Science.gov

Sample records for 12-day mission discoverys

  1. The Europa Ocean Discovery mission

    SciTech Connect

    Edwards, B.C.; Chyba, C.F.; Abshire, J.B.

    1997-06-01

    Since it was first proposed that tidal heating of Europa by Jupiter might lead to liquid water oceans below Europa`s ice cover, there has been speculation over the possible exobiological implications of such an ocean. Liquid water is the essential ingredient for life as it is known, and the existence of a second water ocean in the Solar System would be of paramount importance for seeking the origin and existence of life beyond Earth. The authors present here a Discovery-class mission concept (Europa Ocean Discovery) to determine the existence of a liquid water ocean on Europa and to characterize Europa`s surface structure. The technical goal of the Europa Ocean Discovery mission is to study Europa with an orbiting spacecraft. This goal is challenging but entirely feasible within the Discovery envelope. There are four key challenges: entering Europan orbit, generating power, surviving long enough in the radiation environment to return valuable science, and complete the mission within the Discovery program`s launch vehicle and budget constraints. The authors will present here a viable mission that meets these challenges.

  2. Cost efficient operations for Discovery class missions

    NASA Technical Reports Server (NTRS)

    Cameron, G. E.; Landshof, J. A.; Whitworth, G. W.

    1994-01-01

    The Near Earth Asteroid Rendezvous (NEAR) program at The Johns Hopkins University Applied Physics Laboratory is scheduled to launch the first spacecraft in NASA's Discovery program. The Discovery program is to promote low cost spacecraft design, development, and mission operations for planetary space missions. The authors describe the NEAR mission and discuss the design and development of the NEAR Mission Operations System and the NEAR Ground System with an emphasis on those aspects of the design that are conducive to low-cost operations.

  3. STS-114: Discovery Mission Status Briefing

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This STS-114 Discovery Mission Status Briefing begins with Eileen Collins, Commander of the STS-114 Discovery, and crewmembers in orbit talking with mission control after launch of the Space Shuttle Discovery. Collins gives tribute to the crewmembers of the Space Shuttle Columbia and their families. Phil Engelauf, STS-114 Mission Operations Representative presents his mission status briefing and John Shannon, Space Shuttle Flight Operations and Integration Manager talks about the processing of radar data taken of the Space Shuttle Discovery during ascent. A video presentation from the Solid Rocket Booster Camera is shown by John Shannon. The video includes: 1) Piece of orbiter tile and origins of debris; 2) Pictures of debris after SRB separation; 3) TYVEK covers; and 4) Bird impacts external tank nose cone. Questions from the news media about tile shearing, vehicle damage and debris from the external tank are answered.

  4. NASA's Kepler Mission Announces Latest Discoveries

    NASA Video Gallery

    Scientists from NASA's Kepler mission have been busy recently. The team has announced the discovery of Kepler-22b, its first confirmed planet in the habitable zone of its solar system, 600 light ye...

  5. Discovery Takes Off on New Mission

    NASA Video Gallery

    Space shuttle Discovery began its next mission April 17, 2012, when it took off from its operational home and headed to the Smithsonian Institution where it will be put on display to inspire the pu...

  6. Perfect launch for Space Shuttle Discovery on mission STS-105

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- Trailing a fiery-looking column of smoke, Space Shuttle Discovery hurtles into a blue sky on mission STS-105 to the International Space Station. Viewed from the top of the Vehicle Assembly Building, liftoff occurred at 5:10:14 p.m. EDT on this second launch attempt. Launch countdown activities for the 12-day mission were called off Aug. 9 during the T-9 minute hold due to the high potential for lightning, a thick cloud cover and the potential for showers. Besides the Shuttle crew of four, Discovery carries the Expedition Three crew who will replace Expedition Two on the International Space Station. The mission includes the third flight of an Italian-built Multi-Purpose Logistics Module delivering additional scientific racks, equipment and supplies for the Space Station, and two spacewalks. Part of the payload is the Early Ammonia Servicer (EAS) tank, which will be attached to the Station during the spacewalks. The EAS contains spare ammonia for the Station'''s cooling system. The three-member Expedition Two crew will be returning to Earth aboard Discovery after a five-month stay on the Station.

  7. Perfect launch for Space Shuttle Discovery on mission STS-105

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- Smoke billows out from Launch Pad 39A as Space Shuttle Discovery soars into the blue sky on mission STS-105 to the International Space Station. Liftoff occurred at 5:10:14 p.m. EDT on this second launch attempt. Launch countdown activities for the 12-day mission were called off Aug. 9 during the T-9 minute hold due to the high potential for lightning, a thick cloud cover and the potential for showers. Besides the Shuttle crew of four, Discovery carries the Expedition Three crew who will replace Expedition Two on the International Space Station. The mission includes the third flight of an Italian-built Multi-Purpose Logistics Module delivering additional scientific racks, equipment and supplies for the Space Station, and two spacewalks. Part of the payload is the Early Ammonia Servicer (EAS) tank, which will be attached to the Station during the spacewalks. The EAS contains spare ammonia for the Station'''s cooling system. The three-member Expedition Two crew will be returning to Earth aboard Discovery after a five-month stay on the Station.

  8. Perfect launch for Space Shuttle Discovery on mission STS-105

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- Viewed from between the trees, Space Shuttle Discovery rises above the smoke as it soars into the blue sky on mission STS-105 to the International Space Station. Viewed from the top of the Vehicle Assembly Building, liftoff occurred at 5:10:14 p.m. EDT on this second launch attempt. Launch countdown activities for the 12-day mission were called off Aug. 9 during the T-9 minute hold due to the high potential for lightning, a thick cloud cover and the potential for showers. Besides the Shuttle crew of four, Discovery carries the Expedition Three crew who will replace Expedition Two on the International Space Station. The mission includes the third flight of an Italian-built Multi-Purpose Logistics Module delivering additional scientific racks, equipment and supplies for the Space Station, and two spacewalks. Part of the payload is the Early Ammonia Servicer (EAS) tank, which will be attached to the Station during the spacewalks. The EAS contains spare ammonia for the Station'''s cooling system. The three-member Expedition Two crew will be returning to Earth aboard Discovery after a five-month stay on the Station.

  9. STS-121: Discovery Mission Overview Briefing

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Tony Ceccacci, Lead STS-121 Space Shuttle Flight director, and Rick LaBrode, Lead STS-121 ULF 1.1 International Space Station Flight Director, are shown in this STS-121 Discovery mission overview. Ceccacci begins with an overview of the mission and gives the mission goals. He also presents various slides of the STS-121 payload that includes: 1) Orbiter Docking System; 2) Integrated Cargo Carrier (ICC); 3) Multipurpose Logistics Module (MPLM); 4) TPS Sample Box Assembly; 5) Shuttle Remote Manipulator System (SRMS); and 6) Orbiter Boom Sensor System (OBSS). He shows a video presentation on the various processes involved in the inspections of the Orbiter that include: 1) Unberthing OBSS; 2) Starboard wing leading edge survey; 3) Wing leading edge passes; 4) Nose cap surveys; 5) Port side surveys; and 6) Docking with the International Space Station. Ceccacci ends his presentation with discussing the work performed from flight day 1 to flight day 14. Rick LaBrode begins with discussing the on-orbit status of the Expedition 13 crew. He then presents a video of the MPLM installation, forward hatch of MPLM, resupply stowage platform, resupply stowage racks, and Oxygen Generator System (OGS) rack. Questions are answered from the media.

  10. The Pascal Discovery Mission: A Mars Climate Network Mission

    NASA Technical Reports Server (NTRS)

    Haberle, R. M.; Catling, D. C.; Chassefiere, E.; Forget, F.; Hourdin, F.; Leovy, C. B.; Magalhaes, J.; Mihalov, J.; Pommereau, J. P.; Murphy, J. R.

    2000-01-01

    The climate of Mars is a major focus of Mars exploration. With the loss of MCO, however, it remains uncertain how it will be achieved. We argue that a truly dedicated climate mission to Mars should have both orbital and landed components, and that these should operate simultaneously for at least 1 Mars year if not longer. Pascal is a Discovery mission that emphasizes the landed component. Its principal goal is to establish a network of 24 small weather stations on the surface of Mars that will operate for 2 Mars years, with an extended mission option for an additional 8 Mars years bringing the total mission lifetime up to 10 Mars years. The stations will collect hourly measurements of pressure, temperature, and optical depth. After delivering the probes to Mars, Pascal's carrier spacecraft will go into an elliptical orbit which will serve as a relay for the landers, and a platform for synoptic imaging. These simultaneous measurements from the surface and from orbit will allow us to characterize the planet's general circulation and its interaction with the dust, water, and CO2 cycles. During entry, descent, and landing, each of Pascal's 24 probes will also measure the temperature structure of the atmosphere and acquire images of the surface. These data will allow us to determine the global structure of the atmosphere between 15 and 130 km, and characterize the local terrain to help interpret the landed data. The descent images are part of Pascal's outreach program, as the probe camera system will be developed by faculty-supervised student project. The intent is to generate enthusiasm for the Pascal mission by directly involving students. Pascal will be launched on a Delta II-7925 in August of 2005. A type I trajectory will deliver Pascal to Mars in January of 2006. On approach, the three-axis stabilized carrier spacecraft will spring deploy the Pascal probes in 4 separate salvo's of 6 each. Global coverage is achieved with small time-of-arrival adjustments in

  11. The Pascal Discovery Mission: A Mars Climate Network Mission

    NASA Technical Reports Server (NTRS)

    Haberle, Robert M.; Catling, D. C.; Chassefiere, E.; Forget, F.; Hourdin, F.; Leovy, C. B.; Magalhaes, J.; Mihalov, J.; Pommereau, J. P.; Murphy, J. R.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    The climate of Mars is a major focus of Mars exploration. With the loss of MCO, however, it remains uncertain how it will be achieved. We argue that a truly dedicated climate mission to Mars should have both orbital and landed components, and that these should operate simultaneously for at least I Mars year if not longer. Pascal is Discovery mission that emphasizes the landed component. Its principal goal is to establish a network of 24 small weather stations on the surface of Mars that will operate for 2 Mars years, with an extended mission option for an additional 8 Mars years bringing the total mission lifetime up to 10 Mars years. The stations will collect hourly measurements of pressure, temperature, and optical depth. After delivering the probes to Mars, Pascal's carrier spacecraft will go into an elliptical orbit which will serve as a relay for the landers, and a platform for synoptic imaging. These simultaneous measurements from the surface and from orbit will allow us to characterize the planet's general circulation and its interaction with the dust, water, and CO2 cycles. During entry, descent, and landing, each of Pascal's 24 probes will also measure the temperature structure of the atmosphere and acquire images of the surface. These data will allow us to determine the global structure of the atmosphere between 15 and 130 km, and characterize the local terrain to help interpret the landed data. The descent images are part of Pascal's outreach program, as the probe camera system will be developed by faculty-supervised student project. The intent is to generate enthusiasm for the Pascal mission by directly involving students. Pascal will be launched on a Delta 11-7925 in August of 2005. A type I trajectory will deliver Pascal to Mars in January of 2006. On approach, the three-axis stabilized carrier spacecraft will spring deploy the Pascal probes in 4 separate salvo's of 6 each. Global coverage is achieved with small time-of-arrival adjustments in between

  12. Hermes Global Orbiter: A Discovery Mission in Gestation

    NASA Technical Reports Server (NTRS)

    Nelson, R. M.; Horn, L. J.; Weiss, J. R.; Smythe, W. D.

    1994-01-01

    The hermes Global Orbiter (HGO) is a Discovery class mission under study, which is investigating the possibility of placing a small spacecraft in highly elliptical polar orbit about mercury. The purpose of the mission is to conduct observations of the planet's surface, atmosphere and magnetosphere.

  13. Solar composition from the Genesis Discovery Mission.

    PubMed

    Burnett, D S; Team, Genesis Science

    2011-11-29

    Science results from the Genesis Mission illustrate the major advantages of sample return missions. (i) Important results not otherwise obtainable except by analysis in terrestrial laboratories: the isotopic compositions of O, N, and noble gases differ in the Sun from other inner solar system objects. The N isotopic composition is the same as that of Jupiter. Genesis has resolved discrepancies in the noble gas data from solar wind implanted in lunar soils. (ii) The most advanced analytical instruments have been applied to Genesis samples, including some developed specifically for the mission. (iii) The N isotope result has been replicated with four different instruments. PMID:21555545

  14. Solar composition from the Genesis Discovery Mission

    PubMed Central

    Burnett, D. S.; Team, Genesis Science

    2011-01-01

    Science results from the Genesis Mission illustrate the major advantages of sample return missions. (i) Important results not otherwise obtainable except by analysis in terrestrial laboratories: the isotopic compositions of O, N, and noble gases differ in the Sun from other inner solar system objects. The N isotopic composition is the same as that of Jupiter. Genesis has resolved discrepancies in the noble gas data from solar wind implanted in lunar soils. (ii) The most advanced analytical instruments have been applied to Genesis samples, including some developed specifically for the mission. (iii) The N isotope result has been replicated with four different instruments. PMID:21555545

  15. STS-114: Discovery Day 3 Mission Status Briefing

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Paul Hill, STS-114 Lead Shuttle Flight Director and John Shannon, Space Shuttle Flight Operations and Integration Manager are seen in this STS-114 flight day three Mission Status Briefing. Hill expresses that the Discovery Orbiter is performing beautifully and that STS-114 crew performed a picture perfect rendezvous. He also shows a video of the Rendezvous Pitch Maneuver (RPM) where Commander Eileen Collins slowly flips Discovery in a circle to give the Expedition 11 crew a view of Discovery's heat resistant tiles. He talks about the removal of the Multi-Purpose Logistics Module (MPLM) from Discovery's payload bay using the ISS Robotic Arm. Shannon discusses two objectives that his team is fulfilling on this mission. They include: 1) Understanding the health of Space Shuttle Discovery; and 2) Assessing the performance of the External Tank. Questions from the news media pertaining to the life expectancy of the Space Shuttle Discovery, battery lifetime on the wing leading edge impact sensors, foam loss, PAL ramps, and the safety of the Space Shuttle Discovery are addressed.

  16. The Titan Mare Explorer Mission (TiME): A Discovery mission to a Titan sea

    NASA Astrophysics Data System (ADS)

    Stofan, E. R.; Lunine, J. I.; Lorenz, R. D.; Aharonson, O.; Bierhaus, E.; Boldt, J.; Clark, B.; Griffith, C.; Harri, A.-M.; Karkoschka, E.; Kirk, R.; Mahaffy, P.; Newman, C.; Ravine, M.; Trainer, M.; Turtle, E.; Waite, H.; Yelland, M.; Zarnecki, J.

    2011-10-01

    The Titan Mare Explorer (TiME) is a Discovery class mission to Titan, and would be the first in situ exploration of an extraterrestrial sea. The mission is one of three recently chosen by NASA for a Phase A study; one mission will be downselected for launch in the summer of 2012. TiME is a lake lander, which would float on the surface of a sea, performing chemical, meteorological and visual observations.

  17. STS-121: Discovery Mission Management Team Briefing

    NASA Technical Reports Server (NTRS)

    2006-01-01

    The briefing opened with Bruce Buckingham (NASA Public Affairs) introducing John Shannon (Chairman, Mission Management Team, JSC), John Chapman (External Tank Project Manager), Mike Leinbach (Shuttle Launch Director), and 1st Lt. Kaleb Nordgren (USAF 45th Weather Squadron). John Shannon reported that the team for hydrogen loading was proceeding well and the external tank detanking was completed. During detanking the inspection team cracked foam caused by condensation and ice formation as the tank expanded and contracted. Aerothermal analysis and analysis fro ice formation will be completed before launch. John Chapman explained the mechanics of the external tank design, the foam cracking, bracket design, etc. Mike Leinbach discussed the inspection teams and their inspection final inspection for ice formation before and after external tank filling. The inspection team of eight very experienced personnel also use telescopes with cameras to find any problems before launch. Kaleb Nordgren discussed weather and said there was a 40% chance of weather prohibiting launch. The floor was the opened for questions from the press.

  18. Future Mission Proposal Opportunities: Discovery, New Frontiers, and Project Prometheus

    NASA Technical Reports Server (NTRS)

    Niebur, S. M.; Morgan, T. H.; Niebur, C. S.

    2003-01-01

    The NASA Office of Space Science is expanding opportunities to propose missions to comets, asteroids, and other solar system targets. The Discovery Program continues to be popular, with two sample return missions, Stardust and Genesis, currently in operation. The New Frontiers Program, a new proposal opportunity modeled on the successful Discovery Program, begins this year with the release of its first Announcement of Opportunity. Project Prometheus, a program to develop nuclear electric power and propulsion technology intended to enable a new class of high-power, high-capability investigations, is a third opportunity to propose solar system exploration. All three classes of mission include a commitment to provide data to the Planetary Data System, any samples to the NASA Curatorial Facility at Johnson Space Center, and programs for education and public outreach.

  19. Exobiology opportunities from Discovery-class missions. [Abstract only

    NASA Technical Reports Server (NTRS)

    Meyer, Michael A.; Rummel, John D.

    1994-01-01

    Discovery-class missions that are now planned, and those in the concept stage, have the potential to expand our knowledge of the origins and evolution of biogenic compounds, and ultimately, of the origins of life in the solar system. This class of missions, recently developed within NASA's Solar System Exploration Program, is designed to meet important scientific objectives within stringent guidelines--$150 million cap on development cost and a 3-year cap on the development schedule. The Discovery Program will effectively enable "faster, cheaper" missions to explore the inner solar system. The first two missions are Mars Environmental Survey (MESUR) Pathfinder and Near Earth Asteroid Rendezvous (NEAR). MESUR Pathfinder will be the first Discovery mission, with launch planned for November/December 1996. It will be primarily a technical demonstration and validation of the MESUR Program--a network of automated landers to study the internal structure, meteorology, and surface properties of Mars. Besides providing engineering data, Pathfinder will carry atmospheric instrumentation and imaging capabilities, and may deploy a microrover equipped with an alpha proton X-ray spectrometer to determine elemental composition, particularly the lighter elements of exobiological interest. NEAR is expected to be launched in 1998 and to rendezvous with a near-Earth asteroid for up to 1 year. During this time, the spacecraft will assess the asteroid's mass, size, density, map its surface topography and composition, determine its internal properties, and study its interaction with the interplanetary environment. A gamma ray or X-ray spectrometer will be used to determine elemental composition. An imaging spectrograph, with 0.35 to 2.5 micron spectral range, will be used to determine the asteroid's compositional disbribution. Of the 11 Discovery mission concepts that have been designated as warranting further study, several are promising in terms of determining the composition and

  20. Space Shuttle Discovery lifts off successfully on mission STS-95

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Space Shuttle Discovery soars above billowing clouds of steam and smoke into clear blue skies as it lifts off from Launch Pad 39B at 2:19 p.m. EST Oct. 29 on mission STS-95. The crew members are Mission Commander Curtis L. Brown Jr.; Pilot Steven W. Lindsey; Payload Specialist Chiaki Mukai, (M.D., Ph.D.), with the National Space Development Agency of Japan (NASDA); Mission Specialist Scott E. Parazynski; Mission Specialist Stephen K. Robinson; Mission Specialist Pedro Duque of Spain, representing the European Space Agency (ESA); and Payload Specialist John H. Glenn Jr., a senator from Ohio and one of the original Mercury 7 astronauts. Glenn is making his second voyage into space after 36 years. The STS-95 mission includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process. Discovery is expected to return to KSC at 11:49 a.m. EST on Nov. 7.

  1. STS-121: Discovery End of Mission Crew Briefing

    NASA Technical Reports Server (NTRS)

    2006-01-01

    The crew of the STS-121 Discovery mission is shown during this end of mission briefing. The crewmembers consist of: Stephanie Wilson, mission specialist; Steve Lindsey, commander; Lisa Nowak, mission specialist; Piers Sellers, mission specialist; Mike Fossum, mission specialist; and Mark Kelly, pilot. The briefing opens with Commander Lindsey describing the two major objectives of this mission, which are to accomplish the rest of the return to flight objectives started by STS-114, and to increase the ISS crew to three. He expresses that these objectives were fulfilled. A question and answer period from the news media follows. Lisa Nowak talks about robotics and her experiences during her first flight. Stephanie Wilson also discusses robotics and gives her thoughts about spaceflight. Steve Lindsey discusses the flying qualities of STS-121, spacecraft landing, and weather conditions while in space. Mark Kelly was responsible for the undocking of the Shuttle from the International Space Station, and he elaborates on this process. Spacewalkers Piers Sellers and Mike Fossum discuss testing of the Orbiter Boom Sensor System (OBSS). This system will be used as a platform to make repairs to the Space Shuttle.

  2. Discovery lands at KSC after completing mission STS-105

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. A great blue heron flies along with orbiter Discovery as it lands on KSC's Shuttle Landing Facility runway 15. Main gear touchdown was at 2:22:58 p.m. EDT; wheel stop, at 2:24:06 p.m. EDT. The 11-day, 21-hour, 12-minute STS-105 mission accomplished the goals set for the 11th flight to the International Space Station: swapout of the resident Station crew; delivery of equipment, supplies and scientific experiments; and installation of the Early Ammonia Servicer and heater cables for the S0 truss on the Station. Discovery traveled 4.3 million miles on its 30th flight into space, the 106th mission of the Space Shuttle program. The landing was the first of five in 2001 to occur in daylight at KSC.

  3. Space Shuttle Discovery is launched on mission STS-96

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Competing with the sunrise, the brilliant flames from the launch of Space Shuttle Discovery light up the morning sky. Mission STS- 96 lifted off at 6:49:42 a.m. EDT. The crew of seven begin a 10- day logistics and resupply mission for the International Space Station, carrying about 4,000 pounds of supplies, to be stored aboard the station for use by future crews, including laptop computers, cameras, tools, spare parts, and clothing. The mission also includes such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student- involved experiment. It will include a space walk to attach the cranes to the outside of the ISS for use in future construction. Landing is expected at the SLF on June 6 about 1:58 a.m. EDT.

  4. Space Shuttle Discovery is launched on mission STS-96

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the early dawn, the brilliant flames from the launch of Space Shuttle Discovery light up the billows of steam below. Mission STS-96 lifted off at 6:49:42 a.m. EDT. The crew of seven begin a 10-day logistics and resupply mission for the International Space Station, carrying about 4,000 pounds of supplies, to be stored aboard the station for use by future crews, including laptop computers, cameras, tools, spare parts, and clothing. The mission also includes such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student- involved experiment. It will include a space walk to attach the cranes to the outside of the ISS for use in future construction. Landing is expected at the SLF on June 6 about 1:58 a.m. EDT.

  5. Space Shuttle Discovery is launched on mission STS-96

    NASA Technical Reports Server (NTRS)

    1999-01-01

    On its perfect launch today, Space Shuttle Discovery's brilliant flames illuminate the tower at left, with the lightning mast on top, and the billows of smoke and steam at right. Liftoff into a gossamer dawn sky for mission STS-96 occurred at 6:49:42 a.m. EDT. The crew of seven begin a 10-day logistics and resupply mission for the International Space Station, carrying about 4,000 pounds of supplies, to be stored aboard the station for use by future crews, including laptop computers, cameras, tools, spare parts, and clothing. The mission also includes such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student-involved experiment. It will include a space walk to attach the cranes to the outside of the ISS for use in future construction. Landing is expected at the SLF on June 6 about 1:58 a.m. EDT.

  6. DISCOVERY OF A ZZ CETI IN THE KEPLER MISSION FIELD

    SciTech Connect

    Hermes, J. J.; Winget, D. E.; Mullally, Fergal; Howell, Steve B.; Oestensen, R. H.; Bloemen, S.; Williams, Kurtis A.; Telting, John; Southworth, John; Everett, Mark

    2011-11-01

    We report the discovery of the first identified pulsating DA white dwarf, WD J1916+3938 (Kepler ID 4552982), in the field of the Kepler mission. This ZZ Ceti star was first identified through ground-based, time-series photometry, and follow-up spectroscopy confirms that it is a hydrogen-atmosphere white dwarf with T {sub eff} = 11,129 {+-} 115 K and log g = 8.34 {+-} 0.06, placing it within the empirical ZZ Ceti instability strip. The object shows up to 0.5% amplitude variability at several periods between 800 and 1450 s. Extended Kepler observations of WD J1916+3938 could yield the best light curve, to date, of any pulsating white dwarf, allowing us to directly study the interior of an evolved object representative of the fate of the majority of stars in our Galaxy.

  7. Gamma Ray Burst Discoveries by the Swift Mission

    NASA Technical Reports Server (NTRS)

    Barthelmy, Scott

    2008-01-01

    With 3 years of on-orbit operations (launched in Nov 2004), Swift has detected over 300 gammaray bursts (GRBs). The unique combination of quick and accurate position determinations by the BAT instrument, fast autonomous spacecraft slewing, and multi-band instrumentation (XRT and UVOT) has allowed Swift to accumulate a long list of discoveries about GRBs. These positions are also available to the ground follow-up community (via TDRSS and GCN) within 15-30 sec. A summary of these discoveries will be given (e.g. long and short GRB host associations, SN associations, flaring and on-going activity in the central engine). The Swift spacecraft and instruments are in fine working order with no signs of performance degradation. With an expected orbital lifetime well past 2020, the overlap with GLAST (launch in mid-2008) will yield greater than 30 GRBs/year with observations by both missions. This will provide an unprecedented wavelength coverage from optical to 100 GeV. The coordination of pointing Swift with GLAST will be described.

  8. Deciphering Solar System Chronology with Lunar In-situ Dating: The MARE Discovery Mission

    NASA Astrophysics Data System (ADS)

    Anderson, F. S.; Draper, D.; Christensen, P. R.; Olansen, J.; Devolites, J.; Harris, W.; Whitaker, T. J.; Levine, J.

    2015-10-01

    We have proposed a discovery mission called the Moon Age and Regolith Explorer (MARE) that will land southwest of the Aristarchus Plateau, providing new measurements of age and petrology, addressing major questions of lunar and solar system chronology.

  9. PICA Forebody Heatshield Qualification for the Stardust Discovery Class Mission

    NASA Technical Reports Server (NTRS)

    Tran, Huy K.; Johnson, Christine E.; Hsu, Ming-Ta; Smith, Marnell; Dill, Harry; Rasky, Daniel J. (Technical Monitor)

    1996-01-01

    This paper presents the qualification of the light weight Phenolic Impregnated Carbon Ablators (PICA) as the forebody heatshield for the Stardust Discovery Class Mission. The Stardust spacecraft will be launched in early 1999 and fly by Comet Wild-2 to collect cometary and interstellar dust and return them back to earth in the Sample Return Capsule (SRC). This earth re-entry will be the fastest to date, at 12.6 km/s, and therefore requires a heatshield that can withstand very high heating rates and stagnation pressures, as well as provide the necessary insulation to the vehicle structure. The PICA material was developed as part of the Lightweight Ceramic Ablators program at NASA Ames Research Center, and was baselined as the forebody heatshield because of its low density and superior ablation and thermal performance at severe aerothermodynamic conditions. Under a Small Business Innovative Research (SBIR) program with NASA Ames, Fiber Materials, Inc. developed a process to manufacture a single-piece PICA heatshield for the forebody of the SRC, along with witness material for the fabrication of the test models. The test models were fabricated and instrumented by the staff of Lockheed Martin Astronautics in Denver, Colorado. Full body preliminary aerothermal CFD calculations were performed at NASA Ames to determine the heating and stagnation pressure conditions. The Heat shield sizing was also performed at NASA Ames by using a new material response code that accounts for the highly porous characteristics of the PICA material. The ablation and thermal performance of PICA was qualified in the NASA Ames Interaction Heating Arc Jet Facility. A total of 24 models and four test conditions were used to qualify PICA at the predicted peak heat flux, heat load, shear, and stagnation pressure conditions. Surface and in-depth temperatures were measured using optical pyrometers and thermocouples. Surface recession was measured by using a template and a height gage. Several models

  10. Engaging the Public in the Discovery of Other Worlds: The Kepler Discovery Mission Education and Public Outreach Program

    NASA Astrophysics Data System (ADS)

    DeVore, E. K.; Gould, A. D.; Harman, P. K.; Koch, D. G.

    2005-12-01

    Are we alone? Are there other worlds like our own? Astronomers are discovering large planets, but can smaller planets - new Earths - be found? These are powerful and exciting questions that motivate student learning and public interest in NASA's Kepler Discovery Mission's search for planets. Continual discoveries of extrasolar planets have sparked broad public interest, and Kepler will expand this search to discover planets like our own. The Kepler Mission Education and Public Outreach (EPO) program focuses on the excitement of discovering Earth-size planets in the habitable zone to enhance student learning and public interest in astronomy and physics. Kepler will launch in 2008, to begin searching for extrasolar Earths. During the first year, we expect Kepler to rapidly detect large planets similar to 51 Peg and smaller Earth-size planets in Mercury-like orbits. By the fourth year, we anticipate the discovery Earth-size planets in habitable zones. The Kepler EPO program began October 2002 and will continue through at least 2012, and our goals and plans are presented in this poster. The EPO program is scoped to build public interest during development, and to engage students and the public throughout the initial four-year, on-orbit mission and beyond if an extended mission is conducted. The EPO goals are to increase public awareness and understanding of the Kepler Mission by embodying key principles of NASA's ``Partners in Education" and ``Implementing the OSS Education/ Public Outreach Strategy:" involve scientists and contractors in EPO efforts, establish collaborations with planetariums and science museums, and build on existing programs and networks that maximize the leverage of NASA EPO funding in this project. The Kepler EPO plan is designed to take advantage of existing collaborations, networks, experience, and relationships to optimize the impact of EPO. Kepler EPO is funded by NASA's Discovery Mission Program, Science Mission Directorate.

  11. Behind the Scenes: Mission Control Practices Launching Discovery

    NASA Video Gallery

    Before every shuttle launch, the astronauts train with their ascent team in Mission Control Houston. In this episode of NASA Behind the Scenes, astronaut Mike Massimino introduces you to some of th...

  12. Gamma Ray Burst Discoveries with the Swift Mission

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil

    2006-01-01

    Gamma-ray bursts are among the most fascinating occurrences in the cosmos. They are thought to be the birth cries of black holes throughout the universe. There has been tremendous recent progress in our understanding of bursts with the new data from the Swift mission. Swift was launched in November 2004 and is an international multiwavelength observatory designed to determine the origin of bursts and use them to probe the early Universe. The two years of findings fiom the mission will be presented. A huge step forward has been made in our understanding of the mysterious short GRBs. High redshift bursts have been detected from enormous explosions early in the universe. GRBs have been found with giant X-ray flares occurring in their afterglow. These, and other topics, will be discussed.

  13. Gamma Ray Burst Discoveries by the SWIFT Mission

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil

    2007-01-01

    Gamma-ray bursts are among the most fascinating occurences in the cosmos. They are thought to be the birth cries of black holes throughout the universe. The NASA SWIFT mission, in orbit since November 2004, is an innovative multiwavelenth observaroty designed to determine the origin of bursts and use them to probe the early Universe. Recent results from the mission will be presented. The long-standing mstery of short GRBs is beginning to be solved in a most interesting direction. High redshift bursts have been detected to redshift z=6.3 leading to a better understanding of star formation rates at early times. GRBs have been found with giant X-ray flares occurring in their afterglow.The very nearby GRB 060218 triggered obsevations within minutes of the full light curve of an odd suupernova Type Ic.

  14. The Discovery of Transient Phenomena by NASA's K2 Mission

    NASA Astrophysics Data System (ADS)

    Colón, Knicole D.

    2016-01-01

    The NASA K2 space mission is photometrically monitoring fields along the ecliptic to achieve a variety of science goals. These goals involve time variable observations of Solar System objects, extrasolar planets, star clusters, supernovae, and more. Because K2 observes each of its fields for just ~80 days, it has a finite baseline over which to acquire observations of photometrically varying astrophysical objects. Thanks to their extended baseline of observations, wide-field ground-based photometric and spectroscopic surveys that have been monitoring the sky for years can provide robust constraints on transiting planets, supernova events, or other transient phenomena that have been newly identified in K2 data. I will discuss the opportunities for synergistic activities between the K2 space mission and such long-running ground-based surveys as HATNet, KELT, SuperWASP, and APOGEE that will maximize the scientific output from these surveys. In particular, I will present results from a search for transient phenomena in K2 data and will use ground-based survey data to aid the characterization of these phenomena. Examples of these phenomena include single planetary transit events and stars with long-duration dimmings caused by an eclipse of a protoplanetary disk. I will also discuss the benefits that upcoming surveys like the NASA Transiting Exoplanet Survey Satellite (TESS) mission and the Large Synoptic Survey Telescope (LSST) will gain from long-term ground-based surveys.

  15. Gamma Ray Burst Discoveries by the Swift Mission

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil

    2006-01-01

    Gamma-ray bursts are among the most fascinating occurrences in the cosmos. They are thought to be the birth cries of black holes throughout the universe. The NASA Swift mission is an innovative new multiwavelength observatory designed to determine the origin of bursts and use them to probe the early Universe. Swift is now in orbit after a beautiful launch on November 20, 2004. A new-technology wide-field gamma-ray camera detects more than a hundred bursts per year. Sensitive narrow-field X-ray and UV/optical telescopes, built in collaboration with UK and Italian partners and calibrated in Germany, are pointed at the burst location in 20 to 70 sec by an autonomously controlled "swift" spacecraft. For each burst, arcsec positions are determined and optical/UV/X-ray/gamma-ray spectrophotometry performed. Information is also rapidly sent to the ground to a team of more than 50 observers at telescopes around the world. Early results from the mission will be presented. The long-standing mystery of short GRBs has been solved, and the answer is the most interesting possible scenario. High redshift bursts have been detected leading to a better understanding of star formation rates and distant galaxy environments. GRBs have been found with giant X-ray flares occurring in their afterglow. Observations of magnetars, galactic transients, supernovae, AGN and many other types of sources are also being performed

  16. Gamma Ray Burst Discoveries by the Swift Mission

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil

    2006-01-01

    Gamma-ray bursts are among the most fascinating occurrences in the cosmos. They are thought to be the birth cries of black holes throughout the universe. The NASA swift mission is an innovative new multiwavelength observatory designed to determine the origin of bursts and use them to probe the early Universe. Swift is now in orbit since November 20, 2004 and all hardware is performing well. A new-technology wide-field gamma-ray camera is detecting a hundred bursts per year. sensitive narrow-field X-ray and uv/optical telescopes, built in collaboration with UK and Italian partners, are pointed at the burst location in 50-100 sec by an autonomously controlled "swift" spacecraft. For each burst, arcsec positions are determined and optical/UV/X-ray/gamma-ray spectrophotometry performed. Information is also rapidly sent to the ground to a team of more than 50 observers at telescopes around the world. The first year of findings from the mission will be presented. There has been a break-through in the longstanding mystery of short GRBs; they appear to be caused by merging neutron stars. High redshift bursts have been detected leading to a better understanding of star formation rates and distant galaxy environments. GRBs have been found with giant X-ray flares occurring in their afterglow.

  17. Gamma Ray Burst Discoveries by the Swift Mission

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil

    2006-01-01

    The NASA Swift mission is an innovative new multiwavelength observatory designed to determine the origin of gamma-ray bursts and use them to probe the early Universe. Swift is now in orbit since November 20, 2004 and all hardware is performing well. A new-technology wide-field gamma-ray camera is detecting a hundred bursts per year. Sensitive narrow-field X-ray and UV/optical telescopes, built in collaboration with UK and Italian partners, are pointed at the burst location in 50-100 sec by an autonomously controlled "swift" spacecraft. For each burst, arcsec positions are determined and optical/UV/X-ray/gamma-ray spectrophotometry performed. Information is also rapidly sent to the ground to a team of more than 50 observers at telescopes around the world. The first year and a half of findings from the mission will be presented. There has been a break-through in the long-standing mystery of short GRBs; they appear to be caused by merging neutron stars. High redshift bursts have been detected leading to a better understanding of star formation rates and distant galaxy environments. A fascinating nearby burst triggered Swift and enabled the best early-time observations of an emerging coincident Type lb/c supernova. GRBs have been found with giant X-ray flares occurring in their afterglow.

  18. Gamma Ray Burst Discoveries by the Swift Mission

    NASA Astrophysics Data System (ADS)

    Gehrels, Neil; Swift Team

    2006-09-01

    The NASA Swift mission is an innovative new multiwavelength observatory designed to determine the origin of gamma-ray bursts and use them to probe the early Universe. Swift is now in orbit since November 20, 2004 and all hardware is performing well. A new-technology wide-field gamma-ray camera is detecting a hundred bursts per year. Sensitive narrow-field X-ray and UV/optical telescopes, built in collaboration with UK and Italian partners, are pointed at the burst location in 50-100 sec by an autonomously controlled "swift" spacecraft. For each burst, arcsec positions are determined and optical/UV/X-ray/gamma-ray spectrophotometry performed. Information is also rapidly sent to the ground to a team of more than 50 observers at telescopes around the world. The first year and a half of findings from the mission will be presented. There has been a break-through in the long-standing mystery of short GRBs; they appear to be caused by merging neutron stars. High redshift bursts have been detected leading to a better understanding of star formation rates and distant galaxy environments. A fascinating nearby burst triggered Swift and enabled the best early-time observations of an emerging coincident Type Ib/c supernova. GRBs have been found with giant X-ray flares occurring in their afterglow.

  19. Gamma Ray Burst Discoveries by the Swift Mission

    NASA Astrophysics Data System (ADS)

    Gehrels, Neil

    2006-04-01

    Gamma-ray bursts are among the most fascinating occurrences in the cosmos. They are thought to be the birth cries of black holes throughout the universe. The NASA Swift mission is an innovative new multiwavelength observatory designed to determine the origin of bursts and use them to probe the early Universe. Swift is now in orbit since November 20, 2004 and all hardware is performing well. A new-technology wide-field gamma-ray camera is detecting a hundred bursts per year. Sensitive narrow-field X-ray and UV/optical telescopes, built in collaboration with UK and Italian partners, are pointed at the burst location in 50-100 sec by an autonomously controlled ``swift'' spacecraft. For each burst, arcsec positions are determined and optical/UV/X-ray/gamma-ray spectrophotometry performed. Information is also rapidly sent to the ground to a team of more than 50 observers at telescopes around the world. The first year of findings from the mission will be presented. There has been a break-through in the long-standing mystery of short GRBs; they appear to be caused by merging neutron stars. High redshift bursts have been detected leading to a better understanding of star formation rates and distant galaxy environments. GRBs have been found with giant X-ray flares occurring in their afterglow.

  20. Gamma Ray Burst Discoveries by the Swift Mission

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil

    2006-01-01

    Gamma-ray bursts are among the most fascinating occurrences in the cosmos. They are thought to be the birth cries of black holes throughout the universe. The NASA Swift mission is an innovative new multiwavelength observatory designed to determine the origin of bursts and use them to probe the early Universe. Swift is now in orbit after a beautiful launch on November 20, 2004. A new-technology wide-field gamma-ray camera detects more than a hundred bursts per year. Sensitive narrow-field X-ray and UV/optical telescopes, built in collaboration with UK and Italian partners, are pointed at the burst location in 20 to 70 sec by an autonomously controlled "swift" spacecraft. For each burst, arcsec positions are determined and optical/UV/X-ray/gamma-ray spectrophotometry performed. Information is also rapidly sent to the ground to a team of more than 50 observers at telescopes around the world. The first year of findings from the mission will be presented. The long-standing mystery of short GRBs has been solved, and the answer is the most interesting possible scenario. High redshift bursts have been detected leading to a better understanding of star formation rates and distant galaxy environments. GRBs have been found with giant X-ray flares occurring in their afterglow. These, and other topics, will be discussed.

  1. A perfect night-time launch of Space Shuttle Discovery on mission STS-92

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Space Shuttle Discovery rises above the lighting mast on the Fixed Service Structure as it hurtles into the night sky on mission STS-92. Discovery launched on time at 7:17 p.m. EDT. Discovery carries a crew of seven on a construction flight to the International Space Station. Discovery also carries a payload that includes the Integrated Truss Structure Z-1, first of 10 trusses that will form the backbone of the Space Station, and the third Pressurized Mating Adapter that will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. Discovery's landing is expected Oct. 22 at 2:10 p.m. EDT. [Photo taken with Nikon D1 camera.

  2. Gamma Ray Burst Discoveries with the Swift Mission

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil; Tueller, Jack

    2007-01-01

    There is a great synergy between the Swift and INTEGRAL missions. Swift provides wide-field hard x-ray monitoring and sensitive x-ray and UV/optical observations. INTEGRAL provides optical through gamma-ray coverage with emphasis on hard xray imaging and gamma-ray spectroscopy. For hard x-ray survey studies, the BAT and IBIS instruments are complementary with BAT covering the full sky every day and IBIS scanning the galactic plane. For GRBs, Swift follows up bursts detected by INTEGRAL. X-ray and optical observations give arcsecond positions and afterglow lightcurves. For IGR sources, X-ray observations identify counterparts. The joint BAT and IBIS survey data are giving the most complete picture of the hard x-ray sky ever obtained. This talk will review Swift capabilities and discuss joint observations that are taking place and planned

  3. The Geospace Dynamics Observatory; a Mission of Discovery for Geospace

    NASA Technical Reports Server (NTRS)

    Spann, James; Paxton, Larry; Burch, James; Reardon, Patrick; Krause, Linda; Gallagher, Dennis; Hopkins, Randall

    2013-01-01

    A few examples of potential advances include: 1. Unparalleled advances in the connection of the upper atmosphere to the Sun. In the aurora and lower latitudes, extending the duration of uninterrupted images would advance understanding of the transfer of energy from the Sun to the upper atmosphere and the response of the space environment. 2. Advances in the influence of waves and tides on the upper atmosphere. Increasing both the signal to noise and the duration ofthe observations would reveal contributions that are not identifiable using other approaches. 3. The ability to probe the mechanisms that control the evolution of planetary atmospheres. The vantage point provided by this mission allows the flux of hydrogen (which is tied to the escape of water from a planet) to be mapped globally. It also allows unique observations of changes in the atmospheric structure and their causes.

  4. Gamma Ray Burst Discoveries with the Swift Mission

    NASA Technical Reports Server (NTRS)

    Marshall, F. E.

    2006-01-01

    Gamma Ray Bursts are the largest explosions in the Universe, and the recently launched Swift mission is a multi-wavelength observatory that has greatly expanded our ability to study them. Swift's wide-field gamma-ray camera is detecting about 100 bursts per year that are quickly viewed with sensitive X-ray and UV/optical telescopes on the observatory. Positions are rapidly released to the world to enable ground-based observations. Results from the first year of observations will be presented. The mystery of short GRBs has been solved, very high redshift bursts discovered, and enormous X-ray flares found in afterglows. These and other results will be discussed.

  5. Mission to the Solar System: Exploration and Discovery. A Mission and Technology Roadmap

    NASA Technical Reports Server (NTRS)

    Gulkis, S. (Editor); Stetson, D. S. (Editor); Stofan, E. R. (Editor)

    1998-01-01

    Solar System exploration addresses some of humanity's most fundamental questions: How and when did life form on Earth? Does life exist elsewhere in the Solar System or in the Universe? - How did the Solar System form and evolve in time? - What can the other planets teach us about the Earth? This document describes a Mission and Technology Roadmap for addressing these and other fundamental Solar System Questions. A Roadmap Development Team of scientists, engineers, educators, and technologists worked to define the next evolutionary steps in in situ exploration, sample return, and completion of the overall Solar System survey. Guidelines were to "develop aa visionary, but affordable, mission and technology development Roadmap for the exploration of the Solar System in the 2000 to 2012 timeframe." The Roadmap provides a catalog of potential flight missions. (Supporting research and technology, ground-based observations, and laboratory research, which are no less important than flight missions, are not included in this Roadmap.)

  6. Behind the Scenes of the Discovery Channel's Rosetta Mission Documentary Special

    NASA Astrophysics Data System (ADS)

    Ayres, S.

    2016-03-01

    On the evening of 12 November 2014, the Discovery Channel documentary Landing on a Comet: Rosetta Mission was broadcast around the world. This was the culmination of months of preparation and behind-the-scenes lming. Shelley Ayres, the producer, director and writer of the one-hour special recounts how this came about and re ects on her experience.

  7. Discovery Venera surface: Atmosphere geochemistry experiments mission concept

    NASA Technical Reports Server (NTRS)

    Surkov, Yuri A.; Head, James W.; Kremnev, Roald; Nock, K. T.

    1993-01-01

    The phenomenal increase in our understanding of Venus provided by the Magellan Mission has raised a series of focused, fundamental scientific questions about the geochemistry of the surface of Venus, the nature of the lower atmosphere, and the relationship of the lower atmosphere and surface. First, surface geochemical measurements from the Venera/Vega spacecraft showed that widely spaced regions of the venusian plains are made of basalts; thus basalts are significant and may be the only component of the venusian crust. But we lack information on the composition of several key elements of Venus geology: (1) Tessera terrain (which may be outcrops of continental-like non-basaltic crustal material) and steep-sided domes/festoons are promising candidates for non-basaltic geochemically evolved material. The composition of the lower part of the Venusian crust is unknown: however, ejecta from large venusian craters provides us with the possibility of sampling this material on the surface; (2) bulk chemistry (structure and dynamics) of the venusian atmosphere are known. The altitude profiles of water vapor content and minor admixtures relevant to redox conditions in the lower atmosphere (less than 20 km altitude) remain uncertain. Lack of that knowledge means that we do not understand the fine chemical structure of the main mass of the Venusian atmosphere; and (3) thermodynamic models predict that igneous materials on the surface of Venus should react with gases of the venusian atmosphere. But because the water vapor content and redox conditions in the lower atmosphere are not well known, we do not understand the nature of venusian weathering: oxidation, sulfatization, carbonatization, and hydration. The answers to these questions are critical to the understanding of Venus, the most Earth-like of the terrestrial planets.

  8. Space Shuttle Discovery leaves the VAB for Launch Pad 39B and mission STS-60

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Leaving the Vehicle Asembly Building for Launch Pad 39A on a crisp, clear winter day, the Space Shuttle Discovery makes the final Earth-bound leg of a journey into space. Once at the pad, two of the payloads for Discovery's upcoming flight, mission STS- 60, will be installed. The Wake Shield Facility-1 and Get Away Special bridge assembly will be joining SPACEHAB-2 in the orbiter's payload bay. Liftoff of the first Space Shuttle flight of 1994 is currently targeted for around Feb. 3.{end}

  9. Titan Mare Explorer (TiME) : A Discovery Mission to Titan's Hydrocarbon Seas

    NASA Astrophysics Data System (ADS)

    Lorenz, Ralph D.; Stofan, Ellen; T. H. E. Time Team

    2010-05-01

    The discovery of lakes in Titan's high latitudes confirmed the expectation that liquid hydrocarbons exist on the surface of the haze-shrouded moon. The lakes fill through drainage of subsurface runoff and/or intersection with the subsurface alkanofer, providing the first evidence for an active condensable-liquid hydrological cycle on another planetary body. The unique nature of Titan's methane cycle, along with the prebiotic chemistry and implications for habitability of Titan's lakes, make the lakes of the highest scientific priority for in situ investigation. The Titan Mare Explorer mission is an ASRG (Advanced Stirling Radioisotope Generator)-powered mission to a lake on Titan. The mission would be the first exploration of a planetary sea beyond Earth, would demonstrate the ASRG both in deep space and a non-terrestrial atmosphere environment, and pioneer low-cost outer planet missions. The scientific objectives of the mission are to: determine the chemistry of a Titan lake to constrain Titan's methane cycle; determine the depth of a Titan lake; characterize physical properties of liquids; determine how the local meteorology over the lakes ties to the global cycling of methane; and analyze the morphology of lake surfaces, and if possible, shorelines, in order to constrain the kinetics of liquids and better understand the origin and evolution of Titan lakes. The focused scientific goals, combined with the new ASRG technology and the unique mission design, allows for a new class of mission at much lower cost than previous outer planet exploration has required.

  10. Earth observations during Space Shuttle Mission STS-42 - Discovery's mission to planet earth

    NASA Technical Reports Server (NTRS)

    Lulla, Kamlesh P.; Helfert, Michael; Amsbury, David; Pitts, David; Jaklitch, Pat; Wilkinson, Justin; Evans, Cynthia; Ackleson, Steve; Helms, David; Chambers, Mark

    1993-01-01

    The noteworthy imagery acquired during Space Shuttle Mission STS-42 is documented. Attention is given to frozen Tibetan lakes, Merapi Volcano in Java, Mt. Pinatubo in the Philippines, the coastline east of Tokyo Japan, land use in southern India, and the Indus River Delta. Observations of Kamchatka Peninsula, Lake Baikal, Moscow, Katmai National Park and Mt. Augustine, Alaska, the Alaskan coast by the Bering Sea, snow-covered New York, the Rhone River valley, the Strait of Gibraltar, and Mt. Ararat, Turkey, are also reported.

  11. A perfect night-time launch of Space Shuttle Discovery on mission STS-92

    NASA Technical Reports Server (NTRS)

    2000-01-01

    In a perfect on-time launch at 7:17 p.m. EDT, Space Shuttle Discovery leaps free of Earth as its solid rocket boosters hurl it into the night sky. The launch of mission STS-92 carries a crew of seven on a construction flight to the International Space Station. Discovery also carries a payload that includes the Integrated Truss Structure Z-1, first of 10 trusses that will form the backbone of the Space Station, and the third Pressurized Mating Adapter that will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. Discovery's landing is expected Oct. 22 at 2:10 p.m. EDT.

  12. A perfect night-time launch of Space Shuttle Discovery on mission STS-92

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Space Shuttle Discovery hurtles into the night sky, trailing a tail of fire from the solid rocket boosters, after a perfect on- time launch at 7:17 p.m. EDT. The launch of mission STS-92 carries a crew of seven on a construction flight to the International Space Station. Discovery also carries a payload that includes the Integrated Truss Structure Z-1, first of 10 trusses that will form the backbone of the Space Station, and the third Pressurized Mating Adapter that will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. Discovery's landing is expected Oct. 22 at 2:10 p.m. EDT. [Photo taken with Nikon D1 camera.

  13. A perfect night-time launch of Space Shuttle Discovery on mission STS-92

    NASA Technical Reports Server (NTRS)

    2000-01-01

    In a perfect on-time launch at 7:17 p.m. EDT, Space Shuttle Discovery trails a blaze of flame amid clouds of smoke and steam as it leaps into the night sky. The launch of mission STS-92 carries a crew of seven on a construction flight to the International Space Station. Discovery also carries a payload that includes the Integrated Truss Structure Z-1, first of 10 trusses that will form the backbone of the Space Station, and the third Pressurized Mating Adapter that will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. Discovery's landing is expected Oct. 22 at 2:10 p.m. EDT.

  14. A Discovery-Class Lunette Mission Concept for a Lunar Geophysical Network

    NASA Technical Reports Server (NTRS)

    Elliott, John; Alkalai, Leon

    2010-01-01

    The Lunette mission concept for a network of small, inexpensive lunar landers has evolved over the last three years as the focus of space exploration activities in the US has changed. Originating in a concept for multiple landers launched as a secondary payload capable of regional science and site survey activities, Lunette has recently been developed into a Discovery-class mission concept that offers global lunar coverage enabling network science on a much broader scale. A particular mission concept has been refined by the Lunette team that would result in a low-cost global lunar geophysical network, comprised of two landers widely spaced on the near side of the moon. Each of the two identical landers would carry a suite of instruments that would make continuous measurements of seismic activity, heat flow, and the electromagnetic environment during the full lunar day/night cycle. Each lander would also deploy a next-generation laser retroreflector capable of improving on distance measurement accuracy by an order of magnitude over those emplaced by the previous Apollo and Lunokhod missions. This paper presents a comprehensive overview of the Lunette geophysical network mission concept, including mission and flight system design, as well as the key requirements and constraints that guided them.

  15. MUADEE: Mars Upper Atmosphere Dynamics, Energetics, and Evolution discovery mission. Executive summary volume

    NASA Technical Reports Server (NTRS)

    Killeen, Timothy L.

    1994-01-01

    This document is the final report of the MAUDEE (Mars Upper Atmosphere Dynamics, Energetics, and Evolution) consortium. It describes a low cost Discovery mission to investigate the upper atmosphere of Mars and to understand the manner in which Mars has evolved over geologic time. In keeping with the innovative philosophy permeating the Discovery Program and in order to minimize the burden of reading an extensive prose exposition, a new presentation format has been adopted. The format involves a series of view graphs with facing text. The view graphs form the basis of a complete oral presentation of the MAUDEE mission and the facing text provides more detailed, but still brief, explanatory descriptions. Readers can scan the view graphs and/or read the facing text at their discretion. The oral presentation of this study was given to code SL personnel at NASA Headquarters on February 23, 1994. MAUDEE is an essential component of the Mars Exploration Program. It provides the information required to understand the evolution of the planet via the escape of volatiles. It provides the key measurements needed to understand the upper atmosphere of the last of the three terrestrial planets to be so studied. It connects and supplements investigations based on other Mars missions: Mars Surveyor, Planet-B and Mars-96. The MAUDEE mission plan involves a combination of remote and in-situ sensors, housed in three instrument packages. The sensors make measurements of the atmospheric regions between 60-200 km. These instruments are based on extensive heritage from Earth explorers and Pioneer Venus. The mission scenario has several phases and employs aerobraking maneuvers to lower initial apoapsis, thereby reducing fuel requirements. The spacecraft has body-mounted solar cells, enabling deep diving into the Martian atmosphere. The orbital inclination allows for pole-to-pole latitudinal sweeps in an initial elliptical phase, followed by a circular phase affording detailed diurnal

  16. Titan Mare Explorer (TiME): A Discovery Mission to Titan’s Hydrocarbon Lakes

    NASA Astrophysics Data System (ADS)

    Lorenz, R. D.; Stofan, E. R.; Lunine, J. I.; Kirk, R. L.; Mahaffy, P. R.; Bierhaus, B.; Aharonson, O.; Clark, B. C.; Kantsiper, B.; Ravine, M. A.; Waite, J. H.; Harri, A.; Griffith, C. A.; Trainer, M. G.

    2009-12-01

    The discovery of lakes in Titan’s high latitudes confirmed the expectation that liquid hydrocarbons exist on the surface of the haze-shrouded moon. The lakes fill through drainage of subsurface runoff and/or intersection with the subsurface alkanofer, providing the first evidence for an active condensable-liquid hydrological cycle on another planetary body. The unique nature of Titan’s methane cycle, along with the prebiotic chemistry and implications for habitability of Titan’s lakes, make the lakes of the highest scientific priority for in situ investigation. The Titan Mare Explorer mission is an ASRG (Advanced Stirling Radioisotope Generator)-powered mission to a lake on Titan. The mission would be the first exploration of a planetary sea beyond Earth, would demonstrate the ASRG both in deep space and a non-terrestrial atmosphere environment, and pioneer low-cost outer planet missions. The scientific objectives of the mission are to: determine the chemistry of a Titan lake to constrain Titan’s methane cycle; determine the depth of a Titan lake; characterize physical properties of liquids; determine how the local meteorology over the lakes ties to the global cycling of methane; and analyze the morphology of lake surfaces, and if possible, shorelines, in order to constrain the kinetics of liquids and better understand the origin and evolution of Titan lakes. The focused scientific goals, combined with the new ASRG technology and the unique mission design, allows for a new class of mission at much lower cost than previous outer planet exploration has required.

  17. Titan Mare Explorer (time): A Discovery Mission To A Titan Sea

    NASA Astrophysics Data System (ADS)

    Stofan, Ellen R.; Lunine, J.; Lorenz, R.; Aharonson, O.; Bierhaus, E.; Clark, B.; Kirk, R.; Kantsiper, B.; Morse, B.

    2009-09-01

    The discovery of lakes and seas in Titan's high latitudes confirmed the expectation that liquid hydrocarbons exist on the surface of the haze-shrouded moon. The lakes and seas fill through drainage of subsurface runoff and/or intersection with the subsurface alkanofer, providing the first evidence for an active condensable-liquid hydrological cycle on another planetary body. The unique nature of Titan's methane cycle, along with the prebiotic chemistry and implications for habitability, make the lakes and seas of the highest scientific priority for in situ investigation. The Titan Mare Explorer mission is an ASRG (Advanced Stirling Radioisotope Generator)-powered mission to a sea on Titan. The mission would be the first exploration of a planetary sea beyond Earth, would demonstrate the ASRG both in deep space and a non-terrestrial atmosphere environment, and pioneer low-cost outer planet missions. The scientific objectives of the mission are to: determine the chemistry of a Titan sea to constrain Titan's methane cycle; determine the depth of a Titan sea; characterize physical properties of liquids; determine how the local meteorology over the seas ties to the global cycling of methane; and analyze the morphology of sea surfaces, and if possible, shorelines, in order to constrain the kinetics of liquids and better understand the origin and evolution of Titan lakes and seas. The focused scientific goals, combined with the new ASRG technology and the unique mission design, allows for a new class of mission at much lower cost than previous outer planet exploration has required.

  18. Lunar polar ice deposits: scientific and utilization objectives of the Lunar Ice Discovery Mission proposal.

    PubMed

    Duke, Michael B

    2002-03-01

    The Clementine mission has revived interest in the possibility that ice exists in shadowed craters near the lunar poles. Theoretically, the problem is complex, with several possible sources of water (meteoroid, asteroid, comet impact), several possible loss mechanisms (impact vaporization, sputtering, photoionization), and burial by meteorite impact. Opinions of modelers have ranged from no ice to several times 10(16) g of ice in the cold traps. Clementine bistatic radar data have been interpreted in favor of the presence of ice, while Arecibo radar data do not confirm its presence. The Lunar Prospector mission, planned to be flown in the fall of 1997, could gather new evidence for the existence of ice. If ice is present, both scientific and utilitarian objectives would be addressed by a lunar polar rover, such as that proposed to the NASA Discovery program, but not selected. The lunar polar rover remains the best way to understand the distribution and characteristics of lunar polar ice. PMID:11902177

  19. Systems Engineering Using Heritage Spacecraft Technology: Lessons Learned from Discovery and New Frontiers Deep Space Missions

    NASA Technical Reports Server (NTRS)

    Barley, Bryan; Newhouse, Marilyn; Clardy, Dennon

    2011-01-01

    In the design and development of complex spacecraft missions, project teams frequently assume the use of advanced technology or heritage systems to enable a mission or reduce the overall mission risk and cost. As projects proceed through the development life cycle, increasingly detailed knowledge of the advanced or heritage systems and the system environment identifies unanticipated issues that result in cost overruns or schedule impacts. The Discovery & New Frontiers (D&NF) Program Office recently studied cost overruns and schedule delays resulting from advanced technology or heritage assumptions for 6 D&NF missions. The goal was to identify the underlying causes for the overruns and delays, and to develop practical mitigations to assist the D&NF projects in identifying potential risks and controlling the associated impacts to proposed mission costs and schedules. The study found that the cost and schedule growth did not result from technical hurdles requiring significant technology development. Instead, systems engineering processes did not identify critical issues early enough in the design cycle to ensure project schedules and estimated costs address the inherent risks. In general, the overruns were traceable to: inadequate understanding of the heritage system s behavior within the proposed spacecraft design and mission environment; an insufficient level of experience with the heritage system; or an inadequate scoping of the system-wide impacts necessary to implement the heritage or advanced technology. This presentation summarizes the study s findings and offers suggestions for improving the project s ability to identify and manage the risks inherent in the technology and heritage design solution.

  20. PADME (Phobos And Deimos & Mars Environment): A Proposed NASA Discovery Mission

    NASA Astrophysics Data System (ADS)

    Lee, Pascal

    2014-11-01

    Ever the since their discovery in 1877 by American astronomer Asaph Hall, the two moons of Mars, Phobos and Deimos, have been enigmas. Spacecraft missions have revealed irregular-shaped small bodies with different densities, morphologies, and evolutionary histories. Spectral data suggest that they might be akin to D-type asteroids, although compositional interpretations of the spectra are ambiguous. The origin of Phobos and Deimos remains unknown. There are three prevailing hypotheses for their origin: 1) They are captured asteroids, possibly primitive D-type bodies from the outer main belt or beyond; 2) They are reaccreted impact ejecta from Mars; 3) They are remnants of Mars’s formation. Each one of these hypotheses has radically different and important implications regarding the evolution of the solar system, and/or the formation and evolution of planets and satellites, including the delivery of water and organics to the inner solar system. The Phobos And Deimos & Mars Environment (PADME) mission is a proposed NASA Discovery mission that will test these hypotheses, by investigating simultaneously the internal structure of Phobos and Deimos, and the composition and dynamics of their surface and near-surface materials. PADME would launch in 2020 and reach Mars orbit in early 2021. PADME would then begin a series of slow and increasingly close flybys of Phobos first, then of Deimos. PADME would use the proven LADEE spacecraft and mature instrument systems to enable a low-cost and low risk approach to carrying out its investigation. In addition to achieving its scientific objectives, PADME would fill strategic knowledge gaps identified by NASA’s SBAG and HEOMD for planning future, more ambitious robotic landed or sample return missions to Phobos and/or Deimos, and eventual human missions to Mars Orbit. PADME would be built, managed, and operated by NASA Ames Research Center. Partners include the SETI Institute, NASA JPL, NASA GSFC, NASA JSC, NASA KSC, LASP

  1. Impurity characterization of solar wind collectors for the genesis discovery mission by resonance ionization mass spectrometry.

    SciTech Connect

    Calaway, W. F.

    1999-02-01

    NASA's Genesis Discovery Mission is designed to collect solar matter and return it to earth for analysis. The mission consists of launching a spacecraft that carries high purity collector materials, inserting the spacecraft into a halo orbit about the L1 sun-earth libration point, exposing the collectors to the solar wind for two years, and then returning the collectors to earth. The collectors will then be made available for analysis by various methods to determine the elemental and isotopic abundance of the solar wind. In preparation for this mission, potential collector materials are being characterized to determine baseline impurity levels and to assess detection limits for various analysis techniques. As part of the effort, potential solar wind collector materials have been analyzed using resonance ionization mass spectrometry (RIMS). RIMS is a particularly sensitivity variation of secondary neutral mass spectrometry that employs resonantly enhanced multiphoton ionization (REMPI) to selectively postionize an element of interest, and thus discriminates between low levels of that element and the bulk material. The high sensitivity and selectivity of RIMS allow detection of very low concentrations while consuming only small amounts of sample. Thus, RIMS is well suited for detection of many heavy elements in the solar wind, since metals heavier than Fe are expected to range in concentrations from 1 ppm to 0.2 ppt. In addition, RIMS will be able to determine concentration profiles as a function of depth for these implanted solar wind elements effectively separating them from terrestrial contaminants. RIMS analyses to determine Ti concentrations in Si and Ge samples have been measured. Results indicate that the detection limit for RIMS analysis of Ti is below 100 ppt for 10{sup 6} averages. Background analyses of the mass spectra indicate that detection limits for heavier elements will be similar. Furthermore, detection limits near 1 ppt are possible with higher

  2. Applicability of STEM-RTG and High-Power SRG Power Systems to the Discovery and Scout Mission Capabilities Expansion (DSMCE) Study of ASRG-Based Missions

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony J.; Cataldo, Robert L.

    2015-01-01

    This study looks at the applicability of utilizing the Segmented Thermoelectric Modular Radioisotope Thermoelectric Generator (STEM-RTG) or a high-power radioisotope generator to replace the Advanced Stirling Radioisotope Generator (ASRG), which had been identified as the baseline power system for a number of planetary exploration mission studies. Nine different Discovery-Class missions were examined to determine the applicability of either the STEM-RTG or the high-power SRG power systems in replacing the ASRG. The nine missions covered exploration across the solar system and included orbiting spacecraft, landers and rovers. Based on the evaluation a ranking of the applicability of each alternate power system to the proposed missions was made.

  3. A Discovery Mission to Determine the Interior Structure of Gas- and Ice-Giants

    NASA Astrophysics Data System (ADS)

    Hofstadter, Mark D.; Murphy, N.; Matousek, S.; Bairstow, S.; Maiwald, F.; Jeffries, S.; Schmider, F.; Guillot, T.

    2013-10-01

    The Ice Giants (Uranus and Neptune) are fundamentally different than the better-known Gas Giants (Jupiter and Saturn). Ice Giants are roughly 65% water by mass, compared to Gas Giants which are ~95% hydrogen and helium. Knowing the interior structure of both types of planets is a key measurement needed to advance our understanding of the formation and evolution of planetary systems, particularly in light of recent findings that Ice Giants are far more abundant in our galaxy than Gas Giants (Borucki et al., ApJ 2011). In the past, gravity measurements from spacecraft in low orbits have been the primary way to tease out information on interior structure. A new approach, Doppler imaging, can provide detailed information on interior structure from great distances (Gaulme et al., A&A 2011). A planetary Doppler Imager (DI) builds on the well-established fields of helio- and stellar-seismology, which have revolutionized our understanding of the interior of stars. The great advantage of a DI is that its observations do not require the spacecraft to enter orbit. We have designed a Discovery mission around such an instrument to determine the interior structures of Jupiter and Uranus during flybys of each planet. The data collected at Jupiter (after a 1.5 year flight) will compliment observations to be made by the Juno spacecraft in 2016, creating a much more accurate picture of the interior than is possible from the gravity technique alone. Roughly 6.5 years after the Jupiter flyby, DI measurements of Uranus will open that planet's interior for the first time. At both planets, measurements of the interior structure are made over a 4-month period centered on closest approach (CA), but with a ~1 week gap at CA when the planet is too close for whole-disk imaging. This allows other measurements to be made at that time, such as of small-scale weather features or satellites. We note that the DI technique, while enabling a Discovery-class mission, can also benefit larger missions

  4. DISCOVERY OF A NOVA-LIKE CATACLYSMIC VARIABLE IN THE KEPLER MISSION FIELD

    SciTech Connect

    Williams, Kurtis A.; De Martino, Domitilla; Silvotti, Roberto; Bruni, Ivan; Dufour, Patrick; Riecken, Thomas S.; Kronberg, Martin; Mukadam, Anjum; Handler, G.

    2010-06-15

    We announce the identification of a new cataclysmic variable (CV) star in the field of the Kepler Mission, KIC J192410.81+445934.9. This system was identified during a search for compact pulsators in the Kepler field. High-speed photometry reveals coherent large-amplitude variability with a period of 2.94 hr. Rapid, large-amplitude quasi-periodic variations are also detected on time scales of {approx}1200 s and {approx}650 s. Time-resolved spectroscopy covering one half photometric period shows shallow, broad Balmer and He I absorption lines with bright emission cores as well as strong He II and Bowen blend emission. Radial velocity variations are also observed in the Balmer and He I emission lines that are consistent with the photometric period. We therefore conclude that KIC J192410.81+445934.9 is a nova-like (NL) variable of the UX UMa class in or near the period gap, and it may belong to the rapidly growing subclass of SW Sex systems. Based on Two Micron All Sky Survey photometry and companion star models, we place a lower limit on the distance to the system of {approx}500 pc. Due to limitations of our discovery data, additional observations including spectroscopy and polarimetry are needed to confirm the nature of this object. Such data will enable further understanding of the behavior of NL variables in the critical period range of 3-4 hr, where standard CV evolutionary theory finds major problems. The presence of this system in the Kepler Mission field of view also presents a unique opportunity to obtain a continuous photometric data stream of unparalleled length and precision on a CV system.

  5. Seismology on a small body: expected results for the BASiX Discovery Mission proposal

    NASA Astrophysics Data System (ADS)

    Robert, O.; Lognonne, P.; Scheeres, D. J.; Goujon, N.; Le Feuvre, M.; Izzet, A.; Blitz, C.; Bowman, L.

    2010-12-01

    Small bodies like asteroids and comets are affected by the seismic waves generated by impacts, as the maximum acceleration of these waves exceed their local gravity. This seismic shaking is not understood however, as no space mission to date has deployed seismometers on a small body and as their detailed internal structure and seismic properties is not well know. The BASiX Discovery Mission proposal, if selected by NASA, will be the first to seismically explore a small body. It is targeted to binary asteroid 65803 Didymos whose primary is slightly less than 800 m in diameter. It will deploy several surface modules: the first will be Explosive BPods, each with about 5 kg of explosive and the second will be seismic GPods, equipped with 3 axis geophones and a UHF system for data transmission. We present the expected amplitudes of seismic waves generated by the BPod explosion. The simulations use 20 Hz Spectral Element, taking into account the 3D shape of the asteroid and very low regolith layers in its subsurface. Normal mode summation at higher frequencies are used too. These simulations show that the internal structure can be retrieved by using cross-correlation from seismograms of 2 GPods recording both the signal generated by the explosion of one BPod. We then estimate the amplitude of seismic waves generated by natural impacts, by performing simulation of these impacts over a full Sun orbit of Dydimos and show the variability of this source of seismic energy as a function of the distance to the Sun. We finally speculate on the amplitude of possible thermal quakes, comparable to those detected by the Apollo seismometer close to Sun set/rise on the Moon. The two technical challenges are to design sensitive and light sensors and to deploy the latter in a way allowing pertinent seismic measurements of the surface vibrations. Instead of a design based on seismic coupling by harpoon or spike (which are difficult given the unknown strength properties of asteroid

  6. Phenolic Impregnated Carbon Ablators (PICA) as Thermal Protection Systems for Discovery Missions

    NASA Technical Reports Server (NTRS)

    Tran, Huy K.; Johnson, Christine E.; Rasky, Daniel J.; Hui, Frank C. L.; Hsu, Ming-Ta; Chen, Timothy; Chen, Y. K.; Paragas, Daniel; Kobayashi, Loreen

    1997-01-01

    This paper presents the development of the light weight Phenolic Impregnated Carbon Ablators (PICA) and its thermal performance in a simulated heating environment for planetary entry vehicles. The PICA material was developed as a member of the Light Weight Ceramic Ablators (LCA's), and the manufacturing process of this material has since been significantly improved. The density of PICA material ranges from 14 to 20 lbm/ft(exp 3), having uniform resin distribution with and without a densified top surface. The thermal performance of PICA was evaluated in the Ames arc-jet facility at cold wall heat fluxes from 375 to 2,960 BtU/ft(exp 2)-s and surface pressures of 0.1 to 0.43 atm. Heat loads used in these tests varied from 5,500 to 29,600 BtU/ft(exp 2) and are representative of the entry conditions of the proposed Discovery Class Missions. Surface and in-depth temperatures were measured using optical pyrometers and thermocouples. Surface recession was also measured by using a template and a height gage. The ablation characteristics and efficiency of PICA are quantified by using the effective heat of ablation, and the thermal penetration response is evaluated from the thermal soak data. In addition, a comparison of thermal performance of standard and surface densified PICA is also discussed.

  7. Low Altitude Mapping Orbit Design and Maintenance for the Dawn Discovery Mission at Vesta

    NASA Technical Reports Server (NTRS)

    Whiffen, Gregory J.

    2011-01-01

    NASA's Dawn discovery mission will orbit the giant asteroid Vesta beginning in the summer of 2011. Four different near polar science orbits are planned. The lowest planned orbit at Vesta is called the Low Altitude Mapping Orbit or LAMO and is by far the most challenging to design and maintain due to the strong, nonspherical gravity expected there. This paper describes the orbit selection process. The true gravity field of Vesta remains highly uncertain. The proposed orbit selection process will be applied once sufficient gravity knowledge is obtained at higher orbits. The orbit selection process is applied here to a fictitious gravity field based on a Hubble space telescope shape model for Vesta assuming uniform density. The outcome of the process described here is a variety of stable orbits. However, Initially stable orbits at the LAMO altitude are not expected to remain stable operationally due to the unpredictable impulses resulting from the Dawn spacecraft thruster firings to de-saturate its momentum wheels. As a result, orbital maintenance maneuvers will be probably be necessary. This paper also briefly describes the statistical maneuver design process that resulted in the orbit maintenance plan.

  8. LUNETTE - A Discovery Class Mission to the Moon to Establish a Geophysical Network

    NASA Astrophysics Data System (ADS)

    Neal, C. R.; Banerdt, W. B.; Alkalai, L.

    2009-12-01

    Lunette is a Discovery mission concept that is designed to deliver three landed geophysical packages (“nodes”) to widely spaced (3000-5000 km) locations on the lunar surface. This mission will provide detailed information on the interior of the Moon through seismic, thermal, electromagnetic, and precision laser ranging measurements, and will substantially address the lunar interior science objectives set out in “The Scientific Context for the Exploration of the Moon” (NRC, 2008) and ”The Final Report for the International Lunar Network Anchor Nodes Science Definition Team” (NASA, 2009). Each node will contain: a very broad band seismometer that is at least an order of magnitude more sensitive over a wider frequency band than the seismometers used during Apollo; a heat flow probe, delivered via a self-penetrating “mole” device; a low-frequency electromagnetic sounding instrument, which will measure the electromagnetic properties of the outermost few hundred km of the Moon; and a corner-cube laser retroreflector for lunar laser ranging. These instruments will provide an enormous advance in our knowledge of the structure and processes of the lunar interior over that provided by Apollo-era data, allowing insights into the earliest history of the formation and evolution of the Moon. The instruments that comprise the individual nodes are all optimized for low power operation and this mission will not rely on a radioisotope power supply. Improvements in solar energy and battery technology, along with an Event Timer Module which allows the lander to shut down its electronics for most of the lunar night, enables a solar/battery mission architecture with continuous instrument operation and a two-year nominal lifetime. The instruments have a combined mass of <12 kg, and the dry mass of each lander will be on the order of 100 kg, including solar panels, batteries, and communications. The most power hungry instrument is the heat flow “mole”, which requires

  9. Pandora - Discovering the origin of the moons of Mars (a proposed Discovery mission)

    NASA Astrophysics Data System (ADS)

    Raymond, C. A.; Diniega, S.; Prettyman, T. H.

    2015-12-01

    After decades of intensive exploration of Mars, fundamental questions about the origin and evolution of the martian moons, Phobos and Deimos, remain unanswered. Their spectral characteristics are similar to C- or D-class asteroids, suggesting that they may have originated in the asteroid belt or outer solar system. Perhaps these ancient objects were captured separately, or maybe they are the fragments of a captured asteroid disrupted by impact. Various lines of evidence hint at other possibilities: one alternative is co-formation with Mars, in which case the moons contain primitive martian materials. Another is that they are re-accreted ejecta from a giant impact and contain material from the early martian crust. The Pandora mission, proposed in response to the 2014 NASA Discovery Announcement of Opportunity, will acquire new information needed to determine the provenance of the moons of Mars. Pandora will travel to and successively orbit Phobos and Deimos to map their chemical and mineral composition and further refine their shape and gravity. Geochemical data, acquired by nuclear- and infrared-spectroscopy, can distinguish between key origin hypotheses. High resolution imaging data will enable detailed geologic mapping and crater counting to determine the timing of major events and stratigraphy. Data acquired will be used to determine the nature of and relationship between "red" and "blue" units on Phobos, and determine how Phobos and Deimos are related. After identifying material representative of each moons' bulk composition, analysis of the mineralogical and elemental composition of this material will allow discrimination between the formation hypotheses for each moon. The information acquired by Pandora can then be compared with similar data sets for other solar system bodies and from meteorite studies. Understanding the formation of the martian moons within this larger context will yield a better understanding of processes acting in the early solar system

  10. Students Engaging the Public in Exciting Discoveries by NASA's MESSENGER Mission

    NASA Astrophysics Data System (ADS)

    Hallau, K. G.; Morison, J.; Schuele, H.

    2012-12-01

    In March 2011, NASA's MESSENGER spacecraft entered into orbit around Mercury, the closest planet to the Sun. As the first mission to orbit and study Mercury in depth, MESSENGER sought to answer six primary scientific questions: why is Mercury so dense; what is the geologic history of Mercury; what is the nature of Mercury's magnetic field; what is the structure of Mercury's core; what are the unusual materials at Mercury's poles; and what volatiles are important at Mercury? In the first year of orbit, MESSENGER answered all of these questions, and also made several surprising discoveries. Student interns working with the MESSENGER Education and Public Outreach (EPO) team are using MESSENGER Mosaic Postcards (MPC) in both print and digital formats to present this new information to a broad audience. These MPCs, in conjunction with the rest of the MESSENGER EPO tools, present a unified and global resource for the public. By creating this resource in a variety of media, from printable cards to interactive features on the EPO website (http://www.messenger-education.org/), the EPO team can reach a larger audience, further the goal of the MPC project to share newly discovered features and phenomena with the general public, and thereby generate increased interest in and excitement about science and planetary exploration. One side of each MPC shows a MESSENGER image of a portion of Mercury's surface, and together the postcards can be arranged to form a complete image of the planet. On the reverse side of some cards is information pertaining to an item of interest in view on the image-side. One of us (physics undergraduate JEM) researches interesting features on the surface of Mercury and creates descriptions for the informational side of the postcards, and another (computer science undergraduate HCS) creates the digital versions of cards and associated resources for the Surface Interactive, an interactive tool on the MESSENGER EPO website. Postcards already in distribution

  11. Learning from the Mars Rover Mission: Scientific Discovery, Learning and Memory

    NASA Technical Reports Server (NTRS)

    Linde, Charlotte

    2005-01-01

    Purpose: Knowledge management for space exploration is part of a multi-generational effort. Each mission builds on knowledge from prior missions, and learning is the first step in knowledge production. This paper uses the Mars Exploration Rover mission as a site to explore this process. Approach: Observational study and analysis of the work of the MER science and engineering team during rover operations, to investigate how learning occurs, how it is recorded, and how these representations might be made available for subsequent missions. Findings: Learning occurred in many areas: planning science strategy, using instrumen?s within the constraints of the martian environment, the Deep Space Network, and the mission requirements; using software tools effectively; and running two teams on Mars time for three months. This learning is preserved in many ways. Primarily it resides in individual s memories. It is also encoded in stories, procedures, programming sequences, published reports, and lessons learned databases. Research implications: Shows the earliest stages of knowledge creation in a scientific mission, and demonstrates that knowledge management must begin with an understanding of knowledge creation. Practical implications: Shows that studying learning and knowledge creation suggests proactive ways to capture and use knowledge across multiple missions and generations. Value: This paper provides a unique analysis of the learning process of a scientific space mission, relevant for knowledge management researchers and designers, as well as demonstrating in detail how new learning occurs in a learning organization.

  12. Mission specification and control for unmanned aerial and ground vehicles for indoor target discovery and tracking

    NASA Astrophysics Data System (ADS)

    Ulam, Patrick D.; Kira, Zsolt; Arkin, Ronald C.; Collins, Thomas R.

    2010-04-01

    This paper describes ongoing research by Georgia Tech into the challenges of tasking and controlling heterogonous teams of unmanned vehicles in mixed indoor/outdoor reconnaissance scenarios. We outline the tools and techniques necessary for an operator to specify, execute, and monitor such missions. The mission specification framework used for the purposes of intelligence gathering during mission execution are first demonstrated in simulations involving a team of a single autonomous rotorcraft and three ground-based robotic platforms. Preliminary results including robotic hardware in the loop are also provided.

  13. Discovery

    ERIC Educational Resources Information Center

    de Mestre, Neville

    2010-01-01

    All common fractions can be written in decimal form. In this Discovery article, the author suggests that teachers ask their students to calculate the decimals by actually doing the divisions themselves, and later on they can use a calculator to check their answers. This article presents a lesson based on the research of Bolt (1982).

  14. Kepler Mission: a Discovery-Class Mission Designed to Determine the Frequency of Earth-Size and Larger Planets Around Solar-Like Stars

    NASA Technical Reports Server (NTRS)

    Borucki, William; Koch, David; Lissauer, Jack; Basri, Gibor; Caldwell, John; Cochran, William; Dunham, Edward W.; Gilliland, Ronald; Caldwell, Douglas; Kondo, Yoji; DeVincenzi, Donald (Technical Monitor)

    2002-01-01

    The first step in discovering the extent of life in our galaxy is to determine the number of terrestrial planets in the habitable zone (HZ). The Kepler Mission is designed around a 0.95 in aperture Schmidt-type telescope with an array of 42 CCDs designed to continuously monitor the brightness of 100,000 solar-like stars to detect the transits of Earth-size and larger planets. The photometer is scheduled to be launched into heliocentric orbit in 2007. Measurements of the depth and repetition time of transits provide the size of the planet relative to the star and its orbital period. When combined with ground-based spectroscopy of these stars to fix the stellar parameters, the true planet radius and orbit scale, hence the position relative to the HZ are determined. These spectra are also used to discover the relationships between the characteristics of planets and the stars they orbit. In particular, the association of planet size and occurrence frequency with stellar mass and metallicity will be investigated. At the end of the four year mission, hundreds of terrestrial planets should be discovered in and near the HZ of their stars if such planets are common. Extending the mission to six years doubles the expected number of Earth-size planets in the HZ. A null result would imply that terrestrial planets in the HZ occur in less than 1% of the stars and that life might be quite rare. Based on the results of the current Doppler-velocity discoveries, detection of a thousand giant planets is expected. Information on their albedos and densities of those giants showing transits will be obtained.

  15. Planetary Protection Provisions for the Mars 2020 Mission: Enabling Discovery by Constraining Contamination

    NASA Astrophysics Data System (ADS)

    Rummel, J. D.; Conley, C. A.

    2013-12-01

    The 2013-2022 NRC Decadal Survey named its #1 Flagship priority as a large, capable Mars rover that would be the first of a three-mission, multi-decadal effort to return samples from Mars. More recently, NASA's Mars Program has stated that a Mars rover mission known as 'Mars 2020' would be flown to Mars (in 2020) to accomplish a subset of the goals specified by the NRC, and the recent report of the Mars 2020 Science Definition Team (SDT) has recommended that the mission accomplish broad and rigorous in situ science, including seeking biosignatures, acquiring a diverse set of samples intended to address a range of Mars science questions and storing them in a cache for potential return to Earth at a later time, and other engineering goals to constrain costs and support future human exploration. In some ways Mars 2020 will share planetary protection requirements with the Mars Science Laboratory mission that landed in 2012, which included landing site constraints based on the presence of a perennial heat source (the MMRTG) aboard the lander/rover. In a very significant way, however, the presence of a sample-cache and the potential that Mars 2020 will be the first mission in the chain that will return a sample from Mars to Earth. Thus Mars 2020 will face more stringent requirements aimed at keeping the mission from returning Earth contamination with the samples from Mars. Mars 2020 will be looking for biosignatures of ancient life, on Mars, but will also need to be concerned with the potential to detect extant biosignatures or life itself within the sample that is eventually returned. If returned samples are able to unlock wide-ranging questions about the geology, surface processes, and habitability of Mars that cannot be answered by study of meteorites or current mission data, then either the returned samples must be free enough of Earth organisms to be releasable from a quarantine facility or the planned work of sample scientists, including high- and low

  16. Earth observations during Space Shuttle flight STS-41 - Discovery's mission to planet earth

    NASA Technical Reports Server (NTRS)

    Lulla, Kamlesh P.; Helfert, Michael R.; Amsbury, David L.; Whitehead, Victor S.; Richards, Richard N.; Cabana, Robert D.; Shepherd, William M.; Akers, Thomas D.; Melnick, Bruce E.

    1991-01-01

    An overview of space flight STS-41 is presented, including personal observations and comments by the mission astronauts. The crew deployed the Ulysses spacecraft to study the polar regions of the sun and the interplanetary space above the poles. Environmental observations, including those of Lake Turkana, Lake Chad, biomass burning in Madagascar and Argentina, and circular features in Yucatan are described. Observations that include landforms and geology, continental sedimentation, desert landscapes, and river morphology are discussed.

  17. RAVEN - High-resolution Mapping of Venus within a Discovery Mission Budget

    NASA Astrophysics Data System (ADS)

    Sharpton, V. L.; Herrick, R. R.; Rogers, F.; Waterman, S.

    2009-12-01

    It has been more than 15 years since the Magellan mission mapped Venus with S-band synthetic aperture radar (SAR) images at ~100-m resolution. Advances in radar technology are such that current Earth-orbiting SAR instruments are capable of providing images at meter-scale resolution. RAVEN (RAdar at VENus) is a mission concept that utilizes the instrument developed for the RADARSAT Constellation Mission (RCM) to map Venus in an economical, highly capable, and reliable way. RCM relies on a C-band SAR that can be tuned to generate images at a wide variety of resolutions and swath widths, ranging from ScanSAR mode (broad swaths at 30-m resolution) to strip-map mode (resolutions as fine as 3 m), as well as a spotlight mode that can image patches at 1-m resolution. In particular, the high-resolution modes allow the landing sites of previous missions to be pinpointed and characterized. Repeat-pass interferometric SAR (InSAR) and stereo radargrammetry provide options for constraining topography to better than 100-m horizontal and 10-m vertical resolution. InSAR also provides the potential for detecting surface deformation at centimeter precision. Performing InSAR requires precise knowledge and control of the orbital geometry, and for this reason a 600-km circular polar orbit is favored. This configuration causes the equatorial nadir point to move ~9 km per orbit. Considering both ascending and descending passes, the spacecraft will pass over every point on the planet in half a Venus day (~4 Earth months). The ability to transmit data back to Earth via the Deep Space Network is the primary limiting factor on the volume of data that can be collected. Our current estimates indicate that within an imaging cycle of one Venus day we can image 20-30 percent of the planet at 20-30-m resolution and several percent at 3-5 m resolution. These figures compare favorably to the coverage provided by recent imaging systems orbiting Mars. Our strategy calls for the first cycle of coverage

  18. Discovery and Characterization of Small Planets from the K2 Mission

    NASA Astrophysics Data System (ADS)

    Howard, Andrew

    The K2 mission offers a unique opportunity to find substantial numbers of new transiting planets with host stars much brighter than those found by Kepler -- ideal targets for measurements of planetary atmospheres (with HST and JWST) and planetary masses and densities (with Doppler spectroscopy). The K2 data present unique challenges compared to the Kepler mission. We propose to build on our team's demonstrated successes with the Kepler photometry and in finding exciting new planetary systems in K2 data. We will search for transiting planets in photometry of all stellar K2 targets in each of the first three K2 Campaigns (Fields C0, C1, and C2). We will adapt and enhance our TERRA transit search tool to detect transits in the K2 photometry, and we will assess candidate transiting planets with a suite of K2-specific vetting tools including pixel-level inspection for transit localization, centroid motion tests, and secondary eclipse searches. We will publicly release TERRA and our pixel-level diagnostics for use by other teams in future analyses of K2 and TESS photometry. We will also develop FreeBLEND, a free and open source tool to robustly quantify the probability of false positive detections for individual planet candidates given reduced photometry, constraints from the K2 pixel-level data, adaptive optics imaging, high-resolution stellar spectroscopy, and radial velocity measurements. This tool will be similar to BLENDER for Kepler, but (a) more computationally efficient and useable on the wide range of galactic latitudes that K2 samples and (b) available for use by the entire community. With these tools we will publicly release high-quality (low-noise) reduced photometry of the K2 target stars as well as catalogs of the transiting planets. Host stars in our planet catalogs will be characterized by medium and high-resolution spectroscopy (as appropriate) to yield accurate planet parameters. For a handful of planets in the sample, we will measure masses using Keck

  19. The Stardust Discovery Mission - Returning Unique Samples of Early Solar System Organics

    NASA Technical Reports Server (NTRS)

    Sandford, Scott

    2006-01-01

    On January 2,2004, the STARDUST spacecraft made the closest ever flyby (236 km) of the nucleus of a comet - Comet Wild 2. During the flyby the spacecraft collected samples of dust from the coma of the comet. These samples were successfully returned to Earth on January 15,2006. After a six-month preliminary examination to establish the nature of the returned samples, they will be made available to the general scientific community for study. During my talk I will discuss the scientific goals of the STARDUST mission and provide a brief overview of the mission's design and flight. I will also discuss the recovery of the Stardust Sample Return Capsule (SRC), with an emphasis on those aspects of the recovery important for minimizing the degree of contamination (particularly organic contamination) of the samples. Finally, the first samples are only just now being distributed for preliminary examination, but I hope to be able to talk about some of the preliminary findings from the returned comet samples.

  20. STS-121: Discovery Pre-Launch Mission Management Team Press Briefing

    NASA Technical Reports Server (NTRS)

    2006-01-01

    The briefing began with Allard Buetel (NASA Public Affairs) introducing Bill Gerstenmaier (Associate Administrator for Space Operations) who provided an update of the Mission Management team meeting. The 3 criteria reviewed by the team were: a) ascent heating; b) ice formation and c) remaining foam still intact. The ascent heating had a safety factor of 5 and posed no concern. Ice formation was not a concern. In order to insure there was no damage to the remaining foam, an 8ft. pipe with a camera attached was used to provide pictures. The boroscope pictures showed there was no damage to the brackets or foam. The inspection went very well and the foam was acceptable and ready to fly. Then the floor was open to questions from the press.

  1. The Fourier-Kelvin Stellar Interferometer (FKSI): A Discovery Class TPF/DARWIN Pathfinder Mission Concept

    NASA Technical Reports Server (NTRS)

    Danchi, W. C.; Allen, R. J.; Benford, D. J.; Deming, D.; Gezan, D. Y.; Kuchner, M.; Leisawitz, D. T.; Linfield, R.; Millan-Gabet, R.; Monnier, J. D.

    2003-01-01

    The Fourier-Kelvin Stellar Interferometer (FKSI) is a mission concept for an imaging and nulling interferometer for the mid-infrared spectral region (5-30 microns). FKSI is conceived as a scientific and technological pathfinder to TPF/DARWIN as well as SPIRIT, SPECS, and SAFIR. It will also be a high angular resolution system complementary to NGST. The scientific emphasis of the mission is on the evolution of protostellar systems, from just after the collapse of the precursor molecular cloud core, through the formation of the disk surrounding the protostar, the formation of planets in the disk, and eventual dispersal of the disk material. FKSI will also search for brown dwarfs and Jupiter mass and smaller planets, and could also play a very powerful role in the investigation of the structure of active galactic nuclei and extra-galactic star formation. We have been studying alternative interferometer architectures and beam combination techniques, and evaluating the relevant science and technology tradeoffs. Some of the technical challenges include the development of the cryocooler systems necessary for the telescopes and focal plane array, light and stiff but well-damped truss systems to support the telescopes, and lightweight and coolable optical telescopes. We present results of detailed design studies of the FKSI starting with a design consisting of five one meter diameter telescopes arranged along a truss structure in a linear non-redundant array, cooled to 35 K. A maximum baseline of 20 meters gives a nominal resolution of 26 mas at 5 microns. Using a Fizeau beam combination technique, a simple focal plane camera could be used to obtain both Fourier and spectral data simultaneously for a given orientation of the array. The spacecraft will be rotated to give sufficient Fourier data to reconstruct complex images of a broad range of astrophysical sources. Alternative and simpler three and two telescope designs emphasizing nulling and spectroscopy also have been

  2. New discoveries enabled by OMI SO2 measurements and future missions

    NASA Astrophysics Data System (ADS)

    Krotkov, Nickolay

    2010-05-01

    -sulfur coal in its many coal-fired power plants. Recently, China's government has instituted nationwide measures to control SO2 emissions through the adoption of flue-gas desulfurization technology (FGD) on new power plants; and even greater measures were adopted in the Beijing area in anticipation of the Olympic Games. We demonstrate that the OMI can pick up both SO2 and NO2 emissions from large point sources in northern China, where large increases in both gases were observed from 2005 to 2007, over areas with newly established power plants. The OMI SO2/NO2 ratio generally agrees with the estimated emission factors for coal-fired power plants based on a bottom-up approach. Between 2007 and 2008, OMI detected little change in NO2 but dramatic decline in SO2 over the same areas. While the almost constant NO2 levels between the two years imply steady electricity generation from the power plants, the large reduction in SO2 confirms the effectiveness of the FGD units, which likely became operational between 2007 and 2008. Further development of satellite detection and monitoring of point pollution sources requires better than 10km ground resolution. We show how planned Dutch /ESA TROPOMI and NASA GEOCape missions will advance the art of measuring point source emissions in coming decade.

  3. Earth observations during Space Shuttle flight STS-26: Discovery's mission to earth - September 29-October 3, 1988

    NASA Technical Reports Server (NTRS)

    Wood, C. A.; Helfert, M. R.; Lulla, K. P.; Covey, R. O.

    1989-01-01

    During the late September-early October, 1988 flight of the Space Shuttle Discovery, astronauts took 1505 photographs of earth using handheld cameras. The resulting pictures provide an overview, not available from any other source, of dynamic environmental phenomena on five continents. The Discovery photographs show that: (1) atmospheric clarity has improved in the Northern Hemisphere, (2) widespread burning of natural vegetation throughout the Southern Hemisphere continues to generate immense smoke palls and extensive sedimentation in rivers and estuaries, and (3) although the drought in Africa was partially relieved by heavy rains in autumn, 1988, Lakes Chad and Nasser are at the lowest levels ever seen from space.

  4. An Overview of the Comet Nucleus TOUR Discovery Mission and a Description of Neutral Gas and Ion Measurements Planned

    NASA Technical Reports Server (NTRS)

    Mahaffy, Paul; Veverka, Joe; Niemann, Hasso; Harpold, Dan; Chiu, Mary; Reynolds, Edward; Owen, Toby; Kasprzak, Wayne; Patrick, Ed; Raaen, Eric

    2001-01-01

    The CONTOUR (Comet Nucleus TOUR) Mission led by its Principal Investigator Professor Joseph Veverka of Cornell is presently under development at the Johns Hopkins Applied Physics Laboratory for launch in July of 2002 with a flyby of Comet Encke scheduled for November 3, 2003 at a solar distance of 1.07 au. A robust Whipple dust shield is designed to allow a close nucleus approach distance (less than 150 km). The 2nd nominal CONTOUR target is Comet Schwassmann-Wachmann 3, although the spacecraft can alternately be directed to a new comet if such an interesting target is discovered. CONTOUR contains 4 instruments: an imaging spectrometer (CRISP) developed at APL that will obtain both high resolution nucleus images through 8 filters and IR spectra (800 to 2550 nm) of the nucleus, a narrow field of view forward imager (CFI) to locate the target days before the encounter, a dust composition time of flight mass spectrometer (CIDA) provided by Dr. J. Kissel and von Hoemer & Sulger, GmbH, and a mass spectrometer (NGIMS) provided by Goddard Space Flight Center to measure neutral gas and ambient ions. Laboratory calibration of the NGIMS has now been completed. NGIMS also includes an in-flight calibration system that we plan to exercise before and after each comet encounter. We will provide an overview of the CONTOUR Mission and discuss more specifically the NGIMS measurement goals for this mission.

  5. The new Planetary Science Archive: A tool for exploration and discovery of scientific datasets from ESA's planetary missions.

    NASA Astrophysics Data System (ADS)

    Heather, David; Besse, Sebastien; Barbarisi, Isa; Arviset, Christophe; de Marchi, Guido; Barthelemy, Maud; Docasal, Ruben; Fraga, Diego; Grotheer, Emmanuel; Lim, Tanya; Macfarlane, Alan; Martinez, Santa; Rios, Carlos

    2016-04-01

    Introduction: The Planetary Science Archive (PSA) is the European Space Agency's (ESA) repository of science data from all planetary science and exploration missions. The PSA provides access to scientific datasets through various interfaces (e.g. FTP browser, Map based, Advanced search, and Machine interface): http://archives.esac.esa.int/psa All datasets are scientifically peer-reviewed by independent scientists, and are compliant with the Planetary Data System (PDS) standards. Updating the PSA: The PSA is currently implementing a number of significant changes, both to its web-based interface to the scientific community, and to its database structure. The new PSA will be up-to-date with versions 3 and 4 of the PDS standards, as PDS4 will be used for ESA's upcoming ExoMars and BepiColombo missions. The newly designed PSA homepage will provide direct access to scientific datasets via a text search for targets or missions. This will significantly reduce the complexity for users to find their data and will promote one-click access to the datasets. Additionally, the homepage will provide direct access to advanced views and searches of the datasets. Users will have direct access to documentation, information and tools that are relevant to the scientific use of the dataset, including ancillary datasets, Software Interface Specification (SIS) documents, and any tools/help that the PSA team can provide. A login mechanism will provide additional functionalities to the users to aid / ease their searches (e.g. saving queries, managing default views). Queries to the PSA database will be possible either via the homepage (for simple searches of missions or targets), or through a filter menu for more tailored queries. The filter menu will offer multiple options to search for a particular dataset or product, and will manage queries for both in-situ and remote sensing instruments. Parameters such as start-time, phase angle, and heliocentric distance will be emphasized. A further

  6. The new Planetary Science Archive: A tool for exploration and discovery of scientific datasets from ESA's planetary missions

    NASA Astrophysics Data System (ADS)

    Heather, David

    2016-07-01

    Introduction: The Planetary Science Archive (PSA) is the European Space Agency's (ESA) repository of science data from all planetary science and exploration missions. The PSA provides access to scientific datasets through various interfaces (e.g. FTP browser, Map based, Advanced search, and Machine interface): http://archives.esac.esa.int/psa All datasets are scientifically peer-reviewed by independent scientists, and are compliant with the Planetary Data System (PDS) standards. Updating the PSA: The PSA is currently implementing a number of significant changes, both to its web-based interface to the scientific community, and to its database structure. The new PSA will be up-to-date with versions 3 and 4 of the PDS standards, as PDS4 will be used for ESA's upcoming ExoMars and BepiColombo missions. The newly designed PSA homepage will provide direct access to scientific datasets via a text search for targets or missions. This will significantly reduce the complexity for users to find their data and will promote one-click access to the datasets. Additionally, the homepage will provide direct access to advanced views and searches of the datasets. Users will have direct access to documentation, information and tools that are relevant to the scientific use of the dataset, including ancillary datasets, Software Interface Specification (SIS) documents, and any tools/help that the PSA team can provide. A login mechanism will provide additional functionalities to the users to aid / ease their searches (e.g. saving queries, managing default views). Queries to the PSA database will be possible either via the homepage (for simple searches of missions or targets), or through a filter menu for more tailored queries. The filter menu will offer multiple options to search for a particular dataset or product, and will manage queries for both in-situ and remote sensing instruments. Parameters such as start-time, phase angle, and heliocentric distance will be emphasized. A further

  7. The STARDUST Discovery Mission: Data from the Encounter with Comet Wild 2 and the Expected Sample Return

    NASA Technical Reports Server (NTRS)

    Sandford, Scott A.

    2004-01-01

    On January 2,2004, the STARDUST spacecraft made the closest ever flyby (236 km) of the nucleus of a comet - Comet Wild 2. During the fly by the spacecraft collected samples of dust from the coma of the comet. These samples will be returned to Earth on January 15,2006. After a brief preliminary examination to establish the nature of the returned samples, they will be made available to the general scientific community for study. In addition to its aerogel dust collector, the STARDUST spacecraft was also equipped with instruments that made in situ measurements of the comet during the flyby. These included several dust impact monitors, a mass spectrometer, and a camera. The spacecraft's communication system was also used to place dynamical constraints on the mass of the nucleus and the number of impacts the spacecraft had with large particles. The data taken by these instruments indicate that the spacecraft successfully captured coma samples. These instruments, particularly the camera, also demonstrated that Wild 2 is unlike any other object in the Solar System previously visited by a spacecraft. During my talk I will discuss the scientific goals of the STARDUST mission and provide an overview of its design and flight to date. I will then end with a description of the exciting data returned by the spacecraft during the recent encounter with Wild 2 and discuss what these data tell us about the nature of comets. It will probably come as no surprise that the encounter data raise as many (or more) new questions as they answer old ones.

  8. Effects of 12 days exposure to simulated microgravity on central circulatory hemodynamics in the rhesus monkey

    NASA Technical Reports Server (NTRS)

    Convertino, V. A.; Koenig, S. C.; Krotov, V. P.; Fanton, J. W.; Korolkov, V. I.; Trambovetsky, E. V.; Ewert, D. L.; Truzhennikov, A.; Latham, R. D.

    1998-01-01

    Central circulatory hemodynamic responses were measured before and during the initial 9 days of a 12-day 10 degrees head-down tilt (HDT) in 4 flight-sized juvenile rhesus monkeys who were surgically instrumented with a variety of intrathoracic catheters and blood flow sensors to assess the effects of simulated microgravity on central circulatory hemodynamics. Each subject underwent measurements of aortic and left ventricular pressures, and aortic flow before and during HDT as well as during a passive head-up postural test before and after HDT. Heart rate, stroke volume, cardiac output, and left ventricular end-diastolic pressure were measured, and dP/dt and left ventricular elastance was calculated from hemodynamic measurements. The postural test consisted of 5 min of supine baseline control followed by 5 minutes of 90 degrees upright tilt (HUT). Heart rate, stroke volume, cardiac output, and left ventricular end-diastolic pressure showed no consistent alterations during HDT. Left ventricular elastance was reduced in all animals throughout HDT, indicating that cardiac compliance was increased. HDT did not consistently alter left ventricular +dP/dt, indicating no change in cardiac contractility. Heart rate during the post-HDT HUT postural test was elevated compared to pre-HDT while post-HDT cardiac output was decreased by 52% as a result of a 54% reduction in stroke volume throughout HUT. Results from this study using an instrumented rhesus monkey suggest that exposure to microgravity may increase ventricular compliance without alternating cardiac contractility. Our project supported the notion that an invasively-instrumented animal model should be viable for use in spaceflight cardiovascular experiments to assess potential changes in myocardial function and cardiac compliance.

  9. Effects of 12 days exposure to simulated microgravity on central circulatory hemodynamics in the rhesus monkey

    NASA Astrophysics Data System (ADS)

    Convertino, V. A.; Koenig, S. C.; Krotov, V. P.; Fanton, J. W.; Korolkov, V. I.; Trambovetsky, E. V.; Ewert, D. L.; Truzhennikov, A.; Latham, R. D.

    Central circulatory hemodynamic responses were measured before and during the initial 9 days of a 12-day 10 ° head-down tilt (HDT) in 4 flight-sized juvenile rhesus monkeys who were surgically instrumented with a variety of intrathoracic catheters and blood flow sensors to assess the effects of simulated microgravity on central circulatory hemodynamics. Each subject underwent measurements of aortic and left ventricular pressures, and aortic flow before and during HDT as well as during a passive head-up postural test before and after HDT. Heart rate, stroke volume, cardiac output, and left ventricular end-diastolic pressure were measured, and dP/dt and left ventricular elastance was calculated from hemodynamic measurements. The postural test consisted of 5 min of supine baseline control followed by 5 minutes of 90 ° upright tilt (HUT). Heart rate, stroke volume, cardiac output, and left ventricular end-diastolic pressure showed no consistent alterations during HDT. Left ventricular elastance was reduced in all animals throughout HDT, indicating that cardiac compliance was increased. HDT did not consistently alter left ventricular +dP/dt, indicating no change in cardiac contractility. Heart rate during the post-HDT HUT postural test was elevated compared to pre-HDT while post-HDT cardiac output was decreased by 52% as a result of a 54% reduction in stroke volume throughout HUT. Results from this study using an instrumented rhesus monkey suggest that exposure to microgravity may increase ventricular compliance without alterating cardiac contractility. Our project supported the notion that an invasively-instrumented animal model should be viable for use in spaceflight cardiovascular experiments to assess potential changes in myocardial function and cardiac compliance.

  10. InSight/SEIS@Mars Educational program : Sharing the InSight NASA mission and the Seismic Discovery of Mars with a International Network of classes

    NASA Astrophysics Data System (ADS)

    Lognonne, P. H.; Berenguer, J. L.; Sauron, A.; Denton, P.; Carrer, D.; Taber, J.; Bravo, T. K.; Gaboriaud, A.; Houston Jones, J.; Banerdt, W. B.; Martinuzzi, J. M.

    2015-12-01

    The InSIght mission will deploy in September 2016 a Geophysical Station on Mars, equipped with a suite of geophysical instruments, including 3 axis Very Broad Band Seismometer, 3 axis Short Period Seismometer, 3 axis Flux gate Magnetometer, Heat flow probe, geodetic beacon, infrasound/microbarometer, wind sensors and cameras. As for all NASA missions, Children and teenagers will be associated to the mission in the framework of the K12 InSight program, part of it being associated to the SEIS instrument.The two faces of the InSight/SEIS Education program are directed toward the promotion of Space Technologies and of Space Science.For Space technologies, this has already started with the InSight Elysium Educational project. The goal of the project, supported by CNES and performed by Technical High School near Toulouse, was the fabrication of a full scale mockup of the lander (see more at https://jeunes.cnes.fr/fr/elysium-le-jumeau-terrestre-dinsight ). The mockup was exhibited during the June, 2015 Paris air show. More than 300 students participated to the Elysium project.For Space Science, this will be made with the SEIS@Mars Educational project. Its plan is to transmit the SEIS data to a network of several hundred of middle and high schools worldwide, associated to existing "seismo(graph) at school" programs in the United States (https://www.iris.edu/hq/sis), France (www.edusismo.org) Switzerland (www.seismoatschool.ethz.ch) and United Kingdom (http://www.bgs.ac.uk/schoolseismology/). If the transmission of these data to the SEIS@school network will be automatic after their release by the NASA Planetary Data System, an earlier transmission will be made, especially after mid 2017, but also before through the integration of selected Schools to the project activities: the selected classrooms will perform the same activities as the project scientists. They will have to process rapidly the proprietary data in order to identify MarsQuake(s) and will be allowed to perform

  11. NASA's Discovery Program

    NASA Astrophysics Data System (ADS)

    Kicza, Mary; Bruegge, Richard Vorder

    1995-01-01

    NASA's Discovery Program represents an new era in planetary exploration. Discovery's primary goal: to maintain U.S. scientific leadership in planetary research by conducting a series of highly focused, cost effective missions to answer critical questions in solar system science. The Program will stimulate the development of innovative management approaches by encouraging new teaming arrangements among industry, universities and the government. The program encourages the prudent use of new technologies to enable/enhance science return and to reduce life cycle cost, and it supports the transfer of these technologies to the private sector for secondary applications. The Near-Earth Asteroid Rendezvous and Mars Pathfinder missions have been selected as the first two Discovery missions. Both will be launched in 1996. Subsequent, competitively selected missions will be conceived and proposed to NASA by teams of scientists and engineers from industry, academia, and government organizations. This paper summarizes the status of Discovery Program planning.

  12. Discovery Touches Down!

    NASA Video Gallery

    Discovery has completed its final mission, STS-133, for NASA's Space Shuttle Program landing on-time at Kennedy Space Center in Florida at 11:57 a.m. EST, March 9, 2011 after 202 orbits around Eart...

  13. STS-114: Discovery L-2 Countdown Status Briefing

    NASA Technical Reports Server (NTRS)

    2005-01-01

    George Diller of NASA Public Affairs hosted this briefing. Pete Nickolenko, NASA Test Director; Scott Higgenbotham, STS-114 Payload-Mission Manager; Cathy Winters, Shuttle Weather Officer were present. Pete reports his team has completed the avionics system check ups, servicing of the cryogenic tanks will take about seven hours that day, and will perform engine system checks and pad close outs come evening. Pete also summarized other standard close out activities: check ups of the Orbiter and ground communications network, rotary service, structure retraction, and external tank load (ETL). Pete reported that the mission will be 12 days with two weather contingency days, and end of mission landing scheduled at Kennedy Space Center (KSC) at approximately 11:00 in the morning, Eastern time on July 25th. Scott briefly reported that all hardware is on board Discovery, closed out, and ready to fly. Cathy reported that hurricane Dennis moved to the North and looking forward to launch. She mentioned of a new hurricane looming and will be named Emily, spotted some crosswinds which will migrate to the west, there is 30% probability weather prohibiting launch. Cathy further gave current weather forecast supported with charts: the Launch Forecast, Tanking Forecast, SRB (Shuttle Solid Rocket Booster) Forecast, CONUS and TAL Launch Sites Forecast, and with 24 hours and 48 hours turn around plan. Launch constraints, weather, crosswinds, cloud cover, ground imagery system, launch countdown, launch crews, mission management simulations, launch team simulations were topics covered with the News Media.

  14. Discovery concepts for Mars

    NASA Technical Reports Server (NTRS)

    Luhmann, J. G.; Russell, C. T.; Brace, L. H.; Nagy, A. F.; Jakosky, B. M.; Barth, C. A.; Waite, J. H.

    1992-01-01

    Two focused Mars missions that would fit within the guidelines for the proposed Discovery line are discussed. The first mission would deal with the issue of the escape of the atmosphere (Mars') to space. A complete understanding of this topic is crucial to deciphering the evolution of the atmosphere, climate change, and volatile inventories. The second mission concerns the investigation of remanent magnetization of the crust and its relationship to the ionosphere and the atmosphere.

  15. STS-51 Mission Overview

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Robert Castle, Lead Flight Director, gives an overview of the STS-51 Discovery mission, including details on the Space Shuttle, the payloads (ACTS-TOS, ORFEUS-SPAS, etc.), the crew, mission objectives, and the spacewalks to be performed. Simulations of the ACT-TS deployment and the ORPFEUS-SPAS operations are shown.

  16. Predicting Mission Success in Small Satellite Missions

    NASA Technical Reports Server (NTRS)

    Saunders, Mark; Richie, R. Wayne; Moore, Arlene; Rogers, John

    1999-01-01

    In our global society with its increasing international competition and tighter financial resources, governments, commercial entities and other organizations are becoming critically aware of the need to ensure that space missions can be achieved on time and within budget. This has become particularly true for the National Aeronautics and Space Administration's (NASA's) Office of Space Science (OSS) which has developed their Discovery and Explorer programs to meet this need. As technologies advance, space missions are becoming smaller and more capable than their predecessors. The ability to predict the mission success of these small satellite missions is critical to the continued achievement of NASA science mission objectives. The NASA Office of Space Science, in cooperation with the NASA Langley Research Center, has implemented a process to predict the likely success of missions proposed to its Discovery and Explorer Programs. This process is becoming the basis for predicting mission success in many other NASA programs as well. This paper describes the process, methodology, tools and synthesis techniques used to predict mission success for this class of mission.

  17. Predicting Mission Success in Small Satellite Missions

    NASA Technical Reports Server (NTRS)

    Saunders, Mark; Richie, Wayne; Rogers, John; Moore, Arlene

    1992-01-01

    In our global society with its increasing international competition and tighter financial resources, governments, commercial entities and other organizations are becoming critically aware of the need to ensure that space missions can be achieved on time and within budget. This has become particularly true for the National Aeronautics and Space Administration's (NASA) Office of Space Science (OSS) which has developed their Discovery and Explorer programs to meet this need. As technologies advance, space missions are becoming smaller and more capable than their predecessors. The ability to predict the mission success of these small satellite missions is critical to the continued achievement of NASA science mission objectives. The NASA Office of Space Science, in cooperation with the NASA Langley Research Center, has implemented a process to predict the likely success of missions proposed to its Discovery and Explorer Programs. This process is becoming the basis for predicting mission success in many other NASA programs as well. This paper describes the process, methodology, tools and synthesis techniques used to predict mission success for this class of mission.

  18. Effects of a 12-day maximal shuttle-run shock microcycle in hypoxia on soccer specific performance and oxidative stress.

    PubMed

    Gatterer, Hannes; Klarod, Kultida; Heinrich, Dieter; Schlemmer, Philipp; Dilitz, Stefan; Burtscher, Martin

    2015-08-01

    The purpose of this study was to investigate the effect of a maximal shuttle-run shock microcycle in hypoxia on repeated sprint ability (RSA, 6 × 40-m (6 × 20 m back and forth, 20" rest in between)), Yo-Yo-intermittent-recovery (YYIR) test performance, and redox-status. Fourteen soccer players (age: 23.9 ± 2.1 years), randomly assigned to hypoxia (∼ 3300 m) or normoxia training, performed 8 maximal shuttle-run training sessions within 12 days. YYIR test performance and RSA fatigue-slope improved independently of the hypoxia stimulus (p < 0.05). Training reduced the oxidative stress level (-7.9%, p < 0.05), and the reduction was associated with performance improvements (r = 0.761, ΔRSA; r = -0.575, ΔYYIR, p < 0.05). PMID:26212372

  19. Do Milk Samples Stored for 12 Days after Collection Exhibit a Change in Composition Related to the Initial Bacterial Load?

    PubMed

    de Freitas, Larissa Nazareth; Cassoli, Laerte Dagher; da Silva, Janielen; de Figueiredo Pantoja, José Carlos; Machado, Paulo Fernando

    2016-05-01

    Total bacterial count (TBC) is a tool used to assess milk quality and is associated with not only the initial sample contamination but also the sample storage time and temperature. Several countries have reported milk samples with a high TBC, and the influence of TBC on milk preservation remains unclear. Thus, the aim of this study was to evaluate the impact of the initial bacterial contamination level on the macrocomponents and somatic cell count (SCC) of raw milk samples preserved with bronopol and maintained at two storage temperatures (7 and 25°C) for up to 12 days. Thus, we collected milk samples from 51 dairy farms, which were divided into two groups according to the initial bacterial load: low TBC (<100,000 CFU/ml) and high TBC (≥100,000 CFU/ml). We analyzed the sample composition for protein, fat, total solids, lactose, milk urea nitrogen, and the SCC. We did not observe an effect from TBC and storage time and temperature on the concentration of protein, fat, total solids, and lactose. SCC changes were not observed for samples maintained under refrigeration (7°C); however, samples maintained at room temperature (25°C) exhibited a decrease in the SCC beginning on day 6 of storage. For milk urea nitrogen, values increased when the samples were maintained at room temperature, beginning on the ninth storage day. Samples with the preservative bronopol added and maintained under refrigeration may be analyzed up to 12 days after collection, regardless of the milk microbial load. PMID:27296431

  20. The Near-Earth Space Surveillance (NESS) Mission: Discovery, Tracking, and Characterization of Asteroids, Comets, and Artificial Satellites with a Microsatellite

    NASA Technical Reports Server (NTRS)

    Hildebrand, A. R.; Carroll, K. A.; Balam, D. D.; Cardinal, R. D.; Matthews, J. M.; Kuschnig, R.; Walker, G. A. H.; Brown, P. G.; Tedesco, E. F.; Worden, S. P.

    2001-01-01

    The Near-Earth Space Surveillance (NESS) Mission, a microsatellite dedicated to observing near-Earth (NEO) and interior-to-the-Earth (IEO)asteroids and comets plus artificial satellites, is currently being studied under contract to the Canadian Space Agency. Additional information is contained in the original extended abstract.

  1. Discovery Scarp

    NASA Technical Reports Server (NTRS)

    1974-01-01

    One of the most prominent lobate scarps (Discovery Scarp), photographed by Mariner 10 during it's first encounter with Mercury, is located at the center of this image (extending from the top to near bottom). This scarp is about 350 kilometers long and transects two craters 35 and 55 kilometers in diameter. The maximum height of the scarp south of the 55-kilometer crater is about 3 kilometers. Notice the shallow older crater (near the center of the image) perched on the crest of the scarp. (FDS 17389 and 27399)

    The Mariner 10 mission, managed by the Jet Propulsion Laboratory for NASA's Office of Space Science, explored Venus in February 1974 on the way to three encounters with Mercury-in March and September 1974 and in March 1975. The spacecraft took more than 7,000 photos of Mercury, Venus, the Earth and the Moon.

    Image Credit: NASA/JPL/Northwestern University

  2. STS-85 Discovery Launch

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Blasting through the hazy late morning sky, the Space Shuttle Discovery soars from Launch Pad 39A at 10:41 a.m. EDT Aug. 7 on the 11-day STS-85 mission. Aboard Discovery are Commander Curtis L. Brown, Jr.; Pilot Kent V. Rominger, Payload Commander N. Jan Davis, Mission Specialist Robert L. Curbeam, Jr., Mission Specialist Stephen K. Robinson and Payload Specialist Bjarni V. Tryggvason, a Canadian Space Agency astronaut . The primary payload aboard the Space Shuttle orbiter Discovery is the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite-2 (CRISTA-SPAS-2) free-flyer. The CRISTA-SPAS-2 will be deployed on flight day 1 to study trace gases in the Earths atmosphere as a part of NASAs Mission to Planet Earth program. Also aboard the free-flying research platform will be the Middle Atmosphere High Resolution Spectrograph Instrument (MAHRSI). Other payloads on the 11-day mission include the Manipulator Flight Demonstration (MFD), a Japanese Space Agency-sponsored experiment. Also in Discoverys payload bay are the Technology Applications and Science-1 (TAS-1) and International Extreme Ultraviolet Hitchhiker-2 (IEH-2) experiments.

  3. Time course of neuronal damage in the hippocampus following lithium-pilocarpine status epilepticus in 12-day-old rats.

    PubMed

    Druga, Rastislav; Mares, Pavel; Kubová, Hana

    2010-10-01

    Status epilepticus (SE) leads to serious damage in hippocampus of the adult brain. Much less is known about immature brain where neuronal degeneration may have different localization and time course. Lithium-pilocarpine SE was induced in 12-day-old male Wistar rats. Six different intervals after SE (from 4 h to 1 week) were studied using Fluoro-Jade B staining. Three to four animals were used for every interval. Severity of damage in individual parts of hippocampal formation was semi-quantified. A consistent neuronal damage occurred in all hippocampal fields (CA 1, CA 3, dentate gyrus) at all survival intervals. Hippocampal fields CA 1 and CA 3 exhibited degeneration of interneurons located mainly in stratum oriens and pyramidale at shorter intervals (4-12h). Massive degeneration of pyramidal cells started at 24h in CA 1 and at 48 h in CA 3. Dentate gyrus exhibited degenerating neurons in granular layer with a peak at short intervals (4-8 h), and molecular layer was spared. The lower blade of dentate gyrus was more affected than the upper blade. Damage of hilar neurons was negligible. Our results demonstrate that SE elicited in immature rats causes acute neurodegeneration in the hippocampus. Time course of this degeneration is different for individual parts of hippocampal formation and for individual cell types. PMID:20673826

  4. Kepler Mission: A Search for Habitable Planets

    NASA Technical Reports Server (NTRS)

    Koch, David; Fonda, Mark (Technical Monitor)

    2002-01-01

    The Kepler Mission was selected by NASA as one of the next two Discovery Missions. The mission design is based on the search for Earth-size planets in the habitable zone of solar-like stars, but does not preclude the discovery of larger or smaller planets in other orbits of non-solar-like stars. An overview of the mission, the scientific goals and the anticipated results will be presented.

  5. Kepler Mission

    NASA Technical Reports Server (NTRS)

    Borucki, William J.; DeVincenzi, D. (Technical Monitor)

    2002-01-01

    The first step in discovering, the extent of life in our galaxy is to determine the number of terrestrial planets in the habitable zone (HZ). The Kepler Mission is a 0.95 m aperture photometer scheduled to be launched in 2006. It is designed to continuously monitor the brightness of 100,000 solar-like stars to detect the transits of Earth-size and larger planets. The depth and repetition time of transits provide the size of the planet relative to the star and its orbital period. When combined with ground-based spectroscopy of these stars to fix the stellar parameters, the true planet radius and orbit scale, hence the relation to the HZ are determined. These spectra are also used to discover the relationships between the characteristics of planets and the stars they orbit. In particular, the association of planet size and occurrence frequency with stellar mass and metallicity will be investigated. Based on the results of the current Doppler - velocity discoveries, over a thousand giant planets will be found. Information on the albedos and densities of those giants showing transits will be obtained. At the end of the four year mission, hundreds of terrestrial planets should be discovered in and near the HZ of their stars if such planets are common. A null result would imply that terrestrial planets in the HZ occur in less than 1% of the stars and that life might be quite rare.

  6. STS-41D Mission Insignia

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The official mission insignia for the 41-D Space Shuttle flight features the Discovery - NASA's third orbital vehicle - as it makes its maiden voyage. The ghost ship represents the orbiter's namesakes which have figured prominently in the history of exploration. The Space Shuttle Discovery heads for new horizons to extend that proud tradition. Surnames for the crewmembers of NASA's eleventh Space Shuttle mission encircle the red, white, and blue scene.

  7. Comparative Studies of the Thick-Toed Geckos after the 16 and 12 Days Spaceflight in <> Experiments

    NASA Astrophysics Data System (ADS)

    Nikitin, V. B.; Proshchina, A. E.; Kharlamova, A. S.; Barabanov, V. M.; Krivova, J. S.; Godovalova, O. S.; Savelieva, E. S.; Makarov, A. N.; Gulimova, V. I.; Okshtein, I. L.; Naidenko, S. V.; Souza, K. A.; Almeida, E. A. C.; Ilyin, E. A.; Saveliev, S. V.

    2008-06-01

    In our study we compare the data from analysis of thick-toed geckoes Pachydactylus turneri from 16 and 12 days spaceflights onboard «Foton-M2» (M2) and «Foton-M3» (M3) satellites respectively. These studies were realized in the frames of Russian-American joint experiments. In M2 they were performed on 4 females and 1 male in each of the following groups: flight (F), basal (BC) and delayed synchronous (SC) controls. In M3 there were 5 females in each group. The animals were euthanized and examined using traditional histology, immunohistochemistry and X-ray microtomography. Mallory, Nissl and hematoxylin-eosin staining were used to compare the condition of brain, heart, liver, pancreas, spleen and small intestine. Brain and pancreas were also studied immunohistochemically. Behavior was registered by video camera in F and SC (M3). Thus we confirm the previous assumption that geckoes can preserve in weightlessness their ability to fi x themselves to the surfaces by their toe pads. We did not reveal in liver, pancreas, spleen and small intestine of F-M3 geckoes such evident changes like in F-M2 group. Glial destruction was detected immunohistochemically in the brains of F-M3 geckoes, especially in the cortical structures and epithalamus. Gluckocorticoids level for geckoes' feces in F-M2 was 4 times higher than in SC-M2 whereas the results for M3 were almost the same. Microtomografi c analysis of the femur bones showed some redistribution of the trabeculae in F-M3 group which occured in the direction from the outer compact bone to the bone center. Thus we conclude that in most structures of F-M3 animals the changes were less then in F-M2 ones. It can be explaned by shorter duration of M3 flight, higer temperature and the presence of water source. More prolonged experiments with larger groups of geckoes are necessary to verify the obtained data. Probably geckoes are well preadapted to conditions of spaceflight due to their specific biology.

  8. PERCIVAL mission to Mars

    NASA Technical Reports Server (NTRS)

    Reed, David W.; Lilley, Stewart; Sirman, Melinda; Bolton, Paul; Elliott, Susan; Hamilton, Doug; Nickelson, James; Shelton, Artemus

    1992-01-01

    With the downturn of the world economy, the priority of unmanned exploration of the solar system has been lowered. Instead of foregoing all missions to our neighbors in the solar system, a new philosophy of exploration mission design has evolved to insure the continued exploration of the solar system. The 'Discovery-class' design philosophy uses a low cost, limited mission, available technology spacecraft instead of the previous 'Voyager-class' design philosophy that uses a 'do-everything at any cost' spacecraft. The Percival Mission to Mars was proposed by Ares Industries as one of the new 'Discovery-class' of exploration missions. The spacecraft will be christened Percival in honor of American astronomer Percival Lowell who proposed the existence of life on Mars in the early twentieth century. The main purpose of the Percival mission to Mars is to collect and relay scientific data to Earth suitable for designing future manned and unmanned missions to Mars. The measurements and observations made by Percival will help future mission designers to choose among landing sites based on the feasibility and scientific interest of the sites. The primary measurements conducted by the Percival mission include gravity field determination, surface and atmospheric composition, sub-surface soil composition, sub-surface seismic activity, surface weather patterns, and surface imaging. These measurements will be taken from the orbiting Percival spacecraft and from surface penetrators deployed from Mars orbit. The design work for the Percival Mission to Mars was divided among four technical areas: Orbits and Propulsion System, Surface Penetrators, Gravity and Science Instruments, and Spacecraft Structure and Systems. The results for each of the technical areas is summarized and followed by a design cost analysis and recommendations for future analyses.

  9. STS-95 Mission Insignia

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The STS-95 patch, designed by the crew, is intended to reflect the scientific, engineering, and historic elements of the mission. The Space Shuttle Discovery is shown rising over the sunlit Earth limb, representing the global benefits of the mission science and the solar science objectives of the Spartan Satellite. The bold number '7' signifies the seven members of Discovery's crew and also represents a historical link to the original seven Mercury astronauts. The STS-95 crew member John Glenn's first orbital flight is represented by the Friendship 7 capsule. The rocket plumes symbolize the three major fields of science represented by the mission payloads: microgravity material science, medical research for humans on Earth and in space, and astronomy.

  10. Future Titan Missions

    NASA Astrophysics Data System (ADS)

    Waite, J. H.; Coustenis, A.; Lorenz, R.; Lunine, J.; Stofan, E.

    2012-04-01

    New discoveries about Titan from the Cassini-Huygens mission have led to a broad range of mission class studies for future missions, ranging from NASA Discovery class to International Flagship class. Three consistent science themes emerge and serve as a framework for discussing the various mission concepts: Goal A: Explore Titan, an Earth-Like System - How does Titan function as a system? How are the similarities and differences with Earth, and other solar system bodies, a result of the interplay of the geology, hydrology, meteorology, and aeronomy present in the Titan system?; Goal B: Examine Titan’s Organic Inventory—A Path to Prebiological Molecules - What is the complexity of Titan’s organic chemistry in the atmosphere, within its lakes, on its surface, and in its putative subsurface water ocean and how does this inventory differ from known abiotic organic material in meteorites and therefore contribute to our understanding of the origin of life in the Solar System?; and Goal C: Explore Enceladus and Saturn’s magnetosphere—clues to Titan’s origin and evolution - What is the exchange of energy and material with the Saturn magnetosphere and solar wind? What is the source of geysers on Enceladus? Does complex chemistry occur in the geyser source? Within this scientific framework the presentation will overview the Titan Explorer, Titan AND Enceladus Mission, Titan Saturn System Mission, Titan Mare Explorer, and Titan Submersible. Future timelines and plans will be discussed.

  11. STS-82 Discovery Launch

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Space Shuttle Discovery cuts a bright swath through the early-morning darkness as it lifts off from Launch Pad 39A on a scheduled 10-day flight to service the Hubble Space Telescope (HST). Liftoff of Mission STS-82 occurred on-time at 3:55:17 a.m. EST, Feb. 11, 1997. Leading the veteran crew is Mission Commander Kenneth D. Bowersox. Scott J. 'Doc' Horowitz is the pilot. Mark C. Lee is the payload commander. Rounding out the seven-member crew are Mission Specialists Steven L. Smith, Gregory J. Harbaugh, Joseph R. 'Joe' Tanner and Steven A. Hawley. Four of the astronauts will be divided into two teams to perform the scheduled four back-to-back extravehicular activities (EVAs) or spacewalks. Lee and Smith will team up for EVAs 1 and 3 on flight days 4 and 6; Harbaugh and Tanner will perform EVAs 2 and 4 on flight days 5 and 7. Among the tasks will be to replace two outdated scientific instruments with two new instruments the Space Telescope Imaging Spectrograph (STIS) and the Near Infrared Camera and Multi-Object Spectrometer (NICMOS). This is the second servicing mission for HST, which was originally deployed in 1990 and designed to be serviced on-orbit about every three years. Hubble was first serviced in 1993. STS-82 is the second of eight planned flights in 1997. It is the 22nd flight of Discovery and the 82nd Shuttle mission.

  12. Guided Discoveries.

    ERIC Educational Resources Information Center

    Ehrlich, Amos

    1991-01-01

    Presented are four mathematical discoveries made by students on an arithmetical function using the Fibonacci sequence. Discussed is the nature of the role of the teacher in directing the students' discovery activities. (KR)

  13. Discovery Systems

    NASA Technical Reports Server (NTRS)

    Pell, Barney

    2003-01-01

    A viewgraph presentation on NASA's Discovery Systems Project is given. The topics of discussion include: 1) NASA's Computing Information and Communications Technology Program; 2) Discovery Systems Program; and 3) Ideas for Information Integration Using the Web.

  14. STS-121/Discovery: Mission Status Briefing

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Tony Ceccacci (Space Shuttle Flight Director) discussed the following activities: starboard survey, two space rendezvous, nose cap survey, timelines. Rick LaBrode (International Space Station Flight Director) discussed the following activities: preparation for Shuttle Docking, leak checks, pressurization checks, final configuration for cameras, setting up the internal wireless information system, accelerometers, etc. Then the floor was open to questions from the press.

  15. Titan Saturn System Mission

    NASA Technical Reports Server (NTRS)

    Reh, Kim R.

    2009-01-01

    Titan is a high priority for exploration, as recommended by NASA's 2006 Solar System Exploration (SSE) Roadmap. NASA's 2003 National Research Council (NRC) Decadal Survey and ESA's Cosmic Vision Program Themes. Recent revolutionary Cassini-Huygens discoveries have dramatically escalated interest in Titan as the next scientific target in the outer solar system. This study demonstrates that an exciting Titan Saturn System Mission (TSSM) that explores two worlds of intense astrobiological interest can be initiated now as a single NASA/ESA collaboration.

  16. A Mars Exploration Discovery Program

    NASA Astrophysics Data System (ADS)

    Hansen, C. J.; Paige, D. A.

    2000-07-01

    The Mars Exploration Program should consider following the Discovery Program model. In the Discovery Program a team of scientists led by a PI develop the science goals of their mission, decide what payload achieves the necessary measurements most effectively, and then choose a spacecraft with the capabilities needed to carry the payload to the desired target body. The primary constraints associated with the Discovery missions are time and money. The proposer must convince reviewers that their mission has scientific merit and is feasible. Every Announcement of Opportunity has resulted in a collection of creative ideas that fit within advertised constraints. Following this model, a "Mars Discovery Program" would issue an Announcement of Opportunity for each launch opportunity with schedule constraints dictated by the launch window and fiscal constraints in accord with the program budget. All else would be left to the proposer to choose, based on the science the team wants to accomplish, consistent with the program theme of "Life, Climate and Resources". A proposer could propose a lander, an orbiter, a fleet of SCOUT vehicles or penetrators, an airplane, a balloon mission, a large rover, a small rover, etc. depending on what made the most sense for the science investigation and payload. As in the Discovery program, overall feasibility relative to cost, schedule and technology readiness would be evaluated and be part of the selection process.

  17. A Mars Exploration Discovery Program

    NASA Technical Reports Server (NTRS)

    Hansen, C. J.; Paige, D. A.

    2000-01-01

    The Mars Exploration Program should consider following the Discovery Program model. In the Discovery Program a team of scientists led by a PI develop the science goals of their mission, decide what payload achieves the necessary measurements most effectively, and then choose a spacecraft with the capabilities needed to carry the payload to the desired target body. The primary constraints associated with the Discovery missions are time and money. The proposer must convince reviewers that their mission has scientific merit and is feasible. Every Announcement of Opportunity has resulted in a collection of creative ideas that fit within advertised constraints. Following this model, a "Mars Discovery Program" would issue an Announcement of Opportunity for each launch opportunity with schedule constraints dictated by the launch window and fiscal constraints in accord with the program budget. All else would be left to the proposer to choose, based on the science the team wants to accomplish, consistent with the program theme of "Life, Climate and Resources". A proposer could propose a lander, an orbiter, a fleet of SCOUT vehicles or penetrators, an airplane, a balloon mission, a large rover, a small rover, etc. depending on what made the most sense for the science investigation and payload. As in the Discovery program, overall feasibility relative to cost, schedule and technology readiness would be evaluated and be part of the selection process.

  18. Astronauts Culbertson and Bursch brush their teeth on Discovery's middeck

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Astronauts Frank L. Culbertson (right), mission commander, and Daniel W. Bursch, mission specialist, brush their teeth on Discovery's middeck. Two sleep restraints form part of the backdrop for the photograph.

  19. STS-60 cosmonauts participate in mission training activities

    NASA Technical Reports Server (NTRS)

    1994-01-01

    STS-60 Discovery, Orbiter Vehicle (OV) 103, Russian Mission Specialist Sergei Krikalev and Russian backup Mission Specialist Vladimir Titov work with Training Instructor Richard M. Davis (holding space shuttle model) prior to entering the Building 16 Systems Engineering Simulator (SES).

  20. STS-105 Shuttle Orbiter Discovery

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This is a view of the Space Shuttle Discovery as it approaches the International Space Station (ISS) during the STS-105 mission. Visible in the payload bay of Discovery are the Multipurpose Logistics Module (MPLM) Leonardo at right, which stores various supplies and experiments to be transferred into the ISS; at center, the Integrated Cargo Carrier (ICC) which carries the Early Ammonia Servicer (EAS); and two Materials International Space Station Experiment (MISSE) containers at left. Aboard Discovery were the ISS Expedition Three crew, who were to replace the Expedition Two crew that had been living on the ISS for the past five months.

  1. Missions to Venus

    NASA Astrophysics Data System (ADS)

    Titov, D. V.; Baines, K. H.; Basilevsky, A. T.; Chassefiere, E.; Chin, G.; Crisp, D.; Esposito, L. W.; Lebreton, J.-P.; Lellouch, E.; Moroz, V. I.; Nagy, A. F.; Owen, T. C.; Oyama, K.-I.; Russell, C. T.; Taylor, F. W.; Young, R. E.

    2002-10-01

    Venus has always been a fascinating objective for planetary studies. At the beginning of the space era Venus became one of the first targets for spacecraft missions. Our neighbour in the solar system and, in size, the twin sister of Earth, Venus was expected to be very similar to our planet. However, the first phase of Venus spacecraft exploration in 1962-1992 by the family of Soviet Venera and Vega spacecraft and US Mariner, Pioneer Venus, and Magellan missions discovered an entirely different, exotic world hidden behind a curtain of dense clouds. These studies gave us a basic knowledge of the conditions on the planet, but generated many more questions concerning the atmospheric composition, chemistry, structure, dynamics, surface-atmosphere interactions, atmospheric and geological evolution, and the plasma environment. Despite all of this exploration by more than 20 spacecraft, the "morning star" still remains a mysterious world. But for more than a decade Venus has been a "forgotten" planet with no new missions featuring in the plans of the world space agencies. Now we are witnessing the revival of interest in this planet: the Venus Orbiter mission is approved in Japan, Venus Express - a European orbiter mission - has successfully passed the selection procedure in ESA, and several Venus Discovery proposals are knocking at the doors of NASA. The paper presents an exciting story of Venus spacecraft exploration, summarizes open scientific problems, and builds a bridge to the future missions.

  2. Behind the Scenes: Discovery Crew Practices Landing

    NASA Video Gallery

    In this episode of NASA Behind the Scenes, Astronaut Mike Massimino introduces you to Commander Steve Lindsey and the crewmembers of STS-133, space shuttle Discovery's last mission. Go inside one o...

  3. Lunar Prospector Extended Mission

    NASA Technical Reports Server (NTRS)

    Folta, David; Beckman, Mark; Lozier, David; Galal, Ken

    1999-01-01

    The National Aeronautics and Space Administration (NASA) selected Lunar Prospector as one of the discovery missions to conduct solar system exploration science investigations. The mission is NASA's first lunar voyage to investigate key science objectives since Apollo and was launched in January 1998. In keeping with discovery program requirements to reduce total mission cost and utilize new technology, Lunar Prospector's mission design and control focused on the use of innovative and proven trajectory analysis programs. As part of this effort, the Ames Research Center and the Goddard Space Flight Center have become partners in the Lunar Prospector trajectory team to provide the trajectory analysis, maneuver planning, orbit determination support, and product generation. At the end of 1998, Lunar Prospector completed its one-year primary mission at 100 km altitude above the lunar surface. On December 19, 1998, Lunar Prospector entered the extended mission phase. Initially the mission orbit was lowered from 100 km to a mean altitude of 40 km. The altitude of Lunar Prospector varied between 25 and 55 km above the mean lunar geode due to lunar potential effects. After one month, the lunar potential model was updated based upon the new tracking data at 40 km. On January 29, 1999, the altitude was lowered again to a mean altitude of 30 km. This altitude varies between 12 and 48 km above the mean lunar geode. Since the minimum altitude is very close to the mean geode, various approaches were employed to get accurate lunar surface elevation including Clementine altimetry and line of sight analysis. Based upon the best available terrain maps, Lunar Prospector will reach altitudes of 8 km above lunar mountains in the southern polar and far side regions. This extended mission phase of six months will enable LP to obtain science data up to 3 orders of magnitude better than at the mission orbit. This paper details the trajectory design and orbit determination planning, and

  4. Lunar Prospector Extended Mission

    NASA Technical Reports Server (NTRS)

    Folta, David; Beckman, Mark; Lozier, David; Galal, Ken

    1999-01-01

    The National Aeronautics and Space Administration (NASA) selected Lunar Prospector (LP) as one of the discovery missions to conduct solar system exploration science investigations. The mission is NASA's first lunar voyage to investigate key science objectives since Apollo and was launched in January 1998. In keeping with discovery program requirements to reduce total mission cost and utilize new technology, Lunar Prospector's mission design and control focused on the use of innovative and proven trajectory analysis programs. As part of this effort, the Ames Research Center and the Goddard Space Flight Center have become partners in the Lunar Prospector trajectory team to provide the trajectory analysis, maneuver planning, orbit determination support, and product generation. At the end of 1998, Lunar Prospector completed its one-year primary mission at 100 km altitude above the lunar surface. On December 19, 1998, Lunar Prospector entered the extended mission phase. Initially the mission orbit was lowered from 100 km to a mean altitude of 40 km. The altitude of Lunar Prospector varied between 25 and 55 km above the mean lunar geode due to lunar potential effects. After one month, the lunar potential model was updated based upon the new tracking data at 40 km. On January 29, 1999, the altitude was lowered again to a mean altitude of 30 km. This altitude varies between 12 and 48 km above the mean lunar geode. Since the minimum altitude is very close to the mean geode, various approaches were employed to get accurate lunar surface elevation including Clementine altimetry and line of sight analysis. Based upon the best available terrain maps, Lunar Prospector will reach altitudes of 8 km above lunar mountains in the southern polar and far side regions. This extended mission phase of six months will enable LP to obtain science data up to 3 orders of magnitude better than at the mission orbit. This paper details the trajectory design and orbit determination planning and

  5. Lunar Prospector Extended Mission

    NASA Astrophysics Data System (ADS)

    Folta, David; Beckman, Mark; Lozier, David; Galal, Ken

    1999-05-01

    The National Aeronautics and Space Administration (NASA) selected Lunar Prospector (LP) as one of the discovery missions to conduct solar system exploration science investigations. The mission is NASA's first lunar voyage to investigate key science objectives since Apollo and was launched in January 1998. In keeping with discovery program requirements to reduce total mission cost and utilize new technology, Lunar Prospector's mission design and control focused on the use of innovative and proven trajectory analysis programs. As part of this effort, the Ames Research Center and the Goddard Space Flight Center have become partners in the Lunar Prospector trajectory team to provide the trajectory analysis, maneuver planning, orbit determination support, and product generation. At the end of 1998, Lunar Prospector completed its one-year primary mission at 100 km altitude above the lunar surface. On December 19, 1998, Lunar Prospector entered the extended mission phase. Initially the mission orbit was lowered from 100 km to a mean altitude of 40 km. The altitude of Lunar Prospector varied between 25 and 55 km above the mean lunar geode due to lunar potential effects. After one month, the lunar potential model was updated based upon the new tracking data at 40 km. On January 29, 1999, the altitude was lowered again to a mean altitude of 30 km. This altitude varies between 12 and 48 km above the mean lunar geode. Since the minimum altitude is very close to the mean geode, various approaches were employed to get accurate lunar surface elevation including Clementine altimetry and line of sight analysis. Based upon the best available terrain maps, Lunar Prospector will reach altitudes of 8 km above lunar mountains in the southern polar and far side regions. This extended mission phase of six months will enable LP to obtain science data up to 3 orders of magnitude better than at the mission orbit. This paper details the trajectory design and orbit determination planning and

  6. Heat Shield for Extreme Entry Environment Technology for Near-Term Robotic Science Missions and Longer Term Human Missions

    NASA Astrophysics Data System (ADS)

    Venkatapathy, E.; Ellerby, D.

    2014-06-01

    Heat shield for Extreme Entry Environment is currently funded for technology development for mission infusion into Discovery-13 and New Frontier-4 completed missions. We will describe the technology and the approach to TRL 6 to meet infusion challenges.

  7. NASA Discovery Program Workshop

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The purpose of the workshop was to review concepts for Discover-class missions that would follow the first two missions (MESUR-Pathfinder and NEAR) of this new program. The concepts had been generated by scientists involved in NASA's Solar System Exploration Program to carry out scientifically important investigations within strict guidelines -- $150 million cap on development cost and 3 year cap on development schedule. Like the Astrophysics Small Explorers (SMEX), such 'faster and cheaper' missions could provide vitality to solar system exploration research by returning high quality data more frequently and regularly and by involving many more young researchers than normally participate directly in larger missions. An announcement of opportunity (AO) to propose a Discovery mission to NASA is expected to be released in about two years time. One purpose of the workshop was to assist Code SL in deciding how to allocate its advanced programs resources. A second, complimentary purpose was to provide the concept proposers with feedback to allow them to better prepare for the AO.

  8. STS-88 Mission Specialists Krikalev and Newman inside Endeavour

    NASA Technical Reports Server (NTRS)

    1998-01-01

    STS-88 Mission Specialists Sergei Konstantinovich Krikalev (left) and James H. Newman (right) sit inside orbiter Endeavour during Terminal Countdown Demonstration Activities (TCDT). The TCDT includes mission familiarization activities, emergency egress training, and the simulated main engine cut-off exercise. Mission STS-88 is targeted for launch on Dec. 3, 1998. It is the first U.S. flight for the assembly of the International Space Station and will carry the Unity connecting module. Unity will be mated with the already orbiting Russian-built Zarya control module. The 12-day mission includes three planned spacewalks to connect power, data and utility lines and install exterior equipment.

  9. STS-88 Mission Specialists Currie and Ross inside Endeavour

    NASA Technical Reports Server (NTRS)

    1998-01-01

    STS-88 Mission Specialists Nancy J. Currie, Ph.D., (back) and Jerry L. Ross (front) check over equipment inside orbiter Endeavour during Terminal Countdown Demonstration Activities (TCDT). The TCDT includes mission familiarization activities, emergency egress training, and the simulated main engine cut-off exercise. Mission STS-88 is targeted for launch on Dec. 3, 1998. It is the first U.S. flight for the assembly of the International Space Station and will carry the Unity connecting module. Unity will be mated with the already orbiting Russian-built Zarya control module. The 12-day mission includes three planned spacewalks to connect power, data and utility lines and install exterior equipment.

  10. [The mission].

    PubMed

    Ruiz Moreno, J; Blanch Mon, A

    2000-01-01

    After having made a historical review of the concept of mission statement, of evaluating its importance (See Part I), of describing the bases to create a mission statement from a strategic perspective and of analyzing the advantages of this concept, probably more important as a business policy (See Parts I and II), the authors proceed to analyze the mission statement in health organizations. Due to the fact that a mission statement is lacking in the majority of health organizations, the strategy of health organizations are not exactly favored; as a consequence, neither are its competitive advantage nor the development of its essential competencies. After presenting a series of mission statements corresponding to Anglo-Saxon health organizations, the authors highlight two mission statements corresponding to our social context. The article finishes by suggesting an adequate sequence for developing a mission statement in those health organizations having a strategic sense. PMID:10983153

  11. Effect of energy repletion on dynamic aspects of protein metabolism of malnourished adolescent and young adult patients with cystic fibrosis during the first 12 days of treatment.

    PubMed

    Pencharz, P; Hill, R; Archibald, E

    1986-01-01

    The short-term effect of nutritional rehabilitation on whole body protein metabolism of six malnourished (energy depleted) adolescent and young adult cystic fibrosis (CF) patients was examined during the first 12 days of treatment. Refeeding was accomplished using continuous nasogastric administration of an elemental diet. Intakes were 1.65 SD 0.3 g protein/kg/day and 85.3 SD 19.2 kcal/kg/day. Turnover measurements were carried out on four occasions, during the control period on a normal diet and days 4, 8, and 12 on the elemental diet. In response to refeeding, whole body amino nitrogen flux (Q) fell consistently over the study (p less than 0.05). Protein synthesis (S) and breakdown (B) also fell but their values did not reach statistical significance. On the other hand, there was a prompt increase in ratios S/Q and B/Q in response to tube feeding discernible on days 4 and 8 (p less than 0.05), but which returned to baseline by day 12. We conclude that malnourished CF patients who are still eating well have increased rates of protein turnover. There is a prompt response of protein metabolism to energy repletion with a progressive decline in rates during the first 12 days of treatment. PMID:3755167

  12. Cassini Mission

    SciTech Connect

    Mitchell, Robert

    2005-08-10

    The Cassini/Huygens mission is a joint NASA/European Space Agency/Italian Space Agency project which has a spacecraft currently in orbit about Saturn, and has successfully sent an atmospheric probe through the atmosphere of Saturn's largest moon Titan and down to its previously hidden surface. This presentation will describe the overall mission, how it got a rather massive spacecraft to Saturn, and will cover some of the scientific results of the mission to date.

  13. STS-51B Mission Insignia

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The Space Shuttle Discovery and its science module payload are featured in the insignia for the STS-51B / Spacelab-3 mission. The seven stars of the constellation Pegasus surround the orbiting spacehip above the flag draped Earth. Surnames of the seven crewmembers encircle the scene. The artwork was done by Carol Ann Lind.

  14. KEPLER Mission: development and overview.

    PubMed

    Borucki, William J

    2016-03-01

    The Kepler Mission is a space observatory launched in 2009 by NASA to monitor 170,000 stars over a period of four years to determine the frequency of Earth-size and larger planets in and near the habitable zone of Sun-like stars, the size and orbital distributions of these planets, and the types of stars they orbit. Kepler is the tenth in the series of NASA Discovery Program missions that are competitively-selected, PI-directed, medium-cost missions. The Mission concept and various instrument prototypes were developed at the Ames Research Center over a period of 18 years starting in 1983. The development of techniques to do the 10 ppm photometry required for Mission success took years of experimentation, several workshops, and the exploration of many 'blind alleys' before the construction of the flight instrument. Beginning in 1992 at the start of the NASA Discovery Program, the Kepler Mission concept was proposed five times before its acceptance for mission development in 2001. During that period, the concept evolved from a photometer in an L2 orbit that monitored 6000 stars in a 50 sq deg field-of-view (FOV) to one that was in a heliocentric orbit that simultaneously monitored 170,000 stars with a 105 sq deg FOV. Analysis of the data to date has detected over 4600 planetary candidates which include several hundred Earth-size planetary candidates, over a thousand confirmed planets, and Earth-size planets in the habitable zone (HZ). These discoveries provide the information required for estimates of the frequency of planets in our galaxy. The Mission results show that most stars have planets, many of these planets are similar in size to the Earth, and that systems with several planets are common. Although planets in the HZ are common, many are substantially larger than Earth. PMID:26863223

  15. KEPLER Mission: development and overview

    NASA Astrophysics Data System (ADS)

    Borucki, William J.

    2016-03-01

    The Kepler Mission is a space observatory launched in 2009 by NASA to monitor 170 000 stars over a period of four years to determine the frequency of Earth-size and larger planets in and near the habitable zone of Sun-like stars, the size and orbital distributions of these planets, and the types of stars they orbit. Kepler is the tenth in the series of NASA Discovery Program missions that are competitively-selected, PI-directed, medium-cost missions. The Mission concept and various instrument prototypes were developed at the Ames Research Center over a period of 18 years starting in 1983. The development of techniques to do the 10 ppm photometry required for Mission success took years of experimentation, several workshops, and the exploration of many ‘blind alleys’ before the construction of the flight instrument. Beginning in 1992 at the start of the NASA Discovery Program, the Kepler Mission concept was proposed five times before its acceptance for mission development in 2001. During that period, the concept evolved from a photometer in an L2 orbit that monitored 6000 stars in a 50 sq deg field-of-view (FOV) to one that was in a heliocentric orbit that simultaneously monitored 170 000 stars with a 105 sq deg FOV. Analysis of the data to date has detected over 4600 planetary candidates which include several hundred Earth-size planetary candidates, over a thousand confirmed planets, and Earth-size planets in the habitable zone (HZ). These discoveries provide the information required for estimates of the frequency of planets in our galaxy. The Mission results show that most stars have planets, many of these planets are similar in size to the Earth, and that systems with several planets are common. Although planets in the HZ are common, many are substantially larger than Earth.

  16. IMP mission

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The program requirements and operations requirements for the IMP mission are presented. The satellite configuration is described and the missions are analyzed. The support equipment, logistics, range facilities, and responsibilities of the launching organizations are defined. The systems for telemetry, communications, satellite tracking, and satellite control are identified.

  17. Mission Architecture Options for Enceladus Exploration

    NASA Astrophysics Data System (ADS)

    Spilker, Thomas R.; Strange, N. J.; Elliott, J. O.; Reh, K. R.

    2009-09-01

    Discoveries made by the Cassini-Huygens mission reveal Saturn's moon Enceladus as a high science-value target for a future mission. Recent work at JPL to assessed the feasibility of various mission architecture options for Enceladus exploration. This poster discusses the feasibility of Enceladus flyby, orbiter, lander, impactor, and sample return missions. In 2007 and 2008, NASA and ESA both commissioned studies of concepts for large missions that would investigate Enceladus either as a dedicated mission or jointly with Titan. This battery of studies included the 2007 NASA Enceladus Flagship study, the 2007 ESA TandEM study, and the 2008 joint NASA/ESA Titan Saturn System Mission study. We summarize these recent studies and present additional mission concepts beyond those examined in detail in these studies.

  18. The OASIS Mission

    NASA Technical Reports Server (NTRS)

    Adams, James H., Jr.; Barghouty, Abdulnasser F.; Binns, W. robert; Christl, Mark; Cosse, Charles B.; Guzik, T. Gregory; deNolfo, Georgia A.; Hams,Thomas; Isbert, Joachim; Israel, Martin H.; Krizmanic, John F.; Labrador, Allan W.; Link, Jason T.; Mewaldt, Richard A.; Mitchell, Martin H.; Moiseev, Alexander A.; Sasaki, Makoto; Stochaj, Steven J.; Stone, Edward C.; Steitmatter, Robert E.; Waddington, C. Jake; Watts, John W.; Wefel, John P.; Wiedenbeck, Mark E.

    2010-01-01

    The Orbiting Astrophysical Observatory in Space (OASIS) is a mission to investigate Galactic Cosmic Rays (GCRs), a major feature of our galaxy. OASIS will use measurements of GCRs to determine the cosmic ray source, where they are accelerated, to investigate local accelerators and to learn what they can tell us about the interstellar medium and the processes that occur in it. OASIS will determine the astrophysical sources of both the material and acceleration of GCRs by measuring the abundances of the rare actinide nuclei and make direct measurements of the spectrum and anisotropy of electrons at energies up to approx.10 TeV, well beyond the range of the Fermi and AMS missions. OASIS has two instruments. The Energetic Trans-Iron Composition Experiment (ENTICE) instrument measures elemental composition. It resolves individual elements with atomic number (Z) from 10 to 130 and has a collecting power of 60m2.str.yrs, >20 times larger than previous instruments, and with improved resolution. The sample of 10(exp 10) GCRs collected by ENTICE will include .100 well-resolved actinides. The High Energy Particle Calorimeter Telescope (HEPCaT) is an ionization calorimeter that will extend the electron spectrum into the TeV region for the first time. It has 7.5 sq m.str.yrs of collecting power. This talk will describe the scientific objectives of the OASIS mission and its discovery potential. The mission and its two instruments which have been designed to accomplish this investigation will also be described.

  19. Space Discovery.

    ERIC Educational Resources Information Center

    Blackman, Joan

    1998-01-01

    Describes one teacher's experience taking Space Discovery courses that were sponsored by the United States Space Foundation (USSF). These courses examine the history of space science, theory of orbits and rocketry, the effects of living in outer space on humans, and space weather. (DDR)

  20. STS-88 Mission Specialist Newman prepares to enter Endeavour

    NASA Technical Reports Server (NTRS)

    1998-01-01

    STS-88 Mission Specialist James H. Newman is assisted with his ascent and re-entry flight suit in the white room at Launch Pad 39A before entering Space Shuttle Endeavour for launch. During the nearly 12-day mission, the six-member crew will mate the first two elements of the International Space Station -- the already-orbiting Zarya control module with the Unity connecting module carried by Endeavour. Newman is making his third spaceflight and is one of two extravehicular activity crew members on this mission.

  1. Mission scheduling

    NASA Technical Reports Server (NTRS)

    Gaspin, Christine

    1989-01-01

    How a neural network can work, compared to a hybrid system based on an operations research and artificial intelligence approach, is investigated through a mission scheduling problem. The characteristic features of each system are discussed.

  2. Feeding, body weight, and sensitivity to non-ingestive reward stimuli during and after 12-day continuous central infusions of melanocortin receptor ligands.

    PubMed

    Cabeza de Vaca, S; Hao, J; Afroz, T; Krahne, L L; Carr, K D

    2005-11-01

    The brain melanocortin system mediates downstream effects of hypothalamic leptin and insulin signaling. Yet, there have been few studies of chronic intracerebroventricular (i.c.v.) melanocortin receptor (MCR) agonist or antagonist infusion. Although there is evidence of interaction between melanocortin and dopamine (DA) systems, effects of chronic MCR ligand infusion on behavioral sensitivity to non-ingestive reward stimuli have not been investigated. The objective of this study was to investigate effects of chronic i.c.v. infusion of the MCR agonist, MTII, and the MCR antagonist, SHU9119, on food intake, body weight, and sensitivity to rewarding lateral hypothalamic electrical stimulation (LHSS) and the reward-potentiating (i.e., threshold-lowering) effect of D-amphetamine. The MCR antagonist, SHU9119 (0.02 microg/h) produced sustained hyperphagia and weight gain during the 12-day infusion period, followed by compensatory hypophagia and an arrest of body weight gain during the 24-day post-infusion period. At no point during the experiment was sensitivity to LHSS or D-amphetamine (0.25mg/kg, i.p.) altered. The MCR agonist, MTII (0.02 microg/h) produced a brief hypophagia (3 days) followed by a return to control levels of daily intake, but with body weight remaining at a reduced level throughout the 12-day infusion period. This was followed by compensatory hyperphagia and weight gain during the 24-day post-infusion period. There was no change in sensitivity to non-ingestive reward stimuli during the infusion of MTII. However, sensitivity to D-amphetamine was increased during the 24-day post-infusion period. It therefore seems that changes in ingestive behavior that occur during chronic MCR ligand infusion may not affect the response to non-ingestive reward stimuli. However, it is possible that the drive to re-feed and restore body weight following MCR agonist treatment includes neuroadaptations that enhance the incentive effects of drug stimuli. PMID:15894406

  3. Official portrait space shuttle mission 41-D crew

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Official portrait of the space shuttle mission 41-D crew. Seated are (left to right): Richard M. (Mike) Mullane and Steven A. Hawley, mission specialists; Henry W. Hartsfield, Jr., crew commander; Michael L. Coats, pilot. Standing are Charles D. Walker, pilot and Judith A. Resnik, mission specialist. Behind them is a model of the early sailing vessel Discovery and a model of the shuttle Discovery.

  4. Deep Space Mission Applications for NEXT: NASA's Evolutionary Xenon Thruster

    NASA Technical Reports Server (NTRS)

    Oh, David; Benson, Scott; Witzberger, Kevin; Cupples, Michael

    2004-01-01

    NASA's Evolutionary Xenon Thruster (NEXT) is designed to address a need for advanced ion propulsion systems on certain future NASA deep space missions. This paper surveys seven potential missions that have been identified as being able to take advantage of the unique capabilities of NEXT. Two conceptual missions to Titan and Neptune are analyzed, and it is shown that ion thrusters could decrease launch mass and shorten trip time, to Titan compared to chemical propulsion. A potential Mars Sample return mission is described, and compassion made between a chemical mission and a NEXT based mission. Four possible near term applications to New Frontiers and Discovery class missions are described, and comparisons are made to chemical systems or existing NSTAR ion propulsion system performance. The results show that NEXT has potential performance and cost benefits for missions in the Discovery, New Frontiers, and larger mission classes.

  5. Effect of MAP, vacuum skin-pack and combined packaging methods on physicochemical properties of beef steaks stored up to 12days.

    PubMed

    Łopacka, Joanna; Półtorak, Andrzej; Wierzbicka, Agnieszka

    2016-09-01

    The physicochemical properties of M. longissimus lumborum steaks over 12days of storage at 2°C, and under three packaging conditions, were investigated: vacuum skin packaging (VSP); modified atmosphere packaging (MAP), and their combination with semi-permeable inner VSP film (VSP-MAP). Standard gas composition (80% O2/20% CO2) was used for MAP and VSP-MAP packaging. CIE L*a*b* color parameters of VSP-MAP samples were similar to those kept in MAP and significantly higher to those stored in VSP. Myoglobin oxidation was more evident in VSP-MAP and MAP samples than in VSP indicating increased oxidation processes. However, storage in MAP resulted in greater lipid oxidation compared both to VSP and VSP-MAP. No differences between treatments were observed in terms of Warner-Bratzler shear force values and drip loss. In general, these results suggest that the combination of VSP and MAP methods may be an efficient way to reduce negative quality changes typical for both systems used separately. PMID:27180223

  6. Phoenix--the first Mars Scout mission.

    PubMed

    Shotwell, Robert

    2005-01-01

    NASA has initiated the first of a new series of missions to augment the current Mars Program. In addition to the systematic series of planned, directed missions currently comprising the Mars Program plan, NASA has started a series of Mars Scout missions that are low cost, price fixed, Principal [correction of Principle] Investigator-led projects. These missions are intended to provide an avenue for rapid response to discoveries made as a result of the primary Mars missions, as well as allow more risky technologies and approaches to be applied in the investigation of Mars. The first in this new series is the Phoenix mission which was selected as part of a highly competitive process. Phoenix will use the Mars 2001 Lander that was discontinued in 2000 and apply a new set of science objectives and mission objectives and will validate this soft lander architecture for future applications. This paper will provide an overview of both the Program and the Project. PMID:16010756

  7. Hall Thruster Technology for NASA Science Missions

    NASA Technical Reports Server (NTRS)

    Manzella, David; Oh, David; Aadland, Randall

    2005-01-01

    The performance of a prototype Hall thruster designed for Discovery-class NASA science mission applications was evaluated at input powers ranging from 0.2 to 2.9 kilowatts. These data were used to construct a throttle profile for a projected Hall thruster system based on this prototype thruster. The suitability of such a Hall thruster system to perform robotic exploration missions was evaluated through the analysis of a near Earth asteroid sample return mission. This analysis demonstrated that a propulsion system based on the prototype Hall thruster offers mission benefits compared to a propulsion system based on an existing ion thruster.

  8. Mission Possible

    ERIC Educational Resources Information Center

    Kittle, Penny, Ed.

    2009-01-01

    As teachers, our most important mission is to turn our students into readers. It sounds so simple, but it's hard work, and we're all on a deadline. Kittle describes a class in which her own expectations that students would become readers combined with a few impassioned strategies succeeded ... at least with a young man named Alan.

  9. Science Planning for the TROPIX Mission

    NASA Technical Reports Server (NTRS)

    Russell, C. T.

    1998-01-01

    The objective of the study grant was to undertake the planning needed to execute meaningful solar electric propulsion missions in the magnetosphere and beyond. The first mission examined was the Transfer Orbit Plasma Investigation Experiment (TROPIX) mission to spiral outward through the magnetosphere. The next mission examined was to the moon and an asteroid. Entitled Diana, it was proposed to NASA in October 1994. Two similar missions were conceived in 1996 entitled CNR for Comet Nucleus Rendezvous and MBAR for Main Belt Asteroid Rendezvous. The latter mission was again proposed in 1998. All four of these missions were unsuccessfully proposed to the NASA Discovery program. Nevertheless we were partially successful in that the Deep Space 1 (DS1) mission was eventually carried out nearly duplicating our CNR mission. Returning to the magnetosphere we studied and proposed to the Medium Class Explorer (MIDEX) program a MidEx mission called TEMPEST, in 1995. This mission included two solar electric spacecraft that spiraled outward in the magnetosphere: one at near 900 inclination and one in the equatorial plane. This mission was not selected for flight. Next we proposed a single SEP vehicle to carry Energetic Neutral Atom (ENA) imagers and inside observations to complement the IMAGE mission providing needed data to properly interpret the IMAGE data. This mission called SESAME was submitted unsuccessfully in 1997. One proposal was successful. A study grant was awarded to examine a four spacecraft solar electric mission, named Global Magnetospheric Dynamics. This study was completed and a report on this mission is attached but events overtook this design and a separate study team was selected to design a classical chemical mission as a Solar Terrestrial Probe. Competing proposals such as through the MIDEX opportunity were expressly forbidden. A bibliography is attached.

  10. The Gravity Recovery and Interior Laboratory Mission

    NASA Technical Reports Server (NTRS)

    Lehman, David H.; Hoffman, Tom L.; Havens, Glen G.

    2013-01-01

    The Gravity Recovery and Interior Laboratory (GRAIL) mission, launched in September 2011, successfully completed its Primary Science Mission in June 2012 and is currently in Extended Mission operations. Competitively selected under a NASA Announcement of Opportunity in December 2007, GRAIL is a Discovery Program mission subject to a mandatory project cost cap. The purpose of the mission is to precisely map the gravitational field of the Moon to reveal its internal structure from crust to core, determine its thermal evolution, and extend this knowledge to other planets. The mission uses twin spacecraft flying in tandem to provide the gravity map. The GRAIL Flight System, consisting of the spacecraft and payload, was developed based on significant heritage from previous missions such an experimental U.S. Air Force satellite, the Mars Reconnaissance Orbiter (MRO) mission, and the Gravity Recovery and Climate Experiment (GRACE) mission. The Mission Operations System (MOS) was based on high-heritage multimission operations developed by NASA's Jet Propulsion Laboratory and Lockheed Martin. Both the Flight System and MOS were adapted to meet the unique challenges posed by the GRAIL mission design. This paper summarizes the implementation challenges and accomplishments of getting GRAIL ready for launch. It also discusses the in-flight challenges and experiences of operating two spacecraft, and mission results.

  11. Get Involved in Planetary Discoveries through New Worlds, New Discoveries

    NASA Astrophysics Data System (ADS)

    Shupla, Christine; Shipp, S. S.; Halligan, E.; Dalton, H.; Boonstra, D.; Buxner, S.; SMD Planetary Forum, NASA

    2013-01-01

    "New Worlds, New Discoveries" is a synthesis of NASA’s 50-year exploration history which provides an integrated picture of our new understanding of our solar system. As NASA spacecraft head to and arrive at key locations in our solar system, "New Worlds, New Discoveries" provides an integrated picture of our new understanding of the solar system to educators and the general public! The site combines the amazing discoveries of past NASA planetary missions with the most recent findings of ongoing missions, and connects them to the related planetary science topics. "New Worlds, New Discoveries," which includes the "Year of the Solar System" and the ongoing celebration of the "50 Years of Exploration," includes 20 topics that share thematic solar system educational resources and activities, tied to the national science standards. This online site and ongoing event offers numerous opportunities for the science community - including researchers and education and public outreach professionals - to raise awareness, build excitement, and make connections with educators, students, and the public about planetary science. Visitors to the site will find valuable hands-on science activities, resources and educational materials, as well as the latest news, to engage audiences in planetary science topics and their related mission discoveries. The topics are tied to the big questions of planetary science: how did the Sun’s family of planets and bodies originate and how have they evolved? How did life begin and evolve on Earth, and has it evolved elsewhere in our solar system? Scientists and educators are encouraged to get involved either directly or by sharing "New Worlds, New Discoveries" and its resources with educators, by conducting presentations and events, sharing their resources and events to add to the site, and adding their own public events to the site’s event calendar! Visit to find quality resources and ideas. Connect with

  12. STS-85 Discovery Launch (Side View)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Blasting through the hazy late morning sky, the Space Shuttle Discovery soars from Launch Pad 39A at 10:41 a.m. EDT Aug. 7 on the 11-day STS-85 mission. Aboard Discovery are Commander Curtis L. Brown, Jr.; Pilot Kent V. Rominger, Payload Commander N. Jan Davis, Mission Specialist Robert L. Curbeam, Jr., Mission Specialist Stephen K. Robinson and Payload Specialist Bjarni V. Tryggvason, a Canadian Space Agency astronaut . The primary payload aboard the Space Shuttle orbiter Discovery is the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite-2 (CRISTA-SPAS-2) free-flyer. The CRISTA-SPAS-2 will be deployed on flight day 1 to study trace gases in the Earths atmosphere as a part of NASAs Mission to Planet Earth program. Also aboard the free-flying research platform will be the Middle Atmosphere High Resolution Spectrograph Instrument (MAHRSI). Other payloads on the 11-day mission include the Manipulator Flight Demonstration (MFD), a Japanese Space Agency-sponsored experiment. Also in Discoverys payload bay are the Technology Applications and Science-1 (TAS-1) and International Extreme Ultraviolet Hitchhiker-2 (IEH-2) experiments.

  13. STS-85 Discovery Launch (From Tower)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Blasting through the hazy late morning sky, the Space Shuttle Discovery soars from Launch Pad 39A at 10:41 a.m. EDT Aug. 7 on the 11-day STS-85 mission. Aboard Discovery are Commander Curtis L. Brown, Jr.; Pilot Kent V. Rominger, Payload Commander N. Jan Davis, Mission Specialist Robert L. Curbeam, Jr., Mission Specialist Stephen K. Robinson and Payload Specialist Bjarni V. Tryggvason, a Canadian Space Agency astronaut . The primary payload aboard the Space Shuttle orbiter Discovery is the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite-2 (CRISTA-SPAS-2) free-flyer. The CRISTA-SPAS-2 will be deployed on flight day 1 to study trace gases in the Earths atmosphere as a part of NASAs Mission to Planet Earth program. Also aboard the free-flying research platform will be the Middle Atmosphere High Resolution Spectrograph Instrument (MAHRSI). Other payloads on the 11-day mission include the Manipulator Flight Demonstration (MFD), a Japanese Space Agency-sponsored experiment. Also in Discoverys payload bay are the Technology Applications and Science-1 (TAS-1) and International Extreme Ultraviolet Hitchhiker-2 (IEH-2) experiments.

  14. STS-85 Discovery Launch (trees in foreground)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Blasting through the hazy late morning sky, the Space Shuttle Discovery soars from Launch Pad 39A at 10:41 a.m. EDT Aug. 7 on the 11-day STS-85 mission. Aboard Discovery are Commander Curtis L. Brown, Jr.; Pilot Kent V. Rominger, Payload Commander N. Jan Davis, Mission Specialist Robert L. Curbeam, Jr., Mission Specialist Stephen K. Robinson and Payload Specialist Bjarni V. Tryggvason, a Canadian Space Agency astronaut . The primary payload aboard the Space Shuttle orbiter Discovery is the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite-2 (CRISTA-SPAS-2) free-flyer. The CRISTA-SPAS-2 will be deployed on flight day 1 to study trace gases in the Earths atmosphere as a part of NASAs Mission to Planet Earth program. Also aboard the free-flying research platform will be the Middle Atmosphere High Resolution Spectrograph Instrument (MAHRSI). Other payloads on the 11-day mission include the Manipulator Flight Demonstration (MFD), a Japanese Space Agency-sponsored experiment. Also in Discoverys payload bay are the Technology Applications and Science-1 (TAS-1) and International Extreme Ultraviolet Hitchhiker-2 (IEH-2) experiments.

  15. STS-26 MS Nelson on fixed based (FB) shuttle mission simulator (SMS) middeck

    NASA Technical Reports Server (NTRS)

    1988-01-01

    STS-26 Discovery, Orbiter Vehicle (OV) 103, Mission Specialist (MS) George D. Nelson trains on the middeck of the fixed based (FB) shuttle mission simulator (SMS). Nelson, wearing communications assembly headset, adjusts camera mounting bracket.

  16. Space Shuttle Discovery lifts off successfully

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Against a curtain of blue sky, the Space Shuttle Discovery spews clouds of exhaust as it lifts off from Launch Pad 39B at 2:19 p.m. EST Oct. 29 on the 9-day mission STS-95. On board Discovery are Mission Commander Curtis L. Brown Jr., Pilot Steven W. Lindsey, Payload Specialist Chiaki Mukai, (M.D., Ph.D.), with the National Space Development Agency of Japan (NASDA), Payload Specialist John H. Glenn Jr., senator from Ohio, Mission Specialist Stephen K. Robinson, Mission Specialist Pedro Duque of Spain, representing the European Space Agency (ESA), and Mission Specialist Scott E. Parazynski. The STS-95 mission includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process. Discovery is expected to return to KSC at 11:49 a.m. EST on Nov. 7.

  17. Space Shuttle Discovery lifts off successfully

    NASA Technical Reports Server (NTRS)

    1998-01-01

    As if sprung from the rolling exhaust clouds below, Space Shuttle Discovery shoots into the heavens over the blue Atlantic Ocean from Launch Pad 39B on mission STS-95. Lifting off at 2:19 p.m. EST, Discovery carries a crew of six, including Payload Specialist John H. Glenn Jr., senator from Ohio, who is making his second voyage into space after 36 years. Other crew members are Mission Commander Curtis L. Brown Jr., Pilot Steven W. Lindsey, Payload Specialist Chiaki Mukai, (M.D., Ph.D.), with the National Space Development Agency of Japan (NASDA), Mission Specialist Stephen K. Robinson, Mission Specialist Pedro Duque of Spain, representing the European Space Agency (ESA), and Mission Specialist Scott E. Parazynski. The STS-95 mission includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process. Discovery is expected to return to KSC at 11:49 a.m. EST on Nov. 7.

  18. Venus Aerobot Multisonde Mission

    NASA Technical Reports Server (NTRS)

    Cutts, James A.; Kerzhanovich, Viktor; Balaram, J. Bob; Campbell, Bruce; Gershaman, Robert; Greeley, Ronald; Hall, Jeffery L.; Cameron, Jonathan; Klaasen, Kenneth; Hansen, David M.

    1999-01-01

    Robotic exploration of Venus presents many challenges because of the thick atmosphere and the high surface temperatures. The Venus Aerobot Multisonde mission concept addresses these challenges by using a robotic balloon or aerobot to deploy a number of short lifetime probes or sondes to acquire images of the surface. A Venus aerobot is not only a good platform for precision deployment of sondes but is very effective at recovering high rate data. This paper describes the Venus Aerobot Multisonde concept and discusses a proposal to NASA's Discovery program using the concept for a Venus Exploration of Volcanoes and Atmosphere (VEVA). The status of the balloon deployment and inflation, balloon envelope, communications, thermal control and sonde deployment technologies are also reviewed.

  19. Astronaut Daniel Bursch with CPCG experiment on Discovery's middeck

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Astronaut Daniel W. Bursch, mission specialist, is pictured on Discovery's middeck with the Commercial Protein Crystal Growth (CPCG) experiment. This experiment is designed to explore the structure of specific protein molecules in space-grown crystals.

  20. Four STS 51-G crewmembers on Discovery's middeck

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Four STS 51-G crewmembers huddle in a corner of the Discovery's middeck area. Daniel C. Brandenstein, mission commander, assists Steven R. Nagel with the treadmill device while John O. Creighton and Shannon W. Lucid look on.

  1. Momentous discoveries on Mars: science outside MEP pathways

    NASA Technical Reports Server (NTRS)

    Easter, R. W.; Delitsky, M. I.; Lamassoure, E.; Marshall, M. F.; Matthews, J. B.; Palkovic, L. A.; Wilson, T. J.

    2003-01-01

    The Mars Outpost Team seeks further input from the Mars community about other possible momentous discoveries that could be made, as well as ways to respond to them (types of missions, instruments, spacecraft-orbiters, landers, rovers, airplanes, etc.).

  2. STS-102 Discovery lifts off from Launch Pad 39-B

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. - Sunrise paints the exhaust trail of Space Shuttle Discovery a rosy hue at liftoff on mission STS-102 . Liftoff occurred at 6:42:09 EST for the eighth flight to the International Space Station.

  3. Astronaut Richard Richards looks out of Discovery's flight deck window

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Astronaut Richard N. Richards, mission commander, looks through one of the Space Shuttle Discovery's overhead flight deck windows to view the space walk activities of astronauts Carl J. Meade, who took this picture, and Mark C. Lee.

  4. (abstract) Hermes Global Orbiter: Mission to Mercury

    NASA Technical Reports Server (NTRS)

    Horn, L.; Nelson, R.; Weiss, J.; Smythe, W.; Evans, M.; Gatz, E.; Kuo, S.; Lane, A.; Linick, S.; Lopes-Gautier, R.; Manatt, K.; Martin, W.; Morris, R.; Ocampo, A.; Spradlin, G.; Wallis, B.; Yen, C.; Danielson, G.; Garvin, J.; Guest, J.; Hapke, B.; McClintock, W.; Simmons, K.; Russell, C.; Cruz, M.

    1993-01-01

    The Hermes Global Orbiter is a proposed Discovery-class mission. Hermes will be launched aboard a Delta II rocket in 1999 and will be placed in an elliptical polar orbit about Mercury. Remote sensing measurements of the planet's surface, atmosphere, and magnetosphere will be performed. Key mission goals include mapping the entire surface at 1 km resolution, characterizing the surface composition, texture and topography, searching for water ice at the poles, characterizing the atmosphere, and constraining the interior structure.

  5. NASA reschedules Mars mission for 2018

    NASA Astrophysics Data System (ADS)

    Gwynne, Peter

    2016-04-01

    NASA has announced that its next mission to Mars will be launched in May 2018 following the discovery of a leak in a key scientific instrument. The mission – Interior Exploration using Seismic Investigations, Geodesy and Heat Transport (InSight) – was originally scheduled to launch last month and reach Mars later this year, but the new launch window means it will now not land on the red planet until November 2018.

  6. STS-88 Mission Specialist Currie prepares to enter Endeavour

    NASA Technical Reports Server (NTRS)

    1998-01-01

    STS-88 Mission Specialist Nancy Jane Currie is assisted with her ascent and re-entry flight suit in the white room at Launch Pad 39A before entering Space Shuttle Endeavour for launch. During the nearly 12-day mission, the six-member crew will mate the first two elements of the International Space Station -- the already-orbiting Zarya control module with the Unity connecting module carried by Endeavour. She is making her third spaceflight as the crew's flight engineer and prime operator of the Remote Manipulator System, the robotic arm.

  7. Payload missions integration

    NASA Technical Reports Server (NTRS)

    Mitchell, R. A. K.

    1983-01-01

    Highlights of the Payload Missions Integration Contract (PMIC) are summarized. Spacelab Missions no. 1 to 3, OSTA partial payloads, Astro-1 Mission, premission definition, and mission peculiar equipment support structure are addressed.

  8. Landing of STS-63 Discovery at KSC

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Contrails stream from the port side wing of the Space Shuttle Discovery as it touches down on Runway 15 at the Kennedy Space Center's (KSC) Shuttle Landing Facility to complete an eight day mission. Touchdown occurred at 6:50:19 a.m. (EST), February 11, 1995.

  9. Landing of STS-63 Discovery at KSC

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The main gear of the Space Shuttle Discovery touches down on Runway 15 at the Kennedy Space Center's (KSC) Shuttle Landing Facility to complete an eight day mission. Touchdown occurred at 6:50:19 a.m. (EST), February 11, 1995.

  10. Landing of STS-63 Discovery at KSC

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Space Shuttle Discovery is about to touch down on Runway 15 at the Kennedy Space Center's (KSC) Shuttle Landing Facility to complete an eight day mission. Touchdown occurred at 6:50:19 a.m. (EST), February 11, 1995.

  11. Landing of STS-63 Discovery at KSC

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Space Shuttle Discovery deploys its drag chute on Runway 15 at the Kennedy Space Center's (KSC) Shuttle Landing Facility as it completes an eight day mission. Touchdown occurred at 6:50:19 a.m. (EST), February 11, 1995.

  12. General view of the Orbiter Discovery on runway 33 at ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view of the Orbiter Discovery on runway 33 at Kennedy Space Center shortly after landing. The orbiter is processed and prepared for being towed to the Orbiter Processing Facility for continued post flight processing and pre flight preparations for its next mission. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  13. STS-92 crew looks over their payload in Space Shuttle Discovery

    NASA Technical Reports Server (NTRS)

    2000-01-01

    In Space Shuttle Discovery'''s payload bay, STS-92 Mission Specialist Michael E. Lopez-Alegria takes hold of a lever on the Pressurized Mating Adapter, part of the payload on the mission. Behind him Mission Specialist William S. McArthur Jr. describes a task while Mission Specialist Peter J.K. Wisoff looks on. The STS-92 crew has been inspecting the payload in preparation for launch Oct. 5, 2000. The mission is the fifth flight for the construction of the International Space Station. The payload also includes the Integrated Truss Structure Z-1. During the 11-day mission, four extravehicular activities (EVAs), or space walks, are planned.

  14. Mission specification for three generic mission classes

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Mission specifications for three generic mission classes are generated to provide a baseline for definition and analysis of data acquisition platform system concepts. The mission specifications define compatible groupings of sensors that satisfy specific earth resources and environmental mission objectives. The driving force behind the definition of sensor groupings is mission need; platform and space transportation system constraints are of secondary importance. The three generic mission classes are: (1) low earth orbit sun-synchronous; (2) geosynchronous; and (3) non-sun-synchronous, nongeosynchronous. These missions are chosen to provide a variety of sensor complements and implementation concepts. Each mission specification relates mission categories, mission objectives, measured parameters, and candidate sensors to orbits and coverage, operations compatibility, and platform fleet size.

  15. STS-114: Discovery Post MMT Briefing

    NASA Technical Reports Server (NTRS)

    2005-01-01

    On flight day 13, Leroy Cain, STS-114 Ascent/Entry Flight Director, discusses the condition of the Space Shuttle Discovery, and the weather outlook for landing. He answers questions from the news media about his feelings about re-entry since the Columbia tragedy, possible new information during re-entry, critical moments in the Mission Control Room during landing, and differences between night landing and day landing. Footage of the Mission Control Room and a talk with Soichi Noguchi in orbit is shown. Also, footage of the truss structure of the International Space Station, Destiny Laboratory, crew cabin of Discovery, and the Orbiter Docking System linked up to forward docking port on Discovery is shown. Eileen Collins and Wendy Lawrence are shown in the flight deck of Discovery. Charles Camarda is also shown in the mid-deck. Downlink television from Discovery shows spacewalk choreographer Andy Thomas with Stephen Robinson and Soichi Noguchi preparing for depressurization and pre-breathing activities that will lead to the opening of the hatch. The installation of a replacement GPS antenna, images of the port wing of Discovery and Canadarm moving with the Orbital Boom Sensor System (OBSS) extension is shown.

  16. STS-51 astronauts photographed during sleep period on Discovery's middeck

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Four of the five STS-51 crew members were photographed during one of their sleep periods on Discovery's middeck. At bottom center, astronaut Frank L. Culbertson Jr., mission commander, is barely visible, with most of his body zipped securely in the sleep restraint. Others, left to right, are astronauts Daniel W. Bursch and Carl E. Walz, mission specialists, and William F. Readdy, pilot. The photograph was taken by astronaut James H. Newman, mission specialist.

  17. Conceptual Design For Interplanetary Spaceship Discovery

    NASA Astrophysics Data System (ADS)

    Benton, Mark G.

    2006-01-01

    With the recently revived national interest in Lunar and Mars missions, this design study was undertaken by the author in an attempt to satisfy the long-term space exploration vision of human travel ``to the Moon, Mars, and beyond'' with a single design or family of vehicles. This paper describes a conceptual design for an interplanetary spaceship of the not-to-distant future. It is a design that is outwardly similar to the spaceship Discovery depicted in the novel ``2001 - A Space Odyssey'' and film of the same name. Like its namesake, this spaceship could one day transport a human expedition to explore the moons of Jupiter. This spaceship Discovery is a real engineering design that is capable of being implemented using technologies that are currently at or near the state-of-the-art. The ship's main propulsion and electrical power are provided by bi-modal nuclear thermal rocket engines. Configurations are presented to satisfy four basic Design Reference Missions: (1) a high-energy mission to Jupiter's moon Callisto, (2) a high-energy mission to Mars, (3) a low-energy mission to Mars, and (4) a high-energy mission to the Moon. The spaceship design includes dual, strap-on boosters to enable the high-energy Mars and Jupiter missions. Three conceptual lander designs are presented: (1) Two types of Mars landers that utilize atmospheric and propulsive braking, and (2) a lander for Callisto or Earth's Moon that utilizes only propulsive braking. Spaceship Discovery offers many advantages for human exploration of the Solar System: (1) Nuclear propulsion enables propulsive capture and escape maneuvers at Earth and target planets, eliminating risky aero-capture maneuvers. (2) Strap-on boosters provide robust propulsive energy, enabling flexibility in mission planning, shorter transit times, expanded launch windows, and free-return abort trajectories from Mars. (3) A backup abort propulsion system enables crew aborts at multiple points in the mission. (4) Clustered NTR

  18. Space Shuttle Discovery lifts off successfully

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Clouds of exhaust fill Launch Pad 39B as Space Shuttle Discovery lifts off at 2:19 p.m. EST Oct. 29 on mission STS-95. Making his second voyage into space after 36 years is Payload Specialist John H. Glenn Jr., senator from Ohio. Other crew members are Mission Commander Curtis L. Brown Jr., Pilot Steven W. Lindsey, Payload Specialist Chiaki Mukai, (M.D., Ph.D.), with the National Space Development Agency of Japan (NASDA), Mission Specialist Stephen K. Robinson, Mission Specialist Pedro Duque of Spain, representing the European Space Agency (ESA), and Mission Specialist Scott E. Parazynski. The STS-95 mission includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process. Discovery is expected to return to KSC at 11:49 a.m. EST on Nov. 7.

  19. Space Shuttle Discovery lifts off successfully

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Clouds of exhaust seem to fill the marsh near Launch Pad 39B as Space Shuttle Discovery lifts off at 2:19 p.m. EST Oct. 29 on mission STS-95. Making his second voyage into space after 36 years is Payload Specialist John H. Glenn Jr., senator from Ohio. Other crew members are Mission Commander Curtis L. Brown Jr., Pilot Steven W. Lindsey, Payload Specialist Chiaki Mukai, (M.D., Ph.D.), with the National Space Development Agency of Japan (NASDA), Mission Specialist Stephen K. Robinson, Mission Specialist Pedro Duque of Spain, representing the European Space Agency (ESA), and Mission Specialist Scott E. Parazynski. The STS-95 mission includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process. Discovery is expected to return to KSC at 11:49 a.m. EST on Nov. 7.

  20. Space Shuttle Discovery lifts off successfully

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Clouds of exhaust and blazing light fill Launch Pad 39B as Space Shuttle Discovery lifts off at 2:19 p.m. EST Oct. 29 on mission STS-95. Making his second voyage into space after 36 years is Payload Specialist John H. Glenn Jr., senator from Ohio. Other crew members are Mission Commander Curtis L. Brown Jr., Pilot Steven W. Lindsey, Payload Specialist Chiaki Mukai, (M.D., Ph.D.), with the National Space Development Agency of Japan (NASDA), Mission Specialist Stephen K. Robinson, Mission Specialist Pedro Duque of Spain, representing the European Space Agency (ESA), and Mission Specialist Scott E. Parazynski. The STS-95 mission includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process. Discovery is expected to return to KSC at 11:49 a.m. EST on Nov. 7.

  1. Space Shuttle Discovery lifts off successfully

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Thousands of gallons of water released as part of the sound suppression system at the launch pad create clouds of steam and exhaust as Space Shuttle Discovery lifts off from Launch Pad 39B at 2:19 p.m. EST Oct. 29 on mission STS-95. Making his second voyage into space after 36 years is Payload Specialist John H. Glenn Jr., senator from Ohio. Other crew members are Mission Commander Curtis L. Brown Jr., Pilot Steven W. Lindsey, Payload Specialist Chiaki Mukai, (M.D., Ph.D.), with the National Space Development Agency of Japan (NASDA), Mission Specialist Stephen K. Robinson, Mission Specialist Pedro Duque of Spain, representing the European Space Agency (ESA), and Mission Specialist Scott E. Parazynski. The STS-95 mission includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process. Discovery is expected to return to KSC at 11:49 a.m. EST on Nov. 7.

  2. Space Shuttle Discovery lifts off successfully

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Tree branches on the Space Coast frame Space Shuttle Discovery's liftoff from Launch Pad 39B at 2:19 p.m. EST Oct. 29 on mission STS-95. Making his second voyage into space after 36 years is Payload Specialist John H. Glenn Jr., senator from Ohio. Other crew members are Mission Commander Curtis L. Brown Jr., Pilot Steven W. Lindsey, Payload Specialist Chiaki Mukai, (M.D., Ph.D.), with the National Space Development Agency of Japan (NASDA), Mission Specialist Stephen K. Robinson, Mission Specialist Pedro Duque of Spain, representing the European Space Agency (ESA), and Mission Specialist Scott E. Parazynski. The STS-95 mission includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process. Discovery is expected to return to KSC at 11:49 a.m. EST on Nov. 7.

  3. Space Shuttle Discovery lifts off successfully

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Framed by the foliage of the Canaveral National Sea Shore, Space Shuttle Discovery soars through bright blue skies as it lifts off from Launch Pad 39B at 2:19 p.m. EST Oct. 29 on mission STS-95. Making his second voyage into space after 36 years is Payload Specialist John H. Glenn Jr., senator from Ohio. Other crew members are Mission Commander Curtis L. Brown Jr., Pilot Steven W. Lindsey, Payload Specialist Chiaki Mukai, (M.D., Ph.D.), with the National agency for Space Development (NASDA), Mission Specialist Stephen K. Robinson, Mission Specialist Pedro Duque of Spain, representing the European Space Agency (ESA), and Mission Specialist Scott E. Parazynski. The STS-95 mission includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process. Discovery is expected to return to KSC at 11:49 a.m. EST on Nov. 7.

  4. Space Shuttle Discovery lifts off successfully

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Space Shuttle Discovery clears Launch Pad 39B at 2:19 p.m. EST Oct. 29 as it lifts off on mission STS-95. Making his second voyage into space after 36 years is Payload Specialist John H. Glenn Jr., senator from Ohio. Other crew members are Mission Commander Curtis L. Brown Jr., Pilot Steven W. Lindsey, Payload Specialist Chiaki Mukai, (M.D., Ph.D.), with the National Space Development Agency of Japan (NASDA), Mission Specialist Stephen K. Robinson, Mission Specialist Pedro Duque of Spain, representing the European Space Agency (ESA), and Mission Specialist Scott E. Parazynski. The STS-95 mission includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process. Discovery is expected to return to KSC at 11:49 a.m. EST on Nov. 7.

  5. Mission Advantages of NEXT: Nasa's Evolutionary Xenon Thruster

    NASA Technical Reports Server (NTRS)

    Oleson, Steven; Gefert, Leon; Benson, Scott; Patterson, Michael; Noca, Muriel; Sims, Jon

    2002-01-01

    With the demonstration of the NSTAR propulsion system on the Deep Space One mission, the range of the Discovery class of NASA missions can now be expanded. NSTAR lacks, however, sufficient performance for many of the more challenging Office of Space Science (OSS) missions. Recent studies have shown that NASA's Evolutionary Xenon Thruster (NEXT) ion propulsion system is the best choice for many exciting potential OSS missions including outer planet exploration and inner solar system sample returns. The NEXT system provides the higher power, higher specific impulse, and higher throughput required by these science missions.

  6. Low Cost Mission Operations Workshop. [Space Missions

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The presentations given at the Low Cost (Space) Mission Operations (LCMO) Workshop are outlined. The LCMO concepts are covered in four introductory sections: Definition of Mission Operations (OPS); Mission Operations (MOS) Elements; The Operations Concept; and Mission Operations for Two Classes of Missions (operationally simple and complex). Individual presentations cover the following topics: Science Data Processing and Analysis; Mis sion Design, Planning, and Sequencing; Data Transport and Delivery, and Mission Coordination and Engineering Analysis. A list of panelists who participated in the conference is included along with a listing of the contact persons for obtaining more information concerning LCMO at JPL. The presentation of this document is in outline and graphic form.

  7. STS-105 Mission Crew Portrait

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This is the portrait of the astronaut and cosmonaut crewmembers comprising the STS-105 mission. The base crew (bottom center), left to right, are pilot Frederick W. (Rich) Sturckow, Mission Specialists Patrick G. Forester and Daniel T. Barry, and Commander Scott J. Horowitz. The upper right group are the International Space Station (ISS) Expedition Three crew, (left to right) Cosmonaut Mikhail Tyurin, flight engineer; Astronaut Frank L. Culbertson, Jr., commander; and Cosmonaut Vladimir N. Dezhurov, flight engineer. The upper left group are the ISS Expedition Two crew, (left to right) Astronaut James S. Voss, commander; Cosmonaut Yury V. Usachev, flight engineer; and Astronaut Susan J. Helms, flight engineer. The STS-105 was the 11th ISS assembly flight and launched on August 19, 2001 aboard the Space Shuttle Orbiter Discovery.

  8. NEW COMPLETENESS METHODS FOR ESTIMATING EXOPLANET DISCOVERIES BY DIRECT DETECTION

    SciTech Connect

    Brown, Robert A.; Soummer, Remi

    2010-05-20

    We report on new methods for evaluating realistic observing programs that search stars for planets by direct imaging, where observations are selected from an optimized star list and stars can be observed multiple times. We show how these methods bring critical insight into the design of the mission and its instruments. These methods provide an estimate of the outcome of the observing program: the probability distribution of discoveries (detection and/or characterization) and an estimate of the occurrence rate of planets ({eta}). We show that these parameters can be accurately estimated from a single mission simulation, without the need for a complete Monte Carlo mission simulation, and we prove the accuracy of this new approach. Our methods provide tools to define a mission for a particular science goal; for example, a mission can be defined by the expected number of discoveries and its confidence level. We detail how an optimized star list can be built and how successive observations can be selected. Our approach also provides other critical mission attributes, such as the number of stars expected to be searched and the probability of zero discoveries. Because these attributes depend strongly on the mission scale (telescope diameter, observing capabilities and constraints, mission lifetime, etc.), our methods are directly applicable to the design of such future missions and provide guidance to the mission and instrument design based on scientific performance. We illustrate our new methods with practical calculations and exploratory design reference missions for the James Webb Space Telescope (JWST) operating with a distant starshade to reduce scattered and diffracted starlight on the focal plane. We estimate that five habitable Earth-mass planets would be discovered and characterized with spectroscopy, with a probability of zero discoveries of 0.004, assuming a small fraction of JWST observing time (7%), {eta} = 0.3, and 70 observing visits, limited by starshade

  9. The Mars Pathfinder Mission

    NASA Technical Reports Server (NTRS)

    Golombek, Matthew P.

    1997-01-01

    Mars Pathfinder, one of the first Discovery-class missions (quick, low-cost projects with focused science objectives), will land a single spacecraft with a microrover and several instruments on the surface of Mars in 1997. Pathfinder will be the first mission to use a rover, carrying a chemical analysis instrument, to characterize the rocks and soils in a landing area over hundreds of square meters on Mars, which will provide a calibration point or "ground truth" for orbital remote sensing observations. In addition to the rover, which also performs a number of technology experiments, Pathfinder carries three science instruments: a stereoscopic imager with spectral filters on an extendable mast, an alpha proton X ray spectrometer, and an atmospheric structure instrument/meteorology package. The instruments, the rover technology experiments, and the telemetry system will allow investigations of the surface morphology and geology at submeter to a hundred meters scale, the petrology and geochemistry of rocks and soils, the magnetic properties of dust, soil mechanics and properties, a variety of atmospheric investigations, and the rotational and orbital dynamics of Mars. Landing downstream from the mouth of a giant catastrophic outflow channel, Ares Vallis at 19.5 deg N, 32.8 deg W, offers the potential of identifying and analyzing a wide variety of crustal materials, from the ancient heavily cratered terrain, intermediate-aged ridged plains, and reworked channel deposits, thus allowing first-order scientific investigations of the early differentiation and evolution of the crust, the development of weathering products, and tile early environments and conditions on Mars.

  10. Flora: A Proposed Hyperspectral Mission

    NASA Technical Reports Server (NTRS)

    Ungar, Stephen; Asner, Gregory; Green, Robert; Knox, Robert

    2006-01-01

    In early 2004, one of the authors (Stephen Ungar, NASA GSFC) presented a mission concept called "Spectrasat" at the AVIRIS Workshop in Pasadena, CA. This mission concept grew out of the lessons learned from the Earth Observing-One (EO-1) Hyperion Imaging Spectrometer and was structured to more effectively accomplish the types of studies conducted with Hyperion. The Spectrasat concept represented an evolution of the technologies and operation strategies employed on EO-I. The Spectrasat concept had been preceded by two community-based missions proposed by Susan Ustin, UC Davis and Robert Green, NASA JPL. As a result of community participation, starting at this AVIRIS Workshop, the Spectrasat proposal evolved into the Flora concept which now represents the combined visions of Gregory Asner (Carnegie Institute), Stephen Ungar, Robert Green and Robert Knox, NASA GSFC. Flora is a proposed imaging spectrometer mission, designed to address global carbon cycle science issues. This mission centers on measuring ecological disturbance for purposes of ascertaining changes in global carbon stocks and draws heavily on experience gained through AVIRIS airborne flights and Hyperion space born flights. The observing strategy exploits the improved ability of imaging spectrometers, as compared with multi-spectral observing systems, to identify vegetation functional groups, detect ecosystem response to disturbance and assess the related discovery. Flora will be placed in a sun synchronous orbit, with a 45 meter pixel size, a 90 km swath width and a 31 day repeat cycle. It covers the spectral range from 0.4 to 2.5 micrometers with a spectral sampling interval of 10 nm. These specifications meet the needs of the Flora science team under the leadership of Gregory Asner. Robert Green, has introduced a spectrometer design for Flora which is expected to have a SNR of 600: 1 in the VNIR and 450: 1 in the SWIR. The mission team at NASA GSFC is designing an Intelligent Payload Module (IPM

  11. Enabling Future Low-Cost Small Mission Concepts

    NASA Technical Reports Server (NTRS)

    Lee, Young; Bairstow, Brian; Amini, Rashied; Zakrajsek, June; Oleson, Steven; Cataldo, Robert

    2014-01-01

    A SmallSat using a small Radioisotope Power System for deep space destinations could potentially fit into a Discovery class mission cost cap and perform significant science with a timely return of data. Only applicable when the Discovery 12 guidelines were applied. Commonality of hardware and science instruments among identical spacecraft enabled to meet the Discovery Class mission cost cap. Multiple spacecraft shared the costs of the Launch Approval Engineering Process. Assumed a secondary science instrument was contributed. Small RPS could provide small spacecraft with a relatively high power (approx. 60 We) option for missions to deep space destinations (> 10 AU) with multiple science instruments. Study of Centaur mission demonstrated the ability to achieve New Frontiers level science. Multiple spacecraft possible with small RPS, allowing for multiple targets, science from multiple platforms, and/or redundancy.

  12. Interplanetary mission planning

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A long range plan for solar system exploration is presented. The subjects discussed are: (1) science payload for first Jupiter orbiters, (2) Mercury orbiter mission study, (3) preliminary analysis of Uranus/Neptune entry probes for Grand Tour Missions, (4) comet rendezvous mission study, (5) a survey of interstellar missions, (6) a survey of candidate missions to explore rings of Saturn, and (7) preliminary analysis of Venus orbit radar missions.

  13. Solar flare discovery

    NASA Technical Reports Server (NTRS)

    Hudson, Hugh S.

    1987-01-01

    This paper considers the discoveries that have appreciably changed our understanding of the physics of solar flares. A total of 42 discoveries from all disciplines, ranging from Galileo's initial observation of faculae to the recent discovery of strong limb brightening in 10-MeV gamma-radiation, are identified. The rate of discovery increased dramatically over the past four decades as new observational tools became available. The assessment of significance suggests that recent discoveries -though more numerous - are individually less significant; perhaps this is because the minor early discoveries tend to be taken for granted.

  14. Recent Discoveries in Nuclear Line Astrophysics

    NASA Astrophysics Data System (ADS)

    Boggs, Steven E.

    2016-06-01

    Nuclear gamma-ray lines provide a unique probe of supernovae and nuclear astrophysics. The potential for significant contributions to the understanding supernovae, as well as the large potential for new discoveries, has long been recognized. I will review several major discoveries in the past few years from the NuSTAR and INTEGRAL missions, including observations of SN 1987A, Cas A, and SN 2014J. In addition, I will look forward to the next generation of gamma-ray line instruments currently under development, including wide-field Compton telescopes and focusing lens telescopes.

  15. Future Missions to Titan and Enceladus.

    NASA Astrophysics Data System (ADS)

    Beauchamp, Patricia; Reh, Kim; Lunine, Jonathan; Coustenis, Athena; John, Elliott; Matson, Dennis L.; Lebreton, Jean-Pierre; Waite, Hunter; Turtle, Elizabeth

    A mission to Titan is a high priority for exploration, as recommended by the 2003 NRC report on New Frontiers in the Solar System (Decadal Survey). As anticipated by the NRC subcommittee, recent Cassini-Huygens discoveries have revolution-ized our understanding of Titan and its potential for harboring "ingredients" necessary for life. These discoveries reveal that Titan has a thick atmosphere that is rich in organics, possibly contains a vast liquid water subsurface ocean and has energy sources to drive chemical evolu-tion. Furthermore, insight into Titan's climate is important in understanding the climates of Earth, Venus and Mars. With these recent discoveries, interest in Titan as the next scientific target in the outer Solar System is strongly reinforced. Cassini's discovery of active geysers on Enceladus adds a second target in the Saturn system for such a mission, one that is synergistic with Titan in understanding planetary evolution and in adding a potential abode in the Saturn system for life. This presentation will provide an overview of the Titan Saturn System Mission (TSSM) concept, a discussion of other potential concepts, and current plans to advance technical readiness. This work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract to NASA.

  16. STS-64 Mission Insignia

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The STS-64 patch depicts the Space Shuttle Discovery in a payload-bay-to-Earth attitude with its primary payload, Lidar In-Space Technology Experiment (LITE-1) operating in support of Mission to Planet Earth. LITE-1 is a lidar system that uses a three-wavelength laser, symbolized by the three gold rays emanating from the star in the payload bay that form part of the astronaut symbol. The major objective of the LITE-1 is to gather data about the Earth's troposphere and stratosphere, represented by the clouds and dual-colored Earth limb. A secondary payload on STS-64 is the free-flier SPARTAN 201 satellite shown on the Remote Manipulator System (RMS) arm post-retrieval. The RMS also operated another payload, Shuttle Plume Impingement Flight Experiment (SPIFEX). A newly tested extravehicular activity (EVA) maneuvering device, Simplified Aid for EVA Rescue (SAFER), represented symbolically by the two small nozzles on the backpacks of the two untethered EVA crew men. The names of the crew members encircle the patch: Astronauts Richard N. Richards, L. Blaine Hammond, Jr., Jerry M. Linenger, Susan J. Helms, Carl J. Meade and Mark C. Lee. The gold or silver stars by each name represent that person's parent service.

  17. Discovery and New Frontiers Project Budget Analysis Tool

    NASA Technical Reports Server (NTRS)

    Newhouse, Marilyn E.

    2011-01-01

    The Discovery and New Frontiers (D&NF) programs are multi-project, uncoupled programs that currently comprise 13 missions in phases A through F. The ability to fly frequent science missions to explore the solar system is the primary measure of program success. The program office uses a Budget Analysis Tool to perform "what-if" analyses and compare mission scenarios to the current program budget, and rapidly forecast the programs ability to meet their launch rate requirements. The tool allows the user to specify the total mission cost (fixed year), mission development and operations profile by phase (percent total mission cost and duration), launch vehicle, and launch date for multiple missions. The tool automatically applies inflation and rolls up the total program costs (in real year dollars) for comparison against available program budget. Thus, the tool allows the user to rapidly and easily explore a variety of launch rates and analyze the effect of changes in future mission or launch vehicle costs, the differing development profiles or operational durations of a future mission, or a replan of a current mission on the overall program budget. Because the tool also reports average monthly costs for the specified mission profile, the development or operations cost profile can easily be validate against program experience for similar missions. While specifically designed for predicting overall program budgets for programs that develop and operate multiple missions concurrently, the basic concept of the tool (rolling up multiple, independently-budget lines) could easily be adapted to other applications.

  18. NASA's Discovery Program: Moving Toward the Edge (of the Solar System)

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Gilbert, Paul

    2007-01-01

    NASA's Planetary Science , Division sponsors a competitive program of small spacecraft missions with the goal of performing focused science investigations that complement NASA's larger planetary science explorations at relatively low cost. The goal of the Discovery program is to launch many smaller missions with fast development times to increase our understanding of the solar system by exploring the planets, dwarf planets, their moons, and small bodies such as comets and asteroids. Discovery missions are solicited from the broad planetary science community approximately every 2 years. Active missions within the Discovery program include several with direct scientific or engineering connections to potential future missions to the edge of the solar system and beyond. In addition to those in the Discovery program are the missions of the New Frontiers program. The first New Frontiers mission. is the New Horizons mission to Pluto, which will explore this 38-AU distant dwarf planet and potentially some Kuiper Belt objects beyond. The Discovery program's Dawn mission, when launched in mid-2007, will use ion drive as its primary propulsion system. Ion propulsion is one of only two technologies that appear feasible for early interstellar precursor missions with practical flight times. The Kepler mission will explore the structure and diversity of extrasolar planetary systems, with an emphasis on the detection of Earth-size planets around other stars. Kepler will survey nearby solar systems searching for planets that may fall within the habitable zone,' a region surrounding a star within which liquid water may exist on a planet's surface - an essential ingredient for life as we know it. With its open and competitive approach to mission selections, the Discovery program affords scientists the opportunity to propose missions to virtually any solar system destination. With its emphasis on science and proven openness to the use of new technologies such as ion propulsion

  19. The virtual mission approach: Empowering earth and space science missions

    NASA Astrophysics Data System (ADS)

    Hansen, Elaine

    1993-08-01

    Future Earth and Space Science missions will address increasingly broad and complex scientific issues. To accomplish this task, we will need to acquire and coordinate data sets from a number of different instrumetns, to make coordinated observations of a given phenomenon, and to coordinate the operation of the many individual instruments making these observations. These instruments will need to be used together as a single ``Virtual Mission.'' This coordinated approach is complicated in that these scientific instruments will generally be on different platforms, in different orbits, from different control centers, at different institutions, and report to different user groups. Before this Virtual Mission approach can be implemented, techniques need to be developed to enable separate instruments to work together harmoniously, to execute observing sequences in a synchronized manner, and to be managed by the Virtual Mission authority during times of these coordinated activities. Enabling technologies include object-oriented designed approaches, extended operations management concepts and distributed computing techniques. Once these technologies are developed and the Virtual Mission concept is available, we believe the concept will provide NASA's Science Program with a new, ``go-as-you-pay,'' flexible, and resilient way of accomplishing its science observing program. The concept will foster the use of smaller and lower cost satellites. It will enable the fleet of scientific satellites to evolve in directions that best meet prevailing science needs. It will empower scientists by enabling them to mix and match various combinations of in-space, ground, and suborbital instruments - combinations which can be called up quickly in response to new events or discoveries. And, it will enable small groups such as universities, Space Grant colleges, and small businesses to participate significantly in the program by developing small components of this evolving scientific fleet.

  20. STS-70 Mission Commander Henricks inspects tire

    NASA Technical Reports Server (NTRS)

    1995-01-01

    STS-70 Mission Commander Terence 'Tom' Henricks inspects the nose wheel landing gear tires of the Space Shuttle Orbiter Discovery along with Mission Specialist Mary Ellen Weber after the spaceplane touched down on KSC's Runway 33 to successfully conclude the nearly nine-day space flight. Main gear touchdown was unofficially listed at 8:02 a.m. EDT on July 22, 1995 on the second landing attempt after the first opportunity was waved off. The orbiter was originally scheduled to land on the 21st, but fog and low visibility at the Shuttle Landing Facility led to the one-day extension. This was the 24th landing at KSC and the 70th Space Shuttle mission. During the space flight, the five-member crew deployed the NASA Tracking and Data Relay Satellite-G (TDRS- G). The other crew members were Pilot Kevin R. Kregel and Mission Specialists Nancy Jane Currie and Donald A. Thomas.

  1. The Compton Gamma Ray Observatory: mission status.

    NASA Astrophysics Data System (ADS)

    Gehrels, N.; Chipman, E.; Kniffen, D. A.

    The Arthur Holly Compton Gamma Ray Observatory (Compton) is the second in NASA's series of Great Observatories. Compton has now been operating for over two and a half years, and has given a dramatic increase in capability over previous gamma-ray missions. The spacecraft and scientific instruments are all in good health, and many significant discoveries have already been made and continue to be made. The authors describe the capabilities of the four scientific instruments and the observing programs for the first three years of the mission. During Phases 2 and 3 of the mission a Guest Investigator program has been in progress with the Guest Observers' time share increasing from 30% to over 50% for the later mission phases.

  2. Discovery: Near-Earth Asteroid Rendezvous (NEAR)

    NASA Technical Reports Server (NTRS)

    Veverka, Joseph

    1992-01-01

    The work carried out under this grant consisted of two parallel studies aimed at defining candidate missions for the initiation of the Discovery Program being considered by NASA's Solar System Exploration Division. The main study considered a Discover-class mission to a Near Earth Asteroid (NEA); the companion study considered a small telescope in Earth-orbit dedicated to ultra violet studies of solar system bodies. The results of these studies are summarized in two reports which are attached (Appendix 1 and Appendix 2).

  3. STS-26 MS Lounge in fixed based (FB) shuttle mission simulator (SMS)

    NASA Technical Reports Server (NTRS)

    1988-01-01

    STS-26 Discovery, Orbiter Vehicle (OV) 103, Mission Specialist (MS) John M. Lounge, wearing comunications kit assembly headset and crouched on the aft flight deck, performs checklist inspection during training session. The STS-26 crew is training in the fixed base (FB) shuttle mission simulator (SMS) located in JSC Mission Simulation and Training Facility Bldg 5.

  4. STS-26 MS Hilmers on fixed based (FB) shuttle mission simulator (SMS) middeck

    NASA Technical Reports Server (NTRS)

    1988-01-01

    STS-26 Discovery, Orbiter Vehicle (OV) 103, Mission Specialist (MS) David C. Hilmers prepares to ascend a ladder representing the interdeck access hatch from the shuttle middeck to the flight deck. The STS-26 crew is training in the fixed base (FB) shuttle mission simulator (SMS) located in JSC Mission Simulation and Training Facility Bldg 5.

  5. STS-121/Discovery L-3 Countdown Status Briefing

    NASA Technical Reports Server (NTRS)

    2006-01-01

    The briefing started with opening remarks from George Diller (NASA Public Affairs). Jeff Spaulding (NASA Test Director) discussed the Shuttle launch status and the return to the International Space Station 12 day mission. Debbie Hahn (STS-121 Payload Manager) discussed the installation of mid-decks on ISS and the 2 tons of cargo (mainly crew supplies and food) and the oxygen regeneration system. Kathy Winters (Shuttle Weather Officer) discussed the weather forecast for the launch. The team also answered questions from the press.

  6. STS-114: Discovery Crew Post Landing Press Briefing

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The crew of the STS-114 Discovery is shown during a post landing press briefing. Commander Collins introduces the crew members who consist of Pilot Jim Kelley, Mission Specialist Soichi Noguchi from JAXA, Steve Robinson, Mission Specialist and Charlie Camarda, Mission Specialist. Steve Robinson answers a question from the news media about the repair that he performed in orbit, and his feelings about being back in his hometown of California. Commander Collins talks about the most significant accomplishment of the mission. The briefing ends as each crewmember reflects on the Space Shuttle Columbia tragedy and expresses their personal thoughts and feelings as they re-entered the Earth's atmosphere.

  7. Mir Mission Chronicle

    NASA Technical Reports Server (NTRS)

    McDonald, Sue

    1998-01-01

    Dockings, module additions, configuration changes, crew changes, and major mission events are tracked for Mir missions 17 through 21 (November 1994 through August 1996). The international aspects of these missions are presented, comprising joint missions with ESA and NASA, including three U.S. Space Shuttle dockings. New Mir modules described are Spektr, the Docking Module, and Priroda.

  8. Space physics missions handbook

    NASA Technical Reports Server (NTRS)

    Cooper, Robert A. (Compiler); Burks, David H. (Compiler); Hayne, Julie A. (Editor)

    1991-01-01

    The purpose of this handbook is to provide background data on current, approved, and planned missions, including a summary of the recommended candidate future missions. Topics include the space physics mission plan, operational spacecraft, and details of such approved missions as the Tethered Satellite System, the Solar and Heliospheric Observatory, and the Atmospheric Laboratory for Applications and Science.

  9. Missions and Moral Judgement.

    ERIC Educational Resources Information Center

    Bushnell, Amy Turner

    2000-01-01

    Addresses the history of Spanish-American missions, discussing the view of missions in church history, their role in the Spanish conquest, and the role and ideas of Herbert E. Bolton. Focuses on differences among Spanish borderlands missions, paying particular attention to the Florida missions. (CMK)

  10. STS-70 Discovery launch startling the birds

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Startled birds scatter as the stillness of a summer morning is broken by a giant's roar. The Space Shuttle Discovery thundered into space from launch Pad 39-B at 9:41:55:078 a.m. EDT. STS-70 is the 70th Shuttle flight overall, the 21st for Discovery (OV- 103), and the fourth Shuttle flight in 1995. On board for the nearly eight-day mission are a crew of five: Commander Terence 'Tom' Hendricks; Pilot Kevin R. Kregel; and Mission Specialists Nancy Jane Currie, Donald A. Thomas and Mary Ellen Weber. The crew's primary objective is to deploy the Tracking and Data Relay Satellite-G (TDRS-G), which will join a constellation of other TDRS spacecraft already on orbit.

  11. The Lunar Occultation Observer (LOCO) mission concept

    NASA Astrophysics Data System (ADS)

    Miller, Richard S.

    2007-09-01

    The hard X-ray sky has tremendous potential for future discoveries and is one of the last electromagnetic regimes without a sensitive all-sky survey. A new approach to such a survey is to utilize the Moon as an occulting disk. The Lunar Occultation Observer (LOCO) mission concept, based on this Lunar Occultation Technique (LOT) and incorporating advanced inorganic scintillators as a detection medium, represents a sensitive and cost effective option for NASA's Beyond Einstein Black Hole Finder Probe or a future Explorer-class mission. We present the motivating factors for the LOT, outline developmental details and simulation results, as well as give preliminary estimates for source detection sensitivity.

  12. Exoplanet Science from NASA’s Kepler Mission

    SciTech Connect

    Steffen, Jason

    2012-09-12

    NASA's exoplanet mission is the world's premier instrument for the discovery and study of planets orbiting distant stars. As the nominal mission comes to a close, Kepler has discovered nearly 2500 planet candidates, confirmed dozens of multi-planet systems, provided important insights into the orbital architectures of planetary systems, identified specific systems that challenge theories of planet formation and dynamical evolution, has revolutionized our understanding of stellar interiors, and is gearing to measure the frequency of Earth-like planets in the habitable zones of Sun-like stars in its extended mission phase. I present the most recent results from the Kepler mission.

  13. Early Mission Power Assessment of the Dawn Solar Array

    NASA Technical Reports Server (NTRS)

    Stella, Paul M.; DiStefano, Salvatore; Rayman, Marc D.; Ulloa-Severino, Antonio

    2009-01-01

    NASA's Discovery Mission Dawn was launched in September 2007. Dawn will be the first to orbit two asteroids on a single voyage. The solar array for the Dawn mission will provide power under greatly varying illumination and temperature conditions. Dawn's ion propulsion system (IPS) will provide the spacecraft with enough thrust to reach Vesta and Ceres and orbit both. The demanding mission would be impossible without ion propulsion -- a mission only to the asteroid Vesta (and not including Ceres) would require a much more massive spacecraft and, a much larger launch vehicle.

  14. STS-114: Discovery Day 13 Mission Status Briefing

    NASA Technical Reports Server (NTRS)

    2005-01-01

    LeRoy Cain, STS-114 Ascent/Entry Flight Director, takes a solo stand with the Press in this briefing. He reports that the vehicle is in good shape, consumable status is excellent, and the shuttle crew is in high spirits and preparing for de-orbit and landing. LeRoy and his team have completed the entry system check up, flight control check up, reactor control system check up, and noted that all are at nominal performance; weather forecast is very good, the Entry team is ready and looking forward to de-orbit and landing at the Kennedy Space Center on Monday, August 8th. Re-entry, personal feelings, Columbia accident, data gathering, consumable situation, back up sites, weather, communication block out, night and day landing, and Commander Collin's piloting skills during night flight are some of the topics covered with the News media.

  15. Gamma Ray Burst Discoveries with the Swift Mission

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil

    2007-01-01

    This viewgraph presentation reviews the current understanding of Gamma Ray Bursts. It covers the Long GRBs, our current understanding of Collapsar, Short GRBs, afterglows, and reduced trigger threshold. It also discusses the Hard X-ray Sky Survey.

  16. Gamma Ray Burst Discoveries with the Swift Mission

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil

    2009-01-01

    Gamma-ray bursts (GRBs) are among the most fascinating occurrences in the universe. They are powerful explosions, visible to high redshift, and thought to be the signature of black hole formation. The Swift Observatory has been detecting 100 bursts per year for 4 years and has greatly stimulated the field with new findings. Observations are made of the X-ray and optical afterglow from approximately 1 minute after the burst, continuing for days. Evidence is building that the long and short duration subcategories of GRBs have very different origins: massive star core collapse to a black hole for long bursts and binary neutron star coalescence to a black hole for short bursts. The similarity to Type II and Ia supernovae originating from young and old stellar progenitors is striking. Bursts are providing a new tool to study the high redshift universe. Swift has detected several events at z>5 and one at z=6.7 giving metallicity measurements and other data on galaxies at previously inaccessible distances. The talk will present the latest results from Swift in GRB astronomy.

  17. Gamma Ray Burst Discoveries with the Swift Mission

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil

    2008-01-01

    Gamma-ray bursts (GRBs) are among the most fascinating occurrences in the universe. They are powerful explosions, visible to high redshift, and thought to be the signature of black hole formation. The Swift Observatory has been detecting 100 bursts per year for 3 years and has greatly stimulated the field with new findings. Observations are made of the X-ray and optical afterglow from approximately 1 minute after the burst, continuing for days. Evidence is building that the long and short duration subcategories of GRBs have very different origins: massive star core collapse to a black hole for long bursts and binary neutron star coalescence to a black hole for short bursts. The similarity to Type II and Ia supernovae originating from young and old stellar progenitors is striking. Bursts are providing a new tool to study the high redshift universe. Swift has detected several events at z greater than 5 and one at z=6.3 giving metallicity measurements and other data on galaxies at previously inaccessible distances. The talk will present the latest results from Swift in GRB astronomy.

  18. Gamma Ray Burst Discoveries with the Swift Mission

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil

    2008-01-01

    Gamma-ray bursts (GRBs) are among the most fascinating occurrences in the universe. They are powerful explosions, visible to high redshift, and thought to be the signature of black hole formation. The Swift Observatory has been detecting 100 bursts per year for 3 years and has greatly stimulated the field with new findings. Observations are made of the X-ray and optical afterglow from - 1 minute after the burst, continuing for days. Evidence is building that the long and short duration subcategories of GRBs have very different origins: massive star core collapse to a black hole for long bursts and binary neutron star coalescence to a black hole for short bursts. The similarity to Type I1 and Ia supernovae originating from young and old stellar progenitors is striking. Bursts are providing a new tool to study the high redshift universe. Swift has detected several events at z>5 and one at z=6.3 giving metallicity measurements and other data on galaxies at previously inaccessible distances. The talk will present the latest results from Swift in GRB astronomy.

  19. Applying successful near mission operations approaches and refining for contour mission operations

    NASA Astrophysics Data System (ADS)

    Holdridge, Mark E.

    2003-01-01

    On February 17, 1996, the first NASA Discovery Class Mission to launch, the Near Earth Asteroid Rendezvous (NEAR) spacecraft, began its journey to the asteroid Eros. NEAR is the first planetary spacecraft to be designed and operated by the Johns Hopkins University Applied Physics Laboratory (JHU/APL). In July 2002, the comet nucleus tour (CONTOUR) spacecraft, the second planetary spacecraft to be built and operated at JHUAPL and the 6th in the series of NASA Discovery Class Missions, will be launched. Both NEAR and CONTOUR share ambitious "Faster, Better, Cheaper" goals. Furthermore, with both missions being developed and operated at the same institution, a unique opportunity exists to refine CONTOUR designs and operational practices based on 5 years of NEAR operational experience. This paper provides an overview of designs and operational practices implemented by JHU/APL to safely and effectively conduct the NEAR mission. This paper discusses how these will be applied to the CONTOUR mission and what improvements are planned. It also discusses the unique challenges CONTOUR possesses for operating a 4 year mission with widely varying operations activity levels at low cost.

  20. Dawn Mission's Education and Public Outreach Program

    NASA Astrophysics Data System (ADS)

    McFadden, Lucy-Ann A.; Wise, J.; Ristvey, J.; Warner, E. M.

    2007-10-01

    NASA's Dawn mission, the 9th Discovery mission, is the first to orbit two solar system bodies: Vesta (Oct 2011-Apr 2012), then Ceres (Feb-Jul 2015), the most massive Main Belt asteroids. The Education and Public Outreach (EPO) goals are to inspire the next generation of explorers; motivate students to pursue careers in science, technology, engineering and mathematics (STEM); to enhance the quality of STEM education at the K-13 level and engage the public in exploration and discovery. Dawn's website (dawn.jpl.nasa.gov) is central to the dissemination of products and activities. The Dawn E-Newsletter, with 2,301 subscribers, is produced on a quarterly basis. Leonard Nimoy narrated the mission video available on Google videos. Dawn Young Engineers build a paper model of the Dawn spacecraft and submit photos with their constructions. 366,050 names were collected to send to the asteroids. Speaker's kits for the Solar System Ambassadors are online and a poster can be printed via web at a local Office Max. Educational materials about dwarf planets, history and discovery of asteroids, ion propulsion and finding meteorites have been developed. In addition, numerous activities including an interactive activity on ion propulsion, identifying craters (ClickWorkers) and observing asteroids (Telescopes in Education and Amateur Observers' Program) appeal to formal and informal educational audiences. Educators from over 20 states convened in Florida for a workshop in June with the opportunity to meet mission scientists, learn about the modules and activities, observe Vesta through a telescope and tour KSFC. Plans for the coming years include developing modules on instrumentation, theories of the origin of the solar system and data analysis. A planetarium show, museum displays, a video field trip to the asteroid belt and additional educator workshops are planned. This work is funded by NASA's Discovery Program.

  1. STS-64 Mission Photograph - Extravehicular Activity (EVA)

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Astronaut Mark Lee floats freely as he tests the new backpack called the Simplified Aid for EVA Rescue (SAFER) system. SAFER is designed for use in the event a crew member becomes untethered while conducting an EVA. The STS-64 mission marked the first untethered U.S. EVA in 10 years, and was launched on September 9, 1994, aboard the Space Shuttle Orbiter Discovery.

  2. Potential Mission Scenarios Post Asteroid Crewed Mission

    NASA Technical Reports Server (NTRS)

    Lopez, Pedro, Jr.; McDonald, Mark A.

    2015-01-01

    A deep-space mission has been proposed to identify and redirect an asteroid to a distant retrograde orbit around the moon, and explore it by sending a crew using the Space Launch System and the Orion spacecraft. The Asteroid Redirect Crewed Mission (ARCM), which represents the third segment of the Asteroid Redirect Mission (ARM), could be performed on EM-3 or EM-4 depending on asteroid return date. Recent NASA studies have raised questions on how we could progress from current Human Space Flight (HSF) efforts to longer term human exploration of Mars. This paper will describe the benefits of execution of the ARM as the initial stepping stone towards Mars exploration, and how the capabilities required to send humans to Mars could be built upon those developed for the asteroid mission. A series of potential interim missions aimed at developing such capabilities will be described, and the feasibility of such mission manifest will be discussed. Options for the asteroid crewed mission will also be addressed, including crew size and mission duration.

  3. STS-26/Discovery Preparations for Launch

    NASA Technical Reports Server (NTRS)

    1988-01-01

    This NASA Kennedy Space Center two-part video release is comprised of footage covering STS-26 launch preparations from the arrival of the Tracking and Data Relay Satellite (TDRS) at the Orbiter Processing Facility (OPF) to the lift and mate of the external tanks. The STS-26 flight crew include: Frederick H. (Rick) Hauck, mission commander; Richard O. Covey, pilot; John M. (Mike) Lounge, mission specialist; David C. Hilmers, mission specialist; and George D. (Pinky) Nelson, mission specialist. The primary payload of STS-26 is the TDRS while the secondary payloads include the Physical Vapor Transport of Organic Solids (PVTOS); Protein Crystal Growth (PCG); Infrared Communications Flight Experiment (IRCFE); Aggregation of Red Blood Cells (ARC); Isoelectric Focusing Experiment (IFE); Mesoscale Lightning Experiment (MLE); Phase Partitioning Experiment (PPE); Earth-Limb Radiance Experiment (ELRAD); Automated Directional Solidification Furnace (ADSF) and two Shuttle Student Involvement Program (SSIP) experiments. Launch preparation footage includes flight crew arrival at KSC, rollout of Discovery to Pad B, OV-103 Discovery power-up, main engine unpacking and installation, solid rocket boosters' arrival prep and stacking, and aft skirt to aft segment mating.

  4. STS-95 Discovery rolls over to the VAB

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Rollover of the orbiter Discovery from the Orbiter Processing Facility Bay 2 to the Vehicle Assembly Building draws the attention of KSC employees. The orbiter displays the recently painted NASA logo, termed the 'meatball,' on its left wing and both sides of the fuselage. Discovery (OV-103) is scheduled for its 25th flight, from Launch Pad 39B, on Oct. 29, 1998, for the STS-95 mission.

  5. STS-95 Discovery rolls over to the VAB

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The orbiter Discovery is moved from the Orbiter Processing Facility Bay 2 to the Vehicle Assembly Building, drawing the attention of KSC employees. The orbiter displays the recently painted NASA logo, termed the 'meatball,' on its left wing and both sides of the fuselage. Discovery (OV-103) is scheduled for its 25th flight, from Launch Pad 39B, on Oct. 29, 1998, for the STS-95 mission.

  6. STS-96 Mission Highlights. Part 1

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In this first part of a three-part video mission-highlights set, the flight of the STS-96 Space Shuttle Orbiter Discovery is reviewed. The flight crew consists of Kent V. Rominger, Commander; Rick D. Husband, Pilot; and Mission Specialists Ellen Ochoa, Tamara E. Jernigan, Daniel T. Barry, Julie Payette (Canadian), and Valery Ivanovich Tokarev (Russian). The primary goals of this mission were to work on logistics and resupply the International Space Station (ISS). This is the first flight to dock to the International Space Station. The primary payloads are the Russian cargo crane, known as STRELA, which the astronauts mount to the exterior of the Russian station segment, the SPACEHAB Oceaneering Space System Box (SHOSS), and a U.S. built crane called the ORU Transfer Device (OTD). Other payloads include the Student Tracked Atmospheric Research Satellite for Heuristic International Networking Equipment (STARSHINE), the Shuttle Vibration Forces Experiment (SVF), and the Orbiter Integrated Vehicle Health Monitoring - HEDS Technology Demonstration (IVHM HTD). The traditional pre-launch breakfast, being suited up, entry into the Shuttle, and views of the liftoff from several different vantage points are shown. In-flight footage includes views from the robot arm conducting a television survey of Discovery's payload bay and the flawless docking of the Unity module with the International Space Station. During the docking, camera views from both the ISS and Discovery are presented. These activities make up the first three Flight Days of STS-96.

  7. Discovery rolls from OPF bay 2 to the VAB.

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- Orbiter Discovery rolls out of Orbiter Processing Facility bay 2 atop its transporter for the short trip to the Vehicle Assembly Building. There it will be mated with its external tank and solid rocket boosters for its launch on mission STS-105. The payload on this 11th mission to the International Space Station includes the Multi-Purpose Logistics Module Leonardo, which was built by the Italian Space Agency. Leonardo will be outfitted with 12 racks of experiments and equipment. Launch of Discovery is scheduled for no earlier than Aug. 5, 2001.

  8. The Titan Saturn System Mission

    NASA Astrophysics Data System (ADS)

    Coustenis, A.; Lunine, J.; Lebreton, J.; Matson, D.; Erd, C.; Reh, K.; Beauchamp, P.; Lorenz, R.; Waite, H.; Sotin, C.; Tssm Jsdt, T.

    2008-12-01

    A mission to return to Titan after Cassini-Huygens is a high priority for exploration. Recent Cassini-Huygens discoveries have revolutionized our understanding of the Titan system, rich in organics, containing a vast subsurface ocean of liquid water, surface repositories of organic compounds, and having the energy sources necessary to drive chemical evolution. With these recent discoveries, interest in Titan as the next scientific target in the outer Solar System is strongly reinforced. Cassini's discovery of active geysers on Enceladus adds an important second target in the Saturn system. The mission concept consists of a NASA-provided orbiter and an ESA-provided probe/lander and a Montgolfiere. The mission would launch on an Atlas 551 around 2020, travelling to Saturn on an SEP gravity assist trajectory, and reaching Saturn about 9.5 years later. The flight system would go into orbit around Saturn for about 2 years. During the first Titan flyby, the orbiter would release the lander to target a large northern polar sea, Kraken Mare, and the balloon system to a mid latitude region. During the tour phase, TSSM will perform Saturn system and Enceladus science, with at least 5 Enceladus flybys. Instruments aboard the orbiter will map Titan's surface at 50 m resolution in the 5 micron window, provide a global data set of topography and sound the immediate subsurface, sample complex organics, provide detailed observations of the atmosphere, and quantify the interaction of Titan with the Saturn magnetosphere. A subset of the instruments would provide spectra, imaging, plume sampling and particles and fields data on Enceladus. Instruments aboard the balloon will acquire high resolution vistas of the surface of Titan as the balloon cruises at 10 km altitude, as well as make compositional measurements of the surface, detailed sounding of crustal layering, and chemical measurements of aerosols. A magnetometer, will permit sensitive detection of induced or intrinsic fields

  9. STS-26 crew during MB shuttle mission simulator (SMS) training in Bldg 5

    NASA Technical Reports Server (NTRS)

    1987-01-01

    STS-26 Discovery, Orbiter Vehicle (OV) 103, crewmembers participate in motion base (MB) shuttle mission simulator (SMS) training in JSC Mission Simulation and Training Facility Bldg 5. Three of the five veteran astronauts in training for the STS-26 mission are seen in their ascent positions on MB SMS flight deck. Left to right are Pilot Richard O. Covey, Mission Specialist (MS) John M. Lounge, and MS David C. Hilmers.

  10. STS-26 crew trains in JSC fixed-based (FB) shuttle mission simulator (SMS)

    NASA Technical Reports Server (NTRS)

    1987-01-01

    STS-26 Discovery, Orbiter Vehicle (OV) 103, mission specialists pose on aft flight deck in fixed-based (FB) shuttle mission simulator (SMS) located in JSC Mission Simulation and Training Facility Bldg 5. Left to right, Mission Specialist (MS) John M. Lounge, MS George D. Nelson, and MS David C. Hilmers await start of FB-SMS simulation. The long simulation, part of the training for their anticipated June 1988 flight, began 10-20-87.

  11. STS-92 Discovery Launch

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Viewed from across the waters of Banana Creek, clouds of smoke and steam are illuminated by the flames from Space Shuttle Discovery'''s perfect on-time launch at 7:17 p.m. EDT. Discovery carries a crew of seven on a construction flight to the International Space Station. Discovery also carries a payload that includes the Integrated Truss Structure Z-1, first of 10 trusses that will form the backbone of the Space Station, and the third Pressurized Mating Adapter that will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. Discovery'''s landing is expected Oct. 22 at 2:10 p.m. EDT.

  12. Computational drug discovery

    PubMed Central

    Ou-Yang, Si-sheng; Lu, Jun-yan; Kong, Xiang-qian; Liang, Zhong-jie; Luo, Cheng; Jiang, Hualiang

    2012-01-01

    Computational drug discovery is an effective strategy for accelerating and economizing drug discovery and development process. Because of the dramatic increase in the availability of biological macromolecule and small molecule information, the applicability of computational drug discovery has been extended and broadly applied to nearly every stage in the drug discovery and development workflow, including target identification and validation, lead discovery and optimization and preclinical tests. Over the past decades, computational drug discovery methods such as molecular docking, pharmacophore modeling and mapping, de novo design, molecular similarity calculation and sequence-based virtual screening have been greatly improved. In this review, we present an overview of these important computational methods, platforms and successful applications in this field. PMID:22922346

  13. Cubesat Gravity Field Mission

    NASA Astrophysics Data System (ADS)

    Burla, Santoshkumar; Mueller, Vitali; Flury, Jakob; Jovanovic, Nemanja

    2016-04-01

    CHAMP, GRACE and GOCE missions have been successful in the field of satellite geodesy (especially to improve Earth's gravity field models) and have established the necessity towards the next generation gravity field missions. Especially, GRACE has shown its capabilities beyond any other gravity field missions. GRACE Follow-On mission is going to continue GRACE's legacy which is almost identical to GRACE mission with addition of laser interferometry. But these missions are not only quite expensive but also takes quite an effort to plan and to execute. Still there are few drawbacks such as under-sampling and incapability of exploring new ideas within a single mission (ex: to perform different orbit configurations with multi satellite mission(s) at different altitudes). The budget is the major limiting factor to build multi satellite mission(s). Here, we offer a solution to overcome these drawbacks using cubesat/ nanosatellite mission. Cubesats are widely used in research because they are cheaper, smaller in size and building them is easy and faster than bigger satellites. Here, we design a 3D model of GRACE like mission with available sensors and explain how the Attitude and Orbit Control System (AOCS) works. The expected accuracies on final results of gravity field are also explained here.

  14. Antibiotic drug discovery.

    PubMed

    Wohlleben, Wolfgang; Mast, Yvonne; Stegmann, Evi; Ziemert, Nadine

    2016-09-01

    Due to the threat posed by the increase of highly resistant pathogenic bacteria, there is an urgent need for new antibiotics; all the more so since in the last 20 years, the approval for new antibacterial agents had decreased. The field of natural product discovery has undergone a tremendous development over the past few years. This has been the consequence of several new and revolutionizing drug discovery and development techniques, which is initiating a 'New Age of Antibiotic Discovery'. In this review, we concentrate on the most significant discovery approaches during the last and present years and comment on the challenges facing the community in the coming years. PMID:27470984

  15. Discovery and Classification in Astronomy

    NASA Astrophysics Data System (ADS)

    Dick, Steven J.

    2013-10-01

    Preface; Abbreviations; Introduction: the natural history of the heavens and the natural history of discovery; Part I. Entrée: 1. The Pluto affair; Part II. Narratives of Discovery: 2. Moons, rings, and asteroids: discovery in the realm of the planets; 3. In Herschel's gardens: nebulous discoveries in the realm of the stars; 4. Dwarfs, giants, and planets (again!): the discovery of the stars themselves; 5. Galaxies, quasars, and clusters: discovery in the realm of the galaxies; Part III. Patterns of Discovery: 6. The structure of discovery; 7. The varieties of discovery; 8. Discovery and classification; Part IV. Drivers of Discovery: 9. Technology and theory as drivers of discovery; Part V. The Synthesis of Discovery: 10. Luxuriant gardens and the master narrative; 11. The meaning of discovery; Appendix I; Appendix II.

  16. President and Mrs. Clinton watch launch of Space Shuttle Discovery

    NASA Technical Reports Server (NTRS)

    1998-01-01

    From the roof of the Launch Control Center, U.S. President Bill Clinton and First Lady Hillary Rodham Clinton track the plume and successful launch of Space Shuttle Discovery on mission STS-95. This was the first launch of a Space Shuttle to be viewed by President Clinton, or any President to date. They attended the launch to witness the return to space of American legend John H. Glenn Jr., payload specialist on the mission.

  17. Soviet Mission Control Center

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This photo is an overall view of the Mission Control Center in Korolev, Russia during the Expedition Seven mission. The Expedition Seven crew launched aboard a Soyez spacecraft on April 26, 2003. Photo credit: NASA/Bill Ingalls

  18. Space missions to comets

    NASA Technical Reports Server (NTRS)

    Neugebauer, M. (Editor); Yeomans, D. K. (Editor); Brandt, J. C. (Editor); Hobbs, R. W. (Editor)

    1979-01-01

    The broad impact of a cometary mission is assessed with particular emphasis on scientific interest in a fly-by mission to Halley's comet and a rendezvous with Tempel 2. Scientific results, speculations, and future plans are discussed.

  19. Editing the Mission.

    ERIC Educational Resources Information Center

    Walsh, Sharon; Fogg, Piper

    2002-01-01

    Discusses the decision by Columbia University's new president to reevaluate the mission of its journalism school before naming a new dean, in order to explore how the journalism school fits into the mission of a research university. (EV)

  20. Metadata-Centric Discovery Service

    NASA Astrophysics Data System (ADS)

    Huang, T.; Chung, N. T.; Gangl, M. E.; Armstrong, E. M.

    2011-12-01

    It is data about data. It is the information describing a picture without looking at the picture. Through the years, the Earth Science community seeks better methods to describe science artifacts to improve the quality and efficiency in information exchange. One the purposes are to provide information to the users to guide them into identifies the science artifacts of their interest. The NASA Distributed Active Archive Centers (DAACs) are the building blocks of a data centric federation, designed for processing and archiving from NASA's Earth Observation missions and their distribution as well as provision of specialized services to users. The Physical Oceanography Distributed Active Archive Center (PO.DAAC), at the Jet Propulsion Laboratory, archives and distributes science artifacts pertain to the physical state of the ocean. As part of its high-performance operational Data Management and Archive System (DMAS) is a fast data discovery RESTful web service called the Oceanographic Common Search Interface (OCSI). The web service searches and delivers metadata on all data holdings within PO.DAAC. Currently OCSI supports metadata standards such as ISO-19115, OpenSearch, GCMD, and FGDC, with new metadata standards still being added. While we continue to seek the silver bullet in metadata standard, the Earth Science community is in fact consists of various standards due to the specific needs of its users and systems. This presentation focuses on the architecture behind OCSI as a reference implementation on building a metadata-centric discovery service.

  1. STS-31 Space Shuttle mission report

    NASA Technical Reports Server (NTRS)

    Camp, David W.; Germany, D. M.; Nicholson, Leonard S.

    1990-01-01

    The STS-31 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem activities on this thirty-fifth flight of the Space Shuttle and the tenth flight of the Orbiter Vehicle Discovery (OV-103). In addition to the Discovery vehicle, the flight vehicle consisted of an External Tank (ET) (designated as ET-34/LWT-27), three Space Shuttle main engines (SSME's) (serial numbers 2011, 2031, and 2107), and two Solid Rocket Booster (SRB) (designated as BI-037). The primary objective of the mission was to place the Hubble Space Telescope (HST) into a 330 nmi. circular orbit having an inclination of 28.45 degrees. The secondary objectives were to perform all operations necessary to support the requirements of the Protein Crystal Growth (PCG), Investigations into Polymer Membrane Processing (IPMP), Radiation Monitoring Equipment (RME), Ascent Particle Monitor (APM), IMAX Cargo Bay Camera (ICBC), Air Force Maui Optical Site Calibration Test (AMOS), IMAX Crew Compartment Camera, and Ion Arc payloads. In addition, 12 development test objectives (DTO's) and 10 detailed supplementary objectives (DSO's) were assigned to the flight. The sequence of events for this mission is shown. The significant problems that occurred in the Space Shuttle Orbiter subsystems during the mission are summarized, and the official problem tracking list is presented. In addition, each of the Space Shuttle Orbiter problems is cited in the subsystem discussion.

  2. STS-41 Space Shuttle mission report

    NASA Technical Reports Server (NTRS)

    Camp, David W.; Germany, D. M.; Nicholson, Leonard S.

    1990-01-01

    The STS-41 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem activities on this thirty-sixth flight of the Space Shuttle and the eleventh flight of the Orbiter vehicle, Discovery (OV-103). In addition to the Discovery vehicle, the flight vehicle consisted of an External Tank (ET) (designated as ET-39/LWT-32), three Space Shuttle main engines (SSME's) (serial numbers 2011, 2031, and 2107), and two Solid Rocket Boosters (SRB's), designated as BI-040. The primary objective of the STS-41 mission was to successfully deploy the Ulysses/inertial upper stage (IUS)/payload assist module (PAM-S) spacecraft. The secondary objectives were to perform all operations necessary to support the requirements of the Shuttle Backscatter Ultraviolet (SSBUV) Spectrometer, Solid Surface Combustion Experiment (SSCE), Space Life Sciences Training Program Chromosome and Plant Cell Division in Space (CHROMEX), Voice Command System (VCS), Physiological Systems Experiment (PSE), Radiation Monitoring Experiment - 3 (RME-3), Investigations into Polymer Membrane Processing (IPMP), Air Force Maui Optical Calibration Test (AMOS), and Intelsat Solar Array Coupon (ISAC) payloads. The sequence of events for this mission is shown in tabular form. Summarized are the significant problems that occurred in the Orbiter subsystems during the mission. The official problem tracking list is presented. In addition, each Orbiter problem is cited in the subsystem discussion.

  3. NASA's Planetary Science Missions and Participations

    NASA Astrophysics Data System (ADS)

    Green, James

    2016-04-01

    NASA's Planetary Science Division (PSD) and space agencies around the world are collaborating on an extensive array of missions exploring our solar system. Planetary science missions are conducted by some of the most sophisticated robots ever built. International collaboration is an essential part of what we do. NASA has always encouraged international participation on our missions both strategic (ie: Mars 2020) and competitive (ie: Discovery and New Frontiers) and other Space Agencies have reciprocated and invited NASA investigators to participate in their missions. NASA PSD has partnerships with virtually every major space agency. For example, NASA has had a long and very fruitful collaboration with ESA. ESA has been involved in the Cassini mission and, currently, NASA funded scientists are involved in the Rosetta mission (3 full instruments, part of another), BepiColombo mission (1 instrument in the Italian Space Agency's instrument suite), and the Jupiter Icy Moon Explorer mission (1 instrument and parts of two others). In concert with ESA's Mars missions NASA has an instrument on the Mars Express mission, the orbit-ground communications package on the Trace Gas Orbiter (launched in March 2016) and part of the DLR/Mars Organic Molecule Analyzer instruments going onboard the ExoMars Rover (to be launched in 2018). NASA's Planetary Science Division has continuously provided its U.S. planetary science community with opportunities to include international participation on NASA missions too. For example, NASA's Discovery and New Frontiers Programs provide U.S. scientists the opportunity to assemble international teams and design exciting, focused planetary science investigations that would deepen the knowledge of our Solar System. Last year, PSD put out an international call for instruments on the Mars 2020 mission. This procurement led to the selection of Spain and Norway scientist leading two instruments and French scientists providing a significant portion of

  4. Threads of Mission Success

    NASA Technical Reports Server (NTRS)

    Gavin, Thomas R.

    2006-01-01

    This viewgraph presentation reviews the many parts of the JPL mission planning process that the project manager has to work with. Some of them are: NASA & JPL's institutional requirements, the mission systems design requirements, the science interactions, the technical interactions, financial requirements, verification and validation, safety and mission assurance, and independent assessment, review and reporting.

  5. Mission objectives and trajectories

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The present state of the knowledge of asteroids was assessed to identify mission and target priorities for planning asteroidal flights in the 1980's and beyond. Mission objectives, mission analysis, trajectory studies, and cost analysis are discussed. A bibliography of reports and technical memoranda is included.

  6. A Neptune Orbiter Mission

    NASA Technical Reports Server (NTRS)

    Wallace, R. A.; Spilker, T. R.

    1998-01-01

    This paper describes the results of new analyses and mission/system designs for a low cost Neptune Orbiter mission. Science and measurement objectives, instrumentation, and mission/system design options are described and reflect an aggressive approach to the application of new advanced technologies expected to be available and developed over the next five to ten years.

  7. Mission operations management

    NASA Technical Reports Server (NTRS)

    Rocco, David A.

    1994-01-01

    Redefining the approach and philosophy that operations management uses to define, develop, and implement space missions will be a central element in achieving high efficiency mission operations for the future. The goal of a cost effective space operations program cannot be realized if the attitudes and methodologies we currently employ to plan, develop, and manage space missions do not change. A management philosophy that is in synch with the environment in terms of budget, technology, and science objectives must be developed. Changing our basic perception of mission operations will require a shift in the way we view the mission. This requires a transition from current practices of viewing the mission as a unique end product, to a 'mission development concept' built on the visualization of the end-to-end mission. To achieve this change we must define realistic mission success criteria and develop pragmatic approaches to achieve our goals. Custom mission development for all but the largest and most unique programs is not practical in the current budget environment, and we simply do not have the resources to implement all of our planned science programs. We need to shift our management focus to allow us the opportunity make use of methodologies and approaches which are based on common building blocks that can be utilized in the space, ground, and mission unique segments of all missions.

  8. Small planetary missions for the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Staehle, R. L.

    1979-01-01

    The paper deals with the concept of a small planetary mission that might be described as one which: (1) focuses on a narrow set of discovery-oriented objectives, (2) utilizes largely existing and proven subsystem capabilities, (3) does not tax future launch vehicle capabilities, and (4) is flexible in terms of mission timing such that it can be easily integrated with launch vehicle schedules. Three small planetary mission concepts are presented: a tour of earth-sun Lagrange regions in search of asteroids which might be gravitationally trapped, a network of spacecraft to search beyond Pluto for a tenth planet; and a probe which could be targeted for infrequent long period 'comets of opportunity' or for a multitude of shorter period comets.

  9. Europa Explorer - An Exceptional Mission Using Existing Technology

    NASA Technical Reports Server (NTRS)

    Clark, Karla B.

    2007-01-01

    A mission to Europa has been identified as a high priority by the science community for several years. The difficulty of an orbital mission, primarily due to the propulsive requirements and Jupiter's trapped radiation, led to many studies which investigated various approaches to meeting the science goals. The Europa Orbiter Mission studied in the late 1990's only met the most fundamental science objectives. The science objectives have evolved with the discoveries from the Galileo mission. JPL studied one concept, Europa Explorer, for a Europa orbiting mission which could meet a much expanded set of science objectives. A study science group was formed to verify that the science objectives and goals were being adequately met by the resulting mission design concept. The Europa Explorer design emerged primarily from two key self-imposed constraints: 1) meet the full set of identified nonlander science objectives and 2) use only existing technology.

  10. STS-26 crew during MB shuttle mission simulator (SMS) training in Bldg 5

    NASA Technical Reports Server (NTRS)

    1987-01-01

    STS-26 Discovery, Orbiter Vehicle (OV) 103, crewmembers participate in motion base (MB) shuttle mission simulator (SMS) training in JSC Mission Simulation and Training Facility Bldg 5. Five veteran astronauts recently named to man the Discovery for the STS-26 mission are pictured prior to a training session in the nearby MB SMS. Commander Frederick H. Hauck (top right) stands next to Pilot Richard O. Covey with (left to right) Mission Specialist (MS) George D. Nelson, MS David C. Hilmers, and MS John M. Lounge on front row.

  11. Hummingbird Comet Nucleus Analysis Mission

    NASA Technical Reports Server (NTRS)

    Kojiro, Daniel; Carle, Glenn C.; Lasher, Larry E.

    2000-01-01

    Hummingbird is a highly focused scientific mission, proposed to NASA s Discovery Program, designed to address the highest priority questions in cometary science-that of the chemical composition of the cometary nucleus. After rendezvous with the comet, Hummingbird would first methodically image and map the comet, then collect and analyze dust, ice and gases from the cometary atmosphere to enrich characterization of the comet and support landing site selection. Then, like its namesake, Hummingbird would carefully descend to a pre-selected surface site obtaining a high-resolution image, gather a surface material sample, acquire surface temperature and then immediately return to orbit for detailed chemical and elemental analyses followed by a high resolution post-sampling image of the site. Hummingbird s analytical laboratory contains instrumentation for a comprehensive molecular and elemental analysis of the cometary nucleus as well as an innovative surface sample acquisition device.

  12. Computer graphics aid mission operations. [NASA missions

    NASA Technical Reports Server (NTRS)

    Jeletic, James F.

    1990-01-01

    The application of computer graphics techniques in NASA space missions is reviewed. Telemetric monitoring of the Space Shuttle and its components is discussed, noting the use of computer graphics for real-time visualization problems in the retrieval and repair of the Solar Maximum Mission. The use of the world map display for determining a spacecraft's location above the earth and the problem of verifying the relative position and orientation of spacecraft to celestial bodies are examined. The Flight Dynamics/STS Three-dimensional Monitoring System and the Trajectroy Computations and Orbital Products System world map display are described, emphasizing Space Shuttle applications. Also, consideration is given to the development of monitoring systems such as the Shuttle Payloads Mission Monitoring System and the Attitude Heads-Up Display and the use of the NASA-Goddard Two-dimensional Graphics Monitoring System during Shuttle missions and to support the Hubble Space Telescope.

  13. STS-26 Mission Control Center (MCC) activity at JSC

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Flight controllers in JSC's Mission Control Center (MCC) Bldg 30 flight control room (FCR) listen to a presentation by STS-26 crewmembers on the fourth day of Discovery's, Orbiter Vehicle (OV) 103's, orbital mission. Flight Directors Charles W. Shaw and James M. (Milt) Heflin (in the foreground) and other controllers view a television image of Earth on a screen in the front of the FCR while listening to crewmembers.

  14. STS-26 Mission Control Center (MCC) activity at JSC

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Flight controllers in JSC's Mission Control Center (MCC) Bldg 30 flight control room (FCR) listen to a presentation by STS-26 crewmembers on the fourth day of Discovery's, Orbiter Vehicle (OV) 103's, orbital mission. Instrumentation and Communications Officers (INCOs) Harold Black (left foreground) and John F. Muratore and other controllers view a television (TV) transmission of the crew on a screen in front of the FCR as each member relates some inner feelings while paying tribute to the 51L Challenger crew.

  15. Decades of Discovery

    DOE R&D Accomplishments Database

    2011-06-01

    For the past two-and-a-half decades, the Office of Science at the U.S. Department of Energy has been at the forefront of scientific discovery. Over 100 important discoveries supported by the Office of Science are represented in this document.

  16. Drug discovery in academia.

    PubMed

    Verkman, A S

    2004-03-01

    Drug discovery and development is generally done in the commercial rather than the academic realm. Drug discovery involves target discovery and validation, lead identification by high-throughput screening, and lead optimization by medicinal chemistry. Follow-up preclinical evaluation includes analysis in animal models of compound efficacy and pharmacology (ADME: administration, distribution, metabolism, elimination) and studies of toxicology, specificity, and drug interactions. Notwithstanding the high-cost, labor-intensive, and non-hypothesis-driven aspects of drug discovery, the academic setting has a unique and expanding niche in this important area of investigation. For example, academic drug discovery can focus on targets of limited commercial value, such as third-world and rare diseases, and on the development of research reagents such as high-affinity inhibitors for pharmacological "gene knockout" in animal models ("chemical genetics"). This review describes the practical aspects of the preclinical drug discovery process for academic investigators. The discovery of small molecule inhibitors and activators of the cystic fibrosis transmembrane conductance regulator is presented as an example of an academic drug discovery program that has yielded new compounds for physiology research and clinical development. PMID:14761879

  17. Serendipity and Scientific Discovery.

    ERIC Educational Resources Information Center

    Rosenman, Martin F.

    1988-01-01

    The discovery of penicillin is cited in a discussion of the role of serendipity as it relates to scientific discovery. The importance of sagacity as a personality trait is noted. Successful researchers have questioning minds, are willing to view data from several perspectives, and recognize and appreciate the unexpected. (JW)

  18. Friends' Discovery Camp

    ERIC Educational Resources Information Center

    Seymour, Seth

    2008-01-01

    This article features Friends' Discovery Camp, a program that allows children with and without autism spectrum disorder to learn and play together. In Friends' Discovery Camp, campers take part in sensory-rich experiences, ranging from hands-on activities and performing arts to science experiments and stories teaching social skills. Now in its 7th…

  19. The MAVEN Mission to Mars: Results from the nominal mission

    NASA Astrophysics Data System (ADS)

    Brain, David; Jakosky, Bruce; Luhmann, Janet; Grebowsky, Joe

    2016-04-01

    The MAVEN (Mars Atmosphere and Volatile EvolutioN) spacecraft has been making measurements relevant to the loss of Martian atmospheric particles to space since September 2014. Now in its first extended mission, MAVEN observations are teaching us about the chain of events that lead to atmospheric escape - including the drivers of escape from the Sun and solar wind, the atmospheric particle reservoirs for escape, and the escape processes and rates. These measurements are made using nine science instruments on a spacecraft with an elliptical precessing orbit that dips below the Martian exobase every 4.5 hours. During certain 'Deep Dip' periods the spacecraft periapsis is lowered further to near the top of the homopause, and the main peak of the ionosphere. Here we summarize the key results from MAVEN through the nominal mission and beyond. We emphasize new discoveries (e.g. diffuse aurora, a dusty upper atmosphere, metallic atmospheric ions) as well as coordinated measurements that allow us to evaluate atmospheric escape and climate evolution in unprecedented ways. We then highlight plans for continued observations of the Martian upper atmosphere and escape.

  20. Applications Explorer Missions (AEM): Mission planners handbook

    NASA Technical Reports Server (NTRS)

    Smith, S. R. (Editor)

    1974-01-01

    The Applications Explorer Missions (AEM) Program is a planned series of space applications missions whose purpose is to perform various tasks that require a low cost, quick reaction, small spacecraft in a dedicated orbit. The Heat Capacity Mapping Mission (HCMM) is the first mission of this series. The spacecraft described in this document was conceived to support a variety of applications instruments and the HCMM instrument in particular. The maximum use of commonality has been achieved. That is, all of the subsystems employed are taken directly or modified from other programs such as IUE, IMP, RAE, and Nimbus. The result is a small versatile spacecraft. The purpose of this document, the AEM Mission Planners Handbook (AEM/MPH) is to describe the spacecraft and its capabilities in general and the HCMM in particular. This document will also serve as a guide for potential users as to the capabilities of the AEM spacecraft and its achievable orbits. It should enable each potential user to determine the suitability of the AEM concept to his mission.

  1. "Eureka, Eureka!" Discoveries in Science

    ERIC Educational Resources Information Center

    Agarwal, Pankaj

    2011-01-01

    Accidental discoveries have been of significant value in the progress of science. Although accidental discoveries are more common in pharmacology and chemistry, other branches of science have also benefited from such discoveries. While most discoveries are the result of persistent research, famous accidental discoveries provide a fascinating…

  2. The orbiter Discovery is moved into the Vehicle Assembly Building for prelaunch preparations.

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The Space Shuttle orbiter Discovery rests inside the Vehicle Assembly Building after rollover from the Orbiter Processing Facility bay 1. Discovery is being readied for the next mission, STS-96, which is targeted for launch on May 20 from Launch Pad 39B. STS-96 is a logistics and resupply mission for the International Space Station, carrying such payloads as a Russian crane, the Strehla; a U.S.-built crane; a Shuttle Vibration Forces experiment; and STARSHINE, a student-led experiment.

  3. The discovery of 1982 DB, the most accessible asteroid known

    NASA Technical Reports Server (NTRS)

    Helin, E. F.; Hulkower, N. D.; Bender, D. F.

    1984-01-01

    A small Apollo object was found while photographing the split comet DuToit 2-Hartley on February 27/28, 1982. Designated 1982 DB, this earth-crossing asteroid passed the earth at a distance of 4.08 million km about 1 month prior to its discovery. Asteroid 1982 DB has been determined to be the most accessible near-earth minor planet known. It provides many excellent opportunities for rendezvous and sample return missions, and a rare dual rendezvous mission with 1980 AA as the second target. For a mission to be realized, opportunities to observe 1982 DB during future apparitions must be taken.

  4. Approach to rapid mission design and planning. [earth orbit missions

    NASA Technical Reports Server (NTRS)

    Green, W. G.; Matthys, V. J.

    1973-01-01

    Methods and techniques are described for implementation in automated computer systems to assess parametric data, capabilities, requirements and constraints for planning earth orbit missions. Mission planning and design procedures are defined using two types of typical missions as examples. These missions were the high energy Astronomical Observatory Satellite missions, and Small Applications Technology Satellite missions.

  5. Kepler Mission: A Technical Overview

    NASA Technical Reports Server (NTRS)

    Borucki, W. J.

    2003-01-01

    The Kepler Mission is a Discovery-class mission designed to continuously monitor the brightness of 100,000 solar-like stars to detect the transits of Earth-size and larger planets. It is a wide field of view photometer Schmidt-type telescope with an array of 42 CCDs. It has a 0.95 m aperture and 1.4 m primary and is designed to attain a photometric precision of 2 parts in 10(exp 5) for 12th magnitude solar-like stars for a 6 hr transit duration. It will continuously observe 100,000 main-sequence stars from 9th to 14th magnitude in the Cygnus constellation for a period of four years with a cadence of 4/hour. An additional 250 stars can be monitored at a cadence of l/minute to do astro-seismology of stars brighter than 11.5 mv. The photometer is scheduled to be launched into heliocentric orbit in 2007. A ground-based program to classify all 225,000 stars in the FOV and to do a detailed examination of a subset of the stars that show planetary companions is also planned.

  6. Odyssey: a solar system mission

    NASA Astrophysics Data System (ADS)

    Christophe, B.; Andersen, P. H.; Anderson, J. D.; Asmar, S.; Bério, Ph.; Bertolami, O.; Bingham, R.; Bondu, F.; Bouyer, Ph.; Bremer, S.; Courty, J.-M.; Dittus, H.; Foulon, B.; Gil, P.; Johann, U.; Jordan, J. F.; Kent, B.; Lämmerzahl, C.; Lévy, A.; Métris, G.; Olsen, O.; Pàramos, J.; Prestage, J. D.; Progrebenko, S. V.; Rasel, E.; Rathke, A.; Reynaud, S.; Rievers, B.; Samain, E.; Sumner, T. J.; Theil, S.; Touboul, P.; Turyshev, S.; Vrancken, P.; Wolf, P.; Yu, N.

    2009-03-01

    The Solar System Odyssey mission uses modern-day high-precision experimental techniques to test the laws of fundamental physics which determine dynamics in the solar system. It could lead to major discoveries by using demonstrated technologies and could be flown within the Cosmic Vision time frame. The mission proposes to perform a set of precision gravitation experiments from the vicinity of Earth to the outer Solar System. Its scientific objectives can be summarized as follows: (1) test of the gravity force law in the Solar System up to and beyond the orbit of Saturn; (2) precise investigation of navigation anomalies at the fly-bys; (3) measurement of Eddington’s parameter at occultations; (4) mapping of gravity field in the outer solar system and study of the Kuiper belt. To this aim, the Odyssey mission is built up on a main spacecraft, designed to fly up to 13 AU, with the following components: (a) a high-precision accelerometer, with bias-rejection system, measuring the deviation of the trajectory from the geodesics, that is also giving gravitational forces; (b) Ka-band transponders, as for Cassini, for a precise range and Doppler measurement up to 13 AU, with additional VLBI equipment; (c) optional laser equipment, which would allow one to improve the range and Doppler measurement, resulting in particular in an improved measurement (with respect to Cassini) of the Eddington’s parameter. In this baseline concept, the main spacecraft is designed to operate beyond the Saturn orbit, up to 13 AU. It experiences multiple planetary fly-bys at Earth, Mars or Venus, and Jupiter. The cruise and fly-by phases allow the mission to achieve its baseline scientific objectives [(1) to (3) in the above list]. In addition to this baseline concept, the Odyssey mission proposes the release of the Enigma radio-beacon at Saturn, allowing one to extend the deep space gravity test up to at least 50 AU, while achieving the scientific objective of a mapping of gravity field in

  7. Worldwide Discoveries Help People Everywhere

    MedlinePlus

    ... Home Current Issue Past Issues Special Section Worldwide Discoveries Help People Everywhere Past Issues / Spring 2008 Table ... shows examples of discoveries and their impact. Diseases Discoveries The Benefits for All Americans Huntington's Disease Venezuela— ...

  8. Purposive discovery of operations

    NASA Technical Reports Server (NTRS)

    Sims, Michael H.; Bresina, John L.

    1992-01-01

    The Generate, Prune & Prove (GPP) methodology for discovering definitions of mathematical operators is introduced. GPP is a task within the IL exploration discovery system. We developed GPP for use in the discovery of mathematical operators with a wider class of representations than was possible with the previous methods by Lenat and by Shen. GPP utilizes the purpose for which an operator is created to prune the possible definitions. The relevant search spaces are immense and there exists insufficient information for a complete evaluation of the purpose constraint, so it is necessary to perform a partial evaluation of the purpose (i.e., pruning) constraint. The constraint is first transformed so that it is operational with respect to the partial information, and then it is applied to examples in order to test the generated candidates for an operator's definition. In the GPP process, once a candidate definition survives this empirical prune, it is passed on to a theorem prover for formal verification. We describe the application of this methodology to the (re)discovery of the definition of multiplication for Conway numbers, a discovery which is difficult for human mathematicians. We successfully model this discovery process utilizing information which was reasonably available at the time of Conway's original discovery. As part of this discovery process, we reduce the size of the search space from a computationally intractable size to 3468 elements.

  9. STS-70 Discovery approaches Runway 33

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Space Shuttle orbiter Discovery approaches KSC's Runway 33, with the Vehicle Assembly Building in the background, marking a successful conclusion to the STS-70 mission. Discovery landed on orbit 143, during the second opportunity of the day. Main gear touchdown was unofficially listed at 8:02 a.m. EDT on July 22, 1995. The orbiter traveled some 3.7 million statute miles during the nearly nine-day flight, which included a one-day extension because of fog and low visibility conditions at the KSC Shuttle Landing Facility. STS-70 was the 24th Shuttle landing at KSC and the 70th Space Shuttle mission. The five-member crew deployed the NASA Tracking and Data Relay Satellite-G (TDRS-G). Crew members were Commander Terence 'Tom' Henricks, Pilot Kevin R. Kregel, and Mission Specialists Nancy Jane Currie, Donald A. Thomas and Mary Ellen Weber. STS-70 also was the maiden flight of the new Block 1 orbiter main engine, which flew in the number one position. The other two engines were of the existing Phase II design.

  10. STS-92 - Discovery Fly-away - return to Florida

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Carrying the Space Shuttle Discovery piggyback, one of NASA's modified Boeing 747 Shuttle Carrier Aircraft lifts off the runway at Edwards Air Force Base, California. The Discovery was ferried from NASA's Dryden Flight Research Center at Edwards to NASA's Kennedy Space Center in Florida on November 2, 2000, after extensive post-landing servicing and ferry flight preparations. STS-92 was the 100th mission since the fleet of four Space Shuttles began flying in 1981. (Due to schedule changes, missions are not always launched in the order that was originally planned.) The almost 13-day mission, the 46th Shuttle mission to land at Edwards, was the last construction mission for the International Space Station prior to the first scientists taking up residency in the orbiting space laboratory the following month. The seven-member crew on STS-92 included mission specialists Koichi Wakata, Michael Lopez-Alegria, Jeff Wisoff, Bill McArthur and Leroy Chiao, pilot Pam Melroy and mission commander Brian Duffy.

  11. STS-92 - Discovery Fly-away - return to Florida

    NASA Technical Reports Server (NTRS)

    2000-01-01

    One of NASA's two modified Boeing 747 Shuttle Carrier Aircraft with the Space Shuttle orbiter Discovery on its back climbs out after takeoff from Edwards Air Force Base, California. The Discovery was ferried from NASA's Dryden Flight Research Center at Edwards to NASA's Kennedy Space Center in Florida on November 2, 2000, after extensive post-landing servicing and ferry flight preparations. STS-92 was the 100th mission since the fleet of four Space Shuttles began flying in 1981. (Due to schedule changes, missions are not always launched in the order that was originally planned.) The almost 13-day mission, the 46th Shuttle mission to land at Edwards, was the last construction mission for the International Space Station prior to the first scientists taking up residency in the orbiting space laboratory the following month. The seven-member crew on STS-92 included mission specialists Koichi Wakata, Michael Lopez-Alegria, Jeff Wisoff, Bill McArthur and Leroy Chiao, pilot Pam Melroy and mission commander Brian Duffy.

  12. Astronaut James Newman evaluates tether devices in Discovery's payload bay

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Astronaut James H. Newman, mission specialist, uses a 35mm camera to take a picture of fellow astronaut Carl E. Walz (out of frame) in Discovery's cargo bay. The two were engaged in an extravehicular activity (EVA) to test equipment to be used on future EVA's. Newman is tethered to the starboard side, with the orbital maneuvering system (OMS) pod just behind him.

  13. STS-102 Discovery lifts off from Launch Pad 39-B

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. - Space Shuttle Discovery rivals the rising sun as it blasts off from Launch Pad 39B at dawn on mission STS-102. . Liftoff occurred at 6:42:09 EST for this eighth flight to the International Space Station.

  14. STS-102 Discovery lifts off from Launch Pad 39-B

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. - Viewed from the top of the Vehicle Assembly Building, Space Shuttle Discovery leaps from the Earth against the background of the Atlantic Ocean on mission STS-102. Liftoff at dawn occurrred at 6:42:09 EST for the eighth flight to the International Space Station.

  15. STS-102 Discovery lifts off from Launch Pad 39-B

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. - As Space Shuttle Atlantis clears Launch Pad 39B, the sun peers over the horizon of the Atlantic Ocean. . Liftoff of Discovery on mission STS-102 occurred at 6:42:09 EST for the eighth flight to the International Space Station.

  16. ACTS/TOS after release from Shuttle Discovery

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The Advanced Communications Technology Satellite (ACTS) with its Transfer Orbit Stage (TOS) is backdropped over the blue ocean following its release from the Earth-orbiting Space Shuttle Discovery. ACTS/TOS deploy was the first major task performed on the almost ten-day mission.

  17. Manned Mars mission accommodation: Sprint mission

    NASA Technical Reports Server (NTRS)

    Cirillo, William M.; Kaszubowski, Martin J.; Ayers, J. Kirk; Llewellyn, Charles P.; Weidman, Deene J.; Meredith, Barry D.

    1988-01-01

    The results of a study conducted at the NASA-LaRC to assess the impacts on the Phase 2 Space Station of Accommodating a Manned Mission to Mars are documented. In addition, several candidate transportation node configurations are presented to accommodate the assembly and verification of the Mars Mission vehicles. This study includes an identification of a life science research program that would need to be completed, on-orbit, prior to mission departure and an assessment of the necessary orbital technology development and demonstration program needed to accomplish the mission. Also included is an analysis of the configuration mass properties and a preliminary analysis of the Space Station control system sizing that would be required to control the station. Results of the study indicate the Phase 2 Space Station can support a manned mission to Mars with the addition of a supporting infrastructure that includes a propellant depot, assembly hangar, and a heavy lift launch vehicle to support the large launch requirements.

  18. Manned Mars mission accommodation: Sprint mission

    NASA Astrophysics Data System (ADS)

    Cirillo, William M.; Kaszubowski, Martin J.; Ayers, J. Kirk; Llewellyn, Charles P.; Weidman, Deene J.; Meredith, Barry D.

    1988-04-01

    The results of a study conducted at the NASA-LaRC to assess the impacts on the Phase 2 Space Station of Accommodating a Manned Mission to Mars are documented. In addition, several candidate transportation node configurations are presented to accommodate the assembly and verification of the Mars Mission vehicles. This study includes an identification of a life science research program that would need to be completed, on-orbit, prior to mission departure and an assessment of the necessary orbital technology development and demonstration program needed to accomplish the mission. Also included is an analysis of the configuration mass properties and a preliminary analysis of the Space Station control system sizing that would be required to control the station. Results of the study indicate the Phase 2 Space Station can support a manned mission to Mars with the addition of a supporting infrastructure that includes a propellant depot, assembly hanger, and a heavy lift launch vehicle to support the large launch requirements.

  19. The Greatest Mathematical Discovery?

    SciTech Connect

    Bailey, David H.; Borwein, Jonathan M.

    2010-05-12

    What mathematical discovery more than 1500 years ago: (1) Is one of the greatest, if not the greatest, single discovery in the field of mathematics? (2) Involved three subtle ideas that eluded the greatest minds of antiquity, even geniuses such as Archimedes? (3) Was fiercely resisted in Europe for hundreds of years after its discovery? (4) Even today, in historical treatments of mathematics, is often dismissed with scant mention, or else is ascribed to the wrong source? Answer: Our modern system of positional decimal notation with zero, together with the basic arithmetic computational schemes, which were discovered in India about 500 CE.

  20. Viral surveillance and discovery

    PubMed Central

    Lipkin, Walter Ian; Firth, Cadhla

    2014-01-01

    The field of virus discovery has burgeoned with the advent of high throughput sequencing platforms and bioinformatics programs that enable rapid identification and molecular characterization of known and novel agents, investments in global microbial surveillance that include wildlife and domestic animals as well as humans, and recognition that viruses may be implicated in chronic as well as acute diseases. Here we review methods for viral surveillance and discovery, strategies and pitfalls in linking discoveries to disease, and identify opportunities for improvements in sequencing instrumentation and analysis, the use of social media and medical informatics that will further advance clinical medicine and public health. PMID:23602435

  1. STS-82 Mission Specialist Steven L. Smith Suit Up

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-82 Mission Specialist Steven L. Smith gives a ''';thumbs up'''; while donning his launch and entry suit in the Operations and Checkout Building. A suit technician stands ready to assist with final adjustments. This is Smith''';s second space flight. He and the six other crew members will depart shortly for Launch Pad 39A, where the Space Shuttle Discovery awaits liftoff on a 10-day mission to service the orbiting Hubble Space Telescope (HST). This will be the second HST servicing mission. Four back-to-back spacewalks are planned.

  2. Design of the ARES Mars Airplane and Mission Architecture

    NASA Technical Reports Server (NTRS)

    Braun, Robert D.; Wright, Henry S.; Croom, Mark A.; Levine, Joel S.; Spencer, David A.

    2006-01-01

    Significant technology advances have enabled planetary aircraft to be considered as viable science platforms. Such systems fill a unique planetary science measurement gap, that of regional-scale, near-surface observation, while providing a fresh perspective for potential discovery. Recent efforts have produced mature mission and flight system concepts, ready for flight project implementation. This paper summarizes the development of a Mars airplane mission architecture that balances science, implementation risk and cost. Airplane mission performance, flight system design and technology maturation are described. The design, analysis and testing completed demonstrates the readiness of this science platform for use in a Mars flight project.

  3. JPL Mission Bibliometrics

    NASA Technical Reports Server (NTRS)

    Coppin, Ann

    2013-01-01

    For a number of years ongoing bibliographies of various JPL missions (AIRS, ASTER, Cassini, GRACE, Earth Science, Mars Exploration Rovers (Spirit & Opportunity)) have been compiled by the JPL Library. Mission specific bibliographies are compiled by the Library and sent to mission scientists and managers in the form of regular (usually quarterly) updates. Charts showing publications by years are periodically provided to the ASTER, Cassini, and GRACE missions for supporting Senior Review/ongoing funding requests, and upon other occasions as a measure of the impact of the missions. Basically the Web of Science, Compendex, sometimes Inspec, GeoRef and Aerospace databases are searched for the mission name in the title, abstract, and assigned keywords. All get coded for journal publications that are refereed publications.

  4. Manned Mars mission

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Terrapin Technologies proposes a Manned Mars Mission design study. The purpose of the Manned Mars Mission is to transport ten people and a habitat with all required support systems and supplies from low Earth orbit (LEO) to the surface of Mars and, after an expedition of three months to return the personnel safely to LEO. The proposed hardware design is based on systems and components of demonstrated high capability and reliability. The mission design builds on past mission experience but incorporates innovative design approaches to achieve mission priorities. These priorities, in decreasing order of importance, are safety, reliability, minimum personnel transfer time, minimum weight, and minimum cost. The design demonstrates the feasibility and flexibility of a waverider transfer module. Information is given on how the plan meets the mission requirements.

  5. End of Mission Considerations

    NASA Technical Reports Server (NTRS)

    Hull, Scott M.

    2013-01-01

    While a great deal of effort goes into planning and executing successful mission operations, it is also important to consider the End of the Mission during the planning, design, and operations phases of any mission. Spacecraft and launch vehicles must be disposed of properly in order to limit the generation of orbital debris, and better preserve the orbital environment for all future missions. Figure 30-1 shows a 1990's projected growth of debris with and without the use of responsible disposal techniques. This requires early selection of a responsible disposal scenario, so that the necessary capabilities can be incorporated into the hardware designs. The mission operations must then be conducted in such a way as to preserve, and then actually perform, the planned, appropriate end of mission disposal.

  6. National Aeronautics and Space Administration and the Indian Space Research Organisation Synthetic Aperture Radar Mission Concept

    NASA Astrophysics Data System (ADS)

    Bawden, G. W.; Rosen, P. A.; Dubayah, R.; Hager, B. H.; Joughin, I. R.

    2014-12-01

    The U.S. National Aeronautics and Space Administration and the Indian Space Research Organisation are planning a synthetic aperture radar (currently named NISAR) mission for launch in 2020. The mission is a dual L- and S-band polarimetric SAR satellite with a 12-day interferometric orbit and 240 km wide ground swath. The 3-year mission will have a circular sun synchronous orbit (6 am and 6 pm) with a 98° inclination and 747 km altitude that will provide systematic global coverage. Its primary science objectives are to: measure solid Earth surface deformation (earthquakes, volcanic unrest, land subsidence/uplift, landslides); track and understand cryosphere dynamics (glaciers, ice sheets, sea ice, and permafrost); characterize and track changes in vegetation structure and wetlands for understanding ecosystem dynamics and carbon cycle; and support global disaster response. We will describe the current mission concept: the satellite design/capabilities, spacecraft, launch vehicle, and data flow.

  7. Guidelines and Capabilities for Designing Human Missions

    NASA Astrophysics Data System (ADS)

    2002-03-01

    The human element is likely the most complex and difficult one of mission design; it significantly influences every aspect of mission planning, from the basic parameters like duration to the more complex tradeoffs between mass, volume, power, risk, and cost. For engineers who rely on precise specifications in data books and other such technical references, dealing with the uncertainty and the variability of designing for human beings can be frustrating. When designing for the human element, questions arise more often than definitive answers. Nonetheless, we do not doubt that the most captivating discoveries in future space missions will necessitate human explorers. These guidelines and capabilities are meant to identify the points of intersection between humans and mission considerations such as architecture, vehicle design, technologies, operations, and science requirements. We seek to provide clear, top-level guidelines for human-related exploration studies and technology research that address common questions and requirements. As a result, we hope that ongoing mission trade studies consider common, standard, and practical criteria for human interfaces.

  8. Guidelines and Capabilities for Designing Human Missions

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The human element is likely the most complex and difficult one of mission design; it significantly influences every aspect of mission planning, from the basic parameters like duration to the more complex tradeoffs between mass, volume, power, risk, and cost. For engineers who rely on precise specifications in data books and other such technical references, dealing with the uncertainty and the variability of designing for human beings can be frustrating. When designing for the human element, questions arise more often than definitive answers. Nonetheless, we do not doubt that the most captivating discoveries in future space missions will necessitate human explorers. These guidelines and capabilities are meant to identify the points of intersection between humans and mission considerations such as architecture, vehicle design, technologies, operations, and science requirements. We seek to provide clear, top-level guidelines for human-related exploration studies and technology research that address common questions and requirements. As a result, we hope that ongoing mission trade studies consider common, standard, and practical criteria for human interfaces.

  9. 2001 Mars Odyssey Mission

    NASA Technical Reports Server (NTRS)

    Varghese, Philip

    2008-01-01

    This viewgraph presentation reviews the 2001 Mars Odyssey Mission. The contents include: 1) Mission Overview; 2) Current Scope of Work: 3) Facilities; 4) Critical Role of DSN; 5) Relay as Mission Supplement; 6) Current Mars Telecom Infrastructure; 7) PHX EDL Comm Overview; 8) EDL Geometry (Entry through Landing); 9) Phoenix Support; 10) Preparations for Phoenix; 11) EDL Support Timeline; 12) One Year Rolling Schedule; 13) E3 Rationale; and 14) Spacecraft Status.

  10. Lunar Missions and Datasets

    NASA Technical Reports Server (NTRS)

    Cohen, Barbara A.

    2009-01-01

    There are two slide presentations contained in this document. The first reviews the lunar missions from Surveyor, Galileo, Clementine, the Lunar Prospector, to upcoming lunar missions, Lunar Reconnaissance Orbiter (LRO), Lunar Crater Observation & Sensing Satellite (LCROSS), Acceleration, Reconnection, Turbulence and Electrodynamics of Moon's Interaction with the Sun (ARTEMIS), Gravity Recovery and Interior Laboratory (GRAIL), Lunar Atmosphere, Dust and Environment Explorer (LADEE), ILN and a possible Robotic sample return mission. The information that the missions about the moon is reviewed. The second set of slides reviews the lunar meteorites, and the importance of lunar meteorites to adding to our understanding of the moon.

  11. STEREO Mission Design Implementation

    NASA Technical Reports Server (NTRS)

    Guzman, Jose J.; Dunham, David W.; Sharer, Peter J.; Hunt, Jack W.; Ray, J. Courtney; Shapiro, Hongxing S.; Ossing, Daniel A.; Eichstedt, John E.

    2007-01-01

    STEREO (Solar-TErrestrial RElations Observatory) is the third mission in the Solar Terrestrial Probes program (STP) of the National Aeronautics and Space Administration (NASA) Science Mission Directorate Sun-Earth Connection theme. This paper describes the successful implementation (lunar swingby targeting) of the mission following the first phasing orbit to deployment into the heliocentric mission orbits following the two lunar swingbys. The STEREO Project had to make some interesting trajectory decisions in order to exploit opportunities to image a bright comet and an unusual lunar transit across the Sun.

  12. SEI reference mission

    NASA Technical Reports Server (NTRS)

    Weary, Dwayne

    1992-01-01

    Information is given in viewgraph form on the Space Exploration Initiative (SEI). The goal of the reference mission is to expand the human presence to the moon and Mars in order to enhance our understanding of the universe, to seek terrestrial benefits from this exploration, and to establish the beginnings of a sustainable spacefaring civilization. Topics covered here include a phased definition of initial programmatic milestones and follow-on capabilities, near-term mission strategy, a lunar mission timeline, and a Mars mission timeline.

  13. Juno Mission Simulation

    NASA Technical Reports Server (NTRS)

    Lee, Meemong; Weidner, Richard J.

    2008-01-01

    The Juno spacecraft is planned to launch in August of 2012 and would arrive at Jupiter four years later. The spacecraft would spend more than one year orbiting the planet and investigating the existence of an ice-rock core; determining the amount of global water and ammonia present in the atmosphere, studying convection and deep- wind profiles in the atmosphere; investigating the origin of the Jovian magnetic field, and exploring the polar magnetosphere. Juno mission management is responsible for mission and navigation design, mission operation planning, and ground-data-system development. In order to ensure successful mission management from initial checkout to final de-orbit, it is critical to share a common vision of the entire mission operation phases with the rest of the project teams. Two major challenges are 1) how to develop a shared vision that can be appreciated by all of the project teams of diverse disciplines and expertise, and 2) how to continuously evolve a shared vision as the project lifecycle progresses from formulation phase to operation phase. The Juno mission simulation team addresses these challenges by developing agile and progressive mission models, operation simulations, and real-time visualization products. This paper presents mission simulation visualization network (MSVN) technology that has enabled a comprehensive mission simulation suite (MSVN-Juno) for the Juno project.

  14. Mission: PHH2O

    NASA Technical Reports Server (NTRS)

    Adams, D.; Bays, J.; Kronschnabl, G.; Mccutchon, J.; Minier, E.; Rush, P.

    1989-01-01

    The purpose of this project was to design a mission and a spacecraft capable of retrieving 120,000 kg of water from Phobos, a martian moon. There were no restrictions on the types of propulsion or power systems used. The duration of the mission was not defined, but a factor influencing the length of the mission was the statement that it would be cyclic in nature and the spacecraft could be manned or unmanned. The only assumptions provided were that a pumping and refueling station existed on Phobos and that a base existed on the Moon. The technology used for this mission was to be of the year 2007 and beyond.

  15. The requirements discovery process

    SciTech Connect

    Bahill, A.T.; Dean, F.F.

    1997-02-01

    Cost and schedule overruns are often caused by poor requirements that are produced by people who do not understand the requirement process. This paper provides a high-level overview of the requirements discovery process.

  16. The Discovery of Noggin.

    ERIC Educational Resources Information Center

    Oppenheimer, Steven B.

    1995-01-01

    Discusses recently published work that appears to have many of the answers to the question of how the nervous system develops. Focuses on the discovery of what is believed to be neural inducer, a protein called noggin. (LZ)

  17. Toxins and drug discovery.

    PubMed

    Harvey, Alan L

    2014-12-15

    Components from venoms have stimulated many drug discovery projects, with some notable successes. These are briefly reviewed, from captopril to ziconotide. However, there have been many more disappointments on the road from toxin discovery to approval of a new medicine. Drug discovery and development is an inherently risky business, and the main causes of failure during development programmes are outlined in order to highlight steps that might be taken to increase the chances of success with toxin-based drug discovery. These include having a clear focus on unmet therapeutic needs, concentrating on targets that are well-validated in terms of their relevance to the disease in question, making use of phenotypic screening rather than molecular-based assays, and working with development partners with the resources required for the long and expensive development process. PMID:25448391

  18. STS-114: Discovery Post MMT Briefing

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Wayne Hale, Space Shuttle Deputy Program Manager, is presented in this STS-114 Discovery Post Mission Management Team (MMT) briefing. He begins by talking about obtaining clearance from the Reinforced Carbon-Carbon (RCC) material. He then describes the supplies such as eleven water containers and the transfer of 50 additional pounds of Oxygen to the International Space Station. Hale presents a video of a billowed thermal blanket next to the commander's window on the port side of the Space Shuttle Discovery that seems to be of some concern. He answers questions from the news media about the dimensions of this blanket, and the dangers of getting close to this blanket during the Extravehicular Activity (EVA) to repair the gap fillers.

  19. STS-96 Launch of Discovery from Pad 39-B

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The launch of Space Shuttle Discovery on mission STS-96 is reflected in the waters of Banana Creek just after sunrise. Liftoff occurred at 6:49:42 a.m. EDT. In the shadows near the bottom are silhouetted a number of spectators at the Banana Creek viewing site. STS-96 is on a 10-day logistics and resupply mission for the International Space Station. Along with such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student-involved experiment, Discovery carries about 4,000 pounds of supplies, to be stored aboard the station for use by future crews, including laptop computers, cameras, tools, spare parts, and clothing. The mission includes a space walk to attach the cranes to the outside of the ISS for use in future construction. Landing is expected at the SLF on June 6 about

  20. STS-96 Launch of Discovery from Pad 39-B

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Space Shuttle Discovery is hurled through a gossamer sky after launch today on mission STS-96. Lifting off at 6:49:42 a.m. EDT, the crew of seven begin a 10-day logistics and resupply mission for the International Space Station. Discovery carries about 4,000 pounds of supplies, to be stored aboard the station for use by future crews, including laptop computers, cameras, tools, spare parts, and clothing. The mission also includes such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student-involved experiment. It will include a space walk to attach the cranes to the outside of the ISS for use in future construction. Landing is expected at the SLF on June 6 about 1:58 a.m. EDT.

  1. The Outer Planetary Mission Design Project

    NASA Astrophysics Data System (ADS)

    Benfield, Michael; Turner, M. W.

    2010-10-01

    With the recent focus from the planetary science community on the outer planets of the solar system, The University of Alabama in Huntsville Integrated Product Team program is embarking on a new challenge to develop an outer planetary mission for the academic year 2010-2011. Currently four bodies are of interest for this mission: Titan, Europa, Triton, and Enceledus, with one body being chosen by the instructors by the beginning of the fall semester. This project will use the 2010 Discovery Announcement of Opportunity as its Request for Proposal (RFP). All of the teams competing in this project will use the AO to respond with a proposal to the instructors for their proposed mission and spacecraft concept. The project employs the two-semester design sequence of the IPT program to provide a framework for the development of this mission. This sequence is divided into four phases. Phase 1 - Requirements Development - focuses on the development of both the scientific and engineering requirements of the mission. During this phase the teams work very closely with the PI organization, represented by the College of Charleston. Phase 2 - Team Formation and Architecture Development - concentrates on the assessment of the overall mission architecture from the launch vehicle to the ground operations of the proposed spacecraft. Phase 3 - System Definition - provides for spacecraft subsystem trade studies and further refinement of the specific spacecraft to meet the scientific requirements and objectives developed in Phase 1. Phase 4 - Design - is the phase where the engineers provide the spacecraft design that is required for the mission of interest. At the conclusion of Phases 2 and 4, an external review board evaluates the proposed designs and chooses one winner of the competition.

  2. Kepler & K2: One spacecraft, Two Missions

    NASA Astrophysics Data System (ADS)

    Batalha, Natalie

    2015-12-01

    This year, we mark twenty years of exploring the diversity of planets and planetary systems orbiting main sequence stars. Exoplanet discoveries spill into the thousands, and the sensitivity boundaries continue to expand. NASA's Kepler Mission unveiled a galaxy replete with small planets and revealed populations that don't exist in our own solar system. The mission has yielded a sample sufficient for computing planet occurrence rates as a function of size, orbital period, and host star properties. We've learned that every late-type star has at least one planet on average, that terrestrial-sized planets are more common than larger planets within 1 AU, and that the nearest, potentially habitable earth-sized planet is likely within 5pc. After four years of continuous observations, the Kepler prime mission ended in May 2013 with the loss of a second reaction wheel. Thanks to innovative engineering, the spacecraft gained a second lease on life and emerged as the ecliptic surveyor, K2. In many regards, K2 is a distinctly new mission, not only by pointing at new areas of the sky but also by focusing on community-driven goals that diversify the science yield. For exoplanets, this means targeting bright and low mass stars -- the populations harboring planets amenable to dynamical and atmospheric characterization. To date, the mission has executed 7 observing campaigns lasting ~80 days each and has achieved a 6-hour photometric precision of 30 ppm. A couple dozen planets have been confirmed, including two nearby (< 50 pc) systems on the watch-list for future JWST campaigns. While Kepler prime is setting the stage for the direct imaging missions of the future, K2 is easing us into an era of atmospheric characterization -- one spacecraft, two missions, and a bright future for exoplanet science.

  3. STS-31 Mission Highlights Resource Tape. Part 1

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The primary objective of mission STS-31 was to deploy the Hubble Space Telescope. The commander of the mission was Loren J. Shriver. The crew was pilot Charles F. Bolden, and Mission Specialists, Steven A. Hawley, Bruce McCandless II, and Kathryn D. Sullivan. The mission was launched on April 24, 1990. This videotape shows the astronauts at their pre-launch breakfast, their final preparations for launch and boarding the Shuttle Discovery. It shows the launch and the detachment of the rocket boosters. It shows the deployment of the Hubble Telescope and the unfurling of its Solar Arrays. Other payloads include the Protein Crystal Growth (PCG) experiment, and the Radiation Monitoring Equipment III, to measure gamma ray levels in the crew cabin. The videotape shows many shots of the Kennedy Mission Control room and the shuttle cockpit. The videotape finally shows the landing at Edwards Air Force Base, and the crew disembarking the shuttle.

  4. Managing the Perception of Advanced Technology Risks in Mission Proposals

    NASA Technical Reports Server (NTRS)

    Bellisario, Sebastian Nickolai

    2012-01-01

    Through my work in the project proposal office I became interested in how technology advancement efforts affect competitive mission proposals. Technology development allows for new instruments and functionality. However, including technology advancement in a mission proposal often increases perceived risk. Risk mitigation has a major impact on the overall evaluation of the proposal and whether the mission is selected. In order to evaluate the different approaches proposals took I compared the proposals claims of heritage and technology advancement to the sponsor feedback provided in the NASA debriefs. I examined a set of Discovery 2010 Mission proposals to draw patterns in how they were evaluated and come up with a set of recommendations for future mission proposals in how they should approach technology advancement to reduce the perceived risk.

  5. Modeling and Simulation for Mission Operations Work System Design

    NASA Technical Reports Server (NTRS)

    Sierhuis, Maarten; Clancey, William J.; Seah, Chin; Trimble, Jay P.; Sims, Michael H.

    2003-01-01

    Work System analysis and design is complex and non-deterministic. In this paper we describe Brahms, a multiagent modeling and simulation environment for designing complex interactions in human-machine systems. Brahms was originally conceived as a business process design tool that simulates work practices, including social systems of work. We describe our modeling and simulation method for mission operations work systems design, based on a research case study in which we used Brahms to design mission operations for a proposed discovery mission to the Moon. We then describe the results of an actual method application project-the Brahms Mars Exploration Rover. Space mission operations are similar to operations of traditional organizations; we show that the application of Brahms for space mission operations design is relevant and transferable to other types of business processes in organizations.

  6. Mission Specialist Smith is suited and ready for launch

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the Operations and Checkout Building, STS-103 Mission Specialist Steven L. Smith signals he is suited up and ready for launch. Other crew members are Commander Curtis L. Brown Jr., Pilot Scott J. Kelly and Mission Specialists C. Michel Foale (Ph.D.), John M. Grunsfeld (Ph.D.), Jean-Frangois Clervoy of France and Claude Nicollier of Switzerland. Clervoy and Nicollier are with the European Space Agency. The STS-103 mission, to service the Hubble Space Telescope, is scheduled for launch Dec. 17 at 8:47 p.m. EST from Launch Pad 39B. Mission objectives include replacing gyroscopes and an old computer, installing another solid state recorder, and replacing damaged insulation in the telescope. After the 8-day, 21-hour mission, Discovery is expected to land at KSC Sunday, Dec. 26, at about 6:30 p.m. EST.

  7. Mission Specialist Nicollier gets help suiting up before launch

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the Operations and Checkout Building, STS-103 Mission Specialist Claude Nicollier of Switzerland waves while having his launch and entry suit checked by a suit techician during final launch preparations. Other crew members are Commander Curtis L. Brown Jr., Pilot Scott J. Kelly and Mission Specialists Steven L. Smith, C. Michael Foale (Ph.D.), John M. Grunsfeld (Ph.D.) and Jean-Frangois Clervoy of France. Nicollier and Clervoy are with the European Space Agency. The STS-103 mission, to service the Hubble Space Telescope, is scheduled for launch Dec. 17 at 8:47 p.m. EST from Launch Pad 39B. Mission objectives include replacing gyroscopes and an old computer, installing another solid state recorder, and replacing damaged insulation in the telescope. After the 8-day, 21-hour mission, Discovery is expected to land at KSC Sunday, Dec. 26, at about 6:30 p.m. EST.

  8. Mission Specialist Foale gets help suiting up before launch

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the Operations and Checkout Building, STS-103 Mission Specialist C. Michel Foale (Ph.D.) smiles as his launch and entry suit is checked by a suit techician during final launch preparations. Other crew members are Commander Curtis L. Brown Jr., Pilot Scott J. Kelly and Mission Specialists Steven L. Smith, John M. Grunsfeld (Ph.D.), Claude Nicollier of Switzerland and Jean-Frangois Clervoy of France. Nicollier and Clervoy are with the European Space Agency. The STS-103 mission, to service the Hubble Space Telescope, is scheduled for launch Dec. 17 at 8:47 p.m. EST from Launch Pad 39B. Mission objectives include replacing gyroscopes and an old computer, installing another solid state recorder, and replacing damaged insulation in the telescope. After the 8-day, 21-hour mission, Discovery is expected to land at KSC Sunday, Dec. 26, at about 6:30 p.m. EST.

  9. Mission Specialist Grunsfeld gets help suiting up before launch

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the Operations and Checkout Building, STS-103 Mission Specialist John M. Grunsfeld (Ph.D.) is assisted by a suit technician in donning his launch and entry suit during final launch preparations. Other crew members are Commander Curtis L. Brown Jr., Pilot Scott J. Kelly and Mission Specialists Steven L. Smith, C. Michael Foale (Ph.D.), Claude Nicollier of Switzerland and Jean-Frangois Clervoy of France. Nicollier and Clervoy are with the European Space Agency. The STS-103 mission, to service the Hubble Space Telescope, is scheduled for launch Dec. 17 at 8:47 p.m. EST from Launch Pad 39B. Mission objectives include replacing gyroscopes and an old computer, installing another solid state recorder, and replacing damaged insulation in the telescope. After the 8-day, 21-hour mission, Discovery is expected to land at KSC Sunday, Dec. 26, at about 6:30 p.m. EST.

  10. Discovery of Planetary Systems With SIM

    NASA Technical Reports Server (NTRS)

    Marcy, Geoffrey W.; Butler, Paul R.; Frink, Sabine; Fischer, Debra; Oppenheimer, Ben; Monet, David G.; Quirrenbach, Andreas; Scargle, Jeffrey D.

    2004-01-01

    We are witnessing the birth of a new observational science: the discovery and characterization of extrasolar planetary systems. In the past five years, over 70 extrasolar planets have been discovered by precision Doppler surveys, most by members of this SIM team. We are using the data base of information gleaned from our Doppler survey to choose the best targets for a new SIN planet search. In the same way that our Doppler database now serves SIM, our team will return a reconnaissance database to focus Terrestrial Planet Finder (TPF) into a more productive, efficient mission.

  11. Mission requirements: Second Skylab mission SL-3

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Complete SL-3 mission objectives and requirements, as revised 1 February 1972 (Rev. 6), are presented. Detailed test objectives are also given on the medical experiments, Apollo Telescope Mount experiments, Earth Resources Experiment Package, and corollary experiments and environmental microbiology experiments.

  12. NASA's RPS Design Reference Mission Set for Solar System Exploration

    NASA Technical Reports Server (NTRS)

    Balint, Tibor S.

    2007-01-01

    NASA's 2006 Solar System Exploration (SSE) Strategic Roadmap identified a set of proposed large Flagship, medium New Frontiers and small Discovery class missions, addressing key exploration objectives. These objectives respond to the recommendations by the National Research Council (NRC), reported in the SSE Decadal Survey. The SSE Roadmap is down-selected from an over-subscribed set of missions, called the SSE Design Reference Mission (DRM) set. Missions in the Flagship and New Frontiers classes can consider Radioisotope Power Systems (RPSs), while small Discovery class missions are not permitted to use them, due to cost constraints. In line with the SSE DRM set and the SSE Roadmap missions, the RPS DRM set represents a set of missions, which can be enabled or enhanced by RPS technologies. At present, NASA has proposed the development of two new types of RPSs. These are the Multi-Mission Radioisotope Thermoelectric Generator (MMRTG), with static power conversion; and the Stirling Radioisotope Generator (SRG), with dynamic conversion. Advanced RPSs, under consideration for possible development, aim to increase specific power levels. In effect, this would either increase electric power generation for the same amount of fuel, or reduce fuel requirements for the same power output, compared to the proposed MMRTG or SRG. Operating environments could also influence the design, such that an RPS on the proposed Titan Explorer would use smaller fins to minimize heat rejection in the extreme cold environment; while the Venus Mobile Explorer long-lived in-situ mission would require the development of a new RPS, in order to tolerate the extreme hot environment, and to simultaneously provide active cooling to the payload and other electric components. This paper discusses NASA's SSE RPS DRM set, in line with the SSE DRM set. It gives a qualitative assessment regarding the impact of various RPS technology and configuration options on potential mission architectures, which could

  13. NASA'S RPS Design Reference Mission Set for Solar System Exploration

    NASA Astrophysics Data System (ADS)

    Balint, Tibor S.

    2007-01-01

    NASA's 2006 Solar System Exploration (SSE) Strategic Roadmap identified a set of proposed large Flagship, medium New Frontiers and small Discovery class missions, addressing key exploration objectives. These objectives respond to the recommendations by the National Research Council (NRC), reported in the SSE Decadal Survey. The SSE Roadmap is down-selected from an over-subscribed set of missions, called the SSE Design Reference Mission (DRM) set Missions in the Flagship and New Frontiers classes can consider Radioisotope Power Systems (RPSs), while small Discovery class missions are not permitted to use them, due to cost constraints. In line with the SSE DRM set and the SSE Roadmap missions, the RPS DRM set represents a set of missions, which can be enabled or enhanced by RPS technologies. At present, NASA has proposed the development of two new types of RPSs. These are the Multi-Mission Radioisotope Thermoelectric Generator (MMRTG), with static power conversion; and the Stirling Radioisotope Generator (SRG), with dynamic conversion. Advanced RPSs, under consideration for possible development, aim to increase specific power levels. In effect, this would either increase electric power generation for the same amount of fuel, or reduce fuel requirements for the same power output, compared to the proposed MMRTG or SRG. Operating environments could also influence the design, such that an RPS on the proposed Titan Explorer would use smaller fins to minimize heat rejection in the extreme cold environment; while the Venus Mobile Explorer long-lived in-situ mission would require the development of a new RPS, in order to tolerate the extreme hot environment, and to simultaneously provide active cooling to the payload and other electric components. This paper discusses NASA's SSE RPS DRM set, in line with the SSE DRM set. It gives a qualitative assessment regarding the impact of various RPS technology and configuration options on potential mission architectures, which could

  14. Mission Medical Information System

    NASA Technical Reports Server (NTRS)

    Johnson-Throop, Kathy A.; Joe, John C.; Follansbee, Nicole M.

    2008-01-01

    This viewgraph presentation gives an overview of the Mission Medical Information System (MMIS). The topics include: 1) What is MMIS?; 2) MMIS Goals; 3) Terrestrial Health Information Technology Vision; 4) NASA Health Information Technology Needs; 5) Mission Medical Information System Components; 6) Electronic Medical Record; 7) Longitudinal Study of Astronaut Health (LSAH); 8) Methods; and 9) Data Submission Agreement (example).

  15. Comet rendezvous mission study

    NASA Technical Reports Server (NTRS)

    Friedlander, A. L.; Wells, W. C.

    1971-01-01

    Four periodic comets with perihelia between 1980 and 1986 (Encke, d'Arrest, Kipff, and Halley) are used as candidates for the comet rendezvous mission study. All these comet apparitions are especially favorable for rendezvous missions, because of early earth-based comet recovery, good opportunities to view their activity from earth, and reasonable launch vehicle and trajectory requirements for nominal payloads.

  16. NASA Mission: The Universe

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This booklet is mainly a recruitment tool for the various NASA Centers. This well illustrated booklet briefly describes NASA's mission and career opportunities on the NASA team. NASA field installations and their missions are briefly noted. NASA's four chief program offices are briefly described. They are: (1) Aeronautics, Exploration, and Space Technology; (2) Space Flight; (3) Space Operations; and (4) Space Science and Applications.

  17. The Pioneer Venus Missions.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Mountain View, CA. Ames Research Center.

    This document provides detailed information on the atmosphere and weather of Venus. This pamphlet describes the technological hardware including the probes that enter the Venusian atmosphere, the orbiter and the launch vehicle. Information is provided in lay terms on the mission profile, including details of events from launch to mission end. The…

  18. The Community College Mission.

    ERIC Educational Resources Information Center

    Vaughan, George B.

    1988-01-01

    Argues that the community college's mission has been and will be constant with respect to its social role to educate; its responsiveness to community needs; its focus on teaching; its open access philosophy; and its commitment to a comprehensive curriculum. Examines social tensions affecting the mission. (DMM)

  19. An interstellar precursor mission

    NASA Technical Reports Server (NTRS)

    Jaffe, L. D.; Ivie, C.; Lewis, J. C.; Lipes, R.; Norton, H. N.; Stearns, J. W.; Stimpson, L. D.; Weissman, P.

    1980-01-01

    A mission out of the planetary system, launched about the year 2000, could provide valuable scientific data as well as test some of the technology for a later mission to another star. Primary scientific objectives for the precursor mission concern characteristics of the heliopause, the interstellar medium, stellar distances (by parallax measurements), low-energy cosmic rays, interplanetary gas distribution, and the mass of the solar system. Secondary objectives include investigation of Pluto. The mission should extend to 400-1000 AU from the sun. A heliocentric hyperbolic escape velocity of 50-100 km/sec or more is needed to attain this distance within a reasonable mission duration (20-50 years). The trajectory should be toward the incoming interstellar gas. For a year 2000 launch, a Pluto encounter and orbiter can be included. A second mission targeted parallel to the solar axis would also be worthwhile. The mission duration is 20 years, with an extended mission to a total of 50 years. A system using one or two stages of nuclear electric propulsion (NEP) was selected as a possible baseline. The most promising alternatives are ultralight solar sails or laser sailing, with the lasers in earth orbit, for example. The NEP baseline design allows the option of carrying a Pluto orbiter as a daughter spacecraft.

  20. STS-31 Mission Specialist Hawley examines ARRIFLEX camera during JSC briefing

    NASA Technical Reports Server (NTRS)

    1989-01-01

    STS-31 Mission Specialist (MS) Steven A. Hawley, having removed the glass lens from the ARRIFLEX camera eye piece, examines it closely. Hawley, along with other crewmembers, is participating in a Photo/TV briefing and camera familiarization session at JSC. This type of camera equipment will be used during the STS-31 mission aboard Discovery, Orbiter Vehicle (OV) 103.

  1. STS-26 crew on fixed based (FB) shuttle mission simulator (SMS) flight deck

    NASA Technical Reports Server (NTRS)

    1988-01-01

    STS-26 Discovery, Orbiter Vehicle (OV) 103, Commander Frederick H. Hauck (left) and Pilot Richard O. Covey review checklists in their respective stations on the foward flight deck. The STS-26 crew is training in the fixed base (FB) shuttle mission simulator (SMS) located in JSC Mission Simulation and Training Facility Bldg 5.

  2. Astronauts Newman and Walz evaluate tools for use on HST servicing mission

    NASA Technical Reports Server (NTRS)

    1993-01-01

    With the Caribbean Sea and part of the Bahama Islands chain as a backdrop, two STS-51 crewmembers evaluate procedures and gear to be used on the upcoming Hubble Space Telescope (HST)-servicing mission. Sharing the lengthy extravehicular activity in and around Discovery's cargo bay were astronauts James H. Newman (left), and Carl E. Walz, mission specialists.

  3. Earth observations during Space Shuttle Mission STS-33 - November 23-27, 1989

    NASA Technical Reports Server (NTRS)

    Amsbury, David L.; Helfert, Michael R.; Lulla, Kamlesh P.; Whitehead, Victor S.; Evans, Cynthia A.

    1990-01-01

    An overview is presented of photographs, astronaut impressions, and photographic equipment and techniques coincident with the Discovery STS-33 mission of November 23-27, 1989. Particularly significant geographical photographs of southern Africa, Madagascar, northern Africa, Southeast Asia islands, Pacific islands, and Australia are shown and reviewed. Meteorological and oceanographic observations are summarized along with film anomalies that occurred during this mission.

  4. STS-69 Mission Insignia

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Designed by the mission crew members, the patch for STS-69 symbolizes the multifaceted nature of the flight's mission. The primary payload, the Wake Shield Facility (WSF), is represented in the center by the astronaut emblem against a flat disk. The astronaut emblem also signifies the importance of human beings in space exploration, reflected by the planned space walk to practice for International Space Station (ISS) activities and to evaluate space suit design modifications. The two stylized Space Shuttles highlight the ascent and entry phases of the mission. Along with the two spiral plumes, the stylized Space Shuttles symbolize a NASA first, the deployment and recovery on the same mission of two spacecraft (both the Wake Shield Facility and the Spartan). The constellations Canis Major and Canis Minor represent the astronomy objectives of the Spartan and International Extreme Ultraviolet Hitchhiker (IEH) payload. The two constellations also symbolize the talents and dedication of the support personnel who make Space Shuttle missions possible.

  5. Mars Surface Mission Workshop

    NASA Technical Reports Server (NTRS)

    Duke, M. B. (Editor)

    1997-01-01

    A workshop was held at the Lunar and Planetary Institute on September 4-5, 1997, to address the surface elements of the Mars Reference Mission now being reviewed by NASA. The workshop considered the current reference mission and addressed the types of activities that would be expected for science and resource exploration and facilities operations. A set of activities was defined that can be used to construct "vignettes" of the surface mission. These vignettes can form the basis for describing the importance of the surface mission, for illustrating aspects of the surface mission, and for allowing others to extend and revise these initial ideas. The topic is rich with opportunities for additional conceptualization. It is recommended that NASA consider supporting university design teams to conduct further analysis of the possibilities.

  6. Outer Planet Flagship Mission

    NASA Astrophysics Data System (ADS)

    Cutts, James; Niebur, C.; Dudzinski, L.; Coradini, M.; Lebreton, J.

    2008-09-01

    Studies for Outer Planet Missions have been ongoing for many years, but in 2007 NASA commissioned four specific studies to be considered for further examination; the Europa Explorer, Titan Explorer, Enceladus Mission and Jupiter Science Orbiter. During the same time frame ESA invited Outer Planet proposals under the Cosmic Vision call. Two were submitted, TandEm and LaPlace, which focused on Titan/Enceladus and Jupiter System science respectively. In 2008, NASA selected two of the missions, Europa Explorer and Titan Explorer, and ESA selected the two outer planet proposals for further study. This poster describes the process by which NASA and ESA are collaborating on the current studies which are now named the Titan/Saturn (TSSM) and Europa/Jupiter Missions (EJSM). We provide an update on the background, organization and schedule for these two mission studies.

  7. Outer Planet Flagship Missions

    NASA Astrophysics Data System (ADS)

    Niebur, C.; Dudzinski, L.; Coradini, M.; Lebreton, J.; Cutts, J. A.

    2008-05-01

    Studies for Outer Planet Missions have been ongoing for many years, but in 2007 NASA commissioned four specific studies to be considered for further examination; the Europa Explorer, Titan Explorer, Enceladus Mission and Jupiter Science Orbiter. During the same time frame ESA invited Outer Planet proposals under the Cosmic Vision call. Two were submitted, TandEM and LaPlace, which focused on Titan/Enceladus and Jupiter System science respectively. In 2008, NASA selected two of the missions, Europa Explorer and Titan Explorer, and ESA selected the two outer planet proposals for further study. This poster describes the process by which NASA and ESA are collaborating on the current studies which are now named the Titan/Saturn and Europa/Jupiter Missions. We provide the background, organization and schedule that are presently envisaged for these two mission studies.

  8. Outer Planets Flagship Mission

    NASA Astrophysics Data System (ADS)

    Niebur, C.; Dudzinski, L.; Coradini, M.; Lebreton, J. P.; Cutts, J. A.

    2008-09-01

    Studies for Outer Planet Missions have been ongoing for many years, but in 2007 NASA commissioned four specific studies to be considered for further examination; the Europa Explorer, Titan Explorer, Enceladus Mission and Jupiter Science Orbiter. During the same time frame ESA invited Outer Planet proposals under the Cosmic Vision call. Two were submitted, TandEm and LaPlace, which focused on Titan/Enceladus and Jupiter System science respectively. In 2008, NASA selected two of the missions, Europa Explorer and Titan Explorer, and ESA selected the two outer planet proposals for further study. This poster describes the process by which NASA and ESA are collaborating on the current studies which are now named the Titan/Saturn (TSSM) and Europa/Jupiter Missions (EJSM). We provide an update on the background, organization and schedule for these two mission studies.

  9. Kepler Mission Design

    NASA Technical Reports Server (NTRS)

    Koch, David; Borucki, William; Lissauer, J.; Mayer, David; Voss, Janice; Basri, Gibor; Gould, Alan; Brown, Timothy; Cockran, William; Caldwell, Douglas

    2005-01-01

    The Kepler Mission is in the development phase with launch planned for 2007. The mission goal first off is to reliably detect a significant number of Earth-size planets in the habitable zone of solar-like stars. The mission design allows for exploring the diversity of planetary sizes, orbital periods, stellar spectral types, etc. In this paper we describe the technical approach taken for the mission design; describing the flight and ground system, the detection methodology, the photometer design and capabilities, and the way the data are taken and processed. (For Stellar Classification program. Finally the detection capability in terms of planet size and orbit are presented as a function of mission duration and stellar type.

  10. How WISE Points to Future Far-Infrared Missions

    NASA Technical Reports Server (NTRS)

    Benford, Dominic J.; Leisawitz, D. T.; Wright, E. L.

    2011-01-01

    Based on the tantalizing science that is emerging from the first WISE discoveries, we consider the impact that the future will bring to far-infrared mission concepts. What we've learned from WISE gives us new investigations for missions like SPICA and SPIRIT. We highlight the new results from WISE and incorporate that into the context of the Far-Infrared Community Plan and the recent New Worlds, New Horizons documents. Plain-Language Abstract: Based on tantalizing science emerging from the first WISE discoveries, what we've learned gives us new investigations for missions like SPICA and SPIRIT. We highlight the new results from WISE and incorporate that into the context of the Far-Infrared Community Plan and the recent New Worlds, New Horizons documents.

  11. (abstract) A Solar Electric Propulsion Mission to the Moon and Beyond!

    NASA Technical Reports Server (NTRS)

    Russell, C. T.; Pieters, C. M.; Konopliv, A.; Metzger, A.; Sercel, J.; Hickman, M.; Palac, D.; Sykes, M.

    1994-01-01

    The technological development of solar electric propulsion has advanced significantly over the last few years. Mission planners are now seriously studying which missions would benefit most from solar electric propulsion (SEP) and NASA's Solar System Exploration Division is contributing funding to ground and space qualification tests. In response to the impending release of NASA's Announcement of Opportunity for Discovery class planetary missions, we have undertaken a pre-Phase A study of a SEP mission to the Moon. This mission will not only return a wealth of new scientific data but will open up a whole new era of planetary exploration.

  12. Cometary Coma Chemical Composition (C4) Mission

    NASA Technical Reports Server (NTRS)

    Carle, Glenn C.; Clark, Benton C.; Knocke, Philip C.; OHara, Bonnie J.; Adams, Larry; Niemann, Hasso B.; Alexander, Merle; Veverka, Joseph; Goldstein, Raymond; Huebner, Walter; Morrison, David (Technical Monitor)

    1994-01-01

    Cometary exploration remains of great importance to virtually all of space science. Because comets are presumed to be remnants of the early solar nebula, they are expected to provide fundamental knowledge as to the origin and development of the solar system as well as to be key to understanding of the source of volatiles and even life itself in the inner solar system. Clearly the time for a detailed study of the composition of these apparent messages from the past has come. A comet rendezvous mission, the Cometary Coma Chemical Composition (C4) Mission, is now being studied as a candidate for the new Discovery program. This mission is a highly-focussed and usefully-limited subset of the Cometary Rendezvous Asteroid Flyby (CRAF) Mission. The C4 mission will concentrate on measurements that will produce an understanding of the composition and physical makeup of a cometary nucleus. The core science goals of the C4 mission are 1) to determine the chemical, elemental, and isotopic composition of a cometary nucleus and 2) to characterize the chemical and isotopic nature of its atmosphere. A related goal is to obtain temporal information about the development of the cometary coma as a function of time and orbital position. The four short-period comets -- Tempel 1, Tempel 2, Churyumov-Gerasimenko, and Wirtanen -which all appear to have acceptable dust production rates, were identified as candidate targets. Mission opportunities have been identified beginning as early as 1998. Tempel I with a launch in 1999, however, remains the baseline comet for studies of and planning the C4 mission. The C4 mission incorporates two science instruments and two engineering instruments in the payload to obtain the desired measurements. The science instruments include an advanced version of the Cometary Ice and Dust Experiment (CIDEX), a mini-CIDEX with a sample collection system, an X-ray Fluorescence Spectrometer and a Pyrolysis-Gas Chromatograph, and a simplified version of the Neutral

  13. Lessons Learned from the Clementine Mission

    NASA Technical Reports Server (NTRS)

    1997-01-01

    According to BMDO, the Clementine mission achieved many of its technology objectives during its flight to the Moon in early 1994 but, because of a software error, was unable to test the autonomous tracking of a cold target. The preliminary analyses of the returned lunar data suggest that valuable scientific measurements were made on several important topics but that COMPLEX's highest-priority objectives for lunar science were not achieved. This is not surprising given that the rationale for Clementine was technological rather than scientific. COMPLEX lists below a few of the lessons that may be learned from Clementine. Although the Clementine mission was not conceived as a NASA science mission exactly like those planned for the Discovery program, many operational aspects of the two are similar. It is therefore worthwhile to understand the strengths and faults of the Clementine approach. Some elements of the Clementine operation that led to the mission's success include the following: (1) The mission's achievements were the responsibility of a single organization and its manager, which made that organization and that individual accountable for the final outcome; (2) The sponsor adopted a hands-off approach and set a minimum number of reviews (three); (3) The sponsor accepted a reasonable amount of risk and allowed the project team to make the trade-offs necessary to minimize the mission's risks while still accomplishing all its primary objectives; and (4) The development schedule was brief and the agreed-on funding (and funding profile) was adhered to. Among the operational shortcomings of Clementine were the following: (1) An overly ambitious schedule and a slightly lean budget (meaning insufficient time for software development and testing, and leading ultimately to human exhaustion); and (2) No support for data calibration, reduction, and analysis. The principal lesson to be learned in this category is that any benefits from the constructive application of higher

  14. STS-39 Space Shuttle mission report

    NASA Technical Reports Server (NTRS)

    Fricke, Robert W.

    1991-01-01

    The STS-39 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem operations during the fortieth flight of the Space Shuttle and the twelfth flight of the Orbiter Vehicle Discovery (OV-103). In addition to the Discovery vehicle, the flight vehicle consisted of the following: an External Tank (ET) (designated as ET-46 (LWT-39); three Space Shuttle main engines (SSME's) (serial numbers 2026, 2030, and 2029 in positions 1, 2, and 3, respectively); and two Solid Rocket Boosters (SRB's) designated as BI-043. The primary objective of this flight was to successfully perform the planned operations of the Infrared Background Signature Survey (IBSS), Air Force Payload (AFP)-675, Space Test Payload (STP)-1, and the Multipurpose Experiment Canister (MPEC) payloads.

  15. STS-48 Space Shuttle mission report

    NASA Technical Reports Server (NTRS)

    Fricke, Robert W.

    1991-01-01

    The STS-48 Space Shuttle Program Mission Report is a summary of the vehicle subsystem operations during the forty-third flight of the Space Shuttle Program and the thirteenth flight of the Orbiter vehicle Discovery (OV-103). In addition to the Discovery vehicle, the flight vehicle consisted of the following: an External Tank (ET) designated as ET-42 (LUT-35); three Space Shuttle main engines (SSME's) (serial numbers 2019, 2031, and 2107 in positions 1, 2, and 3, respectively); and two Solid Rocket Boosters (SRB's) designated as BI-046. The lightweight redesigned Solid Rocket Motors (RSRM's) installed in each one of the SRB's were designated as 360L018A for the left SRB and 360L018B for the right SRB. The primary objective of the flight was to successfully deploy the Upper Atmospheric Research Satellite (UARS) payload.

  16. A Decade of Discovery

    SciTech Connect

    2008-01-01

    This book provides a fascinating account of some of the most significant scientific discoveries and technological innovations coming out of the U.S. Department of Energy’s National Laboratories. This remarkable book illustrates how the men and women of the National Laboratories are keeping us on the cutting edge. Though few Americans are familiar with the scope and scale of the work conducted at these National Laboratories, their research is literally changing our lives and bettering our planet. The book describes the scientific discoveries and technological advancements "in recognition of the men and women working in DOE's seventeen national laboratories across the country." Through highly vivid and accessible stories, this book details recent breakthroughs in three critical areas: 1) Energy and Environment, 2) National Security and 3) Life and Physical Science. The book illustrates how this government-funded research has resulted in more energy-efficient buildings; new, cleaner alternative fuels that reduce greenhouse gas emissions; safer, more efficient, nuclear power plants; improved responses to disease outbreaks; more secure and streamlined airport security; more effective treatments for cancer and other diseases; and astonishing discoveries that are altering our understanding of the universe and enabling scientific breakthroughs in fields such as nanotechnology and particle physics. Specifically, it contains 37 stories. A Decade of Discovery is truly a recent history of discovery - and a fascinating look at what the next decade holds.

  17. DB DISCOVERY. Discovery Programs for SBH Experiments

    SciTech Connect

    Milosavljevic, A.

    1992-12-01

    DB DISCOVERY is a suite of programs for analyzing results of SBH experiments and for discovering patterns and correlations with the existing sequence data. The bundles of data that are analyzed as a unit are prepared by DB EXP ASSEMBLY programs. The DB DISCOVERY programs are written in the UNIX shell style and execute in the context of the database. The data in the database are accessed through the Sybase db-library. The programs are typically combined in UNIX shell scripts which perform particular data analysis tasks. The suite consists of the DBB, DBC, DBE, DBF, DBG, DBH programs, and an improved version of the SMPL program which is also part of the PYTHIA suite. DBB, DBC, and DBD are used to generate desired clone signatures, which consist either of hybridiztion intensities or a partial sequence. DBE discovers groups of similar clones based on their signatures. DBG, DBH, and DBF are used for analyzing the clustering information, comparing different groupings of clones, and for clustering error correction information. The improved version of SMPL compares partial sequences with known DNA sequences in order to identify already-sequenced clones and possible sequence similarities with sequenced DNA.

  18. STS-26 crew trains in JSC fixed-based (FB) shuttle mission simulator (SMS)

    NASA Technical Reports Server (NTRS)

    1987-01-01

    STS-26 Discovery, Orbiter Vehicle (OV) 103, crewmembers (left to right) Commander Frederick H. Hauck, Pilot Richard O. Covey, Mission Specialist (MS) George D. Nelson, MS David C. Hilmers, and MS John M. Lounge pose on the middeck in fixed-based (FB) shuttle mission simulator (SMS) located in JSC Mission Simulation and Training Facility Bldg 5. A simulation for their anticipated June 1988 flight began 10-20-87.

  19. STS-26 crew trains in JSC fixed-based (FB) shuttle mission simulator (SMS)

    NASA Technical Reports Server (NTRS)

    1987-01-01

    STS-26 Discovery, Orbiter Vehicle (OV) 103, Commander Frederick H. Hauck (left) and Pilot Richard O. Covey train in JSC fixed-based (FB) shuttle mission simulator (SMS) located in the Mission Simulation and Training Facility Bldg 5. On FB-SMS flight deck, Hauck and Covey man their respective stations. Mission Specialist (MS) David C. Hilmers is partially visible in the foreground. A simulation for their anticipated June 1988 flight began 10-20-87.

  20. First Results from the SUNRISE Mission

    NASA Astrophysics Data System (ADS)

    Solanki, S. K.; Barthol, P.; Danilovic, S.; Feller, A.; Gandorfer, A.; Hirzberger, J.; Jafarzadeh, S.; Lagg, A.; Riethmüller, T. L.; Schüssler, M.; Wiegelmann, T.; Bonet, J. A.; González, M. J. M.; Pillet, V. M.; Khomenko, E.; Yelles Chaouche, L.; Iniesta, J. C. d. T.; Domingo, V.; Palacios, J.; Knölker, M.; González, N. B.; Borrero, J. M.; Berkefeld, T.; Franz, M.; Roth, M.; Schmidt, W.; Steiner, O.; Title, A. M.

    2012-05-01

    The SUNRISE balloon-borne solar observatory consists of a 1m aperture Gregory telescope, a UV filter imager, an imaging vector polarimeter, an image stabilization system, and further infrastructure. The first science flight of SUNRISE yielded high-quality data that reveal the structure, dynamics, and evolution of solar convection, oscillations, and magnetic fields at a resolution of around 100 km in the quiet Sun. Here we describe very briefly the mission and the first results obtained from the SUNRISE data, which include a number of discoveries.

  1. Mission Scenario Development Workbench

    NASA Technical Reports Server (NTRS)

    Kordon, Mark; Baker, John; Gilbert, John; Hanks, David; Mandutianu, Dan; Hooper, David

    2006-01-01

    The Mission Scenario Development Workbench (MSDW) is a multidisciplinary performance analysis software tool for planning and optimizing space missions. It provides a number of new capabilities that are particularly useful for planning the surface activities on other planets. MSDW enables rapid planning of a space mission and supports flight system and scientific-instrumentation trades. It also provides an estimate of the ability of flight, ground, and science systems to meet high-level mission goals and provides means of evaluating expected mission performance at an early stage of planning in the project life cycle. In MSDW, activity plans and equipment-list spreadsheets are integrated with validated parameterized simulation models of spacecraft systems. In contrast to traditional approaches involving worst-case estimates with large margins, the approach embodied in MSDW affords more flexibility and more credible results early in the lifecycle through the use of validated, variable- fidelity models of spacecraft systems. MSDW is expected to help maximize the scientific return on investment for space missions by understanding early the performance required to have a successful mission while reducing the risk of costly design changes made at late stages in the project life cycle.

  2. Results from the Lunar Reconnaissance Orbiter Mission and Plans for the Extended Science Mission

    NASA Technical Reports Server (NTRS)

    Vondrak, Richard R.; Keller, J. W.; Chin, G.; Garvin, J.; Petro, N.

    2012-01-01

    The Lunar Reconnaissance Orbiter spacecraft (LRO), launched on June 18,2009, began with the goal of seeking safe landing sites for future robotic missions or the return of humans to the Moon as part of NASA's Exploration Systems Mission Directorate (ESMD). In addition, LRO's objectives included the search for surface resources and the measurement of the lunar radiation environment. After spacecraft commissioning, the ESMD phase of the mission began on September 15, 2009 and was completed on September 15, 2010 when operational responsibility for LRO was transferred to NASA's Science Mission Directorate (SMD). The SMD mission was scheduled for 2 years and completed in September of 2012. Under SMD, the Science Mission focused on a new set of goals related to understanding the history of the Moon, its current state, and what it can tell us about the evolution of the Solar System. Having recently marked the completion of the two-year Science Mission, we will review here the major results from the LRO for both exploration and science and discuss plans and objectives for the Extended Science that will last until September, 2014. Some results from the LRO mission are: the development of comprehensive high resolution maps and digital terrain models of the lunar surface; discoveries on the nature of hydrogen distribution, and by extension water, at the lunar poles; measurement of the daytime and nighttime temperature of the lunar surface including temperature down below 30 K in permanently shadowed regions (PSRs); direct measurement of Hg, H2, and CO deposits in the PSRs; evidence for recent tectonic activity on the Moon; and high resolution maps of the illumination conditions at the poles.

  3. Results from the Lunar Reconnaissance Orbiter Mission and Plans for the Extended Science Mission

    NASA Astrophysics Data System (ADS)

    Keller, J. W.; Vondrak, R. R.; Petro, N. E.; Chin, G.; Garvin, J.

    2012-12-01

    The Lunar Reconnaissance Orbiter spacecraft (LRO), launched on June 18, 2009, began with the goal of seeking safe landing sites for future robotic missions or the return of humans to the Moon as part of NASA's Exploration Systems Mission Directorate (ESMD). In addition, LRO's objectives included the search for surface resources and the measurement of the lunar radiation environment. After spacecraft commissioning, the ESMD phase of the mission began on September 15, 2009 and was completed on September 15, 2010 when operational responsibility for LRO was transferred to NASA's Science Mission Directorate (SMD). The SMD mission was scheduled for 2 years and completed in September of 2012. Under SMD, the Science Mission focused on a new set of goals related to understanding the history of the Moon, its current state, and what it can tell us about the evolution of the Solar System. Having recently marked the completion of the two-year Science Mission, we will review here the major results from the LRO for both exploration and science and discuss plans and objectives for the Extended Science that will last until September, 2014. Some results from the LRO mission are: the development of comprehensive high resolution maps and digital terrain models of the lunar surface; discoveries on the nature of hydrogen distribution, and by extension water, at the lunar poles; measurement of the daytime and nighttime temperature of the lunar surface including temperature down below 30 K in permanently shadowed regions (PSRs); direct measurement of Hg, H2, and CO deposits in the PSRs; evidence for recent tectonic activity on the Moon; and high resolution maps of the illumination conditions at the poles.

  4. Shuttle Discovery Landing at Edwards

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The STS-29 Space Shuttle Discovery mission lands at NASA's then Ames-Dryden Flight Research Facility, Edwards AFB, California, early Saturday morning, 18 March 1989. Touchdown was at 6:35:49 a.m. PST and wheel stop was at 6:36:40 a.m. on runway 22. Controllers chose the concrete runway for the landing in order to make tests of braking and nosewheel steering. The STS-29 mission was very successful, completing the launch of a Tracking and Data Relay communications satellite, as well as a range of scientific experiments. Discovery's five-man crew was led by Commander Michael L. Coats, and included pilot John E. Blaha and mission specialists James P. Bagian, Robert C. Springer, and James F. Buchli. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout

  5. Shuttle Discovery Landing at Edwards

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The STS-29 Space Shuttle Discovery mission lands at NASA's then Ames-Dryden Flight Research Facility, Edwards AFB, California, early Saturday morning, 18 March 1989. Touchdown was at 6:35:49 a.m. PST and wheel stop was at 6:36:40 a.m. on runway 22. Controllers chose the concrete runway for the landing in order to make tests of braking and nosewheel steering. The STS-29 mission was very successful, completing the launch of a Tracking and Data Relay communications satellite, as well as a range of scientific experiments. Discovery's five-man crew was led by Commander Michael L. Coats, and included pilot John E. Blaha and mission specialists James P. Bagian, Robert C. Springer, and James F. Buchli. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout

  6. NASA Earth science missions

    NASA Astrophysics Data System (ADS)

    Neeck, Steven P.; Volz, Stephen M.

    2013-10-01

    NASA's Earth Science Division (ESD) conducts pioneering work in Earth system science, the interdisciplinary view of Earth that explores the interaction among the atmosphere, oceans, ice sheets, land surface interior, and life itself that has enabled scientists to measure global and climate changes and to inform decisions by governments, organizations, and people in the United States and around the world. The ESD makes the data collected and results generated by its space missions accessible to other agencies and organizations to improve the products and services they provide, including air quality indices, disaster management, agricultural yield projections, and aviation safety. Through partnerships with national and international agencies, NASA enables the application of this understanding. The ESD's Flight Program provides the spacebased observing systems and supporting ground segment infrastructure for mission operations and scientific data processing and distribution that support NASA's Earth system science research and modeling activities. The Flight Program currently has 15 operating Earth observing space missions, including the recently launched Landsat-8/Landsat Data Continuity Mission (LDCM). The ESD has 16 more missions planned for launch over the next decade. These include first and second tier missions from the 2007 Earth Science Decadal Survey, Climate Continuity missions to assure availability of key data sets needed for climate science and applications, and small-sized competitively selected orbital missions and instrument missions of opportunity utilizing rideshares that are part of the Earth Venture (EV) Program. The recently selected Cyclone Global Navigation Satellite System (CYGNSS) microsatellite constellation and the Tropospheric Emissions: Monitoring of Pollution (TEMPO) instrument are examples. In addition, the International Space Station (ISS) is being increasingly used to host NASA Earth observing science instruments. An overview of plans

  7. Recce mission planning

    NASA Astrophysics Data System (ADS)

    York, Andrew M.

    2000-11-01

    The ever increasing sophistication of reconnaissance sensors reinforces the importance of timely, accurate, and equally sophisticated mission planning capabilities. Precision targeting and zero-tolerance for collateral damage and civilian casualties, stress the need for accuracy and timeliness. Recent events have highlighted the need for improvement in current planning procedures and systems. Annotating printed maps takes time and does not allow flexibility for rapid changes required in today's conflicts. We must give aircrew the ability to accurately navigate their aircraft to an area of interest, correctly position the sensor to obtain the required sensor coverage, adapt missions as required, and ensure mission success. The growth in automated mission planning system capability and the expansion of those systems to include dedicated and integrated reconnaissance modules, helps to overcome current limitations. Mission planning systems, coupled with extensive integrated visualization capabilities, allow aircrew to not only plan accurately and quickly, but know precisely when they will locate the target and visualize what the sensor will see during its operation. This paper will provide a broad overview of the current capabilities and describe how automated mission planning and visualization systems can improve and enhance the reconnaissance planning process and contribute to mission success. Think about the ultimate objective of the reconnaissance mission as we consider areas that technology can offer improvement. As we briefly review the fundamentals, remember where and how TAC RECCE systems will be used. Try to put yourself in the mindset of those who are on the front lines, working long hours at increasingly demanding tasks, trying to become familiar with new operating areas and equipment, while striving to minimize risk and optimize mission success. Technical advancements that can reduce the TAC RECCE timeline, simplify operations and instill Warfighter

  8. Preparing Cassini Uplink Operations for Extended Mission

    NASA Technical Reports Server (NTRS)

    Maxwell, Jennifer L.; McCullar, Michelle L.; Conner, Diane

    2008-01-01

    The Cassini-Huygens Mission to Saturn and Titan, a joint venture between the National Aeronautics and Space Administration, the European Space Agency, and the Italian Space Agency, is conducting a four-year, prime mission exploring the Saturnian system, including its atmosphere, rings, magnetosphere, moons and icy satellites. Launched in 1997, Cassini began its prime mission in 2004. Cassini is now preparing for a new era, a two-year extended mission to revisit many of the highlights and new discoveries made during the prime mission. Because of the light time delay from Earth to Saturn, and the time needed to coordinate the complicated science and engineering activities that take place on the spacecraft, commanding on Cassini is done in approximately 40-day intervals known as sequences. The Cassini Uplink Operations team is responsible for the final development and validation of the pointing profile and instrument and spacecraft commands that are contained in a sequence. During this final analysis prior to uplink to the spacecraft, thorough and exact evaluation is necessary to ensure there are no mistakes during commanding. In order to perform this evaluation, complete and refined processes and procedures are fundamental. The Uplink Operations team is also responsible for anomaly response during sequence execution, a process in which critical decisions often are made in real-time. Recent anomalies on other spacecraft missions have highlighted two major risks in the operations process: (1) personnel turnover and the retirement of critical knowledge and (2) aging, outdated operations procedures. If other missions are a good barometer, the Cassini extended mission will be presented with a high personnel turnover of the Cassini flight team, which could lead to a loss of expertise that has been essential to the success of the prime mission. In order to prepare the Cassini Uplink Operations Team for this possibility and to continue to develop and operate safe science and

  9. STS-96 Discovery rolls back into the Vehicle Assembly Building

    NASA Technical Reports Server (NTRS)

    1999-01-01

    A crawler transporter moves Space Shuttle Discovery, with its external tank and solid rocket boosters, from Pad 39B back to the Vehicle Assembly Building (VAB) at left to repair damage to the external tank's foam insulation caused by hail. The external tank-solid rocket booster stack for mission STS-93, which was moved out of High Bay 1 to make room for Discovery, can be seen in the background between Discovery and the VAB. The necessary repair work could not be performed at the pad due to limited access to the damaged areas. The work is expected to take two to three days, allowing Discovery to roll back to Pad 39B by midweek for launch of mission STS-96, the 94th launch in the Space Shuttle Program. This is only the 13th time since 1981 that a Shuttle has had to roll back from the pad. Liftoff will occur no earlier than May 27. STS-96 is a logistics and resupply mission for the International Space Station, carrying such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student-shared experiment.

  10. STS-96 Discovery rolls back into the Vehicle Assembly Building

    NASA Technical Reports Server (NTRS)

    1999-01-01

    A crawler transporter moves Space Shuttle Discovery, hidden by its external tank and solid rocket boosters, from Pad 39B back to the Vehicle Assembly Building (VAB) for repair of damage to the external tank foam insulation caused by hail. The external tank/solid rocket booster stack for mission STS-93 was moved out of High Bay 1 to make room for Discovery and can be seen on the horizon between Discovery and the VAB. The necessary repair work could not be performed at the pad due to limited access to the damaged areas. The work is expected to take two to three days, allowing Discovery to roll back to Pad 39B by midweek for launch of mission STS-96, the 94th launch in the Space Shuttle Program. This is only the 13th time since 1981 that a Shuttle has had to roll back from the pad. Liftoff will occur no earlier than May 27. STS-96 is a logistics and resupply mission for the International Space Station, carrying such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student-shared experiment.

  11. The Cassini Extended Mission

    NASA Astrophysics Data System (ADS)

    Seal, David A.; Buffington, Brent B.

    Based on the overwhelming success of the Cassini/Huygens 4-year tour of Saturn from July 2004 to June 2008, NASA Headquarters approved at least two years of extended mission for continued study of the target-rich Saturnian system. After a rigorous phase of science objective definition and trajectory design and analysis, the Cassini project initiated an efficient, scientifically intense and operationally challenging mission phase, including 60 orbits around Saturn, 26 close Titan flybys, and 10 close icy satellite flybys — including seven more flybys of Enceladus. At the conclusion of the 2-year extended mission, substantial operating margins should be present with some fascinating options for further extensions

  12. Discovery of Charm

    DOE R&D Accomplishments Database

    Goldhaber, G.

    1984-11-01

    In my talk I will cover the period 1973 to 1976 which saw the discoveries of the J/psi and psi' resonances and most of the Psion spectroscopy, the tau lepton and the D0030099,D0015599 charmed meson doublet. Occasionally I will refer briefly to more recent results. Since this conference is on the history of the weak-interactions I will deal primarily with the properties of naked charm and in particular the weakly decaying doublet of charmed mesons. Most of the discoveries I will mention were made with the SLAC-LBL Magnetic Detector or MARK I which we operated at SPEAR from 1973 to 1976.

  13. The JEM-EUSO Mission

    SciTech Connect

    Ebisuzaki, T.; Mase, H.; Takizawa, Y.; Kawasaki, Y.; Miyamoto, H.; Shinozaki, K.; Ohmori, H.; Hachisu, Hachisu; Wada, S.; Ogawa, T.; Kajino, F.; Inoue, N.; Sakaki, N.; Adams, J.; Christl, M.; Young, R.; Bonamente, M.; Santangelo, A.; Teshima, M.; Parizot, E.

    2011-09-22

    The JEM-EUSO mission explores the origin of the extreme energy cosmic rays (EECRs) above 100 EeV and explores the limits of the fundamental physics, through the observations of their arrival directions and energies. It is designed to achieve an exposure larger than 1 million km{sup 2} sr year at the highest energies to open a new particle astronomy channel. This super-wide-field of view (60 degrees) telescope with a diameter of about 2.5 m looks down from space onto the night sky to detect near UV photons (330-400 nm, both fluorescent and Cherenkov photons) emitted from the giant air showers produced by EECRs. The arrival direction map with more than five hundred events after just the three years will tell us the origin of the EECRs, allow us to identify the nearest EECR sources with known astronomical objects, which can afterwards be examined in other astronomical channels. This is likely to lead to an understanding of the acceleration mechanisms perhaps producing discoveries in astrophysics and fundamental physics. The comparison of the energy spectra among the spatially resolved individual sources will help to clarify the acceleration/emission mechanism, and also finally confirm the Greisen-Zatsepin-Kuz'min process for the validation of Lorentz invariance up to {gamma}{approx}10{sup 11}. Neutral components (neutrinos and gamma rays) can be detected as well, if their fluxes are high enough. The JEM-EUSO mission is planned to be launched by a H2B rocket about JFY 2016 and transferred to ISS by H2 Transfer Vehicle (HTV). It will be attached to the Exposed Facility external experiment platform of 'KIBO'. JEM-EUSO is being developed by an international collaboration of institutions from 13 countries.

  14. The Kepler Project: Mission Update

    NASA Technical Reports Server (NTRS)

    Borucki, William J.; Koch, David G.

    2009-01-01

    Kepler is a Discovery-class mission designed to determine the frequency of Earth-size planets in and near the habitable zone of solar-like stars. The instrument consists of a 0.95 m aperture photometer designed to obtain high precision photometric measurement of > 100,000 stars to search for patterns of transits. The focal plane of the Schmidt-telescope contains 42 CCDs with at total of 95 mega pixels that cover 116 square degrees of sky. The photometer was launched into an Earth-trailing heliocentric orbit on March 6, 2009, finished its commissioning on May 12, and is now in the science operations mode. During the commissioning of the Kepler photometer, data were obtained at a 30 minute cadence for 53,000 stars for 9.7 days. Although the data have not yet been corrected for the presence of systematic errors and artifacts, the data show the presence of hundreds of eclipsing binary stars and variable stars of amazing variety. To provide some estimate of the capability of the photometer, a quick analysis of the photometric precision was made. Analysis of the commissioning data also show transits, occultations and light emitted from the known exoplanet HAT-P7b. The data show a smooth rise and fall of light: from the planet as it orbits its star, punctuated by a drop of 130 +/- 11 ppm in flux when the planet passes behind its star. We interpret this as the phase variation of the dayside thermal emission plus reflected light from the planet as it orbits its star and is occulted. The depth of the occultation is similar in amplitude to that expected from a transiting Earth-size planet and demonstrates that the Mission has the precision necessary to detect such planets.

  15. Navigational Challenges for a Europa Flyby Mission

    NASA Technical Reports Server (NTRS)

    Martin-Mur, Tomas J.; Ionasescu, Rodica; Valerino, Powtawche; Criddle, Kevin; Roncoli, Ralph

    2014-01-01

    Jupiter's moon Europa is a prime candidate in the search for present-day habitable environments outside of the Earth. A number of missions have provided increasingly detailed images of the complex surface of Europa, including the Galileo mission, which also carried instruments that allowed for a limited investigation of the environment of Europa. A new mission to Europa is needed to pursue these exciting discoveries using close-up observations with modern instrumentation designed to address the habitability of Europa. In all likelihood the most cost effective way of doing this would be with a spacecraft carrying a comprehensive suite of instruments and performing multiple flybys of Europa. A number of notional trajectory designs have been investigated, utilizing gravity assists from other Galilean moons to decrease the period of the orbit and shape it in order to provide a globally distributed coverage of different regions of Europa. Navigation analyses are being performed on these candidate trajectories to assess the total Delta V that would be needed to complete the mission, to study how accurately the flybys could be executed, and to determine which assumptions most significantly affect the performance of the navigation system.

  16. Sample Return from the Stardust Mission

    NASA Technical Reports Server (NTRS)

    2006-01-01

    On January 2,2004, the STARDUST spacecraft made a close flyby (236 km) of the nucleus of a comet - Comet Wild 2. During the flyby the spacecraft collected samples of dust from the coma of the comet. These samples were successfully returned to Earth on January 15,2006. After a six month preliminary examination to establish the nature of the returned samples, they will be made available to the general scientific community for study. STARDUST is one of the missions carried out under NASA's Discovery Mission Program. During my talk I will present a brief overview of the scientific goals of the STARDUST mission and describe the mission's design and flight. I will also discuss the reentry and recovery of the Stardust Sample Return Capsule (SRC) in Utah, with an emphasis on those aspects of the recovery important for minimizing the degree of contamination (particularly organic contamination) of the samples. Finally, I will discuss some of the results coming out of the preliminary examination of the returned samples, with an emphasis on the nature of organic materials found in the samples.

  17. Planetary Missions of the 20th Century*

    NASA Astrophysics Data System (ADS)

    Moroz, V. I.; Huntress, W. T.; Shevalev, I. L.

    2002-09-01

    Among of the highlights of the 20th century were flights of spacecraft to other bodies of the Solar System. This paper describes briefly the missions attempted, their goals, and fate. Information is presented in five tables on the missions launched, their goals, mission designations, dates, discoveries when successful, and what happened if they failed. More detailed explanations are given in the accompanying text. It is shown how this enterprise developed and evolved step by step from a politically driven competition to intense scientific investigations and international cooperation. Initially, only the USA and USSR sent missions to the Moon and planets. Europe and Japan joined later. The USSR carried out significant research in Solar System exploration until the end of the 1980s. The Russian Federation no longer supports robotic planetary exploration for economic reasons, and it remains to be seen whether the invaluable Russian experience in planetary space flight will be lost. Collaboration between Russian and other national space agencies may be a solution.

  18. Lunar prospector mission design and trajectory support

    NASA Technical Reports Server (NTRS)

    Lozier, David; Galal, Ken; Folta, David; Beckman, Mark

    1998-01-01

    The Lunar Prospector mission is the first dedicated NASA lunar mapping mission since the Apollo Orbiter program which was flown over 25 years ago. Competitively selected under the NASA Discovery Program, Lunar Prospector was launched on January 7, 1998 on the new Lockheed Martin Athena 2 launch vehicle. The mission design of Lunar Prospector is characterized by a direct minimum energy transfer trajectory to the moon with three scheduled orbit correction maneuvers to remove launch and cislunar injection errors prior to lunar insertion. At lunar encounter, a series of three lunar orbit insertion maneuvers and a small circularization burn were executed to achieve a 100 km altitude polar mapping orbit. This paper will present the design of the Lunar Prospector transfer, lunar insertion and mapping orbits, including maneuver and orbit determination strategies in the context of mission goals and constraints. Contingency plans for handling transfer orbit injection and lunar orbit insertion anomalies are also summarized. Actual flight operations results are discussed and compared to pre-launch support analysis.

  19. Rollback of the Rotating Service Structure from Space Shuttle Discovery

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Rollback of the Rotating Service Structure on Launch Pad 39B reveals the Space Shuttle Discovery, scheduled to launch on mission STS-96 at 6:49 a.m. EDT on May 27. Above the top of the external tank is the external tank gaseous oxygen vent arm, with a vent hood, known as the 'beanie cap,' at the outer end. Below it up against Discovery is the orbiter access arm, which allows entry into the orbiter crew compartment. through an environmental chamber or 'white room' at the outer end. STS-96 is a 10-day logistics and resupply mission for the International Space Station, carrying about 4,000 pounds of supplies to be stored aboard the station, for use by future crews, including laptop computers, cameras, tools, spare parts, and clothing. The mission also includes such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student- involved experiment. The mission will include a space walk to attach the cranes to the outside of the ISS for use in future construction. Space Shuttle Discovery is due to launch on May 27 at 6:49 a.m. EDT. Landing is expected at the SLF on June 6 about 1:58 a.m. EDT.

  20. Discovery: Under the Microscope at Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Howard, Philip M.

    2013-01-01

    The National Aeronautics & Space Administration (NASA) is known for discovery, exploration, and advancement of knowledge. Since the days of Leeuwenhoek, microscopy has been at the forefront of discovery and knowledge. No truer is that statement than today at Kennedy Space Center (KSC), where microscopy plays a major role in contamination identification and is an integral part of failure analysis. Space exploration involves flight hardware undergoing rigorous "visually clean" inspections at every step of processing. The unknown contaminants that are discovered on these inspections can directly impact the mission by decreasing performance of sensors and scientific detectors on spacecraft and satellites, acting as micrometeorites, damaging critical sealing surfaces, and causing hazards to the crew of manned missions. This talk will discuss how microscopy has played a major role in all aspects of space port operations at KSC. Case studies will highlight years of analysis at the Materials Science Division including facility and payload contamination for the Navigation Signal Timing and Ranging Global Positioning Satellites (NA VST AR GPS) missions, quality control monitoring of monomethyl hydrazine fuel procurement for launch vehicle operations, Shuttle Solids Rocket Booster (SRB) foam processing failure analysis, and Space Shuttle Main Engine Cut-off (ECO) flight sensor anomaly analysis. What I hope to share with my fellow microscopists is some of the excitement of microscopy and how its discoveries has led to hardware processing, that has helped enable the successful launch of vehicles and space flight missions here at Kennedy Space Center.

  1. STS-91 Launch of Discovery from Launch Pad 39-A

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The last mission of the Shuttle-Mir program begins as the Space Shuttle Discovery lifts off from Launch Pad 39A at 6:06:24 p.m. EDT June 2. A torrent of water is seen flowing onto the mobile launcher platform (MLP) from numerous large quench nozzles, or 'rainbirds,' mounted on its surface. This water, part of the Sound Suppression System, helps protect the orbiter and its payloads from damage by acoustical energy and rocket exhaust reflected from the flame trench and MLP during launch. On board Discovery are Mission Commander Charles J. Precourt; Pilot Dominic L. Gorie; and Mission Specialists Wendy B. Lawrence, Franklin R. Chang-Diaz, Janet Lynn Kavandi and Valery Victorovitch Ryumin. The nearly 10-day mission will feature the ninth and final Shuttle docking with the Russian space station Mir, the first Mir docking for the Space Shuttle orbiter Discovery, the first on-orbit test of the Alpha Magnetic Spectrometer (AMS), and the first flight of the new Space Shuttle super lightweight external tank. Astronaut Andrew S. W. Thomas will be returning to Earth as an STS-91 crew member after living more than four months aboard Mir.

  2. Exobiology and Future Mars Missions

    NASA Technical Reports Server (NTRS)

    Mckay, Christopher P. (Editor); Davis, Wanda, L. (Editor)

    1989-01-01

    Scientific questions associated with exobiology on Mars were considered and how these questions should be addressed on future Mars missions was determined. The mission that provided a focus for discussions was the Mars Rover/Sample Return Mission.

  3. The Pan-STARRS discovery machine

    NASA Astrophysics Data System (ADS)

    Chambers, Kenneth C.

    2014-11-01

    The Pan-STARRS System has proven to be a remarkable machine for discovery. The PS1 Science Mission has drawn to a close, and the second Pan-STARRS survey, optimized for NEO's has begun. PS2 is in the commissioning stages and will eventually support NEO discovery as well. The performance of the PS1 system, sky coverage, cadence, and data quality of the Pan-STARRS1 Surveys will be presented as well as progress in reprocessing of the data taken to date and the plans for the public release of all Pan-STARRS1 data products in the spring of 2015. Science results related to planetary studies and the dust will be presented. The Pan-STARRS1 Surveys (PS1) have been made possible through contributions of the Institute for Astronomy, the University of Hawaii, the Pan-STARRS Project Office, the Max-Planck Society and its participating institutes, the Max Planck Institute for Astronomy, Heidelberg and the Max Planck Institute for Extraterrestrial Physics, Garching, The Johns Hopkins University, Durham University, the University of Edinburgh, Queen's University Belfast, the Harvard-Smithsonian Center for Astrophysics, the Las Cumbres Observatory Global Telescope Network Incorporated, the National Central University of Taiwan, the Space Telescope Science Institute, the National Aeronautics and Space Administration under Grant No. NNX08AR22G issued through the Planetary Science Division of the NASA Science Mission Directorate, the National Science Foundation under Grant No. AST-1238877, the University of Maryland, and Eotvos Lorand University (ELTE).

  4. New Hubble Servicing Mission to upgrade instruments

    NASA Astrophysics Data System (ADS)

    2006-10-01

    The history of the NASA/ESA Hubble Space Telescope is dominated by the familiar sharp images and amazing discoveries that have had an unprecedented scientific impact on our view of the world and our understanding of the universe. Nevertheless, such important contributions to science and humankind have only been possible as result of regular upgrades and enhancements to Hubble’s instrumentation. Using the Space Shuttle for this fifth Servicing Mission underlines the important role that astronauts have played and continue to play in increasing the Space Telescope’s lifespan and scientific power. Since the loss of Columbia in 2003, the Shuttle has been successfully launched on three missions, confirming that improvements made to it have established the required high level of safety for the spacecraft and its crew. “There is never going to be an end to the science that we can do with a machine like Hubble”, says David Southwood, ESA’s Director of Science. “Hubble is our way of exploring our origins. Everyone should be proud that there is a European element to it and that we all are part of its success at some level.” This Servicing Mission will not just ensure that Hubble can function for perhaps as much as another ten years; it will also increase its capabilities significantly in key areas. This highly visible mission is expected to take place in 2008 and will feature several space walks. As part of the upgrade, two new scientific instruments will be installed: the Cosmic Origins Spectrograph and Wide Field Camera 3. Each has advanced technology sensors that will dramatically improve Hubble’s potential for discovery and enable it to observe faint light from the youngest stars and galaxies in the universe. With such an astounding increase in its science capabilities, this orbital observatory will continue to penetrate the most distant regions of outer space and reveal breathtaking phenomena. “Today, Hubble is producing more science than ever before in

  5. SLS Launched Missions Concept Studies for LUVOIR Mission

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Hopkins, Randall C.

    2015-01-01

    NASA's "Enduring Quests Daring Visions" report calls for an 8- to 16-meter Large UV-Optical-IR (LUVOIR) Surveyor mission to enable ultra-high-contrast spectroscopy and coronagraphy. AURA's "From Cosmic Birth to Living Earth" report calls for a 12-meter class High-Definition Space Telescope to pursue transformational scientific discoveries. The multi-center ATLAST Team is working to meet these needs. The MSFC Team is examining potential concepts that leverage the advantages of the SLS (Space Launch System). A key challenge is how to affordably get a large telescope into space. The JWST design was severely constrained by the mass and volume capacities of its launch vehicle. This problem is solved by using an SLS Block II-B rocket with its 10-m diameter x 30-m tall fairing and 45 mt payload to SE-L2. Previously, two development study cycles produced a detailed concept called ATLAST-8. Using ATLAST-8 as a point of departure, this paper reports on a new ATLAST-12 concept. ATLAST-12 is a 12-meter class segmented aperture LUVOIR with an 8-m class center segment. Thus, ATLAST-8 is now a de-scope option.

  6. SLS launched missions concept studies for LUVOIR mission

    NASA Astrophysics Data System (ADS)

    Stahl, H. Philip; Hopkins, Randall C.

    2015-09-01

    NASA's "Enduring Quests Daring Visions" report calls for an 8- to 16-m Large UV-Optical-IR (LUVOIR) Surveyor mission to enable ultra-high-contrast spectroscopy and coronagraphy. AURA's "From Cosmic Birth to Living Earth" report calls for a 12-m class High-Definition Space Telescope to pursue transformational scientific discoveries. The multi-center ATLAST Team is working to meet these needs. The MSFC Team is examining potential concepts that leverage the advantages of the SLS (Space Launch System). A key challenge is how to affordably get a large telescope into space. The JWST design was severely constrained by the mass and volume capacities of its launch vehicle. This problem is solved by using an SLS Block II-B rocket with its 10-m diameter x 30-m tall fairing and estimated 45 mt payload to SE-L2. Previously, two development study cycles produced a detailed concept called ATLAST-8. Using ATLAST-8 as a point of departure, this paper reports on a new ATLAST-12 concept. ATLAST-12 is a 12-m class segmented aperture LUVOIR with an 8-m class center segment. Thus, ATLAST-8 is now a de-scope option.

  7. Apollo 15 mission report

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A detailed discussion is presented of the Apollo 15 mission, which conducted exploration of the moon over longer periods, greater ranges, and with more instruments of scientific data acquisition than previous missions. The topics include trajectory, lunar surface science, inflight science and photography, command and service module performance, lunar module performance, lunar surface operational equipment, pilot's report, biomedical evaluation, mission support performance, assessment of mission objectives, launch phase summary, anomaly summary, and vehicle and equipment descriptions. The capability of transporting larger payloads and extending time on the moon were demonstrated. The ground-controlled TV camera allowed greater real-time participation by earth-bound personnel. The crew operated more as scientists and relied more on ground support team for systems monitoring. The modified pressure garment and portable life support system provided better mobility and extended EVA time. The lunar roving vehicle and the lunar communications relay unit were also demonstrated.

  8. EUVE Outsourced Extended Mission

    NASA Astrophysics Data System (ADS)

    Malina, R. F.; Biroscak, D.; Herz, A.; Christian, D.; Kaier, K.; Kaplan, G. C.; Lilly, S.; Quinn, T.; Stroozas, B.; Tucker, T.

    1996-05-01

    NASA has accepted an unsolicited proposal by the Center for EUV Atrophysics (CEA) at the University of California at Berkeley to manage spacecraft operations for the Extreme Ultraviolet Explorer (EUVE) extended mission. The proposal can serve as a model for university, government, and industry collaborations to respond to NASA's stated strategic goal to outsource all routine operations of scientific satellites to academia and industry. CEA has taken a conservative, low-cost approach to outsourcing that continues observatory operations, maintains the science return, and preserves the EUVE science archive. The Outsourced Extended Mission reduces yearly EUVE program costs, which may allow for a further extension of the science mission. This poster discusses the outsourced EUVE mission, its operations concept, NASA institutional support, and the roles and responsibilities of the government, university, and industry.

  9. Mission X Introduction

    NASA Video Gallery

    Expedition 26 Flight Engineer Cady Coleman delivers a message to student teams participating in the Mission X: Train Like An Astronaut international education and fitness challenge. To learn more, ...

  10. Students on Hayabusa Mission

    NASA Video Gallery

    Three Massachusetts high school students began their summer with a journey halfway around the world to participate in a NASA airborne mission to image the Japanese Hayabusa spacecraft's fiery retur...

  11. The Spacelab J mission

    NASA Technical Reports Server (NTRS)

    Cremin, J. W.; Leslie, F. W.

    1990-01-01

    This paper describes Spacelab J (SL-J), its mission characteristics, features, parameters and configuration, the unique nature of the shared reimbursable cooperative effort with the National Space Development Agency (NASDA) of Japan and the evolution, content and objectives of the mission scientific experiment complement. The mission is planned for launch in 1991. This long module mission has 35 experiments from Japan as well as 9 investigations from the United States. The SL-J payload consists of two broad scientific disciplines which require the extended microgravity or cosmic ray environment: (1) materials science such as crystal growth, solidification processes, drop dynamics, free surface flows, gas dynamics, metallurgy and semiconductor technology; and (2) life science including cell development, human physiology, radiation-induced mutations, vestibular studies, embryo development, and medical technology. Through an international agreement with NASDA, NASA is preparing to fly the first Japanese manned, scientific, cooperative endeavor with the United States.

  12. Cassini's Solstice Mission

    NASA Technical Reports Server (NTRS)

    Seal, David; Mitchell, Robert

    2010-01-01

    With the recent approval of NASA's flagship Cassini mission for seven more years of continued operations, dozens more Titan, Enceladus and other icy moon flybys await, as well as many occultations and multiple close passages to Saturn. Seasonal change is the principal scientific theme as Cassini extends its survey of the target-rich system over one full half-season, from just after northern winter solstice at arrival back in 2004, to northern summer solstice at the end of mission in 2017. The new seven-year mission extension requires careful propellant management as well as streamlined operations strategies with smaller spacecraft, sequencing and science teams. Cassini's never-before-envisioned end of mission scenario also includes nearly two dozen high-inclination orbits which pass between the rings and the planet allowing thrilling and unique science opportunities before entry into Saturn's atmosphere.

  13. An interstellar precursor mission

    NASA Technical Reports Server (NTRS)

    Jaffe, L. D.; Ivie, C.; Lewis, J. C.; Lipes, R. G.; Norton, H. N.; Stearns, J. W.; Stimpson, L.; Weissman, P.

    1977-01-01

    A mission out of the planetary system, with launch about the year 2000, could provide valuable scientific data as well as test some of the technology for a later mission to another star. Primary scientific objectives for the precursor mission concern characteristics of the heliopause, the interstellar medium, stellar distances (by parallax measurements), low energy cosmic rays, interplanetary gas distribution, and mass of the solar system. Secondary objectives include investigation of Pluto. Candidate science instruments are suggested. Individual spacecraft systems for the mission were considered, technology requirements and problem areas noted, and a number of recommendations made for technology study and advanced development. The most critical technology needs include attainment of 50-yr spacecraft lifetime and development of a long-life NEP system.

  14. Mission critical technology development

    NASA Technical Reports Server (NTRS)

    Sliwa, Nancy

    1991-01-01

    Mission critical technology development is presented in the form of the viewgraphs. The following subject areas are covered: organization/philosophy overview; fault management technology; and introduction to optical processing.

  15. Technology Demonstration Missions

    NASA Video Gallery

    NASA's Technology Demonstration Missions (TDM) Program seeks to infuse new technology into space applications, bridging the gap between mature “lab-proven” technology and "flight-ready" status....

  16. NASA Hurricane Mission - GRIP

    NASA Video Gallery

    This is an overview of NASA's hurricane research campaign called Genesis and Rapid Intensification Processes (GRIP). The six-week mission was conducted in coordination with NOAA and the National Sc...

  17. Giotto mission support

    NASA Technical Reports Server (NTRS)

    Stelzried, C.; Howe, T.

    1986-01-01

    Deep Space Network (DSN) support of the Giotto mission to Comet Halley is summarized. The support is described beginning with the prelaunch testing and continues through the post comet encounter period.

  18. Mars Exploration Rover Mission

    NASA Technical Reports Server (NTRS)

    Cohen, Barbara A.

    2008-01-01

    This viewgraph presentation reviews the Mars Exploration Rover Mission. The design of the Rover along with the Athena science payload is also described. Photographs of the Gusev Crater and Meridiani rocks are also shown.

  19. STS-83 Mission Insignia

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The crew patch for NASA's STS-83 mission depicts the Space Shuttle Columbia launching into space for the first Microgravity Sciences Laboratory 1 (MSL-1) mission. MSL-1 investigated materials science, fluid dynamics, biotechnology, and combustion science in the microgravity environment of space, experiments that were conducted in the Spacelab Module in the Space Shuttle Columbia's cargo bay. The center circle symbolizes a free liquid under microgravity conditions representing various fluid and materials science experiments. Symbolic of the combustion experiments is the surrounding starburst of a blue flame burning in space. The 3-lobed shape of the outermost starburst ring traces the dot pattern of a transmission Laue photograph typical of biotechnology experiments. The numerical designation for the mission is shown at bottom center. As a forerunner to missions involving International Space Station (ISS), STS-83 represented the hope that scientific results and knowledge gained during the flight will be applied to solving problems on Earth for the benefit and advancement of humankind.

  20. Space Mission Operations Concept

    NASA Technical Reports Server (NTRS)

    Squibb, Gael F.

    1996-01-01

    This paper will discuss the concept of developing a space mission operations concept; the benefits of starting this system engineering task early; the neccessary inputs to the process; and the products that are generated.

  1. Mission Control Roses

    NASA Video Gallery

    The 110th bouquet of roses arrived in Mission Control on Saturday, July 9, 2011. They were sent as quietly as they have been for more than 23 years by a family near Dallas, Texas. For 110 shuttle m...

  2. The IRIS Mission Timeline

    NASA Video Gallery

    This animation shows the timeline of activities for the IRIS mission. Following launch, during the initial orbits, the spacecraft “detumbles”, opens the solar arrays, acquires the sun and com...

  3. LEO and GEO missions

    NASA Technical Reports Server (NTRS)

    Mercanti, Enrico

    1987-01-01

    The occurrence of the Challenger disaster in early 1986 caused a severe reevaluation of the space program. Plans already established had to be drastically revised and new plans had to be made. NASA created the Space Leadership Planning Group (SLPG) to formulate space mission plans covering a 50 year period based on Agency goals and objectives responsive to the National Commission on Space recommendations. An interim view of the status of SLPG plans for low altitude and geosynchronous missions is presented.

  4. Galileo Mission Science Briefing

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The first of two tapes of the Galileo Mission Science press briefing is presented. The panel is moderated by George Diller from the Kennedy Space Center (KSC) Public Affairs Office. The participants are John Conway, the director of Payload and operations at Kennedy; Donald E. Williams, Commander of STS-43, the shuttle mission which will launch the Galileo mission; John Casani, the Deputy Assistant Director of Flight Projects at the Jet Propulsion Lab (JPL); Dick Spehalski, Galileo Project Manager at JPL; and Terrence Johnson, Galileo Project Scientist at JPL. The briefing begins with an announcement of the arrival of the Galileo Orbiter at KSC. The required steps prior to the launch are discussed. The mission trajectory and gravity assists from planetary and solar flybys are reviewed. Detailed designs of the orbiter are shown. The distance that Galileo will travel from the sun precludes the use of solar energy for heat. Therefore Radioisotope heater units are used to keep the equipment at operational temperature. A video of the arrival of the spacecraft at KSC and final tests and preparations is shown. Some of the many science goals of the mission are reviewed. Another video showing an overview of the Galileo mission is presented. During the question and answer period, the issue of the use of plutonium on the mission is broached, which engenders a review of the testing methods used to ensure the safety of the capsules containing the hazardous substance. This video has actual shots of the orbiter, as it is undergoing the final preparations and tests for the mission.

  5. NEEMO 7 undersea mission

    NASA Astrophysics Data System (ADS)

    Thirsk, Robert; Williams, David; Anvari, Mehran

    2007-02-01

    The NEEMO 7 mission was the seventh in a series of NASA-coordinated missions utilizing the Aquarius undersea habitat in Florida as a human space mission analog. The primary research focus of this mission was to evaluate telementoring and telerobotic surgery technologies as potential means to deliver medical care to astronauts during spaceflight. The NEEMO 7 crewmembers received minimal pre-mission training to perform selected medical and surgical procedures. These procedures included: (1) use of a portable ultrasound to locate and measure abdominal organs and structures in a crewmember subject; (2) use of a portable ultrasound to insert a small needle and drain into a fluid-filled cystic cavity in a simulated patient; (3) surgical repair of two arteries in a simulated patient; (4) cystoscopy and use of a ureteral basket to remove a renal stone in a simulated patient; and (5) laparoscopic cholecystectomy in a simulated patient. During the actual mission, the crewmembers performed the procedures without or with telementoring and telerobotic assistance from experts located in Hamilton, Ontario. The results of the NEEMO 7 medical experiments demonstrated that telehealth interventions rely heavily on a robust broadband, high data rate telecommunication link; that certain interventional procedures can be performed adequately by minimally trained individuals with telementoring assistance; and that prior clinical experience does not always correlate with better procedural performance. As space missions become longer in duration and take place further from Earth, enhancement of medical care capability and expertise will be required. The kinds of medical technologies demonstrated during the NEEMO 7 mission may play a significant role in enabling the human exploration of space beyond low earth orbit, particularly to destinations such as the Moon and Mars.

  6. STEREO Mission Design

    NASA Technical Reports Server (NTRS)

    Dunham, David W.; Guzman, Jose J.; Sharer, Peter J.; Friessen, Henry D.

    2007-01-01

    STEREO (Solar-TErestrial RElations Observatory) is the third mission in the Solar Terrestrial Probes program (STP) of the National Aeronautics and Space Administration (NASA). STEREO is the first mission to utilize phasing loops and multiple lunar flybys to alter the trajectories of more than one satellite. This paper describes the launch computation methodology, the launch constraints, and the resulting nine launch windows that were prepared for STEREO. More details are provided for the window in late October 2006 that was actually used.

  7. The EOS Aura Mission

    NASA Technical Reports Server (NTRS)

    Schoeberl, Mark R.; Douglass, A. R.; Hilsenrath, E.; Luce, M.; Barnett, J.; Beer, R.; Waters, J.; Gille, J.; Levelt, P. F.; DeCola, P.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    The EOS Aura Mission is designed to make comprehensive chemical measurements of the troposphere and stratosphere. In addition the mission will make measurements of important climate variables such as aerosols, and upper tropospheric water vapor and ozone. Aura will launch in late 2003 and will fly 15 minutes behind EOS Aqua in a polar sun synchronous ascending node orbit with a 1:30 pm equator crossing time.

  8. Apollo mission experience

    NASA Technical Reports Server (NTRS)

    Schaefer, H. J.

    1972-01-01

    Dosimetric implications for manned space flight are evaluated by analyzing the radiation field behind the heavy shielding of a manned space vehicle on a near-earth orbital mission and how it compares with actual exposure levels recorded on Apollo missions. Emphasis shifts from flux densities and energy spectra to incident radiation and absorbed doses and dose equivalents as they are recorded within the ship at locations close to crew members.

  9. Apollo 17 mission report

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Operational and engineering aspects of the Apollo 17 mission are outlined. The vehicle configuration was similar to those of Apollo 15 and 16. There were significant differences in the science payload for Apollo 17 and spacecraft hardware differences and experiment equipment are described. The mission achieved a landing in the Taurus-Littrow region of the moon and returned samples of the pre-Imbrium highlands and young craters.

  10. Interoperability and information discovery

    USGS Publications Warehouse

    Christian, E.

    2001-01-01

    In the context of information systems, there is interoperability when the distinctions between separate information systems are not a barrier to accomplishing a task that spans those systems. Interoperability so defined implies that there are commonalities among the systems involved and that one can exploit such commonalities to achieve interoperability. The challenge of a particular interoperability task is to identify relevant commonalities among the systems involved and to devise mechanisms that exploit those commonalities. The present paper focuses on the particular interoperability task of information discovery. The Global Information Locator Service (GILS) is described as a policy, standards, and technology framework for addressing interoperable information discovery on a global and long-term basis. While there are many mechanisms for people to discover and use all manner of data and information resources, GILS initiatives exploit certain key commonalities that seem to be sufficient to realize useful information discovery interoperability at a global, long-term scale. This paper describes ten of the specific commonalities that are key to GILS initiatives. It presents some of the practical implications for organizations in various roles: content provider, system engineer, intermediary, and searcher. The paper also provides examples of interoperable information discovery as deployed using GILS in four types of information communities: bibliographic, geographic, environmental, and government.

  11. The Discovery of America

    ERIC Educational Resources Information Center

    Martin, Paul S.

    1973-01-01

    Discusses a model for explaining the spread of human population explosion on North American continent since its discovery 12,000 years ago. The model may help to map the spread of Homo sapiens throughout the New World by using the extinction chronology of the Pleistocene megafauna. (Author/PS)

  12. The Discovery Way

    ERIC Educational Resources Information Center

    Hamlin, Theresa

    2005-01-01

    At the Center for Discovery (The Center), a private, non-profit agency 80 miles northwest of New York City in the Catskill Mountains, children are growing and learning at their own pace, in their own way, with careful attention focused on communication and social/emotional development. Children with autism are being educated to be social beings,…

  13. Birds. Nature Discovery I.

    ERIC Educational Resources Information Center

    Stone, Sally F.

    The birds of New England and their particular habitats are explored in this guide which is part of a series of Nature Discovery publications. The materials are designed to directly supplement the natural science curricula and to complement other subject areas including social studies, language arts, music, and art. The program is designed for…

  14. Scientific Discovery for All

    ERIC Educational Resources Information Center

    Zaikowski, Lori; Lichtman, Paul; Quarless, Duncan

    2007-01-01

    The scientific discovery process comes alive for 70 minority students each year at Uniondale High School in New York where students have won top awards for "in-house" projects. Uniondale High School is in a middle-income school district where over 95% of students are from minority groups. Founded in 2000, the Uniondale High School Research Program…

  15. Historian's Discovery of Childhood

    ERIC Educational Resources Information Center

    Frijhoff, Willem

    2012-01-01

    The "discovery of childhood" is a tricky notion because childhood is as much a fact of a biological and psychological nature as a cultural notion that through the centuries has been the object of changing perceptions, definitions, and images. Children barely speak in history; virtually everything we know about them is mediated by adults. Then how…

  16. Knowledge Discovery in Databases.

    ERIC Educational Resources Information Center

    Norton, M. Jay

    1999-01-01

    Knowledge discovery in databases (KDD) revolves around the investigation and creation of knowledge, processes, algorithms, and mechanisms for retrieving knowledge from data collections. The article is an introductory overview of KDD. The rationale and environment of its development and applications are discussed. Issues related to database design…

  17. Human exploration mission studies

    NASA Technical Reports Server (NTRS)

    Cataldo, Robert L.

    1989-01-01

    The Office of Exploration has established a process whereby all NASA field centers and other NASA Headquarters offices participate in the formulation and analysis of a wide range of mission strategies. These strategies were manifested into specific scenarios or candidate case studies. The case studies provided a systematic approach into analyzing each mission element. First, each case study must address several major themes and rationale including: national pride and international prestige, advancement of scientific knowledge, a catalyst for technology, economic benefits, space enterprise, international cooperation, and education and excellence. Second, the set of candidate case studies are formulated to encompass the technology requirement limits in the life sciences, launch capabilities, space transfer, automation, and robotics in space operations, power, and propulsion. The first set of reference case studies identify three major strategies: human expeditions, science outposts, and evolutionary expansion. During the past year, four case studies were examined to explore these strategies. The expeditionary missions include the Human Expedition to Phobos and Human Expedition to Mars case studies. The Lunar Observatory and Lunar Outpost to Early Mars Evolution case studies examined the later two strategies. This set of case studies established the framework to perform detailed mission analysis and system engineering to define a host of concepts and requirements for various space systems and advanced technologies. The details of each mission are described and, specifically, the results affecting the advanced technologies required to accomplish each mission scenario are presented.

  18. The Voyager Interstellar Mission.

    PubMed

    Rudd, R P; Hall, J C; Spradlin, G L

    1997-01-01

    The Voyager Interstellar Mission began on January 1, 1990, with the primary objective being to characterize the interplanetary medium beyond Neptune and to search for the transition region between the interplanetary medium and the interstellar medium. At the start of this mission, the two Voyager spacecraft had already been in flight for over twelve years, having successfully returned a wealth of scientific information about the planetary systems of Jupiter, Saturn, Uranus, and Neptune, and the interplanetary medium between Earth and Neptune. The two spacecraft have the potential to continue returning science data until around the year 2020. With this extended operating lifetime, there is a high likelihood of one of the two spacecraft penetrating the termination shock and possibly the heliopause boundary, and entering interstellar space before that time. This paper describes the Voyager Interstellar Mission--the mission objectives, the spacecraft and science payload, the mission operations system used to support operations, and the mission operations strategy being used to maximize science data return even in the event of certain potential spacecraft subsystem failures. The implementation of automated analysis tools to offset and enable reduced flight team staffing levels is also discussed. PMID:11540770

  19. MNSM - A Future Mars Network Science Mission

    NASA Astrophysics Data System (ADS)

    Chicarro, A. F.

    2012-04-01

    partners have expressed an interest to participate (e.g., Japan, Russia, China). Also, NASA' s 2016 GEMS one-station mission could be a very valuable precursor for MNSM, if selected as NASA' s next Discovery mission. The proposed Mars Network Science Mission would focus on the early Mars, providing essential constraints on geophysical, geochemical, and geological models of Mars' evolution and a better understanding of SNC meteorites and future returned Martian samples. Measurements on the seismology, geodesy, magnetic field and surface heat flow would reveal the internal structure, activity and composition of Mars, its thermal structure and its magnetic evolution. Meteorological surface measurements would allow monitoring the atmospheric dynamics at the boundary layer (coupled with orbital measurements) to infer the climate patterns. Such mission can also provide important insights into the astrobiological conditions of Mars, in particular its magnetic field, heat flow and climate evolution. The Mars Network Science Mission represents a unique tool to perform new investigations of Mars, which could not be addressed by any other means. It would fill a longstanding gap in the scientific exploration of the Solar System by performing in-situ investigations of the interior of an Earth-like planet other than our own and provide unique and critical information about the fundamental processes of terrestrial planetary formation and evolution. The long-term goal of Mars robotic exploration in Europe remains the return of rock and soil samples from the Martian surface before eventually Humans explore Mars, but the Mars Network would provide the context in which returned samples should be interpreted.

  20. General view of the mid deck of the Orbiter Discovery ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view of the mid deck of the Orbiter Discovery during pre-launch preparations. Note the payload and mission specialists seats. The seats are removed packed and stowed during on-orbit activities. Also not the black panels in the right of the image, they are protective panels used for preparation of the orbiter and astronaut ingress while the orbiter is in its vertical launch position. This image was taken at Kenney Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  1. Workshop on Discovery Lessons-Learned

    NASA Technical Reports Server (NTRS)

    Saunders, M. (Editor)

    1995-01-01

    As part of the Discovery Program's continuous improvement effort, a Discovery Program Lessons-Learned workshop was designed to review how well the Discovery Program is moving toward its goal of providing low-cost research opportunities to the planetary science community while ensuring continued U.S. leadership in solar system exploration. The principal focus of the workshop was on the recently completed Announcement of Opportunity (AO) cycle, but the program direction and program management were also open to comment. The objective of the workshop was to identify both the strengths and weaknesses of the process up to this point, with the goal of improving the process for the next AO cycle. The process for initializing the workshop was to solicit comments from the communities involved in the program and to use the feedback as the basis for establishing the workshop agenda. The following four sessions were developed after reviewing and synthesizing both the formal feedback received and informal feedback obtained during discussions with various participants: (1) Science and Return on Investment; (2) Technology vs. Risk; Mission Success and Other Factors; (3) Cost; and (4) AO.AO Process Changes and Program Management.

  2. Mission safety evaluation report for STS-48, postflight edition

    NASA Technical Reports Server (NTRS)

    Clatterbuck, Guy E.; Hill, William C.

    1991-01-01

    Space Shuttle Discovery was launched into a 57 deg inclination orbit from the Kennedy Space Center (KSC) Launch Complex 39A at 7:11 p.m. EDT on 12 Sep. 1991. STS-48 was the second mission since return-to-flight to have KSC as the planned end-of-mission landing site, and the first mission to have a planned night landing at KSC. However, due to weather conditions at KSC, Discovery flew one extra orbit and landed at Edwards AFB, Calif. at 3:38 a.m. EDT on 18 Sep. 1991. Operation of all systems was generally satisfactory during the 5 day mission. On flight day 3, the Upper Atmospheric Research Satellite (UARS) was deployed from Discovery's payload bay 350 statute miles above Earth. This orbiting observatory will study mankind's effects on the planet's atmosphere and its shielding ozone layer. STS-48 safety risk factors are addressed that represent a change from previous flights, factors from previous flights that had an impact on this flight, and factors that are unique to this flight.

  3. Lunar Prospector: developing a very low cost planetary mission.

    NASA Astrophysics Data System (ADS)

    Hubbard, G. S.

    Lunar Prospector, the first competitively selected planetary mission in NASA's Discovery Program, is described with emphasis on the lessons learned from managing a very low cost project. Insights into government-industry teaming, project management, contractual arrangements, schedule and budget reserve approach are discussed. The mission is conducting an orbital survey of the Moon's composition and structure. A mission overview and scientific data return is briefly described in the context of low cost mission development. The suite of five instruments is outlined: neutron spectrometer (NS), alpha particle spectrometer (APS), gamma ray spectrometer (GRS), magnetometer (MAG) and an electron reflectometer (ER). Scientific requirements and measurement approaches to detect water ice to a sensitivity of 50 ppm (hydrogen), measure key elemental constituents, detect gas release events and accurately map the Moon's gravitational and magnetic fields are described.

  4. Communicating the Science from NASA's Astrophysics Missions

    NASA Astrophysics Data System (ADS)

    Hasan, Hashima; Smith, Denise A.

    2015-01-01

    Communicating science from NASA's Astrophysics missions has multiple objectives, which leads to a multi-faceted approach. While a timely dissemination of knowledge to the scientific community follows the time-honored process of publication in peer reviewed journals, NASA delivers newsworthy research result to the public through news releases, its websites and social media. Knowledge in greater depth is infused into the educational system by the creation of educational material and teacher workshops that engage students and educators in cutting-edge NASA Astrophysics discoveries. Yet another avenue for the general public to learn about the science and technology through NASA missions is through exhibits at museums, science centers, libraries and other public venues. Examples of the variety of ways NASA conveys the excitement of its scientific discoveries to students, educators and the general public will be discussed in this talk. A brief overview of NASA's participation in the International Year of Light will also be given, as well as of the celebration of the twenty-fifth year of the launch of the Hubble Space Telescope.

  5. STS-42 Space Shuttle mission report

    NASA Technical Reports Server (NTRS)

    Fricke, Robert W.

    1992-01-01

    The STS-42 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem operations during the forty-fifth flight of the Space Shuttle Program and the fourteenth flight of the Orbiter vehicle Discovery (OV-103). In addition to the Discovery vehicle, the flight vehicle consisted of the following: an External Tank (ET) designated as ET-52 (LWT-45); three Space Shuttle main engines (SSME's), which were serial numbers 2026, 2022, and 2027 in positions 1, 2, and 3, respectively; and two Solid Rocket Boosters (SRB's) designated as BI-048. The lightweight redesigned Solid Rocket Motors (RSRM's) installed in each one of the SRB's were designated as 360L020A for the left SRM and 360Q020B for the right SRM. The primary objective of the STS-42 mission was to complete the objectives of the first International Microgravity Laboratory (IML-1). Secondary objectives were to perform all operations necessary to support the requirements of the following: Gelation of Sols: Applied Microgravity Research (GOSAMR); Student Experiment 81-09 (Convection in Zero Gravity); Student Experiment 83-02 (Capillary Rise of Liquid Through Granular Porous Media); the Investigation into Polymer Membrane Processing (IPMP); the Radiation Monitoring Equipment-3 (RME-3); and Get-Away Special (GAS) payloads carried on the GAS Beam Assembly.

  6. STS-70 mission highlights

    NASA Astrophysics Data System (ADS)

    1995-09-01

    The highlights of the STS-70 mission are presented in this video. The flight crew consisted of Cmdr. John Hendricks, Pilot Kevin Kregel, Flight Engineer Nancy Curie, and Mission Specialists Dr. Don Thomas and Dr. Mary Ellen Weber. The mission's primary objective was the deployment of the 7th Tracking Data and Relay Satellite (TDRS), which will provide a communication, tracking, telemetry, data acquisition, and command services space-based network system essential to low Earth orbital spacecraft. Secondary mission objectives included activating and studying the Physiological and Anatomical Rodent Experiment/National Institutes of Health-Rodents (PARE/NIH-R), The Bioreactor Demonstration System (BDS), the Commercial Protein Crystal Growth (CPCG) studies, the Space Tissue Loss/National Institutes of Health-Cells (STL/NIH-C) experiment, the Biological Research in Canisters (BRIC) experiment, Shuttle Amateur Radio Experiment-2 (SAREX-2), the Visual Function Tester-4 (VFT-4), the Hand-Held, Earth Oriented, Real-Time, Cooperative, User-Friendly, Location-Targeting and Environmental System (HERCULES), the Microcapsules in Space-B (MIS-B) experiment, the Windows Experiment (WINDEX), the Radiation Monitoring Equipment-3 (RME-3), and the Military Applications of Ship Tracks (MAST) experiment. There was an in-orbit dedication ceremony by the spacecrew and the newly Integrated Mission Control Center to commemorate the Center's integration. The STS-70 mission was the first mission monitored by this new control center. Earth views included the Earth's atmosphere, a sunrise over the Earth's horizon, several views of various land masses, some B/W lightning shots, some cloud cover, and a tropical storm.

  7. COPD Discovery Might Improve Treatment

    MedlinePlus

    ... page: https://medlineplus.gov/news/fullstory_158852.html COPD Discovery Might Improve Treatment Study may help pinpoint ... will progress, a discovery they believe could improve COPD treatment. Their research might help doctors determine which ...

  8. Swift: 10 Years of Discovery

    NASA Astrophysics Data System (ADS)

    The conference Swift: 10 years of discovery was held in Roma at La Sapienza University on Dec. 2-5 2014 to celebrate 10 years of Swift successes. Thanks to a large attendance and a lively program, it provided the opportunity to review recent advances of our knowledge of the high-energy transient Universe both from the observational and theoretical sides. When Swift was launched on November 20, 2004, its prime objective was to chase Gamma-Ray Bursts and deepen our knowledge of these cosmic explosions. And so it did, unveiling the secrets of long and short GRBs. However, its multi-wavelength instrumentation and fast scheduling capabilities made it the most versatile mission ever flown. Besides GRBs, Swift has observed, and contributed to our understanding of, an impressive variety of targets including AGNs, supernovae, pulsars, microquasars, novae, variable stars, comets, and much more. Swift is continuously discovering rare and surprising events distributed over a wide range of redshifts, out to the most distant transient objects in the Universe. Such a trove of discoveries has been addressed during the conference with sessions dedicated to each class of events. Indeed, the conference in Rome was a spectacular celebration of the Swift 10th anniversary. It included sessions on all types of transient and steady sources. Top scientists from around the world gave invited and contributed talks. There was a large poster session, sumptuous lunches, news interviews and a glorious banquet with officials attending from INAF and ASI. All the presentations, as well as several conference pictures, can be found in the conference website (http://www.brera.inaf.it/Swift10/Welcome.html). These proceedings have been collected owing to the efforts of Paolo D’Avanzo who has followed each paper from submission to final acceptance. Our warmest thanks to Paolo for all his work. The Conference has been made possible by the support from La Sapienza University as well as from the ARAP

  9. Getting Involved with the Discovery Program

    NASA Technical Reports Server (NTRS)

    Asplund, Shari

    2000-01-01

    NASA's Discovery Program represents the implementation of NASA Administrator Daniel Goldin's vision of 'faster, better, cheaper' planetary missions; encompasses a series of low-cost solar system exploration missions intended to accomplish high quality, focused planetary science investigations using innovative, streamlined, and efficient approaches to assure the highest science value for the cost; and aims to enhance our understanding of the solar system by exploring the planets, their moons and other small bodies, either by traveling to them or remotely from the vicinity of Earth. The objectives of this program include the following: (1) Provide exciting and important scientific data to the global community; (2) Pursue new and innovative ways of doing business; (3) Encourage technological development by designing and testing new technologies and transferring them to the private sector; (4) Increase public awareness of, and appreciation for, solar system exploration through exciting education and public outreach activities; (5) Support national education initiatives through mission-specific programs; and (6) Ensure participation of small disadvantaged businesses, women-owned businesses, HBCUs, and other minority educational institutions in procurements.

  10. STS-90 Mission Insignia

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The STS-90 crew patch reflects the dedication of the mission to neuroscience in celebration of the decade of the brain. Earth is revealed through a neuron-shaped window, which symbolizes new perspectives in the understanding of nervous system development, structure and function, both here on Earth and in the microgravity environment of space. The Space Shuttle Columbia is depicted with its open payload bay doors revealing the Spacelab within. An integral component of the mission, the laboratory/science module provided by the European Space Agency (ESA), signifies the strong international involvement in the mission. The seven crew members and two alternate payload specialists, Chiaki Naito-Mukai and Alexander W. Dunlap, are represented by the nine major stars of the constellation Cetus (the whale) in recognition of the International Year of the Ocean. The distant stars illustrate the far reaching implications of the mission science to the many sponsoring agencies, helping prepare for long-duration space flight aboard the International Space Station (ISS). The moon and Mars are depicted to reflect the crew's recognition that those two celestial bodies will be the next great challenges in human exploration of space and represent the key role that life science research will play in supporting such missions.

  11. Autonomous mission operations

    NASA Astrophysics Data System (ADS)

    Frank, J.; Spirkovska, L.; McCann, R.; Wang, Lui; Pohlkamp, K.; Morin, L.

    NASA's Advanced Exploration Systems Autonomous Mission Operations (AMO) project conducted an empirical investigation of the impact of time delay on today's mission operations, and of the effect of processes and mission support tools designed to mitigate time-delay related impacts. Mission operation scenarios were designed for NASA's Deep Space Habitat (DSH), an analog spacecraft habitat, covering a range of activities including nominal objectives, DSH system failures, and crew medical emergencies. The scenarios were simulated at time delay values representative of Lunar (1.2-5 sec), Near Earth Object (NEO) (50 sec) and Mars (300 sec) missions. Each combination of operational scenario and time delay was tested in a Baseline configuration, designed to reflect present-day operations of the International Space Station, and a Mitigation configuration in which a variety of software tools, information displays, and crew-ground communications protocols were employed to assist both crews and Flight Control Team (FCT) members with the long-delay conditions. Preliminary findings indicate: 1) Workload of both crewmembers and FCT members generally increased along with increasing time delay. 2) Advanced procedure execution viewers, caution and warning tools, and communications protocols such as text messaging decreased the workload of both flight controllers and crew, and decreased the difficulty of coordinating activities. 3) Whereas crew workload ratings increased between 50 sec and 300 sec of time delay in the Baseline configuration, workload ratings decreased (or remained flat) in the Mitigation configuration.

  12. Rosetta Mission Status update

    NASA Astrophysics Data System (ADS)

    Taylor, Matthew

    2015-04-01

    The Rosetta Mission is the third cornerstone mission the ESA programme Horizon 2000. The aim of the mission is to map the comet 67-P/Churyumov-Gerasimenko by remote sensing, to ex-amine its environment insitu and its evolution in the inner solar system. The lander Philae is the first device to land on a comet and perform in-situ science on the surface. Nearly 10 years after launch in 2004, on 20th January 2014 at 10:00 UTC the spacecraft woke up from hibernation. Following successful instrument commissioning, Rosetta successfully rendezvoused with the comet. Following an intense period of map-ping and characterisation, a landing site for Philae was selected and on 12 November 2014, Philae was suc-cessfully deployed. This presentation will provide a brief overview of the mission up to date and where we stand in main science phase, which began with Philae's separation. It will also provide a look forward. IT is given on behalf of ALL Rosetta mission science, in-strument and operations teams.

  13. Rosetta Mission Status Update

    NASA Astrophysics Data System (ADS)

    Taylor, M. G.; Altobelli, N.; Alexander, C. J.; Schwehm, G. H.; Jansen, F.; Küppers, M.; O'Rourke, L.; Barthelemy, M.; Geiger, B.; Grieger, B.; Moissl, R.; Vallat, C.

    2014-12-01

    The Rosetta Mission is the third cornerstone mission the ESA programme Horizon 2000. The aim of the mission is to map the comet 67-P/Churyumov-Gerasimenko by remote sensing, to examine its environment insitu and its evolution in the inner solar system. The lander Philae will be the first device to land on a comet and perform in-situ science on the surface. Nearly 10 years after launch in 2004, on 20th January 2014 at 10:00 UTC the spacecraft woke up from hibernation. Following successful instrument commissioning, at the time of writing the spacecraft is about to rendez-vous with the comet. The rest of 2014 will involve careful mapping and characterisation of the nucleus and its environs, for science and to identify a landing site for the lander Philae in November. This presentation will provide a brief overview of the mission up to date and where we stand in early part of the escort phase of the mission which runs until end of 2015.

  14. The Euclid Mission

    NASA Astrophysics Data System (ADS)

    Racca, Giuseppe; Laureijs, Rene

    Euclid is a space-based optical/near-infrared survey mission of the European Space Agency (ESA) designed to investigate the nature of dark energy, dark matter and gravity by observing their signatures on the geometry of the Universe and on the formation of large structures over cosmological timescales. Euclid is optimised for two primary cosmological probes: Weak gravitational Lensing, which requires the measurement of the shape and photometric redshifts of distant galaxies, and Galaxy Clustering, based on the measurement of the 3-dimensional distribution of galaxies through their spectroscopic redshifts. The mission is scheduled for a launch date in the first half of 2020 and is designed for 6 years of nominal survey operations. The Euclid Spacecraft is composed of a Service Module and a Payload Module. The Service Module comprises all the conventional spacecraft subsystems, the instruments warm electronics units, the sun shield and the solar arrays. The Payload Module consists of a 1.2 m three-mirror Korsch type telescope and of two instruments, the visible imager and the near-infrared spectro-photometer, both covering a large common field-of-view enabling to survey more than 35% of the entire sky. The ground segment is broken down into three elements: the Mission Operations, the Science Operations under the responsibility of ESA and the Science Data Centres belonging to the Euclid Consortium. We will describe the overall mission, the mission elements architecture and the current project status.

  15. Autonomous Mission Operations Roadmap

    NASA Technical Reports Server (NTRS)

    Frank, Jeremy David

    2014-01-01

    As light time delays increase, the number of such situations in which crew autonomy is the best way to conduct the mission is expected to increase. However, there are significant open questions regarding which functions to allocate to ground and crew as the time delays increase. In situations where the ideal solution is to allocate responsibility to the crew and the vehicle, a second question arises: should the activity be the responsibility of the crew or an automated vehicle function? More specifically, we must answer the following questions: What aspects of mission operation responsibilities (Plan, Train, Fly) should be allocated to ground based or vehicle based planning, monitoring, and control in the presence of significant light-time delay between the vehicle and the Earth?How should the allocated ground based planning, monitoring, and control be distributed across the flight control team and ground system automation? How should the allocated vehicle based planning, monitoring, and control be distributed between the flight crew and onboard system automation?When during the mission should responsibility shift from flight control team to crew or from crew to vehicle, and what should the process of shifting responsibility be as the mission progresses? NASA is developing a roadmap of capabilities for Autonomous Mission Operations for human spaceflight. This presentation will describe the current state of development of this roadmap, with specific attention to in-space inspection tasks that crews might perform with minimum assistance from the ground.

  16. Geospace Magnetospheric Dynamics Mission

    NASA Technical Reports Server (NTRS)

    Russell, C. T.; Kluever, C.; Burch, J. L.; Fennell, J. F.; Hack, K.; Hillard, G. B.; Kurth, W. S.; Lopez, R. E.; Luhmann, J. G.; Martin, J. B.; Hanson, J. E.

    1998-01-01

    The Geospace Magnetospheric Dynamics (GMD) mission is designed to provide very closely spaced, multipoint measurements in the thin current sheets of the magnetosphere to determine the relation between small scale processes and the global dynamics of the magnetosphere. Its trajectory is specifically designed to optimize the time spent in the current layers and to minimize radiation damage to the spacecraft. Observations are concentrated in the region 8 to 40 R(sub E) The mission consists of three phases. After a launch into geostationary transfer orbit the orbits are circularized to probe the region between geostationary orbit and the magnetopause; next the orbit is elongated keeping perigee at the magnetopause while keeping the line of apsides down the tail. Finally, once apogee reaches 40 R(sub E) the inclination is changed so that the orbit will match the profile of the noon-midnight meridian of the magnetosphere. This mission consists of 4 solar electrically propelled vehicles, each with a single NSTAR thruster utilizing 100 kg of Xe to tour the magnetosphere in the course of a 4.4 year mission, the same thrusters that have been successfully tested on the Deep Space-1 mission.

  17. Kepler Mission Discovers Trove of Extrasolar Planet Candidates

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2011-02-01

    NASA's Kepler discovery mission is collecting more than just pennies from heaven. Results from the first 4 months of science operations of the Kepler space telescope, announced on 2 February, include the discovery of 1235 candidate planets orbiting 997 stars in a small portion of the Milky Way galaxy examined by the telescope. Follow-up observations likely could confirm about 80% of the candidates as actual planets rather than false positives, according to researchers. This new trove of possible exoplanets could greatly expand the number of known planets outside of our solar system.

  18. Titan Orbiter with Aerorover Mission (TOAM)

    NASA Technical Reports Server (NTRS)

    Sittler, E. C., Jr.; Cooper, J. F.; Mahaffy, P.; Esper, J.; Fairbrother, D.; Farley, R.; Pitman, J.; Kojiro, D. R.; Acuna, M.; Allen, M.; Bjoraker, G.; Brasunas, J.; Farrell, W.; Burchell, M. J.; Burger, M.; Chin, G.; Coates, A. J.; Farrell, W.; Flasar, M.; Gerlach, B.; Gorevan, S.; Hartle, R. E.; Im, Eastwood; Jennings, D.; Johnson, R. E.

    2007-01-01

    We propose to develop a new mission to Titan called Titan Orbiter with Aerorover Mission (TOAM). This mission is motivated by the recent discoveries of Titan, its atmosphere and its surface by the Huygens Probe, and a combination of in situ, remote sensing and radar mapping measurements of Titan by the Cassini orbiter. Titan is a body for which Astrobiology (i.e., prebiotic chemistry) will be the primary science goal of any future missions to it. TOAM is planned to use an orbiter and balloon technology (i.e., aerorover). Aerobraking will be used to put payload into orbit around Titan. One could also use aerobraking to put spacecraft into orbit around Saturn first for an Enceladus phase of the mission and then later use aerocapture to put spacecraft into orbit around Titan. The Aerorover will probably use a hot air balloon concept using the waste heat from the MMRTG approx. 1000 watts. Orbiter support for the Aerorover is unique to our approach for Titan. Our strategy to use an orbiter is contrary to some studies using just a single probe with balloon. Autonomous operation and navigation of the Aerorover around Titan will be required, which will include descent near to the surface to collect surface samples for analysis (i.e., touch and go technique). The orbiter can provide both relay station and GPS roles for the Aerorover. The Aerorover will have all the instruments needed to sample Titan's atmosphere, surface, possible methane lakes-rivers, use multi-spectral imagers for surface reconnaissance; to take close up surface images; take core samples and deploy seismometers during landing phase. Both active and passive broadband remote sensing techniques will be used for surface topography, winds and composition measurements.

  19. The Discovery Method in Training.

    ERIC Educational Resources Information Center

    Belbin, R. M.

    In the form of a discussion between faceless people, this booklet concerns discovery learning and its advantages. Subjects covered in the discussions are: Introducing the Discovery Method; An Experiment with British Railways; The OECD Research Projects in U.S.A., Austria, and Sweden; How the Discovery Method Differs from Other Methods; Discovery…

  20. Recent Discoveries and Bible Translation.

    ERIC Educational Resources Information Center

    Harrelson, Walter

    1990-01-01

    Discusses recent discoveries for "Bible" translation with a focus on the "Dead Sea Scrolls." Examines recent discoveries that provide direct support for alternative reading of biblical passages and those discoveries that have contributed additional insight to knowledge of cultural practices, especially legal and religious practices. (DB)

  1. STS-103 MS Clervoy and Commander Brown look over Discovery after landing

    NASA Technical Reports Server (NTRS)

    1999-01-01

    After landing at the Shuttle Landing Facility, STS-103 Mission Specialist Jean-Frangois Clervoy of France (left), with the European Space Agency (ESA), and Commander Curtis L. Brown Jr. (right) look over the orbiter Discovery. They and other crew members Pilot Scott J. Kelly and Mission Specialists Steven L. Smith, C. Michael Foale (Ph.D.), John M. Grunsfeld (Ph.D.) and Claude Nicollier of Switzerland (also with ESA), completed a successful eight-day mission to service the Hubble Space Telescope, spending the Christmas holiday in space in order to accomplish their mission before the end of 1999. During the mission, Discovery's four space-walking astronauts, Smith, Foale, Grunsfeld and Nicollier, spent 24 hours and 33 minutes upgrading and refurbishing Hubble, making it more capable than ever to renew its observations of the universe. Mission objectives included replacing gyroscopes and an old computer, installing another solid state recorder, and replacing damaged insulation in the telescope. Hubble was released from the end of Discovery's robot arm on Christmas Day. Main gear touchdown was at 7:00:47 p.m. EST. Nose gear touchdown occurred at 7:00:58 EST and wheel stop at 7:01:34 EST. This was the 96th flight in the Space Shuttle program and the 27th for the orbiter Discovery. The landing was the 20th consecutive Shuttle landing in Florida and the 13th night landing in Shuttle program history.

  2. STS-103 MS Clervoy and Nicollier and Commander Brown look over Discovery after landing

    NASA Technical Reports Server (NTRS)

    1999-01-01

    After landing at the Shuttle Landing Facility, STS-103 Mission Specialists Jean-Francois Clervoy of France and Claude Nicollier of Switzerland, who are with the European Space Agency, listen to a comment by Commander Curtis L. Brown Jr. while looking over the orbiter Discovery. Other members of the crew are Pilot Scott J. Kelly and Mission Specialists Steven L. Smith, C. Michael Foale (Ph.D.), and John M. Grunsfeld (Ph.D.). The crew of seven completed a successful eight-day mission to service the Hubble Space Telescope, spending the Christmas holiday in space in order to accomplish their mission before the end of 1999. During the mission, Discovery's four space-walking astronauts, Smith, Foale, Grunsfeld and Nicollier, spent 24 hours and 33 minutes upgrading and refurbishing Hubble, making it more capable than ever to renew its observations of the universe. Mission objectives included replacing gyroscopes and an old computer, installing another solid state recorder, and replacing damaged insulation in the telescope. Hubble was released from the end of Discovery's robot arm on Christmas Day. Main gear touchdown was at 7:00:47 p.m. EST. Nose gear touchdown occurred at 7:00:58 EST and wheel stop at 7:01:34 EST. This was the 96th flight in the Space Shuttle program and the 27th for the orbiter Discovery. The landing was the 20th consecutive Shuttle landing in Florida and the 13th night landing in Shuttle program history.

  3. Discovery of Isotopes

    NASA Astrophysics Data System (ADS)

    May, Erin; Thoennessen, Michael

    2011-10-01

    To date, no comprehensive study has been undertaken regarding the initial detection and identification of isotopes. At NSCL, a project has been initiated to catalog and report the initial observation of every isotope. The conditions characterizing the successful discovery of an isotope include a clear and unambiguous mass and element identification through decay curves, mass spectroscopy, gamma-ray spectra, and/or relationships to other isotopes, as well as the publication of such findings in a refereed journal. I will present the documentation for eight elements: cesium, lanthanum, praseodymium, promethium, samarium, europium, gadolinium, and terbium. The year and author of each initial publication along with the location and methods of production and identification will be shown. A summary and overview of all ~3000 isotopes documented so far as a function of discovery year, method and place will also be presented.

  4. Challenges of Antibacterial Discovery

    PubMed Central

    Silver, Lynn L.

    2011-01-01

    Summary: The discovery of novel small-molecule antibacterial drugs has been stalled for many years. The purpose of this review is to underscore and illustrate those scientific problems unique to the discovery and optimization of novel antibacterial agents that have adversely affected the output of the effort. The major challenges fall into two areas: (i) proper target selection, particularly the necessity of pursuing molecular targets that are not prone to rapid resistance development, and (ii) improvement of chemical libraries to overcome limitations of diversity, especially that which is necessary to overcome barriers to bacterial entry and proclivity to be effluxed, especially in Gram-negative organisms. Failure to address these problems has led to a great deal of misdirected effort. PMID:21233508

  5. Recommendation Knowledge Discovery

    NASA Astrophysics Data System (ADS)

    McSherry, David; Stretch, Christopher

    Recently we presented a novel approach to the discovery of recommendation rules from a product case base that take account of all features of a recommended product, including those with respect to which the user's preferences are unknown. In this paper, we investigate the potential role of default preferences in the discovery of recommendation rules. As we show in the domain of digital cameras, the potential benefits include a dramatic reduction in the effective length of the discovered rules and increased coverage of queries representing the user's personal preferences. Another important finding of the research presented is that in a recommender system that takes account of default preferences, many of the products in the case base may never be recommended.

  6. Scientists on a Mission

    ERIC Educational Resources Information Center

    Carlisle, Peggy

    2011-01-01

    Education is an ever-changing field, yet constants remain: A teacher must be able to motivate students to become lifelong learners. Science has much to offer--the excitement that comes from discovery and learning can carry over into adulthood. Science provides an avenue for students to encounter phenomena in their environment and to discover…

  7. Discoveries in Photosynthesis

    NASA Astrophysics Data System (ADS)

    Govindjee; Beatty, J. T.; Gest, H.; Allen, J. F.

    "Life Is Bottled Sunshine" [Wynwood Reade, Martyrdom of Man, 1924]. This inspired phrase is a four-word summary of the significance of photosynthesis for life on earth. The study of photosynthesis has attracted the attention of a legion of biologists, biochemists, chemists and physicists for over 200 years. Discoveries in Photosynthesis presents a sweeping overview of the history of photosynthesis investigations, and detailed accounts of research progress in all aspects of the most complex bioenergetic process in living organisms.

  8. Discovery as a process

    SciTech Connect

    Loehle, C.

    1994-05-01

    The three great myths, which form a sort of triumvirate of misunderstanding, are the Eureka! myth, the hypothesis myth, and the measurement myth. These myths are prevalent among scientists as well as among observers of science. The Eureka! myth asserts that discovery occurs as a flash of insight, and as such is not subject to investigation. This leads to the perception that discovery or deriving a hypothesis is a moment or event rather than a process. Events are singular and not subject to description. The hypothesis myth asserts that proper science is motivated by testing hypotheses, and that if something is not experimentally testable then it is not scientific. This myth leads to absurd posturing by some workers conducting empirical descriptive studies, who dress up their study with a ``hypothesis`` to obtain funding or get it published. Methods papers are often rejected because they do not address a specific scientific problem. The fact is that many of the great breakthroughs in silence involve methods and not hypotheses or arise from largely descriptive studies. Those captured by this myth also try to block funding for those developing methods. The third myth is the measurement myth, which holds that determining what to measure is straightforward, so one doesn`t need a lot of introspection to do science. As one ecologist put it to me ``Don`t give me any of that philosophy junk, just let me out in the field. I know what to measure.`` These myths lead to difficulties for scientists who must face peer review to obtain funding and to get published. These myths also inhibit the study of science as a process. Finally, these myths inhibit creativity and suppress innovation. In this paper I first explore these myths in more detail and then propose a new model of discovery that opens the supposedly miraculous process of discovery to doser scrutiny.

  9. Discovery management workshop

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Two dozen participants assembled under the direction of the NASA Solar System Exploration Division (SEED) April 13-15, 1993. Participants supported the goals of cheaper and faster solar system exploration. The workshop concluded that the Discovery Program concept and goals are viable. Management concerns are articulated in the final report. Appendix A includes lists of participants in alphabetical order, by functional area, and by organization type. Appendix B includes the agenda for the meeting.

  10. Discovery with FAST

    NASA Astrophysics Data System (ADS)

    Wilkinson, P.

    2016-02-01

    FAST offers "transformational" performance well-suited to finding new phenomena - one of which might be polarised spectral transients. But discoveries will only be made if "the system" provides its users with the necessary opportunities. In addition to designing in as much observational flexibility as possible, FAST should be operated with a philosophy which maximises its "human bandwidth". This band includes the astronomers of tomorrow - many of whom not have yet started school or even been born.

  11. Early lunar rover mission studies

    NASA Technical Reports Server (NTRS)

    Gillespie, Vernon P.

    1993-01-01

    Results of lunar mission studies aimed at developing mission goals and high level requirements are reported. A mission concept to meet the mission requirements was developed and the design of mission hardware was to follow. Mission concepts not only included operations analysis and plans but also fabrication and test planning, quality control measures, and project organization. The design of mission concepts and hardware identified issues that are not easily resolved. Although none of the issues identified appear to be unresolvable, many will be difficult to resolve within Space Exploration Initiative constraints. These issues discussed which appear to have the potential for negative project impact are rover mobility, power, imaging, telemanagment, and remote control.

  12. Mars Exploration Rover Mission

    NASA Technical Reports Server (NTRS)

    Adler, M.

    2004-01-01

    Two rovers with a sophisticated geological payload have been operating on the surface of Mars since January of 2004. Future missions and their related technology developments will benefit from the lessons learned during these surface operations. The planning cycle was dictated by the communications opportunities and the times of day that the rovers could operate, and the team and tools were tuned to optimize the mission return for that cycle time. The ability to traverse and to approach and perform in situ investigations on targets was limited in speed by the same cycle time, due to required human involvement in the related planning and risk decisions. In addition traverse was limited by the speed of the on-board terrain and hazard assessment, and in situ operations were limited by a lack of autonomy. Different planning cycles and levels of autonomy should be considered for future surface missions, which will result in different approaches to science decision making.

  13. The LISA Pathfinder Mission

    NASA Technical Reports Server (NTRS)

    Stebbins, Robin

    2009-01-01

    LISA Pathfinder (formerly known as SMART-2) is a European Space Agency (ESA) mission designed to pave the way for the joint ESA/NASA Laser Interferometer Space Antenna (LISA) mission by testing in flight the critical technologies required for spaceborne gravitational wave detection: it will put two test masses in a near-perfect gravitational free-fall and control and measure their motion with unprecedented accuracy. LISA Pathfinder is currently in the integration and test phase of the development, and is due to be launched on a dedicated launch vehicle in late 2011, with first results on the performance of the system being available approx 6 months later. This poster will describe the mission in detail, give the current status of the spacecraft development, and highlight the future milestones in the integration and test campaign.

  14. STS-55 Mission Insignia

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The official insignia of the STS-55 mission displays the Space Shuttle Columbia over an Earth-sky background. Depicted beneath the orbiter are the American and German flags flying together, representing the partnership of this laboratory mission. The two blue stars in the border bearing the crewmembers' names signify each of the backup (alternate) payload specialists -- Gerhard Thiele and Renate Brummer. The stars in the sky stand for each of the children of the crewmembers in symbolic representation of the space program's legacy to future generations. The rainbow symbolizes the hope for a brighter tomorrow because of the knowledge and technologies gained from this mission's multifaceted experiments. Each crewmember contributed to the design of the insignia.

  15. Athena Mission Status

    NASA Astrophysics Data System (ADS)

    Lumb, D.

    2016-07-01

    Athena has been selected by ESA for its second large mission opportunity of the Cosmic Visions programme, to address the theme of the Hot and Energetic Universe. Following the submission of a proposal from the community, the technical and programmatic aspects of the mission design were reviewed in ESA's Concurrent Design Facility. The proposed concept was deemed to betechnically feasible, but with potential constraints from cost and schedule. Two parallel industry study contracts have been conducted to explore these conclusions more thoroughly, with the key aim of providing consolidated inputs to a Mission Consolidation Review that was conducted in April-May 2016. This MCR has recommended a baseline design, which allows the agency to solicit proposals for a community provided payload. Key design aspects arising from the studies are described, and the new reference design is summarised.

  16. The PROBA-3 Mission

    NASA Astrophysics Data System (ADS)

    Zhukov, Andrei

    2016-07-01

    PROBA-3 is the next ESA mission in the PROBA line of small technology demonstration satellites. The main goal of PROBA-3 is in-orbit demonstration of formation flying techniques and technologies. The mission will consist of two spacecraft together forming a giant (150 m long) coronagraph called ASPIICS (Association of Spacecraft for Polarimetric and Imaging Investigation of the Corona of the Sun). The bigger spacecraft will host the telescope, and the smaller spacecraft will carry the external occulter of the coronagraph. ASPIICS heralds the next generation of solar coronagraphs that will use formation flying to observe the inner corona in eclipse-like conditions for extended periods of time. The occulter spacecraft will also host the secondary payload, DARA (Davos Absolute RAdiometer), that will measure the total solar irradiance. PROBA-3 is planned to be launched in 2019. The scientific objectives of PROBA-3 will be discussed in the context of other future solar and heliospheric space missions.

  17. STS-96 Launch of Discovery from Pad 39-B

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Space Shuttle Discovery begins its climb into space, clearing the fixed service structure at left, after liftoff at 6:49:42 a.m. EDT. The crew of seven begin a 10-day logistics and resupply mission for the International Space Station. Discovery carries about 4,000 pounds of supplies, to be stored aboard the station for use by future crews, including laptop computers, cameras, tools, spare parts, and clothing. The mission also includes such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student-involved experiment. It will include a space walk to attach the cranes to the outside of the ISS for use in future construction. Landing is expected at the SLF on June 6 about 1:58 a.m. EDT.

  18. Space Shuttle Discovery rolls out to the launch pad

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The Space Shuttle Discovery, atop the mobile launcher platform and crawler-transporter, approaches the turn in the crawlerway as it creeps to Launch Pad 39B at 1 mph. The crawler-transporter takes about five hours to cover the 4.2 miles from the Vehicle Assembly Building to the launch pad. Liftoff of Discovery on mission STS-96 is targeted for May 20 at 9:32 a.m. EDT. STS-96 is a logistics and resupply mission for the International Space Station, carrying such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student-led experiment.

  19. Space Shuttle Discovery rolls out to the launch pad

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The Space Shuttle Discovery, atop the mobile launcher platform and crawler-transporter, dwarfs the car parked at right on the median of the 130-foot-wide crawlerway. Traveling at 1 mph, the crawler-transporter takes about five hours to cover the 4.2 miles from the Vehicle Assembly Building to Launch Pad 39B. Here it is moving toward the turn that will take it to the pad. Liftoff of Discovery on mission STS-96 is targeted for May 20 at 9:32 a.m. EDT. STS-96 is a logistics and resupply mission for the International Space Station, carrying such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student-led experiment.

  20. STS-70 Discovery launch startled birds at ignition

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Startled birds scatter as the stillness of a summer morning is broken by a giant's roar. The Space Shuttle Discovery thundered into space from launch Pad 39-B at 9:41:55:078 a.m. EDT. STS-70 is the 70th Shuttle flight overall, the 21st for Discovery (OV- 103), and the fourth Shuttle flight in 1995. On board for the nearly eight-day mission are a crew of five: Commander Terence 'Tom' Hendricks; Pilot Kevin R. Kregel; and Mission Specialists Nancy Jane Currie, Donald A. Thomas and Mary Ellen Weber. The crew's primary objective is to deploy the Tracking and Data Relay Satellite-G (TDRS-G), which will join a constellation of other TDRS spacecraft already on orbit.

  1. Space Shuttle Discovery rolls out to the launch pad

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The Space Shuttle Discovery, atop the mobile launcher platform and crawler-transporter, begins the climb up the ramp to Launch Pad 39B. Traveling at 1 mph, the crawler-transporter takes about five hours to cover the 4.2 miles from the Vehicle Assembly Building to the launch pad. Special levelers on the crawler- transporter keep the Space Shuttle vertical within plus or minus 10 minutes of arc about the dimensions of a basketball. Liftoff of Discovery on mission STS-96 is targeted for May 20 at 9:32 a.m. EDT. STS-96 is a logistics and resupply mission for the International Space Station, carrying such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student-led experiment.

  2. STS-70 Discovery launch before tower clear (fish eye view)

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The fourth Space Shuttle flight of 1995 is off to an all-but- perfect start, as the Shuttle Discovery surges skyward from Launch Pad 39B at 9:41:55.078 a.m. EDT, July 13, 1995. On board for Discovery's 21st spaceflight are a crew of five: Commander Terence 'Tom' Henricks; Pilot Kevin R. Kregel; and Mission Specialists Nancy Jane Currie, Donald A. Thomas and Mary Ellen Weber. Primary objective of Mission STS-70 is to assure the continued readiness of NASA's Tracking and Data Relay Satellite (TDRS) communications network which links Earth-orbiting spacecraft -- including the Shuttle -- with the ground. The 70th Shuttle flight overall also marks the maiden flight of the new Block I Space Shuttle Main Engine configuration designed to increase engine performance as well as safety and reliability.

  3. Space Shuttle Discovery rolls out to the launch pad

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Space Shuttle Discovery sits on Launch Pad 39B against a backdrop of blue sky and the blue-green Atlantic Ocean. At the top left is the 290-foot-high water tank that holds 300,000 gallons of water for the sound suppression system during liftoff. At the bottom, on the Rotating Service Structure, is photographer John Sexton, taking photos for a book. Liftoff of Discovery on mission STS-96 is targeted for May 20 at 9:32 a.m. EDT. STS-96 is a logistics and resupply mission for the International Space Station, carrying such payloads as a Russian crane, the Strela; a U.S.- built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student-led experiment.

  4. The language of discovery.

    PubMed

    Souba, Wiley

    2011-01-01

    Discovery, as a public attribution, and discovering, the act of conducting research, are experiences that entail "languaging" the unknown. This distinguishing property of language - its ability to bring forth, out of the unspoken realm, new knowledge, original ideas, and novel thinking - is essential to the discovery process. In sharing their ideas and views, scientists create co-negotiated linguistic distinctions that prompt the revision of established mental maps and the adoption of new ones. While scientific mastery entails command of the conversational domain unique to a specific discipline, there is an emerging conversational domain that must be mastered that goes beyond the language unique to any particular specialty. Mastery of this new conversational domain gives researchers access to their hidden mental maps that limit their ways of thinking about and doing science. The most effective scientists use language to recontextualize their approach to problem-solving, which triggers new insights (previously unavailable) that result in new discoveries. While language is not a replacement for intuition and other means of knowing, when we try to understand what's outside of language we have to use language to do so. PMID:21688238

  5. The language of discovery

    PubMed Central

    Souba, Wiley

    2011-01-01

    Discovery, as a public attribution, and discovering, the act of conducting research, are experiences that entail “languaging” the unknown. This distinguishing property of language ‐ its ability to bring forth, out of the unspoken realm, new knowledge, original ideas, and novel thinking – is essential to the discovery process. In sharing their ideas and views, scientists create co‐negotiated linguistic distinctions that prompt the revision of established mental maps and the adoption of new ones. While scientific mastery entails command of the conversational domain unique to a specific discipline, there is an emerging conversational domain that must be mastered that goes beyond the language unique to any particular specialty. Mastery of this new conversational domain gives researchers access to their hidden mental maps that limit their ways of thinking about and doing science. The most effective scientists use language to recontextualize their approach to problem‐solving, which triggers new insights (previously unavailable) that result in new discoveries. While language is not a replacement for intuition and other means of knowing, when we try to understand what’s outside of language we have to use language to do so. PMID:21688238

  6. A Participating Scientist Program for the STARDUST Mission

    NASA Technical Reports Server (NTRS)

    Morgan, T. H.; Geldazhler, B. G.

    2003-01-01

    It is the Policy of NASA s Office of Space Science to emphasize and encourage the addition of Participating Scientist Programs (PSP s) to broaden the scientific impact of missions. A Participating Scientist Program for the STARDUST Mission: STARDUST is the fourth Discovery mission, and it is the first sample return mission selected within the Discovery Program. The STARDUST Spacecraft will fly through the coma of comet PIwildt-2 in early January 2004, and return the samples to the Earth in January 2006. The Principal Investigator of the STARDUST mission, Dr. Donald Brownlee, has generously requested the implementation of a PSP for STARDUST in order to provide more community participation in the initial characterization and analysis of the samples from PIwildt-2. In particular participating scientists will fill out the membership of the Preliminary Examination Team (PET) called for in the original 1994 STARDUST proposal accepted by NASA in 1995. The work of the PET will be organized around major subdiscipline areas such as mineralogy and petrology, isotopic abundances, and elemental composition. There will be leaders for each of these areas, and also a number of team members within each. Support will be commensurate with the level of participation.

  7. STS-89 Mission Insignia

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In the STS-89 crew insignia, the link between the United States and Russia is symbolically represented by the Space Shuttle Endeavour and Russia's Mir Space Station orbiting above the Bering Strait between Siberia and Alaska. The success of the joint United States-Russian missions is depicted by the Space Shuttle and Mir colored by the rising sun in the background. A shadowed representation of the International Space Station (ISS) rising with the sun represents the future program for which the Shuttle-Mir missions are prototypes. The inside rim of the insignia describes the outline of the number eight representing STS-89 as the eighth Shuttle/Mir docking mission. The nine stars represent the nine joint missions to be flown of the program and when combined with the number eight in the rim, reflect the mission number. The nine stars also symbolize the children of the crew members who will be the future beneficiaries of the joint development work of the space programs of the two countries. Along the rim are the crew members' names with David A. Wolf's name on the left and Andrew S. W. Thomas' name on the right, the returning and upgoing cosmonaut guest researcher crew members. In between and at the bottom is the name of Salizan S. Sharipov, payload specialist representing Russian Space Agency (RSA), in Cyrillic alphabet. The other crew members are Terrence W. Wilcutt, commander; Joe F. Edwards, Jr., pilot; and mission specialists Michael P. Anderson, Bonnie J. Dunbar, and James F. Reilly. The red, white and blue of the rim reflect the colors of the American and Russian flags which are also represented in the rim on either side of the joined spacecraft.

  8. The ALEXIS mission recovery

    SciTech Connect

    Bloch, J.; Armstrong, T.; Dingler, B.; Enemark, D.; Holden, D.; Little, C.; Munson, C.; Priedhorsky, B.; Roussel-Dupre, D.; Smith, B.; Warner, R.; Dill, B.; Huffman, G.; McLoughlin, F.; Mills, R.; Miller, R.

    1994-03-01

    The authors report the recovery of the ALEXIS small satellite mission. ALEXIS is a 113-kg satellite that carries an ultrasoft x-ray telescope array and a high-speed VHF receiver/digitizer (BLACKBEARD), supported by a miniature spacecraft bus. It was launched by a Pegasus booster on 1993 April 25, but a solar paddle was damaged during powered flight. Initial attempts to contact ALEXIS were unsuccessful. The satellite finally responded in June, and was soon brought under control. Because the magnetometer had failed, the rescue required the development of new attitude control-techniques. The telemetry system has performed nominally. They discuss the procedures used to recover the ALEXIS mission.

  9. Mission Critical Networking

    SciTech Connect

    Eltoweissy, Mohamed Y.; Du, David H.C.; Gerla, Mario; Giordano, Silvia; Gouda, Mohamed; Schulzrinne, Henning; Youssef, Moustafa

    2010-06-01

    Mission-Critical Networking (MCN) refers to networking for application domains where life or livelihood may be at risk. Typical application domains for MCN include critical infrastructure protection and operation, emergency and crisis intervention, healthcare services, and military operations. Such networking is essential for safety, security and economic vitality in our complex world characterized by uncertainty, heterogeneity, emergent behaviors, and the need for reliable and timely response. MCN comprise networking technology, infrastructures and services that may alleviate the risk and directly enable and enhance connectivity for mission-critical information exchange among diverse, widely dispersed, mobile users.

  10. The Asteroid Impact Mission

    NASA Astrophysics Data System (ADS)

    Carnelli, Ian; Galvez, Andres; Mellab, Karim

    2016-04-01

    The Asteroid Impact Mission (AIM) is a small and innovative mission of opportunity, currently under study at ESA, intending to demonstrate new technologies for future deep-space missions while addressing planetary defense objectives and performing for the first time detailed investigations of a binary asteroid system. It leverages on a unique opportunity provided by asteroid 65803 Didymos, set for an Earth close-encounter in October 2022, to achieve a fast mission return in only two years after launch in October/November 2020. AIM is also ESA's contribution to an international cooperation between ESA and NASA called Asteroid Impact Deflection Assessment (AIDA), consisting of two mission elements: the NASA Double Asteroid Redirection Test (DART) mission and the AIM rendezvous spacecraft. The primary goals of AIDA are to test our ability to perform a spacecraft impact on a near-Earth asteroid and to measure and characterize the deflection caused by the impact. The two mission components of AIDA, DART and AIM, are each independently valuable but when combined they provide a greatly increased scientific return. The DART hypervelocity impact on the secondary asteroid will alter the binary orbit period, which will also be measured by means of lightcurves observations from Earth-based telescopes. AIM instead will perform before and after detailed characterization shedding light on the dependence of the momentum transfer on the asteroid's bulk density, porosity, surface and internal properties. AIM will gather data describing the fragmentation and restructuring processes as well as the ejection of material, and relate them to parameters that can only be available from ground-based observations. Collisional events are of great importance in the formation and evolution of planetary systems, own Solar System and planetary rings. The AIDA scenario will provide a unique opportunity to observe a collision event directly in space, and simultaneously from ground-based optical and

  11. Mars Stratigraphy Mission

    NASA Technical Reports Server (NTRS)

    Budney, C. J.; Miller, S. L.; Cutts, J. A.

    2000-01-01

    The Mars Stratigraphy Mission lands a rover on the surface of Mars which descends down a cliff in Valles Marineris to study the stratigraphy. The rover carries a unique complement of instruments to analyze and age-date materials encountered during descent past 2 km of strata. The science objective for the Mars Stratigraphy Mission is to identify the geologic history of the layered deposits in the Valles Marineris region of Mars. This includes constraining the time interval for formation of these deposits by measuring the ages of various layers and determining the origin of the deposits (volcanic or sedimentary) by measuring their composition and imaging their morphology.

  12. STS-52 Mission Insignia

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The STS-52 insignia, designed by the mission's crew members, features a large gold star to symbolize the crew's mission on the frontiers of space. A gold star is often used to symbolize the frontier period of the American West. The red star in the shape of the Greek letter lambda represents both the laser measurements taken from the Laser Geodynamic Satellite (LAGEOS II) and the Lambda Point Experiment, which was part of the United States Microgravity Payload (USMP-l). The remote manipulator and maple leaf are emblematic of the Canadian payload specialist who conducted a series of Canadian flight experiments (CANEX-2), including the Space Vision System test.

  13. Magellan: mission summary.

    PubMed

    Saunders, R S; Pettengill, G H

    1991-04-12

    The Magellan radar mapping mission is in the process of producing a global, high-resolution image and altimetry data set of Venus. Despite initial communications problems, few data gaps have occurred. Analysis of Magellan data is in the initial stages. The radar system data are of high quality, and the planned performance is being achieved in terms of spatial resolution and geometric and radiometric accuracy. Image performance exceeds expectations, and the image quality and mosaickability are extremely good. Future plans for the mission include obtaining gravity data, filling gaps in the initial map, and conducting special studies with the radar. PMID:17769269

  14. Space missions to the exoplanets: Will they ever be possible

    NASA Astrophysics Data System (ADS)

    Genta, Giancarlo

    There is no doubt that the discovery of exoplanets has made interstellar space mission much more interesting than they were in the past. The possible discovery of a terrestrial type plane at a reasonable distance will give a strong impulse in this direction. However, there are doubts that such long range space mission will ever become feasible at all and, in case they will be, it is impossible to forecast a timeframe for them. At present, precursor interstellar missions are planned, but they fall way short from yielding interesting information about exoplanets, except perhaps in the case of missions to the focal line of the Sun’s gravitational lens, whose usefulness in this context is still to be demonstrated. They are anyway an essential step in the roadmap toward interstellar missions. Often the difficulties linked with interstellar missions are considered as related with the huge quantity of energy required for reaching the target star system within a reasonable timeframe. While this may well be a showstopper, it is not the only problem to be solved to make them possible. Two other issues are those linked with the probe’s autonomy and the telecommunications required to transmit large quantities of information at those distances. Missions to the exoplanets may be subdivided in the following categories: 1) robotic missions to the destination system, including flybys; 2) robotic missions including landing on an exoplanet; 3) robotic sample return missions; 4) human missions. The main problem to be solved for missions of type 1 is linked with propulsion and with energy availability, while autonomy (artificial intelligence) and telecommunication problems are more or less manageable with predictable technologies. Missions of type 2 are more demanding for what propulsion is concerned, but above all require a much larger artificial intelligence and also will generate a large amount of data, whose transmission back to Earth may become a problem. The suggestion of

  15. GRAIL Orbit Determination for the Science Phase and Extended Mission

    NASA Technical Reports Server (NTRS)

    Ryne, Mark; Antreasian, Peter; Broschart, Stephen; Criddle, Kevin; Gustafson, Eric; Jefferson, David; Lau, Eunice; Ying Wen, Hui; You, Tung-Han

    2013-01-01

    The Gravity Recovery and Interior Laboratory Mission (GRAIL) is the 11th mission of the NASA Discovery Program. Its objective is to help answer funda-mental questions about the Moon's internal structure, thermal evolution, and collisional history. GRAIL employs twin spacecraft, which fly in formation in low altitude polar orbits around the Moon. An improved global lunar gravity field is derived from high-precision range-rate measurements of the distance between the two spacecraft. The purpose of this paper is to describe the strategies used by the GRAIL Orbit Determination Team to overcome challenges posed during on-orbit operations.

  16. STS-26 Mission Control Center (MCC) activity at JSC

    NASA Technical Reports Server (NTRS)

    1988-01-01

    A wide angle view shows flight controllers in JSC's Mission Control Center (MCC) Bldg 30 flight control room (FCR) as they listen to a presentation by STS-26 crewmembers on the fourth day of Discovery's, Orbiter Vehicle (OV) 103's, orbital mission. Flight Director James M. (Milt) Heflin (standing at center) and astronaut and spacecraft communicator (CAPCOM) G. David Low (standing at right) briefly look away from a television image of the crew on a screen in the front of the FCR. Heflin, Low, and other flight controllers listen as each member relates some inner feelings while paying tribute to the 51L Challenger crew.

  17. STS-102 Discovery lifts off from Launch Pad 39-B

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. - Spectators line the banks of the turn basin to watch the dawn launch of Space Shuttle Discovery on mission STS-102. The rosy sky pales in comparison to the deep rose of the orbiter'''s exhaust trail that captures the rising sun'''s rays. Liftoff occurred at 6:42:09 EST for the eighth flight to the International Space Station.

  18. Kepler: NASA's First Mission Capable of Finding Earth-Size Planets

    NASA Technical Reports Server (NTRS)

    Borucki, William J.

    2009-01-01

    Kepler, a NASA Discovery mission, is a spaceborne telescope designed to search a nearby region of our galaxy for Earth-size planets orbiting in the habitable zone of stars like our sun. The habitable zone is that region around a start where the temperature permits water to be liquid on the surface of a planet. Liquid water is considered essential forth existence of life. Mission Phases: Six mission phases have been defined to describe the different periods of activity during Kepler's mission. These are: launch; commissioning; early science operations, science operations: and decommissioning

  19. The role of small missions in planetary and lunar exploration

    NASA Astrophysics Data System (ADS)

    1995-01-01

    The Space Studies Board of the National Research Council charged its Committee on Planetary and Lunar Exploration (COMPLEX) to (1) examine the degree to which small missions, such as those fitting within the constraints of the Discovery program, can achieve priority objectives in the lunar and planetary sciences; (2) determine those characteristics, such as level of risk, flight rate, target mix, university involvement, technology development, management structure and procedures, and so on, that could allow a successful program; (3) assess issues, such as instrument selection, mission operations, data analysis, and data archiving, to ensure the greatest scientific return from a particular mission, given a rapid deployment schedule and a tightly constrained budget; and (4) review past programmatic attempts to establish small planetary science mission lines, including the Planetary Observers and Planetary Explorers, and consider the impact management practices have had on such programs. A series of small missions presents the planetary science community with the opportunity to expand the scope of its activities and to develop the potential and inventiveness of its members in ways not possible within the confines of large, traditional programs. COMPLEX also realized that a program of small planetary missions was, in and of itself, incapable of meeting all of the prime objectives contained in its report 'An Integrated Strategy for the Planetary Sciences: 1995-2010.' Recommendations are provided for the small planetary missions to fulfill their promise.

  20. Nano-Satellite Secondary Spacecraft on Deep Space Missions

    NASA Technical Reports Server (NTRS)

    Klesh, Andrew T.; Castillo-Rogez, Julie C.

    2012-01-01

    NanoSat technology has opened Earth orbit to extremely low-cost science missions through a common interface that provides greater launch accessibility. They have also been used on interplanetary missions, but these missions have used one-off components and architectures so that the return on investment has been limited. A natural question is the role that CubeSat-derived NanoSats could play to increase the science return of deep space missions. We do not consider single instrument nano-satellites as likely to complete entire Discovery-class missions alone,but believe that nano-satellites could augment larger missions to significantly increase science return. The key advantages offered by these mini-spacecrafts over previous planetary probes is the common availability of advanced subsystems that open the door to a large variety of science experiments, including new guidance, navigation and control capabilities. In this paper, multiple NanoSat science applications are investigated, primarily for high risk/high return science areas. We also address the significant challenges and questions that remain as obstacles to the use of nano-satellites in deep space missions. Finally, we provide some thoughts on a development roadmap toward interplanetary usage of NanoSpacecraft.

  1. ESASky: a new Astronomy Multi-Mission Interface

    NASA Astrophysics Data System (ADS)

    Baines, D.; Merin, B.; Salgado, J.; Giordano, F.; Sarmiento, M.; Lopez Marti, B.; Racero, E.; Gutierrez, R.; De Teodoro, P.; Nieto, S.

    2016-06-01

    ESA is working on a science-driven discovery portal for all its astronomy missions at ESAC called ESASky. The first public release of this service will be shown, featuring interfaces for sky exploration and for single and multiple targets. It requires no operational knowledge of any of the missions involved. A first public beta release took place in October 2015 and gives users world-wide simplified access to high-level science-ready data products from ESA Astronomy missions plus a number of ESA-produced source catalogues. XMM-Newton data, metadata and products were some of the first to be accessible through ESASky. In the next decade, ESASky aims to include not only ESA missions but also access to data from other space and ground-based astronomy missions and observatories. From a technical point of view, ESASky is a web application that offers all-sky projections of full mission datasets using a new-generation HEALPix projection called HiPS; detailed geometrical footprints to connect all-sky mosaics to individual observations; direct access to the underlying mission-specific science archives and catalogues. The poster will be accompanied by a demo booth at the conference.

  2. Manned Mars missions using propellant from space

    SciTech Connect

    Zuppero, A.C.; Olson, T.S. ); Redd, L.R. )

    1993-01-10

    .A recent discovery (8/14/92) of a near-earth object containing materials potentially useful for space activities could perhaps change the entire way humans access and operate in space. A near-Earth object ([number sign]4015, 1979 VA, comet Wilson-Harrington) contains water ice that could be used for space propulsion. In addition, this type of object may contain structural and lifesustaining materials (complex hydrocarbons, ammonia and/or bound nitrogen compounds) for space structures, manned planetary bases, or planetary surface terraforming. The retrieval and utilization of rocket propellant from near-Earth objects, for manned Mars missions in particular, has been investigated and the benefits of this scenario to over performing a Mars mission with terrestrial propellants have been documented. The results show water extracted from these objects and retrieved to Earth orbit for use in going to Mars may actually enable manned Mars exploration by reducing the number of Heavy Lift Launch Vehicle (HLLV) flights or eliminating the need for HLLV's altogether. The mission can perhaps be supported with existing launch vehicles and not required heavy lift capability. Also, the development of a nuclear thermal rocket for this alternate approach may be simplified substantially by reducing the operating temperature required.

  3. STS-96 Discovery rolls back into the Vehicle Assembly Building

    NASA Technical Reports Server (NTRS)

    1999-01-01

    On a beautiful Florida morning, a crawler transporter moves Space Shuttle Discovery (right, nearly hidden behind its external tank and solid rocket boosters) from Pad 39B back to the Vehicle Assembly Building (VAB) at left to repair damage to the external tank's foam insulation caused by hail. The external tank-solid rocket booster stack for mission STS-93 was moved out of High Bay 1, which awaits Discovery's arrival with its door open. The necessary repair work could not be performed at the pad due to limited access to the damaged areas. The work is expected to take two to three days, allowing Discovery to roll back to Pad 39B by midweek for launch of mission STS-96, the 94th launch in the Space Shuttle Program. This is only the 13th time since 1981 that a Shuttle has had to roll back from the pad. Liftoff will occur no earlier than May 27. STS-96 is a logistics and resupply mission for the International Space Station, carrying such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student-shared experiment.

  4. STS-114 Space Shuttle Discovery Performs Back Flip For Photography

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Launched on July 26, 2005 from the Kennedy Space Center in Florida, STS-114 was classified as Logistics Flight 1. Among the Station-related activities of the mission were the delivery of new supplies and the replacement of one of the orbital outpost's Control Moment Gyroscopes (CMGs). STS-114 also carried the Raffaello Multi-Purpose Logistics Module and the External Stowage Platform-2. A major focus of the mission was the testing and evaluation of new Space Shuttle flight safety, which included new inspection and repair techniques. Upon its approach to the International Space Station (ISS), the Space Shuttle Discovery underwent a photography session in order to assess any damages that may have occurred during its launch and/or journey through Space. Discovery was over Switzerland, about 600 feet from the ISS, when Cosmonaut Sergei K. Kriklev, Expedition 11 Commander, and John L. Phillips, NASA Space Station officer and flight engineer photographed the spacecraft as it performed a back flip to allow photography of its heat shield. Astronaut Eileen M. Collins, STS-114 Commander, guided the shuttle through the flip. The photographs were analyzed by engineers on the ground to evaluate the condition of Discovery's heat shield. The crew safely returned to Earth on August 9, 2005. The mission historically marked the Return to Flight after nearly a two and one half year delay in flight after the Space Shuttle Columbia tragedy in February 2003.

  5. Underside View of STS-114 Space Shuttle Discovery

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Launched on July 26, 2005 from the Kennedy Space Center in Florida, STS-114 was classified as Logistics Flight 1. Among the Station-related activities of the mission were the delivery of new supplies and the replacement of one of the orbital outpost's Control Moment Gyroscopes (CMGs). STS-114 also carried the Raffaello Multi-Purpose Logistics Module and the External Stowage Platform-2. A major focus of the mission was the testing and evaluation of new Space Shuttle flight safety, which included new inspection and repair techniques. Upon its approach to the International Space Station (ISS), the Space Shuttle Discovery underwent a photography session in order to assess any damages that may have occurred during its launch and/or journey through Space. Discovery was over Switzerland, about 600 feet from the ISS, when Cosmonaut Sergei K. Kriklev, Expedition 11 Commander, and John L. Phillips, NASA Space Station officer and flight engineer photographed the under side of the spacecraft as it performed a back flip to allow photography of its heat shield. Astronaut Eileen M. Collins, STS-114 Commander, guided the shuttle through the flip. The photographs were analyzed by engineers on the ground to evaluate the condition of Discovery's heat shield. The crew safely returned to Earth on August 9, 2005. The mission historically marked the Return to Flight after nearly a two and one half year delay in flight after the Space Shuttle Columbia tragedy in February 2003.

  6. Underside View of STS-114 Space Shuttle Discovery

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Launched on July 26, 2005, from the Kennedy Space Center in Florida, STS-114 was classified as Logistics Flight 1. Among the Station-related activities of the mission were the delivery of new supplies and the replacement of one of the orbital outpost's Control Moment Gyroscopes (CMGs). STS-114 also carried the Raffaello Multi-Purpose Logistics Module and the External Stowage Platform-2. A major focus of the mission was the testing and evaluation of new Space Shuttle flight safety, which included new inspection and repair techniques. Upon its approach to the International Space Station (ISS), the Space Shuttle Discovery underwent a photography session in order to assess any damages that may have occurred during its launch and/or journey through Space. Discovery was over Switzerland, about 600 feet from the ISS, when Cosmonaut Sergei K. Kriklev, Expedition 11 Commander, and John L. Phillips, NASA Space Station officer and flight engineer photographed the under side of the spacecraft as it performed a back flip to allow photography of its heat shield. Astronaut Eileen M. Collins, STS-114 Commander, guided the shuttle through the flip. The photographs were analyzed by engineers on the ground to evaluate the condition of Discovery's heat shield. The crew safely returned to Earth on August 9, 2005. The mission historically marked the Return to Flight after nearly a two and one half year delay in flight after the Space Shuttle Columbia tragedy in February 2003.

  7. STS-80 Mission Insignia

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This mission patch for mission STS-80 depicts the Space Shuttle Columbia and the two research satellites its crew deployed into the blue field of space. The uppermost satellite is the Orbiting Retrievable Far and Extreme Ultraviolet Spectrograph-Shuttle Pallet Satellite (ORFEUS-SPAS), a telescope aimed at unraveling the life cycles of stars and understanding the gases that drift between them. The lower satellite is the Wake Shield Facility (WSF), flying for the third time. It will use the vacuum of space to create advanced semiconductors for the nation's electronics industry. ORFEUS and WSF are joined by the symbol of the Astronaut Corps, representing the human contribution to scientific progress in space. The two bright blue stars represent the mission's Extravehicular Activities (EVA), final rehearsals for techniques and tools to be used in assembly of the International Space Station (ISS). Surrounding Columbia is a constellation of 16 stars, one for each day of the mission, representing the stellar talents of the ground and flight teams that share the goal of expanding knowledge through a permanent human presence in space.

  8. Framing Your Mission

    ERIC Educational Resources Information Center

    Jarrell, Andrea

    2009-01-01

    St. Paul's School in New Hampshire, the Orchard School in Indiana, Chestnut Hill Academy in Pennsylvania, and Dana Hall School in Massachusetts are like most independent schools--they have qualities that are distinctive and extraordinary. Line up their mission statements, however, and the schools sound almost interchangeable. They're all on a…

  9. Series of JASMINE missions

    NASA Astrophysics Data System (ADS)

    Gouda, N.

    2011-02-01

    We are planning three space astrometry missions as a series of JASMINE missions; Nano-JASMINE, Small-JASMINE and (Medium-sized)JASMINE. JASMINE is an abbreviation of Japan Astrometry Satellite Mission of INfrared Exploration. The JASMINE mission will measure in an infrared band annual parallaxes, positions on the celestial sphere, and proper motions of many stars in the bulge of the Milky Way (the Galaxy) with high accuracies. A target launch date is the first half of the 2020s. Before the launch of JASMINE, we are planning Nano-JASMINE and Small-JASMINE. Nano-JASMINE uses a very small nano-satellite and it is determined to be launched in 2011. Small-JASMINE is a downsized version of the JASMINE satellite, which observes toward restricted small regions of the Galactic bulge. A target launch date is around 2016. A completely new "map" of the Galactic bulge given by Small-JASMINE and JASMINE will bring us many exciting scientific results.

  10. Visual Navigation - SARE Mission

    NASA Technical Reports Server (NTRS)

    Alonso, Roberto; Kuba, Jose; Caruso, Daniel

    2007-01-01

    The SARE Earth Observing and Technological Mission is part of the Argentinean Space Agency (CONAE - Comision Nacional de Actividades Espaciales) Small and Technological Payloads Program. The Argentinean National Space Program requires from the SARE program mission to test in a real environment of several units, assemblies and components to reduce the risk of using these equipments in more expensive Space Missions. The objective is to make use those components with an acceptable maturity in design or development, but without any heritage at space. From the application point of view, this mission offers new products in the Earth Observation data market which are listed in the present paper. One of the technological payload on board of the SARE satellite is the sensor Ground Tracker. It computes the satellite attitude and orbit in real time (goal) and/or by ground processing. For the first operating mode a dedicated computer and mass memory are necessary to be part of the mentioned sensor. For the second operational mode the hardware and software are much simpler.

  11. Inspiration is "Mission Critical"

    NASA Astrophysics Data System (ADS)

    McCarthy, D. W.; DeVore, E.; Lebofsky, L.

    2014-07-01

    In spring 2013, the President's budget proposal restructured the nation's approach to STEM education, eliminating ˜$50M of NASA Science Mission Directorate (SMD) funding with the intent of transferring it to the Dept. of Education, National Science Foundation, and Smithsonian Institution. As a result, Education and Public Outreach (EPO) would no longer be a NASA mission requirement and funds that had already been competed, awarded, and productively utilized were lost. Since 1994, partnerships of scientists, engineers, and education specialists were required to create innovative approaches to EPO, providing a direct source of inspiration for today's youth that may now be lost. Although seldom discussed or evaluated, "inspiration" is the beginning of lasting education. For decades, NASA's crewed and robotic missions have motivated students of all ages and have demonstrated a high degree of leverage in society. Through personal experiences we discuss (1) the importance of inspiration in education, (2) how NASA plays a vital role in STEM education, (3) examples of high-leverage educational materials showing why NASA should continue embedding EPO specialists within mission teams, and (4) how we can document the role of inspiration. We believe that personal histories are an important means of assessing the success of EPO. We hope this discussion will lead other people to document similar stories of educational success and perhaps to undertake longitudinal studies of the impact of inspiration.

  12. Interpreting the Mission.

    ERIC Educational Resources Information Center

    Yarrington, Roger

    1980-01-01

    Underscores the importance of increasing public understanding and support of the community college mission in the 1980s. Suggests increased public relations efforts, community forums, the use of television advertisements, and efforts to gain the support of state legislators and officials. (AYC)

  13. Mission Statement Impossible

    ERIC Educational Resources Information Center

    Douglas, Lawrence; George, Alexander

    2008-01-01

    Mission statements are "in" these days. So it was only a matter of time before the authors' own institution was called upon to define itself. What could be easier? The people charged to draft the statement, the faculty, were simply being asked to describe their own doings. The authors discover that with a diverse range of opinions it was not easy…

  14. Spacelab D-1 mission

    NASA Technical Reports Server (NTRS)

    Dunbar, Bonnie J.

    1990-01-01

    The Spacelab D-1 (Deutchland Eins) Mission is discussed from the points of view of safety, materials handling, and toxic materials; the laboratory and equipment used; and some of the different philosophies utilized on this flight. How to enhance scientific return at the same time as being safe was examined.

  15. EOS Aura Mission Status

    NASA Technical Reports Server (NTRS)

    Guit, William J.

    2015-01-01

    This PowerPoint presentation will discuss EOS Aura mission and spacecraft subsystem summary, recent and planned activities, inclination adjust maneuvers, propellant usage lifetime estimate. Eric Moyer, ESMO Deputy Project Manager-Technical (code 428) has reviewed and approved the slides on April 30, 2015.

  16. Titan Orbiter Aerorover Mission

    NASA Technical Reports Server (NTRS)

    Sittler Jr., E. C.; Acuna, M.; Burchell, M. J.; Coates, A.; Farrell, W.; Flasar, M.; Goldstein, B. E.; Gorevan, S.; Hartle, R. E.; Johnson, W. T. K.

    2001-01-01

    We propose a combined Titan orbiter and Titan Aerorover mission with an emphasis on both in situ and remote sensing measurements of Titan's surface, atmosphere, ionosphere, and magnetospheric interaction. The biological aspect of the Titan environment will be emphasized by the mission (i.e., search for organic materials which may include simple organics to 'amono' analogues of amino acids and possibly more complex, lightening detection and infrared, ultraviolet, and charged particle interactions with Titan's surface and atmosphere). An international mission is assumed to control costs. NASA will provide the orbiter, launch vehicle, DSN coverage and operations, while international partners will provide the Aerorover and up to 30% of the cost for the scientific instruments through collaborative efforts. To further reduce costs we propose a single PI for orbiter science instruments and a single PI for Aerorover science instruments. This approach will provide single command/data and power interface between spacecraft and orbiter instruments that will have redundant central DPU and power converter for their instruments. A similar approach could be used for the Aerorover. The mission profile will be constructed to minimize conflicts between Aerorover science, orbiter radar science, orbiter radio science, orbiter imaging science, and orbiter fields and particles (FP) science. Additional information is contained in the original extended abstract.

  17. Mission and Assets Database

    NASA Technical Reports Server (NTRS)

    Baldwin, John; Zendejas, Silvino; Gutheinz, Sandy; Borden, Chester; Wang, Yeou-Fang

    2009-01-01

    Mission and Assets Database (MADB) Version 1.0 is an SQL database system with a Web user interface to centralize information. The database stores flight project support resource requirements, view periods, antenna information, schedule, and forecast results for use in mid-range and long-term planning of Deep Space Network (DSN) assets.

  18. The Pioneer Missions

    NASA Technical Reports Server (NTRS)

    Lasher, Larry E.; Hogan, Robert (Technical Monitor)

    1999-01-01

    This article describes the major achievements of the Pioneer Missions and gives information about mission objectives, spacecraft, and launches of the Pioneers. Pioneer was the United States' longest running space program. The Pioneer Missions began forty years ago. Pioneer 1 was launched shortly after Sputnik startled the world in 1957 as Earth's first artificial satellite at the start of the space age. The Pioneer Missions can be broken down into four distinct groups: Pioneer (PN's) 1 through 5, which comprise the first group - the "First Pioneers" - were launched from 1958 through 1960. These Pioneers made the first thrusts into space toward the Moon and into interplanetary orbit. The next group - the "Interplanetary Pioneers" - consists of PN's 6 through 9, with the initial launch being in 1965 (through 1968); this group explored inward and outward from Earth's orbit and travel in a heliocentric orbit around the Sun just as the Earth. The Pioneer group consisting of 10 and 11 - the "Outer Solar System Pioneers" - blazed a trail through the asteroid belt and was the first to explore Jupiter, Saturn and the outer Solar System and is seeking the borders of the heliosphere and will ultimately journey to the distant stars. The final group of Pioneer 12 and 13 the "Planetary Pioneers" - traveled to Earth's mysterious twin, Venus, to study this planet.

  19. The ATLAS-1 mission

    NASA Technical Reports Server (NTRS)

    Torr, Marsha R.

    1994-01-01

    Atmospheric Laboratory for Applications and Science (ATLAS)-1 was launched on March 24, 1992, carrying an international payload of 14 investigations, and conducted a successful series of experiments and observations over the subsequent 9 days. The objectives included: measuring the solar irradiance at high precision; remote sensing of the composition of the stratosphere, mesosphere, and thermosphere using techniques for wavelengths from 300 A to 5 mm; and inducing auroras by means of 1.2 amp electron beams. A subset of these instruments will subsequently be flown in a series of shuttle missions at roughly 1-year intervals over an 11-year solar cycle. The frequent recalibration opportunities afforded by such a program allows the transfer of calibrations to longer duration orbiting observatories. The ATLAS-1 mission occurred at the same time as the Upper Atmosphere Research Satellite (UARS), TIROS-N, and ERB satellites were in operation, and correlative measurements were conducted with these. In all, the mission was most successful in achieving its objectives and a unique and important database was acquired, with many scientific firsts accomplished. This paper provides the mission overview for the series of papers that follow.

  20. Mission Operations Assurance

    NASA Technical Reports Server (NTRS)

    Faris, Grant

    2012-01-01

    Integrate the mission operations assurance function into the flight team providing: (1) value added support in identifying, mitigating, and communicating the project's risks and, (2) being an essential member of the team during the test activities, training exercises and critical flight operations.

  1. The Phoenix Mars Mission

    NASA Technical Reports Server (NTRS)

    Tamppari, Leslie K.; Smith, Peter H.

    2008-01-01

    This slide presentation details the Phoenix Mission which was designed to enhance our understanding of water and the potential for habitability on the north polar regions of Mars. The slides show the instruments and the robotics designed to scrape Martian surface material, and analyze it in hopes of identifying water in the form of ice, and other chemicals.

  2. The Lobster Mission

    NASA Technical Reports Server (NTRS)

    Barthelmy, Scott

    2011-01-01

    I will give an overview of the Goddard Lobster mission: the science goals, the two instruments, the overall instruments designs, with particular attention to the wide-field x-ray instrument (WFI) using the lobster-eye-like micro-channel optics.

  3. Mission Simulation Toolkit

    NASA Technical Reports Server (NTRS)

    Pisaich, Gregory; Flueckiger, Lorenzo; Neukom, Christian; Wagner, Mike; Buchanan, Eric; Plice, Laura

    2007-01-01

    The Mission Simulation Toolkit (MST) is a flexible software system for autonomy research. It was developed as part of the Mission Simulation Facility (MSF) project that was started in 2001 to facilitate the development of autonomous planetary robotic missions. Autonomy is a key enabling factor for robotic exploration. There has been a large gap between autonomy software (at the research level), and software that is ready for insertion into near-term space missions. The MST bridges this gap by providing a simulation framework and a suite of tools for supporting research and maturation of autonomy. MST uses a distributed framework based on the High Level Architecture (HLA) standard. A key feature of the MST framework is the ability to plug in new models to replace existing ones with the same services. This enables significant simulation flexibility, particularly the mixing and control of fidelity level. In addition, the MST provides automatic code generation from robot interfaces defined with the Unified Modeling Language (UML), methods for maintaining synchronization across distributed simulation systems, XML-based robot description, and an environment server. Finally, the MSF supports a number of third-party products including dynamic models and terrain databases. Although the communication objects and some of the simulation components that are provided with this toolkit are specifically designed for terrestrial surface rovers, the MST can be applied to any other domain, such as aerial, aquatic, or space.

  4. The Swift GRB Mission

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil; Chincarini, Guido

    2004-01-01

    Swift is a MIDEX mission that is in development for launch in October 2004. It is a multiwavelength transient observatory for GRB astronomy. The goals of the mission are to determine the origin of GRBs and their afterglows and use bursts to probe the early Universe. A wide-field gamma-ray camera will detect mare than 100 GRBs per year to -3 times fainter than BATSE. Sensitive narrow-field X-ray and UV/optical telescopes will be pointed at the burst location in 20 to 75 sec by an autonomously controlled spacecraft. Far each burst, aresec positions will be determined and optical/UV/X-ray/gamma-say spectrophotometry performed. Measurements of redshift will be made for many burstes. The instrumentation is a combination of superb existing flight-spare hardware and design from XMM and Spectrum-X/JET-X contributed by collaborators in the UK and Italy and development of a coded-aperture camera with a large-area (approx. 0.5 square meter) CdZnTe detector array. Key components of the mission are vigorous follow-up and outreach programs to engage the astronomical community and public in Swift. The talk vi11 describe the mission statue and give a summary of plans for GRB operations. It is likely that Swift will have just been launched at the time of the conference.

  5. The LISA Pathfinder Mission

    NASA Astrophysics Data System (ADS)

    Armano, M.; Audley, H.; Auger, G.; Baird, J.; Binetruy, P.; Born, M.; Bortoluzzi, D.; Brandt, N.; Bursi, A.; Caleno, M.; Cavalleri, A.; Cesarini, A.; Cruise, M.; Danzmann, K.; Diepholz, I.; Dolesi, R.; Dunbar, N.; Ferraioli, L.; Ferroni, V.; Fitzsimons, E.; Freschi, M.; Gallegos, J.; García Marirrodriga, C.; Gerndt, R.; Gesa, L. I.; Gibert, F.; Giardini, D.; Giusteri, R.; Grimani, C.; Harrison, I.; Heinzel, G.; Hewitson, M.; Hollington, D.; Hueller, M.; Huesler, J.; Inchauspé, H.; Jennrich, O.; Jetzer, P.; Johlander, B.; Karnesis, N.; Kaune, B.; Korsakova, N.; Killow, C.; Lloro, I.; Maarschalkerweerd, R.; Madden, S.; Mance, D.; Martín, V.; Martin-Porqueras, F.; Mateos, I.; McNamara, P.; Mendes, J.; Mendes, L.; Moroni, A.; Nofrarias, M.; Paczkowski, S.; Perreur-Lloyd, M.; Petiteau, A.; Pivato, P.; Plagnol, E.; Prat, P.; Ragnit, U.; Ramos-Castro, J.; Reiche, J.; Romera Perez, J. A.; Robertson, D.; Rozemeijer, H.; Russano, G.; Sarra, P.; Schleicher, A.; Slutsky, J.; Sopuerta, C. F.; Sumner, T.; Texier, D.; Thorpe, J.; Trenkel, C.; Tu, H. B.; Vetrugno, D.; Vitale, S.; Wanner, G.; Ward, H.; Waschke, S.; Wass, P.; Wealthy, D.; Wen, S.; Weber, W.; Wittchen, A.; Zanoni, C.; Ziegler, T.; Zweifel, P.

    2015-05-01

    LISA Pathfinder (LPF), the second of the European Space Agency's Small Missions for Advanced Research in Technology (SMART), is a dedicated technology validation mission for future spaceborne gravitational wave detectors, such as the proposed eLISA mission. LISA Pathfinder, and its scientific payload - the LISA Technology Package - will test, in flight, the critical technologies required for low frequency gravitational wave detection: it will put two test masses in a near-perfect gravitational free-fall and control and measure their motion with unprecedented accuracy. This is achieved through technology comprising inertial sensors, high precision laser metrology, drag-free control and an ultra-precise micro-Newton propulsion system. LISA Pathfinder is due to be launched in mid-2015, with first results on the performance of the system being available 6 months thereafter. The paper introduces the LISA Pathfinder mission, followed by an explanation of the physical principles of measurement concept and associated hardware. We then provide a detailed discussion of the LISA Technology Package, including both the inertial sensor and interferometric readout. As we approach the launch of the LISA Pathfinder, the focus of the development is shifting towards the science operations and data analysis - this is described in the final section of the paper

  6. STS-51 Mission Insignia

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Designed by the crewmembers, the STS-51 crew patch honors all who have contributed to mission success. It symbolizes NASA's continuing quest to increase mankind's knowledge and use of space through this multi-faceted mission. The gold star represents the U.S. Advanced Communications Technology Satellite (ACTS) boosted by the Transfer Orbit Stage (TOS). The rays below the ACTTOS represent the innovative communication technologies to be tested by this experiment. The stylized Shuttle Pallet Satellite (SPAS) represents the German-sponsored ASTROSPAS mission. The constellation Orion below SPAS is representative of the types of stellar objects to be studied by its experimenters. The stars in Orion also commemorate the astronauts who have sacrificed their lives for the space program. The ascending spiral, symbolizing America's continuing commitment to leadership in space exploration and development, originates with the thousands of persons who ensure the success of each Shuttle flight. The five large white stars, representing the five crewmembers, along with the single gold star, fomm the mission's numerical designation.

  7. Revising the Institutional Mission.

    ERIC Educational Resources Information Center

    Dominick, Charles A.

    1990-01-01

    Revision of a college mission statement through a broadly participatory process can provide a new and sharpened sense of direction and priorities and a powerful mechanism for institutional change. Although institutional circumstances and processes may differ, the experience of Wittenberg University (Ohio) serves as an example of a model for…

  8. Planetary cubesats - mission architectures

    NASA Astrophysics Data System (ADS)

    Bousquet, Pierre W.; Ulamec, Stephan; Jaumann, Ralf; Vane, Gregg; Baker, John; Clark, Pamela; Komarek, Tomas; Lebreton, Jean-Pierre; Yano, Hajime

    2016-07-01

    Miniaturisation of technologies over the last decade has made cubesats a valid solution for deep space missions. For example, a spectacular set 13 cubesats will be delivered in 2018 to a high lunar orbit within the frame of SLS' first flight, referred to as Exploration Mission-1 (EM-1). Each of them will perform autonomously valuable scientific or technological investigations. Other situations are encountered, such as the auxiliary landers / rovers and autonomous camera that will be carried in 2018 to asteroid 1993 JU3 by JAXA's Hayabusas 2 probe, and will provide complementary scientific return to their mothership. In this case, cubesats depend on a larger spacecraft for deployment and other resources, such as telecommunication relay or propulsion. For both situations, we will describe in this paper how cubesats can be used as remote observatories (such as NEO detection missions), as technology demonstrators, and how they can perform or contribute to all steps in the Deep Space exploration sequence: Measurements during Deep Space cruise, Body Fly-bies, Body Orbiters, Atmospheric probes (Jupiter probe, Venus atmospheric probes, ..), Static Landers, Mobile landers (such as balloons, wheeled rovers, small body rovers, drones, penetrators, floating devices, …), Sample Return. We will elaborate on mission architectures for the most promising concepts where cubesat size devices offer an advantage in terms of affordability, feasibility, and increase of scientific return.

  9. Apollo 16 mission report

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Information is provided on the operational and engineering aspects of the Apollo 16 mission. Customary units of measurement are used in those sections of the report pertaining to spacecraft systems and trajectories. The International System of Units is used in sections pertaining to science activities.

  10. Exomars Mission Verification Approach

    NASA Astrophysics Data System (ADS)

    Cassi, Carlo; Gilardi, Franco; Bethge, Boris

    According to the long-term cooperation plan established by ESA and NASA in June 2009, the ExoMars project now consists of two missions: A first mission will be launched in 2016 under ESA lead, with the objectives to demonstrate the European capability to safely land a surface package on Mars, to perform Mars Atmosphere investigation, and to provide communi-cation capability for present and future ESA/NASA missions. For this mission ESA provides a spacecraft-composite, made up of an "Entry Descent & Landing Demonstrator Module (EDM)" and a Mars Orbiter Module (OM), NASA provides the Launch Vehicle and the scientific in-struments located on the Orbiter for Mars atmosphere characterisation. A second mission with it launch foreseen in 2018 is lead by NASA, who provides spacecraft and launcher, the EDL system, and a rover. ESA contributes the ExoMars Rover Module (RM) to provide surface mobility. It includes a drill system allowing drilling down to 2 meter, collecting samples and to investigate them for signs of past and present life with exobiological experiments, and to investigate the Mars water/geochemical environment, In this scenario Thales Alenia Space Italia as ESA Prime industrial contractor is in charge of the design, manufacturing, integration and verification of the ESA ExoMars modules, i.e.: the Spacecraft Composite (OM + EDM) for the 2016 mission, the RM for the 2018 mission and the Rover Operations Control Centre, which will be located at Altec-Turin (Italy). The verification process of the above products is quite complex and will include some pecu-liarities with limited or no heritage in Europe. Furthermore the verification approach has to be optimised to allow full verification despite significant schedule and budget constraints. The paper presents the verification philosophy tailored for the ExoMars mission in line with the above considerations, starting from the model philosophy, showing the verification activities flow and the sharing of tests

  11. The OCO-3 MIssion

    NASA Astrophysics Data System (ADS)

    Eldering, A.; Kaki, S.; Crisp, D.; Gunson, M. R.

    2013-12-01

    For the OCO-3 mission, NASA has approved a proposal to install the OCO-2 flight spare instrument on the International Space Station (ISS). The OCO-3 mission on ISS will have a key role in delivering sustained, global, scientifically-based, spaceborne measurements of atmospheric CO2 to monitor natural sources and sinks as part of NASA's proposed OCO-2/OCO-3/ASCENDS mission sequence and NASA's Climate Architecture. The OCO-3 mission will contribute to understanding of the terrestrial carbon cycle through enabling flux estimates at smaller spatial scales and through fluorescence measurements that will reduce the uncertainty in terrestrial carbon flux measurements and drive bottom-up land surface models through constraining GPP. The combined nominal missions of both OCO-2 and OCO-3 will likely span a complete El Niño Southern Oscillation (ENSO) cycle, a key indicator of ocean variability. In addition, OCO-3 may allow investigation of the high-frequency and wavenumber structures suggested by eddying ocean circulation and ecosystem dynamics models. Finally, significant growth of urban agglomerations is underway and projected to continue in the coming decades. With the city mode sampling of the OCO-3 instrument on ISS we can evaluate different sampling strategies aimed at studying anthropogenic sources and demonstrate elements of a Greenhouse Gas Information system, as well as providing a gap-filler for tracking trends in the fastest-changing anthropogenic signals during the coming decade. In this presentation, we will describe our science objectives, the overall approach of utilization of the ISS for OCO-3, and the unique features of XCO2 measurements from ISS.

  12. The Double Star mission

    NASA Astrophysics Data System (ADS)

    Liu, Z. X.; Escoubet, C. P.; Pu, Z.; Laakso, H.; Shi, J. K.; Shen, C.; Hapgood, M.

    2005-11-01

    The Double Star Programme (DSP) was first proposed by China in March, 1997 at the Fragrant Hill Workshop on Space Science, Beijing, organized by the Chinese Academy of Science. It is the first mission in collaboration between China and ESA. The mission is made of two spacecraft to investigate the magnetospheric global processes and their response to the interplanetary disturbances in conjunction with the Cluster mission. The first spacecraft, TC-1 (Tan Ce means "Explorer"), was launched on 29 December 2003, and the second one, TC-2, on 25 July 2004 on board two Chinese Long March 2C rockets. TC-1 was injected in an equatorial orbit of 570x79000 km altitude with a 28° inclination and TC-2 in a polar orbit of 560x38000 km altitude. The orbits have been designed to complement the Cluster mission by maximizing the time when both Cluster and Double Star are in the same scientific regions. The two missions allow simultaneous observations of the Earth magnetosphere from six points in space. To facilitate the comparison of data, half of the Double Star payload is made of spare or duplicates of the Cluster instruments; the other half is made of Chinese instruments. The science operations are coordinated by the Chinese DSP Scientific Operations Centre (DSOC) in Beijing and the European Payload Operations Service (EPOS) at RAL, UK. The spacecraft and ground segment operations are performed by the DSP Operations and Management Centre (DOMC) and DSOC in China, using three ground station, in Beijing, Shanghai and Villafranca.

  13. The Mothership Mission Architecture

    NASA Astrophysics Data System (ADS)

    Ernst, S. M.; DiCorcia, J. D.; Bonin, G.; Gump, D.; Lewis, J. S.; Foulds, C.; Faber, D.

    2015-12-01

    The Mothership is considered to be a dedicated deep space carrier spacecraft. It is currently being developed by Deep Space Industries (DSI) as a mission concept that enables a broad participation in the scientific exploration of small bodies - the Mothership mission architecture. A Mothership shall deliver third-party nano-sats, experiments and instruments to Near Earth Asteroids (NEOs), comets or moons. The Mothership service includes delivery of nano-sats, communication to Earth and visuals of the asteroid surface and surrounding area. The Mothership is designed to carry about 10 nano-sats, based upon a variation of the Cubesat standard, with some flexibility on the specific geometry. The Deep Space Nano-Sat reference design is a 14.5 cm cube, which accommodates the same volume as a traditional 3U CubeSat. To reduce cost, Mothership is designed as a secondary payload aboard launches to GTO. DSI is offering slots for nano-sats to individual customers. This enables organizations with relatively low operating budgets to closely examine an asteroid with highly specialized sensors of their own choosing and carry out experiments in the proximity of or on the surface of an asteroid, while the nano-sats can be built or commissioned by a variety of smaller institutions, companies, or agencies. While the overall Mothership mission will have a financial volume somewhere between a European Space Agencies' (ESA) S- and M-class mission for instance, it can be funded through a number of small and individual funding sources and programs, hence avoiding the processes associated with traditional space exploration missions. DSI has been able to identify a significant interest in the planetary science and nano-satellite communities.

  14. 14 CFR 406.143 - Discovery.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Discovery. 406.143 Section 406.143... Transportation Adjudications § 406.143 Discovery. (a) Initiation of discovery. Any party may initiate discovery... after a complaint has been filed. (b) Methods of discovery. The following methods of discovery...

  15. 5 CFR 1201.73 - Discovery procedures.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 5 Administrative Personnel 3 2014-01-01 2014-01-01 false Discovery procedures. 1201.73 Section... AND PROCEDURES Procedures for Appellate Cases Discovery § 1201.73 Discovery procedures. (a) Initiating discovery. A party seeking discovery must start the process by serving a request for discovery on...

  16. 14 CFR 406.143 - Discovery.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Discovery. 406.143 Section 406.143... Transportation Adjudications § 406.143 Discovery. (a) Initiation of discovery. Any party may initiate discovery... after a complaint has been filed. (b) Methods of discovery. The following methods of discovery...

  17. 14 CFR 406.143 - Discovery.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Discovery. 406.143 Section 406.143... Transportation Adjudications § 406.143 Discovery. (a) Initiation of discovery. Any party may initiate discovery... after a complaint has been filed. (b) Methods of discovery. The following methods of discovery...

  18. Clementine: An inexpensive mission to the Moon and Geographos

    NASA Technical Reports Server (NTRS)

    Shoemaker, Eugene M.; Nozette, Stewart

    1993-01-01

    The Clementine Mission, a joint project of the Strategic Defense Initiative Organization (SDIO) and NASA, has been planned primarily to test and demonstrate a suite of lightweight sensors and other lightweight spacecraft components under extended exposure to the space environment. Although the primary objective of the mission is to space-qualify sensors for Department of Defense applications, it was recognized in 1990 that such a mission might also be designed to acquire scientific observations of the Moon and of Apollo asteroid (1620) Geographos. This possibility was explored jointly by SDIO and NASA, including representatives from NASA's Discovery Program Science Working Group, in early 1991. Besides the direct return of scientific information, one of the benefits envisioned from a joint venture was the development of lightweight components for possible future use in NASA's Discovery-class spacecraft. In Jan. 1992, SDIO informed NASA of its intent to fly a 'Deep Space Program Science Experiment,' now popularly called Clementine; NASA then formed an advisory science working group to assist in the early development of the mission. The Clementine spacecraft is being assembled at the Naval Research Laboratory, which is also in charge of the overall mission design and mission operations. Support for mission design is being provided by GSFC and by JPL. NASA's Deep Space Network will be utilized in tracking and communicating with the spacecraft. Following a recommendation of the COMPLEX committee of the Space Science Board, NASA will issue an NRA and appoint a formal science team in early 1993. Clementine is a 3-axis stabilized, 200 kg (dry weight) spacecraft that will be launched on a refurbished Titan-2G. One of the goals has been to build two spacecraft, including the sensors, for $100M. Total time elapsed from the decision to proceed to the launch will be two years.

  19. STS-114: Multi-Cut Profiles and Mission Overviews

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Profiles of the seven crewmembers of the STS-114 Discovery are shown. Eileen Collins, Commander, talks about her fascination with flying as a young child and her eagerness to have someone teach her to fly at age 19. Her eagerness and hard work earned her a master's in operations research from Stanford University in 1986 and a master's in space systems management from Webster University in 1989. Jim Kelly, Pilot, talks about his desire to become an astronaut at a very young age. Charles Camarda, Mission Specialist, always wanted to become an astronaut and earned a Bachelor's degree in aerospace engineering from Polytechnic Institute of Brooklyn in 1974, a Master's in engineering Science from George Washington University in 1980 and a doctorate in aerospace engineering from Virginia Polytechnic Institute and State University in 1990. Wendy Lawrence, Mission Specialist decided that she wanted to become an astronaut when she saw the first man to walk on the moon. Soichi Noguchi, Mission Specialist from JAXA expresses that people like scientists, doctors and engineers could fly and he also wanted to venture into spaceflight. Steve Robinson, Mission Specialist says that he was fascinated with things that flew as a child and wanted to make things fly. Australian born Andrew Thomas, Mission Specialist wanted to become an astronaut as a young boy but never realized that he would fulfill his dream. The crewmember profiles end with an overview of the STS-114 Discovery mission. Paul Hill, Lead Flight Director talks about the main goal of the STS-114 mission which is to demonstrate that changes to the Orbiter and flight procedures are good and the second goal is to finish construction of the International Space Station. Sergei Krikalev, Commander talks about increasing the capability of the International Space Station, Jim Kelly discusses the work that is being performed in the external tank, Andy Thomas talks about procedures done to stop foam release and Soichi Noguchi

  20. Clementine: An inexpensive mission to the Moon and Geographos

    NASA Astrophysics Data System (ADS)

    Shoemaker, Eugene M.; Nozette, Stewart

    1993-03-01

    The Clementine Mission, a joint project of the Strategic Defense Initiative Organization (SDIO) and NASA, has been planned primarily to test and demonstrate a suite of lightweight sensors and other lightweight spacecraft components under extended exposure to the space environment. Although the primary objective of the mission is to space-qualify sensors for Department of Defense applications, it was recognized in 1990 that such a mission might also be designed to acquire scientific observations of the Moon and of Apollo asteroid (1620) Geographos. This possibility was explored jointly by SDIO and NASA, including representatives from NASA's Discovery Program Science Working Group, in early 1991. Besides the direct return of scientific information, one of the benefits envisioned from a joint venture was the development of lightweight components for possible future use in NASA's Discovery-class spacecraft. In Jan. 1992, SDIO informed NASA of its intent to fly a 'Deep Space Program Science Experiment,' now popularly called Clementine; NASA then formed an advisory science working group to assist in the early development of the mission. The Clementine spacecraft is being assembled at the Naval Research Laboratory, which is also in charge of the overall mission design and mission operations. Support for mission design is being provided by GSFC and by JPL. NASA's Deep Space Network will be utilized in tracking and communicating with the spacecraft. Following a recommendation of the COMPLEX committee of the Space Science Board, NASA will issue an NRA and appoint a formal science team in early 1993. Clementine is a 3-axis stabilized, 200 kg (dry weight) spacecraft that will be launched on a refurbished Titan-2G. One of the goals has been to build two spacecraft, including the sensors, for $100M. Total time elapsed from the decision to proceed to the launch will be two years.