Technical Reports Server (NTRS)

    Redd, Larry

    1988-01-01

    Future missions to the moon and Mars have been investigated with regard to propulsion system selection. The results of this analysis show that near state-of-the-art LO2/LH2 propulsion technology provides a feasible means of performing lunar missions and trans-Mars injections. In other words, existing cryogenic space engines with certain modifications and product improvements would be suitable for these missions. In addition, present day cryogenic system tankage and structural weights appear to scale reasonably when sizing for large payload and high energy missions such as sending men to Mars.

  2. Nuclear powered Mars cargo transport mission utilizing advanced ion propulsion

    SciTech Connect

    Galecki, D.L.; Patterson, M.J.

    1987-01-01

    Nuclear-powered ion propulsion technology was combined with detailed trajectory analysis to determine propulsion system and trajectory options for an unmanned cargo mission to Mars in support of manned Mars missions. A total of 96 mission scenarios were identified by combining two power levels, two propellants, four values of specific impulse per propellant, three starting altitudes, and two starting velocities. Sixty of these scenarios were selected for a detailed trajectory analysis; a complete propulsion system study was then conducted for 20 of these trajectories. Trip times ranged from 344 days for a xenon propulsion system operating at 300 kW total power and starting from lunar orbit with escape velocity, to 770 days for an argon propulsion system operating at 300 kW total power and starting from nuclear start orbit with circular velocity. Trip times for the 3 MW cases studied ranged from 356 to 413 days. Payload masses ranged from 5700 to 12,300 kg for the 300 kW power level, and from 72,200 to 81,500 kg for the 3 MW power level.

  3. SCATHA mission termination report

    NASA Technical Reports Server (NTRS)

    Stakkestad, Kjell; Fennessey, Richard

    1993-01-01

    The SCATHA (Spacecraft Charging at High Altitudes) satellite was operated from the Consolidated Space Test Center in Sunnyvale, California from February 1979 to May 1991. It was a spin stabilized vehicle in a highly eccentric orbit that collected data on spacecraft charging. The purpose of such data gathering was to predict and/or model the effects of the Earth's magnetic field on synchronous and near synchronous satellites. During the majority of its lifetime, attitude precession maneuvers were done every 10-15 days to maintain solar panel orientation. Maneuver planning was difficult due to the structural characteristics of SCATHA. It is cylindrically shaped and has seven booms ranging in length from 2 to 50 meters. These precession maneuvers induced predictable nutation that damped out after a few days. Eventually fuel began running low due to these frequent maneuvers. Experiments that had required the spin axis be in the orbit plane had already been turned off or had collected all their data. To increase the vehicle lifetime, the spin axis was moved to ecliptic normal. While this stopped the need for frequent attitude maneuvering (only two per year required now), this movement of the spin axis caused nutation that would not damp out for the remainder of the mission. This phase of the mission, with the ecliptic normal orientation, lasted for approximately three years. Although nutation never damped, data gathering was uninterrupted. In late 1990, when SCATHA's transmitter became seriously degraded, the Air Force decided to turn SCATHA off. This would only be done after the satellite was made 'safe'. The most difficult part of making the vehicle safe was quickly purging the fuel. Several plans were considered. The selected plan was to perform a series of 20 degree attitude precession maneuvers (3 days apart to allow for the worst nutation to damp) until the fuel was depleted. Although this sounded simple, the actual execution proved difficult. This was due to a

  4. SCATHA mission termination report

    NASA Astrophysics Data System (ADS)

    Stakkestad, Kjell; Fennessey, Richard

    1993-02-01

    The SCATHA (Spacecraft Charging at High Altitudes) satellite was operated from the Consolidated Space Test Center in Sunnyvale, California from February 1979 to May 1991. It was a spin stabilized vehicle in a highly eccentric orbit that collected data on spacecraft charging. The purpose of such data gathering was to predict and/or model the effects of the Earth's magnetic field on synchronous and near synchronous satellites. During the majority of its lifetime, attitude precession maneuvers were done every 10-15 days to maintain solar panel orientation. Maneuver planning was difficult due to the structural characteristics of SCATHA. It is cylindrically shaped and has seven booms ranging in length from 2 to 50 meters. These precession maneuvers induced predictable nutation that damped out after a few days. Eventually fuel began running low due to these frequent maneuvers. Experiments that had required the spin axis be in the orbit plane had already been turned off or had collected all their data. To increase the vehicle lifetime, the spin axis was moved to ecliptic normal. While this stopped the need for frequent attitude maneuvering (only two per year required now), this movement of the spin axis caused nutation that would not damp out for the remainder of the mission. This phase of the mission, with the ecliptic normal orientation, lasted for approximately three years. Although nutation never damped, data gathering was uninterrupted. In late 1990, when SCATHA's transmitter became seriously degraded, the Air Force decided to turn SCATHA off. This would only be done after the satellite was made 'safe'. The most difficult part of making the vehicle safe was quickly purging the fuel. Several plans were considered. The selected plan was to perform a series of 20 degree attitude precession maneuvers (3 days apart to allow for the worst nutation to damp) until the fuel was depleted.

  5. Space physics missions handbook

    NASA Technical Reports Server (NTRS)

    Cooper, Robert A. (Compiler); Burks, David H. (Compiler); Hayne, Julie A. (Editor)

    1991-01-01

    The purpose of this handbook is to provide background data on current, approved, and planned missions, including a summary of the recommended candidate future missions. Topics include the space physics mission plan, operational spacecraft, and details of such approved missions as the Tethered Satellite System, the Solar and Heliospheric Observatory, and the Atmospheric Laboratory for Applications and Science.

  6. Mir Mission Chronicle

    NASA Technical Reports Server (NTRS)

    McDonald, Sue

    1998-01-01

    Dockings, module additions, configuration changes, crew changes, and major mission events are tracked for Mir missions 17 through 21 (November 1994 through August 1996). The international aspects of these missions are presented, comprising joint missions with ESA and NASA, including three U.S. Space Shuttle dockings. New Mir modules described are Spektr, the Docking Module, and Priroda.

  7. A 28-day oral gavage toxicity study of 3-monochloropropane-1,2-diol (3-MCPD) in CB6F1-non-Tg rasH2 mice.

    PubMed

    Lee, Byoung-Seok; Park, Sang-Jin; Kim, Yong-Bum; Han, Ji-Seok; Jeong, Eun-Ju; Moon, Kyoung-Sik; Son, Hwa-Young

    2015-12-01

    3-Monochloro-1,2-propanediol (3-MCPD) is a well-known contaminant of foods containing hydrolyzed vegetable protein. However, limited toxicity data are available for the risk assessment of 3-MCPD and its carcinogenic potential is controversial. To evaluate the potential toxicity and determine the dose levels for a 26-week carcinogenicity test using Tg rasH2 mice, 3-MCPD was administered once daily by oral gavage at doses of 0, 25, 50, and 100 mg/kg body weight (b.w.)/day for 28 days to male and female CB6F1-non-Tg rasH2 mice (N = 5 males and females per dose). The standard toxicological evaluations were conducted during the in-life and post-mortem phase. In the 100 mg/kg b.w./day group, 3 males and 1 female died during the study and showed clinical signs such as thin appearance and subdued behavior accompanied by significant decreases in mean b.w. Microscopy revealed tubular basophilia in the kidneys, exfoliated degenerative germ cells in the lumen of the seminiferous tubule of the testes, vacuolation in the brain, axonal degeneration of the sciatic nerve, and cardiomyopathy in the 100, ≥25, ≥50, 100, and 100 mg/kg b.w./day groups, respectively. In conclusion, 3-MCPD's target organs were the kidneys, testes, brain, sciatic nerve, and heart. The "no-observed-adverse-effect level" (NOAEL) of 3-MCPD was ≤25 and 25 mg/kg b.w./day in males and females, respectively.

  8. STS-112 Mission Highlights Resource, Part 3 of 3

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The STS-112 Mission begins with a view of the center radiator on the S(1) Truss. A good view of the International Space Station's (ISS) Destiny Laboratory, Soyuz Crew Return Vehicle and Quest Airlock are shown from a video camera located at the end of the S(1) Truss Segment. The ISS Canadarm 2 is shown getting in position for spacewalk three. Highlights of flight day eight begin with Pilot Pam Melroy and Mission Specialist Fyodur Yurchikhin shown inside of the Quest Airlock closing the hatch as spacewalkers David Wolf and Piers Sellers move in the outer compartment of the Airlock to begin Extravehicular Activity 3 (EVA 3). During EVA 3, Dave Wolf and Piers Sellers are installing spool positioning devices on ammonia lines located on the ISS. Robot Arm Operators Peggy Whitson and Sandy Magnus are shown reviewing procedures for operating the robot arm. A view of Piers Seller climbing back into the Quest Airlock is presented. During flight day nine, robot arm operators Pam Melroy, Jeff Ashby and Peggy Whitson are in the process of removing spacesuits worn by David Wolf and Piers Sellers. A final farewell of the nine crewmembers shown inside of the Destiny Laboratory is presented during flight day ten. The undocking of Space Shuttle Atlantis from the International Space Station is shown on flight day eleven. This presentation ends on flight day 12 with a view of head up displays and the actual landing of the Space Shuttle Atlantis.

  9. STS-69 flight day 7 highlights

    NASA Astrophysics Data System (ADS)

    1995-09-01

    On the seventh day of the STS-69 mission, the astronauts, Cmdr. Dave Walker, Pilot Ken Cockrell, and Mission Specialists Jim Voss, Jim Newman, and Mike Gernhardt, were awakened by the theme song from the movie 'Patten.' Voss and Gernhardt performed a pre-EVA (Extravehicular Activity) checkout of the new thermal spacesuits that they will be wearing in two days. Solving problems with the Wake Shield Facility (WSF) occupied the other astronauts for most of this day. Earth views included tropical storm Marilyn in the Caribbean.

  10. Spacelab 3 Mission Science Review

    NASA Technical Reports Server (NTRS)

    Fichtl, George H. (Editor); Theon, John S. (Editor); Hill, Charles K. (Editor); Vaughan, Otha H. (Editor)

    1987-01-01

    Papers and abstracts of the presentations made at the symposium are given as the scientific report for the Spacelab 3 mission. Spacelab 3, the second flight of the National Aeronautics and Space Administration's (NASA) orbital laboratory, signified a new era of research in space. The primary objective of the mission was to conduct applications, science, and technology experiments requiring the low-gravity environment of Earth orbit and stable vehicle attitude over an extended period (e.g., 6 days) with emphasis on materials processing. The mission was launched on April 29, 1985, aboard the Space Shuttle Challenger which landed a week later on May 6. The multidisciplinary payload included 15 investigations in five scientific fields: material science, fluid dynamics, life sciences, astrophysics, and atmospheric science.

  11. Apollo 11 Mission Commemorated

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2009-07-01

    On 24 July 1969, 4 days after Apollo 11 Mission Commander Neil Armstrong and Lunar Module Eagle Pilot Eugene “Buzz” Aldrin had become the first people to walk on the Moon, they and Apollo 11 Command Module Pilot Michael Collins peered through a window of the Mobile Quarantine Facility on board the U.S.S. Hornet following splashdown of the command module in the central Pacific as U.S. President Richard Nixon told them, “This is the greatest week in the history of the world since the creation.” Forty years later, the Apollo 11 crew and other Apollo-era astronauts gathered at several events in Washington, D. C., to commemorate and reflect on the Apollo program, that mission, and the future of manned spaceflight. “I don’t know what the greatest week in history is,” Aldrin told Eos. “But it was certainly a pioneering opening the door. With the door open when we touched down on the Moon, that was what enabled humans to put many more footprints on the surface of the Moon.”

  12. The Solar Maximum Mission

    NASA Astrophysics Data System (ADS)

    Simnett, G. M.

    The scientific goals, instrumentation and operation, and results from the Solar Maximum Mission are described. The spacecraft was launched to observe the peak of the solar cycle and the impulsive phase of large flares. Instrumentation included a gamma ray spectrometer, X ray burst spectrometer, imaging spectrometer, and polychromator, a UV spectrometer and polarimeter, a coronagraph/polarimeter, and an active cavity radiometer for measurements at wavelengths ranging from the Hα line at 6563 A up to the gamma ray region of the spectrum. Command programs were prepared one day in advance by each team for its instrument, and limited readjustment was available in real-time. The spacecraft was equipped to, and did, point the instruments at one region for an expected flare build-up, and maintain that heading for an extended period of time through the appearance, development, and demise of the flare.

  13. Mission Operations Insights

    NASA Technical Reports Server (NTRS)

    Littman, Dave; Parksinson, Lou

    2006-01-01

    The mission description Polar Operational Environmental Satellites (POES): I) Collect and disseminate worldwide meteorological and environmental data: a) Provide day and night information (AVHRR): 1) cloud cover distribution and type; 2) cloud top temperature; 3) Moisture patterns and ice/snow melt. b) Provide vertical temperature and moisture profiles of atmospheres (HIRS, AMSU, MHS. c) Measure global ozone distribution and solar UV radiation (SBUV). d) Measure proton, electro, and charged particle density to provide solar storm warnings (SEM). d) Collect environmental data (DCS): 1) Stationary platforms in remote locations; 2) Free floating platforms on buoys, balloons, migratory animals. II) Provide Search and Rescue capabilities (SARR, SARP): a) Detection and relay of distress signals. b) Has saved thousands of lives around the world.

  14. Predicting Mission Success in Small Satellite Missions

    NASA Technical Reports Server (NTRS)

    Saunders, Mark; Richie, Wayne; Rogers, John; Moore, Arlene

    1992-01-01

    In our global society with its increasing international competition and tighter financial resources, governments, commercial entities and other organizations are becoming critically aware of the need to ensure that space missions can be achieved on time and within budget. This has become particularly true for the National Aeronautics and Space Administration's (NASA) Office of Space Science (OSS) which has developed their Discovery and Explorer programs to meet this need. As technologies advance, space missions are becoming smaller and more capable than their predecessors. The ability to predict the mission success of these small satellite missions is critical to the continued achievement of NASA science mission objectives. The NASA Office of Space Science, in cooperation with the NASA Langley Research Center, has implemented a process to predict the likely success of missions proposed to its Discovery and Explorer Programs. This process is becoming the basis for predicting mission success in many other NASA programs as well. This paper describes the process, methodology, tools and synthesis techniques used to predict mission success for this class of mission.

  15. The effects of adults' affective expression and direction of visual gaze on 12-month-olds' visual preferences for an object following a 5-minute, 1-day, or 1-month delay.

    PubMed

    Flom, Ross; Johnson, Sarah

    2011-03-01

    Between 12- and 14 months of age infants begin to use another's direction of gaze and affective expression in learning about various objects and events. What is not well understood is how long infants' behaviour towards a previously unfamiliar object continues to be influenced following their participation in circumstances of social referencing. In this experiment, we examined infants' sensitivity to an adult's direction of gaze and their visual preference for one of two objects following a 5-min, 1-day, or 1-month delay. Ninety-six 12-month-olds participated. For half of the infants during habituation (i.e., familiarization), the adults' direction of gaze was directed towards an unfamiliar object (look condition). For the remaining half of the infants during habituation, the adults' direction of gaze was directed away from the unfamiliar object (look-away condition). All infants were habituated to two events. One event consisted of an adult looking towards (look condition) or away from (look-away condition) an object while facially and vocally conveying a positive affective expression. The second event consisted of the same adult looking towards or away from a different object while conveying a disgusted affective expression. Following the habituation phase and a 5-min, 1-day, or 1-month delay, infants' visual preference was assessed. During the visual preference phase, infants saw the two objects side by side where the adult conveying the affective expression was not visible. Results of the visual preference phase indicate that infants in the look condition showed a significant preference for object previously paired with the positive affect following a 5-min and 1-day delay. No significant visual preference was found in the look condition following a 1-month delay. No significant preferences were found at any retention interval in the look-away condition. Results are discussed in terms of early learning, social referencing, and early memory.

  16. Effects of long working hours and the night shift on severe sleepiness among workers with 12-hour shift systems for 5 to 7 consecutive days in the automobile factories of Korea.

    PubMed

    Son, Mia; Kong, Jeong-Ok; Koh, Sang-Baek; Kim, Jaeyoung; Härmä, Mikko

    2008-12-01

    We investigated the effects of 12-hour shift work for five to seven consecutive days and overtime on the prevalence of severe sleepiness in the automobile industry in Korea. [Correction added after online publication 28 Nov: Opening sentence of the summary has been rephrased for better clarity.] A total of 288 randomly selected male workers from two automobile factories were selected and investigated using questionnaires and sleep-wake diaries in South Korea. The prevalence of severe sleepiness at work [i.e. Karolinska Sleepiness Scale (KSS) score of 7 or higher] was modeled using marginal logistic regression and included theoretical risk factors related to working hours and potential confounding factors related to socio-economic status, work demands, and health behaviors. Factors related to working hours increased the risk for severe sleepiness at the end of the shift in the following order: the night shift [odds ratio (OR): 4.7; 95% confidence interval (CI): 3.6-6.0)], daily overtime (OR: 2.2; 95% CI: 1.7-2.9), weekly overtime (OR: 1.6; 95% CI: 1.0-2.6), and night overtime (OR: 1.6; 95% CI: 0.8-3.0). Long working hours and shift work had a significant interactive effect for severe sleepiness at work. Night shift workers who worked for 12 h or more a day were exposed to a risk of severe sleepiness that was 7.5 times greater than day shift workers who worked less than 11 h. Night shifts and long working hours were the main risk factors for severe sleepiness among automobile factory workers in Korea. Night shifts and long working hours have a high degree of interactive effects resulting in severe sleepiness at work, which highlight the need for immediate measures to address these characteristics among South Korean labor force patterns.

  17. Biosatellite II mission.

    PubMed

    Reynolds, O E

    1969-01-01

    Biosatellite B was launched from Cape Kennedy, Florida, on a two-stage DELTA launch vehicle at 6:04 p.m. on 7 September, 1967. Approximately nine minutes later the 435 kg spacecraft biological laboratory was placed into a satisfactory 315 km near-circular earth orbit, successfully separated from the launch vehicle's second stage and was designated Biosatellite II. The scientific payload consisting of thirteen selected general biology and radiation experiments were subjected to planned, carefully controlled environmental conditions during 45 hours of earth-orbital flight. The decision was made to abbreviate the scheduled 3-day mission by approximately one day because of a threatening tropical storm in the recovery area, and a problem of communication with the spacecraft from the tracking stations. Highest priority was placed on recovery which was essential to obtain the scientific results on all the experiments. The operational phase of the mission came to a successful conclusion with the deorbit of the recovery capsule, deployment of the parachute system and air recovery by the United States Air Force. The 127 kg recovery capsule was returned to biology laboratories at Hickam Air Force Base, Hawaii, for disassembly and immediate inspection and analysis of the biological materials by the experimenters. It was evident immediately that the quality of the biology was excellent and this fact gave promise of a high return of scientific data. The environmental conditions provided to the experimental material in the spacecraft, provisions for experimental controls, and operational considerations are presented as they relate to interpretation of the experimental results.

  18. Discovery lands at KSC after completing mission STS-105

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. With its drag chute just beginning to open, orbiter Discovery and its crew land on KSC's Shuttle Landing Facility runway 15. Main gear touchdown was at 2:22:58 p.m. EDT; wheel stop, at 2:24:06 p.m. EDT. The 11-day, 21-hour, 12-minute STS-105 mission accomplished the goals set for the 11th flight to the International Space Station: swapout of the resident Station crew; delivery of equipment, supplies and scientific experiments; and installation of the Early Ammonia Servicer and heater cables for the S0 truss on the Station. Discovery traveled 4.3 million miles on its 30th flight into space, the 106th mission of the Space Shuttle program. The landing was the first of five in 2001 to occur in daylight at KSC.

  19. Discovery lands at KSC after completing mission STS-105

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. Orbiter Discovery and its crew land on KSC's Shuttle Landing Facility runway 15, creating a cloud of smoke as its wheels touch the concrete. Main gear touchdown was at 2:22:58 p.m. EDT; wheel stop, at 2:24:06 p.m. EDT. The 11-day, 21-hour, 12-minute STS-105 mission accomplished the goals set for the 11th flight to the International Space Station: swapout of the resident Station crew; delivery of equipment, supplies and scientific experiments; and installation of the Early Ammonia Servicer and heater cables for the S0 truss on the Station. Discovery traveled 4.3 million miles on its 30th flight into space, the 106th mission of the Space Shuttle program. The landing was the first of five in 2001 to occur in daylight at KSC.

  20. Discovery lands at KSC after completing mission STS-105

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. With its drag chute trailing behind, orbiter Discovery and its crew land on KSC's Shuttle Landing Facility runway 15. Main gear touchdown was at 2:22:58 p.m. EDT; wheel stop, at 2:24:06 p.m. EDT. The 11-day, 21-hour, 12-minute STS-105 mission accomplished the goals set for the 11th flight to the International Space Station: swapout of the resident Station crew; delivery of equipment, supplies and scientific experiments; and installation of the Early Ammonia Servicer and heater cables for the S0 truss on the Station. Discovery traveled 4.3 million miles on its 30th flight into space, the 106th mission of the Space Shuttle program. The landing was the first of five in 2001 to occur in daylight at KSC.

  1. Discovery lands at KSC after completing mission STS-105

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. Orbiter Discovery and its crew land on KSC's Shuttle Landing Facility runway 15. Main gear touchdown was at 2:22:58 p.m. EDT; wheel stop, at 2:24:06 p.m. EDT. The 11-day, 21-hour, 12-minute STS-105 mission accomplished the goals set for the 11th flight to the International Space Station: swapout of the resident Station crew; delivery of equipment, supplies and scientific experiments; and installation of the Early Ammonia Servicer and heater cables for the S0 truss on the Station. Discovery traveled 4.3 million miles on its 30th flight into space, the 106th mission of the Space Shuttle program. The landing was the first of five in 2001 to occur in daylight at KSC.

  2. Discovery lands at KSC after completing mission STS-105

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. A great blue heron flies along with orbiter Discovery as it lands on KSC's Shuttle Landing Facility runway 15. Main gear touchdown was at 2:22:58 p.m. EDT; wheel stop, at 2:24:06 p.m. EDT. The 11-day, 21-hour, 12-minute STS-105 mission accomplished the goals set for the 11th flight to the International Space Station: swapout of the resident Station crew; delivery of equipment, supplies and scientific experiments; and installation of the Early Ammonia Servicer and heater cables for the S0 truss on the Station. Discovery traveled 4.3 million miles on its 30th flight into space, the 106th mission of the Space Shuttle program. The landing was the first of five in 2001 to occur in daylight at KSC.

  3. Discovery lands at KSC after completing mission STS-105

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. With its drag chute trailing behind, orbiter Discovery and its crew land on KSC's Shuttle Landing Facility runway 15. The 525-foot-tall Vehicle Assembly Building can be seen in the background. Main gear touchdown was at 2:22:58 p.m. EDT; wheel stop, at 2:24:06 p.m. EDT. The 11-day, 21-hour, 12-minute STS-105 mission accomplished the goals set for the 11th flight to the International Space Station: swapout of the resident Station crew; delivery of equipment, supplies and scientific experiments; and installation of the Early Ammonia Servicer and heater cables for the S0 truss on the Station. Discovery traveled 4.3 million miles on its 30th flight into space, the 106th mission of the Space Shuttle program. The landing was the first of five in 2001 to occur in daylight at KSC.

  4. Mission Specialist Coleman and Pilot Ashby in the White Room

    NASA Technical Reports Server (NTRS)

    1999-01-01

    STS-93 Mission Specialist Catherine G. Coleman (Ph.D.) (left) and Pilot Jeffrey S. Ashby (right) are checked out by white room closeout crew members before entering the orbiter Columbia. The white room is an environmental chamber at the end of the orbiter access arm that provides entry to the orbiter crew compartment. STS-93 is a five-day mission primarily to release the Chandra X- ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. After Space Shuttle Columbia's July 20 and 22 launch attempts were scrubbed, the launch was again rescheduled for Friday, July 23, at 12:24 a.m. EDT. The target landing date is July 27 at 11:20 p.m. EDT.

  5. STS-107 Flight Day 13 Highlights

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This video shows the activities of the STS-107 crew on flight day 13 of the Columbia orbiter's final mission. The crew members include: Rick Husband, Commander; William McCool, Pilot; Kalpana Chawla, David Brown, Michael Anderson, Laurel Clark, Mission Specialists; Ilan Ramon, Payload Specialist. The primary activities of flight day 13 are spaceborne experiments, including troubleshooting undertaken by Mission Specialist Chawla on the Water Mist Fire Suppression (MIST) experiment. Chawla performs troubleshooting tasks relayed to her by Mission Control. She shows Mission Control the location of air and water in a transparent hose that is part of the atomizer on the exterior of the combustion module. She also changes the atomizer head. All six Space Technology and Research Students (STARS) experiments are profiled in the video. These experiments are on ants, crystal growth in a chemical garden, fish embryos, carpenter bees, spiders, and silkworms. The video also includes a view of the southeast Texas coast near Houston, and a view of Portugal, Spain, Gibraltar, Morocco, and the Sahara Desert. The video ends with an explanation of roses at Mission Control which commemorate astronauts who have died on missions.

  6. STS-90 Day 14 Highlights

    NASA Technical Reports Server (NTRS)

    1998-01-01

    On this fourteenth day of the STS-90 mission, the flight crew, Cmdr. Richard A. Searfoss, Pilot Scott D. Altman, and Mission Specialists Richard M. Linnehan, Dafydd Rhys Williams and Kathryn P. Hire, and Payload Specialists Jay C. Buckey and James A. Pawelczyk focus on the efforts of Neurolab's Neuronal Plasticity Team to better understand how the adult nervous system adapts to the new environment of space. Columbia's science crew -- Mission Specialists Rick Linnehan and Dave Williams and Payload Specialists Jay Buckey and Jim Pawelczyk -- perform the second and final in-flight dissections of the adult male rats on board. The crew euthanizes and dissects nine rats and remove the vestibular or balance organs of the inner ear; the cerebellum, the part of the brain critical for maintaining balance and for processing information from the limbs so they can be moved smoothly; and the cerebrum, one part of which controls automatic functions such as body temperature regulation and the body's internal clock, and the cortical region that controls cognitive functions such as thinking. The first dissection, which was performed on the second day of the flight, went extremely well, according to Neurolab scientists.

  7. STS-113 Flight Day 2 Highlights

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The second flight day of the STS-113 mission begins with a shot inside of the Destiny Laboratory Module. NASA ISS Science Officer Peggy Whitson is seen inside of the Destiny Laboratory where scientific research is performed. Mission Specialists John Herrington and Michael Lopez-Alegria are seen at the Mid-deck of the Space Shuttle Endeavor. Commander Jim Wetherbee and Ken Bowersox are also shown. Pilot Paul Lockhart is the EVA coordinator for this mission. Ken Bowersox, Don Pettit and Nikolai Budarin of the Space Station Expedition Six crew answer questions about the launch.

  8. STS-113 Flight Day 2 Highlights

    NASA Astrophysics Data System (ADS)

    2002-11-01

    The second flight day of the STS-113 mission begins with a shot inside of the Destiny Laboratory Module. NASA ISS Science Officer Peggy Whitson is seen inside of the Destiny Laboratory where scientific research is performed. Mission Specialists John Herrington and Michael Lopez-Alegria are seen at the Mid-deck of the Space Shuttle Endeavor. Commander Jim Wetherbee and Ken Bowersox are also shown. Pilot Paul Lockhart is the EVA coordinator for this mission. Ken Bowersox, Don Pettit and Nikolai Budarin of the Space Station Expedition Six crew answer questions about the launch.

  9. STS-112 Flight Day 8 Highlights

    NASA Technical Reports Server (NTRS)

    2002-01-01

    On this eighth day of the STS-112 mission, the crew members of Atlantis (Commander Jeff Ashby; Pilot Pam Melroy; Mission Specialists Sandy Magnus, Piers Sellers, Dave Wolf, and Fyodor Yurchikhin) are seen preparing for the mission's third extravehicular activity (EVA). Magnus is shown reviewing instructions for operation of the International Space Station's (ISS) robot arm. Wolf and Sellers are seen successfully attaching cable connections to the S1 truss during the EVA. Scenes shown include: the ISS's robot arm, the Crew Equipment Translation Aid (CETA) cart and the deployment of the central radiator panel of the S1 truss.

  10. STS-108 Flight Day 7 Highlights

    NASA Technical Reports Server (NTRS)

    2001-01-01

    On this seventh day of the STS-108 mission, NASA Ground Control, STS-108 crew (Commander Dominic Gorie, Pilot Mark Kelly, and Mission Specialists Linda Godwin and Daniel Tani), Expedition 3 crew (Commander Frank Culbertson, Jr. and Flight Engineers Mikhail Turin and Vladimir Dezhurov), and Expedition 4 crew (Commander Yuri Onufrienko and Flight Engineers Carl Walz and Daniel Bursch) are seen during a ceremony of remembrance on the three-month anniversary of the September 11th tragedy. The three crews also answer questions from the press on their missions. They are seen as they transfer supplies and equipment from the Rafaello Multipurpose Logistics Module.

  11. ESA announces its Future Science Missions

    NASA Astrophysics Data System (ADS)

    2000-10-01

    The announcement will be made at ESA's Head Office, 8-10 rue Mario Nikis in Paris, during a press breakfast starting at 08:30. Media representatives wishing to attend the event are kindly requested to fill out the attached accreditation from and fax it back to ESA Media Relations Office - Paris. Note to editors The announcement will follow a two-day meeting of ESA's Space Science Committee (SPC), composed of Delegates from all ESA's Member States, in Paris on 11 and 12 October. The SPC will decide - on the basis of the Space Science Advisory Committee's (SSAC) recommendations formulated earlier in September - about the next Cornerstone (CS) and Flexi (F) Missions that will be implemented in the framework of ESA's Horizons 2000 Programme. Further information about the Future Mission candidates and the ESA Science Programme can be found at: http://sci.esa.int. In particular the SSAC recommendations to SPC can be found at: http://sci.esa.int/structure/content/index.cfm?aid=1&cid=2304 Further information on ESA at : http//www.esa.int

  12. STS-99 Mission Specialist Mohri arrives for launch

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-99 Mission Specialist Mamoru Mohri (Ph.D.), who is with the National Space Development Agency (NASDA) of Japan, waves on his arrival at KSC aboard a T-38 jet aircraft to prepare for launch of Endeavour Jan. 31 at 12:47 p.m. EST. Over the next few days, the crew will review mission procedures, conduct test flights in the Shuttle Training Aircraft and undergo routine preflight medical exams. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot- long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety.

  13. Heat Capacity Mapping Mission investigation no. 25 (Tellus project)

    NASA Technical Reports Server (NTRS)

    Deparatesi, S. G. (Principal Investigator); Reiniger, P. (Editor)

    1982-01-01

    The TELLUS pilot project, utilizing 0.5 to 1.1 micron and 10.5 to 12.5 micron day and/or night imagery from the Heat Capacity Mapping Mission, is described. The application of remotely sensed data to synoptic evaluation of evapotranspiration and moisture in agricultural soils was considered. The influence of topography, soils, land use, and meteorology on surface temperature distribution was evaluated. Anthropogenic heat release was investigated. Test areas extended from semi-arid land in southern Italy to polders in the Netherlands, and from vine-growing hills in the Rhineland to grasslands in Buckinghamshire.

  14. Historical trends of participation of women in robotic spacecraft missions

    NASA Astrophysics Data System (ADS)

    Rathbun, Julie A.; Dones, Luke; Gay, Pamela; Cohen, Barbara; Horst, Sarah; Lakdawalla, Emily; Spickard, James; Milazzo, Moses; Sayanagi, Kunio M.; Schug, Joanna

    2015-11-01

    For many planetary scientists, being involved in a spacecraft mission is the highlight of a career. Many young scientists hope to one day be involved in such a mission. We will look at the science teams of several flagship-class spacecraft missions to look for trends in the representation of groups that are underrepresented in science. We will start with The Galileo, Cassini, and Europa missions to the outer solar system as representing missions that began in the 1980s, 1990s and 2010s respectively. We would also like to extend our analysis to smaller missions and those to targets other than the outer solar system.

  15. Earth Day Illustrated Haiku Contest

    NASA Astrophysics Data System (ADS)

    2007-02-01

    As part of their 2007 Chemists Celebrate Earth Day Celebration, the American Chemical Society is sponsoring an illustrated haiku contest for students in grades K 12 around the theme, Recycling—Chemistry Can!

  16. 12 CFR 1282.12 - Single-family housing goals.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 12 Banks and Banking 9 2013-01-01 2013-01-01 false Single-family housing goals. 1282.12 Section 1282.12 Banks and Banking FEDERAL HOUSING FINANCE AGENCY HOUSING GOALS AND MISSION ENTERPRISE HOUSING GOALS AND MISSION Housing Goals § 1282.12 Single-family housing goals. (a) Single-family housing...

  17. 12 CFR 1282.12 - Single-family housing goals.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 10 2014-01-01 2014-01-01 false Single-family housing goals. 1282.12 Section 1282.12 Banks and Banking FEDERAL HOUSING FINANCE AGENCY HOUSING GOALS AND MISSION ENTERPRISE HOUSING GOALS AND MISSION Housing Goals § 1282.12 Single-family housing goals. (a) Single-family housing...

  18. 12 CFR 1282.12 - Single-family housing goals.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 12 Banks and Banking 9 2012-01-01 2012-01-01 false Single-family housing goals. 1282.12 Section 1282.12 Banks and Banking FEDERAL HOUSING FINANCE AGENCY HOUSING GOALS AND MISSION ENTERPRISE HOUSING GOALS AND MISSION Housing Goals § 1282.12 Single-family housing goals. (a) Single-family housing...

  19. Potential Mission Scenarios Post Asteroid Crewed Mission

    NASA Technical Reports Server (NTRS)

    Lopez, Pedro, Jr.; McDonald, Mark A.

    2015-01-01

    A deep-space mission has been proposed to identify and redirect an asteroid to a distant retrograde orbit around the moon, and explore it by sending a crew using the Space Launch System and the Orion spacecraft. The Asteroid Redirect Crewed Mission (ARCM), which represents the third segment of the Asteroid Redirect Mission (ARM), could be performed on EM-3 or EM-4 depending on asteroid return date. Recent NASA studies have raised questions on how we could progress from current Human Space Flight (HSF) efforts to longer term human exploration of Mars. This paper will describe the benefits of execution of the ARM as the initial stepping stone towards Mars exploration, and how the capabilities required to send humans to Mars could be built upon those developed for the asteroid mission. A series of potential interim missions aimed at developing such capabilities will be described, and the feasibility of such mission manifest will be discussed. Options for the asteroid crewed mission will also be addressed, including crew size and mission duration.

  20. Mission design options for human Mars missions

    NASA Astrophysics Data System (ADS)

    Wooster, Paul D.; Braun, Robert D.; Ahn, Jaemyung; Putnam, Zachary R.

    Trajectory options for conjunction-class human Mars missions are examined, including crewed Earth-Mars trajectories with the option for abort to Earth, with the intent of serving as a resource for mission designers. An analysis of the impact of Earth and Mars entry velocities on aeroassist systems is included, and constraints are suggested for interplanetary trajectories based upon aeroassist system capabilities.

  1. 34 CFR 300.11 - Day; business day; school day.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 34 Education 2 2014-07-01 2013-07-01 true Day; business day; school day. 300.11 Section 300.11 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF SPECIAL EDUCATION AND REHABILITATIVE SERVICES, DEPARTMENT OF EDUCATION ASSISTANCE TO STATES FOR THE EDUCATION...

  2. 34 CFR 300.11 - Day; business day; school day.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 34 Education 2 2013-07-01 2013-07-01 false Day; business day; school day. 300.11 Section 300.11 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF SPECIAL EDUCATION AND REHABILITATIVE SERVICES, DEPARTMENT OF EDUCATION ASSISTANCE TO STATES FOR THE EDUCATION...

  3. 34 CFR 300.11 - Day; business day; school day.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 2 2010-07-01 2010-07-01 false Day; business day; school day. 300.11 Section 300.11 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF SPECIAL EDUCATION AND REHABILITATIVE SERVICES, DEPARTMENT OF EDUCATION ASSISTANCE TO STATES FOR THE EDUCATION...

  4. Monitoring a high-amplitude δ Scuti star for 152 days: discovery of 12 additional modes and modulation effects in the light curve of CoRoT 101155310

    NASA Astrophysics Data System (ADS)

    Poretti, E.; Rainer, M.; Weiss, W. W.; Bognár, Zs.; Moya, A.; Niemczura, E.; Suárez, J. C.; Auvergne, M.; Baglin, A.; Baudin, F.; Benkő, J. M.; Debosscher, J.; Garrido, R.; Mantegazza, L.; Paparó, M.

    2011-04-01

    Aims: The detection of small-amplitude nonradial modes in high-amplitude δ Sct (HADS) variables has been very elusive until at least five of them were detected in the light curve of V974 Oph obtained from ground-based observations. The combination of radial and nonradial modes has a high asteroseismic potential, thanks to the strong constraints we can put in the modelling. The continuous monitoring of ASAS 192647-0030.0 ≡ CoRoT 101155310 (P = 0.1258 d, V = 13.4) ensured from space by the CoRoT (COnvection, ROtation and planetary Transits) mission constitutes a unique opportunity to exploit such potential. Methods: The 22270 CoRoT measurements were performed in the chromatic mode. They span 152 d and cover 1208 consecutive cycles. After the correction for one jump and the long-term drift, the level of the noise turned out to be 29 μmag. The phase shifts and amplitude ratios of the coloured CoRoT data, the HARPS spectra, and the period-luminosity relation were used to determine a self-consistent physical model. In turn, it allowed us to model the oscillation spectrum, also giving feedback on the internal structure of the star. Results: In addition to the fundamental radial mode f1 = 7.949 d-1 with harmonics up to 10f1, we detected 12 independent terms. Linear combinations were also found and the light curve was solved by means of 61 frequencies (smallest amplitude 0.10 mmag). The newest result is the detection of a periodic modulation of the f1 mode (triplets at ± 0.193 d-1 centred on f1 and 2f1), discussed as a rotational effect or as an extension of the Blazhko effect to HADS stars. The physical model suggests that CoRoT 101155310 is an evolved star, with a slight subsolar metallic abundance, close to the terminal age main sequence. All the 12 additional terms are identified with mixed modes in the predicted overstable region. The CoRoT space mission was developed and is operated by the French space agency CNES, with the participation of ESA's RSSD and Science

  5. Space Mission Human Reliability Analysis (HRA) Project

    NASA Technical Reports Server (NTRS)

    Boyer, Roger

    2014-01-01

    The purpose of the Space Mission Human Reliability Analysis (HRA) Project is to extend current ground-based HRA risk prediction techniques to a long-duration, space-based tool. Ground-based HRA methodology has been shown to be a reasonable tool for short-duration space missions, such as Space Shuttle and lunar fly-bys. However, longer-duration deep-space missions, such as asteroid and Mars missions, will require the crew to be in space for as long as 400 to 900 day missions with periods of extended autonomy and self-sufficiency. Current indications show higher risk due to fatigue, physiological effects due to extended low gravity environments, and others, may impact HRA predictions. For this project, Safety & Mission Assurance (S&MA) will work with Human Health & Performance (HH&P) to establish what is currently used to assess human reliabiilty for human space programs, identify human performance factors that may be sensitive to long duration space flight, collect available historical data, and update current tools to account for performance shaping factors believed to be important to such missions. This effort will also contribute data to the Human Performance Data Repository and influence the Space Human Factors Engineering research risks and gaps (part of the HRP Program). An accurate risk predictor mitigates Loss of Crew (LOC) and Loss of Mission (LOM).The end result will be an updated HRA model that can effectively predict risk on long-duration missions.

  6. Flora: A Proposed Hyperspectral Mission

    NASA Technical Reports Server (NTRS)

    Ungar, Stephen; Asner, Gregory; Green, Robert; Knox, Robert

    2006-01-01

    In early 2004, one of the authors (Stephen Ungar, NASA GSFC) presented a mission concept called "Spectrasat" at the AVIRIS Workshop in Pasadena, CA. This mission concept grew out of the lessons learned from the Earth Observing-One (EO-1) Hyperion Imaging Spectrometer and was structured to more effectively accomplish the types of studies conducted with Hyperion. The Spectrasat concept represented an evolution of the technologies and operation strategies employed on EO-I. The Spectrasat concept had been preceded by two community-based missions proposed by Susan Ustin, UC Davis and Robert Green, NASA JPL. As a result of community participation, starting at this AVIRIS Workshop, the Spectrasat proposal evolved into the Flora concept which now represents the combined visions of Gregory Asner (Carnegie Institute), Stephen Ungar, Robert Green and Robert Knox, NASA GSFC. Flora is a proposed imaging spectrometer mission, designed to address global carbon cycle science issues. This mission centers on measuring ecological disturbance for purposes of ascertaining changes in global carbon stocks and draws heavily on experience gained through AVIRIS airborne flights and Hyperion space born flights. The observing strategy exploits the improved ability of imaging spectrometers, as compared with multi-spectral observing systems, to identify vegetation functional groups, detect ecosystem response to disturbance and assess the related discovery. Flora will be placed in a sun synchronous orbit, with a 45 meter pixel size, a 90 km swath width and a 31 day repeat cycle. It covers the spectral range from 0.4 to 2.5 micrometers with a spectral sampling interval of 10 nm. These specifications meet the needs of the Flora science team under the leadership of Gregory Asner. Robert Green, has introduced a spectrometer design for Flora which is expected to have a SNR of 600: 1 in the VNIR and 450: 1 in the SWIR. The mission team at NASA GSFC is designing an Intelligent Payload Module (IPM

  7. Editing the Mission.

    ERIC Educational Resources Information Center

    Walsh, Sharon; Fogg, Piper

    2002-01-01

    Discusses the decision by Columbia University's new president to reevaluate the mission of its journalism school before naming a new dean, in order to explore how the journalism school fits into the mission of a research university. (EV)

  8. Soviet Mission Control Center

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This photo is an overall view of the Mission Control Center in Korolev, Russia during the Expedition Seven mission. The Expedition Seven crew launched aboard a Soyez spacecraft on April 26, 2003. Photo credit: NASA/Bill Ingalls

  9. Space missions to comets

    NASA Technical Reports Server (NTRS)

    Neugebauer, M. (Editor); Yeomans, D. K. (Editor); Brandt, J. C. (Editor); Hobbs, R. W. (Editor)

    1979-01-01

    The broad impact of a cometary mission is assessed with particular emphasis on scientific interest in a fly-by mission to Halley's comet and a rendezvous with Tempel 2. Scientific results, speculations, and future plans are discussed.

  10. Fast piloted missions to Mars using nuclear electric propulsion

    NASA Astrophysics Data System (ADS)

    George, Jeffery A.; Hack, Kurt J.; Dudzinski, Leonard A.

    1992-01-01

    Nuclear electric propulsion is investigated for suitability to ``fast'' piloted Mars mission of approximateley 400 days or less duration using Split opposition mission scenarios with 30 day stay and Earth Crew Capture Vehicle return. Mission performance was assessed for a range of NEP technologies. Modular NEP systems utilizing SP-100 reactor, potassium Rankine power conversion, and argon ion thruster technologies were found to enable 400 day class missions with total power levels of only 10 to 15 MWe. More advanced NEP technologies, such as higher temperature lithium-cooled reactors with 1500 K potassium Rankine power conversion, were found to allow missions of one year duration at a 15 MWe power level. Highly advanced NEP systems, characterized by specific masses of 3 kg/kWe, could some day allow 300 day missions for power levels of 40 MWe. Mars cargo mission analysis is performed to assess total mass requirements for a Split mission. Various mission options are compared, including Split versus All-Up mission scenarios, propulsive versus aerocapture Earth crew return, and reusable versus expendable strategies.

  11. The Asteroid Redirect Mission (ARM)

    NASA Astrophysics Data System (ADS)

    Abell, Paul; Gates, Michele; Johnson, Lindley; Chodas, Paul; Mazanek, Dan; Reeves, David; Ticker, Ronald

    2016-07-01

    To achieve its long-term goal of sending humans to Mars, the National Aeronautics and Space Administration (NASA) plans to proceed in a series of incrementally more complex human spaceflight missions. Today, human flight experience extends only to Low-Earth Orbit (LEO), and should problems arise during a mission, the crew can return to Earth in a matter of minutes to hours. The next logical step for human spaceflight is to gain flight experience in the vicinity of the Moon. These cis-lunar missions provide a "proving ground" for the testing of systems and operations while still accommodating an emergency return path to the Earth that would last only several days. Cis-lunar mission experience will be essential for more ambitious human missions beyond the Earth-Moon system, which will require weeks, months, or even years of transit time. In addition, NASA has been given a Grand Challenge to find all asteroid threats to human populations and know what to do about them. Obtaining knowledge of asteroid physical properties combined with performing technology demonstrations for planetary defense provide much needed information to address the issue of future asteroid impacts on Earth. Hence the combined objectives of human exploration and planetary defense give a rationale for the Asteroid Re-direct Mission (ARM). Mission Description: NASA's ARM consists of two mission segments: 1) the Asteroid Redirect Robotic Mission (ARRM), the first robotic mission to visit a large (greater than ~100 m diameter) near-Earth asteroid (NEA), collect a multi-ton boulder from its surface along with regolith samples, demonstrate a planetary defense technique, and return the asteroidal material to a stable orbit around the Moon; and 2) the Asteroid Redirect Crewed Mission (ARCM), in which astronauts will take the Orion capsule to rendezvous and dock with the robotic vehicle, conduct multiple extravehicular activities to explore the boulder, and return to Earth with samples. NASA's proposed

  12. Mission objectives and trajectories

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The present state of the knowledge of asteroids was assessed to identify mission and target priorities for planning asteroidal flights in the 1980's and beyond. Mission objectives, mission analysis, trajectory studies, and cost analysis are discussed. A bibliography of reports and technical memoranda is included.

  13. A Neptune Orbiter Mission

    NASA Technical Reports Server (NTRS)

    Wallace, R. A.; Spilker, T. R.

    1998-01-01

    This paper describes the results of new analyses and mission/system designs for a low cost Neptune Orbiter mission. Science and measurement objectives, instrumentation, and mission/system design options are described and reflect an aggressive approach to the application of new advanced technologies expected to be available and developed over the next five to ten years.

  14. Threads of Mission Success

    NASA Technical Reports Server (NTRS)

    Gavin, Thomas R.

    2006-01-01

    This viewgraph presentation reviews the many parts of the JPL mission planning process that the project manager has to work with. Some of them are: NASA & JPL's institutional requirements, the mission systems design requirements, the science interactions, the technical interactions, financial requirements, verification and validation, safety and mission assurance, and independent assessment, review and reporting.

  15. Mission operations management

    NASA Technical Reports Server (NTRS)

    Rocco, David A.

    1994-01-01

    Redefining the approach and philosophy that operations management uses to define, develop, and implement space missions will be a central element in achieving high efficiency mission operations for the future. The goal of a cost effective space operations program cannot be realized if the attitudes and methodologies we currently employ to plan, develop, and manage space missions do not change. A management philosophy that is in synch with the environment in terms of budget, technology, and science objectives must be developed. Changing our basic perception of mission operations will require a shift in the way we view the mission. This requires a transition from current practices of viewing the mission as a unique end product, to a 'mission development concept' built on the visualization of the end-to-end mission. To achieve this change we must define realistic mission success criteria and develop pragmatic approaches to achieve our goals. Custom mission development for all but the largest and most unique programs is not practical in the current budget environment, and we simply do not have the resources to implement all of our planned science programs. We need to shift our management focus to allow us the opportunity make use of methodologies and approaches which are based on common building blocks that can be utilized in the space, ground, and mission unique segments of all missions.

  16. STS-79 Flight Day 9

    NASA Technical Reports Server (NTRS)

    1996-01-01

    On this ninth day of the STS-79 mission, the flight crew, Cmdr. William F. Readdy, Pilot Terrence W. Wilcutt, Mission Specialists, Thomas D. Akers, Shannon Lucid, Jay Apt, and Carl E. Walz having completed five days of joint operations between the American astronauts and the Russian cosmonauts are seen flying solo once again after undocking from the Mir Space Station. As Atlantis/Mir flew over the Ural Mountains of central Asia, the docking hooks and latches that joined the vehicles together were commanded open and Atlantis drifted slowly away from Mir. Wilcutt then initiated a tail-forward fly-around of the Russian space station. After one and one-half revolutions around Mir, Atlantis' jets were fired in a separation maneuver to enable Atlantis to break away from Mir. On board Atlantis, the six-member crew is settling back into its normal routine with a fairly light schedule for the remainder of the day. Early in the morning as Atlantis flew over the United States, the crew took time to talk with anchors for the CBS Up to the Minute' network news broadcast.

  17. Atmospheric Science and the JIMO Mission

    NASA Technical Reports Server (NTRS)

    Simon-Miller, A. A.

    2003-01-01

    The Jupiter Icy Moons Orbiter mission will intensely study Callisto, Ganymede and Eu- ropa for several years. During its orbital tour, there will be long periods (approximately 300 days) where the spacecraft is spiraling in from one satellite to the next, giving the perfect opportunity to study Jupiter's atmosphere. The obvious question is, 'Why do we need JIMO to do this, after Voyager, Galileo and the Cassini flyby?' Much like the satellite science from these missions, atmospheric science still has many outstanding questions, some of which were raised by these missions. In addition, virtually every measurable quantity on Jupiter varies both spatially and temporally, and previous missions did not supply the coverage needed to address them. The JIMO mission offers an outstanding opportunity for the global and long temporal coverage needed to answer these questions.

  18. STS-70 Mission Commander Henricks inspects tire

    NASA Technical Reports Server (NTRS)

    1995-01-01

    STS-70 Mission Commander Terence 'Tom' Henricks inspects the nose wheel landing gear tires of the Space Shuttle Orbiter Discovery along with Mission Specialist Mary Ellen Weber after the spaceplane touched down on KSC's Runway 33 to successfully conclude the nearly nine-day space flight. Main gear touchdown was unofficially listed at 8:02 a.m. EDT on July 22, 1995 on the second landing attempt after the first opportunity was waved off. The orbiter was originally scheduled to land on the 21st, but fog and low visibility at the Shuttle Landing Facility led to the one-day extension. This was the 24th landing at KSC and the 70th Space Shuttle mission. During the space flight, the five-member crew deployed the NASA Tracking and Data Relay Satellite-G (TDRS- G). The other crew members were Pilot Kevin R. Kregel and Mission Specialists Nancy Jane Currie and Donald A. Thomas.

  19. The effects of GnRH analogue (buserelin) or hCG (Chorulon) on Day 12 of pregnancy on ovarian function, plasma hormone concentrations, conceptus growth and placentation in ewes and ewe lambs.

    PubMed

    Khan, T H; Beck, N F G; Khalid, M

    2007-12-01

    The objectives of this study were to determine the effect of GnRH analogue (buserelin) or human chorionic gonadotrophin (hCG, Chorulon) treatment on Day 12 of pregnancy on ovarian function, plasma hormone concentrations, conceptus growth and placentation in ewes and ewe lambs. After oestrus synchronization with progestagen sponges and eCG, all the animals were mated with fertile rams. Both ewes and ewe lambs (20 per treatment group) were given either normal saline or 4 microg GnRH or 200 IU hCG on Day 12 post-mating. Pre- and post-treatment plasma hormone concentrations were determined in seven pregnant animals per treatment group in samples collected 1h before and 0, 2, 4, 6, 8, 24, 48 and 72 h after treatment. Overall mean progesterone concentrations were higher (P<0.001) in ewes as compared with ewe lambs in saline-treated controls. GnRH or hCG treatment increased (P<0.001) mean plasma progesterone concentrations in both age groups, however, post-treatment concentrations were significantly (P<0.05) higher in ewes than in ewe lambs. Oestradiol concentrations were similar in the two control groups. In ewes, but not in ewe lambs, both GnRH and hCG treatments significantly (P<0.05) increased the mean oestradiol concentrations above pre-treatment levels. Moreover, post-treatment oestradiol concentrations in GnRH- and hCG-treated animals were significantly (P<0.05) higher than those in the saline-treated controls. LH release in response to GnRH treatment was greater (P<0.05) in ewes than in ewe lambs, whereas FSH release in ewes was less (P<0.05) than that of ewe lambs. The effects of GnRH or hCG on conceptus growth and placentation was determined at slaughter on Day 25. In ewes, GnRH treatment increased (P<0.05) luteal weight, amniotic sac width and length, and crown-rump length compared with controls, but had no effect on these parameters in ewe lambs. In ewes, hCG treatment also enhanced (P<0.05) luteal weight, amniotic sac width and length, crown-rump length

  20. Efficacy and safety of agomelatine (10 or 25 mg/day) in non-depressed out-patients with generalized anxiety disorder: A 12-week, double-blind, placebo-controlled study.

    PubMed

    Stein, Dan J; Ahokas, Antti; Jarema, Marek; Avedisova, Alla S; Vavrusova, Livia; Chaban, Oleg; Gruget, Céline; Olivier, Valérie; Picarel-Blanchot, Françoise; de Bodinat, Christian

    2017-03-12

    Agomelatine is efficacious in reducing symptoms and preventing relapse in placebo-controlled trials in generalised anxiety disorder (GAD). Nevertheless, fixed dose studies of agomelatine in GAD have not been undertaken. To determine the minimally effective optimal dose of agomelatine in GAD, the efficacy of two doses of agomelatine (10 and 25mg/day) was investigated in a 12-week, placebo-controlled, double-blind, international study in patients with a primary diagnosis of GAD. The primary outcome measure was the Hamilton Anxiety scale (HAM-A). The study was undertaken in 35 clinical centers in Finland, Russia, Poland, Slovakia and Ukraine from August 2013 to January 2015. 131 out-patients were included in the agomelatine 10mg group, 139 in the agomelatine 25mg group, and 142 in the placebo group. Both doses of agomelatine were associated with significant decreases in the HAM-A at week 12 (difference versus placebo of 7.16±1.00 at 10mg and 11.08±0.98 at 25mg, p<0.0001). Significant effects on all secondary measures were found for both doses at week 12; including psychic and somatic HAM-A subscales, response rate, remission on the HAM-A, and functional impairment. Findings were confirmed in subsets of more severely ill patients on all endpoints. The low placebo response rate observed in this study was consistent with an increase in the quality of data collected. Agomelatine was well-tolerated by patients, with minimal distinctions from placebo. There was a dose effect of agomelatine, with a greater placebo-agomelatine difference in the agomelatine 25mg group, compared to the agomelatine 10mg group.The present data support early work indicating the efficacy and tolerability of agomelatine in the treatment of GAD.

  1. Applications Spacelab missions

    NASA Technical Reports Server (NTRS)

    Pellerin, C. J., Jr.

    1979-01-01

    The paper presents the plans of the Office of Space and Terrestrial Applications for the Shuttle/Spacelab missions. It is reported that the current program contains dedicated low-gravity mission (Spacelab 3 mission) and several minor missions planned for flight during 1980-1982. It is noted that these missions have either Materials Processing or Earth viewing emphasis. Finally, several representative experiments are used to illustrate the Applications Spacelab Program, such as the Materials Experiment Assembly (MEA), and the Atmospheric Trace Molecule Measured by Spectroscopy (ATMOS) experiment.

  2. The Ulysses mission

    NASA Technical Reports Server (NTRS)

    Marsden, R. G.; Wenzel, K.-P.; Smith, E. J.

    1986-01-01

    The Ulysses mission to explore the heliosphere within a few astronomical units of the sun over the full range of heliographic latitudes, thereby providing the first characterization of the uncharted third heliospheric dimension, is discussed. The scientific objectives of the mission are reviewed, and the nine flight experiments which make up the spacecraft payload are summarized. The Ulysses trajectory and mission timeline are described, as are the spacecraft itself and the mission operations. The timing of the mission with the solar cycle is discussed.

  3. Computer graphics aid mission operations. [NASA missions

    NASA Technical Reports Server (NTRS)

    Jeletic, James F.

    1990-01-01

    The application of computer graphics techniques in NASA space missions is reviewed. Telemetric monitoring of the Space Shuttle and its components is discussed, noting the use of computer graphics for real-time visualization problems in the retrieval and repair of the Solar Maximum Mission. The use of the world map display for determining a spacecraft's location above the earth and the problem of verifying the relative position and orientation of spacecraft to celestial bodies are examined. The Flight Dynamics/STS Three-dimensional Monitoring System and the Trajectroy Computations and Orbital Products System world map display are described, emphasizing Space Shuttle applications. Also, consideration is given to the development of monitoring systems such as the Shuttle Payloads Mission Monitoring System and the Attitude Heads-Up Display and the use of the NASA-Goddard Two-dimensional Graphics Monitoring System during Shuttle missions and to support the Hubble Space Telescope.

  4. Sun-Earth Day, 2001

    NASA Technical Reports Server (NTRS)

    Adams, Mitzi L.; Mortfield, P.; Hathaway, D. H.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    To promote awareness of the Sun-Earth connection, NASA's Marshall Space Flight Center, in collaboration with the Stanford SOLAR Center, sponsored a one-day Sun-Earth Day event on April 27, 2001. Although "celebrated" on only one day, teachers and students from across the nation, prepared for over a month in advance. Workshops were held in March to train teachers. Students performed experiments, results of which were shared through video clips and an internet web cast. Our poster includes highlights from student experiments (grades 2 - 12), lessons learned from the teacher workshops and the event itself, and plans for Sun-Earth Day 2002.

  5. Earth Observing-1 Extended Mission

    USGS Publications Warehouse

    ,

    2003-01-01

    From its beginning in November 2000, the NASA Earth Observing-1 (EO-1) mission demonstrated the feasibility and performance of a dozen innovative sensor, spacecraft, and operational technologies. The 1-year mission tested a variety of technologies, some of which may be included on the planned 2007 Landsat Data Continuity Mission. Onboard the spacecraft are two land remote sensing instruments: the Advanced Land Imager (ALI), which acquires data in spectral bands and at resolutions similar to Landsat, and Hyperion, which acquires data in 220 10-nanometer-wide bands covering the visible, near-, and shortwave-infrared bands. Recognizing the remarkable performance of the satellite's instruments and the exceptional value of the data, the U.S. Geological Survey (USGS) and NASA agreed in December 2001 to share responsibility for operating EO-1 on a cost-reimbursable basis as long as customer sales are sufficient to recover flight and ground operations costs. The EO-1 extended mission operates within constraints imposed by its technology-pioneering origins, but it also provides unique and valuable capabilities. The spacecraft can acquire a target scene three times in a 16-day period. The ALI instrument has additional spectral coverage and greater radiometric dynamic range compared with the sensors on Landsat 7. Hyperion is the first civilian spaceborne hyperspectral imager. As of January 2003, more than 5,000 scenes had been acquired, indexed, and archived.

  6. UAV Mission Planning under Uncertainty

    DTIC Science & Technology

    2006-06-01

    and outputs of our problem, and explains any assumptions that we make in it. Chapter 4 -Problem Formulation. In this chapter we develop the mathemat...anid Sim [12]. We then present our formulation for the UAV mission planner, and explain any assumptions we make in it. Chapter 5 -Tests and Analysis...is the first application of the Bertsimas- Sim method to a Vehicle Routing Problem with Time Windows (VRPTW), to our knowledge. The research makes a

  7. When Every Day Is Professional Development Day

    ERIC Educational Resources Information Center

    Tienken, Christopher H.; Stonaker, Lew

    2007-01-01

    In the Monroe Township (New Jersey) Public Schools, teachers' learning occurs daily, not just on one day in October and February. Central office and school-level administrators foster job-embedded teacher growth. Every day is a professional development day in the district, but that has not always been so. How did the district become a system with…

  8. Academic survival through mission-based management.

    PubMed

    Brigham, E J; Tellers, C A; Rondinelli, R

    2001-10-01

    This article summarizes the DeLisa lecture and 3-day course of the same name offered at the 2001 Annual Association of Academic Physiatrists Educational Conference, in Hilton Head, South Carolina. The authors briefly discuss the historical school of medicine management approach and the rationale behind mission-based management. The three components of mission-based management are then reviewed along with issues pertaining to their development, implementation, and utilization. Finally, potential operational and political obstacles related to mission-based management are discussed, and recommendations for avoiding political difficulties are presented.

  9. Accompanied by the Shuttle Training Aircraft, Discovery touches down after successful mission STS-95

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Viewed across the creek bordering runway 33, orbiter Discovery prepares to touch down at the Shuttle Landing Facility after a successful mission of nearly nine days and 3.6 million miles. Flying above it is the Shuttle Training Aircraft. Main gear touchdown was at 12:04 p.m. EST, landing on orbit 135. In the background, right, is the Vehicle Assembly Building. The STS-95 crew consists of Mission Commander Curtis L. Brown Jr.; Pilot Steven W. Lindsey; Mission Specialist Scott E. Parazynski; Mission Specialist Stephen K. Robinson; Payload Specialist John H. Glenn Jr., senator from Ohio; Mission Specialist Pedro Duque, with the European Space Agency (ESA); and Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA). The mission included research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.

  10. Radiation dosimetry measurements during U.S. Space Shuttle missions with the RME-III

    NASA Technical Reports Server (NTRS)

    Golightly, M. J.; Hardy, K.; Quam, W.

    1994-01-01

    Time-resolved radiation dosimetry measurements inside the crew compartment have been made during recent Shuttle missions with the U.S. Air Force Radiation Monitoring Equipment-III (RME-III), a portable battery-powered four-channel tissue equivalent proportional counter. Results from the first six missions are presented and discussed. Half of the missions had orbital inclinations of 28.5 degrees with the remainder at inclinations of 57 degrees or greater; altitudes ranged from 300 to 600 km. The determined dose equivalent rates ranged from 70 to 5300 microSv/day. The RME-III measurements are in good agreement with other dosimetry measurements made aboard the vehicles. Measurements indicate that medium- and high-LET particles contribute less than 2% of the particle fluence for all missions, but up to 50% of the dose equivalent, depending on the spacecraft's altitude and orbital inclination. Isocontours of fluence, dose and dose equivalent rate have been developed from measurements made during the STS-28 mission. The drift rate of the South Atlantic Anomaly is estimated to be 0.49 degrees W/yr and 0.12 degrees N/yr. The calculated trapped proton and GCR dose for the STS-28 mission was significantly lower than the measured values.

  11. Applications Explorer Missions (AEM): Mission planners handbook

    NASA Technical Reports Server (NTRS)

    Smith, S. R. (Editor)

    1974-01-01

    The Applications Explorer Missions (AEM) Program is a planned series of space applications missions whose purpose is to perform various tasks that require a low cost, quick reaction, small spacecraft in a dedicated orbit. The Heat Capacity Mapping Mission (HCMM) is the first mission of this series. The spacecraft described in this document was conceived to support a variety of applications instruments and the HCMM instrument in particular. The maximum use of commonality has been achieved. That is, all of the subsystems employed are taken directly or modified from other programs such as IUE, IMP, RAE, and Nimbus. The result is a small versatile spacecraft. The purpose of this document, the AEM Mission Planners Handbook (AEM/MPH) is to describe the spacecraft and its capabilities in general and the HCMM in particular. This document will also serve as a guide for potential users as to the capabilities of the AEM spacecraft and its achievable orbits. It should enable each potential user to determine the suitability of the AEM concept to his mission.

  12. The Space Interferometry Mission

    NASA Technical Reports Server (NTRS)

    Unwin, Stephen C.

    1998-01-01

    The Space Interferometry Mission (SIM) is the next major space mission in NASA's Origins program after SIRTF. The SIM architecture uses three Michelson interferometers in low-earth orbit to provide 4 microarcsecond precision absolute astrometric measurements on approx. 40,000 stars. SIM will also provide synthesis imaging in the visible waveband to a resolution of 10 milliarcsecond, and interferometric nulling to a depth of 10(exp -4). A near-IR (1-2 micron) capability is being considered. Many key technologies will be demonstrated by SIM that will be carried over directly or can be readily scaled to future Origins missions such as TPF. The SIM spacecraft will carry a triple Michelson interferometer with baselines in the 10 meter range. Two interferometers act as high precision trackers, providing attitude information at all time, while the third one conducts the science observations. Ultra-accurate laser metrology and active systems monitor the systematic errors and to control the instrument vibrations in order to reach the 4 microarcsecond level on wide-angle measurements. SIM will produce a wealth of new astronomical data. With an absolute positional precision of 4 microarcsecond, SIM will improve on the best currently available measures (the Hipparcos catalog) by 2 or 3 orders of magnitude, providing parallaxes accurate to 10% and transverse velocities to 0.2 km/s anywhere in the Galaxy, to stars as faint as 20th magnitude. With the addition of radial velocities, knowledge of the 6-dimension phase space for objects of interest will allow us to attack a wide array of previously inaccessible problems such as: search for planets down to few earth masses; calibration of stellar luminosities and by means of standard candles, calibration of the cosmic distance scale; detecting perturbations due to spiral arms, disk warps and central bar in our galaxy; probe of the gravitational potential of the Galaxy, several kiloparsecs out of the galactic plane; synthesis imaging

  13. STS-112 Flight Day 10 Highlights

    NASA Technical Reports Server (NTRS)

    2002-01-01

    On Flight Day 10 of the STS-112 mission, its crew (Jeffrey Ashby, Commander; Pamela Melroy, Pilot; David Wolf, Mission Specialist; Piers Sellers, Mission Specialist; Sandra Magnus, Mission Specialist; Fyodor Yurchikhin, Mission Specialist) on the Atlantis and the Expedition 5 crew on the International Space Station (ISS) (Valery Korzun, Commander; Peggy Whitson, Flight Engineer; Sergei Treschev, Flight Engineer) are shown exchanging farewells in the ISS's Destiny Laboratory Module following the completion of a week-long period of docked operations. The Expedition 5 crew is nearing the end of five and a half continuous months aboard the space station. Following the closing of the hatches, the Atlantis Orbiter undocks from the station, and Melroy pilots the shuttle slowly away from the ISS, and engages in a radial fly-around of the station. During the fly-around cameras aboard Atlantis shows ISS from a number of angles. ISS cameras also show Atlantis. There are several shots of each craft with a variety of background settings including the Earth, its limb, and open space. The video concludes with a live interview of Ashby, Melroy and Yurchikhin, still aboard Atlantis, conducted by a reporter on the ground. Questions range from feelings on the conclusion of the mission to the experience of being in space. The primary goal of the mission was the installation of the Integrated Truss Structure S1 on the ISS.

  14. STS-88 Day 11 Highlights

    NASA Technical Reports Server (NTRS)

    1998-01-01

    On this eleventh day of the STS-88 mission, the flight crew, Commander Robert D. Cabana, Pilot Frederick W. Sturckow, and Mission Specialists Nancy J. Currie, James H. Newman, Jerry L. Ross, and Sergei Krikalev are awakened with the song "Goodnight, Sweetheart, Goodnight". Pilot Rick Sturckow undocks Endeavour from the station and backs the shuttle away to a distance of 450 feet above the station before beginning a nose-forward fly-around. Later Cabana, Sturckow and Ross deploy the SAC-A satellite from Endeavour's payload bay. SAC-A is a small, self-contained, non-recoverable satellite built by the Argentinean National Commission of Space Activities. The cube-shaped, 590-pound satellite will test and characterize the performance of new equipment and technologies that may be used in future scientific or operational missions. The payload includes a differential global positioning system, a magnetometer, silicon solar cells, a charge-coupled device Earth camera and a whale tracker experiment.

  15. INTEGRITY - Integrated Human Exploration Mission Simulation Facility

    NASA Technical Reports Server (NTRS)

    Henninger, Donald L.

    2002-01-01

    It is proposed to develop a high-fidelity ground facility to carry out long-duration human exploration mission simulations. These would not be merely computer simulations - they would in fact comprise a series of actual missions that just happen to stay on earth. These missions would include all elements of an actual mission, using actual technologies that would be used for the real mission. These missions would also include such elements as extravehicular activities, robotic systems, telepresence and teleoperation, surface drilling technology-all using a simulated planetary landscape. A sequence of missions would be defined that get progressively longer and more robust, perhaps a series of five or six missions over a span of 10 to 15 years ranging in duration from 180 days up to 1000 days. This high-fidelity ground facility would operate hand-in-hand with a host of other terrestrial analog sites such as the Antarctic, Haughton Crater, and the Arizona desert. Of course, all of these analog mission simulations will be conducted here on earth in 1-g, and NASA will still need the Shuttle and ISS to carry out all the microgravity and hypogravity science experiments and technology validations. The proposed missions would have sufficient definition such that definitive requirements could be derived from them to serve as direction for all the program elements of the mission. Additionally, specific milestones would be established for the "launch" date of each mission so that R&D programs would have both good requirements and solid milestones from which to .build their implementation plans. Mission aspects that could not be directly incorporated into the ground facility would be simulated via software. New management techniques would be developed for evaluation in this ground test facility program. These new techniques would have embedded metrics which would allow them to be continuously evaluated and adjusted so that by the time the sequence of missions is completed, the

  16. Large-Scale Mapping and Monitoring of Terrestrial Ecosystems with the NISAR Mission

    NASA Astrophysics Data System (ADS)

    Kellndorfer, J. M.; Dubayah, R.; Siqueira, P.; Saatchi, S. S.; Chapman, B. D.; Rosen, P. A.

    2014-12-01

    Set to launch at the early part of the next decade, the NI-SAR mission will measure globally the spatial distribution of vegetation and biomass to understand changes and trends in terrestrial forest and wetland ecosystems and their functioning as carbon sources and sinks, and characterize and quantify changes resulting from forest disturbance and recovery. Novel technology provides for unprecedented forest monitoring and ecosystem structure assessment with NI-SAR based on a 12-m reflector L-band scan-on-receive configuration (known as SweepSAR), which allows for a greater than 240 km swath and unprecedented global wall-to-wall coverage with a 12-day repeat cycle at pixel resolutions better than 25 m. Data from the mission will be made freely available through NASA's open data policy. Latency for basic data products such as co- and cross-pol reflectivity is expected to be less than several days. Through this capability, the mission will provide a crucial tool for forest carbon assessment and monitoring, important for treaties like REDD+, forest inundation monitoring, improved carbon stock estimates for low biomass regions, and monitoring of land-cover conversion to and from agricultural production. In this paper we summarize the capability of NI-SAR's observing strategy, anticipated approaches for monitoring forests, wetlands, and agricultural lands and their changes. We review the science background, science objectives and requirements, and data products stemming from the mission.

  17. Magnetospheric Multiscale (MMS) Mission Attitude Ground System Design

    NASA Technical Reports Server (NTRS)

    Sedlak, Joseph E.; Superfin, Emil; Raymond, Juan C.

    2010-01-01

    This paper describes the attitude ground system (AGS) design to be used for support of the Magnetospheric MultiScale (MMS) mission. The AGS exists as one component of the mission operations control center. It has responsibility for validating the onboard attitude and accelerometer bias estimates, calibrating the attitude sensors and the spacecraft inertia tensor, and generating a definitive attitude history for use by the science teams. NASA's Goddard Space Flight Center (GSFC) in Greenbelt, Maryland is responsible for developing the MMS spacecraft, for the overall management of the MMS mission, and for mission operations. MMS is scheduled for launch in 2014 for a planned two-year mission. The MMS mission consists of four identical spacecraft flying in a tetrahedral formation in an eccentric Earth orbit. The relatively tight formation, ranging from 10 to 400 km, will provide coordinated observations giving insight into small-scale magnetic field reconnection processes. By varying the size of the tetrahedron and the orbital semi-major axis and eccentricity, and making use of the changing solar phase, this geometry allows for the study of both bow shock and magnetotail plasma physics, including acceleration, reconnection, and turbulence. The mission divides into two phases for science; these phases will have orbit dimensions of 1.2 x 12 Earth radii in the first phase and 1.2x25 Earth radii in the second in order to study the dayside magnetopause and the nightside magnetotail, respectively. The orbital periods are roughly one day and three days for the two mission phases. Each of the four MMS spacecraft will be spin stabilized at 3 revolutions per minute (rpm), with the spin axis oriented near the ecliptic north pole but tipped approximately 2.5 deg towards the Sun line. The main body of each spacecraft will be an eight-sided platform with diameter of 3.4 m and height of 1.2 m. Several booms are attached to this central core: two axial booms of 14.9 m length, two

  18. The EXIST Mission Concept Study

    NASA Technical Reports Server (NTRS)

    Fishman, Gerald J.; Grindlay, J.; Hong, J.

    2008-01-01

    EXIST is a mission designed to find and study black holes (BHs) over a wide range of environments and masses, including: 1) BHs accreting from binary companions or dense molecular clouds throughout our Galaxy and the Local Group, 2) supermassive black holes (SMBHs) lying dormant in galaxies that reveal their existence by disrupting passing stars, and 3) SMBHs that are hidden from our view at lower energies due to obscuration by the gas that they accrete. 4) the birth of stellar mass BHs which is accompanied by long cosmic gamma-ray bursts (GRBs) which are seen several times a day and may be associated with the earliest stars to form in the Universe. EXIST will provide an order of magnitude increase in sensitivity and angular resolution as well as greater spectral resolution and bandwidth compared with earlier hard X-ray survey telescopes. With an onboard optical-infra red (IR) telescope, EXIST will measure the spectra and redshifts of GRBs and their utility as cosmological probes of the highest z universe and epoch of reionization. The mission would retain its primary goal of being the Black Hole Finder Probe in the Beyond Einstein Program. However, the new design for EXIST proposed to be studied here represents a significant advance from its previous incarnation as presented to BEPAC. The mission is now less than half the total mass, would be launched on the smallest EELV available (Atlas V-401) for a Medium Class mission, and most importantly includes a two-telescope complement that is ideally suited for the study of both obscured and very distant BHs. EXIST retains its very wide field hard X-ray imaging High Energy Telescope (HET) as the primary instrument, now with improved angular and spectral resolution, and in a more compact payload that allows occasional rapid slews for immediate optical/IR imaging and spectra of GRBs and AGN as well as enhanced hard X-ray spectra and timing with pointed observations. The mission would conduct a 2 year full sky survey in

  19. Precision orbit determination for the GEOSAT exact repeat mission

    NASA Astrophysics Data System (ADS)

    Smith, J. C.; Ries, J. C.; Shum, C. K.; Schutz, B. E.; Tapley, B. D.

    The Navy's Geodetic Satellite (GEOSAT) was launched on March 12, 1985, carrying a single-frequency microwave altimeter which measures the height of the satellite above the ocean surface to a precision of a few centimeters. The GEOSAT Exact Repeat Mission (ERM), which was initiated in November of 1986, placed the spacecraft in an exact 17 day repeat orbit. The Geophysical Data Records (GDR) for the ERM are available to the scientific community. GEOSAT is tracked by the Navy's OPNET and the Defense Mapping Agency's TRANET doppler tracking systems. The GDR orbits are computed using the OPNET tracking data and have an rms radial accuracy of one to two meters. The initial eighty days of the TRANET data during the ERM were made available for the assessment of the TRANET tracking system to perform precision orbit determination for the Topex/Poseidon Mission. This data was used to compute GEOSAT orbits using an improved gravity model which has been developed as part of the Topex gravity model improvement effort. Accuracy of the orbit was evaluated using altimeter crossover data. For a continuous 17 day GEOSAT orbit, the global crossover rms is at the 35 cm level, which suggests a radial orbit accuracy also on the order of 35 cm.

  20. STS-69 flight day 6 highlights

    NASA Astrophysics Data System (ADS)

    1995-09-01

    After being awakened by the Beatles song, 'A Hard Days Night', the flightcrew of the STS-69 mission, Cmdr. Dave Walker, Pilot Ken Cockrell, and Mission Specialists Jim Voss, Jim Newman, and Mike Gernhardt, began their sixth day in orbit by monitoring the free orbiting Wake Shield Facility (WSF). Later Cmdr. Walker conducted an interview with television reporters from Atlanta and Boston, answering questions about the mission and general questions about NASA's space program. The crew filmed a video fo themselves performing daily routines (eating, shaving, exercising), as well as some of the physiological experiments, and shuttle equipment maintenance and checkout. One of the secondary experiments included the Commercial Generic Bioprocessing Apparatus-7 (CGBA-7), which served as an incubator and experiment station for a variety of tests (agricultural, pharmaceutical, biomedical, and environmental). Earth views included some cloud cover, the Gulf of Mexico, Texas, and the Atlantic Ocean.

  1. STS-107 Flight Day 6 Highlights

    NASA Astrophysics Data System (ADS)

    2003-01-01

    This video shows the activities of the STS-107 crew on flight day 6 of the Columbia orbiter's final mission. The crew members include: Rick Husband, Commander; William McCool, Pilot; Kalpana Chawla, David Brown, Michael Anderson, Laurel Clark; Mission Specialists; Ilan Ramon, Payload Specialist. The primary activities of flight day 6 are spaceborne experiments, and a conversation between Israeli Prime Minister Ariel Sharon, accompanied by the Israeli Minister of Education, and Israeli astronaut Ilan Ramon. Both the Israelis and their interpreter are audible on the tape. The video also features a bioreactor used to grow cancer cells in microgravity, and footage taken by the Mediterranean Israeli Dust Experiment (MEIDEX) of sprites, lightning in the lower ionosphere. Mission Specialist Anderson is shown working on the Laminar Soot Processes (LSP-2) experiment. Pilot McCool answers two questions from the public, and a view of Panama is shown.

  2. The Mission Assessment Post Processor (MAPP): A New Tool for Performance Evaluation of Human Lunar Missions

    NASA Technical Reports Server (NTRS)

    Williams, Jacob; Stewart, Shaun M.; Lee, David E.; Davis, Elizabeth C.; Condon, Gerald L.; Senent, Juan

    2010-01-01

    The National Aeronautics and Space Administration s (NASA) Constellation Program paves the way for a series of lunar missions leading to a sustained human presence on the Moon. The proposed mission design includes an Earth Departure Stage (EDS), a Crew Exploration Vehicle (Orion) and a lunar lander (Altair) which support the transfer to and from the lunar surface. This report addresses the design, development and implementation of a new mission scan tool called the Mission Assessment Post Processor (MAPP) and its use to provide insight into the integrated (i.e., EDS, Orion, and Altair based) mission cost as a function of various mission parameters and constraints. The Constellation architecture calls for semiannual launches to the Moon and will support a number of missions, beginning with 7-day sortie missions, culminating in a lunar outpost at a specified location. The operational lifetime of the Constellation Program can cover a period of decades over which the Earth-Moon geometry (particularly, the lunar inclination) will go through a complete cycle (i.e., the lunar nodal cycle lasting 18.6 years). This geometry variation, along with other parameters such as flight time, landing site location, and mission related constraints, affect the outbound (Earth to Moon) and inbound (Moon to Earth) translational performance cost. The mission designer must determine the ability of the vehicles to perform lunar missions as a function of this complex set of interdependent parameters. Trade-offs among these parameters provide essential insights for properly assessing the ability of a mission architecture to meet desired goals and objectives. These trades also aid in determining the overall usable propellant required for supporting nominal and off-nominal missions over the entire operational lifetime of the program, thus they support vehicle sizing.

  3. Ongoing Mars Missions: Extended Mission Plans

    NASA Astrophysics Data System (ADS)

    Zurek, Richard; Diniega, Serina; Crisp, Joy; Fraeman, Abigail; Golombek, Matt; Jakosky, Bruce; Plaut, Jeff; Senske, David A.; Tamppari, Leslie; Thompson, Thomas W.; Vasavada, Ashwin R.

    2016-10-01

    Many key scientific discoveries in planetary science have been made during extended missions. This is certainly true for the Mars missions both in orbit and on the planet's surface. Every two years, ongoing NASA planetary missions propose investigations for the next two years. This year, as part of the 2016 Planetary Sciences Division (PSD) Mission Senior Review, the Mars Odyssey (ODY) orbiter project submitted a proposal for its 7th extended mission, the Mars Exploration Rover (MER-B) Opportunity submitted for its 10th, the Mars Reconnaissance Orbiter (MRO) for its 4th, and the Mars Science Laboratory (MSL) Curiosity rover and the Mars Atmosphere and Volatile Evolution (MVN) orbiter for their 2nd extended missions, respectively. Continued US participation in the ongoing Mars Express Mission (MEX) was also proposed. These missions arrived at Mars in 2001, 2004, 2006, 2012, 2014, and 2003, respectively. Highlights of proposed activities include systematic observations of the surface and atmosphere in twilight (early morning and late evening), building on a 13-year record of global mapping (ODY); exploration of a crater rim gully and interior of Endeavour Crater, while continuing to test what can and cannot be seen from orbit (MER-B); refocused observations of ancient aqueous deposits and polar cap interiors, while adding a 6th Mars year of change detection in the atmosphere and the surface (MRO); exploration and sampling by a rover of mineralogically diverse strata of Mt. Sharp and of atmospheric methane in Gale Crater (MSL); and further characterization of atmospheric escape under different solar conditions (MVN). As proposed, these activities follow up on previous discoveries (e.g., recurring slope lineae, habitable environments), while expanding spatial and temporal coverage to guide new detailed observations. An independent review panel evaluated these proposals, met with project representatives in May, and made recommendations to NASA in June 2016. In this

  4. STS-79 Flight Day 3

    NASA Technical Reports Server (NTRS)

    1996-01-01

    On this third day of the STS-79 mission, the flight crew, Cmdr. William F. Readdy, Pilot Terrence W. Wilcutt, Mission Specialists, Thomas D. Akers, John E. Blaha, Jay Apt, and Carl E. Walz, start another busy day on orbit activating experiments in the Spacehab module. Readdy and Wilcutt are seen conducting two rendezvous burns while other crew members are seen working in the Spacehab module. The Active Rack Isolation System, or ARIS, is tended to by Walz, who performs a minor maintenance procedure on one of ARIS' vibration-damping pushrods while Akers works with an inventory management system using a bar code reader to more effectively keep track of items that will be transferred back and forth between the Shuttle and the Mir. Apt continues work with a furnace which heats to nearly 1,600 degrees centigrade to melt metal samples for study after the flight. Apt also provides a television tour of the Spacehab, which is twice its normal size for this flight to allow extra room for science experiments and logistical items slated for transfer to Mir.

  5. Manned Mars mission accommodation: Sprint mission

    NASA Astrophysics Data System (ADS)

    Cirillo, William M.; Kaszubowski, Martin J.; Ayers, J. Kirk; Llewellyn, Charles P.; Weidman, Deene J.; Meredith, Barry D.

    1988-04-01

    The results of a study conducted at the NASA-LaRC to assess the impacts on the Phase 2 Space Station of Accommodating a Manned Mission to Mars are documented. In addition, several candidate transportation node configurations are presented to accommodate the assembly and verification of the Mars Mission vehicles. This study includes an identification of a life science research program that would need to be completed, on-orbit, prior to mission departure and an assessment of the necessary orbital technology development and demonstration program needed to accomplish the mission. Also included is an analysis of the configuration mass properties and a preliminary analysis of the Space Station control system sizing that would be required to control the station. Results of the study indicate the Phase 2 Space Station can support a manned mission to Mars with the addition of a supporting infrastructure that includes a propellant depot, assembly hanger, and a heavy lift launch vehicle to support the large launch requirements.

  6. Manned Mars mission accommodation: Sprint mission

    NASA Technical Reports Server (NTRS)

    Cirillo, William M.; Kaszubowski, Martin J.; Ayers, J. Kirk; Llewellyn, Charles P.; Weidman, Deene J.; Meredith, Barry D.

    1988-01-01

    The results of a study conducted at the NASA-LaRC to assess the impacts on the Phase 2 Space Station of Accommodating a Manned Mission to Mars are documented. In addition, several candidate transportation node configurations are presented to accommodate the assembly and verification of the Mars Mission vehicles. This study includes an identification of a life science research program that would need to be completed, on-orbit, prior to mission departure and an assessment of the necessary orbital technology development and demonstration program needed to accomplish the mission. Also included is an analysis of the configuration mass properties and a preliminary analysis of the Space Station control system sizing that would be required to control the station. Results of the study indicate the Phase 2 Space Station can support a manned mission to Mars with the addition of a supporting infrastructure that includes a propellant depot, assembly hangar, and a heavy lift launch vehicle to support the large launch requirements.

  7. The GLAST mission

    NASA Technical Reports Server (NTRS)

    McEnery, Julie

    2006-01-01

    The Gamma-ray Large Area Space Telescope (GLAST) is a next-generation high-energy gamma-ray telescope for studying high energy gamma-ray emission from astrophysical sources. The main instrument is the Large Area Telescope (LAT) which operated in the energy band from 20 MeV to greater than 300 GeV. A second instrument, the Glast Burst Monitor to provide supportive observations of gamma-ray bursts at lower energies. The LAT is a solid state pair-conversion telescope which will have capabilities well beyond those achieved by the highly successful EGRET instrument on the Compton Gamma-ray Observatory. The sensitivity achieved on the entire sky after a single day's observation is similar to the point source sensitivity of EGRET for its entire mission. The large effective area will allow flares from AGN to be detected at much lower flux levels and on far shorter time intervals that has previously been possible from space. The very large field of view will make it possible to monitor approx. 20% of the sky at any instant, and the entire sky on timescale of a few hours. In this talk I will describe the design of the GLAST instruments and discuss their science capabilities.

  8. COSMOS 2044 Mission: Overview

    NASA Technical Reports Server (NTRS)

    Grindeland, R. E.; Ballard, R. W.; Connol, J. P.; Vasques, M. F.

    1992-01-01

    The COSMOS 2044 spaceflight was the ninth Soviet-International joint mission dedicated to space biomedicine and the seventh in which the United States has participated. The unmanned Vostok vehicle carried 10 rats and two rhesus monkeys on its 14-day voyage. This spaceflight yielded an unprecedented bounty of data on physiological responses to the microgravity environment. The tissues studied and the numbers and types of studies performed by members of the international science community constituted a new record. Many of the results obtained by the approximately 80 American scientists who participated are reported in the series of COSMOS 2044 papers in this issue. Descriptions of the spaceflight and animal procedures are detailed elsewhere. The broad goals of the space biomedical program are threefold. The first is to characterize qualitatively and quantitatively the biological responses to the microgravity environment, be they adaptive or pathological. The second goal is to clarify the physiological-biochemical mechanisms mediating the responses to microgravity. The third goal of this program is to use the space environment as a tool to better understand adaptive and disease processes in terrestrial organisms.

  9. International Task Force on Volunteer Cleft Missions.

    PubMed

    Yeow, Vincent K L; Lee, Seng-Teik T; Lambrecht, Thomas J; Barnett, John; Gorney, Mark; Hardjowasito, Widanto; Lemperle, Gottfried; McComb, Harold; Natsume, Nagato; Stranc, Mirek; Wilson, Libby

    2002-01-01

    The International Task Force on Volunteer Cleft Missions was set up to provide a report to be presented at the Eighth International Congress of Cleft Palate and Associated Craniofacial Anomalies on September 12, 1997, in Singapore. The aim of the report was to provide data from a wide range of different international teams performing volunteer cleft missions and, thereafter, based on the collected data, to identify common goals and aims of such missions. Thirteen different groups actively participating in volunteer cleft missions worldwide were selected from the International Confederation of Plastic and Reconstructive Surgery's list of teams actively participating in volunteer cleft missions. Because of the time frame within which the committee had to work, three groups that did not respond by the stipulated deadline were omitted from the committee. The represented members and their respective institutions have undertaken more than 50 volunteer cleft missions to underdeveloped nations worldwide within the last 3 years. They have visited over 20 different countries, treating more than 3,500 patients worldwide. Based on the data collected and by consensus, the committee outlined recommendations for future volunteer cleft missions based on 1) mission objectives, 2) organization, 3) personal health and liability, 4) funding, 5) trainees in volunteer cleft missions, and 6) public relations. The task force believed that all volunteer cleft missions should have well-defined objectives, preferably with long-term plans. The task force also decided that it was impossible to achieve a successful mission without good organization and close coordination. All efforts should be made, and care taken, to ensure that there is minimal morbidity and no mortality. Finally, as ambassadors of goodwill and humanitarian aid, the participants must make every effort to understand and respect local customs and protocol. The main aims are to provide top-quality surgical service, train local

  10. Logistics Needs for Potential Deep Space Mission Scenarios Post Asteroid Redirect Crewed Mission

    NASA Technical Reports Server (NTRS)

    Lopez, Pedro, Jr.; Shultz, Eric; Mattfeld, Bryan; Stromgren, Chel; Goodliff, Kandyce

    2015-01-01

    The Asteroid Redirect Mission (ARM) is currently being explored as the next step towards deep space human exploration, with the ultimate goal of reaching Mars. NASA is currently investigating a number of potential human exploration missions, which will progressively increase the distance and duration that humans spend away from Earth. Missions include extended human exploration in cis-lunar space which, as conceived, would involve durations of around 60 days, and human missions to Mars, which are anticipated to be as long as 1000 days. The amount of logistics required to keep the crew alive and healthy for these missions is significant. It is therefore important that the design and planning for these missions include accurate estimates of logistics requirements. This paper provides a description of a process and calculations used to estimate mass and volume requirements for crew logistics, including consumables, such as food, personal items, gasses, and liquids. Determination of logistics requirements is based on crew size, mission duration, and the degree of closure of the environmental control life support system (ECLSS). Details are provided on the consumption rates for different types of logistics and how those rates were established. Results for potential mission scenarios are presented, including a breakdown of mass and volume drivers. Opportunities for mass and volume reduction are identified, along with potential threats that could possibly increase requirements.

  11. STS-107 Flight Day 5 Highlights

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The fifth day of the STS-107 space mission begins with a presentation of The Six Space Technology and Research Students (STARS) program experiments aboard the Space Shuttle Columbia. Students from Australia, China, Israel, Japan, Lichtenstein and The United States send scientific experiments into space. The video includes the progress of experiments with various insects including silkworms, carpenter bees, ants, fish, and spiders.

  12. STS-110 Flight Day 11 Highlights

    NASA Astrophysics Data System (ADS)

    2002-04-01

    The STS-110 flight day eleven begins with a live television view from the cockpit of the Space Shuttle Atlantis. The crewmembers consist of Commander Michael Bloomfield, Pilot Stephen N. Frick, Mission Specialists Rex J. Walhheim, Ellen Ochoa, Lee M.E. Morin, Jerry L. Ross, and Steven L. Smith. The crewmembers answer questions about the Canadarm 2 and the mobile servicing system.

  13. JPL Mission Bibliometrics

    NASA Technical Reports Server (NTRS)

    Coppin, Ann

    2013-01-01

    For a number of years ongoing bibliographies of various JPL missions (AIRS, ASTER, Cassini, GRACE, Earth Science, Mars Exploration Rovers (Spirit & Opportunity)) have been compiled by the JPL Library. Mission specific bibliographies are compiled by the Library and sent to mission scientists and managers in the form of regular (usually quarterly) updates. Charts showing publications by years are periodically provided to the ASTER, Cassini, and GRACE missions for supporting Senior Review/ongoing funding requests, and upon other occasions as a measure of the impact of the missions. Basically the Web of Science, Compendex, sometimes Inspec, GeoRef and Aerospace databases are searched for the mission name in the title, abstract, and assigned keywords. All get coded for journal publications that are refereed publications.

  14. End of Mission Considerations

    NASA Technical Reports Server (NTRS)

    Hull, Scott M.

    2013-01-01

    While a great deal of effort goes into planning and executing successful mission operations, it is also important to consider the End of the Mission during the planning, design, and operations phases of any mission. Spacecraft and launch vehicles must be disposed of properly in order to limit the generation of orbital debris, and better preserve the orbital environment for all future missions. Figure 30-1 shows a 1990's projected growth of debris with and without the use of responsible disposal techniques. This requires early selection of a responsible disposal scenario, so that the necessary capabilities can be incorporated into the hardware designs. The mission operations must then be conducted in such a way as to preserve, and then actually perform, the planned, appropriate end of mission disposal.

  15. Cyber Network Mission Dependencies

    DTIC Science & Technology

    2015-09-18

    APPLICATIONS A useful model of mission mapping is presented in Figure 2. Users and defenders of a network typically have several disjoint types of... Mapping user processes to network capabilities reveals the broader impact of information in the logs, and improves risk analysis by identifying...The final stage of mission mapping connects the user processes with the missions they support. This mapping is critical both for prioritization of

  16. Mission planning with ROSAT.

    NASA Astrophysics Data System (ADS)

    Snowden, S. L.; Schmitt, J. H. M. M.

    The mission planning activities for the satellite bourne X-ray observatory ROSAT are discussed. Responsibility is shared between the Max Planck Institute for Extraterrestrial Physics (MPE), which provides the sientific and calibration program input, and the German Space Operations Center (GSOC), whose responsibility it is to generate a mission timeline satisfying all operational constraints. An optimum solution for the mission timeline is achieved using an efficient networking procedure.

  17. RAF and Mission Command

    DTIC Science & Technology

    2015-02-01

    of the art of command, i.e., the mission command philosophy , by examining six guiding principles. The third section analyzes RAF through the...describes mission command as a “ philosophy and a warfighting function;” it is also the framework for the Army’s execution of military operations in...support of Unified Land Operations (ULO).35 The mission command philosophy is described as “the exercise of authority and direction by the commander

  18. Robotics Challenge: Cognitive Robot for General Missions

    DTIC Science & Technology

    2015-01-01

    ROBOTICS CHALLENGE: COGNITIVE ROBOT FOR GENERAL MISSIONS UNIVERSITY OF KANSAS JANUARY 2015 FINAL TECHNICAL REPORT... ROBOTICS CHALLENGE: COGNITIVE ROBOT FOR GENERAL MISSIONS 5a. CONTRACT NUMBER FA8750-12-1-0302 5b. GRANT NUMBER N/A 5c. PROGRAM ELEMENT NUMBER 62702E...a complicated environment, a robotic system requires both high-level command facilities and low- level sensing/control mechanisms. This report

  19. Asteroid Crew Segment Mission Lean Development

    NASA Technical Reports Server (NTRS)

    Gard, Joseph; McDonald, Mark

    2014-01-01

    Asteroid Retrieval Crewed Mission (ARCM) requires a minimum set of Key Capabilities compared in the context of the baseline EM-1/2 Orion and SLS capabilities. These include: Life Support & Human Systems Capabilities; Mission Kit Capabilities; Minimizing the impact to the Orion and SLS development schedules and funding. Leveraging existing technology development efforts to develop the kits adds functionality to Orion while minimizing cost and mass impact.

  20. STEREO Mission Design Implementation

    NASA Technical Reports Server (NTRS)

    Guzman, Jose J.; Dunham, David W.; Sharer, Peter J.; Hunt, Jack W.; Ray, J. Courtney; Shapiro, Hongxing S.; Ossing, Daniel A.; Eichstedt, John E.

    2007-01-01

    STEREO (Solar-TErrestrial RElations Observatory) is the third mission in the Solar Terrestrial Probes program (STP) of the National Aeronautics and Space Administration (NASA) Science Mission Directorate Sun-Earth Connection theme. This paper describes the successful implementation (lunar swingby targeting) of the mission following the first phasing orbit to deployment into the heliocentric mission orbits following the two lunar swingbys. The STEREO Project had to make some interesting trajectory decisions in order to exploit opportunities to image a bright comet and an unusual lunar transit across the Sun.

  1. Missions to Mars

    NASA Astrophysics Data System (ADS)

    Chicarro, A. F.; Science Team

    2002-10-01

    This presentation started with a historical perspective of the astronomical discovery of Mars and followed by an overview of previous missions to Mars by the United States and the Soviet Union. Recently launched missions, such as Nozomi, Mars Global Surveyor and Mars Odyssey were addressed in more detailed, as well as a few other missions soon to be launched. Among these, Mars Express is particularly relevant as the first European mission towards the red planet, and the talk concentrated on it, including both the Mars Express orbiter spacecraft and the Beagle-2 lander to be launched in 2003.

  2. Juno Mission Simulation

    NASA Technical Reports Server (NTRS)

    Lee, Meemong; Weidner, Richard J.

    2008-01-01

    The Juno spacecraft is planned to launch in August of 2012 and would arrive at Jupiter four years later. The spacecraft would spend more than one year orbiting the planet and investigating the existence of an ice-rock core; determining the amount of global water and ammonia present in the atmosphere, studying convection and deep- wind profiles in the atmosphere; investigating the origin of the Jovian magnetic field, and exploring the polar magnetosphere. Juno mission management is responsible for mission and navigation design, mission operation planning, and ground-data-system development. In order to ensure successful mission management from initial checkout to final de-orbit, it is critical to share a common vision of the entire mission operation phases with the rest of the project teams. Two major challenges are 1) how to develop a shared vision that can be appreciated by all of the project teams of diverse disciplines and expertise, and 2) how to continuously evolve a shared vision as the project lifecycle progresses from formulation phase to operation phase. The Juno mission simulation team addresses these challenges by developing agile and progressive mission models, operation simulations, and real-time visualization products. This paper presents mission simulation visualization network (MSVN) technology that has enabled a comprehensive mission simulation suite (MSVN-Juno) for the Juno project.

  3. Schoolwide Literacy Days.

    ERIC Educational Resources Information Center

    Polder, Darlene D.

    2000-01-01

    Describes 10 "literacy day" activities that one California elementary school has used successfully schoolwide, typically one such day per month, to make reading fun and purposeful, while developing a sense of community. Includes: spread-a-quilt day; teacher exchange day; turn off the TV; Dr. Seuss day; community readers; schoolwide…

  4. A Heuristic Algorithm for U.S. Naval Mission Resource Allocation

    DTIC Science & Technology

    2008-09-01

    constructed” mission on day 25 as well. H-CARMA systematically, selects a mission, attempts to package other missions together, schedules these...compensate for possible spoilage .) 37 Table 5. H-CARMA Developed Schedule for Days 1-34 in the 2007 GOG Six-month Demonstration. This table

  5. 14 CFR 431.79 - Reusable launch vehicle mission reporting requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... vehicle mission reporting requirements. (a) Not less than 60 days before each RLV mission conducted under... safety. (b) Not later than 15 days before each licensed RLV mission, a licensee must notify the FAA, in writing, of the time and date of the intended launch and reentry or other landing on Earth of the RLV...

  6. Mars Pathfinder mission operations concepts

    NASA Technical Reports Server (NTRS)

    Sturms, Francis M., Jr.; Dias, William C.; Nakata, Albert Y.; Tai, Wallace S.

    1994-01-01

    The Mars Pathfinder Project plans a December 1996 launch of a single spacecraft. After jettisoning a cruise stage, an entry body containing a lander and microrover will directly enter the Mars atmosphere and parachute to a hard landing near the sub-solar latitude of 15 degrees North in July 1997. Primary surface operations last for 30 days. Cost estimates for Pathfinder ground systems development and operations are not only lower in absolute dollars, but also are a lower percentage of total project costs than in past planetary missions. Operations teams will be smaller and fewer than typical flight projects. Operations scenarios have been developed early in the project and are being used to guide operations implementation and flight system design. Recovery of key engineering data from entry, descent, and landing is a top mission priority. These data will be recorded for playback after landing. Real-time tracking of a modified carrier signal through this phase can provide important insight into the spacecraft performance during entry, descent, and landing in the event recorded data is never recovered. Surface scenarios are dominated by microrover activity and lander imaging during 7 hours of the Mars day from 0700 to 1400 local solar time. Efficient uplink and downlink processes have been designed to command the lander and microrover each Mars day.

  7. Going beyond: Target selection and mission analysis of human exploration missions to Near-Earth Asteroids

    NASA Astrophysics Data System (ADS)

    Zimmer, A. K.; Messerschmid, E.

    2011-12-01

    Missions to Near-Earth Asteroids (NEAs) offer a wide range of possibilities for space exploration, scientific research, and technology demonstration. In particular, manned missions to NEAs provide a unique opportunity to be the first human expedition to an interplanetary body beyond the Earth-Moon system and represent the perfect environment to gain experience in deep-space operations, which is an indispensable prerequisite for human missions to Mars. As a starting point for the analysis of such missions, the objectives of this study are to identify target asteroids and evaluate possible transfer trajectories as well as the associated launch windows. The list of accessible asteroids is narrowed down by taking dynamical and structural properties such as size and rotation rate into account. An accessibility model for NEAs is developed allowing pre-selection of asteroid targets for human missions. For this model, a novel approach is taken which assesses the accessibility of a NEA not by considering its orbital parameters separately. Instead, accessibility is determined by evaluating the combination of all orbital parameters only limited by mission duration (less than 365 days) and round-trip Δv (less than 10 km/s). In order to verify the reliability of the model, mission architectures for missions departing from low-Earth orbit are investigated and transfers to 2567 NEAs in the time frame from 2020 to 2040 are simulated. Two hundred and forty asteroids are found to be accessible for human missions under the given boundary conditions and are observed to nicely fit the model developed. Seventy three of these remaining asteroids can be reached with a Δv≤7.5km/s, 15 of which allow mission durations of less than 200 days. One hundred and seventy launch windows strongly varying in duration are found for these 73 asteroids between 2020 and 2040. Launch opportunity analysis shows that several launch windows open every year in the given time frame for missions with

  8. STS-108 Mission Highlights Resource Tape. Part 3 of 3

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A continuation of 'STS-108 Mission Highlights Resource Tape, Part 1 of 3' (internal ID 2002049331) and 'STS-108 Mission Highlights Resource Tape, Part 2 of 3' (internal ID 2002049330), this video shows footage from flight days 9-12. The control of the International Space Station (ISS) is handed from the Expedition 3 crew (Commander Frank Culbertson, Jr. and Flight Engineers Mikhail Turin and Vladimir Dezhurov) to the Expedition 4 crew (Commander Yuri Onufrienko and Flight Engineers Carl Walz and Daniel Bursch) in an on-orbit ceremony. Both Expedition crews and the STS-108 crew (Commander Dominic Gorie, Pilot Mark Kelly, and Mission Specialists Linda Godwin and Daniel Tani) are seen reloading the Rafaello Multipurpose Logistics Module (MPLM). External shots show the MPLM demating from the ISS and returning to the payload bay of Endeavour. The three crews bid farewell to each other before closing the hatches between ISS and Endeavour. The orbiter undocks from ISS and performs its flyarounds. ISS is seen against a backdrop of stars as Endeavour flies away. On the return flight to Earth, the Starshine 2 satellite is deployed. The video ends with the orbiter's landing as seen from several viewpoints.

  9. STS-107 Flight Day 15 Highlights

    NASA Astrophysics Data System (ADS)

    2003-01-01

    This video shows the activities of the STS-107 crew on flight day 15 of the Columbia orbiter's final mission. The crew includes Commander Rick Husband, Pilot William McCool, Mission Specialists Michael Anderson, David Brown, Laurel Clark, and Kalpana Chawla, and Payload Specialist Ilan Ramon. The primary activities of flight day 15 are crew interviews, and operating the Water Mist Fire Suppression (MIST) experiment. Early in the video, astronauts McCool and Ramon respond together to a question. Much of the video is taken up by an interview of astronauts Brown, Anderson, and McCool. Two parts of the video show the MIST experiment in operation, operated the first time by astronaut Brown. Another part of the video is narrated by Mission Specialist Clark, who identifies views of Mount Vesuvius, and an atoll in the south Pacific. In this part, Payload Specialist Ramon is seen on an exercise machine, Commander Husband shows body fluid samples from the crew taken during the mission, and Clark demonstrates how the crew eats meals. The video ends with footage from earlier in the mission which shows a deployed radiator in the shuttle's payload bay that reflects an image of the Earth.

  10. Adult Day Care

    MedlinePlus

    ... Page Resize Text Printer Friendly Online Chat Adult Day Care Adult Day Care Centers are designed to provide care and ... adults who need assistance or supervision during the day. Programs offer relief to family members and caregivers, ...

  11. STS-102 Crew Activity Report/Flight Day 11 Highlights

    NASA Technical Reports Server (NTRS)

    2001-01-01

    On this 11th day of the STS-102 mission, Discovery Mission Specialist Andrew Thomas and Expedition 1 Commander Bill Shepherd are seen closing the hatch of the Leonardo Module. External shots show the Leonardo Module undocking from the International Space Station (ISS) and being moved via robotic arm into the payload bay of Discovery.

  12. Bion 11 mission: primate experiments

    NASA Technical Reports Server (NTRS)

    Ilyin, E. A.; Korolkov, V. I.; Skidmore, M. G.; Viso, M.; Kozlovskaya, I. B.; Grindeland, R. E.; Lapin, B. A.; Gordeev, Y. V.; Krotov, V. P.; Fanton, J. W.; Bielitzki, J. T.; Golov, V. K.; Magedov, V. S.; Hines, J. W.

    2000-01-01

    A summary is provided of the major operations required to conduct the wide range of primate experiments on the Bion 11 mission, which flew for 14 days beginning December 24, 1996. Information is given on preflight preparations, including flight candidate selection and training; attachment and implantation of bioinstrumentation; flight and ground experiment designs; onboard life support and test systems; ground and flight health monitoring; flight monkey selection and transport to the launch site; inflight procedures and data collection; postflight examinations and experiments; and assessment of results.

  13. A Nuclear Powered ISRU Mission to Mars

    NASA Astrophysics Data System (ADS)

    Finzi, Elvina; Davighi, Andrea; Finzi, Amalia

    2006-01-01

    Space exploration has always been drastically constrained by the masses that can be launched into orbit; Hence affordable planning and execution of prolonged manned space missions depend upon the utilization of local. Successful in-situ resources utilization (ISRU) is a key element to allow the human presence on Mars or the Moon. In fact a Mars ISRU mission is planned in the Aurora Program, the European program for the exploration of the solar system. Orpheus mission is a technological demonstrator whose purpose is to show the advantages of an In Situ Propellant Production (ISPP). Main task of this work is to demonstrate the feasibility of a nuclear ISPP plant. The mission designed has been sized to launch back form Mars an eventual manned module. The ISPP mission requires two different: the ISPP power plant module and the nuclear reactor module. Both modules reach the escape orbit thanks to the launcher upper stage, after a 200 days cruising phase the Martian atmosphere is reached thanks to small DV propelled manoeuvres, aerobreaking and soft landing. During its operational life the ISPP plant produces. The propellant is produced in one synodic year. 35000 kg of Ethylene are produced at the Martian equator. The resulting systems appear feasible and of a size comparable to other ISRU mission designs. This mission seems challenging not only for the ISPP technology to be demonstrated, but also for the space nuclear reactor considered; Though this seems the only way to allow a permanent human presence on Mars surface.

  14. A Nuclear Powered ISRU Mission to Mars

    SciTech Connect

    Finzi, Elvina; Davighi, Andrea; Finzi, Amalia

    2006-01-20

    Space exploration has always been drastically constrained by the masses that can be launched into orbit; Hence affordable planning and execution of prolonged manned space missions depend upon the utilization of local. Successful in-situ resources utilization (ISRU) is a key element to allow the human presence on Mars or the Moon. In fact a Mars ISRU mission is planned in the Aurora Program, the European program for the exploration of the solar system. Orpheus mission is a technological demonstrator whose purpose is to show the advantages of an In Situ Propellant Production (ISPP). Main task of this work is to demonstrate the feasibility of a nuclear ISPP plant. The mission designed has been sized to launch back form Mars an eventual manned module. The ISPP mission requires two different: the ISPP power plant module and the nuclear reactor module. Both modules reach the escape orbit thanks to the launcher upper stage, after a 200 days cruising phase the Martian atmosphere is reached thanks to small DV propelled manoeuvres, aerobreaking and soft landing. During its operational life the ISPP plant produces. The propellant is produced in one synodic year. 35000 kg of Ethylene are produced at the Martian equator. The resulting systems appear feasible and of a size comparable to other ISRU mission designs. This mission seems challenging not only for the ISPP technology to be demonstrated, but also for the space nuclear reactor considered; Though this seems the only way to allow a permanent human presence on Mars surface.

  15. Mission requirements: Second Skylab mission SL-3

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Complete SL-3 mission objectives and requirements, as revised 1 February 1972 (Rev. 6), are presented. Detailed test objectives are also given on the medical experiments, Apollo Telescope Mount experiments, Earth Resources Experiment Package, and corollary experiments and environmental microbiology experiments.

  16. Mission Specialist Scott Parazynski arrives at KSC

    NASA Technical Reports Server (NTRS)

    1998-01-01

    STS-95 Mission Specialist Scott E. Parazynski notes the time on his watch upon his late arrival aboard a T-38 jet at the Shuttle Landing Facility. Parazynski's first plane experienced problems at the stop at Tyndall AFB and he had to wait for another jet and pilot to finish the flight to KSC. He joined other crewmembers Mission Commander Curtis L. Brown Jr., Pilot Steven W. Lindsey, Mission Specialist Stephen K. Robinson, Payload Specialist John H. Glenn Jr., senator from Ohio, Mission Specialist Pedro Duque, with the European Space Agency (ESA), and Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA), for final pre-launch preparations. STS-95 is expected to launch at 2 p.m. EST on Oct. 29, last 8 days, 21 hours and 49 minutes, and land at 11:49 a.m. EST on Nov. 7.

  17. NASA Mission: The Universe

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This booklet is mainly a recruitment tool for the various NASA Centers. This well illustrated booklet briefly describes NASA's mission and career opportunities on the NASA team. NASA field installations and their missions are briefly noted. NASA's four chief program offices are briefly described. They are: (1) Aeronautics, Exploration, and Space Technology; (2) Space Flight; (3) Space Operations; and (4) Space Science and Applications.

  18. The Pioneer Venus Missions.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Mountain View, CA. Ames Research Center.

    This document provides detailed information on the atmosphere and weather of Venus. This pamphlet describes the technological hardware including the probes that enter the Venusian atmosphere, the orbiter and the launch vehicle. Information is provided in lay terms on the mission profile, including details of events from launch to mission end. The…

  19. Mervyn's Moving Mission.

    ERIC Educational Resources Information Center

    2001

    This teacher's resource packet includes a number of items designed to support teachers in the classroom before and after visiting Mervyn's Moving Mission. The packet includes eight sections: (1) welcome letter in English and Spanish; (2) summary timeline of California mission events in English and Spanish; (3) objectives and curriculum links; (4)…

  20. Mission Medical Information System

    NASA Technical Reports Server (NTRS)

    Johnson-Throop, Kathy A.; Joe, John C.; Follansbee, Nicole M.

    2008-01-01

    This viewgraph presentation gives an overview of the Mission Medical Information System (MMIS). The topics include: 1) What is MMIS?; 2) MMIS Goals; 3) Terrestrial Health Information Technology Vision; 4) NASA Health Information Technology Needs; 5) Mission Medical Information System Components; 6) Electronic Medical Record; 7) Longitudinal Study of Astronaut Health (LSAH); 8) Methods; and 9) Data Submission Agreement (example).

  1. Tektite 2 habitability research program: Day-to-day life in the habitat

    NASA Technical Reports Server (NTRS)

    Nowlis, D. P.

    1972-01-01

    Because it is widely agreed that the field of environmental psychology is quite young, it was determined that a sample of recorded observations from a representative mission should be included in the report on Tektite to give the professional reader a better feeling of normal day-to-day life in the isolated habitat. Names of the crew members have been replaced with numbers and some off-color words have been replaced by more acceptable slang; some remarks have been omitted that might lead to easy identification of the subjects. Otherwise, the following pages are exactly as transcribed during the late afternoons and the evenings of the mission.

  2. The responses of selected terrestrial plants to short (<12 days) and long term (2, 4 and 6 weeks) hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) exposure. Part I: Growth and developmental effects.

    PubMed

    Winfield, Linda E; Rodgers, John H; D'Surney, Stephen J

    2004-05-01

    Soils contaminated with explosive materials like hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) is a concern nation-wide on military installations and sites where explosives are manufactured, stored, or disposed. Terrestrial plants are a vital group of receptor organism, yet limited published information is available on the potential impacts of RDX exposure in terrestrial plants. This research comprised the initial phases in the development of a short-term (<12 days) screening experiment for assessing the environmental impacts of RDX exposure in terrestrial plants. Fifteen plants (dicots and monocots) were exposed to three soils amended with 0-4000 microg g(-1) of RDX during the short-term screening experiments. Growth responses (maximum root and shoot lengths, percent emergence) and adverse developmental effects were the assessment endpoints. Sunflower was identified as the most RDX sensitive plant and selected for evaluation during the long-term (2, 4, and 6 weeks) experiments. Two life stages of sunflower (embryos and 2-week old seedlings) were exposed to Grenada soil amended with 0-100 microg g(-1) of RDX. The assessment endpoints during the long-term experiments included: biomass, maximum shoot and root length, root bio-volume, maximum stem diameter, number of leaves, and adverse developmental effects. Statistically significant differences were measured in several of the growth parameters following the short and long term exposure studies, however there were no consistent patterns. The consistent indicators of detrimental impacts from RDX exposure were the adverse developmental effects observed, regardless of life stage, soil type, or exposure duration. Typically, more adverse developmental effects were observed in dicots than monocots. The efficacy of the short-term screening experiments for estimating the impacts of long-term RDX exposure was validated.

  3. Mars Surface Mission Workshop

    NASA Technical Reports Server (NTRS)

    Duke, M. B. (Editor)

    1997-01-01

    A workshop was held at the Lunar and Planetary Institute on September 4-5, 1997, to address the surface elements of the Mars Reference Mission now being reviewed by NASA. The workshop considered the current reference mission and addressed the types of activities that would be expected for science and resource exploration and facilities operations. A set of activities was defined that can be used to construct "vignettes" of the surface mission. These vignettes can form the basis for describing the importance of the surface mission, for illustrating aspects of the surface mission, and for allowing others to extend and revise these initial ideas. The topic is rich with opportunities for additional conceptualization. It is recommended that NASA consider supporting university design teams to conduct further analysis of the possibilities.

  4. Kepler Mission Design

    NASA Technical Reports Server (NTRS)

    Koch, David; Borucki, William; Lissauer, J.; Mayer, David; Voss, Janice; Basri, Gibor; Gould, Alan; Brown, Timothy; Cockran, William; Caldwell, Douglas

    2005-01-01

    The Kepler Mission is in the development phase with launch planned for 2007. The mission goal first off is to reliably detect a significant number of Earth-size planets in the habitable zone of solar-like stars. The mission design allows for exploring the diversity of planetary sizes, orbital periods, stellar spectral types, etc. In this paper we describe the technical approach taken for the mission design; describing the flight and ground system, the detection methodology, the photometer design and capabilities, and the way the data are taken and processed. (For Stellar Classification program. Finally the detection capability in terms of planet size and orbit are presented as a function of mission duration and stellar type.

  5. Radiological risk analysis of potential SP-100 space mission scenarios

    SciTech Connect

    Bartram, B.W.; Weitzberg, A.

    1988-08-19

    This report presents a radiological risk analysis of three representative space mission scenarios utilizing a fission reactor. The mission profiles considered are: a high-altitude mission, launched by a TITAN IV launch vehicle, boosted by chemical upper stages into its operational orbit, a interplanetary nuclear electric propulsion (NEP) mission, started directly from a shuttle parking orbit, a low-altitude mission, launched by the Shuttle and boosted by a chemical stage to its operational orbit, with subsequent disposal boost after operation. 21 refs., 12 figs., 7 tabs.

  6. 2. Historic American Buildings Survey Oriane Day Paintings (1861 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Historic American Buildings Survey Oriane Day Paintings (1861 - 1885) DeYoung Museum - San Francisco, California Prior to 1835 VIEW FROM EAST - Mission San Carlos Borromeo, Rio Road & Lausen Drive, Carmel-by-the-Sea, Monterey County, CA

  7. CGH Supports World Cancer Day Every Day

    Cancer.gov

    We celebrate World Cancer Day every year on February 4th. This year the theme “We can. I can.” invites us to think not only about how we can work with one another to reduce the global burden of cancer, but how we as individuals can make a difference. Every day the staff at CGH work to establish and build upon programs that are aimed at improving the lives of people affected by cancer.

  8. 75 FR 9181 - Secretarial Indonesia Clean Energy Business Development Mission: Application Deadline Extended

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-01

    ... International Trade Administration Secretarial Indonesia Clean Energy Business Development Mission: Application... the Clean Energy Business Development Missions' Web site at http://www.trade.gov/CleanEnergyMission or... or CleanEnergyMission@doc.gov ). The application deadline has been extended to Friday, March 12,...

  9. 75 FR 9181 - Secretarial China Clean Energy Business Development Mission; Application Deadline Extended

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-01

    ... International Trade Administration Secretarial China Clean Energy Business Development Mission; Application... the Clean Energy Business Development Missions' Web site at http://www.trade.gov/CleanEnergyMission or... or CleanEnergyMission@doc.gov ). The application deadline has been extended to Friday, March 12,...

  10. STS-110 Flight Day 4 Highlights

    NASA Astrophysics Data System (ADS)

    2002-04-01

    On this fourth day of the STS-110 mission, the crewmembers of Atlantis (Michael Bloomfield, Commander; Stephen Frick, Pilot; and Mission Specialists Ellen Ochoa, Jerry Ross, Rex Walheim, Steven Smith and Lee Morin) are seen briefly performing various crew procedures. The extravehicular activity (EVA) performed by Smith and Walheim to install the S0 truss onto the International Space Station (ISS) is shown in great detail. Shots of the robot arm lifting the S0 truss out of the Atlantis payload bay are also seen. A view of Hawaii is briefly shown.

  11. STS-110 Flight Day 10 Highlights

    NASA Astrophysics Data System (ADS)

    2002-04-01

    The STS-110 tenth flight day begins with a live view of the flight deck of The Space Shuttle Atlantis. Commander Michael Bloomfield, Pilot Stephen Frick, Mission Specialists Lee Morin, Jerry L. Ross, Steven Smith, Ellen Ochoa, and Rex Walheim are joined by Cosmonaut Yury Onufrienko and Flight Engineers Dan Bursch and Carl Walz. Commander Michael Bloomfield thanks everyone who participated in the STS-110 mission and who made it a success. Commander Bloomfield bids farewell to the Expedition four crew before undocking of the Space Shuttle Atlantis from the International Space Station. A live shot of Atlantis and the newly installed S0 truss is shown.

  12. STS-108 Flight Day 5 Highlights

    NASA Technical Reports Server (NTRS)

    2001-01-01

    On this fifth day of the STS-108 mission, the STS-108 crew (Commander Dominic Gorie, Pilot Mark Kelly, and Mission Specialists Linda Godwin and Daniel Tani), Expedition 3 crew (Commander Frank Culbertson, Jr. and Flight Engineers Mikhail Turin and Vladimir Dezhurov), and Expedition 4 crew (Commander Yuri Onufrienko and Flight Engineers Carl Walz and Daniel Bursch) join in an on-orbit conference to honor those who lost loved ones in the September 11th tragedy. They are also seen moving equipment from the Rafaello Multipurpose Logistics Module to the International Space Station.

  13. STS-108 Flight Day 4 Highlights

    NASA Technical Reports Server (NTRS)

    2001-01-01

    On this fourth day of the STS-108 mission, the robotic arm is seen as it moves towards the Rafaello Multipurpose Logistics Module to prepare for the grapple and transfer of the module from Endeavour to the International Space Station (ISS). Expedition 4 Flight Engineer Carl Walz and STS-108 Mission Specialist Linda Godwin are shown during preparations to open the hatch between ISS and Rafaello. Expedition 3 Commander Frank Culbertson, Expedition 4 Commander Yuri Onufrienko, and STS-108 Pilot Mark Kelly are seen during an on-orbit press conference, where they answer questions about the supply transfer between Rafaello and ISS and share their thoughts about the September 11th tragedy.

  14. STS-105 Flight Day 11 Highlights

    NASA Technical Reports Server (NTRS)

    2001-01-01

    On this 11th day of the STS-105 mission, the three crews, Expedition 2 (Commander Yuriy Usachev and Flight Engineers James Voss and Susan Helms), Expedition 3 (Frank Culbertson, Jr., Mikhail Turin, and Vladimir Dezhurov), and STS-105 (Commander Scott Horowitz, Pilot Fred Sturckow, and Mission Specialists Dan Barry and Pat Forrester), gather to say a few words about the changeover of the control of the International Space Station (ISS). Footage shows the undocking of Discovery from the ISS. STS-105 and E2 crews answer questions about the stay on the ISS in an on-orbit interview.

  15. PERCIVAL mission to Mars

    NASA Technical Reports Server (NTRS)

    Reed, David W.; Lilley, Stewart; Sirman, Melinda; Bolton, Paul; Elliott, Susan; Hamilton, Doug; Nickelson, James; Shelton, Artemus

    1992-01-01

    With the downturn of the world economy, the priority of unmanned exploration of the solar system has been lowered. Instead of foregoing all missions to our neighbors in the solar system, a new philosophy of exploration mission design has evolved to insure the continued exploration of the solar system. The 'Discovery-class' design philosophy uses a low cost, limited mission, available technology spacecraft instead of the previous 'Voyager-class' design philosophy that uses a 'do-everything at any cost' spacecraft. The Percival Mission to Mars was proposed by Ares Industries as one of the new 'Discovery-class' of exploration missions. The spacecraft will be christened Percival in honor of American astronomer Percival Lowell who proposed the existence of life on Mars in the early twentieth century. The main purpose of the Percival mission to Mars is to collect and relay scientific data to Earth suitable for designing future manned and unmanned missions to Mars. The measurements and observations made by Percival will help future mission designers to choose among landing sites based on the feasibility and scientific interest of the sites. The primary measurements conducted by the Percival mission include gravity field determination, surface and atmospheric composition, sub-surface soil composition, sub-surface seismic activity, surface weather patterns, and surface imaging. These measurements will be taken from the orbiting Percival spacecraft and from surface penetrators deployed from Mars orbit. The design work for the Percival Mission to Mars was divided among four technical areas: Orbits and Propulsion System, Surface Penetrators, Gravity and Science Instruments, and Spacecraft Structure and Systems. The results for each of the technical areas is summarized and followed by a design cost analysis and recommendations for future analyses.

  16. AAS 228: Day 4

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-06-01

    Editors Note: Lastweek we were at the 228th AAS Meeting in San Diego, CA. Here is a final post aboutselectedevents on the last day of the meeting, written by authors fromastrobites.com, a grad-student collaborative project with which we recently announced a new partnership! Starting in July,keep an eye out for astrobites postsat AAS Nova in between Highlights(i.e., on Tuesdays and Thursdays).Were excited to be working together to bring you more recent astronomy research from AAS journals!Extrasolar Planets: Detection (by Leonardo dos Santos)Thursdays first session on exoplanets was about detecting these distant worlds, and the opening talk was given by Robert Siverd (Las Cumbres Observatory). He describes the NRES, a network of spectrographs that will look for exoplanets using the radial velocity method. One of the coolest aspects of this instrument is that it will feature an on the fly scheduling system that will perform observations as efficiently as possible. The spectrograph is still being tested, but a unit will be deployed at CTIO later this year.@lcogt contracted by @NASA_TESS for follow up of their candidates. #aas228 Jessie Christiansen (@aussiastronomer) June 16, 2016Measuring the depths of transits and eclipses in Spitzer has been problematic in the past, since the Spitzer instrument IRAC (InfraRed Array Camera) has a non-uniform response in its detectors pixels. But, as reported by James Ingalls (Spitzer Science Center, Caltech), observers are circumventing this issue by using what they call the staring mode (avoiding large pointing jumps) and an algorithm to pick sweet spot pixels. Moreover, the results from the IRAC Data Challenge are helping to better understand its behavior. Giuseppe Morello (University College London), on the other hand, explained how his research group gets rid of instrumental effects from IRAC using machine learning. This method removes systematics from exoplanet transit data no matter if the noise source is from an instrument or

  17. STS-111 Mission Highlights Resource Tape

    NASA Astrophysics Data System (ADS)

    2002-08-01

    This video, Part 1 of 4, shows the activities of the STS-111 crew (Kenneth Cockrell, Commander; Paul Lockhart, Pilot; Franklin Chang-Diaz, Phillipe Perrin, Mission Specialists) during flight days 1 through 4. Also shown are the incoming Expedition 5 (Valeri Korzun, Commander; Peggy Whitson, NASA ISS Science Officer; Sergei Treschev, Flight Engineer) and outgoing Expedition 4 (Yuri Onufriyenko, Commander; Carl Walz, Daniel Bursch, Flight Engineers) crews of the ISS (International Space Station). The activities from other flight days can be seen on 'STS-111 Mission Highlights Resource Tape' Part 2 of 4 (internal ID 2002139469), 'STS-111 Mission Highlights Resource Tape' Part 3 of 4 (internal ID 2002139468), and 'STS-111 Mission Highlights Resource Tape' Part 4 of 4 (internal ID 2002139474). The primary activity of flight day 1 is the launch of Space Shuttle Endeavour. The crew is seen before the launch at a meal and suit-up, and some pre-flight procedures are shown. Perrin holds a sign with a personalized message. The astronauts communicate with Mission Control extensively after launch, and an inside view of the shuttle cabin is shown. The replays of the launch include close-ups of the nozzles at liftoff, and the fall of the solid rocket boosters and the external fuel tank. Flight day 2 shows footage of mainland Asia at night, and daytime views of the eastern United States and Lake Michigan. Flight day three shows the Endeavour orbiter approaching and docking with the ISS. After the night docking, the crews exchange greetings, and a view of the Nile river and Egypt at night is shown. On flight day 4, the MPLM (Multi-Purpose Logistics Module) Leonardo was temporarily transferred from Endeavour's payload bay to the ISS.

  18. Adult Day Services

    MedlinePlus

    A Smart Choice Adult Day Services Comparison At-a-Glance 1 Adult Day Services Assisted Living Home Care Nursing Homes Live at home with family ... supervision Nursing care available as needed during the day Flexibility to receive care only on days when ...

  19. Engaging the public in planetary science missions: the role of competitions in the Rosetta mission

    NASA Astrophysics Data System (ADS)

    O'Flaherty, K. S.; Baldwin, E.; Mignone, C.; Homfeld, A.-M.; Scuka, D.; Schepers, A.; Braun, M.; Croci, F.; Giacomini, L.; Journo, N.; Bauer, M.; McCaughrean, M. J.

    2015-10-01

    The year 2014 was an historic and challenging year for the Rosetta mission. On 20 January, the spacecraft awoke from a 957-day hibernation; by August, the spacecraft had arrived at Comet 67P/Churyumov-Gerasimenko; and in November, the lander Philae was deployed to the comet's surface. Each of these mission milestones was marked by a competition. We outline how these competitions provided a means for the public to engage with what was to become one of the most exciting space science missions of this decade.

  20. The decadal survey tier 2 missions

    NASA Astrophysics Data System (ADS)

    Neeck, Steven P.; Jucks, Kenneth W.; Lindstrom, Eric J.; Maring, Hal; Turner, Woody

    2008-10-01

    In January 2007, the National Research Council (NRC) released the first decadal survey addressing Earth science entitled "Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond". The study, initiated in 2004, conducted a decadal survey to generate consensus recommendations from the Earth and environmental science and applications communities regarding a systems approach to the space-based and ancillary observations encompassing the research programs of NASA, the related operational programs of the National Oceanic and Atmospheric Administration (NOAA), and associated programs, such as Landsat, a joint initiative of the U.S. Geological Survey (USGS) and NASA. Among its many recommendations, were that NOAA and NASA should undertake a set of 17 missions, phased over the next decade in three year groupings. Of these 17 missions, 15 were designated to NASA. The four NASA Phase 1 missions are currently in Pre-Phase A study at different levels of development with SMAP, a soil moisture monitoring mission, targeting a launch date of 2013 and ICESat-II, intended to continue the record initiated by ICESat-I to monitor ice sheet height changes for climate change diagnosis, targeting a launch date of 2015. The CLARREO solar and earth radiation monitoring mission and the DESDynI Earth surface and ice deformation monitoring mission are preparing to enter Pre-Phase A in 2009. The five NASA Phase 2 missions are: SWOT, a wide swath altimeter mission measuring ocean, lake, and river water levels; HyspIRI, a hyperspectral mission for measuring land surface composition for agriculture and mineral characterization and vegetation types for ecosystem health; ASCENDS, a day/night, all-latitude, all-season CO2 column measuring mission; ACE, an aerosol and cloud profiling mission for climate and water cycle research with an ocean color measuring capability for open ocean biogeochemistry; and GEO-CAPE, a geostationary mission for measuring atmospheric

  1. Hipparcos: mission accomplished

    NASA Astrophysics Data System (ADS)

    1993-08-01

    During the last few months of its life, as the high radiation environment to which the satellite was exposed took its toll on the on-board system, Hipparcos was operated with only two of the three gyroscopes normally required for such a satellite, following an ambitious redesign of the on-board and on-ground systems. Plans were in hand to operate the satellite without gyroscopes at all, and the first such "gyro- less" data had been acquired, when communication failure with the on-board computers on 24 June 1993 put an end to the relentless flow of 24000 bits of data that have been sent down from the satellite each second, since launch. Further attempts to continue operations proved unsuccessful, and after a short series of sub-systems tests, operations were terminated four years and a week after launch. An enormous wealth of scientific data was gathered by Hipparcos. Even though data analysis by the scientific teams involved in the programme is not yet completed, it is clear that the mission has been an overwhelming success. "The ESA advisory bodies took a calculated risk in selecting this complex but fundamental programme" said Dr. Roger Bonnet, ESA's Director of Science, "and we are delighted to have been able to bring it to a highly successful conclusion, and to have contributed unique information that will take a prominent place in the history and development of astrophysics". Extremely accurate positions of more than one hundred thousand stars, precise distance measurements (in most cases for the first time), and accurate determinations of the stars' velocity through space have been derived. The resulting HIPPARCOS Star Catalogue, expected to be completed in 1996, will be of unprecedented accuracy, achieving results some 10-100 times more accurate than those routinely determined from ground-based astronomical observatories. A further star catalogue, the Thyco Star Catalogue of more than a million stars, is being compiled from additional data accumulated by the

  2. Apollo experience report: Mission evaluation team postflight documentation

    NASA Technical Reports Server (NTRS)

    Dodson, J. W.; Cordiner, D. H.

    1975-01-01

    The various postflight reports prepared by the mission evaluation team, including the final mission evaluation report, report supplements, anomaly reports, and the 5-day mission report, are described. The procedures for preparing each report from the inputs of the various disciplines are explained, and the general method of reporting postflight results is discussed. Recommendations for postflight documentation in future space programs are included. The official requirements for postflight documentation and a typical example of an anomaly report are provided as appendixes.

  3. AAS 227: Day 1

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-01-01

    Editors Note:This week were at the 227th AAS Meeting in Kissimmee, FL. Along with several fellow authors from astrobites.com, I will bewritingupdates on selectedevents at themeeting and posting at the end of each day. Follow along here or at astrobites.com, or catch ourlive-tweeted updates from the @astrobites Twitter account. The usual posting schedule for AAS Nova will resumenext week.Things kicked off last night at our undergraduate reception booth. Thanks to all of you who stopped by we were delightedto have so many people tell us that they already know about and useastrobites, and we were excited to introduce a new cohort of students at AAS to astrobites for the first time.Tuesday morning was the official start of the meeting. Here are just a few of the talks and workshops astrobiters attended today.Opening Address (by Becky Smethurst)The President of the AAS, aka our fearless leader Meg Urry kicked off the meeting this morning at the purely coffee powered hour of 8am this morning. She spoke about the importance of young astronomers at the meeting (heres looking at you reader!) and also the importance of the new Working Group for Accessibility and Disabilities (aka WGAD pronounced like wicked) at the AAS. The Society has made extra effort this year to make the conference accessible to all,a message which was very well received by everyone in attendance.Kavli Lecture: New Horizons Alan Stern (by Becky Smethurst)We were definitely spoilt with the first Plenary lecture at this years conference Alan Stern gave us a a review of the New Horizons mission of the Pluto Fly By (astrobites covered the mission back in July with this post). We were treated to beautiful images, wonderful results and a foray into geology.Before (Hubble) and after #NewHorizons. #thatisall #science #astro alanstern #aas227 pic.twitter.com/kkMt6RsSIR Science News (@topsciencething) January 5, 2016Some awesome facts from the lecture that blew my mind:New Horizons is now 2AU (!) beyond Pluto

  4. In Brief: Proposed European space missions

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2007-10-01

    New candidates for possible future scientific missions were selected by the European Space Agency's Space Science Advisory Committee at its 17-18 October meeting. Among the eight candidates are four solar system missions. The Laplace mission would perform coordinated observations of Europa, the Jovian satellites, Jupiter's magnetosphere, and its atmosphere and interior. Tandem is a mission that would explore two Saturn satellites-Titan and Enceladus-in situ and from orbit to investigate their origins, interiors, and evolution as well as their astrobiological potential. Cross-Scale, with 12 spacecraft, would make simultaneous measurements of plasma on different scales at shocks, reconnection sites, and turbulent regions in near-Earth space. Marco Polo would characterize a near-Earth object at multiple scales and return with a sample. Among other missions, Plato, a photometry mission, would detect and characterize transiting exoplanets, while Spica, a next-generation infrared observatory, would address planetary formation questions. Ultimately, two missions will be proposed for implementation, with launches planned for 2017 and 2018.

  5. NASDA President Isao Uchida greets STS-87 Mission Specialist Takao Doi, Ph.D., after landing

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The president of the National Space Development Agency (NASDA) of Japan, Isao Uchida, at left, chats with STS-87 Mission Specialist Takao Doi, Ph.D., of NASDA, shortly after the landing of Columbia at Kennedy Space Center. STS-87 concluded its mission with a main gear touchdown at 7:20:04 a.m. EST Dec. 5, at KSC's Shuttle Landing Facility Runway 33, drawing the 15-day, 16-hour and 34- minute-long mission of 6.5 million miles to a close. Also onboard the orbiter were Commander Kevin Kregel; Pilot Steven Lindsey; Mission Specialists Winston Scott and Kalpana Chawla, Ph.D.; and Payload Specialist Leonid Kadenyuk of the National Space Agency of Ukraine. During the 88th Space Shuttle mission, the crew performed experiments on the United States Microgravity Payload-4 and pollinated plants as part of the Collaborative Ukrainian Experiment. This was the 12th landing for Columbia at KSC and the 41st KSC landing in the history of the Space Shuttle program.

  6. STS-99 Mission Specialists Thiele and Mohri greet the media at SLF

    NASA Technical Reports Server (NTRS)

    2000-01-01

    After the crew arrival at KSC's Shuttle Landing Facility, STS-99 Mission Specialist Mamoru Mohri (Ph.D.), at right, talks to the media. At left is Mission Specialist Gerhard Thiele (Ph.D.). Thiele is with the European Space Agency and Mohri is with the National Space Development Agency (NASDA) of Japan. Over the next few days, the crew will review mission procedures, conduct test flights in the Shuttle Training Aircraft and undergo routine preflight medical exams. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour is scheduled for Jan. 31 at 12:47 p.m. EST.

  7. STS-109 Mission Highlights Resource Tape

    NASA Astrophysics Data System (ADS)

    2002-05-01

    This video, Part 3 of 4, shows the activities of the STS-109 crew (Scott Altman, Commander; Duane Carey, Pilot; John Grunsfeld, Payload Commander; Nancy Currie, James Newman, Richard Linnehan, Michael Massimino, Mission Specialists) during flight days 6 and 7. The activities from other flight days can be seen on 'STS-109 Mission Highlights Resource Tape' Part 1 of 4 (internal ID 2002139471), 'STS-109 Mission Highlights Resource Tape' Part 2 of 4 (internal ID 2002137664), and 'STS-109 Mission Highlights Resource Tape' Part 4 of 4 (internal ID 2002137577). Flight day 6 features a very complicated EVA (extravehicular activity) to service the HST (Hubble Space Telescope). Astronauts Grunsfeld and Linnehan replace the HST's power control unit, disconnecting and reconnecting 36 tiny connectors. The procedure includes the HST's first ever power down. The cleanup of spilled water from the coollant system in Grunsfeld's suit is shown. The pistol grip tool, and two other space tools are also shown. On flight day 7, Newman and Massimino conduct an EVA. They replace the HST's FOC (Faint Object Camera) with the ACS (Advanced Camera for Surveys). The video ends with crew members playing in the shuttle's cabin with a model of the HST.

  8. Simulation of a lunar gradiometer mission

    NASA Technical Reports Server (NTRS)

    Argentiero, P. D.; Garza-Robles, R.

    1974-01-01

    A lunar gradiometer mission involves the mounting of a gradiometer on a satellite which is in a low, polar, and circular lunar orbit. The results of a numerical simulation of the mission is presented. It is shown that if the satellite is in a 50 km orbit, 1 deg and 2 deg gravity anomalies may be estimated with accuracies of 12 mgal and 1 mgal respectively. At a 100 km altitude, 2 deg gravity anomalies can be estimated with an accuracy of 12 mgal. These results assume a rotating type gradiometer with a .1E accuracy. The results can be readily scaled to reflect another level.

  9. Jovian Tour Design for Orbiter and Lander Missions to Europa

    NASA Technical Reports Server (NTRS)

    Campagnola, Stefano; Buffington, Brent B.; Petropoulos, Anastassios E.

    2013-01-01

    Europa is one of the most interesting targets for solar system exploration, as its ocean of liquid water could harbor life. Following the recommendation of the Planetary Decadal Survey, NASA commissioned a study for a flyby mission, an orbiter mission, and a lander mission. This paper presents the moon tours for the lander and orbiter concepts. The total delta v and radiation dose would be reduced by exploiting multi-body dynamics and avoiding phasing loops in the Ganymede-to- Europa transfer. Tour 11-O3, 12-L1 and 12-L4 are presented in details and their performaces compared to other tours from previous Europa mission studies.

  10. Mission Scenario Development Workbench

    NASA Technical Reports Server (NTRS)

    Kordon, Mark; Baker, John; Gilbert, John; Hanks, David; Mandutianu, Dan; Hooper, David

    2006-01-01

    The Mission Scenario Development Workbench (MSDW) is a multidisciplinary performance analysis software tool for planning and optimizing space missions. It provides a number of new capabilities that are particularly useful for planning the surface activities on other planets. MSDW enables rapid planning of a space mission and supports flight system and scientific-instrumentation trades. It also provides an estimate of the ability of flight, ground, and science systems to meet high-level mission goals and provides means of evaluating expected mission performance at an early stage of planning in the project life cycle. In MSDW, activity plans and equipment-list spreadsheets are integrated with validated parameterized simulation models of spacecraft systems. In contrast to traditional approaches involving worst-case estimates with large margins, the approach embodied in MSDW affords more flexibility and more credible results early in the lifecycle through the use of validated, variable- fidelity models of spacecraft systems. MSDW is expected to help maximize the scientific return on investment for space missions by understanding early the performance required to have a successful mission while reducing the risk of costly design changes made at late stages in the project life cycle.

  11. STS-90 Day 04 Highlights

    NASA Technical Reports Server (NTRS)

    1998-01-01

    On this forth day of the STS-90 mission, the flight crew, Cmdr. Richard A. Searfoss, Pilot Scott D. Altman, and Mission Specialists Richard M. Linnehan, Dafydd Rhys Williams and Kathryn P. Hire, and Payload Specialists Jay C. Buckey and James A. Pawelczyk continue work with the Escher Staircase Behavior Testing of Adult Rats experiment. This is the first of two behavior testing sessions with the adult rats being used for this experiment. The rats will have a 'hyper drive' unit placed on their head which has recording electrodes made of microscopic wires that are positioned in the brain to record activity in the hippocampus. The hippocampus is that portion of the brain used to develop spatial maps to help us navigate from one place to the other. With the 'hyper drive' units in place, the rats will then be put through a maze or on a track. While the rat is maneuvering on the maze or track, the cell activity of the hippocampus will be measured and recorded.

  12. Magnetospheric Multiscale Mission (MMS) Phase 2B Navigation Performance

    NASA Technical Reports Server (NTRS)

    Scaperoth, Paige Thomas; Long, Anne; Carpenter, Russell

    2009-01-01

    The Magnetospheric Multiscale (MMS) formation flying mission, which consists of four spacecraft flying in a tetrahedral formation, has challenging navigation requirements associated with determining and maintaining the relative separations required to meet the science requirements. The baseline navigation concept for MMS is for each spacecraft to independently estimate its position, velocity and clock states using GPS pseudorange data provided by the Goddard Space Flight Center-developed Navigator receiver and maneuver acceleration measurements provided by the spacecraft's attitude control subsystem. State estimation is performed onboard in real-time using the Goddard Enhanced Onboard Navigation System flight software, which is embedded in the Navigator receiver. The current concept of operations for formation maintenance consists of a sequence of two maintenance maneuvers that is performed every 2 weeks. Phase 2b of the MMS mission, in which the spacecraft are in 1.2 x 25 Earth radii orbits with nominal separations at apogee ranging from 30 km to 400 km, has the most challenging navigation requirements because, during this phase, GPS signal acquisition is restricted to less than one day of the 2.8-day orbit. This paper summarizes the results from high-fidelity simulations to determine if the MMS navigation requirements can be met between and immediately following the maintenance maneuver sequence in Phase 2b.

  13. Recce mission planning

    NASA Astrophysics Data System (ADS)

    York, Andrew M.

    2000-11-01

    The ever increasing sophistication of reconnaissance sensors reinforces the importance of timely, accurate, and equally sophisticated mission planning capabilities. Precision targeting and zero-tolerance for collateral damage and civilian casualties, stress the need for accuracy and timeliness. Recent events have highlighted the need for improvement in current planning procedures and systems. Annotating printed maps takes time and does not allow flexibility for rapid changes required in today's conflicts. We must give aircrew the ability to accurately navigate their aircraft to an area of interest, correctly position the sensor to obtain the required sensor coverage, adapt missions as required, and ensure mission success. The growth in automated mission planning system capability and the expansion of those systems to include dedicated and integrated reconnaissance modules, helps to overcome current limitations. Mission planning systems, coupled with extensive integrated visualization capabilities, allow aircrew to not only plan accurately and quickly, but know precisely when they will locate the target and visualize what the sensor will see during its operation. This paper will provide a broad overview of the current capabilities and describe how automated mission planning and visualization systems can improve and enhance the reconnaissance planning process and contribute to mission success. Think about the ultimate objective of the reconnaissance mission as we consider areas that technology can offer improvement. As we briefly review the fundamentals, remember where and how TAC RECCE systems will be used. Try to put yourself in the mindset of those who are on the front lines, working long hours at increasingly demanding tasks, trying to become familiar with new operating areas and equipment, while striving to minimize risk and optimize mission success. Technical advancements that can reduce the TAC RECCE timeline, simplify operations and instill Warfighter

  14. Tandem-X Mission Status

    NASA Astrophysics Data System (ADS)

    Zink, M.

    2015-04-01

    TanDEM-X (TerraSAR-X add-on for Digital Elevation Measurements) is an innovative formation flying radar mission that opens a new era in spaceborne radar remote sensing. Its primary objective is the acquisition of a global Digital Elevation Model (DEM) with unprecedented accuracy (12 m horizontal resolution and 2 m relative height accuracy). This goal is achieved by extending the TerraSAR-X synthetic aperture radar (SAR) mission by a second TerraSAR-X like satellite, TanDEM-X (TDX). Both satellites fly in close orbit formation of a few hundred meters distance, and the resulting large single-pass SAR interferometer features flexible baseline selection enabling the acquisition of highly accurate cross-track interferograms not impacted by temporal decorrelation and atmospheric disturbances. Beyond the global DEM, several secondary mission objectives based on along-track interferometry as well as new bistatic and multistatic SAR techniques have been defined. Since 2010 both satellites have been operated in close formation to map all land surfaces at least twice and difficult terrain even up to four times. While data acquisition for the DEM generation will be concluded by the end of 2014 it is expected to complete the processing of the global DEM in the second half of 2016.

  15. Spacelab mission 2: Experimental descriptions

    NASA Technical Reports Server (NTRS)

    Clifton, K. S. (Editor)

    1982-01-01

    The second Spacelab Mission and the 12 multidisciplinary experiments selected to fly on board are described. These experiments include the following: vitamin D metabolities and bone demineralization; interaction of oxygen and gravity influenced lignification; ejectable plasma diagnostics package; plasma depletion experiments for ionospheric and radio astronomical studies; small helium cooled IR telescope; elemental composition and energy spectra of cosmic ray nuclei; hard X-ray imaging of clusters of galaxies and other extended X-ray sources; solar magnetic and velocity field measurement system; solar coronal helium abundance Spacelab experiment; solar UV high resolution telescope and spectroraph; solar UV spectral irradiance monitor; and properties of superfluid helium in zero-G.

  16. EXCEED (SORA) mission overview

    NASA Astrophysics Data System (ADS)

    Yoshikawa, I.

    2013-05-01

    An earth-orbiting Extreme Ultraviolet spectroscopic mission, EXtreme ultraviolet spectrosCope for ExosphEric Dynamics explore (EXCEED) is ready for the launch. The EXCEED mission will carry out observations of Extreme Ultraviolet (EUV: 60 -145 nm) emissions from tenuous plasmas around the planets (Mercury, Mars, Venus, and Jupiter). It is necessary for planetary EUV spectroscopy to avoid the Earth's atmospheric absorption, therefore we have to observe above the Earth's atmosphere. In this paper, we will introduce the mission overview, the instrument, and the scientific targets.

  17. The LISA Pathfinder mission

    NASA Astrophysics Data System (ADS)

    Antonucci, F.; Armano, M.; Audley, H.; Auger, G.; Benedetti, M.; Binetruy, P.; Bogenstahl, J.; Bortoluzzi, D.; Bosetti, P.; Brandt, N.; Caleno, M.; Cañizares, P.; Cavalleri, A.; Cesa, M.; Chmeissani, M.; Conchillo, A.; Congedo, G.; Cristofolini, I.; Cruise, M.; Danzmann, K.; De Marchi, F.; Diaz-Aguilo, M.; Diepholz, I.; Dixon, G.; Dolesi, R.; Dunbar, N.; Fauste, J.; Ferraioli, L.; Ferrone, V.; Fichter, W.; Fitzsimons, E.; Freschi, M.; García Marin, A.; García Marirrodriga, C.; Gerndt, R.; Gesa, L.; Gilbert, F.; Giardini, D.; Grimani, C.; Grynagier, A.; Guillaume, B.; Guzmán, F.; Harrison, I.; Heinzel, G.; Hernández, V.; Hewitson, M.; Hollington, D.; Hough, J.; Hoyland, D.; Hueller, M.; Huesler, J.; Jennrich, O.; Jetzer, P.; Johlander, B.; Karnesis, N.; Killow, C.; Llamas, X.; Lloro, I.; Lobo, A.; Maarschalkerweerd, R.; Madden, S.; Mance, D.; Mateos, I.; McNamara, P. W.; Mendes, J.; Mitchell, E.; Monsky, A.; Nicolini, D.; Nicolodi, D.; Nofrarias, M.; Pedersen, F.; Perreur-Lloyd, M.; Plagnol, E.; Prat, P.; Racca, G. D.; Ramos-Castro, J.; Reiche, J.; Romera Perez, J. A.; Robertson, D.; Rozemeijer, H.; Sanjuan, J.; Schleicher, A.; Schulte, M.; Shaul, D.; Stagnaro, L.; Strandmoe, S.; Steier, F.; Sumner, T. J.; Taylor, A.; Texier, D.; Trenkel, C.; Tu, H.-B.; Vitale, S.; Wanner, G.; Ward, H.; Waschke, S.; Wass, P.; Weber, W. J.; Ziegler, T.; Zweifel, P.

    2012-06-01

    In this paper, we describe the current status of the LISA Pathfinder mission, a precursor mission aimed at demonstrating key technologies for future space-based gravitational wave detectors, like LISA. Since much of the flight hardware has already been constructed and tested, we will show that performance measurements and analysis of these flight components lead to an expected performance of the LISA Pathfinder which is a significant improvement over the mission requirements, and which actually reaches the LISA requirements over the entire LISA Pathfinder measurement band.

  18. Venus 2000 Mission Design

    NASA Astrophysics Data System (ADS)

    Folta, David; Marr, Greg; Vaughn, Frank; Houghton, Martin B.

    1997-05-01

    As part of the Discovery Program, National Aeronautics and Space Administration (NASA) has solicited proposals for inter-planetary research to conduct solar system exploration science investigations. A mission, called Venus 2000 (V2k), has been proposed for exploration of the Venus Atmosphere. This is NASAs first voyage to Venus to investigate key science objectives since Magellan and will be launched in summer 2002. In keeping with discovery program requirements to reduce total mission cost and utilize new technology, V2k mission design and control will focus on the use of innovative and proven trajectory analysis programs and control systems provided by the Goddard Space Flight Center (GSFC).

  19. Manned Venus Orbiting Mission

    NASA Technical Reports Server (NTRS)

    Willis, E. A., Jr.

    1967-01-01

    Manned orbiting stopover round trips to Venus are studied for departure dates between 1975 and 1986 over a range of trip times and stay times. The use of highly elliptic parking orbits at Venus leads to low initial weights in Earth orbit compared with circular orbits. For the elliptic parking orbit, the effect of constraints on the low altitude observation time on the initial weight is shown. The mission can be accomplished with the Apollo level of chemical propulsion, but advanced chemical or nuclear propulsion can give large weight reductions. The Venus orbiting mission weights than the corresponding Mars mission.

  20. Euclid mission status

    NASA Astrophysics Data System (ADS)

    Laureijs, R.; Racca, G.; Stagnaro, L.; Salvignol, J.-C.; Lorenzo Alvarez, J.; Saavedra Criado, G.; Gaspar Venancio, L.; Short, A.; Strada, P.; Colombo, C.; Buenadicha, G.; Hoar, J.; Kohley, R.; Vavrek, R.; Mellier, Y.; Berthe, M.; Amiaux, J.; Cropper, M.; Niemi, S.; Pottinger, S.; Ealet, A.; Jahnke, K.; Maciaszek, T.; Pasian, F.; Sauvage, M.; Wachter, S.; Israelsson, U.; Holmes, W.; Seiffert, M.; Cazaubiel, V.; Anselmi, A.; Musi, P.

    2014-08-01

    In June 2012, Euclid, ESA's Cosmology mission was approved for implementation. Afterwards the industrial contracts were signed for the payload module and the spacecraft prime, and the mission requirements consolidated. We present the status of the mission in the light of the design solutions adopted by the contractors. The performances of the spacecraft in its operation, the telescope assembly, the scientific instruments as well as the data-processing have been carefully budgeted to meet the demanding scientific requirements. We give an overview of the system and where necessary the key items for the interfaces between the subsystems.

  1. Voyager Interstellar Mission (VIM)

    NASA Technical Reports Server (NTRS)

    Rudd, R.; Textor, G.

    1991-01-01

    The DSN (Deep Space Network) mission support requirements for the Voyager Interstellar Mission (VIM) are summarized. The general objectives of the VIM are to investigate the interplanetary and interstellar media and to continue the Voyager program of ultraviolet astronomy. The VIM will utilize both Voyager spacecraft for the period from January 1990 through December 2019. The mission objectives are outlined and the DSN support requirements are defined through the presentation of tables and narratives describing the spacecraft flight profile; DSN support coverage; frequency assignments; support parameters for telemetry, control and support systems; and tracking support responsibility.

  2. Planet Detection: The Kepler Mission

    NASA Astrophysics Data System (ADS)

    Jenkins, Jon M.; Smith, Jeffrey C.; Tenenbaum, Peter; Twicken, Joseph D.; Van Cleve, Jeffrey

    2012-03-01

    , only ˜0.5% will exhibit transits. By observing such a large number of stars, Kepler is guaranteed to produce a robust null result in the unhappy event that no Earth-size planets are detected in or near the habitable zone. Such a result would indicate that worlds like ours are extremely rare in the Milky Way galaxy and perhaps the cosmos, and that we might be solitary sojourners in the quest to answer the age-old question: "Are we alone?" Kepler is an audacious mission that places rigorous demands on the science pipeline used to process the ever-accumulating, large amount of data and to identify and characterize the minute planetary signatures hiding in the data haystack. Kepler observes over 160,000 stars simultaneously over a field of view (FOV) of 115 square degrees with a focal plane consisting of 42 charge-coupled devices‡ (CCDs), each of which images 2.75 square degrees of sky onto 2200×1024 pixels. The photometer, which contains the CCD array, reads out each CCD every 6.54 s [10,11] and co-adds the images for 29.4 min, called a long cadence (LC) interval. Due to storage and bandwidth constraints, only the pixels of interest, those that contain images of target stars, are saved onboard the solid-state recorder (SSR), which can store 66+ days of data. An average of 32 pixels per star is allowed for up to 170,000 stellar target definitions. In addition, a total of 512 targets are sampled at 58.85-s short cadence (SC) intervals, permitting further characterization of the planet-star systems for the brighter stars with a Kepler magnitude,* Kp, brighter than 12 (Kp < 12) stars via asteroseismology [17], and more precise transit timing. In addition to the stellar images, collateral data used for calibration (CAL) are also collected and stored on the SSR. For each of the 84 CCD readout channels these data include up to 4500 background sky pixels used to estimate and remove diffuse stellar background and zodiacal light; 1100 pixels containing masked smear measurements

  3. STS-107 Flight Day 11 Highlights

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This video shows the activities of the STS-107 crew (Rick Husband, Commander; William McCool, Pilot; Kalpana Chawla, David Brown, Michael Anderson, Laurel Clark, Mission Specialists; Ilan Ramon, Payload Specialist) during flight day 11 of the Columbia orbiter's final mission. In the video, crew members from the Blue Team (McCool, Brown, Anderson) and the Red Team (Husband, Chawla, Clark, Ramon) are shown at work on experiments in the SpaceHab RDM (Research Double Module), and performing other tasks. Much of the video is shot and narrated by Commander Husband. Mission Specialist Brown is shown operating the MEIDEX (Mediterranean Israeli Dust Experiment). Crew activities shown include making breakfast, entering sleep stations, and programming shuttle maneuvers necessary for the spaceborne experiments onboard. Earth views shown in the video include one of Egypt, Israel and Jerusalem.

  4. STS-107 Flight Day 1 Highlights

    NASA Astrophysics Data System (ADS)

    2003-01-01

    This video shows the activities of the STS-107 crew on flight day 1 of the Columbia orbiter's final mission. The crew includes Commander Rick Husband, Pilot William McCool, Mission Specialists Michael Anderson, David Brown, Laurel Clark, and Kalpana Chawla, and Payload Specialist Ilan Ramon. The video begins with a view of the space shuttle on its launch pad, while an announcer gives an overview of the mission, including its spaceborne experiments. The announcer then introduces the crew members, listing their previous experience. They are seen seated at a banquet table, and during suit up. The seating of the crew in the orbiter is shown, as are other prelaunch procedures. Dialog from during the launch is audible on the tape, and the video includes views of the ascent from different angles, as well as booster separation. The video ends with a view of Columbia in orbit, showing the Research Double Module (RDM) on the inside of its payload bay.

  5. STS-110 Flight Day 1 Highlights

    NASA Astrophysics Data System (ADS)

    2002-04-01

    The first day of the STS-110 mission begins with a live shot of the Space Shuttle Atlantis at the Kennedy Space Center. The primary objective of this flight is to rendezvous and dock with the International Space Station to attach the S (0) Truss and mobile transporter. The STS-110 crew consists of: Commander Michael J. Bloomfield, Pilot Stephen N. Frick, Mission Specialists Rex J. Walheim, Ellen Ochoa, Lee M.E. Morin, Jerry L. Ross, and Steven L. Smith. The crew is shown getting suited for their mission. Extravehicular Activity (EVA) will be performed by Jerry Ross, Lee Morin, Rex Walheim and Steven Smith. Live footage of the launch of the Space Shuttle Atlantis is also given.

  6. STS-104 Flight Day 11 Highlights

    NASA Technical Reports Server (NTRS)

    2001-01-01

    On this 11th day of the STS-104 mission, Expedition 2 crewmembers, Commander Yuriy Usachev and Flight Engineers James Voss and Susan Helms, are seen in the Destiny Laboratory Module as they prepare for the departure of the STS-104 crew. Both the Expedition 2 crew and the STS-104 crew (Commander Steven Lindsey, Pilot Charles Hobaugh, and Mission Specialists Mike Gernhardt, Jim Reilly, and Janet Kavandi) are seen as they say their farewells and the STS-104 crew returns to the Space Shuttle. The undocking of Atlantis is shown and the International Space Station is seen against Earth and space as the orbiter flys around the station. The STS-104 crew answers questions about the mission in an on-orbit interview.

  7. Exobiology and Future Mars Missions

    NASA Technical Reports Server (NTRS)

    Mckay, Christopher P. (Editor); Davis, Wanda, L. (Editor)

    1989-01-01

    Scientific questions associated with exobiology on Mars were considered and how these questions should be addressed on future Mars missions was determined. The mission that provided a focus for discussions was the Mars Rover/Sample Return Mission.

  8. No Treatment Day School.

    PubMed

    DeJong, Judith A; Holder, Stanley R

    2006-01-01

    At the No Treatment Day School, less than 15% of students used the dormitory during the school week. Located in the heart of a reservation and serving local students, the K-12 school enrolled over 1,000 students. The site received Therapeutic Residential Model funding for the 2001-2002 school year. Initial evaluation of this site found an array of daunting problems throughout the school structure and functioning. There were some successes, including implementation of the Morningside reading program in the elementary school and some response from the community to the comprehensive evaluation report which provided an overview of the situation to policy-makers and community members. However instability in the system and a mid-year change in leadership complicated the process of implementation. By the end of the first year, it was clear that the feasibility of the original proposal was questionable and that an overhaul of the school's system and culture was necessary before a Therapeutic Residential Model could be implemented or significant change could come about. Therapeutic Residential Model funding was terminated at the end of the school year. As there was no substantial implementation of a Therapeutic Residential Model program, data gathered were utilized as representing a naturally occurring control or minimal treatment site.

  9. The GRACE Mission Status and Future Directions

    NASA Astrophysics Data System (ADS)

    Tapley, Byron; Flechtner, Frank; Watkins, Michael; Bettadpur, Srinivas

    The twin satellites of the Gravity Recovery and Climate Experiment (GRACE) were launched on March 17, 2002 and have operated continuously for over 12 years. During this time, the results from this mission have been used in a wide range of contemporary studies of Earth System Dynamics. The mission objectives are to sense the spatial and temporal variations of the Earth’s mass through its effects on the gravity field at the GRACE satellite altitude. The primary mission objectives of GRACE are to measure: 1) the Earth’s time-averaged gravity field over the mission life and 2) the monthly variations in the mean gravity field at wave lengths between 300 and 4000 km. The major cause of the time varying mass is water motion and the GRACE mission has provided a continuous decade long measurement sequences which characterizes the seasonal cycle of mass transport between the oceans, land, cryosphere and atmosphere; its inter-annual variability; and the climate driven secular, or long period, mass transport signals. Measurements of continental aquifer mass change, polar ice mass change and ocean bottom currents are examples of paradigm shifting remote sensing observations enabled by the GRACE satellite measurements. In 2012, a complete reanalysis of the mission data, referred to as the RL05 data release, was initiated. The monthly solutions from this effort were released in mid-2013 and have been applied in numerous science and application related investigations. The RL05 mean and combined models, involving the GRACE/GOCE data combinations, are still in development. This presentation will review some of the science improvements from the RL05 data and the remaining tasks to be conducted in completing the solution, describe the current mission status and the current operations, which are focused on extending enhance the mission lifetime. Finally, plans for the GRACE Follow On Mission, whose objectives extend the GRACE measurement set, will be discussed.

  10. Every Day Is National Lab Day

    ERIC Educational Resources Information Center

    Bull, Glen

    2010-01-01

    President Barack Obama recently issued a call for increased hands-on learning in U.S. schools in an address at the National Academy of Sciences. Obama concluded that the future of the United States depends on one's ability to encourage young people to "create, and build, and invent." In this article, the author discusses National Lab Day (NLD)…

  11. The Prisma Hyperspectra Mission

    NASA Astrophysics Data System (ADS)

    Loizzo, R.; Ananasso, C.; Guarini, R.; Lopinto, E.; Candela, L.; Pisani, A. R.

    2016-08-01

    PRISMA (PRecursore IperSpettrale della Missione Applicativa) is an Italian Space Agency (ASI) hyperspectral mission currently scheduled for the lunch in 2018. PRISMA is a single satellite placed on a sun- synchronous Low Earth Orbit (620 km altitude) with an expected operational lifetime of 5 years. The hyperspectral payload consists of a high spectral resolution (VNIR-SWIR) imaging spectrometer, optically integrated with a medium resolution Panchromatic camera. PRISMA will acquire data on areas of 30 km Swath width and with a Ground Sampling Distance (GSD) of 30 m (hyperspectral) and of 5 m Panchromatic (PAN). The PRISMA Ground Segment will be geographically distributed between Fucino station and ASI Matera Space Geodesy Centre and will include the Mission Control Centre, the Satellite Control Centre and the Instrument Data Handling System. The science community supports the overall lifecycle of the mission, being involved in algorithms definition, calibration and validation activities, research and applications development.

  12. Cassini's Solstice Mission

    NASA Technical Reports Server (NTRS)

    Seal, David; Mitchell, Robert

    2010-01-01

    With the recent approval of NASA's flagship Cassini mission for seven more years of continued operations, dozens more Titan, Enceladus and other icy moon flybys await, as well as many occultations and multiple close passages to Saturn. Seasonal change is the principal scientific theme as Cassini extends its survey of the target-rich system over one full half-season, from just after northern winter solstice at arrival back in 2004, to northern summer solstice at the end of mission in 2017. The new seven-year mission extension requires careful propellant management as well as streamlined operations strategies with smaller spacecraft, sequencing and science teams. Cassini's never-before-envisioned end of mission scenario also includes nearly two dozen high-inclination orbits which pass between the rings and the planet allowing thrilling and unique science opportunities before entry into Saturn's atmosphere.

  13. Students on Hayabusa Mission

    NASA Video Gallery

    Three Massachusetts high school students began their summer with a journey halfway around the world to participate in a NASA airborne mission to image the Japanese Hayabusa spacecraft's fiery retur...

  14. Mars Exploration Rover Mission

    NASA Technical Reports Server (NTRS)

    Cohen, Barbara A.

    2008-01-01

    This viewgraph presentation reviews the Mars Exploration Rover Mission. The design of the Rover along with the Athena science payload is also described. Photographs of the Gusev Crater and Meridiani rocks are also shown.

  15. Microspacecraft missions and systems

    NASA Technical Reports Server (NTRS)

    Jones, Ross M.

    1989-01-01

    The microspacecraft is defined as a fully functional spacecraft whose mass is on the order of 10 kg or less. The results of a recent microspacecraft workshop are reviewed. The workshop concluded that microspacecraft are feasible and can be enabling for missions that require multiple simultaneous measurements displaced in position or very high mission delta-VSDIO-s. The paper includes discussions of science objectives and instruments as well as potential missions. Potential missions include a very close approach to the sun, determining the origin of gamma ray bursters and a search for gravity waves. Technology for microspacecraft is coming from the 'Lightsat' or small satellite community and developments sponsored by the SDIO. Concepts for microspacecraft power and telecommunications subsystems developed at the JPL are presented. Due to their small size, microspacecraft can be launched by traditional chemical rockets and also unconventional launchers such as electromagnetic launchers.

  16. Apollo 15 Mission Report

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A detailed discussion is presented of the Apollo 15 mission, which conducted exploration of the moon over longer periods, greater ranges, and with more instruments of scientific data acquisition than previous missions. The topics include trajectory, lunar surface science, inflight science and photography, command and service module performance, lunar module performance, lunar surface operational equipment, pilot's report, biomedical evaluation, mission support performance, assessment of mission objectives, launch phase summary, anomaly summary, and vehicle and equipment descriptions. The capability of transporting larger payloads and extending time on the moon were demonstrated. The ground-controlled TV camera allowed greater real-time participation by earth-bound personnel. The crew operated more as scientists and relied more on ground support team for systems monitoring. The modified pressure garment and portable life support system provided better mobility and extended EVA time. The lunar roving vehicle and the lunar communications relay unit were also demonstrated.

  17. The MARSIS Science Mission

    NASA Technical Reports Server (NTRS)

    Plaut, J J.; Picardi, G.

    2005-01-01

    The Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS) is an integral component of the Mars Express mission. A low-frequency sounding radar was carried on the Russian Mars 96 spacecraft, and in keeping with the concept of re-flying the science experiments lost on that mission, a call for a radar sounder was part of the Announcement of Opportunity for the 2003 ESA Mars Express mission. MARSIS is the only totally new instrument on Mars Express. The instrument was developed, delivered and operated as a joint effort between the Italian Space Agency and the U.S space agency NASA. The MARSIS science mission has been delayed due to concerns about the safety of the antenna deployment. As a testament to the importance placed on the

  18. STS-133 Mission Highlights

    NASA Video Gallery

    Space shuttle Discovery and the STS-133 crew launched Feb. 24, 2011, on a mission to deliver the Permanent Multipurpose Module, Robonaut 2 and the Express Logistics Carrier 4 to the International S...

  19. The IRIS Mission Timeline

    NASA Video Gallery

    This animation shows the timeline of activities for the IRIS mission. Following launch, during the initial orbits, the spacecraft “detumbles”, opens the solar arrays, acquires the sun and com...

  20. NASA Hurricane Mission - GRIP

    NASA Video Gallery

    This is an overview of NASA's hurricane research campaign called Genesis and Rapid Intensification Processes (GRIP). The six-week mission was conducted in coordination with NOAA and the National Sc...

  1. Mission X Introduction

    NASA Video Gallery

    Expedition 26 Flight Engineer Cady Coleman delivers a message to student teams participating in the Mission X: Train Like An Astronaut international education and fitness challenge. To learn more, ...

  2. An interstellar precursor mission

    NASA Technical Reports Server (NTRS)

    Jaffe, L. D.; Ivie, C.; Lewis, J. C.; Lipes, R. G.; Norton, H. N.; Stearns, J. W.; Stimpson, L.; Weissman, P.

    1977-01-01

    A mission out of the planetary system, with launch about the year 2000, could provide valuable scientific data as well as test some of the technology for a later mission to another star. Primary scientific objectives for the precursor mission concern characteristics of the heliopause, the interstellar medium, stellar distances (by parallax measurements), low energy cosmic rays, interplanetary gas distribution, and mass of the solar system. Secondary objectives include investigation of Pluto. Candidate science instruments are suggested. Individual spacecraft systems for the mission were considered, technology requirements and problem areas noted, and a number of recommendations made for technology study and advanced development. The most critical technology needs include attainment of 50-yr spacecraft lifetime and development of a long-life NEP system.

  3. Technology Demonstration Missions

    NASA Video Gallery

    NASA's Technology Demonstration Missions (TDM) Program seeks to infuse new technology into space applications, bridging the gap between mature “lab-proven” technology and "flight-ready" status....

  4. Mission Control Roses

    NASA Video Gallery

    The 110th bouquet of roses arrived in Mission Control on Saturday, July 9, 2011. They were sent as quietly as they have been for more than 23 years by a family near Dallas, Texas. For 110 shuttle m...

  5. Galileo Mission Science Briefing

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The first of two tapes of the Galileo Mission Science press briefing is presented. The panel is moderated by George Diller from the Kennedy Space Center (KSC) Public Affairs Office. The participants are John Conway, the director of Payload and operations at Kennedy; Donald E. Williams, Commander of STS-43, the shuttle mission which will launch the Galileo mission; John Casani, the Deputy Assistant Director of Flight Projects at the Jet Propulsion Lab (JPL); Dick Spehalski, Galileo Project Manager at JPL; and Terrence Johnson, Galileo Project Scientist at JPL. The briefing begins with an announcement of the arrival of the Galileo Orbiter at KSC. The required steps prior to the launch are discussed. The mission trajectory and gravity assists from planetary and solar flybys are reviewed. Detailed designs of the orbiter are shown. The distance that Galileo will travel from the sun precludes the use of solar energy for heat. Therefore Radioisotope heater units are used to keep the equipment at operational temperature. A video of the arrival of the spacecraft at KSC and final tests and preparations is shown. Some of the many science goals of the mission are reviewed. Another video showing an overview of the Galileo mission is presented. During the question and answer period, the issue of the use of plutonium on the mission is broached, which engenders a review of the testing methods used to ensure the safety of the capsules containing the hazardous substance. This video has actual shots of the orbiter, as it is undergoing the final preparations and tests for the mission.

  6. Atmospheric tether mission analyses

    NASA Technical Reports Server (NTRS)

    1996-01-01

    NASA is considering the use of tethered satellites to explore regions of the atmosphere inaccessible to spacecraft or high altitude research balloons. This report summarizes the Lockheed Martin Astronautics (LMA) effort for the engineering study team assessment of an Orbiter-based atmospheric tether mission. Lockheed Martin responsibilities included design recommendations for the deployer and tether, as well as tether dynamic analyses for the mission. Three tether configurations were studied including single line, multistrand (Hoytether) and tape designs.

  7. Galileo Mission Science Briefing

    NASA Astrophysics Data System (ADS)

    1989-07-01

    The first of two tapes of the Galileo Mission Science press briefing is presented. The panel is moderated by George Diller from the Kennedy Space Center (KSC) Public Affairs Office. The participants are John Conway, the director of Payload and operations at Kennedy; Donald E. Williams, Commander of STS-43, the shuttle mission which will launch the Galileo mission; John Casani, the Deputy Assistant Director of Flight Projects at the Jet Propulsion Lab (JPL); Dick Spehalski, Galileo Project Manager at JPL; and Terrence Johnson, Galileo Project Scientist at JPL. The briefing begins with an announcement of the arrival of the Galileo Orbiter at KSC. The required steps prior to the launch are discussed. The mission trajectory and gravity assists from planetary and solar flybys are reviewed. Detailed designs of the orbiter are shown. The distance that Galileo will travel from the sun precludes the use of solar energy for heat. Therefore Radioisotope heater units are used to keep the equipment at operational temperature. A video of the arrival of the spacecraft at KSC and final tests and preparations is shown. Some of the many science goals of the mission are reviewed. Another video showing an overview of the Galileo mission is presented. During the question and answer period, the issue of the use of plutonium on the mission is broached, which engenders a review of the testing methods used to ensure the safety of the capsules containing the hazardous substance. This video has actual shots of the orbiter, as it is undergoing the final preparations and tests for the mission.

  8. Apollo 17 Mission Report

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Operational and engineering aspects of the Apollo 17 mission are outlined. The vehicle configuration was similar to those of Apollo 15 and 16. There were significant differences in the science payload for Apollo 17 and spacecraft hardware differences and experiment equipment are described. The mission achieved a landing in the Taurus-Littrow region of the moon and returned samples of the pre-Imbrium highlands and young craters.

  9. The EOS Aura Mission

    NASA Technical Reports Server (NTRS)

    Schoeberl, Mark R.; Douglass, A. R.; Hilsenrath, E.; Luce, M.; Barnett, J.; Beer, R.; Waters, J.; Gille, J.; Levelt, P. F.; DeCola, P.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    The EOS Aura Mission is designed to make comprehensive chemical measurements of the troposphere and stratosphere. In addition the mission will make measurements of important climate variables such as aerosols, and upper tropospheric water vapor and ozone. Aura will launch in late 2003 and will fly 15 minutes behind EOS Aqua in a polar sun synchronous ascending node orbit with a 1:30 pm equator crossing time.

  10. NEEMO 7 undersea mission

    NASA Astrophysics Data System (ADS)

    Thirsk, Robert; Williams, David; Anvari, Mehran

    2007-02-01

    The NEEMO 7 mission was the seventh in a series of NASA-coordinated missions utilizing the Aquarius undersea habitat in Florida as a human space mission analog. The primary research focus of this mission was to evaluate telementoring and telerobotic surgery technologies as potential means to deliver medical care to astronauts during spaceflight. The NEEMO 7 crewmembers received minimal pre-mission training to perform selected medical and surgical procedures. These procedures included: (1) use of a portable ultrasound to locate and measure abdominal organs and structures in a crewmember subject; (2) use of a portable ultrasound to insert a small needle and drain into a fluid-filled cystic cavity in a simulated patient; (3) surgical repair of two arteries in a simulated patient; (4) cystoscopy and use of a ureteral basket to remove a renal stone in a simulated patient; and (5) laparoscopic cholecystectomy in a simulated patient. During the actual mission, the crewmembers performed the procedures without or with telementoring and telerobotic assistance from experts located in Hamilton, Ontario. The results of the NEEMO 7 medical experiments demonstrated that telehealth interventions rely heavily on a robust broadband, high data rate telecommunication link; that certain interventional procedures can be performed adequately by minimally trained individuals with telementoring assistance; and that prior clinical experience does not always correlate with better procedural performance. As space missions become longer in duration and take place further from Earth, enhancement of medical care capability and expertise will be required. The kinds of medical technologies demonstrated during the NEEMO 7 mission may play a significant role in enabling the human exploration of space beyond low earth orbit, particularly to destinations such as the Moon and Mars.

  11. Apollo mission experience

    NASA Technical Reports Server (NTRS)

    Schaefer, H. J.

    1972-01-01

    Dosimetric implications for manned space flight are evaluated by analyzing the radiation field behind the heavy shielding of a manned space vehicle on a near-earth orbital mission and how it compares with actual exposure levels recorded on Apollo missions. Emphasis shifts from flux densities and energy spectra to incident radiation and absorbed doses and dose equivalents as they are recorded within the ship at locations close to crew members.

  12. The PLATO Mission

    NASA Astrophysics Data System (ADS)

    Rauer, H.; Aerts, C.; Cabrera, J.; PLATO Team

    2016-09-01

    We present the current status of the PLATO space mission, which is currently in its design phase. A brief overview of its capabilities is given, after introducing the core science goals of the mission. We also present the amount of observing time offered to the community as Guest Observer program. This will allow a wealth of complementary science in many areas of astrophysics, ranging from stellar to extragalactic science and covering variability phenomena with time scales from a few seconds to years.

  13. Modelling UV sky for future UV missions

    NASA Astrophysics Data System (ADS)

    Sreejith, A. G.; Safanova, M.; Mohan, R.; Murthy, Jayant

    Software simulators are now widely used in all areas of science, especially in application to astronomical missions: from instrument design to mission planning, and to data interpretation. We present a simulator to model the diffuse ultraviolet sky, where the different contributors are separately calculated and added together to produce a sky image of the size specified by the instrument requirements. Each of the contributors to the background, instrumental dark current, airglow, zodiacal light and diffuse galactic light, is dependent on various factors. Airglow is dependent on the time of day, zodiacal light on the time of year, angle from the Sun and from the ecliptic, and diffuse UV emission depends on the look direction. To provide a full description of any line of sight, we have also added stars. The diffuse UV background light can dominate in many areas of the sky and severely impact space telescopes viewing directions due to over brightness. The simulator, available as a downloadable package and as a simple web-based tool, can be applied to separate missions and instruments. For demonstration, we present the example used for two UV missions: the UVIT instrument on the Indian ASTROSAT mission to be launched in the next year and a prospective wide-field mission to search for transients in the UV.

  14. AAS 227: Day 2

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-01-01

    % atoms, 23% dark matter, and 73% dark energy.Spergel and Kamionkowski then pointed towards the future, predicting even more spectacular results to come over the next decade or so. Our current model of the universe predicts gravitational waves, which we havent observed so far, but the search is heating up. Kamionkowski called this potentially the most important new physics result of this century! He also explained that we can now do neutrino physics using the cosmic microwave background, which already provides the strongest constraint on the sum of neutrinon masses. In the next decade, we should be able to further determine the neutrino mass hierarchy. The coming years in cosmology could be even more exciting than the past twenty!HEAD Rossi Prize talk: A New View of the High Energy Universe with NuSTAR (by Susanna Kohler)This years Rossi Prize winner Fiona Harrison capped off the main part of the day with a plenary talk about some of the highlights from the first two years of the NuSTAR mission, NASAs space-based, high-energy X-ray telescope.Additional science results from the past two years with NuSTAR.Harrison began by telling us about NuSTARs launch in 2012, in which a Pegasus rocket with NuSTAR as its payload was launched from a L-1011 Stargazer aircraft. She claims to have been unconcerned about this part: The payload would go up or it would go down, there wasnt anything I could do about it. The real terror for the NuSTAR team came 9 days later when the telescope slowly unfolded itself over the span of 24 minutes, snapping components into place. All went well, however, and NuSTAR has since been forging exciting new territory in the high-energy X-ray regime!Harrison discussed science highlights from the last two years of NuSTAR, like the discovery of a population of dead stars in the inner parsecs of the galaxy, the identification of the mechanism that most likely re-energizes stalled shocks in supernovae and launches the explosion (in case youre keeping track, its

  15. STS-110 Flight Day 7 Highlights

    NASA Technical Reports Server (NTRS)

    2002-01-01

    On the seventh day of STS-110, Mission Specialists Steven Smith and Rex Walheim are shown preparing for their second extravehicular activity (EVA) and the third of the mission, with the assistance of Mission Specialist Jerry Ross. Following this mission, Ross and Smith will be the first and second most experienced spacewalkers, respectively, in history. A camera mounted on the Space Shuttle Atlantis shows footage of the International Space Station. While Smith and Walheim are on EVA, Mission Specialists Ross and Lee Morin will provide choreography from inside the Atlantis crew cabin, Pilot Stephen Frick will operate the robotic arm, and Commander Mike Bloom will control the cameras on the robotic arm. Smith and Walheim are shown exiting the airlock hatch and then installing an PFR (Portable Foot Restraint) on the end of the robotic arm, from which much of the work will be done. Following the switching off of a circuit breaker, the main EVA task of rewiring umbilical cables that provide power, commands, and video is begun. These cables will be connected to the Mobile Transporter's (MT) robotic arm. The MT, an external transportation system which runs on rails, is seen with a helmet mounted camera as the astronauts work to release bolts that had served to secure the MT during launch. After a final check of the umbilical connections mated, the Umbilical Reconfiguration Panel is fitted over the cables, and the astronauts make their way to the airlock hatch.

  16. STS-107 Flight Day 14 Highlights

    NASA Astrophysics Data System (ADS)

    2003-01-01

    This video shows the activities of the STS-107 crew on flight day 14 of the Columbia orbiter's final mission. The crew includes Commander Rick Husband, Pilot William McCool, Mission Specialists Kalpana Chawla, David Brown, Michael Anderson, and Laurel Clark, and Payload Specialist Ilan Ramon. Most of the video shows a press conference on board Columbia featuring all seven astronauts. Reporters ask the crew members questions, who reply via a handset. Most of the questions cover life in space and the mission's spaceborne experiments. Each astronaut answers multiple questions, and in response to one of the questions, each of the seven describes an 'O Wow!' moment. The remainder of the video consists of a tour of the orbiter, including the flight deck, mid-deck, and the SpaceHab Research Double Module (RDM) in the payload bay. Mission Specialist Chawla demonstrates eating at the shuttle's galley, and Commander Husband shows his toiletries. In the RDM, Mission Specialist Clark exercises on a machine for an experiment on respiration.

  17. The LISA Pathfinder Mission

    NASA Astrophysics Data System (ADS)

    McNamara, Paul

    2013-04-01

    LISA Pathfinder, the second of the European Space Agency's Small Missions for Advanced Research in Technology (SMART), is a dedicated technology validation mission for future interferometric spaceborne gravitational wave observatories, for example the proposed eLISA mission. The technologies required for eLISA are many and extremely challenging. This coupled with the fact that some flight hardware cannot be fully tested on ground due to Earth-induced noise, led to the implementation of the LISA Pathfinder mission to test the critical eLISA technologies in a flight environment. LISA Pathfinder essentially mimics one arm of the eLISA constellation by shrinking the 1 million kilometre armlength down to a few tens of centimetres, giving up the sensitivity to gravitational waves, but keeping the measurement technology: the distance between the two test masses is measured using a laser interferometric technique similar to one aspect of the eLISA interferometry system. The scientific objective of the LISA Pathfinder mission consists then of the first in-flight test of low frequency gravitational wave detection metrology. Here I will present an overview of the mission, focusing on scientific and technical goals, followed by the current status of the project.

  18. The Voyager Interstellar Mission.

    PubMed

    Rudd, R P; Hall, J C; Spradlin, G L

    1997-01-01

    The Voyager Interstellar Mission began on January 1, 1990, with the primary objective being to characterize the interplanetary medium beyond Neptune and to search for the transition region between the interplanetary medium and the interstellar medium. At the start of this mission, the two Voyager spacecraft had already been in flight for over twelve years, having successfully returned a wealth of scientific information about the planetary systems of Jupiter, Saturn, Uranus, and Neptune, and the interplanetary medium between Earth and Neptune. The two spacecraft have the potential to continue returning science data until around the year 2020. With this extended operating lifetime, there is a high likelihood of one of the two spacecraft penetrating the termination shock and possibly the heliopause boundary, and entering interstellar space before that time. This paper describes the Voyager Interstellar Mission--the mission objectives, the spacecraft and science payload, the mission operations system used to support operations, and the mission operations strategy being used to maximize science data return even in the event of certain potential spacecraft subsystem failures. The implementation of automated analysis tools to offset and enable reduced flight team staffing levels is also discussed.

  19. Human exploration mission studies

    NASA Technical Reports Server (NTRS)

    Cataldo, Robert L.

    1989-01-01

    The Office of Exploration has established a process whereby all NASA field centers and other NASA Headquarters offices participate in the formulation and analysis of a wide range of mission strategies. These strategies were manifested into specific scenarios or candidate case studies. The case studies provided a systematic approach into analyzing each mission element. First, each case study must address several major themes and rationale including: national pride and international prestige, advancement of scientific knowledge, a catalyst for technology, economic benefits, space enterprise, international cooperation, and education and excellence. Second, the set of candidate case studies are formulated to encompass the technology requirement limits in the life sciences, launch capabilities, space transfer, automation, and robotics in space operations, power, and propulsion. The first set of reference case studies identify three major strategies: human expeditions, science outposts, and evolutionary expansion. During the past year, four case studies were examined to explore these strategies. The expeditionary missions include the Human Expedition to Phobos and Human Expedition to Mars case studies. The Lunar Observatory and Lunar Outpost to Early Mars Evolution case studies examined the later two strategies. This set of case studies established the framework to perform detailed mission analysis and system engineering to define a host of concepts and requirements for various space systems and advanced technologies. The details of each mission are described and, specifically, the results affecting the advanced technologies required to accomplish each mission scenario are presented.

  20. Dust Storm Impacts on Human Mars Mission Equipment and Operations

    NASA Technical Reports Server (NTRS)

    Rucker, M. A.

    2017-01-01

    Although it is tempting to use dust impacts on Apollo lunar exploration mission equipment and operations as an analog for human Mars exploration, there are a number of important differences to consider. Apollo missions were about a week long; a human Mars mission will start at least two years before crew depart from Earth, when cargo is pre-deployed, and crewed mission duration may be over 800 days. Each Apollo mission landed at a different site; although no decisions have been made, NASA is investigating multiple human missions to a single Mars landing site, building up capability over time and lowering costs by re-using surface infrastructure. Apollo missions used two, single-use spacecraft; a human Mars mission may require as many as six craft for different phases of the mission, most of which would be re-used by subsequent crews. Apollo crews never ventured more than a few kilometers from their lander; Mars crews may take "camping trips" a hundred kilo-meters or more from their landing site, utilizing pressurized rovers to explore far from their base. Apollo mission designers weren't constrained by human for-ward contamination of the Moon; if we plan to search for evidence of life on Mars we'll have to be more careful. These differences all impact how we will mitigate and manage dust on our human Mars mission equipment and operations.

  1. STS-111 Flight Day 8 Highlights

    NASA Technical Reports Server (NTRS)

    2002-01-01

    On Flight Day 8 of STS-111 (Space Shuttle Endeavour crew includes: Kenneth Cockrell, Commander; Paul Lockhart, Pilot; Franklin Chang-Diaz, Mission Specialist; Philippe Perrin, Mission Specialist; International Space Station (ISS) Expedition 5 crew includes Valery Korzun, Commander; Peggy Whitson, Flight Engineer; Sergei Treschev, Flight Engineer; ISS Expedition 4 crew includes: Yury Onufrienko, Commander; Daniel Bursch, Flight Engineer; Carl Walz, Flight Engineer), the Leonardo Multi Purpose Logistics Module (MPLM) is shown from the outside of the ISS. The MPLM, used to transport goods to the station for the Expedition 5 crew, and to return goods used by the Expedition 4 crew, is being loaded and unloaded by crewmembers. Live video from within the Destiny Laboratory Module shows Whitson and Chang-Diaz. They have just completed the second of three reboosts planned for this mission, in each of which the station will gain an additional statutory mile in altitude. Following this there is an interview conducted by ground-based reporters with some members from each of the three crews, answering various questions on their respective missions including sleeping in space and conducting experiments. Video of Earth and space tools precedes a second interview much like the first, but with the crews in their entirety. Topics discussed include the feelings of Bursch and Walz on their breaking the US record for continual days spent in space. The video ends with footage of the Southern California coastline.

  2. STS-111 Flight Day 8 Highlights

    NASA Astrophysics Data System (ADS)

    2002-06-01

    On Flight Day 8 of STS-111 (Space Shuttle Endeavour crew includes: Kenneth Cockrell, Commander; Paul Lockhart, Pilot; Franklin Chang-Diaz, Mission Specialist; Philippe Perrin, Mission Specialist; International Space Station (ISS) Expedition 5 crew includes Valery Korzun, Commander; Peggy Whitson, Flight Engineer; Sergei Treschev, Flight Engineer; ISS Expedition 4 crew includes: Yury Onufrienko, Commander; Daniel Bursch, Flight Engineer; Carl Walz, Flight Engineer), the Leonardo Multi Purpose Logistics Module (MPLM) is shown from the outside of the ISS. The MPLM, used to transport goods to the station for the Expedition 5 crew, and to return goods used by the Expedition 4 crew, is being loaded and unloaded by crewmembers. Live video from within the Destiny Laboratory Module shows Whitson and Chang-Diaz. They have just completed the second of three reboosts planned for this mission, in each of which the station will gain an additional statutory mile in altitude. Following this there is an interview conducted by ground-based reporters with some members from each of the three crews, answering various questions on their respective missions including sleeping in space and conducting experiments. Video of Earth and space tools precedes a second interview much like the first, but with the crews in their entirety. Topics discussed include the feelings of Bursch and Walz on their breaking the US record for continual days spent in space. The video ends with footage of the Southern California coastline.

  3. STS-107 Flight Day 10 Highlights

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This video shows the activities of the STS-107 crew (Rick Husband, Commander; William McCool, Pilot; Kalpana Chawla, David Brown, Michael Anderson, Laurel Clark, Mission Specialists; Ilan Ramon, Payload Specialist) during flight day 10 of the Columbia orbiter's final mission. Flight day 10 includes an interview by Mission Control of astronauts Brown, McCool, and Anderson, who answer questions on the mission's spaceborne experiments, as well as biographical and other questions. Much of the video is shot and narrated by Payload Specialist Ramon, who shows the crew members at work on experiments in the SpaceHab RDM (Research Double Module), and performing other tasks. Experiments featured in the video include SOFBALL (Structure of Flame Balls at Low Lewis-Number), the STARS (Space Technology and Research Students) experiments, and experiments on cancer and osteoporosis. Crew activities shown include making a video of Earth, and preparing for sleep. Earth views shown in the video include the Gulf of Aden, Ghana, Lake Chad, and the coast of North Carolina.

  4. Every Day Is Mathematical

    ERIC Educational Resources Information Center

    Barger, Rita H.; Jarrah, Adeeb M.

    2012-01-01

    March 14 is special because it is Pi Day. Mathematics is celebrated on that day because the date, 3-14, replicates the first three digits of pi. Pi-related songs, websites, trivia facts, and more are at the fingertips of interested teachers and students. Less celebrated, but still fairly well known, is National Metric Day, which falls on October…

  5. Day Care: Everybody's Problem.

    ERIC Educational Resources Information Center

    Office of Child Development (DHEW), Washington, DC.

    This document reports on statistics regarding the need for day care facilities for children under the age of six. It also gives suggestions for making better use of local day care resources. Statistics show that: (1) There are more than 5 million children in this country under the age of 6 whose mothers work; (2) There are licensed day care…

  6. Growing degree day calculator

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Degree-day benchmarks indicate discrete biological events in the development of insect pests. For the Sparganothis fruitworm, we have isolated all key development events and linked them to degree-day accumulations. These degree-day accumulations can greatly improve treatment timings for cranberry IP...

  7. Day Care Evaluation Manual.

    ERIC Educational Resources Information Center

    Council for Community Services in Metropolitan Chicago, IL.

    This manual presents instruments for evaluating the program and facilities of day care centers and family day care homes serving nonhandicapped children aged 3-5. Chapter 1 discusses child care evaluation in general and outlines the rationale underlying this evaluation system (including the principle that day care evaluation should assess program…

  8. Low-Radiation Europa Lander Mission Concept

    NASA Astrophysics Data System (ADS)

    Strange, N. J.; Hand, K. P.; Casani, J. R.; Eisen, H. J.; Elliott, J. O.

    2011-12-01

    The Jet Propulsion Laboratory, California Institute of Technology, conducted a mission design study focused on delivering a redundant two-lander mission to the surface of Europa. A mission focused on surface science permits a short lifetime for the prime mission (7 days) and thus enables a low total radiation dose mission to Europa. Lowering the radiation dose retires much of the risk and cost threats associated with Europa missions. Here we describe the science investigations and accompanying payload studied as part of this effort. The science payload allocation for each lander is approximately 40 kilograms. The goal of this mission is to explore Europa to investigate its habitability. Our study of life on Earth has revealed three critical components that comprise a habitable environment and our current understanding of Europa indicates that it may harbor all three. These "keystones" for habitability are liquid water, a suite of essential elements, and chemical or radiation energy to power life. Europa, with its global liquid water ocean, likely in contact with a rocky seafloor, may be habitable today and it may have been habitable for much of the history of the solar system. Europa is thus the premier target in our search for evidence of both past and contemporary habitability. The discovery and exploration of a world that hosts extant, i.e., living, life permits investigations that could revolutionize our understanding of chemistry, biology, the origin of life, and the broader context of whether or not we are alone in the Universe. This mission provides the first steps toward that goal.

  9. Potential Astrophysics Science Missions Enabled by NASA's Planned Ares V

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Thronson, Harley; Langhoff, Stepheni; Postman, Marc; Lester, Daniel; Lillie, Chuck

    2009-01-01

    NASA s planned Ares V cargo vehicle with its 10 meter diameter fairing and 60,000 kg payload mass to L2 offers the potential to launch entirely new classes of space science missions such as 8-meter monolithic aperture telescopes, 12- meter aperture x-ray telescopes, 16 to 24 meter segmented telescopes and highly capable outer planet missions. The paper will summarize the current Ares V baseline performance capabilities and review potential mission concepts enabled by these capabilities.

  10. View of Mission Control Center during Apollo 13 splashdown

    NASA Technical Reports Server (NTRS)

    1970-01-01

    Overall view of Mission Operations Control Room in Mission Control Center at the Manned Spacecraft Center (MSC) during the ceremonies aboard the U.S.S. Iwo Jima, prime recovery ship for the Apollo 13 mission. The Apollo 13 spacecraft, with Astronauts James Lovell, John Swigert, and Fred Haise aboard splashed down in the South Pacific at 12:07:44 p.m., April 17, 1970.

  11. Surgical mission planning in the developing world.

    PubMed

    McClenaghan, F; Fell, M; Martin, D; Smith, G; McGurk, M

    2013-12-01

    Surgical missions to the developing world have been criticized for their lack of outcome analysis. Reported studies indicate a high rate of postoperative complications. An integrated pathway developed for surgical missions and a report of its performance in action is presented herein. Patients were optimized for surgery by a medical team from the UK for a minimum of 14 days preoperatively. They were then transferred to hospital for surgery and returned when stable. At the completion of the mission a junior doctor remained behind for 3 weeks to chart the patients' progress. Thirty case patients were treated over a 2-week period. The complication rate at 3 weeks postoperatively was 7/30. Twenty-two operations were classified as complex (over 1h with more than one flap) and eight as simple (under 1h with minimal flaps). Of those undergoing the simple operations, 2/8 encountered complications at an average of 5 days postoperatively (range 3-7 days). Many medical teams depart in an elevated atmosphere of accomplishment, which without an outcome analysis gives a false impression of their positive impact. Outcome analysis is essential to honestly appraise the effect of surgical missions.

  12. STS 41-D mission crew training in Shuttle Mission simulator

    NASA Technical Reports Server (NTRS)

    1983-01-01

    View of members of the STS 41-D mission crew training in Shuttle Mission simulator. The crew members are in the simulated flight deck. Seated behind the pilot is mission specialist Steven Hawley. Beside him are mission specialist Judith Resnick and pilot Michael Coats. All three are wearing their communication kit assemblies.

  13. Mars Observer Mission: Mapping the Martian World

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The 1992 Mars Observer Mission is highlighted in this video overview of the mission objectives and planning. Using previous photography and computer graphics and simulation, the main objectives of the 687 day (one Martian year) consecutive orbit by the Mars Observer Satellite around Mars are explained. Dr. Arden Albee, the project scientist, speaks about the pole-to-pole mapping of the Martian surface topography, the planned relief maps, the chemical and mineral composition analysis, the gravity fields analysis, and the proposed search for any Mars magnetic fields.

  14. Phoenix - The First Mars Scout Mission

    NASA Technical Reports Server (NTRS)

    Goldstein, Barry; Shotwell, Robert

    2008-01-01

    As the first of the new Mars Scouts missions, the Phoenix project was selected by NASA in August of 2003. Four years later, almost to the day, Phoenix was launched from Cape Canaveral Air Station and successfully injected into an interplanetary trajectory on its way to Mars. On May 25, 2008 Phoenix conducted the first successful powered decent on Mars in over 30 years. This paper will highlight some of the key changes since the 2008 IEEE paper of the same name, as well as performance through cruise, landing at the north pole of Mars and some of the preliminary results of the surface mission.

  15. Mission planning parameters for the Space Shuttle large format camera

    NASA Technical Reports Server (NTRS)

    Wood, G. A.

    1979-01-01

    The paper discusses the impact of various Space Shuttle mission parameters on the efficient and meaningful utilization of the large format camera (LFC) as a photographic acquisition system. Some of the LFC's vital statistics and its mounting within the Orbiter payload are described. LFC characteristics and mounting dictate certain mission parameters. The controlling parameters are orbit inclinations, launch time of year, launch time of day, orbital altitude, mission duration, overlap selection, film capacity, and climatological prediction. A mission case is evaluated relative to controlling parameters and geographical area(s) of interest.

  16. Integrated Network Architecture for NASA's Orion Missions

    NASA Technical Reports Server (NTRS)

    Bhasin, Kul B.; Hayden, Jeffrey L.; Sartwell, Thomas; Miller, Ronald A.; Hudiburg, John J.

    2008-01-01

    phases of a mission: pre-launch, launch from T0 to T+6.5 min, launch from T+6.5 min to 12 min, in LEO for rendezvous and docking with ISS, and return to Earth. The network of networks that supports the mission during each of these phases and the concepts of operations during those phases are developed as a high level operational concepts graphic called OV-1, an architecture diagram type described in the Department of Defense Architecture Framework (DoDAF). Additional operational views on organizational relationships (OV-4), operational activities (OV-5), and operational node connectivity (OV-2) are also discussed. The system interfaces view (SV-1) that provides the communication and navigation services to Orion is also included and described. The challenges of architecting integrated network architecture for the NASA Orion missions are highlighted.

  17. STS-69 flight day 9 highlights

    NASA Astrophysics Data System (ADS)

    1995-09-01

    The song, 'He's A Tramp', from the Walt Disney cartoon movie, 'Lady and the Tramp', awakened the astronauts, Cmdr. Dave Walker, Pilot Ken Cockrell, and Mission Specialists Jim Voss, Jim Newman, and Mike Gernhardt, on the ninth day of the STS-69 mission. The Wake Shield Facility (WSF) was again unberthed from the shuttle cargo bay and , using the shuttle's robot arm, held over the side of the shuttle for five hours where it collected data on the electrical field build-up around the spacecraft as part of the Charging Hazards and Wake Studies Experiment (CHAWS). Voss and Gernhardt rehearsed their Extravehicular Activity (EVA) spacewalk, which was planned for the next day. Earth views included cloud cover, a hurricane, and its eye.

  18. STS-109 Mission Highlights Resource Tape

    NASA Astrophysics Data System (ADS)

    2002-05-01

    This video, Part 2 of 4, shows the activities of the STS-109 crew (Scott Altman, Commander; Duane Carey, Pilot; John Grunsfeld, Payload Commander; Nancy Currie, James Newman, Richard Linnehan, Michael Massimino, Mission Specialists) during flight days 4 and 5. The activities from other flights days can be seen on 'STS-109 Mission Highlights Resource Tape' Part 1 of 4 (internal ID 2002139471), 'STS-109 Mission Highlights Resource Tape' Part 3 of 4 (internal ID 2002139476), and 'STS-109 Mission Highlights Resource Tape' Part 4 of 4 (internal ID 2002137577). The primary activities during these days were EVAs (extravehicular activities) to replace two solar arrays on the HST (Hubble Space Telescope). Footage from flight day 4 records an EVA by Grunsfeld and Linnehan, including their exit from Columbia's payload bay airlock, their stowing of the old HST starboard rigid array on the rigid array carrier in Columbia's payload bay, their attachment of the new array on HST, the installation of a new starboard diode box, and the unfolding of the new array. The pistol grip space tool used to fasten the old array in its new location is shown in use. The video also includes several shots of the HST with Earth in the background. On flight day 5 Newman and Massimino conduct an EVA to change the port side array and diode box on HST. This EVA is very similar to the one on flight day 4, and is covered similarly in the video. A hand operated ratchet is shown in use. In addition to a repeat of the previous tasks, the astronauts change HST's reaction wheel assembly, and because they are ahead of schedule, install installation and lubricate an instrument door on the telescope. The Earth views include a view of Egypt and Israel, with the Nile River, Red Sea, and Mediterranean Sea.

  19. SpinSat Mission Ground Truth Characterization

    DTIC Science & Technology

    2014-09-01

    launch via the SpaceX Falcon 9 CRS4 mission on 12 Sept 2014 and is to be deployed from the International Space Station (ISS) on 29 Sept. 2014. 2...ISS as part of the soft-stow cargo allotment on the SpaceX Dragon spacecraft launched by the SpaceX Falcon 9 two stage to orbit launch vehicle during

  20. An Analysis of Private School Mission Statements

    ERIC Educational Resources Information Center

    Boerema, Albert J.

    2006-01-01

    This article is a study of private school mission/vision statements using content analysis. Statements from private schools in British Columbia, Canada, that provided instruction to Grade 12 students were analyzed to explore the diversity that lies within the private school sector. The concepts that emerged from the analysis were grouped into five…

  1. Creative Analytics of Mission Ops Event Messages

    NASA Technical Reports Server (NTRS)

    Smith, Dan

    2017-01-01

    Historically, tremendous effort has been put into processing and displaying mission health and safety telemetry data; and relatively little attention has been paid to extracting information from missions time-tagged event log messages. Todays missions may log tens of thousands of messages per day and the numbers are expected to dramatically increase as satellite fleets and constellations are launched, as security monitoring continues to evolve, and as the overall complexity of ground system operations increases. The logs may contain information about orbital events, scheduled and actual observations, device status and anomalies, when operators were logged on, when commands were resent, when there were data drop outs or system failures, and much much more. When dealing with distributed space missions or operational fleets, it becomes even more important to systematically analyze this data. Several advanced information systems technologies make it appropriate to now develop analytic capabilities which can increase mission situational awareness, reduce mission risk, enable better event-driven automation and cross-mission collaborations, and lead to improved operations strategies: Industry Standard for Log Messages. The Object Management Group (OMG) Space Domain Task Force (SDTF) standards organization is in the process of creating a formal standard for industry for event log messages. The format is based on work at NASA GSFC. Open System Architectures. The DoD, NASA, and others are moving towards common open system architectures for mission ground data systems based on work at NASA GSFC with the full support of the commercial product industry and major integration contractors. Text Analytics. A specific area of data analytics which applies statistical, linguistic, and structural techniques to extract and classify information from textual sources. This presentation describes work now underway at NASA to increase situational awareness through the collection of non

  2. Heart Rate Response During Mission-Critical Tasks After Space Flight

    NASA Technical Reports Server (NTRS)

    Arzeno, Natalia M.; Lee, S. M. C.; Stenger, M. B.; Lawrence, E. L.; Platts, S. H.; Bloomberg, J. J.

    2010-01-01

    Adaptation to microgravity could impair crewmembers? ability to perform required tasks upon entry into a gravity environment, such as return to Earth, or during extraterrestrial exploration. Historically, data have been collected in a controlled testing environment, but it is unclear whether these physiologic measures result in changes in functional performance. NASA?s Functional Task Test (FTT) aims to investigate whether adaptation to microgravity increases physiologic stress and impairs performance during mission-critical tasks. PURPOSE: To determine whether the well-accepted postflight tachycardia observed during standard laboratory tests also would be observed during simulations of mission-critical tasks during and after recovery from short-duration spaceflight. METHODS: Five astronauts participated in the FTT 30 days before launch, on landing day, and 1, 6, and 30 days after landing. Mean heart rate (HR) was measured during 5 simulations of mission-critical tasks: rising from (1) a chair or (2) recumbent seated position followed by walking through an obstacle course (egress from a space vehicle), (3) translating graduated masses from one location to another (geological sample collection), (4) walking on a treadmill at 6.4 km/h (ambulation on planetary surface), and (5) climbing 40 steps on a passive treadmill ladder (ingress to lander). For tasks 1, 2, 3, and 5, astronauts were encouraged to complete the task as quickly as possible. Time to complete tasks and mean HR during each task were analyzed using repeated measures ANOVA and ANCOVA respectively, in which task duration was a covariate. RESULTS: Landing day HR was higher (P < 0.05) than preflight during the upright seat egress (7%+/-3), treadmill walk (13%+/-3) and ladder climb (10%+/-4), and HR remained elevated during the treadmill walk 1 day after landing. During tasks in which HR was not elevated on landing day, task duration was significantly greater on landing day (recumbent seat egress: 25

  3. Rosetta Mission Status Update

    NASA Astrophysics Data System (ADS)

    Taylor, M. G.; Altobelli, N.; Alexander, C. J.; Schwehm, G. H.; Jansen, F.; Küppers, M.; O'Rourke, L.; Barthelemy, M.; Geiger, B.; Grieger, B.; Moissl, R.; Vallat, C.

    2014-12-01

    The Rosetta Mission is the third cornerstone mission the ESA programme Horizon 2000. The aim of the mission is to map the comet 67-P/Churyumov-Gerasimenko by remote sensing, to examine its environment insitu and its evolution in the inner solar system. The lander Philae will be the first device to land on a comet and perform in-situ science on the surface. Nearly 10 years after launch in 2004, on 20th January 2014 at 10:00 UTC the spacecraft woke up from hibernation. Following successful instrument commissioning, at the time of writing the spacecraft is about to rendez-vous with the comet. The rest of 2014 will involve careful mapping and characterisation of the nucleus and its environs, for science and to identify a landing site for the lander Philae in November. This presentation will provide a brief overview of the mission up to date and where we stand in early part of the escort phase of the mission which runs until end of 2015.

  4. Geospace Magnetospheric Dynamics Mission

    NASA Technical Reports Server (NTRS)

    Russell, C. T.; Kluever, C.; Burch, J. L.; Fennell, J. F.; Hack, K.; Hillard, G. B.; Kurth, W. S.; Lopez, R. E.; Luhmann, J. G.; Martin, J. B.; Hanson, J. E.

    1998-01-01

    The Geospace Magnetospheric Dynamics (GMD) mission is designed to provide very closely spaced, multipoint measurements in the thin current sheets of the magnetosphere to determine the relation between small scale processes and the global dynamics of the magnetosphere. Its trajectory is specifically designed to optimize the time spent in the current layers and to minimize radiation damage to the spacecraft. Observations are concentrated in the region 8 to 40 R(sub E) The mission consists of three phases. After a launch into geostationary transfer orbit the orbits are circularized to probe the region between geostationary orbit and the magnetopause; next the orbit is elongated keeping perigee at the magnetopause while keeping the line of apsides down the tail. Finally, once apogee reaches 40 R(sub E) the inclination is changed so that the orbit will match the profile of the noon-midnight meridian of the magnetosphere. This mission consists of 4 solar electrically propelled vehicles, each with a single NSTAR thruster utilizing 100 kg of Xe to tour the magnetosphere in the course of a 4.4 year mission, the same thrusters that have been successfully tested on the Deep Space-1 mission.

  5. The LISA Pathfinder mission

    NASA Astrophysics Data System (ADS)

    McNamara, Paul

    2012-07-01

    LISA Pathfinder, the second of the European Space Agency's Small Missions for Advanced Research in Technology (SMART), is a dedicated technology demonstrator for future spaceborne gravitational wave observatories, for example the proposed ESA mission, NGO. The technologies required for NGO are many and extremely challenging. This coupled with the fact that some flight hardware cannot be fully tested on ground due to Earth-induced noise, led to the implementation of the LISA Pathfinder mission to test the critical NGO technologies in a flight environment. LISA Pathfinder essentially mimics one arm of the NGO constellation by shrinking the 1 million kilometre armlength down to a few tens of centimetres, giving up the sensitivity to gravitational waves, but keeping the measurement technology: the distance between the two test masses is measured using a laser interferometric technique similar to one aspect of the NGO interferometry system. The scientific objective of the LISA Pathfinder mission consists then of the first in-flight test of low frequency gravitational wave detection metrology. Here I will present an overview of the mission, focusing on scientific and technical goals, followed by the current status of the project.

  6. Autonomous Mission Operations Roadmap

    NASA Technical Reports Server (NTRS)

    Frank, Jeremy David

    2014-01-01

    As light time delays increase, the number of such situations in which crew autonomy is the best way to conduct the mission is expected to increase. However, there are significant open questions regarding which functions to allocate to ground and crew as the time delays increase. In situations where the ideal solution is to allocate responsibility to the crew and the vehicle, a second question arises: should the activity be the responsibility of the crew or an automated vehicle function? More specifically, we must answer the following questions: What aspects of mission operation responsibilities (Plan, Train, Fly) should be allocated to ground based or vehicle based planning, monitoring, and control in the presence of significant light-time delay between the vehicle and the Earth?How should the allocated ground based planning, monitoring, and control be distributed across the flight control team and ground system automation? How should the allocated vehicle based planning, monitoring, and control be distributed between the flight crew and onboard system automation?When during the mission should responsibility shift from flight control team to crew or from crew to vehicle, and what should the process of shifting responsibility be as the mission progresses? NASA is developing a roadmap of capabilities for Autonomous Mission Operations for human spaceflight. This presentation will describe the current state of development of this roadmap, with specific attention to in-space inspection tasks that crews might perform with minimum assistance from the ground.

  7. STS-90 Mission Insignia

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The STS-90 crew patch reflects the dedication of the mission to neuroscience in celebration of the decade of the brain. Earth is revealed through a neuron-shaped window, which symbolizes new perspectives in the understanding of nervous system development, structure and function, both here on Earth and in the microgravity environment of space. The Space Shuttle Columbia is depicted with its open payload bay doors revealing the Spacelab within. An integral component of the mission, the laboratory/science module provided by the European Space Agency (ESA), signifies the strong international involvement in the mission. The seven crew members and two alternate payload specialists, Chiaki Naito-Mukai and Alexander W. Dunlap, are represented by the nine major stars of the constellation Cetus (the whale) in recognition of the International Year of the Ocean. The distant stars illustrate the far reaching implications of the mission science to the many sponsoring agencies, helping prepare for long-duration space flight aboard the International Space Station (ISS). The moon and Mars are depicted to reflect the crew's recognition that those two celestial bodies will be the next great challenges in human exploration of space and represent the key role that life science research will play in supporting such missions.

  8. Medical survey of European astronauts during Mir missions

    NASA Astrophysics Data System (ADS)

    Clément, G.; Hamilton, D.; Davenport, L.; Comet, B.

    2010-10-01

    This paper reviews the medical operations performed on six European astronauts during seven space missions on board the space station Mir. These missions took place between November 1988 and August 1999, and their duration ranged from 14 days to 189 days. Steps of pre-flight medical selection and flight certification are presented. Countermeasures program used during the flight, as well as rehabilitation program following short and long-duration missions are described. Also reviewed are medical problems encountered during the flight, post-flight physiological changes such as orthostatic intolerance, exercise capacity, blood composition, muscle atrophy, bone density, and radiation exposure.

  9. Mission objectives and scientific rationale for the magnetometer mission.

    NASA Astrophysics Data System (ADS)

    Langel, R. A.

    1991-12-01

    Based on a review of the characteristics of the geomagnetic field, objectives for the magnetic portion of the ARISTOTELES mission are: (1) To derive a description of the main magnetic field and its secular variation. (2) To investigate the correlation between the geomagnetic field and variations in the length of day. (3) To study properties of the fluid core. (4) To study the conductivity of the mantle. (5) To model the state and evolution of the crust and upper lithosphere. (6) To measure and characterize field aligned currents and ionospheric currents and to understand their generation mechanisms and their role in energy coupling in the interplanetary-magnetospheric-ionospheric systems. Procedures for these investigations are outlined.

  10. STS-107 Mission Highlights Resource, Part 3 of 4

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This video, Part 3 of 4, shows the activities of the STS-107 crew during flight days 9 through 12 of the Columbia orbiter's final flight. The crew consists of Commander Rick Husband, Pilot William McCool, Payload Commander Michael Anderson, Mission Specialists David Brown, Kalpana Chawla, and Laurel Clark, and Payload Specialist Ilan Ramon. On flight day 9 David Brown and other crew members are at work on experiments in the Spacehab research module, and imagery is shown from the Mediterranean Israeli Dust Experiment (MEIDEX) on a pass over North Africa and the Horn of Africa. Ilan Ramon narrates part of the footage from flight day 10, and intravehicular activities of the astronauts onboard Columbia are shown, as well as views of the Gulf of Aden, and Lake Chad, which is seen with the back of the orbiter in the foreground. Rick Husband narrates the footage from day 11, which includes cleaning duties and maintenance, as well as an excellent view of the Sinai Peninsula, Israel, and Jordan, as well as the Mediterranean Sea, Red Sea, and Gulf of Aqaba. The highlight of flight day 12 is a conversation between Columbia's crew and the crew of the International Space Station (ISS). A special section of Earth views at the end of the video shows: 1) Atlantic Ocean, Strait of Gibraltar, Mediterranean Sea, Iberian Peninsula, Morocco, and Algeria; 2) Baja Peninsula; 3) Cyprus and Mediterranean Sea; 4) Florida; 5) Earth limb and Pacific Ocean; 6) North Carolina Outer Banks, Cape Hatteras, and Atlantic Ocean; 7) Houston with zoom out to Texas and Louisiana; 8) Mt. Vesuvius (Italy); 9) Earth limb and Atlantic Ocean; 10) Earth limb and terminator, and Pacific Ocean; 11) Saudia Arabia, Yemen, Oman, and Arabian Sea.

  11. Mission Design Overview for Mars 2003/2005 Sample Return Mission

    NASA Technical Reports Server (NTRS)

    Lee, Wayne J.; DAmario, Louis A.; Roncoli, Ralph B.; Smith, John C.

    2000-01-01

    traverse will involve the rover exploring a selected area of terrain up to 100 meters from the lander, the collection of rock core samples, and the delivery of the samples from the traverse back to a sample canister on the lander. Planning estimates indicate that up to three traverses may be possible during the expected 90-sol lifetime of the lander. The canister that will receive the samples from the rover will be attached to the top stage of a small solid-fueled rocket mounted to the deck of the lander. This rocket is called the Mars Ascent Vehicle (MAV) and consists of three stages weighing a total of about 140 kg. After the conclusion of the surface mission, the MAV will lift-off and insert the sample canister into a near-circular orbit with an altitude of about 600 km and inclination of 45 degrees. The sample canister will wait in this orbit until it is retrieved by the orbiter sometime in early 2007. In August 2005, the second lander and a CNES-provided orbiter weighing 2700 kg will depart for Mars. Currently, it is proposed that a single Ariane 5 provided by CNES will launch both of these two elements onto a Type-2 transfer trajectory. Although the orbiter and lander will be launched together, they will separate shortly after injection and will fly to Mars as two independent spacecraft. However, both spacecraft will perform a maneuver between 10 and 15 days after launch so that their arrival times at Mars differ by between 12 and 24 hours. This scheme will reduce the operational complexity at the encounter date. A set of four 60-kg surface probes will ride piggyback on the orbiter to Mars. These CNES-provided probes are called Netlanders and will serve as surface stations for scientific investigations independent of the Mars Sample Return goals. Starting approximately one month prior to arrival at Mars, the orbiter will begin to release the Netlanders one at a time. Each release cycle will take several days, and will include time for precision navigation to execute

  12. STS-81 Mission Specialist Jerry Linenger suits up

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-81 Mission Specialist Jerry Linenger waves to the camera in his launch/entry suit and helmet in the suitup room of the Operations and Checkout (O&C) Building. He is on his second Shuttle flight and has been an astronaut since 1992. Linenger will become a member of the Mir 22 crew and replace astronaut John Blaha on the Russian space station for a four-month stay after the Space Shuttle orbiter Atlantis docks with the orbital habitat on flight day 3. A medical doctor and an exercise buff, Linenger will conduct physiological experiments during his stay on Mir. He and five crew members will shortly depart the O&C and head for Launch Pad 39B, where the Space Shuttle Atlantis will lift off during a 7-minute window that opens at 4:27 a.m. EST, January 12.

  13. Discovery prepares to land after successful mission STS-95

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Orbiter Discovery prepares to land on runway 33 at the Shuttle Landing Facility. Discovery returns to Earth with its crew of seven after successfully completing mission STS-95, lasting nearly nine days and 3.6 million miles. The crew members are Mission Commander Curtis L. Brown Jr., Pilot Steven W. Lindsey, Mission Specialist Scott E. Parazynski, Mission Specialist Stephen K. Robinson, Payload Specialist John H. Glenn Jr., senator from Ohio, Mission Specialist Pedro Duque, with the European Space Agency (ESA), and Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA). The mission included research payloads such as the Spartan solar- observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.

  14. Discovery touches down after successful mission STS-95

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Orbiter Discovery lowers its nose wheel after touching down on runway 33 at the Shuttle Landing Facility. Discovery returns to Earth with its crew of seven after successfully completing mission STS-95, lasting nearly nine days and 3.6 million miles. The STS-95 crew is composed of Mission Commander Curtis L. Brown Jr., Pilot Steven W. Lindsey, Mission Specialist Scott E. Parazynski, Mission Specialist Stephen K. Robinson, Payload Specialist John H. Glenn Jr., senator from Ohio, Mission Specialist Pedro Duque, with the European Space Agency (ESA), and Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA). The mission included research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.

  15. Discovery touches down after successful mission STS-95

    NASA Technical Reports Server (NTRS)

    1998-01-01

    After nine days and 3.6 million miles in space, orbiter Discovery prepares to land on runway 33 at the Shuttle Landing Facility. Discovery returns to Earth with its crew of seven after successfully completing mission STS-95. The STS-95 crew members are Mission Commander Curtis L. Brown Jr.; Pilot Steven W. Lindsey; Mission Specialist Scott E. Parazynski; Mission Specialist Stephen K. Robinson; Payload Specialist John H. Glenn Jr., a senator from Ohio; Mission Specialist Pedro Duque of Spain, with the European Space Agency (ESA); and Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA). The mission included research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.

  16. Discovery touches down after successful mission STS-95

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Orbiter Discovery touches down in a cloud of smoke on runway 33 at the Shuttle Landing Facility. Discovery returns to Earth with its crew of seven after successfully completing mission STS-95, lasting nearly nine days and 3.6 million miles. The crew members are Mission Commander Curtis L. Brown Jr., Pilot Steven W. Lindsey, Mission Specialist Scott E. Parazynski, Mission Specialist Stephen K. Robinson, Payload Specialist John H. Glenn Jr., senator from Ohio, Mission Specialist Pedro Duque, with the European Space Agency (ESA), and Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA). The mission included research payloads such as the Spartan solar- observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.

  17. SLS Launched Missions Concept Studies for LUVOIR Mission

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Hopkins, Randall C.

    2015-01-01

    NASA's "Enduring Quests Daring Visions" report calls for an 8- to 16-meter Large UV-Optical-IR (LUVOIR) Surveyor mission to enable ultra-high-contrast spectroscopy and coronagraphy. AURA's "From Cosmic Birth to Living Earth" report calls for a 12-meter class High-Definition Space Telescope to pursue transformational scientific discoveries. The multi-center ATLAST Team is working to meet these needs. The MSFC Team is examining potential concepts that leverage the advantages of the SLS (Space Launch System). A key challenge is how to affordably get a large telescope into space. The JWST design was severely constrained by the mass and volume capacities of its launch vehicle. This problem is solved by using an SLS Block II-B rocket with its 10-m diameter x 30-m tall fairing and 45 mt payload to SE-L2. Previously, two development study cycles produced a detailed concept called ATLAST-8. Using ATLAST-8 as a point of departure, this paper reports on a new ATLAST-12 concept. ATLAST-12 is a 12-meter class segmented aperture LUVOIR with an 8-m class center segment. Thus, ATLAST-8 is now a de-scope option.

  18. SLS launched missions concept studies for LUVOIR mission

    NASA Astrophysics Data System (ADS)

    Stahl, H. Philip; Hopkins, Randall C.

    2015-09-01

    NASA's "Enduring Quests Daring Visions" report calls for an 8- to 16-m Large UV-Optical-IR (LUVOIR) Surveyor mission to enable ultra-high-contrast spectroscopy and coronagraphy. AURA's "From Cosmic Birth to Living Earth" report calls for a 12-m class High-Definition Space Telescope to pursue transformational scientific discoveries. The multi-center ATLAST Team is working to meet these needs. The MSFC Team is examining potential concepts that leverage the advantages of the SLS (Space Launch System). A key challenge is how to affordably get a large telescope into space. The JWST design was severely constrained by the mass and volume capacities of its launch vehicle. This problem is solved by using an SLS Block II-B rocket with its 10-m diameter x 30-m tall fairing and estimated 45 mt payload to SE-L2. Previously, two development study cycles produced a detailed concept called ATLAST-8. Using ATLAST-8 as a point of departure, this paper reports on a new ATLAST-12 concept. ATLAST-12 is a 12-m class segmented aperture LUVOIR with an 8-m class center segment. Thus, ATLAST-8 is now a de-scope option.

  19. STS-95 Mission Insignia

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The STS-95 patch, designed by the crew, is intended to reflect the scientific, engineering, and historic elements of the mission. The Space Shuttle Discovery is shown rising over the sunlit Earth limb, representing the global benefits of the mission science and the solar science objectives of the Spartan Satellite. The bold number '7' signifies the seven members of Discovery's crew and also represents a historical link to the original seven Mercury astronauts. The STS-95 crew member John Glenn's first orbital flight is represented by the Friendship 7 capsule. The rocket plumes symbolize the three major fields of science represented by the mission payloads: microgravity material science, medical research for humans on Earth and in space, and astronomy.

  20. The LISA Pathfinder Mission

    NASA Astrophysics Data System (ADS)

    McNamara, Paul W.

    2013-01-01

    Laser Interferometer Space Antenna (LISA) Pathfinder (formerly known as SMART-2) is a European Space Agency mission designed to pave the way for the joint ESA/NASA LISA mission by testing in flight the critical technologies required for space borne gravitational wave detection; it will put two test masses in a near-perfect gravitational free-fall and control and measure their motion with unprecedented accuracy. This is achieved through technology comprising inertial sensors, high precision laser metrology, drag-free control and an ultra precise micro-Newton propulsion system. LISA Pathfinder (LPF) essentially mimics one arm of space-borne gravitational wave detectors by shrinking the million kilometer scale armlengths down to a few tens of centimeters, giving up the sensitivity to gravitational waves, but keeping the measurement technology. The scientific objective of the LPF mission consists then of the first in-flight test of low frequency gravitational wave detection metrology.

  1. Athena Mission Status

    NASA Astrophysics Data System (ADS)

    Lumb, D.

    2016-07-01

    Athena has been selected by ESA for its second large mission opportunity of the Cosmic Visions programme, to address the theme of the Hot and Energetic Universe. Following the submission of a proposal from the community, the technical and programmatic aspects of the mission design were reviewed in ESA's Concurrent Design Facility. The proposed concept was deemed to betechnically feasible, but with potential constraints from cost and schedule. Two parallel industry study contracts have been conducted to explore these conclusions more thoroughly, with the key aim of providing consolidated inputs to a Mission Consolidation Review that was conducted in April-May 2016. This MCR has recommended a baseline design, which allows the agency to solicit proposals for a community provided payload. Key design aspects arising from the studies are described, and the new reference design is summarised.

  2. The LISA Pathfinder Mission

    NASA Technical Reports Server (NTRS)

    Stebbins, Robin

    2009-01-01

    LISA Pathfinder (formerly known as SMART-2) is a European Space Agency (ESA) mission designed to pave the way for the joint ESA/NASA Laser Interferometer Space Antenna (LISA) mission by testing in flight the critical technologies required for spaceborne gravitational wave detection: it will put two test masses in a near-perfect gravitational free-fall and control and measure their motion with unprecedented accuracy. LISA Pathfinder is currently in the integration and test phase of the development, and is due to be launched on a dedicated launch vehicle in late 2011, with first results on the performance of the system being available approx 6 months later. This poster will describe the mission in detail, give the current status of the spacecraft development, and highlight the future milestones in the integration and test campaign.

  3. The LISA Pathfinder Mission

    NASA Astrophysics Data System (ADS)

    McNamara, Paul

    2015-04-01

    LISA Pathfinder is the second of the European Space Agency's Small Missions for Advanced Research and Technology (SMART). The goal of LISA Pathfinder (LPF) is to demonstrate the technologies required for future laser interferometric spaceborne gravitational wave detectors. The development of the LPF hardware is now over, and final integration and testing of the spacecraft and payload is underway. The delivery of the opto-mechanical heart of the payload is scheduled for Q2 2015, following which the final system tests will be performed. Launch is scheduled for September 2015. First results will be available approximately 3 months after launch. In this presentation I will describe the LISA Pathfinder mission, and provide the current status of the mission and remaining activities to launch and operations.

  4. STS-65 Mission Onboard Photograph

    NASA Technical Reports Server (NTRS)

    1994-01-01

    In this photograph, astronaut Carl Walz performs the Performance Assessment Workstation (PAWS) experiment at the flight deck of the Space Shuttle Orbiter Columbia during the STS-65 mission. Present day astronauts are subject to a variety of stresses during spaceflight. These include microgravity, physical isolation, confinement, lack of privacy, fatigue, and changing work/rest cycles. The purpose of this experiment is to determine the effects of microgravity upon thinking skills critical to the success of operational tasks in space. The principle objective is to distinguish between the effects of microgravity on specific information-processing skills affecting performance and those of fatigue caused by long work periods. To measure these skills, the investigators use a set of computerized performance tests called the Performance Assessment Workstation, which is based on current theoretical models of human performance. The tests were selected by analyzing tasks related to space missions and their hypothesized sensitivity to microgravity. Multiple subjective measures of cumulative fatigue and changing mood states are also included for interpreting performance data.

  5. ESA Sentinel-1 Mission and Products

    NASA Astrophysics Data System (ADS)

    Floury, Nicolas; Attema, Evert; Davidson, Malcolm; Levrini, Guido; Rommen, Björn; Rosich, Betlem; Snoeij, Paul

    The global Monitoring for Environment and Security (GMES) space component relies on existing and planned space assets by European States, the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT), and the European Space Agency (ESA), as well as new complementary developments by ESA. The new developments are implemented in terms of five families of satellites called Sentinels. The Sentinel-1 mission is an imaging synthetic aperture radar (SAR) mission at C-band designed to supply all-weather day-and-night imagery to a number of operational Earth observation based services. Three priorities (fasttrack services) for the mission have been identified by user consultation working groups of the European Union: Marine Core Services, Land Monitoring and Emergency Services. These cover applications such as: - monitoring sea ice zones and the arctic environment, - surveillance of marine environment, - monitoring land surface motion risks, - mapping of land surfaces: forest, water and soil, agriculture, - mapping in support of humanitarian aid in crisis situations. Sentinel-1 has been designed to address medium resolution applications. It includes a main mode of operation that features a wide swath (250 km) and a medium resolution (5 m x 20 m). The two-satellite constellation offers six days exact repeat and the conflict-free operations based on the main operational mode allow exploiting every single data take. This paper describes the Sentinel-1 mission, provides an overview of the mission requirements, and presents some of the key user driven information products, the crucial requirements for operational sustainable services being continuity of data supply, frequent revisit, geographical coverage and timeliness. As data products from the Agency‘s successful ERS-1, ERS-2 and Envisat missions form the basis for many of the pilot GMES services, Sentinel-1 data products need to maintain and in some ways to improve data quality levels of the Agency

  6. AAS 228: Day 1 morning

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-06-01

    Kohler)The first press conference of the meeting featured four speakers discussing some of the latest developments in the field of exoplanet and brown dwarfs.Artists impression of the surface of a massive, planet-like body being devoured by a white dwarf. [A. Hara/C. Melis/W. M. Keck Observatory]First up was Carl Melis (UC San Diego), who discussed the discovery of a rocky exoplanetary body currently being shredded by a white dwarf. As the white dwarfs strong gravitational pull tears the body apart, we can observe the material pulled from its surface layers. These observations made by Keck Observatory and Hubble indicate that the body might have been Earth-like, with an outer surface of made up of limestone. Heres the press release.Next, Avi Shporer (NASA Jet Propulsion Laboratory) spoke about the first transiting brown dwarf found in K2 mission data. Stars like companionship, but the companions are usually other massive stars, or Jupiter-size or smaller planets. Companions with the mass and size of brown dwarfs are uncommon, leading to the term brown dwarf desert. The brown dwarf found by K2 marks the 12th transiting brown dwarf we have discovered.Jerome Orosz (San Diego State University) was up next, presenting the largest and longest-period circumbinary planet yet discovered. This planet is in an orbit with a 3-year period around a two-star binary system (think Tatooine!). This is the longest orbital period of any confirmed transiting exoplanet, and this Jupiter-sized planet, which is in the circumbinarys habitable zone, is the largest circumbinary planet weve observed. Heres the press release.Jerome Orosz on the largest and longest-period circumbinary planet found in Kepler data #aas228 #tatooine pic.twitter.com/2wngVJWEzH astrobites (@astrobites) June 13, 2016Finally, Sean Mills (University of Chicago) spoke about Kepler-108, a giant planet system in which the two exoplanets dont orbit within the same plane. This is detectable because the transits of these planets

  7. The Asteroid Impact Mission

    NASA Astrophysics Data System (ADS)

    Carnelli, Ian; Galvez, Andres; Mellab, Karim

    2016-04-01

    The Asteroid Impact Mission (AIM) is a small and innovative mission of opportunity, currently under study at ESA, intending to demonstrate new technologies for future deep-space missions while addressing planetary defense objectives and performing for the first time detailed investigations of a binary asteroid system. It leverages on a unique opportunity provided by asteroid 65803 Didymos, set for an Earth close-encounter in October 2022, to achieve a fast mission return in only two years after launch in October/November 2020. AIM is also ESA's contribution to an international cooperation between ESA and NASA called Asteroid Impact Deflection Assessment (AIDA), consisting of two mission elements: the NASA Double Asteroid Redirection Test (DART) mission and the AIM rendezvous spacecraft. The primary goals of AIDA are to test our ability to perform a spacecraft impact on a near-Earth asteroid and to measure and characterize the deflection caused by the impact. The two mission components of AIDA, DART and AIM, are each independently valuable but when combined they provide a greatly increased scientific return. The DART hypervelocity impact on the secondary asteroid will alter the binary orbit period, which will also be measured by means of lightcurves observations from Earth-based telescopes. AIM instead will perform before and after detailed characterization shedding light on the dependence of the momentum transfer on the asteroid's bulk density, porosity, surface and internal properties. AIM will gather data describing the fragmentation and restructuring processes as well as the ejection of material, and relate them to parameters that can only be available from ground-based observations. Collisional events are of great importance in the formation and evolution of planetary systems, own Solar System and planetary rings. The AIDA scenario will provide a unique opportunity to observe a collision event directly in space, and simultaneously from ground-based optical and

  8. Human exploration mission studies

    NASA Technical Reports Server (NTRS)

    Cataldo, Robert L.

    1989-01-01

    The nation's efforts to expand human presence and activity beyond Earth orbit into the solar system was given renewed emphasis in January of 1988 when the Presidential Directive on National Space Policy was signed into effect. The expansion of human presence into the solar system has particular significance, in that it defines long-range goals for NASA's future missions. To embark and achieve such ambitious ventures is a significant undertaking, particularly compared to past space activities. Missions to Mars, the Moon, and Phobos, as well as an observatory based on the dark side of the Moon are discussed.

  9. Aquarius Mission Technical Overview

    NASA Technical Reports Server (NTRS)

    LeVine, D. M.; Lagerloef, G. S. E.; Yueh, S.; Dinnat, E.; Pellerano, F.

    2007-01-01

    Aquarius is an L-band microwave instrument being developed to map the surface salinity field of the oceans from space. It is part of the Aquarius/SAC-D mission, a partnership between the USA (NASA) and Argentina (CONAE) with launch scheduled for early in 2009. The primary science objective of this mission is to monitor the seasonal and interannual variation of the large scale features of the surface salinity field in the open ocean with a spatial resolution of 150 km and a retrieval accuracy of 0.2 psu globally on a monthly basis.

  10. Apollo 13 Mission Report

    NASA Technical Reports Server (NTRS)

    1970-01-01

    The Apollo 13 mission, planned as a lunar landing in the Fra Mauro area, was aborted because of an abrupt loss of service module cryogenic oxygen associated with a fire in one of the two tanks at approximately 56 hours. The lunar module provided the necessary support to sustain a minimum operational condition for a safe return to earth. A circumlunar profile was executed as the most efficient means of earth return, with the lunar module providing power and life support until transfer to the command module just prior to entry. Although the mission was unsuccessful as planned, a lunar flyby and several scientific experiments were completed.

  11. The ALEXIS mission recovery

    SciTech Connect

    Bloch, J.; Armstrong, T.; Dingler, B.; Enemark, D.; Holden, D.; Little, C.; Munson, C.; Priedhorsky, B.; Roussel-Dupre, D.; Smith, B.; Warner, R.; Dill, B.; Huffman, G.; McLoughlin, F.; Mills, R.; Miller, R.

    1994-03-01

    The authors report the recovery of the ALEXIS small satellite mission. ALEXIS is a 113-kg satellite that carries an ultrasoft x-ray telescope array and a high-speed VHF receiver/digitizer (BLACKBEARD), supported by a miniature spacecraft bus. It was launched by a Pegasus booster on 1993 April 25, but a solar paddle was damaged during powered flight. Initial attempts to contact ALEXIS were unsuccessful. The satellite finally responded in June, and was soon brought under control. Because the magnetometer had failed, the rescue required the development of new attitude control-techniques. The telemetry system has performed nominally. They discuss the procedures used to recover the ALEXIS mission.

  12. STS-52 Mission Insignia

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The STS-52 insignia, designed by the mission's crew members, features a large gold star to symbolize the crew's mission on the frontiers of space. A gold star is often used to symbolize the frontier period of the American West. The red star in the shape of the Greek letter lambda represents both the laser measurements taken from the Laser Geodynamic Satellite (LAGEOS II) and the Lambda Point Experiment, which was part of the United States Microgravity Payload (USMP-l). The remote manipulator and maple leaf are emblematic of the Canadian payload specialist who conducted a series of Canadian flight experiments (CANEX-2), including the Space Vision System test.

  13. Mission Critical Networking

    SciTech Connect

    Eltoweissy, Mohamed Y.; Du, David H.C.; Gerla, Mario; Giordano, Silvia; Gouda, Mohamed; Schulzrinne, Henning; Youssef, Moustafa

    2010-06-01

    Mission-Critical Networking (MCN) refers to networking for application domains where life or livelihood may be at risk. Typical application domains for MCN include critical infrastructure protection and operation, emergency and crisis intervention, healthcare services, and military operations. Such networking is essential for safety, security and economic vitality in our complex world characterized by uncertainty, heterogeneity, emergent behaviors, and the need for reliable and timely response. MCN comprise networking technology, infrastructures and services that may alleviate the risk and directly enable and enhance connectivity for mission-critical information exchange among diverse, widely dispersed, mobile users.

  14. Mars Stratigraphy Mission

    NASA Technical Reports Server (NTRS)

    Budney, C. J.; Miller, S. L.; Cutts, J. A.

    2000-01-01

    The Mars Stratigraphy Mission lands a rover on the surface of Mars which descends down a cliff in Valles Marineris to study the stratigraphy. The rover carries a unique complement of instruments to analyze and age-date materials encountered during descent past 2 km of strata. The science objective for the Mars Stratigraphy Mission is to identify the geologic history of the layered deposits in the Valles Marineris region of Mars. This includes constraining the time interval for formation of these deposits by measuring the ages of various layers and determining the origin of the deposits (volcanic or sedimentary) by measuring their composition and imaging their morphology.

  15. The ALEXIS mission recovery

    NASA Astrophysics Data System (ADS)

    Bloch, J.; Armstrong, T.; Dingler, B.; Enemark, D.; Holden, D.; Little, C.; Munson, C.; Priedhorsky, B.; Roussel-Dupre, D.; Smith, B.

    1994-01-01

    The authors report the recovery of the ALEXIS small satellite mission. ALEXIS is a 113-kg satellite that carries an ultrasoft x-ray telescope array and a high-speed VHF receiver/digitizer (BLACKBEARD), supported by a miniature spacecraft bus. It was launched by a Pegasus booster on 1993 April 25, but a solar paddle was damaged during powered flight. Initial attempts to contact ALEXIS were unsuccessful. The satellite finally responded in June, and was soon brought under control. Because the magnetometer had failed, the rescue required the development of new attitude control-techniques. The telemetry system has performed nominally. They discuss the procedures used to recover the ALEXIS mission.

  16. STS-109 Mission Highlights Resource Tape

    NASA Astrophysics Data System (ADS)

    2002-05-01

    This video, Part 1 of 4, shows the activities of the STS-109 crew (Scott Altman, Commander; Duane Carey, Pilot; John Grunsfeld, Payload Commander; Nancy Currie, James Newman, Richard Linnehan, Michael Massimino, Mission Specialists) during flight days 1 through 3. The activities from other flight days can be seen on 'STS 109 Mission Highlights Resource Tape' Part 2 of 4 (internal ID 2002137664), 'STS 109 Mission Highlights Resource Tape' Part 3 of 4 (internal ID 2002139471), and 'STS-109 Mission Highlights Resource Tape' Part 4 of 4 (internal ID 2002137577). The main activity recorded during flight day 1 is the liftoff of Columbia. Attention is given to suit-up, boarding, and pre-flight procedures. The pre-launch crew meal has no sound. The crew members often wave to the camera before liftoff. The jettisoning of the solid rocket boosters is shown, and the External Tank is seen as it falls to Earth, moving over African dunes in the background. There are liftoff replays, including one from inside the cockpit. The opening of the payload bay doors is seen from the rear of the shuttle's cockpit. The footage from flight day 2 shows the Flight Support System for bearthing the HST (Hubble Space Telescope). Crew preparations for the bearthing are shown. Flight day 3 shows the tracking of and approach to the HST by Columbia, including orbital maneuvers, the capture of the HST, and its lowering onto the Flight Support System. Many views of the HST are shown, including one which reveals an ocean and cloud background as the HST retracts a solar array.

  17. Decreased human circadian pacemaker influence after 100 days in space: a case study

    NASA Technical Reports Server (NTRS)

    Monk, T. H.; Kennedy, K. S.; Rose, L. R.; Linenger, J. M.

    2001-01-01

    OBJECTIVE: The objectives of this study were (1) to assess the circadian rhythms and sleep of a healthy, 42-year-old male astronaut experiencing microgravity (weightlessness) for nearly 5 months while living aboard Space Station Mir as it orbited Earth and (2) to determine the effects of prolonged space flight on the endogenous circadian pacemaker, as indicated by oral temperature and subjective alertness rhythms, and their ramifications for sleep, alertness, and performance. METHODS: For three 12- to 14-day blocks of time (spread throughout the mission), oral temperatures were taken and subjective alertness was self-rated five times per day. Sleep diaries and performance tests were also completed daily during each block. RESULTS: Examination of the subject's circadian alertness and oral temperature rhythms suggested that the endogenous circadian pacemaker seemed to function quite well up to 90 days in space. Thereafter (on days 110-122), the influence of the endogenous circadian pacemaker on oral temperature and subjective alertness circadian rhythms was considerably weakened, with consequent disruptions in sleep. CONCLUSIONS: Space missions lasting more than 3 months might result in diminished circadian pacemaker influence in astronauts, leading to eventual sleep problems.

  18. [Infants in Day Care].

    ERIC Educational Resources Information Center

    Pawl, Jeree, Ed.; And Others

    1990-01-01

    This newsletter theme issue looks at infant day care models including those emphasizing early intervention with special needs infants. The lead article, "Infants in Day Care: Reflections on Experiences, Expectations and Relationships," by Jeree H. Pawl, stresses the importance of understanding infants' and toddlers' capacities and needs in…

  19. Rainy Day Activities.

    ERIC Educational Resources Information Center

    Texas Child Care, 1997

    1997-01-01

    Experienced caregivers plan ahead for rainy days. This article describes specific rainy day activities for young children, such as books and crafts to learn about rain (rain in a jar, making a rainbow), simple cooking activities (taffy pull, cinnamon candy tea), and games (mummy wrap, hunt the thimble, rain lotto). (EV)

  20. Science Challenge Day

    ERIC Educational Resources Information Center

    Siegel, Deborah

    2013-01-01

    Science fairs can be good motivators, but as extracurricular activities, they leave some students behind. However, by staging a Science Challenge Day at school, educators can involve all students in doing everything from choosing activities to judging projects. This article presents a model for running a successful Science Challenge Day. The…