Science.gov

Sample records for 12-km resolution north

  1. Twelve-month, 12 km resolution North American WRF-Chem v3.4 air quality simulation: performance evaluation

    DOE PAGESBeta

    Tessum, C. W.; Hill, J. D.; Marshall, J. D.

    2015-04-07

    We present results from and evaluate the performance of a 12-month, 12 km horizontal resolution year 2005 air pollution simulation for the contiguous United States using the WRF-Chem (Weather Research and Forecasting with Chemistry) meteorology and chemical transport model (CTM). We employ the 2005 US National Emissions Inventory, the Regional Atmospheric Chemistry Mechanism (RACM), and the Modal Aerosol Dynamics Model for Europe (MADE) with a volatility basis set (VBS) secondary aerosol module. Overall, model performance is comparable to contemporary modeling efforts used for regulatory and health-effects analysis, with an annual average daytime ozone (O3) mean fractional bias (MFB) of 12%more » and an annual average fine particulate matter (PM2.5) MFB of −1%. WRF-Chem, as configured here, tends to overpredict total PM2.5 at some high concentration locations and generally overpredicts average 24 h O3 concentrations. Performance is better at predicting daytime-average and daily peak O3 concentrations, which are more relevant for regulatory and health effects analyses relative to annual average values. Predictive performance for PM2.5 subspecies is mixed: the model overpredicts particulate sulfate (MFB = 36%), underpredicts particulate nitrate (MFB = −110%) and organic carbon (MFB = −29%), and relatively accurately predicts particulate ammonium (MFB = 3%) and elemental carbon (MFB = 3%), so that the accuracy in total PM2.5 predictions is to some extent a function of offsetting over- and underpredictions of PM2.5 subspecies. Model predictive performance for PM2.5 and its subspecies is in general worse in winter and in the western US than in other seasons and regions, suggesting spatial and temporal opportunities for future WRF-Chem model development and evaluation.« less

  2. Twelve-month, 12 km resolution North American WRF-Chem v3.4 air quality simulation: performance evaluation

    DOE PAGESBeta

    Tessum, C. W.; Hill, J. D.; Marshall, J. D.

    2014-12-02

    We present results from and evaluate the performance of a 12 month, 12 km horizontal resolution air pollution simulation for the contiguous United States using the WRF-Chem (Weather Research and Forecasting with Chemistry) meteorology and chemical transport model (CTM). We employ the 2005 US National Emissions Inventory, the Regional Atmospheric Chemistry Mechanism (RACM), and the Modal Aerosol Dynamics Model for Europe (MADE) with a Volatility Basis Set (VBS) secondary aerosol module. Overall, model performance is comparable to contemporary models used for regulatory and health-effects analysis, with an annual average daytime ozone (O3) mean fractional bias (MFB) of 12% and anmore » annual average fine particulate matter (PM2.5) MFB of −1%. WRF-Chem, as configured here, tends to overpredict total PM2.5 at some high concentration locations, and generally overpredicts average 24 h O3 concentrations, with better performance at predicting average daytime and daily peak O3 concentrations. Predictive performance for PM2.5 subspecies is mixed: the model overpredicts particulate sulfate (MFB = 65%), underpredicts particulate nitrate (MFB = −110%) and organic carbon (MFB = −65%), and relatively accurately predicts particulate ammonium (MFB = 3%) and elemental carbon (MFB = 3%), so that the accuracy in total PM2.5 predictions is to some extent a function of offsetting over- and underpredictions of PM2.5 subspecies. Model predictive performance for PM2.5 and its subspecies is in general worse in winter and in the western US than in other seasons and regions, suggesting spatial and temporal opportunities for future WRF-Chem model development and evaluation.« less

  3. Twelve-month, 12 km resolution North American WRF-Chem v3.4 air quality simulation: performance evaluation

    NASA Astrophysics Data System (ADS)

    Tessum, C. W.; Hill, J. D.; Marshall, J. D.

    2015-04-01

    We present results from and evaluate the performance of a 12-month, 12 km horizontal resolution year 2005 air pollution simulation for the contiguous United States using the WRF-Chem (Weather Research and Forecasting with Chemistry) meteorology and chemical transport model (CTM). We employ the 2005 US National Emissions Inventory, the Regional Atmospheric Chemistry Mechanism (RACM), and the Modal Aerosol Dynamics Model for Europe (MADE) with a volatility basis set (VBS) secondary aerosol module. Overall, model performance is comparable to contemporary modeling efforts used for regulatory and health-effects analysis, with an annual average daytime ozone (O3) mean fractional bias (MFB) of 12% and an annual average fine particulate matter (PM2.5) MFB of -1%. WRF-Chem, as configured here, tends to overpredict total PM2.5 at some high concentration locations and generally overpredicts average 24 h O3 concentrations. Performance is better at predicting daytime-average and daily peak O3 concentrations, which are more relevant for regulatory and health effects analyses relative to annual average values. Predictive performance for PM2.5 subspecies is mixed: the model overpredicts particulate sulfate (MFB = 36%), underpredicts particulate nitrate (MFB = -110%) and organic carbon (MFB = -29%), and relatively accurately predicts particulate ammonium (MFB = 3%) and elemental carbon (MFB = 3%), so that the accuracy in total PM2.5 predictions is to some extent a function of offsetting over- and underpredictions of PM2.5 subspecies. Model predictive performance for PM2.5 and its subspecies is in general worse in winter and in the western US than in other seasons and regions, suggesting spatial and temporal opportunities for future WRF-Chem model development and evaluation.

  4. Twelve-month, 12 km resolution North American WRF-Chem v3.4 air quality simulation: performance evaluation

    NASA Astrophysics Data System (ADS)

    Tessum, C. W.; Hill, J. D.; Marshall, J. D.

    2014-12-01

    We present results from and evaluate the performance of a 12 month, 12 km horizontal resolution air pollution simulation for the contiguous United States using the WRF-Chem (Weather Research and Forecasting with Chemistry) meteorology and chemical transport model (CTM). We employ the 2005 US National Emissions Inventory, the Regional Atmospheric Chemistry Mechanism (RACM), and the Modal Aerosol Dynamics Model for Europe (MADE) with a Volatility Basis Set (VBS) secondary aerosol module. Overall, model performance is comparable to contemporary models used for regulatory and health-effects analysis, with an annual average daytime ozone (O3) mean fractional bias (MFB) of 12% and an annual average fine particulate matter (PM2.5) MFB of -1%. WRF-Chem, as configured here, tends to overpredict total PM2.5 at some high concentration locations, and generally overpredicts average 24 h O3 concentrations, with better performance at predicting average daytime and daily peak O3 concentrations. Predictive performance for PM2.5 subspecies is mixed: the model overpredicts particulate sulfate (MFB = 65%), underpredicts particulate nitrate (MFB = -110%) and organic carbon (MFB = -65%), and relatively accurately predicts particulate ammonium (MFB = 3%) and elemental carbon (MFB = 3%), so that the accuracy in total PM2.5 predictions is to some extent a function of offsetting over- and underpredictions of PM2.5 subspecies. Model predictive performance for PM2.5 and its subspecies is in general worse in winter and in the western US than in other seasons and regions, suggesting spatial and temporal opportunities for future WRF-Chem model development and evaluation.

  5. Extreme precipitation events in southestearn France in a high-resolution regional climate model : comparison of a 12 km and a 50 km hindcast with ALADIN-Climate

    NASA Astrophysics Data System (ADS)

    Colin, Jeanne; Déqué, Michel; Sanchez Gomez, Emilia; Somot, Samuel

    2010-05-01

    We present a comparison of the modelling of intense precipitations over France in two regional climate simulations performed with the Limited Area Model (LAM) ALADIN-Climate, run at a 12 km and a 50 km resolution. In both experiments, the model is forced by the ERA40 re-analysis over the 1958-2000 period. We focus on the representation of the highest precipitation extremes occuring in southeastern France in Autumn. These events involve small-scale processes than can be explicitly resolved only with 2-1 km resolution non-hydrostatic models. However, previous studies have shown that regional climate models are able to simulate heavy rainfalls in this area, although the amounts of rain are much smaller than the ones that are actually observed. Here, we further explore the ability of ALADIN-Climate in reproducing these specific events and the possible added-value of a higher resolution regarding this matter. Indeed, driving the LAM with ERA40 allows the LAM to stick to the real chronology and therefore enables us to analyze its results not only from a statistical point of view but also through day-to-day diagnosis. First, we assess the performances of the model at the 12 km and 50 km resolutions by comparing the simulated daily precipitations with observations over the south east part of France. To do so, we use the high-resolution gridded SAFRAN analysis which provides series of hourly fields over the french territory at a 8 km resolution, from 1958 to 2008. We consider the differences in the upper quantiles of precipitations between the model and the data, as well as the time correlations of heavy rainfalls and the spatial rain patterns for given extreme events. Then we compare the performances of ALADIN-Climate in both simulations to the ones obtained with a statistical downscaling method we apply to the last twenty years of the ERA40 period. This method is based on a weather regime approach and uses the analog methodology (Boé and Terray, 2007) to reconstruct

  6. North Twin Peak in super resolution

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This pair of images shows the result of taking a sequence of 25 identical exposures from the Imager for Mars Pathfinder (IMP) of the northern Twin Peak, with small camera motions, and processing them with the Super-Resolution algorithm developed at NASA's Ames Research Center.

    The upper image is a representative input image, scaled up by a factor of five, with the pixel edges smoothed out for a fair comparison. The lower image allows significantly finer detail to be resolved.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

    The super-resolution research was conducted by Peter Cheeseman, Bob Kanefsky, Robin Hanson, and John Stutz of NASA's Ames Research Center, Mountain View, CA. More information on this technology is available on the Ames Super Resolution home page at

    http://ic-www.arc.nasa.gov/ic/projects/bayes-group/ group/super-res/

  7. Future water availability in North African dams simulated by high-resolution regional climate models

    NASA Astrophysics Data System (ADS)

    Tramblay, Yves; Jarlan, Lionel; Hanich, Lahoucine; Somot, Samuel

    2016-04-01

    In North Africa, the countries of Morocco, Algeria and Tunisia are already experiencing water scarcity and a strong interannual variability of precipitation. To better manage their existing water resources, several dams and reservoirs have been built on most large river catchments. The objective of this study is to provide quantitative scenarios of future changes in water availability for the 47 major dams and reservoirs catchments located in North Africa. An ensemble of regional climate models (RCM) with a spatial resolution of 12km, driven by different general circulation models (GCM), from the EuroCORDEX experiment have been considered to analyze the projected changes on temperature, precipitation and potential evapotranspiration (PET) for two scenarios (RCP4.5 and RCP8.5) and two time horizons (2040-2065 and 2065-2090). PET is estimated from RCM outputs either with the FAO-Penman-Monteith (PM) equation, requiring air temperature, relative humidity, net radiation and wind, or with the Hargreave Samani (HS) equation, requiring only air temperature. The water balance is analyzed by comparing the climatic demand and supply of water, considering that for most of these catchments groundwater storage is negligible over long time periods. Results indicated a future temperature increase for all catchments between +1.8° and +4.2°, depending on the emission scenario and the time period considered. Precipitation is projected to decrease between -14% to -27%, mainly in winter and spring, with a strong East to West gradient. PET computed from PM or HS formulas provided very similar estimates and projections, ranging between +7% to +18%. Changes in PET are mostly driven by rising temperatures and are greatest during dry summer months than for the wet winter season. Therefore the increased PET has a lower impact than declining precipitation on future water availability, which is expected to decrease by -19% to -33% on average.

  8. Faraday laser using 1.2 km fiber as an extended cavity

    NASA Astrophysics Data System (ADS)

    Tao, Zhiming; Zhang, Xiaogang; Pan, Duo; Chen, Mo; Zhu, Chuanwen; Chen, Jingbiao

    2016-07-01

    We demonstrate a Faraday laser using a 1.2 km fiber as an extended cavity, which provides optical feedback and obtains small free spectrum range (FSR) of 83 kHz, and have succeeded in limiting the laser frequency to a crossover transition {5}2{S}1/2,F=2\\to {5}2{P}3/2,F\\prime =1,3 of the natural 87Rb at 780 nm. The Faraday laser is based on a Faraday anomalous dispersion optical filter (FADOF) with an ultra-narrow bandwidth and the long fiber extended cavity of 1.2 km. The peak transmission assigned to the crossover transition F=2\\to F\\prime =1,3 in the FADOF is 20.5% with an ultra-narrow bandwidth of 29.1 MHz. The Allan deviation of the Faraday laser is around 6.0× {10}-11 in 0.06 to 1 s sampling time. Laser frequency is always kept in the center of the transmitted peak assigned to F=2\\to F\\prime =1,3. The Faraday laser realized here can provide light exactly resonant with an atomic transition used for atom–photon interaction experiments and is insensitive to diode temperature and injection current fluctuations.

  9. Space-time kriging extension of precipitation variability at 12 km spacing from tree-ring chronologies and its implications for drought analysis

    NASA Astrophysics Data System (ADS)

    Biondi, F.

    2013-04-01

    Understanding and preparing for future hydroclimatic variability greatly benefits from long (i.e., multi-century) records at seasonal to annual time steps that have been gridded at km-scale spatial intervals over a geographic region. Kriging is a geostatistical technique commonly used for optimal interpolation of environmental data, and space-time geostatistical models can improve kriging estimates when long temporal sequences of observations exist at relatively few points on the landscape. Here I present how a network of 22 tree-ring chronologies from single-leaf pinyon (Pinus monophylla) in the central Great Basin of North America was used to extend hydroclimatic records both temporally and spatially. First, the Line of Organic Correlation (LOC) method was used to reconstruct October-May total precipitation anomalies at each tree-ring site, as these ecotonal environments at the lower forest border are typically moisture limited. Individual site reconstructions were then combined using a hierarchical model of spatio-temporal kriging that produced annual anomaly maps on a 12 × 12 km grid during the period in common among all chronologies (1650-1976). Hydro-climatic episodes were numerically identified and modeled using their duration, magnitude, and peak. Spatial patterns were more variable during wet years than during dry years, and the evolution of drought episodes over space and time could be visualized and quantified. The most remarkable episode in the entire reconstruction was the early 1900s pluvial, followed by the late 1800s drought. The 1930s "Dust Bowl" drought was among the top ten hydroclimatic episodes in the past few centuries. These results directly address the needs of water and natural resource managers with respect to planning for "worst case" scenarios of drought duration and magnitude at the watershed level. For instance, it is possible to analyze which geographical areas are more likely to be impacted by severe and sustained droughts at annual

  10. High-resolution dynamically downscaled projections of precipitation in the mid and late 21st century over North America

    SciTech Connect

    none,

    2015-07-29

    This study performs high-spatial-resolution (12 km) Weather Research and Forecasting (WRF) simulations over a very large domain (7200 km × 6180 km, covering much of North America) to explore changes in mean and extreme precipitation in the mid and late 21st century under Representative Concentration Pathways 4.5 (RCP 4.5) and 8.5 (RCP 8.5). We evaluate WRF model performance for a historical simulation and future projections, applying the Community Climate System Model version 4 (CCSM4) as initial and boundary conditions with and without a bias correction. WRF simulations using boundary and initial conditions from both versions of CCSM4 show smaller biases versus evaluation data sets than does CCSM4 over western North America. WRF simulations also improve spatial details of precipitation over much of North America. However, driving the WRF with the bias-corrected CCSM4 does not always reduce the bias. WRF-projected changes in precipitation include decreasing intensity over the southwestern United States, increasing intensity over the eastern United States and most of Canada, and an increase in the number of days with heavy precipitation over much of North America. Projected precipitation changes are more evident in the late 21st century than the mid 21st century, and they are more evident under RCP 8.5 than under RCP 4.5 in the late 21st century. Uncertainties in the projected changes in precipitation due to different warming scenarios are non-negligible. Differences in summer precipitation changes between WRF and CCSM4 are significant over most of the United States.

  11. High-resolution dynamically downscaled projections of precipitation in the mid and late 21st century over North America

    DOE PAGESBeta

    none,

    2015-07-29

    This study performs high-spatial-resolution (12 km) Weather Research and Forecasting (WRF) simulations over a very large domain (7200 km × 6180 km, covering much of North America) to explore changes in mean and extreme precipitation in the mid and late 21st century under Representative Concentration Pathways 4.5 (RCP 4.5) and 8.5 (RCP 8.5). We evaluate WRF model performance for a historical simulation and future projections, applying the Community Climate System Model version 4 (CCSM4) as initial and boundary conditions with and without a bias correction. WRF simulations using boundary and initial conditions from both versions of CCSM4 show smaller biasesmore » versus evaluation data sets than does CCSM4 over western North America. WRF simulations also improve spatial details of precipitation over much of North America. However, driving the WRF with the bias-corrected CCSM4 does not always reduce the bias. WRF-projected changes in precipitation include decreasing intensity over the southwestern United States, increasing intensity over the eastern United States and most of Canada, and an increase in the number of days with heavy precipitation over much of North America. Projected precipitation changes are more evident in the late 21st century than the mid 21st century, and they are more evident under RCP 8.5 than under RCP 4.5 in the late 21st century. Uncertainties in the projected changes in precipitation due to different warming scenarios are non-negligible. Differences in summer precipitation changes between WRF and CCSM4 are significant over most of the United States.« less

  12. High-resolution dynamically downscaled projections of precipitation in the mid and late 21st century over North America

    NASA Astrophysics Data System (ADS)

    Wang, Jiali; Kotamarthi, Veerabhadra R.

    2015-07-01

    This study performs high-spatial-resolution (12 km) Weather Research and Forecasting (WRF) simulations over a very large domain (7200 km × 6180 km, covering much of North America) to explore changes in mean and extreme precipitation in the mid and late 21st century under Representative Concentration Pathways 4.5 (RCP 4.5) and 8.5 (RCP 8.5). We evaluate WRF model performance for a historical simulation and future projections, applying the Community Climate System Model version 4 (CCSM4) as initial and boundary conditions with and without a bias correction. WRF simulations using boundary and initial conditions from both versions of CCSM4 show smaller biases versus evaluation data sets than does CCSM4 over western North America. WRF simulations also improve spatial details of precipitation over much of North America. However, driving the WRF with the bias-corrected CCSM4 does not always reduce the bias. WRF-projected changes in precipitation include decreasing intensity over the southwestern United States, increasing intensity over the eastern United Sates and most of Canada, and an increase in the number of days with heavy precipitation over much of North America. Projected precipitation changes are more evident in the late 21st century than the mid 21st century, and they are more evident under RCP 8.5 than under RCP 4.5 in the late 21st century. Uncertainties in the projected changes in precipitation due to different warming scenarios are non-negligible. Differences in summer precipitation changes between WRF and CCSM4 are significant over most of the United States.

  13. North American vegetation patterns observed with the NOAA-7 advanced very high resolution radiometer. [North America

    NASA Technical Reports Server (NTRS)

    Goward, S. N.; Tucker, C. J.; Dye, D. G.

    1985-01-01

    Spectral vegetation index measurements derived from remotely sensed observations show great promise as a means to improve knowledge of land vegetation patterns. The daily, global observations acquired by the advanced very high resolution radiometer, a sensor on the current series of U.S. National Oceanic and Atmospheric Administration meteorological satellites, may be particularly well suited for global studies of vegetation. Preliminary results from analysis of North American observations, extending from April to November 1982, show that the vegetation index patterns observed correspond to the known seasonality of North American natural and cultivated vegetation. Integration of the observations over the growing season produced measurements that are related to net primary productivity patterns of the major North American natural vegetation formations. Regions of intense cultivation were observed as anomalous areas in the integrated growing season measurements. Significant information on seasonality, annual extent and interannual variability of vegetation photosynthetic activity at continental and global scales can be derived from these satellite observations.

  14. Regional High Resolution Reanalysis Covered European North East Shelf

    NASA Astrophysics Data System (ADS)

    Bourdalle-Badie, R.; Benkiran, M.; Chanut, J.; Drillet, Y.; Reffray, G.

    2011-12-01

    Mercator-Ocean has developed a regional forecasting system at 1/12° resolution over the North East Atlantic (IBI: Iberia, Biscay and Irish), taking advantage of the recent developments in NEMO. This regional forecasting system uses boundary conditions from the Mercator-Ocean global reanalysis (GLORYS: Global Ocean ReanalYses and Simulations). The assimilation component of the Mercator Ocean system, is based on a reduced-order Kalman filter (the SEEK or Singular Extended Evolutive Kalman filter). An IAU method (Incremental Analysis Updates) is used to apply the increments in the system. The error statistics are represented in a sub-space spanned by a small number of dominant 3D error directions. The data assimilation system allows to constrain the model in a multivariate way with Sea Surface Temperature (AVHRR + Multi-satellite High resolution), together with all available satellite Sea Level Anomalies, and with in situ observations from the CORA-03 data base, including ARGO floats temperature and salinity measurements. This reanalysis covers the period from January 2002 to December 2009. In this presentation, the results obtained with this reanalysis system (1/12°) are compared to the GLORYS ones. A special focus will be made on the gain thanks to the higher resolution of the model and higher resolution of the SST assimilated in this reanalysis.

  15. High-Resolution Radar Imaging of Mercury's North Pole

    NASA Astrophysics Data System (ADS)

    Harmon, J. K.; Perillat, P. J.; Slade, M. A.

    2001-01-01

    The recently upgraded Arecibo S-band (λ12.6-cm) radar was used to make delay-Doppler images of Mercury's north polar region, where earlier observations had shown strong echoes from putative ice deposits in craters. The image resolution of 1.5-3 km is a substantial improvement over the 15-km resolution of the older Arecibo images (J. K. Harmon et al. 1994, Nature369, 213-215). The new observations confirm all the original polar features and reveal many additional features, including several at latitudes as low as 72-75°N and several from craters less than 10 km in diameter. All of the new features located on the Mariner-imaged side of the planet can be matched with known craters or other shaded areas. We find the north pole to be located 65 km from the original Mariner-based pole and 15 km from the new Mariner-based pole of M. S. Robinson et al. (1999, J. Geophys. Res.104, 30,847-30,852). The improved resolution reveals fine structure in the radar features and their respective host craters, including radar shadowing/highlighting by central peaks and rim walls, rim terracing, and preferential concentration of radar-bright deposits in shaded southern floor areas. The radar features' high brightness, circular polarization inversion (μ c=1.25), and confinement to regions permanently shaded from direct sunlight are all consistent with volume scattering from a cold-trapped volatile such as clean water ice. The sizes and locations of most of the features show good agreement with the thermal model of A. R. Vasavada, D. A. Paige, and S. E. Wood (1999, Icarus141, 179-193) for insulated (buried) water ice, although the problems of explaining radar features in small craters and the rapid burial required at lower latitudes suggest that other factors may be suppressing ice loss after emplacement.

  16. Amelia Creek, Northern Territory, Australia: A 20 x 12 km Oblique Impact Structure with No Central Uplift

    NASA Astrophysics Data System (ADS)

    Macdonald, F. A.; Mitchell, K.

    2003-02-01

    The Amelia Creek Structure is located in the Davenport Ranges of the Northern Territory, Australia at lat. 20 deg. 55 sec.S, long. 134 deg. 50 sec.E. Shock metamorphic features are developed on the southern, downrange side of the structure. No central uplift is developed and the dimensions of the impact structure are at least 20 X 12 km.

  17. Impact of spatial resolution of ocean models in depicting climate change patterns of the North Sea.

    NASA Astrophysics Data System (ADS)

    Narayan, Nikesh; Klein, Birgit; Mathis, Moritz; Klein, Holger; Mikolajewicz, Uwe

    2016-04-01

    The impact of enhanced spatial resolution of models in simulating large scale climate change has been of interest for the modeling community for quite some time. It has been noticed in previous studies that the pattern of Sea Surface Temperature anomalies are better captured by higher resolution models. Significant changes in simulating sea-ice loss associated with global warming was also noticed when the spatial resolution of climate models were enhanced. Spatial resolution is a particular important issue in climate change scenarios of shelf seas such as the North Sea. The North Sea is strongly influenced by its water mass exchanges with North Atlantic to the west and north and Baltic Sea to east. Furthermore, local forcing and changes in advected water masses significantly affect the thermodynamics and stratification patterns in the North Sea, making it a challenging area to study. Under the newly started RACE2 project we are looking at global simulations of Representative Concentration Pathway (RCP) scenarios 4.5 and 8.5 at lower and higher resolutions, performed using the Max Planck Institute Earth System Model (MPIESM). The model resolution is non uniform and achieves the highest resolution over the European Seas by shifting the model poles over Chicago and Central Europe. In the high resolution run, the grid reaches up to a spatial resolution of up to 4 km in part of the German Bight and close to 20 km in the Northern part of North Sea. The placement of model poles at specific locations enables the global model to obtain higher resolution at regional scales (North Sea), without the inherent complications of open boundary conditions. High and low resolution simulations will be compared to determine differences in spatial and temporal pattern of temperature anomalies, fresh water intrusion from the Baltic Sea to North Sea etc. Also taken into consideration will be the changes in simulating local sea level change and response to basin scale oscillations like NAO.

  18. A quantitative assessment of the influence of grid resolution on predictions of future-year air quality in North Carolina, USA

    NASA Astrophysics Data System (ADS)

    Arunachalam, Saravanan; Holland, Andrew; Do, Bebhinn; Abraczinskas, Michael

    Increased focus has been directed at fine-scale modeling for improving the ability of air quality modeling systems to capture local phenomena. While numerous studies have investigated model performance at finer resolution (4-5 km), there is relatively limited information available for choosing the optimum grid resolution for predicting future air quality in attainment demonstration studies. We demonstrate an evaluation of the MM5-SMOKE-MAQSIP modeling system for four 8-h ozone episodes in the summers of 1995, 1996 and 1997 in North Carolina using a one-way nested 36/12/4-km application. After establishing acceptable base-case model performance for ozone predictions during each episode, we developed future-year emissions control scenarios for 2007 and 2012, and finally computed relative reduction factors (RRFs) using model outputs from each of the three grid resolutions. Our analyses, based upon qualitative as well as quantitative approaches like the Student's t-test, indicate that RRFs computed at specific monitoring locations—and hence predicted future-year air quality—are not very different between the 4- and 12-km results, while the differences are slightly larger between the 4- and 36-km results. The results imply that grid resolution contributes to a variability of about 1-3 ppb in the projected future-year design values; this variability needs to be incorporated into policy-relevant decision-making. Since this assessment was performed for four different episodes under diverse meteorological, physical and chemical regimes, one can generalize the results from this study. They are also relevant for regional modeling applications that are currently ongoing for studying PM 2.5 nonattainment issues, where the need for annual base-year and future-year simulations for demonstrating attainment may place a large demand on computing resources. Based upon the results from this study, future studies may consider using results from 12-km modeling to address future

  19. A seamless, high-resolution digital elevation model (DEM) of the north-central California coast

    USGS Publications Warehouse

    Foxgrover, Amy C.; Barnard, Patrick L.

    2012-01-01

    A seamless, 2-meter resolution digital elevation model (DEM) of the north-central California coast has been created from the most recent high-resolution bathymetric and topographic datasets available. The DEM extends approximately 150 kilometers along the California coastline, from Half Moon Bay north to Bodega Head. Coverage extends inland to an elevation of +20 meters and offshore to at least the 3 nautical mile limit of state waters. This report describes the procedures of DEM construction, details the input data sources, and provides the DEM for download in both ESRI Arc ASCII and GeoTIFF file formats with accompanying metadata.

  20. High-resolution Neogene reconstructions of Eurasia-North America Plate motion

    NASA Astrophysics Data System (ADS)

    Merkouriev, S.; DeMets, C.

    2014-07-01

    We estimate Eurasia-North America Plate motion rotations at ˜1-Myr intervals for the past 20 Myr from more than 11 000 crossings of 21 magnetic reversals from Chron 1n (0.78 Ma) to C6no (19.72 Ma) and flow lines digitized from the Charlie Gibbs, Bight and Molloy fracture zones and transform faults. Adjusted for outward displacement, the 21 best-fitting rotations determined from a simultaneous inversion of the numerous kinematic data reconstruct the reversal crossings with weighted root mean square misfits of only 1-2 km and 0.2-7 km for the transform fault and fracture zone crossings. The new rotations clearly define a ˜1000 km southward shift of the rotation pole and 20 per cent slowdown in seafloor spreading rates between 7 and 6 Ma, preceded by apparently steady plate motion from 19.7 to ˜7 Ma. Data for times since C3An.2 (6.7 Ma) are well fit by a stationary pole of rotation and constant rate of angular opening, consistent with steady motion since 6.7 Ma. The southward shift of the rotation pole at 7-6 Ma implies that Eurasia-North America motion in northeastern Asia changed from slowly convergent before 7 Ma to slowly divergent afterward. Crossings of magnetic reversals C1n through C3An.1 (6.0 Ma) are well fit everywhere in the Arctic basin and south to the Azores triple junction, indicating that the Eurasia and North America plates have not deformed along their mutual boundary since at least 6.0 Ma. However, the new rotations systematically overrotate magnetic lineations older than C3An.1 (6.0 Ma) within 200 km of the Azores triple junction and also overrotate lineations older than C5n along the Gakkel Ridge in the Arctic Basin. Barring misidentifications of the magnetic anomalies in those areas, the pattern and magnitude of the systematic misfits imply that slow (˜1 mm yr-1) distributed or microplate deformation occurred in one or both regions.

  1. An Observation-base investigation of nudging in WRF for downscaling surface climate information to 12-km Grid Spacing

    EPA Science Inventory

    Previous research has demonstrated the ability to use the Weather Research and Forecast (WRF) model and contemporary dynamical downscaling methods to refine global climate modeling results to a horizontal resolution of 36 km. Environmental managers and urban planners have expre...

  2. OMI NO2 column densities over North American urban cities: the effect of satellite footprint resolution

    NASA Astrophysics Data System (ADS)

    Kim, H. C.; Lee, P.; Judd, L.; Pan, L.; Lefer, B.

    2015-10-01

    Nitrogen dioxide vertical column density (NO2 VCD) measurements via satellite are compared with a fine-scale regional chemistry transport model, using a new approach that considers varying satellite footprint sizes. Space-borne NO2 VCD measurement has been used as a proxy for surface nitrogen oxide (NOx) emission, especially for anthropogenic urban emission, so accurate comparison of satellite and modeled NO2 VCD is important in determining the future direction of NOx emission policy. The National Aeronautics and Space Administration Ozone Monitoring Instrument (OMI) NO2 VCD measurements, retrieved by the Royal Netherlands Meteorological Institute (KNMI), are compared with a 12 km Community Multi-scale Air Quality (CMAQ) simulation from the National Oceanic and Atmospheric Administration. We found that OMI footprint pixel sizes are too coarse to resolve urban NO2 plumes, resulting in a possible underestimation in the urban core and overestimation outside. In order to quantify this effect of resolution geometry, we have made two estimates. First, we constructed pseudo-OMI data using fine-scale outputs of the model simulation. Assuming the fine-scale model output is a true measurement, we then collected real OMI footprint coverages and performed conservative spatial regridding to generate a set of fake OMI pixels out of fine-scale model outputs. When compared to the original data, the pseudo-OMI data clearly showed smoothed signals over urban locations, resulting in roughly 20-30 % underestimation over major cities. Second, we further conducted conservative downscaling of OMI NO2 VCD using spatial information from the fine-scale model to adjust the spatial distribution, and also applied Averaging Kernel (AK) information to adjust the vertical structure. Four-way comparisons were conducted between OMI with and without downscaling and CMAQ with and without AK information. Results show that OMI and CMAQ NO2 VCDs show the best agreement when both downscaling and AK

  3. OMI NO2 column densities over North American urban cities: the effect of satellite footprint resolution

    NASA Astrophysics Data System (ADS)

    Kim, Hyun Cheol; Lee, Pius; Judd, Laura; Pan, Li; Lefer, Barry

    2016-03-01

    Nitrogen dioxide vertical column density (NO2 VCD) measurements via satellite are compared with a fine-scale regional chemistry transport model, using a new approach that considers varying satellite footprint sizes. Space-borne NO2 VCD measurement has been used as a proxy for surface nitrogen oxide (NOx) emission, especially for anthropogenic urban emission, so accurate comparison of satellite and modeled NO2 VCD is important in determining the future direction of NOx emission policy. The NASA Ozone Monitoring Instrument (OMI) NO2 VCD measurements, retrieved by the Royal Netherlands Meteorological Institute (KNMI), are compared with a 12 km Community Multi-scale Air Quality (CMAQ) simulation from the National Oceanic and Atmospheric Administration. We found that the OMI footprint-pixel sizes are too coarse to resolve urban NO2 plumes, resulting in a possible underestimation in the urban core and overestimation outside. In order to quantify this effect of resolution geometry, we have made two estimates. First, we constructed pseudo-OMI data using fine-scale outputs of the model simulation. Assuming the fine-scale model output is a true measurement, we then collected real OMI footprint coverages and performed conservative spatial regridding to generate a set of fake OMI pixels out of fine-scale model outputs. When compared to the original data, the pseudo-OMI data clearly showed smoothed signals over urban locations, resulting in roughly 20-30 % underestimation over major cities. Second, we further conducted conservative downscaling of OMI NO2 VCDs using spatial information from the fine-scale model to adjust the spatial distribution, and also applied averaging kernel (AK) information to adjust the vertical structure. Four-way comparisons were conducted between OMI with and without downscaling and CMAQ with and without AK information. Results show that OMI and CMAQ NO2 VCDs show the best agreement when both downscaling and AK methods are applied, with the correlation

  4. Variability of the North Atlantic Current: high resolution model data versus in situ measurements

    NASA Astrophysics Data System (ADS)

    Breckenfelder, Tilia; Rhein, Monika; Roessler, Achim; Behrens, Erik; Böning, Claus; Biastoch, Arne; Mertens, Christian

    2015-04-01

    The North Atlantic Current (NAC) provides an important heat source for the relatively warm winters in Western Europe by bringing warm and salty tropical/subtropical water into the subpolar gyre of the North Atlantic. The NAC is the northward extension of the Gulfstream and its warm and salty water form the warm upper branch of the Atlantic Meridional Overturning Circulation (AMOC). The NAC crosses the Mid-Atlantic Ridge (MAR) via the Charlie-Gibbs, Faraday and Maxwell Fracture Zones between 47° and 53°N. Along that section an array of four inverted echo sounders with bottom pressure sensors (PIES) are deployed since 2006 and combined with altimetry to quantify the NAC transport and its variability. The observed transport time series is compared to the high resolution output of the VIKING20 model, a 1/20° North Atlantic model which is embedded in a global model of 1/4° resolution (ORCA25) via a two-way nesting. We compare the horizontal and vertical flow fields, the mean transport and the variability as well as the water mass characteristics.

  5. High-resolution Neogene and Quaternary estimates of Nubia-Eurasia-North America Plate motion

    NASA Astrophysics Data System (ADS)

    DeMets, C.; Iaffaldano, G.; Merkouriev, S.

    2015-10-01

    Reconstructions of the history of convergence between the Nubia and Eurasia plates constitute an important part of a broader framework for understanding deformation in the Mediterranean region and the closing of the Mediterranean Basin. Herein, we combine high-resolution reconstructions of Eurasia-North America and Nubia-North America Plate motions to determine rotations that describe Nubia-Eurasia Plate motion at ˜1 Myr intervals for the past 20 Myr. We apply trans-dimensional hierarchical Bayesian inference to the Eurasia-North America and Nubia-North America rotation sequences in order to reduce noise in the newly estimated Nubia-Eurasia rotations. The noise-reduced rotation sequences for the Eurasia-North America and Nubia-North America Plate pairs describe remarkably similar kinematic histories since 20 Ma, consisting of relatively steady seafloor spreading from 20 to 8 Ma, ˜20 per cent opening-rate slowdowns at 8-6.5 Ma, and steady plate motion from ˜7 Ma to the present. Our newly estimated Nubia-Eurasia rotations predict that convergence across the central Mediterranean Sea slowed by ˜50 per cent and rotated anticlockwise after ˜25 Ma until 13 Ma. Motion since 13 Ma has remained relatively steady. An absence of evidence for a significant change in motion immediately before or during the Messinian Salinity Crisis at 6.3-5.6 Ma argues against a change in plate motion as its causative factor. The detachment of the Arabian Peninsula from Africa at 30-24 Ma may have triggered the convergence rate slowdown before 13 Ma; however, published reconstructions of Nubia-Eurasia motion for times before 20 Ma are too widely spaced to determine with confidence whether the two are correlated. A significant discrepancy between our new estimates of Nubia-Eurasia motion during the past few Myr and geodetic estimates calls for further investigation.

  6. High-resolution atmospheric modeling of fluorotelomer alcohols and perfluorocarboxylic acids in the North American troposphere.

    PubMed

    Yarwood, Greg; Kemball-Cook, Susan; Keinath, Michael; Waterland, Robert L; Korzeniowski, Stephen H; Buck, Robert C; Russell, Mark H; Washburn, Stephen T

    2007-08-15

    A high spatial and temporal resolution atmospheric model is used to evaluate the potential contribution of fluorotelomer alcohol (FTOH) and perfluorocarboxylate (PFCA) emissions associated with the manufacture, use, and disposal of DuPont fluorotelomer-based products in North America to air concentrations of FTOH, perfluorooctanoic acid (PFOA), and perfluorononanoic acid (PFNA) in North America and the Canadian Arctic. A bottom-up emission inventory for PFCAs and FTOHs was developed from sales and product composition data. A detailed FTOH atmospheric degradation mechanism was developed to simulate FTOH degradation to PFCAs and model atmospheric transport of PFCAs and FTOHs. Modeled PFCA yields from FTOH degradation agree with experimental smog-chamber results supporting the degradation mechanism used. Estimated PFCA and FTOH air concentrations and PFCA deposition fluxes are compared to monitoring data and previous global modeling. Predicted FTOH air concentrations are generally in agreement with available monitoring data. Overall emissions from the global fluorotelomer industry are estimated to contribute approximately 1-2% of the PFCAs in North American rainfall, consistent with previous global emissions estimates. Emission calculations and modeling results indicate that atmospheric inputs of PFCAs in North America from fluorotelomer-based products will decline by an order of magnitude in the near future as a result of current industry commitments to reduce manufacturing emissions and lower the residual fluorotelomer alcohol raw material and trace PFCA product content. PMID:17874783

  7. Regional High-resolution Coupled Atmosphere Ocean Modelling in the North Sea Region

    NASA Astrophysics Data System (ADS)

    Dumenil-Gates, Lydia; Bülow, Katharina; Ganske, Anette; Heinrich, Hartmut; Klein, Birgit; Klein, Holger; Möller, Jens; Rosenhagen, Gudrun; Schade, Nils; Hüttl-Kabus, Sabine; Tinz, Birger

    2015-04-01

    The analysis of climate projections in the North Sea area is one of the research tasks of the research programme KLIWAS of the German Federal Ministry of Transport and Digital Infrastructure. A multi-model ensemble of three coupled regional atmosphere-ocean models was set up comprising very high resolution simulations for the German coastal regions of the North Sea and the Baltic to represent the complex land-sea-atmosphere conditions in the region. The ensemble consists of simulations made in cooperation with the Swedish Meteorological and Hydrological Institute, the Climate Service Centre and the Max-Planck-Institute for the period of 1950 to 2100. The KLIWAS project thereby adds coupled models to the band-width of possible future climate conditions in the atmosphere as given by the ENSEMBLES project, which were also analyzed. The coupled results are evaluated for present-day climate using a North Sea climatology of maritime conditions at a matching high resolution. In the future climate, while air and water temperatures will rise to the year 2100, the mean wind speed does not show a significant trend, but large decadal variability. The frequency of occurrence of westerly wind directions increases in the majority of simulations and results in an increase of significant wave height in the eastern parts of the North Sea. In an interdisciplinary approach, these results are used to provide regional to local information for the development of adaptation strategies for the estuary, and climate-proofing of infrastructure in the wider context of the project.

  8. Differences between magnitudes and health impacts of BC emissions across the United States using 12 km scale seasonal source apportionment.

    PubMed

    Turner, Matthew D; Henze, Daven K; Hakami, Amir; Zhao, Shunliu; Resler, Jaroslav; Carmichael, Gregory R; Stanier, Charles O; Baek, Jaemeen; Sandu, Adrian; Russell, Armistead G; Nenes, Athanasios; Jeong, Gill-Ran; Capps, Shannon L; Percell, Peter B; Pinder, Rob W; Napelenok, Sergey L; Bash, Jesse O; Chai, Tianfeng

    2015-04-01

    Recent assessments have analyzed the health impacts of PM2.5 from emissions from different locations and sectors using simplified or reduced-form air quality models. Here we present an alternative approach using the adjoint of the Community Multiscale Air Quality (CMAQ) model, which provides source-receptor relationships at highly resolved sectoral, spatial, and temporal scales. While damage resulting from anthropogenic emissions of BC is strongly correlated with population and premature death, we found little correlation between damage and emission magnitude, suggesting that controls on the largest emissions may not be the most efficient means of reducing damage resulting from anthropogenic BC emissions. Rather, the best proxy for locations with damaging BC emissions is locations where premature deaths occur. Onroad diesel and nonroad vehicle emissions are the largest contributors to premature deaths attributed to exposure to BC, while onroad gasoline emissions cause the highest deaths per amount emitted. Emissions in fall and winter contribute to more premature deaths (and more per amount emitted) than emissions in spring and summer. Overall, these results show the value of the high-resolution source attribution for determining the locations, seasons, and sectors for which BC emission controls have the most effective health benefits. PMID:25729920

  9. Effect of horizontal grid resolution on simulations of the subtropical mode water in the North Pacific

    NASA Astrophysics Data System (ADS)

    Lee, Ho Jin; Yeop Kim, Sang; Lee, Kyung Eun

    2016-04-01

    We investigate how the Subtopical Mode Water (STMW) can be simulated differently in the North Pacific using a global Ocean General Circulation Model (OGCM) with non-eddying and eddy permitting resolution. The OGCM used in this study is the MOM version 4.1 and has a total of 50 levels along the vertical direction with enhanced resolution near the surface. The CORE version 2 (normal year forcing) data derived from the air-sea flux climatology averaged over 60 years (1948‑2007) are used to calculate heat, salt and momentum fluxes with a bulk formula at the sea surface. The sea surface salinity is restored to the climatological monthly mean surface salinity of the Polar Science Center Hydrographic Climatology on a 60-day timescale, to make up the fresh water flux at the sea surface. Two models that have horizontal resolutions of 1° and 1/4 °, respectively, are integrated during 50 years. The inter-annual variation of the STMW volume was well reproduced with the eddy-permitting grid resolution although the model was forced by a climatological atmospheric forcing. The annual formation and erosion volume of STMW varies by 7% and 9% of the mean volume, respectively.

  10. Evaluation of the two-way coupled WRF-CMAQ modeling system to the 2011 DISCOVER-AQ campaign at 12-km, 4-km and 1-km resolutions

    EPA Science Inventory

    At the 12th Annual CMAS Conference initial results from the application of the coupled WRF-CMAQ modeling system to the 2011 Baltimore-Washington D.C. DISCOVER-AQ campaign were presented, with the focus on updates and new methods applied to the WRF modeling for fine-scale applicat...

  11. Added value and signal-to-noise in an eight-member ensemble of the KNMI regional climate model RACMO2 at 12 km resolution.

    NASA Astrophysics Data System (ADS)

    Lenderink, Geert; van Meijgaard, Erik

    2013-04-01

    Projections of future climate derived from multi-model ensembles with regional climate models, like those in CORDEX, often show large changes at regional (10-500 km) scales, in particular for precipitation. However, the inter-model differences in such ensembles are often of the same size. It is therefore not clear which part of the regional/local information from these regional climate model integrations can be trusted, and for users of climate information this is an undesirable situation. Thus, it is important to determine the cause of the inter-model differences within these multi-model ensembles. In general, three main causes can be distinguished: i) differences in future emissions (uncertainty in the forcing), ii) differences in modeling the response to this forcing (uncertainty in the climate models), and iii) differences due to natural variations not related to the forcing (natural variability). In multi-model ensembles, such as those in CORDEX, where different regional models are driven by different global climate models with different emission scenarios it is difficult to unravel the cause of differences in the projected changes. Here, we therefore investigated an eight-member ensemble with the regional climate model RACMO2 driven by one global climate model (EC-EARTH) using one emission scenario (RCP8.5). In this ensemble inter-model differences are solely attributed to natural variations. We determined the size of these natural variations compared to the forced climate change signal (defined as the average response over all ensemble members). In particular, we investigated whether the forced climate change signal contains persistent small scale features that would not be captured in the GCMs output ("added value"). Within a perfect model approach we also investigated whether these small scale structures can be reliably estimated from a limited number of model simulations.

  12. High-resolution inversion of methane emissions in North America using satellite observations (SCIAMACHY, TES, GOSAT)

    NASA Astrophysics Data System (ADS)

    Wecht, K.; Jacob, D. J.; Payer, M.; Henze, D. K.; Worden, J.; Payne, V.; Frankenberg, C.; Bowman, K. W.; Boesch, H.

    2012-12-01

    Methane emissions from North America are poorly known and potentially subject to rapid anthropogenic and natural changes. Satellite retrievals of methane columns from SCIAMACHY, TES, and GOSAT offer a unique resource for constraining and monitoring methane emissions using adjoint inverse modeling. We validate these methane retrievals using INTEX-A, HIPPO and NOAA/GMD aircraft observations. We also evaluate the consistency between the different satellite instruments with respect to the GEOS-Chem chemical transport model (CTM) as an intercomparison platform. We derive fine-scale constraints on methane sources through a four-dimensional variational (4D-VAR) inversion using the adjoint of GEOS-Chem with 1/2o × 2/3o (~50 × 50 km2) horizontal resolution over North America. Boundary conditions over the oceans are optimized as part of the inversion, thus preventing any global model bias from impacting the North American GEOS-Chem domain. In situ observations from aircraft campaigns and ground-based networks are used to evaluate the inversion results. We find that current inventories overestimate emissions from natural wetlands and underestimate emissions from natural gas production and enteric fermentation. Our results provide guidance to the US EPA for improving its national emission inventories.

  13. High resolution near-bed observations in winter near Cape Hatteras, North Carolina

    USGS Publications Warehouse

    Martini, M.; Armstrong, B.; Warner, J.C.

    2009-01-01

    The U.S. Geological Survey (USGS) Coastal and Marine Science Center in Woods Hole, Massachusetts, is leading an effort to understand the regional sediment dynamics along the coastline of North and South Carolina. As part of the Carolinas Coastal Change Processes Project, a geologic framework study in June of 2008 by the Woods Hole Coastal and Marine Science Center's Sea Floor Mapping Group focused on the seaward limit of Diamond Shoals and provided high resolution bathymetric data, surficial sediment characteristics, and subsurface geologic stratigraphy. These data also provided unprecedented guidance to identify deployment locations for tripods and moorings to investigate the processes that control sediment transport at Diamond Shoals. Equipment was deployed at three sites from early January, 2009 through early May, 2009: north and south of the shoals at 15 m depth, and at the tip at 24 m depth. Many strong storm systems were recorded during that time period. Mounted on the tripods were instruments to measure surface waves, pressure, current velocity, bottom turbulence, suspended-sediment profiles, and sea-floor sand-ripple bedforms. Many instruments were designed and programmed to sample in high resolution in time and space, as fast as 8 Hz hourly bursts and as small as 6 cm bin sizes in near bottom profiles. A second tripod at the north site also held a visual camera system and sonar imaging system which document seafloor bedforms. The region is known for its dynamics, and one of the tripods tipped over towards the end of the experiment. A preliminary look at the data suggests the region is characterized by high energy. Raw data from a burst recorded at the south site on Mar. 26th show instantaneous flow speed at 150 cm/s at 0.5 m above the seabed. This paper reports preliminary highlights of the observations, based on raw data, and lessons learned from a deployment of large tripod systems in such a dynamic location. ??2009 MTS.

  14. A Variable-resolution Surface Wave Dispersion Study of Eurasia, North Africa, and Surrounding Regions

    SciTech Connect

    Pasyanos, M E

    2005-03-21

    This paper presents the results of a large-scale study of surface wave dispersion performed across Eurasia and North Africa. Improvements were made to previous surface wave work by enlarging the study region, increasing path density, improving spatial resolution, and expanding the period range. This study expands the coverage area northwards and eastwards relative to a previous dispersion analysis, which covered only North Africa and the Middle East. We have significantly increased the number of seismograms examined and group velocity measurements made. We have now made good quality dispersion measurements for about 30,000 Rayleigh wave and 20,000 Love wave paths, and have incorporated measurements from several other researchers into the study. A conjugate gradient method was employed for the group velocity tomography, which improved the inversion from the previous study by adopting a variable smoothness. This technique allows us to go to higher resolution where the data allow without producing artifacts. The current results include both Love and Rayleigh wave inversions across the region for periods from 7 to 100 seconds at 1{sup o} resolution. Short period group velocities are sensitive to slow velocities associated with large sedimentary features such as the Caspian Sea, West Siberian Platform, Mediterranean Sea, Bay of Bengal, Tarim Basin, and Persian Gulf. Intermediate periods are sensitive to differences in crustal thickness, such as those between oceanic and continental crust or along orogenic zones and continental plateaus. At longer periods, fast velocities are consistently found beneath cratons while slow upper mantle velocities occur along rift systems, subduction zones, and collision zones such as the Tethys Belt. We have compared the group velocities at various periods with features such as sediment thickness, topographic height, crustal thickness, proximity to plate boundaries, lithospheric age and lithospheric thickness, and find significant

  15. A regional high-resolution carbon flux inversion of North America for 2004

    NASA Astrophysics Data System (ADS)

    Schuh, A. E.; Denning, A. S.; Corbin, K. D.; Baker, I. T.; Uliasz, M.; Parazoo, N.; Andrews, A. E.; Worthy, D. E. J.

    2010-05-01

    Resolving the discrepancies between NEE estimates based upon (1) ground studies and (2) atmospheric inversion results, demands increasingly sophisticated techniques. In this paper we present a high-resolution inversion based upon a regional meteorology model (RAMS) and an underlying biosphere (SiB3) model, both running on an identical 40 km grid over most of North America. Current operational systems like CarbonTracker as well as many previous global inversions including the Transcom suite of inversions have utilized inversion regions formed by collapsing biome-similar grid cells into larger aggregated regions. An extreme example of this might be where corrections to NEE imposed on forested regions on the east coast of the United States might be the same as that imposed on forests on the west coast of the United States while, in reality, there likely exist subtle differences in the two areas, both natural and anthropogenic. Our current inversion framework utilizes a combination of previously employed inversion techniques while allowing carbon flux corrections to be biome independent. Temporally and spatially high-resolution results utilizing biome-independent corrections provide insight into carbon dynamics in North America. In particular, we analyze hourly CO2 mixing ratio data from a sparse network of eight towers in North America for 2004. A prior estimate of carbon fluxes due to Gross Primary Productivity (GPP) and Ecosystem Respiration (ER) is constructed from the SiB3 biosphere model on a 40 km grid. A combination of transport from the RAMS and the Parameterized Chemical Transport Model (PCTM) models is used to forge a connection between upwind biosphere fluxes and downwind observed CO2 mixing ratio data. A Kalman filter procedure is used to estimate weekly corrections to biosphere fluxes based upon observed CO2. RMSE-weighted annual NEE estimates, over an ensemble of potential inversion parameter sets, show a mean estimate 0.57 Pg/yr sink in North America

  16. A regional high-resolution carbon flux inversion of North America for 2004

    NASA Astrophysics Data System (ADS)

    Schuh, A. E.; Denning, A. S.; Corbin, K. D.; Baker, I. T.; Uliasz, M.; Parazoo, N.; Andrews, A. E.; Worthy, D. E. J.

    2009-11-01

    Resolving the discrepancies between NEE estimates based upon (1) ground studies and (2) atmospheric inversion results, demands increasingly sophisticated techniques. In this paper we present a high-resolution inversion based upon a regional meteorology model (RAMS) and an underlying biosphere (SiB3) model, both running on an identical 40 km grid over most of North America. Previous papers have utilized inversion regions formed by collapsing biome-similar grid cells into large aggregated regions. The effect of this is that the NEE correction imposed on forested regions on the east coast of the United States might be the same as that imposed on forests on the west coast of the United States while, in reality, there likely exist subtle differences in the two areas, both natural and anthropogenic. Our current inversion framework utilizes a combination of previously employed inversion techniques while allowing carbon flux corrections to be biome independent. Temporally and spatially high-resolution results utilizing biome-independent corrections provide insight into carbon dynamics in North America. In particular, we analyze hourly CO2 mixing ratio data from a sparse network of eight towers in North America for 2004. A prior estimate of carbon fluxes due to gross primary productivity (GPP) and ecosystem respiration (ER) is constructed from the SiB3 biosphere model on a 40 km grid. A combination of transport from the RAMS and the parameterized chemical transport model (PCTM) models is used to forge a connection between upwind biosphere fluxes and downwind observed CO2 mixing ratio data. A Kalman filter procedure is used to estimate weekly corrections to biosphere fluxes based upon observed CO2. RMSE-weighted annual NEE estimates, over an ensemble of potential inversion parameter sets, show a mean estimate 0.57 Pg/yr sink in North America. We perform the inversion with two independently derived boundary inflow conditions and calculate jackknife-based statistics to test

  17. Estimating global and North American methane emissions with high spatial resolution using GOSAT satellite data

    NASA Astrophysics Data System (ADS)

    Turner, A. J.; Jacob, D. J.; Wecht, K. J.; Maasakkers, J. D.; Lundgren, E.; Andrews, A. E.; Biraud, S. C.; Boesch, H.; Bowman, K. W.; Deutscher, N. M.; Dubey, M. K.; Griffith, D. W. T.; Hase, F.; Kuze, A.; Notholt, J.; Ohyama, H.; Parker, R.; Payne, V. H.; Sussmann, R.; Sweeney, C.; Velazco, V. A.; Warneke, T.; Wennberg, P. O.; Wunch, D.

    2015-06-01

    We use 2009-2011 space-borne methane observations from the Greenhouse Gases Observing SATellite (GOSAT) to estimate global and North American methane emissions with 4° × 5° and up to 50 km × 50 km spatial resolution, respectively. GEOS-Chem and GOSAT data are first evaluated with atmospheric methane observations from surface and tower networks (NOAA/ESRL, TCCON) and aircraft (NOAA/ESRL, HIPPO), using the GEOS-Chem chemical transport model as a platform to facilitate comparison of GOSAT with in situ data. This identifies a high-latitude bias between the GOSAT data and GEOS-Chem that we correct via quadratic regression. Our global adjoint-based inversion yields a total methane source of 539 Tg a-1 with some important regional corrections to the EDGARv4.2 inventory used as a prior. Results serve as dynamic boundary conditions for an analytical inversion of North American methane emissions using radial basis functions to achieve high resolution of large sources and provide error characterization. We infer a US anthropogenic methane source of 40.2-42.7 Tg a-1, as compared to 24.9-27.0 Tg a-1 in the EDGAR and EPA bottom-up inventories, and 30.0-44.5 Tg a-1 in recent inverse studies. Our estimate is supported by independent surface and aircraft data and by previous inverse studies for California. We find that the emissions are highest in the southern-central US, the Central Valley of California, and Florida wetlands; large isolated point sources such as the US Four Corners also contribute. Using prior information on source locations, we attribute 29-44 % of US anthropogenic methane emissions to livestock, 22-31 % to oil/gas, 20 % to landfills/wastewater, and 11-15 % to coal. Wetlands contribute an additional 9.0-10.1 Tg a-1.

  18. Estimating global and North American methane emissions with high spatial resolution using GOSAT satellite data

    NASA Astrophysics Data System (ADS)

    Turner, A. J.; Jacob, D. J.; Wecht, K. J.; Maasakkers, J. D.; Biraud, S. C.; Boesch, H.; Bowman, K. W.; Deutscher, N. M.; Dubey, M. K.; Griffith, D. W. T.; Hase, F.; Kuze, A.; Notholt, J.; Ohyama, H.; Parker, R.; Payne, V. H.; Sussmann, R.; Velazco, V. A.; Warneke, T.; Wennberg, P. O.; Wunch, D.

    2015-02-01

    We use 2009-2011 space-borne methane observations from the Greenhouse Gases Observing SATellite (GOSAT) to constrain global and North American inversions of methane emissions with 4° × 5° and up to 50 km × 50 km spatial resolution, respectively. The GOSAT data are first evaluated with atmospheric methane observations from surface networks (NOAA, TCCON) and aircraft (NOAA/DOE, HIPPO), using the GEOS-Chem chemical transport model as a platform to facilitate comparison of GOSAT with in situ data. This identifies a high-latitude bias between the GOSAT data and GEOS-Chem that we correct via quadratic regression. The surface and aircraft data are subsequently used for independent evaluation of the methane source inversions. Our global adjoint-based inversion yields a total methane source of 539 Tg a-1 and points to a large East Asian overestimate in the EDGARv4.2 inventory used as a prior. Results serve as dynamic boundary conditions for an analytical inversion of North American methane emissions using radial basis functions to achieve high resolution of large sources and provide full error characterization. We infer a US anthropogenic methane source of 40.2-42.7 Tg a-1, as compared to 24.9-27.0 Tg a-1 in the EDGAR and EPA bottom-up inventories, and 30.0-44.5 Tg a-1 in recent inverse studies. Our estimate is supported by independent surface and aircraft data and by previous inverse studies for California. We find that the emissions are highest in the South-Central US, the Central Valley of California, and Florida wetlands, large isolated point sources such as the US Four Corners also contribute. We attribute 29-44% of US anthropogenic methane emissions to livestock, 22-31% to oil/gas, 20% to landfills/waste water, and 11-15% to coal with an additional 9.0-10.1 Tg a-1 source from wetlands.

  19. IBIRYS: a Regional High Resolution Reanalysis (physical and biogeochemical) over the European North East Shelf

    NASA Astrophysics Data System (ADS)

    Levier, Bruno; Benkiran, Mounir; Reffray, Guillaume; García Sottilo, Marcos

    2014-05-01

    Mercator-Ocean has developed a regional forecasting system at 1/12° resolution over the North East Atlantic (IBI: Iberia, Biscay and Irish), taking advantage of the recent developments in NEMO. A reanalysis, called IBIRYS, was performed with the IBI system on the 2002-2012 period. The physical model was coupled on-line with the biogeochemical component of NEMO based on the PISCES model. The model was forced by ERA-interim products (every 3 hours) including the atmospheric pressure. In addition to atmospheric forcing, the model included astronomical tidal forcing. This regional forecasting system used boundary conditions from the Mercator-Ocean global reanalysis (GLORYS: GLobal Ocean ReanalYses and Simulations).The assimilation component SAM2 (Mercator Ocean assimilation system), was based on a reduced-order Kalman filter (the SEEK or Singular Extended Evolutive Kalman filter). An IAU method (Incremental Analysis Updates) was used to apply the increments in the system. The error statistics were represented in a sub-space spanned by a small number of dominant 3D error directions. A 3D-Var scheme corrected for the slowly evolving large-scale biases in temperature and salinity. The data assimilation system allowed to constrain the model in a multivariate way with Sea Surface Temperature (AVHRR + Multi-satellite High resolution), together with all available satellite Sea Level Anomalies, and with in situ observations from the CORA-03 data base, including ARGO floats temperature and salinity measurements. In this presentation, the results obtained with IBIRYS are compared to GLORYS results. The consistency of the IBIRYS and GLORYS results at large scales is demonstrated. The capacity of IBIRYS to provide useful information at high frequencies in the North East Atlantic is shown. The biogeochemical results of IBIRYS are evaluated.

  20. Biogeochemical cycling of cadmium isotopes along a high-resolution section through the North Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Conway, Tim M.; John, Seth G.

    2015-01-01

    Cadmium (Cd) is a bioactive trace element in the oceans, with a nutrient-like distribution that closely matches dissolved phosphate. Seawater-dissolved stable Cd isotope ratios (δ114Cd) are a relatively new parameter, which show much promise for furthering our understanding of the biogeochemical cycling of Cd in the oceans. Here we present a high-resolution paired section of dissolved Cd concentrations and dissolved δ114Cd from 21 open-ocean stations along the US GEOTRACES GA03 transect through the North Atlantic Ocean. Dissolved Cd concentrations along the section are strongly influenced by water-mass distribution and the cycling of Cd. The highest dissolved Cd concentrations (400-540 pmol kg-1) are associated with Antarctic-sourced water masses, whilst biological uptake in the surface ocean results in a strong vertical gradient in dissolved Cd towards the surface, reaching as low as 0.03 pmol kg-1 in western surface waters. Dissolved δ114Cd is also characterized by a vertical gradient from ∼+0.2‰ in the deep ocean to +2‰ to +5‰ in the Cd-depleted surface ocean (relative to NIST SRM 3108). This variability in δ114Cd can be ascribed to mixing of Antarctic and North Atlantic water masses, together with fractionation due to in situ biological uptake of light Cd in the very surface ocean. Subtle deviations from this overall pattern of dissolved Cd concentration and dissolved δ114Cd are observed within low-oxygen waters off North Africa, where a dissolved Cd deficit relative to phosphate is associated with higher dissolved δ114Cd values. Together with elevated particulate Cd and Ba, this suggests that Cd sulfide precipitation is occurring within the water column of the North Atlantic, constituting a potentially important sink for isotopically light Cd. Additionally, the first measurements of dissolved δ114Cd within a hydrothermal plume at the Mid-Atlantic Ridge show that Cd is scavenged from the dissolved phase, leaving the remnant dissolved Cd

  1. Estimating global and North American methane emissions with high spatial resolution using GOSAT satellite data

    DOE PAGESBeta

    Turner, A. J.; Jacob, D. J.; Wecht, K. J.; Maasakkers, J. D.; Biraud, S. C.; Boesch, H.; Bowman, K. W.; Deutscher, N. M.; Dubey, M. K.; Griffith, D. W. T.; et al

    2015-02-18

    We use 2009–2011 space-borne methane observations from the Greenhouse Gases Observing SATellite (GOSAT) to constrain global and North American inversions of methane emissions with 4° × 5° and up to 50 km × 50 km spatial resolution, respectively. The GOSAT data are first evaluated with atmospheric methane observations from surface networks (NOAA, TCCON) and aircraft (NOAA/DOE, HIPPO), using the GEOS-Chem chemical transport model as a platform to facilitate comparison of GOSAT with in situ data. This identifies a high-latitude bias between the GOSAT data and GEOS-Chem that we correct via quadratic regression. The surface and aircraft data are subsequently usedmore » for independent evaluation of the methane source inversions. Our global adjoint-based inversion yields a total methane source of 539 Tg a−1 and points to a large East Asian overestimate in the EDGARv4.2 inventory used as a prior. Results serve as dynamic boundary conditions for an analytical inversion of North American methane emissions using radial basis functions to achieve high resolution of large sources and provide full error characterization. We infer a US anthropogenic methane source of 40.2–42.7 Tg a−1, as compared to 24.9–27.0 Tg a−1 in the EDGAR and EPA bottom-up inventories, and 30.0–44.5 Tg a−1 in recent inverse studies. Our estimate is supported by independent surface and aircraft data and by previous inverse studies for California. We find that the emissions are highest in the South-Central US, the Central Valley of California, and Florida wetlands, large isolated point sources such as the US Four Corners also contribute. We attribute 29–44% of US anthropogenic methane emissions to livestock, 22–31% to oil/gas, 20% to landfills/waste water, and 11–15% to coal with an additional 9.0–10.1 Tg a−1 source from wetlands.« less

  2. Estimating global and North American methane emissions with high spatial resolution using GOSAT satellite data

    DOE PAGESBeta

    Turner, A. J.; Jacob, D. J.; Wecht, K. J.; Maasakkers, J. D.; Lundgren, E.; Andrews, A. E.; Biraud, S. C.; Boesch, H.; Bowman, K. W.; Deutscher, N. M.; et al

    2015-06-30

    We use 2009–2011 space-borne methane observations from the Greenhouse Gases Observing SATellite (GOSAT) to estimate global and North American methane emissions with 4° × 5° and up to 50 km × 50 km spatial resolution, respectively. GEOS-Chem and GOSAT data are first evaluated with atmospheric methane observations from surface and tower networks (NOAA/ESRL, TCCON) and aircraft (NOAA/ESRL, HIPPO), using the GEOS-Chem chemical transport model as a platform to facilitate comparison of GOSAT with in situ data. This identifies a high-latitude bias between the GOSAT data and GEOS-Chem that we correct via quadratic regression. Our global adjoint-based inversion yields a totalmore » methane source of 539 Tg a−1 with some important regional corrections to the EDGARv4.2 inventory used as a prior. Results serve as dynamic boundary conditions for an analytical inversion of North American methane emissions using radial basis functions to achieve high resolution of large sources and provide error characterization. We infer a US anthropogenic methane source of 40.2–42.7 Tg a−1, as compared to 24.9–27.0 Tg a−1 in the EDGAR and EPA bottom-up inventories, and 30.0–44.5 Tg a−1 in recent inverse studies. Our estimate is supported by independent surface and aircraft data and by previous inverse studies for California. We find that the emissions are highest in the southern–central US, the Central Valley of California, and Florida wetlands; large isolated point sources such as the US Four Corners also contribute. Using prior information on source locations, we attribute 29–44 % of US anthropogenic methane emissions to livestock, 22–31 % to oil/gas, 20 % to landfills/wastewater, and 11–15 % to coal. Wetlands contribute an additional 9.0–10.1 Tg a−1.« less

  3. Revisiting the Submerged Paleo Elbe Valley (S North Sea) with High-Resolution Shallow Seismics

    NASA Astrophysics Data System (ADS)

    Papenmeier, S.; Hass, H. C.

    2014-12-01

    The Elbe paleo valley is the most prominent subsurface structure in the southern North Sea (~10,000 km²) and constitutes an important part of Germany's largest marine Natura 2000-Reserve "Sylter Außenriff" (European environmental protection area). It is supposed that the valley was formed by epeirogenic movement during the Tertiary. The depression developed to its present form during the Weichselian sea-level lowstand (-130 m below present). Melt waters that discharged in north-westerly directions fed the paleo Elbe at that time. During the Holocene the valley drowned in the rising sea. A narrow raster of new shallow seismic data combined with high resolution sidescan sonar data is used to shed new light on the Holocene development of the paleo Elbe valley and its adjacent regions in detail. Cross sections distributed with transect distances of 400 and 800 m, respectively, over a length of 100 km (approximately one third of the total valley length) enable a good comprehensive analysis of the historical process of sedimentary valley infill and coastal evolution with the successive Holocene sea level rise. The eastern flank of the valley is characterized by a relatively steep slope with one or more terraces, representing moraine deposits which are today still present at the seafloor surface, partly covered with Holocene marine deposits. The western slip-off slope of the valley is much smoother than the eastern undercut slope. West of the valley, sediment cores show peat and tidal flat sediments. Shallow seismic data show the base of the valley. There are conspicuous internal seismic reflectors above the base, inclined in northeastern direction. They indicate a sedimentary infill of the valley from the southwest when the southern part of the Dogger Bank was flooded during the early Holocene sea-level rise. In this process the steeper eastern slope acted as a natural barrier towards the northeast, averted sediment transport beyond the eastern boundary of the paleo

  4. High-resolution estimates of Nubia-North America plate motion: 20 Ma to present

    NASA Astrophysics Data System (ADS)

    Merkouriev, S.; DeMets, C.

    2014-03-01

    We present new, detailed estimates of Nubia-North America plate motion since 20 Ma based on 21 rotations that reconstruct seafloor spreading magnetic lineations and fracture zone flow lines between the two plates and an instantaneous angular velocity that best fits the velocities of 1343 GPS stations on the two plates. Total opening distances and opening gradients along the plate boundary are constrained by nearly 11 000 crossings of magnetic reversals 1n (0.78 Ma) to 6n (19.7 Ma) from shipboard and aeromagnetic data surveys of the Mid-Atlantic Ridge between the Azores triple junction and Fifteen-Twenty fracture zone. Plate slip directions are estimated from flow lines digitized from multibeam, single-beam and satellite-based bathymetry for the Oceanographer, Hayes and Atlantis fracture zones. Linear extrapolations of seafloor spreading distances for young magnetic reversals to zero seafloor age shows that magnetic reversal boundaries everywhere along the plate boundary are shifted outwards by 1 ± 0.5 km from the spreading axis with respect to their idealized locations; small corrections to the finite opening rotations to compensate for this outward displacement are thus made to reveal the underlying plate motion. A single inversion of the nearly 13 000 kinematic data is used to estimate the 21 rotations that simultaneously optimize the fits to the reconstructed magnetic lineations and the three fracture zone flow lines and their transform fault traces. Uncertainties in the rotations are estimated via bootstrapping. The new rotations indicate that seafloor spreading rates remained steady from 20 to 8.2 Ma, slowed by 25 per cent between 8.2 Ma and 6.2 Ma, and remained steady since 6.2 Ma within the ≈1 mm yr-1 resolution of our new rotations. Our kinematic results corroborate a significant change in motion at ≈7 Ma previously identified by Sloan and Patriat from a dense magnetic survey of young seafloor from 28°N to 29°N. The timing and magnitude of the change

  5. Rapid Holocene coastal change revealed by high-resolution micropaleontological analysis, Pamlico Sound, North Carolina, USA

    USGS Publications Warehouse

    Grand, Pre C.; Culver, S.J.; Mallinson, D.J.; Farrell, K.M.; Corbett, D.R.; Horton, B.P.; Hillier, C.; Riggs, S.R.; Snyder, S.W.; Buzas, M.A.

    2011-01-01

    Foraminiferal analyses of 404 contiguous samples, supported by diatom, lithologic, geochronologic and seismic data, reveal both rapid and gradual Holocene paleoenvironmental changes in an 8.21-m vibracore taken from southern Pamlico Sound, North Carolina. Data record initial flooding of a latest Pleistocene river drainage and the formation of an estuary 9000. yr ago. Estuarine conditions were punctuated by two intervals of marine influence from approximately 4100 to 3700 and 1150 to 500. cal. yr BP. Foraminiferal assemblages in the muddy sand facies that accumulated during these intervals contain many well-preserved benthic foraminiferal species, which occur today in open marine settings as deep as the mid shelf, and significant numbers of well-preserved planktonic foraminifera, some typical of Gulf Stream waters. We postulate that these marine-influenced units resulted from temporary destruction of the southern Outer Banks barrier islands by hurricanes. The second increase in marine influence is coeval with increased rate of sea-level rise and a peak in Atlantic tropical cyclone activity during the Medieval Climate Anomaly. This high-resolution analysis demonstrates the range of environmental variability and the rapidity of coastal change that can result from the interplay of changing climate, sea level and geomorphology in an estuarine setting. ?? 2011 University of Washington.

  6. High Resolution Modelling of Mantle Convective Flow Below the North American Plate.

    NASA Astrophysics Data System (ADS)

    Forte, A. M.; Moucha, R.; Simmons, N. A.; Grand, S. P.; Rowley, D. B.; Mitrovica, J. X.; Quéré, S.

    2008-12-01

    Recent progress in joint seismic-geodynamic tomographic imaging of both thermal and compositional anomalies in Earth's mantle allows us to carry out new high-resolution calculations of the present-day mantle convective flow at all depths, from the lithosphere down to the core-mantle boundary. We are therefore able to delineate the detailed connections between fundamental geological and geophysical surface processes and the underlying mantle convection. We employ these convection calculations to consider North American continental dynamics, with a special focus on the detailed relationship between flow in upper mantle, especially in the asthenosphere, and the impact on present-day dynamic topography as well as its rate-of- change. The surface dynamics that we obtain show a clear and detailed connection to the mantle flow driven by the descent of the ancient Kula-Farallon plate system and a buoyant, actively ascending hot upwelling under the western US. Of particular importance is the relationship of the deep-seated upwelling under the Colorado Plateau as a driving force for current rifting in the Rio Grande River valley. This rifting and its temporal evolution bears a strong resemblance to the convection-induced rifting our convection model also predicts under the East African Rift system. The close similarity between these two rifts, in terms of asthenospheric flow dynamics, will be discussed.

  7. Stratigraphy of the north polar layered deposits of Mars from high-resolution topography

    USGS Publications Warehouse

    Becerra, Patricio; Byrne, Shane; Sori, Michael M.; Sutton, Sarah; Herkenhoff, Kenneth E.

    2016-01-01

    The stratigraphy of the layered deposits of the polar regions of Mars is theorized to contain a record of recent climate change linked to insolation changes driven by variations in the planet's orbital and rotational parameters. In order to confidently link stratigraphic signals to insolation periodicities, a description of the stratigraphy is required based on quantities that directly relate to intrinsic properties of the layers. We use stereo Digital Terrain Models (DTMs) from the High Resolution Imaging Science Experiment (HiRISE) to derive a characteristic of North Polar Layered Deposits (NPLD) strata that can be correlated over large distances: the topographic protrusion of layers exposed in troughs, which is a proxy for the layers’ resistance to erosion. Using a combination of image analysis and a signal-matching algorithm to correlate continuous depth-protrusion signals taken from DTMs at different locations, we construct a stratigraphic column that describes the upper ~500 m of at least 7% of the area of the NPLD, and find accumulation rates that vary by factors of up to two. We find that, when coupled with observations of exposed layers in orbital images, the topographic expression of the strata is consistently continuous through large distances in the top 300 – 500 m of the NPLD, suggesting it is better related to intrinsic layer properties than brightness alone.

  8. High resolution reconstruction of relative sea-level on the Outer Banks, North Carolina

    NASA Astrophysics Data System (ADS)

    Kemp, A. C.; Horton, B. P.; Reide, C. D.; Stephen, C. J.; Feyen, J. C.; Thomson, K.

    2006-12-01

    The need for high resolution sea-level reconstruction has increased drastically with the realization that global warming may accelerate the rate of sea-level rise, resulting in increased coastal flooding. Determining the physical response of a coastline to sea-level rise is one of the most important problems to be addressed in applied coastal geology today. This concern is particularly acute for the Outer Banks and its back barrier estuary system which are considered by the United States Geological Survey (USGS) as having a "very high" vulnerability to sea-level rise. In order to consider the potential impacts sea-level rise may have on the Outer Banks it is necessary to place them in an appropriate geological framework. Scenarios for future sea-level rise are concerned with decadal to centennial timescales; as such they must be viewed in light of geologically derived sea level reconstructions at a comparable temporal resolution. The microfossil based transfer function approach is a quantitative methodology which can be effective in establishing these kind of records. We provide a high resolution relative sea-level history for the Outer Banks, North Carolina in the absence of a local, reliable tide gauge of sufficient, continuous duration. Contemporary foraminifera were collected from five back barrier marshes on the Outer Banks to create a regional scale modern training set. The use of multiple marshes from a region increases the ecological and environmental diversity included within the training set and reduces the probability of a no modern analogue outcome. In order to merge the five spatially distinct sites and to relate each to local tide levels we the VDatum transformation tool. This method relates all contemporary samples to a common orthometric datum (NAVD88) and reduces error associated with the implicit assumption that the hydrodynamic regime at a locality is the same as that which prevails at the nearest tide gauge. A transfer function was developed to

  9. High Resolution Map of Water Supply and Demand for North East United States

    NASA Astrophysics Data System (ADS)

    Ehsani, N.; Vorosmarty, C. J.; Fekete, B. M.

    2012-12-01

    Accurate estimates of water supply and demand are crucial elements in water resources management and modeling. As part of our NSF-funded EaSM effort to build a Northeast Regional Earth System Model (NE-RESM) as a framework to improve our understanding and capacity to forecast the implications of planning decisions on the region's environment, ecosystem services, energy and economic systems through the 21st century, we are producing a high resolution map (3' x 3' lat/long) of estimated water supply and use for the north east region of United States. Focusing on water demand, results from this study enables us to quantify how demand sources affect the hydrology and thermal-chemical water pollution across the region. In an attempt to generate this 3-minute resolution map in which each grid cell has a specific estimated monthly domestic, agriculture, thermoelectric and industrial water use. Estimated Use of Water in the United States in 2005 (Kenny et al., 2009) is being coupled to high resolution land cover and land use, irrigation, power plant and population data sets. In addition to water demands, we tried to improve estimates of water supply from the WBM model by improving the way it controls discharge from reservoirs. Reservoirs are key characteristics of the modern hydrologic system, with a particular impact on altering the natural stream flow, thermal characteristics, and biogeochemical fluxes of rivers. Depending on dam characteristics, watershed characteristics and the purpose of building a dam, each reservoir has a specific optimum operating rule. It means that literally 84,000 dams in the National Inventory of Dams potentially follow 84,000 different sets of rules for storing and releasing water which must somehow be accounted for in our modeling exercise. In reality, there is no comprehensive observational dataset depicting these operating rules. Thus, we will simulate these rules. Our perspective is not to find the optimum operating rule per se but to find

  10. Solving cryptogenic histories using host and parasite molecular genetics: the resolution of Littorina littorea's North American origin.

    PubMed

    Blakeslee, April M H; Byers, James E; Lesser, Michael P

    2008-08-01

    Even after decades of investigation using multiple sources of evidence, the natural histories of some species remain unclear (i.e. cryptogenic). A key example is Littorina littorea, the most abundant intertidal snail in northeastern North America. Native to Europe, the snail's ecological history in North America has been debated for over 100 years with no definitive resolution. To resolve its cryptogenic status, we used molecular genetics from a novel combination of the snail and a highly associated trematode parasite, Cryptocotyle lingua. Based on mitochondrial sequences of 370 L. littorea and 196 C. lingua individuals, our results demonstrate a significant reduction in genetic diversity in North America vs. Europe, North American haplotypes nested within European haplotypes, and mean divergence estimates of approxiamtely 500 years ago from Europe for both host and parasite--thus supporting a recent introduction of both host and parasite to North America from Europe. Our study therefore resolves not only a specific cryptogenic history, but it also demonstrates the success of our approach generally and could be used in resolving difficult invasion histories worldwide. PMID:18643882

  11. A high resolution salinity time series 1993-2012 in the North Atlantic from Argo and Altimeter data

    NASA Astrophysics Data System (ADS)

    Stendardo, I.; Rhein, M.; Hollmann, R.

    2016-04-01

    The study of salinity changes has been hampered by the lack of temporal and spatial resolution of the observations. In order to improve the spatial and temporal distribution of salinity observations, we used the Gravest Empirical Mode (GEM) technique to calculate high-resolution salinity distributions as a function of dynamic height for the period 1993-2012. This technique combined Argo and altimeter data to exploit the relationship between T/S profiles and dynamic height in the North Atlantic. The method was valid in the upper 700 m mainly at and near the pathways of the North Atlantic Current (NAC), but failed in regions with weak stratification or with ambiguities in the T/S relationships. Coherent, multiannual large-scale variability was observed, with many features present in all regions, albeit with weaker amplitudes in the eastern basins. Some of the interannual features in the northeastern Atlantic basins were unrelated to the variability further south and west, pointing to an occasional advection of subtropical water in the eastern Atlantic. Origin and advection of salinity anomalies with the NAC from the North American Basin into the western subpolar North Atlantic are correlated with the state of the North Atlantic Oscillation (NAO) and dampened by the surface freshwater fluxes. Other mechanisms influencing the salinity pattern are the changing location of the subpolar front, also related to the NAO. The large multiyear variability in the 20 year time series obscured any potential trends caused by global warming. Only the Rockall Trough showed a salinity increase of 0.03 per decade.

  12. High Resolution Anisotropic Structure of the North American Upper Mantle From Inversion of Body and Surface Waveform Data

    NASA Astrophysics Data System (ADS)

    Marone, F.; Gung, Y.; Romanowicz, B.

    2004-12-01

    Seismic anisotropy provides insight into upper mantle structure as well as paleo and recent deformation processes. To date, our knowledge of the North American anisotropic structure arises mainly from global tomographic models or \\textit{SKS} splitting studies which lack horizontal and vertical resolution respectively, and are limited to either radial or azimuthal anisotropy. Our goal is a new high resolution model for the North American upper mantle incorporating both radial and azimuthal anisotropy. We hope to achieve unprecedented lateral and depth resolution by improving both methodology and data coverage. We invert seismic long period waveform data in the framework of normal mode asymptotic theory (NACT). The resulting broad band sensitivity kernels allow us to exploit the information contained in long period seismograms for fundamental mode surface waves, overtones and body waves simultaneously. Until now, this approach has only been applied at the global scale. We have adapted the NACT algorithm for the regional case by implementing a lateral parametrization in terms of spherical splines on an inhomogeneous triangular grid of nodes, with the finest mesh for North America. Moreover, accurate crustal corrections are essential for the quality of high resolution regional tomographic studies, because they prevent the mapping of unresolved shallow features into the mantle structure. Going beyond the linear perturbation approximation, we split the correction into a linear and non-linear part. In this way, we can deal with the large lateral variations over a short distance observed in Moho topography more accurately. The inverted dataset consists of more than 100,000 high quality 3 component body, fundamental and overtone surface waveforms, recorded at broad band seismic stations in North America from teleseismic events and provides a fairly homogeneous path and azimuthal coverage. We use information from \\textit{SKS} splitting measurements as additional

  13. High cesium concentrations in groundwater in the upper 1.2 km of fractured crystalline rock - Influence of groundwater origin and secondary minerals

    NASA Astrophysics Data System (ADS)

    Mathurin, Frédéric A.; Drake, Henrik; Tullborg, Eva-Lena; Berger, Tobias; Peltola, Pasi; Kalinowski, Birgitta E.; Åström, Mats E.

    2014-05-01

    Dissolved and solid phase cesium (Cs) was studied in the upper 1.2 km of a coastal granitoid fracture network on the Baltic Shield (Äspö Hard Rock Laboratory and Laxemar area, SE Sweden). There unusually high Cs concentrations (up to 5-6 μg L-1) occur in the low-temperature (<20 °C) groundwater. The material includes water collected in earlier hydrochemical monitoring programs and secondary precipitates (fracture coatings) collected on the fracture walls, as follows: (a) hydraulically pristine fracture groundwater sampled through 23 surface boreholes equipped for the retrieval of representative groundwater at controlled depths (Laxemar area), (b) fracture groundwater affected by artificial drainage collected through 80 boreholes drilled mostly along the Äspö Hard Rock Laboratory (underground research facility), (c) surface water collected in local streams, a lake and sea bay, and shallow groundwater collected in 8 regolith boreholes, and (d) 84 new specimens of fracture coatings sampled in cores from the Äspö HRL and Laxemar areas. The groundwater in each area is different, which affects Cs concentrations. The highest Cs concentrations occurred in deep-seated saline groundwater (median Äspö HRL: 4.1 μg L-1; median Laxemar: 3.7 μg L-1) and groundwater with marine origin (Äspö HRL: 4.2 μg L-1). Overall lower, but variable, Cs concentrations were found in other types of groundwater. The similar concentrations of Cs in the saline groundwater, which had a residence time in the order of millions of years, and in the marine groundwater, which had residence times in the order of years, shows that duration of water-rock interactions is not the single and primary control of dissolved Cs in these systems. The high Cs concentrations in the saline groundwater is ascribed to long-term weathering of minerals, primarily Cs-enriched fracture coatings dominated by illite and mixed-layer clays and possibly wall rock micaceous minerals. The high Cs concentrations in the groundwater of marine origin are, in contrast, explained by relatively fast cation exchange reactions. As indicated by the field data and predicted by 1D solute transport modeling, alkali cations with low-energy hydration carried by intruding marine water are capable of (NH4+ in particular and K+ to some extent) replacing Cs+ on frayed edge (FES) sites on illite in the fracture coatings. The result is a rapid and persistent (at least in the order of decades) buildup of dissolved Cs concentrations in fractures where marine water flows downward. The identification of high Cs concentrations in young groundwater of marine origin and the predicted capacity of NH4+ to displace Cs from fracture solids are of particular relevance in the disposal of radioactive nuclear waste deep underground in crystalline rock.

  14. Examination of Climate Simulations Across Spatial Resolutions and their Representation of the Continental High Temperature Bias over North America

    NASA Astrophysics Data System (ADS)

    Rasmussen, R.; Newman, A. J.; Ikeda, K.; Liu, C.; Barlage, M. J.

    2014-12-01

    Many Global Climate Models (GCMs) are known to have a high near surface temperature bias over the central portions of Northern Hemisphere continents (e.g. North America). It has been postulated that this high bias is due to the lack of propagating convection in the GCMs, due to their coarse resolution and convective parameterizations. Recent results from the Clouds Above the United States and Errors at the Surface (CAUSES) program indicate that there may be myriad factors contributing to the high bias. Additionally, high resolution, convection permitting simulations (grid spacing of 4 km) performed with the Weather Research and Forecasting (WRF) model at the National Center for Atmospheric Research (NCAR) have shown that the warm bias persists, even though propagating convection is now resolved in long-term climate simulations. This presentation will examine summertime retrospective regional climate simulations with high temperature biases over the contiguous United States (CONUS) at resolutions similar to GCMs (36-km grid spacing) down to convective permitting resolutions (4-km grid spacing). Identification of days with and without large bias contributions are examined and contrasted. Differences in regional water budgets, surface precipitation, representations of propagating convection, mesoscale organized downdrafts and their evolution will be diagnosed. Use of surface, radiosonde, radar, and satellite observations can highlight key differences in the evolution of clouds, precipitation and resultant cold pools. Additional aspects related to the land-surface such as albedo specification, sensible and latent heat flux partitioning and irrigation impacts on flux partitioning will be discussed.

  15. Sensitivity of optimized high-resolution North American CH4 emissions to regional CH4 boundary conditions

    NASA Astrophysics Data System (ADS)

    Stanevich, Ilya; Strong, Kimberly; Jones, Dylan; Lin, John; Wecht, Kevin; Andrews, Arlyn; Worthy, Doug; Wennberg, Paul; Wunch, Debra; Roehl, Coleen

    2016-04-01

    Constraining CH4 emissions at subcontinental scales is of great value, especially for quantifying local anthropogenic emissions. However, high-resolution emission estimates are more uncertain, particularly due to their relatively weak signature in the atmosphere and the uncertainty of the CH4 measurements used to infer the emissions. In this work, we investigate the robustness of high-resolution North American emission estimates. We perform regional inversion analyses over North America using the Stochastic Time-Inverted Lagrangian Transport (STILT) model, with initial and boundary conditions imposed from the GEOS-Chem global chemical transport model, constrained by NOAA and Environment Canada CH4 flask measurements and CH4 columns measured using Fourier transform spectrometers at the University of Toronto Atmospheric Observatory and at the Total Carbon Column Observing Network (TCCON) Lamont station. We also perform STILT and GEOS-Chem inversions with pseudo in situ- and satellite-like measurements, respectively, to assess the seasonal sensitivity of optimized emissions to uncorrected biases in CH4 boundary conditions. We show that, depending on the season, the sensitivity of the emissions to the biases varies by up to 40%.

  16. High-resolution seismic analysis of the coastal Mecklenburg Bay (North German Basin): the pre-Alpine evolution

    NASA Astrophysics Data System (ADS)

    Zöllner, H.; Reicherter, K.; Schikowsky, P.

    2008-09-01

    The pre-Alpine structural and geological evolution in the northern part of the North German Basin have been revealed on the basis of a very dense reflection seismic profile grid. The study area is situated in the coastal Mecklenburg Bay (Germany), part of the southwestern Baltic Sea. From the central part of the North German Basin to the northern basin margin in the Grimmen High area a series of high-resolution maps show the evolution from the base Zechstein to the Lower Jurassic. We present a map of basement faults affecting the pre-Zechstein. The pre-Alpine structural evolution of the region has been determined from digital mapping of post-Permian key horizons traced on the processed seismic time sections. The geological evolution of the North German Basin can be separated into four distinct periods in the Rerik study area. During Late Permian and Early Triassic evaporites and clastics were deposited. Salt movement was initiated after the deposition of the Middle Triassic Muschelkalk. Salt pillows, which were previously unmapped in the study area, are responsible for the creation of smaller subsidence centers and angular unconformities in the Late Triassic Keuper, especially in the vicinity of the fault-bounded Grimmen High. In this area, partly Lower Jurassic sediments overlie the Keuper unconformably. The change from extension to compression in the regional stress field remobilized the salt, leading to a major unconformity marked at the base of the Late Cretaceous.

  17. A composite annual-resolution stalagmite record of North Atlantic climate over the last three millennia

    PubMed Central

    Baker, Andy; C. Hellstrom, John; Kelly, Bryce F. J.; Mariethoz, Gregoire; Trouet, Valerie

    2015-01-01

    Annually laminated stalagmites can be used to construct a precise chronology, and variations in laminae thickness provide an annual growth-rate record that can be used as a proxy for past climate and environmental change. Here, we present and analyse the first composite speleothem annual growth-rate record based on five stalagmites from the same cave system in northwest Scotland, where precipitation is sensitive to North Atlantic climate variability and the winter North Atlantic Oscillation (NAO). Our 3000-year record confirms persistently low growth-rates, reflective of positive NAO states, during the Medieval Climate Anomaly (MCA). Another persistently low growth period occurring at 290-550 CE coincides with the European Migration Period, and a subsequent period of sustained fast growth-rate (negative NAO) from 600-900 AD provides the climate context for the Viking Age in northern and western Europe. PMID:26068805

  18. A composite annual-resolution stalagmite record of North Atlantic climate over the last three millennia

    NASA Astrophysics Data System (ADS)

    Baker, Andy; C. Hellstrom, John; Kelly, Bryce F. J.; Mariethoz, Gregoire; Trouet, Valerie

    2015-06-01

    Annually laminated stalagmites can be used to construct a precise chronology, and variations in laminae thickness provide an annual growth-rate record that can be used as a proxy for past climate and environmental change. Here, we present and analyse the first composite speleothem annual growth-rate record based on five stalagmites from the same cave system in northwest Scotland, where precipitation is sensitive to North Atlantic climate variability and the winter North Atlantic Oscillation (NAO). Our 3000-year record confirms persistently low growth-rates, reflective of positive NAO states, during the Medieval Climate Anomaly (MCA). Another persistently low growth period occurring at 290-550 CE coincides with the European Migration Period, and a subsequent period of sustained fast growth-rate (negative NAO) from 600-900 AD provides the climate context for the Viking Age in northern and western Europe.

  19. A composite annual-resolution stalagmite record of North Atlantic climate over the last three millennia.

    PubMed

    Baker, Andy; C Hellstrom, John; Kelly, Bryce F J; Mariethoz, Gregoire; Trouet, Valerie

    2015-01-01

    Annually laminated stalagmites can be used to construct a precise chronology, and variations in laminae thickness provide an annual growth-rate record that can be used as a proxy for past climate and environmental change. Here, we present and analyse the first composite speleothem annual growth-rate record based on five stalagmites from the same cave system in northwest Scotland, where precipitation is sensitive to North Atlantic climate variability and the winter North Atlantic Oscillation (NAO). Our 3000-year record confirms persistently low growth-rates, reflective of positive NAO states, during the Medieval Climate Anomaly (MCA). Another persistently low growth period occurring at 290-550 CE coincides with the European Migration Period, and a subsequent period of sustained fast growth-rate (negative NAO) from 600-900 AD provides the climate context for the Viking Age in northern and western Europe. PMID:26068805

  20. High resolution Rayleigh wave phase velocity tomography in northern North China

    NASA Astrophysics Data System (ADS)

    Wang, Weilai; Wu, Jianping; Fang, Lihua

    2012-04-01

    This study presents the Rayleigh wave phase velocity tomographic results in northern North China. The data are from 190 broad-band and 10 very broad-band stations of the North China Seismic Array and 50 permanent stations nearby. All available teleseismic vertical component time-series are used to extract the phase velocity dispersion curves of the fundamental mode Rayleigh wave by interstation method. Tomographic maps are obtained at periods of 10, 15, 25 and 60 s with a grid spacing of 0.25°× 0.25°. The short-period phase velocity maps show good correlation with the geological and tectonic features. To be specific, lower velocities correspond to North China Basin and depression area whereas higher velocities are associated with Taihangshan and Yanshan uplifts. At 25 s, there are obvious low-velocity anomalies in Jizhong depression and Beijing-Tianjin-Tangshan region, indicating that ascendant low velocity channel may be formed beneath these areas and induce the velocity difference in the upper crust. The phase velocity map at 60 s reflects the upper-mantle information in the study area. High-velocity anomalies are observed at Yanshan blocks north to Zhangjiakou-Bohai seismic belt, suggesting that the materials are stable beneath these areas or the asthenosphere is at deeper location. Low-velocity anomalies are mainly south to the seismic belt, implying the asthenosphere is shallower and the materials are transformed by the open stretching rift trending NNE, resulting in many NNE-directed fault belts. These structural differences at depth may be controlled by the fault activity and strong tectonic movements.

  1. A resolution celebrating the 60th anniversary of the North Atlantic Treaty Organization.

    THOMAS, 111th Congress

    Sen. Voinovich, George V. [R-OH

    2009-01-26

    04/01/2009 Resolution agreed to in Senate without amendment and with a preamble by Unanimous Consent. (consideration: CR S4227; text as passed Senate: CR S4227) (All Actions) Tracker: This bill has the status Passed SenateHere are the steps for Status of Legislation:

  2. Utilizing Multi-Sensor Data Products and high-resolution flood model in Analyzing North African Hydrological Processes

    NASA Astrophysics Data System (ADS)

    Thengumthara, K.; Policelli, F.; Habib, S.; David, J. L.; Melocik, K. A.; Huffman, G. J.; Anderson, M. C.; Ali, A. B.; Bacha, S.

    2013-12-01

    North Africa is an arid region characterized by isolated extreme events such as floods and droughts. Our present understanding of hydrological processes over North Africa is limited due to low rainfall, mixed response of evaporation to temperature and soil moisture gradients, and lack of high-resolution ground measurements. Remote sensing is an excellent way to obtain near real- time data of high spatial and temporal resolution. Satellite estimates of rainfall and evapotranspiration (ET) have uncertainties due to topography, land-sea contrast, complex weather, and climate variability for high-elevated regions. Generally for arid regions, the satellite precipitation instruments are sensitive to soil moisture and land surface geometry. This study analyzes different components of hydrological processes over North Africa based on remote sensing data such as precipitation (NASA-TMPA, CMORPH and PERSIANN), evaporation (ALEXI and MODIS), and elevation (SRTM) along with ground measurements and model simulations. Here we use the Coupled Routing and Excess STorage (CREST) hydrological model-version 2.0, which was originally developed by NASA-GSFC and the University of Oklahoma [Wang J et al., 2011]. The model is driven by real time TMPA and climatological PET, interpolated to model grids. The flexible simulation and calibration enables the model to provide high-resolution runoff and water depth at each time step. Our study mainly focuses on two major basins such as Medjerda over Tunisia and the Sebou basin of Morocco. Case studies of flood events over North Africa were analyzed based on CREST model simulations with respect to ground measurements. The floods are mainly modulated by rainfall associated with synoptic frontal and tropical plumes and orographic mesoscale systems. Occurrences of peak floods simulated by CREST are comparable with diagnostics such as vertically integrated moisture convergence, stratiform and convective precipitation from ECMWF reanalysis. These were

  3. North Atlantic Holocene climate evolution recorded by high-resolution terrestrial and marine biomarker records

    NASA Astrophysics Data System (ADS)

    Moossen, Heiko; Bendle, James; Seki, Osamu; Quillmann, Ursula; Kawamura, Kimitaka

    2015-12-01

    Holocene climatic change is driven by a plethora of forcing mechanisms acting on different time scales, including: insolation, internal ocean (e.g. Atlantic Meridional Overturning Circulation; AMOC) and atmospheric (e.g. North Atlantic Oscillation; NAO) variability. However, it is unclear how these driving mechanisms interact with each other. Here we present five, biomarker based, paleoclimate records (air-, sea surface temperature and precipitation), from a fjordic sediment core, revealing North Atlantic terrestrial and marine climate in unprecedented detail. The Early Holocene (10.7-7.8 kyrs BP) is characterised by relatively high air temperatures while SSTs are dampened by melt water events, and relatively low precipitation. The Middle Holocene (7.8-3.2 kyrs BP) is characterised by peak SSTs, declining air temperatures and high precipitation. A pronounced marine thermal maximum occurs between ∼7-5.5 kyrs BP, 3000 years after the terrestrial thermal maximum, driven by melt water cessation and an accelerating AMOC. The neoglacial cooling, between 5.8 and 3.2 kyrs BP leads into the late Holocene. We demonstrate that an observed modern link between Icelandic precipitation variability during different NAO phases, may have existed from ∼7.5 kyrs BP. A simultaneous decoupling of both air, and sea surface temperature records from declining insolation at ∼3.2 kyrs BP may indicate a threshold, after which internal feedback mechanisms, namely the NAO evolved to be the primary drivers of Icelandic climate on centennial time-scales.

  4. High Resolution North and South Polar Maps of the Moon with AMIE/SMART-1

    NASA Astrophysics Data System (ADS)

    Despan, Daniela; Erard, Stephane; Beauvivre, Stephane; Chevrel, Serge; Pinet, Patrick; Almeida, Miguel; Grieger, Bjoern; Cerroni, Priscilla; Barucci, M. A.; Josset, Jean-Luc; Koschny, Detlef; Foing, Bernard H.

    The northern and southern polar areas maps of the Moon are obtained by processing and mosaiking of the AMIE, SMART-1 images. The Advanced Moon micro-Imager Experiment (AMIE) on board the ESA lunar mission Smart-1 has performed colour imaging of the lunar surface using various filters in the visible and NIR. The low pericenter, polar orbit, allowed to obtain high resolution images in various locations at the surface. From the 300 km pericenter altitude, the field of view (5,3° x5,3° ) corresponds to a spatial resolution about 30 m. The 1024x1024 images are shared by the various filters, allowing to derive mosaics of the surface in up to 3 colors depending on pointing mode. Spot-pointing observations and multiple observations from different orbits have provided photometric sequences that allow to study the surface properties in restricted areas. Geometrical analysis of the AMIE images relies on the SPICE system: image coordinates are computed to get precise projection at the surface, and illumination angles are computed to analyze the photometric sequences. Images from various orbits are first identified for each selected region of interest. These images are then selected according to signal to noise ratio, spatial coverage, and spatial resolution. The best images obtained with the neutral filter are calibrated, and mosaicked using the coordinates of the image frames corners. In the polar areas, images are selected so as to provide the best possible viewing of surface topography, depending on solar illumination angle, while preserving images continuity in shadowed areas. The maps of other regions of interest are yielded: Marius Hills, the Gruitheisen Domes, Rumker Hills, Aristarchus Plateau. Eventually, this method will be applied in all regions where AMIE has provided high resolution observations of the surface, typically a factor of 3 higher than the Clementine UV-vis camera. These regions are essentially located at latitude ranging from 80 to 40° S, specially

  5. Forest responses to late Holocene climate change in north-central Wisconsin: a high- resolution study from Hell's Kitchen Lake.

    NASA Astrophysics Data System (ADS)

    Urban, M. A.; Booth, R. K.; Jackson, S. T.; Minckley, T. A.

    2007-12-01

    Forest dynamics at centennial to millennial timescales can be identified using paleoecological records with high spatial, temporal, and taxonomic resolution. These dynamics are linked to climate changes by comparing the paleoecological records with independent paleoclimate records of complementary sensitivity and temporal resolution. We analyzed plant macrofossils at contiguous 1cm intervals (representing 5 to 35 yr/cm) from late Holocene sediments of Hell's Kitchen Lake (3 ha) in north-central Wisconsin. Most of the plant macrofossils derive from trees growing on the slopes directly adjacent to the lake, and were identified to the species. We also analyzed pollen at an approximately100 year resolution to provide a regionally integrated record of forest composition. We then compared the macrofossil and pollen records with independent records of climate change in the region, particularly paleohydrological records from kettle bogs. The most notable feature of the late Holocene record occurs between 2300-2000 cal yr BP. During this period yellow birch (Betula alleghaniensis) macrofossils first appear in the record, along with a corresponding increase in pollen percentages. Hemlock (Tsuga canadensis) macrofossils and pollen also show a marked increase at this time. These changes coincide with a major transition towards wetter conditions recorded in the testate amoebae record of Hornet Bog (~200km northwest) and in a number of other kettle bog records from the region. Directly following this transition, tamarack (Larix laricina) and Sphagnum macrofossils at Hell's Kitchen Lake increase dramatically, likely representing the initiation of bog-mat growth along the southwest margin of the lake during the wet period. . We are continuing our high-resolution sampling downcore at Hell's Kitchen Lake. This will permit us to examine additional ecologic and climatic events in the early and mid-Holocene.

  6. A high-resolution NO x emission factor model for North American motor vehicles

    NASA Astrophysics Data System (ADS)

    Singh, Rakesh B.; Sloan, James J.

    Criteria air contaminant inventories in Canada show that approximately 60% of NO x is produced from the transportation sector alone. NO 2, which is present at higher levels in the winter than in the summer, has been identified as the main pollutant responsible for non-traumatic deaths and hospitalization in Canadian cities. Therefore, accurate emission estimates of vehicle-generated NO x are needed, especially at the micro-scale level. The MOBILE emission model, which is widely used in Canada, provides only aggregated emission factors at very low resolution. Many studies have shown that MOBILE emission data are unreliable for many applications—particularly for air-quality modelling. In contrast to the aggregated nature of the MOBILE data, the new disaggregated model, MicroFacNO x, uses time-dependent site-specific vehicle fleet information to calculate emission factors at high spatial and temporal resolution. MicroFacNO x evaluation in a range of traffic fleet and meteorological conditions shows very encouraging results. Sensitivity analyses of the model reveal that its results depend on traffic fleet composition, speed and ambient temperature. MicroFacNO x results are suitable for use in human exposure assessment and by city planners in decision making for growth management. The effect of vehicle-related NO x on ozone in the vicinity of a large urban area is a good example of an unsolved problem that would benefit from the MicroFacNO x modelling approach.

  7. Applications of high resolution sequence stratigraphy in North Sea syn-rift reservoir correlation and development

    SciTech Connect

    Howell, H.; Flint, S.

    1995-08-01

    Tectonically active basins may host a spectrum of sequence stratigraphic expressions previously considered to be spatially mutually exclusive. In low accommodation areas with high sediment supply, fourth order eustatic cyclicity results in high frequency sequence sets while within rapidly subsiding areas, time-equivalent Type-2 sequences are expressed by highly asymmetrical coarsening upward successions, resembling large parasequences. In the shallow marine Fulmar Formation, of the U.K. North Sea Central Graben a sequence boundary and overlying lowstand deposits, which illustrate the effects of laterally variable subsidence rate and intrabasinal topography on the expression of a eustatic sea-level fall, lie between the Glosense and Serratum (J54a and J54b) maximum flooding surfaces. The syn-rift physiography comprises major tilted fault blocks, with the Central Graben dipping parallel to the major faults, simulating a ramp setting. Where the throw of the faults were greatest (SE), the structure acted as a local shelf-slope break. Adjacent to the basin margin, incised valley were cut at fluvial input points (structural transfer zones) and laterally, interfluvial sequence boundaries developed. During early lowstand, sand bypassed the footwall shelf and was deposited as lowstand fan sediments within the deepest part of the hangingwall, with the fault zone acting as a local shelf slope break. Within the shallower water areas of the hangingwall a localised ramp geometry existed parallel to the fault zone. Forced regression deposits developed here were coeval but not physically related to the deep water lowstand turbidite fan deposits.

  8. Study of Regional Volcanic Impact on the Middle East and North Africa using high-resolution global and regional models

    NASA Astrophysics Data System (ADS)

    Osipov, Sergey; Dogar, Mohammad; Stenchikov, Georgiy

    2016-04-01

    High-latitude winter warming after strong equatorial volcanic eruptions caused by circulation changes associated with the anomalously positive phase of Arctic Oscillation is a subject of active research during recent decade. But severe winter cooling in the Middle East observed after the Mt. Pinatubo eruption of 1991, although recognized, was not thoroughly investigated. These severe regional climate perturbations in the Middle East cannot be explained by solely radiative volcanic cooling, which suggests that a contribution of forced circulation changes could be important and significant. To better understand the mechanisms of the Middle East climate response and evaluate the contributions of dynamic and radiative effects we conducted a comparative study using Geophysical Fluid Dynamics Laboratory global High Resolution Atmospheric Model (HiRAM) with the effectively "regional-model-resolution" of 25-km and the regional Weather Research and Forecasting (WRF) model focusing on the eruption of Mount Pinatubo on June 15, 1991 followed by a pronounced positive phase of the Arctic Oscillation. The WRF model has been configured over the Middle East and North Africa (MENA) region. The WRF code has been modified to interactively account for the radiative effect of volcanic aerosols. Both HiRAM and WRF capture the main features of the MENA climate response and show that in winter the dynamic effects in the Middle East prevail the direct radiative cooling from volcanic aerosols.

  9. A novel technique for studying F-region ionization patches with the Resolute Bay Incoherent Scatter Radar - North

    NASA Astrophysics Data System (ADS)

    Perry, G. W.; Hosokawa, K.; St-Maurice, J.; Shiokawa, K.

    2013-12-01

    The northward facing Resolute Bay Incoherent Scatter Radar - North (RISR-N) and the soon to be operational southward facing RISR-Canada (RISR-C) systems are both exceptional platforms for investigating F-region ionization patches and the polar ionosphere. To advance patch research using these systems, an algorithm has been developed for detecting F-region ionization patches with the RISR-N system. The algorithm is based on the definition of a patch put forward by Crowley [1996]: a volume of F-region plasma with a density that is twice that of the background ionosphere. In this work, the algorithm is applied to the sizeable RISR-N dataset, providing valuable insight into the prevalence of patches over Resolute Bay over a time frame of several years. Additional questions concerning patches are also addressed using the algorithm, including: when compared to each other, do the occurrence rates of patches identified by the Optical Mesosphere and Thermosphere Imagers (OMTI), Polar Dual Auroral Radar Network (PolarDARN) and RISR-N instruments (whose fields-of-view overlap over Resolute Bay) agree? Namely, for every patch that is detected with RISR-N and/or PolarDARN, is there a corresponding patch seen optically? Lastly, using the algorithm, is it possible to advance our ability to distinguish patches from other coherent backscatter echoes detected by PolarDARN? Crowley, G. (1996), Critical review of ionospheric patches and blobs, in Review of Radio Science: 1993-1996, edited by W. R. Stone, pp. 619 648, Oxford Univ. Press, Oxford, U. K.

  10. High-resolution mapping of glacial landforms in the North Alpine Foreland, Austria

    NASA Astrophysics Data System (ADS)

    Salcher, Bernhard C.; Hinsch, Ralph; Wagreich, Michael

    2010-10-01

    In this study results from traditional field mapping were merged with precise elevation information from airborne LiDAR (Light detection and ranging) surveys. Morphological and sedimentological data provide new results from the Austrian (eastern) part of the Salzach piedmont glacier during times of and shortly after the Last Glacial Maximum (LGM). The variations in meltwater discharge had a major impact on the development of glacial landforms. In areas with high meltwater supply erosional or debris reworking processes play a major role, represented by drainage channels, drumlins and kettled, low relief hummocky moraine with low slope angles. Low discharge areas are associated with distinct depositional forms such as high relief end moraines (up to 30 m) and hummocky moraine (averaging 20 m) with high slope angles. Isolated conical kames may reach heights up to 45 m. Fluvial activity is supposed to rise towards the end of the glacial cycle causing high melting rates and comprehensive debris reworking. The formation of terminal lakes and associated widespread, inorganic lake clays are the last deposits within the study area before the Salzach Glacier completely receded to its main valley. The survey of glacial landforms through the combination of field mapping and high-resolution DEM derived from airborne LiDAR missions gives precise information on transport and deposition during the last glacial cycle of the eastern Salzach Glacier piedmont lobe.

  11. Hydrographical long term measurements and high resolution transects in tidal estuaries of the Southern North Sea

    NASA Astrophysics Data System (ADS)

    Badewien, Thomas H.; Schulz, Anne-Christin; Holinde, Lars; Zielinski, Oliver

    2013-04-01

    The tidal flats of the Wadden Sea and connected estuaries such as the Ems-Dollart are highly dynamic and diverse ecosystems and are of high economic value to the neighbouring regions. The Institute for Chemistry and Biology of the Marine Environment (ICBM) at the University of Oldenburg has expertise in observing and analysing environmental data from such complex systems. A research platform located at a tidal inlet between the East Frisian Islands Spiekeroog and Langeoog has collected hydrographical, meteorological and biogeochemical time series data for more than ten years. Currently, the bilateral Dutch-German research project "Future-Ems" deals with the highly dynamic exchange processes of the river Ems and its estuary (Dollart). Here, we present hydrographical long-term data sets obtained from the research platform as well as short-term high-resolution measurements from the same location and the river Ems. We focus on exchange and mixing processes as well as water mass transport through the respective tidal channels.

  12. Availability and Use of Instructional Materials in the Teaching of Conflict and Conflict Resolution in Primary Schools in Nandi North District, Kenya

    ERIC Educational Resources Information Center

    Tuimur, Hilda Ng'etich; Chemwei, Bernard

    2015-01-01

    This paper examines the availability and use of instructional resources necessary for teaching Conflict and Conflict Resolution as a topic in Social Studies subject in primary schools in Nandi North District in Kenya. The study was carried out through descriptive survey. The study population included Social Studies teachers in Kosirai Division of…

  13. High resolution study of petroleum source rock variation, Lower Cretaceous (Hauterivian and Barremian) of Mikkelsen Bay, North Slope, Alaska

    USGS Publications Warehouse

    Keller, Margaret A.; Macquaker, Joe H.S.; Lillis, Paul G.

    2001-01-01

    Open File Report 01-480 was designed as a large format poster for the Annual Meeting of the American Association of Petroleum Geologists and the Society for Sedimentary Geology in Denver Colorado in June 2001. It is reproduced here in digital format to make widely available some unique images of mudstones. The images include description, interpretation, and Rock-Eval data that resulted from a high-resolution study of petroleum source rock variation of the Lower Cretaceous succession of the Mobil-Phillips Mikkelsen Bay State #1 well on the North Slope of Alaska. Our mudstone samples with Rock-Eval data plus color images are significant because they come from one of the few continuously cored and complete intervals of the Lower Cretaceous succession on the North Slope. This succession, which is rarely preserved in outcrop and very rarely cored in the subsurface, is considered to include important petroleum source rocks that have not previously been described nor explained Another reason these images are unique is that the lithofacies variability within mudstone dominated successions is relatively poorly known in comparison with that observed in coarser clastic and carbonate successions. They are also among the first published scans of thin sections of mudstone, and are of excellent quality because the sections are well made, cut perpendicular to bedding, and unusually thin, 20 microns. For each of 15 samples, we show a thin section scan (cm scale) and an optical photomicrograph (mm scale) that illustrates the variability present. Several backscattered SEM images are also shown. Rock-Eval data for the samples can be compared with the textures and mineralogy present by correlating sample numbers and core depth.

  14. Climate Change during Marine Isotope Stages 10 & 11 based on High-Resolution Speleothem Records from Eastern North America

    NASA Astrophysics Data System (ADS)

    Buckles, J. A.; Gao, Y.; Wang, X.; Rowe, H.; Cheng, H.; Edwards, R. L.

    2014-12-01

    Two speleothems from eastern North America grew throughout Marine Isotope Stages 10 and 11. High-resolution stable isotope δ18O and δ13C, and Sr records are constrained by 16 230Th age dates. MIS 11 (374 - 424 kyr BP) is of particular interest due to the similarity of orbitally-controlled insolation conditions from this time period and the modern. While few high-resolution continental paleoclimate records exist for this time period, marine records reveal that during this prominent interglacial, sea surface temperatures were relatively stable, in contrast to those which occurred during the subsequent glacial period (MIS 10). Speleothems TNBS-8 and TNMOR2-01, from Tennessee's Blue Springs Cave and Morrell Cave, respectively, grew between 338 - 420 kyr BP and overlap for ~50 kyr. Growth rates were generally higher during MIS 11 than 10, with a higher degree of variability. Stable isotope δ18O and δ13C records (TNMOR2-01) show an overall trend towards higher values throughout the MIS 11-10 transition, with well-defined periods of depletion and enrichment. Sr concentration measured through µ-XRF reveals similar behavior as the δ13C record and serves as a proxy for moisture availability. Overlapping Sr results for both speleothems share general trends and reveal distinct intervals of increased precipitation occur throughout the record, with most coinciding with summer insolation maxima. The transitions of MIS 11.2 to 11.1 and MIS 11 to 10 are well-constrained by abrupt increases in δ18O and δ13C values along with Sr concentrations. An examination of continental proxy responses to similar orbital and climatic conditions as the modern allows for not only a greater understanding of how the climate changed during the MIS 10-11, but also allows for the examination of natural climate variability in light of the addition of anthropogenic climate forcing.

  15. Reconstruction of vegetation and lake level at Moon Lake, North Dakota, from high-resolution pollen and diatom data

    SciTech Connect

    Grimm, E.C.; Laird, K.R.; Mueller, P.G. |

    1995-06-01

    High-resolution fossil-pollen and diatom data from Moon Lake, North Dakota, reveal major climate and vegetation changes near the western margin of the tall-grass prairie. Fourteen AMS radiocarbon dates provide excellent time control for the past {approximately}11,800 {sup 14}C years B.P. Picea dominated during the late-glacial until it abruptly declined {approximately}10,300 B.P. During the early Holocene ({approximately}10,300-8000 B.P.), deciduous trees and shrubs (Populus, Betula, Corylus, Quercus, and especially Ulmus) were common, but prairie taxa (Poaceae, Artemisia, and Chenopodiaceae/Amaranthaceae) gradually increased. During this period the diatoms indicate the lake becoming gradually more saline as water-level fell. By {approximately}8000 B.P., salinity had increased to the point that the diatoms were no longer sensitive to further salinity increases. However, fluctuating pollen percentages of mud-flat weeds (Ambrosia and Iva) indicate frequently changing water levels during the mid-Holocene ({approximately}8000-5000 B.P.). The driest millennium was 7000-6000 B.P., when Iva annua was common. After {approximately}3000 B.P. the lake became less-saline, and the diatoms were again sensitive to changing salinity. The Medieval Warm Period and Little Ice Age are clearly evident in the diatom data.

  16. Heinrich Stadial 4: sequence of events from North to South seen in high resolution Greenland and Antarctic ice cores and suggestion of synchronization to North Atlantic marine records

    NASA Astrophysics Data System (ADS)

    Guillevic, Myriam; Bazin, Lucie; Stowasser, Christopher; Landais, Amaelle; Masson-Delmotte, Valérie; Prié, Frédéric; Blunier, Thomas; Eynaud, Frédérique; Michel, Elisabeth; Vinther, Bo M.

    2013-04-01

    The last glacial period was affected by the occurrence of rapid climatic events at the millennial time scale known as Dansgaard-Oeschger (DO) events. In Greenland, these events are composed of a rapid temperature increase of 5-16° in less than a century, a warm phase lasting several centuries (InterStadial, GI) followed by a more gradual temperature decrease, and finally a cold phase (Stadial, GS). An Antarctic counterpart to each GI of the Last Glacial Period has been identified in Antarctic ice cores. In the North Atlantic Ocean, marine cores also record changes in surface temperature as well as the occurrence during cold phases of ice rafted debris horizons, corresponding to massive icebergs discharges, known as Heinrich (H) events. It has never been possible to identify the presence of H events from temperature proxies in Greenland ice cores. It thus remains difficult to compare the durations of H events and GS. Here, we focus on the time period covering DO 9 to 7 (41 to 34 ka b2k according to the GICC05/AICC2012 time scales), with H event 4 occurring during GS 9. We present a compilation of high resolution measurements (about 60 years) of this period based on Greenland and Antarctic ice cores data (ice and gas) synchronized on the new time scale AICC2012. Proxies for local Greenland temperature (δ15N-N2, δ18O-H2O) record GS9 as a uniform period lasting ~1850 years, followed by a sharp transition to GI8. This pattern is also seen in continuous methane concentration data (NEEM ice core, Greenland) showing a large increase by ~100 ppbv at the GS9 - GI8 transition. However, using additional proxies and a detailed inspection of the methane profile, GS9 can be divided into 3 phases. The first 600 years of GS9 (phase 1) are characterized by low CO2 and methane concentration, intermediate δD of CH4 (tracer of methane sources), high NEEM 17O-excess (proxy for vapor source relative humidity) and a progressive increase in EDML δ18O. The transition between phase 1

  17. An optimal merging technique for high-resolution precipitation products

    SciTech Connect

    Houser, Paul

    2011-01-01

    Precipitation products are currently available from various sources at higher spatial and temporal resolution than any time in the past. Each of the precipitation products has its strengths and weaknesses in availability, accuracy, resolution, retrieval techniques and quality control. By merging the precipitation data obtained from multiple sources, one can improve its information content by minimizing these issues. However, precipitation data merging poses challenges of scale-mismatch, and accurate error and bias assessment. In this paper we present Optimal Merging of Precipitation (OMP), a new method to merge precipitation data from multiple sources that are of different spatial and temporal resolutions and accuracies. This method is a combination of scale conversion and merging weight optimization, involving performance-tracing based on Bayesian statistics and trend-analysis, which yields merging weights for each precipitation data source. The weights are optimized at multiple scales to facilitate multiscale merging and better precipitation downscaling. Precipitation data used in the experiment include products from the 12-km resolution North American Land Data Assimilation (NLDAS) system, the 8-km resolution CMORPH and the 4-km resolution National Stage-IV QPE. The test cases demonstrate that the OMP method is capable of identifying a better data source and allocating a higher priority for them in the merging procedure, dynamically over the region and time period. This method is also effective in filtering out poor quality data introduced into the merging process.

  18. High-resolution single-channel seismic reflection surveys of Orange Lake and other selected sites of north central Florida

    USGS Publications Warehouse

    Kindinger, Jack G.; Davis, Jeffrey B.; Flocks, James G.

    1994-01-01

    The potential fluid exchange between lakes of north central Florida and the Floridan aquifer and the process by which exchange occurs is of critical concern to the St. Johns Water Management District. High-resolution seismic tools with relatively new digital technology were utilized in collecting geophysical data from Orange, Kingsley, Lowry and Magnolia Lakes, and the Drayton Island area of St. Johns River. The data collected shows the application of these techniques in understanding the formation of individual lakes, thus aiding in the management of these natural resources by identifying breaches or areas where the confining units are thin or absent between the water bodies and the Floridan aquifer. Orange Lake, the primary focus of the study, is a shallow flooded plain that was formed essentially as an erosional depression in the clayey Hawthorn formation. The primary karstic features identified in the lake were cover subsidence, cover collapse and buried sinkholes structures in various sizes and stages of development. Orange Lake was divided into three areas southeast, southwest, and north-central. Karst features within the southeast area of Orange Lake are mostly cover subsidence sinkholes and associated features. Many of the subsidence features found are grouped together to form larger composite sinkholes, some greater than 400 m in diameter. The size of these composite sinkholes and the number of buried subsidence sinkholes distinguish the southeast area from the others. The potential of lake waters leaking to the aquifer in the southeast area is probably controlled by the permeability of the cover sediments or by fractures that penetrate the lake floor. The lake bottom and subsurface of the north-central areas are relatively subsidence sinkholes that have no cover sediments overlying them, implying that the sinks have been actively subsiding with some seepage into the aquifer from the lake in this area due to the possible presence of the active subsidence

  19. A High-Resolution Stalagmite Record of East-Central North America Hydroclimates during Marine Isotope Stages 3-5

    NASA Astrophysics Data System (ADS)

    Springer, G. S.; Rowe, H. D.; Hardt, B. F.; Cheng, H.; Edwards, R. L.

    2014-12-01

    Long-term, high-resolution stalagmite carbon and oxygen isotope records from eastern North America (ENA) provides a mid-latitude history of relative changes in moisture availability and climate states during the last interglacial and glacial inception (127.7 to 41.6 ka before present). The West Virginia carbon record (δ13C) shows low-amplitude variability at orbital time scales, superimposed on a long-term asymmetric pattern similar to global sea level changes. Relative moisture availability peaked at ~114ka and following a brief dry interval at ~96ka, moisture availability gradually decreased. The gradual changes in moisture availability over ENA may reflect similarly gradual changes in mid-latitude zonal circulation as the polar cell and Laurentide Ice Sheet expanded or decreased. However, high frequency isotopic fluctuations are present and correlative with climatic phenomena recorded in Greenland. In contrast to the gradual changes in carbon isotopes, our oxygen record (δ18O) is precession-modulated and in phase with spring insolation, perhaps due to changes in precipitation seasonality. Altered precipitation seasonality or seasonal moisture availabilities would, as a result of annual variability in meteoric δ18O, have caused a weighting effect in stalagmitic calcite precipitation. However, this explanation for changes in δ18O does not explain why the two isotopic records of eccentricity (carbon) and precession (oxygen) are paced differently because moisture availability might resonably be expected to covary with precipitation seasonality. The same pattern is observed in a stalagmite from the previous interglacial-glacial cycle, so it is a persistent feature in our study area. We will present possible explanations.

  20. A high resolution seismic reflection image for the oceanic LAB (Lithosphere-Asthenosphere Boundary), beneath southern North Island, New Zealand

    NASA Astrophysics Data System (ADS)

    Stern, T. A.; Henrys, S. A.; Okaya, D. A.; Savage, M. K.; Sato, H.; Iwasaki, T.; Louie, J. N.; Lamb, S. H.

    2014-12-01

    We present the first high-resolution, multichannel, seismic-reflection image for the base of an oceanic plate. Our image is based on an 85 km-long, ~ 900 station deployment across the lower North Island of New Zealand. 12 x 500 kg dynamite shots were used as seismic sources. Strong reflections at a two way travel time of 9-12 s define the top of the plate that dips to the NW at ~ 12-15 degrees. Between 27-32 s we identify a pair of reflections on some shot gathers that are interpreted to come from a reflection 90-100 km deep, that dips to the NW at 15 degrees. We interpret the reflection pair as marking a Lithosphere-Asthenosphere Boundary (LAB) zone at the base of the Pacific plate. Using all 12 shots we made a CDP-stacked image (maximum fold = 15) that shows the LAB as a double event (2-3 s apart) dipping roughly parallel to the top of the plate and Benioff zone. Shot quality varies but the highest frequencies we record from the base of the plate are ~ 18 Hz, suggesting a boundary zone < 1 km thick. Seismic amplitude attributes, calibrated to the reflection from the top of the plate, indicate P-wave speed drops off at least 8% across the LAB boundary. The double reflection at the LAB is interpreted to be a 10 km-thick layer of low seismic wave speed. Because it is so sharp it cannot be a thermal boundary and must represent some form of mechanical change. Previous attempts to explain the abruptness of seismic wave speed changes at the LAB have appealed to layered zones of ponded melt, or anelastic relaxation due to water accumulating beneath the LAB. Both mechanisms may explain our observations and both would point to low viscosity below the LAB. However, the fact we see a ~ 10 km thick channel, with strong acoustic impedances each side of the channel, suggests a shear zone where plate motion ( ~ 9 cm/y in hotspot reference frame) is taken up and strain rates of ~3 x 10-13 s-1 are generated. This interpreted, low wave-speed, low-viscosity, shear zone appears to be

  1. A high resolution estimate of the inorganic nitrogen flux from the Scheldt estuary to the coastal North Sea during a nitrogen-limited algal bloom, spring 1995

    SciTech Connect

    Regnier, P. |; Steefel, C.I.

    1999-05-01

    Massive short-term (4--8 wk) blooms of Phaeocystis have been observed in coastal North Sea waters in the spring for a number of years now. Researchers have shown that these algal blooms, which lead to eutrophication of the local water mass, are limited by the supply of inorganic nitrogen from the various bordering estuaries. The authors demonstrate using the case of a typical heavily polluted macrotidal estuary, the Scheldt in Belgium and the Netherlands, that the short duration of the algal blooms requires estuarine flux estimation methods with a high temporal resolution. They use the fully transient, multicomponent reactive transport model CONTRASTE to compute inorganic nitrogen fluxes through the mouth of the Scheldt estuary into the North Sea. The model simulations use a detailed dataset of upstream river discharges and solute concentrations along with tidal forcings for a 210 day period between December 1, 1994 and June 30, 1995. The temporally resolved estimate shows that widely used estuarine flux estimation methods which rely on a steady-state approximation underestimate the inorganic nitrogen loading available to sustain primary production in the North Sea during the period of the algal bloom by 100%.

  2. A High-Resolution Multi-Proxy Lake Sediment Record from Torfdalsvatn Suggests an Enhanced Temperature Gradient Between North and South Iceland During the Early Holocene

    NASA Astrophysics Data System (ADS)

    Florian, Christopher; Geirsdóttir, Áslaug; Miller, Gifford; Axford, Yarrow

    2015-04-01

    Torfdalsvatn (66° 3'41.73"N, 20°23'14.26"W) is a relatively small (0.4 km2) and shallow (z=5.8 m) lake on the Skagi Peninsula of northern Iceland approximately 0.5 km from the modern coastline. This location is ideal for comparison with the many marine core records from the North Iceland Shelf that record variability in the northern extent of the warm Irminger Current, one of the primary controls on regional climate. To develop a record of north Iceland Holocene terrestrial climate, we analyzed a 8.4 m sediment core at 15-30 year resolution from approximately 12 ka to present using multiple proxies including sedimentary pigments, organic carbon flux, carbon to nitrogen ratio and stable isotopes, as well as biogenic silica measured by Fourier Transform Infrared Spectroscopy (FTIR-S). Results show gradual warming during the early Holocene, with stable soil development and peak aquatic productivity not occurring until after 8 ka. Increased aquatic productivity and a stable terrestrial environment between 6 and 2 ka indicate peak Holocene warmth in this interval. Aquatic productivity abruptly decreases at 1.8 ka associated with an increase in minerogenic material from landscape destabilization in the catchment with the onset of late Holocene cooling. At 1ka, the proportion of terrestrially-derived organic matter deposited in the lake sediment increases, indicating significant destabilization of soil horizons due to continued cooling and potential human settlement. This record is in good agreement with composite north Iceland chironomid-inferred July air temperatures from Axford et al. (2007), which show peak summer temperatures occurring between approximately 5 and 2 ka. The time of peak warmth at Torfdalsvatn is associated with peak biogenic carbonate concentration in the marine core MD99-2269, indicating an influx of warm Irminger waters. This is in contrast with Holocene climate records obtained from lakes in south and west Iceland, implying that there was an

  3. Evidence of added value in North American regional climate model hindcast simulations using ever-increasing horizontal resolutions

    NASA Astrophysics Data System (ADS)

    Lucas-Picher, Philippe; Laprise, René; Winger, Katja

    2016-07-01

    The study of regional rainfall trends over South Asia is critically important for food security and economy, as both these factors largely depend on the availability of water. In this study, South Asian summer monsoon rainfall trends on seasonal and monthly (June-September) time scales have been investigated using three observational data sets. Our analysis identify a dipole-type structure in rainfall trends over the region north of the Indo-Pak subcontinent, with significant increasing trends over the core monsoon region of Pakistan and significant decreasing trends over the central-north India and adjacent areas. The dipole is also evident in monthly rainfall trend analyses, which is more prominent in July and August. We show, in particular, that the strengthening of northward moisture transport over the Arabian Sea is a likely reason for the significant positive trend of rainfall in the core monsoon region of Pakistan. In contrast, over the central-north India region, the rainfall trends are significantly decreasing due to the weakening of northward moisture transport over the Bay of Bengal. The leading empirical orthogonal functions clearly show the strengthening (weakening) patterns of vertically integrated moisture transport over the Arabian Sea (Bay of Bengal) in seasonal and monthly interannual time scales. The regression analysis between the principal components and rainfall confirm the dipole pattern over the region. Our results also suggest that the extra-tropical phenomena could influence the mean monsoon rainfall trends over Pakistan by enhancing the cross-equatorial flow of moisture into the Arabian Sea.

  4. Evidence of added value in North American regional climate model hindcast simulations using ever-increasing horizontal resolutions

    NASA Astrophysics Data System (ADS)

    Lucas-Picher, Philippe; Laprise, René; Winger, Katja

    2016-06-01

    The study of regional rainfall trends over South Asia is critically important for food security and economy, as both these factors largely depend on the availability of water. In this study, South Asian summer monsoon rainfall trends on seasonal and monthly (June-September) time scales have been investigated using three observational data sets. Our analysis identify a dipole-type structure in rainfall trends over the region north of the Indo-Pak subcontinent, with significant increasing trends over the core monsoon region of Pakistan and significant decreasing trends over the central-north India and adjacent areas. The dipole is also evident in monthly rainfall trend analyses, which is more prominent in July and August. We show, in particular, that the strengthening of northward moisture transport over the Arabian Sea is a likely reason for the significant positive trend of rainfall in the core monsoon region of Pakistan. In contrast, over the central-north India region, the rainfall trends are significantly decreasing due to the weakening of northward moisture transport over the Bay of Bengal. The leading empirical orthogonal functions clearly show the strengthening (weakening) patterns of vertically integrated moisture transport over the Arabian Sea (Bay of Bengal) in seasonal and monthly interannual time scales. The regression analysis between the principal components and rainfall confirm the dipole pattern over the region. Our results also suggest that the extra-tropical phenomena could influence the mean monsoon rainfall trends over Pakistan by enhancing the cross-equatorial flow of moisture into the Arabian Sea.

  5. High resolution dating of moraines on Kodiak Island, Alaska links Atlantic and North Pacific climatic changes during the late glacial

    SciTech Connect

    Mann, D.H. . Alaska Quaternary Center)

    1992-01-01

    Much less is known about the paleoclimate and paleoceanography of the North Pacific than the North Atlantic despite the North Pacific's important role in the global ocean-climate system. Kodiak Island lies in the northwestern Gulf of Alaska astride the eastern end of the Aleutian Low. On southwestern Kodiak Island, coastal bluffs section a series of moraines, kettle ponds, and bogs formed between 15 and 9 ka BP. Distinctive tephras from volcanoes on the Alaska Peninsula provide time-lines within the stratigraphy. Deformation events recorded in sediment stacks from basins within glaciotectonic landforms allows precise dating of glacial events. An ice cap occupied the Kodiak archipelago during the last glaciation. Three glacial advances of the southwestern margin of this ice cap occurred after 15 ka BP. At 13.4 ka, piedmont ice lobes formed large push moraines extending into Shelikof Strait during the Low Cape Advance. The less-extensive Tundra Advance culminated between 12 and 11.7 ka BP followed by glacier retreat then readvance to form the prominent Olga Moraine system between 11 and 10 ka BP. The timing of the Tundra and Olga Advances correlates closely with that of the Older and Younger Dryas cold episodes in northwestern Europe suggesting that these climatic oscillations were synchronous throughout the northern hemisphere.

  6. Sensitivity of the North Atlantic Ocean Circulation to an abrupt change in the Nordic Sea overflow in a high resolution global coupled climate model

    NASA Astrophysics Data System (ADS)

    Zhang, Rong; Delworth, Thomas L.; Rosati, Anthony; Anderson, Whit G.; Dixon, Keith W.; Lee, Hyun-Chul; Zeng, Fanrong

    2011-12-01

    The sensitivity of the North Atlantic Ocean Circulation to an abrupt change in the Nordic Sea overflow is investigated for the first time using a high resolution eddy-permitting global coupled ocean-atmosphere model (GFDL CM2.5). The Nordic Sea overflow is perturbed through the change of the bathymetry in GFDL CM2.5. We analyze the Atlantic Meridional Overturning Circulation (AMOC) adjustment process and the downstream oceanic response to the perturbation. The results suggest that north of 34°N, AMOC changes induced by changes in the Nordic Sea overflow propagate on the slow tracer advection timescale, instead of the fast Kelvin wave timescale, resulting in a time lead of several years between subpolar and subtropical AMOC changes. The results also show that a stronger and deeper-penetrating Nordic Sea overflow leads to stronger and deeper AMOC, stronger northward ocean heat transport, reduced Labrador Sea deep convection, stronger cyclonic Northern Recirculation Gyre (NRG), westward shift of the North Atlantic Current (NAC) and southward shift of the Gulf Stream, warmer sea surface temperature (SST) east of Newfoundland and colder SST south of the Grand Banks, stronger and deeper NAC and Gulf Stream, and stronger oceanic eddy activities along the NAC and the Gulf Stream paths. A stronger/weaker Nordic Sea overflow also leads to a contracted/expanded subpolar gyre (SPG). This sensitivity study points to the important role of the Nordic Sea overflow in the large scale North Atlantic ocean circulation, and it is crucial for climate models to have a correct representation of the Nordic Sea overflow.

  7. An optimal merging technique for high-resolution precipitation products: OPTIMAL MERGING OF PRECIPITATION METHOD

    SciTech Connect

    Shrestha, Roshan; Houser, Paul R.; Anantharaj, Valentine G.

    2011-04-01

    Precipitation products are currently available from various sources at higher spatial and temporal resolution than any time in the past. Each of the precipitation products has its strengths and weaknesses in availability, accuracy, resolution, retrieval techniques and quality control. By merging the precipitation data obtained from multiple sources, one can improve its information content by minimizing these issues. However, precipitation data merging poses challenges of scale-mismatch, and accurate error and bias assessment. In this paper we present Optimal Merging of Precipitation (OMP), a new method to merge precipitation data from multiple sources that are of different spatial and temporal resolutions and accuracies. This method is a combination of scale conversion and merging weight optimization, involving performance-tracing based on Bayesian statistics and trend-analysis, which yields merging weights for each precipitation data source. The weights are optimized at multiple scales to facilitate multiscale merging and better precipitation downscaling. Precipitation data used in the experiment include products from the 12-km resolution North American Land Data Assimilation (NLDAS) system, the 8-km resolution CMORPH and the 4-km resolution National Stage-IV QPE. The test cases demonstrate that the OMP method is capable of identifying a better data source and allocating a higher priority for them in the merging procedure, dynamically over the region and time period. This method is also effective in filtering out poor quality data introduced into the merging process.

  8. Sensitivity of Tropical Cyclones to Resolution, Convection Scheme and Ocean Flux Parameterization over Eastern Tropical Pacific and Tropical North Atlantic Oceans in RegCM4 Model

    NASA Astrophysics Data System (ADS)

    Fuentes-Franco, Ramon; Giorgi, Filippo; Coppola, Erika; Zimmermann, Klaus

    2016-04-01

    The sensitivity of simulated tropical cyclones (TC) to resolution and convection scheme parameterization is investigated over the CORDEX Central America domain. The performance of the simulations, performed for a ten-year period (1989-1998) using ERA-Interim reanalysis as boundary and initial conditions, is assessed considering 50 km and 25 km resolution, and the use of two different convection schemes: Emanuel (Em) and Kain-Fritsch (KF). Two ocean surface fluxes are also compared as well: the Monin-Obukhov scheme, and the one proposed by Zeng et al. (1998). By comparing with observations, for the whole period we assess the spatial representation of the TC, and their intensity. At interannual scale we assess the representation of their variability and at daily scale we compare observed and simulated tracks in order to establish a measure of how similar to observed are the simulated tracks. In general the simulations using KF convection scheme show higher TC density, as well as longer-duration TC (up to 15 days) with stronger winds (> 50ms-1) than those using Em (<40ms-1). Similar results were found for simulations using 25 km respect to 50 km resolution. All simulations show a better spatial representation of simulated TC density and its interannual variability over the Tropical North Atlantic Ocean (TNA) than over the Eastern Tropical Pacific Ocean (ETP). The 25 km resolution simulations show an overestimation of TC density compared to observations over ETP off the coast of Mexico. The duration of the TC in simulations using 25km resolution is similar to the observations, while is underestimated by the 50km resolution. The Monin-Obukhov ocean flux overestimates the number of TCs, while Zeng parameterization give a number similar to observations in both oceans. At daily scale, in general all simulations capture the density of cyclones during highly active TC seasons over the TNA, however the tracks generally are not coincident with observations, except for highly

  9. Using multi-satellite data fusion to estimate daily high spatial resolution evapotranspiration over a forested site in North Carolina

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Atmosphere-Land Exchange Inverse model and associated disaggregation scheme (ALEXI/DisALEXI). Satellite-based ET retrievals from both the Moderate Resolution Imaging Spectoradiometer (MODIS; 1km, daily) and Landsat (30m, bi-weekly) are fused with The Spatial and Temporal Adaptive Reflective Fusion ...

  10. Rocks, resolution, and the record at the terrestrial K/T boundary, eastern Montana and western North Dakota

    NASA Technical Reports Server (NTRS)

    Fastovsky, D. E.

    1988-01-01

    Reconstructions of mass extinction events are based upon faunal patterns, reconstructed from numerical and diversity data ultimately derived from rocks. It follows that geological complexity must not be subsumed in the desire to establish patterns. This is exemplified at the Terrestrial Cretaceous-Tertiary (K/T) boundary in eastern Montana and western North Dakota, where there are represented all of the major indicators of the terrestrial K/T transition: dinosaurian and non-dinosaurian vertebrate faunas, pollen, a megaflora, iridium, and shocked quartz. It is the patterns of these indicators that shape ideas about the terrestrial K/T transition. In eastern Montana and western North Dakota, the K/T transition is represented lithostratigraphically by the Cretaceous Hell Creek Formation, and the Tertiary Tullock Formation. Both of these are the result of aggrading, meandering, fluvial systems, a fact that has important consequences for interpretations of fossils they contain. Direct consequences of the fluvial depositional environments are: facies are lenticular, interfingering, and laterally discontinuous; the occurrence of fossils in the Hell Creek and Tullock formations is facies-dependent; and the K/T sequence in eastern Montana and western North Dakota is incomplete, as indicated by repetitive erosional contacts and soil successions. The significance for faunal patterns of lenticular facies, facies-dependent preservation, and incompleteness is discussed. A project attempting to reconstruct vertebrate evolution in a reproducible manner in Hell Creek-type sediments must be based upon a reliable scale of correlations, given the lenticular nature of the deposits, and a recognition of the fact that disparate facies are not comparable in terms of either numbers of preserved vertebrates or depositional rates.

  11. High-Resolution Satellite-Derived PM2.5 from Optimal Estimation and Geographically Weighted Regression over North America.

    PubMed

    van Donkelaar, Aaron; Martin, Randall V; Spurr, Robert J D; Burnett, Richard T

    2015-09-01

    We used a geographically weighted regression (GWR) statistical model to represent bias of fine particulate matter concentrations (PM2.5) derived from a 1 km optimal estimate (OE) aerosol optical depth (AOD) satellite retrieval that used AOD-to-PM2.5 relationships from a chemical transport model (CTM) for 2004-2008 over North America. This hybrid approach combined the geophysical understanding and global applicability intrinsic to the CTM relationships with the knowledge provided by observational constraints. Adjusting the OE PM2.5 estimates according to the GWR-predicted bias yielded significant improvement compared with unadjusted long-term mean values (R(2) = 0.82 versus R(2) = 0.62), even when a large fraction (70%) of sites were withheld for cross-validation (R(2) = 0.78) and developed seasonal skill (R(2) = 0.62-0.89). The effect of individual GWR predictors on OE PM2.5 estimates additionally provided insight into the sources of uncertainty for global satellite-derived PM2.5 estimates. These predictor-driven effects imply that local variability in surface elevation and urban emissions are important sources of uncertainty in geophysical calculations of the AOD-to-PM2.5 relationship used in satellite-derived PM2.5 estimates over North America, and potentially worldwide. PMID:26261937

  12. Open-System Magma Reservoir Affects Gas Segregation, Vesiculation, Fragmentation and Lava/Pyroclast Dispersal During the 1.2 km-deep 2007-2010 Submarine Eruption at West Mata Volcano

    NASA Astrophysics Data System (ADS)

    Rubin, K. H.; Clague, D. A.; Embley, R. W.; Hellebrand, E.; Soule, S. A.; Resing, J.

    2014-12-01

    West Mata, a small, active rear-arc volcano in the NE Lau Basin, erupts crystal and gas rich boninite magma. Eruptions were observed at the summit (1.2 km water depth) during 5 ROV Jason dives in 2009 (the deepest erupting submarine volcano observed to date). Subsequent ROV and ship-based bathymetric mapping revealed that a pit crater formed and the summit eruption ceased in 2010, with roughly simultaneous eruptions along the SW rift zone. During the summit eruption, a combination of water depth, H2O-CO2-rich and high crystallinity magma, a split in the conduit to feed two vent sites, and waxing/waning magma supply led to a range of effusive/explosive eruption styles and volcanic deposit types. The 2-3 vent Hades cluster and the lone Prometheus vent had different eruption characteristics. Petrographic, petrologic and geochemical studies of erupted products indicate a change in magma composition in time and space over a period of 3.5 yrs, suggesting a small, open-system magma reservoir within the volcano. Prometheus (1174m depth) produced mostly pyroclastic material during our observations (e.g., highly vesicular glowing fluidal ejecta that cooled in the water column and rounded recycled dense clasts), but sampling and 210Po radiometric dating show that several months prior pillowed lava flows, subsequently covered with cm-sized pyroclasts, had flowed >50m from the vent. In contrast, vents at Hades (1200m depth) cycled between lava production and vigorous degassing, 10-20m high fire fountains and bursts of glowing lava-skinned bubbles, the products of which froze/broke in the water column, forming unstable cones of spatter and scoria near the vents. We hypothesize that bubbles collapse rather than form lava balloons because of skin brittleness (from high crystal content) and hydrostatic pressure. Clast settling times and patterns suggest >100m water column rise height for 10+ cm-sized fragments. Pillow flows were also observed to be issuing from the base of the Hades cones some 30-50m below, and had traveled 100 m from the vent in the months before. This, plus hydrophone and water column data (Embley et al., G3, in review), and the occurrence of extensive deposits of young, glassy, identical composition cm-sized fragmental material 250 m from Hades suggest an earlier more vigorous phase of the eruption.

  13. Sensitivity of advective transfer times across the North Atlantic Ocean to the temporal and spatial resolution of model velocity data: Implication for European eel larval transport

    NASA Astrophysics Data System (ADS)

    Blanke, Bruno; Bonhommeau, Sylvain; Grima, Nicolas; Drillet, Yann

    2012-05-01

    European eel (Anguilla anguilla) larvae achieve one of the longest larval migrations of the marine realm, i.e., more than 6000 km from their spawning grounds in the Sargasso Sea to European continental shelves. The duration of this migration remains debated, between 7 months and 3 years. This information is, however, crucial since it determines the period over which larvae are affected by environmental conditions and hence the subsequent recruitment success. We investigate the pathways and duration of trans-Atlantic connections using 3 years of high-resolution (daily, 1/12°) velocity fields available from a Mercator-Océan model configuration without data assimilation. We study specifically the effect of spatial and temporal resolutions on our estimates by applying various filters in time (from daily to 12-day averages) and space (from 1/12° to 1° gridcell aggregation) to the nominal model outputs. Numerical particles are released in the presumed European eel spawning area and considered as passive tracers at three specific depths (around 0, 50, and 200 m). We diagnose particularly the intensity of the water transfer between suitable control sections that encompass the eel larva distribution. Transit ages are also investigated, with a particular focus on the pathways that minimize the connection times between the western and eastern North Atlantic. We show that small-scale structures (eddies and filaments) contribute to faster connections though they also correspond to additional complexity in trajectories. The shortest pathways mostly follow the Gulf Stream and the North Atlantic Drift, whereas interior connections require longer transfers that prove less compatible with biological observations.

  14. Daily atmospheric circulation patterns from the North Atlantic region as recorded in high-resolution stable isotope records from Greenland ice cores

    NASA Astrophysics Data System (ADS)

    Rimbu, N.; Lohmann, G.

    2009-04-01

    We investigate the relationship between decadal variability of several stable isotope (deuterium and oxygen 18) high-resolution records from Greenland ice cores and the frequency of daily circulation patterns from the North Atlantic realm. Daily circulation patterns as well as their seasonal frequencies for the period 1850-2003 used in this study were published by Philipp et al. (2007). The main source of stable isotopes is the world ocean. During their path from the oceans to the Greenland ice sheet the concentration of heavy relative to light stable isotopes is modified by different fractionation processes. The fractionation depends on the moisture source locations and conditions, temperature of condensation, rain-out effect, amount effect, altitude effect, re-evaporation and kinetic processes. A correlation analysis reveals that a large part of stable isotopes decadal variability from Greenland ice cores is controlled by a summer atmospheric circulation pattern (pattern 2 according to Philipp's et al. classification). Analysis of the moisture transport using NCEP/NCAR reanalysis fields suggests a strong rain-out effect associated with this circulation pattern. This may explain the strong correlation between the frequency of this pattern and stable isotope variability from Greenland ice cores. We argue that high-resolution stable isotope records from Greenland can be used to reconstruct the frequency of certain daily circulation patterns during past periods. This helps to put the decadal variations of the daily circulation patterns as identified from analysis of observed data into a long-term context. Reference Philipp A, Della-Marta PM, Jacobeit J, Fereday DR, Jones PD, Moberg A, Wanner H. 2007: Long-term variability of daily North Atlantic-European pressure patterns since 1850 classified by simulated annealing clustering. J. Climate 20: 4065-4095, doi: 10.1175/JCLI4175.1

  15. High-resolution seismic stratigraphy of North Carolina continental margin, Cape Fear Terrace: sea level cyclicity, Paleobathymetry, and Gulf Stream dynamics

    SciTech Connect

    Matteucci, T.D.; Hine, A.C.; Snyder, S.W.; Riggs, S.

    1985-02-01

    A high-resolution seismic stratigraphic study of the Cape Fear Terrace (outer continental shelf off North Carolina) combined with biolithostratigraphic data has yielded a chronostratigraphic framework of the Quaternary sequences that comprise this portion of the North American continental margin. The Cape Fear Terrace is an anomalous, point-source, prograding, shelf-margin feature that has experienced positive relief through much of the Quaternary. This upbuilding or outbuilding followed a period of active, early Pliocene, submarine erosion in which the ancestral Gulf stream cut an erosional path beneath the presence shelf margin. The terrace was originally built up during a relative lowstand of sea level with the construction of a shelf-edge deltaic feature. Severe modification of this delta front occurred during a relative highstand of sea level as the Gulf Stream began to impinge upon the margin. The anomalously thick accumulation of shelf-edge sediments acted as a barrier to flow, inducing complex flow patterns of the Gulf Stream. Excavation of these sediments yielded a terrace feature with preferential erosion on the upstream side. Subsequent deposition in the terrace region may have resulted during fairly highstands of sea level, as evidenced by the presence of active seaward-prograding sand waves in the terrace region today. Once this shelf-edge bathymetric irregularity (the terrace) had been established, the Gulf Stream acted as a dynamic force inducing cellular flow structures within the shelf environment, which enabled sediments to be transported seaward along the paleo-shoals complex.

  16. High-resolution record of geomagnetic excursions in the Matuyama chron constrains the ages of the Feiliang and Lanpo Paleolithic sites in the Nihewan Basin, North China

    NASA Astrophysics Data System (ADS)

    Ao, Hong; An, Zhisheng; Dekkers, Mark J.; Wei, Qi; Pei, Shuwen; Zhao, Hui; Zhao, Hongli; Xiao, Guoqiao; Qiang, Xiaoke; Wu, Dacheng; Chang, Hong

    2012-08-01

    The Nihewan Basin (40°N) in North China is a rich source of Early Pleistocene Paleolithic sites and thus a key area for studying early human evolution in high-latitude (from an early human perspective) East Asia. Here a high-resolution magnetostratigraphic investigation is carried out on a fluvio-lacustrine section in the northeastern Nihewan Basin, which contains the Feiliang and Lanpo Paleolithic sites. Paleomagnetic results suggest that this section records the lower portion of the Brunhes polarity chron and the upper Matuyama polarity chron. Furthermore, the Jaramillo polarity subchron and seven of the nine validated geomagnetic excursions within the Matuyama polarity chron are identified, including the Kamikatsura, Santa Rosa, Intra-Jaramillo, Cobb Mountain, Bjorn, Gardar and Gilsa excursions. The Feiliang artifact layer is located just at the bottom of the Cobb Mountain excursion, thus its age is estimated to be ˜1.2 Ma. The Lanpo artifact layer appears to be coeval with the Gilsa excursion, yielding an estimated age of ˜1.6 Ma. This study provides new evidence for the presence of early humans in North China before 1.5 Ma and documents the powerful role of geomagnetic excursions: they provide valuable age control points for ongoing efforts to date the early Paleolithic sites.

  17. High-resolution digital elevation model of Mount St. Helens crater and upper North Fork Toutle River basin, Washington, based on an airborne lidar survey of September 2009

    USGS Publications Warehouse

    Mosbrucker, Adam

    2014-01-01

    The lateral blast, debris avalanche, and lahars of the May 18th, 1980, eruption of Mount St. Helens, Washington, dramatically altered the surrounding landscape. Lava domes were extruded during the subsequent eruptive periods of 1980–1986 and 2004–2008. More than three decades after the emplacement of the 1980 debris avalanche, high sediment production persists in the North Fork Toutle River basin, which drains the northern flank of the volcano. Because this sediment increases the risk of flooding to downstream communities on the Toutle and Cowlitz Rivers, the U.S. Army Corps of Engineers (USACE), under the direction of Congress to maintain an authorized level of flood protection, built a sediment retention structure on the North Fork Toutle River in 1989 to help reduce this risk and to prevent sediment from clogging the shipping channel of the Columbia River. From September 16–20, 2009, Watershed Sciences, Inc., under contract to USACE, collected high-precision airborne lidar (light detection and ranging) data that cover 214 square kilometers (83 square miles) of Mount St. Helens and the upper North Fork Toutle River basin from the sediment retention structure to the volcano's crater. These data provide a digital dataset of the ground surface, including beneath forest cover. Such remotely sensed data can be used to develop sediment budgets and models of sediment erosion, transport, and deposition. The U.S. Geological Survey (USGS) used these lidar data to develop digital elevation models (DEMs) of the study area. DEMs are fundamental to monitoring natural hazards and studying volcanic landforms, fluvial and glacial geomorphology, and surface geology. Watershed Sciences, Inc., provided files in the LASer (LAS) format containing laser returns that had been filtered, classified, and georeferenced. The USGS produced a hydro-flattened DEM from ground-classified points at Castle, Coldwater, and Spirit Lakes. Final results averaged about five laser last

  18. Role of dust direct radiative effect on the tropical rain belt over Middle East and North Africa: A high-resolution AGCM study

    NASA Astrophysics Data System (ADS)

    Bangalath, Hamza Kunhu; Stenchikov, Georgiy

    2015-05-01

    To investigate the influence of direct radiative effect of dust on the tropical summer rain belt across the Middle East and North Africa (MENA), the present study utilizes the high-resolution capability of an Atmospheric General Circulation Model, the High-Resolution Atmospheric Model. Ensembles of Atmospheric Model Intercomparison Project style simulations have been conducted with and without dust radiative impacts, to differentiate the influence of dust on the tropical rain belt. The analysis focuses on summer season. The results highlight the role of dust-induced responses in global- and regional-scale circulations in determining the strength and the latitudinal extent of the tropical rain belt. A significant response in the strength and position of the local Hadley circulation is predicted in response to meridionally asymmetric distribution of dust and the corresponding radiative effects. Significant responses are also found in regional circulation features such as African Easterly Jet and West African Monsoon circulation. Consistent with these dynamic responses at various scales, the tropical rain belt across MENA strengthens and shifts northward. Importantly, the summer precipitation over the semiarid strip south of Sahara, including Sahel, increases up to 20%. As this region is characterized by the "Sahel drought," the predicted precipitation sensitivity to the dust loading over this region has a wide range of socioeconomic implications. Overall, the study demonstrates the extreme importance of incorporating dust radiative effects and the corresponding circulation responses at various scales, in the simulations and future projections of this region's climate.

  19. Towards a high resolution, integrated hydrology model of North America: Diagnosis of feedbacks between groundwater and land energy fluxes at continental scales.

    NASA Astrophysics Data System (ADS)

    Maxwell, Reed; Condon, Laura

    2016-04-01

    Recent studies demonstrate feedbacks between groundwater dynamics, overland flow, land surface and vegetation processes, and atmospheric boundary layer development that significantly affect local and regional climate across a range of climatic conditions. Furthermore, the type and distribution of vegetation cover alters land-atmosphere water and energy fluxes, as well as runoff generation and overland flow processes. These interactions can result in significant feedbacks on local and regional climate. In mountainous regions, recent research has shown that spatial and temporal variability in annual evapotranspiration, and thus water budgets, is strongly dependent on lateral groundwater flow; however, the full effects of these feedbacks across varied terrain (e.g. from plains to mountains) are not well understood. Here, we present a high-resolution, integrated hydrology model that covers much of continental North America and encompasses the Mississippi and Colorado watersheds. The model is run in a fully-transient manner at hourly temporal resolution incorporating fully-coupled land energy states and fluxes with integrated surface and subsurface hydrology. Connections are seen between hydrologic variables (such as water table depth) and land energy fluxes (such as latent heat) and spatial and temporal scaling is shown to span many orders of magnitude. Model results suggest that partitioning of plant transpiration to bare soil evaporation is a function of water table depth and later groundwater flow. Using these transient simulations as a proof of concept, we present a vision for future integrated simulation capabilities.

  20. Identifying Erosional Hotspots in Streams Along the North Shore of Lake Superior, Minnesota using High-Resolution Elevation and Soils Data

    NASA Astrophysics Data System (ADS)

    Wick, Molly J.

    Many streams on the North Shore of Lake Superior, Minnesota, USA, are impaired for turbidity driven by excess fine sediment loading. The goal of this project was to develop a GIS-based model using new, openly-available, high-resolution remote datasets to predict erosional hotspots at a reach scale, based on three study watersheds: Amity Creek, the Talmadge River, and the French River. The ability to identify erosional hotspots, or locations that are highly susceptible to erosion, using remote data would be helpful for watershed managers in implementing practices to reduce turbidity in these streams. Erosion in streams is a balance between driving forces, largely controlled by topography; and resisting forces, controlled by the materials that make up a channel's bed and banks. New high-resolution topography and soils datasets for the North Shore provide the opportunity to extract these driving and resisting forces from remote datasets and possibly predict erosion potential and identify erosional hotspots. We used 3-meter LiDAR-derived DEMs to calculate a stream power-based erosion index, to identify stream reaches with high radius of curvature, and to identify stream reaches proximal to high bluffs. We used the Soil Survey Geographic (SSURGO) Database to investigate changes in erodibility along the channel. Because bedrock exposure significantly limits erodibility, we investigated bedrock exposure using bedrock outcrop maps made available by the Minnesota Geological Survey (MGS, Hobbs, 2002; Hobbs, 2009), and by using a feature extraction tool to remotely map bedrock exposure using high-resolution air photos and LiDAR data. Predictions based on remote data were compared with two datasets. Bank Erosion Hazard Index surveys, which are surveys designed to evaluate erosion susceptibility of banks, were collected along the three streams. In addition, a 500-year flood event during our field season gave us the opportunity to collect erosion data after a major event and

  1. High-resolution well-log derived dielectric properties of gas-hydrate-bearing sediments, Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope

    USGS Publications Warehouse

    Sun, Y.; Goldberg, D.; Collett, T.; Hunter, R.

    2011-01-01

    A dielectric logging tool, electromagnetic propagation tool (EPT), was deployed in 2007 in the BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well (Mount Elbert Well), North Slope, Alaska. The measured dielectric properties in the Mount Elbert well, combined with density log measurements, result in a vertical high-resolution (cm-scale) estimate of gas hydrate saturation. Two hydrate-bearing sand reservoirs about 20 m thick were identified using the EPT log and exhibited gas-hydrate saturation estimates ranging from 45% to 85%. In hydrate-bearing zones where variation of hole size and oil-based mud invasion are minimal, EPT-based gas hydrate saturation estimates on average agree well with lower vertical resolution estimates from the nuclear magnetic resonance logs; however, saturation and porosity estimates based on EPT logs are not reliable in intervals with substantial variations in borehole diameter and oil-based invasion.EPT log interpretation reveals many thin-bedded layers at various depths, both above and below the thick continuous hydrate occurrences, which range from 30-cm to about 1-m thick. Such thin layers are not indicated in other well logs, or from the visual observation of core, with the exception of the image log recorded by the oil-base microimager. We also observe that EPT dielectric measurements can be used to accurately detect fine-scale changes in lithology and pore fluid properties of hydrate-bearing sediments where variation of hole size is minimal. EPT measurements may thus provide high-resolution in-situ hydrate saturation estimates for comparison and calibration with laboratory analysis. ?? 2010 Elsevier Ltd.

  2. High-resolution water column survey to identify active sublacustrine hydrothermal discharge zones within Lake Rotomahana, North Island, New Zealand

    NASA Astrophysics Data System (ADS)

    Walker, Sharon L.; de Ronde, Cornel E. J.; Fornari, Daniel; Tivey, Maurice A.; Stucker, Valerie K.

    2016-03-01

    Autonomous underwater vehicles were used to conduct a high-resolution water column survey of Lake Rotomahana using temperature, pH, turbidity, and oxidation-reduction potential (ORP) to identify active hydrothermal discharge zones within the lake. Five areas with active sublacustrine venting were identified: (1) the area of the historic Pink Terraces; (2) adjacent to the western shoreline subaerial "Steaming Cliffs," boiling springs and geyser; (3) along the northern shoreline to the east of the Pink Terrace site; (4) the newly discovered Patiti hydrothermal system along the south margin of the 1886 Tarawera eruption rift zone; and (5) a location in the east basin (northeast of Patiti Island). The Pink Terrace hydrothermal system was active prior to the 1886 eruption of Mount Tarawera, but venting along the western shoreline, in the east basin, and the Patiti hydrothermal system appear to have been initiated in the aftermath of the eruption, similar to Waimangu Valley to the southwest. Different combinations of turbidity, pH anomalies (both positive and negative), and ORP responses suggest vent fluid compositions vary over short distances within the lake. The seasonal period of stratification limits vertical transport of heat to the surface layer and the hypolimnion temperature of Lake Rotomahana consequently increases with an average warming rate of ~ 0.010 °C/day due to both convective hydrothermal discharge and conductive geothermal heating. A sudden temperature increase occurred during our 2011 survey and was likely the response to an earthquake swarm just 11 days prior.

  3. High-resolution analysis of a North Sea phytoplankton community structure based on in situ flow cytometry observations and potential implication for remote sensing

    NASA Astrophysics Data System (ADS)

    Thyssen, M.; Alvain, S.; Lefèbvre, A.; Dessailly, D.; Rijkeboer, M.; Guiselin, N.; Creach, V.; Artigas, L.-F.

    2015-07-01

    Phytoplankton observation in the ocean can be a challenge in oceanography. Accurate estimations of its biomass and dynamics will help to understand ocean ecosystems and refine global climate models. Relevant data sets of phytoplankton defined at a functional level and on a sub-meso- and daily scale are thus required. In order to achieve this, an automated, high-frequency, dedicated scanning flow cytometer (SFC, Cytobuoy b.v., the Netherlands) has been developed to cover the entire size range of phytoplankton cells whilst simultaneously taking pictures of the largest of them. This cytometer was directly connected to the water inlet of a PocketFerryBox during a cruise in the North Sea, 08-12 May 2011 (DYMAPHY project, INTERREG IV A "2 Seas"), in order to identify the phytoplankton community structure of near surface waters (6 m) with a high spatial resolution basis (2.2 ± 1.8 km). Ten groups of cells, distinguished on the basis of their optical pulse shapes, were described (abundance, size estimate, red fluorescence per unit volume). Abundances varied depending on the hydrological status of the traversed waters, reflecting different stages of the North Sea blooming period. Comparisons between several techniques analysing chlorophyll a and the scanning flow cytometer, using the integrated red fluorescence emitted by each counted cell, showed significant correlations. For the first time, the community structure observed from the automated flow cytometry data set was compared with PHYSAT reflectance anomalies over a daily scale. The number of matchups observed between the SFC automated high-frequency in situ sampling and remote sensing was found to be more than 2 times better than when using traditional water sampling strategies. Significant differences in the phytoplankton community structure within the 2 days for which matchups were available suggest that it is possible to label PHYSAT anomalies using automated flow cytometry to resolve not only dominant groups but

  4. Past variability of the North American Monsoon: ultrahigh resolution records from the lower Gulf of California for the last 6 Ka

    NASA Astrophysics Data System (ADS)

    Herguera, J. C.; Nava Fernandez, C.; Bernal, G.; Paull, C. K.

    2015-12-01

    The North American Monsoon regime results from an interplay between the ocean, atmosphere and continental topography though there is an ongoing debate as to the relative importance of sea surface temperatures (SSTs) in the NE tropical Pacific warm water lens region, solar radiation variability, land snow cover and soil moisture over the Western North America mountain ranges and the strength and spatial patterns of the dominant winds. The links between these factors and the monsoonal variability appear to be of variable importance during the short instrumental record, and hampers any prediction on the future evolution of this climatic regime in a warming climate. The terrigenous component in very-high sedimentation rate sediments on the margins of the Gulf of California links monsoonal precipitation patterns on land with the varying importance of the lithogenic component in these margin sediments. Here we use the elemental composition of Si and Fe in these margin sediments, as a proxy for the lithogenic component in a collection of box and kasten cores from the eastern and western margins of the lower Gulf of California. This region shows a strong tropical influence during the summer, as part of the northernmost extension of the eastern tropical Pacific warm water lens region. A period when the southwestern winds bring moist air masses inland enhancing the monsoonal rains on the eastern reaches of Sierra Madre Occidental. High resolution XRF results allow us to explore the relationships between different elemental ratios in these sediments and the available instrumental record and several paleo-reconstructions to evaluate the possible links between external forcings and internal feedback effects, to help to understand the controls on the evolution of the monsoonal regime in this region.

  5. High resolution images of the mid- to lower-crust beneath the North Anatolian Fault obtained using the scattered seismic wavefield

    NASA Astrophysics Data System (ADS)

    Thompson, D. A.; Rost, S.; Houseman, G.; Cornwell, D. G.; Turkelli, N.; Teoman, U.; Kahraman, M.; Altuncu Poyraz, S.; Gülen, L.; Utkucu, M.; Rondenay, S.; Frederiksen, A. W.

    2014-12-01

    Deformation along major strike-slip faults is typically focussed into narrow damage zones at the surface, but the distribution at greater depths is more enigmatic. For instance, deformation in the lower crust beneath these faults is often attributed to much broader ductile shear zones. Deciphering how strain is distributed throughout the crust and lithospheric mantle is important because it has ramifications on the earthquake loading cycle. In order to better understand the structure of these systems at depth, we investigate the North Anatolian Fault Zone (NAFZ) as part of a multidisciplinary project entitled FaultLab. This fault system extends ~1200km across Turkey and has shown a clear west-east progression in seismicity over the last century, culminating in 2 catastrophic earthquakes located close to the population centers of Izmit and Duzce in 1999. In this contribution, we will present new data from a dense seismic array (Dense Array for North Anatolia, DANA, a 6x11 grid with a nominal station spacing of 7km) located across a part of the ruptured segment of the Izmit earthquake. Using the techniques of teleseismic scattering tomography and scattering migration, the excellent resolution afforded by DANA highlights sharp (< 5km) lateral variations in structure at mid- to lower-crustal depths (~20-25 km) across two branches of the NAFZ. This suggests that deformation zones between distinct crustal blocks remain narrow at these depths. Integrating complementary results from other parts of the FaultLab project (satellite geodesy, geodynamical modelling, structural geology), the results appear to be consistent with postseismic deformation being accommodated through afterslip on the deep extension of a narrow fault zone as opposed to a broad ductile region beneath the seismogenic extent of the fault.

  6. More evidence for a glacial world prior to the middle Miocene oxygen-isotope enrichment event: resolution of early Miocene glacioeustatic sea-level cyclicity from North Carolina

    SciTech Connect

    Synder, S.W.; Synder, S.W.; Waters, V.J.; Steinmetz, J.C.; Hine, A.C.; Riggs, S.R.

    1985-01-01

    Benthic delta/sup 18/O analyses from DSDP sites worldwide have documented a positive excursion (similarly ordered + 1.5%) through the early-middle Miocene. These data are traditionally interpreted as marking the transition from an ice-free world to one that was extensively glaciated. Recently, however, this doctrine has been challenged, and an alternative hypothesis suggests the benthic delta/sup 18/O excursion primarily reflects a temperature drop within a previously glaciated world. Within the North Carolina continental margin, a chronostratigraphic framework consisting of 6 discrete early Miocene depositional sequences was established via stratigraphic interpretations from over 21,000 Km of high-resolution seismic reflection profiles. Each sequence is bound by unconformities which were mapped throughout the continental margin. Biostratigraphic analyses of 140 vibracores penetrating these sequences demonstrate that each sequence is a consequence of 4th-order (10/sup 5/yrs) sea-level cyclicity, similar in duration (100-300 Ka) and amplitude (100-150 m) to the glacioeustatic sea-level fluctuations of the Quaternary Epoch. Recognition of late Burdigalian high-frequency (4th-order) sea-level cyclicity demonstrates that continental ice-sheets were large enough during the early Miocene to drive eustatic sea-level fluctuations with Milankovitch-type periodicities. This further supports Matthews (1984) hypothesis that continental ice-caps existed on Antarctica PRIOR to the well-documented middle Miocene benthic delta/sup 18/O global enrichment event.

  7. Four micron high-resolution spectra of Jupiter in the North Equatorial Belt: H3(+) emissions and the C-12/C-13 ratio

    NASA Technical Reports Server (NTRS)

    Marten, A.; De Bergh, C.; Owen, T.; Gautier, D.; Maillard, J. P.; Drossart, P.; Lutz, B. L.; Orton, G. S.

    1994-01-01

    Spectra of the North Equatorial Belt of Jupiter were obtained in March 1992 at an unapodized resolution of 0.1/cm between 2450 and 2600/cm with the Fourier Transform Spectrometer at the 3.6 m Canada-France-Hawaii Telescope (CFHT) on Mauna Kea. Several emissions from the nu(sub 2) band of H3(+) were detected. The excitation temperature derived from the relative intensities of these emissions averaged over a wide range of longitudes is 800 +/- 100 K, and the H3(+) column density is 1.56(sup +1.0)(sub -0.5) x 10(exp 11)/sq. cm. In addition, several strong absorption features due to (13)CH4 were observed. A comparison between (12)CH4 and (13)CH4 absorptions allowed us to obtain a new measurement of the C-12/C-13 ratio. We found that this ratio, estimated for the first time in this spectral range, is 89 (+/- 25), in agreement with the terrestrial value.

  8. High-resolution IP25-based reconstruction of sea-ice variability in the western North Pacific and Bering Sea during the past 18,000 years

    NASA Astrophysics Data System (ADS)

    Méheust, Marie; Stein, Ruediger; Fahl, Kirsten; Max, Lars; Riethdorf, Jan-Rainer

    2016-04-01

    Due to its strong influence on heat and moisture exchange between the ocean and the atmosphere, sea ice is an essential component of the global climate system. In the context of its alarming decrease in terms of concentration, thickness and duration, understanding the processes controlling sea-ice variability and reconstructing paleo-sea-ice extent in polar regions have become of great interest for the scientific community. In this study, for the first time, IP25, a recently developed biomarker sea-ice proxy, was used for a high-resolution reconstruction of the sea-ice extent and its variability in the western North Pacific and western Bering Sea during the past 18,000 years. To identify mechanisms controlling the sea-ice variability, IP25 data were associated with published sea-surface temperature as well as diatom and biogenic opal data. The results indicate that a seasonal sea-ice cover existed during cold periods (Heinrich Stadial 1 and Younger Dryas), whereas during warmer intervals (Bølling-Allerød and Holocene) reduced sea ice or ice-free conditions prevailed in the study area. The variability in sea-ice extent seems to be linked to climate anomalies and sea-level changes controlling the oceanographic circulation between the subarctic Pacific and the Bering Sea, especially the Alaskan Stream injection though the Aleutian passes.

  9. High-resolution records of Bonneville Basin paleohydrology offer new insights into changing atmospheric circulation patterns over North America from 26 ka through the Holocene

    NASA Astrophysics Data System (ADS)

    Steponaitis, E.; McGee, D.; Quade, J.; Andrews, A.; Edwards, R.; Hsieh, Y.; Broecker, W. S.; Cheng, H.

    2013-12-01

    The tremendous lateral extent of the Bonneville Basin, which covers much of western Utah, makes paleoclimate records from this region highly sensitive to global-scale changes in atmospheric circulation and hydrology. New paleoclimate records from speleothems and lacustrine carbonates offer insight into the hydrology the Bonneville Basin spanning from 26 ka through the Holocene. Anchored by high-precision U-Th dates, Sr records from crystalline lacustrine carbonates from throughout the basin provide a mechanism for constraining zonal variations in precipitation over time. To accomplish this, we exploit spatial variations in the 87Sr/86Sr ratios of fluvial inputs to Lake Bonneville (Hart et al. 2004). Paired with stable isotope records, these Sr records give a spatially detailed view of the response of Great Basin to global climate change, and by extension, insight into atmospheric circulation patterns over North America during abrupt climate changes. Stable isotope and trace metal records from Lehman Cave speleothems provide a high-resolution extension of these Great Basin hydrological records into the Holocene. Here we provide an overview of these unique paired records, focusing particular attention on the region's response to the Younger Dryas and Heinrich events 1 and 2. Hart, W.S. et al., The 87Sr/86Sr ratios of lacustrine carbonates and lake-level history of the Bonneville paleolake system. GSA Bulletin. 2004; 116: 1107-1119.

  10. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the North Bamyan mineral district in Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the North Bamyan mineral district, which has copper deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2006,2007, 2008), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such

  11. Estimation of Basal Depth of Magnetic Sources from High Resolution Aeromagnetic Data of Middle Niger Basin, Nigeria using Adapted Centroid Technique for Fractal Distribution of Sources

    NASA Astrophysics Data System (ADS)

    Nwankwo, L.

    2015-12-01

    An estimate of depths to the bottom of magnetic sources in the Middle Niger Basin, north-central Nigeria has been made from a recently acquired high-resolution aeromagnetic data using adapted centroid technique for fractal distribution of sources. The result shows that the depth varies between 11.71 and 26.53 km. Deeper values are found in northern and central regions while values as low as 12 km were observed in the southern part. The shallower depths to the bottom of magnetic sources may be representing the thermal/petrological boundaries in the basin. This study is therefore crucial for quantitative understanding of the geo-processes and geothermal parameters in the study area.

  12. Clementine High Resolution Camera Mosaicking Project. Volume 21; CL 6021; 80 deg S to 90 deg S Latitude, North Periapsis; 1

    NASA Technical Reports Server (NTRS)

    Malin, Michael; Revine, Michael; Boyce, Joseph M. (Technical Monitor)

    1998-01-01

    This compact disk (CD) is part of the Clementine I high resolution (HiRes) camera lunar image mosaics developed by Malin Space Science Systems (MSSS). These mosaics were developed through calibration and semi-automated registration against the recently released geometrically and photometrically controlled Ultraviolet/Visible (UV/Vis) Basemap Mosaic, which is available through the PDS, as CD-ROM volumes CL_3001-3015. The HiRes mosaics are compiled from non-uniformity corrected, 750 nanometer ("D") filter high resolution observations from the HiRes imaging system onboard the Clementine Spacecraft. The geometric control is provided by the U. S. Geological Survey (USGS) Clementine Basemap Mosaic compiled from the 750 nm Ultraviolet/Visible Clementine imaging system. Calibration was achieved by removing the image nonuniformity largely caused by the HiRes system's light intensifier. Also provided are offset and scale factors, achieved by a fit of the HiRes data to the corresponding photometrically calibrated UV/Vis basemap that approximately transform the 8-bit HiRes data to photometric units. The mosaics on this CD are compiled from polar data (latitudes greater than 80 degrees), and are presented in the stereographic projection at a scale of 30 m/pixel at the pole, a resolution 5 times greater than that (150 m/pixel) of the corresponding UV/Vis polar basemap. This 5:1 scale ratio is in keeping with the sub-polar mosaic, in which the HiRes and UV/Vis mosaics had scales of 20 m/pixel and 100 m/pixel, respectively. The equal-area property of the stereographic projection made this preferable for the HiRes polar mosaic rather than the basemap's orthographic projection. Thus, a necessary first step in constructing the mosaic was the reprojection of the UV/Vis basemap to the stereographic projection. The HiRes polar data can be naturally grouped according to the orbital periapsis, which was in the south during the first half of the mapping mission and in the north during the

  13. Clementine High Resolution Camera Mosaicking Project. Volume 19; CL 6019; 80 deg N to 90 deg N Latitude, North Periapsis; 1

    NASA Technical Reports Server (NTRS)

    Malin, Michael; Revine, Michael; Boyce, Joseph M. (Technical Monitor)

    1998-01-01

    This compact disk (CD) is part of the Clementine I high resolution (HiRes) camera lunar image mosaics developed by Malin Space Science Systems (MSSS). These mosaics were developed through calibration and semi-automated registration against the recently released geometrically and photometrically controlled Ultraviolet/Visible (UV/Vis) Basemap Mosaic, which is available through the PDS, as CD-ROM volumes CL_3001-3015. The HiRes mosaics are compiled from non-uniformity corrected, 750 nanometer ("D") filter high resolution observations from the HiRes imaging system onboard the Clementine Spacecraft. The geometric control is provided by the U. S. Geological Survey (USGS) Clementine Basemap Mosaic compiled from the 750 nm Ultraviolet/Visible Clementine imaging system. Calibration was achieved by removing the image nonuniformity largely caused by the HiRes system's light intensifier. Also provided are offset and scale factors, achieved by a fit of the HiRes data to the corresponding photometrically calibrated UV/Vis basemap that approximately transform the 8-bit HiRes data to photometric units. The mosaics on this CD are compiled from polar data (latitudes greater than 80 degrees), and are presented in the stereographic projection at a scale of 30 m/pixel at the pole, a resolution 5 times greater than that (150 m/pixel) of the corresponding UV/Vis polar basemap. This 5:1 scale ratio is in keeping with the sub-polar mosaic, in which the HiRes and UV/Vis mosaics had scales of 20 m/pixel and 100 m/pixel, respectively. The equal-area property of the stereographic projection made this preferable for the HiRes polar mosaic rather than the basemap's orthographic projection. Thus, a necessary first step in constructing the mosaic was the reprojection of the UV/Vis basemap to the stereographic projection. The HiRes polar data can be naturally grouped according to the orbital periapsis, which was in the south during the first half of the mapping mission and in the north during the

  14. New high resolution geochemistry of Lower Jurassic marine sections in western North America: A global positive carbon isotope excursion in the Sinemurian?

    NASA Astrophysics Data System (ADS)

    Porter, Sarah J.; Smith, Paul L.; Caruthers, Andrew H.; Hou, Pengfei; Gröcke, Darren R.; Selby, David

    2014-07-01

    Recognising variations in the carbon isotope compositions of marine organic-rich sedimentary rocks can provide insight into changes in ocean chemistry throughout geological time. Further, identification of global excursions in the carbon isotope record has proved to be valuable as a chronostratigraphic correlation tool. This investigation presents new high-resolution organic carbon isotope data (δCorg13) for marine sediments from 2 regions in North America (Last Creek, British Columbia, Canada and Five Card Draw, Nevada, USA). The carbon isotope profiles demonstrate that there were significant differences between the carbon reservoirs at Five Card Draw and Last Creek, notably in the upper part of the Leslei Zone. The δCorg13 values show a gradual positive CIE (∼2‰) at Last Creek in the upper part of the Leslei Zone. This corresponds to a coeval positive CIE of similar duration in Dorset, UK (upper Turneri Zone; Jenkyns and Weedon, 2013), suggesting that this may be a global marine carbon isotope signature, and likely reflects a widespread increase in primary productivity during the Early Sinemurian. In addition, a brief negative CIE is observed in the uppermost Lower Sinemurian at Last Creek. This negative excursion is not recorded in the Dorset section, suggesting localised upwelling of 12C-rich bottom-waters at Last Creek. Further, the signals identified at Last Creek are not present in coeval sections at Five Card Draw, thus highlighting a significant difference between these localities. Osmium (Os) isotope data (initial 187Os/188Os values) provide a quantitative determination of the contrasting depositional environments of Five Card Draw and Last Creek (at least partially restricted with high levels of continental inundation and open-ocean, respectively). This demonstrates that basinal restriction may act as a major factor that controls isotopic stratigraphic signatures, thus preventing the identification of global or widespread regional excursions.

  15. Variation of the North Equatorial Current, Mindanao Current, and Kuroshio Current in a high-resolution data assimilation during 2008-2012

    NASA Astrophysics Data System (ADS)

    Zhai, Fangguo; Wang, Qingye; Wang, Fujun; Hu, Dunxin

    2014-11-01

    Outputs from a high-resolution data assimilation system, the global Hybrid Coordinate Ocean Model and Navy Coupled Ocean Data Assimilation (HYCOM+NCODA) 1/12° analysis, were analyzed for the period September 2008 to February 2012. The objectives were to evaluate the performance of the system in simulating ocean circulation in the tropical northwestern Pacific and to examine the seasonal to interannual variations of the western boundary currents. The HYCOM assimilation compares well with altimetry observations and mooring current measurements. The mean structures and standard deviations of velocities of the North Equatorial Current (NEC), Mindanao Current (MC) and Kuroshio Current (KC) also compare well with previous observations. Seasonal to interannual variations of the NEC transport volume are closely correlated with the MC transport volume, instead of that of the KC. The NEC and MC transport volumes mainly show well-defined annual cycles, with their maxima in spring and minima in fall, and are closely related to the circulation changes in the Mindanao Dome (MD) region. In seasons of transport maxima, the MD region experiences negative SSH anomalies and a cyclonic gyre anomaly, and in seasons of transport minima the situation is reversed. The sea surface NEC bifurcation latitude (NBL) in the HYCOM assimilation also agrees well with altimetry observations. In 2009, the NBL shows an annual cycle similar to previous studies, reaching its southernmost position in summer and its northernmost position in winter. In 2010 and 2011, the NBL variations are dominantly influenced by La Niña events. The dynamics responsible for the seasonal to interannual variations of the NEC-MC-KC current system are also discussed.

  16. Influence of air quality model resolution on uncertainty associated with health impacts

    NASA Astrophysics Data System (ADS)

    Thompson, T. M.; Selin, N. E.

    2012-10-01

    We use regional air quality modeling to evaluate the impact of model resolution on uncertainty associated with the human health benefits resulting from proposed air quality regulations. Using a regional photochemical model (CAMx), we ran a modeling episode with meteorological inputs simulating conditions as they occurred during August through September 2006 (a period representative of conditions leading to high ozone), and two emissions inventories (a 2006 base case and a 2018 proposed control scenario, both for Houston, Texas) at 36, 12, 4 and 2 km resolution. The base case model performance was evaluated for each resolution against daily maximum 8-h averaged ozone measured at monitoring stations. Results from each resolution were more similar to each other than they were to measured values. Population-weighted ozone concentrations were calculated for each resolution and applied to concentration response functions (with 95% confidence intervals) to estimate the health impacts of modeled ozone reduction from the base case to the control scenario. We found that estimated avoided mortalities were not significantly different between the 2, 4 and 12 km resolution runs, but the 36 km resolution may over-predict some potential health impacts. Given the cost/benefit analysis requirements motivated by Executive Order 12866 as it applies to the Clean Air Act, the uncertainty associated with human health impacts and therefore the results reported in this study, we conclude that health impacts calculated from population weighted ozone concentrations obtained using regional photochemical models at 36 km resolution fall within the range of values obtained using fine (12 km or finer) resolution modeling. However, in some cases, 36 km resolution may not be fine enough to statistically replicate the results achieved using 2, 4 or 12 km resolution. On average, when modeling at 36 km resolution, an estimated 5 deaths per week during the May through September ozone season are avoided

  17. Improving Numerical Weather Predictions of Summertime Precipitation Over the Southeastern U.S. Through a High-Resolution Initialization of the Surface State

    NASA Technical Reports Server (NTRS)

    Case, Jonathan L.; Kumar, Sujay V.; Krikishen, Jayanthi; Jedlovec, Gary J.

    2011-01-01

    It is hypothesized that high-resolution, accurate representations of surface properties such as soil moisture and sea surface temperature are necessary to improve simulations of summertime pulse-type convective precipitation in high resolution models. This paper presents model verification results of a case study period from June-August 2008 over the Southeastern U.S. using the Weather Research and Forecasting numerical weather prediction model. Experimental simulations initialized with high-resolution land surface fields from the NASA Land Information System (LIS) and sea surface temperature (SST) derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) are compared to a set of control simulations initialized with interpolated fields from the National Centers for Environmental Prediction 12-km North American Mesoscale model. The LIS land surface and MODIS SSTs provide a more detailed surface initialization at a resolution comparable to the 4-km model grid spacing. Soil moisture from the LIS spin-up run is shown to respond better to the extreme rainfall of Tropical Storm Fay in August 2008 over the Florida peninsula. The LIS has slightly lower errors and higher anomaly correlations in the top soil layer, but exhibits a stronger dry bias in the root zone. The model sensitivity to the alternative surface initial conditions is examined for a sample case, showing that the LIS/MODIS data substantially impact surface and boundary layer properties.

  18. High-resolution sequence stratigraphy of lower Paleozoic sheet sandstones in central North America: The role of special conditions of cratonic interiors in development of stratal architecture

    USGS Publications Warehouse

    Runkel, Anthony C.; Miller, J.F.; McKay, R.M.; Palmer, A.R.; Taylor, John F.

    2007-01-01

    Well-known difficulties in applying sequence stratigraphic concepts to deposits that accumulated across slowly subsiding cratonic interior regions have limited our ability to interpret the history of continental-scale tectonism, oceanographic dynamics of epeiric seas, and eustasy. We used a multi-disciplinary approach to construct a high-resolution stratigraphic framework for lower Paleozoic strata in the cratonic interior of North America. Within this framework, these strata proved readily amenable to modern sequence stratigraphic techniques that were formulated based on successions along passive margins and in foreland basins, settings markedly different from the cratonic interior. Parasequences, parasequence stacking patterns, systems tracts, maximum flooding intervals, and sequence-bounding unconformities can be confidently recognized in the cratonic interior using mostly standard criteria for identification. The similarity of cratonic interior and foreland basin successions in size, geometry, constituent facies, and local stacking patterns of nearshore parasequences is especially striking. This similarity indicates that the fundamental processes that establish shoreface morphology and determine the stratal expression of retreat and progradation were likewise generally the same, despite marked differences in tectonism, physiography, and bathymetry between the two settings. Our results do not support the widespread perception that Paleozoic cratonic interior successions are so anomalous in stratal geometries, and constitute such a poor record of time, that they are poorly suited for modern sequence stratigraphic analyses. The particular arrangement of stratal elements in the cratonic interior succession we studied is no more anomalous or enigmatic than the variability in architecture that sets all sedimentary successions apart from one another. Thus, Paleozoic strata of the cratonic interior are most appropriately considered as a package that belongs in a

  19. Spatio-Temporal Variability of Atmospheric CO2 as Observed from In-Situ Measurements over North America during NASA Field Campaigns (2004-2008)

    NASA Technical Reports Server (NTRS)

    Choi, Yonghoon; Vay, Stephanie A.; Woo, Jung-Hun; Choi, Kichul; Diskin, Glenn S.; Sachse, G. W.; Vadrevu, Krishna P.; Czech, E.

    2009-01-01

    Regional-scale measurements were made over the eastern United States (Intercontinental Chemical Transport Experiment - North America (INTEX-NA), summer 2004); Mexico (Megacity Initiative: Local and Global Research Observations (MILAGRO), March 2006); the eastern North Pacific and Alaska (INTEX-B May 2006); and the Canadian Arctic (Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS), spring and summer 2008). For these field campaigns, instrumentation for the in situ measurement of CO2 was integrated on the NASA DC-8 research aircraft providing high-resolution (1 second) data traceable to the WMO CO2 mole fraction scale. These observations provide unique and definitive data sets via their intermediate-scale coverage and frequent vertical profiles (0.1 - 12 km) for examining the variability CO2 exhibits above the Earth s surface. A bottom-up anthropogenic CO2 emissions inventory (1deg 1deg) and processing methodology has also been developed for North America in support of these airborne science missions. In this presentation, the spatio-temporal distributions of CO2 and CO column values derived from the campaign measurements will be examined in conjunction with the emissions inventory and transport histories to aid in the interpretation of the CO2 observations.

  20. The High Resolution Hurricane Test

    NASA Astrophysics Data System (ADS)

    Tripoli, G. J.

    2009-09-01

    It has been suggested that an answer to the hurricane intensity forecast problem is to use very high cloud-resolving resolution in operational forecast models. In consideration of this hypothesis, the United States National Atmospheric and Oceanic Administration commissioned a major study to take place over the past 1.5 years whereby the hypothesis would be tested with 6 different hurricane models featuring different dynamics cores and different physics. These models included the GFDL hurricane, Navy COAMPS, the WRF-ARW, WRF-AHW, WRF-NMM, and the UW-NMS. The experiment design was to choose and optimal mix of historic hurricanes where good observations of intensity at land fall existed and run 5 day model forecasts with 3 different resolutions of about 9-12 km (low resolution), 3-4 km (medium resolution) and 1-1.5 km (high resolution) and document how much the forecast improved in each case. The project focused on 10 storms over 2-12, 1-5 day forecast periods, for a total of 67 simulations. Not all groups completed all 67 simulations, but there were sufficient results to reach a stunning conclusion. The results of these tests suggested that little or no improvement in intensity prediction was achieved with high resolution.

  1. Daily high spatial resolution evapotranspiration estimation using multi-satellite data fusion over a managed pine plantation in North Carolina, USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Evapotranspiration (ET) is a major part of the water balance and connects hydrologic and biologic processes. High spatial and temporal resolution ET mapping using satellite remote sensing can provide detailed information about daily vegetation water use and soil moisture status at scales of land-use...

  2. North Sea development activity surges

    SciTech Connect

    Not Available

    1992-08-10

    This paper reports that operators in the North Sea have reported a burst of upstream activity. Off the U.K.: Amoco (U.K.) Exploration Co. installed three jackets in its North Everest and Lomond fields. It also completed laying the Central Area Transmission System (CATS) pipeline, which will carry the fields' gas to shore. BP Exploration Operating Co. Ltd. installed the jacket for it Unity riser platform 5 {1/2} km from its Forties Charlie platform. Conoco (U.K.) Ltd. tested a successful appraisal well in Britannia field in Block 15/30, about 130 miles northeast of Aberdeen. In the Norwegian North Sea, Saga Petroleum AS placed Snorre oil and gas field on production 6 weeks ahead of schedule and 1.5 billion kroner under budget at a cost of 16.6 billion kroner; and downstream off the U.K., Phillips Petroleum Co. (U.K.) Ltd. awarded Allseas Marine Contractors SA, Essen, Belgium, a pipelay and trenching contract for its Ann field development project in Block 49/6a.

  3. Refinement of horizontal resolution in dynamical downscaling of climate information using WRF: Costs, benefits, and lessons learned

    EPA Science Inventory

    Dynamical downscaling techniques have previously been developed by the U.S. Environmental Protection Agency (EPA) using a nested WRF at 108- and 36-km. Subsequent work extended one-way nesting down to 12-km resolution. Recently, the EPA Office of Research and Development used com...

  4. Toward variational assimilation of SARAL/Altika altimeter data in a North Atlantic circulation model at eddy-permitting resolution: assessment of a NEMO-based 4D-VAR system

    NASA Astrophysics Data System (ADS)

    Bouttier, Pierre-Antoine; Brankart, Jean-Michel; Candille, Guillem; Vidard, Arthur; Blayo, Eric; Verron, Jacques; Brasseur, Pierre

    2015-04-01

    In this project, the response of a variational data assimilation system based on NEMO and its linear tangent and adjoint model is investigated using a 4DVAR algorithm into a North-Atlantic model at eddy-permitting resolution. The assimilated data consist of Jason-2 and SARAL/AltiKA dataset collected during the 2013-2014 period. The main objective is to explore the robustness of the 4DVAR algorithm in the context of a realistic turbulent oceanic circulation at mid-latitude constrained by multi-satellite altimetry missions. This work relies on two previous studies. First, a study with similar objectives was performed based on academic double-gyre turbulent model and synthetic SARAL/AltiKA data, using the same DA experimental framework. Its main goal was to investigate the impact of turbulence on variational DA methods performance. The comparison with this previous work will bring to light the methodological and physical issues encountered by variational DA algorithms in a realistic context at similar, eddy-permitting spatial resolution. We also have demonstrated how a dataset mimicking future SWOT observations improves 4DVAR incremental performances at eddy-permitting resolution. Then, in the context of the OSTST and FP7 SANGOMA projects, an ensemble DA experiment based on the same model and observational datasets has been realized (see poster by Brasseur et al.). This work offers the opportunity to compare efficiency, pros and cons of both DA methods in the context of KA-band altimetric data, at spatial resolution commonly used today for research and operational applications. In this poster we will present the validation plan proposed to evaluate the skill of variational experiment vs. ensemble assimilation experiments covering the same period using independent observations (e.g. from Cryosat-2 mission).

  5. Severe weather during the North American monsoon and its response to rapid urbanization and a changing global climate within the context of high resolution regional atmospheric modeling

    NASA Astrophysics Data System (ADS)

    Luong, Thang Manh

    The North American monsoon (NAM) is the principal driver of summer severe weather in the Southwest U.S. With sufficient atmospheric instability and moisture, monsoon convection initiates during daytime in the mountains and later may organize, principally into mesoscale convective systems (MCSs). Most monsoon-related severe weather occurs in association with organized convection, including microbursts, dust storms, flash flooding and lightning. The overarching theme of this dissertation research is to investigate simulation of monsoon severe weather due to organized convection within the use of regional atmospheric modeling. A commonly used cumulus parameterization scheme has been modified to better account for dynamic pressure effects, resulting in an improved representation of a simulated MCS during the North American monsoon experiment and the climatology of warm season precipitation in a long-term regional climate model simulation. The effect of urbanization on organized convection occurring in Phoenix is evaluated in model sensitivity experiments using an urban canopy model (UCM) and urban land cover compared to pre-settlement natural desert land cover. The presence of vegetation and irrigation makes Phoenix a "heat sink" in comparison to its surrounding desert, and as a result the modeled precipitation in response to urbanization decreases within the Phoenix urban area and increase on its periphery. Finally, analysis of how monsoon severe weather is changing in association with observed global climate change is considered within the context of a series of retrospectively simulated severe weather events during the period 1948-2010 in a numerical weather prediction paradigm. The individual severe weather events are identified by favorable thermodynamic conditions of instability and atmospheric moisture (precipitable water). Changes in precipitation extremes are evaluated with extreme value statistics. During the last several decades, there has been

  6. The Development of North America CORDEX

    NASA Astrophysics Data System (ADS)

    Mearns, L. O.; Gutowski, W. J.; Barsugli, J. J.; Buja, L.; Garfin, G. M.; Lettenmaier, D. P.; Leung, L.

    2013-12-01

    The Coordinated Regional Downscaling Experiment (CORDEX) is an international program that will provide regional climate scenarios covering the period 1950 - 2100 for most of the populated land (and some ocean) regions of the globe. It also provides a generalized framework for testing and applying regional climate models and other downscaling techniques to current and future climate. We are in the process of developing North America CORDEX (NA-CORDEX), which will expand on work performed in the North American Regional Climate Change Assessment Program (NARCCAP). To be relevant in a decision context, the design of NA-CORDEX must address several sources of uncertainty in climate projections. The experience of NARCCAP and ENSEMBLES regional experiments dictates that both the uncertainty of the driving global model, and that of the high-resolution model be considered. We propose to use a regional climate model (GCM-RCM) matrix of simulations, similar in statistical design to that used in NARCCAP, but with a) higher spatial resolution, and b) greater sampling of uncertainty. While increasing computer power means that both of these goals can be accomplished to some degree, these competing goals necessitate some tradeoffs. To address this, we are producing scenarios of experimental designs that will allow funders and participants to choose options based on resource levels and scientific questions that can be addressed with each design. Spatial resolutions of the simulations will include both 25 km and 12 km. One additional aspect of the NA-CORDEX runs will entail how the GCMs for nesting are selected. This will include some combination of sampling the sensitivity range of the GCMs from the CMIP5 suite of simulations and evaluating the quality of boundary conditions from the GCMs. Based on the results of the analysis of variance (ANOVA) performed for seasonal temperature and precipitation of the NARCCAP simulations we anticipate including approximately the same number of

  7. The effect of grid resolution on estimates of the burden of ozone and fine particulate matter on premature mortality in the United States

    PubMed Central

    Punger, Elizabeth M.; West, J. Jason

    2013-01-01

    Assessments of human health impacts associated with outdoor air pollution often use air quality models to represent exposure, but involve uncertainties due to coarse model resolution. Here we quantify how estimates of mortality in the United States attributable to ozone (O3) and fine particulate matter (PM2.5) at coarse resolution differ from those at finer resolution. Using the finest modeled concentrations (12 km), we estimate that 66,000 (95% CI, 39,300 – 84,500) all-cause and 21,400 (5,600 – 34,200) respiratory deaths per year are attributable to PM2.5 and O3 concentrations above low-concentration thresholds, respectively. Using model results at 36 km resolution gives mortality burdens that are 11% higher for PM2.5 and 12% higher for O3 than the 12 km estimates, suggesting a modest positive bias. We also scale modeled concentrations at 12 km to coarser resolutions by simple averaging, and repeat the mortality assessment at multiple resolutions from 24 to 408 km, including the resolutions of global models; in doing so, we account for the effect of resolution on population exposure. Coarse grid resolutions produce mortality estimates that are substantially biased low for PM2.5 (30–40% lower than the 12 km estimate at >250 km resolution), but less than 6% higher for O3 at any resolution. Mortality estimates for primary PM2.5 species show greater bias at coarse resolution than secondary species. These results suggest that coarse resolution global models (>100 km) are likely biased low for PM2.5 health effects. For ozone, biases due to coarse resolution may be much smaller, and the effect on modeled chemistry likely dominates. PMID:24348882

  8. Characterization of organic material in ice core samples from North America, Greenland, and Antarctica using ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry

    NASA Astrophysics Data System (ADS)

    Catanzano, V.; Grannas, A. M.; Sleighter, R. L.; Hatcher, P. G.

    2013-12-01

    Historically, it has been an analytical challenge to detect and identify the organic components present in ice cores, due to the low abundance of organic carbon. In order to detect and characterize the small amounts of organic matter in ice cores, ultra high resolution instrumentation is required. Here we report the use of ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry, coupled with electrospray ionization, to identify the molecular formulas and compound classes of organic matter in both modern and ancient ice core and glacial samples from Wyoming, Greenland, and Antarctica. A suite of 21 samples were analyzed and thousands of distinct molecular species were identified in each sample, providing clues to the nature and sources of organic matter in these regions. Major biochemical classes of compounds were detected such as lignins, tannins, carbohydrates, proteins, lipids, unsaturated hydrocarbons, and condensed aromatic compounds. We will compare the nature of the organic matter present in the samples in order to determine the differences in dominant organic compound classes and in heteroatom (nitrogen and sulfur) abundance. By analyzing these differences, it is possible to investigate the historical patterns of organic matter deposition/source, and begin to investigate the influence of climate change, volcanism, and onset of the industrial revolution on the nature of organic matter preserved in ice cores.

  9. Projecting Future Changes in Extreme Weather During the North American Monsoon in the Southwest with High Resolution, Convective-Permitting Regional Atmospheric Modeling

    NASA Astrophysics Data System (ADS)

    Chang, H. I.; Castro, C. L.; Luong, T. M.; Lahmers, T.; Jares, M.; Carrillo, C. M.

    2014-12-01

    Most severe weather during the North American monsoon in the Southwest U.S. occurs in association with organized convection, including microbursts, dust storms, flash flooding and lightning. Our objective is to project how monsoon severe weather is changing due to anthropogenic global warming. We first consider a dynamically downscaled reanalysis (35 km grid spacing), generated with the Weather Research and Forecasting (WRF) model during the period 1948-2010. Individual severe weather events, identified by favorable thermodynamic conditions of instability and precipitable water, are then simulated for short-term, numerical weather prediction-type simulations of 24h at a convective-permitting scale (2 km grid spacing). Changes in the character of severe weather events within this period likely reflect long-term climate change driven by anthropogenic forcing. Next, we apply the identical model simulation and analysis procedures to several dynamically downscaled CMIP3 and CMIP5 models for the period 1950-2100, to assess how monsoon severe weather may change in the future and if these changes correspond with what is already occurring per the downscaled renalaysis and available observational data. The CMIP5 models we are downscaling (HadGEM and MPI-ECHAM6) will be included as part of North American CORDEX. The regional model experimental design for severe weather event projection reasonably accounts for the known operational forecast prerequisites for severe monsoon weather. The convective-permitting simulations show that monsoon convection appears to be reasonably well captured with the use of the dynamically downscaled reanalysis, in comparison to Stage IV precipitation data. The regional model tends to initiate convection too early, though correctly simulates the diurnal maximum in convection in the afternoon and subsequent westward propagation of thunderstorms. Projected changes in extreme event precipitation will be described in relation to the long-term changes in

  10. Evaluating Changes in Extreme Weather During the North American Monsoon in the Southwest U.S. Using High Resolution, Convective-Permitting Regional Atmospheric Modeling

    NASA Astrophysics Data System (ADS)

    Castro, C. L.; Chang, H. I.; Luong, T. M.; Lahmers, T.; Jares, M.; Mazon, J.; Carrillo, C. M.; Adams, D. K.

    2015-12-01

    The North American monsoon (NAM) is the principal driver of summer severe weather in the Southwest U.S. Monsoon convection typically initiates during daytime over the mountains and may organize into mesoscale convective systems (MCSs). Most monsoon-related severe weather occurs in association with organized convection, including microbursts, dust storms, flash flooding and lightning. A convective resolving grid spacing (on the kilometer scale) model is required to explicitly represent the physical characteristics of organized convection, for example the presence of leading convective lines and trailing stratiform precipitation regions. Our objective is to analyze how monsoon severe weather is changing in relation to anthropogenic climate change. We first consider a dynamically downscaled reanalysis during a historical period 1948-2010. Individual severe weather event days, identified by favorable thermodynamic conditions, are then simulated for short-term, numerical weather prediction-type simulations of 30h at a convective-permitting scale. Changes in modeled severe weather events indicate increases in precipitation intensity in association with long-term increases in atmospheric instability and moisture, particularly with organized convection downwind of mountain ranges. However, because the frequency of synoptic transients is decreasing during the monsoon, organized convection is less frequent and convective precipitation tends to be more phased locked to terrain. These types of modeled changes also similarly appear in observed CPC precipitation, when the severe weather event days are selected using historical radiosonde data. Next, we apply the identical model simulation and analysis procedures to several dynamically downscaled CMIP3 and CMIP5 models for the period 1950-2100, to assess how monsoon severe weather may change in the future with respect to occurrence and intensity and if these changes correspond with what is already occurring in the historical

  11. Ground-Penetrating Radar vertical resolution, signal attenuation, and penetration in temperate and polar glaciers: Case studies from North America and Antarctica

    NASA Astrophysics Data System (ADS)

    Campbell, S. W.; Kreutz, K. J.; Arcone, S. A.

    2013-12-01

    The application of commercially available ground-penetrating radar (GPR) has become a standard routine for many field glaciological research efforts. However, the success of glaciological radar surveys often depends on frequency selection, tunable parameters, and data collection methods relative to the glaciological setting. Specifically, glaciers exhibit a range of thermal properties (i.e. cold, polythermal, temperate) and exist under diverse settings (e.g. maritime, continental, mountain glaciers, ice sheets, ice streams), each which present unique and complex challenges for conducting radar surveys. Herein, we review over 1000 km of ground collected GPR data from polar and temperate settings and distill vertical resolution, signal attenuation, and depth of penetration for various recording and antenna configurations ranging between 15-900 MHz. Snow and firn studies, ice thickness measurements, and ice flow dynamics studies from Alaska, Antarctica, Canada, and the Western United States will be referenced.

  12. Improved estimate of the policy-relevant background ozone in the United States using the GEOS-Chem global model with 1/2° × 2/3° horizontal resolution over North America

    NASA Astrophysics Data System (ADS)

    Zhang, Lin; Jacob, Daniel J.; Downey, Nicole V.; Wood, Dana A.; Blewitt, Doug; Carouge, Claire C.; van Donkelaar, Aaron; Jones, Dylan B. A.; Murray, Lee T.; Wang, Yuxuan

    2011-12-01

    The policy-relevant background (PRB) ozone is defined by the US Environmental Protection Agency (EPA) as the surface ozone concentration that would be present over the US in the absence of North American anthropogenic emissions. It is intended to provide a baseline for risk and exposure assessments used in setting the National Ambient Air Quality Standard (NAAQS). We present here three-year statistics (2006-2008) of PRB ozone over the US calculated using the GEOS-Chem global 3-D model of atmospheric composition with 1/2° × 2/3° horizontal resolution over North America and adjacent oceans (2° × 2.5° for the rest of the world). We also provide estimates of the US background (no anthropogenic US emissions) and natural background (no anthropogenic emissions worldwide and pre-industrial methane). Our work improves on previous GEOS-Chem PRB estimates through the use of higher model resolution, 3-year statistics, better representation of stratospheric influence, and updated emissions. PRB is particularly high in the intermountain West due to high elevation, arid terrain, and large-scale subsidence. We present for this region a detailed model evaluation showing that the model is successful in reproducing ozone exceedances up to 70 ppbv. However, the model cannot reproduce PRB-relevant exceptional events associated with wildfires or stratospheric intrusions. The mean PRB estimates for spring-summer are 27 ± 8 ppbv at low-altitude sites and 40 ± 7 ppbv at high-altitude sites. Differences between the PRB simulation and the natural simulation indicate a mean enhancement from intercontinental pollution and anthropogenic methane of 9 ppbv at low-altitude sites and 13 ppbv at high-altitude sites. The PRB is higher than average when ozone exceeds 60 ppbv, particularly in the intermountain West. Our PRB estimates are on average 4 ppbv higher than previous GEOS-Chem studies and we attribute this to higher lighting, increasing Asian emissions, and improved model resolution

  13. Glacitectonic rafting and associated deformation of mid-Pleistocene glacigenic sediments, near Central Graben, central North Sea; results of a 2D High-Resolution Geophysical Survey

    NASA Astrophysics Data System (ADS)

    Vaughan-Hirsch, David

    2013-04-01

    Glacitectonic rafts are defined as dislocated slabs of bedrock or unconsolidated sediments, transported from their original position by glacial action. These relatively thin, slab-like bodies feature transport distances ranging from tens of meters to hundreds of kilometers. They occur as either single rafts, or multiple stacked bodies associated with a variety of ice-pushed landforms. Internally, rafts frequently appear undeformed although at a larger scale, they may be folded or cut by shear zones and brittle faults. However, the processes leading to the detachment, transport and subsequent emplacement of the rafts remain uncertain. This work describes the results of a geophysical 2D seismic survey of thrust-bound glacitectonic rafts and associated deformation structures, occurring within mid-Pleistocene glacigenic sediments of the Central Graben, central North Sea. The total shortened length of the rafted section is 2.4km, comprising a series of nine discrete rafts which individually range from 235m to 1018m in length. The principle basal detachment occurs at the erosive contact between Aberdeen Ground Formation and overlying Ling Bank Formation. The ice-proximal (northern) limit of rafting is defined by the presence of a large-scale palaeo-channel oriented perpendicular to the direction of rafting, composed of sediments of the Ling Bank Formation and the Forth Formation. The observed deformation structures infer a mean tectonic direction of 178°, indicating that they are associated with an active glacial advance from the north. The resulting deformation creates a minimum lateral shortening throughout the observed sequence of 35%, typifying a strongly compressional regieme associated with rafting. Throughout the surveyed area, structurally younger rafts are found to be emplaced towards the south, compared to the structurally older rafts which are emplaced towards the south-east. This distinction is suggested to be caused by early rafts creating an obstacle to

  14. Deposition of sedimentary organic matter in black shale facies indicated by the geochemistry and petrography of high-resolution samples, blake nose, western North Atlantic

    USGS Publications Warehouse

    Barker, C.E.; Pawlewicz, M.; Cobabe, E.A.

    2001-01-01

    A transect of three holes drilled across the Blake Nose, western North Atlantic Ocean, retrieved cores of black shale facies related to the Albian Oceanic Anoxic Events (OAE) lb and ld. Sedimentary organic matter (SOM) recovered from Ocean Drilling Program Hole 1049A from the eastern end of the transect showed that before black shale facies deposition organic matter preservation was a Type III-IV SOM. Petrography reveals that this SOM is composed mostly of degraded algal debris, amorphous SOM and a minor component of Type III-IV terrestrial SOM, mostly detroinertinite. When black shale facies deposition commenced, the geochemical character of the SOM changed from a relatively oxygen-rich Type III-IV to relatively hydrogen-rich Type II. Petrography, biomarker and organic carbon isotopic data indicate marine and terrestrial SOM sources that do not appear to change during the transition from light-grey calcareous ooze to the black shale facies. Black shale subfacies layers alternate from laminated to homogeneous. Some of the laminated and the poorly laminated to homogeneous layers are organic carbon and hydrogen rich as well, suggesting that at least two SOM depositional processes are influencing the black shale facies. The laminated beds reflect deposition in a low sedimentation rate (6m Ma-1) environment with SOM derived mostly from gravity settling from the overlying water into sometimes dysoxic bottom water. The source of this high hydrogen content SOM is problematic because before black shale deposition, the marine SOM supplied to the site is geochemically a Type III-IV. A clue to the source of the H-rich SOM may be the interlayering of relatively homogeneous ooze layers that have a widely variable SOM content and quality. These relatively thick, sometimes subtly graded, sediment layers are thought to be deposited from a Type II SOM-enriched sediment suspension generated by turbidities or direct turbidite deposition.

  15. Ultra High Energy Cosmic Rays in the North: Measurement of UHE Cosmic Rays with the High Resolution Fly's Eye (HiRes) Detector

    SciTech Connect

    Matthews, J. N.

    2006-11-17

    The High Resolution Fly's Eye (HiRes) observatory has been collecting Ultra High Energy Cosmic Ray (UHECR) data since 1997. The experiment observes cosmic ray air showers via the air fluorescence technique and consists of two observatory sites separated by 12.6 km in the western Utah desert. The two stations can each measure the cosmic rays in monocular mode. In addition, the data from the two stations can also be combined to form a stereo measurement of the air showers. The experiment measures such properties as the energy spectrum, chemical composition, and p-air cross-section of these cosmic rays. It also searches for point sources and other anisotropy. The spectrum is measured above {approx}3 x 1017 eV and shows significant structure including the 'ankle' and a steep fall off which is consistent with the expectation of the GZK. threshold. The spectrum is inconsistent with a continuing spectrum at the 5{sigma} level. The composition is measured using the Xmax technique. It was found to be predominantly light and unchanging over the range from 1018 to 3 x 1019 eV. Finally, several different styles of searches for anisotropy in the data were performed. There are some tantalizing hints including potential correlation with BL Lac objects and the 'AGASA triplet', however these will need to be confirmed with an independent data set.

  16. High-resolution stratigraphy of a Mississippi subdelta-lobe progradation in the Barataria Bight, north-central Gulf of Mexico

    USGS Publications Warehouse

    Flocks, J.G.; Ferina, N.F.; Dreher, C.; Kindinger, J.L.; FitzGerald, D.M.; Kulp, M.A.

    2006-01-01

    The coastal zone of southeastern Louisiana is the product of numerous cycles of progradation, abandonment, and marine transgression of the Mississippi River delta. Currently, the shoreline in the Barataria Bight is undergoing significant erosion and retreat, and understanding its evolution is crucial in stabilization efforts. This study uses an extensive collection of geophysical and sediment core data from Barataria Bay and offshore to develop a geologic model of the shallow (< 10 m) subsurface. The purpose of the model is twofold: (1) establish the stratigraphic architecture of a subdelta lobe of the Bayou des Families delta, deposited by the Mississippi River approximately 4000 years before present; and (2) provide a high-resolution description of the geologic framework in a context that can be applied to coastal management issues in similar fluvially dominated coastal environments worldwide. The results of the study demonstrate how high-quality geologic data from the coastal environment can be used not only to further our understanding of shoreline evolution but also to provide pertinent information for coastal management needs.

  17. An Objective Verification of the North American Mesoscale Model for Kennedy Space Center and Cape Canaveral Air Force Station

    NASA Technical Reports Server (NTRS)

    Bauman, William H., III

    2010-01-01

    The 45th Weather Squadron (45 WS) Launch Weather Officers (LWO's) use the 12-km resolution North American Mesoscale (NAM) model (MesoNAM) text and graphical product forecasts extensively to support launch weather operations. However, the actual performance of the model at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS) has not been measured objectively. In order to have tangible evidence of model performance, the 45 WS tasked the Applied Meteorology Unit (AMU; Bauman et ai, 2004) to conduct a detailed statistical analysis of model output compared to observed values. The model products are provided to the 45 WS by ACTA, Inc. and include hourly forecasts from 0 to 84 hours based on model initialization times of 00, 06, 12 and 18 UTC. The objective analysis compared the MesoNAM forecast winds, temperature (T) and dew pOint (T d), as well as the changes in these parameters over time, to the observed values from the sensors in the KSC/CCAFS wind tower network shown in Table 1. These objective statistics give the forecasters knowledge of the model's strengths and weaknesses, which will result in improved forecasts for operations.

  18. An Objective Verification of the North American Mesoscale Model for Kennedy Space Center and Cape Canaveral Air Force Station

    NASA Technical Reports Server (NTRS)

    Bauman, William H., III

    2010-01-01

    The 45th Weather Squadron (45 WS) Launch Weather Officers use the 12-km resolution North American Mesoscale (NAM) model (MesoNAM) text and graphical product forecasts extensively to support launch weather operations. However, the actual performance of the model at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS) has not been measured objectively. In order to have tangible evidence of model performance, the 45 WS tasked the Applied Meteorology Unit to conduct a detailed statistical analysis of model output compared to observed values. The model products are provided to the 45 WS by ACTA, Inc. and include hourly forecasts from 0 to 84 hours based on model initialization times of 00, 06, 12 and 18 UTC. The objective analysis compared the MesoNAM forecast winds, temperature and dew point, as well as the changes in these parameters over time, to the observed values from the sensors in the KSC/CCAFS wind tower network. Objective statistics will give the forecasters knowledge of the model's strength and weaknesses, which will result in improved forecasts for operations.

  19. Improving High-resolution Weather Forecasts using the Weather Research and Forecasting (WRF) Model with Upgraded Kain-Fritsch Cumulus Scheme

    EPA Science Inventory

    High-resolution weather forecasting is affected by many aspects, i.e. model initial conditions, subgrid-scale cumulus convection and cloud microphysics schemes. Recent 12km grid studies using the Weather Research and Forecasting (WRF) model have identified the importance of inco...

  20. North Carolina

    Atmospheric Science Data Center

    2014-05-15

    ... (Terra orbit 4344) captures the intricate system of barrier islands, wetlands, and estuaries comprising the coastal environments of North ... formats available at JPL October 11, 2000 - Barrier islands, wetlands, and estuaries of coastal North Carolina and ...

  1. Relationships between Greenland and lower latitude climate over the last glacial period from new high resolution measurements of 17O-excess and d-excess on the NorthGRIP ice core

    NASA Astrophysics Data System (ADS)

    Landais, Amaelle; Prie, Frederic; Minster, Benedicte; Masson-Delmotte, Valerie; Vinther, Bo; Popp, Trevor; Rhodes, Rachael; Dahl-Jensen, Dorther

    2016-04-01

    Greenland ice cores have long revealed the abrupt climatic variability characterizing the last glacial period (succession of Dansgaard-Oeschger events). Since then, many other continental and marine records have shown the northern hemispheric extent of these abrupt events with an associated signature in the southern hemisphere. While the water isotopic records (d18O or dD) records of Greenland ice cores have long been used as references for the northern hemisphere climatic variability, more and more pieces of evidence point to some decoupling between the climate variability in Greenland and the climate variability in lower latitudes. In particular, the Greenland temperature records derived from water and air isotopes do not exhibit any signature for the Heinrich events. We present here new high resolution measurements of 17O-excess and d-excess from the NorthGRIP ice core covering the abrupt climatic variability of the last deglaciation and the last glacial period. These second order parameters are particularly useful to decipher the local from the distant effect on the water isotopic records in polar ice cores since they are sensitive to climatic conditions at the oceanic evaporative regions and to the trajectories of the water mass toward the polar precipitation sites. These new measurements clearly highlight a decoupling between Greenland and lower latitudes between the cold phases (stadials) of the Dansgaard-Oeschger events that can be due to sea-ice extent or other modifications in the oceanic surface climatic conditions. A comparison between the d-excess records of the GRIP and NGRIP ice core highlight different behaviours in the trajectories of moisture toward different regions Greenland that can again be linked to regional differences in sea-ice extent. Finally, our new sets of data also exhibit a particular behavior of the Greenland vs lower latitude climate during very short Dansgaard-Oeschger events.

  2. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the North Takhar mineral district in Afghanistan: Chapter D in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Cagney, Laura E.

    2012-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the North Takhar mineral district, which has placer gold deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2006,2008), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such

  3. High-resolution reflection seismic imaging of the upper crust at Laxemar, southeastern Sweden

    NASA Astrophysics Data System (ADS)

    Bergman, B.; Juhlin, C.; Palm, H.

    2002-09-01

    A major cost in exploring the upper 1-2 km of crystalline crust with reflection seismics is the drilling required for explosive sources. By reducing the charge size to a minimum, shallow inexpensive shotholes can be drilled with handheld equipment. Here, we present results from a full-scale test using small charges for high-resolution seismic surveying over a nuclear waste disposal study site (not an actual site). Two 2-2.5-km-long crossing profiles were acquired in December 1999 with 10-m shot and geophone spacing in the Laxemar area, near Oskarshamn in southeastern Sweden. After standard processing, including dip moveout (DMO), several subhorizontal to moderately dipping reflections are imaged. Many of the dipping ones can be correlated to fracture zones observed in a ca. 1700-m-deep borehole where the profiles cross and/or to fracture zones mapped on the surface. The imaged fracture zones form a complex 3D pattern illustrating the necessity of having 3D control before interpreting seismic reflection data. Analyses of sonic and density logs from the borehole show that greenstones have significantly higher impedances than the more dominant granite found in the borehole (granite/greenstone reflection coefficient is +0.065). These greenstones may contribute to the reflectivity when associated with fracture zones. In some cases, where they are present as larger subhorizontal lenses, they may be the dominant source of reflectivity. A set of north-dipping (10°) reflectors at 3-3.5-km depth can be correlated to a similar set observed below the island of Ävrö about 3 km to the east.

  4. Evaluating the skill of high-resolution WRF-Chem simulations in describing drivers of aerosol direct climate forcing on the regional scale

    NASA Astrophysics Data System (ADS)

    Crippa, P.; Sullivan, R. C.; Thota, A.; Pryor, S. C.

    2016-01-01

    Assessing the ability of global and regional models to describe aerosol optical properties is essential to reducing uncertainty in aerosol direct radiative forcing in the contemporary climate and to improving confidence in future projections. Here we evaluate the performance of high-resolution simulations conducted using the Weather Research and Forecasting model with coupled with Chemistry (WRF-Chem) in capturing spatiotemporal variability of aerosol optical depth (AOD) and the Ångström exponent (AE) by comparison with ground- and space-based remotely sensed observations. WRF-Chem is run over eastern North America at a resolution of 12 km for a representative year (2008). A systematic positive bias in simulated AOD relative to observations is found (annual mean fractional bias (MFB) is 0.15 and 0.50 relative to MODIS (MODerate resolution Imaging Spectroradiometer) and AERONET, respectively), whereas the spatial variability is well captured during most months. The spatial correlation of observed and simulated AOD shows a clear seasonal cycle with highest correlation during summer months (r = 0.5-0.7) when the aerosol loading is large and more observations are available. The model is biased towards the simulation of coarse-mode aerosols (annual MFB for AE = -0.10 relative to MODIS and -0.59 for AERONET), but the spatial correlation for AE with observations is 0.3-0.5 during most months, despite the fact that AE is retrieved with higher uncertainty from the remote-sensing observations. WRF-Chem also exhibits high skill in identifying areas of extreme and non-extreme aerosol loading, and its ability to correctly simulate the location and relative intensity of extreme aerosol events (i.e., AOD > 75th percentile) varies between 30 and 70 % during winter and summer months, respectively.

  5. Defrosting North

    NASA Technical Reports Server (NTRS)

    2004-01-01

    15 June 2004 Spring is upon the martian northern hemisphere, and the north polar cap is shrinking. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image, acquired on 12 June 2004, shows the retreating edge of the seasonal north polar cap near 70oN, 209oW. Low clouds and fogs stream away from the cap edge as it sublimes away. North is approximately up and the image covers an area roughly 500 km (311 mi) across. Sunlight illuminates the scene from the lower left. The crater containing a thick mound of material near the right-center of the image is Korolev.

  6. Improving the Accuracy of Daily PM2.5 Distributions Derived from the Fusion of Ground-Level Measurements with Aerosol Optical Depth Observations, a Case Study in North China.

    PubMed

    Lv, Baolei; Hu, Yongtao; Chang, Howard H; Russell, Armistead G; Bai, Yuqi

    2016-05-01

    The accuracy in estimated fine particulate matter concentrations (PM2.5), obtained by fusing of station-based measurements and satellite-based aerosol optical depth (AOD), is often reduced without accounting for the spatial and temporal variations in PM2.5 and missing AOD observations. In this study, a city-specific linear regression model was first developed to fill in missing AOD data. A novel interpolation-based variable, PM2.5 spatial interpolator (PMSI2.5), was also introduced to account for the spatial dependence in PM2.5 across grid cells. A Bayesian hierarchical model was then developed to estimate spatiotemporal relationships between AOD and PM2.5. These methods were evaluated through a city-specific 10-fold cross-validation procedure in a case study in North China in 2014. The cross validation R(2) was 0.61 when PMSI2.5 was included and 0.48 when PMSI2.5 was excluded. The gap-filled AOD values also effectively improved predicted PM2.5 concentrations with an R(2) = 0.78. Daily ground-level PM2.5 concentration fields at a 12 km resolution were predicted with complete spatial and temporal coverage. This study also indicates that model prediction performance should be assessed by accounting for monitor clustering due to the potential misinterpretation of model accuracy in spatial prediction when validation monitors are randomly selected. PMID:27043852

  7. 84. INTERIOR, SECOND FLOOR, NORTH ENTRANCE, NORTH LOBBY, NORTH WALL, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    84. INTERIOR, SECOND FLOOR, NORTH ENTRANCE, NORTH LOBBY, NORTH WALL, BRONZE DOUBLE DOORS (4' x 5' negative; 8' x 10' print) - U.S. Department of the Interior, Eighteenth & C Streets Northwest, Washington, District of Columbia, DC

  8. True North

    ERIC Educational Resources Information Center

    Benson, Jo-Anne Mary

    2007-01-01

    For Americans wanting to explore beyond their frontiers, their neighbor to the north is an ideal destination. Much of Canada's population is concentrated near the shared border, mostly in Ontario and Quebec. While nature is an obvious draw, Canada's dynamic urban centers present their own sophisticated enticements, and the country's ten provinces…

  9. [Dispute Resolutions].

    ERIC Educational Resources Information Center

    Hale, Claudia L.; Cooks, Leda M.

    1994-01-01

    Focusing on the teaching of alternative dispute resolutions at universities, Claudia L. Hale and Leda M. Cooks argue that mediation should be taught primarily as a communication process that involves the joint efforts of mediator and disputants. Teachers of mediation should begin by distinguishing mediation from other forms of dispute resolution,…

  10. Variable-Resolution GCMs

    NASA Technical Reports Server (NTRS)

    Fox-Rabinovitz, Michael S.

    2002-01-01

    Variable resolution GCMs using a global stretched grid (SG) with enhanced regional resolute over multiple (four) areas of interest represent a viable new approach to regional climate and climate change studies and applications. The four areas, one at each global quadrant, include major global monsoonal circulations over North America, South America, India-China, and Australia. The SG-approach is an ideal tool for representing consistent interactions of global/large- and regional/mesoscales. It is an alternative to the widely used nested-grid approach. Several existing SG-GCMs are briefly described. The major discussion is based on the GEOS (Goddard Earth Observing System) SG-GCM regional climate simulations.

  11. High-Resolution Geophysical Constraints on Late Pleistocene-Present Deformation History, Seabed Morphology, and Slip-Rate along the Queen Charlotte-Fairweather Fault, Offshore Southeastern Alaska

    NASA Astrophysics Data System (ADS)

    Brothers, D. S.; Haeussler, P. J.; Dartnell, P.; Conrad, J. E.; Kluesner, J. W.; Hart, P. E.; Witter, R. C.; Balster-Gee, A. F.; Maier, K. L.; Watt, J. T.; East, A. E.

    2015-12-01

    The Queen Charlotte-Fairweather Fault (QCFF) of southeastern Alaska and British Columbia is the dominant fault along the 1200 km-long transform boundary between the Pacific and North American plates. More than 900 km of the QCFF lies offshore where the style and rates of deformation are poorly constrained due to a lack of high-resolution marine geophysical data. In May 2015, the USGS acquired ~900 km2 of high-resolution multibeam bathymetry data and >2000 line-km of high-resolution multichannel seismic reflection profiles between Cross Sound, Yakobi Sea Valley, and Icy Point (the northernmost offshore section of the QCFF) using a 24-ch streamer and 500 Joule minisparker source. During a second cruise in August 2015 we conducted targeted multichannel seismic and subbottom CHIRP profiling in the same region. The new data reveal a single trace of the QCFF expressed as a clear and remarkably straight seafloor lineation for >60 km. Subtle jogs in the fault (<3 degrees) are associated with pop-up structures and en echelon pull-apart basins. The near surface deformation along the fault never exceeds a width of 1.2 km. Northward, as the fault approaches Icy Point and a restraining bend, it splays into multiple strands and displays evidence for uplift and transpression. The fault appears to transition from almost purely strike-slip in the south to oblique-convergence as it steps onshore to the north. The QCFF cuts through the Yakobi Sea Valley and Cross Sound, two elongate bathymetric troughs that were filled with glaciers as recently as 17-19 ka. The southern wall of the Yakobi Sea Valley is offset 890±30 m by the QCFF, providing a late Pleistocene-present slip-rate estimate of 45-54 mm/yr. This suggests that nearly the entire plate boundary slip budget is confined to a single, narrow, strike-slip fault zone, which may have implications for models of plate boundary strain localization.

  12. High resolution kilometric range optical telemetry in air by radio frequency phase measurement

    NASA Astrophysics Data System (ADS)

    Guillory, Joffray; Šmíd, Radek; García-Márquez, Jorge; Truong, Daniel; Alexandre, Christophe; Wallerand, Jean-Pierre

    2016-07-01

    We have developed an optical Absolute Distance Meter (ADM) based on the measurement of the phase accumulated by a Radio Frequency wave during its propagation in the air by a laser beam. In this article, the ADM principle will be described and the main results will be presented. In particular, we will emphasize how the choice of an appropriate photodetector can significantly improve the telemeter performances by minimizing the amplitude to phase conversion. Our prototype, tested in the field, has proven its efficiency with a resolution better than 15 μm for a measurement time of 10 ms and distances up to 1.2 km.

  13. High resolution kilometric range optical telemetry in air by radio frequency phase measurement.

    PubMed

    Guillory, Joffray; Šmíd, Radek; García-Márquez, Jorge; Truong, Daniel; Alexandre, Christophe; Wallerand, Jean-Pierre

    2016-07-01

    We have developed an optical Absolute Distance Meter (ADM) based on the measurement of the phase accumulated by a Radio Frequency wave during its propagation in the air by a laser beam. In this article, the ADM principle will be described and the main results will be presented. In particular, we will emphasize how the choice of an appropriate photodetector can significantly improve the telemeter performances by minimizing the amplitude to phase conversion. Our prototype, tested in the field, has proven its efficiency with a resolution better than 15 μm for a measurement time of 10 ms and distances up to 1.2 km. PMID:27475593

  14. North America

    SciTech Connect

    Field, Christopher B.; Mortsch, Linda D.; Brklacich, Michael; Forbes, Donald L.; Kovacs, Paul; Patz, Jonathan A.; Running, Steven W.; Scott, Michael J.

    2007-08-06

    The United States (U.S.) and Canada will experience climate changes through direct effects of local changes (e.g., temperature, precipitation, and extreme weather events), as well as through indirect effects, transmitted among regions by interconnected economies and migrations of humans and other species. Variations in wealth and geography, however, lead to an uneven distribution of likely impacts, vulnerabilities, and capacities to adapt. This chapter reviews and synthesizes the state of knowledge on both direct and indirect impacts, vulnerability and adaptations for North America 9 (comprising Canada and the U.S).

  15. Structure of the Hat Creek graben region: Implications for the structure of the Hat Creek graben and transfer of right-lateral shear from the Walker Lane north of Lassen Peak, northern California, from gravity and magnetic anomalies

    USGS Publications Warehouse

    Langenheim, Victoria; Jachens, Robert C.; Clynne, Michael A.; Muffler, L. J. Patrick

    2016-01-01

    Interpretation of magnetic and new gravity data provides constraints on the geometry of the Hat Creek Fault, the amount of right-lateral offset in the area between Mt. Shasta and Lassen Peak, and confirmation of the influence of pre-existing structure on Quaternary faulting. Neogene volcanic rocks coincide with short-wavelength magnetic anomalies of both normal and reversed polarity, whereas a markedly smoother magnetic field occurs over the Klamath Mountains and its Paleogene cover. Although the magnetic field over the Neogene volcanic rocks is complex, the Hat Creek Fault, which is one of the most prominent normal faults in the region and forms the eastern margin of the Hat Creek Valley, is marked by the eastern edge of a north-trending magnetic and gravity high 20-30 km long. Modeling of these anomalies indicates that the fault is a steeply dipping (~75-85°) structure. The spatial relationship of the fault as modeled by the potential-field data, the youngest strand of the fault, and relocated seismicity suggests that deformation continues to step westward across the valley, consistent with a component of right-lateral slip in an extensional environment. Filtered aeromagnetic data highlight a concealed magnetic body of Mesozoic or older age north of Hat Creek Valley. The body’s northwest margin strikes northeast and is linear over a distance of ~40 km. Within the resolution of the aeromagnetic data (1-2 km), we discern no right-lateral offset of this body. Furthermore, Quaternary faults change strike or appear to end, as if to avoid this concealed magnetic body and to pass along its southeast edge, suggesting that pre-existing crustal structure influenced younger faulting, as previously proposed based on gravity data.

  16. Anaglyph, North America

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This anaglyph (stereoscopic view) of North America was generated with data from the Shuttle Radar Topography Mission (SRTM). It is best viewed at or near full resolution with anaglyph glasses. For this broad view the resolution of the data was first reduced to 30 arcseconds (about 928 meters north-south and 736 meters east-west in central North America), matching the best previously existing global digital topographic data set called GTOPO30. The data were then resampled to a Mercator projection with approximately square pixels (about one kilometer, or 0.6 miles, on each side). Even at this decreased resolution the variety of landforms comprising the North American continent is readily apparent.

    Active tectonics (structural deformation of the Earth's crust) along and near the Pacific North American plate boundary creates the great topographic relief seen along the Pacific coast. Earth's crustal plates converge in southern Mexico and in the northwest United States, melting the crust and producing volcanic cones. Along the California coast, the plates are sliding laterally past each other, producing a pattern of slices within the San Andreas fault system. And, where the plates are diverging, the crust appears torn apart as one huge tear along the Gulf of California (northwest Mexico), and as the several fractures comprising the Basin and Range province (in and around Nevada).

    Across the Great Plains, erosional patterns dominate, with stream channels surrounding and penetrating the remnants of older smooth slopes east of the Rocky Mountains. This same erosion process is exposing the bedrock structural patterns of the Black Hills in South Dakota and the Ozark Mountains in Arkansas. Lateral erosion and sediment deposition by the Mississippi River has produced the flatlands of the lower Mississippi Valley and the Mississippi Delta.

    To the north, evidence of the glaciers of the last ice age is widely found, particularly east of the Canadian Rocky Mountains and

  17. A resolution expressing the sense of the Senate in support of the North Atlantic Treaty Organization and the NATO summit to be held in Chicago, Illinois from May 20 through 21, 2012.

    THOMAS, 112th Congress

    Sen. Durbin, Richard [D-IL

    2012-03-13

    03/29/2012 Resolution agreed to in Senate without amendment and an amended preamble by Voice Vote. (consideration: CR S2279-2280; text of measure as reported in Senate: CR S2279; text as passed Senate: CR S2279-2280) (All Actions) Tracker: This bill has the status Passed SenateHere are the steps for Status of Legislation:

  18. A resolution honoring and supporting women in North Africa and the Middle East whose bravery, compassion, and commitment to putting the wellbeing of others before their own have proven that courage can be contagious.

    THOMAS, 112th Congress

    Sen. Snowe, Olympia J. [R-ME

    2011-03-28

    04/14/2011 Resolution agreed to in Senate with an amendment and an amended preamble by Unanimous Consent. (text: CR S2552-2553) (All Actions) Tracker: This bill has the status Passed SenateHere are the steps for Status of Legislation:

  19. High resolution spectroscopy of the Martian atmosphere - Study of seasonal variations of CO, O3, H2O, and T on the north polar cap and a search for SO2, H2O2, and H2CO

    NASA Technical Reports Server (NTRS)

    Krasnopolsky, V. A.; Chakrabarti, S.; Larson, H.; Sandel, B. R.

    1992-01-01

    An overview is presented of an observational campaign which will measure (1) the seasonal variations of the CO mixing ratio on the Martian polar cap due to accumulation and depletion of CO during the condensation and evaporation of CO2, as well as (2) the early spring ozone and water vapor of the Martian north polar cap, and (3) the presence of H2CO, H2O2, and SO2. The lines of these compounds will be measured by a combined 4-m telescope and Fourier-transform spectrometer 27097.

  20. [CO2 Budget and Atmospheric Rectification (COBRA) Over North America

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The purpose of the CO2 Budget and Rectification Airborne (COBRA) study was to assess terrestrial sources and sinks of carbon dioxide using an air-borne study. The study was designed to address the measurement gap between plot-scale direct flux measurements and background hemispheric-scale constraints and to refine techniques for measuring terrestrial fluxes at regional to continental scales. The initial funded effort (reported on here) was to involve two air-borne campaigns over North America, one in summer and one in winter. Measurements for COBRA (given the acronym C02BAR in the initial proposal) were conducted from the University of North Dakota Citation 11, a twin-engine jet aircraft capable of profiling from the surface to 12 km and cruising for up to 4 hours and 175m/s. Onboard instrumentation measured concentrations of CO2, CO, and H2O, and meteorological parameters at high rates. In addition, two separate flask sampling systems collected discrete samples for laboratory analysis of CO2,CO, CH4, N2O, SF6, H2, 13CO2, C18O16O,O2/N2, and Ar/N2. The project involved a collaboration between a number of institutions, including (but not limited to) Harvard, NOAA-CMDL, the University of North Dakota, and Scripps.

  1. Projections of Increased Intensity of Summer Rainfall over the UK from Very High Resolution Regional Climate Model Simulations

    NASA Astrophysics Data System (ADS)

    Fowler, H. J.; Kendon, E. J.; Chan, S. C.; Roberts, N. M.; Roberts, M.; Senior, C. A.

    2014-12-01

    We have performed the first climate change experiments with a very high resolution (1.5 km grid spacing) regional climate model over a region of the UK and compared these to results for a coarser resolution climate model (12 km). This model is typically used for weather forecasting in the UK. Although observations show increases in heavy rainfall at daily timescales in many regions, how changes will manifest themselves on sub-daily timescales remains highly uncertain. A reanalysis-driven simulation shows realistic hourly rainfall characteristics, including extremes, unlike results for coarser resolution climate models. This gives us confidence in the very high resolution model's ability to project future changes at sub-daily scales. The 1.5 km model shows increases in hourly rainfall intensities in winter, consistent with projections from the coarser 12 km resolution model and from previous studies at the daily timescale. However, the 1.5 km model also shows future intensification of short-duration heavy rainfall in summer with significantly more events exceeding the high thresholds set by UK flood forecasters as indicative of serious flash flooding. We conclude that accurate representation of the local storm dynamics is an essential requirement for predicting changes to convective extremes; when included we find for the model here that summer downpours intensify with warming. We further explore some of the mechanisms causing the changes, including the relationships to temperature and humidity through mechanisms such as the Clausius-cCapeyron relationship, and larger scale circulation changes.

  2. High-resolution spectroscopy of Q1100 - 264 again

    SciTech Connect

    Carswell, R.F.; Lanzetta, K.M.; Parnell, H.C.; Webb, J.K. Oxford University Royal Greenwich Observatory, Cambridge )

    1991-04-01

    The results of echelle spectrometry with resolution less than about 9 km/s of the Ly-alpha forest region of Q1100 - 264 are described. The Ly-alpha forest systems show a range of Doppler parameters from 12 km/s to about 80 km/s, with rather large uncertainties for the low H I column density systems particularly. Few of these systems have low Doppler parameters, and there is no significant trend of Doppler parameter with H I column density, in contrast with the results of Pettini et al. from the study of a different quasar. The six heavy element systems with lines in the observed spectral region are all found to have complex velocity structure, on scales ranging from less than about 10 km/s to about 150 km/s. 17 refs.

  3. [North] Yemen.

    PubMed

    1987-11-01

    The Yemen Arab Republic, also called North Yemen, is a small republic on the southern tip of the Arabian peninsula facing the Red Sea. Yemen has a temperate interior suitable for agriculture. 8.7 million people of Semetic Arab origin are growing at a rate of 3.1% yearly. The infant mortality rate is 173/1000; the life expectancy is 44 years, and the per capita income is about $550. Yemen was once self-sufficient in food production, exporting fine coffee. Years of civil wars, emigration to Saudi Arabia for work, production of the cash crop "qat" for internal consumption, and the recent drought have contributed to the decline of agriculture. Yemen's economy is maintained by foreign aid from Saudi Arabia, the Soviet Union, China, and the United States. U.S. aid has centered around food, roads and other development projects and primary health care such as immunization and reduction of child mortality. PMID:12177954

  4. Remote Sensing of Aerosol Backscatter and Earth Surface Targets By Use of An Airborne Focused Continuous Wave CO2 Doppler Lidar Over Western North America

    NASA Technical Reports Server (NTRS)

    Jarzembski, Maurice A.; Srivastava, Vandana; Goodman, H. Michael (Technical Monitor)

    2000-01-01

    Airborne lidar systems are used to determine wind velocity and to measure aerosol or cloud backscatter variability. Atmospheric aerosols, being affected by local and regional sources, show tremendous variability. Continuous wave (cw) lidar can obtain detailed aerosol loading with unprecedented high resolution (3 sec) and sensitivity (1 mg/cubic meter) as was done during the 1995 NASA Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS) mission over western North America and the Pacific Ocean. Backscatter variability was measured at a 9.1 micron wavelength cw focused CO2 Doppler lidar for approximately 52 flight hours, covering an equivalent horizontal distance of approximately 30,000 km in the troposphere. Some quasi-vertical backscatter profiles were also obtained during various ascents and descents at altitudes that ranged from approximately 0.1 to 12 km. Similarities and differences for aerosol loading over land and ocean were observed. Mid-tropospheric aerosol backscatter background mode was approximately 6 x 10(exp -11)/ms/r, consistent with previous lidar datasets. While these atmospheric measurements were made, the lidar also retrieved a distinct backscatter signal from the Earth's surface from the unfocused part of the focused cw lidar beam during aircraft rolls. Atmospheric backscatter can be highly variable both spatially and temporally, whereas, Earth-surface backscatter is relatively much less variant and can be quite predictable. Therefore, routine atmospheric backscatter measurements by an airborne lidar also give Earth surface backscatter which can allow for investigating the Earth terrain. In the case where the Earth's surface backscatter is coming from a well-known and fairly uniform region, then it can potentially offer lidar calibration opportunities during flight. These Earth surface measurements over varying Californian terrain during the mission were compared with laboratory backscatter measurements using the same lidar of various

  5. North Polar Erg

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    Our topic for the weeks of April 4 and April 11 is dunes on Mars. We will look at the north polar sand sea and at isolated dune fields at lower latitudes. Sand seas on Earth are often called 'ergs,' an Arabic name for dune field. A sand sea differs from a dune field in two ways: 1) a sand sea has a large regional extent, and 2) the individual dunes are large in size and complex in form.

    This VIS image was taken at 82 degrees North latitude during Northern spring. As with yesterday's image, the dunes are still partially frost covered. This region is part of the north polar erg (sand sea), note the complexity and regional coverage of the dunes.

    Image information: VIS instrument. Latitude 81.2, Longitude 118.2 East (241.8 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  6. North Polar Erg

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    Our topic for the weeks of April 4 and April 11 is dunes on Mars. We will look at the north polar sand sea and at isolated dune fields at lower latitudes. Sand seas on Earth are often called 'ergs,' an Arabic name for dune field. A sand sea differs from a dune field in two ways: 1) a sand sea has a large regional extent, and 2) the individual dunes are large in size and complex in form.

    This VIS image was taken at 81 degrees North latitude during Northern spring. This region of the north polar erg is dominated by a different form of dunes than yesterday's image.

    Image information: VIS instrument. Latitude 81.4, Longitude 121.9 East (238.1 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  7. MODIS Views North Pole

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This true-color image over the North Pole was acquired by the MODerate-resolution Imaging Spectroradiometer (MODIS), flying aboard the Terra spacecraft, on May 5, 2000. The scene was received and processed by Norway's MODIS Direct Broadcast data receiving station, located in Svalbard, within seconds of photons hitting the sensor's detectors. (Click for more details about MODIS Direct Broadcast data.) In this image, the sea ice appears white and areas of open water, or recently refrozen sea surface, appear black. The irregular whitish shapes toward the bottom of the image are clouds, which are often difficult to distinguish from the white Arctic surface. Notice the considerable number of cracks, or 'leads,' in the ice that appear as dark networks of lines. Throughout the region within the Arctic Circle leads are continually opening and closing due to the direction and intensity of shifting wind and ocean currents. Leads are particularly common during the summer, when temperatures are higher and the ice is thinner. In this image, each pixel is one square kilometer. Such true-color views of the North Pole are quite rare, as most of the time much of the region within the Arctic Circle is cloaked in clouds. Image by Allen Lunsford, NASA GSFC Direct Readout Laboratory; Data courtesy Tromso receiving station, Svalbard, Norway

  8. North Atlantic Bloom

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Reminiscent of the distinctive swirls in a Van Gogh painting, millions of microscopic plants color the waters of the North Atlantic with strokes of blue, turquoise, green, and brown. Fed by nutrients that have built up during the winter and the long, sunlit days of late spring and early summer, the cool waters of the North Atlantic come alive every year with a vivid display of color. The microscopic plants, called phytoplankton, that give the water this color are the base of the marine food chain. Some species of phytoplankton are coated with scales of calcium (chalk), which turn the water electric blue. Chlorophyll and other light-capturing pigments in others give the water a deep green hue. The proliferation of many different species in various stages of growth and decay provides many nuances of color in this concentrated bloom. The bloom stretches across hundreds of kilometers, well beyond the edges of this photo-like image, captured on June 23, 2007, by the Moderate Resolution Imaging Spectroradiometer (MODIS) flying aboard NASA's Aqua satellite. The upper left edge of the image is bounded by Greenland. Iceland is in the upper right. Plumes of dust are blowing off the island, probably adding nutrients to the surface waters to its south. NASA image courtesy Norman Kuring, Ocean Color Group at NASA Goddard Space Flight Center

  9. North Polar Ice Cap

    NASA Technical Reports Server (NTRS)

    1997-01-01

    North polar ice cap of Mars, as seen during mid summer in the northern hemisphere. The reddish areas consist of eolian dust, bright white areas consist of a mixture of water ice and dust, and the dark blue areas consist of sand dunes forming a huge 'collar' around the polar ice cap. (The colors have been enhanced with a decorrelation stretch to better show the color variability.) Shown here is an oblique view of the polar region, as seen with the Viking 1 spacecraft orbiting Mars over latitude 39 degrees north. The spiral bands consist of valleys which form by a combination of the Coriolis forces, wind erosion, and differential sublimation and condensation. In high-resolution images the polar caps are seen to consist of thick sequences of layered deposits, suggesting that cyclical climate changes have occurred on Mars. Cyclical climate changes are readily explained by quasi-periodic changes in the amount and distribution of solar heating resulting from perturbations in orbital and axial elements. Variations in the Earth's orbit have also been linked to the terrestrial climate changes during the ice ages.

  10. Practical Point-to-Point Free-Space Quantum Key Distribution over 1/2 KM

    SciTech Connect

    Buttler, W.T.; Hughes, R.J.; Kwiat, P.G.; Lamoreaux, S.K.; Morgan, G.L.; Peterson, C.G.

    1999-02-01

    We have demonstrated point-to-point single-photon quantum key distribution (QKD) over a free-space optical path of {approximately}475 m under daylight conditions. This represents an increase of >1,000 times farther than any reported point-to-point demonstration, and >6 times farther than the previous folded path daylight demonstration. We expect to extend the daylight range to 2 km or more within the next few months. A brief description of the system is given here. The QKD transmitter, a.k.a. ''Alice'' (Fig. 1), consists of three thermoelectrically cooled diode lasers, a single interference filter (IF), two optical attenuators, two linear polarizers, two non-polarization beam-splitters (BSs), and a 27x beam expander. The two data-lasers' (dim-lasers') wavelengths are temperature controlled and constrained by the IF to {approximately}773 {+-} 0.5 nm, while the transmitted wavelength of the bright-laser (timing-laser) is {approximately}768 nm; the data-lasers are configured to emit a weak pulse of approximately 1 ns duration. The transmitter incorporates no active polarization switching--a first in QKD.

  11. High-spatial-resolution isotope geochemistry of monazite (U-Pb & Sm-Nd) and zircon (U-Pb & Lu-Hf) in the Old Woman and North Piute Mountains, Mojave Desert, California

    NASA Astrophysics Data System (ADS)

    Phillips, Stacy E.; Hanchar, John M.; Miller, Calvin F.; Fisher, Christopher M.; Lancaster, Penny J.; Darling, James R.

    2014-05-01

    Recent improvements in analytical capabilities allow us to reveal details of magmatic processes at an increasingly finer spatial and temporal scale. In situ analyses of the isotopic and trace element composition of accessory minerals at the sub-grain scale have proven to be effective tools for solving a wide range of geological problems. This study presents new data on accessory minerals including monazite & zircon, examined by in situ LA-ICP-MS and Laser Ablation Split Stream (LASS) techniques, analyzing multiple isotopic systems (U-Pb + Sm-Nd, and U-Pb + Lu-Hf in monazite and zircon, respectively) in order to track geochemical changes over time through a magmatic system. The late Cretaceous granitoids of the Old Woman Mountains in the Mojave Desert, California, provide an excellent opportunity to apply these analytical techniques. The peraluminous granites of the Sweetwater Wash, Painted Rock, and North Piute plutons represent different depths of the magmatic system, and are well understood in terms of field relations and whole-rock geochemistry. A preliminary study on the Sweetwater Wash monazites (Fisher et al., in preparation) has revealed significant inter-grain isotopic heterogeneity in the ɛNd composition of the source region (~1700 Ma); however, the U-Pb ages show an isotopic resetting during emplacement at ~75 Ma. This decoupling of U-Pb and Sm-Nd isotopic systems is suggested by Fisher et al. to be due to recrystallisation and/or dissolution-reprecipitation of monazite. If grain boundary diffusion of Pb overrides the more kinetically limited volume diffusion, then the U-Pb systematics will be reset while Sm and Nd remain immobile in the monazite structure as essential structural components of the lattice. This new data will allow the further investigation of these preliminary results, providing new insights into the observed isotopic disequilibrium, with the LASS technique accurately linking the multiple isotopic systems. This will provide important

  12. Anaglyph, North America

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This anaglyph (stereoscopic view) of North America was generated with data from the Shuttle Radar Topography Mission (SRTM). It is best viewed at or near full resolution with anaglyph glasses. For this broad view the resolution of the data was first reduced to 30 arcseconds (about 928 meters north-south and 736 meters east-west in central North America), matching the best previously existing global digital topographic data set called GTOPO30. The data were then resampled to a Mercator projection with approximately square pixels (about one kilometer, or 0.6 miles, on each side). Even at this decreased resolution the variety of landforms comprising the North American continent is readily apparent.

    Active tectonics (structural deformation of the Earth's crust) along and near the Pacific North American plate boundary creates the great topographic relief seen along the Pacific coast. Earth's crustal plates converge in southern Mexico and in the northwest United States, melting the crust and producing volcanic cones. Along the California coast, the plates are sliding laterally past each other, producing a pattern of slices within the San Andreas fault system. And, where the plates are diverging, the crust appears torn apart as one huge tear along the Gulf of California (northwest Mexico), and as the several fractures comprising the Basin and Range province (in and around Nevada).

    Across the Great Plains, erosional patterns dominate, with stream channels surrounding and penetrating the remnants of older smooth slopes east of the Rocky Mountains. This same erosion process is exposing the bedrock structural patterns of the Black Hills in South Dakota and the Ozark Mountains in Arkansas. Lateral erosion and sediment deposition by the Mississippi River has produced the flatlands of the lower Mississippi Valley and the Mississippi Delta.

    To the north, evidence of the glaciers of the last ice age is widely found, particularly east of the Canadian Rocky Mountains and

  13. Multidimensional High Spatiotemporal Resolution InSAR Time Series Assist Interdisciplinary Space- And Ground-Based Monitoring To Reveal Pre-Eruptive Signals At Nyamulagira Volcano (North Kivu, D.R.C.)

    NASA Astrophysics Data System (ADS)

    d'Oreye, N.; Smets, B.; Kervyn, F.; Kervyn, M.; Albino, F.; Arellano, S. R.; Arjona, A. A.; Carn, S. A.; Fernandez, J.; Galle, B.; Gonzalez, P. J.; Head, E.; Pallero, J.; Prieto, J. F.; Samsonov, S. V.; Tedesco, D.; Tiampo, K. F.; Wauthier, C.

    2013-12-01

    Interdisciplinary space- and ground-based monitoring systems allowed the quantitative and detailed study of the Nyamulagira 2010 eruption (Congo). Field observations revealed the event as 4 eruptive phases delimited by major changes in effusive activity. Signals from ground deformation, seismicity, SO2 emission and thermal flux correlate with these eruptive phases. Moreover, MSBAS InSAR time series combining data acquired under different geometries and with different satellites (Samsonov and d'Oreye, 2012) allowed the detection of pre-, co- and inter-eruptive deformation in the Nyamulagira volcanic field. Using 8 years of ENVISAT, RADARSAT2 and ALOS data, the MSBAS method reveals the first unambiguous pre-eruptive ground deformations in the Virunga Volcanic Province. Precursory ground deformations are detected up to 3 weeks prior the onset of the 2010 eruption by images acquired by 3 different sensors in different geometries. These deformations took place in the main crater and along the SE flank of the volcano, where eruptive fractures will ultimately opened. Deformations coincide with small, though clear, increase of the short period seismicity and SO2 emissions.These seismic and SO2 variations alone were too small, however, to raise attention. The pre-eruptive ground deformation signals revealed by InSAR are of about the same amplitude and spatial extent as atmospheric noise and therefore cannot be identified on individual differential interferograms. Conventional time-series methods based on single acquisition geometry do not have a sufficient time resolution to discriminate such a precursory signal from an atmospheric artifact. The 3-week precursors detected at Nyamulagira contrast with the only precursory signal previously recognized so far in the Virunga, namely the increase of tremors and long period seismicity no more than few hours or days before the eruption onset. In January 2010, such short-term seismic precursors were detected less than two hours

  14. The impact of temperature resolution on trajectory modeling of stratospheric water vapour

    NASA Astrophysics Data System (ADS)

    Wang, T.; Dessler, A. E.; Schoeberl, M. R.; Randel, W. J.; Kim, J.-E.

    2014-11-01

    Lagrangian trajectories driven by reanalysis meteorological fields are frequently used to study water vapour (H2O) in the stratosphere, in which the tropical cold-point temperatures regulate H2O amount entering the stratosphere. Therefore, the accuracy of temperatures in the tropical tropopause layer (TTL) is of great importance for trajectory studies. Currently, most reanalyses, such as the NASA MERRA (Modern Era Retrospective-Analysis for Research and Applications), only provide temperatures with ~1.2 km vertical resolution in the TTL, which has been argued to introduce uncertainties in the simulations. In this paper, we quantify this uncertainty by comparing the trajectory results using MERRA temperatures on model levels (traj.MER-T) to those using temperatures in finite resolutions, including GPS temperatures (traj.GPS-T) and MERRA temperatures adjusted to recover wave-induced variability underrepresented by the current ~1.2 km vertical resolution (traj.MER-Twave). Comparing with traj.MER-T, traj.GPS-T has little impact on simulated stratospheric H2O (changes ~0.1 ppmv), whereas traj.MER-Twave tends to dry air by 0.2-0.3 ppmv. The bimodal dehydration peaks in traj.MER-T due to limited vertical resolution disappear in traj.GPS-T and traj.MER-Twave by allowing the cold-point tropopause to be found at finer vertical levels. Despite these differences in absolute values of predicted H2O and vertical dehydration patterns, there is virtually no difference in the interannual variability in different runs. Overall, we find that the finite resolution of temperature has limited impact on predicted H2O in the trajectory model.

  15. Fargo, North Dakota, USA

    NASA Technical Reports Server (NTRS)

    2009-01-01

    [figure removed for brevity, see original site] Annotated version Click on the image for high resolution TIFF file

    Why does Fargo flood? The Red River of the North, which forms the border between North Dakota and Minnesota, has a long history of severe floods. Major floods include those of 1826, 1897, 1950, 1997, and now 2009. The 1997 flood caused billions of dollars of damage, with greatest impact to the city of Grand Forks, north of and downstream from Fargo. The 2009 flood, which has primarily impacted Fargo, appears to have peaked early on March 28.

    Several factors combine to cause floods. Obviously, rainfall and snowmelt rates (and their geographic distribution) are the fundamental variables that create flooding in some years and not others. But the repetition of flooding in Fargo (and areas downstream), rather than in adjacent regions, can be attributed largely to its topographic setting and geologic history.

    The formation of landforms in the geologic past is often interpretable from digital topographic data, such as that supplied by the Shuttle Radar Topography Mission (SRTM). This image, covering parts of North Dakota, Minnesota, and South Dakota, displays ground elevation as brightness (higher is brighter) plus has simulated shading (with illumination from the north) to enhance topographic detail such as stream channels, ridges, and cliffs.

    The Red River of the North is the only major river that flows northward from the United States into Canada. In this scene it flows almost straight north from Fargo. North of this image it continues past the city of Winnipeg, Manitoba, and into Lake Winnipeg, which in turn drains to Hudson Bay. In the United States, the river lies in a trough that was shaped by continental glaciers that pushed south from Canada during the Pleistocene epoch, up to about 10,000 years ago. This trough is about 70 km (45 miles) wide and tens of meters (very generally about 100 feet) deep. Here near Fargo it lies on

  16. The collision zone between the North d'Entrecasteaux Ridge and the New Hebrides island arc. 2. Structure from multichannel seismic data

    USGS Publications Warehouse

    Fisher, M.A.; Collot, J.-Y.; Geist, E.L.

    1991-01-01

    The d'Entrecasteaux zone (DEZ) collides with the central New Hebrides island arc and consists of two subparallel ridges that strike east-west, stand 1-2 km above the surrounding oceanic plate, and subduct obliquely (15??) northward beneath the arc. Rocks dredged from the north ridge as well as reflections evident in multichannel seismic reflection data indicate that this ridge has a volcanic origin. Seismic reflection data collected over the lower arc slope reveal that mass wasting deposits locally make up most of the accretionary wedge. Mass wasting is thought to occur as the accretionary wedge is uplifted in response to the northward oblique subduction of the north ridge. The toe of the north ridge flank marks an abrupt transition in the lithologies that make up the footwall of the interplate decollement. -from Authors

  17. Fargo, North Dakota, USA

    NASA Technical Reports Server (NTRS)

    2009-01-01

    [figure removed for brevity, see original site] Annotated version Click on the image for high resolution TIFF file

    Why does Fargo flood? The Red River of the North, which forms the border between North Dakota and Minnesota, has a long history of severe floods. Major floods include those of 1826, 1897, 1950, 1997, and now 2009. The 1997 flood caused billions of dollars of damage, with greatest impact to the city of Grand Forks, north of and downstream from Fargo. The 2009 flood, which has primarily impacted Fargo, appears to have peaked early on March 28.

    Several factors combine to cause floods. Obviously, rainfall and snowmelt rates (and their geographic distribution) are the fundamental variables that create flooding in some years and not others. But the repetition of flooding in Fargo (and areas downstream), rather than in adjacent regions, can be attributed largely to its topographic setting and geologic history.

    The formation of landforms in the geologic past is often interpretable from digital topographic data, such as that supplied by the Shuttle Radar Topography Mission (SRTM). This image, covering parts of North Dakota, Minnesota, and South Dakota, displays ground elevation as brightness (higher is brighter) plus has simulated shading (with illumination from the north) to enhance topographic detail such as stream channels, ridges, and cliffs.

    The Red River of the North is the only major river that flows northward from the United States into Canada. In this scene it flows almost straight north from Fargo. North of this image it continues past the city of Winnipeg, Manitoba, and into Lake Winnipeg, which in turn drains to Hudson Bay. In the United States, the river lies in a trough that was shaped by continental glaciers that pushed south from Canada during the Pleistocene epoch, up to about 10,000 years ago. This trough is about 70 km (45 miles) wide and tens of meters (very generally about 100 feet) deep. Here near Fargo it lies on

  18. Investigation of Multi-decadal Trends in Aerosol Direct Radiative Effects over North America using a Coupled Meteorology-Chemistry Model

    NASA Astrophysics Data System (ADS)

    Mathur, R.; Pleim, J.; Wong, D.; Wei, C.; Xing, J.; Gan, M.; Yu, S.; Binkowski, F.

    2012-12-01

    While aerosol radiative effects have been recognized as some of the largest sources of uncertainty among the forcers of climate change, there has been little effort devoted to verification of the spatial and temporal variability of the magnitude and directionality of aerosol radiative forcing. A comprehensive investigation of the processes regulating aerosol distributions, their optical properties, and their radiative effects and verification of their simulated effects for past conditions relative to measurements is needed in order to build confidence in the estimates of the projected impacts arising from changes in both anthropogenic forcing and climate change. This study aims at addressing this issue through a systematic investigation of changes in anthropogenic emissions of SO2 and NOx over the past two decades in the United States, their impacts on anthropogenic aerosol loading in the North American troposphere, and subsequent impacts on regional radiation budgets. A newly developed 2-way coupled meteorology and air pollution model composed of the Weather Research and Forecasting (WRF) model and the Community Multiscale Air Quality (CMAQ) model is being run for 20 years (1990 - 2010) on a 12 km resolution grid that covers most of North America including the entire conterminous US. During this period US emissions of SO2 and NOx have been reduced by about 66% and 50%, respectively, mainly due to Title IV of the U.S. Clean Air Act Amendments (CAA) that aimed to reduce emissions that contribute to acid deposition. A methodology is developed to consistently estimate emission inventories for the 20-year period accounting for air quality regulations as well as population trends, economic conditions, and technology changes in motor vehicles and electric power generation. The coupled WRF-CMAQ model includes detailed treatment of direct effects of aerosols on photolysis rates as well as on shortwave radiation and the direct effects of tropospheric ozone on the long

  19. Global modelling of climate processes at high resolution - from one model towards multi-model

    NASA Astrophysics Data System (ADS)

    Roberts, Malcolm J.; Mizielinski, Matthew; Strachan, Jane; Vidale, Pier Luigi; Demory, Marie-Estelle; Schiemann, Reinhard; Haarsma, Rein

    2015-04-01

    A traceable hierarchy of global climate models, with atmosphere resolutions (using the Met Office Unified Model) ranging from 130km to 12km, with a subset of these coupled to ¼˚ ocean (NEMO), have been developed in order to study the impact of improved representation of small scale processes on the mean climate, its variability and extremes. An ensemble of 25km atmosphere integrations, using time on the European PrACE supercomputer HERMIT, and integrations with the 12km atmosphere model in which the convective parameterization has been switched off, have also been completed. In addition, a 10 year global coupled simulation with an eddy-resolving 1/12˚ ocean has recently been completed. The UPSCALE project completed an ensemble of 25km atmosphere integrations for both present day and idealised future climate, together with lower resolution models for comparison. For an increasing range of processes, we are attempting to assess the resolution at which the process and their impact on the mean climate are adequately represented. Example processes include tropical cyclones, large-scale hydrological transports and tropical precipitation. Building on this work, several 12km simulations have been performed in which the convective parameterization has been either reduced in effect or switched off and replaced by a sub-grid scale turbulence model. The impact on aspects of the simulation, such as the diurnal cycle and propagation of convective systems, will be discussed. The recently completed coupled simulation with an eddy-resolving ocean is being analysed to understand aspects of coupling and flux exchanges, in particular whether the ocean has a stronger driving influence on the atmosphere once it is able to reasonably resolve its fundamental dynamical processes. The above work is primarily based on analysis from one model, whereas robust understanding comes from analysis of multi-model ensembles. The proposed HighResMIP inter-comparison as part of CMIP6 (led by Rein

  20. FISH KILLS, NORTH CAROLINA

    EPA Science Inventory

    Data related to fish kills in North Carolina are collected and stored in tables on the Web at the North Carolina Department of Environment and Natural Resources. http://www.esb.enr.state.nc.us/Fishkill/fishkill00.htm

  1. Pervasive post-Eocene faulting and folding in unconsolidated sediments of the Mississippi River, Central U.S. as imaged by high-resolution CHIRP seismic data

    NASA Astrophysics Data System (ADS)

    Fave, X. J.; Magnani, M.; Waldron, B. A.; McIntosh, K. D.; Saustrup, S.; Guo, L.

    2010-12-01

    Despite being located in the stable continental interior of the North American plate, in 1811-1812 the New Madrid Seismic Zone (NMSZ) experienced among the largest magnitude historical earthquakes that ever occurred in the U.S. Paleoseismological evidence shows that large earthquakes have been occurring every 500 yr in the region for the past few thousand years, and historical and instrumental seismicity demonstrate that the NMSZ fault system is actively deforming today. By contrast, motion rates emerging from almost twenty years of geodetic observations substantiate a very slow rate of deformation across the NMSZ faults, suggesting that present velocities are not representative of the long-term deformation rate of the NMSZ fault system, and that deformation has likely been accommodated along structures additional to the NMSZ. In the summer of 2010, a high-resolution marine seismic reflection survey was carried out along the Mississippi River as part of a multi-year cooperative effort to investigate the spatial and temporal distribution of deformation in the Mississippi Embayment. Coincident to the seismic reflection profile, the survey also acquired ~300 km of CHIRP (Edgetech SB-512i) data from Cape Girardeau, MO to Caruthersville, MO. The CHIRP used a 0.7-1.2 kHz source pulse and recorded to a depth of 5-50 m sub-bottom. Here we present the preliminary interpretation of part of the CHIRP profile along the Mississippi River north of Hickman, KY, where the survey imaged a highly reflective sedimentary package down to a depth of ~50 m. The sedimentary sequence is about 20 m thick and appears to be bounded at the top and at the bottom by angular unconformities. The package is mildly folded and pervasively faulted, in some cases by extensional faults that exhibit up to 2 m of displacement and that reach the riverbed. Based on exposure of Eocene deposits 7 km to the east of the study area, and on the correlation of electric and gamma logs of nearby oil, gas and water

  2. 2. AERIAL VIEW, LOOKING NORTH. CHICAGO & NORTH WESTERN RAILWAY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. AERIAL VIEW, LOOKING NORTH. CHICAGO & NORTH WESTERN RAILWAY BRIDGE IS AT BOTTOM OF FRAME. - Chicago & North Western Railway, Kinzie Street Bridge, Spanning North Branch of Chicago River, South of Kinzie Street, Chicago, Cook County, IL

  3. A high-resolution regional reanalysis for Europe

    NASA Astrophysics Data System (ADS)

    Ohlwein, C.

    2015-12-01

    Reanalyses gain more and more importance as a source of meteorological information for many purposes and applications. Several global reanalyses projects (e.g., ERA, MERRA, CSFR, JMA9) produce and verify these data sets to provide time series as long as possible combined with a high data quality. Due to a spatial resolution down to 50-70km and 3-hourly temporal output, they are not suitable for small scale problems (e.g., regional climate assessment, meso-scale NWP verification, input for subsequent models such as river runoff simulations). The implementation of regional reanalyses based on a limited area model along with a data assimilation scheme is able to generate reanalysis data sets with high spatio-temporal resolution. Within the Hans-Ertel-Centre for Weather Research (HErZ), the climate monitoring branch concentrates efforts on the assessment and analysis of regional climate in Germany and Europe. In joint cooperation with DWD (German Meteorological Service), a high-resolution reanalysis system based on the COSMO model has been developed. The regional reanalysis for Europe matches the domain of the CORDEX EURO-11 specifications, albeit at a higher spatial resolution, i.e., 0.055° (6km) instead of 0.11° (12km) and comprises the assimilation of observational data using the existing nudging scheme of COSMO complemented by a special soil moisture analysis with boundary conditions provided by ERA-Interim data. The reanalysis data set covers the past 20 years. Extensive evaluation of the reanalysis is performed using independent observations with special emphasis on precipitation and high-impact weather situations indicating a better representation of small scale variability. Further, the evaluation shows an added value of the regional reanalysis with respect to the forcing ERA Interim reanalysis and compared to a pure high-resolution dynamical downscaling approach without data assimilation.

  4. Evaluation of a High-Resolution Regional Reanalysis for Europe

    NASA Astrophysics Data System (ADS)

    Ohlwein, C.; Wahl, S.; Keller, J. D.; Bollmeyer, C.

    2014-12-01

    Reanalyses gain more and more importance as a source of meteorological information for many purposes and applications. Several global reanalyses projects (e.g., ERA, MERRA, CSFR, JMA9) produce and verify these data sets to provide time series as long as possible combined with a high data quality. Due to a spatial resolution down to 50-70km and 3-hourly temporal output, they are not suitable for small scale problems (e.g., regional climate assessment, meso-scale NWP verification, input for subsequent models such as river runoff simulations). The implementation of regional reanalyses based on a limited area model along with a data assimilation scheme is able to generate reanalysis data sets with high spatio-temporal resolution. Within the Hans-Ertel-Centre for Weather Research (HErZ), the climate monitoring branch concentrates efforts on the assessment and analysis of regional climate in Germany and Europe. In joint cooperation with DWD (German Meteorological Service), a high-resolution reanalysis system based on the COSMO model has been developed. The regional reanalysis for Europe matches the domain of the CORDEX EURO-11 specifications, albeit at a higher spatial resolution, i.e., 0.055° (6km) instead of 0.11° (12km) and comprises the assimilation of observational data using the existing nudging scheme of COSMO complemented by a special soil moisture analysis with boundary conditions provided by ERA-Interim data. The reanalysis data set covers 6 years (2007-2012) and is currently extended to 16 years. Extensive evaluation of the reanalysis is performed using independent observations with special emphasis on precipitation and high-impact weather situations indicating a better representation of small scale variability. Further, the evaluation shows an added value of the regional reanalysis with respect to the forcing ERA Interim reanalysis and compared to a pure high-resolution dynamical downscaling approach without data assimilation.

  5. Structure and evolution of the seismically active Ostler Fault Zone (New Zealand) based on interpretations of multiple high resolution seismic reflection profiles

    NASA Astrophysics Data System (ADS)

    Campbell, Fiona M.; Ghisetti, Francesca; Kaiser, Anna E.; Green, Alan G.; Horstmeyer, Heinrich; Gorman, Andrew R.

    2010-12-01

    To improve our understanding of active faulting away from the main plate boundary on New Zealand's South Island, we have acquired high resolution seismic data across the Ostler Fault Zone Twelve 1.2 km long lines perpendicular to fault strike and a 1.6 km long crossline were collected in a region of the MacKenzie Basin where surface mapping delineates significant complexity in the form of two non-overlapping reverse fault strands separated by a transfer zone characterised by multiple smaller strands and increased folding. Interpretation of the resultant images includes a 45-55° west-dipping principal fault and two 25-30° west-dipping subsidiary faults, one in the hanging wall and one in the footwall of the principal fault. The geologically mapped complexities are shown to be caused by shallow variations in the structure of the principal fault, which breaks the surface in the north and south but not within the transfer zone, where it forms a triangle zone with associated backthrusting and minor faulting. These complexities only extend to ~ 300 m depth. Structures below this level are markedly simpler and much more 2D in nature, with the principal fault strand extending over a much longer distance than the individual strands observed at the surface. Since longer faults are susceptible to larger earthquakes than shorter ones, seismic hazard at the study site may be higher than previously thought. Multiple surface fault strands that give way to a single more major stand at relatively shallow depths may be a common feature of segmented fault systems. The deepest layered reflections at our site are consistent with the presence of a Late Cretaceous (?)-Tertiary basin underlying the present-day MacKenzie Basin. Structural restoration of the seismic images back to the base of Quaternary fluvioglacial terraces and back to the top of a Late Pliocene-Pleistocene fluviolacustrine unit indicate that compression was initiated prior to the Late Pliocene and that it has continued

  6. North Polar Cap

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    This week we will be looking at five examples of laminar wind flow on the north polar cap. On Earth, gravity-driven south polar cap winds are termed 'catabatic' winds. Catabatic winds begin over the smooth expanse of the cap interior due to temperature differences between the atmosphere and the surface. Once begun, the winds sweep outward along the surface of the polar cap toward the sea. As the polar surface slopes down toward sealevel, the wind speeds increase. Catabatic wind speeds in the Antartic can reach several hundreds of miles per hour.

    In the images of the Martian north polar cap we can see these same type of winds. Notice the streamers of dust moving downslope over the darker trough sides, these streamers show the laminar flow regime coming off the cap. Within the trough we see turbulent clouds of dust, kicked up at the trough base as the winds slow down and enter a chaotic flow regime.

    The horizontal lines in these images are due to framelet overlap and lighting conditions over the bright polar cap.

    Image information: VIS instrument. Latitude 86.5, Longitude 64.5 East (295.5 West). 40 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation

  7. North Polar Cap

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    This week we will be looking at five examples of laminar wind flow on the north polar cap. On Earth, gravity-driven south polar cap winds are termed 'catabatic' winds. Catabatic winds begin over the smooth expanse of the cap interior due to temperature differences between the atmosphere and the surface. Once begun, the winds sweep outward along the surface of the polar cap toward the sea. As the polar surface slopes down toward sealevel, the wind speeds increase. Catabatic wind speeds in the Antartic can reach several hundreds of miles per hour.

    In the images of the Martian north polar cap we can see these same type of winds. Notice the streamers of dust moving downslope over the darker trough sides, these streamers show the laminar flow regime coming off the cap. Within the trough we see turbulent clouds of dust, kicked up at the trough base as the winds slow down and enter a chaotic flow regime.

    The horizontal lines in these images are due to framelet overlap and lighting conditions over the bright polar cap.

    Image information:VIS instrument. Latitude 86.5, longitude 57.4 East (302.6 West). 40 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is

  8. North Polar Cap

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    This week we will be looking at five examples of laminar wind flow on the north polar cap. On Earth, gravity-driven south polar cap winds are termed 'catabatic' winds. Catabatic winds begin over the smooth expanse of the cap interior due to temperature differences between the atmosphere and the surface. Once begun, the winds sweep outward along the surface of the polar cap toward the sea. As the polar surface slopes down toward sealevel, the wind speeds increase. Catabatic wind speeds in the Antartic can reach several hundreds of miles per hour.

    In the images of the Martian north polar cap we can see these same type of winds. Notice the streamers of dust moving downslope over the darker trough sides, these streamers show the laminar flow regime coming off the cap. Within the trough we see turbulent clouds of dust, kicked up at the trough base as the winds slow down and enter a chaotic flow regime.

    The horizontal lines in these images are due to framelet overlap and lighting conditions over the bright polar cap.

    Image information: VIS instrument. Latitude 84.3, Longitude 314.4 East (45.6 West). 40 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation

  9. North Polar Cap

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    This week we will be looking at five examples of laminar wind flow on the north polar cap. On Earth, gravity-driven south polar cap winds are termed 'catabatic' winds. Catabatic winds begin over the smooth expanse of the cap interior due to temperature differences between the atmosphere and the surface. Once begun, the winds sweep outward along the surface of the polar cap toward the sea. As the polar surface slopes down toward sealevel, the wind speeds increase. Catabatic wind speeds in the Antartic can reach several hundreds of miles per hour.

    In the images of the Martian north polar cap we can see these same type of winds. Notice the streamers of dust moving downslope over the darker trough sides, these streamers show the laminar flow regime coming off the cap. Within the trough we see turbulent clouds of dust, kicked up at the trough base as the winds slow down and enter a chaotic flow regime.

    The horizontal lines in these images are due to framelet overlap and lighting conditions over the bright polar cap.

    Image information: VIS instrument. Latitude 84.2, Longitude 57.4 East (302.6 West). 40 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation

  10. The Role of Convection in Redistributing Formaldehyde to the Upper Troposphere Over North America and the North Atlantic during the Summer 2004 INTEX Campaign

    NASA Technical Reports Server (NTRS)

    Fried, Alan; Olson, Jennifer R.; Walega, Jim; Crawford, Jim H.; Chen, Gao; Weibring, Petter; Richter, Dirk; Roller, Chad; Tittel, Frank; Porter, Michael; Fuelberg, Henry; Halland, Jeremy; Bertram, Timothy H.; Cohen, Ronald C.; Pickering, Kenneth; Heikes, Brian G.

    2007-01-01

    Measurements of CH2O from a tunable diode laser absorption spectrometer (TDLAS) were acquired onboard the NASA DC-8 during the summer 2004 INTEX-NA (Intercontinental Chemical Transport Experiment - North America) campaign to test our understanding of convection and production mechanisms in the upper troposphere (UT, 6-12-km) over continental North America and the North Atlantic Ocean. Point-by-point comparisons with box model calculations, when MHP (CH3OOH) measurements were available for model constraint, resulted in a median CH2O measurement/model ratio of 0.91 in the UT. Multiple tracers were used to arrive at a set of UT CH2O background and perturbed air mass periods, and 46% of the TDLAS measurements fell within the latter category. At least 66% to 73% of these elevated UT observations were caused by enhanced production from CH2O precursors rather than direct transport of CH2O from the boundary layer. This distinction is important, since the effects from the former can last for over a week or more compared to one day or less in the case of convective transport of CH2O itself. In general, production of CH2O from CH4 was found to be the dominant source term, even in perturbed air masses. This was followed by production from MHP, methanol, PAN type compounds, and ketones, in descending order of their contribution. In the presence of elevated NO from lightning and potentially from the stratosphere, there was a definite trend in the CH2O discrepancy, which for the highest NO mixing ratios produced a median CH2O measurement/model ratio of 3.9 in the 10-12-km range. Discrepancies in CH2O and HO2 in the UT with NO were highly correlated and this provided further information as to the possible mechanism(s) responsible. These discrepancies with NO are consistent with additional production sources of both gases involving CH3O2 + NO reactions, most likely caused by unmeasured hydrocarbons.

  11. North American patience

    SciTech Connect

    1994-12-01

    Independent power companies are facing numerous changes in power markets across North America. While changes bring uncertainty, they also hold promise for future competitive power opportunities. Included are new capacity, repowering aging infrastructure and the role of power brokers. It is likely that patience has never been a more valuable attribute for companies working in the North American market.

  12. North American Biome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The North America biome includes the major ecoregions that make up the land area of Canada, the United States, Mexico, and countries in Central America. The biome is bordered to the north by the Arctic Ocean, to the east by the Atlantic Ocean, to the west and south by the Pacific Ocean, and to the s...

  13. 17. Interior first level view looking north within forward (north) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. Interior first level view looking north within forward (north) section of firing pier. - Naval Torpedo Station, Firing Pier, North end of Gould Island in Narragansett Bay, Newport, Newport County, RI

  14. 39. View of north side of 1958 service building, north ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    39. View of north side of 1958 service building, north side of warehouse, and north and west sides of parking deck, from northwest on Spring Street viaduct looking southeast. - Rich's Downtown Department Store, 45 Broad Street, Atlanta, Fulton County, GA

  15. Detail; Street Car Waiting House window, north wall North ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail; Street Car Waiting House window, north wall - North Philadelphia Station, Street Car Waiting House, 2900 North Broad Street, on northwest corner of Broad Street & Glenwood Avenue, Philadelphia, Philadelphia County, PA

  16. 29. Oblique Aerial View of North Plant, Looking North, Showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. Oblique Aerial View of North Plant, Looking North, Showing Powerhouse in Left Center and 1929 Bridge in Right Center (undated) - Atwater Kent Manufacturing Company, North Plant, 5000 Wissahickon Avenue, Philadelphia, Philadelphia County, PA

  17. WEST PIER OF NORTH GATE (490 NORTH & 900 EAST), ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    WEST PIER OF NORTH GATE (490 NORTH & 900 EAST), SALT LAKE CITY, UT. VIEW LOOKING SOUTH AT THE WEST PIER OF THE CEMETERY'S NORTH GATE. - Salt Lake City Cemetery, 200 N Street, Salt Lake City, Salt Lake County, UT

  18. NORTH GATE AT 11TH AVENUE (490 NORTH & 900 EAST), ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    NORTH GATE AT 11TH AVENUE (490 NORTH & 900 EAST), SALT LAKE CITY, UT. VIEW LOOKING SOUTH AT CEMETERY'S NORTH GATE (WPA PROJECT, 1938-1941). - Salt Lake City Cemetery, 200 N Street, Salt Lake City, Salt Lake County, UT

  19. 626628 North Eutaw Street (Commercial Building), 626628 North Eutaw Street ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    626-628 North Eutaw Street (Commercial Building), 626-628 North Eutaw Street & 400-412 Druid Hill Avenue on a block bounded by North Eutaw Street, George Street, Jaspar Street, & Druid Hill Avenue, Baltimore, Independent City, MD

  20. INTERIOR VIEW, NORTH QUARRY, AN ACTIVE DOLOMITE QUARRY, LOOKING NORTH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW, NORTH QUARRY, AN ACTIVE DOLOMITE QUARRY, LOOKING NORTH TO THE POWER PLANT OF THE HISTORIC THOMAS COKEWORKS SITE. - Wade Sand & Gravel Company, North Quarry, State Highway 78, Thomas, Jefferson County, AL

  1. EAST (FRONT) AND NORTH SIDE OF DOUBLE FURNACE AND NORTH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EAST (FRONT) AND NORTH SIDE OF DOUBLE FURNACE AND NORTH SIDE OF SINGLE FURNACE, SOUTHWEST. - Tannehill Furnace, 12632 Confederate Parkway, Tannehill Historical State Park, Bucksville, Tuscaloosa County, AL

  2. 52. GREAT HALL, LOOKING NORTH THROUGH STAIR HALL TO NORTH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    52. GREAT HALL, LOOKING NORTH THROUGH STAIR HALL TO NORTH VESTIBULE DOORS - Smithsonian Institution Building, 1000 Jefferson Drive, between Ninth & Twelfth Streets, Southwest, Washington, District of Columbia, DC

  3. Satellite signal shows storage-unloading subsidence in North China

    NASA Astrophysics Data System (ADS)

    Moiwo, J. P.; Tao, F.

    2015-06-01

    Worsening water storage depletion (WSD) contributes to environmental degradation, land subsidence and earthquake and could disrupt food production/security and social stability. There is need for efficient water use strategies in North China, a pivotal agrarian, industrial and political base in China with a widespread WSD. This study integrates satellite, model and field data products to investigate WSD and land subsidence in North China. In the first step, GRACE (Gravity Recovery and Climate Experiment) mass rates are used to show WSD in the region. Next, GRACE total water storage (TWS) is corrected for soil water storage (SWS) to derive groundwater storage (GWS) using GLDAS (Global Land Data Assimilation System) data products. The derived GWS is compared with GWS obtained from field-measured groundwater level to show land subsidence in the study area. Then GPS (Global Positioning System) data of relative land surface change (LSC) are used to confirm the subsidence due to WSD. A total of ~ 96 near-consecutive months (January 2002 through December 2009) of datasets are used in the study. Based on GRACE mass rates, TWS depletion is 23.76 ± 1.74 mm yr-1 or 13.73 ± 1.01 km3 yr-1 in the 578 000 km2 study area. This is ~ 31 % of the slated 45 km3 yr-1 water delivery in 2050 via the South-North Water Diversion Project. Analysis of relative LSC shows subsidence of 7.29 ± 0.35 mm yr-1 in Beijing and 2.74 ± 0.16 mm yr-1 in North China. About 11.53 % (2.74 ± 0.18 mm or 1.58 ± 0.12 km3) of the TWS and 8.37 % (1.52 ± 0.70 mm or 0.88 ± 0.03 km3) of the GWS are attributed to storage reductions accompanying subsidence in the region. Although interpretations of the findings require caution due to the short temporal and large spatial coverage, the concurrence of WSD and land subsidence could have adverse implications for the study area. It is critical that the relevant stakeholders embark on resource-efficient measures to ensure water availability, food security, ecological

  4. Towards a 1km resolution global flood risk model

    NASA Astrophysics Data System (ADS)

    Bates, Paul; Neal, Jeff; Sampson, Chris; Smith, Andy

    2014-05-01

    Recent advances in computationally efficient numerical algorithms and new High Performance Computing architectures now make high (1-2km) resolution global hydrodynamic models a realistic proposition. However in many areas of the world the data sets and tools necessary to undertake such modelling do not currently exist. In particular, five major problems need to be resolved: (1) the best globally available terrain data (SRTM) was generated from X-band interferometric radar data which does not penetrate vegetation canopies and which has significant problems in determining ground elevations in urban areas; (2) a global river bathymetry data set does not currently exist; (3) most river channels globally are less than the smallest currently resolvable grid scale (1km) and therefore require a sub-grid treatment; (4) a means to estimate the magnitude of the T year flood at any point along the global river network does not currently exist; and (5) a large proportion of flood losses are generated by off-floodplain surface water flows which are not well represented in current hydrodynamic modelling systems. In this paper we propose solutions to each of these five issues as part of a concerted effort to develop a 1km (or better) resolution global flood hazard model. We describe the new numerical algorithms, computer architectures and computational resources used, and demonstrate solutions to the five previously intractable problems identified above. We conduct a validation study of the modelling against satellite imagery of major flooding on the Mississippi-Missouri confluence plain in the central USA before outlining a proof-of-concept regional study for SE Asia as a step towards a global scale model. For SE Asia we simulate flood hazard for ten different flood return periods over the entire Thailand, Cambodia, Vietnam, Malaysia and Laos region at 1km resolution and show that the modelling produces coherent, consistent and sensible simulations of extent and water depth.

  5. North Polar Dunes

    NASA Technical Reports Server (NTRS)

    2006-01-01

    23 January 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows dark sand dunes in the north polar region of Mars. Surrounding much of the north polar ice cap are fields of sand dunes. In this case, the strongest winds responsible for the dunes blew off the polar cap (not seen here), from the north-northwest (upper left).

    Location near: 76.5oN, 63.7oW Image width: 3 km (1.9 mi) Illumination from: lower left Season: Northern Summer

  6. North American encephalitic arboviruses

    PubMed Central

    Davis, Larry E.; Beckham, J. David; Tyler, Kenneth L.

    2008-01-01

    Synopsis Arboviruses continue to be a major cause of encephalitis in North America and West Nile virus neuroinvasive disease is now the dominant cause of encephalitis. Transmission to humans of North American arboviruses occurs by infected mosquitoes or ticks. Most infections are asymptomatic or produce a flu-like illness. Elderly, immunosuppressed individuals and infants for some arboviruses have the highest incidence of severe encephalitis. Rapid serum or CSF IgM antibody capture ELISA assays are now available to diagnosis the acute infection for all North American arboviruses. Unfortunately, no antiviral drugs are approved for the treatment of arbovirus infection and current therapy is supportive. PMID:18657724

  7. Conflict Resolution Communications.

    ERIC Educational Resources Information Center

    Lincoln, Melinda G.

    2002-01-01

    Suggests that, due to escalating violence in contemporary society, community colleges should offer certificate or degree programs in conflict resolution. Describes a conflict resolution communication program, which teaches communication skills, mediation processes, and coping strategies to prospective mediators. (NB)

  8. Using High Resolution Numerical Weather Prediction Models to Reduce and Estimate Uncertainty in Flood Forecasting

    NASA Astrophysics Data System (ADS)

    Cole, S. J.; Moore, R. J.; Roberts, N.

    2007-12-01

    Forecast rainfall from Numerical Weather Prediction (NWP) and/or nowcasting systems is a major source of uncertainty for short-term flood forecasting. One approach for reducing and estimating this uncertainty is to use high resolution NWP models that should provide better rainfall predictions. The potential benefit of running the Met Office Unified Model (UM) with a grid spacing of 4 and 1 km compared to the current operational resolution of 12 km is assessed using the January 2005 Carlisle flood in northwest England. These NWP rainfall forecasts, and forecasts from the Nimrod nowcasting system, were fed into the lumped Probability Distributed Model (PDM) and the distributed Grid-to-Grid model to predict river flow at the outlets of two catchments important for flood warning. The results show the benefit of increased resolution in the UM, the benefit of coupling the high- resolution rainfall forecasts to hydrological models and the improvement in timeliness of flood warning that might have been possible. Ongoing work aims to employ these NWP rainfall forecasts in ensemble form as part of a procedure for estimating the uncertainty of flood forecasts.

  9. North American Spine Society

    MedlinePlus

    ... an appointment Search Don't miss the Largest Spine Meeting and Exhibition in the world. Check it ... committee Coverage Recommendations SpineLine Renew Membership NORTH AMERICAN SPINE SOCIETY BURR RIDGE, IL 7075 Veterans Blvd. Burr ...

  10. North America Mosaic

    Atmospheric Science Data Center

    2014-05-15

    article title:  Natural Color Mosaic of North America     View Larger ... at lower right. In addition to the contiguous United States, the scene spans from British Columbia in the northwest to Newfoundland ...

  11. Interior, north end of building, looking north. At left is ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior, north end of building, looking north. At left is the threading machine and the cutout in the wall for a long tube in the machine is on the north wall beyond the machine. - Fitzsimons General Hospital, Shops Building, Northwest Corner of West Pennington Avenue, & North Tenth Street, Aurora, Adams County, CO

  12. Highest Resolution Gaspra Mosaic

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This picture of asteroid 951 Gaspra is a mosaic of two images taken by the Galileo spacecraft from a range of 5,300 kilometers (3,300 miles), some 10 minutes before closest approach on October 29, 1991. The Sun is shining from the right; phase angle is 50 degrees. The resolution, about 54 meters/pixel, is the highest for the Gaspra encounter and is about three times better than that in the view released in November 1991. Additional images of Gaspra remain stored on Galileo's tape recorder, awaiting playback in November. Gaspra is an irregular body with dimensions about 19 x 12 x 11 kilometers (12 x 7.5 x 7 miles). The portion illuminated in this view is about 18 kilometers (11 miles) from lower left to upper right. The north pole is located at upper left; Gaspra rotates counterclockwise every 7 hours. The large concavity on the lower right limb is about 6 kilometers (3.7 miles) across, the prominent crater on the terminator, center left, about 1.5 kilometers (1 mile). A striking feature of Gaspra's surface is the abundance of small craters. More than 600 craters, 100-500 meters (330-1650 feet) in diameter are visible here. The number of such small craters compared to larger ones is much greater for Gaspra than for previously studied bodies of comparable size such as the satellites of Mars. Gaspra's very irregular shape suggests that the asteroid was derived from a larger body by nearly catastrophic collisions. Consistent with such a history is the prominence of groove-like linear features, believed to be related to fractures. These linear depressions, 100-300 meters wide and tens of meters deep, are in two crossing groups with slightly different morphology, one group wider and more pitted than the other. Grooves had previously been seen only on Mars's moon Phobos, but were predicted for asteroids as well. Gaspra also shows a variety of enigmatic curved depressions and ridges in the terminator region at left. The Galileo project, whose primary mission is the

  13. Gaspra - Highest Resolution Mosaic

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This picture of asteroid 951 Gaspra is a mosaic of two images taken by the Galileo spacecraft from a range of 5,300 kilometers (3,300 miles), some 10 minutes before closest approach on October 29, 1991. The Sun is shining from the right; phase angle is 50 degrees. The resolution, about 54 meters/pixel, is the highest for the Gaspra encounter and is about three times better than that in the view released in November 1991. Additional images of Gaspra remain stored on Galileo's tape recorder, awaiting playback in November. Gaspra is an irregular body with dimensions about 19 x 12 x 11 kilometers (12 x 7.5 x 7 miles). The portion illuminated in this view is about 18 kilometers (11 miles) from lower left to upper right. The north pole is located at upper left; Gaspra rotates counterclockwise every 7 hours. The large concavity on the lower right limb is about 6 kilometers (3.7 miles) across, the prominent crater on the terminator, center left, about 1.5 kilometers (1 mile). A striking feature of Gaspra's surface is the abundance of small craters. More than 600 craters, 100-500 meters (330-1650 feet) in diameter are visible here. The number of such small craters compared to larger ones is much greater for Gaspra than for previously studied bodies of comparable size such as the satellites of Mars. Gaspra's very irregular shape suggests that the asteroid was derived from a larger body by nearly catastrophic collisions. Consistent with such a history is the prominence of groove-like linear features, believed to be related to fractures. These linear depressions, 100-300 meters wide and tens of meters deep, are in two crossing groups with slightly different morphology, one group wider and more pitted than the other. Grooves had previously been seen only on Mars's moon Phobos, but were predicted for asteroids as well. Gaspra also shows a variety of enigmatic curved depressions and ridges in the terminator region at left. The Galileo project, whose primary mission is the

  14. DIFFERENCES IN GROUND CONTACT TIME EXPLAIN THE LESS EFFICIENT RUNNING ECONOMY IN NORTH AFRICAN RUNNERS

    PubMed Central

    Granados, C.; Irazusta, J.; Bidaurrazaga-Letona, I.; Zabala-Lili, J.; Tam, N.; Gil, S.M.

    2013-01-01

    The purpose of this study was to investigate the relationship between biomechanical variables and running economy in North African and European runners. Eight North African and 13 European male runners of the same athletic level ran 4-minute stages on a treadmill at varying set velocities. During the test, biomechanical variables such as ground contact time, swing time, stride length, stride frequency, stride angle and the different sub-phases of ground contact were recorded using an optical measurement system. Additionally, oxygen uptake was measured to calculate running economy. The European runners were more economical than the North African runners at 19.5 km · h−1, presented lower ground contact time at 18 km · h−1 and 19.5 km · h−1 and experienced later propulsion sub-phase at 10.5 km · h−1,12 km · h−1, 15 km · h−1, 16.5 km · h−1 and 19.5 km · h−1 than the European runners (P < 0.05). Running economy at 19.5 km · h−1 was negatively correlated with swing time (r = -0.53) and stride angle (r = -0.52), whereas it was positively correlated with ground contact time (r = 0.53). Within the constraints of extrapolating these findings, the less efficient running economy in North African runners may imply that their outstanding performance at international athletic events appears not to be linked to running efficiency. Further, the differences in metabolic demand seem to be associated with differing biomechanical characteristics during ground contact, including longer contact times. PMID:24744486

  15. Geographic distribution and dispersal of normapolles genera in North America

    USGS Publications Warehouse

    Tschudy, R.H.

    1981-01-01

    Normapolles pollen have been found in North America in Cretaceous and Lower Tertiary rocks from the eastern Atlantic Seaboard, the Mississippi embayment region and from the states and provinces from western North America as far north as the District of Mackenzie, Northwest Territories. Previous postulates relating to the Normapolles floral province (western Europe-eastern North America) were re-examined in the light of new finds of Normapolles genera in rocks from west of the Cretaceous epeiric seaway which separated the Normapolles province from the western North American Aquilapollenites province. A study of published occurrences of Normapolles genera and U.S. Geological Survey Denver Laboratory Normapolles records revealed that of the approximately 60 Normapolles genera recognized from western Europe, only 26 of these have been recognized from eastern North America. These data suggest that Normapolles-producing plants originated in western Europe and migrated to eastern North America prior to the opening of the north Atlantic seaway. Ten of these 26 genera also have been found in rocks from west of the Cretaceous epeiric seaway, suggesting that these genera were the only ones able to cross this barrier. At least six genera having Normapolles characteristics occur in eastern North America but have not yet been recorded from Europe. Two additional genera with Normapolles characteristics have been reported only from the Aquilapollenites province of western North America. Several discrepancies in the record need resolution, such as the latitudinal restriction of Thomsonipollis and Nudopollis to areas south 40??N latitude, the absence of records of Thomsonipollis east and north of central Georgia, and the absence of records of Kyandopollenites and Choanopollenites west of eastern Texas. These data show that the known boundaries of the Normapolles province are somewhat hazy and that firm conclusions regarding the geographic distribution and history of dispersal of

  16. Diagnosing overflow waters in the North Atlantic

    NASA Astrophysics Data System (ADS)

    Guo, Chuncheng; Ilicak, Mehmet; Bentsen, Mats; Fer, Ilker

    2015-04-01

    Danmark Strait overflow water (DSOW) and Iceland Faroe overflow water (ISOW) are important for the formation and transformation of deep waters in the North Atlantic. In this work the volume transport, variability, and pathways of DSOW and ISOW are diagnosed using the one degree ocean-ice coupled Norwegian Earth System Model (NorESM) that is forced by CORE2 inter-annual forcing. The oceanic component (MICOM) features an isopycnal coordinate that is referenced to 2000 db. The issues related to the coarse resolution such as the southward transport of ISOW to the western European Basin, the lack of overflow water in the western North Atlantic, and the western boundary detachment of the deep western boundary current are addressed. The effects of diapycnal mixing on the behavior of overflow descent at Denmark Strait and Faroe Bank Channel and its downstream evolution are examined.

  17. Differences Between Magnitudes and Health Impacts of BC Emissions Across the United States Using 12 km Scale Seasonal Source Apportionment

    EPA Science Inventory

    Recent assessments have analyzed the health impacts of PM2.5 from emissions from different locations and sectors using simplified or reduced-form air quality models. Here we present an alternative approach using the adjoint of the Community Multiscale Air Quality (CMAQ) model, wh...

  18. Late orogenic mafic magmatism in the North Cascades, Washington: Petrology and tectonic setting of the Skymo layered intrusion

    USGS Publications Warehouse

    Whitney, D.L.; Tepper, J.H.; Hirschmann, M.M.; Hurlow, H.A.

    2008-01-01

    The Skymo Complex in the North Cascades, Washington, is a layered mafic intrusion within the Ross Lake fault zone, a major orogen-parallel structure at the eastern margin of the Cascades crystalline core. The complex is composed dominantly of troctolite and gabbro, both with inclusions of primitive olivine gabbro. Low-pressure minerals in the metasedimentary contact aureole and early crystallization of olivine + plagioclase in the mafic rocks indicate the intrusion was emplaced at shallow depths (<12 km). The Skymo rocks have trace-element characteristics of arc magmas, but the association of Mg-rich olivine (Fo88-80) with relatively sodic plagioclase (An75-60) and the Al/Ti ratios of clinopyroxene are atypical of arc gabbros and more characteristic of rift-related gabbros. A Sm-Nd isochron indicates crystallization in the early Tertiary (ca. 50 Ma), coeval with the nearby Golden Horn alkaline granite. Mantle melting to produce Skymo magma likely occurred in a mantle wedge with a long history of arc magmatism. The Skymo mafic complex and the Golden Horn granite were emplaced during regional extension and collapse of the North Cascades orogen and represent the end of large-scale magmatism in the North Cascades continental arc. ?? 2008 Geological Society of America.

  19. USGS aerial resolution targets.

    USGS Publications Warehouse

    Salamonowicz, P.H.

    1982-01-01

    It is necessary to measure the achievable resolution of any airborne sensor that is to be used for metric purposes. Laboratory calibration facilities may be inadequate or inappropriate for determining the resolution of non-photographic sensors such as optical-mechanical scanners, television imaging tubes, and linear arrays. However, large target arrays imaged in the field can be used in testing such systems. The USGS has constructed an array of resolution targets in order to permit field testing of a variety of airborne sensing systems. The target array permits any interested organization with an airborne sensing system to accurately determine the operational resolution of its system. -from Author

  20. Ganymede - Comparison of Voyager and Galileo Resolution

    NASA Technical Reports Server (NTRS)

    1996-01-01

    These images demonstrate the dramatic improvement in the resolution of pictures that NASA's Galileo spacecraft is returning compared to previous images of the Jupiter system. The frame at left was taken by the Voyager 2 spacecraft when it flew by in 1979, with a resolution of about 1.3 kilometers (0.8 mile) per pixel. The frame at right showing the same area was captured by Galileo during its first flyby of Ganymede on June 27, 1996; it has a resolution of about 74 meters (243 feet) per pixel, more than 17 times better than that of the Voyager image. In the Voyager frame, line-like bright and dark bands can be seen but their detailed structure and origin are not clear. In the Galileo image, each band is now seen to be composed of many smaller ridges. The structure and shape of the ridges permit scientists to determine their origin and their relation to other terrains, helping to unravel the complex history of the planet-sized moon. In each of these frames, north is to the top, and the sun illuminates the surface from the lower left nearly overhead (about 77 degrees above the horizon). The area shown, at latitude 10 degrees north, 167 degrees west, is about 35 by 55 kilometers (25 by 34 miles). The image was taken June 27 when Galileo was 7,448 kilometers (4.628 miles) away from Ganymede. The Jet Propulsion Laboratory manages the Galileo mission for NASA's Office of Space Science.

  1. Decadal prediction with a high resolution model

    NASA Astrophysics Data System (ADS)

    Monerie, Paul-Arthur; Valcke, Sophie; Terray, Laurent; Moine, Marie-Pierre

    2016-04-01

    The ability of a high resolution coupled atmosphere-ocean general circulation model (with a horizontal resolution of the quarter degree in the ocean and of about 50 km in the atmosphere) to predict the annual means of temperature, precipitation, sea-ice volume and extent is assessed. Reasonable skill in predicting sea surface temperatures and surface air temperature is obtained, especially over the North Atlantic, the tropical Atlantic and the Indian Ocean. The skill in predicting precipitations is weaker and not significant. The Sea Ice Extent and volume are also reasonably predicted in winter (March) and summer (September). It is however argued that the skill is mainly due to the atmosphere feeding in well-mixed GHGs. The mid-90's subpolar gyre warming is assessed. The model simulates a warming of the North Atlantic Ocean, associated with an increase of the meridional heat transport, a strengthening of the North Atlantic current and a deepening of the mixed layer over the Labrador Sea. The atmosphere plays a role in the warming through a modulation of the North Atlantic Oscillation and a shrinking of the subpolar gyre. At the 3-8 years lead-time, a negative anomaly of pressure, located south of the subpolar gyre is associated with the wind speed decrease over the subpolar gyre. It prevents oceanic heat-loss and favors the northward move, from the subtropical to the subpolar gyre, of anomalously warm and salty water, leading to its warming. We finally argued that the subpolar gyre warming is triggered by the ocean dynamic but the atmosphere can contributes to its sustaining. This work is realised in the framework of the EU FP7 SPECS Project.

  2. Emplacement and Growth of the August 2014 to February 2015 Nornahraun Lava Flow Field North Iceland

    NASA Astrophysics Data System (ADS)

    Thordarson, T.; Hoskuldsson, A.; Jónsdottir, I.; Pedersen, G.; Gudmundsson, M. T.; Dürig, T.; Riishuus, M. S.; Moreland, W.; Gudnason, J.; Gallagher, C. R.; Askew, R. A.

    2015-12-01

    The 31.08.2014 to 27.02.2015 Nornahraun eruption in North Iceland is the largest eruption in Iceland in 232 years, producing an 85km2 lava flow field with a volume of 1.5-2km3. The eruption began on a 2 km long fissure that cut through the 1797AD Holuhraun vent system, spreading lava onto the flat (slope <0.4°) Dyngjujokull outwash plane. At mean magma discharge of 250 m3 the lava was transported from the vents via a 3.5km long lava channel, feeding a 1-2km wide rubbly pāhoehoe to 'a'a flow front advancing to the NE at rate of 1-2 km/day. This lava flow came to halt on 12 September at a distance of 18km from the vents and for the next 5 days it was subjected to endogenous growth reaching a mean thickness 12m and a volume 0.35km3. Mean magma discharge dropped to 150 m3/s on 18th and the vent activity was reduced to a 500 m long central segment of the fissure. A new lava flow formed, advancing along the southern margins of the first, coming to rest on 22 September at 11.5 km from the vents (vol. 0.09km3). On 23rd the third flow formed, advanced along south and north margins of the flow field, reaching a maximum length of 6.7 km as it came to rest on the 26th (vol. 0.06km3). Increase in magma discharge to about 220 m3/s is observed between 27 September and 8 October forming the 4th lava flow along the south margins of the flow field. This flow surged out to a distance of 15km in 12 days (vol. 0.22km3). Flow 5 formed between 9 to 30 October at mean discharge of 140 m3/s, advancing along the south side of flow 4 and reaching length of 11 km (vol. 0.30km3). Similarly, the sixth flow formed along flow 5 between 1-14 November at mean discharge of 110 m3/s and reaching length of 7.5km (vol. 0.11km3). This signaled the end of this gradual clockwise widening of the flow field, which coincided with partial crusting over of the lava channel and initiation of insulated flows that were emplaced on top of the earlier formed flows for the reminder of the eruption.

  3. 8. VIEW NORTH, DETAIL OF INBOARD WEST BASCULE NORTH TRUNNION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. VIEW NORTH, DETAIL OF INBOARD WEST BASCULE NORTH TRUNNION POST, SHOWING RACK QUADRANT AND FINAL REDUCTION GEAR; COUNTERWEIGHT AT UPPER LEFT - Grand Street Bridge, Spanning Pequonnock River at Grand Street, Bridgeport, Fairfield County, CT

  4. 8. NORTH ELEVATION. ALSO SHOWS NORTH (right) AND SOUTH (in ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. NORTH ELEVATION. ALSO SHOWS NORTH (right) AND SOUTH (in background) DEPENDENCIES, HABS No. SC-204 A AND HABS No. SC-204 B RESPECTIVELY - Faber House, 631 East Bay Street, Charleston, Charleston County, SC

  5. 3. NORTH ELEVATION OF BOILER HOUSE; PARTIAL NORTH ELEVATION OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. NORTH ELEVATION OF BOILER HOUSE; PARTIAL NORTH ELEVATION OF ENGINE HOUSE, LEFT REAR. - Providence Sewage Treatment System, Ernest Street Pumping Station, Boiler House, Ernest Street & Allens Avenue, Providence, Providence County, RI

  6. Lock 1 View north of north wall with concrete ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Lock 1 - View north of north wall with concrete foundation for coal unloader and gate pocket at left. - Savannah & Ogeechee Barge Canal, Between Ogeechee & Savannah Rivers, Savannah, Chatham County, GA

  7. 6. WEST END OF NORTH TRAINING WALL, LOOKING NORTH FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. WEST END OF NORTH TRAINING WALL, LOOKING NORTH FROM THE WATER, ALSO SHOWING FOUNDATIONS FOR AN UNIDENTIFIED STRUCTURE AT RIGHT. - Oakland Harbor Training Walls, Mouth of Federal Channel to Inner Harbor, Oakland, Alameda County, CA

  8. 1. GENERAL VIEW, NORTH SIDE OF CANNERY Looking north along ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. GENERAL VIEW, NORTH SIDE OF CANNERY Looking north along main canning area. Retorts were located under the wooden frame work on the right. - Hovden Cannery, 886 Cannery Row, Monterey, Monterey County, CA

  9. FOURTH FLOOR, NORTH HALF. VIEW NORTH SHOWING LINE OF PHOENIX ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FOURTH FLOOR, NORTH HALF. VIEW NORTH SHOWING LINE OF PHOENIX COLUMNS. - Colt Fire Arms Company, East Armory Building, 36-150 Huyshope Avenue, 17-170 Van Dyke Avenue, 49 Vredendale Avenue, Hartford, Hartford County, CT

  10. Detail of north wing with rollup door on north elevation; ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of north wing with roll-up door on north elevation; camera facing south. - Mare Island Naval Shipyard, Defense Electronics Equipment Operating Center, I Street, terminus west of Cedar Avenue, Vallejo, Solano County, CA

  11. Life sciences building, north rear, also showing north hall to ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Life sciences building, north rear, also showing north hall to the right, and the library in the center distance. - San Bernardino Valley College, 701 South Mount Vernon Avenue, San Bernardino, San Bernardino County, CA

  12. 8. VIEW, LOOKING NORTH, SHOWING NORTH SHORE AND OPERATOR'S HOUSE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. VIEW, LOOKING NORTH, SHOWING NORTH SHORE AND OPERATOR'S HOUSE WITH BRIDGE IN OPEN POSITION - New York, New Haven & Hartford Railroad, Mystic River Bridge, Spanning Mystic River between Groton & Stonington, Groton, New London County, CT

  13. location map, floor plan, north elevation, north elevation with porch ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    location map, floor plan, north elevation, north elevation with porch removed, south elevation, building section - Chopawamsic Recreational Demonstration Area - Cabin Camp 1, Help's Quarters, Prince William Forest Park, Triangle, Prince William County, VA

  14. Automated conflict resolution issues

    NASA Technical Reports Server (NTRS)

    Wike, Jeffrey S.

    1991-01-01

    A discussion is presented of how conflicts for Space Network resources should be resolved in the ATDRSS era. The following topics are presented: a description of how resource conflicts are currently resolved; a description of issues associated with automated conflict resolution; present conflict resolution strategies; and topics for further discussion.

  15. Conflict Resolution Bibliography.

    ERIC Educational Resources Information Center

    Charnofsky, Norene M., Comp.

    Various theories and approaches to conflict resolution and peace education are presented in the 31 resources listed in this annotated bibliography. It is divided into two sections. Section 1 contains materials designed to help adults become more effective role models for the peaceful resolution of conflict. Topics include parent/child conflicts,…

  16. Effects of spatial resolution

    NASA Technical Reports Server (NTRS)

    Abrams, M.

    1982-01-01

    Studies of the effects of spatial resolution on extraction of geologic information are woefully lacking but spatial resolution effects can be examined as they influence two general categories: detection of spatial features per se; and the effects of IFOV on the definition of spectral signatures and on general mapping abilities.

  17. Indians of North Carolina.

    ERIC Educational Resources Information Center

    Bureau of Indian Affairs (Dept. of Interior), Washington, DC.

    A brief historical review of the Cherokee Indians from the mid-sixteenth century to modern day depicts an industrious tribe adversely affected by the settlement movement only to make exceptional economic advancements with the aid of the Bureau of Indian Affairs. Civic pride and self-leadership among the Cherokee Indians in North Carolina has…

  18. North-South Relations

    ERIC Educational Resources Information Center

    Watkins, Melville

    1975-01-01

    Multinational corporations operating mostly in northern Canada export natural resources thus creating jobs and money for foreign shareholders. Similarly, businesses based in southern Canada reap benefits from northern resources. Environmentalists and churches can ally north-south interests to protect northern resources and people from corporate…

  19. NORTH AMERICAN BIOTIC COMMUNITIES

    EPA Science Inventory

    This digital 1:10,000,000 map (Reichenbacher et al. 1998) of coded polygons depicts the major upland biotic communities of North America using an ecological color scheme that illustrates gradients in available plant moisture, heat, and cold. Biotic communities are regional plant...

  20. North Carolina and SREB

    ERIC Educational Resources Information Center

    Southern Regional Education Board (SREB), 2009

    2009-01-01

    The Southern Regional Education Board (SREB) is a nonprofit organization that works collaboratively with North Carolina and 15 other member states to improve education at every level--from pre-K to postdoctoral study--through many effective programs and initiatives. SREB's "Challenge to Lead" Goals for Education, which call for the region to lead…

  1. News from the North.

    ERIC Educational Resources Information Center

    Ellis, Sarah

    1987-01-01

    Reports on three new illustrated children's books with settings in the frozen Far North: "Zoom Away" by Tim Wynne-Jones and Ken Nutt, "The Cremation of Sam McGee" by Ted Harrison, and "A Candle for Christmas" by Jean Speare and Ann Blades. (NKA)

  2. The North End Boston.

    ERIC Educational Resources Information Center

    Connally, Nicole; And Others

    Goals and objectives, student activities, and evaluations are contained in this guide for a one-day scavenger hunt through the North End of Boston. The culmination of a unit involving urban planning and land-use problems, the field trip is intended to give students first-hand experience with city life and a better understanding of urban issues…

  3. Seismic Attenuation, Temperature, H20, Mantle Melting and Rock Uplift, Central North Island New Zealand

    NASA Astrophysics Data System (ADS)

    Salmon, M.; Savage, M.; Stern, T.

    2005-12-01

    Back-arc basins of the western Pacific are elevated some 1-2 km above the adjacent oceanic floor. Where oceanic back-arc basins propagate into continental lithosphere we also see an uplift signal, which can be mapped and evaluated with geological methods. Trying to understand the driving force for this uplift requires seismological methods to quantify temperatures, and therefore buoyancy, in the upper mantle. New Zealand's North Island is one such place where the back-arc basin has propagated into continental lithosphere. Geological records show that the North Island has undergone up to 2.5 km of broad wavelength rock uplift since 5 Ma. We use earthquake data to map variations in seismic attenuation (Qp-1) beneath the North Island. Results are used to determine some constraints on the effects of temperature, water and melt on buoyancy in the mantle wedge above the subduction zone. A region of high attenuation extending to depths of ~140 km correlates, spatially, with the region of back-arc extension, volcanism and high heat flow (Central Volcanic Region or CVR). In this region the path-averaged Qp-1 for frequencies from 1-15Hz is 4.0×10-3±0.3×10-3 and shows little variation with depth. West of the CVR, the north-western North Island shows a decrease in attenuation but Qp-1 remains slightly elevated (path-averaged Qp-1 1.4×10-3±0.2×10-3). Here attenuation increases with depth until it reaches similar values as the CVR mantle at approximately 80 km. We use Qp values to calculate temperatures at 30 km and 80 km depth below these two regions. Temperatures at 30 km below the CVR are elevated to just above the melting temperature (1.02 Tm) while to the west temperatures are just below the solidus (~0.95 Tm). At 80 km depth attenuation indicates temperatures for both regions are just above the solidus. To reconcile temperatures calculated from heat flow measurements in the north-western North Island with those calculated from attenuation, melting temperatures must

  4. 19. Interior first level view looking north within forward (north) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. Interior first level view looking north within forward (north) section of firing pier. Objects pictured include torpedo cart (left), floor-mounted roller tray (extending to lower right), and (at center rear), deck-type firing tube. - Naval Torpedo Station, Firing Pier, North end of Gould Island in Narragansett Bay, Newport, Newport County, RI

  5. 49. Machinery rooms on north tower. Facing north. Machinery rooms ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    49. Machinery rooms on north tower. Facing north. Machinery rooms contain all motors, motor controllers, and gears for operating one span, in this case, the north span. Note bell with continuous operating clapper for use as fog signals. - Henry Ford Bridge, Spanning Cerritos Channel, Los Angeles-Long Beach Harbor, Los Angeles, Los Angeles County, CA

  6. North portal and deck view, from north, showing inclined endposts, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    North portal and deck view, from north, showing inclined endposts, Pratt through trusses, north portal strut, overhead bracing, pipe rails and posts, and concrete deck with bituminous wearing surface - Castle Garden Bridge, Township Route 343 over Bennetts Branch of Sinnemahoning Creek, Driftwood, Cameron County, PA

  7. Highest Resolution Image of Europa

    NASA Technical Reports Server (NTRS)

    1998-01-01

    During its twelfth orbit around Jupiter, on Dec. 16, 1997, NASA's Galileo spacecraft made its closest pass of Jupiter's icy moon Europa, soaring 200 kilometers (124 miles) kilometers above the icy surface. This image was taken near the closest approach point, at a range of 560 kilometers (335 miles) and is the highest resolution picture of Europa that will be obtained by Galileo. The image was taken at a highly oblique angle, providing a vantage point similar to that of someone looking out an airplane window. The features at the bottom of the image are much closer to the viewer than those at the top of the image. Many bright ridges are seen in the picture, with dark material in the low-lying valleys. In the center of the image, the regular ridges and valleys give way to a darker region of jumbled hills, which may be one of the many dark pits observed on the surface of Europa. Smaller dark, circular features seen here are probably impact craters.

    North is to the right of the picture, and the sun illuminates the surface from that direction. This image, centered at approximately 13 degrees south latitude and 235 degrees west longitude, is approximately 1.8 kilometers (1 mile) wide. The resolution is 6 meters (19 feet) per picture element. This image was taken on December 16, 1997 by the solid state imaging system camera on NASA's Galileo spacecraft.

    The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://www.jpl.nasa.gov/ galileo.

  8. High resolution MR microscopy

    NASA Astrophysics Data System (ADS)

    Ciobanu, Luisa

    Magnetic resonance imaging (MRI) microscopy [1] has the potential to bring the full capabilities of NMR to arbitrarily specified localized positions within small samples. The most interesting target of study is the living biological cell, with typical dimensions ˜100 mum, but with substructures that are much smaller, such as the cell nucleus (typically ˜10 mu m) and mitochondria (1--10 mum). One anticipates that the development of MR microscopy with resolution at the level of these substructures or better and with a wide, three dimensional field-of-view could open a new avenue of investigation into the biology of the living cell. Although the first MR image of a single biological cell was reported in 1987 [2], the cell imaged had quite large (˜1 mm diameter) spatial dimensions and the resolution obtained (on the order of 10 mu m) was not adequate for meaningful imaging of more typically sized cells. The quest for higher resolution has continued. In 1989 Zhou et al. [3] obtained fully three dimensional images with spatial resolution of (6.37 mum)3, or 260 femtoliters. While better "in-plane" resolutions (i.e., the resolution in 2 of the 3 spatial dimensions) have since been obtained, [4, 5] this volume resolution was not exceeded until quite recently by Lee et al., [6] who report 2D images having volume resolution of 75 mum 3 and in-plane resolution of 1 mum. In parallel with these advances in raw resolution several investigators [7, 8, 9] have focused on localized spectroscopy and/or chemical shift imaging. The key obstacles to overcome in MR microscopy are (1) the loss of signal to noise that occurs when observing small volumes and (2) molecular diffusion during the measurement or encoding. To date the problem of sensitivity has typically been addressed by employing small micro-coil receivers. [10] The problem of molecular diffusion can only be defeated with strong magnetic field gradients that can encode spatial information quickly. We report MR microscopy

  9. Nephelinite lavas at early stage of rift initiation (Hanang volcano, North Tanzanian Divergence)

    NASA Astrophysics Data System (ADS)

    Baudouin, Céline; Parat, Fleurice; Denis, Carole M. M.; Mangasini, Fredrik

    2016-07-01

    North Tanzanian Divergence is the first stage of continental break-up of East African Rift (<6 Ma) and is one of the most concentrated areas of carbonatite magmatism on Earth, with singular Oldoinyo Lengai and Kerimasi volcanoes. Hanang volcano is the southernmost volcano in the North Tanzanian Divergence and the earliest stage of rift initiation. Hanang volcano erupted silica-undersaturated alkaline lavas with zoned clinopyroxene, nepheline, andradite-schorlomite, titanite, apatite, and pyrrhotite. Lavas are low MgO-nephelinite with low Mg# and high silica content (Mg# = 22.4-35.2, SiO2 = 44.2-46.7 wt%, respectively), high incompatible element concentrations (e.g. REE, Ba, Sr) and display Nb-Ta fractionation (Nb/Ta = 36-61). Major elements of whole rock are consistent with magmatic differentiation by fractional crystallization from a parental melt with melilititic composition. Although fractional crystallization occurred at 9-12 km and can be considered as an important process leading to nephelinite magma, the complex zonation of cpx (e.g. abrupt change of Mg#, Nb/Ta, and H2O) and trace element patterns of nephelinites recorded magmatic differentiation involving open system with carbonate-silicate immiscibility and primary melilititic melt replenishment. The low water content of clinopyroxene (3-25 ppm wt. H2O) indicates that at least 0.3 wt% H2O was present at depth during carbonate-rich nephelinite crystallization at 340-640 MPa and 1050-1100 °C. Mg-poor nephelinites from Hanang represent an early stage of the evolution path towards carbonatitic magmatism as observed in Oldoinyo Lengai. Paragenesis and geochemistry of Hanang nephelinites require the presence of CO2-rich melilititic liquid in the southern part of North Tanzanian Divergence and carbonate-rich melt percolations after deep partial melting of CO2-rich oxidized mantle source.

  10. Proterozoic metamorphism and uplift history of the north-central Laramie Mountains, Wyoming, USA

    USGS Publications Warehouse

    Patel, S.C.; Frost, B.R.; Chamberlain, K.R.; Snyder, G.L.

    1999-01-01

    The Laramie Mountains of south-eastern Wyoming contain two metamorphic domains that are separated by the 1.76 Ga. Laramie Peak shear zone (LPSZ). South of the LPSZ lies the Palmer Canyon block, where apatite U-Pb ages are c. 1745 Ma and the rocks have undergone Proterozoic kyanite-grade Barrovian metamorphism. In contrast, in the Laramie Peak block, north of the shear zone, the U-Pb apatite ages are 2.4-2.1 Ga, the granitic rocks are unmetamorphosed and supracrustal rocks record only low-T amphibolite facies metamorphism that is Archean in age. Peak mineral assemblages in the Palmer Canyon block include (a) quartz-biotite-plagioclase-garnet-staurolite-kyanite in the pelitic schists; (b) quartz-biotite-plagioclase-low-Ca amphiboles-kyanite in Mg-Al-rich schists, and locally (c) hornblende-plagioclase-garnet in amphibolites. All rock types show abundant textural evidence of decompression and retrograde re-equilibration. Notable among the texturally late minerals are cordierite and sapphirine, which occur in coronas around kyanite in Mg-Al-rich schists. Thermobarometry from texturally early and late assemblages for samples from different areas within the Palmer Canyon block define decompression from > 7 kbar to < 3 kbar. The high-pressure regional metamorphism is interpreted to be a response to thrusting associated with the Medicine Bow orogeny at c. 1.78-1.76 Ga. At this time, the north-central Laramie Range was tectonically thickened by as much as 12 km. This crustal thickening extended for more than 60 km north of the Cheyenne belt in southern Wyoming. Late in the orogenic cycle, rocks of the Palmer Canyon block were uplifted and unroofed as the result of transpression along the Laramie Peak shear zone to produce the widespread decompression textures. The Proterozoic tectonic history of the central Laramie Range is similar to exhumation that accompanied late-orogenic oblique convergence in many Phanerozoic orogenic belts.

  11. Creating the virtual Eiger North Face

    NASA Astrophysics Data System (ADS)

    Buchroithner, Manfred

    The described activities aim at combining the potentials of photogrammetry, remote sensing, digital cartography and virtual reality/photorealism with the needs of modern spatial information systems for tourism and for alpinism in particular (the latter aspect is, however, not covered in the paper). Since for slopes steeper than 45°, a digital relief model in nadir projection cannot adequately depict the terrain even in low-angle views, digital Steep Slope Models (SSMs) with a rather vertical reference plane are desirable. This condition very much applies to the Eiger North Face which has been chosen as a testbed for the realisation of a virtual rock face and which shall later be embedded into a lower resolution synthetic landscape of the Eiger-Moench-Jungfrau Region generated from a DTM and satellite imagery. Our "SSM approach" seems justified by the fact that except for the visualisation, commercial software was used which is very limited both in DTM modelling and texture mapping. For the creation of the actual SSM, a pair of oblique coloured air photos has been used, resulting in both a digital face model of 3.7 m grid size and an orthophoto with a resolution of 0.25 m. To demonstrate the alpinistic potential of the product, climbing routes have been inserted into the face model, thus enabling even non-experienced individuals to enjoy the "virtual reality conquest" of the Eiger North Face and potential climbing candidates to prepare themselves for the actual "real world" enterprise.

  12. Resolving North America`s environmental disputes

    SciTech Connect

    Mauseth, M.

    1998-12-31

    Seventeen years ago John E. Carroll and Newell B. Mack analyzed the then-current status of environmental protection mechanisms used between Canada and the United States. They criticized the ad hoc nature of North America`s history of environmental dispute resolution, which they dubbed ``ad hockery,`` and believed the present ambiguity hurt business, diplomatic relations, and the citizenry`s environment. Since that publication, increasing efforts to incorporate environmental concerns into Conventions have resulted in several multilateral agreements focusing on environmental protection and dispute resolution. Part 2 of this paper introduces a few of these recent agreements and the mechanisms they have established to monitor environmental damage and to enforce the goals of the agreements. The agreements discussed include: Montreal Protocol on Substances that Deplete the Ozone Layer; Vienna Convention for the Protection of the Ozone Layer; Protocol on Substances that Deplete the Ozone Layer; Basel Convention on the Control of Transboundary Movements of Hazardous Wastes and their Disposal; Canada-United States: Agreement on Air Quality; Rio Declaration on Environment and Development; Framework Convention on Climate Change; Convention on Biological Diversity; and the North American Agreement on Environmental Cooperation. Part 3 discusses the general concern related to economic development (with the need to maintain ``sustainable development``), the possible environmental impact of NAFTA, and the Supplemental Agreement`s strengths and weaknesses.

  13. Moon - North Pole Mosaic

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This view of the Moon's north pole is a mosaic assembled from 18 images taken by Galileo's imaging system through a green filter as the spacecraft flew by on December 7, 1992. The left part of the Moon is visible from Earth; this region includes the dark, lava-filled Mare Imbrium (upper left); Mare Serenitatis (middle left); Mare Tranquillitatis (lower left), and Mare Crisium, the dark circular feature toward the bottom of the mosaic. Also visible in this view are the dark lava plains of the Marginis and Smythii Basins at the lower right. The Humboldtianum Basin, a 650-kilometer (400-mile) impact structure partly filled with dark volcanic deposits, is seen at the center of the image. The Moon's north pole is located just inside the shadow zone, about a third of the way from the top left of the illuminated region.

  14. North Polar Features

    NASA Technical Reports Server (NTRS)

    2004-01-01

    28 November 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows banded terrain of the north polar region of Mars. The bands are exposures of layered material, possibly composed of dust and ice. The dark, rounded to elliptical mounds in this image might be the locations of ancient sand dunes that were completely buried in the north polar layered material. In more recent times, these mounds have been exhumed from within the layered material. Alternatively, the dark features are not ancient, exhumed dunes, but perhaps the remnants of a dark layer of material that once covered the entire area shown in the image. These features are located near 79.9oN, 31.4oW. The image covers an area about 3 km (1.9 mi) wide. Sunlight illuminates the scene from the lower left.

  15. Lincoln's Spot Resolutions.

    ERIC Educational Resources Information Center

    Mueller, Jean West; Schamel, Wynell Burroughs

    1988-01-01

    Examines the events leading to and immediately following the declaration of war on Mexico in 1846. Includes the second and third pages of Abraham Lincoln's "Spot Resolutions" and presents teaching suggestions for interpreting the document and assessing public opinion. (GEA)

  16. Shower counter resolution scaling

    SciTech Connect

    Kirk, T.B.W.

    1991-10-14

    The EM shower counter for the SDC detector has a resolution expression containing two stochastic terms plus a constant term. Recent measurements clarifying the sources of these terms are presented here. 3 refs., 4 figs.

  17. Workforce: North Dakota

    ERIC Educational Resources Information Center

    Western Interstate Commission for Higher Education, 2006

    2006-01-01

    Between 2002 and 2012, the rate of job growth in North Dakota will be modest: under 1 percent annually. However, a large number of positions-close to a quarter of all jobs in the state-will open up for hiring due to retirements and separations. In addition, the demand for well-educated employees will only increase over the next several years. In…

  18. Ultra high resolution tomography

    SciTech Connect

    Haddad, W.S.

    1994-11-15

    Recent work and results on ultra high resolution three dimensional imaging with soft x-rays will be presented. This work is aimed at determining microscopic three dimensional structure of biological and material specimens. Three dimensional reconstructed images of a microscopic test object will be presented; the reconstruction has a resolution on the order of 1000 A in all three dimensions. Preliminary work with biological samples will also be shown, and the experimental and numerical methods used will be discussed.

  19. High-Resolution Autoradiography

    NASA Technical Reports Server (NTRS)

    Towe, George C; Gomberg, Henry J; Freemen, J W

    1955-01-01

    This investigation was made to adapt wet-process autoradiography to metallurgical samples to obtain high resolution of segregated radioactive elements in microstructures. Results are confined to development of the technique, which was perfected to a resolution of less than 10 microns. The radioactive samples included carbon-14 carburized iron and steel, nickel-63 electroplated samples, a powder product containing nickel-63, and tungsten-185 in N-155 alloy.

  20. Paleoseismologic Studies of the North Anatolian Fault, Cukurcimen and Ulaslar, North-Central Turkey

    NASA Astrophysics Data System (ADS)

    Hartleb, R. D.; Dolan, J. F.; Kozaci, O.; Seitz, G. G.; Akyuz, H. S.; Barka, A. A.

    2001-12-01

    The central North Anatolian fault (NAF) is a model opportunity to study long-term behavior of continental transforms because of its relative mechanical simplicity and long historic record of earthquakes. We excavated three trenches across the NAF at Cukurcimen, near Refahiye in north-central Turkey on the eastern part of the 1939 M7.9 surface rupture. Measurement of a nearby offset dirt road, together with interviews with residents, indicates that ~9 - 14 m of dextral slip occurred at the site during the 1939 event. Trench stratigraphy is superb, with alternating fine-scale alluvial and marsh deposits, including abundant, laterally-continuous peat horizons. These in-situ peat deposits provide excellent chronological control, which we are utilizing by strategic sampling and AMS 14C analysis. We identified evidence for at least two, and perhaps four, surface ruptures at Cukurcimen. Two distinct event horizons were recognized in trench 1 on the basis of upward fault terminations. The most recent event in trench 1 occurred shortly after deposition of a thin peat horizon (1332 - 1481 AD). We do not have an upper age limit for this event, but the event horizon lies ~75 cm below ground surface. We believe that this is the historical 1583 earthquake which razed Erzincan, and that the 1939 event is not recorded in trench 1. An older, clearly-defined event in trench 1 occurred shortly after deposition of another thin peat horizon (795 - 1022 AD), and before the 1583 (?) event. We suspect that this event is the historical 1045 earthquake. There is also equivocal evidence in trench 1 for an older event that occurred after deposition of a peat dated at BC 538 - 260, and before 795 - 1022 AD. Trench 2 revealed evidence for one event (1939?), peat dates are pending. Trench 3 revealed evidence for two events (probably 1939 and 1583). Additional excavations are planned at this site. We excavated two trenches across the NAF near Ulaslar, 12 km east of Gerede, on the 1944 M7

  1. Moon - North Pole

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This view of the north polar region of the Moon was obtained by Galileo's camera during the spacecraft's flyby of the Earth-Moon system on December 7 and 8, 1992. The north pole is to the lower right of the image. The view in the upper left is toward the horizon across the volcanic lava plains of Mare Imbrium. The prominent crater with the central peak is Pythagoras, an impact crater some 130 kilometers (80 miles) in diameter. The image was taken at a distance of 121,000 kilometers (75,000 miles) from the Moon through the violet filter of Galileo's imaging system. According to team scientists, the viewing geometry provided by the spacecraft's pass over the north pole and the low sun-angle illumination provide a unique opportunity to assess the geologic relationships among the smooth plains, cratered terrain and impact ejecta deposits in this region of the Moon. JPL manages the Galileo Project for NASA's Office of Space Science and Applications.

  2. Saturn's North Temperate Belt

    NASA Technical Reports Server (NTRS)

    1981-01-01

    In this Voyager 2 false-color photograph, obtained Aug. 20 from a distance of 6.4 million kilometers (4 million miles), north is to the upper left. This view of the northern edge of Saturn's North Temperate Belt, the brownish region in the lower right of the image, was made from frames taken through violet, blue and green filters. The bright disturbance in the lower left has been coiled into a figure '6' by the wind shear in the planet's atmosphere; this same feature was seen in an earlier release (P-23912, S-2-9). To the south of it, winds blow westward at 20 meters-per-second (45 mph). Within the white zone to the north, wind speeds are in excess of 130 meters-per-second (290 mph) to the east. Wavelike structures can be seen along the ribbon feature that roughly follows the core of this strong eastward-flowing jet. The smallest observable features in this image are about 120 km. (75 mi.) across. The Voyager project is managed for NASA by the Jet Propulsion Laboratory, Pasadena, Calif.

  3. Urban Stormwater Modeling: Ultra-High-Resolution Evaluation of Best Management Practices

    NASA Astrophysics Data System (ADS)

    Lopez, S. R.; Maxwell, R. M.

    2013-12-01

    Urban infrastructures affect drainage networks, alter flow paths, change feedbacks to the atmosphere and enhance contaminant transport. Urban stormwater either floods a system due to poor drainage and impervious surfaces, or is quickly transported out of the system in channels that then carry contaminants to downstream ecosystems with potentially harmful impacts. To mitigate these impacts, developers often use best management practices (BMPs) such as pervious pavement, infiltration basins, rain gardens or engineered wetlands. BMPs are typically represented using conceptually-based, coarse resolution hydrologic models; however, to effectively capture the flow dynamics, trace non-source pollutants and test BMP types and distributions, a high-resolution hydrologic model is needed. The goal of this work is to develop a novel approach to evaluate BMP implementation using an ultra-high-resolution hydrologic model. This study domain is located in Aurora, CO, in an area characterized by growing urban development. The ultra-high-resolution domain was constructed using LIDAR imagery and consisted of 1m x 1m horizontal resolution over a ~12 km by 4.5 km lateral extent up to 1m in the subsurface, with a domain totaling more than 108 unknowns. This analysis was performed using ParFlow, a physically-based, parallel hydrologic model that simulates surface and subsurface water interactions. Extreme wet, dry and normal storms events were coupled with three types of pervious pavement, amounting to 9 simulation scenarios. We investigated changes to stormwater routing and infiltration with and without BMP implementation. Contaminant transport is also included in this analysis via a Lagrangian, particle tracking approach, that allows for complex, contaminant-loading scenarios common in the urban environment. Future work includes investigating implications of alternate BMPs also used within urban developments.

  4. An oceanic mechanism for decadal variability in the North Pacific

    NASA Astrophysics Data System (ADS)

    Dawson, Andrew; Stevens, David; Matthews, Adrian

    2013-04-01

    Many studies have noted decadal scale sea surface temperature (SST) variability in the North Pacific Ocean. The spatial SST pattern has a cold anomaly in the central North Pacific that extends to the Pacific western boundary and resembles a broader and weaker El Nino signal in the tropics. This pattern of variability is often referred to as the Pacific Decadal Oscillation (PDO). Despite extensive research, the nature of the apparent oscillation between warm and cold SST anomalies in the central North Pacific is still surrounded by much uncertainty. A generally agreed upon point is that decadal-scale SST variability appears to be somehow linked to El Nino. However, the mechanism by which such variability is generated, be it an independent dynamical process or a stochastic reddening of other climate signals, is not well understood. Decadal variability in the North Pacific has impacts both locally and remotely. Temperature changes in the North Pacific can have a significant effect on the local ecosystem. Remote effects of the PDO include changes to the surface climate (e.g., temperature and precipitation) in Australia, South and North America, the Russian Far East, much of eastern Asia, and the maritime continent. Improved understanding of decadal variability in the North Pacific could lead to a better understanding of climate variability in these remote regions. Here we use a state-of-the-art high-resolution coupled climate model, HiGEM, to show that anomalous ocean transport in the North Pacific can largely account for the decadal-scale SST variability. We also demonstrate that it is likely that the same mechanism occurs in the real ocean, and therefore that internal ocean dynamics play a key role in regulating decadal-scale variability in the North Pacific.

  5. North Atlantic, ITCZ, and Monsoonal Climate Links

    NASA Astrophysics Data System (ADS)

    Haug, G. H.; Deplazes, G.; Peterson, L. C.; Brauer, A.; Mingram, J.; Dulski, P.; Sigman, D. M.

    2008-12-01

    Major element chemistry and color data from sediment cores in the anoxic Cariaco Basin off Venezuela record with (sub)annual resolution large and abrupt shifts in the hydrologic cycle of the tropical Atlantic during the last 80 ka. These data suggest a direct connection between the position of the ITCZ over northern South America, the strength of trade winds, and the temperature gradient to the high northern latitudes, ENSO, and monsoonal climate in Asia. The mechanisms behind these decadal-scale ITCZ-monsoon swings can be further explored at major climate transitions such as the onset of Younger Dryas cooling at ~12.7 ka, one of the most abrupt climate changes observed in ice core, lake and marine records in the North Atlantic realm and much of the Northern Hemisphere. Annually laminated sediments from ideally record the dynamics of abrupt climate changes since seasonal deposition immediately responds to climate and varve counts accurately estimate the time of change. We compare sub-annual geochemical data from a lake in Western Germany, which provides one of the best-dated records currently available for this climate transition, with the new the Cariaco Basin record and a new and higher resolution record from Lake Huguang Maar in China, and the Greenland ice core record. The Lake Meerfelder Maar record indicates an abrupt increase in storminess, occurring from one year to the next at 12,678 ka BP, coincident with other observed climate changes in the region. We interpret this shift of the wintertime winds to signify an abrupt change in the North Atlantic westerlies to a stronger and more zonal jet. The observed wind shift provides the atmospheric mechanism for the strong temporal link between North Atlantic overturning and European climate during the last deglaciation, tightly coupled to ITCZ migrations observed in the Cariaco Basin sediments, and a stronger east Asian Monsoon winter monsoon as seen in lake Huguang Maar, when cave stalagmite oxygen isotope data

  6. North polar region of Mars - Imaging results from Viking 2

    NASA Technical Reports Server (NTRS)

    Cutts, J. A.; Blasius, K. R.; Briggs, G. A.; Carr, M. H.; Masursky, H.; Greeley, R.

    1976-01-01

    During October 1976, the Viking 2 orbiter acquired approximately 700 high-resolution images of the north polar region of Mars. These images confirm the existence at the north pole of extensive layered deposits largely covered over with deposits of perennial ice. An unconformity within the layered deposits suggests a complex history of climate change during their time of deposition. A pole-girdling accumulation of dunes composed of very dark materials is revealed by the Viking cameras. The entire region is devoid of fresh impact craters. Rapid rates of erosion or deposition are implied. A scenario for polar geological evolution, involving two types of climate change, is proposed.

  7. High Resolution Projection of Future Air Quality in South Asia

    NASA Astrophysics Data System (ADS)

    Kumar, R.; Barth, M. C.; Pfister, G.; Lamarque, J. F.; Walters, S.; Naja, M. K.; Ghude, S. D.

    2015-12-01

    About one seventh of the world's population living in South Asia faces the risk of severe air pollution due to high anthropogenic emissions of air pollutants. Recent studies have shown that exposure to present day air pollution in South Asia is sufficient enough to reduce the lifespan of about 660 million people by about 3 years, destroy food that can feed about 94 million poor people and cause economic loss of several billion dollars. This problem may worsen in the future as anthropogenic emissions are expected to increase due to rapid economic growth in South Asia, and climate change is expected to lead to atmospheric conditions conducive for the production and accumulation of air pollutants. In order to predict how air quality will change in South Asia in future (2050), we are conducting high resolution air quality simulations for the present day (2005-2014) and future (2046-2055) time periods using the Nested Regional Climate Model coupled with Chemistry (NRCM-Chem). The model domain covers entire South Asia at a horizontal grid spacing of 60 km with a nested domain over the densely populated and polluted Indo-Gangetic Plain region at a horizontal grid spacing of 12 km. The model results are being evaluated with available in situ and satellite based observations and the evaluation results show that NRCM-Chem model is able to capture several important features of the observed spatial and temporal distribution of key meteorological parameters and air pollutants. Initial model results show that annual average surface ozone and PM2.5 concentrations may increase by up to 15 ppbv and 25 μg m-3, respectively with highest increase in the Indo-Gangetic Plain.

  8. INTERMEDIATE RESOLUTION NEAR-INFRARED SPECTROSCOPY OF 36 LATE M DWARFS

    SciTech Connect

    Deshpande, R.; Martin, E. L.; Zapatero Osorio, M. R.; Bouy, H.; Montgomery, M. M.; Rodler, F.; Del Burgo, C.; Phan Bao, N.; Lyubchik, Y.; Pavlenko, Y.; Tata, R.

    2012-10-01

    We present observations of 36 late M dwarfs obtained with the Keck II/NIRSPEC in the J band at a resolution of {approx}20,000. We have measured projected rotational velocities, absolute radial velocities, and pseudo-equivalent widths of atomic lines. Twelve of our targets did not have previous measurements in the literature. For the other 24 targets, we confirm previously reported measurements. We find that 13 stars from our sample have v sin i below our measurement threshold (12 km s{sup -1}) whereas four of our targets are fast rotators (v sin i > 30 km s{sup -1}). As fast rotation causes spectral features to be washed out, stars with low projected rotational velocities are sought for radial velocity surveys. At our intermediate spectral resolution, we have confirmed the identification of neutral atomic lines reported in McLean et al. We also calculated pseudo-equivalent widths of 12 atomic lines. Our results confirm that the pseudo-equivalent width of K I lines is strongly dependent on spectral types. We observe that the pseudo-equivalent width of Fe I and Mn I lines remains fairly constant with later spectral type. We suggest that these lines are particularly suitable for deriving metallicities for late M dwarfs.

  9. High resolution dating of young magmatic oceanic crust using near-seafloor magnetics

    NASA Astrophysics Data System (ADS)

    Dyment, J.; Kitazawa, M.; Hemond, C.; Guillou, H.; Chauvin, A.; Ravilly, M.; Honsho, C.

    2015-12-01

    We compare two independent dating methods on a section of oceanic crust created within the last million year on the Central Indian Ridge axis at 19°10'S, an area affected by the Reunion hotspot. First, near-seafloor magnetic anomalies display characteristic sequences of magnetic intensity variations that we confidently identified by comparison with published paleointensity curves for the Brunhes period and used as a dating tool. This approach is further confirmed by the linear trend relating the NRM (Natural Remanent Magnetization) and paleointensity measured on rock samples along the same section. Second, valid K-Ar and Ar-Ar ages are determined on enriched basalt samples collected by deep-sea submersible. They show an excellent coincidence with the magnetic ages and support the use of high-resolution, near-seafloor marine magnetic anomalies as an efficient tool to date the young magmatic oceanic crust, where radiometric methods are generally unpractical, with unprecedented resolution. The ages obtained on the CIR reveal a 150-200 kyr cyclicity in the magmatic and tectonic processes of seafloor formation, two ridge jumps of 2.5 km and 1.2 km, respectively, and a systematic spreading asymmetry in favor to the Indian flank which may result from the interaction of the CIR with the Reunion hotspot.

  10. Evaluation of the Diurnal Evolution of the Size of Tropical Convective Systems in Large Domain, High Resolution Simulations using Observations of Outgoing Longwave Radiation

    NASA Astrophysics Data System (ADS)

    Pearson, K.; Hogan, R.; Allan, R.; Holloway, C. E.; Lister, G.

    2010-12-01

    A long-standing problem in climate models is the failure to capture either the correct diurnal cycle in convective clouds or the growth of individual cells into larger scale complexes. Cascade is a multi-institution project to study the formation and development of tropical convective systems using high-resolution numerical modeling (down to 1.5~km) run over large domains ( ˜2000×2000~km) and observations. As one element of this, we have developed a technique for visualizing and testing the diurnal cycle in the size of convective cloud systems using observations of outgoing longwave radiation. This has been applied to a 2006 test case over Africa using GERB observations and models run with differing configurations and resolutions. We are now applying this to a large domain simulation of the Maritime continent covering several weeks during April 2009 comparing with TRMM observations. The image shows a comparison of the Met Office Unified Model run at 4~km and 12~km resolution, with and without convective parametrization respectively, for the West Africa test case. The grayscale represents the anomaly in the number of systems falling into each lengthscale bin against time. The middle panel is derived from observations by the Geostationary Earth Radiation Budget (GERB) instrument. It shows a broad upward stripe reflecting growth from smaller to larger systems beginning in the late afternoon. The 12~km model shows the effect of the parametrization scheme with systems of all sizes peaking at similar times much earlier than the observations. The 4~km model bears much closer comparison to the observations with growth in the middle to large size range occurring at a similar time to the observations. The small scale behavior, however, is affected by an unrealistic "shattering" of the large systems into many fragments in the early morning rather than a gradual decay.

  11. High Resolution Camera for Mapping Titan Surface

    NASA Technical Reports Server (NTRS)

    Reinhardt, Bianca

    2011-01-01

    Titan, Saturn's largest moon, has a dense atmosphere and is the only object besides Earth to have stable liquids at its surface. The Cassini/Huygens mission has revealed the extraordinary breadth of geological processes shaping its surface. Further study requires high resolution imaging of the surface, which is restrained by light absorption by methane and scattering from aerosols. The Visual and Infrared Mapping Spectrometer (VIMS) onboard the Cassini spacecraft has demonstrated that Titan's surface can be observed within several windows in the near infrared, allowing us to process several regions in order to create a geological map and to determine the morphology. Specular reflections monitored on the lakes of the North Pole show little scattering at 5 microns, which, combined with the present study of Titan's northern pole area, refutes the paradigm that only radar can achieve high resolution mapping of the surface. The present data allowed us to monitor the evolution of lakes, to identify additional lakes at the Northern Pole, to examine Titan's hypothesis of non-synchronous rotation and to analyze the albedo of the North Pole surface. Future missions to Titan could carry a camera with 5 micron detectors and a carbon fiber radiator for weight reduction.

  12. Developing High-Resolution Inundation Estimates through a Downscaling of Brightness Temperature Measurements

    NASA Astrophysics Data System (ADS)

    Fisher, C. K.; Wood, E. F.

    2014-12-01

    There is currently a large demand for high-resolution estimates of inundation extent and flooding for applications in water management, risk assessment and hydrologic modeling. In many regions of the world it is possible to examine the extent of past inundation from visible and infrared imagery provided by sensors such as the Moderate Resolution Imaging Spectroradiometer (MODIS); however, this is not possible in regions that are densely vegetated or are under persistent cloud cover. As a result of this, there is a need for alternative methodologies that make use of other remotely sensed data sources to inform high-resolution estimates of inundation. One such data source is the AMSR-E/Aqua 37 GHz vertically and horizontally polarized brightness temperature measurements, which have been used in previous studies to estimate the extent of inundated areas and which can make observations in vegetated or cloudy regions. The objective of this work was to develop a decision tree classifier based downscaling methodology by which inundation extent can be obtained at a high resolution, based on microwave brightness temperature measurements and high resolution topographic information. Using a random forest classifier that combined the AMSR-E 37GHz brightness temperatures (~12km mean spatial resolution) and a number of high-resolution topographic indices derived from the National Elevation Dataset for the United States (30m spatial resolution), a high-resolution estimate of inundation was created. A case study of this work is presented for the severe flooding that occurred in Iowa during the summer of 2008. Training and validation data for the random forest classifier were derived from an ensemble of previously existing estimates of inundation from sources such as MODIS imagery, as well as simulated inundation extents generated from a hydrologic routing model. Results of this work suggest that the decision tree based downscaling has skill in producing high-resolution estimates

  13. Submesoscale Instabilities on the North Wall of the Gulf Stream

    NASA Astrophysics Data System (ADS)

    Klymak, J. M.; Shearman, R. K.; Lee, C. M.; D'Asaro, E. A.; Thomas, L. N.; Sundermeyer, M. A.; Harcourt, R. R.

    2012-12-01

    Repeated kilometer-scale surveys of the north wall of the Gulf Stream made while following a Lagrangian float reveal filaments of warm water peeling off the Gulf Stream at regular intervals. Visible from satellite, these filaments have an along-front scale of over 50 km, and a cross-front scale of approximately 10 km. They consist of warm salty Gulf Stream water extruding into the cold fresh water to the north. Shipboard surveys had very high lateral and vertical resolution, and reveal that these features extend subsurface, peeling off the wall to a depth of over 150 m, and are tilted away from the wall at the surface and join it at the base of the Stream. These filaments were ubiquitous on the north wall, appearing approximately every 200 km, with a tendency to be on the trailing edge of Gulf Stream meanders. We propose that this mechanism is an important way for the Gulf Stream to lose heat to the north.Two finely sampled sections of salinity (colors) across the north wall of the Gulf Stream, showing separated warm salty filaments to the north (postive x).

  14. 3. AERIAL VIEW TO NORTH OF NORTH PART OF COAST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. AERIAL VIEW TO NORTH OF NORTH PART OF COAST GUARD AIR STATION SAN FRANCISCO, SHOWING PAN AMERICAN WORLD AIRWAYS HANGAR IN BACKGROUND. 8X10 black and white silver gelatin print. United States Coast Guard Official Photograph, 12th District, File No. 62751-21 A.S. Date unknown. - U.S. Coast Guard Air Station San Francisco, 1020 North Access Road, San Francisco, San Francisco County, CA

  15. INTERIOR VIEW, NORTH QUARRY, LOOKING NORTH TOWARDS THE SITE OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW, NORTH QUARRY, LOOKING NORTH TOWARDS THE SITE OF THE HISTORIC THOMAS FURNACES WITH ACTIVE DOLOMITE EXTRACTION ONGOING IN THE FOREGROUND. FURNACE FOUNDATION RUINS ARE PICTURED ON THE TOP LEDGE (CENTER LEFT) OF THE QUARRY. ALSO PICTURED IS THE HISTORIC THOMAS COKEWORKERS WITH (LEFT TO RIGHT) THE POWER PLANT, BOILER HOUSE, AND COKEWORKS. JUST SOUTH OF THE COKEWORKS, IS AN ACTIVE DOLOMITE CRUSHING, SIZING, AND SCREENING PLANT - Wade Sand & Gravel Company, North Quarry, State Highway 78, Thomas, Jefferson County, AL

  16. INTERIOR VIEW, NORTH QUARRY, LOOKING NORTH TOWARDS THE SITE OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW, NORTH QUARRY, LOOKING NORTH TOWARDS THE SITE OF THE HISTORIC THOMAS FURNACES WITH ACTIVE DOLOMITE EXTRACTION ONGOING IN THE FOREGROUND. FURNACE FOUNDATION RUINS ARE PICTURED ON THE TOP LEDGE (CENTER LEFT) OF THE QUARRY. ALSO PICTURED IS THE HISTORIC THOMAS COKEWORKS WITH (LEFT TO RIGHT) THE POWER PLANT, BOILER HOUSE, AND COKEWORKS. JUST SOUTH OF THE COKEWORKS IS AN ACTIVE DOLOMITE CRUSHING, SIZING, AND SCREENING PLANT. - Wade Sand & Gravel Company, North Quarry, State Highway 78, Thomas, Jefferson County, AL

  17. North Polar Dunes

    NASA Technical Reports Server (NTRS)

    2005-01-01

    10 April 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows low-albedo sand dunes in the north polar region. The slip faces on the dunes face toward the lower left, indicating that the dominant winds in this region blow or blew from the upper right.

    Location near: 82.4oN, 46.5oW Image width: 3 km (1.9 mi) Illumination from: lower left Season: Northern Summer

  18. North America: Chapter 5

    USGS Publications Warehouse

    Schwartz, Mark D.; Beaubien, Elisabeth G.; Crimmins, Theresa M.; Weltzin, Jake F.

    2013-01-01

    Plant phenological observations and networks in North America have been largely local and regional in extent until recent decades. In the USA, cloned plant monitoring networks were the exception to this pattern, with data collection spanning the late 1950s until approximately the early 1990s. Animal observation networks, especially for birds have been more extensive. The USA National Phenology Network (USA-NPN), established in the mid-2000s is a recent effort to operate a comprehensive national-scale network in the United States. In Canada, PlantWatch, as part of Nature Watch, is the current national-scale plant phenology program.

  19. North Pacific Acoustic Laboratory.

    PubMed

    Worcester, Peter F; Spindel, Robert C

    2005-03-01

    A series of long-range acoustic propagation experiments have been conducted in the North Pacific Ocean during the last 15 years using various combinations of low-frequency, wide-bandwidth transmitters and horizontal and vertical line array receivers, including a 2-dimensional array with a maximum vertical aperture of 1400 m and a horizontal aperture of 3600 m. These measurements were undertaken to further our understanding of the physics of low-frequency, broadband propagation and the effects of environmental variability on signal stability and coherence. In this volume some of the results are presented. In the present paper the central issues these experiments have addressed are briefly summarized. PMID:15810685

  20. S.Res.395 — 112th Congress (2011-2012) A resolution expressing the sense of the Senate in support of the North Atlantic Treaty Organization and the NATO summit to be held in Chicago, Illinois from May 20 through 21, 2012.

    THOMAS, 112th Congress

    Sen. Durbin, Richard [D-IL

    2012-03-13

    03/29/2012 Resolution agreed to in Senate without amendment and an amended preamble by Voice Vote. (consideration: CR S2279-2280; text of measure as reported in Senate: CR S2279; text as passed Senate: CR S2279-2280) (All Actions)

  1. Role of convection in redistributing formaldehyde to the upper troposphere over North America and the North Atlantic during the summer 2004 INTEX campaign

    NASA Astrophysics Data System (ADS)

    Fried, Alan; Olson, Jennifer R.; Walega, James G.; Crawford, Jim H.; Chen, Gao; Weibring, Petter; Richter, Dirk; Roller, Chad; Tittel, Frank; Porter, Michael; Fuelberg, Henry; Halland, Jeremy; Bertram, Timothy H.; Cohen, Ronald C.; Pickering, Kenneth; Heikes, Brian G.; Snow, Julie A.; Shen, Haiwei; O'Sullivan, Daniel W.; Brune, William H.; Ren, Xinrong; Blake, Donald R.; Blake, Nicola; Sachse, Glen; Diskin, Glenn S.; Podolske, James; Vay, Stephanie A.; Shetter, Richard E.; Hall, Samuel R.; Anderson, Bruce E.; Thornhill, Lee; Clarke, Antony D.; McNaughton, Cameron S.; Singh, Hanwant B.; Avery, Melody A.; Huey, Gregory; Kim, Saewung; Millet, Dylan B.

    2008-09-01

    Measurements of formaldehyde (CH2O) from a tunable diode laser absorption spectrometer (TDLAS) were acquired onboard the NASA DC-8 aircraft during the summer 2004 INTEX-NA campaign to test our understanding of convection and CH2O production mechanisms in the upper troposphere (UT, 6-12 km) over continental North America and the North Atlantic Ocean. The present study utilizes these TDLAS measurements and results from a box model to (1) establish sets of conditions by which to distinguish "background" UT CH2O levels from those perturbed by convection and other causes; (2) quantify the CH2O precursor budgets for both air mass types; (3) quantify the fraction of time that the UT CH2O measurements over North America and North Atlantic are perturbed during the summer of 2004; (4) provide estimates for the fraction of time that such perturbed CH2O levels are caused by direct convection of boundary layer CH2O and/or convection of CH2O precursors; (5) assess the ability of box models to reproduce the CH2O measurements; and (6) examine CH2O and HO2 relationships in the presence of enhanced NO. Multiple tracers were used to arrive at a set of UT CH2O background and perturbed air mass periods, and 46% of the TDLAS measurements fell within the latter category. In general, production of CH2O from CH4 was found to be the dominant source term, even in perturbed air masses. This was followed by production from methyl hydroperoxide, methanol, PAN-type compounds, and ketones, in descending order of their contribution. At least 70% to 73% of the elevated UT observations were caused by enhanced production from CH2O precursors rather than direct transport of CH2O from the boundary layer. In the presence of elevated NO, there was a definite trend in the CH2O measurement-model discrepancy, and this was highly correlated with HO2 measurement-model discrepancies in the UT.

  2. The value of high-resolution prediction of weather and crop productivity

    NASA Astrophysics Data System (ADS)

    Garcia-Carreras, Luis; Challinor, Andrew J.; Parkes, Ben J.

    2013-04-01

    Global climate and weather models are a key tool for the prediction of future crop productivity. Convective rainfall systems are too spatially small to be resolved by any current global model and must therefore be parameterised. Parameterisations of convection, however, all exhibit common deficiencies in the spatial and temporal variability of rainfall when compared to observations. Generally, rainfall peaks too early in the day (midday as opposed to the evening) and is too weak and widespread compared to the intense, localized storms which occur in reality. Because the simulated cloud cover is maximized at a different time of day compared to reality there are also knock-on effects on the mean incoming radiation and surface temperatures. Previous modelling studies over West Africa have also shown that these errors can upscale to affect the intensity and structure of the entire regional-scale monsoon circulation. All these factors constitute a significant source of error for any crop model that depends on inputs from global models in order to determine regional scale yields. Furthermore, as these errors are likely to be similar in all global models, they will not be captured in the uncertainty derived from existing climate model intercomparisons. In this study the General Large Area Model for annual crops (GLAM) is driven by Met Office Unified Model atmospheric data from regional-scale simulations of one cropping season over West Africa at different resolutions (40 and 12km with parameterised convection, 12 and 4km with resolved convection). These are used to assess the impact of both model resolution and the use of a parameterisation of convection on the prediction of groundnut yields. The use of two runs with the same resolution but a different representation of convection allows us to separate the impact of resolution from the parameterisation. Observed regional crop yield returns are used to evaluate the skill of the crop model output from the different runs.

  3. Environmental impact and recovery at two dumping sites for dredged material in the North Sea.

    PubMed

    Stronkhorst, J; Ariese, F; van Hattum, B; Postma, J F; de Kluijver, M; Den Besten, P J; Bergman, M J N; Daan, R; Murk, A J; Vethaak, A D

    2003-01-01

    The environmental impact and recovery associated with the long and uninterrupted disposal of large volumes of moderately contaminated dredged material from the port of Rotterdam was studied at nearby dumping sites in the North Sea. Observations were made on sediment contamination, ecotoxicity, biomarker responses and benthic community changes shortly after dumping at the 'North' site had ceased and at the start of disposal at the new dumping site 'Northwest'. During the period of dumping, very few benthic invertebrates were found at the North site. Concentrations of cadmium, mercury, polychlorinated biphenyls (PCBs), polyaromatic hydrocarbons (PAHs) and tributyltin (TBT) in the fine sediment fraction (<63 microm) from this site were 2-3 times higher than at the reference site. In four different bioassays with marine invertebrates the sediments showed no acute toxic effects. In tissue (pyloric caeca) of resident starfish Asterias rubens, residual levels of mercury, zinc, PCBs and dioxin-like activity were never more than twice those at the reference site. Four different biomarkers (DNA integrity, cytochrome P450 content, benzo[a]pyrene hydroxylase activity and acetylcholinesterase inhibition) were used on the starfish tissues, but no significant differences were found between North and the reference site. Minor pathological effects were observed in resident dab Limanda limanda. One year after dumping had ceased at the North site, a significant increase in the species richness and abundance of benthic invertebrates and a concomitant decrease in the fine sediment fraction of the seabed were observed. After 8.2 million m3 of moderately contaminated dredged material had been dumped at the new dumping site Northwest, the species richness and abundance of benthic invertebrates declined over an area extending about 1-2 km eastwards. This correlated with a shift in sediment texture from sand to silt. The contamination of the fine sediment fraction at the Northwest location

  4. International Conflict Resolution Workshops.

    ERIC Educational Resources Information Center

    Cohen, Stephen P.

    This paper describes two attempts to utilize a conflict resolution approach in academic settings. The approach includes: (1) the significance of the structure of communication between parties in conflict; (2) the understanding of face-to-face interaction processes; (3) problems of perceptual distortion; and (4) political socializations. The…

  5. Conflict Resolution Unit.

    ERIC Educational Resources Information Center

    Busselle, Tish

    This 7-day unit, intended for use with secondary students, contains a statement of rationale and objectives, lesson plans, class assignments, teacher and student bibliographies, and suggestions for instructional materials on conflict resolution between individuals, groups, and nations. Among the six objectives listed for the unit are: 1) explain…

  6. High resolution drift chambers

    SciTech Connect

    Va'vra, J.

    1985-07-01

    High precision drift chambers capable of achieving less than or equal to 50 ..mu..m resolutions are discussed. In particular, we compare so called cool and hot gases, various charge collection geometries, several timing techniques and we also discuss some systematic problems. We also present what we would consider an ''ultimate'' design of the vertex chamber. 50 refs., 36 figs., 6 tabs.

  7. High-resolution echocardiography

    NASA Technical Reports Server (NTRS)

    Nathan, R.

    1979-01-01

    High resolution computer aided ultrasound system provides two-and three-dimensional images of beating heart from many angles. System provides means for determining whether small blood vessels around the heart are blocked or if heart wall is moving normally without interference of dead and noncontracting muscle tissue.

  8. Resolution in 60 Seconds

    ERIC Educational Resources Information Center

    Burns, Hugh

    2009-01-01

    As a visiting scholar in digital media and composition at Ohio State University during Spring 2009, I created "Resolution in 60 Seconds" to promote the National Day on Writing on October 20, 2009, established by the National Council of Teachers of English (NCTE). The National Day on Writing (NDoW) seeks "[t]o draw attention to the remarkable…

  9. High-resolution headlamp

    NASA Astrophysics Data System (ADS)

    Gut, Carsten; Cristea, Iulia; Neumann, Cornelius

    2016-04-01

    The following article shall describe how human vision by night can be influenced. At first, front lighting systems that are already available on the market will be described, followed by their analysis with respect to the positive effects on traffic safety. Furthermore, how traffic safety by night can be increased since the introduction of high resolution headlamps shall be discussed.

  10. Assessment of the effects of horizontal grid resolution on long-term air quality trends using coupled WRF-CMAQ simulations

    NASA Astrophysics Data System (ADS)

    Gan, Chuen-Meei; Hogrefe, Christian; Mathur, Rohit; Pleim, Jonathan; Xing, Jia; Wong, David; Gilliam, Robert; Pouliot, George; Wei, Chao

    2016-05-01

    The objective of this study is to determine the adequacy of using a relatively coarse horizontal resolution (i.e. 36 km) to simulate long-term trends of pollutant concentrations and radiation variables with the coupled WRF-CMAQ model. WRF-CMAQ simulations over the continental United State are performed over the 2001 to 2010 time period at two different horizontal resolutions of 12 and 36 km. Both simulations used the same emission inventory and model configurations. Model results are compared both in space and time to assess the potential weaknesses and strengths of using coarse resolution in long-term air quality applications. The results show that the 36 km and 12 km simulations are comparable in terms of trends analysis for both pollutant concentrations and radiation variables. The advantage of using the coarser 36 km resolution is a significant reduction of computational cost, time and storage requirement which are key considerations when performing multiple years of simulations for trend analysis. However, if such simulations are to be used for local air quality analysis, finer horizontal resolution may be beneficial since it can provide information on local gradients. In particular, divergences between the two simulations are noticeable in urban, complex terrain and coastal regions.

  11. 21. VIEW NORTH; TYPICAL SMALLER ROOM, SECOND FLOOR, NORTH SIDE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. VIEW NORTH; TYPICAL SMALLER ROOM, SECOND FLOOR, NORTH SIDE OF BUILDING. - Naval Undersea Warfare Center, Bowditch Hall, 600 feet east of Smith Street & 350 feet south of Columbia Cove, West bank of Thames River, New London, New London County, CT

  12. 4. VIEW NORTH, YARD NORTH OF ENGINE HOUSE, SHOWING WATER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VIEW NORTH, YARD NORTH OF ENGINE HOUSE, SHOWING WATER TANK AND SHOP Photocopy of photograph, 1941 (Courtesy of Chesapeake Beach Railway Museum; L. W. Rice, photographer) - Chesapeake Beach Railroad Engine House, 21 Yost Place, Seat Pleasant, Prince George's County, MD

  13. 1. GENERAL VIEW OF EAST AND NORTH SIDES OF NORTH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. GENERAL VIEW OF EAST AND NORTH SIDES OF NORTH WING; NOTE PLYWOOD COVERED WINDOWS DUE TO EXPLOSION ON LAUNCH PAD A IN MARCH 1997 WITH FIERY RAIN OF SOLID ROCKET FUEL AND PROLONGED CONCUSSION WAVES; VIEW TO SOUTHWEST. - Cape Canaveral Air Station, Launch Complex 17, Facility 36001, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL

  14. ATTIC LEVEL NORTH HALF, VIEW NORTH. NOTE ROOF, CIRCA 1890, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ATTIC LEVEL NORTH HALF, VIEW NORTH. NOTE ROOF, CIRCA 1890, BY BERLIN IRON BRIDGE CO., E. BERLIN, CONN. - Colt Fire Arms Company, East Armory Building, 36-150 Huyshope Avenue, 17-170 Van Dyke Avenue, 49 Vredendale Avenue, Hartford, Hartford County, CT

  15. North Central Thailand

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This radar image shows the dramatic landscape in the Phang Hoei Range of north central Thailand, about 40 kilometers (25 miles) northeast of the city of Lom Sak. The plateau, shown in green to the left of center, is the area of Phu Kradung National Park. This plateau is a remnant of a once larger plateau, another portion of which is seen along the right side of the image. The plateaus have been dissected by water erosion over thousands of years. Forest areas appear green on the image; agricultural areas and settlements appear as red and blue. North is toward the lower right. The area shown is 38 by 50 kilometers (24 by 31 miles) and is centered at 16.96 degrees north latitude, 101.67 degrees east longitude. Colors are assigned to different radar frequencies and polarizations as follows: red is L-band horizontally transmitted and horizontally received; green is L-band horizontally transmitted and vertically received; blue is C-band horizontally transmitted and vertically received. The image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture (SIR-C/X-SAR) imaging radar on October 3, 1994, when it flew aboard the space shuttle Endeavour. SIR-C/X-SAR is a joint mission of the U.S./German and Italian space agencies.

    Spaceborne Imaging Radar-C and X-Band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by

  16. Improving North American gross primary production (GPP) estimates using atmospheric measurements of carbonyl sulfide (COS)

    NASA Astrophysics Data System (ADS)

    Chen, Huilin; Montzka, Steve; Andrews, Arlyn; Sweeney, Colm; Jacobson, Andy; Miller, Ben; Masarie, Ken; Jung, Martin; Gerbig, Christoph; Campbell, Elliott; Abu-Naser, Mohammad; Berry, Joe; Baker, Ian; Tans, Pieter

    2013-04-01

    Understanding the responses of gross primary production (GPP) to climate change is essential for improving our prediction of climate change. To this end, it is important to accurately partition net ecosystem exchange of carbon into GPP and respiration. Recent studies suggest that carbonyl sulfide is a useful tracer to provide a constraint on GPP, based on the fact that both COS and CO2 are simultaneously taken up by plants and the quantitative correlation between GPP and COS plant uptake. We will present an assessment of North American GPP estimates from the Simple Biosphere (SiB) model, the Carnegie-Ames-Stanford Approach (CASA) model, and the MPI-BGC model through atmospheric transport simulations of COS in a receptor oriented framework. The newly upgraded Hybrid Single Particle Lagrangian Integrated Trajectory Model (HYSPLIT) will be employed to compute the influence functions, i.e. footprints, to link the surface fluxes to the concentration changes at the receptor observations. The HYSPLIT is driven by the 3-hourly archived NAM 12km meteorological data from NOAA NCEP. The background concentrations are calculated using empirical curtains along the west coast of North America that have been created by interpolating in time and space the observations at the NOAA/ESRL marine boundary layer stations and from aircraft vertical profiles. The plant uptake of COS is derived from GPP estimates of biospheric models. The soil uptake and anthropogenic emissions are from Kettle et al. 2002. In addition, we have developed a new soil flux map of COS based on observations of molecular hydrogen (H2), which shares a common soil uptake term but lacks a vegetative sink. We will also improve the GPP estimates by assimilating atmospheric observations of COS in the receptor oriented framework, and then present the assessment of the improved GPP estimates against variations of climate variables such as temperature and precipitation.

  17. Oceanic plateau subduction beneath North America and its geological and geophysical implications

    NASA Astrophysics Data System (ADS)

    Liu, L.; Gurnis, M.; Seton, M.; Saleeby, J.; M Ü Ller, D.; Jackson, J. M.

    2009-12-01

    We use two independent approaches, inverse models of mantle convection and plate reconstructions, to predict the temporal and spatial association of the Laramide events to subduction of oceanic plateaus. Inverse convection models, consistent with vertical motions in western US, recover two prominent anomalies on the Farallon plate during the Late Cretaceous that coincide with paleogeographically restored Shatsky and Hess conjugate plateaus when they collided with North America. The distributed deformation of the Laramide orogeny closely tracked the passage of the Shatsky conjugate massif, suggesting that subduction of this plateau dominated the distinctive geology of the western United States. Subduction of the Hess conjugate corresponds to termination of a Latest Cretaceous arc magmatism and intense crustal shortening in Early Paleogene in northwest Mexico. At present, conjugates of the Shatsky and Hess plateaus are located beneath the east coast of North America, and we predict that +4% seismic anomalies in P and S velocities are associated with the remnant plateaus with sharp lateral boundaries detectable by the USArray seismic experiment. Flat subduction of the Shatsky conjugate caused drastic subsidence/uplift and tilt of the Colorado Plateau (CP). From the inverse convection calculations, we find that with the arrival of the flat slab, dynamic subsidence starts at the southwestern CP and reaches a maximum at ~86 Ma. Two stages of uplift follow the removal of the Farallon slab: one in Latest Cretaceous and the other in Eocene with a cumulative uplift of ~1.2 km. The southwestern plateau reaches a high dynamic topography in the Eocene which is sustained to the present. Both the descent of the slab and buoyant upwelling may have contributed to late Cenozoic plateau uplift. The CP tilts downward to the NE before the Oligocene, caused by NE trending subduction of the Farallon slab. The NE tilt diminishes and switches to a SW tilt during the Miocene when buoyant

  18. Reactive Nitrogen Distribution and Partitioning in the North American Troposphere and Lowermost Stratosphere

    NASA Technical Reports Server (NTRS)

    Singh, H. B.; Salas, L.; Herlth, D.; Kolyer, R.; Czech, E.; Crawford, J. H.; Pierce, R. B.; Sachse, G. W.; Blake, D. R.; Cohen, R. C.; Bertram, T. H.; Perring, A.; Wooldridge, P. J.; Dibb, J.; Huey, G.; Hudman, R. C.; Turquety, S.; Emmons, L. K.; Flocke, F.; Tang, Y.; Carmichael, G. R.; Horowitz, L. W.

    2007-01-01

    A comprehensive group of reactive nitrogen species (NO, NOz, HN03, HOzN02, PANs, alkyl nitrates, and aerosol-NO3) were measured over North America during July/August 2004 from the NASA DC-8 platform (0.1 - 12 km). Nitrogen containing tracers of biomass combustion (HCN and CH3CN) were also measured along with a host of other gaseous (CO, VOC, OVOC, halocarbon) and aerosol tracers. Clean background air as well as air with influences from biogenic emissions, anthropogenic pollution, biomass combustion, convection, lightning, and the stratosphere was sampled over the continental United States, the Atlantic, and the Pacific. The North American upper troposphere (UT) was found to be greatly influenced by both lightning NO, and surface pollution lofted via convection and contained elevated concentrations of PAN, ozone, hydrocarbons, and NO,. Observational data suggest that lightning was a far greater contributor to NO, in the UT than previously believed. PAN provided a dominant reservoir of reactive nitrogen in the UT while nitric acid dominated in the lower troposphere (LT). Peroxynitric acid (H02N02) was present in sizable concentrations peaking at around 8 km. Aerosol nitrate appeared to be mostly contained in large soil based particles in the LT. Plumes from Alaskan fires contained large amounts of PAN and aerosol nitrate but little enhancement in ozone. A comparison of observed data with simulations from four 3-D models shows significant differences between observations and models as well as among models. We investigate the partitioning and interplay of the reactive nitrogen species within characteristic air masses and further examine their role in ozone formation.

  19. Dunes of the North

    NASA Technical Reports Server (NTRS)

    2005-01-01

    30 March 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows linear and barchan sand dunes in Chasma Boreale, a broad erosional trough in the martian north polar region. Winds responsible for these dunes generally blow from upper right toward the lower left. Martian dunes tend to be darker than their counterparts on Earth because they are composed of darker, iron-bearing minerals and rock fragments.

    Location near: 84.2oN, 37.9oW Image width: 3 km (1.9 mi) Illumination from: lower left Season: Northern Summer

  20. North Absaroka Wilderness, Wyoming

    SciTech Connect

    Nelson, W.H.; Williams, F.E.

    1984-01-01

    The North Absaroka Wilderness was studied during 1970-1972 to evaluate the resource potential of the area. The results of geologic field mapping, field inspection of claims and prospects, analyses of bedrock and stream-sediment samples, and an aeromagnetic survey indicate that a small area of geologic terrane with probable mineral-resource potential for silver, lead, and zinc is present on the northern edge of the wilderness. Bentonite, low-quality coal, and localized deposits of uranium and chromite have been produced from surrounding areas; but such deposits, if present in the wilderness, are probably too deeply buried, too small, or too sporadically distributed to be classed as resources. Copper and gold mines and prospects are present on the fringes of the wilderness, but otherwise the area seems to be devoid of concentrations of metallic minerals. No surface evidence of geothermal energy resources was found.

  1. North American plate dynamics

    NASA Technical Reports Server (NTRS)

    Richardson, Randall M.; Reding, Lynn M.

    1991-01-01

    Deformation within the North American plate in response to various tectonic processes is modeled using an elastic finite element analysis. The tectonic processes considered in the modeling include ridge forces associated with the normal thermal evolution of oceanic lithosphere, shear and normal stresses transmitted across transforms, normal stresses transmitted across convergent boundaries, stresses due to horizontal density contrasts within the continent, and shear tractions applied along the base of the plate. Model stresses are calculated with respect to a lithostatic reference stress state. Shear stresses transmitted across transform boundaries along the San Andreas and Caribbean are small, of the order of 5-10 MPa. Also, compressive stresses of the order of 5-10 MPa transmitted across the major transforms improve the fit to the data. Compressive stresses across convergent margins along the Aleutians and the Middle America trench are important.

  2. MOPITT Views North America

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Measurement of Pollution in the Troposphere, MOPITT, measures two important pollutants in the Earth's atmosphere-carbon monoxide (CO) and methane. This MOPITT image shows the relative amount of CO over North America from March 5-7, 2000. The animation (2.9MB) (high-res (5MB)) shows the global distribution of carbon monoxide. Industrial activity produced the large amount of CO present in the Northern Hemisphere, and brush fires in Central Africa created the plume of CO stretching from Africa over the Atlantic Ocean. For more information: MOPITT images through Visible Earth MOPITT Web Site at the Canadian Space Agency MOPITT Web Site at the University of Toronto Image courtesy of the MOPITT instrument team

  3. Assessing the Sensitivity of Simulated East Coast Winter Storms to Horizontal Resolution Using Variable-Resolution CAM

    NASA Astrophysics Data System (ADS)

    Zarzycki, C. M.

    2015-12-01

    East Coast winter storms can have a broad range of impacts on densely populated regions of eastern North America. These systems can pose threats to health and safety, significantly disrupt transportation infrastructure, and result in long-term national and global economic consequences. While considerable efforts have been made in the short-term forecasting of these storms, less investigation has detailed their representation in free-running climate simulations at seasonal to multi-year timescales, in part due to the relatively low resolution of traditional global general circulation models (GCMs). However, aspects of these systems determining local impacts include mesoscale storm dynamics, orography, and land surface properties, which require higher horizontal resolution for increased realism. Recently, variable-resolution GCMs have become more widely used as a method of targeting computing resources to regionally increase resolution while maintaining a global modeling framework. These techniques allow for the elimination of boundary conditions and the more physically consistent treatment of subgrid parameterizations. In this presentation we assess the impact of model resolution on winter storm characteristics by using a hierarchy of variable-resolution Community Atmosphere Model version 5 (CAM5) simulations. Regional refinement is added within CAM over the eastern portions of North America. An automated detection scheme has been developed to objectively find and track storms in output data. In addition, implementation of precipitation type and snow liquid water equivalent algorithms allow for simulated snow, freezing rain, sleet, and mixed precipitation to be assessed in a climatological sense. We pay particular attention to changes in storm intensity and shifts in precipitation distribution as horizontal resolution is increased from typical GCM grid spacings (1°, ~110 km) to resolutions more typical of numerical weather prediction (0.125°, ~14km). Novel methods

  4. Performance Summary of the 2006 Community Multiscale Air Quality (CMAQ) Simulation for the AQMEII Project: North American Application

    EPA Science Inventory

    The CMAQ modeling system has been used to simulate the CONUS using 12-km by 12-km horizontal grid spacing for the entire year of 2006 as part of the Air Quality Model Evaluation International initiative (AQMEII). The operational model performance for O3 and PM2.5<...

  5. North Korea: A Geographical Analysis.

    ERIC Educational Resources Information Center

    Palka, Eugene J., Ed.; Galgano, Francis A., Ed.

    North Korea is a country about the size of the state of New York, inhabited by about 23 million people. It came into existence after the conclusion of World War II following decades of occupation of the Korean Peninsula by the Japanese empire. Dividing the peninsula into North and South Korea was the politically expedient solution to one of the…

  6. North American XP-51 Mustang

    NASA Technical Reports Server (NTRS)

    1944-01-01

    North American XP-51 Mustang: This XP-51 Mustang built by North American Aviation is the oldest P-51 in existence. It flew for two period at Langley with the NACA, shown here during its later stay between January 1944 and July 1945. It worked in developing the Mustang series, and later with 'bump' models on its wing, it helped design later aircraft.

  7. NORTH ALBEMARLE REGION HYDROGEOLOGIC FRAMEWORK

    EPA Science Inventory

    The North Albemarle region lies north of the Albemarle Sound and east of the Chowan River, including Camden, Chowan, Currituck, Gates, Pasquotank, and Perquimans Counties. This area is in great need of additional water sources in order to accommodate a growing population spilling...

  8. Very high resolution radiometer

    NASA Technical Reports Server (NTRS)

    Aronson, A. I.

    1974-01-01

    A primary sensor used in environmental and earth-resource observation, the Very High Resolution Radiometer (VHRR) was designed for use on the ITOS D series spacecraft. The VHRR provides a 0.47 mile resolution made possible with a mercury-cadmium-telluride detector cooled to approximately 105 K by a passive radiator cooler. The components of this system are described. The optical subsystem of the VHRR consists of a scanning mirror, a Dall-Kirkham telescope, a dichroic beam splitter, relay lenses, spectral filters, and an IR detector. Signal electronics amplify and condition the signals from the infrared and visible light detector. Sync generator electronics provides the necessary time signals. Scan-drive electronics is used for commutation of the motor winding, velocity, and phase control. A table lists the performance parameters of the VHRR.

  9. Particle detector spatial resolution

    DOEpatents

    Perez-Mendez, Victor

    1992-01-01

    Method and apparatus for producing separated columns of scintillation layer material, for use in detection of X-rays and high energy charged particles with improved spatial resolution. A pattern of ridges or projections is formed on one surface of a substrate layer or in a thin polyimide layer, and the scintillation layer is grown at controlled temperature and growth rate on the ridge-containing material. The scintillation material preferentially forms cylinders or columns, separated by gaps conforming to the pattern of ridges, and these columns direct most of the light produced in the scintillation layer along individual columns for subsequent detection in a photodiode layer. The gaps may be filled with a light-absorbing material to further enhance the spatial resolution of the particle detector.

  10. High resolution data acquisition

    DOEpatents

    Thornton, Glenn W.; Fuller, Kenneth R.

    1993-01-01

    A high resolution event interval timing system measures short time intervals such as occur in high energy physics or laser ranging. Timing is provided from a clock (38) pulse train (37) and analog circuitry (44) for generating a triangular wave (46) synchronously with the pulse train (37). The triangular wave (46) has an amplitude and slope functionally related to the time elapsed during each clock pulse in the train. A converter (18, 32) forms a first digital value of the amplitude and slope of the triangle wave at the start of the event interval and a second digital value of the amplitude and slope of the triangle wave at the end of the event interval. A counter (26) counts the clock pulse train (37) during the interval to form a gross event interval time. A computer (52) then combines the gross event interval time and the first and second digital values to output a high resolution value for the event interval.

  11. High resolution data acquisition

    DOEpatents

    Thornton, G.W.; Fuller, K.R.

    1993-04-06

    A high resolution event interval timing system measures short time intervals such as occur in high energy physics or laser ranging. Timing is provided from a clock, pulse train, and analog circuitry for generating a triangular wave synchronously with the pulse train (as seen in diagram on patent). The triangular wave has an amplitude and slope functionally related to the time elapsed during each clock pulse in the train. A converter forms a first digital value of the amplitude and slope of the triangle wave at the start of the event interval and a second digital value of the amplitude and slope of the triangle wave at the end of the event interval. A counter counts the clock pulse train during the interval to form a gross event interval time. A computer then combines the gross event interval time and the first and second digital values to output a high resolution value for the event interval.

  12. High resolution analysis

    NASA Technical Reports Server (NTRS)

    Robinove, C. J.

    1982-01-01

    The possibilities for the use of high spectral resolution analysis in the field of hydrology and water resources are examined. Critical gaps in scientific knowledge that must be filled before technology can be evaluated involve the spectral response of water, substances dissolved and suspended in water, and substances floating on water. The most complete mapping of oil slicks can be done in the ultraviolet region. A mean of measuring the ultraviolet reflection at the surface from satellite altitudes needs to be determined. The use of high spectral resolution sensors in a reasonable number of narrow bands may be able to sense the reflectance or emission characteristics of water and its contained materials that can be correlated with commonly used water quality variables. Technological alternative available to experiment with problems of sensing water quality are to use existing remote sensing instrumentation in an empirical mode and to develop instruments for either testing hypoteses or conducting empirical experiments.

  13. A super resolution framework for low resolution document image OCR

    NASA Astrophysics Data System (ADS)

    Ma, Di; Agam, Gady

    2013-01-01

    Optical character recognition is widely used for converting document images into digital media. Existing OCR algorithms and tools produce good results from high resolution, good quality, document images. In this paper, we propose a machine learning based super resolution framework for low resolution document image OCR. Two main techniques are used in our proposed approach: a document page segmentation algorithm and a modified K-means clustering algorithm. Using this approach, by exploiting coherence in the document, we reconstruct from a low resolution document image a better resolution image and improve OCR results. Experimental results show substantial gain in low resolution documents such as the ones captured from video.

  14. Optical resolution of rotenoids

    USGS Publications Warehouse

    Abidi, S.L.

    1987-01-01

    Optical resolution of selected rotenoids containing 1-3 asymmetric centers in dihydrobenzopyranofuroben-zopyranone and dihydrobisbenzopyranopyranone series has been achieved on two chiral high-performance liquid chromatographic (hplc) stationary phases. In most cases, the absolute stereochemistry at the cis-B/C ring junction of the rotenoidal antipodes can be related to their elution order. Generally, the 6aα,12aα-enantiomers were more strongly retained by the chiral substrate than their corresponding optical antipodes. The elution-configuration relationship provides potential utility for predicting the absolute configuration of related rotenoidal compounds. Chiral phase hplc on amino-acid-bonded-silica yielded results explicable in terms of Pirkle's bonding schemes for chiral recognition. Resolution data for 12a-hydroxy-, 12a-methoxy-, and 12-hydroxyiminorotenoids further corroborate the mechanistic rationale, and demonstrate that nonpolar π-π interactions appeared to be important for enantiomeric separation on helic poly-triphenylmethylacryl-ate-silica (CPOT). In the latter system, steric effects and conformational factors in association with the modification of E-ring structures might play significant roles in the chiral separation process in view of the reversal to the elution order observed for all methoxylated rotenoids and elliptone derivatives including the parent deguelin. The unique separability (α = 1.44) of 12a-hydroxyelliptone on CPOT was suggestive of structural effects of the 5-side chain on the resolution of the rotenoids having a five-membered-E-ring. The results obtained with two different types of chiral phases are complementary and useful for optical resolution of a wide variety of natural and synthetic rotenoidal compounds.

  15. Continuing Appropriations Resolution, 2012

    THOMAS, 112th Congress

    Rep. Rogers, Harold [R-KY-5

    2011-09-14

    09/15/2011 Rules Committee Resolution H. Res. 399 Reported to House. Rule provides for consideration of H.J. Res. 79 with 1 hour of general debate. Previous question shall be considered as ordered without intervening motions except motion to recommit with or without instructions... (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  16. The North Pacific Gyre Mode

    NASA Astrophysics Data System (ADS)

    Schneider, N.; di Lorenzo, E.

    2007-12-01

    Discussion of North Pacific Decadal decadal variability has focused primarily on the Pacific Decadal Oscillation, the leading mode of sea surface temperature anomalies north of the tropics. The PDO appears to result from a superposition of SST pattern forced by the North Pacific atmosphere due to its intrinsic dynamics and teleconnected from the tropics, with a regional impact of the ocean circulation in the frontal regions associated with the Kuroshio/Oyashio and their extensions into the interior. Recent modeling, however, suggest that previously unexplained decadal changes of salinity, nutrient upwelling and chlorophyl in the California Current are not dominated by the PDO. Rather, these are associated with a mode of variability associated with wind driven changes of the North Pacific Gyre. Consideration of this mode variability may thus be important to understand present and future variations of the North Pacific ecosystem, and in the interpretation of climate proxies.

  17. High resolution telescope

    DOEpatents

    Massie, Norbert A.; Oster, Yale

    1992-01-01

    A large effective-aperture, low-cost optical telescope with diffraction-limited resolution enables ground-based observation of near-earth space objects. The telescope has a non-redundant, thinned-aperture array in a center-mount, single-structure space frame. It employs speckle interferometric imaging to achieve diffraction-limited resolution. The signal-to-noise ratio problem is mitigated by moving the wavelength of operation to the near-IR, and the image is sensed by a Silicon CCD. The steerable, single-structure array presents a constant pupil. The center-mount, radar-like mount enables low-earth orbit space objects to be tracked as well as increases stiffness of the space frame. In the preferred embodiment, the array has elemental telescopes with subaperture of 2.1 m in a circle-of-nine configuration. The telescope array has an effective aperture of 12 m which provides a diffraction-limited resolution of 0.02 arc seconds. Pathlength matching of the telescope array is maintained by an electro-optical system employing laser metrology. Speckle imaging relaxes pathlength matching tolerance by one order of magnitude as compared to phased arrays. Many features of the telescope contribute to substantial reduction in costs. These include eliminating the conventional protective dome and reducing on-site construction activites. The cost of the telescope scales with the first power of the aperture rather than its third power as in conventional telescopes.

  18. High resolution telescope

    SciTech Connect

    Massie, N.A.; Oster, Y.

    1990-01-01

    A large effective-aperture, low-cost optical telescope with diffraction-limited resolution enables ground-based observation of near-earth space objects. The telescope has a non-redundant, thinned-aperture array in a center-mount, single-structure space frame. It employs speckle interferometric imaging to achieve diffraction-limited resolution. The signal-to-noise ratio problem is mitigated by moving the wavelength of operation to the near-IR, and the image is sensed by a Silicon CCD. The steerable, single-structure array presents a constant pupil. The center-mount, radar-like mount enables low-earth orbit space objects to be tracked as well as increases stiffness of the space frame. In the preferred embodiment, the array has elemental telescopes with subaperture of 2.1m in a circle-of-nine configuration. The telescope array has an effective aperture of 12m which provides a diffraction-limited resolution of 0.02 arc seconds. Pathlength matching of the telescope array is maintained by an electro-optical system employing laser metrology. Speckle imaging relaxes pathlength matching tolerance by one order of magnitude as compared to phased arrays. Many features of the telescope contribute to substantial reduction in costs. These include eliminating the conventional protective dome and reducing on-site construction activities. The cost of the telescope scales with the first power of the aperture rather than its third power as in conventional telescopes. 9 figs., 1 tab.

  19. High resolution telescope

    SciTech Connect

    Massie, N.A.; Oster, Y.

    1990-12-31

    A large effective-aperture, low-cost optical telescope with diffraction-limited resolution enables ground-based observation of near-earth space objects. The telescope has a non-redundant, thinned-aperture array in a center-mount, single-structure space frame. It employs speckle interferometric imaging to achieve diffraction-limited resolution. The signal-to-noise ratio problem is mitigated by moving the wavelength of operation to the near-IR, and the image is sensed by a Silicon CCD. The steerable, single-structure array presents a constant pupil. The center-mount, radar-like mount enables low-earth orbit space objects to be tracked as well as increases stiffness of the space frame. In the preferred embodiment, the array has elemental telescopes with subaperture of 2.1m in a circle-of-nine configuration. The telescope array has an effective aperture of 12m which provides a diffraction-limited resolution of 0.02 arc seconds. Pathlength matching of the telescope array is maintained by an electro-optical system employing laser metrology. Speckle imaging relaxes pathlength matching tolerance by one order of magnitude as compared to phased arrays. Many features of the telescope contribute to substantial reduction in costs. These include eliminating the conventional protective dome and reducing on-site construction activities. The cost of the telescope scales with the first power of the aperture rather than its third power as in conventional telescopes. 9 figs., 1 tab.

  20. NOrth AMerica Soil (NOAM-SOIL) Database

    NASA Astrophysics Data System (ADS)

    Miller, D. A.; Waltman, S. W.; Geng, X.; James, D.; Hernandez, L.

    2009-05-01

    NOAM-SOIL is being created by combining the CONUS-SOIL database with pedon data and soil geographic data coverages from Canada and Mexico. Completion of the in-progress NOrth AMerica Soil (NOAM-SOIL) database will provide complete North America coverage comparable to CONUS. Canadian pedons, which number more than 500, have been painstakingly transcribed to a common format, from hardcopy, and key- entered. These data, along with map unit polygons from the 1:1,000,000 Soil Landscapes of Canada, will be used to create the required spatial data coverages. The Mexico data utilizes the INEGI 1:1,000,000 scale soil map that was digitized by U. S. Geological Survey EROS Data Center in the mid 1990's plus about 20,000 pedons. The pedon data were published on the reverse side of the paper 1:250,000 scale Soil Map of Mexico and key entered by USDA and georeferenced by Penn State to develop an attribute database that can be linked to the 1:1,000,000 scale Soil Map of Mexico based on taxonomic information and geographic proximity. The essential properties that will be included in the NOAM-SOIL data base are: layer thickness (depth to bedrock or reported soil depth); available water capacity; sand, silt, clay; rock fragment volume; and bulk density. For quality assurance purposes, Canadian and Mexican soil scientists will provide peer review of the work. The NOAM-SOIL project will provide a standard reference dataset of soil properties for use at 1km resolution by NACP modelers for all of North America. All data resources, including metadata and selected raw data, will be provided through the Penn State web site: Soil Information for Environmental Modeling and Ecosystem Management (www.soilinfo.psu.edu). Progress on database completion is reported.

  1. The North Sea: Satellite colour atlas

    NASA Astrophysics Data System (ADS)

    Holligan, P. M.; Aarup, T.; Groom, S. B.

    Satellite imagery of the North Sea from the Coastal Zone Color Scanner (CZCS) shows complex seasonal changes in the optical and biological properties of surface waters, features which have not been resolved, hitherto, through direct observations from ships. Selected scenes for the period 1979-1986, presented as single band (channel 3), colour composite (channels 1 + 2 + 3) and chlorophyll (channels 1/3 or 2/3) images, are used to demonstrate the relative surface distributions between February and October of suspended sediments, coccolithophores and plant pigments. Comparison are made also with sea surface temperature images from the Advanced Very High Resolution Radiometer (AVHRR). Quantitative evaluation of the CZCS data is restricted by a lack of contemporary in situ optical and biological measurements. However, chlorophyll and Secchi disc distributions, determined by measurements from research ships have been compared qualitatively with images from the Southern Bight (13 May 1986) and for the east central North Sea (24 August 1984 and 24 October 1985). Mini series of CZCS images are presented to show the annual coccolithophore blooms, the development of the spring bloom in the Skagerrak, June 1983 and summer chlorophyl distributions in the German Bight.

  2. Ocean Modeling of the North Atlantic

    NASA Technical Reports Server (NTRS)

    Seminar, A. J.

    1984-01-01

    Present modeling of the North Atlantic is inadequate and can be improved in a number of ways. A number of important physical processes are listed in five categories from the viewpoints of how they are treated in isolation, how they are usually represented in present ocean basin models, and how they may be better represented in future models. In the first two categories of vertical boundary processes and internal vertical mixing, parameterizations exist which can easily be incorporated into models and which will have important effects on the simulated structure of the North Atlantic. For the third catagory (mesoscale eddy effects), adequate parameterizations do not exist; but the order of magnitude of the effects is known from observational and process-model studies. A horizontal grid spacing of 100 km or less in required to allow parameterizations with this order of magnitude, as well as to resolve the time-averaged ocean fields. In the fourth category of large scale transports improvements are suggested by way of increased vertical resolution and by the requirement that lateral mixing due to eddies takes place on isopycnal surfaces. Model incorporation of the latter phenomenta is underway. In the fifth category of miscellaneous high-latitude processes, formulations for the treatment of sea ice are available for use. However, the treatment of gravitational instability, which is crucial to deepwater formation in the Atlantic Ocean, will require additional refinements to account for the unresolved physics of chimney formations in the open ocean and buoyant plumes near ocean boundaries.

  3. Autumn Frost, North Polar Sand Dunes

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Autumn in the martian northern hemisphere began around August 1, 1999. Almost as soon as northern fall began, the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) started documenting the arrival of autumn frost--a precursor to the cold winter that will arrive in late December 1999. The first features to become covered by frost were the sand dunes that surround the north polar ice cap. The dunes seen here would normally appear very dark--almost black--except when covered by frost. Why the dunes begin to frost sooner than the surrounding surfaces is a mystery: perhaps the dunes contain water vapor that emerges from the sand during the day and condenses again at night. This picture shows dunes near 74.7oN, 61.4oW at a resolution of about 7.3 meters (24 feet) per pixel. The area covered is about 3 km (1.9 mi) across and is illuminated from the upper right. The picture appears to be somewhat fuzzy and grainy because the dunes here are seen through the thin haze of the gathering north polar winter hood (i.e., clouds).

  4. Phytoplankton Bloom in North Sea off Scotland

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The northern and western highlands of Scotland were still winter-brown and even dusted with snow in places, but the waters of the North Sea were blooming with phytoplankton on May 8, 2008, when the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's Aqua satellite passed over the region and captured this image. The tiny, plant-like organisms swirled in the waters off the country's east coast, coloring the shallow coastal waters shades of bright blue and green. Phytoplankton are tiny organisms--many are just a single cell--that use chlorophyll and other pigments to capture light for photosynthesis. Because these pigments absorb sunlight, they change the color of the light reflected from the sea surface back to the satellite. Scientists have used observations of 'ocean color' from satellites for more than 20 years to track worldwide patterns in phytoplankton blooms. Phytoplankton are important to the Earth system for a host of reasons, including their status as the base of the ocean food web. In the North Sea, they are the base of the food web that supports Scotland's commercial fisheries, including monkfish and herring. As photosynthesizers, they also play a crucial role in the carbon cycle, removing carbon dioxide from the atmosphere. Some oceanographers are concerned that rising ocean temperatures will slow phytoplankton growth rates, harming marine ecosystems and causing carbon dioxide to accumulate more rapidly in the atmosphere.

  5. The North Sea - A shelf sea in the Anthropocene

    NASA Astrophysics Data System (ADS)

    Emeis, Kay-Christian; van Beusekom, Justus; Callies, Ulrich; Ebinghaus, Ralf; Kannen, Andreas; Kraus, Gerd; Kröncke, Ingrid; Lenhart, Hermann; Lorkowski, Ina; Matthias, Volker; Möllmann, Christian; Pätsch, Johannes; Scharfe, Mirco; Thomas, Helmuth; Weisse, Ralf; Zorita, Eduardo

    2015-01-01

    Global and regional change clearly affects the structure and functioning of ecosystems in shelf seas. However, complex interactions within the shelf seas hinder the identification and unambiguous attribution of observed changes to drivers. These include variability in the climate system, in ocean dynamics, in biogeochemistry, and in shelf sea resource exploitation in the widest sense by societies. Observational time series are commonly too short, and resolution, integration time, and complexity of models are often insufficient to unravel natural variability from anthropogenic perturbation. The North Sea is a shelf sea of the North Atlantic and is impacted by virtually all global and regional developments. Natural variability (from interannual to multidecadal time scales) as response to forcing in the North Atlantic is overlain by global trends (sea level, temperature, acidification) and alternating phases of direct human impacts and attempts to remedy those. Human intervention started some 1000 years ago (diking and associated loss of wetlands), expanded to near-coastal parts in the industrial revolution of the mid-19th century (river management, waste disposal in rivers), and greatly accelerated in the mid-1950s (eutrophication, pollution, fisheries). The North Sea is now a heavily regulated shelf sea, yet societal goals (good environmental status versus increased uses), demands for benefits and policies diverge increasingly. Likely, the southern North Sea will be re-zoned as riparian countries dedicate increasing sea space for offshore wind energy generation - with uncertain consequences for the system's environmental status. We review available observational and model data (predominantly from the southeastern North Sea region) to identify and describe effects of natural variability, of secular changes, and of human impacts on the North Sea ecosystem, and outline developments in the next decades in response to environmental legislation, and in response to

  6. Clouds Over the North Pole

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released 29 June 2004 The atmosphere of Mars is a dynamic system. Water-ice clouds, fog, and hazes can make imaging the surface from space difficult. Dust storms can grow from local disturbances to global sizes, through which imaging is impossible. Seasonal temperature changes are the usual drivers in cloud and dust storm development and growth.

    Eons of atmospheric dust storm activity has left its mark on the surface of Mars. Dust carried aloft by the wind has settled out on every available surface; sand dunes have been created and moved by centuries of wind; and the effect of continual sand-blasting has modified many regions of Mars, creating yardangs and other unusual surface forms.

    Like yesterday's image, the linear 'ripples' are water-ice clouds. As spring is deepening at the North Pole these clouds are becoming more prevalent.

    Image information: VIS instrument. Latitude 68.9, Longitude 135.5 East (224.5 West). 38 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter

  7. Characterization of nested watershed hydrologic response from high-resolution rainfall and runoff data in the Baltimore Ecosystem Study LTER

    NASA Astrophysics Data System (ADS)

    Miller, A. J.; Lindner, G. A.; Smith, J. A.; Baeck, M. L.; Welty, C.; Miller, J.; Meierdiercks, K. L.

    2011-12-01

    This presentation reports initial results from analysis of data collected at a set of six stream gages representing three nested watershed scales (1-2 km2, 5-6 km2, 14 km2) in Dead Run, a highly impervious suburban watershed in Baltimore County, MD, USA. Streamflow data collected at 5-minute temporal resolution during the period 2007-2011 are compared with 1-km2 gridded and watershed-average precipitation data with 15-minute temporal resolution provided by the HydroNEXRAD project for the Baltimore metropolitan area. The period of overlapping precipitation and runoff data currently available for all six nested watersheds includes calendar years 2008 and 2009. Analyses include mass balance for monthly time periods as well as individual storm events; comparison of hydrologic response among nested watersheds of similar scale and across scales; and characterization of spatial and temporal patterns in storm-period rainfall, drainage network structure, watershed morphometry, and urban infrastructure as potential influences on patterns of hydrologic response. We attempted to isolate the effects of watershed characteristics by selecting a subset of storm events with a rainfall "pulse" defined by minimum accumulation of ~10 mm and >80% of storm-total rainfall arriving within a one-hour period at all six nested subwatersheds. Hydrographs were compared to assess characteristic shape, runoff ratio, and timing. We also examined several longer, more complex storm events with multiple rainfall pulses in order to observe the response at multiple watershed scales. Despite the constraints imposed on storm structure we find that even slight variations in the spatial and temporal distribution of rainfall may be associated with major differences in watershed response (volume and timing) at the 1-2 km2 and 5-6 km2 scales. Some of these variations would be difficult to explain without availability of high-resolution rainfall data. In multiple events we observe that the 5-6 km2 watersheds

  8. 8 January 2013 Mw=5.7 North Aegean Sea Earthquake Sequence

    NASA Astrophysics Data System (ADS)

    Kürçer, Akın; Yalçın, Hilal; Gülen, Levent; Kalafat, Doǧan

    2014-05-01

    The deformation of the North Aegean Sea is mainly controlled by the westernmost segments of North Anatolian Fault Zone (NAFZ). On January 8, 2013, a moderate earthquake (Mw= 5.7) occurred in the North Aegean Sea, which may be considered to be a part of westernmost splay of the NAFZ. A series of aftershocks were occurred within four months following the mainschock, which have magnitudes varying from 1.9 to 5.0. In this study, a total of 23 earthquake moment tensor solutions that belong to the 2013 earthquake sequence have been obtained by using KOERI and AFAD seismic data. The most widely used Gephart & Forsyth (1984) and Michael (1987) methods have been used to carry out stress tensor inversions. Based on the earthquake moment tensor solutions, distribution of epicenters and seismotectonic setting, the source of this earthquake sequence is a N75°E trending pure dextral strike-slip fault. The temporal and spatial distribution of earthquakes indicate that the rupture unilaterally propagated from SW to NE. The length of the fault has been calculated as approximately 12 km. using the afterschock distribution and empirical equations, suggested by Wells and Coppersmith (1994). The stress tensor analysis indicate that the dominant faulting type in the region is strike-slip and the direction of the regional compressive stress is WNW-ESE. The 1968 Aghios earthquake (Ms=7.3; Ambraseys and Jackson, 1998) and 2013 North Aegean Sea earthquake sequences clearly show that the regional stress has been transferred from SW to NE in this region. The last historical earthquake, the Bozcaada earthquake (M=7.05) had been occurred in the northeast of the 2013 earthquake sequence in 1672. The elapsed time (342 year) and regional stress transfer point out that the 1672 earthquake segment is probably a seismic gap. According to the empirical equations, the surface rupture length of the 1672 Earthquake segment was about 47 km, with a maximum displacement of 170 cm and average displacement

  9. Paleoclimate. Synchronization of North Pacific and Greenland climates preceded abrupt deglacial warming.

    PubMed

    Praetorius, Summer K; Mix, Alan C

    2014-07-25

    Some proposed mechanisms for transmission of major climate change events between the North Pacific and North Atlantic predict opposing patterns of variations; others suggest synchronization. Resolving this conflict has implications for regulation of poleward heat transport and global climate change. New multidecadal-resolution foraminiferal oxygen isotope records from the Gulf of Alaska (GOA) reveal sudden shifts between intervals of synchroneity and asynchroneity with the North Greenland Ice Core Project (NGRIP) δ(18)O record over the past 18,000 years. Synchronization of these regions occurred 15,500 to 11,000 years ago, just prior to and throughout the most abrupt climate transitions of the last 20,000 years, suggesting that dynamic coupling of North Pacific and North Atlantic climates may lead to critical transitions in Earth's climate system. PMID:25061208

  10. Structural history of the crustal-scale Coast shear zone north of Portland Canal, southeast Alaska and British Columbia

    NASA Astrophysics Data System (ADS)

    Klepeis, Keith A.; Crawford, Maria Luisa; Gehrels, George

    1998-07-01

    Structural, metamorphic and U-Pb geochronologic data reveal how a steep, crustal-scale shear zone influenced the evolution of the Paleogene Coast Mountains batholith during and since its emplacement. We document two distinct stages of deformation ( DCSZ3 and DCSZ4) that produced the Coast shear zone north of Portland Inlet. Between 65 Ma and 57 Ma, deformation now preserved within the eastern side of the Coast shear zone ( DCSZ3) produced a moderately to gently, north-northeast-dipping foliation and north-east-plunging mineral lineations. DCSZ3 involved dominantly east-side-up, top-to-the-southwest displacements during and after the intrusion of tabular tonalite and granodiorite plutons. Widespread crustal thickening followed by rapid exhumation, east-side-up tilting of the batholith, and decompression of rocks equilibrating at 5.6±0.4 kbars, 710±30°C occurred at this time. Prior to DCSZ3, deformation ( DWTB1-2) now preserved west of the Coast shear zone resulted in tectonic imbrication of lithologically distinctive crustal fragments at 8-9 kbars, and west- to southwest-vergent ductile thrust faults before ˜92 Ma. From ˜57 Ma to 55 Ma, deformation in the western Coast shear zone ( DCSZ4) produced a narrow, 1-2 km wide, zone comprised of a steeply-dipping to subvertical foliation that overprints and transposes all DWTB1-2 and DCSZ3 structures. DCSZ4 involved bulk east-side-down displacements parallel to a steeply-plunging, down-dip sillimanite lineation and regional tilting of the batholith. This east-side-down displacement may reflect a final period of crustal readjustment and collapse following an earlier period of crustal thickening during batholith construction. The variable history of motion within the Coast shear zone appears to reflect a response to different periods of batholith development within a convergent to obliquely-convergent continental margin.

  11. High resolution distributed time-to-digital converter (TDC) in a White Rabbit network

    NASA Astrophysics Data System (ADS)

    Pan, Weibin; Gong, Guanghua; Du, Qiang; Li, Hongming; Li, Jianmin

    2014-02-01

    The Large High Altitude Air Shower Observatory (LHAASO) project consists of a complex detector array with over 6000 detector nodes spreading over 1.2 km2 areas. The arrival times of shower particles are captured by time-to-digital converters (TDCs) in the detectors' frontend electronics, the arrival direction of the high energy cosmic ray are then to be reconstructed from the space-time information of all detector nodes. To guarantee the angular resolution of 0.5°, a time synchronization of 500 ps (RMS) accuracy and 100 ps precision must be achieved among all TDC nodes. A technology enhancing Gigabit Ethernet, called the White Rabbit (WR), has shown the capability of delivering sub-nanosecond accuracy and picoseconds precision of synchronization over the standard data packet transfer. In this paper we demonstrate a distributed TDC prototype system combining the FPGA based TDC and the WR technology. With the time synchronization and data transfer services from a compact WR node, separate FPGA-TDC nodes can be combined to provide uniform time measurement information for correlated events. The design detail and test performance will be described in the paper.

  12. Double Bright Band Observations with High-Resolution Vertically Pointing Radar, Lidar, and Profiles

    NASA Technical Reports Server (NTRS)

    Emory, Amber E.; Demoz, Belay; Vermeesch, Kevin; Hicks, Michael

    2014-01-01

    On 11 May 2010, an elevated temperature inversion associated with an approaching warm front produced two melting layers simultaneously, which resulted in two distinct bright bands as viewed from the ER-2 Doppler radar system, a vertically pointing, coherent X band radar located in Greenbelt, MD. Due to the high temporal resolution of this radar system, an increase in altitude of the melting layer of approximately 1.2 km in the time span of 4 min was captured. The double bright band feature remained evident for approximately 17 min, until the lower atmosphere warmed enough to dissipate the lower melting layer. This case shows the relatively rapid evolution of freezing levels in response to an advancing warm front over a 2 h time period and the descent of an elevated warm air mass with time. Although observations of double bright bands are somewhat rare, the ability to identify this phenomenon is important for rainfall estimation from spaceborne sensors because algorithms employing the restriction of a radar bright band to a constant height, especially when sampling across frontal systems, will limit the ability to accurately estimate rainfall.

  13. Multi-resolution analysis of high density spatial and temporal cloud inhomogeneity fields from HOPE campaign

    NASA Astrophysics Data System (ADS)

    Lakshmi Madhavan, Bomidi; Deneke, Hartwig; Macke, Andreas

    2015-04-01

    Clouds are the most complex structures in both spatial and temporal scales of the Earth's atmosphere that effect the downward surface reaching fluxes and thus contribute to large uncertainty in the global radiation budget. Within the framework of High Definition Clouds and Precipitation for advancing Climate Prediction (HD(CP)2) Observational Prototype Experiment (HOPE), a high density network of 99 pyranometer stations was set up around Jülich, Germany (~ 10 × 12 km2 area) during April to July 2013 to capture the small-scale variability in cloud induced radiation fields at the surface. In this study, we perform multi-resolution analysis of the downward solar irradiance variability at the surface from the pyranometer network to investigate the dependence of temporal and spatial averaging scales on the variance and spatial correlation for different cloud regimes. Preliminary results indicate that correlation is strongly scale-dependent where as the variance is dependent on the length of averaging period. Implications of our findings will be useful for quantifying the effect of spatial collocation while validating the satellite inferred solar irradiance estimates, and also to explore the link between cloud structure and radiation. We will present the details of our analysis and results.

  14. High Resolution Air Quality Modeling for the Southeast US During SENEX-2013

    NASA Astrophysics Data System (ADS)

    McKeen, S. A.; Ahmadov, R.; Angevine, W. M.; Trainer, M.; Aikin, K. C.; Brock, C. A.; Brown, S. S.; Edwards, P.; De Gouw, J. A.; Gilman, J.; Holloway, J. S.; Lerner, B. M.; Liao, J.; Middlebrook, A. M.; Markovic, M. Z.; Neuman, J. A.; Nowak, J. B.; Olson, J. B.; Schwarz, J. P.; Peischl, J.; Pollack, I. B.; Roberts, J. M.; Veres, P. R.; Warneke, C.; Ryerson, T. B.; Yuan, B.

    2014-12-01

    An intensive measurement campaign - Studying the Interactions Between Natural and Anthropogenic Emissions at the Nexus of Climate Change and Air Quality (SENEX) was carried out by NOAA and other research institutes over the Southeast US during June-July, 2013. A large quantity of meteorological and in-situ chemical composition in-situ measurements were obtained on board the NOAA WP-3D research aircraft, with additional surface monitoring network observations. Results from fully coupled meteorology/air-quality simulations using the WRF-Chem model on 12km grid resolution covering the Eastern continental US during the SENEX time period are presented here. We focus on simulations of ozone and its precursors, related oxidants, particulate matter mass and composition. A recent US EPA anthropogenic emission inventory, NEI-2011 (version 1), is used in the base model simulation. Comparison of model results with the observations are used to quantify model biases and correlations under different emission scenarios, evaluate current estimates of biogenic hydrocarbon fluxes and their impact on air quality over the Southeast US.

  15. Resolution in Electromagnetic Prospecting

    NASA Astrophysics Data System (ADS)

    Aldridge, D. F.; Bartel, L. C.; Knox, H. A.; Schramm, K. A.

    2014-12-01

    Low-frequency electromagnetic (EM) signals are commonly used in geophysical exploration of the shallow subsurface. Sensitivity to conductivity implies they are particularly useful for inferring fluid content of porous media. However, low-frequency EM wavefields are diffusive, and have significantly larger wavelengths compared to seismic signals of equal frequency. The wavelength of a 30 Hz sinusoid propagating with seismic velocity 3000 m/s is 100 m, whereas an analogous EM signal diffusing through a conductive body of 0.1 S/m (clayey shale) has wavelength 1825 m. The larger wavelength has implications for resolution of the EM prospecting method. We are investigating resolving power of the EM method via theoretical and numerical experiments. Normal incidence plane wave reflection/transmission by a thin geologic bed is amenable to analytic solution. Responses are calculated for beds that are conductive or resistive relative to the host rock. Preliminary results indicate the classic seismic resolution/detection limit of bed thickness ~1/8 wavelength is not achieved. EM responses for point or line current sources recorded by general acquisition geometries are calculated with a 3D finite-difference algorithm. These exhibit greater variability which may allow inference of bed thickness. We also examine composite responses of two point scatterers with separation when illuminated by an incident EM field. This is analogous to the Rayleigh resolution problem of estimating angular separation between two light sources. The First Born Approximation implies that perturbations in permittivity, permeability, and conductivity have different scattering patterns, which may be indicators of EM medium properties. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  16. Finite resolution multitarget tracking

    NASA Astrophysics Data System (ADS)

    Mušicki, Darko; Morelande, Mark R.

    2005-09-01

    Target tracking algorithms have to operate in an environment of uncertain measurement origin, due to the presence of randomly detected target measurements as well as clutter measurements from unwanted random scatterers. A majority of Bayesian multi-target tracking algorithms suffer from computational complexity which is exponential in the number of tracks and the number of shared measurements. The Linear Multi-target (LM) tracking procedure is a Bayesian multi-target tracking approximation with complexity which is linear in the number of tracks and the number of shared measurements. It also has a much simpler structure than the "optimal" Bayesian multi-target tracking, with apparently negligible decrease in performance. A vast majority of target tracking algorithms have been developed with the assumption of infinite sensor resolution, where a measurement can have only one source. This assumption is not valid for real sensors, such as radars. This paper presents a multi-target tracking algorithm which removes this restriction. The procedure utilizes a simple structure of LM tracking procedure to obtain a LM Finite Resolution (LMfr) tracking procedure which is much simpler than the previously published efforts. Instead of calculating the probability of measurement merging for each combination of potentially merging targets, we evaluate only one merging hypotheses for each measurement and each track. A simulation study is presented which compares LMfr-IPDA with LM-IPDA and IPDA target tracking in a cluttered environment utilizing a finite resolution sensor with five crossing targets. The study concentrates on the false track discrimination performance and the track retention capabilities.

  17. Europa Ice Cliffs-High Resolution

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This view of the Conamara Chaos region on Jupiter's moon Europa shows cliffs along the edges of high-standing ice plates. The washboard texture of the older terrain has been broken into plates which are separated by material with a jumbled texture. The cliffs themselves are rough and broadly scalloped, and smooth debris shed from the cliff faces is piled along the base. For scale, the height of the cliffs and size of the scalloped indentations are comparable to the famous cliff face of Mount Rushmore in South Dakota.

    This image was taken on December 16, 1997 at a range of 900 kilometers (540 miles) by the solid state imaging system (camera) on NASA's Galileo spacecraft. North is to the top right of the picture, and the sun illuminates the surface from the east. This image, centered at approximately 8 degrees north latitude and 273 degrees west longitude, covers an area approximately 1.5 kilometers by 4 kilometers (0.9 miles by 2.4 miles). The resolution is 9 meters (30 feet) per picture element.

    The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://www.jpl.nasa.gov/ galileo.

  18. Clausius-Clapeyron temperature-precipitation scaling over the UK in high-resolution climate models

    NASA Astrophysics Data System (ADS)

    Chan, Steven; Fowler, Hayley; Kendon, Elizabeth; Roberts, Malcolm; Roberts, Nigel; Ferro, Christopher; Blenkinsop, Stephen

    2014-05-01

    Clausius-Clapyeron (C-C) temperature-precipitation scaling relationships for extreme hourly precipitation (99th quantile) are examined in observations and a set of 12-km parameterized-convection and 1.5-km convection-permitting regional climate model (RCM) simulations, over a domain covering England and Wales for the summer months (JJA). RCM simulations have been carried out driven by ERA-interim reanalysis, and also for control (1996-2009) and future (~2100) runs driven by a 60km resolution Met Office Unified Model using the Global Atmosphere GA3.0 configuration. Radar observations are found to give at least a 1xC-C scaling for UK hourly extreme precipitation at temperatures above 10°C. Despite sharing the same large-scale conditions, the 1.5km explicit-convection model shows very different C-C scaling relationships to the 12km model, whose C-C scaling is shown to be highly sensitive to the lateral boundary conditions - suggesting that the model physics play an important role in the scaling. In contrast, the 1.5km model shows consistent C-C scaling relationships for all present-day (ERA-interim and control) simulations and these are generally in line with observed C-C scaling relationships which sample temperatures mainly between 10°C and 20°C. The future simulations indicate the fallacy of extrapolating present-day scaling relationships to infer extreme precipitation in a future warmer climate. All future climate simulations show a sharp decline in the scaling relationship at high-temperatures (~>20°C), which are not well sampled in the current climate. This is consistent with observational studies in other regions which have also found declines in the scaling relationship at high temperatures. This suggests that there may be an upper temperature limit to super-Clausius-Clapeyron scaling of short-duration extreme precipitation which differs dependent on ambient climate conditions in the study location.

  19. Natural resolution of inflammation.

    PubMed

    Freire, Marcelo O; Van Dyke, Thomas E

    2013-10-01

    Inflammation is a protective response essential for maintaining human health and for fighting disease. As an active innate immune reaction to challenge, inflammation gives rise to clinical cardinal signs: rubor, calor, dolor, tumor and functio laesa. Termination of acute inflammation was previously recognized as a passive process; a natural decay of pro-inflammatory signals. We now understand that the natural resolution of inflammation involves well-integrated, active, biochemical programs that return tissues to homeostasis. This review focuses on recent advances in the understanding of the role of endogenous lipid mediators that modulate cellular fate and inflammation. Biosynthesis of eicosanoids and other lipids in exudates coincides with changes in the types of inflammatory cells. Resolution of inflammation is initiated by an active class switch in lipid mediators, such as classic prostaglandins and leukotrienes, to the production of proresolution mediators. Endogenous pro-resolving lipid mediators, including arachidonic acid-derived lipoxins, aspirin-triggered lipoxins, ω3-eicosapentaenoic acid-derived resolvins of the E-series, docosahexaenoic acid-derived resolvins of the D-series, protectins and maresins, are biosynthesized during the resolution phase of acute inflammation. Depending on the type of injury and the type of tissue, the initial cells that respond are polymorphonuclear leukocytes, monocytes/macrophages, epithelial cells or endothelial cells. The selective interaction of specific lipid mediators with G protein-coupled receptors expressed on innate immune cells (e.g. G protein-coupled receptor 32, lipoxin A4 receptor/formyl peptide receptor2, chemokine-like receptor 1, leukotriene B4 receptor type 1 and cabannoid receptor 2) induces cessation of leukocyte infiltration; vascular permeability/edema returns to normal with polymorphonuclear neutrophil death (mostly via apoptosis), the nonphlogistic infiltration of monocyte/macrophages and the removal

  20. Resolutions in Cotorsion Theories

    NASA Astrophysics Data System (ADS)

    Akinci, Karen; Alizade, Rafail

    2010-11-01

    We consider the λ- (μ-) and λ¯- (μ¯-) dimensions of modules taken under a cotorsion theory (F, C) satisfying the Hereditary Condition, and establish some inequalities between the dimensions of the modules of a short exact sequence, not necessarily Hom (F, -) exact. We investigate the question of whether the property of having a (special) F- or C-resolution of length n is resolving, closed under extensions or coresolving and establish some inequalities connecting the λ- (μ-) and λ¯- (μ¯-) dimensions of modules in a short exact sequence.

  1. High resolution infrared measurements

    NASA Technical Reports Server (NTRS)

    Kessler, B.; Cawley, Robert

    1990-01-01

    Sample ground based cloud radiance data from a high resolution infrared sensor are shown and the sensor characteristics are presented in detail. The purpose of the Infrared Analysis Measurement and Modeling Program (IRAMMP) is to establish a deterministic radiometric data base of cloud, sea, and littoral terrain clutter to be used to advance the design and development of Infrared Search and Track (IRST) systems as well as other infrared devices. The sensor is a dual band radiometric sensor and its description, together with that of the Data Acquisition System (DAS), are given. A schematic diagram of the sensor optics is shown.

  2. High resolution time interval meter

    DOEpatents

    Martin, A.D.

    1986-05-09

    Method and apparatus are provided for measuring the time interval between two events to a higher resolution than reliability available from conventional circuits and component. An internal clock pulse is provided at a frequency compatible with conventional component operating frequencies for reliable operation. Lumped constant delay circuits are provided for generating outputs at delay intervals corresponding to the desired high resolution. An initiation START pulse is input to generate first high resolution data. A termination STOP pulse is input to generate second high resolution data. Internal counters count at the low frequency internal clock pulse rate between the START and STOP pulses. The first and second high resolution data are logically combined to directly provide high resolution data to one counter and correct the count in the low resolution counter to obtain a high resolution time interval measurement.

  3. Automating the conflict resolution process

    NASA Technical Reports Server (NTRS)

    Wike, Jeffrey S.

    1991-01-01

    The purpose is to initiate a discussion of how the conflict resolution process at the Network Control Center can be made more efficient. Described here are how resource conflicts are currently resolved as well as the impacts of automating conflict resolution in the ATDRSS era. A variety of conflict resolution strategies are presented.

  4. Blogging from North Pond

    NASA Astrophysics Data System (ADS)

    Marziali, C. G.; Edwards, K. J.

    2009-12-01

    Sea going research expeditions provide an ideal opportunity for outreach through blogs: the finite duration limits the author's commitment; scientists are usually in a remote location with fewer distractions; and fieldwork is visual and interesting to describe. Over four weeks this winter, Katrina Edwards of USC authored a blog about her deep-sea drilling expedition to North Pond, a depression in the ocean crust in the mid-Atlantic. She emailed daily dispatches and photos to USC Media Relations, which maintained a (still accessible) blog. Written for the general public, the blog quickly attracted interest from lay readers as well as from media organizations. Scientific American carried the blog on its web site, and the National Science Foundation linked to it in its "Science 360" electronic news digest. The blog also led to a Q&A with Edwards in the widely-read "Behind the Scenes" feature of LiveScience. Interest from science bloggers and National Geographic towards the end suggests that the blog could have expanded its reach given more time: expeditions lasting between six weeks and three months, such as occur during ocean drilling expeditions, would appear to be ideal candidates for a blog. Most importantly, the blog educated readers about the importance to planetary life of what Edwards calls the "intraterrestrials": the countless microbes that inhabit the oceanic crust and influence major chemical and biological cycles. Considering that the subjects of the expedition were invisible critters in a pitch-dark place, the blog shows what can be accomplished by scientists and institutions committed to public outreach.

  5. North Atlantic Deep Water Formation

    NASA Technical Reports Server (NTRS)

    Bennett, T. (Editor); Broecker, W. S. (Editor); Hansen, J. (Editor)

    1984-01-01

    Various studies concerning differing aspects of the North Atlantic are presented. The three major topics under which the works are classified include: (1) oceanography; (2) paleoclimate; and (3) ocean, ice and climate modeling.

  6. North Atlantic Coastal Tidal Wetlands

    EPA Science Inventory

    The book chapter provides college instructors, researchers, graduate and advanced undergraduate students, and environmental consultants interested in wetlands with foundation information on the ecology and conservation concerns of North Atlantic coastal wetlands. The book c...

  7. Two Methods to Derive Ground-level Concentrations of PM2.5 with Improved Accuracy in the North China, Calibrating MODIS AOD and CMAQ Model Predictions

    NASA Astrophysics Data System (ADS)

    Lyu, Baolei; Hu, Yongtao; Chang, Howard; Russell, Armistead; Bai, Yuqi

    2016-04-01

    Reliable and accurate characterizations of ground-level PM2.5 concentrations are essential to understand pollution sources and evaluate human exposures etc. Monitoring network could only provide direct point-level observations at limited locations. At the locations without monitors, there are generally two ways to estimate the pollution levels of PM2.5. One is observations of aerosol properties from the satellite-based remote sensing, such as Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol optical depth (AOD). The other one is from deterministic atmospheric chemistry models, such as the Community Multi-Scale Air Quality Model (CMAQ). In this study, we used a statistical spatio-temporal downscaler to calibrate the two datasets to monitor observations to derive fine-scale ground-level concentrations of PM2.5 with improved accuracy. We treated both MODIS AOD and CMAQ model predictions as biased proxy estimations of PM2.5 pollution levels. The downscaler proposed a Bayesian framework to model the spatially and temporally varying coefficients of the two types of estimations in the linear regression setting, in order to correct biases. Especially for calibrating MODIS AOD, a city-specific linear model was established to fill the missing AOD values, and a novel interpolation-based variable, i.e. PM2.5 Spatial Interpolator, was introduced to account for the spatial dependence among grid cells. We selected the heavy polluted and populated North China as our study area, in a grid setting of 81×81 12-km cells. For the evaluation of calibration performance for retrieved MODIS AOD, the R2 was 0.61 by the full model with PM2.5 Spatial Interpolator being presented, and was 0.48 with PM2.5 Spatial Interpolator not being presented. The constructed AOD values effectively predicted PM2.5 concentrations under our model structure, with R2=0.78. For the evaluation of calibrated CMAQ predictions, the R2 was 0.51, a little less than that of calibrated AOD. Finally we

  8. North American LNG Project Sourcebook

    SciTech Connect

    2007-06-15

    The report provides a status of the development of LNG Import Terminal projects in North America, and includes 1-2 page profiles of 63 LNG projects in North America which are either in operation, under construction, or under development. For each project, the sourcebook provides information on the following elements: project description, project ownership, project status, projected operation date, storage capacity, sendout capacity, and pipeline interconnection.

  9. Resolution of anisotropic and shielded highly conductive layers using 2-D electromagnetic modelling in the Rhine Graben and Black Forest

    NASA Astrophysics Data System (ADS)

    Tezkan, Bülent; Červ, Václav; Pek, Josef

    1992-12-01

    Anisotropy in magnetotelluric (MT) data has been found very often and has been explained as the result of local structures of different conductivities. In this paper, an observed anisotropy in MT data is not interpreted qualitatively in terms of local structures but is modelled quantitatively by a quasi-anisotropic layer. Besides the MT transfer functions, measurements of the vertical magnetic component are required. The second goal of this paper is to describe a method which permits the resolution of mid-crustal conductive layers in the presence of an additional high-conductivity layer at the surface. This method is possible in a two-dimensional (2-D) situation that limits the spatial extension of the surface structure. Again, vertical magnetic field recordings are necessary, but the phase of the E-polarization with respect to the 2-D structure is the most sensitive parameter. Using two field sites in Southern Germany, it has been possible to give a quantitative explanation of anisotropy and an improved depth resolution, and to derive an integrated conductivity of the highly conductive mid-crustal layers using MT and geomagnetic depth sounding data. The anisotropic highly conductive layer is located 12 km beneath the poorly conductive Black Forest crystalline rocks, whereas it is at a depth of 6 km beneath the highly conductive Rhine Graben sediments.

  10. Cryptotephrochronology in the North Atlantic Region : Linking Greenland Ice and North Atlantic Marine Sediments

    NASA Astrophysics Data System (ADS)

    Abbott, P. M.; Davies, S. M.; Bourne, A.; Meara, R.; Cook, E.; Griggs, A.

    2012-12-01

    Tephrochronology is a powerful technique that can be utilised for the correlation and synchronisation of disparate palaeoclimatic records. Thus, this technique has considerable potential for addressing key questions relating to rapid climatic events that characterised the last glacial period. In particular, our search for microscopic tephra layers or cryptotephras within the Greenland ice-cores and marine cores from the North Atlantic Ocean has the potential to test the phase relationships between the atmospheric and oceanic responses to these high-magnitude and abrupt climatic events. Here we report on results of investigations of the MIS 5 to 2 time period drawing on examples from several North Atlantic marine cores from various sites within the North Atlantic including the Rockall Trough, Faroe Islands region, Goban Spur, Gardar Drift and Irminger Basin. These investigations fall within the context of the SMART and TRACE projects. Several cryptotephra horizons have been identified by applying techniques first developed for terrestrial sedimentary material. The two main challenges associated with cryptotephra work in the glacial North Atlantic are i) determining the dominant transportation processes and ii) assessing the influence of secondary reworking processes and the integrity of the isochrons. The potential influence of these processes is investigated by assessing shard size, geochemical (major and trace element) heterogeneity and co-variance of IRD input and sortable silt for some cores. High-resolution investigations of the Greenland ice-cores of NGRIP, GRIP and NEEM over the same time period have identified cryptotephras from numerous previously unrecognised eruptions. The principal source of horizons is Iceland, with some correlated to specific volcanic systems such as Katla, Grimsvötn, Hekla and Veidivötn-Bardabunga. An overarching aspect of this work is the robust geochemical fingerprinting of the small glass shards within these cryptotephras using

  11. High Resolution Spectroscopy of Rocket Triggered Lightning

    NASA Astrophysics Data System (ADS)

    Walker, T. D.; Christian, H. J.

    2012-12-01

    In the Summer of 2012, optical spectra of rocket triggered lightning return strokes were recorded at the International Center for Lightning Research and Testing in north-central Florida. The spectra were recorded with a Phantom v710 high speed CMOS camera running at 670 kfps (kiloframes per second) with a 1 microsecond exposure time and a Princeton ProEM high speed CCD camera running at over 1,000 kfps with a 0.5 microsecond exposure time. Three separate volume phase holographic grisms were used during the study and were sensitive in the spectral ranges of 3800-6200 Angstroms, 6400-6700 Angstroms, 7600-7900 Angstroms. The first had a spectral resolution of 5 Angstroms, allowing the separation of singly ionized nitrogen multiplets. These spectra were recorded 50m above the ground with 0.65 m vertical field of view. The second and third spectrometers were recorded with the Princeton ProEM camera and had a resolution of 0.5 Angstroms. These spectra were recorded 50m above ground with 0.06 m vertical field of view. The evolution of important lines in the spectral ranges such as singly ionized nitrogen lines (including spatially resolved 4630 Angstrom multiplet), H-alpha, and a resolved 7774 Angstrom Neutral oxygen triplet will all be presented. The opacity of the lightning channel as well as number density, temperature, and conductivity, will be discussed along with channel base current.

  12. Direct Experimental Assessment of Microbial Activity in North Pond Sediments

    NASA Astrophysics Data System (ADS)

    Ferdelman, T. G.; Picard, A.; Morando, M.; Ziebis, W.

    2009-12-01

    North Pond, an isolated sediment pond located at 22°45’N on the western flank of the Mid-Atlantic Ridge, offered the opportunity to study microbial activities in deeply-buried low-activity sediments. About 8 x 15 km in size with sediment maximum thickness of about 300 m, North Pond is completely surrounded by exposed 7 Ma old basement. North Pond lies above the carbonate compensation depth at a water depth about 4500 m; hydrostatic pressure at the seafloor is about 45 MPa and the temperature is near 2°C. During the a R/V MS Merian cruise (MSM-11/1) in February -March 2009, 14 gravity cores of up to 9 m length were successfully obtained, from which samples were taken with 1-m resolution for experimental activity measurements. The goal of the experimental work was 1) to examine potential metabolic pathways in North Pond sediments and carbon assimilation pathways in this low-energy environment, and 2) explore the effects of pressure on microbial metabolic activities. As dissolved oxygen penetrated through all depths, sediments were aerobically sampled, processed and incubated at 4°C. Selected samples were immediately stored at in situ pressure until further use. The microbial uptake of both organic and inorganic carbon in selected North Pond sediment samples was investigated by following the fate of 14C in radio-labeled organic and organic compounds in North Pond sediment slurry incubations. Shipboard and on-shore experiments using 14C-leucine, 14C-glucose and 14C-bicarbonate were performed on selected cores. Day- to month- incubations were performed at 4°C. Parallel incubations were conducted at atmospheric pressure (0.1 MPa) and in situ pressure (~45 MPa). Either whole cell extraction (Kallmeyer et al., Limnol. Oceanogr.: Methods 6, 2008, 238-245) or protein-DNA extraction was carried on after various incubations to determine the fraction of 14C incorporated into cellular components. Formation of 14C-labeled CO2 was determined on samples incubated with 14C

  13. High resolution Doppler lidar

    NASA Technical Reports Server (NTRS)

    Abreu, Vincent J.; Hays, Paul B.; Barnes, John E.

    1989-01-01

    A high resolution lidar system was implemented to measure winds in the lower atmosphere. The wind speed along the line of sight was determined by measuring the Doppler shift of the aerosol backscattered laser signal. The system in its present configuration is stable, and behaves as indicated by theoretical simulations. This system was built to demonstrate the capabilities of the detector system as a prototype for a spaceborne lidar. The detector system investigated consisted of a plane Fabry-Perot etalon, and a 12-ring anode detector. This system is generically similar to the Fabry-Perot interferometer developed for passive wind measurements on board the Dynamics Explorer satellite. That this detector system performs well in a lidar configuration was demonstrated.

  14. Atomic resolution holography.

    PubMed

    Hayashi, Kouichi

    2014-11-01

    Atomic resolution holography, such as X-ray fluorescence holography (XFH)[1] and photoelectron holography (PH), has the attention of researcher as an informative local structure analysis, because it provides three dimensional atomic images around specific elements within a range of a few nanometers. It can determine atomic arrangements around a specific element without any prior knowledge of structures. It is considered that the atomic resolution holographic is a third method of structural analysis at the atomic level after X-ray diffraction (XRD) and X-ray absorption fine structure (XAFS). As known by many researchers, XRD and XAFS are established methods that are widespread use in various fields. XRD and XAFS provide information on long-range translational periodicities and very local environments, respectively, whereas the atomic resolution holography gives 3D information on the local order and can visualize surrounding atoms with a large range of coordination shells. We call this feature "3D medium-range local structure observation".In addition to this feature, the atomic resolution holography is very sensitive to the displacement of atoms from their ideal positions, and one can obtain quantitative information about local lattice distortions by analyzing reconstructed atomic images[2] When dopants with different atomic radii from the matrix elements are present, the lattices around the dopants are distorted. However, using the conventional methods of structural analysis, one cannot determine the extent to which the local lattice distortions are preserved from the dopants. XFH is a good tool for solving this problem.Figure 1 shows a recent achievement on a relaxor ferroelectric of Pb(Mg1/3Nb2/3)O3 (PMN) using XFH. The structural studies of relaxor ferroelectrics have been carried out by X-ray or neutron diffractions, which suggested rhombohedral distortions of their lattices. However, their true pictures have not been obtained, yet. The Nb Kα holograms showed

  15. High resolution ultrasonic densitometer

    SciTech Connect

    Dress, W.B.

    1983-01-01

    The velocity of torsional stress pulses in an ultrasonic waveguide of non-circular cross section is affected by the temperature and density of the surrounding medium. Measurement of the transit times of acoustic echoes from the ends of a sensor section are interpreted as level, density, and temperature of the fluid environment surrounding that section. This paper examines methods of making these measurements to obtain high resolution, temperature-corrected absolute and relative density and level determinations of the fluid. Possible applications include on-line process monitoring, a hand-held density probe for battery charge state indication, and precise inventory control for such diverse fluids as uranium salt solutions in accountability storage and gasoline in service station storage tanks.

  16. Persistent Cold Air Outbreaks over North America Under Climate Warming

    NASA Astrophysics Data System (ADS)

    Gao, Y.; Leung, L. R.; Lu, J.

    2014-12-01

    This study evaluates the change of cold air outbreaks (CAO) over North America using Coupled Model Intercomparison Project Phase 5 (CMIP5) multi-model ensemble of global climate simulations as well as regional high resolution climate simulations. In future, while robust decrease of CAO duration dominates in most of the North America, the decrease over northwestern U.S. was found to have much smaller magnitude than the surrounding regions. We found statistically significant increase of the sea level pressure over gulf of Alaska, leading to the advection of cold air to northwestern U.S.. By shifting the probability distribution of present temperature towards future warmer conditions, we identified the changes in large scale circulation contribute to about 50% of the enhanced sea level pressure. Using the high resolution regional climate model results, we found that increases of existing snowpack could potentially trigger the increase of CAO in the near future over the southwestern U.S. and Rocky Mountain through surface albedo effects. By the end of this century, the top 5 most extreme historical CAO events may still occur and wind chill warning will continue to have societal impacts over North America in particular over northwestern United States.

  17. North Atlantic forcing of tropical Indian Ocean climate.

    PubMed

    Mohtadi, Mahyar; Prange, Matthias; Oppo, Delia W; De Pol-Holz, Ricardo; Merkel, Ute; Zhang, Xiao; Steinke, Stephan; Lückge, Andreas

    2014-05-01

    The response of the tropical climate in the Indian Ocean realm to abrupt climate change events in the North Atlantic Ocean is contentious. Repositioning of the intertropical convergence zone is thought to have been responsible for changes in tropical hydroclimate during North Atlantic cold spells, but the dearth of high-resolution records outside the monsoon realm in the Indian Ocean precludes a full understanding of this remote relationship and its underlying mechanisms. Here we show that slowdowns of the Atlantic meridional overturning circulation during Heinrich stadials and the Younger Dryas stadial affected the tropical Indian Ocean hydroclimate through changes to the Hadley circulation including a southward shift in the rising branch (the intertropical convergence zone) and an overall weakening over the southern Indian Ocean. Our results are based on new, high-resolution sea surface temperature and seawater oxygen isotope records of well-dated sedimentary archives from the tropical eastern Indian Ocean for the past 45,000 years, combined with climate model simulations of Atlantic circulation slowdown under Marine Isotope Stages 2 and 3 boundary conditions. Similar conditions in the east and west of the basin rule out a zonal dipole structure as the dominant forcing of the tropical Indian Ocean hydroclimate of millennial-scale events. Results from our simulations and proxy data suggest dry conditions in the northern Indian Ocean realm and wet and warm conditions in the southern realm during North Atlantic cold spells. PMID:24784218

  18. View of Callisto at Increasing Resolutions

    NASA Technical Reports Server (NTRS)

    1998-01-01

    These four views of Jupiter's second largest moon, Callisto, highlight how increasing resolutions enable interpretation of the surface. In the global view (top left) the surface is seen to have many small bright spots, while the regional view (top right) reveals the spots to be the larger craters. The local view (bottom right) not only brings out smaller craters and detailed structure of larger craters, but also shows a smooth dark layer of material that appears to cover much of the surface. The close-up frame (bottom left) presents a surprising smoothness in this highest resolution (30 meters per picture element) view of Callisto's surface.

    North is to the top of these frames which were taken by the Solid State Imaging (SSI) system on NASA's Galileo spacecraft between November 1996 and November 1997. Even higher resolution images (better than 20 meters per picture element) of Callisto will be taken on June 30, 1999 during the 21st orbit of the spacecraft around Jupiter.

    The top left frame is scaled to 10 kilometers (km) per picture element (pixel) and covers an area about 4400 by 2500 km. The moon Callisto, which has a diameter of 4806 km, appears to be peppered with many bright spots. Images at this resolution of other cratered moons in the Solar System indicate that the bright spots could be impact craters. The ring structure of Valhalla, the largest impact structure on Callisto, is visible in the center of the frame. This color view combines images obtained in November 1997 taken through the green, violet, and 1 micrometer filters of the SSI system.

    The top right frame is ten times higher resolution (about 1 km per pixel) and covers an area approximately 440 by 250 km. Craters, which are clearly recognizable, appear to be the dominant landform on Callisto. The crater rims appear bright, while the adjacent area and the crater interiors are dark. This resolution is comparable to the best data available from the 1979 flyby's of NASA's two Voyager

  19. Algorithm for IAU north poles and rotation parameters

    NASA Technical Reports Server (NTRS)

    Lieske, J. H.

    1993-01-01

    In 1970 the International Astronomical Union (IAU) defined any object's north pole to be that axis of rotation which lies north of the solar system's invariable plane. A competing definition in widespread use at some institutions followed the 'right hand rule' whereby the 'north' axis of rotation was generally said to be that of the rotational angular momentum. In the case of the latter definition, the planet Neptune and its satellite Triton would have their 'north' poles in opposite hemispheres because Triton's angular momentum vector is in the hemisphere opposite from that of Neptune's rotation angular momentum. The IAU resolutions have been somewhat controversial in some quarters ever since their adoption. A Working Group has periodically updated the recommended values of planet and satellite poles and rotation rates in accordance with the IAU definition of north and the IAU definition of prime meridian. Neither system is completely satisfactory in the perception of all scientists, and some confusion has been generated by publishing data in the two different systems. In this paper we review the IAU definitions of north and of the location of prime meridian and we present the algorithm which has been employed in determining the rotational parameters of the natural satellites. The IAU definition of the prime meridian contains some ambiguities which in practice have been 'specified' by the numerical values published by the IAU working group but which have not yet been explicitly documented. The purpose of this paper is to explicitly document the algorithm employed by the IAU working group in specifying satellite poles and rotation rates.

  20. Daucus for the flora of North America

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Flora of North America Project will treat more than 20,000 species of plants native or naturalized in North America north of Mexico, about 7% of the world's total. This contribution presents a floristic account of the two species of wild carrots (Daucus) occurring in North America, Daucus carota...

  1. The Mackenzie River magnetic anomaly, Yukon and Northwest Territories, Canada-Evidence for Early Proterozoic magmatic arc crust at the edge of the North American craton

    USGS Publications Warehouse

    Pilkington, M.; Saltus, R.W.

    2009-01-01

    We characterize the nature of the source of the high-amplitude, long-wavelength, Mackenzie River magnetic anomaly (MRA), Yukon and Northwest Territories, Canada, based on magnetic field data collected at three different altitudes: 300??m, 3.5??km and 400??km. The MRA is the largest amplitude (13??nT) satellite magnetic anomaly over Canada. Within the extent of the MRA, source depth estimates (8-12??km) from Euler deconvolution of low-altitude aeromagnetic data show coincidence with basement depths interpreted from reflection seismic data. Inversion of high-altitude (3.5??km) aeromagnetic data produces an average magnetization of 2.5??A/m within a 15- to 35-km deep layer, a value typical of magmatic arc complexes. Early Proterozoic magmatic arc rocks have been sampled to the southeast of the MRA, within the Fort Simpson magnetic anomaly. The MRA is one of several broad-scale magnetic highs that occur along the inboard margin of the Cordillera in Canada and Alaska, which are coincident with geometric changes in the thrust front transition from the mobile belt to stable cratonic North America. The inferred early Proterozoic magmatic arc complex along the western edge of the North American craton likely influenced later tectonic evolution, by acting as a buttress along the inboard margin of the Cordilleran fold-and-thrust belt. Crown Copyright ?? 2008.

  2. High Resolution Global View of Io

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Io, the most volcanic body in the solar system is seen in the highest resolution obtained to date by NASA's Galileo spacecraft. The smallest features that can be discerned are 2.5 kilometers in size. There are rugged mountains several kilometers high, layered materials forming plateaus, and many irregular depressions called volcanic calderas. Several of the dark, flow-like features correspond to hot spots, and may be active lava flows. There are no landforms resembling impact craters, as the volcanism covers the surface with new deposits much more rapidly than the flux of comets and asteroids can create large impact craters. The picture is centered on the side of Io that always faces away from Jupiter; north is to the top.

    Color images acquired on September 7, 1996 have been merged with higher resolution images acquired on November 6, 1996 by the Solid State Imaging (CCD) system aboard NASA's Galileo spacecraft. The color is composed of data taken, at a range of 487,000 kilometers, in the near-infrared, green, and violet filters and has been enhanced to emphasize the extraordinary variations in color and brightness that characterize Io's face. The high resolution images were obtained at ranges which varied from 245,719 kilometers to 403,100 kilometers.

    Launched in October 1989, Galileo entered orbit around Jupiter on December 7, 1995. The spacecraft's mission is to conduct detailed studies of the giant planet, its largest moons and the Jovian magnetic environment. The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  3. Surface Wind Observational Database in North Eastern North America: Quality Control Procedure and Climatological Variability

    NASA Astrophysics Data System (ADS)

    Lucio-Eceiza, Etor E.; Fidel González-Rouco, J.; Navarro, Jorge; Hidalgo, Ángela; Conte, Jorge; Beltrami, Hugo

    2015-04-01

    This work summarizes the design and application of a Quality Control (QC) procedure for an observational surface wind database located in North Eastern North America. It also presents some insights of the long-term climatological variability over the region. The database consists of 527 sites (487 land stations and 40 buoys) with varying resolutions of hourly, 3 hourly and 6 hourly data, compiled from three different source institutions. The records span from 1940 to 2010 and cover an approximate spatial extension of 2.2 × 106 km2. The QC process is composed of different phases focused either on problems related with the providing source institutions or measurement errors. Due to the size of the data set, a great effort has been made on the automation of the procedures. A number of problems are associated with data management and data conventions: unification of measurement units and recording times due to the variety of institutional sources; detection of erroneous data sequence duplications within a station or among different ones; and detection of errors related with physically unrealistic data measurements. From the other hand there is a variety of treated instrumental errors: problems related with low variability, placing particular emphasis on the detection of unrealistic low wind speed records with the help of regional references; high variability related erroneous records; wind speed biases on week to monthly timescales and homogenization of wind direction records. As a result, around 1.7% of wind speed records and 0.4% of wind direction records have been deleted, making a combined total of 1.9% of removed records. Around 2.4% of wind direction data have been also corrected. The already quality controlled database allows for subsequent climatological analyses. The intra and inter decadal variability of the monthly surface wind field in such a vast and orographically complex region as the North Eastern North America is explored. Several decades of quality

  4. High-resolution structural mapping in Southwest Candor Chasma

    NASA Astrophysics Data System (ADS)

    Okubo, C. H.; Lewis, K.; McEwen, A. S.; Kirk, R.; HiRISE Team

    2007-12-01

    We report initial results of high-resolution structural mapping of layered deposits in southwest Candor Chasma, near the contact with the surrounding wall rock. Mapping is accomplished on a digital terrain model created from stereo HiRISE imagery, with postings at every one meter. A prominent stratigraphic package, herein referred to as the 'Slickrock Member', is present throughout the study area and consists of a characteristic sequence of massive and friable layers. Mapping of the Slickrock Member reveals both the stratigraphic continuity between faults and folds, as well as the younging direction throughout the study area. Numerous synclines, anticlines and monoclines generally trend NW-SE and have wavelengths of ca. 0.5-0.7 km. Present-day exposures through these folds indicate that at least several hundred meters of layered deposits have been eroded and removed. Normal and thrust faults are identified from the dip direction of the fault plane and sense of bedding offset. These faults generally strike NE-SW to E-W. Fault dip angles are consistent with an effective rock friction of ca. 30 degrees. Thrust faults have lengths that are 1-2 km or more, while normal faults are generally less than 0.5 km in length. Damage zones occur at several fault stopovers and bends, and fault propagation folds are also observed. Thrust fault vergence directions appear non-systematic, consistent with thick-skinned deformation. Fault planes have a ridge-like erosional morphology that rises up to 5 m above the surrounding terrain, consistent with an origin through deformation band processes. Faults crosscut the NW-SE- trending folds and these faults do not appear to be folded, indicating that brittle deformation occurred after formation of the folds. These overlapping styles of deformation, and senses of faulting, reveal multiple changes in the orientations and magnitudes of the principal stresses that drove deformation in this area. Further, large-scale normal faulting associated

  5. North Polar Cliff

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This full HiRISE image shows a cliff-face that has been eroded into the ice-rich polar layered deposits at the head of the large canyon, Chasma Boreale. In a similar way to layers in the Earth's ice caps, these Martian layers are thought to record variations in climate, which makes them very interesting to scientists. This particular cliff-face is several hundred meters high and the layers exposed here are the deepest (and so the oldest) in the polar layered deposits. The lower layers exposed in this scarp appear to be rich in dark sand, and erosion of these layers has produced the sand dunes that cover sections of this cliff-face. A close examination of the layers in the center of the image shows they have curved shapes and intersect each other. Scientists call this cross-bedding and it may indicate that these sandy layers were laid down as a large dunefield before being buried. At the bottom of the image, the floor of Chasma Boreale in this area appears to have been swept clean of sandy material. There is a complex history of erosion and deposition of material at this location. On the right of the image one can see a smooth material that covers the lower layers and which must have been deposited after the main cliff face was initially eroded. Closer to the center of the image, this smooth mantling material is in turn being eroded away to once again expose the layers beneath it.

    Image PSP_001334_2645 was taken by the High Resolution Imaging Science Experiment (HiRISE) camera onboard the Mars Reconnaissance Orbiter spacecraft on November 8, 2006. The complete image is centered at 84.4 degrees latitude, 343.5 degrees East longitude. The range to the target site was 317.4 km (198.4 miles). At this distance the image scale ranges from 31.8 cm/pixel (with 1 x 1 binning) to 63.5 cm/pixel (with 2 x 2 binning). The image shown here has been map-projected to 25 cm/pixel. The image was taken at a local Mars time of 1:38 PM and the scene is illuminated from the

  6. Going just a little nuclear: Nonproliferation lessons from North Korea

    SciTech Connect

    Mazarr, M.J.

    1995-12-31

    Nonproliferation in the 1990s and beyond will be an enormously difficult challenge. In large part this is true because the only road map for such efforts merely points us in a general direction. The lay of the land, its contours and pathways, the barriers to progress and the bridges over them will only become apparent when we lay that map over a specific case. And once apparent, they will show a geopolitical topography that is maddeningly complex. In particular, the long-term success of the October 1994 North Korean-U.S. nuclear deal is by no means guaranteed. The agreement calls for the sort of nuanced, patient engagement of the North that the United States and its allies have so far proven incapable of conducting. Already, one major step toward a resolution of the nuclear issue has fallen victim to failed implementation: the process that was underway in 1992, when North Korea accepted inspections only to see U.S.-South Korean diplomacy collapse during the second half of the year. What the Agreed Framework will mean for the future is not completely clear, but this much is certain: if the United States stamps the Korean nuclear issue {open_quotes}solved{close_quotes} and turns to other crises, the agreement will collapse. Only by a continuous and energetic follow-up process of engagement and reconciliation with North Korea can the United States and its allies make this deal stick. 47 refs.

  7. Shear-Wave Velocity Structure Around the Korean Peninsula Using the Rayleigh Wave Signature of the North Korea Underground Nuclear Explosion on May 25, 2009

    NASA Astrophysics Data System (ADS)

    Kim, G.; Shin, J.; Chi, H. C.; Sheen, D.; Park, J.; Cho, C.

    2011-12-01

    The crustal structure around the Korean Peninsula was investigated by analyzing the Rayleigh waves generated from the 2nd North Korea underground nuclear explosion on May 25, 2009. Group velocity dispersion curves were measured from vertical component waveforms of 20 broadband stations in the range of 194 to 1183 km from the test site. The measured dispersion curves were inverted to get shear-wave velocity models for depths from 0 to 50 km. The dispersion curves and the velocity models clearly show lateral variations in the crustal structure, which could be more clearly classified into the North Korea-Northeast China group, the Western Margin of the East Sea group, and the Japan Basin group. For each group, an averaged dispersion curve and an averaged velocity model were measured. The averaged shear-wave velocity model of the North Korea-Northeast China group shows that the mean shear-wave velocity of the Moho discontinuity, which is known to be located at approximately 35 km, is 4.37 km/s with a standard deviation of 0.15 km/s. The averaged shear-wave velocity model of the Japan Basin group shows a mean shear-wave velocity of 4.26 km/s with a standard deviation of 0.14 km/s in the layer between 16 and 22 km. The averaged shear-wave velocity model of the Western Margin of the East Sea group shows characteristics of a transition zone between the North Korea-Northeast China group, which represents continental crust, and the Japan Basin group, which represents oceanic crust. The mean shear-wave velocity in the layer between 16 and 22 km is 4.12 km/s with a standard deviation of 0.05 km/s.

  8. Morphology of the Alarcón Rise spreading axis from 1-m resolution AUV bathymetry surveys

    NASA Astrophysics Data System (ADS)

    Caress, D. W.; Clague, D. A.; Paduan, J. B.; Martin, J. F.; Thomas, H.; Thompson, D.; Nieves-Cardoso, C.; Santa Rosa-del Rio, M.

    2012-12-01

    -relief pillow mounds, a few of which post-date the most recent faulting. Along the western boundary fault is a rugged ridge punctuated by three volcanic domes, one of which was found by Clague et al. (this session) to be rhyolitic. This morphology extends southward for 9 km to 23°30.7'N, the northern limit of sheet flows. Between 23°24.5'N and 23°30.7'N (12 km) the neovolcanic zone is covered by a combination of sheet flows, pillow mounds, and two larger edifices. The low relief northern edifice is a 4-km long, 70-m high shield volcano with a 200-m wide, 25 m deep summit crater. The southern edifice is a 100 m high, 800 m wide, flat-topped cone centered on the east side of the axial graben and located at the center of the overall segment. From 23°23.8'N to 23°19.0'N (11 km), the axis is dominated by a single sheet flow that erupted from an 8.5-km long fissure system also located on the east side of the axial graben. This voluminous, unfaulted flow fills the graben, extends to the north and south of the eruptive fissure, and spills down the east side of the axial high beyond the high resolution bathymetric coverage. South of this flow, the axis is characterized by discrete pillow mounds, occasional sheet flows, and fault trends that curve southeastward into the Tamayo Fracture Zone. The southern terminus is less tectonized and has lower relief pillow mounds than the northern end of the segment.

  9. Continuous creep measurements on the North Anatolian fault

    NASA Astrophysics Data System (ADS)

    Mencin, D.; Bilham, R. G.; Ozener, H.; Aktug, B.; Dogru, A.; Ergintav, S.; Cakir, Z.; Aytun, A.

    2014-12-01

    Surface creep was recognized as early as 1969 on the North Anatolian fault near Ismetpasa and continues to the present day at rates of the order of 5 mm/yr. Although subsurface creep is currently monitored using Insar and GPS, continuous creep measurements on the surface fault have been intermittent. In 2014 we installed a carbon-fiber rod creepmeter at Ismetpasa and a second creepmeter across the surface rupture of the 1999 Izmit earthquake, which is also known to be creeping at depth. The creepmeters have a resolution of 5 μm and a range of 2.2 m. Each creepmeter uses two sensors- a subsurface LVDT (resolution 5 μm range 10 mm) and an above-ground rotary Hall effect sensor (resolution 25 μm and range 2.2 m) and their data are transmitted via the Iridium satellite as 30 minute samples every 2 hours. The hybrid sensors on the creepmeters are similar to others currently operating on the Hayward, Calaveras, and San Andreas faults. Their ability to capture slow slip, coseismic rupture or afterslip has been tested in deployments on the rapidly creeping Jackson, Wyoming landslide (1-3 mm/day). Installed creepmeters will be a powerful tool to search the possibilities of the transient or episodic creep and they will be used to validate the results of on-going monthly InSAR and campaign GPS studies, along the north Anatolian fault.

  10. First results from the high resolution air sampler (HIRES) installed in the CARIBIC observatory

    NASA Astrophysics Data System (ADS)

    Brenninkmeijer, C. A.; Koeppel, C.; Baker, A. K.; Schuck, T. J.

    2011-12-01

    In May 2010 the CARIBIC instrument container (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container; www.caribic-atmospheric.com) was upgraded to include a new high resolution air sampler, HIRES. This new sampler consists of 88 1L stainless steel sampling flasks, supplementing the existing 2 units with 14 2.5L glass flasks each, increasing the CARIBIC sampling capacity to 116 whole air samples collected using a single pumping unit having two metal bellow pumps in series. The CARIBIC project involves the monthly deployment of a fully automated instrument container equipped to make atmospheric measurements from aboard a commercial airliner, and has operated since 2005 onboard a Lufthansa Airbus 340-600. Measurements from the container include in-situ trace gas and aerosol analyses and the collection of aerosol and whole air samples for post-flight laboratory analysis. Measurements made from the sampling flasks include greenhouse gas (GHG) and nonmethane hydrocarbon (NMHC) analysis. The first deployment of HIRES for a CARIBIC flight was in June 2010, and it has been in routine monthly operation since, making a total of 1188 HIRES air samples collected as of July 2011 (from a total of 1566 CARIBIC air samples). The ability of CARIBIC to observe the atmosphere at aircraft cruising altitudes (9-12 km) provides the opportunity to regularly measure the composition of the upper troposphere/lowermost stratosphere (UT/LS), and increased sampling resolution has provided invaluable long-term observations of GHG and NMHC gradients across the tropopause which are unique to CARIBIC. Here we provide a detailed description of the collection system itself, and give first results from the inaugural year of HIRES, which include detailed observations of pollution plumes over eastern Asia, tropical convection over continental Africa, and trace gas gradients in the tropopause at high northern latitudes.

  11. Multi-resolution processing for fractal analysis of airborne remotely sensed data

    NASA Technical Reports Server (NTRS)

    Jaggi, S.; Quattrochi, D.; Lam, N.

    1992-01-01

    Fractal geometry is increasingly becoming a useful tool for modeling natural phenomenon. As an alternative to Euclidean concepts, fractals allow for a more accurate representation of the nature of complexity in natural boundaries and surfaces. Since they are characterized by self-similarity, an ideal fractal surface is scale-independent; i.e. at different scales a fractal surface looks the same. This is not exactly true for natural surfaces. When viewed at different spatial resolutions parts of natural surfaces look alike in a statistical manner and only for a limited range of scales. Images acquired by NASA's Thermal Infrared Multispectral Scanner are used to compute the fractal dimension as a function of spatial resolution. Three methods are used to determine the fractal dimension - Schelberg's line-divider method, the variogram method, and the triangular prism method. A description of these methods and the results of applying these methods to a remotely-sensed image is also presented. Five flights were flown in succession at altitudes of 2 km (low), 6 km (mid), 12 km (high), and then back again at 6 km and 2 km. The area selected was the Ross Barnett reservoir near Jackson, Mississippi. The mission was flown during the predawn hours of 1 Feb. 1992. Radiosonde data was collected for that duration to profile the characteristics of the atmosphere. This corresponds to 3 different pixel sizes - 5m, 15m, and 30m. After, simulating different spatial sampling intervals within the same image for each of the 3 image sets, the results are cross-correlated to compare the extent of detail and complexity that is obtained when data is taken at lower spatial intervals.

  12. 1. VIEW, LOOKING NORTH, NORTH OF PORTAL 1, JUST INSIDE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW, LOOKING NORTH, NORTH OF PORTAL 1, JUST INSIDE THE PROTECTED AREA. ON THE LEFT SIDE OF THE PHOTOGRAPH IS BUILDING 709, THE COOLING TOWER FOR BUILDING 707, AND BEHIND BUILDING 709 IS BUILDING 707, THE NEWEST OF THE PLUTONIUM FABRICATION BUILDINGS. IN THE RIGHT FOREGROUND IS BUILDING 763, A BREEZEWAY FOR PEDESTRIANS. IN THE FAR LEFT OF THE PHOTOGRAPH ARE THE T750 TRAILERS AND BUILDING 750, THE PRODUCTION SUPPORT ENGINEERING FACILITY. - Rocky Flats Plant, Bounded by Indiana Street & Routes 93, 128 & 72, Golden, Jefferson County, CO

  13. The North Atlantic Cold Bias

    NASA Astrophysics Data System (ADS)

    Greatbatch, Richard; Drews, Annika; Ding, Hui; Latif, Mojib; Park, Wonsun

    2016-04-01

    The North Atlantic cold bias, associated with a too zonal path of the North Atlantic Current and a missing "northwest corner", is a common problem in coupled climate and forecast models. The bias affects the North Atlantic and European climate mean state, variability and predictability. We investigate the use of a flow field correction to adjust the path of the North Atlantic Current as well as additional corrections to the surface heat and freshwater fluxes. Results using the Kiel Climate Model show that the flow field correction allows a northward flow into the northwest corner, largely eliminating the bias below the surface layer. A surface cold bias remains but can be eliminated by additionally correcting the surface freshwater flux, without adjusting the surface heat flux seen by the ocean model. A model version in which only the surface fluxes of heat and freshwater are corrected continues to exhibit the incorrect path of the North Atlantic Current and a strong subsurface bias. Removing the bias impacts the multi-decadal time scale variability in the model and leads to a better representation of the SST pattern associated with the Atlantic Multidecadal Variability than the uncorrected model.

  14. High spatial resolution imaging of methane and other trace gases with the airborne Hyperspectral Thermal Emission Spectrometer (HyTES)

    NASA Astrophysics Data System (ADS)

    Hulley, Glynn C.; Duren, Riley M.; Hopkins, Francesca M.; Hook, Simon J.; Vance, Nick; Guillevic, Pierre; Johnson, William R.; Eng, Bjorn T.; Mihaly, Jonathan M.; Jovanovic, Veljko M.; Chazanoff, Seth L.; Staniszewski, Zak K.; Kuai, Le; Worden, John; Frankenberg, Christian; Rivera, Gerardo; Aubrey, Andrew D.; Miller, Charles E.; Malakar, Nabin K.; Sánchez Tomás, Juan M.; Holmes, Kendall T.

    2016-06-01

    Currently large uncertainties exist associated with the attribution and quantification of fugitive emissions of criteria pollutants and greenhouse gases such as methane across large regions and key economic sectors. In this study, data from the airborne Hyperspectral Thermal Emission Spectrometer (HyTES) have been used to develop robust and reliable techniques for the detection and wide-area mapping of emission plumes of methane and other atmospheric trace gas species over challenging and diverse environmental conditions with high spatial resolution that permits direct attribution to sources. HyTES is a pushbroom imaging spectrometer with high spectral resolution (256 bands from 7.5 to 12 µm), wide swath (1-2 km), and high spatial resolution (˜ 2 m at 1 km altitude) that incorporates new thermal infrared (TIR) remote sensing technologies. In this study we introduce a hybrid clutter matched filter (CMF) and plume dilation algorithm applied to HyTES observations to efficiently detect and characterize the spatial structures of individual plumes of CH4, H2S, NH3, NO2, and SO2 emitters. The sensitivity and field of regard of HyTES allows rapid and frequent airborne surveys of large areas including facilities not readily accessible from the surface. The HyTES CMF algorithm produces plume intensity images of methane and other gases from strong emission sources. The combination of high spatial resolution and multi-species imaging capability provides source attribution in complex environments. The CMF-based detection of strong emission sources over large areas is a fast and powerful tool needed to focus on more computationally intensive retrieval algorithms to quantify emissions with error estimates, and is useful for expediting mitigation efforts and addressing critical science questions.

  15. 75 FR 61140 - Next Meeting of the North American Numbering Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-04

    ...). 7. Report of the Local Number Portability Administration (LNPA) Working Group. 8. Report of North American Portability Management LLC (NAPM LLC). 9. Report of the Telcordia Dispute Resolution Team... fax number is: (202) 418-1413. The TTY number is: (202) 418-0484. SUPPLEMENTARY INFORMATION: This is...

  16. North polar region of Mars: imaging results from viking 2.

    PubMed

    Cutts, J A; Blasius, K R; Briggs, G A; Carr, M H; Greeley, R; Masursky, H

    1976-12-11

    During October 1976, the Viking 2 orbiter acquired approximately 700 high-resolution images of the north polar region of Mars. These images confirm the existence at the north pole of extensive layered deposits largely covered over with deposits of perennial ice. An unconformity within the layered deposits suggests a complex history of climate change during their time of deposition. A pole-girdling accumulation of dunes composed of very dark materials is revealed for the first time by the Viking cameras. The entire region is devoid of fresh impact craters. Rapid rates of erosion or deposition are implied. A scenario for polar geological evolution, involving two types of climate change, is proposed. PMID:17797095

  17. NLDAS Views of North American 2011 Extreme Events

    NASA Technical Reports Server (NTRS)

    Rui, Hualan; Teng, William L.; Vollmer, Bruce; Mocko, David; Lei, Guang-Dih

    2014-01-01

    2011 was marked as one of the most extreme years in recent history. Over the course of the year, weather-related extreme events, such as floods, heat waves, blizzards, tornadoes, and wildfires, caused tremendous loss of human life and property. The North American Land Data Assimilation System (NLDAS, http:ldas.gsfc.nasa.govnldas) data set, with high spatial and temporal resolutions (0.125 x 0.125, hourly) and various water- and energy-related variables, is an excellent data source for case studies of extreme events. This presentation illustrates some extreme events from 2011 in North America, including the Groundhog Day Blizzard, the July heat wave, Hurricane Irene, and Tropical Storm Lee, all utilizing NLDAS Phase 2 (NLDAS-2) data.

  18. ARRA additions to the north slope of Alaska.

    SciTech Connect

    Richardson, Scott; Cherry, Jessica; Stuefer, Martin; Zirzow, Jeffrey A.; Zak, Bernard Daniel; Ivey, Mark D.; Verlinde, Johannes

    2010-03-01

    The U.S. Department of Energy (DOE) provides scientific infrastructure and data archives to the international Arctic research community through a national user facility, the ARM Climate Research Facility, located on the North Slope of Alaska. The ARM sites at Barrow and Atqasuk, Alaska have been collecting and archiving atmospheric data for more than 10 years. These data have been used for scientific investigation as well as remote sensing validations. Funding from the Recovery Act (American Recovery and Reinvestment Act of 2009) will be used to install new instruments and upgrade existing instruments at the North Slope sites. These instruments include: scanning precipitation radar; scanning cloud radar; automatic balloon launcher; high spectral resolution lidar; eddy correlation flux systems; and upgraded ceilometer, AERI, micropulse lidar, and millimeter cloud radar. Information on these planned additions and upgrades will be provided in our poster. An update on activities planned at Oliktok Point will also be provided.

  19. NLDAS Views of North American 2011 Extreme Events

    NASA Technical Reports Server (NTRS)

    Rui, Hualan; Teng, William; Vollmer, Bruce; Mocko, David; Lei, Guang-Dih

    2012-01-01

    2011 was marked as one of the most extreme years in recent history. Over the course of the year, weather-related extreme events, such as floods, heat waves, blizzards, tornadoes, and wildfires, caused tremendous loss of human life and property. The North American Land Data Assimilation System (NLDAS, http://ldas.gsfc.nasa.gov/nldas/) data set, with high spatial and temporal resolutions (0.125? x 0.125?, hourly) and various water- and energy-related variables, is an excellent data source for case studies of extreme events. This presentation illustrates some extreme events from 2011 in North America, including the Groundhog Day Blizzard, the July heat wave, Hurricane Irene, and Tropical Storm Lee, all utilizing NLDAS Phase 2 (NLDAS-2) data.

  20. New evidence for early presence of hominids in North China

    PubMed Central

    Ao, Hong; Dekkers, Mark J.; Wei, Qi; Qiang, Xiaoke; Xiao, Guoqiao

    2013-01-01

    The Nihewan Basin in North China has a rich source of Early Pleistocene Paleolithic sites. Here, we report a high-resolution magnetostratigraphic dating of the Shangshazui Paleolithic site that was found in the northeastern Nihewan Basin in 1972. The artifact layer is suggested to be located in the Matuyama reversed polarity chron just above the upper boundary of the Olduvai polarity subchron, yielding an estimated age of ca 1.7–1.6 Ma. This provides new evidence for hominid occupation in North China in the earliest Pleistocene. The earliest hominids are argued to have lived in a habitat of open grasslands mixed with patches of forests close to the bank of the Nihewan paleolake as indicated from faunal compositions. Hominid migrations to East Asia during the Early Pleistocene are suggested to be a consequence of increasing cooling and aridity in Africa and Eurasia. PMID:23948715

  1. Laser Provides First 3-D View of Mars' North Pole

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This first three-dimensional picture of Mars' north pole enables scientists to estimate the volume of its water ice cap with unprecedented precision, and to study its surface variations and the heights of clouds in the region for the first time.

    Approximately 2.6 million of these laser pulse measurements were assembled into a topographic grid of the north pole with a spatial resolution of 0.6 miles (one kilometer) and a vertical accuracy of 15-90 feet (5-30 meters).

    The principal investigator for MOLA is Dr. David E. Smith of Goddard. The MOLA instrument was designed and built by the Laser Remote Sensing Branch of Laboratory for Terrestrial Physics at Goddard. The Mars Global Surveyor Mission is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for the NASA Office of Space Science.

  2. High Resolution Laboratory Spectroscopy

    NASA Astrophysics Data System (ADS)

    Brünken, S.; Schlemmer, S.

    2016-05-01

    In this short review we will highlight some of the recent advancements in the field of high-resolution laboratory spectroscopy that meet the needs dictated by the advent of highly sensitive and broadband telescopes like ALMA and SOFIA. Among these is the development of broadband techniques for the study of complex organic molecules, like fast scanning conventional absorption spectroscopy based on multiplier chains, chirped pulse instrumentation, or the use of synchrotron facilities. Of similar importance is the extension of the accessible frequency range to THz frequencies, where many light hydrides have their ground state rotational transitions. Another key experimental challenge is the production of sufficiently high number densities of refractory and transient species in the laboratory, where discharges have proven to be efficient sources that can also be coupled to molecular jets. For ionic molecular species sensitive action spectroscopic schemes have recently been developed to overcome some of the limitations of conventional absorption spectroscopy. Throughout this review examples demonstrating the strong interplay between laboratory and observational studies will be given.

  3. High Resolution Doppler Imager

    NASA Technical Reports Server (NTRS)

    Hays, Paul B.

    1999-01-01

    This report summarizes the accomplishments of the High Resolution Doppler Imager (HRDI) on UARS spacecraft during the period 4/l/96 - 3/31/99. During this period, HRDI operation, data processing, and data analysis continued, and there was a high level of vitality in the HRDI project. The HRDI has been collecting data from the stratosphere, mesosphere, and lower thermosphere since instrument activation on October 1, 1991. The HRDI team has stressed three areas since operations commenced: 1) operation of the instrument in a manner which maximizes the quality and versatility of the collected data; 2) algorithm development and validation to produce a high-quality data product; and 3) scientific studies, primarily of the dynamics of the middle atmosphere. There has been no significant degradation in the HRDI instrument since operations began nearly 8 years ago. HRDI operations are fairly routine, although we have continued to look for ways to improve the quality of the scientific product, either by improving existing modes, or by designing new ones. The HRDI instrument has been programmed to collect data for new scientific studies, such as measurements of fluorescence from plants, measuring cloud top heights, and lower atmosphere H2O.

  4. Evaluating super resolution algorithms

    NASA Astrophysics Data System (ADS)

    Kim, Youn Jin; Park, Jong Hyun; Shin, Gun Shik; Lee, Hyun-Seung; Kim, Dong-Hyun; Park, Se Hyeok; Kim, Jaehyun

    2011-01-01

    This study intends to establish a sound testing and evaluation methodology based upon the human visual characteristics for appreciating the image restoration accuracy; in addition to comparing the subjective results with predictions by some objective evaluation methods. In total, six different super resolution (SR) algorithms - such as iterative back-projection (IBP), robust SR, maximum a posteriori (MAP), projections onto convex sets (POCS), a non-uniform interpolation, and frequency domain approach - were selected. The performance comparison between the SR algorithms in terms of their restoration accuracy was carried out through both subjectively and objectively. The former methodology relies upon the paired comparison method that involves the simultaneous scaling of two stimuli with respect to image restoration accuracy. For the latter, both conventional image quality metrics and color difference methods are implemented. Consequently, POCS and a non-uniform interpolation outperformed the others for an ideal situation, while restoration based methods appear more accurate to the HR image in a real world case where any prior information about the blur kernel is remained unknown. However, the noise-added-image could not be restored successfully by any of those methods. The latest International Commission on Illumination (CIE) standard color difference equation CIEDE2000 was found to predict the subjective results accurately and outperformed conventional methods for evaluating the restoration accuracy of those SR algorithms.

  5. Ultrahigh Resolution Optical Coherence Tomography

    NASA Astrophysics Data System (ADS)

    Drexler, Wolfgang; Chen, Yu; Aguirre, Aaron D.; Považay, Boris; Unterhuber, Angelika; Fujimoto, James G.

    Since its invention in the late 1980s [1-4] and early 1990s [5-7], the original idea of OCT was to enable noninvasive optical biopsy, i.e., the in situ imaging of tissue microstructure with a resolution approaching that of histology, but without the need for tissue excision and post-processing. An important advance toward this goal was the introduction of ultrahigh-resolution OCT (UHR OCT). By improving axial OCT resolution by one order of magnitude from the 10 to 15 μm to the sub-μm region [8-11], UHR OCT enables superior visualization of tissue microstructure, including all major intraretinal layers in ophthalmic applications as well as cellular resolution OCT imaging in nontransparent tissue. This chapter reviews state-of-the-art technology that enables ultrahigh-resolution OCT covering the entire wavelength region from 500 to 1,600 nm and discusses fundamental limitations of OCT image resolution.

  6. Modeling future high-resolution dynamic sea level change

    NASA Astrophysics Data System (ADS)

    Brunnabend, Sandra-Esther; Dijkstra, Henk A.; Kliphuis, Michael A.; van Werkhoven, Ben; Bal, Henri E.; van Meersbergen, Maarten; Seinstra, Frank; Maassen, Jason

    2015-04-01

    Different studies have shown that resolving ocean eddies and representing boundary currents are of major importance when simulating changes in dynamic sea level on regional scale. Therefore, we use the strongly eddying global model version of the Parallel Ocean Program to simulate high-resolution future (up to the year 2100) sea surface height variations (SSH) under the SRES-A1B atmospheric forcing scenario. Results show dynamic sea level changes in the Southern Ocean that are caused by the southward shift in the westerly winds. The warming ocean (global mean sea surface temperature rises by about 2°C over the period 2000-2100) leads to a strong reduction of the Atlantic Meridional Overturning Circulation (AMOC). The magnitude of this reduction is affected by a feedback involving the heat transport to the sub-polar gyre region and evaporation over the North Atlantic region. The ocean circulation changes cause regional deviations from global mean sea level change in the North Atlantic. At coastal regions of eastern North America, dynamic sea level change leads to a positive deviation from global mean sea level change in the order of several decimeters. In the sub-polar gyre region a negative deviation from global mean sea level occurs. In the western North Atlantic, not only mean regional sea level is changed but also its variability, caused by shifted eddy pathways. This leads to a change in the frequency distribution of SSH anomalies, which has important consequences for regional sea level extremes.

  7. High-Resolution Observations of Sympathetic Filament Eruptions by NVST

    NASA Astrophysics Data System (ADS)

    Su, Yingna; Li, Shangwei; Zhou, Tuanhui; Ji, Haisheng

    2016-05-01

    We investigate the sympathetic eruptions of two solar filaments side by side as observed by the New Vacuum Solar Telescope (NVST) on 2015 October 15. These two filaments start from the complex active region NOAA 12434 (north) and end in a large quiescent region (south). The corresponding SDO/HMI magnetic field observations suggest that the two small filaments are located above two different polarity inversion lines in the northern part. The SDO/AIA observations of the eruption show that these two filaments appear to merge into one in the southern quiescent region. The north-eastern filament starts eruption firstly, which is followed by the north-western filament eruption about 20 minutes later. Clear untwisting motions (i.e., signature of flux ropes) are observed in both filaments during the eruption. After the lifts off of the north-western filament, mini filaments are observed to emerge from the surface and rise up multiple times. The high-resolution observations reveal the fact that the filament is composed of multiple sections and multiple layers. The filament in the lower layer can merge into the upper layer, which leads to the increase of non-potentiality of the upper layer. Magnetic field models using the flux rope insertion method are also constructed in order to understand the complex magnetic configuration as well as the initiation and dynamics of the eruptions.

  8. A high-resolution regional reanalysis for the European CORDEX region

    NASA Astrophysics Data System (ADS)

    Bollmeyer, Christoph; Keller, Jan; Ohlwein, Christian; Wahl, Sabrina

    2015-04-01

    Within the Hans-Ertel-Centre for Weather Research (HErZ), the climate monitoring branch concentrates efforts on the assessment and analysis of regional climate in Germany and Europe. In joint cooperation with DWD (German Weather Service), a high-resolution reanalysis system based on the COSMO model has been developed. Reanalyses gain more and more importance as a source of meteorological information for many purposes and applications. Several global reanalyses projects (e.g., ERA, MERRA, CSFR, JMA9) produce and verify these data sets to provide time series as long as possible combined with a high data quality. Due to a spatial resolution down to 50-70km and 3-hourly temporal output, they are not suitable for small scale problems (e.g., regional climate assessment, meso-scale NWP verification, input for subsequent models such as river runoff simulations, renewable energy applications). The implementation of regional reanalyses based on a limited area model along with a data assimilation scheme is able to generate reanalysis data sets with high spatio-temporal resolution. The work presented here focuses on two regional reanalyses for Europe and Germany. The European reanalysis COSMO-REA6 matches the CORDEX EURO-11 specifications, albeit at a higher spatial resolution, i.e., 0.055° (6km) instead of 0.11° (12km). Nested into COSMO-REA6 is COSMO-REA2, a convective-scale reanalysis with 2km resolution for Germany. COSMO-REA6 comprises the assimilation of observational data using the existing nudging scheme of COSMO and is complemented by a special soil moisture analysis and boundary conditions given by ERA-Interim data. COSMO-REA2 also uses the nudging scheme complemented by a latent heat nudging of radar information. The reanalysis data set currently covers 17 years (1997-2013) for COSMO-REA6 and 4 years (2010-2013) for COSMO-REA2 with a very large set of output variables and a high temporal output step of hourly 3D-fields and quarter-hourly 2D-fields. The evaluation

  9. Brown carbon aerosol in the North American continental troposphere: sources, abundance, and radiative forcing

    NASA Astrophysics Data System (ADS)

    Liu, J.; Scheuer, E.; Dibb, J.; Diskin, G. S.; Ziemba, L. D.; Thornhill, K. L.; Anderson, B. E.; Wisthaler, A.; Mikoviny, T.; Devi, J. J.; Bergin, M.; Perring, A. E.; Markovic, M. Z.; Schwarz, J. P.; Campuzano-Jost, P.; Day, D. A.; Jimenez, J. L.; Weber, R. J.

    2015-07-01

    Chemical components of organic aerosol (OA) selectively absorb light at short wavelengths. In this study, the prevalence, sources, and optical importance of this so-called brown carbon (BrC) aerosol component are investigated throughout the North American continental tropospheric column during a summer of extensive biomass burning. Spectrophotometric absorption measurements on extracts of bulk aerosol samples collected from an aircraft over the central USA were analyzed to directly quantify BrC abundance. BrC was found to be prevalent throughout the 1 to 12 km altitude measurement range, with dramatic enhancements in biomass-burning plumes. BrC to black carbon (BC) ratios, under background tropospheric conditions, increased with altitude, consistent with a corresponding increase in the absorption Ångström exponent (AAE) determined from a three-wavelength particle soot absorption photometer (PSAP). The sum of inferred BC absorption and measured BrC absorption at 365 nm was within 3 % of the measured PSAP absorption for background conditions and 22 % for biomass burning. A radiative transfer model showed that BrC absorption reduced top-of-atmosphere (TOA) aerosol forcing by ~ 20 % in the background troposphere. Extensive radiative model simulations applying this study background tropospheric conditions provided a look-up chart for determining radiative forcing efficiencies of BrC as a function of a surface-measured BrC : BC ratio and single scattering albedo (SSA). The chart is a first attempt to provide a tool for better assessment of brown carbon's forcing effect when one is limited to only surface data. These results indicate that BrC is an important contributor to direct aerosol radiative forcing.

  10. Summertime Influence of Asian Pollution in the Free Troposphere over North America

    NASA Technical Reports Server (NTRS)

    Liang, Q.; Jaegle, Lyatt; Hudman, Rynda C.; Turquety, Solene; Jacob, Daniel J.; Avery, Melody A.; Blake, Donald R.; Browell, Edward V.; Sachse, Glen W.; Brune, W. H.; Ren, Xinrong; Clarke, A.; Cohen, R.; Dibb, Jack; Fried, Alan; Fuelberg, Henry; Porter, M.; Heikes, Brian; Huey, Greg; Singh, H. B.; Wennberg, Paul

    2007-01-01

    We analyze aircraft observations obtained during INTEX-A (1 July 14 - August 2004) to examine the summertime influence of Asian pollution in the free troposphere over North America. By applying correlation analysis and Principal Component Analysis (PCA) to the observations between 6-12 km, we find dominant influences from recent convection and lightning (13 percent of observations), Asia (7 percent), the lower stratosphere (7 percent), and boreal forest fires (2 percent), with the remaining 71 percent assigned to background. Asian airmasses are marked by high levels of CO, O3, HCN, PAN, acetylene, benzene, methanol, and SO4(2-). The partitioning of reactive nitrogen species in the Asian plumes is dominated by peroxyacetyl nitrate (PAN) (approximately 600 pptv), with varying NO(x)/HNO3 ratios in individual plumes consistent with different plumes ages ranging from 3 to 9 days. Export of Asian pollution in warm conveyor belts of mid-latitude cyclones, deep convection, and lifting in typhoons all contributed to the five major Asian pollution plumes. Compared to past measurement campaigns of Asian outflow during spring, INTEX-A observations display unique characteristics: lower levels of anthropogenic pollutants (CO, propane, ethane, benzene) due to their shorter summer lifetimes; higher levels of biogenic tracers (methanol and acetone) because of a more active biosphere; as well as higher levels of PAN, NO(x), HNO3, and O3 (more active photochemistry possibly enhanced by injection of lightning NO(x)). The high delta O3/delta CO ratio (0.76 mol mol(exp -1)) of Asian plumes during INTEX-A is due to a combination of strong photochemical production and mixing with stratospheric air along isentropic surfaces. The GEOS-Chem global chemical transport model captures the timing and location of the Asian plumes remarkably well. However, it significantly underestimates the magnitude of the enhancements.

  11. A statistical overview of mass movement characteristics on the North American atlantic outer continental margin

    USGS Publications Warehouse

    Booth, James S.; O'Leary, Dennis W.

    1992-01-01

    An analysis of 179 mass movements on the North American Atlantic continental slope and upper rise shows that slope failures have occurred throughout the geographic extent of the outer margin. Although the slope failures show no striking affinity for a particular depth as an origination level, there is a broad, primary mode centered at about 900 m. The resulting slides terminate at almost all depths and have a primary mode at 1100 m, but the slope/rise boundary (at 2200 m) also is an important mode. Slope failures have occurred at declivities ranging from 1° to 30° (typically, 4°); the resultant mass movement deposits vary in width from 0.2 to 50 km (typically, 1-2 km) and in length from 0.3 to 380 km (typically, 2–4 km), and they have been reported to be as thick as 650 m. On a numeric basis, mass movements are slightly more prevalent on open slopes than in other physiographic settings, and both translational and rotational failure surfaces are common. The typical mass movement is disintegrative in nature. Open slope slides tend to occur at lower slope angles and are larger than canyon slides. Further, large‐scale slides rather than small‐scale slides tend to originate on gentle slopes (≍ 3-4°). Rotational slope failures appear to have a slightly greater chance of occurring in canyons, but there is no analogous bias associated with translational failures. Similarly, disintegrative slides seem more likely to be associated with rotational slope failures than translational ones and are longer than their nondisintegrative counterparts. The occurrence of such a variety of mass movements at low declivities implies that a regional failure mechanism has prevailed. We suggest that earthquakes or, perhaps in some areas, gas hydrates are the most likely cause of the slope failures.

  12. Summertime influence of Asian pollution in the free troposphere over North America

    NASA Astrophysics Data System (ADS)

    Liang, Q.; Jaeglé, L.; Hudman, R. C.; Turquety, S.; Jacob, D. J.; Avery, M. A.; Browell, E. V.; Sachse, G. W.; Blake, D. R.; Brune, W.; Ren, X.; Cohen, R. C.; Dibb, J. E.; Fried, A.; Fuelberg, H.; Porter, M.; Heikes, B. G.; Huey, G.; Singh, H. B.; Wennberg, P. O.

    2007-06-01

    We analyze aircraft observations obtained during INTEX-A (1 July to 14 August 2004) to examine the summertime influence of Asian pollution in the free troposphere over North America. By applying correlation analysis and principal component analysis (PCA) to the observations between 6 and 12 km, we find dominant influences from recent convection and lightning (13% of observations), Asia (7%), the lower stratosphere (7%), and boreal forest fires (2%), with the remaining 71% assigned to background. Asian air masses are marked by high levels of CO, O3, HCN, PAN, C2H2, C6H6, methanol, and SO42-. The partitioning of NOy species in the Asian plumes is dominated by PAN (˜600 pptv), with varying NOx/HNO3 ratios in individual plumes, consistent with individual transit times of 3-9 days. Export of Asian pollution occurred in warm conveyor belts of midlatitude cyclones, deep convection, and in typhoons. Compared to Asian outflow measurements during spring, INTEX-A observations display lower levels of anthropogenic pollutants (CO, C3H8, C2H6, C6H6) due to shorter summer lifetimes; higher levels of biogenic tracers (methanol and acetone) because of a more active biosphere; and higher levels of PAN, NOx, HNO3, and O3 reflecting active photochemistry, possibly enhanced by efficient NOy export and lightning. The high ΔO3/ΔCO ratio (0.76 mol/mol) in Asian plumes during INTEX-A is due to strong photochemical production and, in some cases, mixing with stratospheric air along isentropic surfaces. The GEOS-Chem global model captures the timing and location of the Asian plumes. However, it significantly underestimates the magnitude of observed enhancements in CO, O3, PAN and NOx.

  13. GENERAL VIEW OF NORTH VEHICLE ACCESS PLATFORMS, HB3, FACING NORTH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    GENERAL VIEW OF NORTH VEHICLE ACCESS PLATFORMS, HB-3, FACING NORTH TOWARDS FLOOR - Cape Canaveral Air Force Station, Launch Complex 39, Vehicle Assembly Building, VAB Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  14. High Resolution Maps of the Moon Surface with AMIE/SMART-1

    NASA Astrophysics Data System (ADS)

    Despan, Daniela; Erard, S.; Barucci, A.; Josset, J. L.; Beauvivre, S.; Chevrel, S.; Pinet, P.; Koschny, D.; Almeida, M.; Grieger, B.; Foing, B.; AMIE Team

    2008-09-01

    The Advanced Moon micro-Imager Experiment (AMIE) on board the ESA lunar mission Smart-1 has performed colour imaging of the lunar surface using various filters in the visible and NIR range. This micro-camera provided high resolution images of selected parts of the lunar surface, including the North and South pole areas. Being give that the SMART-1 mission was in a 300km x 300km orbit with perilune over the South pole, the coverage between the North and the South regions is different. The AMIE images were obtained using a tele-objective with 5.3° x 5.3° field of view and a sensor of 1024 x 1024 pixels. The output images have resolution 45m/pixel at 500km, and are encoded with 10 bits/pixel. The data for the North pole were obtained at a much higher altitude than the South pole data. From the 300 Km pericenter altitude, the same field of view corresponds to a spatial resolution about 27 m/pixel. The high resolution imaging of the Moon surface makes possible detailed analysis of the morphological features and physical characteristics of the lunar surface. In order to construct AMIE data maps, systematic analysis and processing is being carried on using the whole data set. Geometrical analysis of AMIE images relies on the SPICE system: image coordinates are computed to get precise projection at the surface, and illumination angles are computed to analyze the photometric sequences. Using this method, high resolution mosaics were constructed then compared to lower resolution Clementine UV-Vis and NIR images. Maps of both North and South pole were obtained as well as other regions of interest. Eventually, this method will be applied in all areas where AMIE has provided high resolution observations of the surface, typically a factor of 3 higher than the Clementine UV-Vis camera. New results will be presented at the conference.

  15. The North Atlantic Population Project

    PubMed Central

    RUGGLES, STEVEN; ROBERTS, EVAN; SARKAR, SULA; SOBEK, MATTHEW

    2011-01-01

    The North Atlantic Population Project (NAPP) is a massive database of historical census microdata from European and North American countries. The backbone of the project is the unique collection of completely digitized censuses providing information on the entire enumerated populations of each country. In addition, for some countries, the NAPP includes sample data from surrounding census years. In this article, the authors provide a brief history of the project, describe their progress to data and plans for the future, and discuss some potential implications of this unique data resource for social and economic research. PMID:22199411

  16. North American XP-51 Mustang

    NASA Technical Reports Server (NTRS)

    1941-01-01

    North American XP-51 Mustang: This is the North American XP-51 Mustang shortly after it arrived for NACA trials in December 1941. Built as the fourth Mustang, it was diverted from RAF production for U. S. Army use. The prewar polished metal finish would soon be covered in camouflage paint. Extensive flight tests were made on this aircraft at Langley. In the past few years, this particular aircraft has been restored to flight status by the Experimental Aircraft Association, and may be seen at their museum at Oshkosh, Wisconsin.

  17. Tele-AAC Resolution

    PubMed Central

    Anderson, Kate; Boisvert, Michelle K.; Doneski-Nicol, Janis; Gutmann, Michelle L.; Hall, Nerissa C.; Morelock, Cynthia; Steele, Richard; Cohn, Ellen R.

    2012-01-01

    Approximately 1.3% of all people, or about 4 million Americans, cannot rely on their natural speech to meet their daily communication needs. Telepractice offers a potentially cost-effective service delivery mechanism to provide clinical AAC services at a distance to the benefit of underserved populations in the United States and worldwide. Tele-AAC is a unique cross-disciplinary clinical service delivery model that requires expertise in both telepractice and augmentative and alternative communication (AAC) systems. The Tele-AAC Working Group of the 2012 ISAAC Research Symposium therefore drafted a resolution underscoring the importance of identifying and characterizing the unique opportunities and constraints of Tele-AAC in all aspects of service delivery. These include, but are not limited to: needs assessments; implementation planning; device/system procurement, set-up and training; quality assurance, client progress monitoring, and follow-up service delivery. Tele-AAC, like other telepractice applications, requires adherence to the ASHA Code of Ethics and other policy documents, and state, federal, and international laws, as well as a competent technological infrastructure. The Working Group recommends that institutions of higher education and professional organizations provide training in Tele-AAC service provision. In addition, research and development are needed to create validity measures across Tele-AAC practices (i.e., assessment, implementation, and consultation); determine the communication competence levels achieved by Tele-AAC users; discern stakeholders’ perceptions of Tele-AAC services (e.g., acceptability and viability); maximize Tele-AAC’s capacity to engage multiple team members in AAC assessment and ongoing service; identify the limitations and barriers of Tele-AAC provision; and develop potential solutions. PMID:25945206

  18. Observed and Simulated Regional North American Vegetation Dynamics: 1982- 2005

    NASA Astrophysics Data System (ADS)

    Neigh, C. S.; Tucker, C. J.; Townshend, J. R.; Collatz, G. J.

    2006-12-01

    Normalized difference vegetation index data from the NOAA series of Advanced Very High Resolution Radiometers (AVHRR) revealed regions in North America that experienced marked increases in annual photosynthetic capacity at various times from 1982 to 2005. Inspection of these anomalous areas with Landsat, Ikonos, aerial photography, and ancillary statistical datasets revealed a range of causes: climatic influences; drought and subsequent recovery; irrigated agriculture expansion; herbivores insect outbreaks followed by logging and subsequent regeneration; and forest fires with subsequent regeneration. We describe an efficient continental monitoring system that simulates biogeochemistry dynamics to quantify changing carbon content of ecosystems.

  19. SNAP sky background at the north ecliptic pole

    SciTech Connect

    Aldering, Greg

    2002-07-01

    I summarize the extant direct and indirect data on the sky background SNAP will see at the North Ecliptic Pole over the wavelength range 0.4 < {lambda} < 1.7 {micro}m. At the spatial resolution of SNAP the sky background due to stars and galaxies is resolved, so the only source considered is zodiacal light. Several models are explored to provide interpolation in wavelength between the broadband data from HST and COBE observations. I believe the input data are now established well enough that the accuracy of the sky background presented here is sufficient for SNAP simulations, and that it will stand up to scrutiny by reviewers.

  20. A high resolution water level forecast for the German Bight

    NASA Astrophysics Data System (ADS)

    Niehüser, Sebastian; Dangendorf, Sönke; Arns, Arne; Jensen, Jürgen

    2016-04-01

    Many coastal regions worldwide are potentially endangered by storm surges which can cause disastrous damages and loss of life. Due to climate change induced sea level rise, an accumulation of such events is expected by the end of the 21th century. Therefore, advanced storm surge warnings are needed to be prepared when another storm surge hits the coast. In the shallow southeastern North Sea these storm surge warnings are nowadays routinely provided for selected tide gauge locations along a coastline through state-of-the-art forecast systems, which are based on a coupled system of empirical tidal predictions and numerical storm surge forecasts. Along the German North Sea coastline, the Federal Maritime and Hydrographic Agency in cooperation with the German Weather Service is responsible for the storm surge warnings. They provide accurate, high frequency and real-time water level forecasts for up to six days ahead at selected tide gauge sites via internet, telephone and broadcast. Since water levels along the German North Sea coastline are dominated by shallow water effects and a very complex bathymetric structure of the seabed, the pointwise forecast is not necessarily transferable to un-gauged areas between the tide gauges. Here we aim to close this existing gap and develop water level forecasts with a high spatial (continuously with a resolution of at least 1 kilometer) as well as a high temporal (at least 15-minute values) resolution along the entire German North Sea coastline. We introduce a new methodology for water level forecasts which combines empirical or statistical and numerical models. While the tidal forecast is performed by non-parametric interpolation techniques between un-gauged and gauged sites, storm surges are estimated on the basis of statistical/empirical storm surge formulas taken from a numerical model hindcast. The procedure will be implemented in the operational mode forced with numerical weather forecasts.

  1. High Resolution Formaldehyde Photochemistry

    NASA Astrophysics Data System (ADS)

    Ernest, C. T.; Bauer, D.; Hynes, A. J.

    2010-12-01

    Formaldehyde (HCHO) is the most abundant and most important organic carbonyl compound in the atmosphere. The sources of formaldehyde are the oxidation of methane, isoprene, acetone, and other volatile organic compounds (VOCs); fossil fuel combustion; and biomass burning. The dominant loss mechanism for formaldehyde is photolysis which occurs via two pathways: (R1) HCHO + hv → HCO + H (R2) HCHO + hv → H2 + CO The first pathway (R1) is referred to as the radical channel, while the second pathway (R2) is referred to as the molecular channel. The products of both pathways play a significant role in atmospheric chemistry. The CO that is produced in the molecular channel undergoes further oxidation to produce CO2. Under atmospheric conditions, the H atom and formyl radical that are produced in the radical channel undergo rapid reactions with O2 to produce the hydroperoxyl radical (HO2) via (R3) and (R4). (R3) HCO + O2 → HO2 + CO (R4) H + O2 → HO2 Thus, for every photon absorbed, the photolysis of formaldehyde can contribute one CO2 molecule to the global greenhouse budget or two HO2 radicals to the tropospheric HOx (OH + HO2) cycle. The HO2 radicals produced during formaldehyde photolysis have also been implicated in the formation of photochemical smog. The HO2 radicals act as radical chain carriers and convert NO to NO2, which ultimately results in the catalytic production of O3. Constraining the yield of HO2 produced via HCHO photolysis is essential for improving tropospheric chemistry models. In this study, both the absorption cross section and the quantum yield of the radical channel (R1) were measured at high resolution over the tropospherically relevant wavelength range 304-330 nm. For the cross section measurements a narrow linewidth Nd:YAG pumped dye laser was used with a multi-pass cell. Partial pressures of HCHO were kept below 0.3 torr. Simultaneous measurement of OH LIF in a flame allowed absolute calibration of the wavelength scale. Pressure

  2. A magmatic probe of dynamic topography beneath western North America

    NASA Astrophysics Data System (ADS)

    Klöcking, M.; White, N. J.; Maclennan, J.

    2014-12-01

    A region centered on the Yellowstone hotspot and encompassing the Colorado Plateau sits at an elevation 2 km higher than the cratonic North America. This difference broadly coincides with tomographically observed variations in lithospheric thickness: ~120 km beneath western North America, ~240 km beneath the craton. Thermochronology of the Grand Canyon area, sedimentary flux to the Gulf of Mexico, and river profile inversion all suggest that regional uplift occurred in at least two separate stages. High resolution seismic tomographic models, using USArray data, have identified a ring of low velocity material beneath the edges of the Colorado Plateau. Magmatism coincides with these low velocity zones and shows distinct phases: an overall increase in volume around 40 Ma and a change from lithospheric to asthenospheric signatures around 5 Ma. Volcanism is also observed to migrate north-east with time. Here, we attempt to integrate these different observations with lithospheric thickness. A dynamic topography model of progressive lithospheric erosion over a hot mantle plume might account for uplift as well as the temporal and spatial distribution of magmatism across western North America. Thinning of the lithosphere around the edges of the Colorado Plateau in combination with the hotter mantle potential temperature of a plume could create isostatic and dynamic uplift as well as allowing for melt production. To test this model, we have analysed around 100 samples from volcanic centers across western North America by ICP-MS for rare earth elements (REE). Most of the samples are younger than 5 Ma, and all of them have previously been analysed by XRF. Using trace element ratios such as La/Yb and Nb/Y we assess depth of melting and melt fraction, respectively. In addition, we use REE inversion modelling to estimate melt fractions as a function of depth and temperature of melting. The results are compared to existing constraints on lithospheric thickness and mantle potential

  3. Cenozoic stratigraphic evolution, North Sea and Labrador Sea

    SciTech Connect

    Gradstein, F.M.; Grant, A.C.; Mudford, B.S. ); Berggren, W.A. ); Kaminski, M.A. ); D'Lorio, M.A. ); Cloetingh, S. ); Griffiths, C.M. )

    1990-05-01

    The authors are studying Cenozoic correlation patterns, burial trends, and subsidence history of the Central North Sea, Labrador, and Orphan basins. The authors objectives are (1) to detail intraregional mid-high latitude biozonations using noise filtering and probabilistic zonation techniques; (2) to detail paleobathymetric trends from basin margins to centers; (3) to apply this knowledge to model basin evolution, in the perspective of the evolving North Atlantic Ocean; (4) to evaluate causes for the occurrence of major hiatuses and rapid changes of subsidence; and (5) to relate rapid changes in sedimentation in the last few millions of years to model observed undercompaction trends. Cenozoic microfossil assemblages in these basins are similar, related to similarities in sedimentary and paleoeceanographic conditions. In more basinal wells, flysch-type agglutinated foraminiferal assemblages occur, also known from Carpathians, Trinidad, and Moroccan foredeeps. Over 90% of agglutinated taxa are common between these basins, although local stratigraphic ranges vary sufficiently to rely on the concept of average ranges, rather than total ones for correlations. Cenozoic stratigraphic resolution in the North Sea and Labrador basins generally is in 3-5-Ma units. and paleobathymetric zonations define a minimum of five niches, from inner shelf to middle slope regimes. Significant hiatuses occurred in the late Eocene through the Miocene, particularly in northern Labrador and northern North Sea. Subsidence in the Labrador/Grand Banks passive margin half grabens was strongly influenced by Labrador Sea opening between anomalies 34 (Campanian) and 13 (early Oligocene), when subsidence exceeded sedimentation and bathyal conditions prevailed along the margin. Thermally induced subsidence in the central North Sea grabens was considerable in the late Paleocene, when the Norwegian Sea started to open.

  4. Enhanced High Resolution RBS System

    SciTech Connect

    Pollock, Thomas J.; Hass, James A.; Klody, George M.

    2011-06-01

    Improvements in full spectrum resolution with the second NEC high resolution RBS system are summarized. Results for 50 A ring TiN/HfO films on Si yielding energy resolution on the order of 1 keV are also presented. Detector enhancements include improved pulse processing electronics, upgraded shielding for the MCP/RAE detector, and reduced noise generated from pumping. Energy resolution measurements on spectra front edge coupled with calculations using 0.4mStr solid angle show that beam energy spread at 400 KeV from the Pelletron registered accelerator is less than 100 eV. To improve user throughput, magnet control has been added to the automatic data collection. Depth profiles derived from experimental data are discussed. For the thin films profiled, depth resolutions were on the Angstrom level with the non-linear energy/channel conversions ranging from 100 to 200 eV.

  5. Enhanced High Resolution RBS System

    NASA Astrophysics Data System (ADS)

    Pollock, Thomas J.; Hass, James A.; Klody, George M.

    2011-06-01

    Improvements in full spectrum resolution with the second NEC high resolution RBS system are summarized. Results for 50 Å TiN/HfO films on Si yielding energy resolution on the order of 1 keV are also presented. Detector enhancements include improved pulse processing electronics, upgraded shielding for the MCP/RAE detector, and reduced noise generated from pumping. Energy resolution measurements on spectra front edge coupled with calculations using 0.4mStr solid angle show that beam energy spread at 400 KeV from the Pelletron® accelerator is less than 100 eV. To improve user throughput, magnet control has been added to the automatic data collection. Depth profiles derived from experimental data are discussed. For the thin films profiled, depth resolutions were on the Angstrom level with the non-linear energy/channel conversions ranging from 100 to 200 eV.

  6. Momentum resolution in inverse photoemission

    SciTech Connect

    Zumbülte, A.; Schmidt, A. B.; Donath, M.

    2015-01-15

    We present a method to determine the electron beam divergence, and thus the momentum resolution, of an inverse-photoemission setup directly from a series of spectra measured on Cu(111). Simulating these spectra with different beam divergences shows a distinct influence of the divergence on the appearance of the Shockley surface state. Upon crossing the Fermi level, its rise in intensity can be directly linked with the beam divergence. A comparison of measurement and simulation enables us to quantify the momentum resolution independent of surface quality, energy resolution, and experimental geometry. With spin resolution, a single spectrum taken around the Fermi momentum of a spin-split surface state, e.g., on Au(111), is sufficient to derive the momentum resolution of an inverse-photoemission setup.

  7. Interferometric resolution boosting for spectrographs

    SciTech Connect

    Erskine, D J; Edelstein, J

    2004-05-25

    Externally dispersed interferometry (EDI) is a technique for enhancing the performance of spectrographs for wide bandwidth high resolution spectroscopy and Doppler radial velocimetry. By placing a small angle-independent interferometer near the slit of a spectrograph, periodic fiducials are embedded on the recorded spectrum. The multiplication of the stellar spectrum times the sinusoidal fiducial net creates a moir{acute e} pattern, which manifests high detailed spectral information heterodyned down to detectably low spatial frequencies. The latter can more accurately survive the blurring, distortions and CCD Nyquist limitations of the spectrograph. Hence lower resolution spectrographs can be used to perform high resolution spectroscopy and radial velocimetry. Previous demonstrations of {approx}2.5x resolution boost used an interferometer having a single fixed delay. We report new data indicating {approx}6x Gaussian resolution boost (140,000 from a spectrograph with 25,000 native resolving power), taken by using multiple exposures at widely different interferometer delays.

  8. How Attention Affects Spatial Resolution

    PubMed Central

    Carrasco, Marisa; Barbot, Antoine

    2015-01-01

    We summarize and discuss a series of psychophysical studies on the effects of spatial covert attention on spatial resolution, our ability to discriminate fine patterns. Heightened resolution is beneficial in most, but not all, visual tasks. We show how endogenous attention (voluntary, goal driven) and exogenous attention (involuntary, stimulus driven) affect performance on a variety of tasks mediated by spatial resolution, such as visual search, crowding, acuity, and texture segmentation. Exogenous attention is an automatic mechanism that increases resolution regardless of whether it helps or hinders performance. In contrast, endogenous attention flexibly adjusts resolution to optimize performance according to task demands. We illustrate how psychophysical studies can reveal the underlying mechanisms of these effects and allow us to draw linking hypotheses with known neurophysiological effects of attention. PMID:25948640

  9. Coaching Education in North America.

    ERIC Educational Resources Information Center

    Sawyer, Tom, Ed.

    1992-01-01

    Because of increasingly large numbers of nonteacher elementary and secondary coaches, there is concern about the effect on participants and on the future of athletics. Nine articles highlight five North American national coaching education programs, three states with secondary coaching education programs, and a directory of U.S. sport…

  10. The Rediscovery of North America.

    ERIC Educational Resources Information Center

    Lopez, Barry

    1992-01-01

    A book excerpt depicting images of the European conquest of America 500 years ago and the continuation of it today. Discusses the "American dream" of independence in light of the environmental destruction prevalent today and calls for a rediscovery of the meaning of making North America "home." (MCO)

  11. The Flooding of North America.

    ERIC Educational Resources Information Center

    Lennert, James W.

    1986-01-01

    Describes a game, designed for use with primary grade level children, which uses a raised plastic relief map of North America to demonstrate the effect of a rising sea level in order to help the students focus on the variety and location of elevation changes in Canada and the northern United States. (JDH)

  12. Current North American Indian Periodicals.

    ERIC Educational Resources Information Center

    Blew, Carol Van Antwerp Holliday; And Others

    Approximately 150 newsletters, newspapers, and other periodicals are cited in this bibliography of current sources of information about or directed toward North American Indians. One-sentence descriptions of content, ordering information, and frequency of publication are provided. The majority of the periodicals cited emphasize current events of…

  13. Occupational injury in North Carolina.

    PubMed

    Castillo, Dawn N; Higgins, Sheila

    2010-01-01

    In 2008,161 North Carolina workers died from work-related injuries, 3,324 were hospitalized, and 119,000 reported work-related injuries. Workers' compensation costs in the state exceeded $1.3 billion in 2007. Concerted efforts by the private and public sectors will be needed to reach goals to reduce the incidence of occupational injuries. PMID:21500673

  14. The North Carolina PEPSE Project.

    ERIC Educational Resources Information Center

    Veal, Mary Lou; Campbell, Melinda; Johnson, Dennis; McKethan, Robert

    2002-01-01

    North Carolina high school physical education teachers and teacher educators have collaborated to implement the Physical Education Partnership for Sport Education (PEPSE), which recreates the learning environment with a focus on curricular revision and assessment. This article describes current conditions, the PEPSE project's solution, how the…

  15. Conservation Agriculture in North America

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Conservation agriculture (CA) is a production paradigm that groups reduced tillage, mulching with crop residues or cover crops, and diversified crop rotations, especially those that incorporate leguminous crops. In North America, reduced tillage is the most widely-adopted practice that seeks the ide...

  16. The North Korean nuclear dilemma.

    SciTech Connect

    Hecker, Siegfried S.

    2004-01-01

    The current nuclear crisis, the second one in ten years, erupted when North Korea expelled international nuclear inspectors in December 2002, then withdrew from the Nuclear Nonproliferation Treaty (NPT), and claimed to be building more nuclear weapons with the plutonium extracted from the spent fuel rods heretofore stored under international inspection. These actions were triggered by a disagreement over U.S. assertions that North Korea had violated the Agreed Framework (which froze the plutonium path to nuclear weapons to end the first crisis in 1994) by clandestinely developing uranium enrichment capabilities providing an alternative path to nuclear weapons. With Stanford University Professor John Lewis and three other Americans, I was allowed to visit the Yongbyon Nuclear Center on Jan. 8, 2004. We toured the 5 MWe reactor, the 50 MWe reactor construction site, the spent fuel pool storage building, and the radiochemical laboratory. We concluded that North Korea has restarted its 5 MWe reactor (which produces roughly 6 kg of plutonium annually), it removed the 8000 spent fuel rods that were previously stored under IAEA safeguards from the spent fuel pool, and that it most likely extracted the 25 to 30 kg of plutonium contained in these fuel rods. Although North Korean officials showed us what they claimed was their plutonium metal product from this reprocessing campaign, we were not able to conclude definitively that it was in fact plutonium metal and that it came from the most recent reprocessing campaign. Nevertheless, our North Korean hosts demonstrated that they had the capability, the facility and requisite capacity, and the technical expertise to produce plutonium metal. On the basis of our visit, we were not able to address the issue of whether or not North Korea had a 'deterrent' as claimed - that is, we were not able to conclude that North Korea can build a nuclear device and that it can integrate nuclear devices into suitable delivery systems. However

  17. North Dakota to Central Quebec

    NASA Video Gallery

    This video was taken by the crew of Expedition 30 onboard the International Space Station. The sequence of shots was taken January 26, 2012 from 10:04:56 to 10:10:42 GMT, on a pass from North Dakot...

  18. Teacher Burnout in North Dakota

    ERIC Educational Resources Information Center

    Mowers, Erin N.

    2010-01-01

    The purpose of this mixed study dissertation was to determine if teachers in North Dakota public schools show signs of teacher burnout and the extent to which NCLB is a major stress factor. The research questions were: To what extent are teachers experiencing symptoms of burnout? What are the factors of burnout? The research hypothesis was: The…

  19. Resources of North Carolina Libraries.

    ERIC Educational Resources Information Center

    Downs, Robert B., Ed.

    The conclusion of the survey is that North Carolina libraries do not have sufficient resources, physical facilities or staff to provide adequate library service for the state. The survey covers the present and potential roles of the State Library, the State Department of Archives and History, public libraries, university libraries, senior and…

  20. High-resolution climate simulation of the last glacial maximum

    SciTech Connect

    Erickson III, David J

    2008-01-01

    The climate of the last glacial maximum (LGM) is simulated with a high-resolution atmospheric general circulation model, the NCAR CCM3 at spectral truncation of T170, corresponding to a grid cell size of roughly 75 km. The purpose of the study is to assess whether there are significant benefits from the higher resolution simulation compared to the lower resolution simulation associated with the role of topography. The LGM simulations were forced with modified CLIMAP sea ice distribution and sea surface temperatures (SST) reduced by 1 C, ice sheet topography, reduced CO{sub 2}, and 21,000 BP orbital parameters. The high-resolution model captures modern climate reasonably well, in particular the distribution of heavy precipitation in the tropical Pacific. For the ice age case, surface temperature simulated by the high-resolution model agrees better with those of proxy estimates than does the low-resolution model. Despite the fact that tropical SSTs were only 2.1 C less than the control run, there are many lowland tropical land areas 4-6 C colder than present. Comparison of T170 model results with the best constrained proxy temperature estimates (noble gas concentrations in groundwater) now yield no significant differences between model and observations. There are also significant upland temperature changes in the best resolved tropical mountain belt (the Andes). We provisionally attribute this result in part as resulting from decreased lateral mixing between ocean and land in a model with more model grid cells. A longstanding model-data discrepancy therefore appears to be resolved without invoking any unusual model physics. The response of the Asian summer monsoon can also be more clearly linked to local geography in the high-resolution model than in the low-resolution model; this distinction should enable more confident validation of climate proxy data with the high-resolution model. Elsewhere, an inferred salinity increase in the subtropical North Atlantic may have

  1. Exploring a Multi-resolution Approach Using AMIP Simulations

    SciTech Connect

    Sakaguchi, Koichi; Leung, Lai-Yung R.; Zhao, Chun; Yang, Qing; Lu, Jian; Hagos, Samson M.; Rauscher, Sara; Dong, Li; Ringler, Todd; Lauritzen, P. H.

    2015-07-31

    This study presents a diagnosis of a multi-resolution approach using the Model for Prediction Across Scales - Atmosphere (MPAS-A) for simulating regional climate. Four AMIP experiments are conducted for 1999-2009. In the first two experiments, MPAS-A is configured using global quasi-uniform grids at 120 km and 30 km grid spacing. In the other two experiments, MPAS-A is configured using variable-resolution (VR) mesh with local refinement at 30 km over North America and South America embedded inside a quasi-uniform domain at 120 km elsewhere. Precipitation and related fields in the four simulations are examined to determine how well the VR simulations reproduce the features simulated by the globally high-resolution model in the refined domain. In previous analyses of idealized aqua-planet simulations, the characteristics of the global high-resolution simulation in moist processes only developed near the boundary of the refined region. In contrast, the AMIP simulations with VR grids are able to reproduce the high-resolution characteristics across the refined domain, particularly in South America. This indicates the importance of finely resolved lower-boundary forcing such as topography and surface heterogeneity for the regional climate, and demonstrates the ability of the MPAS-A VR to replicate the large-scale moisture transport as simulated in the quasi-uniform high-resolution model. Outside of the refined domain, some upscale effects are detected through large-scale circulation but the overall climatic signals are not significant at regional scales. Our results provide support for the multi-resolution approach as a computationally efficient and physically consistent method for modeling regional climate.

  2. Modelling coastal low-level wind-jets: does horizontal resolution matter?

    NASA Astrophysics Data System (ADS)

    Ranjha, Raza; Tjernström, Michael; Svensson, Gunilla; Semedo, Alvaro

    2016-04-01

    Atmospheric flows in coastal regions are impacted by land-sea temperature contrasts, complex terrain, shape of the coastline, among many things. Along the west coast of central North America, winds in the boundary layer are mainly from north or northwest, roughly parallel to the coastline. Frequently, the coastal low-level wind field is characterized by a sharp wind maximum along the coast in the lowest kilometre. This feature, commonly referred to as a coastal low-level jet (CLLJ), has significant impact on the climatology of the coastal region and affects many human activities in the littoral zone. Hence, a good understanding and forecasting of CLLJs are vital. This study evaluates the issue of proper mesoscale numerical model resolution to describe the physics of a CLLJ, and its impact on the upper ocean. The COAMPS® model is used for a summer event to determine the realism of the model results compared to observations, from an area of supercritical flow adjustment between Pt. Sur and Pt. Conception, California. Simulations at different model horizontal resolutions, from 54 to 2 km are performed. While the model produces realistic results with increasing details at higher resolution, the results do not fully converge even at a resolution of only few kilometres and an objective analysis of model errors do not show an increased skill with increasing resolution. Based on all available information, a compromise resolution appears to be at least 6 km. New methods may have to be developed to evaluate models at very high resolution.

  3. Simulation of summertime ozone over North America

    NASA Technical Reports Server (NTRS)

    Jacob, Daniel J.; Logan, Jennifer A.; Yevich, Rose M.; Gardner, Geraldine M.; Spivakovsky, Clarisa M.; Wofsy, Steven C.; Munger, J. W.; Sillman, Sanford; Prather, Michael J.; Rogers, Michael O.

    1993-01-01

    The concentrations of O3 and its precursors over North America are simulated for three summer months with a 3D, continental-scale photochemical model using meteorological input from the Goddard Institute for Space Studies (GISS) GCM. The model has 4 x 5 deg grid resolution and represents nonlinear chemistry in urban and industrial plumes with a subgrid nested scheme. Simulated median afternoon O3 concentrations at rural U.S. sites are within 5 ppb of observations in most cases, except in the south central U.S., where concentrations are overpredicted by 15-20 ppb. The model captures successfully the development of regional high-O3 episodes over the northeastern United States on the back side of weak, warm, stagnant anticyclones. Simulated concentrations of CO and nonmethane hydrocarbons are generally in good agreement with observations, concentrations of NO(x) are underpredicted by 10-30 percent, and concentrations of PANs are overpredicted by a factor of 2 to 3. The overprediction of PANs is attributed to flaws in the photochemical mechanism, including excessive production from oxidation of isoprene, and may also reflect an underestimate of PANs deposition. Subgrid nonlinear chemistry as captured by the nested plumes scheme decreases the net O3 production computed in the U.S. boundary layer by 8 percent on average.

  4. Have Titan's North-Polar Lakes Changed?

    NASA Astrophysics Data System (ADS)

    Wall, Stephen D.; Hayes, A.; Elachi, C.; Stofan, E.; Paillou, P.; Formico, T.; Mitchell, K.; Casarano, D.; Notarnicola, C.

    2012-10-01

    Cassini's RADAR instrument acquired a SAR swath over Titan's north polar lakes on May 22, 2012 , providing repeat images of a number of the smaller lakes. Previous coverage of these lakes was obtained on various passes in 2006 and 2007. Among the principal objectives of the Cassini mission is to monitor the liquid in the lakes with the approach of northern summer. Evidence of change in the lakes' levels might consist of shoreline changes, changes in radar backscatter (e.g. as penetration increases or dry spots appear), or combinations of these. We have chosen ten lakes and lake complexes for study, ranging from -4 to -100 km largest dimension. Visual comparison of repeat images is complicated by the dissimilar imaging geometry and (in some cases) resolution, and by SAR speckle. There are ambiguous cases that require further study, but at this writing we cannot identify certain changes. Ambiguous cases will be analyzed by using electromagnetic models, which can also take into account different acquisition geometry. Further analysis will be carried out exploiting electromagnetic scattering models and inversion approaches (e.g., Bayesian) to provide estimate of the lake parameters and any related changes. Parts of the research described in this paper were carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  5. Chasma Boreale in the North Polar Region

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This images shows a Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) full-resolution 'targeted image' of the edge of Mars' north polar cap. The region in the image, Chasma Boreale, is a valley several kilometers or miles deep that cuts about 400 kilometers (about 250 miles) into the edge of the cap.

    This image was acquired at 0851 UTC (4:51 a.m. EDT) on Oct. 1, 2006, near 84.6 degrees north latitude, 3.6 degrees east longitude. It covers an area about 13 kilometers (8 miles) long and, at the narrowest point, about 9 kilometers (5.6 miles) wide. At the center of the image the spatial resolution is as good as 18 meters (60 feet) per pixel. The image was taken in 544 colors covering wavelengths of 0.36 to 3.92 micrometers. Two renderings of the data are shown here, both draped over topography without vertical exaggeration, and then viewed from a perspective diagonally above the site. The top view is an approximately true-color representation. The bottom view, constructed from infrared wavelengths, shows strength of the spectral signature of ice. Brighter areas are rich in ice, and dark areas have little ice.

    The polar cap has long been recognized to contain layers composed of dust and ice, and hence has been named the polar layered deposit. This sits atop an underlying 'basal unit.' The upper part of the basal unit is dark at visible wavelengths and steeply sloped, whereas the lower part of the basal unit is brighter, redder, and layered like the polar layered deposits. The chasma floor is cratered, and in the foreground it is covered by dunes that are outliers of a north polar sand sea that surrounds the polar cap. The polar layered deposits and the basal unit form a steeply sloping scarp about 1.1 kilometers (0.7 miles) high.

    CRISM's image of this region shows a number of previously unrecognized characteristics of the polar layered deposits and the basal unit. First, the ice-rich polar layered deposits exhibit coherent banding both at

  6. North energy system risk analysis features

    NASA Astrophysics Data System (ADS)

    Prokhorov, V. A.; Prokhorov, D. V.

    2015-12-01

    Risk indicator analysis for a decentralized energy system of the North was carried out. Based on analysis of damages caused by accidents at energy systems, their structure is selected, and a North energy system risk determination method was proposed.

  7. REVISED NORTH CAROLINA GROUNDWATER RECHARGE RATES 1998

    EPA Science Inventory

    Revised North Carolina Groundwater Recharge Rates, from Heath, R.C., 1994, unpublished map: North Carolina State University, as modified by the NC Department of Environment and Natural Resources (DENR) Division of Water Quality (DWQ) Groundwater Section, (polygons)

  8. A high resolution global scale groundwater model

    NASA Astrophysics Data System (ADS)

    de Graaf, I. E.; Sutanudjaja, E.; Van Beek, L. P.; Bierkens, M. F.

    2013-12-01

    As the world's largest accessible source of freshwater, groundwater plays a vital role in satisfying the basic needs of human society. It serves as a primary source of drinking water and also supplies water for agricultural and industrial activities. During times of drought, the large natural groundwater storage provides a buffer against water shortage and sustains flows to rivers and wetlands, supporting ecosystem habitats and biodiversity. Yet, the current generation of global scale hydrological models (GHMs) do not include a groundwater flow component, although it is a crucial part of the hydrological cycle. Thus, a realistic physical representation of the groundwater system that allows for the simulation of groundwater head dynamics and lateral flows is essential for GHMs that increasingly run at finer resolution. In this study we present a transient global groundwater model with a resolution of 5 arc-minutes (approximately 10 km at the equator) using MODFLOW (McDonald and Harbaugh, 1988). Aquifer schematization and properties of this groundwater model were developed from available global lithological maps and datasets (Dürr et al., 2005; Gleeson et al., 2010; Hartmann and Moosdorf, 2013) combined with information about e.g. aquifer thickness and presence of less permeable, impermeable, and semi-impermeable layers. For the parameterization, we relied entirely on available global datasets and did not calibrate the model so that it can equally be expanded to data poor environments. We forced the groundwater model with the output from the global hydrological model PCR-GLOBWB (van Beek et al., 2011), specifically the net groundwater recharge and average surface water levels derived from routed channel discharge. We validated simulated groundwater heads with observations, from North America and Australia, resulting in a coefficient of determination of 0.8 and 0.7 respectively. This shows that it is feasible to build a global groundwater model using best available

  9. Resolution analysis by random probing

    NASA Astrophysics Data System (ADS)

    Simutė, S.; Fichtner, A.; van Leeuwen, T.

    2015-12-01

    We develop and apply methods for resolution analysis in tomography, based on stochastic probing of the Hessian or resolution operators. Key properties of our methods are (i) low algorithmic complexity and easy implementation, (ii) applicability to any tomographic technique, including full-waveform inversion and linearized ray tomography, (iii) applicability in any spatial dimension and to inversions with a large number of model parameters, (iv) low computational costs that are mostly a fraction of those required for synthetic recovery tests, and (v) the ability to quantify both spatial resolution and inter-parameter trade-offs. Using synthetic full-waveform inversions as benchmarks, we demonstrate that auto-correlations of random-model applications to the Hessian yield various resolution measures, including direction- and position-dependent resolution lengths, and the strength of inter-parameter mappings. We observe that the required number of random test models is around 5 in one, two and three dimensions. This means that the proposed resolution analyses are not only more meaningful than recovery tests but also computationally less expensive. We demonstrate the applicability of our method in 3D real-data full-waveform inversions for the western Mediterranean and Japan. In addition to tomographic problems, resolution analysis by random probing may be used in other inverse methods that constrain continuously distributed properties, including electromagnetic and potential-field inversions, as well as recently emerging geodynamic data assimilation.

  10. Resolution analysis by random probing

    NASA Astrophysics Data System (ADS)

    Fichtner, Andreas; Leeuwen, Tristan van

    2015-08-01

    We develop and apply methods for resolution analysis in tomography, based on stochastic probing of the Hessian or resolution operators. Key properties of our methods are (i) low algorithmic complexity and easy implementation, (ii) applicability to any tomographic technique, including full-waveform inversion and linearized ray tomography, (iii) applicability in any spatial dimension and to inversions with a large number of model parameters, (iv) low computational costs that are mostly a fraction of those required for synthetic recovery tests, and (v) the ability to quantify both spatial resolution and interparameter trade-offs. Using synthetic full-waveform inversions as benchmarks, we demonstrate that autocorrelations of random-model applications to the Hessian yield various resolution measures, including direction- and position-dependent resolution lengths and the strength of interparameter mappings. We observe that the required number of random test models is around five in one, two, and three dimensions. This means that the proposed resolution analyses are not only more meaningful than recovery tests but also computationally less expensive. We demonstrate the applicability of our method in a 3-D real-data full-waveform inversion for the western Mediterranean. In addition to tomographic problems, resolution analysis by random probing may be used in other inverse methods that constrain continuously distributed properties, including electromagnetic and potential-field inversions, as well as recently emerging geodynamic data assimilation.

  11. Super-resolution biomolecular crystallography with low-resolution data.

    PubMed

    Schröder, Gunnar F; Levitt, Michael; Brunger, Axel T

    2010-04-22

    X-ray diffraction plays a pivotal role in the understanding of biological systems by revealing atomic structures of proteins, nucleic acids and their complexes, with much recent interest in very large assemblies like the ribosome. As crystals of such large assemblies often diffract weakly (resolution worse than 4 A), we need methods that work at such low resolution. In macromolecular assemblies, some of the components may be known at high resolution, whereas others are unknown: current refinement methods fail as they require a high-resolution starting structure for the entire complex. Determining the structure of such complexes, which are often of key biological importance, should be possible in principle as the number of independent diffraction intensities at a resolution better than 5 A generally exceeds the number of degrees of freedom. Here we introduce a method that adds specific information from known homologous structures but allows global and local deformations of these homology models. Our approach uses the observation that local protein structure tends to be conserved as sequence and function evolve. Cross-validation with R(free) (the free R-factor) determines the optimum deformation and influence of the homology model. For test cases at 3.5-5 A resolution with known structures at high resolution, our method gives significant improvements over conventional refinement in the model as monitored by coordinate accuracy, the definition of secondary structure and the quality of electron density maps. For re-refinements of a representative set of 19 low-resolution crystal structures from the Protein Data Bank, we find similar improvements. Thus, a structure derived from low-resolution diffraction data can have quality similar to a high-resolution structure. Our method is applicable to the study of weakly diffracting crystals using X-ray micro-diffraction as well as data from new X-ray light sources. Use of homology information is not restricted to X

  12. Temporal resolution enhancement from motion

    NASA Astrophysics Data System (ADS)

    Rollason, M. P.; Watson, G. H.; Strens, M. J. A.

    2009-09-01

    We describe progress in the third year of the EMRS DTC TEP theme project entitled "Temporal Resolution Enhancement from Motion". The aim is to develop algorithms that combine evidence over time from a sequence of images in order to improve spatial resolution and reduce unwanted artefacts. Years one and two of this project developed and demonstrated an efficient algorithm that provided good resolution enhancement of a scene viewed in the far field (approximately flat) [1]. This paper reports a new algorithm which is applicable to a three dimensional scene where substantial depth variation causes parallax within the imagery. The new algorithm is demonstrated using airborne infra-red imagery.

  13. North Atlantic Finite Element Ocean Modeling

    NASA Astrophysics Data System (ADS)

    Veluthedathekuzhiyil, Praveen

    This thesis presents a modified version of the Finite Element Ocean Model (FEOM) developed at Alfred Wegener Institute for Polar and Marine Research (AWI) for the North Atlantic Ocean. A reasonable North Atlantic Ocean simulation is obtained against the observational data sets in a Control simulation (CS) where the surface boundary conditions are relaxed to a climatology. The vertical mixing in the model was tuned to represent convection in the model, also the horizontal mixing and diffusion coefficients to represent the changes in the resolution of the model’s unstructured grid. In addition, the open boundaries in the model are treated with a sponge layer where tracers are relaxed to climatology. The model is then further modified to accept the atmospheric flux forcing at the surface boundary with an added net heat flux correction and freshwater forcing from major rivers that are flowing into the North Atlantic Ocean. The impact of this boundary condition on the simulation results is then analyzed and shows many improvements albeit the drift in tracer properties around the Gulf Stream region remains as that of the CS case. However a comparison of the vertical sections at Cape Desolation and Cape Farewell with the available observational data sets shows many improvements in this simulation compared to that of the CS case. But the freshwater content in the Labrador Sea interior shows a continued drift as that of the CS case with an improvement towards the 10th model year. A detailed analysis of the boundary currents around the Labrador Sea shows the weak offshore transport of freshwater from the West Greenland Current (WGC) as one of the causes. To further improve the model and reasonably represent the boundary currents and associated sub-grid scale eddies in the model, a modified sub-grid scale parameterization based on Gent and McWilliams, (1990) is adopted. The sensitivity of using various approaches in the thickness diffusion parameter ( Kgm) for this

  14. NORTH CAROLINA GROUNDWATER RECHARGE RATES 1994

    EPA Science Inventory

    North Carolina Groundwater Recharge Rates, from Heath, R.C., 1994, Ground-water recharge in North Carolina: North Carolina State University, as prepared for the NC Department of Environment, Health and Natural Resources (NC DEHNR) Division of Enviromental Management Groundwater S...

  15. 27 CFR 9.30 - North Coast.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false North Coast. 9.30 Section... Coast. (a) Name. The name of the viticultural area described in this section is “North Coast.” (b) Approved maps. The appropriate maps for determining the boundaries of the North Coast viticultural area...

  16. 27 CFR 9.30 - North Coast.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false North Coast. 9.30 Section... Coast. (a) Name. The name of the viticultural area described in this section is “North Coast.” (b) Approved maps. The appropriate maps for determining the boundaries of the North Coast viticultural area...

  17. 27 CFR 9.30 - North Coast.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false North Coast. 9.30 Section... Coast. (a) Name. The name of the viticultural area described in this section is “North Coast.” (b) Approved maps. The appropriate maps for determining the boundaries of the North Coast viticultural area...

  18. 27 CFR 9.30 - North Coast.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false North Coast. 9.30 Section... Coast. (a) Name. The name of the viticultural area described in this section is “North Coast.” (b) Approved maps. The appropriate maps for determining the boundaries of the North Coast viticultural area...

  19. 27 CFR 9.30 - North Coast.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false North Coast. 9.30 Section... Coast. (a) Name. The name of the viticultural area described in this section is “North Coast.” (b) Approved maps. The appropriate maps for determining the boundaries of the North Coast viticultural area...

  20. Climatic Variability over the North Atlantic

    NASA Astrophysics Data System (ADS)

    Hurrell, J.; Hoerling, M. P.; Folland, C. K.

    INTRODUCTION WHAT IS THE NORTH ATLANTIC OSCILLATION AND HOW DOES IT IMPACT REGIONAL - CLIMATE? WHAT ARE THE MECHANISMS THAT GOVERN NORTH ATLANTIC OSCILLATION VARIABILITY? Atmospheric Processes Ocean Forcing of the Atmosphere CONCLUDING COMMENTS ON THE OTHER ASPECTS OF NORTH ATLANTIC CLIMATE - VARIABILITY REFERENCES

  1. Conservation of North American rallids

    USGS Publications Warehouse

    Eddleman, William R.; Knopf, Fritz L.; Manley, Brooke; Reid, Frederic A.; Zembal, Richard

    1988-01-01

    The Rallidae are a diverse group in their habitat selection, yet most North American species occur in or near wetlands As a consequence, most species are subject to habitat enhancement or perturbation from waterfowl management programs. The overall effects of these management programs relative to rallid conservation have been assessed for few species, and there is a need for synthesis of such information. In the cases of some species or raves, population status is not known, and suggested directions for conservation and management are needed. Rare, endangered, or status undetermined species or races often occur in areas where related species are classified as game birds, and the effects of such hunting on rarer forms are not known. Their generally secretive nature, the endangered status of several races and populations, and continued loss of habitat and threats to present habitat, warrant an examination of the conservation status of the North American taxa in this group. In 1977, a committee of the International Association of Fish and Wildlife Agencies summarized available information on management and biology of American Coots (Fulica americana), rails, and gallinules in North America (Holliman 1977). That summary was intended to provide relatively complete information on conservation of these species, and also to provide guidance for research within the U.S. Fish and Wildlife Service's (FWS) Accelerated Research Program for Webless Migratory Shore and Upland Game Birds (ARP). Subsequently, a number of rallid studies were funded under this program. The program was eliminated in 1982, following substantial research activities on North American rallids. Since the demise of the ARP, additional research on rallids in North America has focused on an area the International Association of Fish and Wildlife Agencies report failed to cover in detail--that of endangered rallids in the U.S. and their possessions. Most of these studies have been of threatened and endangered

  2. Using High Resolution Regional Climate Models to Quantify the Snow Albedo Feedback in a Region of Complex Terrain

    NASA Astrophysics Data System (ADS)

    Letcher, T.; Minder, J. R.

    2015-12-01

    High resolution regional climate models are used to characterize and quantify the snow albedo feedback (SAF) over the complex terrain of the Colorado Headwaters region. Three pairs of 7-year control and pseudo global warming simulations (with horizontal grid spacings of 4, 12, and 36 km) are used to study how the SAF modifies the regional climate response to a large-scale thermodynamic perturbation. The SAF substantially enhances warming within the Headwaters domain, locally as much as 5 °C in regions of snow loss. The SAF also increases the inter-annual variability of the springtime warming within Headwaters domain under the perturbed climate. Linear feedback analysis is used quantify the strength of the SAF. The SAF attains a maximum value of 4 W m-2 K-1 during April when snow loss coincides with strong incoming solar radiation. On sub-seasonal timescales, simulations at 4 km and 12 km horizontal grid-spacing show good agreement in the strength and timing of the SAF, whereas a 36km simulation shows greater discrepancies that are tired to differences in snow accumulation and ablation caused by smoother terrain. An analysis of the regional energy budget shows that transport by atmospheric motion acts as a negative feedback to regional warming, damping the effects of the SAF. On the mesoscale, this transport causes non-local warming in locations with no snow. The methods presented here can be used generally to quantify the role of the SAF in other regional climate modeling experiments.

  3. High spatial resolution NO2 tropospheric slant columns retrieved from OMI spatial-zoom spectra using an earthshine reference

    NASA Astrophysics Data System (ADS)

    Anand, Jasdeep S.; Leigh, Roland J.; Monks, Paul S.

    2014-08-01

    Future satellite instruments measuring urban NO2 will need to have high spatio-temporal resolution in order to improve air quality model forecasts. However, the likely cost and data telemetry requirements for such instruments will be high with current techniques. In this work we propose a new retrieval algorithm for deriving tropospheric NO2 slant column densities (SCDs) by DOAS fitting an earthshine reference spectrum measured over the Pacific to account for stratospheric NO2, which would eliminate the need for a solar reference and simplify instrument and retrieval design. The retrieval is tested by fitting earthshine radiance spectra measured by the Ozone Measuring Instrument (OMI) during its spatial-zoom mode (nadir pixel size: 13 x 12 km2) and super-zoom mode (nadir pixel size: 13 x 3 km2) using a Pacific reference spectrum. Transects taken over urban areas showed that the retrieval appears to retrieve tropospheric NO2 SCDs with good agreement with the operational L2 DOMINO product over regions with high NOx emissions. The retrieval also appeared to supress across-track striping without the need for a posteriori correction and showed sensitivity to absorption due to sand and liquid water over deserts and oceans. Comparisons with operational-scale retrievals also showed improved SCD precision, if random noise is expected to be the cause of retrieval uncertainty.

  4. 31 CFR 500.554 - Gifts of North Korean, North Vietnamese, Cambodian, or South Vietnamese origin.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Vietnamese, Cambodian, or South Vietnamese origin. 500.554 Section 500.554 Money and Finance: Treasury... § 500.554 Gifts of North Korean, North Vietnamese, Cambodian, or South Vietnamese origin. (a) Except as... importation of North Korean, North Vietnamese, Cambodian, or South Vietnamese origin goods sent as gifts...

  5. The High Resolution Tropospheric Ozone Residual

    NASA Technical Reports Server (NTRS)

    Schoeberl, Mark R.

    2006-01-01

    The co-flight of the MLS stratospheric limb sounder and the Ozone Monitoring Instrument (OMI) provides the capability of computing the Tropospheric Ozone Residual (TOR) in much greater detail [Ziemke et al., 2006]. Using forward trajectory calculations of MLS ozone measurements combined with OMI column ozone we have developed a high horizontal resolution tropospheric ozone residual (HTOR) which can provide even more detail than the standard TOR product. HTOR is especially useful for extra-tropical studies of tropospheric ozone transport. We find that both the Pacific pollution corridor (East Asia to Alaska) and the Atlantic pollution corridor (North America east coast to Europe) are also preferred locations for strat-trop folds leading to systematic overestimates of pollution amounts. In fact, fold events appear to dominate extra-tropical Northern Hemisphere day-to-day maps of HTOR. Model estimates of the tropospheric column are in reasonable agreement with the HTOR amounts when offsets due to different tropopause height calculations are taken into consideration.

  6. Conflict Resolution for Contrasting Cultures.

    ERIC Educational Resources Information Center

    Clarke, Clifford C.; Lipp, G. Douglas

    1998-01-01

    A seven-step process can help people from different cultures understand each other's intentions and perceptions so they can work together harmoniously: problem identification, problem clarification, cultural exploration, organizational exploration, conflict resolution, impact assessment, and organizational integration. (JOW)

  7. Reactive Nitrogen Distribution and Partitioning in the North American Troposphere and Lowermost Stratosphere

    NASA Technical Reports Server (NTRS)

    Singh, H. B.; Salas, L.; Herlth, D.; Kolyer, R.; Czech, E.; Avery, M.; Crawford, J. H.; Pierce, B.; Sachse, G. W.; Blake, D. R.; Cohen, R. C.; Dibb, J.; Huey, G.; Hudman, R. C.; Turquety, S.; Emmons, L. K.; FLocke, F.; Tang, Y.; Carmichael, G. R.; Horowitz, L. W.

    2007-01-01

    A comprehensive group of reactive nitrogen species (NO, NO2, HNO3, HO2NO2, PANs, alkyl nitrates, and aerosol-NO3) were measured in the troposphere and lowermost stratosphere over North America and the Atlantic during July/August 2004 (INTEX-A) from the NASA DC-8 platform (0.1-12 km). Less reactive nitrogen species (HCN and CH3CN), that are also unique tracers of biomass combustion, were also measured along with a host of other gaseous (CO, VOC, OVOC, halocarbon) and aerosol tracers. Clean background air as well as air with influences from biogenic emissions, anthropogenic pollution, biomass combustion, and stratosphere was sampled both over continental U. S., Atlantic and Pacific. The North American upper troposphere was found to be greatly influenced by both lightning NO(x) and surface pollution lofted via convection and contained elevated concentrations of PAN, ozone, hydrocarbons, and NO(x). Under polluted conditions PAN was a dominant carrier of reactive nitrogen in the upper troposphere while nitric acid dominated in the lower troposphere. Peroxynitric acid (HO2NO2) was present in sizable concentrations always peaking at around 8 km. Aerosol nitrate appeared to be mostly contained in large soil based particles in the lower troposphere. Plumes from Alaskan fires contained large amounts of PAN and very little enhancement in ozone. Observational data suggest that lightning was a far greater contributor to NO(x) in the upper troposphere than previously believed. NO(x) and NO(y) reservoir appeared to be in steady state only in the middle troposphere where NO(x)/NO(y) was independent of air mass age. A first comparison of observed data with simulations from four 3-D models shows significant differences between observations and models as well as among models. These uncertainties likely propagate themselves in satellites derived NOx data. Observed data are interpreted to suggest that soil sinks of HCN/CH3CN are at best very small. We investigate the partitioning and

  8. The North American Monsoon Forecast Forum at CPC/NCEP

    NASA Astrophysics Data System (ADS)

    Schemm, J. E.; Higgins, W.; Long, L.; Shi, W.; Gochis, D. J.

    2009-12-01

    In 2008, CPC introduced a new operational product to provide users a forum to monitor the North American monsoon (NAM). The NAME Forecast Forum (NAME FF) was proposed and endorsed by the North American Monsoon Experiment (NAME) Project Science Working Group as a natural extension to the NAME modeling activities coordinated under the NAME Climate Process Team project. It provided an opportunity to consolidate and assess, in real-time, the skill of intra-seasonal and seasonal monsoon forecasts. The NAME FF has continued in 2009 and three modeling groups collaborate with CPC to provide model simulated seasonal precipitation forecasts in the monsoon region. The website includes spatial maps and accumulated precipitation area-averaged over eight sub-regions of the NAM domain and is updated daily to include the current observed precipitation. A weekly update of the current conditions of the NAM system has been added to CPC’s American Monsoons monitoring webpage at, http://www.cpc.ncep.noaa.gov/products/Global_Monsoons/American_Monsoons/NAME/index.shtml. A highlight for the 2009 season is the inclusion of the NCEP CFS forecasts in T382 horizontal resolution. These special high-resolution runs were made with initial conditions in mid-April to accommodate the CPC’s hurricane season outlook. Some results based on the T382 CFS runs also will be presented with emphasis on the prediction of precipitation and accompanying atmospheric circulation over the NAM region.

  9. North American datum report published

    NASA Astrophysics Data System (ADS)

    The redefinition of the horizontal geodetic control network in North America is the subject of a recently published book by the National Oceanic and Atmospheric Administration's National Geodetic Survey. North American Datum of 1983 (NOAA Professional Paper NOS 2) covers the history of the project from its inception in 1978 to completion of the redefinition in 1988. The 256-page report is intended to serve as a record of what was actually done during the new datum project, which was a cooperative effort supported by the United States, Canada, Denmark, and Central America. The report describes the actual execution, including the inventory of data used, the laborious task of building the data base, the computations themselves, and the datum implementation activities.

  10. Towards a North Atlantic Marine Radiocarbon Calibration Curve

    NASA Astrophysics Data System (ADS)

    Austin, William; Reimer, Paula; Blaauw, Maarten; Bryant, Charlotte; Rae, James; Burke, Andrea

    2015-04-01

    Service du dejeuner! Twenty years ago, in 1995, I sailed as a post-doctoral researcher based at the University of Edinburgh (UK) on the first scientific mission of the new Marion Dufresne II. In this presentation, I will provide an update on the work that first quantified North Atlantic marine radiocarbon reservoir ages, highlighting how advances in marine tephrochronology over the last twenty years have significantly improved our understanding (and ability to test) land-ice-ocean linkages. The mechanistic link that connects marine radiocarbon reservoir ages to ocean ventilation state will also be discussed with reference to the Younger Dryas climate anomaly, where models and data have been successfully integrated. I will discuss the use of reference chronologies in the North Atlantic region and evaluate the common practice of climate synchronization between the Greenland ice cores and some of the key MD records that are now available. The exceptional quality of the MD giant piston cores and their potential to capture high-resolution last glacial sediment records from the North Atlantic provides an exciting opportunity to build new regional marine radiocarbon calibration curves. I will highlight new efforts by my co-authors and others to build such curves, setting-out a new agenda for the next twenty years of the IMAGES programme.

  11. Superfine resolution acoustooptic spectrum analysis

    NASA Technical Reports Server (NTRS)

    Ansari, Homayoon; Lesh, James R.

    1991-01-01

    High resolution spectrum analysis of RF signals is required in applications such as the search for extraterrestrial intelligence, RF interference monitoring, or general purpose decomposition of signals. Sub-Hertz resolution in three-dimensional acoustooptic spectrum analysis is theoretically and experimentally demonstrated. The operation of a two-dimensional acoustooptic spectrum analyzer is extended to include time integration over a sequence of CCD frames.

  12. Clementine High Resolution Camera Mosaicking Project

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This report constitutes the final report for NASA Contract NASW-5054. This project processed Clementine I high resolution images of the Moon, mosaicked these images together, and created a 22-disk set of compact disk read-only memory (CD-ROM) volumes. The mosaics were produced through semi-automated registration and calibration of the high resolution (HiRes) camera's data against the geometrically and photometrically controlled Ultraviolet/Visible (UV/Vis) Basemap Mosaic produced by the US Geological Survey (USGS). The HiRes mosaics were compiled from non-uniformity corrected, 750 nanometer ("D") filter high resolution nadir-looking observations. The images were spatially warped using the sinusoidal equal-area projection at a scale of 20 m/pixel for sub-polar mosaics (below 80 deg. latitude) and using the stereographic projection at a scale of 30 m/pixel for polar mosaics. Only images with emission angles less than approximately 50 were used. Images from non-mapping cross-track slews, which tended to have large SPICE errors, were generally omitted. The locations of the resulting image population were found to be offset from the UV/Vis basemap by up to 13 km (0.4 deg.). Geometric control was taken from the 100 m/pixel global and 150 m/pixel polar USGS Clementine Basemap Mosaics compiled from the 750 nm Ultraviolet/Visible Clementine imaging system. Radiometric calibration was achieved by removing the image nonuniformity dominated by the HiRes system's light intensifier. Also provided are offset and scale factors, achieved by a fit of the HiRes data to the corresponding photometrically calibrated UV/Vis basemap, that approximately transform the 8-bit HiRes data to photometric units. The sub-polar mosaics are divided into tiles that cover approximately 1.75 deg. of latitude and span the longitude range of the mosaicked frames. Images from a given orbit are map projected using the orbit's nominal central latitude. Polar mosaics are tiled into squares 2250 pixels on a

  13. The North Carolina Field Test

    SciTech Connect

    Sharp, T.R.; Ternes, M.P.

    1990-08-01

    The North Carolina Field Test will test the effectiveness of two weatherization approaches: the current North Carolina Low-Income Weatherization Assistance Program and the North Carolina Field Test Audit. The Field Test Audit will differ from North Carolina's current weatherization program in that it will incorporate new weatherization measures and techniques, a procedure for basing measure selection of the characteristics of the individual house and the cost-effectiveness of the measure, and also emphasize cooling energy savings. The field test will determine the differences of the two weatherization approaches from the viewpoints of energy savings, cost effectiveness, and implementation ease. This Experimental Plan details the steps in performing the field test. The field test will be a group effort by several participating organizations. Pre- and post-weatherization data will be collected over a two-year period (November 1989 through August 1991). The 120 houses included in the test will be divided into a control group and two treatment groups (one for each weatherization procedure) of 40 houses each. Weekly energy use data will be collected for each house representing whole-house electric, space heating and cooling, and water heating energy uses. Corresponding outdoor weather and house indoor temperature data will also be collected. The energy savings of each house will be determined using linear-regression based models. To account for variations between the pre- and post-weatherization periods, house energy savings will be normalized for differences in outdoor weather conditions and indoor temperatures. Differences between the average energy savings of treatment groups will be identified using an analysis of variance approach. Differences between energy savings will be quantified using multiple comparison techniques. 9 refs., 8 figs., 5 tabs.

  14. On the North Atlantic circulation

    SciTech Connect

    Schmitz, W.J. Jr.; McCartney, M.S. )

    1993-02-01

    A summary for North Atlantic circulation is proposed to replace the circulation scheme hypothesized by Worthington in 1976. Divergences from the previous model are in thermohaline circulation, cross-equatorical transport and Florida Current sources, flow in the eastern Atlantic, circulation in the Newfoundland Basin, slope water currents, and flow pattern near the Bahamas. The circulation patterns presented here are consistent with the majority of of published accounts of flow components. 77 refs., 14 figs., 3 tabs.

  15. Canada geese in North America

    USGS Publications Warehouse

    Rusch, Donald H.; Malecki, Richard E.; Trost, Robert E.

    1995-01-01

    Market hunting and poor stewardship led to record low numbers of geese in the early 1900's, but regulated seasons including closures, refuges, and law enforcement led to restoration of most populations. Winter surveys were begun to study population trends and set responsible harvest regulations for these long-lived and diverse birds. Winter surveys begun in 1936-37 probably represent the oldest continuing index of migratory birds in North America.

  16. 3. NORTH SIDE OF DIVERSION DAM ON THE SNAKE RIVER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. NORTH SIDE OF DIVERSION DAM ON THE SNAKE RIVER SHOWING HEADGATE ON THE NORTH BANK. VIEW IS TO THE NORTH-NORTHWEST. - Snake River Ditch, Headgate on north bank of Snake River, Dillon, Summit County, CO

  17. 19. View west, foreground, north facade of Forest East Suites, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. View west, foreground, north facade of Forest East Suites, background north & east facades of Forest Hall. - Lake Placid Club, Forest Wing, East side of Mirror Lake Drive, North of State Route 86 & Main, North Elba, Essex County, NY

  18. 27. View east, foreground north facade of Forest Hall, background ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. View east, foreground north facade of Forest Hall, background north facade of Forest East Suites. - Lake Placid Club, Forest Wing, East side of Mirror Lake Drive, North of State Route 86 & Main, North Elba, Essex County, NY

  19. View south, barn, north elevation Woods Homestead, Barn, County ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View south, barn, north elevation - Woods Homestead, Barn, County Route 12 on north side of North Fork of Hughes River, 2.2 miles north & east of Goose Run Road intersection, Harrisville, Ritchie County, WV

  20. View north, barn, south elevation Woods Homestead, Barn, County ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View north, barn, south elevation - Woods Homestead, Barn, County Route 12 on north side of North Fork of Hughes River, 2.2 miles north & east of Goose Run Road intersection, Harrisville, Ritchie County, WV

  1. High resolution digital delay timer

    DOEpatents

    Martin, Albert D.

    1988-01-01

    Method and apparatus are provided for generating an output pulse following a trigger pulse at a time delay interval preset with a resolution which is high relative to a low resolution available from supplied clock pulses. A first lumped constant delay (20) provides a first output signal (24) at predetermined interpolation intervals corresponding to the desired high resolution time interval. Latching circuits (26, 28) latch the high resolution data (24) to form a first synchronizing data set (60). A selected time interval has been preset to internal counters (142, 146, 154) and corrected for circuit propagation delay times having the same order of magnitude as the desired high resolution. Internal system clock pulses (32, 34) count down the counters to generate an internal pulse delayed by an interval which is functionally related to the preset time interval. A second LCD (184) corrects the internal signal with the high resolution time delay. A second internal pulse is then applied to a third LCD (74) to generate a second set of synchronizing data (76) which is complementary with the first set of synchronizing data (60) for presentation to logic circuits (64). The logic circuits (64) further delay the internal output signal (72) to obtain a proper phase relationship of an output signal (80) with the internal pulses (32, 34). The final delayed output signal (80) thereafter enables the output pulse generator (82) to produce the desired output pulse (84) at the preset time delay interval following input of the trigger pulse (10, 12).

  2. Decadal climate predictions with an high resolution coupled model

    NASA Astrophysics Data System (ADS)

    Monerie, P. A.; Valcke, S.; Moine, M. P.; Maisonnave, E.; Coquart, L.; Cassou, C.; Terray, L.

    2014-12-01

    We analyze the decadal prediction skill of sea surface temperature variability with a high resolution coupled Ocean-Atmosphere General Circulation Model (OAGCM). The HR CERFACS was developed at the CERFACS (Centre Européen de Recherche et de Formation Avancée en Calcul Scientifique) laboratory in the framework of the EU-FP7 SPECS (Seasonal-to-decadal climate Predictions for the improvement of European Climate Services) project in order to address the question of decadal predictability with the use of a high spatial resolution. The atmospheric model is ARPEGE/IFS with a T359 spectral truncature and the oceanic model is NEMO at 0.25° resolution including the LIM2 sea ice model. Each hindcasts consist of a 10-members ensemble integrated over a 10-years period. These hindcasts are full-field initialized every year from 1993 to 2009 and initial oceanic state is given by the GLORYS2V1 (0.25° resolution) sea-surface temperatures. Members of a given ensemble (one initialization date) are generated by perturbations of the atmospheric initial conditions. We study the predictability of the global sea-surface temperature focusing on the Atlantic Multidecadal Oscillation (AMO), the Pacific Decadal Oscillation (PDO), the North Atlantic Subpolar Gyre (SPG) and the El-Nino Southern Oscillation (ENSO). We also investigate the prediction skill of the Atlantic Meridional Overturning Circulation (AMOC).

  3. Modeling Mesoscale Eddies in the North Atlantic Ocean

    NASA Technical Reports Server (NTRS)

    Chao, Yi

    1999-01-01

    Ocean modeling plays an important role in understanding the current climatic conditions and predicting the future climate change. Modeling the ocean at eddy-permitting and/or eddy resolving resolutions (1/3 degree or higher) has a two-fold objective. One part is to represent the ocean as realistically as possible, because mesoscale eddies have an impact on the large-scale circulation. The second objective is to learn how to represent effects of mesoscale eddies without explicitly resolving them. This is particularly important for climate models which cannot be run at eddy-resolving resolutions because of the computational constraints. At JPL, a 1/6 degree latitude by 1/6 degree longitude with 37 vertical levels Atlantic Ocean model has been developed. The model is based on the Parallel Ocean Program (POP) developed at Los Alamos National Laboratory (LANL). Using the 256-processor Cray T3D, we have conducted a 40-year integration of this Atlantic eddy-resolving ocean model. A regional analysis demonstrate that many observed features associated with the Caribbean Sea eddies can be realistically simulated by this model. Analysis of this Atlantic eddy-resolving ocean model further suggests that these Caribbean Sea eddies are connected with eddies formed outside the Caribbean Sea at the confluence of the North Brazil Current (NBC) and the North Equatorial Countercurrent. The diagram of the model simulated surface current shows that the Caribbean eddies ultimately originate in the NBC retroflection region, traveling more than a year from the North Brazil coast through the Lesser Antilles into the Caribbean Sea and eventually into the Gulf of Mexico. Additional information is contained in the original.

  4. A decade of acoustic thermometry in the North Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Dushaw, B. D.; Worcester, P. F.; Munk, W. H.; Spindel, R. C.; Mercer, J. A.; Howe, B. M.; Metzger, K.; Birdsall, T. G.; Andrew, R. K.; Dzieciuch, M. A.; Cornuelle, B. D.; Menemenlis, D.

    2009-07-01

    Over the decade 1996-2006, acoustic sources located off central California (1996-1999) and north of Kauai (1997-1999, 2002-2006) transmitted to receivers distributed throughout the northeast and north central Pacific. The acoustic travel times are inherently spatially integrating, which suppresses mesoscale variability and provides a precise measure of ray-averaged temperature. Daily average travel times at 4-day intervals provide excellent temporal resolution of the large-scale thermal field. The interannual, seasonal, and shorter-period variability is large, with substantial changes sometimes occurring in only a few weeks. Linear trends estimated over the decade are small compared to the interannual variability and inconsistent from path to path, with some acoustic paths warming slightly and others cooling slightly. The measured travel times are compared with travel times derived from four independent estimates of the North Pacific: (1) climatology, as represented by the World Ocean Atlas 2005 (WOA05); (2) objective analysis of the upper-ocean temperature field derived from satellite altimetry and in situ profiles; (3) an analysis provided by the Estimating the Circulation and Climate of the Ocean project, as implemented at the Jet Propulsion Laboratory (JPL-ECCO); and (4) simulation results from a high-resolution configuration of the Parallel Ocean Program (POP) model. The acoustic data show that WOA05 is a better estimate of the time mean hydrography than either the JPL-ECCO or the POP estimates, both of which proved incapable of reproducing the observed acoustic arrival patterns. The comparisons of time series provide a stringent test of the large-scale temperature variability in the models. The differences are sometimes substantial, indicating that acoustic thermometry data can provide significant additional constraints for numerical ocean models.

  5. Eruption style and flow emplacement in the Submarine North Arch Volcanic Field, Hawaii

    NASA Astrophysics Data System (ADS)

    Clague, David A.; Uto, Kozo; Satake, Kenji; Davis, Alicé S.

    The North Arch Volcanic Field covers about 24,000 km2 of seafloor north of Oahu and has an estimated volume between 1,000 and 1,250 km3. The field straddles the Hawaiian flexural arch about 250 km north of the axis of the island chain and surrounds numerous Cretaceous volcanic ridges, circular flat-topped volcanoes, and low-relief regions of sediment-covered seafloor. New SeaBeam bathymetric maps that cover about 1/3 of the flow field reveal nearly 100 volcanic structures ranging from low shields to steep cones. One shield is modified by a pit crater, approximately 1.1×1.25 km and 300 m deep. A lava flow in the SE part of the volcanic field covers about 3,600 km2, has an estimated volume of 36-72 km3, and apparently erupted from a 75-km-long NNW-trending fissure system. A 108-km-long flow advanced north in a graben parallel to the Cretaceous mid-ocean ridge that formed the crust; its surface gradient is 1.9 m/km (slope of 0.1°). Shinkai 6500 submersible dive 502 explored one of the composite volcanoes and observed and collected dense alkalic basalt sheet flows erupted after vesicular basanite pillow basalts and fragmental hyaloclastite that make up the steep-sided cone. Dive 503 collected alkalic basalt sheet flows and pillow basalt from the top 122 m of the southern wall of a pit crater that formed by collapse caused by a decrease in magma volume from a shallow storage chamber located 1-2 km below the surface. The volume change may have been caused by loss of gas bubbles from the stored magma when replenishment ceased at the end of the eruption. The surficial drapery-folded sheet flow is covered by only a few cm of sediment, indicating that it is younger than the 0.5-1.5 Ma ages previously estimated for North Arch flows and vents. The near-vent constructs and flow characteristics indicate that vigorous eruption of highly vesicular lava constructed steep-sided cones of pillow basalt and hyaloclastite whereas steady eruption of dense lava that had lost its bubbles

  6. River pollution remediation monitored by optical and infrared high-resolution satellite images.

    PubMed

    Trivero, Paolo; Borasi, Maria; Biamino, Walter; Cavagnero, Marco; Rinaudo, Caterina; Bonansea, Matias; Lanfri, Sofia

    2013-09-01

    The Bormida River Basin, located in the northwestern region of Italy, has been strongly contaminated by the ACNA chemical factory. This factory was in operation from 1892 to 1998, and contamination from the factory has had deleterious consequences on the water quality, agriculture, natural ecosystems and human health. Attempts have been made to remediate the site. The aims of this study were to use high-resolution satellite images combined with a classical remote sensing methodology to monitor vegetation conditions along the Bormida River, both upstream and downstream of the ACNA chemical factory site, and to compare the results obtained at different times before and after the remediation process. The trends of the Normalised Difference Vegetation Index (NDVI) and the Enhanced Vegetation Index (EVI) along the riverbanks are used to assess the effect of water pollution on vegetation. NDVI and EVI values show that the contamination produced by the ACNA factory had less severe effects in the year 2007, when most of the remediation activities were concluded, than in 2006 and 2003. In 2007, the contamination effects were noticeable up to 6 km downstream of the factory, whereas in 2003 and 2006 the influence range was up to about 12 km downstream of the factory. The results of this study show the effectiveness of remediation activities that have been taking place in this area. In addition, the comparison between NDVI and EVI shows that the EVI is more suitable to characterise the vegetation health and can be considered an additional tool to assess vegetation health and to monitor restoration activities. PMID:23456221

  7. Continuous creep measurements on the North Anatolian fault

    NASA Astrophysics Data System (ADS)

    Bilham, Roger; Mencin, David; Mattioli, Glen; Ozner, Haluk; Dogru, Asli; Ergintav, Semih; Cakir, Ziyadin; Aytun, Alkut; Hodgkinson, Kathleen; Johnson, Wade; Gottlieb, Mike; VanBoskirk, Liz

    2015-04-01

    Surface creep was observed as early as 1969 on the North Anatolian fault near Ismetpasa and continues to the present day at rates of the order of 5 mm/yr. Although subsurface creep is currently monitored using INSAR and GPS, continuous creep measurements on the trace of the surface fault have been intermittent. In 2014, we installed a carbon-fiber rod creepmeter at Ismetpasa and a second creepmeter across the surface rupture of the 1999 Izmit earthquake, which is also known to be creeping at depth. The creepmeters have a resolution of 5 µm and a dynamic range of 2.2 m. Each creepmeter uses two sensors: 1) a subsurface LVDT (resolution 5 µm, range 10 mm) and an above-ground rotary Hall effect sensor (resolution 25 µm, range 2.2 m) and the data are transmitted via Iridium satellite communications as 30 minute samples every 2 hours. The hybrid sensors on the creepmeters are similar to others currently operating on the Hayward, Calaveras, and San Andreas faults. The sensor's ability to capture slow slip, coseismic rupture or afterslip has been tested in deployments on the rapidly creeping Jackson, Wyoming landslide (1-3 mm/day). In addition, we have installed six borehole strainmeters to measure creep on the Princess Island segment of the North Anatolian fault to the west of Ismetpasa. The tensor strainmeters are able to measure strain events on 10e-10 strain and they can resolve 1 mm creep events on the order of 500 m2 at distances of 4 km away based on observations from deployed instruments along the San Andreas Fault in Southern California. The tensor strainmeters are unique geodetic instruments in that they are capable of imaging the creep in high resolution where the North Anatolian fault (NAF) is submarine in the Sea of Marmara. The newly installed creepmeters and strainmeters will be powerful tools to examine the possibilities of the transient or episodic creep along the NAF and they will be used to validate the results of on-going monthly INSAR, continuous

  8. A 200 years record of multidecadal oceanographic changes from offshore North Iceland

    NASA Astrophysics Data System (ADS)

    Perner, Kerstin; Moros, Matthias; Jansen, Eystein

    2016-04-01

    A 200 years record of multidecadal oceanographic changes from offshore North Iceland During the cruise GS15-198 of the RV G.O. Sars in summer 2015, new sediments cores have been collected from the North Iceland shelf at 66°N, an area known for its high sedimentation rates. Here, offshore North Iceland an offshoot of the East Greenland Current, the surface flowing East Icelandic Current (EIC) transports a mixture of cooled Atlantic Water and cold/fresh Polar Water eastwards and at intermediate depths (100-350 m water depth), flows the relatively warm (4-7°C) North Irminger Icelandic Current (NIIC). Beneath this Atlantic Water layer, less saline and cooled (<3°C) Arctic Intermediate Water is found. Our study area offshore North Iceland is suitably located to investigate multidecadal changes in the southward fluxes of freshwater from the EGC, via the EIC and in the relative contribution/water mass characteristics (i.e. temperature and salinity) of the NIIC and shifts in the location of the Polar Front. Oceanographic variability recorded offshore North Iceland is closely linked to broader scale climatic and oceanographic shifts/variations in the North Atlantic region. Samples for foraminiferal analyses were wet sieved at 63 μm and counted at 1-2 cm intervals, which equals a resolution of ~ 2 years. The foraminiferal assemblage is characterized by a divers fauna and a total of 76 foraminiferal species were identified, 6 planktic, 19 agglutinated and 51 calcareous species. The absolute abundance of foraminifera averages 400 specimens per 1g of wet sediment. Our high-resolution palaeoceanographic reconstructions reveal distinct multidecadal oceanographic variability that relate to climatic changes during the last 200 years, i.e. transition from the Little Ice Age into the modern warm phase.

  9. Very High Resolution Image of Icy Cliffs on Europa

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This image, taken by the camera onboard NASA's Galileo spacecraft, is a very high resolution view of the Conamara Chaos region on Jupiter's moon Europa. It shows an area where icy plates have been broken apart and moved around laterally. The top of this image is dominated by corrugated plateaus ending in icy cliffs over a hundred meters (a few hundred feet) high. Debris piled at the base of the cliffs can be resolved down to blocks the size of a house. A fracture that runs horizontally across and just below the center of the Europa image is about the width of a freeway.

    North is to the top right of the image, and the sun illuminates the surface from the east. The image is centered at approximately 9 degrees north latitude and 274 degrees west longitude. The image covers an area approximately 1.7 kilometers by 4 kilometers (1 mile by 2.5 miles). The resolution is 9 meters (30 feet) per picture element. This image was taken on December 16, 1997 at a range of 900 kilometers (540 miles) by Galileo's solid state imaging system.

    The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://www.jpl.nasa.gov/ galileo.

  10. Defining Electron Backscatter Diffraction Resolution

    SciTech Connect

    El-Dasher, B S; Rollett, A D

    2005-02-07

    Automated electron backscatter diffraction (EBSD) mapping systems have existed for more than 10 years [1,2], and due to their versatility in characterizing multiple aspects of microstructure, they have become an important tool in microscale crystallographic studies. Their increasingly widespread use however raises questions about their accuracy in both determining crystallographic orientations, as well as ensuring that the orientation information is spatially correct. The issue of orientation accuracy (as defined by angular resolution) has been addressed previously [3-5]. While the resolution of EBSD systems is typically quoted to be on the order of 1{sup o}, it has been shown that by increasing the pattern quality via acquisition parameter adjustment, the angular resolution can be improved to sub-degree levels. Ultimately, the resolution is dependent on how it is identified. In some cases it can be identified as the orientation relative to a known absolute, in others as the misorientation between nearest neighbor points in a scan. Naturally, the resulting values can be significantly different. Therefore, a consistent and universal definition of resolution that can be applied to characterize any EBSD system is necessary, and is the focus of the current study. In this work, a Phillips (FEI) XL-40 FEGSEM coupled to a TexSEM Laboratories OIM system was used. The pattern capturing hardware consisted of both a 512 by 512 pixel SIT CCD camera and a 1300 by 1030 pixel Peltier cooled CCD camera. Automated scans of various sizes, each consisting of 2500 points, were performed on a commercial-grade single crystal silicon wafer used for angular resolution measurements. To adequately quantify angular resolution for all possible EBSD applications we define two angular values. The first is {omega}{sub center}, the mean of the misorientation angle distribution between all scan points and the scan point coincident to the calibration source (typically the scan center). The {omega

  11. Quality Control Methodology Of A Surface Wind Observational Database In North Eastern North America

    NASA Astrophysics Data System (ADS)

    Lucio-Eceiza, Etor E.; Fidel González-Rouco, J.; Navarro, Jorge; Conte, Jorge; Beltrami, Hugo

    2016-04-01

    This work summarizes the design and application of a Quality Control (QC) procedure for an observational surface wind database located in North Eastern North America. The database consists of 526 sites (486 land stations and 40 buoys) with varying resolutions of hourly, 3 hourly and 6 hourly data, compiled from three different source institutions with uneven measurement units and changing measuring procedures, instrumentation and heights. The records span from 1953 to 2010. The QC process is composed of different phases focused either on problems related with the providing source institutions or measurement errors. The first phases deal with problems often related with data recording and management: (1) compilation stage dealing with the detection of typographical errors, decoding problems, site displacements and unification of institutional practices; (2) detection of erroneous data sequence duplications within a station or among different ones; (3) detection of errors related with physically unrealistic data measurements. The last phases are focused on instrumental errors: (4) problems related with low variability, placing particular emphasis on the detection of unrealistic low wind speed records with the help of regional references; (5) high variability related erroneous records; (6) standardization of wind speed record biases due to changing measurement heights, detection of wind speed biases on week to monthly timescales, and homogenization of wind direction records. As a result, around 1.7% of wind speed records and 0.4% of wind direction records have been deleted, making a combined total of 1.9% of removed records. Additionally, around 15.9% wind speed records and 2.4% of wind direction data have been also corrected.

  12. Daily precipitation statistics in a EURO-CORDEX RCM ensemble: added value of raw and bias-corrected high-resolution simulations

    NASA Astrophysics Data System (ADS)

    Casanueva, A.; Kotlarski, S.; Herrera, S.; Fernández, J.; Gutiérrez, J. M.; Boberg, F.; Colette, A.; Christensen, O. B.; Goergen, K.; Jacob, D.; Keuler, K.; Nikulin, G.; Teichmann, C.; Vautard, R.

    2015-10-01

    Daily precipitation statistics as simulated by the ERA-Interim-driven EURO-CORDEX regional climate model (RCM) ensemble are evaluated over two distinct regions of the European continent, namely the European Alps and Spain. The potential added value of the high-resolution 12 km experiments with respect to their 50 km resolution counterparts is investigated. The statistics considered consist of wet-day intensity and precipitation frequency as a measure of mean precipitation, and three precipitation-derived indicators (90th percentile on wet days—90pWET, contribution of the very wet days to total precipitation—R95pTOT and number of consecutive dry days—CDD). As reference for model evaluation high resolution gridded observational data over continental Spain (Spain011/044) and the Alpine region (EURO4M-APGD) are used. The assessment and comparison of the two resolutions is accomplished not only on their original horizontal grids (approximately 12 and 50 km), but the high-resolution RCMs are additionally regridded onto the coarse 50 km grid by grid cell aggregation for the direct comparison with the low resolution simulations. The direct application of RCMs e.g. in many impact modelling studies is hampered by model biases. Therefore bias correction (BC) techniques are needed at both resolutions to ensure a better agreement between models and observations. In this work, the added value of the high resolution (before and after the bias correction) is assessed and the suitability of these BC methods is also discussed. Three basic BC methods are applied to isolate the effect of biases in mean precipitation, wet-day intensity and wet-day frequency on the derived indicators. Daily precipitation percentiles are strongly affected by biases in the wet-day intensity, whereas the dry spells are better represented when the simulated precipitation frequency is adjusted to the observed one. This confirms that there is no single optimal way to correct for RCM biases, since

  13. Daily precipitation statistics in a EURO-CORDEX RCM ensemble: added value of raw and bias-corrected high-resolution simulations

    NASA Astrophysics Data System (ADS)

    Casanueva, A.; Kotlarski, S.; Herrera, S.; Fernández, J.; Gutiérrez, J. M.; Boberg, F.; Colette, A.; Christensen, O. B.; Goergen, K.; Jacob, D.; Keuler, K.; Nikulin, G.; Teichmann, C.; Vautard, R.

    2016-08-01

    Daily precipitation statistics as simulated by the ERA-Interim-driven EURO-CORDEX regional climate model (RCM) ensemble are evaluated over two distinct regions of the European continent, namely the European Alps and Spain. The potential added value of the high-resolution 12 km experiments with respect to their 50 km resolution counterparts is investigated. The statistics considered consist of wet-day intensity and precipitation frequency as a measure of mean precipitation, and three precipitation-derived indicators (90th percentile on wet days—90pWET, contribution of the very wet days to total precipitation—R95pTOT and number of consecutive dry days—CDD). As reference for model evaluation high resolution gridded observational data over continental Spain (Spain011/044) and the Alpine region (EURO4M-APGD) are used. The assessment and comparison of the two resolutions is accomplished not only on their original horizontal grids (approximately 12 and 50 km), but the high-resolution RCMs are additionally regridded onto the coarse 50 km grid by grid cell aggregation for the direct comparison with the low resolution simulations. The direct application of RCMs e.g. in many impact modelling studies is hampered by model biases. Therefore bias correction (BC) techniques are needed at both resolutions to ensure a better agreement between models and observations. In this work, the added value of the high resolution (before and after the bias correction) is assessed and the suitability of these BC methods is also discussed. Three basic BC methods are applied to isolate the effect of biases in mean precipitation, wet-day intensity and wet-day frequency on the derived indicators. Daily precipitation percentiles are strongly affected by biases in the wet-day intensity, whereas the dry spells are better represented when the simulated precipitation frequency is adjusted to the observed one. This confirms that there is no single optimal way to correct for RCM biases, since

  14. Sources and Processes Affecting Particulate Matter Pollution over North China

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Shao, J.; Lu, X.; Zhao, Y.; Gong, S.; Henze, D. K.

    2015-12-01

    Severe fine particulate matter (PM2.5) pollution over North China has received broad attention worldwide in recent years. Better understanding the sources and processes controlling pollution over this region is of great importance with urgent implications for air quality policy. We will present a four-dimensional variational (4D-Var) data assimilation system using the GEOS-Chem chemical transport model and its adjoint model at 0.25° × 0.3125° horizontal resolution, and apply it to analyze the factors affecting PM2.5 concentrations over North China. Hourly surface observations of PM2.5 and sulfur dioxide (SO2) from the China National Environmental Monitoring Center (CNEMC) can be assimilated into the model to evaluate and constrain aerosol (primary and precursors) emissions. Application of the data assimilation system to the APEC period (the Asia-Pacific Economic Cooperation summit; 5-11 November 2014) shows that 46% of the PM2.5 pollution reduction during APEC ("The APEC Blue") can be attributed to meteorology conditions and the rest 54% to emission reductions due to strict emission controls. Ammonia emissions are shown to significantly contribute to PM2.5 over North China in the fall. By converting sulfuric acid and nitric acid to longer-lived ammonium sulfate and ammonium nitrate aerosols, ammonia plays an important role in promoting their regional transport influences. We will also discuss the pathways and mechanisms of external long-range transport influences to the PM2.5 pollution over North China.

  15. North Atlantic sea-level variability during the last millennium

    NASA Astrophysics Data System (ADS)

    Gehrels, Roland; Long, Antony; Saher, Margot; Barlow, Natasha; Blaauw, Maarten; Haigh, Ivan; Woodworth, Philip

    2014-05-01

    Climate modelling studies have demonstrated that spatial and temporal sea-level variability observed in North Atlantic tide-gauge records is controlled by a complex array of processes, including ice-ocean mass exchange, freshwater forcing, steric changes, changes in wind fields, and variations in the speed of the Gulf Stream. Longer records of sea-level change, also covering the pre-industrial period, are important as a 'natural' and long-term baseline against which to test model performance and to place recent and future sea-level changes and ice-sheet change into a long-term context. Such records can only be reliably and continuously reconstructed from proxy methods. Salt marshes are capable of recording decimetre-scale sea-level variations with high precision and accuracy. In this paper we present four new high-resolution proxy records of (sub-) decadal sea-level variability reconstructed from salt-marsh sediments in Iceland, Nova Scotia, Maine and Connecticut that span the past 400 to 900 years. Our records, based on more than 100 new radiocarbon analyses, Pb-210 and Cs-137 measurements as well as other biological and geochemical age markers, together with hundreds of new microfossil observations from contemporary and fossil salt marshes, capture not only the rapid 20th century sea-level rise, but also small-scale (decimetre, multi-decadal) sea-level fluctuations during preceding centuries. We show that in Iceland three periods of rapid sea-level rise are synchronous with the three largest positive shifts of the reconstructed North Atlantic Oscillation (NAO) index. Along the North American east coast we compare our data with salt-marsh records from New Jersey, North Carolina and Florida and observe a trend of increased pre-industrial sea-level variability from south to north (Florida to Nova Scotia). Mass changes and freshwater forcing cannot explain this pattern. Based on comparisons with instrumental sea-level data and modelling studies we hypothesise that

  16. Drivers of summer oxygen depletion in the central North Sea

    NASA Astrophysics Data System (ADS)

    Queste, B. Y.; Fernand, L.; Jickells, T. D.; Heywood, K. J.; Hind, A. J.

    2015-06-01

    In stratified shelf seas, oxygen depletion beneath the thermocline is a result of a greater rate of biological oxygen demand than the rate of supply of oxygenated water. Suitably equipped gliders are uniquely placed to observe both the supply through the thermocline and the consumption of oxygen in the bottom layers. A Seaglider was deployed in the shallow (≈ 100 m) stratified North Sea in a region of known low oxygen during August 2011 to investigate the processes regulating supply and consumption of dissolved oxygen below the pycnocline. The first deployment of such a device in this area, it provided extremely high resolution observations, 316 profiles (every 16 min, vertical resolution of 1 m) of CTD, dissolved oxygen concentrations, backscatter and fluorescence during a three day deployment. The high temporal resolution observations revealed occasional small scale events that supply oxygenated water into the bottom layer at a rate of 2±1 μmol dm-3 day-1. Benthic and pelagic oxygen sinks, quantified through glider observations and past studies, indicate more gradual background consumption rates of 2.5±1 μmol dm-3 day-1. This budget revealed that the balance of oxygen supply and demand is in agreement with previous studies of the North Sea. However, the glider data show a net oxygen consumption rate of 2.8±0.3 μmol dm-3 day-1 indicating a localised or short-lived increase in oxygen consumption rates. This high rate of oxygen consumption is indicative of an unidentified oxygen sink. We propose that this elevated oxygen consumption is linked to localised depocentres and rapid remineralisation of resuspensded organic matter. The glider proved to be an excellent tool for monitoring shelf sea processes despite challenges to glider flight posed by high tidal velocities, shallow bathymetry, and very strong density gradients. The direct observation of these processes allows more up to date rates to be used in the development of ecosystem models.

  17. Millennial changes in North American wildfire and soil activity over the last glacial cycle

    NASA Astrophysics Data System (ADS)

    Fischer, Hubertus; Schüpbach, Simon; Gfeller, Gideon; Bigler, Matthias; Röthlisberger, Regine; Erhardt, Tobias; Stocker, Thomas F.; Mulvaney, Robert; Wolff, Eric W.

    2015-09-01

    Climate changes in the North Atlantic region during the last glacial cycle were dominated by the slow waxing and waning of the North American ice sheet as well as by intermittent, millennial-scale Dansgaard-Oeschger climate oscillations. However, prior to the last deglaciation, the responses of North American vegetation and biomass burning to these climate variations are uncertain. Ammonium in Greenland ice cores, a product from North American soil emissions and biomass burning events, can help to fill this gap. Here we use continuous, high-resolution measurements of ammonium concentrations between 110,000 to 10,000 years ago from the Greenland NGRIP and GRIP ice cores to reconstruct North American wildfire activity and soil ammonium emissions. We find that on orbital timescales soil emissions increased under warmer climate conditions when vegetation expanded northwards into previously ice-covered areas. For millennial-scale interstadial warm periods during Marine Isotope Stage 3, the fire recurrence rate increased in parallel to the rapid warmings, whereas soil emissions rose more slowly, reflecting slow ice shrinkage and delayed ecosystem changes. We conclude that sudden warming events had little impact on soil ammonium emissions and ammonium transport to Greenland, but did result in a substantial increase in the frequency of North American wildfires.

  18. Durham, North Carolina, Students Study Martian Volcanism

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image of the wall of a graben a depressed block of land between two parellel faults in Tyrrhena Terra, in Mars' ancient southern highlands, was taken by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) at 0914 UTC (4:14 a.m. EST) on February 6, 2008, near 17.3 degrees south latitude, 95.5 degrees east longitude. CRISM's image was taken in 544 colors covering 0.36-3.92 micrometers, and shows features as small as 35 meters (115 feet) across. The region covered is just over 10 kilometers (6.2 miles) wide at its narrowest point.

    This image was part of an investigation planned by students in four high schools in Durham, North Carolina. The students are working with the CRISM science team in a project called the Mars Exploration Student Data Teams (MESDT), which is part of NASA's Mars Public Engagement Program and Arizona State University's Mars Education Program. Starting with a medium-resolution map of the area, taken as part of CRISM's 'multispectral survey' campaign to map Mars in 72 colors at 200 meters (660 feet) per pixel, the students identified a key rock outcrop to test their hypothesis that the irregular depression was formed by Martian volcanism. They provided the coordinates of the target to CRISM's operations team, who took a high-resolution image of the site. The Context Imager (CTX) accompanied CRISM with a 6 meter (20 feet) per pixel, high-resolution image to sharpen the relationship of spectral variations to the underlying surface structures. The Durham students worked with a mentor on the CRISM team to analyze the data, and presented their results at the 39th Lunar and Planetary Science Conference, held in League City, Texas, on March 10-14, 2008.

    The upper panel of the image shows the location of the CRISM data and the surrounding, larger CTX image, overlain on an image mosaic taken by the Thermal Emission Imaging System (THEMIS) on Mars Odyssey. The mosaic has been color-coded for elevation using data from the Mars

  19. The evolution of extreme precipitations in high resolution scenarios over France

    NASA Astrophysics Data System (ADS)

    Colin, J.; Déqué, M.; Somot, S.

    2009-09-01

    Over the past years, improving the modelling of extreme events and their variability at climatic time scales has become one of the challenging issue raised in the regional climate research field. This study shows the results of a high resolution (12 km) scenario run over France with the limited area model (LAM) ALADIN-Climat, regarding the representation of extreme precipitations. The runs were conducted in the framework of the ANR-SCAMPEI national project on high resolution scenarios over French mountains. As a first step, we attempt to quantify one of the uncertainties implied by the use of LAM : the size of the area on which the model is run. In particular, we address the issue of whether a relatively small domain allows the model to create its small scale process. Indeed, high resolution scenarios cannot be run on large domains because of the computation time. Therefore one needs to answer this preliminary question before producing and analyzing such scenarios. To do so, we worked in the framework of a « big brother » experiment. We performed a 23-year long global simulation in present-day climate (1979-2001) with the ARPEGE-Climat GCM, at a resolution of approximately 50 km over Europe (stretched grid). This first simulation, named ARP50, constitutes the « big brother » reference of our experiment. It has been validated in comparison with the CRU climatology. Then we filtered the short waves (up to 200 km) from ARP50 in order to obtain the equivalent of coarse resolution lateral boundary conditions (LBC). We have carried out three ALADIN-Climat simulations at a 50 km resolution with these LBC, using different configurations of the model : * FRA50, run over a small domain (2000 x 2000 km, centered over France), * EUR50, run over a larger domain (5000 x 5000 km, centered over France as well), * EUR50-SN, run over the large domain (using spectral nudging). Considering the facts that ARPEGE-Climat and ALADIN-Climat models share the same physics and dynamics

  20. How much plutonium does North Korea have?

    SciTech Connect

    Albright, D.

    1994-09-01

    U.S. intelligence discovered in the 1980s that North Korea was building a small nuclear reactor. The reactor was described as a gas-cooled, graphite-moderated model similar to those Britian and France used to produce electric power as well as plutonium for nuclear weapons. When Western nations expressed concern about the reactor Russia pressed North Korea to sign the Non-Proliferation Treaty (NPT) which it did on December 12, 1985. However, North Korea stalled on signing the required safeguards agreement that allows the International Atomic Energy Agency (IAEA) to inspect nuclear facilities until January 1992. Inspections by the IAEA revealed discrepancies with the amounts of plutonium separated as declared by the North Koreans. The IAEA also received reports that two North Korean waste sites were hidden. By February 1993 the IAEA and the North Koreans has reached an impasse: North Koreas initial declarations of plutonium inventory could not be confirmed and North Korea refused to cooperate. At the least, North Korea admits to having separated 100 grams of plutonium. At the most, worst case estimate, they could have a total of 6 - 13 kilograms of separated plutonium. A first nuclear weapon can require up to 10 kilograms of weapon-grade plutonium. Any settlement needs to include a way to insure that the IAEA can verify North Korea`s past nuclear activities and determine the amount of plutonium that may have been separated in the past. 2 refs.

  1. Moderate-Resolution Sea Surface Temperature Data for the Nearshore North Pacific

    EPA Science Inventory

    Coastal sea surface temperature (SST) is an important environmental characteristic defining habitat suitability for nearshore marine and estuarine organisms. The purpose of this publication is to provide access to an easy-to-use coastal SST dataset for ecologists, biogeographers...

  2. A resolution commemorating the 125th anniversary of the University of North Carolina at Pembroke.

    THOMAS, 112th Congress

    Sen. Burr, Richard [R-NC

    2012-03-29

    03/29/2012 Submitted in the Senate, considered, and agreed to without amendment and with a preamble by Unanimous Consent. (consideration: CR S2282; text as passed Senate: CR S2282; text of measure as introduced: CR S2258) (All Actions) Tracker: This bill has the status Passed SenateHere are the steps for Status of Legislation:

  3. A resolution commemorating the 125th anniversary of North Dakota's Statehood.

    THOMAS, 113th Congress

    Sen. Hoeven, John [R-ND

    2014-07-29

    07/29/2014 Submitted in the Senate, considered, and agreed to without amendment and with a preamble by Unanimous Consent. (consideration: CR S5069-5070; text as passed Senate: CR S5067) (All Actions) Tracker: This bill has the status Passed SenateHere are the steps for Status of Legislation:

  4. Resolution in forensic microbial genotyping

    SciTech Connect

    Velsko, S P

    2005-08-30

    Resolution is a key parameter for differentiating among the large number of strain typing methods that could be applied to pathogens involved in bioterror events or biocrimes. In this report we develop a first-principles analysis of strain typing resolution using a simple mathematical model to provide a basis for the rational design of microbial typing systems for forensic applications. We derive two figures of merit that describe the resolving power and phylogenetic depth of a strain typing system. Rough estimates of these figures-of-merit for MLVA, MLST, IS element, AFLP, hybridization microarrays, and other bacterial typing methods are derived from mutation rate data reported in the literature. We also discuss the general problem of how to construct a ''universal'' practical typing system that has the highest possible resolution short of whole-genome sequencing, and that is applicable with minimal modification to a wide range of pathogens.

  5. Singularity Resolution in Quantum Gravity

    NASA Astrophysics Data System (ADS)

    Singh, Parampreet

    2014-03-01

    In recent years, progress in understanding of the quantization of cosmological spacetimes using techniques of loop quantum gravity, has led to important insights on the resolution of singularities. With a rigorous loop quantization of isotropic and anisotropic spacetimes and development of sophisticated numerical techniques, it is now possible to explore in detail the structure of spacetime in the Planck regime and extract new physics of the very early universe. Investigations of quantization of various spacetimes indicates that classical singularities such as the big bang are avoided, and quantum evolution results in a bounce of the scale factor. The resolution of singularities seems to occur without any assumption on the initial state for quantum evolution or the equation of state of matter. In this talk, we will review some of the main developments in this direction and provide an up to date summary of the novel results obtained on the resolution of singularities in various models in loop quantum gravity.

  6. High resolution optical DNA mapping

    NASA Astrophysics Data System (ADS)

    Baday, Murat

    Many types of diseases including cancer and autism are associated with copy-number variations in the genome. Most of these variations could not be identified with existing sequencing and optical DNA mapping methods. We have developed Multi-color Super-resolution technique, with potential for high throughput and low cost, which can allow us to recognize more of these variations. Our technique has made 10--fold improvement in the resolution of optical DNA mapping. Using a 180 kb BAC clone as a model system, we resolved dense patterns from 108 fluorescent labels of two different colors representing two different sequence-motifs. Overall, a detailed DNA map with 100 bp resolution was achieved, which has the potential to reveal detailed information about genetic variance and to facilitate medical diagnosis of genetic disease.

  7. KINOFORM LENSES - TOWARD NANOMETER RESOLUTION.

    SciTech Connect

    STEIN, A.; EVANS-LUTTERODT, K.; TAYLOR, A.

    2004-10-23

    While hard x-rays have wavelengths in the nanometer and sub-nanometer range, the ability to focus them is limited by the quality of sources and optics, and not by the wavelength. A few options, including reflective (mirrors), diffractive (zone plates) and refractive (CRL's) are available, each with their own limitations. Here we present our work with kinoform lenses which are refractive lenses with all material causing redundant 2{pi} phase shifts removed to reduce the absorption problems inherently limiting the resolution of refractive lenses. By stacking kinoform lenses together, the effective numerical aperture, and thus the focusing resolution, can be increased. The present status of kinoform lens fabrication and testing at Brookhaven is presented as well as future plans toward achieving nanometer resolution.

  8. Diseases in North Sea fishes

    NASA Astrophysics Data System (ADS)

    Dethlefsen, V.

    1984-03-01

    Prior to the studies reviewed here, only lymphocystis and skeletal deformities of a variety of fish species and certain diseases of eel were known to occur in the German Bight (North Sea). From 1977 until now, 9 externally visible lesions on North Sea fishes were observed; in addition to those mentioned before, they comprise: fin rot, ulcerations, epidermal papilloma, hyperplasia, pseudobranchial tumour, eye diseases and gill swellings. With the exception of information on changes in frequencies of vertebral deformities of herring from the 1950's to the 1970's, there are no long-term data characterizing changes in frequencies of the diseases under study. For pseudobranchial tumours of cod and epidermal papilloma of dab, information is provided on occurrence and abundance. The distribution pattern of cod afflicted with pseudobranchial tumours is strongly influenced by the migratory behaviour of the fish. Epidermal papillomas of dab were more frequently found at stations within the inner German Bight than in neighbouring areas. The Bight is used for dumping of wastes from titaniumdioxide production. Further disease hot spots are areas off the Humber estuary and the British coast. Analysis of chromium in dab from the German Bight revealed elevated concentrations in epidermal tissues of specimens from the dumping area compared with that found in dab from neighbouring localities. Particulate iron was demonstrated to occur in mucous cells of dab from the dumping area. From increased levels of heavy metals with cancerogenic potential in sensitive target tissues and from increased prevalences of diseased fish in the dumping area it is concluded that these phenomena are possibly causally linked. In the vicinity of the Humber estuary high disease rates were encountered and areas with high prevalences of dab afflicted with epidermal papilloma extended over regions shown to be transport routes for persistent pollutants such as radioactive materials. It is therefore suggested

  9. Heart failure in North America.

    PubMed

    Blair, John E A; Huffman, Mark; Shah, Sanjiv J

    2013-05-01

    Heart failure is a major health problem that affects patients and healthcare systems worldwide. Within the continent of North America, differences in economic development, genetic susceptibility, cultural practices, and trends in risk factors and treatment all contribute to both inter-continental and within-continent differences in heart failure. The United States and Canada represent industrialized countries with similar culture, geography, and advanced economies and infrastructure. During the epidemiologic transition from rural to industrial in countries such as the United States and Canada, nutritional deficiencies and infectious diseases made way for degenerative diseases such as cardiovascular diseases, cancer, overweight/obesity, and diabetes. This in turn has resulted in an increase in heart failure incidence in these countries, especially as overall life expectancy increases. Mexico, on the other hand, has a less developed economy and infrastructure, and has a wide distribution in the level of urbanization as it becomes more industrialized. Mexico is under a period of epidemiologic transition and the etiology and incidence of heart failure is rapidly changing. Ethnic differences within the populations of the United States and Canada highlight the changing demographics of each country as well as potential disparities in heart failure care. Heart failure with preserved ejection fraction makes up approximately half of all hospital admissions throughout North America; however, important differences in demographics and etiology exist between countries. Similarly, acute heart failure etiology, severity, and management differ between countries in North America. The overall economic burden of heart failure continues to be large and growing worldwide, with each country managing this burden differently. Understanding the inter-and within-continental differences may help improve understanding of the heart failure epidemic, and may aid healthcare systems in delivering

  10. Heart Failure in North America

    PubMed Central

    Blair, John E. A; Huffman, Mark; Shah, Sanjiv J

    2013-01-01

    Heart failure is a major health problem that affects patients and healthcare systems worldwide. Within the continent of North America, differences in economic development, genetic susceptibility, cultural practices, and trends in risk factors and treatment all contribute to both inter-continental and within-continent differences in heart failure. The United States and Canada represent industrialized countries with similar culture, geography, and advanced economies and infrastructure. During the epidemiologic transition from rural to industrial in countries such as the United States and Canada, nutritional deficiencies and infectious diseases made way for degenerative diseases such as cardiovascular diseases, cancer, overweight/obesity, and diabetes. This in turn has resulted in an increase in heart failure incidence in these countries, especially as overall life expectancy increases. Mexico, on the other hand, has a less developed economy and infrastructure, and has a wide distribution in the level of urbanization as it becomes more industrialized. Mexico is under a period of epidemiologic transition and the etiology and incidence of heart failure is rapidly changing. Ethnic differences within the populations of the United States and Canada highlight the changing demographics of each country as well as potential disparities in heart failure care. Heart failure with preserved ejection fraction makes up approximately half of all hospital admissions throughout North America; however, important differences in demographics and etiology exist between countries. Similarly, acute heart failure etiology, severity, and management differ between countries in North America. The overall economic burden of heart failure continues to be large and growing worldwide, with each country managing this burden differently. Understanding the inter-and within-continental differences may help improve understanding of the heart failure epidemic, and may aid healthcare systems in delivering

  11. North Dakota Energy Workforce Development

    SciTech Connect

    Carter, Drake

    2014-12-29

    Bismarck State College, along with its partners (Williston State College, Minot State University and Dickinson State University), received funding to help address the labor and social impacts of rapid oilfield development in the Williston Basin of western North Dakota. Funding was used to develop and support both credit and non-credit workforce training as well as four major symposia designed to inform and educate the public; enhance communication and sense of partnership among citizens, local community leaders and industry; and identify and plan to ameliorate negative impacts of oil field development.

  12. North American Natural Gas Markets

    SciTech Connect

    Not Available

    1988-12-01

    This report sunnnarizes the research by an Energy Modeling Forum working group on the evolution of the North American natural gas markets between now and 2010. The group's findings are based partly on the results of a set of economic models of the natural gas industry that were run for four scenarios representing significantly different conditions: two oil price scenarios (upper and lower), a smaller total US resource base (low US resource case), and increased potential gas demand for electric generation (high US demand case). Several issues, such as the direction of regulatory policy and the size of the gas resource base, were analyzed separately without the use of models.

  13. The North Norwegian Health Net.

    PubMed

    Pettersen, S; Uldal, S B; Baardsgard, A; Amundsen, M; Myrvang, R; Nordvåg, D; Stenmarkl, H

    1999-01-01

    The North Norwegian Health Net is a comprehensive scheme to connect all health-care institutions in the area to a national computer network. Services available include telemedicine, e-mail and Web access. A general practitioner has responsibility for ensuring that the clinical information is correct. Medical departments are responsible for the content of their own Web pages. All institutions require authorization before connection to ensure data protection and security. Changes in communication between primary- and secondary-care sectors are being monitored. To date the implementation of the network programme has gone smoothly. PMID:10534834

  14. North American Natural Gas Markets

    SciTech Connect

    Not Available

    1989-02-01

    This report summarizes die research by an Energy Modeling Forum working group on the evolution of the North American natural gas markets between now and 2010. The group's findings are based partly on the results of a set of economic models of the natural gas industry that were run for four scenarios representing significantly different conditions: two oil price scenarios (upper and lower), a smaller total US resource base (low US resource case), and increased potential gas demand for electric generation (high US demand case). Several issues, such as the direction of regulatory policy and the size of the gas resource base, were analyzed separately without the use of models.

  15. Perspective view of Bailey and Massingill Store (4 North E ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Perspective view of Bailey and Massingill Store (4 North E Street, far right of frame), view looking north on E Street. Also visible are General Merchandise Building (8 North E Street), Ousley Furniture Store ( 12 North E Street), Millenery (18 North E Street), Thornton Drug (26 North E Street), B. Reynolds Building (102-106 North E Street), Saloon (108 North E Street), and Langslet Tailor Shop (110-112 North E Street) - Lakeview Downtown Historic District, E, F & G Streets between Second Street North & First Street South, Lakeview, Lake County, OR

  16. Requirements on high resolution detectors

    SciTech Connect

    Koch, A.

    1997-02-01

    For a number of microtomography applications X-ray detectors with a spatial resolution of 1 {mu}m are required. This high spatial resolution will influence and degrade other parameters of secondary importance like detective quantum efficiency (DQE), dynamic range, linearity and frame rate. This note summarizes the most important arguments, for and against those detector systems which could be considered. This article discusses the mutual dependencies between the various figures which characterize a detector, and tries to give some ideas on how to proceed in order to improve present technology.

  17. The effects of explicit versus parameterized convection on the MJO in a large-domain high-resolution tropical case study: moist processes leading to differences in MJO development

    NASA Astrophysics Data System (ADS)

    Holloway, Chris; Woolnough, Steve; Lister, Grenville

    2015-04-01

    High-resolution simulations over a large tropical domain (˜20◦S-20◦N and 42◦E-180◦E) using both explicit and parameterized convection are analyzed during a 10-day case study of an active Madden-Julian Oscillation (MJO) event. Here, the moisture budgets and moist entropy budgets are analyzed. Vertical subgrid diabatic heating profiles and vertical velocity profiles are also compared; these are related to the horizontal and vertical advective components of the moist entropy budget which contribute to gross moist stability, GMS, and normalized GMS (NGMS). The 4-km model with explicit convection and good MJO performance has a vertical heating structure that increases more rapidly with height in the lower troposphere within the propagating MJO convective signal, whereas the 12 km model with parameterized convection and a poor MJO does not show this relationship. The 4-km explicit-convection model also has a more top-heavy heating profile for the troposphere as a whole near and to the west of the active MJO-related convection, unlike the 12-km parameterized-convection model. The dependence of entropy advection components on moisture convergence is fairly weak in all models, and differences between models are not always related to MJO performance, making comparisons to previous work somewhat inconclusive. However, models with relatively good MJO strength and propagation have a slightly larger increase of the vertical advective component with increasing moisture convergence, and their NGMS vertical terms have more variability in time and longitude, with total NGMS that is comparatively larger to the west and smaller to the east.

  18. The scale of hydrothermal circulation of the Iheya-North field inferred from intensive heat flow measurements and ocean drilling

    NASA Astrophysics Data System (ADS)

    Masaki, Y.; Kinoshita, M.; Yamamoto, H.; Nakajima, R.; Kumagai, H.; Takai, K.

    2014-12-01

    Iheya-North hydrothermal field situated in the middle Okinawa trough backarc basin is one of the largest ongoing Kuroko deposits in the world. Active chimneys as well as diffuse ventings (maximum fluid temperature 311 °C) have been located and studied in detail through various geological and geophysical surveys. To clarify the spatial scale of the hydrothermal circulation system, intensive heat flow measurements were carried out and ~100 heat flow data in and around the field from 2002 to 2014. In 2010, Integrated Ocean Drilling Program (IODP) Expedition 331 was carried out, and subbottom temperature data were obtained around the hydrothermal sites. During the JAMSTEC R/V Kaiyo cruise, KY14-01 in 2014, Iheya-North "Natsu" and "Aki" hydrothermal fields were newly found. The Iheya-Noth "Natsu" and "Aki" sites are located 1.2 km and 2.6 km south from the Iheya-North original site, respectively, and the maximum venting fluid temperature was 317 °C. We obtained one heat flow data at the "Aki" site. The value was 17 W/m2. Currently, the relationship between these hydrothermal sites are not well known. Three distinct zones are identified by heat flow values within 3 km from the active hydrothermal field. They are high-heat flow zone (>1 W/m2; HHZ), moderate-heat-flow zone (1-0.1 W/m2; MHZ); and low-heat-flow zone (<0.1 W/m2; LHZ). With increasing distance east of the HHZ, heat flow gradually decreases towards MHZ and LHZ. In the LHZ, temperature at 37m below the seafloor (mbsf) was 6 °C, that is consistent with the surface low heat flow suggesting the recharge of seawater. However, between 70 and 90 mbsf, the coarser sediments were cored, and temperature increased from 25 °C to 40°C. The temperature was 905°C at 151 mbsf, which was measured with thermoseal strips. The low thermal gradient in the upper 40 m suggests downward fluid flow. We infer that a hydrothermal circulation in the scale of ~1.5 km horizontal vs. ~a few hundred meters vertical.

  19. Arguments for a “US Kamioka”: SNOLab and its implications for North American underground science planning

    NASA Astrophysics Data System (ADS)

    Haxton, W. C.; Philpott, K. A.; Holtz, Robert; Long, Philip; Wilkerson, J. F.

    2007-01-01

    We argue for a cost-effective, long-term North American underground science strategy based on partnership with Canada, initial construction of a modest US Stage I laboratory designed to complement SNOLab, and follow-up stages to create clean horizontal access to greater depths. We show, by reviewing the requirements of detectors now in the R&D phase, that SNOLab and a properly designed US Stage I facility would be capable of meeting most needs of North America's next wave of underground experiments. One opportunity for creating such a laboratory is the Pioneer tunnel in Washington State, a site that could be developed to provide dedicated, clean, horizontal access. This unused tunnel, part of the deepest (1040 m) tunnel system in the US, would allow the US to establish, at low risk and modest cost, a laboratory at a depth (2.12km.w.e., or kilometers of water equivalent) quite similar to that of the Japanese laboratory Kamioka (2.04km.w.e.). The site's infrastructure includes highway and rail access to the portal, a gravity drainage system, redundant power, proximity to a major metropolitan area, and a system of crosscuts connecting to the parallel Great Cascade tunnel and its ventilation system. We describe studies of cosmic ray attenuation important to properly locating such a laboratory, and the tunnel improvements that would be required to produce an optimal Stage I facility. We describe the unique role this location could play in formulating an international plan for high-energy accelerator physics that includes, as one component, a neutrino factory. The site has a “doubly magic” baseline—a 7500km separation from both KEK and CERN—as well as an appropriate baseline for CP violation studies, should FermiLab host the neutrino factory. We also describe how new space at greater depth could be added in response to the needs of future experiments, building on the experience gained in Stage I. We discuss possible designs for Stage II (3.62km.w.e.) and Stage

  20. Scientific uncertainties in atmospheric mercury models III: Boundary and initial conditions, model grid resolution, and Hg(II) reduction mechanism

    SciTech Connect

    Lin, Che-Jen; Pongprueksa, Pruek; Lindberg, Steven Eric; Jang, Carey; Braverman, Thomas; Bullock, Russell O; Ho, Thomas; Chu, Hsing-Wei

    2008-03-01

    In this study, the model response in terms of simulated mercury concentration and deposition to boundary condition (BC), initial condition (IC), model grid resolution (12 km versus 36 km), and two alternative Hg(II) reduction mechanisms, was investigated. The model response to the change of gaseous elemental mercury (GEM) concentration from 0 to 2 ngm3 in IC/BC is found to be very linear (r240.99) based on the results of sensitivity simulations in July 2001. An increase of 1 ngm3 of GEM in BC resulted in an increase of 0.81 ngm3 in the monthly average of total mercury concentration, and 1270 ngm2 in the monthly total deposition. IC has similar but weaker effects compared to those of BC. An increase of 1 ngm3 of GEM in IC resulted in an increase of 0.14 ngm3 in the monthly average of total mercury concentration, and 250 ngm2 in the monthly total deposition. Varying reactive gaseous mercury (RGM) or particulate mercury (PHg) in BC/IC has much less significant impact. Simulation results at different grid resolutions show good agreement (slope 0.950 1.026, r 0.816 0.973) in mercury concentration, dry deposition, and total deposition. The agreement in wet deposition is somewhat weaker (slope 0.770 0.794, r 0.685 0.892) due to the difference in emission dilution and simulated precipitation that subsequently change reaction rates in the aqueous phase. Replacing the aqueous Hg(II)-HO2 reduction by either RGM reduction by CO (51018cm3 molecule1 s1) or photoreduction of RGM (1105 s1) gives significantly better model agreement with the wet deposition measured by Mercury Deposition Network (MDN). Possible ranges of the reduction rates are estimated based on model sensitivity results. The kinetic estimate requires further verification by laboratory studies.